Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expected tensors and new_tensors to have the same type but found <class ‘tuple’> and <class ‘torch.Tensor’> #35640

Open
4 tasks
Bruce-Azar-Wayne opened this issue Jan 12, 2025 · 1 comment
Labels

Comments

@Bruce-Azar-Wayne
Copy link

System Info

I added the code to read the first item of tuple, which did not work, but the issue existed even before then. similar issue has been found by others too: https://discuss.huggingface.co/t/add-metrics-to-object-detection-example/31213/12

This is being run in a Kaggle environment.
`from nltk.translate.bleu_score import corpus_bleu
from transformers import EvalPrediction

def compute_metrics(eval_pred: EvalPrediction):
predictions, label_ids = eval_pred.predictions, eval_pred.label_ids

# Ensure predictions are a tensor (handle tuple case)
if isinstance(predictions, tuple):
    predictions = predictions[0]

# Ensure label_ids are a tensor (handle tuple case)
if isinstance(label_ids, tuple):
    label_ids = label_ids[0]

# Decode predictions and labels
decoded_preds = [tokenizer.decode(pred, skip_special_tokens=True) for pred in predictions]
decoded_labels = [[tokenizer.decode(label, skip_special_tokens=True)] for label in label_ids]

# Calculate BLEU score
bleu_score = corpus_bleu(decoded_labels, decoded_preds)
return {"bleu": bleu_score}

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = train_dataset,
eval_dataset= val_dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 1,
# num_train_epochs = 1, # Set this for 1 full training run.
max_steps = 1,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
report_to = "none", # Use this for WandB etc
evaluation_strategy="epoch", # Enable evaluation during training
),
compute_metrics=compute_metrics,
)
`
Full error:

AssertionError Traceback (most recent call last)
in <cell line: 1>()
----> 1 trainer_stats = trainer.train()

/usr/local/lib/python3.10/dist-packages/unsloth/tokenizer_utils.py in train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)

/usr/local/lib/python3.10/dist-packages/unsloth/models/llama.py in _fast_inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time)
3047 metrics = None
3048 if self.control.should_evaluate:
→ 3049 metrics = self._evaluate(trial, ignore_keys_for_eval)
3050 is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)
3051

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in _evaluate(self, trial, ignore_keys_for_eval, skip_scheduler)
3001
3002 def _evaluate(self, trial, ignore_keys_for_eval, skip_scheduler=False):
→ 3003 metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
3004 self._report_to_hp_search(trial, self.state.global_step, metrics)
3005

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in evaluate(self, eval_dataset, ignore_keys, metric_key_prefix)
4048
4049 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
→ 4050 output = eval_loop(
4051 eval_dataloader,
4052 description=“Evaluation”,

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in evaluation_loop(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)
4269 logits = self.gather_function((logits))
4270 if not self.args.batch_eval_metrics or description == “Prediction”:
→ 4271 all_preds.add(logits)
4272 if labels is not None:
4273 labels = self.gather_function((labels))

/usr/local/lib/python3.10/dist-packages/transformers/trainer_pt_utils.py in add(self, tensors)
320 self.tensors = tensors if self.do_nested_concat else [tensors]
321 elif self.do_nested_concat:
→ 322 self.tensors = nested_concat(self.tensors, tensors, padding_index=self.padding_index)
323 else:
324 self.tensors.append(tensors)

/usr/local/lib/python3.10/dist-packages/transformers/trainer_pt_utils.py in nested_concat(tensors, new_tensors, padding_index)
129 if not (isinstance(tensors, torch.Tensor) and isinstance(new_tensors, torch.Tensor)):
130 assert (
→ 131 type(tensors) is type(new_tensors)
132 ), f"Expected tensors and new_tensors to have the same type but found {type(tensors)} and {type(new_tensors)}."
133 if isinstance(tensors, (list, tuple)):

AssertionError: Expected tensors and new_tensors to have the same type but found <class ‘tuple’> and <class ‘torch.Tensor’>.

Who can help?

@muellerzr @SunMarc

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder (such as GLUE/SQuAD, ...)
  • My own task or dataset (give details below)

Reproduction

from nltk.translate.bleu_score import corpus_bleu
from transformers import EvalPrediction

def compute_metrics(eval_pred: EvalPrediction):
predictions, label_ids = eval_pred.predictions, eval_pred.label_ids

# Ensure predictions are a tensor (handle tuple case)
if isinstance(predictions, tuple):
    predictions = predictions[0]

# Ensure label_ids are a tensor (handle tuple case)
if isinstance(label_ids, tuple):
    label_ids = label_ids[0]

# Decode predictions and labels
decoded_preds = [tokenizer.decode(pred, skip_special_tokens=True) for pred in predictions]
decoded_labels = [[tokenizer.decode(label, skip_special_tokens=True)] for label in label_ids]

# Calculate BLEU score
bleu_score = corpus_bleu(decoded_labels, decoded_preds)
return {"bleu": bleu_score}

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = train_dataset,
eval_dataset= val_dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 1,
# num_train_epochs = 1, # Set this for 1 full training run.
max_steps = 1,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
report_to = "none", # Use this for WandB etc
evaluation_strategy="epoch", # Enable evaluation during training
),
compute_metrics=compute_metrics,
)

Expected behavior

Full error:

AssertionError Traceback (most recent call last)
in <cell line: 1>()
----> 1 trainer_stats = trainer.train()

/usr/local/lib/python3.10/dist-packages/unsloth/tokenizer_utils.py in train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)

/usr/local/lib/python3.10/dist-packages/unsloth/models/llama.py in _fast_inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval)

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in _maybe_log_save_evaluate(self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time)
3047 metrics = None
3048 if self.control.should_evaluate:
→ 3049 metrics = self._evaluate(trial, ignore_keys_for_eval)
3050 is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)
3051

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in _evaluate(self, trial, ignore_keys_for_eval, skip_scheduler)
3001
3002 def _evaluate(self, trial, ignore_keys_for_eval, skip_scheduler=False):
→ 3003 metrics = self.evaluate(ignore_keys=ignore_keys_for_eval)
3004 self._report_to_hp_search(trial, self.state.global_step, metrics)
3005

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in evaluate(self, eval_dataset, ignore_keys, metric_key_prefix)
4048
4049 eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
→ 4050 output = eval_loop(
4051 eval_dataloader,
4052 description=“Evaluation”,

/usr/local/lib/python3.10/dist-packages/transformers/trainer.py in evaluation_loop(self, dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix)
4269 logits = self.gather_function((logits))
4270 if not self.args.batch_eval_metrics or description == “Prediction”:
→ 4271 all_preds.add(logits)
4272 if labels is not None:
4273 labels = self.gather_function((labels))

/usr/local/lib/python3.10/dist-packages/transformers/trainer_pt_utils.py in add(self, tensors)
320 self.tensors = tensors if self.do_nested_concat else [tensors]
321 elif self.do_nested_concat:
→ 322 self.tensors = nested_concat(self.tensors, tensors, padding_index=self.padding_index)
323 else:
324 self.tensors.append(tensors)

/usr/local/lib/python3.10/dist-packages/transformers/trainer_pt_utils.py in nested_concat(tensors, new_tensors, padding_index)
129 if not (isinstance(tensors, torch.Tensor) and isinstance(new_tensors, torch.Tensor)):
130 assert (
→ 131 type(tensors) is type(new_tensors)
132 ), f"Expected tensors and new_tensors to have the same type but found {type(tensors)} and {type(new_tensors)}."
133 if isinstance(tensors, (list, tuple)):

AssertionError: Expected tensors and new_tensors to have the same type but found <class ‘tuple’> and <class ‘torch.Tensor’>.

@Rocketknight1
Copy link
Member

this seems like a trainer/metrics thing but I'm not certain, so cc @muellerzr @SunMarc

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

2 participants