-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_only_level2_labels.py
84 lines (59 loc) · 3.1 KB
/
extract_only_level2_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import csv
from collections import OrderedDict
from tqdm import tqdm
from IPython import embed
from util import level_2_names
def read_order_as_dict(csv_file):
csvFile_all = open(csv_file, 'r')
dict_reader_all = csv.DictReader(csvFile_all)
track_target = OrderedDict()
for i, row in enumerate(dict_reader_all):
track_id = row['id']
if track_id not in track_target:
track_target[track_id] = []
track_target[track_id].append(row)
csvFile_all.close()
return track_target
# calculate average confidence score and write into csv
def filter_out_level2_only(track_dict, file_name):
save_file = open(file_name, "w", newline='')
fieldnames = ['id', 'filename', 'xmin', 'ymin', 'xmax', 'ymax', 'conf','class','length','kept' ]
writer = csv.DictWriter(save_file, fieldnames=fieldnames)
writer.writeheader()
for track_id in tqdm(track_dict):
each_track = track_dict[track_id]
# filter out level-1 names
if each_track[0]['class'] not in level_2_names:
continue
for info in each_track:
new_info = info.copy()
writer.writerow(new_info)
save_file.close()
def data_distribution(track_dict):
distribution_track = {}
distribution_img = {}
for track_id in track_dict:
track_info = track_dict[track_id]
species = track_info[0]['class']
if species in distribution_track:
distribution_track[species] += 1
else:
distribution_track[species] = 1
if species in distribution_img:
distribution_img[species] += len(track_info)
else:
distribution_img[species] = len(track_info)
return distribution_track, distribution_img
valid_gt_path = '/run/user/1000/gvfs/afp-volume:host=IPL-NOAA.local,user=JIe%20Mei,volume=homes/Jie Mei/rail data/hierarchy_data_for_Transformer-SVM/labels_track_based/fish-rail-valid-plus_sleeper_shark_nonfish.csv'
train_gt_path = '/run/user/1000/gvfs/afp-volume:host=IPL-NOAA.local,user=JIe%20Mei,volume=homes/Jie Mei/rail data/hierarchy_data_for_Transformer-SVM/labels_track_based/fish-rail-train-plus_sleeper_shark_nonfish.csv'
train_dict = read_order_as_dict(train_gt_path)
valid_dict = read_order_as_dict(valid_gt_path)
level2_train_path = '/run/user/1000/gvfs/afp-volume:host=IPL-NOAA.local,user=JIe%20Mei,volume=homes/Jie Mei/rail data/hierarchy_data_for_Transformer-SVM/labels_track_based/fish-rail-train-plus_sleeper_shark_nonfish-level2_only.csv'
level2_valid_path = '/run/user/1000/gvfs/afp-volume:host=IPL-NOAA.local,user=JIe%20Mei,volume=homes/Jie Mei/rail data/hierarchy_data_for_Transformer-SVM/labels_track_based/fish-rail-valid-plus_sleeper_shark_nonfish-level2_only.csv'
filter_out_level2_only(train_dict, level2_train_path)
filter_out_level2_only(valid_dict, level2_valid_path)
train_dict_level2 = read_order_as_dict(level2_train_path)
valid_dict_levle2 = read_order_as_dict(level2_valid_path)
track_distribution_train, img_distribution_train = data_distribution(train_dict_level2)
track_distribution_val, img_distribution_val = data_distribution(valid_dict_levle2)
embed()