-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathnaf.py
147 lines (109 loc) · 4.84 KB
/
naf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import sys
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.autograd import Variable
import torch.nn.functional as F
def MSELoss(input, target):
return torch.sum((input - target)**2) / input.data.nelement()
def soft_update(target, source, tau):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def hard_update(target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
class Policy(nn.Module):
def __init__(self, hidden_size, num_inputs, action_space):
super(Policy, self).__init__()
self.action_space = action_space
num_outputs = action_space.shape[0]
self.bn0 = nn.BatchNorm1d(num_inputs)
self.bn0.weight.data.fill_(1)
self.bn0.bias.data.fill_(0)
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.bn1 = nn.BatchNorm1d(hidden_size)
self.bn1.weight.data.fill_(1)
self.bn1.bias.data.fill_(0)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.bn2 = nn.BatchNorm1d(hidden_size)
self.bn2.weight.data.fill_(1)
self.bn2.bias.data.fill_(0)
self.V = nn.Linear(hidden_size, 1)
self.V.weight.data.mul_(0.1)
self.V.bias.data.mul_(0.1)
self.mu = nn.Linear(hidden_size, num_outputs)
self.mu.weight.data.mul_(0.1)
self.mu.bias.data.mul_(0.1)
self.L = nn.Linear(hidden_size, num_outputs ** 2)
self.L.weight.data.mul_(0.1)
self.L.bias.data.mul_(0.1)
self.tril_mask = Variable(torch.tril(torch.ones(
num_outputs, num_outputs), diagonal=-1).unsqueeze(0))
self.diag_mask = Variable(torch.diag(torch.diag(
torch.ones(num_outputs, num_outputs))).unsqueeze(0))
def forward(self, inputs):
x, u = inputs
x = self.bn0(x)
x = F.tanh(self.linear1(x))
x = F.tanh(self.linear2(x))
V = self.V(x)
mu = F.tanh(self.mu(x))
Q = None
if u is not None:
num_outputs = mu.size(1)
L = self.L(x).view(-1, num_outputs, num_outputs)
L = L * \
self.tril_mask.expand_as(
L) + torch.exp(L) * self.diag_mask.expand_as(L)
P = torch.bmm(L, L.transpose(2, 1))
u_mu = (u - mu).unsqueeze(2)
A = -0.5 * \
torch.bmm(torch.bmm(u_mu.transpose(2, 1), P), u_mu)[:, :, 0]
Q = A + V
return mu, Q, V
class NAF:
def __init__(self, gamma, tau, hidden_size, num_inputs, action_space):
self.action_space = action_space
self.num_inputs = num_inputs
self.model = Policy(hidden_size, num_inputs, action_space)
self.target_model = Policy(hidden_size, num_inputs, action_space)
self.optimizer = Adam(self.model.parameters(), lr=1e-3)
self.gamma = gamma
self.tau = tau
hard_update(self.target_model, self.model)
def select_action(self, state, action_noise=None, param_noise=None):
self.model.eval()
mu, _, _ = self.model((Variable(state), None))
self.model.train()
mu = mu.data
if action_noise is not None:
mu += torch.Tensor(action_noise.noise())
return mu.clamp(-1, 1)
def update_parameters(self, batch):
state_batch = Variable(torch.cat(batch.state))
action_batch = Variable(torch.cat(batch.action))
reward_batch = Variable(torch.cat(batch.reward))
mask_batch = Variable(torch.cat(batch.mask))
next_state_batch = Variable(torch.cat(batch.next_state))
_, _, next_state_values = self.target_model((next_state_batch, None))
reward_batch = reward_batch.unsqueeze(1)
mask_batch = mask_batch.unsqueeze(1)
expected_state_action_values = reward_batch + (self.gamma * mask_batch * next_state_values)
_, state_action_values, _ = self.model((state_batch, action_batch))
loss = MSELoss(state_action_values, expected_state_action_values)
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(self.model.parameters(), 1)
self.optimizer.step()
soft_update(self.target_model, self.model, self.tau)
return loss.item(), 0
def save_model(self, env_name, suffix="", model_path=None):
if not os.path.exists('models/'):
os.makedirs('models/')
if model_path is None:
model_path = "models/naf_{}_{}".format(env_name, suffix)
print('Saving model to {}'.format(model_path))
torch.save(self.model.state_dict(), model_path)
def load_model(self, model_path):
print('Loading model from {}'.format(model_path))
self.model.load_state_dict(torch.load(model_path))