-
Notifications
You must be signed in to change notification settings - Fork 262
/
Copy pathc3d_model.py
93 lines (73 loc) · 3.29 KB
/
c3d_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Builds the C3D network.
Implements the inference pattern for model building.
inference_c3d(): Builds the model as far as is required for running the network
forward to make predictions.
"""
import tensorflow as tf
# The UCF-101 dataset has 101 classes
NUM_CLASSES = 101
# Images are cropped to (CROP_SIZE, CROP_SIZE)
CROP_SIZE = 112
CHANNELS = 3
# Number of frames per video clip
NUM_FRAMES_PER_CLIP = 16
"-----------------------------------------------------------------------------------------------------------------------"
def conv3d(name, l_input, w, b):
return tf.nn.bias_add(
tf.nn.conv3d(l_input, w, strides=[1, 1, 1, 1, 1], padding='SAME'),
b
)
def max_pool(name, l_input, k):
return tf.nn.max_pool3d(l_input, ksize=[1, k, 2, 2, 1], strides=[1, k, 2, 2, 1], padding='SAME', name=name)
def inference_c3d(_X, _dropout, batch_size, _weights, _biases):
# Convolution Layer
conv1 = conv3d('conv1', _X, _weights['wc1'], _biases['bc1'])
conv1 = tf.nn.relu(conv1, 'relu1')
pool1 = max_pool('pool1', conv1, k=1)
# Convolution Layer
conv2 = conv3d('conv2', pool1, _weights['wc2'], _biases['bc2'])
conv2 = tf.nn.relu(conv2, 'relu2')
pool2 = max_pool('pool2', conv2, k=2)
# Convolution Layer
conv3 = conv3d('conv3a', pool2, _weights['wc3a'], _biases['bc3a'])
conv3 = tf.nn.relu(conv3, 'relu3a')
conv3 = conv3d('conv3b', conv3, _weights['wc3b'], _biases['bc3b'])
conv3 = tf.nn.relu(conv3, 'relu3b')
pool3 = max_pool('pool3', conv3, k=2)
# Convolution Layer
conv4 = conv3d('conv4a', pool3, _weights['wc4a'], _biases['bc4a'])
conv4 = tf.nn.relu(conv4, 'relu4a')
conv4 = conv3d('conv4b', conv4, _weights['wc4b'], _biases['bc4b'])
conv4 = tf.nn.relu(conv4, 'relu4b')
pool4 = max_pool('pool4', conv4, k=2)
# Convolution Layer
conv5 = conv3d('conv5a', pool4, _weights['wc5a'], _biases['bc5a'])
conv5 = tf.nn.relu(conv5, 'relu5a')
conv5 = conv3d('conv5b', conv5, _weights['wc5b'], _biases['bc5b'])
conv5 = tf.nn.relu(conv5, 'relu5b')
pool5 = max_pool('pool5', conv5, k=2)
# Fully connected layer
pool5 = tf.transpose(pool5, perm=[0,1,4,2,3])
dense1 = tf.reshape(pool5, [batch_size, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv3 output to fit dense layer input
dense1 = tf.matmul(dense1, _weights['wd1']) + _biases['bd1']
dense1 = tf.nn.relu(dense1, name='fc1') # Relu activation
dense1 = tf.nn.dropout(dense1, _dropout)
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
dense2 = tf.nn.dropout(dense2, _dropout)
# Output: class prediction
out = tf.matmul(dense2, _weights['out']) + _biases['out']
return out