diff --git a/docs/source/training_tutorials/sft_lora_finetune_llm.mdx b/docs/source/training_tutorials/sft_lora_finetune_llm.mdx index dc3df1ace..70eed29f0 100644 --- a/docs/source/training_tutorials/sft_lora_finetune_llm.mdx +++ b/docs/source/training_tutorials/sft_lora_finetune_llm.mdx @@ -50,6 +50,11 @@ huggingface-cli login --token YOUR_TOKEN ```bash git clone https://github.com/huggingface/optimum-neuron.git ``` +5. Install trl using: +```bash +pip install trl==0.11.4 +``` + ## 2. Load and prepare the dataset @@ -230,13 +235,8 @@ BS=1 GRADIENT_ACCUMULATION_STEPS=8 LOGGING_STEPS=1 MODEL_NAME="meta-llama/Meta-Llama-3-8B" -OUTPUT_DIR=output-$SLURM_JOB_ID +OUTPUT_DIR=dolly_llama -if [ "$NEURON_EXTRACT_GRAPHS_ONLY" = "1" ]; then - MAX_STEPS=$((LOGGING_STEPS + 5)) -else - MAX_STEPS=-1 -fi XLA_USE_BF16=1 neuron_parallel_compile torchrun --nproc_per_node $PROCESSES_PER_NODE docs/source/training_tutorials/sft_lora_finetune_llm.py \ @@ -245,7 +245,7 @@ XLA_USE_BF16=1 neuron_parallel_compile torchrun --nproc_per_node $PROCESSES_PER_ --do_train \ --learning_rate 5e-5 \ --warmup_ratio 0.03 \ - --max_steps $MAX_STEPS \ + --max_steps 11 \ #changed max_steps to 11 so that it can have enough cycles to run --per_device_train_batch_size $BS \ --per_device_eval_batch_size $BS \ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \