forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMAGNN.py
593 lines (491 loc) · 24.8 KB
/
MAGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import numpy as np
import pandas as pd
import os
import pickle
import dgl
from dgl import function as fn
from dgl.nn.functional import edge_softmax
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from dgl.utils import expand_as_pair
from operator import itemgetter
from . import BaseModel, register_model
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
from sklearn.svm import LinearSVC
'''
model
'''
@register_model('MAGNN')
class MAGNN(BaseModel):
r"""
This is the main method of model MAGNN
Parameters
----------
ntypes: list
the nodes' types of the dataset
h_feats: int
hidden dimension
inter_attn_feats: int
the dimension of attention vector in inter-metapath aggregation
num_heads: int
the number of heads in intra metapath attention
num_classes: int
the number of output classes
num_layers: int
the number of hidden layers
metapath_list: list
the list of metapaths, e.g ['M-D-M', 'M-A-M', ...],
edge_type_list: list
the list of edge types, e.g ['M-A', 'A-M', 'M-D', 'D-M'],
dropout_rate: float
the dropout rate of feat dropout and attention dropout
mp_instances : dict
the metapath instances indices dict. e.g mp_instances['MAM'] stores MAM instances indices.
encoder_type: str
the type of encoder, e.g ['RotateE', 'Average', 'Linear']
activation: callable activation function
the activation function used in MAGNN. default: F.elu
Notes
-----
Please make sure that the please make sure that all the metapath is symmetric, e.g ['MDM', 'MAM' ...] are symmetric,
while ['MAD', 'DAM', ...] are not symmetric.
please make sure that the edge_type_list meets the following form:
[edge_type_1, edge_type_1_reverse, edge_type_2, edge_type_2_reverse, ...], like the example above.
All the activation in MAGNN are the same according to the codes of author.
"""
@classmethod
def build_model_from_args(cls, args, hg):
ntypes = hg.ntypes
if args.dataset == 'imdb4MAGNN':
# build model
metapath_list = ['M-D-M', 'M-A-M', 'D-M-D', 'D-M-A-M-D', 'A-M-A', 'A-M-D-M-A']
edge_type_list = ['A-M', 'M-A', 'D-M', 'M-D']
# in_feats: {'n1type': n1_dim, 'n2type', n2_dim, ...}
in_feats = {'M': 3066, 'D': 2081, 'A': 5257}
metapath_idx_dict = mp_instance_sampler(hg, metapath_list, 'imdb4MAGNN')
elif args.dataset == 'dblp4MAGNN':
# build model
metapath_list = ['A-P-A', 'A-P-T-P-A', 'A-P-V-P-A']
edge_type_list = ['A-P', 'P-A', 'P-T', 'T-P', 'P-V', 'V-P']
# in_feats: {'n1type': n1_dim, 'n2type', n2_dim, ...}
in_feats = {'A': 334, 'P': 14328, 'T': 7723, 'V': 20}
metapath_idx_dict = mp_instance_sampler(hg, metapath_list, 'dblp4MAGNN')
else:
raise NotImplementedError("MAGNN on dataset {} has not been implemented".format(args.dataset))
return cls(ntypes=ntypes,
h_feats=args.hidden_dim // args.num_heads,
inter_attn_feats=args.inter_attn_feats,
num_heads=args.num_heads,
num_classes=args.out_dim,
num_layers=args.num_layers,
metapath_list=metapath_list,
edge_type_list=edge_type_list,
dropout_rate=args.dropout,
encoder_type=args.encoder_type,
metapath_idx_dict=metapath_idx_dict)
def __init__(self, ntypes, h_feats, inter_attn_feats, num_heads, num_classes, num_layers,
metapath_list, edge_type_list, dropout_rate, metapath_idx_dict, encoder_type='RotateE',
activation=F.elu):
super(MAGNN, self).__init__()
self.encoder_type = encoder_type
self.ntypes = ntypes
self.h_feats = h_feats
self.inter_attn_feats = inter_attn_feats
self.num_heads = num_heads
self.num_classes = num_classes
self.num_layers = num_layers
self.metapath_list = metapath_list
self.edge_type_list = edge_type_list
self.activation = activation
self.backup = {}
self.is_backup = False
# input projection
# self.ntypes = in_feats.keys()
# self.input_projection = nn.ModuleDict()
# for ntype in self.ntypes:
# self.input_projection[ntype] = nn.Linear(in_features=in_feats[ntype], out_features=h_feats * num_heads)
# for layer in self.input_projection.values():
# nn.init.xavier_normal_(layer.weight, gain=1.414)
# dropout
self.feat_drop = nn.Dropout(p=dropout_rate)
# extract ntypes that have corresponding metapath
# If there're only metapaths like ['M-A-M', 'M-D-M'], 'A' and 'D' have no metapath, so that 'A' and 'D' shouldn't
# be considered as nodes that need to aggregate information from metapath.
self.dst_ntypes = set([metapath.split('-')[0] for metapath in metapath_list])
# hidden layers
self.layers = nn.ModuleList()
for i in range(num_layers - 1):
self.layers.append(
MAGNN_layer(in_feats=h_feats, inter_attn_feats=inter_attn_feats, out_feats=h_feats, num_heads=num_heads,
metapath_list=metapath_list, ntypes=self.ntypes, edge_type_list=edge_type_list,
dst_ntypes=self.dst_ntypes, encoder_type=encoder_type, last_layer=False))
# output layer
self.layers.append(
MAGNN_layer(in_feats=h_feats, inter_attn_feats=inter_attn_feats, out_feats=num_classes, num_heads=num_heads,
metapath_list=metapath_list, ntypes=self.ntypes, edge_type_list=edge_type_list,
dst_ntypes=self.dst_ntypes, encoder_type=encoder_type, last_layer=True))
self.metapath_idx_dict = metapath_idx_dict
def mini_reset_params(self, new_metapth_idx_dict):
'''
This method is utilized for reset some parameters including metapath_idx_dict, metapath_list, dst_ntypes...
Other Parameters like weight matrix don't need to be updated.
'''
if not self.is_backup: # the params of the original graph has not been stored
self.backup['metapath_idx_dict'] = self.metapath_idx_dict
self.backup['metapath_list'] = self.metapath_list
self.backup['dst_ntypes'] = self.dst_ntypes
self.is_backup = True
self.metapath_idx_dict = new_metapth_idx_dict
self.metapath_list = list(new_metapth_idx_dict.keys())
self.dst_ntypes = set([meta[0] for meta in self.metapath_list])
for layer in self.layers:
layer.metapath_list = self.metapath_list
layer.dst_ntypes = self.dst_ntypes
def restore_params(self):
assert self.backup, 'The model.backup is empty'
self.metapath_idx_dict = self.backup['metapath_idx_dict']
self.metapath_list = self.backup['metapath_list']
self.dst_ntypes = self.backup['dst_ntypes']
for layer in self.layers:
layer.metapath_list = self.metapath_list
layer.dst_ntypes = self.dst_ntypes
def forward(self, g, feat_dict=None):
r"""
The forward part of MAGNN
Parameters
----------
g : object
the dgl heterogeneous graph
feat_dict : dict
the feature matrix dict of different node types, e.g {'M':feat_of_M, 'D':feat_of_D, ...}
Returns
-------
dict
The predicted logit after the output projection. e.g For the predicted node type, such as M(movie),
dict['M'] contains the probability that each node is classified as each class. For other node types, such as
D(director), dict['D'] contains the result after the output projection.
dict
The embeddings before the output projection. e.g dict['M'] contains embeddings of every node of M type.
"""
# hidden layer
for i in range(self.num_layers - 1):
h, _ = self.layers[i](feat_dict, self.metapath_idx_dict)
for key in h.keys():
h[key] = self.activation(h[key])
# output layer
h_output, embedding = self.layers[-1](feat_dict, self.metapath_idx_dict)
# return h_output, embedding
return h_output
class MAGNN_layer(nn.Module):
def __init__(self, in_feats, inter_attn_feats, out_feats, num_heads, metapath_list,
ntypes, edge_type_list, dst_ntypes, encoder_type='RotateE', last_layer=False):
super(MAGNN_layer, self).__init__()
self.in_feats = in_feats
self.inter_attn_feats = inter_attn_feats
self.out_feats = out_feats
self.num_heads = num_heads
self.metapath_list = metapath_list # ['M-D-M', 'M-A-M', ...]
self.ntypes = ntypes # ['M', 'D', 'A']
self.edge_type_list = edge_type_list # ['M-A', 'A-M', ...]
self.dst_ntypes = dst_ntypes
self.encoder_type = encoder_type
self.last_layer = last_layer
# in_feats_dst_meta = (feature dimension of dst nodes,
# feature dimension of metapath instances after encoding)
in_feats_dst_meta = tuple((in_feats, in_feats))
self.intra_attn_layers = nn.ModuleDict()
for metapath in self.metapath_list:
self.intra_attn_layers[metapath] = \
MAGNN_attn_intra(in_feats=in_feats_dst_meta, out_feats=in_feats, num_heads=num_heads)
# The linear transformation at the beginning of inter metapath aggregation, including all metapath
# The attention mechanism in inter metapath aggregation
self.inter_linear = nn.ModuleDict()
self.inter_attn_vec = nn.ModuleDict()
for ntype in dst_ntypes:
self.inter_linear[ntype] = \
nn.Linear(in_features=in_feats * num_heads, out_features=inter_attn_feats, bias=True)
self.inter_attn_vec[ntype] = nn.Linear(in_features=inter_attn_feats, out_features=1, bias=False)
nn.init.xavier_normal_(self.inter_linear[ntype].weight, gain=1.414)
nn.init.xavier_normal_(self.inter_attn_vec[ntype].weight, gain=1.414)
# Some initialization related to encoder
if encoder_type == 'RotateE':
# r_vec: [r1, r1_inverse, r2, r2_inverse, ...., rn, rn_inverse]
r_vec_ = nn.Parameter(th.empty(size=(len(edge_type_list) // 2, in_feats * num_heads // 2, 2)))
nn.init.xavier_normal_(r_vec_.data, gain=1.414)
self.r_vec = F.normalize(r_vec_, p=2, dim=2)
self.r_vec = th.stack([self.r_vec, self.r_vec], dim=1)
self.r_vec[:, 1, :, 1] = -self.r_vec[:, 1, :, 1]
self.r_vec = self.r_vec.reshape(r_vec_.shape[0] * 2, r_vec_.shape[1], 2)
self.r_vec_dict = nn.ParameterDict()
for i, edge_type in zip(range(len(edge_type_list)), edge_type_list):
self.r_vec_dict[edge_type] = nn.Parameter(self.r_vec[i])
# The dimension here does not change because multi-heads conversion has been done before
# This part is a little different from the original author's codes.
elif encoder_type == 'Linear':
self.encoder_linear = \
nn.Linear(in_features=in_feats * num_heads, out_features=in_feats * num_heads)
# output layer
if last_layer:
self._output_projection = nn.Linear(in_features=num_heads * in_feats, out_features=out_feats)
else:
self._output_projection = nn.Linear(in_features=num_heads * in_feats, out_features=num_heads * out_feats)
nn.init.xavier_normal_(self._output_projection.weight, gain=1.414)
def forward(self, feat_dict, metapath_idx_dict):
# Intra-metapath latent transformation
feat_intra = {}
for _metapath in self.metapath_list:
feat_intra[_metapath] = \
self.intra_metapath_trans(feat_dict, metapath=_metapath, metapath_idx_dict=metapath_idx_dict)
# Inter-metapath latent transformation
feat_inter = \
self.inter_metapath_trans(feat_dict=feat_dict, feat_intra=feat_intra, metapath_list=self.metapath_list)
# output projection
feat_final = self.output_projection(feat_inter=feat_inter)
# return final features after output projection (without nonlinear activation) and embedding
# nonlinear activation will be added in MAGNN
return feat_final, feat_inter
def intra_metapath_trans(self, feat_dict, metapath, metapath_idx_dict):
metapath_idx = metapath_idx_dict[metapath]
# encoder metapath instances
# intra_metapath_feat: feature matrix of every metapath instance of param metapath
intra_metapath_feat = self.encoder(feat_dict, metapath, metapath_idx)
# aggregate metapath instances into metapath using ATTENTION
feat_intra = \
self.intra_attn_layers[metapath]([intra_metapath_feat, feat_dict[metapath.split('-')[0]]],
metapath, metapath_idx)
return feat_intra
def inter_metapath_trans(self, feat_dict, feat_intra, metapath_list):
meta_s = {}
feat_inter = {}
# construct spi, where pi = ['M-A-M', 'M-D-M', ...]
for metapath in metapath_list:
_metapath = metapath.split('-')
meta_feat = feat_intra[metapath]
meta_feat = th.tanh(self.inter_linear[_metapath[0]](meta_feat)).mean(dim=0) # s_pi
meta_s[metapath] = self.inter_attn_vec[_metapath[0]](meta_feat) # e_pi
for ntype in self.ntypes:
if ntype in self.dst_ntypes:
# extract the metapath with the dst node type of ntype to construct a tensor
# in order to compute softmax
# metapaths: e.g if ntype is M, then ['M-A-M', 'M-D-M']
metapaths = np.array(metapath_list)[[meta.split('-')[0] == ntype for meta in metapath_list]]
# extract the e_pi of metapaths
# e.g the e_pi of ['M-A-M', 'M-D-M'] if ntype is M
meta_b = th.tensor(itemgetter(*metapaths)(meta_s))
# compute softmax, obtain b_pi, which is attention score of metapaths
# e.g the b_pi of ['M-A-M', 'M-D-M'] if ntype is M
meta_b = F.softmax(meta_b, dim=0)
# extract corresbonding features of metapath
# e.g ['MDM_feat_attn', 'MAM_feat_attn'] if ntype is M
meta_feat = itemgetter(*metapaths)(feat_intra)
# compute the embedding feature of nodes
feat_inter[ntype] = th.stack([meta_b[i] * meta_feat[i] for i in range(len(meta_b))], dim=0).sum(dim=0)
else:
feat_inter[ntype] = feat_dict[ntype]
return feat_inter
def encoder(self, feat_dict, metapath, metapath_idx):
_metapath = metapath.split('-')
device = feat_dict[_metapath[0]].device
feat = th.zeros((len(_metapath), metapath_idx.shape[0], feat_dict[_metapath[0]].shape[1]), device=device)
for i, ntype in zip(range(len(_metapath)), _metapath):
feat[i] = feat_dict[ntype][metapath_idx[:, i]]
feat = feat.reshape(feat.shape[0], feat.shape[1], feat.shape[2] // 2, 2)
if self.encoder_type == 'RotateE':
temp_r_vec = th.zeros((len(_metapath), feat.shape[-2], 2), device=device)
temp_r_vec[0, :, 0] = 1
for i in range(1, len(_metapath), 1):
edge_type = '{}-{}'.format(_metapath[i - 1], _metapath[i])
temp_r_vec[i] = self.complex_hada(temp_r_vec[i - 1], self.r_vec_dict[edge_type])
feat[i] = self.complex_hada(feat[i], temp_r_vec[i], opt='feat')
feat = feat.reshape(feat.shape[0], feat.shape[1], -1)
return th.mean(feat, dim=0)
elif self.encoder_type == 'Linear':
feat = feat.reshape(feat.shape[0], feat.shape[1], -1)
feat = self.encoder_linear(th.mean(feat, dim=0))
return feat
elif self.encoder_type == 'Average':
feat = feat.reshape(feat.shape[0], feat.shape[1], -1)
return th.mean(feat, dim=0)
else:
raise ValueError("The encoder type {} has not been implemented yet.".format(self.encoder_type))
@staticmethod
def complex_hada(h, v, opt='r_vec'):
if opt == 'r_vec':
h_h, l_h = h[:, 0].clone(), h[:, 1].clone()
else:
h_h, l_h = h[:, :, 0].clone(), h[:, :, 1].clone()
h_v, l_v = v[:, 0].clone(), v[:, 1].clone()
res = th.zeros_like(h)
if opt == 'r_vec':
res[:, 0] = h_h * h_v - l_h * l_v
res[:, 1] = h_h * l_v + l_h * h_v
else:
res[:, :, 0] = h_h * h_v - l_h * l_v
res[:, :, 1] = h_h * l_v + l_h * h_v
return res
# def output_projection(self, g):
def output_projection(self, feat_inter):
feat_final = {}
for ntype in self.ntypes:
feat_final[ntype] = self._output_projection(feat_inter[ntype])
return feat_final
class MAGNN_attn_intra(nn.Module):
def __init__(self, in_feats, out_feats, num_heads, feat_drop=0.5, attn_drop=0.5, negative_slope=0.01,
activation=F.elu):
super(MAGNN_attn_intra, self).__init__()
self._num_heads = num_heads
self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
self._out_feats = out_feats
self.attn_r = nn.Parameter(th.FloatTensor(size=(1, num_heads, out_feats)))
self.feat_drop = nn.Dropout(feat_drop)
self.attn_drop = nn.Dropout(attn_drop)
self.leaky_relu = nn.LeakyReLU(negative_slope)
self.reset_parameters()
self.activation = activation
def reset_parameters(self):
nn.init.xavier_normal_(self.attn_r, gain=1.414)
def forward(self, feat, metapath, metapath_idx):
_metapath = metapath.split('-')
device = feat[0].device
h_meta = self.feat_drop(feat[0]).view(-1, self._num_heads,
self._out_feats) # feature matrix of metapath instances
# metapath(right) part of attention
er = (h_meta * self.attn_r).sum(dim=-1).unsqueeze(-1)
graph_data = {
('meta_inst', 'meta2{}'.format(_metapath[0]), _metapath[0]): (th.arange(0, metapath_idx.shape[0]),
th.tensor(metapath_idx[:, 0]),)
}
num_nodes_dict = {'meta_inst': metapath_idx.shape[0], _metapath[0]: feat[1].shape[0]}
g_meta = dgl.heterograph(graph_data, num_nodes_dict=num_nodes_dict).to(device)
# feature vector of metapath instances and nodes
g_meta.nodes['meta_inst'].data.update({'feat_src': h_meta, 'er': er})
# g_meta.nodes[metapath[0]].data.update({'feat':feat[1]})
# compute attention without concat with hv
g_meta.apply_edges(func=fn.copy_u('er', 'e'), etype='meta2{}'.format(_metapath[0]))
e = self.leaky_relu(g_meta.edata.pop('e'))
g_meta.edata['a'] = self.attn_drop(edge_softmax(g_meta, e))
# message passing, there's only one edge type
# by default DGL would fill nodes without in-degree with zero
g_meta.update_all(message_func=fn.u_mul_e('feat_src', 'a', 'm'), reduce_func=fn.sum('m', 'feat'))
feat = self.activation(g_meta.dstdata['feat'])
# return dst nodes' features after attention
return feat.flatten(1)
'''
methods
'''
def mp_instance_sampler(g, metapath_list, dataset):
"""
Sampling the indices of all metapath instances in g according to the metapath list
Parameters
----------
g : object
the dgl heterogeneous graph
metapath_list : list
the list of metapaths in g, e.g. ['M-A-M', M-D-M', ...]
dataset : str
the name of dataset, e.g. 'imdb4MAGNN'
Returns
-------
dict
the indices of all metapath instances. e.g dict['MAM'] contains the indices of all MAM instances
Notes
-----
Please make sure that the metapath in metapath_list are all symmetric
We'd store the metapath instances in the disk after one metapath instances sampling and next time the
metapath instances will be extracted directly from the disk if they exists.
"""
file_dir = 'openhgnn/output/MAGNN/'
file_addr = file_dir + '{}'.format(dataset) + '_mp_inst.pkl'
test = True # TODO
if os.path.exists(file_addr) and test is False: # TODO
with open(file_addr, 'rb') as file:
res = pickle.load(file)
else:
etype_idx_dict = {}
for etype in g.etypes:
edges_idx_i = g.edges(etype=etype)[0].cpu().numpy()
edges_idx_j = g.edges(etype=etype)[1].cpu().numpy()
etype_idx_dict[etype] = pd.DataFrame([edges_idx_i, edges_idx_j]).T
_etype = etype.split('-')
etype_idx_dict[etype].columns = [_etype[0], _etype[1]]
res = {}
for metapath in metapath_list:
res[metapath] = None
_metapath = metapath.split('-')
for i in range(1, len(_metapath) - 1):
if i == 1:
res[metapath] = etype_idx_dict['-'.join(_metapath[:i + 1])]
feat_j = etype_idx_dict['-'.join(_metapath[i:i + 2])]
col_i = res[metapath].columns[-1]
col_j = feat_j.columns[0]
res[metapath] = pd.merge(res[metapath], feat_j,
left_on=col_i,
right_on=col_j,
how='inner')
if col_i != col_j:
res[metapath].drop(columns=col_j, inplace=True)
res[metapath] = res[metapath].values
with open(file_addr, 'wb') as file:
pickle.dump(res, file)
return res
def mini_mp_instance_sampler(seed_nodes, mp_instances, num_samples):
'''
Sampling metapath instances with seed_nodes as dst nodes. This method is exclusive to mini batch train/validate/test
which need to sample subsets of metapath instances of the whole graph.
Parameters
----------
seed_nodes : dict
sampling metapath instances based on seed_nodes. e.g. {'A':[0, 1, 2], 'M':[0, 1, 2], ...}, then we'll sample
metapath instances with 0 or 1 or 2 as dst_nodes of type 'A' and type 'B'.
mp_instances : list
the sampled metapath instances of the whole graph. It should be the return value of method
``mp_instance_sampler(g, metapath_list, dataset)``
num_samples : int
the maximal number of sampled metapath instances of each metapath type.
Returns
-------
dict
sampled metapath instances
'''
mini_mp_inst = {}
metapath_list = list(mp_instances.keys())
for ntype in seed_nodes.keys():
target_mp_types = np.array(metapath_list)[[meta.split('-')[0] == ntype for meta in metapath_list]]
for metapath in target_mp_types: # the metapath instances of the certain metapath
for node in seed_nodes[ntype]:
_mp_inst = mp_instances[metapath][mp_instances[metapath][:, 0] == node]
dst_nodes, dst_counts = np.unique(_mp_inst[:, -1], return_counts=True)
# the method of computing sampling probabilities originates from author's codes
p = np.repeat((dst_counts ** (3 / 4)) / dst_counts, dst_counts)
p = p / p.sum()
_num_samples = min(num_samples, len(p))
mp_choice = np.random.choice(len(p), _num_samples, replace=False, p=p)
if metapath not in mini_mp_inst.keys():
mini_mp_inst[metapath] = _mp_inst[mp_choice]
else:
mini_mp_inst[metapath] = np.concatenate((mini_mp_inst[metapath], _mp_inst[mp_choice]),
axis=0)
return mini_mp_inst
def svm_test(X, y, test_sizes=(0.2, 0.4, 0.6, 0.8), repeat=10):
# This method is implemented by author
random_states = [182318 + i for i in range(repeat)]
result_macro_f1_list = []
result_micro_f1_list = []
for test_size in test_sizes:
macro_f1_list = []
micro_f1_list = []
for i in range(repeat):
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, shuffle=True, random_state=random_states[i])
svm = LinearSVC(dual=False)
svm.fit(X_train, y_train)
y_pred = svm.predict(X_test)
macro_f1 = f1_score(y_test, y_pred, average='macro')
micro_f1 = f1_score(y_test, y_pred, average='micro')
macro_f1_list.append(macro_f1)
micro_f1_list.append(micro_f1)
result_macro_f1_list.append((np.mean(macro_f1_list), np.std(macro_f1_list)))
result_micro_f1_list.append((np.mean(micro_f1_list), np.std(micro_f1_list)))
return result_macro_f1_list, result_micro_f1_list