-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathdataset_utils.py
169 lines (136 loc) · 6.21 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import collections
from typing import Optional
import d4rl
import gym
import numpy as np
from tqdm import tqdm
Batch = collections.namedtuple(
'Batch',
['observations', 'actions', 'rewards', 'masks', 'next_observations'])
def split_into_trajectories(observations, actions, rewards, masks, dones_float,
next_observations):
trajs = [[]]
for i in tqdm(range(len(observations))):
trajs[-1].append((observations[i], actions[i], rewards[i], masks[i],
dones_float[i], next_observations[i]))
if dones_float[i] == 1.0 and i + 1 < len(observations):
trajs.append([])
return trajs
def merge_trajectories(trajs):
observations = []
actions = []
rewards = []
masks = []
dones_float = []
next_observations = []
for traj in trajs:
for (obs, act, rew, mask, done, next_obs) in traj:
observations.append(obs)
actions.append(act)
rewards.append(rew)
masks.append(mask)
dones_float.append(done)
next_observations.append(next_obs)
return np.stack(observations), np.stack(actions), np.stack(
rewards), np.stack(masks), np.stack(dones_float), np.stack(
next_observations)
class Dataset(object):
def __init__(self, observations: np.ndarray, actions: np.ndarray,
rewards: np.ndarray, masks: np.ndarray,
dones_float: np.ndarray, next_observations: np.ndarray,
size: int):
self.observations = observations
self.actions = actions
self.rewards = rewards
self.masks = masks
self.dones_float = dones_float
self.next_observations = next_observations
self.size = size
def sample(self, batch_size: int) -> Batch:
indx = np.random.randint(self.size, size=batch_size)
return Batch(observations=self.observations[indx],
actions=self.actions[indx],
rewards=self.rewards[indx],
masks=self.masks[indx],
next_observations=self.next_observations[indx])
class D4RLDataset(Dataset):
def __init__(self,
env: gym.Env,
clip_to_eps: bool = True,
eps: float = 1e-5):
dataset = d4rl.qlearning_dataset(env)
if clip_to_eps:
lim = 1 - eps
dataset['actions'] = np.clip(dataset['actions'], -lim, lim)
dones_float = np.zeros_like(dataset['rewards'])
for i in range(len(dones_float) - 1):
if np.linalg.norm(dataset['observations'][i + 1] -
dataset['next_observations'][i]
) > 1e-6 or dataset['terminals'][i] == 1.0:
dones_float[i] = 1
else:
dones_float[i] = 0
dones_float[-1] = 1
super().__init__(dataset['observations'].astype(np.float32),
actions=dataset['actions'].astype(np.float32),
rewards=dataset['rewards'].astype(np.float32),
masks=1.0 - dataset['terminals'].astype(np.float32),
dones_float=dones_float.astype(np.float32),
next_observations=dataset['next_observations'].astype(
np.float32),
size=len(dataset['observations']))
class ReplayBuffer(Dataset):
def __init__(self, observation_space: gym.spaces.Box, action_dim: int,
capacity: int):
observations = np.empty((capacity, *observation_space.shape),
dtype=observation_space.dtype)
actions = np.empty((capacity, action_dim), dtype=np.float32)
rewards = np.empty((capacity, ), dtype=np.float32)
masks = np.empty((capacity, ), dtype=np.float32)
dones_float = np.empty((capacity, ), dtype=np.float32)
next_observations = np.empty((capacity, *observation_space.shape),
dtype=observation_space.dtype)
super().__init__(observations=observations,
actions=actions,
rewards=rewards,
masks=masks,
dones_float=dones_float,
next_observations=next_observations,
size=0)
self.size = 0
self.insert_index = 0
self.capacity = capacity
def initialize_with_dataset(self, dataset: Dataset,
num_samples: Optional[int]):
assert self.insert_index == 0, 'Can insert a batch online in an empty replay buffer.'
dataset_size = len(dataset.observations)
if num_samples is None:
num_samples = dataset_size
else:
num_samples = min(dataset_size, num_samples)
assert self.capacity >= num_samples, 'Dataset cannot be larger than the replay buffer capacity.'
if num_samples < dataset_size:
perm = np.random.permutation(dataset_size)
indices = perm[:num_samples]
else:
indices = np.arange(num_samples)
self.observations[:num_samples] = dataset.observations[indices]
self.actions[:num_samples] = dataset.actions[indices]
self.rewards[:num_samples] = dataset.rewards[indices]
self.masks[:num_samples] = dataset.masks[indices]
self.dones_float[:num_samples] = dataset.dones_float[indices]
self.next_observations[:num_samples] = dataset.next_observations[
indices]
self.insert_index = num_samples
self.size = num_samples
def insert(self, observation: np.ndarray, action: np.ndarray,
reward: float, mask: float, done_float: float,
next_observation: np.ndarray):
self.observations[self.insert_index] = observation
self.actions[self.insert_index] = action
self.rewards[self.insert_index] = reward
self.masks[self.insert_index] = mask
self.dones_float[self.insert_index] = done_float
self.next_observations[self.insert_index] = next_observation
self.insert_index = (self.insert_index + 1) % self.capacity
self.size = min(self.size + 1, self.capacity)