-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuse_mean.py
50 lines (36 loc) · 1.45 KB
/
fuse_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import json
import argparse
import os
import glob
from transformers import AutoTokenizer
from tqdm import tqdm
#from nltk.corpus import stopwords
#import string
#cachedStopwords = set(tok.lower() for tok in stopwords.words("english"))
#string_set =set(string.punctuation)
parser = argparse.ArgumentParser()
parser.add_argument("--DATA_DIR", type=str, default="data/sysrev-seed-collection")
args = parser.parse_args()
input_files = glob.glob(os.path.join(args.DATA_DIR, "*.trec"))
out_folder = os.path.join(args.DATA_DIR, "fusion_mean")
if not os.path.exists(out_folder):
os.makedirs(out_folder)
result_dict = {}
for input_file in tqdm(input_files):
if "_" not in input_file.split('/')[-1]:
continue
with open(input_file) as f:
for line in f:
qid, _, pid, rank, score, _ = line.strip().split()
qid_original = qid.split('_')[0]
if qid_original not in result_dict:
result_dict[qid_original] = {}
if pid not in result_dict[qid_original]:
result_dict[qid_original][pid] = float(score)
else:
result_dict[qid_original][pid] += float(score)
for qid in tqdm(result_dict):
result_dict[qid] = sorted(result_dict[qid].items(), key=lambda x: x[1], reverse=True)
with open(os.path.join(out_folder, qid + ".trec"), 'w') as f:
for i, (pid, score) in enumerate(result_dict[qid]):
f.write(f"{qid} Q0 {pid} {i+1} {score} fuse\n")