forked from ellisdg/3DUnetCNN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetrics.py
47 lines (32 loc) · 1.47 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from functools import partial
from keras import backend as K
def dice_coefficient(y_true, y_pred, smooth=1.):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coefficient_loss(y_true, y_pred):
return -dice_coefficient(y_true, y_pred)
def weighted_dice_coefficient(y_true, y_pred, axis=(-3, -2, -1), smooth=0.00001):
"""
Weighted dice coefficient. Default axis assumes a "channels first" data structure
:param smooth:
:param y_true:
:param y_pred:
:param axis:
:return:
"""
return K.mean(2. * (K.sum(y_true * y_pred,
axis=axis) + smooth/2)/(K.sum(y_true,
axis=axis) + K.sum(y_pred,
axis=axis) + smooth))
def weighted_dice_coefficient_loss(y_true, y_pred):
return -weighted_dice_coefficient(y_true, y_pred)
def label_wise_dice_coefficient(y_true, y_pred, label_index):
return dice_coefficient(y_true[:, label_index], y_pred[:, label_index])
def get_label_dice_coefficient_function(label_index):
f = partial(label_wise_dice_coefficient, label_index=label_index)
f.__setattr__('__name__', 'label_{0}_dice_coef'.format(label_index))
return f
dice_coef = dice_coefficient
dice_coef_loss = dice_coefficient_loss