-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabel_tool.py
234 lines (194 loc) · 6.36 KB
/
label_tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin python
'''
Read images
label with left button, and correct it with right button
a for previous image
d for next image
detect the skin region,rectangle the regioin
save the region info
@kst_lable_tool1
@gdk
@2014-05-07
'''
import os
import cv2
import numpy as np
import string
extl = ['.jpg', '.jpeg', '.png']
'''
def kst_draw_img(src_img, pt_list):
for pt0 in pt_list:
cv2.circle(src_img,pt0, 2,blue,1)
cv2.imshow('src', src_img)
'''
class CLabel:
def __init__(self):
self.pt = [-1,-1]
self.chg_pt = [-1,-1]
self.imgdict = {}
self.imglist = []
self.infolist = []
self.infoname = ''
self.cur_index = 0
self.num = 0
self.pos = []
self.blue = (255, 0, 0)
self.red = (0,0,255)
self.fs = None
def cmp_near_pt(self, m_pt, pts):
if len(pts) < 1:
return (-1,-1)
index = 0
i = 0
l_pt = pts[0]
min_d = 200
for i,pt in enumerate(pts):
d = abs(pt[0] - m_pt[0]) + abs(pt[1] - m_pt[1])
if d < min_d:
index = i
min_d = d
return l_pt, index
def onmouse(self, event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
self.chg_pt = [-1,-1]
self.pt = [-1,-1]
x, y = np.int16([x,y])
self.pt = [x,y]
if event == cv2.EVENT_RBUTTONDOWN:
self.chg_pt = [-1,-1]
self.pt = [-1,-1]
x, y = np.int16([x,y])
self.chg_pt = [x,y]
def draw_rect(self, pts):
minx = 0
maxx = 0
miny = 0
maxy = 0
if len(pts) > 2:
nparr = np.array(pts)
npx = nparr[:,0]
npy = nparr[:,1]
minx = np.min(npx)
maxx = np.max(npx)
miny = np.min(npy)
maxy = np.max(npy)
return (minx, miny), (maxx, maxy)
def run(self):
cur_index = 0
log = open('log.txt', 'a+')
while len(self.imglist) > 0:
log.write('cur_idx %d\t' % (cur_index))
log.fflush()
pts = []
nn = self.imglist[cur_index]
p,n = os.path.split(nn)
title,ext = n.split('.')
log.write('name: %s\t, title: %s\n' % (nn, title))
lgo.fflush()
img = cv2.imread(nn, 1)
# if title not in keys ,then push
if title not in self.imgdict.keys():
self.imgdict.setdefault(title)
else:
pts = self.imgdict[title]
for pt0 in pts:
cv2.circle(img, tuple(pt0), 2,self.blue,1)
cv2.imshow('src', img)
cv2.setMouseCallback('src', self.onmouse)
if self.pt[0] > 0 and self.pt[1] > 0:
pts.append(self.pt)
cv2.circle(img, tuple(self.pt), 2, self.blue,1)
log.write('pt: (%d,%d)\t' % (self.pt))
log.fflush()
if self.chg_pt[0] > 0 and self.chg_pt[1] > 0:
self.pt,idx = self.cmp_near_pt(self.chg_pt, pts)
cv2.circle(img, tuple(self.chg_pt), 2, self.red,1)
pts[idx] = self.chg_pt
log.write('pt: (%d,%d)\t' % (self.pt))
log.fflush()
if len(pts) > 2:
pt1,pt2 = self.draw_rect(pts)
cv2.rectangle(img, pt1,pt2, self.blue)
cv2.imshow('src', img)
log.write('show img1\n')
log.fflush()
self.imgdict[title] = pts
self.pt = [-1,-1]
self.chg_pt = [-1,-1]
ch = cv2.waitKey(10)
#print ch
if ch == ord('a'):
cur_index -= 1
if cur_index < 0:
cur_index = len(self.imglist) - 1
if ch == ord('d'):
cur_index += 1
if cur_index == len(self.imglist):
cur_index = 0
if ch == ord('c'):
pts = []
self.imgdict[title] = pts
if ch == 27:
#for key in self.imgdict.keys() if key != 'ext':
self.fs.seek(0)
a = self.fs.tell()
a = self.fs.truncate(0)
for key in self.imgdict.keys():
if key == 'ext':
continue
if len(self.imgdict[key]) == 0:
continue
self.fs.write('%s.%s' % (key, self.imgdict['ext']))
for ii in self.imgdict[key]:
for i in ii:
self.fs.write(' %s' % str(i))
self.fs.write('\n')
#self.fs.flush()
self.fs.close()
break
cv2.destroyAllWindows()
def dict_from_file(self):
self.fs.seek(0)
for ln in self.fs:
nm,nu = ln.split('g')
title, ext = nm.split('.')
strnu = nu.split()
cord = []
pts= []
for n in strnu:
nu = string.atoi(n)
cord.append(nu)
i = 0
while i < len(cord):
pt = []
pt.append(cord[i])
pt.append(cord[i+1])
i += 2
pts.append(pt)
self.imgdict.setdefault(title, pts)
def pre_process(self, dir_name):
objs = os.listdir(dir_name)
if len(objs) < 1:
print 'No imgs'
for obj in objs:
nn = os.path.join(dir_name, obj)
ret,ext = os.path.splitext(nn)
if ext in extl:
self.imglist.append(nn)
# create info.txt
# extend push into dict
if len(self.imglist):
infoname = dir_name + '/info.txt'
self.fs = open(infoname, 'a+')
nn = self.imglist[0]
ret,ext = os.path.splitext(nn)
ret = ext.split('.')
self.imgdict.update(ext=ret[1])
self.dict_from_file()
cv2.namedWindow('src', cv2.WINDOW_NORMAL)
#cv2.resizeWindow('src', 100, 100)
if __name__ == '__main__':
dir_name = os.getcwd()
app = CLabel()
app.pre_process(dir_name)
app.run()