-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathPermutations.v
1349 lines (1238 loc) · 37.1 KB
/
Permutations.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import Bits.
Require Import VectorStates.
Require Import Modulus.
(** Facts about permutations and matrices that implement them. *)
Declare Scope perm_scope.
Local Open Scope perm_scope.
Local Open Scope nat_scope.
Create HintDb perm_db.
Create HintDb perm_bounded_db.
Create HintDb perm_inv_db.
Create HintDb WF_perm_db.
(** Permutations on (0, ..., n-1) *)
Definition permutation (n : nat) (f : nat -> nat) :=
exists g, forall x, x < n -> (f x < n /\ g x < n /\ g (f x) = x /\ f (g x) = x).
Lemma permutation_is_injective : forall n f,
permutation n f ->
forall x y, x < n -> y < n -> f x = f y -> x = y.
Proof.
intros n f [g Hbij] x y Hx Hy H.
destruct (Hbij x Hx) as [_ [_ [H0 _]]].
destruct (Hbij y Hy) as [_ [_ [H1 _]]].
rewrite <- H0.
rewrite <- H1.
rewrite H.
reflexivity.
Qed.
Lemma permutation_is_surjective : forall n f,
permutation n f ->
forall k, k < n -> exists k', k' < n /\ f k' = k.
Proof.
intros n f Hf k Hk.
destruct Hf as [finv Hfinv].
specialize (Hfinv k Hk).
exists (finv k).
intuition.
Qed.
Lemma permutation_compose : forall n f g,
permutation n f ->
permutation n g ->
permutation n (f ∘ g)%prg.
Proof.
intros n f g [finv Hfbij] [ginv Hgbij].
exists (ginv ∘ finv)%prg.
unfold compose.
intros x Hx.
destruct (Hgbij x) as [? [_ [? _]]]; auto.
destruct (Hfbij (g x)) as [? [_ [Hinv1 _]]]; auto.
destruct (Hfbij x) as [_ [? [_ ?]]]; auto.
destruct (Hgbij (finv x)) as [_ [? [_ Hinv2]]]; auto.
repeat split; auto.
rewrite Hinv1.
assumption.
rewrite Hinv2.
assumption.
Qed.
(** The identity permutation *)
Notation idn := (fun (k : nat) => k).
Lemma compose_idn_l : forall {T} (f : T -> nat), (idn ∘ f = f)%prg.
Proof.
intros.
unfold compose.
apply functional_extensionality; easy.
Qed.
Lemma compose_idn_r : forall {T} (f : nat -> T), (f ∘ idn = f)%prg.
Proof.
intros.
unfold compose.
apply functional_extensionality; easy.
Qed.
#[export] Hint Rewrite @compose_idn_r @compose_idn_l : perm_cleanup_db.
Lemma idn_permutation : forall n, permutation n idn.
Proof.
intros.
exists idn.
easy.
Qed.
Global Hint Resolve idn_permutation : perm_db.
(** Notions of injectivity, boundedness, and surjectivity of f : nat -> nat
interpreted as a function from [n]_0 to [n]_0) and their equivalences *)
Notation perm_surj n f := (forall k, k < n -> exists k', k' < n /\ f k' = k).
Notation perm_bounded n f := (forall k, k < n -> f k < n).
Notation perm_inj n f := (forall k l, k < n -> l < n -> f k = f l -> k = l).
Lemma fswap_injective_if_injective : forall {A} n (f:nat -> A) x y,
x < n -> y < n ->
perm_inj n f -> perm_inj n (fswap f x y).
Proof.
intros A n f x y Hx Hy Hinj k l Hk Hl.
unfold fswap.
bdestruct (k =? x); bdestruct (k =? y);
bdestruct (l =? x); bdestruct (l =? y);
subst; auto using Hinj.
all: intros Heq;
epose proof (Hinj _ _ _ _ Heq);
exfalso; lia.
Unshelve.
all: assumption.
Qed.
Lemma fswap_injective_iff_injective : forall {A} n (f:nat -> A) x y,
x < n -> y < n ->
perm_inj n f <-> perm_inj n (fswap f x y).
Proof.
intros A n f x y Hx Hy.
split.
- apply fswap_injective_if_injective; easy.
- intros Hinj.
rewrite <- (fswap_involutive f x y).
apply fswap_injective_if_injective; easy.
Qed.
Lemma fswap_surjective_if_surjective : forall n f x y,
x < n -> y < n ->
perm_surj n f -> perm_surj n (fswap f x y).
Proof.
intros n f x y Hx Hy Hsurj k Hk.
destruct (Hsurj k Hk) as [k' [Hk' Hfk']].
bdestruct (k' =? x); [|bdestruct (k' =? y)].
- exists y.
split; [assumption|].
subst.
rewrite fswap_simpl2.
easy.
- exists x.
split; [assumption|].
subst.
rewrite fswap_simpl1.
easy.
- exists k'.
split; [assumption|].
rewrite fswap_neq; lia.
Qed.
Lemma fswap_surjective_iff_surjective : forall n f x y,
x < n -> y < n ->
perm_surj n f <-> perm_surj n (fswap f x y).
Proof.
intros n f x y Hx Hy.
split.
- apply fswap_surjective_if_surjective; easy.
- intros Hsurj.
rewrite <- (fswap_involutive f x y).
apply fswap_surjective_if_surjective; easy.
Qed.
Lemma fswap_bounded_if_bounded : forall n f x y,
x < n -> y < n ->
perm_bounded n f -> perm_bounded n (fswap f x y).
Proof.
intros n f x y Hx Hy Hbounded k Hk.
unfold fswap.
bdestruct_all;
apply Hbounded;
easy.
Qed.
Lemma fswap_bounded_iff_bounded : forall n f x y,
x < n -> y < n ->
perm_bounded n f <-> perm_bounded n (fswap f x y).
Proof.
intros n f x y Hx Hy.
split.
- apply fswap_bounded_if_bounded; easy.
- intros Hbounded.
rewrite <- (fswap_involutive f x y).
apply fswap_bounded_if_bounded; easy.
Qed.
Lemma surjective_of_eq_boundary_shrink : forall n f,
perm_surj (S n) f -> f n = n -> perm_surj n f.
Proof.
intros n f Hsurj Hfn k Hk.
assert (HkS : k < S n) by lia.
destruct (Hsurj k HkS) as [k' [Hk' Hfk']].
bdestruct (k' =? n).
- exfalso; subst; lia.
- exists k'.
split; [lia | assumption].
Qed.
Lemma surjective_of_eq_boundary_grow : forall n f,
perm_surj n f -> f n = n -> perm_surj (S n) f.
Proof.
intros n f Hsurj Hfn k Hk.
bdestruct (k =? n).
- exists n; lia.
- assert (H'k : k < n) by lia.
destruct (Hsurj k H'k) as [k' [Hk' Hfk']].
exists k'; lia.
Qed.
Lemma fswap_at_boundary_surjective : forall n f n',
n' < S n -> perm_surj (S n) f -> f n' = n ->
perm_surj n (fswap f n' n).
Proof.
intros n f n' Hn' Hsurj Hfn' k Hk.
bdestruct (k =? f n).
- exists n'.
split.
+ assert (Hneq: n' <> n); [|lia].
intros Hfalse.
rewrite Hfalse in Hfn'.
rewrite Hfn' in H.
lia.
+ rewrite fswap_simpl1; easy.
- assert (H'k : k < S n) by lia.
destruct (Hsurj k H'k) as [k' [Hk' Hfk']].
assert (Hk'n: k' <> n) by (intros Hfalse; subst; lia).
assert (Hk'n': k' <> n') by (intros Hfalse; subst; lia).
exists k'.
split; [lia|].
rewrite fswap_neq; lia.
Qed.
Lemma injective_monotone : forall {A} n (f : nat -> A) m,
m < n -> perm_inj n f -> perm_inj m f.
Proof.
intros A n f m Hmn Hinj k l Hk Hl Hfkl.
apply Hinj; auto; lia.
Qed.
Lemma injective_and_bounded_grow_of_boundary : forall n f,
perm_inj n f /\ perm_bounded n f -> f n = n ->
perm_inj (S n) f /\ perm_bounded (S n) f.
Proof.
intros n f [Hinj Hbounded] Hfn.
split.
- intros k l Hk Hl Hfkl.
bdestruct (k =? n).
+ subst.
bdestruct (l =? n); [easy|].
assert (H'l : l < n) by lia.
specialize (Hbounded _ H'l).
lia.
+ assert (H'k : k < n) by lia.
bdestruct (l =? n).
* specialize (Hbounded _ H'k).
subst. lia.
* assert (H'l : l < n) by lia.
apply Hinj; easy.
- intros k Hk.
bdestruct (k <? n).
+ specialize (Hbounded _ H). lia.
+ replace k with n by lia.
lia.
Qed.
Lemma injective_and_bounded_of_surjective : forall n f,
perm_surj n f -> perm_inj n f /\ perm_bounded n f.
Proof.
intros n.
induction n; [easy|].
intros f Hsurj.
assert (HnS : n < S n) by lia.
destruct (Hsurj n HnS) as [n' [Hn' Hfn']].
pose proof (fswap_at_boundary_surjective _ _ _ Hn' Hsurj Hfn') as Hswap_surj.
specialize (IHn (fswap f n' n) Hswap_surj).
rewrite (fswap_injective_iff_injective _ f n' n); [|easy|easy].
rewrite (fswap_bounded_iff_bounded _ f n' n); [|easy|easy].
apply injective_and_bounded_grow_of_boundary;
[| rewrite fswap_simpl2; easy].
easy.
Qed.
Lemma injective_and_bounded_shrink_of_boundary : forall n f,
perm_inj (S n) f /\ perm_bounded (S n) f -> f n = n ->
perm_inj n f /\ perm_bounded n f.
Proof.
intros n f [Hinj Hbounded] Hfn.
split.
- eapply injective_monotone, Hinj; lia.
- intros k Hk.
assert (H'k : k < S n) by lia.
specialize (Hbounded k H'k).
bdestruct (f k =? n).
+ rewrite <- Hfn in H.
assert (HnS : n < S n) by lia.
specialize (Hinj _ _ H'k HnS H).
lia.
+ lia.
Qed.
(* Formalization of proof sketch of pigeonhole principle
from https://math.stackexchange.com/a/910790 *)
Lemma exists_bounded_decidable : forall n P,
(forall k, k < n -> {P k} + {~ P k}) ->
{exists j, j < n /\ P j} + {~ exists j, j < n /\ P j}.
Proof.
intros n P HPdec.
induction n.
- right; intros [x [Hlt0 _]]; inversion Hlt0.
- destruct (HPdec n) as [HPn | HnPn]; [lia| |].
+ left. exists n; split; [lia | assumption].
+ destruct IHn as [Hex | Hnex].
* intros k Hk; apply HPdec; lia.
* left.
destruct Hex as [j [Hjn HPj]].
exists j; split; [lia | assumption].
* right.
intros [j [Hjn HPj]].
apply Hnex.
bdestruct (j =? n).
-- exfalso; apply HnPn; subst; easy.
-- exists j; split; [lia | easy].
Qed.
Lemma has_preimage_decidable : forall n f,
forall k, k < n ->
{exists j, j < n /\ f j = k} + {~exists j, j < n /\ f j = k}.
Proof.
intros n f k Hk.
apply exists_bounded_decidable.
intros k' Hk'.
bdestruct (f k' =? k).
- left; easy.
- right; easy.
Qed.
Lemma pigeonhole_S : forall n f,
(forall i, i < S n -> f i < n) ->
exists i j, i < S n /\ j < i /\ f i = f j.
Proof.
intros n.
destruct n;
[intros f Hbounded; specialize (Hbounded 0); lia|].
induction n; intros f Hbounded.
1: {
exists 1, 0.
pose (Hbounded 0).
pose (Hbounded 1).
lia.
}
destruct (has_preimage_decidable (S (S n)) f (f (S (S n)))) as [Hex | Hnex].
- apply Hbounded; lia.
- destruct Hex as [j [Hj Hfj]].
exists (S (S n)), j.
repeat split; lia.
- destruct (IHn (fun k => if f k <? f (S (S n)) then f k else f k - 1)) as
[i [j [Hi [Hj Hgij]]]].
+ intros i Hi.
bdestruct (f i <? f (S (S n))).
* specialize (Hbounded (S (S n))).
lia.
* specialize (Hbounded i).
lia.
+ exists i, j.
repeat (split; [lia|]).
assert (Hnex': forall k, k < S (S n) -> f k >= f (S (S n)) -> f k > f (S (S n))). 1:{
intros k Hk Hge.
bdestruct (f k =? f (S (S n))).
- exfalso; apply Hnex; exists k; split; lia.
- lia.
}
bdestruct (f i <? f (S (S n)));
bdestruct (f j <? f (S (S n)));
try easy.
* specialize (Hnex' j); lia.
* specialize (Hnex' i); lia.
* pose (Hnex' j).
pose (Hnex' i Hi H).
lia.
Qed.
Lemma n_has_preimage_of_injective_and_bounded : forall n f,
perm_inj (S n) f /\ perm_bounded (S n) f -> exists k, k < S n /\ f k = n.
Proof.
intros n f [Hinj Hbounded].
destruct (has_preimage_decidable (S n) f n) as [Hex | Hnex];
[lia | assumption |].
(* Now, contradict injectivity using pigeonhole principle *)
exfalso.
assert (Hbounded': forall j, j < S n -> f j < n). 1:{
intros j Hj.
specialize (Hbounded j Hj).
bdestruct (f j =? n).
- exfalso; apply Hnex; exists j; easy.
- lia.
}
destruct (pigeonhole_S n f Hbounded') as [i [j [Hi [Hj Heq]]]].
absurd (i = j).
- lia.
- apply Hinj; lia.
Qed.
Lemma surjective_of_injective_and_bounded : forall n f,
perm_inj n f /\ perm_bounded n f -> perm_surj n f.
Proof.
induction n; [easy|].
intros f Hinj_bounded.
destruct (n_has_preimage_of_injective_and_bounded n f Hinj_bounded) as [n' [Hn' Hfn']].
rewrite (fswap_injective_iff_injective _ _ n n') in Hinj_bounded;
[|lia|lia].
rewrite (fswap_bounded_iff_bounded _ _ n n') in Hinj_bounded;
[|lia|lia].
rewrite (fswap_surjective_iff_surjective _ _ n n');
[|lia|easy].
intros k Hk.
bdestruct (k =? n).
- exists n.
split; [lia|].
rewrite fswap_simpl1; subst; easy.
- pose proof (injective_and_bounded_shrink_of_boundary n _ Hinj_bounded) as Hinj_bounded'.
rewrite fswap_simpl1 in Hinj_bounded'.
specialize (Hinj_bounded' Hfn').
destruct (IHn (fswap f n n') Hinj_bounded' k) as [k' [Hk' Hfk']]; [lia|].
exists k'.
split; [lia|assumption].
Qed.
(** Explicit inverse of a permutation *)
Fixpoint perm_inv n f k : nat :=
match n with
| 0 => 0%nat
| S n' => if f n' =? k then n'%nat else perm_inv n' f k
end.
Lemma perm_inv_bounded_S : forall n f k,
perm_inv (S n) f k < S n.
Proof.
intros n f k.
induction n; simpl.
- bdestructΩ (f 0 =? k).
- bdestruct (f (S n) =? k); [|transitivity (S n); [apply IHn|]].
all: apply Nat.lt_succ_diag_r.
Qed.
Lemma perm_inv_bounded : forall n f,
perm_bounded n (perm_inv n f).
Proof.
induction n.
- easy.
- intros.
apply perm_inv_bounded_S.
Qed.
#[export] Hint Resolve perm_inv_bounded_S perm_inv_bounded : perm_bounded_db.
Lemma perm_inv_is_linv_of_injective : forall n f,
perm_inj n f ->
forall k, k < n -> perm_inv n f (f k) = k.
Proof.
intros n f Hinj k Hk.
induction n.
- easy.
- simpl.
bdestruct (f n =? f k).
+ apply Hinj; lia.
+ assert (k <> n) by (intros Heq; subst; easy).
apply IHn; [auto|].
assert (k <> n) by (intros Heq; subst; easy).
lia.
Qed.
Lemma perm_inv_is_rinv_of_surjective' : forall n f k,
(exists l, l < n /\ f l = k) ->
f (perm_inv n f k) = k.
Proof.
intros n f k.
induction n.
- intros []; easy.
- intros [l [Hl Hfl]].
simpl.
bdestruct (f n =? k); [easy|].
apply IHn.
exists l.
split; [|easy].
bdestruct (l =? n); [subst; easy|].
lia.
Qed.
Lemma perm_inv_is_rinv_of_surjective : forall n f,
perm_surj n f -> forall k, k < n ->
f (perm_inv n f k) = k.
Proof.
intros n f Hsurj k Hk.
apply perm_inv_is_rinv_of_surjective', Hsurj, Hk.
Qed.
Lemma perm_inv_is_linv_of_permutation : forall n f,
permutation n f ->
forall k, k < n -> perm_inv n f (f k) = k.
Proof.
intros n f Hperm.
apply perm_inv_is_linv_of_injective, permutation_is_injective, Hperm.
Qed.
Lemma perm_inv_is_rinv_of_permutation : forall n f,
permutation n f ->
forall k, k < n -> f (perm_inv n f k) = k.
Proof.
intros n f Hperm k Hk.
apply perm_inv_is_rinv_of_surjective', (permutation_is_surjective _ _ Hperm _ Hk).
Qed.
Lemma perm_inv_is_inv_of_surjective_injective_bounded : forall n f,
perm_surj n f -> perm_inj n f -> perm_bounded n f ->
(forall k, k < n ->
f k < n /\ perm_inv n f k < n /\ perm_inv n f (f k) = k /\ f (perm_inv n f k) = k).
Proof.
intros n f Hsurj Hinj Hbounded.
intros k Hk; repeat split.
- apply Hbounded, Hk.
- apply perm_inv_bounded, Hk.
- rewrite perm_inv_is_linv_of_injective; easy.
- rewrite perm_inv_is_rinv_of_surjective'; [easy|].
apply Hsurj; easy.
Qed.
Lemma permutation_iff_surjective : forall n f,
permutation n f <-> perm_surj n f.
Proof.
split.
- apply permutation_is_surjective.
- intros Hsurj.
exists (perm_inv n f).
pose proof (injective_and_bounded_of_surjective n f Hsurj).
apply perm_inv_is_inv_of_surjective_injective_bounded; easy.
Qed.
Lemma perm_inv_permutation n f : permutation n f ->
permutation n (perm_inv n f).
Proof.
intros Hperm.
exists f.
intros k Hk; repeat split.
- apply perm_inv_bounded, Hk.
- destruct Hperm as [? H]; apply H, Hk.
- rewrite perm_inv_is_rinv_of_permutation; easy.
- rewrite perm_inv_is_linv_of_permutation; easy.
Qed.
#[export] Hint Resolve perm_inv_permutation : perm_db.
Lemma permutation_is_bounded n f : permutation n f ->
perm_bounded n f.
Proof.
intros [finv Hfinv] k Hk.
destruct (Hfinv k Hk); easy.
Qed.
Lemma id_permutation : forall n,
permutation n Datatypes.id.
Proof.
intros.
exists Datatypes.id.
intros.
unfold Datatypes.id.
easy.
Qed.
Lemma fswap_permutation : forall n f x y,
permutation n f ->
(x < n)%nat ->
(y < n)%nat ->
permutation n (fswap f x y).
Proof.
intros.
replace (fswap f x y) with (f ∘ (fswap (fun i => i) x y))%prg.
apply permutation_compose; auto.
exists (fswap (fun i => i) x y).
intros. unfold fswap.
bdestruct_all; subst; auto.
apply functional_extensionality; intros.
unfold compose, fswap.
bdestruct_all; easy.
Qed.
Lemma fswap_at_boundary_permutation : forall n f x,
permutation (S n) f ->
(x < S n)%nat -> f x = n ->
permutation n (fswap f x n).
Proof.
intros n f x.
rewrite 2!permutation_iff_surjective.
intros HsurjSn Hx Hfx.
apply fswap_at_boundary_surjective; easy.
Qed.
(** Well-foundedness of permutations; f k = k for k not in [n]_0 *)
Definition WF_Perm (n : nat) (f : nat -> nat) :=
forall k, n <= k -> f k = k.
Lemma monotonic_WF_Perm n m f : WF_Perm n f -> n <= m ->
WF_Perm m f.
Proof.
intros HWF Hnm k Hk.
apply HWF; lia.
Qed.
#[export] Hint Resolve monotonic_WF_Perm : WF_perm_db.
Lemma compose_WF_Perm n f g : WF_Perm n f -> WF_Perm n g ->
WF_Perm n (f ∘ g)%prg.
Proof.
unfold compose.
intros Hf Hg k Hk.
rewrite Hg, Hf; easy.
Qed.
#[export] Hint Resolve compose_WF_Perm : WF_perm_db.
Lemma linv_WF_of_WF {n} {f finv}
(HfWF : WF_Perm n f) (Hinv : (finv ∘ f = idn)%prg) :
WF_Perm n finv.
Proof.
intros k Hk.
rewrite <- (HfWF k Hk).
unfold compose in Hinv.
apply (f_equal_inv k) in Hinv.
rewrite Hinv, (HfWF k Hk).
easy.
Qed.
Lemma bounded_of_WF_linv {n} {f finv}
(HWF: WF_Perm n f) (Hinv : (finv ∘ f = idn)%prg) :
perm_bounded n f.
Proof.
intros k Hk.
pose proof (linv_WF_of_WF HWF Hinv) as HWFinv.
unfold compose in Hinv.
apply (f_equal_inv k) in Hinv.
bdestruct (f k <? n); [easy|].
specialize (HWFinv (f k) H).
lia.
Qed.
Lemma rinv_bounded_of_WF {n} {f finv} (Hinv : (f ∘ finv = idn)%prg)
(HWF : WF_Perm n f) :
perm_bounded n finv.
Proof.
intros k Hk.
unfold compose in Hinv.
apply (f_equal_inv k) in Hinv.
bdestruct (finv k <? n).
- easy.
- specialize (HWF _ H).
lia.
Qed.
Lemma WF_permutation_inverse_injective (f : nat->nat) (n:nat) {finv finv'}
(Hf: permutation n f) (HfWF : WF_Perm n f)
(Hfinv : (finv ∘ f = idn)%prg) (Hfinv' : (finv' ∘ f = idn)%prg) :
finv = finv'.
Proof.
apply functional_extensionality; intros k.
pose proof (linv_WF_of_WF HfWF Hfinv) as HfinvWF.
pose proof (linv_WF_of_WF HfWF Hfinv') as Hfinv'WF.
bdestruct (n <=? k).
- rewrite HfinvWF, Hfinv'WF; easy.
- destruct Hf as [fi Hfi].
specialize (Hfi k H).
unfold compose in Hfinv, Hfinv'.
apply (f_equal_inv (fi k)) in Hfinv, Hfinv'.
replace (f (fi k)) with k in * by easy.
rewrite Hfinv, Hfinv'.
easy.
Qed.
Lemma permutation_monotonic_of_WF f m n : (m <= n)%nat ->
permutation m f -> WF_Perm m f ->
permutation n f.
Proof.
intros Hmn [finv_m Hfinv_m] HWF.
exists (fun k => if m <=? k then k else finv_m k).
intros k Hk.
bdestruct (m <=? k).
- rewrite HWF; bdestruct_all; auto.
- specialize (Hfinv_m _ H).
repeat split; bdestruct_all; try easy; lia.
Qed.
Notation perm_eq n f g := (forall k, k < n -> f k = g k).
Lemma eq_of_WF_perm_eq n f g : WF_Perm n f -> WF_Perm n g ->
perm_eq n f g -> f = g.
Proof.
intros HfWF HgWF Heq.
apply functional_extensionality; intros k.
bdestruct (k <? n).
- apply Heq, H.
- rewrite HfWF, HgWF; easy.
Qed.
Lemma permutation_linv_iff_rinv_of_bounded n f finv :
permutation n f -> perm_bounded n finv ->
perm_eq n (f ∘ finv)%prg idn <-> perm_eq n (finv ∘ f)%prg idn.
Proof.
intros Hperm Hbounded.
split; unfold compose.
- intros Hrinv.
intros k Hk.
apply (permutation_is_injective n f Hperm); try easy.
+ apply Hbounded, permutation_is_bounded, Hk.
apply Hperm.
+ rewrite Hrinv; [easy|].
apply (permutation_is_bounded n f Hperm _ Hk).
- intros Hlinv k Hk.
destruct Hperm as [fi Hf].
destruct (Hf k Hk) as [Hfk [Hfik [Hfifk Hffik]]].
rewrite <- Hffik.
rewrite Hlinv; easy.
Qed.
Notation is_perm_rinv n f finv := (perm_eq n (f ∘ finv)%prg idn).
Notation is_perm_linv n f finv := (perm_eq n (finv ∘ f)%prg idn).
Notation is_perm_inv n f finv :=
(perm_eq n (f ∘ finv)%prg idn /\ perm_eq n (finv ∘ f)%prg idn).
Lemma perm_linv_injective_of_surjective n f finv finv' :
perm_surj n f -> is_perm_linv n f finv -> is_perm_linv n f finv' ->
perm_eq n finv finv'.
Proof.
intros Hsurj Hfinv Hfinv' k Hk.
destruct (Hsurj k Hk) as [k' [Hk' Hfk']].
rewrite <- Hfk'.
unfold compose in *.
rewrite Hfinv, Hfinv'; easy.
Qed.
Lemma perm_bounded_rinv_injective_of_injective n f finv finv' :
perm_inj n f -> perm_bounded n finv -> perm_bounded n finv' ->
is_perm_rinv n f finv -> is_perm_rinv n f finv' ->
perm_eq n finv finv'.
Proof.
intros Hinj Hbounded Hbounded' Hfinv Hfinv' k Hk.
apply Hinj; auto.
unfold compose in *.
rewrite Hfinv, Hfinv'; easy.
Qed.
Lemma permutation_inverse_injective n f finv finv' : permutation n f ->
is_perm_inv n f finv -> is_perm_inv n f finv' ->
perm_eq n finv finv'.
Proof.
intros Hperm Hfinv Hfinv'.
eapply perm_linv_injective_of_surjective.
+ apply permutation_is_surjective, Hperm.
+ destruct (Hfinv); auto.
+ destruct (Hfinv'); auto.
Qed.
Fixpoint for_all_nat_lt (f : nat -> bool) (k : nat) :=
match k with
| 0 => true
| S k' => f k' && for_all_nat_lt f k'
end.
Lemma forall_nat_lt_S (P : forall k : nat, Prop) (n : nat) :
(forall k, k < S n -> P k) <-> P n /\ (forall k, k < n -> P k).
Proof.
split.
- intros Hall.
split; intros; apply Hall; lia.
- intros [Hn Hall].
intros k Hk.
bdestruct (k=?n); [subst; easy | apply Hall; lia].
Qed.
Lemma for_all_nat_ltE {f : nat -> bool} {P : forall k : nat, Prop}
(ref : forall k, reflect (P k) (f k)) :
forall n, (forall k, k < n -> P k) <-> (for_all_nat_lt f n = true).
Proof.
induction n.
- easy.
- rewrite forall_nat_lt_S.
simpl.
rewrite andb_true_iff.
rewrite IHn.
apply and_iff_compat_r.
apply reflect_iff; easy.
Qed.
Definition perm_inv_is_inv_pred (f : nat -> nat) (n : nat) : Prop :=
forall k, k < n ->
f k < n /\ perm_inv n f k < n /\
perm_inv n f (f k) = k /\ f (perm_inv n f k) = k.
Definition is_permutation (f : nat -> nat) (n : nat) :=
for_all_nat_lt
(fun k =>
(f k <? n) && (perm_inv n f k <? n)
&& (perm_inv n f (f k) =? k)
&& (f (perm_inv n f k) =? k)) n.
Lemma permutation_iff_perm_inv_is_inv (f : nat -> nat) (n : nat) :
permutation n f <-> perm_inv_is_inv_pred f n.
Proof.
split.
- intros Hperm.
intros k Hk.
repeat split.
+ destruct Hperm as [g Hg];
apply (Hg k Hk).
+ apply perm_inv_bounded; easy.
+ apply perm_inv_is_linv_of_permutation; easy.
+ apply perm_inv_is_rinv_of_permutation; easy.
- intros Hperminv.
exists (perm_inv n f); easy.
Qed.
Lemma is_permutationE (f : nat -> nat) (n : nat) :
perm_inv_is_inv_pred f n <-> is_permutation f n = true.
Proof.
unfold perm_inv_is_inv_pred, is_permutation.
apply for_all_nat_ltE.
intros k.
apply iff_reflect.
rewrite 3!andb_true_iff.
rewrite 2!Nat.ltb_lt, 2!Nat.eqb_eq, 2!and_assoc.
easy.
Qed.
Lemma permutation_iff_is_permutation (f : nat -> nat) (n : nat) :
permutation n f <-> is_permutation f n = true.
Proof.
rewrite permutation_iff_perm_inv_is_inv.
apply is_permutationE.
Qed.
Lemma permutationP (f : nat -> nat) (n : nat) :
reflect (permutation n f) (is_permutation f n).
Proof.
apply iff_reflect, permutation_iff_is_permutation.
Qed.
Definition permutation_dec (f : nat -> nat) (n : nat) :
{permutation n f} + {~ permutation n f} :=
reflect_dec _ _ (permutationP f n).
(** vsum terms can be arbitrarily reordered *)
Lemma vsum_reorder : forall {d} n (v : nat -> Vector d) f,
permutation n f ->
big_sum v n = big_sum (fun i => v (f i)) n.
Proof.
intros.
generalize dependent f.
induction n.
reflexivity.
intros f [g Hg].
destruct (Hg n) as [_ [H1 [_ H2]]]; try lia.
rewrite (vsum_eq_up_to_fswap _ f _ (g n) n) by auto.
repeat rewrite <- big_sum_extend_r.
rewrite fswap_simpl2.
rewrite H2.
specialize (IHn (fswap f (g n) n)).
rewrite <- IHn.
reflexivity.
apply fswap_at_boundary_permutation; auto.
exists g. auto.
Qed.
(** showing every permutation is a sequence of fswaps *)
(* note the list acts on the left, for example, [s1,s2,...,sk] ⋅ f = s1 ⋅ ( ... ⋅ (sk ⋅ f)) *)
Fixpoint stack_fswaps (f : nat -> nat) (l : list (nat * nat)) :=
match l with
| [] => f
| p :: ps => (fswap (Datatypes.id) (fst p) (snd p) ∘ (stack_fswaps f ps))%prg
end.
Definition WF_fswap_stack n (l : list (nat * nat)) :=
forall p, In p l -> (fst p < n /\ snd p < n).
Lemma WF_fswap_stack_pop : forall n a l,
WF_fswap_stack n (a :: l) -> WF_fswap_stack n l.
Proof. intros.
unfold WF_fswap_stack in *.
intros.
apply H.
right; easy.
Qed.
Lemma WF_fswap_stack_cons : forall n a l,
fst a < n -> snd a < n -> WF_fswap_stack n l -> WF_fswap_stack n (a :: l).
Proof. intros.
unfold WF_fswap_stack in *.
intros.
destruct H2; subst; auto.
Qed.
Lemma WF_fswap_miss : forall n l i,
WF_fswap_stack n l ->
n <= i ->
(stack_fswaps Datatypes.id l) i = i.
Proof. induction l.
intros; simpl; easy.
intros; simpl.
unfold compose.
rewrite IHl; auto.
unfold fswap, Datatypes.id; simpl.
destruct (H a).
left; auto.
bdestruct_all; try lia.
apply WF_fswap_stack_pop in H; auto.
Qed.
Lemma stack_fswaps_permutation : forall {n} (f : nat -> nat) (l : list (nat * nat)),
WF_fswap_stack n l ->
permutation n f ->
permutation n (stack_fswaps f l).
Proof. induction l.
- intros. easy.
- intros.
simpl.
apply permutation_compose.
apply fswap_permutation.
apply id_permutation.
3 : apply IHl; auto.
3 : apply WF_fswap_stack_pop in H; auto.
all : apply H; left; easy.
Qed.
Lemma stack_fswaps_cons : forall (p : nat * nat) (l : list (nat * nat)),
((stack_fswaps Datatypes.id [p]) ∘ (stack_fswaps Datatypes.id l))%prg =
stack_fswaps Datatypes.id (p :: l).
Proof. intros.
simpl.
rewrite compose_id_right.
easy.
Qed.
(*
Theorem all_perms_are_fswap_stacks : forall {n} f,
permutation n f ->
exists l, WF_fswap_stack n l /\ f = (stack_fswaps Datatypes.id l) /\ length l = n.
Proof. induction n.
- intros.
exists []; simpl.
*)
Definition ordered_real_function n (f : nat -> R) :=
forall i j, i < n -> j < n -> i <= j -> (f j <= f i)%R.
Lemma get_real_function_min : forall {n} (f : nat -> R),
exists n0, (n0 < (S n))%nat /\ (forall i, (i < (S n))%nat -> (f n0 <= f i)%R).
Proof. induction n.
- intros.
exists O; intros.
split; auto.
intros.
destruct i; try lia.
lra.
- intros.
destruct (IHn f) as [n0 [H H0] ].
destruct (Rlt_le_dec (f n0) (f (S n))).
+ exists n0; intros.
split; try lia.
intros.
bdestruct (i =? (S n))%nat; subst.
lra.
apply H0.
bdestruct (n0 <? S n)%nat; bdestruct (i <? S n)%nat; try lia.
+ exists (S n).
split.
lia.
intros.
specialize (H0 i).
unfold get_minor in H0.
bdestruct (n0 <? S n)%nat; bdestruct (i <? S n)%nat; try lia.
apply H0 in H3.
lra.
bdestruct (i =? S n)%nat; try lia; subst.
lra.
Qed.
Lemma order_real_function : forall n (f : nat -> R),
exists l, WF_fswap_stack n l /\
ordered_real_function n (f ∘ (stack_fswaps Datatypes.id l))%prg.
Proof. intros.
generalize dependent f.
induction n.
- intros; exists [].
split; auto.
unfold WF_fswap_stack; intros.
destruct H.
simpl.
unfold ordered_real_function; intros; lia.
- intros.
destruct (@get_real_function_min n f) as [n0 [H H0]].
destruct (IHn (f ∘ (stack_fswaps Datatypes.id [(n0, n)]))%prg) as [l [H1 H2]].
exists ((n0, n) :: l).
split.
apply WF_fswap_stack_cons; simpl; auto.
unfold WF_fswap_stack in *; intros.
apply H1 in H3.