-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathclever.py
executable file
·503 lines (434 loc) · 23.5 KB
/
clever.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
clever.py
Compute CLEVER score using collected Lipschitz constants
Copyright (C) 2017-2018, IBM Corp.
Copyright (C) 2017, Lily Weng <[email protected]>
and Huan Zhang <[email protected]>
This program is licenced under the Apache 2.0 licence,
contained in the LICENCE file in this directory.
"""
import os
import sys
import glob
from functools import partial
from multiprocessing import Pool
import scipy
import scipy.io as sio
from scipy.stats import weibull_min
import scipy.optimize
import numpy as np
import argparse
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# We observe that the scipy.optimize.fmin optimizer (using Nelder–Mead method)
# sometimes diverges to very large parameters a, b and c. Thus, we add a very
# small regularization to the MLE optimization process to avoid this divergence
def fmin_with_reg(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None,
full_output=0, disp=1, retall=0, callback=None, initial_simplex=None, shape_reg = 0.01):
# print('my optimier with shape regularizer = {}'.format(shape_reg))
def func_with_reg(theta, x):
shape = theta[2]
log_likelyhood = func(theta, x)
reg = shape_reg * shape * shape
# penalize the shape parameter
return log_likelyhood + reg
return scipy.optimize.fmin(func_with_reg, x0, args, xtol, ftol, maxiter, maxfun,
full_output, disp, retall, callback, initial_simplex)
# fit using weibull_min.fit and run a K-S test
def fit_and_test(rescaled_sample, sample, loc_shift, shape_rescale, optimizer, c_i):
[c, loc, scale] = weibull_min.fit(-rescaled_sample, c_i, optimizer=optimizer)
loc = - loc_shift + loc * shape_rescale
scale *= shape_rescale
ks, pVal = scipy.stats.kstest(-sample, 'weibull_min', args = (c, loc, scale))
return c, loc, scale, ks, pVal
def plot_weibull(sample,c,loc,scale,ks,pVal,p,q,figname):
# compare the sample histogram and fitting result
fig, ax = plt.subplots(1,1)
x = np.linspace(-1.01*max(sample),-0.99*min(sample),100);
ax.plot(x,weibull_min.pdf(x,c,loc,scale),'r-',label='fitted pdf '+p+'-bnd')
ax.hist(-sample, density=True, bins=20, histtype='stepfilled')
ax.legend(loc='best', frameon=False)
plt.xlabel('-Lips_'+q)
plt.ylabel('pdf')
plt.title('c = {:.2f}, loc = {:.2f}, scale = {:.2f}, ks = {:.2f}, pVal = {:.2f}'.format(c,loc,scale,ks,pVal))
plt.savefig(figname)
plt.close()
#model = figname.split("_")[1]
#plt.savefig('./debug/'+model+'/'+figname)
#plt.show() # can be used to pause the program
# We observe than the MLE estimator in scipy sometimes can converge to a bad
# value if the inital shape parameter c is too far from the true value. Thus we
# test a few different initializations and choose the one with best p-value all
# the initializations are tested in parallel; remove some of them to speedup
# computation.
# c_init = [0.01,0.1,0.5,1,5,10,20,50,70,100,200]
c_init = [0.1,1,5,10,20,50,100]
def get_best_weibull_fit(sample, use_reg = False, shape_reg = 0.01):
# initialize dictionary to save the fitting results
fitted_paras = {"c":[], "loc":[], "scale": [], "ks": [], "pVal": []}
# reshape the data into a better range
# this helps the MLE solver find the solution easier
loc_shift = np.amax(sample)
dist_range = np.amax(sample) - np.amin(sample)
# if dist_range > 2.5:
shape_rescale = dist_range
# else:
# shape_rescale = 1.0
print("shape rescale = {}".format(shape_rescale))
rescaled_sample = np.copy(sample)
rescaled_sample -= loc_shift
rescaled_sample /= shape_rescale
print("loc_shift = {}".format(loc_shift))
##print("rescaled_sample = {}".format(rescaled_sample))
# fit weibull distn: sample follows reverse weibull dist, so -sample follows weibull distribution
if use_reg:
results = pool.map(partial(fit_and_test, rescaled_sample, sample, loc_shift, shape_rescale, partial(fmin_with_reg, shape_reg = shape_reg)), c_init)
else:
results = pool.map(partial(fit_and_test, rescaled_sample, sample, loc_shift, shape_rescale, scipy.optimize.fmin), c_init)
for res, c_i in zip(results, c_init):
c = res[0]
loc = res[1]
scale = res[2]
ks = res[3]
pVal = res[4]
print("[DEBUG][L2] c_init = {:5.5g}, fitted c = {:6.2f}, loc = {:7.2f}, scale = {:7.2f}, ks = {:4.2f}, pVal = {:4.2f}, max = {:7.2f}".format(c_i,c,loc,scale,ks,pVal,loc_shift))
## plot every fitted result
#plot_weibull(sample,c,loc,scale,ks,pVal,p)
fitted_paras['c'].append(c)
fitted_paras['loc'].append(loc)
fitted_paras['scale'].append(scale)
fitted_paras['ks'].append(ks)
fitted_paras['pVal'].append(pVal)
# get the paras of best pVal among c_init
max_pVal = np.nanmax(fitted_paras['pVal'])
if np.isnan(max_pVal) or max_pVal < 0.001:
print("ill-conditioned samples. Using maximum sample value.")
# handle the ill conditioned case
return -1, -1, -max(sample), -1, -1, -1
max_pVal_idx = fitted_paras['pVal'].index(max_pVal)
c_init_best = c_init[max_pVal_idx]
c_best = fitted_paras['c'][max_pVal_idx]
loc_best = fitted_paras['loc'][max_pVal_idx]
scale_best = fitted_paras['scale'][max_pVal_idx]
ks_best = fitted_paras['ks'][max_pVal_idx]
pVal_best = fitted_paras['pVal'][max_pVal_idx]
return c_init_best, c_best, loc_best, scale_best, ks_best, pVal_best
# G_max is the input array of max values
# Return the Weibull position parameter
def get_lipschitz_estimate(G_max, norm = "L2", figname = "", use_reg = False, shape_reg = 0.01):
global plot_res
c_init, c, loc, scale, ks, pVal = get_best_weibull_fit(G_max, use_reg, shape_reg)
# the norm here is Lipschitz constant norm, not the bound's norm
if norm == "L1":
p = "i"; q = "1"
elif norm == "L2":
p = "2"; q = "2"
elif norm == "Li":
p = "1"; q = "i"
else:
print("Lipschitz norm is not in 1, 2, i!")
if plot_res is not None:
plot_res.get()
# plot_weibull(G_max,c,loc,scale,ks,pVal,p,q,figname)
if figname:
figname = figname + '_'+ "L"+ p + ".png"
plot_res = pool.apply_async(plot_weibull, (G_max,c,loc,scale,ks,pVal,p,q,figname))
return {'Lips_est':-loc, 'shape':c, 'loc': loc, 'scale': scale, 'ks': ks, 'pVal': pVal}
#return np.max(G_max)
# file name contains some information, like true_id, true_label and target_label
def parse_filename(filename):
basename = os.path.basename(filename)
name, _ = os.path.splitext(basename)
name_arr = name.split('_')
Nsamp = int(name_arr[0])
Niters = int(name_arr[1])
true_id = int(name_arr[2])
true_label = int(name_arr[3])
target_label = int(name_arr[4])
image_info = name_arr[5]
activation = name_arr[6]
order = name_arr[7][-1]
return Nsamp, Niters, true_id, true_label, target_label, image_info, activation, order
if __name__ == "__main__":
# parse command line parameters
parser = argparse.ArgumentParser(description='Compute CLEVER scores using collected gradient norm data.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data_folder', help='data folder path')
parser.add_argument('--min', dest='reduce_op', action='store_const',
default=lambda x: sum(x) / len(x) if len(x) > 0 else 0, const=min,
help='report min of all CLEVER scores instead of avg')
parser.add_argument('--user_type',
default="",
help='replace user type with string, used for ImageNet data processing')
parser.add_argument('--use_slope',
action="store_true",
help='report slope estimate. To use this option, collect_gradients.py needs to be run with --compute_slope')
parser.add_argument('--untargeted',
action="store_true",
help='process untargeted attack results (for MNIST and CIFAR)')
parser.add_argument('--num_samples',
type=int,
default=0,
help='the number of samples to use. Default 0 is to use all samples')
parser.add_argument('--num_images',
type=int,
default=0,
help='number of images to use, 0 to use all images')
parser.add_argument('--shape_reg',
default=0.01,
type=float,
help='to avoid the MLE solver in Scipy to diverge, we add a small regularization (default 0.01 is sufficient)')
parser.add_argument('--nthreads',
default=0,
type=int,
help='number of threads (default is len(c_init)+1)')
parser.add_argument('--plot_dir',
default='',
help='output path for weibull fit figures (empty to disable)')
parser.add_argument('--method',
default="mle_reg",
choices=['mle','mle_reg','maxsamp'],
help='Fitting algorithm. Please use mle_reg for best results')
args = vars(parser.parse_args())
reduce_op = args['reduce_op']
if args['plot_dir']:
os.system("mkdir -p " + args['plot_dir'])
print(args)
# create thread pool
if args['nthreads'] == 0:
args['nthreads'] = len(c_init) + 1
print("using {} threads".format(args['nthreads']))
pool = Pool(processes = args['nthreads'])
# pool = Pool(1)
# used for asynchronous plotting in background
plot_res = None
# get a list of all '.mat' files in folder
file_list = glob.glob(args['data_folder'] + '/**/*.mat', recursive = True)
# sort by image ID, then by information (least likely, random, top-2)
file_list = sorted(file_list, key = lambda x: (parse_filename(x)[2], parse_filename(x)[5]))
# get the first num_images files
if args['num_images']:
file_list = file_list[:args['num_images']]
if args['untargeted']:
bounds = {}
# bounds will be inserted per image
else:
# aggregate information for three different types: least, random and top2
# each has three bounds: L1, L2, and Linf
bounds = {"least" : [[], [], []],
"random": [[], [], []],
"top2" : [[], [], []]}
for fname in file_list:
nsamps, niters, true_id, true_label, target_label, img_info, activation, order = parse_filename(fname)
# keys in mat:
# ['Li_max', 'pred', 'G1_max', 'g_x0', 'path', 'info', 'G2_max', 'true_label', 'args', 'L1_max', 'Gi_max', 'L2_max', 'id', 'target_label']
mat = sio.loadmat(fname)
print('loading {}'.format(fname))
if order == "1" and args['use_slope']:
G1_max = np.squeeze(mat['L1_max'])
G2_max = np.squeeze(mat['L2_max'])
Gi_max = np.squeeze(mat['Li_max'])
elif order == "1":
G1_max = np.squeeze(mat['G1_max'])
G2_max = np.squeeze(mat['G2_max'])
Gi_max = np.squeeze(mat['Gi_max'])
elif order == "2":
""" For Jun 25 experiments: forgot to save g_x0_grad_2_norm, so rerun a 1 sample 1 iterations cases "1_1_*.mat" and load g_x0_grad_2_norm from it
fname_ref = os.path.dirname(fname)+'_1/'+"1_1_"+str(true_id)+"_"+str(true_label)+"_"+str(target_label)+"_"+img_info+"_"+activation+"_order2.mat"
##fname_ref = 'lipschitz_mat/mnist_normal/'+"1_1_"+str(true_id)+"_"+str(true_label)+"_"+str(target_label)+"_"+img_info+"_"+activation+"_order2.mat"
print("loading {}".format(fname_ref))
mat_ref = sio.loadmat(fname_ref)
g_x0_grad_2_norm = np.squeeze(mat_ref['g_x0_grad_2_norm'])
print("g_x0_grad_2_norm = {}".format(g_x0_grad_2_norm))
#import time
#time.sleep(30)
"""
G2_max = np.abs(np.squeeze(mat['H2_max'])) # forgot to add abs when save in mat file
G1_max = -1*np.empty_like(G2_max) # currently only implemented 2nd order bound for p = 2
Gi_max = -1*np.empty_like(G2_max)
g_x0_grad_2_norm = np.squeeze(mat['g_x0_grad_2_norm'])
else:
raise RuntimeError('!!! order is {}'.format(order))
if args['num_samples'] != 0:
prev_len = len(G1_max)
G1_max = G1_max[:args['num_samples']]
G2_max = G2_max[:args['num_samples']]
Gi_max = Gi_max[:args['num_samples']]
print('Using {} out of {} total samples'.format(len(G1_max), prev_len))
g_x0 = np.squeeze(mat['g_x0'])
target_label = np.squeeze(mat['target_label'])
true_id = np.squeeze(mat['id'])
true_label = np.squeeze(mat['true_label'])
img_info = mat['info'][0]
if args['user_type'] != "" and img_info == "user":
img_info = args['user_type']
# get the filename (.mat)
print('[Filename] {}'.format(fname))
# get the model name (inception, cifar_2-layer)
possible_names = ["mnist", "cifar", "mobilenet", "inception", "resnet"]
model = "unknown"
for path_seg in args["data_folder"].split("/"):
for n in possible_names:
if n in path_seg:
model = path_seg.replace('_', '-')
break
# model = args["data_folder"].split("/")[1]
if args['num_samples'] == 0: # default, use all G1_max
figname = 'Fig_'+model+'_'+img_info+'_'+str(true_id)+'_'+str(true_label)+'_'+str(target_label)+'_Nsamp_'+str(len(G1_max));
elif args['num_samples'] <= len(G1_max) and args['num_samples'] > 0:
figname = 'Fig_'+model+'_'+img_info+'_'+str(true_id)+'_'+str(true_label)+'_'+str(target_label)+'_Nsamp_'+str(args['num_samples']);
else:
print('Warning!! Input arg num_samp = {} exceed len(G1_max) in data_process.py'.format(args['num_samples']))
continue
if args['use_slope']:
figname = figname + '_slope'
if args['plot_dir']:
figname = os.path.join(args['plot_dir'], figname)
# figname
print('[Figname] {}'.format(figname))
else:
# disable debugging figure
figname = ""
if args['method'] == "maxsamp":
if order == "1":
Est_G1 = {'Lips_est': max(G1_max), 'shape': -1, 'loc': -1, 'scale': -1, 'ks': -1, 'pVal': -1}
Est_G2 = {'Lips_est': max(G2_max), 'shape': -1, 'loc': -1, 'scale': -1, 'ks': -1, 'pVal': -1}
Est_Gi = {'Lips_est': max(Gi_max), 'shape': -1, 'loc': -1, 'scale': -1, 'ks': -1, 'pVal': -1}
else: # currently only compare bounds in L2 for both order = 1 and order = 2
Est_G2 = {'Lips_est': max(G2_max), 'shape': -1, 'loc': -1, 'scale': -1, 'ks': -1, 'pVal': -1}
Est_G1 = Est_G2
Est_Gi = Est_G2
elif args['method'] == "mle":
# estimate Lipschitz constant: Est_G1 is a dictionary containing Lips_est and weibull paras
if order == "1":
Est_G1 = get_lipschitz_estimate(G1_max, "L1", figname)
Est_G2 = get_lipschitz_estimate(G2_max, "L2", figname)
Est_Gi = get_lipschitz_estimate(Gi_max, "Li", figname)
else: # currently only compare bounds in L2 for both order = 1 and order = 2
Est_G2 = get_lipschitz_estimate(G2_max, "L2", figname)
Est_G1 = Est_G2 # haven't implemented
Est_Gi = Est_G2 # haven't implemented
elif args['method'] == "mle_reg":
if order == "1":
print('estimating L1...')
Est_G1 = get_lipschitz_estimate(G1_max, "L1", figname, True, args['shape_reg'])
print('estimating L2...')
Est_G2 = get_lipschitz_estimate(G2_max, "L2", figname, True, args['shape_reg'])
print('estimating Li...')
Est_Gi = get_lipschitz_estimate(Gi_max, "Li", figname, True, args['shape_reg'])
else: # currently only compare bounds in L2 for both order = 1 and order = 2
print('estimating L2...')
Est_G2 = get_lipschitz_estimate(G2_max, "L2", figname, True, args['shape_reg'])
Est_G1 = Est_G2
Est_Gi = Est_G1
else:
raise RuntimeError("method not supported")
# the estimated Lipschitz constant
Lip_G1 = Est_G1['Lips_est']
Lip_G2 = Est_G2['Lips_est']
Lip_Gi = Est_Gi['Lips_est']
# the estimated shape parameter (c) in Weibull distn
shape_G1 = Est_G1['shape']
shape_G2 = Est_G2['shape']
shape_Gi = Est_Gi['shape']
# the estimated loc parameters in Weibull distn
loc_G1 = Est_G1['loc']
loc_G2 = Est_G2['loc']
loc_Gi = Est_Gi['loc']
# the estimated scale parameters in Weibull distn
scale_G1 = Est_G1['scale']
scale_G2 = Est_G2['scale']
scale_Gi = Est_Gi['scale']
# the computed ks score
ks_G1 = Est_G1['ks']
ks_G2 = Est_G2['ks']
ks_Gi = Est_Gi['ks']
# the computed pVal
pVal_G1 = Est_G1['pVal']
pVal_G2 = Est_G2['pVal']
pVal_Gi = Est_Gi['pVal']
# compute robustness bound
if order == "1":
bnd_L1 = g_x0 / Lip_Gi
bnd_L2 = g_x0 / Lip_G2
bnd_Li = g_x0 / Lip_G1
else:
bnd_L2 = (-g_x0_grad_2_norm + np.sqrt(g_x0_grad_2_norm**2+2*g_x0*Lip_G2))/Lip_G2
bnd_L1 = bnd_L2 # haven't implemented
bnd_Li = bnd_L2 # haven't implemented
# save bound of each image
if args['untargeted']:
true_id = int(true_id)
if true_id not in bounds:
bounds[true_id] = [[], [], []]
bounds[true_id][0].append(bnd_L1)
bounds[true_id][1].append(bnd_L2)
bounds[true_id][2].append(bnd_Li)
else:
bounds[img_info][0].append(bnd_L1)
bounds[img_info][1].append(bnd_L2)
bounds[img_info][2].append(bnd_Li)
# original data_process mode
#print('[STATS][L1] id = {}, true_label = {}, target_label = {}, info = {}, bnd_L1 = {:.5g}, bnd_L2 = {:.5g}, bnd_Li = {:.5g}'.format(true_id, true_label, target_label, img_info, bnd_L1, bnd_L2, bnd_Li))
bndnorm_L1 = "1";
bndnorm_L2 = "2";
bndnorm_Li = "i";
# if use g_x0 = {:.5g}.format(g_x0), then it will have type error. Not sure why yet.
#print('g_x0 = '+str(g_x0))
if args['method'] == "maxsamp":
if order == "1":
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_L1, bnd_L1))
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_L2, bnd_L2))
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_Li, bnd_Li))
else: # currently only compare L2 bound
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_L2, bnd_L2))
elif args['method'] == "mle" or args['method'] == "mle_reg":
if order == "1":
# estimate Lipschitz constant: Est_G1 is a dictionary containing Lips_est and weibull paras
# current debug mode: bound_L1 corresponds to Gi, bound_L2 corresponds to G2, bound_Li corresponds to G1
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}, ks = {:.5g}, pVal = {:.5g}, shape = {:.5g}, loc = {:.5g}, scale = {:.5g}, g_x0 = {}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_L1, bnd_L1, ks_Gi, pVal_Gi, shape_Gi, loc_Gi, scale_Gi, g_x0))
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}, ks = {:.5g}, pVal = {:.5g}, shape = {:.5g}, loc = {:.5g}, scale = {:.5g}, g_x0 = {}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_L2, bnd_L2, ks_G2, pVal_G2, shape_G2, loc_G2, scale_G2, g_x0))
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}, ks = {:.5g}, pVal = {:.5g}, shape = {:.5g}, loc = {:.5g}, scale = {:.5g}, g_x0 = {}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_Li, bnd_Li, ks_G1, pVal_G1, shape_G1, loc_G1, scale_G1, g_x0))
else: # currently only compare L2 bound
print('[DEBUG][L1] id = {}, true_label = {}, target_label = {}, info = {}, nsamps = {}, niters = {}, bnd_norm = {}, bnd = {:.5g}, ks = {:.5g}, pVal = {:.5g}, shape = {:.5g}, loc = {:.5g}, scale = {:.5g}, g_x0 = {}'.format(true_id, true_label, target_label, img_info, nsamps, niters, bndnorm_L2, bnd_L2, ks_G2, pVal_G2, shape_G2, loc_G2, scale_G2, g_x0))
else:
raise RuntimeError("method not supported")
sys.stdout.flush()
if args['untargeted']:
clever_L1s = []
clever_L2s = []
clever_Lis = []
for true_id, true_id_bounds in bounds.items():
img_clever_L1 = min(true_id_bounds[0])
img_clever_L2 = min(true_id_bounds[1])
img_clever_Li = min(true_id_bounds[2])
n_classes = len(true_id_bounds[0]) + 1
assert len(true_id_bounds[0]) == len(true_id_bounds[2])
assert len(true_id_bounds[1]) == len(true_id_bounds[2])
print('[STATS][L1] image = {:3d}, n_classes = {:3d}, clever_L1 = {:.5g}, clever_L2 = {:.5g}, clever_Li = {:.5g}'.format(true_id, n_classes, img_clever_L1, img_clever_L2, img_clever_Li))
clever_L1s.append(img_clever_L1)
clever_L2s.append(img_clever_L2)
clever_Lis.append(img_clever_Li)
info = "untargeted"
clever_L1 = reduce_op(clever_L1s)
clever_L2 = reduce_op(clever_L2s)
clever_Li = reduce_op(clever_Lis)
print('[STATS][L0] info = {}, {}_clever_L1 = {:.5g}, {}_clever_L2 = {:.5g}, {}_clever_Li = {:.5g}'.format(info, info, clever_L1, info, clever_L2, info, clever_Li))
else:
# print min/average bound
for info, info_bounds in bounds.items():
# reduce each array to a single number (min or avg)
clever_L1 = reduce_op(info_bounds[0])
clever_L2 = reduce_op(info_bounds[1])
clever_Li = reduce_op(info_bounds[2])
if order == "1":
print('[STATS][L0] info = {}, {}_clever_L1 = {:.5g}, {}_clever_L2 = {:.5g}, {}_clever_Li = {:.5g}'.format(info, info, clever_L1, info, clever_L2, info, clever_Li))
else: # currently only compare L2 bound for both order = 1 and order = 2
print('[STATS][L0] info = {}, {}_clever_L2 = {:.5g}'.format(info, info, clever_L2))
sys.stdout.flush()
# shutdown thread pool
pool.close()
pool.join()