-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathopenai_api.py
410 lines (367 loc) · 15.5 KB
/
openai_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#openai_api.py
import aiohttp
import json
import logging
from typing import List, Union, Optional, Dict, Any
import asyncio
import requests
import base64
import os
logger = logging.getLogger(__name__)
async def create_openai_compatible_embedding(api_base: str, model: str, input: Union[str, List[str]], api_key: Optional[str] = None) -> List[float]:
"""
Create embeddings using an OpenAI-compatible API asynchronously.
:param api_base: The base URL for the API
:param model: The name of the model to use for embeddings
:param input: A string or list of strings to embed
:param api_key: The API key (if required)
:return: A list of embeddings
"""
# Normalize the API base URL
api_base = api_base.rstrip('/')
if not api_base.endswith('/v1'):
api_base += '/v1'
url = f"{api_base}/embeddings"
headers = {
"Content-Type": "application/json"
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
payload = {
"model": model,
"input": input,
"encoding_format": "float"
}
try:
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=payload) as response:
response.raise_for_status()
result = await response.json()
if "data" in result and len(result["data"]) > 0 and "embedding" in result["data"][0]:
return result["data"][0]["embedding"] # Return the embedding directly as a list
elif "data" in result and len(result["data"]) == 0: # handle no data in embedding result from API
raise ValueError("No embedding generated for the input text.")
else:
raise ValueError("Unexpected response format: 'embedding' data not found")
except aiohttp.ClientError as e:
raise RuntimeError(f"Error calling embedding API: {str(e)}")
async def send_openai_request(api_url, base64_images, model, system_message, user_message, messages, api_key,
seed, temperature, max_tokens, top_p, repeat_penalty, tools=None, tool_choice=None):
"""
Sends a request to the OpenAI API and returns a unified response format.
Args:
api_url (str): The OpenAI API endpoint URL.
base64_images (List[str]): List of images encoded in base64.
model (str): The model to use.
system_message (str): System message for the LLM.
user_message (str): User message for the LLM.
messages (List[Dict[str, Any]]): Conversation messages.
api_key (str): API key for OpenAI.
seed (Optional[int]): Random seed.
temperature (float): Temperature for randomness.
max_tokens (int): Maximum tokens to generate.
top_p (float): Top P for sampling.
repeat_penalty (float): Penalty for repetition.
tools (Optional[Any], optional): Tools to be used.
tool_choice (Optional[Any], optional): Tool choice.
Returns:
Union[str, Dict[str, Any]]: Standardized response.
"""
try:
openai_headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Prepare messages
openai_messages = prepare_openai_messages(base64_images, system_message, user_message, messages)
data = {
"model": model,
"messages": openai_messages,
"temperature": temperature,
"max_tokens": max_tokens,
"presence_penalty": repeat_penalty,
"top_p": top_p,
}
if seed is not None:
data["seed"] = seed
if tools:
data["tools"] = tools
if tool_choice:
data["tool_choice"] = tool_choice
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=openai_headers, json=data) as response:
response.raise_for_status()
response_data = await response.json()
if tools:
return response_data
else:
choices = response_data.get('choices', [])
if choices:
choice = choices[0]
message = choice.get('message', {})
generated_text = message.get('content', '')
return {
"choices": [{
"message": {
"content": generated_text
}
}]
}
else:
error_msg = "Error: No valid choices in the OpenAI response."
logger.error(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
except aiohttp.ClientResponseError as e:
error_msg = f"HTTP error occurred: {e.status}, message='{e.message}', url={e.request_info.real_url}"
logger.error(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
except asyncio.CancelledError:
# Handle task cancellation if needed
raise
except Exception as e:
error_msg = f"Exception during OpenAI API call: {str(e)}"
logger.error(error_msg)
return {"choices": [{"message": {"content": error_msg}}]}
def prepare_openai_messages(base64_images, system_message, user_message, messages):
openai_messages = []
if system_message:
openai_messages.append({"role": "system", "content": system_message})
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
openai_messages.append({"role": "system", "content": content})
elif role == "user":
openai_messages.append({"role": "user", "content": content})
elif role == "assistant":
openai_messages.append({"role": "assistant", "content": content})
# Add the current user message with all images if provided
if base64_images:
content = [{"type": "text", "text": user_message}]
for base64_image in base64_images:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
}
})
openai_messages.append({
"role": "user",
"content": content
})
print(f"Number of images sent: {len(base64_images)}")
else:
openai_messages.append({"role": "user", "content": user_message})
return openai_messages
async def generate_image(
prompt: str,
model: str = "dall-e-3",
n: int = 1,
size: str = "1024x1024",
api_key: Optional[str] = None
) -> List[str]:
"""
Generate images from a text prompt using DALL·E.
:param prompt: The text prompt to generate images from.
:param model: The model to use ("dall-e-3" or "dall-e-2").
:param n: Number of images to generate.
:param size: Size of the generated images.
:param api_key: The OpenAI API key.
:return: List of image URLs or Base64 strings.
"""
api_url = "https://api.openai.com/v1/images/generations"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"prompt": prompt,
"n": n,
"size": size,
"response_format": "b64_json"
}
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
if response.status != 200:
error_text = await response.text()
logger.error(f"OpenAI generate_image error {response.status}: {error_text}")
response.raise_for_status()
data = await response.json()
# Handle different response structures
if "data" in data and isinstance(data["data"], list):
images = []
for item in data["data"]:
if "b64_json" in item:
images.append(item["b64_json"])
elif "url" in item:
# If response_format was changed or API returned URLs
images.append(item["url"])
return images
else:
logger.error("Unexpected response format in generate_image")
raise ValueError("Unexpected response format")
async def edit_image(
image_base64: str,
mask_base64: str,
prompt: str,
model: str = "dall-e-2",
n: int = 1,
size: str = "1024x1024",
api_key: Optional[str] = None
) -> List[str]:
"""
Edit an existing image by replacing areas defined by a mask using DALL·E.
:param image_base64: Base64-encoded original image.
:param mask_base64: Base64-encoded mask image.
:param prompt: The text prompt describing the desired edits.
:param model: The model to use ("dall-e-2").
:param n: Number of edited images to generate.
:param size: Size of the generated images.
:param api_key: The OpenAI API key.
:return: List of edited image URLs or Base64 strings.
"""
api_url = "https://api.openai.com/v1/images/edits"
headers = {
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": model,
"prompt": prompt,
"n": n,
"size": size,
"response_format": "b64_json"
}
files = {
"image": image_base64,
"mask": mask_base64
}
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
response.raise_for_status()
data = await response.json()
images = [item["b64_json"] for item in data.get("data", [])]
return images
async def generate_image_variations(
image_base64: str,
model: str = "dall-e-2",
n: int = 1,
size: str = "1024x1024",
api_key: Optional[str] = None
) -> List[str]:
"""
Generate variations of an existing image using DALL·E.
:param image_base64: Base64-encoded original image.
:param model: The model to use ("dall-e-2").
:param n: Number of variations to generate.
:param size: Size of the generated images.
:param api_key: The OpenAI API key.
:return: List of variation image URLs or Base64 strings.
"""
api_url = "https://api.openai.com/v1/images/variations"
headers = {
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": model,
"n": n,
"size": size,
"response_format": "b64_json"
}
files = {
"image": image_base64
}
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
response.raise_for_status()
data = await response.json()
images = [item["b64_json"] for item in data.get("data", [])]
return images
async def text_to_speech(text: str, model: str = "tts-1", voice: str = "alloy", response_format: str = "mp3", output_path: str = "speech.mp3", api_key: Optional[str] = None) -> None:
"""
Convert text to spoken audio using OpenAI's TTS API.
:param text: The text to be converted to speech.
:param model: The TTS model to use ("tts-1" or "tts-1-hd").
:param voice: The voice to use for audio generation.
:param response_format: The format of the output audio ("mp3", "opus", "aac", etc.).
:param output_path: The file path to save the generated audio.
:param api_key: The OpenAI API key.
"""
api_url = "https://api.openai.com/v1/audio/speech"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"model": model,
"input": text,
"voice": voice,
"response_format": response_format
}
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, json=payload) as response:
response.raise_for_status()
if response_format == "mp3":
audio_data = await response.read()
with open(output_path, "wb") as audio_file:
audio_file.write(audio_data)
else:
# Handle other formats if necessary
pass
async def transcribe_audio(file_path: str, model: str = "whisper-1", response_format: str = "text", language: Optional[str] = None, api_key: Optional[str] = None) -> Union[str, dict]:
"""
Transcribe audio into text using OpenAI's Whisper API.
:param file_path: Path to the audio file to transcribe.
:param model: The Whisper model to use ("whisper-1").
:param response_format: The format of the transcription ("text", "verbose_json", etc.).
:param language: (Optional) The language of the audio.
:param api_key: The OpenAI API key.
:return: Transcribed text or detailed JSON based on response_format.
"""
api_url = "https://api.openai.com/v1/audio/transcriptions"
headers = {
"Authorization": f"Bearer {api_key}"
}
with open(file_path, "rb") as audio_file:
files = {
"file": (os.path.basename(file_path), audio_file, "audio/mpeg"),
"model": (None, model),
"response_format": (None, response_format)
}
if language:
files["language"] = (None, language)
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, data=files) as response:
response.raise_for_status()
if response_format == "text":
data = await response.text()
else:
data = await response.json()
return data
async def translate_audio(file_path: str, model: str = "whisper-1", response_format: str = "text", api_key: Optional[str] = None) -> Union[str, dict]:
"""
Translate audio into English text using OpenAI's Whisper API.
:param file_path: Path to the audio file to translate.
:param model: The Whisper model to use ("whisper-1").
:param response_format: The format of the transcription ("text", "verbose_json", etc.).
:param api_key: The OpenAI API key.
:return: Translated text or detailed JSON based on response_format.
"""
api_url = "https://api.openai.com/v1/audio/translations"
headers = {
"Authorization": f"Bearer {api_key}"
}
with open(file_path, "rb") as audio_file:
files = {
"file": (os.path.basename(file_path), audio_file, "audio/mpeg"),
"model": (None, model),
"response_format": (None, response_format)
}
async with aiohttp.ClientSession() as session:
async with session.post(api_url, headers=headers, data=files) as response:
response.raise_for_status()
if response_format == "text":
data = await response.text()
else:
data = await response.json()
return data