-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_inference_for_training_data.py
189 lines (158 loc) · 6.72 KB
/
build_inference_for_training_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import json
import argparse
import os
import glob
from transformers import AutoTokenizer
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--train_input_qrel", type=str, default="qrel_eval/2017/qrel_abs_train.txt")
parser.add_argument("--type", type=str, default="tiab", help="title, abstract, boolean or title_alpaca or titles_alpaca")
parser.add_argument("--DATA_DIR", type=str, default="title/2019/intervention")
parser.add_argument("--tokeniser", type=str, default="dmis-lab/biobert-v1.1")
parser.add_argument("--collection_index", type=str, default="collection/model_bio_bert.jsonl")
parser.add_argument("--cache_dir", type=str, default="./cache")
parser.add_argument("--prompt_file", type=str, default="data/preprocessed_with_abstract.jsonl")
args = parser.parse_args()
prompt_file = args.prompt_file
tokenizer = AutoTokenizer.from_pretrained(args.tokeniser, use_fast=True, cache_dir=args.cache_dir)
type=args.type
positive_doc_dict = {}
negative_doc_dict = {}
#out_dir = os.path.join(args.DATA_DIR, type.split("_")[-1] + "_"+ prompt_type + "_multi", "train", args.collection_index.split("/")[-1].split(".")[0])
if type.split("_")[0].endswith("s"):
redefined_type = type.replace("titles", "title").replace("abstracts", "abstract").replace("booleans", "boolean")
out_inference_dir = os.path.join(args.DATA_DIR.split('/testing')[0], "training", "inference", redefined_type + "_multi", args.collection_index.split("/")[-1].split(".")[0])
else:
out_inference_dir = os.path.join(args.DATA_DIR.split('/testing')[0], "training", "inference",
type , args.collection_index.split("/")[-1].split(".")[0])
#
# if not os.path.exists(out_dir):
# os.makedirs(out_dir)
if not os.path.exists(out_inference_dir):
os.makedirs(out_inference_dir)
#out_file = os.path.join(out_dir, "train.tsv")
out_inference_input = os.path.join(out_inference_dir, "run.jsonl")
out_inference_tsv_input = os.path.join(out_inference_dir, "run.tsv")
collection_index = args.collection_index
passage_title_dict = {}
passage_dict = {}
with open(collection_index) as f:
for line in tqdm(f):
current_dict = json.loads(line)
pid = current_dict["pmid"]
title = current_dict["title"]
t_ab = current_dict["title_abstract"]
if len(t_ab) == 0:
continue
passage_title_dict[pid] = title
passage_dict[pid] = t_ab
with open(args.train_input_qrel) as f:
for line in tqdm(f):
qid, _, pid, rel = line.split()
if qid not in negative_doc_dict:
negative_doc_dict[qid] = []
if qid not in positive_doc_dict:
positive_doc_dict[qid] = []
if int(rel)==1:
positive_doc_dict[qid].append(pid)
elif int(rel)==0:
negative_doc_dict[qid].append(pid)
else:
print(rel)
title_abstract_dict = {}
if (type=="title") or (type=="abstract") or (type=="boolean"):
with open(prompt_file) as f:
for line in tqdm(f):
current_dict = json.loads(line)
qid = current_dict["id"]
title = current_dict["title"]
abstract = current_dict["abstract"]
bool_query = current_dict["query"]
title_abstract_dict[qid] = [title ,abstract, bool_query]
else:
with open(prompt_file) as f:
for line in tqdm(f):
current_dict = json.loads(line)
qid = current_dict["id"]
generated_query = current_dict["generated_query"]
if isinstance(generated_query, list):
title_abstract_dict[qid] = generated_query
else:
title_abstract_dict[qid] = [generated_query]
out_runs = []
out_runs_tsv = []
for qid in tqdm(positive_doc_dict):
positive_ids = positive_doc_dict[qid]
negative_ids = negative_doc_dict[qid]
query_list = []
if (type=="title") or (type=="abstract") or (type=="boolean"):
if type=="title":
query = title_abstract_dict[qid][0]
query_tokenized = tokenizer.encode(
query,
add_special_tokens=False,
max_length=64,
truncation=True,
padding="max_length")
elif type=="abstract":
query = title_abstract_dict[qid][1]
query_tokenized = tokenizer.encode(
query,
add_special_tokens=False,
max_length=256,
truncation=True,
padding="max_length")
else:
query = title_abstract_dict[qid][2]
query_tokenized = tokenizer.encode(
query,
add_special_tokens=False,
max_length=256,
truncation=True,
padding="max_length")
current_dict = {}
current_dict["qid"] = qid
current_dict["qry"] = query_tokenized
for pid in negative_ids:
if pid not in passage_dict:
continue
current_dict["pid"] = pid
current_dict["psg"] = passage_dict[pid]
out_runs.append(json.dumps(current_dict) + "\n")
out_runs_tsv.append(f"{qid}\t{pid}\n")
for pid in positive_ids:
if pid not in passage_dict:
continue
current_dict["pid"] = pid
current_dict["psg"] = passage_dict[pid]
out_runs.append(json.dumps(current_dict) + "\n")
out_runs_tsv.append(f"{qid}\t{pid}\n")
else:
generated_queries = title_abstract_dict[qid]
for index, query in enumerate(generated_queries):
query_tokenized = tokenizer.encode(
query,
add_special_tokens=False,
max_length=64,
truncation=True,
padding="max_length")
current_dict = {}
current_dict["qid"] = qid + "_" + str(index)
current_dict["qry"] = query_tokenized
for pid in negative_ids:
if pid not in passage_dict:
continue
current_dict["pid"] = pid
current_dict["psg"] = passage_dict[pid]
out_runs.append(json.dumps(current_dict) + "\n")
out_runs_tsv.append(f"{qid}_{index}\t{pid}\n")
for pid in positive_ids:
if pid not in passage_dict:
continue
current_dict["pid"] = pid
current_dict["psg"] = passage_dict[pid]
out_runs.append(json.dumps(current_dict) + "\n")
out_runs_tsv.append(f"{qid}_{index}\t{pid}\n")
with open(out_inference_input, "w") as out_rerank, open(out_inference_tsv_input, "w") as out_rerank_tsv:
out_rerank_tsv.writelines(out_runs_tsv)
out_rerank.writelines(out_runs)