From 513ceab0e45fbbb442282efb4525a1c161735a1f Mon Sep 17 00:00:00 2001 From: Yoshitaka Inoue <8393063+inoue0426@users.noreply.github.com> Date: Thu, 7 Nov 2024 15:25:08 -0500 Subject: [PATCH] Update README.md --- README.md | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) diff --git a/README.md b/README.md index bf6cae9..cdade07 100644 --- a/README.md +++ b/README.md @@ -21,6 +21,34 @@ docker run -it -p 9999:9999 inoue0426/drgat Then access to http://localhost:9999/notebooks/Tutorial.ipynb and run all cells. +## Input Data + +The model takes the following data structure: + +```python +data = [ + drug, # Drug similarity matrix + cell, # Cell line similarity matrix + gene, # Gene similarity matrix + edge_index, # Graph edge indices + train_drug, # Training set drug indices + train_cell, # Training set cell line indices + val_drug, # Validation set drug indices + val_cell, # Validation set cell line indices + train_labels, # Training set binary labels + val_labels # Validation set binary labels +] +``` + +Output is as follows: + +| Accuracy | Precision | Recall | F1 Score | True Positive | True Negative | False Positive | False Negative | +|-----------|-----------|---------|-----------|----------------|---------------|----------------|-----------------| +| 0.771375 | 0.740881 | 0.783245 | 0.761474 | 1178 | 1312 | 412 | 326 | + +\* You can change the output to the probability or binary prediction easily. + + ## Training For re-training the model, refer to model_training.ipynb. If you want to use your dataset, create_dataset.ipynb might be useful.