-
Notifications
You must be signed in to change notification settings - Fork 360
/
Copy pathexport.py
84 lines (68 loc) · 3.55 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# coding: utf-8
from __future__ import print_function
import tensorflow as tf
import argparse
import time
import os
import model
import utils
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_file', help='the path to the model file')
parser.add_argument('-n', '--model_name', default='transfer', help='the name of the model')
parser.add_argument('-d', dest='is_debug', action='store_true')
parser.set_defaults(is_debug=False)
return parser.parse_args()
def main(args):
g = tf.Graph() # A new graph
with g.as_default():
with tf.Session() as sess:
# Building graph.
image_data = tf.placeholder(tf.int32, name='input_image')
height = tf.placeholder(tf.int32, name='height')
width = tf.placeholder(tf.int32, name='width')
# Reshape data
image = tf.reshape(image_data, [height, width, 3])
processed_image = utils.mean_image_subtraction(
image, [123.68, 116.779, 103.939]) # Preprocessing image
batched_image = tf.expand_dims(processed_image, 0) # Add batch dimension
generated_image = model.net(batched_image, training=False)
casted_image = tf.cast(generated_image, tf.int32)
# Remove batch dimension
squeezed_image = tf.squeeze(casted_image, [0])
cropped_image = tf.slice(squeezed_image, [0, 0, 0], [height, width, 3])
# stylized_image = tf.image.encode_jpeg(squeezed_image, name='output_image')
stylized_image_data = tf.reshape(cropped_image, [-1], name='output_image')
# Restore model variables.
saver = tf.train.Saver(tf.global_variables(), write_version=tf.train.SaverDef.V1)
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
# Use absolute path.
model_file = os.path.abspath(args.model_file)
saver.restore(sess, model_file)
if args.is_debug:
content_file = '/Users/Lex/Desktop/t.jpg'
generated_file = '/Users/Lex/Desktop/xwz-stylized.jpg'
with open(generated_file, 'wb') as img:
image_bytes = tf.read_file(content_file)
input_array, decoded_image = sess.run([
tf.reshape(tf.image.decode_jpeg(image_bytes, channels=3), [-1]),
tf.image.decode_jpeg(image_bytes, channels=3)])
start_time = time.time()
img.write(sess.run(tf.image.encode_jpeg(tf.cast(cropped_image, tf.uint8)), feed_dict={
image_data: input_array,
height: decoded_image.shape[0],
width: decoded_image.shape[1]}))
end_time = time.time()
tf.logging.info('Elapsed time: %fs' % (end_time - start_time))
else:
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, sess.graph_def, output_node_names=['output_image'])
with tf.gfile.FastGFile('/Users/Lex/Desktop/' + args.model_name + '.pb', mode='wb') as f:
f.write(output_graph_def.SerializeToString())
# tf.train.write_graph(g.as_graph_def(), '/Users/Lex/Desktop',
# args.model_name + '.pb', as_text=False)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
args = parse_args()
print(args)
main(args)