-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detection.py
50 lines (37 loc) · 1.71 KB
/
object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
import cv2
import matplotlib.pyplot as plt
from words2contact import Yello
def main(image_path, prompt, yello_vlm, output_path):
# Load and process the image
img = cv2.flip(cv2.imread(image_path), 0)
# Initialize the Words2Contact model
yello = Yello(yello_vlm)
# Predict based on the prompt and image
bbs = yello.predict(img, [prompt])
# Print prompt and response
print("User: ", prompt)
# Visualize results
fig, ax = plt.subplots()
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), origin='lower')
for bb in bbs:
bb.plot_bb(ax)
# Remove axis
ax.axis('off')
plt.tight_layout()
# set title and super title
ax.set_title(f"Prompt: \"{prompt}\"", fontsize=10)
fig.suptitle(f"Yello VLM: {yello_vlm}", fontsize=16)
plt.savefig(output_path)
print(f"Output saved to {output_path}")
if __name__ == "__main__":
# Set up argument parser
parser = argparse.ArgumentParser(description="Run Words2Contact with an image and a text prompt.")
parser.add_argument("--image_path", type=str, default="data/test.png", help="Path to the input image file. Default: 'data/test.png'.")
parser.add_argument("--prompt", type=str, default="bowl", help="Text prompt of the object to be detected'.")
parser.add_argument("--yello_vlm", type=str, default="GroundingDINO", help="Model to use for YELLO VLM. Default: 'GroundingDINO'.")
parser.add_argument("--output_path", type=str, default="data/test_output.png", help="Path to save the output image. Default: 'data/test_output.png'.")
# Parse arguments
args = parser.parse_args()
# Call the main function
main(args.image_path, args.prompt, args.yello_vlm, args.output_path)