-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathset_parameters_vortex_lambdaDNA.m
189 lines (165 loc) · 5.33 KB
/
set_parameters_vortex_lambdaDNA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function params = set_parameters_vortex_lambdaDNA
% This function sets all parameters for vectorial PSF calculations
% show intermediate results for monitoring code
params.debugmode = 0;
% libraries
addpath('funfit');
addpath('funnat');
addpath('funextra');
% flags
params.flg_nat = 1;
params.flg_parallel = 1;
% parameters: NA, refractive indices of medium, cover slip, immersion fluid,
% nominal value of immersion fluid refractive index matching objective lens
% design, nominal free working distance (in nm), distance image plane from
% cover slip (in nm), wavelength (in nm), emitter position (in nm) with
% z-position from image plane, spot footprint (in nm), axial range min/max
% (in nm), flag for axial range by z-position in medium or by z-stage
% position, sampling in pupil with, sampling in image plane, sampling in
% axial direction.
%
% fitting parameters
params.Nitermax = 50;
params.tollim = 1e-6;
params.varfit = 0;
% camera offset and gain
params.offset = 106;
params.gain = 1/0.33;
% PSF/optical parameters
params.NA = 1.47;
params.refmed = 1.333;
params.refcov = 1.523;
params.refimm = 1.518;
params.refimmnom = params.refcov;
params.fwd = 120e3;
params.depth = 0;
params.zrange = [-1100,1100];
params.zspread = [-1100,1100];
params.ztype = 'stage'; % 'medium'
params.lambda = 597.5;
params.lambdacentral = 597.5;
params.lambdaspread = [597.5,597.5];
params.xemit = 0.0;
params.yemit = 0.0;
params.zemit = 0.0;
params.Npupil = 32;
params.pixelsize = 65;
params.samplingdistance = params.pixelsize;
params.Mx = 15;
params.My = params.Mx;
params.Mz = 1;
params.xrange = params.pixelsize*params.Mx/2;
params.yrange = params.pixelsize*params.My/2;
% SAF check
if and(params.NA>params.refmed, params.depth<4*params.lambda)
[zvals,~] = set_saffocus(params);
else
[zvals,~] = get_rimismatchpars(params);
end
params.zvals = zvals;
% sanity check on position emitter w.r.t. cover slip
if strcmp(params.ztype,'stage')
zcheck = params.depth+params.zemit;
end
if strcmp(params.ztype,'medium')
zmin = params.zrange(1);
zcheck = zmin+params.depth+params.zemit;
end
if (zcheck<0)
fprintf('Warning! Emitter must be above the cover slip:\n')
fprintf('Adjust parameter settings for physical results.\n')
end
% sanity check on refractive index values
if (params.NA>params.refimm)
fprintf('Warning! Refractive index immersion medium cannot be smaller than NA.\n')
end
if (params.NA>params.refcov)
fprintf('Warning! Refractive index cover slip cannot be smaller than NA.\n')
end
% parameters needed for fixed dipole PSF only: emitter/absorber dipole
% orientation (characterized by angles pola and azim)
params.dipoletype = 'diffusion'; % 'free' 'fixed'
params.pola = 90.0*pi/180;
params.azim = 0.0*pi/180;
% diffusion coefficient
welldepth = 1/eps;
g2 = (3+welldepth^2-3*welldepth*coth(welldepth))/welldepth^2;
params.welldepth = welldepth;
params.g2 = g2;
% aberrations (Zernike orders [n1,m1,A1,n2,m2,A2,...] with n1,n2,... the
% radial orders, m1,m2,... the azimuthal orders, and A1,A2,... the Zernike
% coefficients in lambda rms, so 0.072 means diffraction limit)
params.aberrationcorrected = false;
params.aberrationsoffset = [];
params.aberrations = [ ...
2, -2, 0;
2, 2, 0;
3, -1, 0;
3, 1, 0;
3, -3, 0;
3, 3, 0;
4, 0, 0;
4, -2, 0;
4, 2, 0;
5, -1, 0;
5, 1, 0;
6, 0, 0];
params.aberrations(:,3) = params.aberrations(:,3)*params.lambdacentral;
% DOE/SLM
% params.doetype = 'none';
params.doetype = 'vortex';
params.ringradius = 1;
params.doelevels = 64;
params.zonefunction = params.aberrations;
params.doephasedepth = 593;
params.doevortexflip = 1;
% Bead parameters for convolution with PSF and derivatives, beaddiameter in nm
params.bead = false;
params.beaddiameter = 0;
% check on meaningfullness of bead convolution
if params.beaddiameter<params.pixelsize
params.bead = false;
end
% Fit model parameters: signal photon count, background photons/pixel, read
% noise variance for sCMOS camera's, fit model, output labels depending on
% fit modelnn
params.readnoisestd = 0;
params.readnoisevariance = 0;
% model parameters
params.alpha = 0;
params.beta = 0;
params.K = 1;
params.m = 1;
params.excitation = 'constant';
% fitting model
params.fitmodel = 'xyz-azim-pola-diffusion';
if strcmp(params.fitmodel,'xy')
params.numparams = 4;
elseif strcmp(params.fitmodel,'xyz')
params.numparams = 5;
elseif strcmp(params.fitmodel,'xy-azim')
params.numparams = 5;
elseif strcmp(params.fitmodel,'xy-azim-pola')
params.numparams = 6;
elseif strcmp(params.fitmodel,'xyz-azim-pola')
params.numparams = 7;
elseif strcmp(params.fitmodel,'xy-azim-diffusion')
params.numparams = 6;
elseif strcmp(params.fitmodel,'xy-azim-pola-diffusion')
params.numparams = 7;
elseif strcmp(params.fitmodel,'xyz-azim-pola-diffusion')
params.numparams = 8;
end
% calculate auxiliary vectors for chirpz
PupilSize = params.NA/params.lambda;
[Ax,Bx,Dx] = prechirpz(PupilSize,params.xrange,params.Npupil,params.Mx);
[Ay,By,Dy] = prechirpz(PupilSize,params.yrange,params.Npupil,params.My);
params.Axmt = repmat(Ax,params.Mx,1);
params.Bxmt = repmat(Bx,params.Mx,1);
params.Dxmt = repmat(Dx,params.Mx,1);
params.Aymt = repmat(Ay,params.Npupil,1);
params.Bymt = repmat(By,params.Npupil,1);
params.Dymt = repmat(Dy,params.Npupil,1);
params.cztN = params.Npupil;
params.cztM = params.Mx;
params.cztL = params.Npupil+params.Mx-1;