-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmain_fqa.cpp
279 lines (254 loc) · 8.59 KB
/
main_fqa.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace dnn;
using namespace std;
typedef struct
{
cv::Rect rect;
float prob;
vector<Point> kpt;
} face;
class YOLOv8_face
{
public:
YOLOv8_face(string modelpath, float confThreshold, float nmsThreshold);
vector<face> detect(Mat& frame);
private:
Mat resize_image(Mat srcimg, int *newh, int *neww, int *padh, int *padw);
const bool keep_ratio = true;
const int inpWidth = 640;
const int inpHeight = 640;
float confThreshold;
float nmsThreshold;
const int num_class = 1; ///只有人脸这一个类别
const int reg_max = 16;
Net net;
void softmax_(const float* x, float* y, int length);
void generate_proposal(Mat out, vector<Rect>& boxes, vector<float>& confidences, vector< vector<Point>>& landmarks, int imgh, int imgw, float ratioh, float ratiow, int padh, int padw);
};
static inline float sigmoid_x(float x)
{
return static_cast<float>(1.f / (1.f + exp(-x)));
}
YOLOv8_face::YOLOv8_face(string modelpath, float confThreshold, float nmsThreshold)
{
this->confThreshold = confThreshold;
this->nmsThreshold = nmsThreshold;
this->net = readNet(modelpath);
}
Mat YOLOv8_face::resize_image(Mat srcimg, int *newh, int *neww, int *padh, int *padw)
{
int srch = srcimg.rows, srcw = srcimg.cols;
*newh = this->inpHeight;
*neww = this->inpWidth;
Mat dstimg;
if (this->keep_ratio && srch != srcw) {
float hw_scale = (float)srch / srcw;
if (hw_scale > 1) {
*newh = this->inpHeight;
*neww = int(this->inpWidth / hw_scale);
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*padw = int((this->inpWidth - *neww) * 0.5);
copyMakeBorder(dstimg, dstimg, 0, 0, *padw, this->inpWidth - *neww - *padw, BORDER_CONSTANT, 0);
}
else {
*newh = (int)this->inpHeight * hw_scale;
*neww = this->inpWidth;
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
*padh = (int)(this->inpHeight - *newh) * 0.5;
copyMakeBorder(dstimg, dstimg, *padh, this->inpHeight - *newh - *padh, 0, 0, BORDER_CONSTANT, 0);
}
}
else {
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
}
return dstimg;
}
void YOLOv8_face::softmax_(const float* x, float* y, int length)
{
float sum = 0;
int i = 0;
for (i = 0; i < length; i++)
{
y[i] = exp(x[i]);
sum += y[i];
}
for (i = 0; i < length; i++)
{
y[i] /= sum;
}
}
void YOLOv8_face::generate_proposal(Mat out, vector<Rect>& boxes, vector<float>& confidences, vector< vector<Point>>& landmarks, int imgh,int imgw, float ratioh, float ratiow, int padh, int padw)
{
const int feat_h = out.size[2];
const int feat_w = out.size[3];
cout << out.size[1] << "," << out.size[2] << "," << out.size[3] << endl;
const int stride = (int)ceil((float)inpHeight / feat_h);
const int area = feat_h * feat_w;
float* ptr = (float*)out.data;
float* ptr_cls = ptr + area * reg_max * 4;
float* ptr_kp = ptr + area * (reg_max * 4 + num_class);
for (int i = 0; i < feat_h; i++)
{
for (int j = 0; j < feat_w; j++)
{
const int index = i * feat_w + j;
int cls_id = -1;
float max_conf = -10000;
for (int k = 0; k < num_class; k++)
{
float conf = ptr_cls[k*area + index];
if (conf > max_conf)
{
max_conf = conf;
cls_id = k;
}
}
float box_prob = sigmoid_x(max_conf);
if (box_prob > this->confThreshold)
{
float pred_ltrb[4];
float* dfl_value = new float[reg_max];
float* dfl_softmax = new float[reg_max];
for (int k = 0; k < 4; k++)
{
for (int n = 0; n < reg_max; n++)
{
dfl_value[n] = ptr[(k*reg_max + n)*area + index];
}
softmax_(dfl_value, dfl_softmax, reg_max);
float dis = 0.f;
for (int n = 0; n < reg_max; n++)
{
dis += n * dfl_softmax[n];
}
pred_ltrb[k] = dis * stride;
}
float cx = (j + 0.5f)*stride;
float cy = (i + 0.5f)*stride;
float xmin = max((cx - pred_ltrb[0] - padw)*ratiow, 0.f); ///还原回到原图
float ymin = max((cy - pred_ltrb[1] - padh)*ratioh, 0.f);
float xmax = min((cx + pred_ltrb[2] - padw)*ratiow, float(imgw - 1));
float ymax = min((cy + pred_ltrb[3] - padh)*ratioh, float(imgh - 1));
Rect box = Rect(int(xmin), int(ymin), int(xmax - xmin), int(ymax - ymin));
boxes.push_back(box);
confidences.push_back(box_prob);
vector<Point> kpts(5);
for (int k = 0; k < 5; k++)
{
float x = ((ptr_kp[(k * 3)*area + index] * 2 + j)*stride - padw)*ratiow; ///还原回到原图
float y = ((ptr_kp[(k * 3 + 1)*area + index] * 2 + i)*stride - padh)*ratioh;
///float pt_conf = sigmoid_x(ptr_kp[(k * 3 + 2)*area + index]);
kpts[k] = Point(int(x), int(y));
}
landmarks.push_back(kpts);
}
}
}
}
vector<face> YOLOv8_face::detect(Mat& srcimg)
{
int newh = 0, neww = 0, padh = 0, padw = 0;
Mat dst = this->resize_image(srcimg, &newh, &neww, &padh, &padw);
Mat blob;
blobFromImage(dst, blob, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
this->net.setInput(blob);
vector<Mat> outs;
net.enableWinograd(false); ////如果是opencv4.7,那就需要加上这一行
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
/////generate proposals
vector<Rect> boxes;
vector<float> confidences;
vector< vector<Point>> landmarks;
float ratioh = (float)srcimg.rows / newh, ratiow = (float)srcimg.cols / neww;
generate_proposal(outs[0], boxes, confidences, landmarks, srcimg.rows, srcimg.cols, ratioh, ratiow, padh, padw);
generate_proposal(outs[1], boxes, confidences, landmarks, srcimg.rows, srcimg.cols, ratioh, ratiow, padh, padw);
generate_proposal(outs[2], boxes, confidences, landmarks, srcimg.rows, srcimg.cols, ratioh, ratiow, padh, padw);
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
vector<face> face_boxes;
for (size_t i = 0; i < indices.size(); ++i)
{
const int idx = indices[i];
face_boxes.push_back({ boxes[idx], confidences[idx], landmarks[idx] });
}
return face_boxes;
}
class face_quality_assessment
{
public:
face_quality_assessment(string modelpath)
{
this->net = readNet(modelpath);
}
float detect(Mat cropped);
private:
const int inpWidth = 112;
const int inpHeight = 112;
Net net;
Mat normalize_(Mat img);
const float mean_[3] = { 0.5, 0.5, 0.5 };
const float std_[3] = { 0.5, 0.5, 0.5 };
};
Mat face_quality_assessment::normalize_(Mat img)
{
vector<cv::Mat> bgrChannels(3);
split(img, bgrChannels);
for (int c = 0; c < 3; c++)
{
bgrChannels[c].convertTo(bgrChannels[c], CV_32FC1, 1.0 / (255.0* std_[c]), (0.0 - mean_[c]) / std_[c]);
}
Mat m_normalized_mat;
merge(bgrChannels, m_normalized_mat);
return m_normalized_mat;
}
float face_quality_assessment::detect(Mat cropped)
{
Mat rgbimg;
cvtColor(cropped, rgbimg, COLOR_BGR2RGB);
resize(rgbimg, rgbimg, cv::Size(this->inpWidth, this->inpHeight));
Mat normalized_mat = this->normalize_(rgbimg);
Mat blob = blobFromImage(normalized_mat);
this->net.setInput(blob);
vector<Mat> outs;
net.enableWinograd(false); ////如果是opencv4.7,那就需要加上这一行
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
float* pdata = (float*)outs[0].data; ///形状1x10
const int length = outs[0].size[1];
float fqa_prob_mean = 0;
for (int i = 0; i < length; i++)
{
fqa_prob_mean += pdata[i];
}
fqa_prob_mean /= length;
return fqa_prob_mean;
}
int main()
{
YOLOv8_face face_detector("weights/yolov8n-face.onnx", 0.45, 0.5);
face_quality_assessment fqa("weights/face-quality-assessment.onnx");
string imgpath = "images/1.jpg";
Mat srcimg = imread(imgpath);
vector<face> face_boxes = face_detector.detect(srcimg);
Mat drawimg = srcimg.clone();
for (int i = 0; i < face_boxes.size(); i++)
{
Mat crop_img = srcimg(face_boxes[i].rect);
const float fqa_prob_mean = fqa.detect(crop_img);
cv::rectangle(drawimg, face_boxes[i].rect, cv::Scalar(0, 0, 255), 2);
string label = format("fqa_score:%.2f", fqa_prob_mean);
cv::putText(drawimg, label, cv::Point(face_boxes[i].rect.x, face_boxes[i].rect.y-5), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 255, 0), 2);
}
static const string kWinName = "Deep learning face-quality-assessment use OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, drawimg);
waitKey(0);
destroyAllWindows();
}