forked from amirmohammadkz/personality-detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_data_python3.py
183 lines (162 loc) · 6.06 KB
/
process_data_python3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import joblib
import numpy as np
# import cPickle
from collections import defaultdict
import sys, re
import pandas as pd
import csv
import getpass
from gensim.models import KeyedVectors
def build_data_cv(datafile, cv=10, clean_string=True):
"""
Loads data and split into 10 folds.
"""
revs = []
vocab = defaultdict(float)
with open(datafile, "r", errors='ignore') as csvf:
csvreader = csv.reader(csvf, delimiter=',', quotechar='"')
first_line = True
for line in csvreader:
if first_line:
first_line = False
continue
status = []
sentences = re.split(r'[.?]', line[1].strip())
try:
sentences.remove('')
except ValueError:
None
for sent in sentences:
if clean_string:
orig_rev = clean_str(sent.strip())
if orig_rev == '':
continue
words = set(orig_rev.split())
splitted = orig_rev.split()
if len(splitted) > 150:
orig_rev = []
splits = int(np.floor(len(splitted) / 20))
for index in range(splits):
orig_rev.append(' '.join(splitted[index * 20:(index + 1) * 20]))
if len(splitted) > splits * 20:
orig_rev.append(' '.join(splitted[splits * 20:]))
status.extend(orig_rev)
else:
status.append(orig_rev)
else:
orig_rev = sent.strip().lower()
words = set(orig_rev.split())
status.append(orig_rev)
for word in words:
vocab[word] += 1
datum = {"y0": 1 if line[2].lower() == 'y' else 0,
"y1": 1 if line[3].lower() == 'y' else 0,
"y2": 1 if line[4].lower() == 'y' else 0,
"y3": 1 if line[5].lower() == 'y' else 0,
"y4": 1 if line[6].lower() == 'y' else 0,
"text": status,
"user": line[0],
"num_words": np.max([len(sent.split()) for sent in status]),
"split": np.random.randint(0, cv)}
revs.append(datum)
return revs, vocab
def get_W(word_vecs, k=300):
"""
Get word matrix. W[i] is the vector for word indexed by i
"""
vocab_size = len(word_vecs)
word_idx_map = dict()
W = np.zeros(shape=(vocab_size + 1, k), dtype="float64")
W[0] = np.zeros(k, dtype="float64")
i = 1
for word in word_vecs:
W[i] = word_vecs[word]
word_idx_map[word] = i
i += 1
return W, word_idx_map
def load_bin_vec(fname, vocab):
"""
Loads 300x1 word vecs from Google (Mikolov) word2vec
"""
word_vecs = {}
model = KeyedVectors.load_word2vec_format(fname, binary=True)
for word in vocab:
try:
word_vecs[word] = model.get_vector(word)
except KeyError:
# Word not in the vocabulary
pass
return word_vecs
def add_unknown_words(word_vecs, vocab, min_df=1, k=300):
"""
For words that occur in at least min_df documents, create a separate word vector.
0.25 is chosen so the unknown vectors have (approximately) same variance as pre-trained ones
"""
i = 0.0
for word in vocab:
if word not in word_vecs and vocab[word] >= min_df:
i += 1
word_vecs[word] = np.random.uniform(-0.25, 0.25, k)
print(word)
print("##########################")
print(i * 100 / len(vocab))
print("##########################")
def clean_str(string, TREC=False):
"""
Tokenization/string cleaning for all datasets except for SST.
Every dataset is lower cased except for TREC
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s ", string)
string = re.sub(r"\'ve", " have ", string)
string = re.sub(r"n\'t", " not ", string)
string = re.sub(r"\'re", " are ", string)
string = re.sub(r"\'d", " would ", string)
string = re.sub(r"\'ll", " will ", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " ( ", string)
string = re.sub(r"\)", " ) ", string)
string = re.sub(r"\?", " \? ", string)
# string = re.sub(r"[a-zA-Z]{4,}", "", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip() if TREC else string.strip().lower()
def clean_str_sst(string):
"""
Tokenization/string cleaning for the SST dataset
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def get_mairesse_features(file_name):
feats = {}
with open(file_name, "r") as csvf:
csvreader = csv.reader(csvf, delimiter=',', quotechar='"')
for line in csvreader:
feats[line[0]] = [float(f) for f in line[1:]]
return feats
if __name__ == "__main__":
w2v_file = sys.argv[1]
data_folder = sys.argv[2]
mairesse_file = sys.argv[3]
print("loading data...")
revs, vocab = build_data_cv(data_folder, cv=10, clean_string=True)
num_words = pd.DataFrame(revs)["num_words"]
max_l = np.max(num_words)
print("data loaded!")
print("number of status: " + str(len(revs)))
print("vocab size: " + str(len(vocab)))
print("max sentence length: " + str(max_l))
print("loading word2vec vectors...", )
w2v = load_bin_vec(w2v_file, vocab)
print("word2vec loaded!")
print("num words already in word2vec: " + str(len(w2v)))
add_unknown_words(w2v, vocab)
W, word_idx_map = get_W(w2v)
rand_vecs = {}
add_unknown_words(rand_vecs, vocab)
W2, _ = get_W(rand_vecs)
mairesse = get_mairesse_features(mairesse_file)
filename = 'essays_mairesse.p'
joblib.dump([revs, W, W2, word_idx_map, vocab, mairesse], filename, protocol=2)
print("dataset created!")