-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmmdloss.py
96 lines (83 loc) · 3.36 KB
/
mmdloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torchvision import datasets, transforms
import numpy as np
"""
MMD Objective using Gaussian Kernel.
The repo is from https://github.com/Saswatm123/MMD-VAE/blob/master/MMD_VAE.ipynb
"""
def gaussian_kernel(a, b):
dim1_1, dim1_2 = a.shape[0], b.shape[0]
depth = a.shape[1]#depth = LATENT_SIZE
a = a.view(dim1_1, 1, depth)
b = b.view(1, dim1_2, depth)
a_core = a.expand(dim1_1, dim1_2, depth)
b_core = b.expand(dim1_1, dim1_2, depth)
numerator = (a_core - b_core).pow(2).mean(2)/depth
return torch.exp(-numerator)
def MMD(a, b):
return gaussian_kernel(a, a).mean() + gaussian_kernel(b, b).mean() - 2*gaussian_kernel(a, b).mean()
class Reshape(nn.Module):
def __init__(self, *target_shape):
super().__init__()
self.target_shape = target_shape
def forward(self, x):
return x.view(*self.target_shape)
class MMD_VAE(nn.Module):
def __init__(self,LATENT_SIZE):
super().__init__()
self.encoder = nn.Sequential(
nn.Conv2d(in_channels = 1, out_channels = 5, kernel_size = 5, padding = 2),
nn.LeakyReLU(),
nn.Conv2d(in_channels = 5, out_channels = 5, kernel_size = 5),
nn.LeakyReLU(),
nn.Conv2d(in_channels = 5, out_channels = 5, kernel_size = 5),
nn.LeakyReLU(),
Reshape([-1,5*20*20]),
nn.Linear(in_features = 5*20*20, out_features = 5*12),
nn.LeakyReLU(),
nn.Linear(in_features = 5*12, out_features = LATENT_SIZE)
)
self.decoder = nn.Sequential(
nn.Linear(in_features = LATENT_SIZE, out_features = 5*12),
nn.ReLU(),
nn.Linear(in_features = 5*12, out_features = 24*24),
nn.ReLU(),
Reshape([-1,1,24,24]),
nn.ConvTranspose2d(in_channels = 1, out_channels = 5, kernel_size = 3),
nn.ReLU(),
nn.ConvTranspose2d(in_channels = 5, out_channels = 10, kernel_size = 5),
nn.ReLU(),
nn.Conv2d(in_channels = 10, out_channels = 1, kernel_size = 3),
nn.Sigmoid()
)
def forward(self, X):
if self.training:
latent = self.encoder(X)
return self.decoder(latent), latent
else:
return self.decoder( self.encoder(X) )
if __name__ == "__main__":
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
SEED, BATCH_SIZE, LATENT_SIZE = 123, 128, 4
torch.manual_seed(SEED)
# DATA I/O
train = datasets.MNIST('mnist',train=True,transform=transforms.ToTensor(),download=True)
train = train.data.float().to(DEVICE)/256# Converting from integer to float
train_loader = DataLoader(dataset = train,batch_size = BATCH_SIZE,shuffle = True)
# MODEL
net = MMD_VAE(LATENT_SIZE).to(DEVICE)
optimizer = optim.Adam(net.parameters(),lr=1e-4)
net.train()
for batchnum, X in enumerate(train_loader):
optimizer.zero_grad()
X = X.reshape(-1, 1, 28, 28)
print("X.shape: ",X.shape)#torch.Size([96, 1, 28, 28])
_, mu = net(X)
print("mu.shape: ",mu.shape)#torch.Size([96, 4])
mmd = MMD(torch.randn(96,LATENT_SIZE,requires_grad=False).to(DEVICE), mu)
mmd.backward()
optimizer.step()
print("mmd loss: ",mmd.item())