-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbasic.py
191 lines (172 loc) · 8.05 KB
/
basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import modules, Parameter
from torch.autograd import Function
activations = {
'ReLU': nn.ReLU,
'Hardtanh': nn.Hardtanh
}
class BinaryQuantize(Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
out = torch.sign(input)
return out
@staticmethod
def backward(ctx, grad_output):
input = ctx.saved_tensors
grad_input = grad_output
grad_input[input[0].gt(1)] = 0
grad_input[input[0].lt(-1)] = 0
return grad_input
class BinaryQuantize_Vanilla(Function):
@staticmethod
def forward(ctx, input, scale):
ctx.save_for_backward(input)
out = torch.sign(input)
if scale != None:
out = out * scale
return out
@staticmethod
def backward(ctx, grad_output):
input = ctx.saved_tensors
grad_input = grad_output
grad_input[input[0].gt(1)] = 0
grad_input[input[0].lt(-1)] = 0
return grad_input, None
class BiLinearVanilla(torch.nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super(BiLinearVanilla, self).__init__(in_features, out_features, bias=bias)
self.output_ = None
def forward(self, input):
bw = self.weight
ba = input
sw = bw.abs().mean(-1).view(-1, 1).detach()
bw = BinaryQuantize_Vanilla().apply(bw, sw)
ba = BinaryQuantize().apply(ba)
output = F.linear(ba, bw, self.bias)
self.output_ = output
return output
biLinears = {
False: nn.Linear,
'Vanilla': BiLinearVanilla,
}
class BiConv1dVanilla(torch.nn.Conv1d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
bias=True, padding_mode='zeros'):
super(BiConv1dVanilla, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, padding_mode)
def forward(self, input):
bw = self.weight
ba = input
bw = bw - bw.mean()
sw = bw.abs().view(bw.size(0), bw.size(1), -1).mean(-1).view(bw.size(0), bw.size(1), 1).detach()
bw = BinaryQuantize_Vanilla().apply(bw, sw)
ba = BinaryQuantize().apply(ba)
if self.padding_mode == 'circular':
expanded_padding = ((self.padding[0] + 1) // 2, self.padding[0] // 2)
return F.conv1d(F.pad(ba, expanded_padding, mode='circular'),
bw, self.bias, self.stride,
_single(0), self.dilation, self.groups)
return F.conv1d(ba, bw, self.bias, self.stride,
self.padding, self.dilation, self.groups)
biConv1ds = {
False: nn.Conv1d,
'Vanilla': BiConv1dVanilla,
}
class BiConv2dVanilla(torch.nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
bias=True, padding_mode='zeros'):
super(BiConv2dVanilla, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, padding_mode)
def forward(self, input):
bw = self.weight
ba = input
bw = bw - bw.mean()
sw = bw.abs().view(bw.size(0), bw.size(1), -1).mean(-1).view(bw.size(0), bw.size(1), 1, -1).detach()
bw = BinaryQuantize_Vanilla().apply(bw, sw)
ba = BinaryQuantize().apply(ba)
if self.padding_mode == 'circular':
expanded_padding = ((self.padding[0] + 1) // 2, self.padding[0] // 2)
return F.conv2d(F.pad(ba, expanded_padding, mode='circular'),
bw, self.bias, self.stride,
_pair(0), self.dilation, self.groups)
return F.conv2d(ba, bw, self.bias, self.stride,
self.padding, self.dilation, self.groups)
biConv2ds = {
False: nn.Conv2d,
'Vanilla': BiConv2dVanilla,
}
def Count(module: nn.Module, id = -1):
id = 0 if id == -1 else id
for name, child_module in module.named_children():
if isinstance(child_module, nn.ModuleList):
for child_child_module in child_module:
id = Count(child_child_module, id)
else:
id = Count(child_module, id)
if isinstance(child_module, nn.Linear):
id += 1
elif isinstance(child_module, nn.Conv1d):
id += 1
elif isinstance(child_module, nn.Conv2d):
id += 1
return id
def Modify(module: nn.Module, method='Sign', id=-1, first=-1, last=-1):
id = 0 if id == -1 else id
if method != False:
for name, child_module in module.named_children():
if isinstance(child_module, nn.ModuleList):
for child_child_module in child_module:
_, id = Modify(child_child_module, method=method, id=id, first=first, last=last)
else:
_, id = Modify(child_module, method=method, id=id, first=first, last=last)
if isinstance(child_module, nn.Linear):
id += 1
if id == first or id == last:
continue
new_layer = biLinears[method](child_module.in_features,
child_module.out_features,
False if child_module.bias == None else True)
new_layer.weight = module._modules[name].weight
new_layer.bias = module._modules[name].bias
module._modules[name] = new_layer
elif isinstance(child_module, nn.Conv1d):
id += 1
if id == first or id == last:
continue
new_layer = biConv1ds[method](in_channels=child_module.in_channels,
out_channels=child_module.out_channels,
kernel_size=child_module.kernel_size,
stride=child_module.stride,
padding=child_module.padding,
dilation=child_module.dilation,
groups=child_module.groups,
bias=False if child_module.bias == None else True,
padding_mode=child_module.padding_mode)
new_layer.weight = module._modules[name].weight
new_layer.bias = module._modules[name].bias
module._modules[name] = new_layer
elif isinstance(child_module, nn.Conv2d):
id += 1
if id == first or id == last:
continue
new_layer = biConv2ds[method](in_channels=child_module.in_channels,
out_channels=child_module.out_channels,
kernel_size=child_module.kernel_size,
stride=child_module.stride,
padding=child_module.padding,
dilation=child_module.dilation,
groups=child_module.groups,
bias=False if child_module.bias == None else True,
padding_mode=child_module.padding_mode)
new_layer.weight = module._modules[name].weight
new_layer.bias = module._modules[name].bias
module._modules[name] = new_layer
return module, id