forked from jurajHasik/peps-torch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptim_spin1_xxz_kagome.py
227 lines (199 loc) · 10.6 KB
/
optim_spin1_xxz_kagome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# import context
import argparse
import config as cfg
import math
import torch
import copy
from collections import OrderedDict
from ipeps.ipess_kagome import *
from ipeps.ipeps_kagome import *
from models import spin1_xxz_kagome
from ctm.generic.env import *
from ctm.generic import ctmrg
from ctm.generic import rdm
from optim.ad_optim_lbfgs_mod import optimize_state
import json
import unittest
import logging
log = logging.getLogger(__name__)
# parse command line args and build necessary configuration objects
parser = cfg.get_args_parser()
parser.add_argument("--delta", type=float, default=1, help="Coupling constant of SzSz.")
parser.add_argument("--h", type=float, default=0., help="Onsite z direction megnetic field.")
parser.add_argument("--theta", type=float, default=0, help="angle [<value> x pi] parametrizing the chiral Hamiltonian")
parser.add_argument("--j1", type=float, default=1., help="nearest-neighbor exchange coupling")
parser.add_argument("--j1sq", type=float, default=0, help="nearest-neighbor biquadratic exchange coupling")
parser.add_argument("--j2", type=float, default=0, help="next-nearest-neighbor exchange coupling")
parser.add_argument("--j2sq", type=float, default=0, help="next-nearest-neighbor biquadratic exchange coupling")
parser.add_argument("--jtrip", type=float, default=0, help="(SxS).S")
parser.add_argument("--jperm", type=float, default=0, help="triangle permutation")
parser.add_argument("--ansatz", type=str, default=None, help="choice of the tensor ansatz",\
choices=["IPEPS", "IPESS", "IPESS_PG", "A_2,B"])
parser.add_argument("--no_sym_up_dn", action='store_false', dest='sym_up_dn',\
help="same trivalent tensors for up and down triangles")
args, unknown_args = parser.parse_known_args()
def main():
cfg.configure(args)
cfg.print_config()
torch.set_num_threads(args.omp_cores)
torch.manual_seed(args.seed)
model= spin1_xxz_kagome.S1_KAGOME_XXZ(delta = args.delta, h = args.h, j1=args.j1,j1sq=args.j1sq,j2=args.j2,j2sq=args.j2sq,\
jtrip=args.jtrip,jperm=args.jperm)
# initialize the ipess/ipeps
if args.ansatz in ["IPESS","IPESS_PG","A_2,B"]:
ansatz_pgs=None
if args.ansatz=="A_2,B": ansatz_pgs= ("A_2", "A_2", "B")
if args.instate!=None:
if args.ansatz=="IPESS":
state= read_ipess_kagome_generic(args.instate)
elif args.ansatz in ["IPESS_PG","A_2,B"]:
state= read_ipess_kagome_pg(args.instate)
# possibly symmetrize by PG
if ansatz_pgs!=None:
if type(state)==IPESS_KAGOME_GENERIC:
state= to_PG_symmetric(state, SYM_UP_DOWN=args.sym_up_dn, pgs=ansatz_pgs)
elif type(state)==IPESS_KAGOME_PG:
if state.pgs==(None,None,None):
state= to_PG_symmetric(state, SYM_UP_DOWN=args.sym_up_dn, pgs=ansatz_pgs)
elif state.pgs==ansatz_pgs:
# nothing to do here
pass
elif state.pgs!=ansatz_pgs:
raise RuntimeError("instate has incompatible PG symmetry with "+args.ansatz)
if args.bond_dim > state.get_aux_bond_dims():
# extend the auxiliary dimensions
state= state.extend_bond_dim(args.bond_dim)
state.add_noise(args.instate_noise)
elif args.opt_resume is not None:
T_u= torch.zeros(args.bond_dim, args.bond_dim, args.bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
T_d= torch.zeros(args.bond_dim, args.bond_dim,\
args.bond_dim, dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
B_a= torch.zeros(3, args.bond_dim, args.bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
if args.ansatz in ["IPESS_PG", "A_2,B"]:
state= IPESS_KAGOME_PG(T_u, B_a, T_d, SYM_UP_DOWN=args.sym_up_dn, pgs=ansatz_pgs)
elif args.ansatz in ["IPESS"]:
B_b= torch.zeros(3, args.bond_dim, args.bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
B_c= torch.zeros(3, args.bond_dim, args.bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
state= IPESS_KAGOME_GENERIC({'T_u': T_u, 'B_a': B_a, 'T_d': T_d, 'B_b': B_b, 'B_c': B_c})
state.load_checkpoint(args.opt_resume)
elif args.ipeps_init_type=='RANDOM':
bond_dim = args.bond_dim
T_u= torch.rand(bond_dim, bond_dim, bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)-1.0
T_d= torch.rand(bond_dim, bond_dim, bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)-1.0
B_a= torch.rand(3, bond_dim, bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)-1.0
if args.ansatz in ["IPESS_PG", "A_2,B"]:
state = IPESS_KAGOME_PG(T_u, B_a, T_d, SYM_UP_DOWN=args.sym_up_dn, pgs=ansatz_pgs)
elif args.ansatz in ["IPESS"]:
B_b= torch.rand(3, args.bond_dim, args.bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
B_c= torch.rand(3, args.bond_dim, args.bond_dim,\
dtype=cfg.global_args.torch_dtype, device=cfg.global_args.device)
state= IPESS_KAGOME_GENERIC({'T_u': T_u, 'B_a': B_a, 'T_d': T_d, 'B_b': B_b, 'B_c': B_c})
elif args.ansatz in ["IPEPS"]:
ansatz_pgs=None
if args.instate!=None:
state= read_ipeps_kagome(args.instate)
if args.bond_dim > max(state.get_aux_bond_dims()):
# extend the auxiliary dimensions
state= state.extend_bond_dim(args.bond_dim)
state.add_noise(args.instate_noise)
elif args.opt_resume is not None:
state= IPEPS_KAGOME(dict(), lX=1, lY=1)
state.load_checkpoint(args.opt_resume)
elif args.ipeps_init_type=='RANDOM':
bond_dim = args.bond_dim
A = torch.rand((model.phys_dim**3, bond_dim, bond_dim, bond_dim, bond_dim),\
dtype=cfg.global_args.torch_dtype,device=cfg.global_args.device) - 0.5
A = A/torch.max(torch.abs(A))
state= IPEPS_KAGOME({(0,0): A}, lX=1, lY=1)
else:
raise ValueError("Missing ansatz specification --ansatz "\
+str(args.ansatz)+" is not supported")
def energy_f(state, env, force_cpu=False):
e_dn = model.energy_triangle_dn(state, env, force_cpu=force_cpu)
e_up = model.energy_triangle_up(state, env, force_cpu=force_cpu)
# e_nnn = model.energy_nnn(state, env)
return (e_up + e_dn)/3 #+ e_nnn) / 3
@torch.no_grad()
def ctmrg_conv_energy(state, env, history, ctm_args=cfg.ctm_args):
if not history:
history = []
e_curr = energy_f(state, env, force_cpu=ctm_args.conv_check_cpu)
history.append(e_curr.item())
if (len(history) > 1 and abs(history[-1] - history[-2]) < ctm_args.ctm_conv_tol) \
or len(history) >= ctm_args.ctm_max_iter:
log.info({"history_length": len(history), "history": history})
return True, history
return False, history
ctm_env_init = ENV(args.chi, state)
init_env(state, ctm_env_init)
ctm_env_init, history, t_ctm, t_conv_check = ctmrg.run(state, ctm_env_init, \
conv_check=ctmrg_conv_energy, ctm_args=cfg.ctm_args)
loss0 = energy_f(state, ctm_env_init, force_cpu=cfg.ctm_args.conv_check_cpu)
obs_values, obs_labels = model.eval_obs(state,ctm_env_init,force_cpu=False)
print("\n\n",end="")
print(", ".join(["epoch",f"loss"]+[label for label in obs_labels]))
print(", ".join([f"{-1}",f"{loss0}"]+[f"{v}" for v in obs_values]))
def loss_fn(state, ctm_env_in, opt_context):
ctm_args = opt_context["ctm_args"]
opt_args = opt_context["opt_args"]
# build on-site tensors
if args.ansatz in ["IPESS", "IPESS_PG", "A_2,B"]:
if args.ansatz in ["IPESS_PG", "A_2,B"]:
# explicit rebuild of on-site tensors
tmp_state= to_PG_symmetric(state, state.pgs)
else:
tmp_state= state
# include normalization of new on-site tensor
tmp_state.sites= tmp_state.build_onsite_tensors()
else:
A= state.sites[(0,0)]
A= A/A.abs().max()
tmp_state= IPEPS_KAGOME({(0,0): A}, lX=1, lY=1)
# possibly re-initialize the environment
if opt_args.opt_ctm_reinit:
init_env(tmp_state, ctm_env_in)
# compute environment by CTMRG
ctm_env_out, history, t_ctm, t_conv_check = ctmrg.run(tmp_state, ctm_env_in, \
conv_check=ctmrg_conv_energy, ctm_args=ctm_args)
loss0 = energy_f(tmp_state, ctm_env_out, force_cpu=cfg.ctm_args.conv_check_cpu)
# loc_ctm_args = copy.deepcopy(ctm_args)
# loc_ctm_args.ctm_max_iter = 1
# ctm_env_out, history1, t_ctm1, t_obs1 = ctmrg.run(state, ctm_env_out, ctm_args=loc_ctm_args)
# loss1 = energy_f(state, ctm_env_out, force_cpu=cfg.ctm_args.conv_check_cpu)
# loss = torch.max(loss0, loss1)
loss= loss0
return loss, ctm_env_out, history, t_ctm, t_conv_check
@torch.no_grad()
def obs_fn(state, ctm_env, opt_context):
if args.ansatz in ["IPESS_PG", "A_2,B"]:
state_sym= to_PG_symmetric(state, state.pgs)
else:
state_sym= state
if opt_context["line_search"]:
epoch= len(opt_context["loss_history"]["loss_ls"])
loss= opt_context["loss_history"]["loss_ls"][-1]
print("LS",end=" ")
else:
epoch= len(opt_context["loss_history"]["loss"])
loss= opt_context["loss_history"]["loss"][-1]
obs_values, obs_labels = model.eval_obs(state_sym,ctm_env,force_cpu=False)
print(", ".join([f"{epoch}",f"{loss}"]+[f"{v}" for v in obs_values]), end="")
log.info("Norm(sites): "+", ".join([f"{t.norm()}" for c,t in state.sites.items()]))
print(" "+", ".join([f"{t.norm()}" for c,t in state.sites.items()]) )
def post_proc(state, ctm_env, opt_context):
pass
optimize_state(state, ctm_env_init, loss_fn, obs_fn=obs_fn,
post_proc=post_proc)
if __name__ == '__main__':
if len(unknown_args) > 0:
print("args not recognized: " + str(unknown_args))
raise Exception("Unknown command line arguments")
main()