forked from shihono/evaluate_japanese_w2v
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
102 lines (84 loc) · 3.77 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# -*- coding: utf-8 -*-
import os
import pathlib
import logging
import argparse
from glob import glob
import numpy as np
import scipy.stats
from src.similarity import SimDataSet, load_keyvector, cal_wv_similarity
from src.ja_tokenizer import JapaneseTokenizer
"""eval w2v similarity"""
logger = logging.getLogger(__name__)
def set_logger():
"""
set logging StreamHandler
"""
# logger.handlers.clear()
format_string = '[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s'
logger.setLevel(logging.INFO)
formatter = logging.Formatter(format_string)
# stdout
handler = logging.StreamHandler()
handler.setLevel(logging.DEBUG)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info('set logger')
def resolve_path(filepath):
p = pathlib.Path(filepath)
if p.is_absolute():
return p
else:
return p.resolve()
def main():
parser = argparse.ArgumentParser(description='japanese word similarity evaluation')
parser.add_argument('model', help='gensim model path: extension like `.bin` or `.model` or `.txt` or `.kv')
parser.add_argument('data', help='evaluation dataset csv path or directory')
parser.add_argument('--col', nargs=3, default=[0, 1, 2], type=int, help='indexes of word1, word2, similarity')
parser.add_argument('--verbose', '-v', help='verbose', action='store_true')
parser.add_argument('--mecab', '-m', help='use mecab', action='store_true')
parser.add_argument('--mecab_dict', '-d', help='mecab dictionary path')
parser.add_argument('--sudachi', '-s', help='use sudachi', action='store_true')
parser.add_argument('--sudachi_mode', help='select sudachi tokenizer mode: A or B or C')
parser.add_argument('--output', '-o', help='output csv path or directory path')
args = parser.parse_args()
if args.verbose:
set_logger()
data_path = resolve_path(args.data)
if data_path.is_dir():
data_path = glob(os.path.join(data_path, '*.csv'))
else:
data_path = [data_path]
model_path = str(resolve_path(args.model))
column_indexes = args.col
wv = load_keyvector(model_path)
logger.info('Word vector {} dim, Vocab size {}'.format(wv.vector_size, len(wv.vocab)))
# set tokenizer : mecab or sudachipy
tokenizer = None
if args.mecab:
logger.info('Use mecab : dict setting is {}'.format(args.mecab_dict))
tokenizer = JapaneseTokenizer(tokenizer_name='mecab', dict_path=args.mecab_dict)
elif args.sudachi:
logger.info('Use sudachipy : mode setting is {}'.format(args.sudachi_mode))
tokenizer = JapaneseTokenizer(tokenizer_name='sudachi', mode=args.sudachi_mode)
for data in data_path:
sim_dataset = SimDataSet(data, column_indexes)
logger.info('load {}'.format(sim_dataset))
res_array = cal_wv_similarity(sim_dataset, wv, oov_score=np.nan, tokenizer=tokenizer)
if args.output:
output_path = resolve_path(args.output)
if output_path.is_dir():
output_path = os.path.join(str(output_path), os.path.basename(data))
else:
output_path = str(output_path)
sim_dataset.write_csv(res_array, output_path)
logger.info('save {}'.format(output_path))
res_array = res_array[~np.isnan(res_array).any(axis=1)]
logger.info('Evaluate {} data'.format(res_array.shape[0]))
spearmanr_result = scipy.stats.spearmanr(res_array)
logger.info('spearmanr {}'.format(spearmanr_result))
print('Data\t{}\nOOV\t{}\nCorr\t{:.3f}'.format(len(sim_dataset.gold_data),
len(sim_dataset.gold_data)-res_array.shape[0],
spearmanr_result[0]))
if __name__ == '__main__':
main()