forked from e0404/matRad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatRad_generateStf.m
493 lines (394 loc) · 20.3 KB
/
matRad_generateStf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
function stf = matRad_generateStf(ct,cst,pln,visMode)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% matRad steering information generation
%
% call
% stf = matRad_generateStf(ct,cst,pln,visMode)
%
% input
% ct: ct cube
% cst: matRad cst struct
% pln: matRad plan meta information struct
% visMode: toggle on/off different visualizations by setting this value to 1,2,3 (optional)
%
% output
% stf: matRad steering information struct
%
% References
% -
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright 2015 the matRad development team.
%
% This file is part of the matRad project. It is subject to the license
% terms in the LICENSE file found in the top-level directory of this
% distribution and at https://github.com/e0404/matRad/LICENSES.txt. No part
% of the matRad project, including this file, may be copied, modified,
% propagated, or distributed except according to the terms contained in the
% LICENSE file.
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('matRad: Generating stf struct... ');
if nargin < 4
visMode = 0;
end
if numel(pln.propStf.gantryAngles) ~= numel(pln.propStf.couchAngles)
error('Inconsistent number of gantry and couch angles.');
end
if pln.propStf.bixelWidth < 0 || ~isfinite(pln.propStf.bixelWidth)
error('bixel width (spot distance) needs to be a real number [mm] larger than zero.');
end
% find all target voxels from cst cell array
V = [];
for i=1:size(cst,1)
if isequal(cst{i,3},'TARGET') && ~isempty(cst{i,6})
V = [V;vertcat(cst{i,4}{:})];
end
end
% Remove double voxels
V = unique(V);
% generate voi cube for targets
voiTarget = zeros(ct.cubeDim);
voiTarget(V) = 1;
% add margin
addmarginBool = 1;
if addmarginBool
voiTarget = matRad_addMargin(voiTarget,cst,ct.resolution,ct.resolution,true);
V = find(voiTarget>0);
end
% throw error message if no target is found
if isempty(V)
error('Could not find target.');
end
% prepare structures necessary for particles
fileName = [pln.radiationMode '_' pln.machine];
try
load([fileparts(mfilename('fullpath')) filesep fileName]);
SAD = machine.meta.SAD;
catch
error(['Could not find the following machine file: ' fileName ]);
end
if strcmp(pln.radiationMode,'protons') || strcmp(pln.radiationMode,'carbon')
availableEnergies = [machine.data.energy];
availablePeakPos = [machine.data.peakPos] + [machine.data.offset];
if sum(availablePeakPos<0)>0
error('at least one available peak position is negative - inconsistent machine file')
end
%clear machine;
end
% calculate rED or rSP from HU
if ~isdeployed
addpath(['dicomImport'])
addpath(['dicomImport' filesep 'hlutLibrary'])
end
ct = matRad_calcWaterEqD(ct, pln);
% Convert linear indices to 3D voxel coordinates
[coordsY_vox, coordsX_vox, coordsZ_vox] = ind2sub(ct.cubeDim,V);
% Define steering file like struct. Prellocating for speed.
stf = struct;
% loop over all angles
for i = 1:length(pln.propStf.gantryAngles)
% Correct for iso center position. Whit this correction Isocenter is
% (0,0,0) [mm]
coordsX = coordsX_vox*ct.resolution.x - pln.propStf.isoCenter(i,1);
coordsY = coordsY_vox*ct.resolution.y - pln.propStf.isoCenter(i,2);
coordsZ = coordsZ_vox*ct.resolution.z - pln.propStf.isoCenter(i,3);
% Save meta information for treatment plan
stf(i).gantryAngle = pln.propStf.gantryAngles(i);
stf(i).couchAngle = pln.propStf.couchAngles(i);
stf(i).bixelWidth = pln.propStf.bixelWidth;
stf(i).radiationMode = pln.radiationMode;
stf(i).SAD = SAD;
stf(i).isoCenter = pln.propStf.isoCenter(i,:);
% Get the (active) rotation matrix. We perform a passive/system
% rotation with row vector coordinates, which would introduce two
% inversions / transpositions of the matrix, thus no changes to the
% rotation matrix are necessary
rotMat_system_T = matRad_getRotationMatrix(pln.propStf.gantryAngles(i),pln.propStf.couchAngles(i));
rot_coords = [coordsX coordsY coordsZ]*rotMat_system_T;
% project x and z coordinates to isocenter
coordsAtIsoCenterPlane(:,1) = (rot_coords(:,1)*SAD)./(SAD + rot_coords(:,2));
coordsAtIsoCenterPlane(:,2) = (rot_coords(:,3)*SAD)./(SAD + rot_coords(:,2));
% Take unique rows values for beamlets positions. Calculate position of
% central ray for every bixel
rayPos = unique(pln.propStf.bixelWidth*round([ coordsAtIsoCenterPlane(:,1) ...
zeros(size(coordsAtIsoCenterPlane,1),1) ...
coordsAtIsoCenterPlane(:,2)]/pln.propStf.bixelWidth),'rows');
% pad ray position array if resolution of target voxel grid not sufficient
maxCtResolution = max([ct.resolution.x ct.resolution.y ct.resolution.z]);
if pln.propStf.bixelWidth < maxCtResolution
origRayPos = rayPos;
for j = -floor(maxCtResolution/pln.propStf.bixelWidth):floor(maxCtResolution/pln.propStf.bixelWidth)
for k = -floor(maxCtResolution/pln.propStf.bixelWidth):floor(maxCtResolution/pln.propStf.bixelWidth)
if abs(j)+abs(k)==0
continue;
end
rayPos = [rayPos; origRayPos(:,1)+j*pln.propStf.bixelWidth origRayPos(:,2) origRayPos(:,3)+k*pln.propStf.bixelWidth];
end
end
end
% remove spaces within rows of bixels for DAO
if pln.propOpt.runDAO
% create single x,y,z vectors
x = rayPos(:,1);
y = rayPos(:,2);
z = rayPos(:,3);
uniZ = unique(z);
for j = 1:numel(uniZ)
x_loc = x(z == uniZ(j));
x_min = min(x_loc);
x_max = max(x_loc);
x = [x; [x_min:pln.propStf.bixelWidth:x_max]'];
y = [y; zeros((x_max-x_min)/pln.propStf.bixelWidth+1,1)];
z = [z; uniZ(j)*ones((x_max-x_min)/pln.propStf.bixelWidth+1,1)];
end
rayPos = [x,y,z];
end
% remove double rays
rayPos = unique(rayPos,'rows');
% Save the number of rays
stf(i).numOfRays = size(rayPos,1);
% Save ray and target position in beam eye's view (bev)
for j = 1:stf(i).numOfRays
stf(i).ray(j).rayPos_bev = rayPos(j,:);
stf(i).ray(j).targetPoint_bev = [2*stf(i).ray(j).rayPos_bev(1) ...
SAD ...
2*stf(i).ray(j).rayPos_bev(3)];
end
% source position in bev
stf(i).sourcePoint_bev = [0 -SAD 0];
% get (active) rotation matrix
% transpose matrix because we are working with row vectors
rotMat_vectors_T = transpose(matRad_getRotationMatrix(pln.propStf.gantryAngles(i),pln.propStf.couchAngles(i)));
stf(i).sourcePoint = stf(i).sourcePoint_bev*rotMat_vectors_T;
% Save ray and target position in lps system.
for j = 1:stf(i).numOfRays
stf(i).ray(j).rayPos = stf(i).ray(j).rayPos_bev*rotMat_vectors_T;
stf(i).ray(j).targetPoint = stf(i).ray(j).targetPoint_bev*rotMat_vectors_T;
if strcmp(pln.radiationMode,'photons')
stf(i).ray(j).rayCorners_SCD = (repmat([0, machine.meta.SCD - SAD, 0],4,1)+ (machine.meta.SCD/SAD) * ...
[rayPos(j,:) + [+stf(i).bixelWidth/2,0,+stf(i).bixelWidth/2];...
rayPos(j,:) + [-stf(i).bixelWidth/2,0,+stf(i).bixelWidth/2];...
rayPos(j,:) + [-stf(i).bixelWidth/2,0,-stf(i).bixelWidth/2];...
rayPos(j,:) + [+stf(i).bixelWidth/2,0,-stf(i).bixelWidth/2]])*rotMat_vectors_T;
end
end
% loop over all rays to determine meta information for each ray
stf(i).numOfBixelsPerRay = ones(1,stf(i).numOfRays);
for j = stf(i).numOfRays:-1:1
% ray tracing necessary to determine depth of the target
[~,l,rho,~,~] = matRad_siddonRayTracer(stf(i).isoCenter, ...
ct.resolution, ...
stf(i).sourcePoint, ...
stf(i).ray(j).targetPoint, ...
[{ct.cube{1}} {voiTarget}]);
% find appropriate energies for particles
if strcmp(stf(i).radiationMode,'protons') || strcmp(stf(i).radiationMode,'carbon')
% target hit
if sum(rho{2}) > 0
% compute radiological depths
% http://www.ncbi.nlm.nih.gov/pubmed/4000088, eq 14
radDepths = cumsum(l .* rho{1});
% find target entry & exit
diff_voi = diff([rho{2}]);
targetEntry = radDepths(diff_voi == 1);
targetExit = radDepths(diff_voi == -1);
if numel(targetEntry) ~= numel(targetExit)
error('Inconsistency during ray tracing.');
end
stf(i).ray(j).energy = [];
% Save energies in stf struct
for k = 1:numel(targetEntry)
stf(i).ray(j).energy = [stf(i).ray(j).energy availableEnergies(availablePeakPos>=targetEntry(k)&availablePeakPos<=targetExit(k))];
end
% book keeping & calculate focus index
stf(i).numOfBixelsPerRay(j) = numel([stf(i).ray(j).energy]);
currentMinimumFWHM = matRad_interp1(machine.meta.LUT_bxWidthminFWHM(1,:)',...
machine.meta.LUT_bxWidthminFWHM(2,:)',...
pln.propStf.bixelWidth);
focusIx = ones(stf(i).numOfBixelsPerRay(j),1);
[~, vEnergyIx] = min(abs(bsxfun(@minus,[machine.data.energy]',...
repmat(stf(i).ray(j).energy,length([machine.data]),1))));
% get for each spot the focus index
for k = 1:stf(i).numOfBixelsPerRay(j)
focusIx(k) = find(machine.data(vEnergyIx(k)).initFocus.SisFWHMAtIso > currentMinimumFWHM,1,'first');
end
stf(i).ray(j).focusIx = focusIx';
else % target not hit
stf(i).ray(j) = [];
stf(i).numOfBixelsPerRay(j) = [];
end
elseif strcmp(stf(i).radiationMode,'photons')
% book keeping for photons
stf(i).ray(j).energy = machine.data.energy;
else
error('Error generating stf struct: invalid radiation modality.');
end
end
% store total number of rays for beam-i
stf(i).numOfRays = size(stf(i).ray,2);
% post processing for particle remove energy slices
if strcmp(stf(i).radiationMode,'protons') || strcmp(stf(i).radiationMode,'carbon')
% get minimum energy per field
minEnergy = min([stf(i).ray.energy]);
maxEnergy = max([stf(i).ray.energy]);
% get corresponding peak position
availableEnergies = [machine.data.energy];
minPeakPos = machine.data(minEnergy == availableEnergies).peakPos;
maxPeakPos = machine.data(maxEnergy == availableEnergies).peakPos;
% find set of energyies with adequate spacing
if strcmp(machine.meta.machine,'Generic')
longitudinalSpotSpacing = 1.5; % enforce all entries to be used
else
longitudinalSpotSpacing = 3; % default value for all other treatment machines
end
tolerance = longitudinalSpotSpacing/10;
availablePeakPos = [machine.data.peakPos];
useEnergyBool = availablePeakPos >= minPeakPos & availablePeakPos <= maxPeakPos;
ixCurr = find(useEnergyBool,1,'first');
ixRun = ixCurr + 1;
ixEnd = find(useEnergyBool,1,'last');
while ixRun <= ixEnd
if abs(availablePeakPos(ixRun)-availablePeakPos(ixCurr)) < ...
longitudinalSpotSpacing - tolerance
useEnergyBool(ixRun) = 0;
else
ixCurr = ixRun;
end
ixRun = ixRun + 1;
end
for j = stf(i).numOfRays:-1:1
for k = stf(i).numOfBixelsPerRay(j):-1:1
maskEnergy = stf(i).ray(j).energy(k) == availableEnergies;
if ~useEnergyBool(maskEnergy)
stf(i).ray(j).energy(k) = [];
stf(i).ray(j).focusIx(k) = [];
stf(i).numOfBixelsPerRay(j) = stf(i).numOfBixelsPerRay(j) - 1;
end
end
if isempty(stf(i).ray(j).energy)
stf(i).ray(j) = [];
stf(i).numOfBixelsPerRay(j) = [];
stf(i).numOfRays = stf(i).numOfRays - 1;
end
end
end
% save total number of bixels
stf(i).totalNumOfBixels = sum(stf(i).numOfBixelsPerRay);
% Show progress
matRad_progress(i,length(pln.propStf.gantryAngles));
%% visualization
if visMode > 0
clf;
% first subplot: visualization in bev
subplot(1,2,1)
hold on
% plot rotated target coordinates
plot3(rot_coords(:,1),rot_coords(:,2),rot_coords(:,3),'r.')
% surface rendering
if visMode == 2
% generate a 3D rectangular grid centered at isocenter in
% voxel coordinates
[X,Y,Z] = meshgrid((1:ct.cubeDim(2))-stf(i).isoCenter(1)/ct.resolution.x, ...
(1:ct.cubeDim(1))-stf(i).isoCenter(2)/ct.resolution.y, ...
(1:ct.cubeDim(3))-stf(i).isoCenter(3)/ct.resolution.z);
% computes surface
patSurfCube = 0*ct.cube{1};
idx = [cst{:,4}];
idx = unique(vertcat(idx{:}));
patSurfCube(idx) = 1;
[f,v] = isosurface(X,Y,Z,patSurfCube,.5);
% convert isosurface from voxel to [mm]
v(:,1) = v(:,1)*ct.resolution.x;
v(:,2) = v(:,2)*ct.resolution.y;
v(:,3) = v(:,3)*ct.resolution.z;
% rotate surface
rotated_surface = v*rotMat_system_T;
% surface rendering
surface = patch('Faces',f,'Vertices',rotated_surface);
set(surface,'FaceColor',[0 0 1],'EdgeColor','none','FaceAlpha',.4);
lighting gouraud;
end
% plot projection matrix: coordinates at isocenter
plot3(rayPos(:,1),rayPos(:,2),rayPos(:,3),'k.');
% Plot matrix border of matrix at isocenter
for j = 1:stf(i).numOfRays
% Compute border for every bixels
targetPoint_vox_X_1 = stf(i).ray(j).targetPoint_bev(:,1) + pln.propStf.bixelWidth;
targetPoint_vox_Y_1 = stf(i).ray(j).targetPoint_bev(:,2);
targetPoint_vox_Z_1 = stf(i).ray(j).targetPoint_bev(:,3) + pln.propStf.bixelWidth;
targetPoint_vox_X_2 = stf(i).ray(j).targetPoint_bev(:,1) + pln.propStf.bixelWidth;
targetPoint_vox_Y_2 = stf(i).ray(j).targetPoint_bev(:,2);
targetPoint_vox_Z_2 = stf(i).ray(j).targetPoint_bev(:,3) - pln.propStf.bixelWidth;
targetPoint_vox_X_3 = stf(i).ray(j).targetPoint_bev(:,1) - pln.propStf.bixelWidth;
targetPoint_vox_Y_3 = stf(i).ray(j).targetPoint_bev(:,2);
targetPoint_vox_Z_3 = stf(i).ray(j).targetPoint_bev(:,3) - pln.propStf.bixelWidth;
targetPoint_vox_X_4 = stf(i).ray(j).targetPoint_bev(:,1) - pln.propStf.bixelWidth;
targetPoint_vox_Y_4 = stf(i).ray(j).targetPoint_bev(:,2);
targetPoint_vox_Z_4 = stf(i).ray(j).targetPoint_bev(:,3) + pln.propStf.bixelWidth;
% plot
plot3([stf(i).sourcePoint_bev(1) targetPoint_vox_X_1],[stf(i).sourcePoint_bev(2) targetPoint_vox_Y_1],[stf(i).sourcePoint_bev(3) targetPoint_vox_Z_1],'g')
plot3([stf(i).sourcePoint_bev(1) targetPoint_vox_X_2],[stf(i).sourcePoint_bev(2) targetPoint_vox_Y_2],[stf(i).sourcePoint_bev(3) targetPoint_vox_Z_2],'g')
plot3([stf(i).sourcePoint_bev(1) targetPoint_vox_X_3],[stf(i).sourcePoint_bev(2) targetPoint_vox_Y_3],[stf(i).sourcePoint_bev(3) targetPoint_vox_Z_3],'g')
plot3([stf(i).sourcePoint_bev(1) targetPoint_vox_X_4],[stf(i).sourcePoint_bev(2) targetPoint_vox_Y_4],[stf(i).sourcePoint_bev(3) targetPoint_vox_Z_4],'g')
end
% Plot properties
daspect([1 1 1]);
view(0,-90);
xlabel 'X [mm]'
ylabel 'Y [mm]'
zlabel 'Z [mm]'
title ('Beam''s eye view')
axis([-300 300 -300 300 -300 300]);
% second subplot: visualization in lps coordinate system
subplot(1,2,2)
% Plot target coordinates whitout any rotation
plot3(coordsX,coordsY,coordsZ,'r.')
hold on;
% Rotated projection matrix at isocenter
isocenter_plane_coor = rayPos*rotMat_vectors_T;
% Plot isocenter plane
plot3(isocenter_plane_coor(:,1),isocenter_plane_coor(:,2),isocenter_plane_coor(:,3),'y.');
% Plot rotated bixels border.
for j = 1:stf(i).numOfRays
% Generate rotated projection target points.
targetPoint_vox_1_rotated = [stf(i).ray(j).targetPoint_bev(:,1) + pln.propStf.bixelWidth,stf(i).ray(j).targetPoint_bev(:,2),stf(i).ray(j).targetPoint_bev(:,3) + pln.propStf.bixelWidth]*rotMat_vectors_T;
targetPoint_vox_2_rotated = [stf(i).ray(j).targetPoint_bev(:,1) + pln.propStf.bixelWidth,stf(i).ray(j).targetPoint_bev(:,2),stf(i).ray(j).targetPoint_bev(:,3) - pln.propStf.bixelWidth]*rotMat_vectors_T;
targetPoint_vox_3_rotated = [stf(i).ray(j).targetPoint_bev(:,1) - pln.propStf.bixelWidth,stf(i).ray(j).targetPoint_bev(:,2),stf(i).ray(j).targetPoint_bev(:,3) - pln.propStf.bixelWidth]*rotMat_vectors_T;
targetPoint_vox_4_rotated = [stf(i).ray(j).targetPoint_bev(:,1) - pln.propStf.bixelWidth,stf(i).ray(j).targetPoint_bev(:,2),stf(i).ray(j).targetPoint_bev(:,3) + pln.propStf.bixelWidth]*rotMat_vectors_T;
% Plot rotated target points.
plot3([stf(i).sourcePoint(1) targetPoint_vox_1_rotated(:,1)],[stf(i).sourcePoint(2) targetPoint_vox_1_rotated(:,2)],[stf(i).sourcePoint(3) targetPoint_vox_1_rotated(:,3)],'g')
plot3([stf(i).sourcePoint(1) targetPoint_vox_2_rotated(:,1)],[stf(i).sourcePoint(2) targetPoint_vox_2_rotated(:,2)],[stf(i).sourcePoint(3) targetPoint_vox_2_rotated(:,3)],'g')
plot3([stf(i).sourcePoint(1) targetPoint_vox_3_rotated(:,1)],[stf(i).sourcePoint(2) targetPoint_vox_3_rotated(:,2)],[stf(i).sourcePoint(3) targetPoint_vox_3_rotated(:,3)],'g')
plot3([stf(i).sourcePoint(1) targetPoint_vox_4_rotated(:,1)],[stf(i).sourcePoint(2) targetPoint_vox_4_rotated(:,2)],[stf(i).sourcePoint(3) targetPoint_vox_4_rotated(:,3)],'g')
end
% surface rendering
if visMode == 2
surface = patch('Faces',f,'Vertices',v);
set(surface,'FaceColor',[0 0 1],'EdgeColor','none','FaceAlpha',.4);
lighting gouraud;
end
% labels etc.
daspect([1 1 1]);
view(0,-90);
xlabel 'X [mm]'
ylabel 'Y [mm]'
zlabel 'Z [mm]'
title 'lps coordinate system'
axis([-300 300 -300 300 -300 300]);
%pause(1);
end
% include rangeshifter data if not yet available
if strcmp(pln.radiationMode, 'protons') || strcmp(pln.radiationMode, 'carbon')
for j = 1:stf(i).numOfRays
for k = 1:numel(stf(i).ray(j).energy)
stf(i).ray(j).rangeShifter(k).ID = 0;
stf(i).ray(j).rangeShifter(k).eqThickness = 0;
stf(i).ray(j).rangeShifter(k).sourceRashiDistance = 0;
end
end
end
end
end