diff --git a/src/transformers/trainer.py b/src/transformers/trainer.py
index 4cd9a6b4dfe..f7108b12b90 100755
--- a/src/transformers/trainer.py
+++ b/src/transformers/trainer.py
@@ -3672,10 +3672,7 @@ def training_step(
             return loss_mb.reduce_mean().detach().to(self.args.device)
 
         with self.compute_loss_context_manager():
-            if self.model_accepts_loss_kwargs:
-                loss = self.compute_loss(model, inputs)
-            else:
-                loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch)
+            loss = self.compute_loss(model, inputs, num_items_in_batch=num_items_in_batch)
 
         del inputs
         if (
@@ -3709,7 +3706,7 @@ def training_step(
                 scaled_loss.backward()
         else:
             # Finally we need to normalize the loss for reporting
-            if num_items_in_batch is None:
+            if not self.model_accepts_loss_kwargs and self.compute_loss_func is None:
                 loss = loss / self.args.gradient_accumulation_steps
 
             self.accelerator.backward(loss, **kwargs)
@@ -5157,10 +5154,6 @@ def get_batch_samples(self, epoch_iterator, num_batches):
             except StopIteration:
                 break
 
-        # Keep default behavior the same
-        if not self.model_accepts_loss_kwargs:
-            return batch_samples, None
-
         if len(batch_samples) > 0 and "labels" in batch_samples[0]:
             # For now we don't support object detection
             try:
diff --git a/tests/trainer/test_trainer.py b/tests/trainer/test_trainer.py
index d89c4aa8030..b4622bb247f 100644
--- a/tests/trainer/test_trainer.py
+++ b/tests/trainer/test_trainer.py
@@ -855,7 +855,14 @@ def tokenize_function(examples):
             self.assertLess(max(diff_truth), 0.01, f"Difference {max(diff_truth)} is not within 0.01")
 
             # max diff broken should be very off
-            self.assertGreater(max(diff_broken), 3, f"Difference {max(diff_broken)} is not greater than 3")
+            self.assertGreater(max(diff_broken), 2, f"Difference {max(diff_broken)} is not greater than 2")
+
+            loss_base = sum(base_loss_callback.losses)
+            loss_broken = sum(broken_loss_callback.losses)
+
+            # mean/sum loss should not vary too much.
+            relative_diff = abs(loss_base - loss_broken) / max(loss_base, loss_broken)
+            self.assertLess(relative_diff, 0.1, f"Relative difference {relative_diff} is not within 0.1")
 
     @slow
     def test_gradient_accumulation_loss_alignment_with_loss_func(self):