-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel_7.py
212 lines (152 loc) · 7.4 KB
/
Model_7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
##########################
### MODEL
##########################
import torch.nn as nn
import torch.nn.functional as F
import torch
from util import hierarchy_dict, get_index, get_index_for_model_2
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, NUM_level_1, NUM_level_2, grayscale):
self.inplanes = 64
if grayscale:
in_dim = 1
else:
in_dim = 3
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# self.avgpool = nn.AvgPool2d(7, stride=1, padding=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc_6 = nn.Linear(512 * block.expansion, NUM_level_2) #2048*4 = 8192
# self.fc_61 =nn.Linear(64, num_classes-6) #2048*4 = 8192
# self.avgpool0 = nn.AvgPool2d(6, stride=1, padding=0)
# self.fc0 = nn.Linear(1024, 32)
self.fc01 = nn.Linear(256 * block.expansion, NUM_level_1)
# self.fc1 = nn.Linear(2048 * block.expansion, num_classes[1])
# self.fc2 = nn.Linear(2048 * block.expansion, num_classes[2])
# self.fc3 = nn.Linear(2048 * block.expansion, num_classes[3])
# self.fc4 = nn.Linear(2048 * block.expansion, num_classes[4])
# self.fc5 = nn.Linear(2048 * block.expansion, num_classes[5])
# self.fc6 = nn.Linear(2048 * block.expansion, num_classes[6])
# 最后的类别的Index
self.idx_list = get_index_for_model_2(hierarchy_dict) #[2, 7, 13, 17, 25, 34, 34, 34, 34, 34]
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, (2. / n)**.5)
# elif isinstance(m, nn.BatchNorm2d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()
for module in self.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x3 = self.layer3(x) #[10, 1024, 8, 8], [10, 1024, 32, 32]
x4 = self.layer4(x3) # [10, 2048, 4, 4], [10, 2048, 16, 16]
#给6个head的 feature
x = self.avgpool(x4) # [10, 2048, 2, 2], [10, 2048, 1, 1]
x = x.view(x.size(0), -1) # [10, 8192], [10, 2048]
#给第一个Head的feature
x0 = self.avgpool(x3) #[10, 1024, 3, 3], [10, 1024, 1, 1]
x0 = x0.view(x0.size(0), -1) # [10, 9216], [10, 1024]
#2层fc
logits = self.fc_6(x)
# logits = self.relu(logits)
# logits = self.fc_61(logits)
# logits_0 = self.fc0(x0)
# logits_0 = self.relu(logits_0)
logits_0 = self.fc01(x0)
logits_1 = logits[:, 0: self.idx_list[0]]
logits_2 = logits[:, self.idx_list[0]:self.idx_list[1]]
logits_3 = logits[:, self.idx_list[1]:self.idx_list[2]]
logits_4 = logits[:, self.idx_list[2]:self.idx_list[3]]
logits_5 = logits[:, self.idx_list[3]:self.idx_list[4]]
logits_6 = logits[:, self.idx_list[4]:]
# logits_1 = self.fc1(x)
# logits_2 = self.fc2(x)
# logits_3 = self.fc3(x)
# logits_4 = self.fc4(x)
# logits_5 = self.fc5(x)
# logits_6 = self.fc6(x)
probas_0 = F.softmax(logits_0, dim=1) #第1个Head是 Level-1,10个group
probas_1 = F.softmax(logits_1, dim=1) * probas_0[:,0:1] #第2Head是'Skates'的 2 类
probas_2 = F.softmax(logits_2, dim=1) * probas_0[:,1:2] #第3Head是'Sharks'的 4 类
probas_3 = F.softmax(logits_3, dim=1) * probas_0[:,2:3]
probas_4 = F.softmax(logits_4, dim=1) * probas_0[:,3:4]
probas_5 = F.softmax(logits_5, dim=1) * probas_0[:,4:5]
probas_6 = F.softmax(logits_6, dim=1) * probas_0[:,5:6]
probas_level2 = torch.cat((probas_1,probas_2,probas_3,probas_4,probas_5,probas_6), dim=1)
return (logits_0, logits_1,logits_2,logits_3,logits_4,logits_5,logits_6),\
(probas_0,probas_1,probas_2,probas_3,probas_4,probas_5,probas_6), \
probas_level2
def resnet101(NUM_level_1_CLASSES, NUM_level_2_CLASSES, grayscale): # NUM_CLASSES is a List [6, 2,3,6,2,8,9]
"""Constructs a ResNet-50 model."""
model = ResNet(block=Bottleneck,
layers=[3, 4, 23, 3],
NUM_level_1=NUM_level_1_CLASSES,
NUM_level_2=NUM_level_2_CLASSES,
grayscale=grayscale)
return model