-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathddpg.py
204 lines (157 loc) · 7.02 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import sys
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.autograd import Variable
import torch.nn.functional as F
def soft_update(target, source, tau):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def hard_update(target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
"""
From: https://github.com/pytorch/pytorch/issues/1959
There's an official LayerNorm implementation in pytorch now, but it hasn't been included in
pip version yet. This is a temporary version
This slows down training by a bit
"""
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-5, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
y = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
y = self.gamma.view(*shape) * y + self.beta.view(*shape)
return y
nn.LayerNorm = LayerNorm
class Actor(nn.Module):
def __init__(self, hidden_size, num_inputs, action_space):
super(Actor, self).__init__()
self.action_space = action_space
num_outputs = action_space.shape[0]
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.ln1 = nn.LayerNorm(hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.ln2 = nn.LayerNorm(hidden_size)
self.mu = nn.Linear(hidden_size, num_outputs)
self.mu.weight.data.mul_(0.1)
self.mu.bias.data.mul_(0.1)
def forward(self, inputs):
x = inputs
x = self.linear1(x)
x = self.ln1(x)
x = F.relu(x)
x = self.linear2(x)
x = self.ln2(x)
x = F.relu(x)
mu = F.tanh(self.mu(x))
return mu
class Critic(nn.Module):
def __init__(self, hidden_size, num_inputs, action_space):
super(Critic, self).__init__()
self.action_space = action_space
num_outputs = action_space.shape[0]
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.ln1 = nn.LayerNorm(hidden_size)
self.linear2 = nn.Linear(hidden_size+num_outputs, hidden_size)
self.ln2 = nn.LayerNorm(hidden_size)
self.V = nn.Linear(hidden_size, 1)
self.V.weight.data.mul_(0.1)
self.V.bias.data.mul_(0.1)
def forward(self, inputs, actions):
x = inputs
x = self.linear1(x)
x = self.ln1(x)
x = F.relu(x)
x = torch.cat((x, actions), 1)
x = self.linear2(x)
x = self.ln2(x)
x = F.relu(x)
V = self.V(x)
return V
class DDPG(object):
def __init__(self, gamma, tau, hidden_size, num_inputs, action_space):
self.num_inputs = num_inputs
self.action_space = action_space
self.actor = Actor(hidden_size, self.num_inputs, self.action_space)
self.actor_target = Actor(hidden_size, self.num_inputs, self.action_space)
self.actor_perturbed = Actor(hidden_size, self.num_inputs, self.action_space)
self.actor_optim = Adam(self.actor.parameters(), lr=1e-4)
self.critic = Critic(hidden_size, self.num_inputs, self.action_space)
self.critic_target = Critic(hidden_size, self.num_inputs, self.action_space)
self.critic_optim = Adam(self.critic.parameters(), lr=1e-3)
self.gamma = gamma
self.tau = tau
hard_update(self.actor_target, self.actor) # Make sure target is with the same weight
hard_update(self.critic_target, self.critic)
def select_action(self, state, action_noise=None, param_noise=None):
self.actor.eval()
if param_noise is not None:
mu = self.actor_perturbed((Variable(state)))
else:
mu = self.actor((Variable(state)))
self.actor.train()
mu = mu.data
if action_noise is not None:
mu += torch.Tensor(action_noise.noise())
return mu.clamp(-1, 1)
def update_parameters(self, batch):
state_batch = Variable(torch.cat(batch.state))
action_batch = Variable(torch.cat(batch.action))
reward_batch = Variable(torch.cat(batch.reward))
mask_batch = Variable(torch.cat(batch.mask))
next_state_batch = Variable(torch.cat(batch.next_state))
next_action_batch = self.actor_target(next_state_batch)
next_state_action_values = self.critic_target(next_state_batch, next_action_batch)
reward_batch = reward_batch.unsqueeze(1)
mask_batch = mask_batch.unsqueeze(1)
expected_state_action_batch = reward_batch + (self.gamma * mask_batch * next_state_action_values)
self.critic_optim.zero_grad()
state_action_batch = self.critic((state_batch), (action_batch))
value_loss = F.mse_loss(state_action_batch, expected_state_action_batch)
value_loss.backward()
self.critic_optim.step()
self.actor_optim.zero_grad()
policy_loss = -self.critic((state_batch),self.actor((state_batch)))
policy_loss = policy_loss.mean()
policy_loss.backward()
self.actor_optim.step()
soft_update(self.actor_target, self.actor, self.tau)
soft_update(self.critic_target, self.critic, self.tau)
return value_loss.item(), policy_loss.item()
def perturb_actor_parameters(self, param_noise):
"""Apply parameter noise to actor model, for exploration"""
hard_update(self.actor_perturbed, self.actor)
params = self.actor_perturbed.state_dict()
for name in params:
if 'ln' in name:
pass
param = params[name]
param += torch.randn(param.shape) * param_noise.current_stddev
def save_model(self, env_name, suffix="", actor_path=None, critic_path=None):
if not os.path.exists('models/'):
os.makedirs('models/')
if actor_path is None:
actor_path = "models/ddpg_actor_{}_{}".format(env_name, suffix)
if critic_path is None:
critic_path = "models/ddpg_critic_{}_{}".format(env_name, suffix)
print('Saving models to {} and {}'.format(actor_path, critic_path))
torch.save(self.actor.state_dict(), actor_path)
torch.save(self.critic.state_dict(), critic_path)
def load_model(self, actor_path, critic_path):
print('Loading models from {} and {}'.format(actor_path, critic_path))
if actor_path is not None:
self.actor.load_state_dict(torch.load(actor_path))
if critic_path is not None:
self.critic.load_state_dict(torch.load(critic_path))