diff --git a/README.md b/README.md index 47b8311e..d9aad00b 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ Tigramite is a causal time series analysis python package. It allows to efficiently reconstruct causal graphs from high-dimensional time series datasets and model the obtained causal dependencies for causal mediation and prediction analyses. Causal discovery is based on linear as well as non-parametric conditional independence tests applicable to discrete or continuously-valued time series. Also includes functions for high-quality plots of the results. Please cite the following papers depending on which method you use: - PCMCI: J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019). https://advances.sciencemag.org/content/5/11/eaau4996 -- PCMCI+: J. Runge (2020): Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. https://arxiv.org/abs/2003.03685 +- PCMCI+: J. Runge (2020): Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, AUAI Press, 2020. http://auai.org/uai2020/proceedings/579_main_paper.pdf - Generally: J. Runge (2018): Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310. https://aip.scitation.org/doi/10.1063/1.5025050 - Nature Communications Perspective paper: https://www.nature.com/articles/s41467-019-10105-3 - Mediation class: J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. http://doi.org/10.1038/ncomms9502 diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle index 7374a70d..61cfd652 100644 Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree index 7be9c117..1c7442dc 100644 Binary files a/docs/_build/doctrees/index.doctree and b/docs/_build/doctrees/index.doctree differ diff --git a/docs/_build/html/_modules/abc.html b/docs/_build/html/_modules/abc.html index a0b81dfb..580b4f31 100644 --- a/docs/_build/html/_modules/abc.html +++ b/docs/_build/html/_modules/abc.html @@ -93,7 +93,7 @@

Source code for abc

 
     __isabstractmethod__ = True
 
-    def __init__(self, callable):
+    def __init__(self, callable):
         callable.__isabstractmethod__ = True
         super().__init__(callable)
 
@@ -116,7 +116,7 @@ 

Source code for abc

 
     __isabstractmethod__ = True
 
-    def __init__(self, callable):
+    def __init__(self, callable):
         callable.__isabstractmethod__ = True
         super().__init__(callable)
 
@@ -153,11 +153,11 @@ 

Source code for abc

 
 
 try:
-    from _abc import (get_cache_token, _abc_init, _abc_register,
+    from _abc import (get_cache_token, _abc_init, _abc_register,
                       _abc_instancecheck, _abc_subclasscheck, _get_dump,
                       _reset_registry, _reset_caches)
 except ImportError:
-    from _py_abc import ABCMeta, get_cache_token
+    from _py_abc import ABCMeta, get_cache_token
     ABCMeta.__module__ = 'abc'
 else:
     class ABCMeta(type):
@@ -173,7 +173,7 @@ 

Source code for abc

         implementations defined by the registering ABC be callable (not
         even via super()).
         """
-        def __new__(mcls, name, bases, namespace, **kwargs):
+        def __new__(mcls, name, bases, namespace, **kwargs):
             cls = super().__new__(mcls, name, bases, namespace, **kwargs)
             _abc_init(cls)
             return cls
@@ -185,24 +185,24 @@ 

Source code for abc

             """
             return _abc_register(cls, subclass)
 
-        def __instancecheck__(cls, instance):
+        def __instancecheck__(cls, instance):
             """Override for isinstance(instance, cls)."""
             return _abc_instancecheck(cls, instance)
 
-        def __subclasscheck__(cls, subclass):
+        def __subclasscheck__(cls, subclass):
             """Override for issubclass(subclass, cls)."""
             return _abc_subclasscheck(cls, subclass)
 
         def _dump_registry(cls, file=None):
             """Debug helper to print the ABC registry."""
-            print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
-            print(f"Inv. counter: {get_cache_token()}", file=file)
+            print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
+            print(f"Inv. counter: {get_cache_token()}", file=file)
             (_abc_registry, _abc_cache, _abc_negative_cache,
              _abc_negative_cache_version) = _get_dump(cls)
-            print(f"_abc_registry: {_abc_registry!r}", file=file)
-            print(f"_abc_cache: {_abc_cache!r}", file=file)
-            print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
-            print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
+            print(f"_abc_registry: {_abc_registry!r}", file=file)
+            print(f"_abc_cache: {_abc_cache!r}", file=file)
+            print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
+            print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
                   file=file)
 
         def _abc_registry_clear(cls):
diff --git a/docs/_build/html/_modules/tigramite/data_processing.html b/docs/_build/html/_modules/tigramite/data_processing.html
index 4a09bbc4..d7d4a672 100644
--- a/docs/_build/html/_modules/tigramite/data_processing.html
+++ b/docs/_build/html/_modules/tigramite/data_processing.html
@@ -54,8 +54,8 @@ 

Source code for tigramite.data_processing

 # Author: Jakob Runge <jakob@jakob-runge.com>
 #
 # License: GNU General Public License v3.0
-from __future__ import print_function
-from collections import defaultdict, OrderedDict
+from __future__ import print_function
+from collections import defaultdict, OrderedDict
 import sys
 import warnings
 import copy
@@ -92,7 +92,7 @@ 

Source code for tigramite.data_processing

     datatime : array-like, optional (default: None)
         Timelabel array. If None, range(T) is used.
     """
-    def __init__(self, data, mask=None, missing_flag=None, var_names=None,
+    def __init__(self, data, mask=None, missing_flag=None, var_names=None,
         datatime=None):
 
         self.values = data
@@ -413,7 +413,7 @@ 

Source code for tigramite.data_processing

         Filtered data array.
     """
     try:
-        from scipy.signal import butter, filtfilt
+        from scipy.signal import butter, filtfilt
     except:
         print('Could not import scipy.signal for butterworth filtering!')
 
@@ -610,7 +610,7 @@ 

Source code for tigramite.data_processing

     patt, patt_mask [, patt_time] : tuple of arrays
         Tuple of converted pattern array and new length
     """
-    from scipy.misc import factorial
+    from scipy.misc import factorial
 
     # Import cython code
     try:
@@ -1205,7 +1205,7 @@ 

Source code for tigramite.data_processing

     vertices : list
         List of nodes.
     """
-    def __init__(self,vertices): 
+    def __init__(self,vertices): 
         self.graph = defaultdict(list) 
         self.V = vertices 
   
@@ -1446,19 +1446,22 @@ 

Source code for tigramite.data_processing

                              "found in links, use tau_max=None or larger "
                              "value" % max_lag)
 
-    graph = np.zeros((N, N, tau_max + 1), dtype='uint8')
+    graph = np.zeros((N, N, tau_max + 1), dtype='<U3')
     for j in links.keys():
         for link_props in links[j]:
             var, lag = link_props[0]
             coeff = link_props[1]
             if coeff != 0.:
-                graph[var, j, abs(lag)] = 1
+                graph[var, j, abs(lag)] = "-->"
+                if lag == 0:
+                    graph[j, var, 0] = "<--"
+
 
     return graph
class _Logger(object): """Class to append print output to a string which can be saved""" - def __init__(self): + def __init__(self): self.terminal = sys.stdout self.log = "" # open("log.dat", "a") diff --git a/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html b/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html index ae9b8200..7c080bff 100644 --- a/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html +++ b/docs/_build/html/_modules/tigramite/independence_tests/cmiknn.html @@ -55,14 +55,14 @@

Source code for tigramite.independence_tests.cmiknn

# # License: GNU General Public License v3.0 -from __future__ import print_function -from scipy import special, stats, spatial +from __future__ import print_function +from scipy import special, stats, spatial import numpy as np -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest try: - from tigramite import tigramite_cython_code + from tigramite import tigramite_cython_code except: print("Could not import packages for CMIknn and GPDC estimation") @@ -152,7 +152,7 @@

Source code for tigramite.independence_tests.cmiknn

""" return self._measure - def __init__(self, + def __init__(self, knn=0.2, shuffle_neighbors=5, significance='shuffle_test', diff --git a/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html b/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html index 352dcb09..75c73fee 100644 --- a/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html +++ b/docs/_build/html/_modules/tigramite/independence_tests/cmisymb.html @@ -55,11 +55,11 @@

Source code for tigramite.independence_tests.cmisymb

# # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import warnings import numpy as np -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest
[docs]class CMIsymb(CondIndTest): r"""Conditional mutual information test based on discrete estimator. @@ -108,7 +108,7 @@

Source code for tigramite.independence_tests.cmisymb

""" return self._measure - def __init__(self, + def __init__(self, n_symbs=None, significance='shuffle_test', sig_blocklength=1, diff --git a/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html b/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html index e90f6dcd..ce2baf63 100644 --- a/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html +++ b/docs/_build/html/_modules/tigramite/independence_tests/gpdc.html @@ -55,18 +55,18 @@

Source code for tigramite.independence_tests.gpdc

# # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import numpy as np -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest try: - from sklearn import gaussian_process + from sklearn import gaussian_process except: print("Could not import sklearn for Gaussian process tests") try: - from tigramite import tigramite_cython_code + from tigramite import tigramite_cython_code except: print("Could not import packages for CMIknn and GPDC estimation") @@ -111,7 +111,7 @@

Source code for tigramite.independence_tests.gpdc

verbosity : int, optional (default: 0) Level of verbosity. """ - def __init__(self, + def __init__(self, null_samples, cond_ind_test, gp_version='new', @@ -465,7 +465,7 @@

Source code for tigramite.independence_tests.gpdc

""" return self._measure - def __init__(self, + def __init__(self, null_dist_filename=None, gp_version='new', gp_params=None, @@ -736,7 +736,7 @@

Source code for tigramite.independence_tests.gpdc

Returns ------- pval : float or numpy.nan - P-value. + p-value. """ # GP regression approximately doesn't cost degrees of freedom diff --git a/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html b/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html index 378ccd06..a68fcdad 100644 --- a/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html +++ b/docs/_build/html/_modules/tigramite/independence_tests/independence_tests_base.html @@ -55,13 +55,13 @@

Source code for tigramite.independence_tests.independence_tests_base

# # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import warnings import math import abc import numpy as np import six -from hashlib import sha1 +from hashlib import sha1
[docs]@six.add_metaclass(abc.ABCMeta) @@ -133,7 +133,7 @@

Source code for tigramite.independence_tests.independence_tests_base

""" pass - def __init__(self, + def __init__(self, mask_type=None, significance='analytic', fixed_thres=0.1, @@ -873,7 +873,7 @@

Source code for tigramite.independence_tests.independence_tests_base

Optimal block length. """ # Inject a dependency on siganal, optimize - from scipy import signal, optimize + from scipy import signal, optimize # Get the shape of the array dim, T = array.shape # Initiailize the indices diff --git a/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html b/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html index 43d31e01..2d2863b4 100644 --- a/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html +++ b/docs/_build/html/_modules/tigramite/independence_tests/oracle_conditional_independence.html @@ -55,10 +55,10 @@

Source code for tigramite.independence_tests.oracle_conditional_independence # # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import numpy as np -from collections import defaultdict, OrderedDict +from collections import defaultdict, OrderedDict
[docs]class OracleCI: @@ -86,7 +86,7 @@

Source code for tigramite.independence_tests.oracle_conditional_independence """ return self._measure - def __init__(self, + def __init__(self, link_coeffs, observed_vars=None, verbosity=0): @@ -725,7 +725,7 @@

Source code for tigramite.independence_tests.oracle_conditional_independence if __name__ == '__main__': import tigramite.plotting as tp - from matplotlib import pyplot as plt + from matplotlib import pyplot as plt def lin_f(x): return x # N = 20 diff --git a/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html b/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html index a0af2fad..3c860372 100644 --- a/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html +++ b/docs/_build/html/_modules/tigramite/independence_tests/parcorr.html @@ -55,12 +55,12 @@

Source code for tigramite.independence_tests.parcorr

# # License: GNU General Public License v3.0 -from __future__ import print_function -from scipy import stats +from __future__ import print_function +from scipy import stats import numpy as np import sys -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest
[docs]class ParCorr(CondIndTest): r"""Partial correlation test. @@ -98,7 +98,7 @@

Source code for tigramite.independence_tests.parcorr

""" return self._measure - def __init__(self, **kwargs): + def __init__(self, **kwargs): self._measure = 'par_corr' self.two_sided = True self.residual_based = True diff --git a/docs/_build/html/_modules/tigramite/models.html b/docs/_build/html/_modules/tigramite/models.html index d1218c12..d7b1ad59 100644 --- a/docs/_build/html/_modules/tigramite/models.html +++ b/docs/_build/html/_modules/tigramite/models.html @@ -55,13 +55,13 @@

Source code for tigramite.models

 #
 # License: GNU General Public License v3.0
 
-from __future__ import print_function
-from copy import deepcopy
+from __future__ import print_function
+from copy import deepcopy
 
 import numpy as np
 
-from tigramite.data_processing import DataFrame
-from tigramite.pcmci import PCMCI
+from tigramite.data_processing import DataFrame
+from tigramite.pcmci import PCMCI
 
 try:
     import sklearn
@@ -103,7 +103,7 @@ 

Source code for tigramite.models

         Level of verbosity.
     """
 
-    def __init__(self,
+    def __init__(self,
                  dataframe,
                  model,
                  data_transform=sklearn.preprocessing.StandardScaler(),
@@ -341,7 +341,7 @@ 

Source code for tigramite.models

         Level of verbosity.
     """
 
-    def __init__(self,
+    def __init__(self,
                  dataframe,
                  model_params=None,
                  data_transform=sklearn.preprocessing.StandardScaler(),
@@ -990,7 +990,7 @@ 

Source code for tigramite.models

         Level of verbosity.
     """
 
-    def __init__(self,
+    def __init__(self,
                  dataframe,
                  train_indices,
                  test_indices,
diff --git a/docs/_build/html/_modules/tigramite/pcmci.html b/docs/_build/html/_modules/tigramite/pcmci.html
index da8d8def..ad66f34a 100644
--- a/docs/_build/html/_modules/tigramite/pcmci.html
+++ b/docs/_build/html/_modules/tigramite/pcmci.html
@@ -55,11 +55,11 @@ 

Source code for tigramite.pcmci

 #
 # License: GNU General Public License v3.0
 
-from __future__ import print_function
+from __future__ import print_function
 import warnings
 import itertools
-from collections import defaultdict
-from copy import deepcopy
+from collections import defaultdict
+from copy import deepcopy
 import numpy as np
 import scipy.stats
 
@@ -127,7 +127,7 @@ 

Source code for tigramite.pcmci

     different times and a link indicates a conditional dependency that can be
     interpreted as a causal dependency under certain assumptions (see paper).
     Assuming stationarity, the links are repeated in time. The parents
-    :math:`\\mathcal{P}` of a variable are defined as the set of all nodes
+    :math:`\mathcal{P}` of a variable are defined as the set of all nodes
     with a link towards it (blue and red boxes in Figure).
 
     The different PCMCI methods estimate causal links by iterative
@@ -147,7 +147,7 @@ 

Source code for tigramite.pcmci

     .. [5] J. Runge,
            Discovering contemporaneous and lagged causal relations in 
            autocorrelated nonlinear time series datasets
-           https://arxiv.org/abs/2003.03685
+           http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf
 
     Parameters
     ----------
@@ -185,7 +185,7 @@ 

Source code for tigramite.pcmci

         Time series sample length.
     """
 
-    def __init__(self, dataframe,
+    def __init__(self, dataframe,
                  cond_ind_test,
                  selected_variables=None,
                  verbosity=0):
@@ -358,7 +358,7 @@ 

Source code for tigramite.pcmci

         already_removed : bool
             Whether parent was already removed.
         """
-        link_marker = {True:"o--o", False:"-->"}
+        link_marker = {True:"o-o", False:"-->"}
 
         abstau = abs(parent[1])
         if self.verbosity > 1:
@@ -1584,7 +1584,7 @@ 

Source code for tigramite.pcmci

             List of ambiguous triples.
         """
         if graph is not None:
-            sig_links = (graph > 0)
+            sig_links = (graph != "")*(graph != "<--")
         elif q_matrix is not None:
             sig_links = (q_matrix <= alpha_level)
         else:
@@ -1613,19 +1613,19 @@ 

Source code for tigramite.pcmci

                         conf_matrix[p[0], j, abs(p[1])][0],
                         conf_matrix[p[0], j, abs(p[1])][1])
                 if graph is not None:
-                    if p[1] == 0 and graph[j, p[0], 0] == 1:
+                    if p[1] == 0 and graph[j, p[0], 0] == "o-o":
                         string += " | unoriented link"
-                    if graph[p[0], j, abs(p[1])] == 2:
+                    if graph[p[0], j, abs(p[1])] == "x-x":
                         string += " | unclear orientation due to conflict"
             print(string)
 
-        link_marker = {True:"o--o", False:"-->"}
+        link_marker = {True:"o-o", False:"-->"}
 
         if ambiguous_triples is not None and len(ambiguous_triples) > 0:
             print("\n## Ambiguous triples:\n")
             for triple in ambiguous_triples:
                 (i, tau), k, j = triple
-                print("    (%s % d) %s %s o--o %s" % (
+                print("    (%s % d) %s %s o-o %s" % (
                     self.var_names[i], tau, link_marker[tau==0],
                     self.var_names[k],
                     self.var_names[j]))
@@ -1752,7 +1752,7 @@

Source code for tigramite.pcmci

                             2: [((2, -1), 0.8), ((1, -2), -0.6)]}
         >>> data, _ = pp.var_process(links_coeffs, T=1000)
         >>> # Data must be array of shape (time, variables)
-        >>> print data.shape
+        >>> print (data.shape)
         (1000, 3)
         >>> dataframe = pp.DataFrame(data)
         >>> cond_ind_test = ParCorr()
@@ -1764,17 +1764,16 @@ 

Source code for tigramite.pcmci

         ## Significant parents at alpha = 0.05:
 
             Variable 0 has 1 link(s):
-                (0 -1): pval = 0.00000 | val = 0.632
+                (0 -1): pval = 0.00000 | val =  0.588
 
             Variable 1 has 2 link(s):
-                (1 -1): pval = 0.00000 | val = 0.653
-
-                (0 -1): pval = 0.00000 | val = 0.444
+                (1 -1): pval = 0.00000 | val =  0.606
+                (0 -1): pval = 0.00000 | val =  0.447
 
             Variable 2 has 2 link(s):
-                (2 -1): pval = 0.00000 | val = 0.623
+                (2 -1): pval = 0.00000 | val =  0.618
+                (1 -2): pval = 0.00000 | val = -0.499
 
-                (1 -2): pval = 0.00000 | val = -0.533
 
         Parameters
         ----------
@@ -1880,7 +1879,8 @@ 

Source code for tigramite.pcmci

         """Runs PCMCIplus time-lagged and contemporaneous causal discovery for
         time series.
 
-        Method described in [5]_: https://arxiv.org/abs/2003.03685
+        Method described in [5]_: 
+        http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf
 
         Notes
         -----
@@ -1923,20 +1923,20 @@ 

Source code for tigramite.pcmci

         links based on PC rules.
 
         In contrast to PCMCI, the relevant output of PCMCIplus is the
-        array ``graph``. Its entries are interpreted as follows:
+        array ``graph``. Its string entries are interpreted as follows:
 
-        * ``graph[i,j,tau]=1`` for :math:`\\tau>0` denotes a directed, lagged
+        * ``graph[i,j,tau]=-->`` for :math:`\\tau>0` denotes a directed, lagged
           causal link from :math:`i` to :math:`j` at lag :math:`\\tau`
 
-        * ``graph[i,j,0]=1`` and ``graph[j,i,0]=0`` denotes a directed,
+        * ``graph[i,j,0]=-->`` (and ``graph[j,i,0]=<--``) denotes a directed,
           contemporaneous causal link from :math:`i` to :math:`j`
 
-        * ``graph[i,j,0]=1`` and ``graph[j,i,0]=1`` denotes an unoriented,
+        * ``graph[i,j,0]=o-o`` (and ``graph[j,i,0]=o-o``) denotes an unoriented,
           contemporaneous adjacency between :math:`i` and :math:`j` indicating
           that the collider and orientation rules could not be applied (Markov
           equivalence)
 
-        * ``graph[i,j,0]=2`` and ``graph[j,i,0]=2`` denotes a conflicting,
+        * ``graph[i,j,0]=x-x`` and (``graph[j,i,0]=x-x``) denotes a conflicting,
           contemporaneous adjacency between :math:`i` and :math:`j` indicating
           that the directionality is undecided due to conflicting orientation
           rules
@@ -1984,7 +1984,7 @@ 

Source code for tigramite.pcmci

 
         Examples
         --------
-        >>> import numpy
+        >>> import numpy as np
         >>> from tigramite.pcmci import PCMCI
         >>> from tigramite.independence_tests import ParCorr
         >>> import tigramite.data_processing as pp
@@ -1997,12 +1997,10 @@ 

Source code for tigramite.pcmci

                      2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
                      3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
                      }
-        >>> # Specify dynamical noise term distributions
-        >>> noises = [np.random.randn for j in links.keys()]
         >>> data, nonstat = pp.structural_causal_process(links,
-                            T=1000, noises=noises, seed=7)
+                            T=1000, seed=7)
         >>> # Data must be array of shape (time, variables)
-        >>> print data.shape
+        >>> print (data.shape)
         (1000, 4)
         >>> dataframe = pp.DataFrame(data)
         >>> cond_ind_test = ParCorr()
@@ -2011,23 +2009,20 @@ 

Source code for tigramite.pcmci

         >>> pcmci.print_results(results, alpha_level=0.01)
             ## Significant links at alpha = 0.01:
 
-                Variable 0 has 1 link(s):
-                    (0 -1): pval = 0.00000 | val = 0.676
-
-                Variable 1 has 2 link(s):
-                    (1 -1): pval = 0.00000 | val = 0.602
-
-                    (0 -1): pval = 0.00000 | val = 0.599
-
-                Variable 2 has 2 link(s):
-                    (1 0): pval = 0.00000 | val = 0.486
+            Variable 0 has 1 link(s):
+                (0 -1): pval = 0.00000 | val =  0.676
 
-                    (2 -1): pval = 0.00000 | val = 0.466
+            Variable 1 has 2 link(s):
+                (1 -1): pval = 0.00000 | val =  0.602
+                (0 -1): pval = 0.00000 | val =  0.599
 
-                Variable 3 has 2 link(s):
-                    (3 -1): pval = 0.00000 | val = 0.524
+            Variable 2 has 2 link(s):
+                (1  0): pval = 0.00000 | val =  0.486
+                (2 -1): pval = 0.00000 | val =  0.466
 
-                    (2 0): pval = 0.00000 | val = -0.449
+            Variable 3 has 2 link(s):
+                (3 -1): pval = 0.00000 | val =  0.524
+                (2  0): pval = 0.00000 | val = -0.449 
 
         Parameters
         ----------
@@ -2209,6 +2204,7 @@ 

Source code for tigramite.pcmci

                                                   exclude_contemporaneous=False)
         # Store the parents in the pcmci member
         self.all_parents = lagged_parents
+
         # Cache the resulting values in the return dictionary
         return_dict = {'graph': graph,
                        'val_matrix': val_matrix,
@@ -2380,8 +2376,11 @@ 

Source code for tigramite.pcmci

                     skeleton_results['val_matrix'][j, i, 0] = \
                         skeleton_results['val_matrix'][i, j, 0]
 
+        # Convert numerical graph matrix to string
+        graph_str = self.convert_to_string_graph(final_graph)
+
         pc_results = {
-            'graph': final_graph,
+            'graph': graph_str,
             'p_matrix': skeleton_results['p_matrix'],
             'val_matrix': skeleton_results['val_matrix'],
             'sepset': colliders_step_results['sepset'],
@@ -2545,9 +2544,9 @@ 

Source code for tigramite.pcmci

             Total number of triples.
         """
         (i, tau), k, j = triple
-        link_marker = {True:"o--o", False:"-->"}
+        link_marker = {True:"o-o", False:"-->"}
 
-        print("\n    Triple (%s % d) %s %s o--o %s (%d/%d)" % (
+        print("\n    Triple (%s % d) %s %s o-o %s (%d/%d)" % (
             self.var_names[i], tau, link_marker[tau==0], self.var_names[k],
             self.var_names[j], index + 1, n_triples))
 
@@ -2744,7 +2743,7 @@ 

Source code for tigramite.pcmci

                                                             (i, -abstau)))
 
                         # Store max. p-value and corresponding value to return
-                        if pval > pvalues[i, j, abstau]:
+                        if pval >= pvalues[i, j, abstau]:
                             pvalues[i, j, abstau] = pval
                             val_matrix[i, j, abstau] = val
 
@@ -3184,7 +3183,7 @@ 

Source code for tigramite.pcmci

         if self.verbosity > 1 and len(v_structures) > 0:
             print("\nOrienting links among colliders:")
 
-        link_marker = {True:"o--o", False:"-->"}
+        link_marker = {True:"o-o", False:"-->"}
 
         # Now go through list of v-structures and (optionally) detect conflicts
         oriented_links = []
@@ -3192,14 +3191,14 @@ 

Source code for tigramite.pcmci

             (i, tau), k, j = itaukj
 
             if self.verbosity > 1:
-                print("\n    Collider (%s % d) %s %s o--o %s:" % (
+                print("\n    Collider (%s % d) %s %s o-o %s:" % (
                     self.var_names[i], tau, link_marker[
                         tau==0], self.var_names[k],
                     self.var_names[j]))
 
             if (k, j) not in oriented_links and (j, k) not in oriented_links:
                 if self.verbosity > 1:
-                    print("      Orient %s o--o %s as %s --> %s " % (
+                    print("      Orient %s o-o %s as %s --> %s " % (
                         self.var_names[j], self.var_names[k], self.var_names[j],
                         self.var_names[k]))
                 graph[k, j, 0] = 0
@@ -3221,7 +3220,7 @@ 

Source code for tigramite.pcmci

                 if (i, k) not in oriented_links and (
                         k, i) not in oriented_links:
                     if self.verbosity > 1:
-                        print("      Orient %s o--o %s as %s --> %s " % (
+                        print("      Orient %s o-o %s as %s --> %s " % (
                             self.var_names[i], self.var_names[k],
                             self.var_names[i], self.var_names[k]))
                     graph[k, i, 0] = 0
@@ -3250,7 +3249,7 @@ 

Source code for tigramite.pcmci

                 }
 
     def _find_triples_rule1(self, graph):
-        """Find triples i_tau --> k_t o--o j_t with i_tau -/- j_t.
+        """Find triples i_tau --> k_t o-o j_t with i_tau -/- j_t.
 
         Excludes conflicting links.
 
@@ -3312,8 +3311,8 @@ 

Source code for tigramite.pcmci

         return triples
 
     def _find_chains_rule3(self, graph):
-        """Find chains i_t o--o k_t --> j_t and i_t o--o l_t --> j_t with
-           i_t o--o j_t and k_t -/- l_t.
+        """Find chains i_t o-o k_t --> j_t and i_t o-o l_t --> j_t with
+           i_t o-o j_t and k_t -/- l_t.
 
         Excludes conflicting links.
 
@@ -3384,7 +3383,7 @@ 

Source code for tigramite.pcmci

         N = graph.shape[0]
 
         def rule1(graph, oriented_links):
-            """Find (unambiguous) triples i_tau --> k_t o--o j_t with
+            """Find (unambiguous) triples i_tau --> k_t o-o j_t with
                i_tau -/- j_t and orient as i_tau --> k_t --> j_t.
             """
             triples = self._find_triples_rule1(graph)
@@ -3399,7 +3398,7 @@ 

Source code for tigramite.pcmci

                             k, j) not in oriented_links:
                         if self.verbosity > 1:
                             print(
-                                "    R1: Found (%s % d) --> %s o--o %s, "
+                                "    R1: Found (%s % d) --> %s o-o %s, "
                                 "orient as %s --> %s" % (
                                     self.var_names[i], tau, self.var_names[k],
                                     self.var_names[j],
@@ -3419,7 +3418,7 @@ 

Source code for tigramite.pcmci

             return triples_left, graph, oriented_links
 
         def rule2(graph, oriented_links):
-            """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o--o j_t
+            """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o-o j_t
                and orient as i_t --> j_t.
             """
 
@@ -3439,7 +3438,7 @@ 

Source code for tigramite.pcmci

                         if self.verbosity > 1:
                             print(
                                 "    R2: Found %s --> %s --> %s  with  %s "
-                                "o--o %s, orient as %s --> %s" % (
+                                "o-o %s, orient as %s --> %s" % (
                                     self.var_names[i], self.var_names[k],
                                     self.var_names[j],
                                     self.var_names[i], self.var_names[j],
@@ -3458,8 +3457,8 @@ 

Source code for tigramite.pcmci

             return triples_left, graph, oriented_links
 
         def rule3(graph, oriented_links):
-            """Find (unambiguous) chains i_t o--o k_t --> j_t
-               and i_t o--o l_t --> j_t with i_t o--o j_t
+            """Find (unambiguous) chains i_t o-o k_t --> j_t
+               and i_t o-o l_t --> j_t with i_t o-o j_t
                and k_t -/- l_t: Orient as i_t --> j_t.
             """
             # First find all chains i_t -- k_t --> j_t with i_t -- j_t
@@ -3483,8 +3482,8 @@ 

Source code for tigramite.pcmci

                             i, j) not in oriented_links:
                         if self.verbosity > 1:
                             print(
-                                "    R3: Found %s o--o %s --> %s and %s o--o "
-                                "%s --> %s with %s o--o %s and %s -/- %s, "
+                                "    R3: Found %s o-o %s --> %s and %s o-o "
+                                "%s --> %s with %s o-o %s and %s -/- %s, "
                                 "orient as %s --> %s" % (
                                     self.var_names[i], self.var_names[k],
                                     self.var_names[j], self.var_names[i],
@@ -3549,7 +3548,7 @@ 

Source code for tigramite.pcmci

         """
 
         for j in variable_order:
-            adj_j = np.where(circle_cpdag[:,j,0])[0].tolist()
+            adj_j = np.where(circle_cpdag[:,j,0] == "o-o")[0].tolist()
 
             # Make sure the node has any adjacencies
             all_adjacent = len(adj_j) > 0
@@ -3559,7 +3558,7 @@ 

Source code for tigramite.pcmci

                 return (j, adj_j)  
             else:
                 for (var1, var2) in itertools.combinations(adj_j, 2):
-                    if circle_cpdag[var1, var2, 0] == 0: 
+                    if circle_cpdag[var1, var2, 0] == "": 
                         all_adjacent = False
                         break
 
@@ -3621,13 +3620,13 @@ 

Source code for tigramite.pcmci

         # Turn circle component CPDAG^C into a DAG with no unshielded colliders.
         circle_cpdag = np.copy(cpdag_graph)
         # All lagged links are directed by time, remove them here
-        circle_cpdag[:,:,1:] = 0
+        circle_cpdag[:,:,1:] = ""
         # Also remove conflicting links
-        circle_cpdag[circle_cpdag==2] = 0
-        # Find undirected links
-        for i, j, tau in zip(*np.where(circle_cpdag)):
-            if circle_cpdag[j,i,0] == 0:
-                circle_cpdag[i,j,0] = 0
+        circle_cpdag[circle_cpdag=="x-x"] = ""
+        # Find undirected links, remove directed links
+        for i, j, tau in zip(*np.where(circle_cpdag != "")):
+            if circle_cpdag[i,j,0] == "-->":
+                circle_cpdag[i,j,0] = ""
 
         # Iterate through simplicial nodes
         simplicial_node = self._get_simplicial_node(circle_cpdag,
@@ -3639,9 +3638,9 @@ 

Source code for tigramite.pcmci

             # component PAG
             (j, adj_j) = simplicial_node
             for var in adj_j:
-                dag[var, j, 0] = 1
-                dag[j, var, 0] = 0
-                circle_cpdag[var, j, 0] = circle_cpdag[j, var, 0] = 0 
+                dag[var, j, 0] = "-->"
+                dag[j, var, 0] = "<--"
+                circle_cpdag[var, j, 0] = circle_cpdag[j, var, 0] = "" 
 
             # Iterate
             simplicial_node = self._get_simplicial_node(circle_cpdag,
@@ -3725,18 +3724,22 @@ 

Source code for tigramite.pcmci

             dag = self._get_dag_from_cpdag(
                             cpdag_graph=results[pc_alpha_here]['graph'],
                             variable_order=variable_order)
-            parents = self.return_significant_links(
-                    pq_matrix=results[pc_alpha_here]['p_matrix'],
-                    val_matrix=results[pc_alpha_here]['val_matrix'], 
-                    alpha_level=pc_alpha_here,
-                    include_lagzero_links=True)['link_dict']
+            
+            # = self.return_significant_links(
+            #         pq_matrix=results[pc_alpha_here]['p_matrix'],
+            #         val_matrix=results[pc_alpha_here]['val_matrix'], 
+            #         alpha_level=pc_alpha_here,
+            #         include_lagzero_links=True)['link_dict']
 
             # Compute the best average score when the model selection
             # is applied to all N variables
             for j in range(self.N):
+                parents = []
+                for i, tau in zip(*np.where(dag[:,j,:] == "-->")):
+                    parents.append((i, -tau))
                 score[iscore] += \
                     self.cond_ind_test.get_model_selection_criterion(
-                        j, parents[j], tau_max)
+                        j, parents, tau_max)
             score[iscore] /= float(self.N)
 
         # Record the optimal alpha value
@@ -3790,236 +3793,37 @@ 

Source code for tigramite.pcmci

 
 
 if __name__ == '__main__':
-    from tigramite.independence_tests import ParCorr, CMIknn
+    from tigramite.independence_tests import ParCorr, CMIknn
     import tigramite.data_processing as pp
     import tigramite.plotting as tp
 
     np.random.seed(43)
 
-
-    ## Generate some time series from a structural causal process
+    # Example process to play around with
+    # Each key refers to a variable and the incoming links are supplied
+    # as a list of format [((var, -lag), coeff, function), ...]
     def lin_f(x): return x
     def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.))
 
-    auto_coeff = 0.95
-    coeff = 0.4
-    T = 500
-
-    # links ={0: [((0, -1), auto_coeff, lin_f),
-    #         ((1, -1), coeff, lin_f)
-    #         ],
-    #     1: [((1, -1), auto_coeff, lin_f), 
-    #         ],
-    #     2: [((2, -1), auto_coeff, lin_f), 
-    #         ((3, 0), -coeff, lin_f), 
-    #         ],
-    #     3: [((3, -1), auto_coeff, lin_f), 
-    #         ((1, -2), coeff, lin_f), 
-    #         ],
-    #     4: [((4, -1), auto_coeff, lin_f), 
-    #         ((3, 0), coeff, lin_f), 
-    #         ],   
-    #     5: [((5, -1), 0.5*auto_coeff, lin_f), 
-    #         ((6, 0), coeff, lin_f), 
-    #         ],  
-    #     6: [((6, -1), 0.5*auto_coeff, lin_f), 
-    #         ((5, -1), -coeff, lin_f), 
-    #         ],  
-    #     7: [((7, -1), auto_coeff, lin_f), 
-    #         ((8, 0), -coeff, lin_f), 
-    #         ],  
-    #     8: [],                                     
-    #     }
-
-    # links = {0: [((0, -1), 0.8, lin_f), ((1, -1), 0.6, lin_f)],
-    #          1: [((1, -1), 0., lin_f)],
-    #          2: [((2, -1), 0., lin_f), ((1, 0), 0.6, lin_f)],
-    #          3: [((3, -1), 0., lin_f), ((2, 0), -0.5, lin_f)],
-    #          }
-    links = {0: [((0, -1), 0., lin_f), ((1, 0), 0.6, lin_f)],
-             1: [((1, -1), 0., lin_f), ((2, 0), 0., lin_f), ((2, -1), 0.6, lin_f)],
-             2: [((2, -1), 0.8, lin_f), ((1, -1), -0.5, lin_f)]
+    links = {0: [((0, -1), 0.9, lin_f)],
+             1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)],
+             2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
+             3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
              }
 
-
-    noises = [np.random.randn for j in links.keys()]
     data, nonstat = pp.structural_causal_process(links,
-                                T=300, noises=noises, seed=7)
+                        T=1000, seed=7)
+
+    # Data must be array of shape (time, variables)
+    print(data.shape)
+    dataframe = pp.DataFrame(data)
+    cond_ind_test = ParCorr()
+    pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
+    results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01)
+    pcmci.print_results(results, alpha_level=0.01)
+
 
-    # data[10, 1] = 999.
-    # data_mask = data>0.4
 
-    verbosity = 2
-    dataframe = pp.DataFrame(data) #, missing_flag=999., mask=data_mask,)
-    pcmci = PCMCI(dataframe=dataframe,
-                  cond_ind_test=ParCorr(verbosity=0),
-                  verbosity=2,
-                  )
-    results = pcmci.run_mci(
-                  selected_links=None,
-                  tau_min=0,
-                  tau_max=2,
-                  )
-    print (pcmci.results)
-
-
-    # lagmat.savefig("/home/rung_ja/work/sandbox/lags_final.pdf")
-
-
-    # print(results['graph'])
-
-    # link_matrix = results['most_frequent_links']
-    # link_width = results['link_frequency']
-    # print(link_matrix.shape, val_matrix.shape, link_width.shape, conf_matrix.shape)
-    # print(link_matrix[:,:,0])
-    # print(link_width[:,:,0])
-
-    # tp.plot_time_series_graph(
-    #     val_matrix=val_matrix,
-    #     link_matrix=link_matrix,
-    #     link_width = link_width,
-    #     link_colorbar_label='MCI',
-    #     cmap_edges='OrRd',
-    #     save_name="/home/rung_ja/work/sandbox/tsg_final.pdf",
-    #     )
-
-
-    # results = pcmci.run_pcalg_non_timeseries_data(pc_alpha=0.01,
-    #               max_conds_dim=None, max_combinations=None, 
-    #               contemp_collider_rule='conservative',
-    #               conflict_resolution=True)
-    # selected_links = {0: [(0, -1)],
-    #                   1: [(1, -1), (0, -1)],
-    #                   2: [(2, -1), (1, 0)],
-    #                   3: [(3, -1), (2, 0)],
-    #                   }
-
-    # results = pcmci.run_pc_stable(
-    #             selected_links=None,
-    #             tau_min=1,
-    #             tau_max=1,
-    #             pc_alpha=0.001,
-    #             )
-    # print(results)
-
-    # results = pcmci.run_pcmci(
-    #               selected_links=None,
-    #               tau_min=0,
-    #               tau_max=2,
-    #               pc_alpha=None,
-    #               max_conds_dim=None,
-    #               max_conds_py=None,
-    #               max_conds_px=None,
-    #               fdr_method='none',
-    #               )
-    # pcmci.print_significant_links(p_matrix=results['p_matrix'],
-    #                                          val_matrix=results['val_matrix'],
-    #                                          alpha_level=0.05)
-
-    # results = pcmci.get_lagged_dependencies(
-    #               selected_links=None,
-    #               tau_min=0,
-    #               tau_max=2,
-    #               val_only=True
-    #               # parents=None,
-    #               # max_conds_py=None,
-    #               # max_conds_px=None,
-    #               )
-
-    # print (results)
-
-    # results = pcmci.run_pcmciplus(
-    #     selected_links=None,
-    #     tau_min=0,
-    #     tau_max=3,
-    #     pc_alpha=None,
-    #     contemp_collider_rule='majority',
-    #     conflict_resolution=True,
-    #     reset_lagged_links=False,
-    #     max_conds_dim=None,
-    #     max_conds_py=None,
-    #     max_conds_px=None,
-    #     max_conds_px_lagged=0,
-    #     fdr_method='none'
-    # )
-    # pcmci.print_results(results, alpha_level=0.01)
-
-    # graph_bool = results['graph']
-    # print(graph_bool[:,:,0])
-    # print(graph_bool[:,:,1])
-
-    # graph = np.zeros(graph_bool.shape, dtype='<U3')
-    # graph[:] = ""
-    # graph[:,:,1:][graph_bool[:,:,1:]==1] = "-->"
-    # graph[:,:,0][np.logical_and(graph_bool[:,:,0]==1, graph_bool[:,:,0].T==1)] = "o-o"
-    # for (i,j) in zip(*np.where(np.logical_and(graph_bool[:,:,0]==1, graph_bool[:,:,0].T==0))):
-    #     graph[i,j,0] = "-->"
-    #     graph[j,i,0] = "<--"
-
-    # # np.logical_or(true_graphs=="-->", true_graphs=="<--")
-
-    # print(graph[:,:,0])
-    # print(graph[:,:,1])    # dag_member = pcmci._get_dag_from_cpdag(cpdag_graph=results['graph'])
-    # print(dag_member[:,:,0])
-    # print(dag_member[:,:,1])
-
-    # print("Graph")
-    # print(results['graph'])
-    # print("p_matrix")
-    # print(results['p_matrix'].round(4))
-    # print("val_matrix")
-    # print(results['val_matrix'].round(2))
-    # print("Contemp graph")
-    # print(results['graph'][:, :, 0])
-    # print("Contemp p_matrix")
-    # print(results['p_matrix'][:, :, 0].round(4))
-    # print("Contemp val_matrix")
-    # print(results['val_matrix'][:, :, 0].round(2))
-
-    # results = pcmci.run_pcalg(
-    #             pc_alpha=pc_alpha,
-    #             tau_min=0, tau_max=tau_max,
-    #           contemp_collider_rule='majority', #'conservative', #None, #'majority',
-    #           conflict_resolution=True,)
-    # results['val_matrix'] = results['graph']
-
-    # print(results['p_matrix'].round(2))
-    # link_matrix = pcmci.return_significant_parents(
-    #     pq_matrix=results['p_matrix'],
-    #     # val_matrix=results['val_matrix'], 
-    #     alpha_level=pc_alpha)['link_matrix']
-
-    # link_matrix[:,:,0] = 0
-    # print(link_matrix.astype('int'))
-    # print(contemp_pcmci_results['val_matrix'].round(2))
-    # tp.plot_time_series_graph(
-    #     val_matrix=results['val_matrix'],
-    #     link_matrix=link_matrix,
-    #     link_colorbar_label='MCI',
-    #     cmap_edges='OrRd',
-    #     save_name="/home/rung_ja/work/sandbox/tsg_final.pdf",
-    #     )
-    # pc_results = pcmci.run_pcalg( 
-    #             pc_alpha=pc_alpha,
-    #             tau_min=0, tau_max=5,
-    #            ci_test='par_corr',
-    # print(results['graph'])
-
-    # np.random.seed(42)
-    # val_matrix = np.random.rand(3,3,4)
-    # link_matrix = np.abs(val_matrix) > .9
-
-    # tp.plot_time_series_graph(
-    #     val_matrix=val_matrix,
-    #     sig_thres=None,
-    #     link_matrix=link_matrix,
-    #     var_names=range(len(val_matrix)),
-    #     undirected_style='dashed',
-    #     save_name="/home/rung_ja/work/sandbox/tsg_contemp.pdf",
-
-    # )
-
-    # Test order
 
diff --git a/docs/_build/html/_modules/tigramite/plotting.html b/docs/_build/html/_modules/tigramite/plotting.html index 2314772f..f9d01bca 100644 --- a/docs/_build/html/_modules/tigramite/plotting.html +++ b/docs/_build/html/_modules/tigramite/plotting.html @@ -57,16 +57,20 @@

Source code for tigramite.plotting

 
 import numpy as np
 import matplotlib
-from matplotlib.colors import ListedColormap
+from matplotlib.colors import ListedColormap
 import matplotlib.transforms as transforms
-from matplotlib import pyplot, ticker
-from matplotlib.ticker import FormatStrFormatter
+from matplotlib import pyplot, ticker
+from matplotlib.ticker import FormatStrFormatter
 import matplotlib.patches as mpatches
+from matplotlib.collections import PatchCollection
+
 import sys
+from operator import sub
 import networkx as nx
 import tigramite.data_processing as pp
-
-from copy import deepcopy
+from copy import deepcopy
+import matplotlib.path as mpath
+import matplotlib.patheffects as PathEffects
 
 # TODO: Add proper docstrings to internal functions...
 
@@ -77,28 +81,28 @@ 

Source code for tigramite.plotting

     # Set negative values to small positive number
     # (zero would be interpreted as non-significant in some functions)
     if np.ndim(cmi) == 0:
-        if cmi < 0.:
-            cmi = 1E-8
+        if cmi < 0.0:
+            cmi = 1e-8
     else:
-        cmi[cmi < 0.] = 1E-8
+        cmi[cmi < 0.0] = 1e-8
 
-    return np.sqrt(1. - np.exp(-2. * cmi))
+    return np.sqrt(1.0 - np.exp(-2.0 * cmi))
 
 
 def _par_corr_to_cmi(par_corr):
     """Transformation of partial correlation to CMI scale."""
 
-    return -0.5 * np.log(1. - par_corr**2)
+    return -0.5 * np.log(1.0 - par_corr ** 2)
 
 
-def _myround(x, base=5, round_mode='updown'):
+def _myround(x, base=5, round_mode="updown"):
     """Rounds x to a float with precision base."""
 
-    if round_mode == 'updown':
+    if round_mode == "updown":
         return base * round(float(x) / base)
-    elif round_mode == 'down':
+    elif round_mode == "down":
         return base * np.floor(float(x) / base)
-    elif round_mode == 'up':
+    elif round_mode == "up":
         return base * np.ceil(float(x) / base)
 
     return base * round(float(x) / base)
@@ -108,10 +112,9 @@ 

Source code for tigramite.plotting

     """Makes nice axes."""
 
     if where is None:
-        where = ['left', 'bottom']
+        where = ["left", "bottom"]
     if color is None:
-        color = {'left': 'black', 'right': 'black',
-                 'bottom': 'black', 'top': 'black'}
+        color = {"left": "black", "right": "black", "bottom": "black", "top": "black"}
 
     if type(skip) == int:
         skip_x = skip_y = skip
@@ -121,48 +124,48 @@ 

Source code for tigramite.plotting

 
     for loc, spine in ax.spines.items():
         if loc in where:
-            spine.set_position(('outward', 5))  # outward by 10 points
+            spine.set_position(("outward", 5))  # outward by 10 points
             spine.set_color(color[loc])
-            if loc == 'left' or loc == 'right':
+            if loc == "left" or loc == "right":
                 pyplot.setp(ax.get_yticklines(), color=color[loc])
                 pyplot.setp(ax.get_yticklabels(), color=color[loc])
-            if loc == 'top' or loc == 'bottom':
+            if loc == "top" or loc == "bottom":
                 pyplot.setp(ax.get_xticklines(), color=color[loc])
-        elif loc in [item for item in ['left', 'bottom', 'right', 'top']
-                     if item not in where]:
-            spine.set_color('none')  # don't draw spine
+        elif loc in [
+            item for item in ["left", "bottom", "right", "top"] if item not in where
+        ]:
+            spine.set_color("none")  # don't draw spine
 
         else:
-            raise ValueError('unknown spine location: %s' % loc)
+            raise ValueError("unknown spine location: %s" % loc)
 
     # ax.xaxis.get_major_formatter().set_useOffset(False)
 
     # turn off ticks where there is no spine
-    if 'top' in where and 'bottom' not in where:
-        ax.xaxis.set_ticks_position('top')
+    if "top" in where and "bottom" not in where:
+        ax.xaxis.set_ticks_position("top")
         ax.set_xticks(ax.get_xticks()[::skip_x])
-    elif 'bottom' in where:
-        ax.xaxis.set_ticks_position('bottom')
+    elif "bottom" in where:
+        ax.xaxis.set_ticks_position("bottom")
         ax.set_xticks(ax.get_xticks()[::skip_x])
     else:
-        ax.xaxis.set_ticks_position('none')
+        ax.xaxis.set_ticks_position("none")
         ax.xaxis.set_ticklabels([])
-    if 'right' in where and 'left' not in where:
-        ax.yaxis.set_ticks_position('right')
+    if "right" in where and "left" not in where:
+        ax.yaxis.set_ticks_position("right")
         ax.set_yticks(ax.get_yticks()[::skip_y])
-    elif 'left' in where:
-        ax.yaxis.set_ticks_position('left')
+    elif "left" in where:
+        ax.yaxis.set_ticks_position("left")
         ax.set_yticks(ax.get_yticks()[::skip_y])
     else:
-        ax.yaxis.set_ticks_position('none')
+        ax.yaxis.set_ticks_position("none")
         ax.yaxis.set_ticklabels([])
 
-    ax.patch.set_alpha(0.)
+    ax.patch.set_alpha(0.0)
 
 
 def _get_absmax(val_matrix):
     """Get value at absolute maximum in lag function array.
-
     For an (N, N, tau)-array this comutes the lag of the absolute maximum
     along the tau-axis and stores the (positive or negative) value in
     the (N,N)-array absmax."""
@@ -173,26 +176,30 @@ 

Source code for tigramite.plotting

     return val_matrix[i, j, absmax_indices]
 
 
-def _add_timeseries(fig, axes, i, time, dataseries, label,
-                   use_mask=False,
-                   mask=None,
-                   missing_flag=None,
-                   grey_masked_samples=False,
-                   data_linewidth=1.,
-                   skip_ticks_data_x=1,
-                   skip_ticks_data_y=1,
-                   unit=None,
-                   last=False,
-                   time_label='',
-                   label_fontsize=10,
-                   color='black',
-                   grey_alpha=1.,
-                   ):
+def _add_timeseries(
+    fig,
+    axes,
+    i,
+    time,
+    dataseries,
+    label,
+    use_mask=False,
+    mask=None,
+    missing_flag=None,
+    grey_masked_samples=False,
+    data_linewidth=1.0,
+    skip_ticks_data_x=1,
+    skip_ticks_data_y=1,
+    unit=None,
+    last=False,
+    time_label="",
+    label_fontsize=10,
+    color="black",
+    grey_alpha=1.0,
+):
     """Adds a time series plot to an axis.
-
     Plot of dataseries is added to axis. Allows for proper visualization of
     masked data.
-
     Parameters
     ----------
     fig : figure instance
@@ -247,55 +254,78 @@ 

Source code for tigramite.plotting

         ax = axes
 
     if missing_flag is not None:
-        dataseries_nomissing = np.ma.masked_where(dataseries==missing_flag,
-                                                 dataseries)
+        dataseries_nomissing = np.ma.masked_where(
+            dataseries == missing_flag, dataseries
+        )
     else:
         dataseries_nomissing = np.ma.masked_where(
-                                                 np.zeros(dataseries.shape),
-                                                 dataseries)
+            np.zeros(dataseries.shape), dataseries
+        )
 
     if use_mask:
 
         maskdata = np.ma.masked_where(mask, dataseries_nomissing)
 
-        if grey_masked_samples == 'fill':
-            ax.fill_between(time, maskdata.min(), maskdata.max(),
-                            where=mask, color='grey',
-                            interpolate=True,
-                            linewidth=0., alpha=grey_alpha)
-        elif grey_masked_samples == 'data':
-            ax.plot(time, dataseries_nomissing,
-                    color='grey', marker='.', markersize=data_linewidth,
-                    linewidth=data_linewidth, clip_on=False,
-                    alpha=grey_alpha)
-
-        ax.plot(time, maskdata,
-                color=color, linewidth=data_linewidth, marker='.',
-                markersize=data_linewidth, clip_on=False)
+        if grey_masked_samples == "fill":
+            ax.fill_between(
+                time,
+                maskdata.min(),
+                maskdata.max(),
+                where=mask,
+                color="grey",
+                interpolate=True,
+                linewidth=0.0,
+                alpha=grey_alpha,
+            )
+        elif grey_masked_samples == "data":
+            ax.plot(
+                time,
+                dataseries_nomissing,
+                color="grey",
+                marker=".",
+                markersize=data_linewidth,
+                linewidth=data_linewidth,
+                clip_on=False,
+                alpha=grey_alpha,
+            )
+
+        ax.plot(
+            time,
+            maskdata,
+            color=color,
+            linewidth=data_linewidth,
+            marker=".",
+            markersize=data_linewidth,
+            clip_on=False,
+        )
     else:
-        ax.plot(time, dataseries_nomissing,
-                color=color, linewidth=data_linewidth, clip_on=False)
+        ax.plot(
+            time,
+            dataseries_nomissing,
+            color=color,
+            linewidth=data_linewidth,
+            clip_on=False,
+        )
 
     if last:
-        _make_nice_axes(ax, where=['left', 'bottom'], skip=(
-            skip_ticks_data_x, skip_ticks_data_y))
-        ax.set_xlabel(r'%s' % time_label, fontsize=label_fontsize)
-    else:
         _make_nice_axes(
-            ax, where=['left'], skip=(skip_ticks_data_x, skip_ticks_data_y))
+            ax, where=["left", "bottom"], skip=(skip_ticks_data_x, skip_ticks_data_y)
+        )
+        ax.set_xlabel(r"%s" % time_label, fontsize=label_fontsize)
+    else:
+        _make_nice_axes(ax, where=["left"], skip=(skip_ticks_data_x, skip_ticks_data_y))
     # ax.get_xaxis().get_major_formatter().set_useOffset(False)
 
-    ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f'))
+    ax.xaxis.set_major_formatter(FormatStrFormatter("%.0f"))
     ax.label_outer()
 
     ax.set_xlim(time[0], time[-1])
 
-    trans = transforms.blended_transform_factory(
-        fig.transFigure, ax.transAxes)
+    trans = transforms.blended_transform_factory(fig.transFigure, ax.transAxes)
     if unit:
-        ax.set_ylabel(r'%s [%s]' % (label, unit), fontsize=label_fontsize)
+        ax.set_ylabel(r"%s [%s]" % (label, unit), fontsize=label_fontsize)
     else:
-        ax.set_ylabel(r'%s' % (label), fontsize=label_fontsize)
+        ax.set_ylabel(r"%s" % (label), fontsize=label_fontsize)
 
         # ax.text(.02, .5, r'%s [%s]' % (label, unit), fontsize=label_fontsize,
         #         horizontalalignment='left', verticalalignment='center',
@@ -307,21 +337,21 @@ 

Source code for tigramite.plotting

     pyplot.tight_layout()
 
 
-
[docs]def plot_timeseries(dataframe=None, - save_name=None, - fig_axes=None, - figsize=None, - var_units=None, - time_label='time', - use_mask=False, - grey_masked_samples=False, - data_linewidth=1., - skip_ticks_data_x=1, - skip_ticks_data_y=2, - label_fontsize=8, - ): +
[docs]def plot_timeseries( + dataframe=None, + save_name=None, + fig_axes=None, + figsize=None, + var_units=None, + time_label="time", + use_mask=False, + grey_masked_samples=False, + data_linewidth=1.0, + skip_ticks_data_x=1, + skip_ticks_data_y=2, + label_fontsize=12, +): """Create and save figure of stacked panels with time series. - Parameters ---------- dataframe : data object, optional @@ -365,11 +395,10 @@

Source code for tigramite.plotting

     T, N = data.shape
 
     if var_units is None:
-        var_units = ['' for i in range(N)]
+        var_units = ["" for i in range(N)]
 
     if fig_axes is None:
-        fig, axes = pyplot.subplots(N, sharex=True,
-                figsize=figsize)
+        fig, axes = pyplot.subplots(N, sharex=True, figsize=figsize)
     else:
         fig, axes = fig_axes
 
@@ -378,24 +407,27 @@ 

Source code for tigramite.plotting

             mask_i = None
         else:
             mask_i = mask[:, i]
-        _add_timeseries(fig=fig, axes=axes, i=i,
-                       time=datatime,
-                       dataseries=data[:, i],
-                       label=var_names[i],
-                       use_mask=use_mask,
-                       mask=mask_i,
-                       missing_flag=missing_flag,
-                       grey_masked_samples=grey_masked_samples,
-                       data_linewidth=data_linewidth,
-                       skip_ticks_data_x=skip_ticks_data_x,
-                       skip_ticks_data_y=skip_ticks_data_y,
-                       unit=var_units[i],
-                       last=(i == N - 1),
-                       time_label=time_label,
-                       label_fontsize=label_fontsize,
-                       )
-
-    fig.subplots_adjust(bottom=0.15, top=.9, left=0.15, right=.95, hspace=.3)
+        _add_timeseries(
+            fig=fig,
+            axes=axes,
+            i=i,
+            time=datatime,
+            dataseries=data[:, i],
+            label=var_names[i],
+            use_mask=use_mask,
+            mask=mask_i,
+            missing_flag=missing_flag,
+            grey_masked_samples=grey_masked_samples,
+            data_linewidth=data_linewidth,
+            skip_ticks_data_x=skip_ticks_data_x,
+            skip_ticks_data_y=skip_ticks_data_y,
+            unit=var_units[i],
+            last=(i == N - 1),
+            time_label=time_label,
+            label_fontsize=label_fontsize,
+        )
+
+    fig.subplots_adjust(bottom=0.15, top=0.9, left=0.15, right=0.95, hspace=0.3)
     pyplot.tight_layout()
 
     if save_name is not None:
@@ -403,12 +435,11 @@ 

Source code for tigramite.plotting

     else:
         return fig, axes
+
[docs]def plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={}): """Wrapper helper function to plot lag functions. - Sets up the matrix object and plots the lagfunction, see parameters in setup_matrix and add_lagfuncs. - Parameters ---------- val_matrix : array_like @@ -420,7 +451,6 @@

Source code for tigramite.plotting

         setup_matrix.
     add_lagfunc_args : dict
         Arguments for adding a lag function matrix, see doc of add_lagfuncs.
-
     Returns
     -------
     matrix : object
@@ -439,13 +469,12 @@ 

Source code for tigramite.plotting

 
     return matrix
-
[docs]class setup_matrix(): - """Create matrix of lag function panels. +
[docs]class setup_matrix: + """Create matrix of lag function panels. Class to setup figure object. The function add_lagfuncs(...) allows to plot the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be overlaid for comparison. - Parameters ---------- N : int @@ -481,20 +510,25 @@

Source code for tigramite.plotting

         Fontsize of variable labels.
     """
 
-    def __init__(self, N, tau_max,
-                 var_names=None,
-                 figsize=None,
-                 minimum=-1,
-                 maximum=1,
-                 label_space_left=0.1,
-                 label_space_top=.05,
-                 legend_width=.15,
-                 legend_fontsize=10,
-                 x_base=1., y_base=0.5,
-                 plot_gridlines=False,
-                 lag_units='',
-                 lag_array=None,
-                 label_fontsize=10):
+    def __init__(
+        self,
+        N,
+        tau_max,
+        var_names=None,
+        figsize=None,
+        minimum=-1,
+        maximum=1,
+        label_space_left=0.1,
+        label_space_top=0.05,
+        legend_width=0.15,
+        legend_fontsize=10,
+        x_base=1.0,
+        y_base=0.5,
+        plot_gridlines=False,
+        lag_units="",
+        lag_array=None,
+        label_fontsize=10,
+    ):
 
         self.tau_max = tau_max
 
@@ -509,7 +543,6 @@ 

Source code for tigramite.plotting

         else:
             self.x_base = x_base
 
-
         self.legend_width = legend_width
         self.legend_fontsize = legend_fontsize
 
@@ -531,76 +564,98 @@ 

Source code for tigramite.plotting

                 # Plot process labels
                 if j == 0:
                     trans = transforms.blended_transform_factory(
-                        self.fig.transFigure, self.axes_dict[(i, j)].transAxes)
-                    self.axes_dict[(i, j)].text(0.01, .5, '%s' %
-                                                str(var_names[i]),
-                                                fontsize=label_fontsize,
-                                                horizontalalignment='left',
-                                                verticalalignment='center',
-                                                transform=trans)
+                        self.fig.transFigure, self.axes_dict[(i, j)].transAxes
+                    )
+                    self.axes_dict[(i, j)].text(
+                        0.01,
+                        0.5,
+                        "%s" % str(var_names[i]),
+                        fontsize=label_fontsize,
+                        horizontalalignment="left",
+                        verticalalignment="center",
+                        transform=trans,
+                    )
                 if i == 0:
                     trans = transforms.blended_transform_factory(
-                        self.axes_dict[(i, j)].transAxes, self.fig.transFigure)
-                    self.axes_dict[(i, j)].text(.5, .99, r'${\to}$ ' + '%s' %
-                                                str(var_names[j]),
-                                                fontsize=label_fontsize,
-                                                horizontalalignment='center',
-                                                verticalalignment='top',
-                                                transform=trans)
+                        self.axes_dict[(i, j)].transAxes, self.fig.transFigure
+                    )
+                    self.axes_dict[(i, j)].text(
+                        0.5,
+                        0.99,
+                        r"${\to}$ " + "%s" % str(var_names[j]),
+                        fontsize=label_fontsize,
+                        horizontalalignment="center",
+                        verticalalignment="top",
+                        transform=trans,
+                    )
 
                 # Make nice axis
                 _make_nice_axes(
-                    self.axes_dict[(i, j)], where=['left', 'bottom'],
-                    skip=(1, 1))
+                    self.axes_dict[(i, j)], where=["left", "bottom"], skip=(1, 1)
+                )
                 if x_base is not None:
                     self.axes_dict[(i, j)].xaxis.set_major_locator(
-                        ticker.FixedLocator(np.arange(0, self.tau_max + 1,
-                                                         x_base)))
-                    if x_base / 2. % 1 == 0:
+                        ticker.FixedLocator(np.arange(0, self.tau_max + 1, x_base))
+                    )
+                    if x_base / 2.0 % 1 == 0:
                         self.axes_dict[(i, j)].xaxis.set_minor_locator(
-                            ticker.FixedLocator(np.arange(0, self.tau_max +
-                                                             1,
-                                                             x_base / 2.)))
+                            ticker.FixedLocator(
+                                np.arange(0, self.tau_max + 1, x_base / 2.0)
+                            )
+                        )
                 if y_base is not None:
                     self.axes_dict[(i, j)].yaxis.set_major_locator(
                         ticker.FixedLocator(
-                            np.arange(_myround(minimum, y_base, 'down'),
-                                         _myround(maximum, y_base, 'up') +
-                                         y_base, y_base)))
+                            np.arange(
+                                _myround(minimum, y_base, "down"),
+                                _myround(maximum, y_base, "up") + y_base,
+                                y_base,
+                            )
+                        )
+                    )
                     self.axes_dict[(i, j)].yaxis.set_minor_locator(
                         ticker.FixedLocator(
-                            np.arange(_myround(minimum, y_base, 'down'),
-                                         _myround(maximum, y_base, 'up') +
-                                         y_base, y_base / 2.)))
+                            np.arange(
+                                _myround(minimum, y_base, "down"),
+                                _myround(maximum, y_base, "up") + y_base,
+                                y_base / 2.0,
+                            )
+                        )
+                    )
 
                     self.axes_dict[(i, j)].set_ylim(
-                        _myround(minimum, y_base, 'down'),
-                        _myround(maximum, y_base, 'up'))
+                        _myround(minimum, y_base, "down"),
+                        _myround(maximum, y_base, "up"),
+                    )
                 if j != 0:
                     self.axes_dict[(i, j)].get_yaxis().set_ticklabels([])
                 self.axes_dict[(i, j)].set_xlim(0, self.tau_max)
                 if plot_gridlines:
-                    self.axes_dict[(i, j)].grid(True, which='major',
-                                                color='black',
-                                                linestyle='dotted',
-                                                dashes=(1, 1),
-                                                linewidth=.05,
-                                                zorder=-5)
+                    self.axes_dict[(i, j)].grid(
+                        True,
+                        which="major",
+                        color="black",
+                        linestyle="dotted",
+                        dashes=(1, 1),
+                        linewidth=0.05,
+                        zorder=-5,
+                    )
 
                 plot_index += 1
 
-
[docs] def add_lagfuncs(self, val_matrix, - sig_thres=None, - conf_matrix=None, - color='black', - label=None, - two_sided_thres=True, - marker='.', - markersize=5, - alpha=1., - ): +
[docs] def add_lagfuncs( + self, + val_matrix, + sig_thres=None, + conf_matrix=None, + color="black", + label=None, + two_sided_thres=True, + marker=".", + markersize=5, + alpha=1.0, + ): """Add lag function plot from val_matrix array. - Parameters ---------- val_matrix : array_like @@ -627,57 +682,75 @@

Source code for tigramite.plotting

         if label is not None:
             self.labels.append((label, color, marker, markersize, alpha))
 
-
         for ij in list(self.axes_dict):
             i = ij[0]
             j = ij[1]
-            maskedres = np.copy(val_matrix[i, j, int(i == j):])
-            self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1),
-                                        maskedres,
-                                        linestyle='', color=color,
-                                        marker=marker, markersize=markersize,
-                                        alpha=alpha, clip_on=False)
+            maskedres = np.copy(val_matrix[i, j, int(i == j) :])
+            self.axes_dict[(i, j)].plot(
+                range(int(i == j), self.tau_max + 1),
+                maskedres,
+                linestyle="",
+                color=color,
+                marker=marker,
+                markersize=markersize,
+                alpha=alpha,
+                clip_on=False,
+            )
             if conf_matrix is not None:
-                maskedconfres = np.copy(conf_matrix[i, j, int(i == j):])
-                self.axes_dict[(i, j)].plot(range(int(i == j),
-                                                  self.tau_max + 1),
-                                            maskedconfres[:, 0],
-                                            linestyle='', color=color,
-                                            marker='_',
-                                            markersize=markersize - 2,
-                                            alpha=alpha, clip_on=False)
-                self.axes_dict[(i, j)].plot(range(int(i == j),
-                                                  self.tau_max + 1),
-                                            maskedconfres[:, 1],
-                                            linestyle='', color=color,
-                                            marker='_',
-                                            markersize=markersize - 2,
-                                            alpha=alpha, clip_on=False)
-
-            self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1),
-                                        np.zeros(self.tau_max + 1 -
-                                                    int(i == j)),
-                                        color='black', linestyle='dotted',
-                                        linewidth=.1)
+                maskedconfres = np.copy(conf_matrix[i, j, int(i == j) :])
+                self.axes_dict[(i, j)].plot(
+                    range(int(i == j), self.tau_max + 1),
+                    maskedconfres[:, 0],
+                    linestyle="",
+                    color=color,
+                    marker="_",
+                    markersize=markersize - 2,
+                    alpha=alpha,
+                    clip_on=False,
+                )
+                self.axes_dict[(i, j)].plot(
+                    range(int(i == j), self.tau_max + 1),
+                    maskedconfres[:, 1],
+                    linestyle="",
+                    color=color,
+                    marker="_",
+                    markersize=markersize - 2,
+                    alpha=alpha,
+                    clip_on=False,
+                )
+
+            self.axes_dict[(i, j)].plot(
+                range(int(i == j), self.tau_max + 1),
+                np.zeros(self.tau_max + 1 - int(i == j)),
+                color="black",
+                linestyle="dotted",
+                linewidth=0.1,
+            )
 
             if sig_thres is not None:
-                maskedsigres = sig_thres[i, j, int(i == j):]
-
-                self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1),
-                                            maskedsigres,
-                                            color=color, linestyle='solid',
-                                            linewidth=.1, alpha=alpha)
+                maskedsigres = sig_thres[i, j, int(i == j) :]
+
+                self.axes_dict[(i, j)].plot(
+                    range(int(i == j), self.tau_max + 1),
+                    maskedsigres,
+                    color=color,
+                    linestyle="solid",
+                    linewidth=0.1,
+                    alpha=alpha,
+                )
                 if two_sided_thres:
-                    self.axes_dict[(i, j)].plot(range(int(i == j),
-                                                      self.tau_max + 1),
-                                                -sig_thres[i, j, int(i == j):],
-                                                color=color, linestyle='solid',
-                                                linewidth=.1, alpha=alpha)
+ self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + -sig_thres[i, j, int(i == j) :], + color=color, + linestyle="solid", + linewidth=0.1, + alpha=alpha, + )
# pyplot.tight_layout()
[docs] def savefig(self, name=None): """Save matrix figure. - Parameters ---------- name : str, optional (default: None) @@ -687,52 +760,75 @@

Source code for tigramite.plotting

         # Trick to plot legend
         if len(self.labels) > 0:
             axlegend = self.fig.add_subplot(111, frameon=False)
-            axlegend.spines['left'].set_color('none')
-            axlegend.spines['right'].set_color('none')
-            axlegend.spines['bottom'].set_color('none')
-            axlegend.spines['top'].set_color('none')
+            axlegend.spines["left"].set_color("none")
+            axlegend.spines["right"].set_color("none")
+            axlegend.spines["bottom"].set_color("none")
+            axlegend.spines["top"].set_color("none")
             axlegend.set_xticks([])
             axlegend.set_yticks([])
 
             # self.labels.append((label, color, marker, markersize, alpha))
             for item in self.labels:
-
                 label = item[0]
                 color = item[1]
                 marker = item[2]
                 markersize = item[3]
                 alpha = item[4]
 
-                axlegend.plot([], [], linestyle='', color=color,
-                              marker=marker, markersize=markersize,
-                              label=label, alpha=alpha)
-            axlegend.legend(loc='upper left', ncol=1,
-                            bbox_to_anchor=(1.05, 0., .1, 1.),
-                            borderaxespad=0, fontsize=self.legend_fontsize
-                            ).draw_frame(False)
-
-            self.fig.subplots_adjust(left=self.label_space_left, right=1. -
-                                     self.legend_width,
-                                     top=1. - self.label_space_top,
-                                     hspace=0.35, wspace=0.35)
+                axlegend.plot(
+                    [],
+                    [],
+                    linestyle="",
+                    color=color,
+                    marker=marker,
+                    markersize=markersize,
+                    label=label,
+                    alpha=alpha,
+                )
+            axlegend.legend(
+                loc="upper left",
+                ncol=1,
+                bbox_to_anchor=(1.05, 0.0, 0.1, 1.0),
+                borderaxespad=0,
+                fontsize=self.legend_fontsize,
+            ).draw_frame(False)
+
+            self.fig.subplots_adjust(
+                left=self.label_space_left,
+                right=1.0 - self.legend_width,
+                top=1.0 - self.label_space_top,
+                hspace=0.35,
+                wspace=0.35,
+            )
             pyplot.figtext(
-                0.5, 0.01, r'lag $\tau$ [%s]' % self.lag_units,
-                horizontalalignment='center', fontsize=self.label_fontsize)
+                0.5,
+                0.01,
+                r"lag $\tau$ [%s]" % self.lag_units,
+                horizontalalignment="center",
+                fontsize=self.label_fontsize,
+            )
         else:
             self.fig.subplots_adjust(
-                left=self.label_space_left, right=.95,
-                top=1. - self.label_space_top,
-                hspace=0.35, wspace=0.35)
+                left=self.label_space_left,
+                right=0.95,
+                top=1.0 - self.label_space_top,
+                hspace=0.35,
+                wspace=0.35,
+            )
             pyplot.figtext(
-                0.55, 0.01, r'lag $\tau$ [%s]' % self.lag_units,
-                horizontalalignment='center', fontsize=self.label_fontsize)
+                0.55,
+                0.01,
+                r"lag $\tau$ [%s]" % self.lag_units,
+                horizontalalignment="center",
+                fontsize=self.label_fontsize,
+            )
 
         if self.lag_array is not None:
             assert self.lag_array.shape == np.arange(self.tau_max + 1).shape
             for ij in list(self.axes_dict):
                 i = ij[0]
                 j = ij[1]
-                self.axes_dict[(i, j)].set_xticklabels(self.lag_array[::self.x_base])
+                self.axes_dict[(i, j)].set_xticklabels(self.lag_array[:: self.x_base])
 
         if name is not None:
             self.fig.savefig(name)
@@ -741,448 +837,747 @@ 

Source code for tigramite.plotting

 
 
 def _draw_network_with_curved_edges(
-    fig, ax,
-    G, pos,
+    fig,
+    ax,
+    G,
+    pos,
     node_rings,
-    node_labels, node_label_size, node_alpha=1., standard_size=100,
-    standard_cmap='OrRd', standard_color='lightgrey', log_sizes=False,
-    cmap_links='YlOrRd', cmap_links_edges='YlOrRd', links_vmin=0.,
-    links_vmax=1., links_edges_vmin=0., links_edges_vmax=1.,
-    links_ticks=.2, links_edges_ticks=.2, link_label_fontsize=8,
-    arrowstyle='simple', arrowhead_size=3., curved_radius=.2, label_fontsize=4,
-    label_fraction=.5, link_colorbar_label='link',
+    node_labels,
+    node_label_size,
+    node_alpha=1.0,
+    standard_size=100,
+    node_aspect=None,
+    standard_cmap="OrRd",
+    standard_color="lightgrey",
+    log_sizes=False,
+    cmap_links="YlOrRd",
+    cmap_links_edges="YlOrRd",
+    links_vmin=0.0,
+    links_vmax=1.0,
+    links_edges_vmin=0.0,
+    links_edges_vmax=1.0,
+    links_ticks=0.2,
+    links_edges_ticks=0.2,
+    link_label_fontsize=8,
+    arrowstyle="->, head_width=0.4, head_length=1",
+    arrowhead_size=3.0,
+    curved_radius=0.2,
+    label_fontsize=4,
+    label_fraction=0.5,
+    link_colorbar_label="link",
     # link_edge_colorbar_label='link_edge',
-    inner_edge_curved=False, inner_edge_style='solid',
-    network_lower_bound=0.2, show_colorbar=True,
-    ):
+    inner_edge_curved=False,
+    inner_edge_style="solid",
+    network_lower_bound=0.2,
+    show_colorbar=True,
+):
     """Function to draw a network from networkx graph instance.
-
     Various attributes are used to specify the graph's properties.
-
     This function is just a beta-template for now that can be further
     customized.
     """
 
-    from matplotlib.patches import FancyArrowPatch, Circle, Ellipse
+    from matplotlib.patches import FancyArrowPatch, Circle, Ellipse
 
-    ax.spines['left'].set_color('none')
-    ax.spines['right'].set_color('none')
-    ax.spines['bottom'].set_color('none')
-    ax.spines['top'].set_color('none')
+    ax.spines["left"].set_color("none")
+    ax.spines["right"].set_color("none")
+    ax.spines["bottom"].set_color("none")
+    ax.spines["top"].set_color("none")
     ax.set_xticks([])
     ax.set_yticks([])
 
     N = len(G)
 
-    def draw_edge(ax, u, v, d, seen, arrowstyle='simple', outer_edge=True):
+    # This fixes a positioning bug in matplotlib.
+    ax.scatter(0, 0, zorder=-10, alpha=0)
+
+    def draw_edge(
+        ax,
+        u,
+        v,
+        d,
+        seen,
+        arrowstyle="->, head_width=0.4, head_length=1",
+        outer_edge=True,
+    ):
 
         # avoiding attribute error raised by changes in networkx
-        if hasattr(G, 'node'):
+        if hasattr(G, "node"):
             # works with networkx 1.10
-            n1 = G.node[u]['patch']
-            n2 = G.node[v]['patch']
+            n1 = G.node[u]["patch"]
+            n2 = G.node[v]["patch"]
         else:
             # works with networkx 2.4
-            n1 = G.nodes[u]['patch']
-            n2 = G.nodes[v]['patch']
+            n1 = G.nodes[u]["patch"]
+            n2 = G.nodes[v]["patch"]
 
         if outer_edge:
-            rad = -1.*curved_radius
-#            facecolor = d['outer_edge_color']
-#            edgecolor = d['outer_edge_edgecolor']
+            rad = -1.0 * curved_radius
             if cmap_links is not None:
-                facecolor = data_to_rgb_links.to_rgba(d['outer_edge_color'])
+                facecolor = data_to_rgb_links.to_rgba(d["outer_edge_color"])
             else:
-                if d['outer_edge_color'] is not None:
-                    facecolor = d['outer_edge_color']
+                if d["outer_edge_color"] is not None:
+                    facecolor = d["outer_edge_color"]
                 else:
                     facecolor = standard_color
 
-            width = d['outer_edge_width']
-            alpha = d['outer_edge_alpha']
+            width = d["outer_edge_width"]
+            alpha = d["outer_edge_alpha"]
             if (u, v) in seen:
                 rad = seen.get((u, v))
-                rad = (rad + np.sign(rad) * 0.1) * -1.
+                rad = (rad + np.sign(rad) * 0.1) * -1.0
             arrowstyle = arrowstyle
             # link_edge = d['outer_edge_edge']
-            linestyle = 'solid'
-            linewidth = 0.
+            linestyle = d.get("outer_edge_style")
 
-            if d.get('outer_edge_attribute', None) == 'spurious':
-                facecolor = 'grey'
+            if d.get("outer_edge_attribute", None) == "spurious":
+                facecolor = "grey"
 
-            if d.get('outer_edge_type') in ['<-o', '<--']:
+            if d.get("outer_edge_type") in ["<-o", "<--", "<-x"]:
                 n1, n2 = n2, n1
 
-            if d.get('outer_edge_type') in ["o-o", "o--", "--o", "---"]:
-                arrowstyle = 'simple,head_length=0.0001'
-            elif d.get('outer_edge_type') == '<->':
-                arrowstyle = '<->, head_width=0.15, head_length=0.3'
-                linewidth = 4
+            if d.get("outer_edge_type") in [
+                "o-o",
+                "o--",
+                "--o",
+                "---",
+                "x-x",
+                "x--",
+                "--x",
+                "o-x",
+                "x-o",
+            ]:
+                arrowstyle = "-"
+                # linewidth = width*factor
+            elif d.get("outer_edge_type") == "<->":
+                arrowstyle = "<->, head_width=0.4, head_length=1"
+                # linewidth = width*factor
+            elif d.get("outer_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->"]:
+                arrowstyle = "->, head_width=0.4, head_length=1"
 
         else:
-            rad = -1. * inner_edge_curved * curved_radius
+            rad = -1.0 * inner_edge_curved * curved_radius
             if cmap_links is not None:
-                facecolor = data_to_rgb_links.to_rgba(d['inner_edge_color'])
+                facecolor = data_to_rgb_links.to_rgba(d["inner_edge_color"])
             else:
-                if d['inner_edge_color'] is not None:
-                    facecolor = d['inner_edge_color']
+                if d["inner_edge_color"] is not None:
+                    facecolor = d["inner_edge_color"]
                 else:
                     facecolor = standard_color
 
-            width = d['inner_edge_width']
-            alpha = d['inner_edge_alpha']
-            # if 'oriented' in d and d['oriented']:
-            #     arrowstyle = arrowstyle
-            # else:
-            # link_edge = d['inner_edge_edge']
-
-            linestyle = 'solid'
-            linewidth = 0.
+            width = d["inner_edge_width"]
+            alpha = d["inner_edge_alpha"]
 
-            if d.get('inner_edge_attribute', None) == 'spurious':
-                facecolor = 'grey'
-                # linestyle = 'dashed'
-
-            if d.get('inner_edge_type') in ['<-o', '<--']:
+            if d.get("inner_edge_attribute", None) == "spurious":
+                facecolor = "grey"
+            if d.get("inner_edge_type") in ["<-o", "<--", "<-x"]:
                 n1, n2 = n2, n1
 
-            if d.get('inner_edge_type') in ["o-o", "o--", "--o", "---"]:
-                arrowstyle = 'simple,head_length=0.0001'
-            elif d.get('inner_edge_type') == '<->':
-                arrowstyle = '<->, head_width=0.15, head_length=0.3'
-                linewidth = 4
-            else:
-                arrowstyle = arrowstyle
-
-
-        connectionstyle='arc3,rad=%s'
-
-        e = FancyArrowPatch(n1.center, n2.center,
-                            arrowstyle= arrowstyle,
-                            connectionstyle=connectionstyle % rad,
-                            mutation_scale=width,
-                            lw=linewidth,
-                            alpha=alpha,
-                            linestyle=linestyle,
-                            color=facecolor,
-                            clip_on=False,
-                            patchA=n1, patchB=n2,
-                            # zorder=-2
-                            )
-        ax.add_patch(e)
-
-        radius=np.sqrt(standard_size)*.005
-        # Transformation found here: https://stackoverflow.com/a/9232513/13011987
-        x0, y0 = ax.transAxes.transform((0, 0)) # lower left in pixels
-        x1, y1 = ax.transAxes.transform((1, 1)) # upper right in pixes
-        dx = x1 - x0
-        dy = y1 - y0
-        maxd = max(dx, dy)
-        width = radius * maxd / dx
-        height = radius * maxd / dy
-
-        circlePath = e.get_path().deepcopy()
-        vertices = circlePath.vertices
-        #vertices[:,0] = vertices[:,0] * maxd / dx
-        #vertices[:,1] = vertices[:,1] * maxd / dy 
-        m,n = vertices.shape
-
-        if "angle3" in connectionstyle or "arc3" in connectionstyle:
-            vertices = vertices[:int(m/2),:]
-
-        #start = n1.center
-        #end = n2.center
+            if d.get("inner_edge_type") in [
+                "o-o",
+                "o--",
+                "--o",
+                "---",
+                "x-x",
+                "x--",
+                "--x",
+                "o-x",
+                "x-o",
+            ]:
+                arrowstyle = "-"
+            elif d.get("inner_edge_type") == "<->":
+                arrowstyle = "<->, head_width=0.4, head_length=1"
+            elif d.get("inner_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->"]:
+                arrowstyle = "->, head_width=0.4, head_length=1"
+
+            linestyle = d.get("inner_edge_style")
+
+        coor1 = n1.center
+        coor2 = n2.center
+
+        marker_size = width ** 2
+        figuresize = fig.get_size_inches()
+
+        e_p = FancyArrowPatch(
+            coor1,
+            coor2,
+            arrowstyle=arrowstyle,
+            connectionstyle=f"arc3,rad={rad}",
+            mutation_scale=width,
+            lw=width / 2,
+            alpha=alpha,
+            linestyle=linestyle,
+            color=facecolor,
+            clip_on=False,
+            patchA=n1,
+            patchB=n2,
+            shrinkA=0,
+            shrinkB=0,
+            zorder=-1,
+        )
+
+        ax.add_artist(e_p)
+        path = e_p.get_path()
+        vertices = path.vertices.copy()
+        m, n = vertices.shape
 
         start = vertices[0]
         end = vertices[-1]
 
-        start_correction = vertices[1]
-        end_correction = vertices[-2]
-
-        start = start + (start_correction-start)*radius*3
-        end = end + (end_correction-end)*radius*3
+        # This must be added to avoid rescaling of the plot, when no 'o'
+        # or 'x' is added to the graph.
+        ax.scatter(*start, zorder=-10, alpha=0)
 
         if outer_edge:
-            if d.get('outer_edge_type') in  ['o->', 'o--']:
-                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                ax.add_patch(circle_start)
-
-            elif d.get('outer_edge_type') in  ['<-o', '--o']:
-                circle_end = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                ax.add_patch(circle_end)
-
-            elif d.get('outer_edge_type') == 'o-o':
-                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                circle_end = Ellipse(end, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                ax.add_patch(circle_start)
-                ax.add_patch(circle_end)
-        else:
-            if d.get('inner_edge_type') in  ['o->', 'o--']:
-                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                ax.add_patch(circle_start)
-
-            elif d.get('inner_edge_type') in  ['<-o', '--o']:
-                circle_end = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                ax.add_patch(circle_end)
+            if d.get("outer_edge_type") in ["o->", "o--"]:
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+            elif d.get("outer_edge_type") == "<-o":
+                circle_marker_end = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "--o":
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") in ["x--", "x->"]:
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+            elif d.get("outer_edge_type") == "<-x":
+                circle_marker_end = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "--x":
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "o-o":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "x-x":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "o-x":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "x-o":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
 
-            elif d.get('inner_edge_type') == 'o-o':
-                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                circle_end = Ellipse(end, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
-                ax.add_patch(circle_start)
-                ax.add_patch(circle_end)
-
-        if d['label'] is not None and outer_edge:
+        else:
+            if d.get("inner_edge_type") in ["o->", "o--"]:
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+            elif d.get("outer_edge_type") == "<-o":
+                circle_marker_end = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "--o":
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("inner_edge_type") in ["x--", "x->"]:
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+            elif d.get("outer_edge_type") == "<-x":
+                circle_marker_end = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("outer_edge_type") == "--x":
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("inner_edge_type") == "o-o":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("inner_edge_type") == "x-x":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("inner_edge_type") == "o-x":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+            elif d.get("inner_edge_type") == "x-o":
+                circle_marker_start = ax.scatter(
+                    *start,
+                    marker="X",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_start)
+                circle_marker_end = ax.scatter(
+                    *end,
+                    marker="o",
+                    s=marker_size,
+                    facecolor="w",
+                    edgecolor=facecolor,
+                    zorder=1,
+                )
+                ax.add_collection(circle_marker_end)
+
+        if d["label"] is not None and outer_edge:
             # Attach labels of lags
             trans = None  # patch.get_transform()
-            path = e.get_path()
+            path = e_p.get_path()
             verts = path.to_polygons(trans)[0]
             if len(verts) > 2:
                 label_vert = verts[1, :]
-                l = d['label']
+                l = d["label"]
                 string = str(l)
-                ax.text(label_vert[0], label_vert[1], string,
-                        fontsize=link_label_fontsize,
-                        verticalalignment='center',
-                        horizontalalignment='center')
+                txt = ax.text(
+                    label_vert[0],
+                    label_vert[1],
+                    string,
+                    fontsize=link_label_fontsize,
+                    verticalalignment="center",
+                    horizontalalignment="center",
+                    color="w",
+                    zorder=1,
+                )
+                txt.set_path_effects(
+                    [PathEffects.withStroke(linewidth=2, foreground="k")]
+                )
 
         return rad
 
-    # Fix lower left and upper right corner (networkx unfortunately rescales
-    # the positions...)
-    # c = Circle((0, 0), radius=.01, alpha=1., fill=False,
-    #            linewidth=0., transform=fig.transFigure)
-    # ax.add_patch(c)
-    # c = Circle((1, 1), radius=.01, alpha=1., fill=False,
-    #            linewidth=0., transform=fig.transFigure)
-    # ax.add_patch(c)
+    # Collect all edge weights to get color scale
+    all_links_weights = []
+    all_links_edge_weights = []
+    for (u, v, d) in G.edges(data=True):
+        if u != v:
+            if d["outer_edge"] and d["outer_edge_color"] is not None:
+                all_links_weights.append(d["outer_edge_color"])
+            if d["inner_edge"] and d["inner_edge_color"] is not None:
+                all_links_weights.append(d["inner_edge_color"])
+
+    if cmap_links is not None and len(all_links_weights) > 0:
+        if links_vmin is None:
+            links_vmin = np.array(all_links_weights).min()
+        if links_vmax is None:
+            links_vmax = np.array(all_links_weights).max()
+        data_to_rgb_links = pyplot.cm.ScalarMappable(
+            norm=None, cmap=pyplot.get_cmap(cmap_links)
+        )
+        data_to_rgb_links.set_array(np.array(all_links_weights))
+        data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax)
+        # Create colorbars for links
+
+        # setup colorbar axes.
+        if show_colorbar:
+            cax_e = pyplot.axes(
+                [
+                    0.55,
+                    ax.figbox.bounds[1] + 0.02,
+                    0.4,
+                    0.025 + (len(all_links_edge_weights) == 0) * 0.035,
+                ],
+                frameon=False,
+            )
+
+            cb_e = pyplot.colorbar(
+                data_to_rgb_links, cax=cax_e, orientation="horizontal"
+            )
+            # try:
+            cb_e.set_ticks(
+                np.arange(
+                    _myround(links_vmin, links_ticks, "down"),
+                    _myround(links_vmax, links_ticks, "up") + links_ticks,
+                    links_ticks,
+                )
+            )
+            # except:
+            #     print('no ticks given')
+
+            cb_e.outline.remove()
+            cax_e.set_xlabel(
+                link_colorbar_label, labelpad=1, fontsize=label_fontsize, zorder=-10
+            )
 
     ##
     # Draw nodes
     ##
     node_sizes = np.zeros((len(node_rings), N))
     for ring in list(node_rings):  # iterate through to get all node sizes
-        if node_rings[ring]['sizes'] is not None:
-            node_sizes[ring] = node_rings[ring]['sizes']
+        if node_rings[ring]["sizes"] is not None:
+            node_sizes[ring] = node_rings[ring]["sizes"]
+
         else:
             node_sizes[ring] = standard_size
-
     max_sizes = node_sizes.max(axis=1)
     total_max_size = node_sizes.sum(axis=0).max()
     node_sizes /= total_max_size
     node_sizes *= standard_size
-#    print  'node_sizes ', node_sizes
+
+    def get_aspect(ax):
+        # Total figure size
+        figW, figH = ax.get_figure().get_size_inches()
+        # print(figW, figH)
+        # Axis size on figure
+        _, _, w, h = ax.get_position().bounds
+        # Ratio of display units
+        # print(w, h)
+        disp_ratio = (figH * h) / (figW * w)
+        # Ratio of data units
+        # Negative over negative because of the order of subtraction
+        data_ratio = sub(*ax.get_ylim()) / sub(*ax.get_xlim())
+        # print(data_ratio, disp_ratio)
+        return disp_ratio / data_ratio
+
+    if node_aspect is None:
+        node_aspect = get_aspect(ax)
 
     # start drawing the outer ring first...
     for ring in list(node_rings)[::-1]:
         #        print ring
         # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
         # or None, 'cmap':string, 'vmin':float or None, 'vmax':float or None}}
-        if node_rings[ring]['color_array'] is not None:
-            color_data = node_rings[ring]['color_array']
-            if node_rings[ring]['vmin'] is not None:
-                vmin = node_rings[ring]['vmin']
+        if node_rings[ring]["color_array"] is not None:
+            color_data = node_rings[ring]["color_array"]
+            if node_rings[ring]["vmin"] is not None:
+                vmin = node_rings[ring]["vmin"]
             else:
-                vmin = node_rings[ring]['color_array'].min()
-            if node_rings[ring]['vmax'] is not None:
-                vmax = node_rings[ring]['vmax']
+                vmin = node_rings[ring]["color_array"].min()
+            if node_rings[ring]["vmax"] is not None:
+                vmax = node_rings[ring]["vmax"]
             else:
-                vmax = node_rings[ring]['color_array'].max()
-            if node_rings[ring]['cmap'] is not None:
-                cmap = node_rings[ring]['cmap']
+                vmax = node_rings[ring]["color_array"].max()
+            if node_rings[ring]["cmap"] is not None:
+                cmap = node_rings[ring]["cmap"]
             else:
                 cmap = standard_cmap
             data_to_rgb = pyplot.cm.ScalarMappable(
-                norm=None, cmap=pyplot.get_cmap(cmap))
+                norm=None, cmap=pyplot.get_cmap(cmap)
+            )
             data_to_rgb.set_array(color_data)
             data_to_rgb.set_clim(vmin=vmin, vmax=vmax)
             colors = [data_to_rgb.to_rgba(color_data[n]) for n in G]
 
-            if node_rings[ring]['colorbar']:
+            if node_rings[ring]["colorbar"]:
                 # Create colorbars for nodes
                 # cax_n = pyplot.axes([.8 + ring*0.11,
                 # ax.figbox.bounds[1]+0.05, 0.025, 0.35], frameon=False) #
                 # setup colorbar axes.
                 # setup colorbar axes.
-                cax_n = pyplot.axes([0.05, ax.figbox.bounds[1] + 0.02 +
-                                     ring * 0.11,
-                                     0.4, 0.025 +
-                                     (len(node_rings) == 1) * 0.035],
-                                    frameon=False)
-                cb_n = pyplot.colorbar(
-                    data_to_rgb, cax=cax_n, orientation='horizontal')
-                try:
-                    cb_n.set_ticks(np.arange(_myround(vmin,
-                                node_rings[ring]['ticks'], 'down'), _myround(
-                        vmax, node_rings[ring]['ticks'], 'up') +
-                        node_rings[ring]['ticks'], node_rings[ring]['ticks']))
-                except:
-                    print ('no ticks given')
+                cax_n = pyplot.axes(
+                    [
+                        0.05,
+                        ax.figbox.bounds[1] + 0.02 + ring * 0.11,
+                        0.4,
+                        0.025 + (len(node_rings) == 1) * 0.035,
+                    ],
+                    frameon=False,
+                )
+                cb_n = pyplot.colorbar(data_to_rgb, cax=cax_n, orientation="horizontal")
+                # try:
+                cb_n.set_ticks(
+                    np.arange(
+                        _myround(vmin, node_rings[ring]["ticks"], "down"),
+                        _myround(vmax, node_rings[ring]["ticks"], "up")
+                        + node_rings[ring]["ticks"],
+                        node_rings[ring]["ticks"],
+                    )
+                )
+                # except:
+                #     print ('no ticks given')
                 cb_n.outline.remove()
                 # cb_n.set_ticks()
                 cax_n.set_xlabel(
-                    node_rings[ring]['label'], labelpad=1,
-                    fontsize=label_fontsize)
+                    node_rings[ring]["label"], labelpad=1, fontsize=label_fontsize
+                )
         else:
             colors = None
             vmin = None
             vmax = None
 
         for n in G:
-            # if n==1: print node_sizes[:ring+1].sum(axis=0)[n]
-
             if type(node_alpha) == dict:
                 alpha = node_alpha[n]
             else:
-                alpha = 1.
+                alpha = 1.0
 
             if colors is None:
-                ax.scatter(pos[n][0], pos[n][1],
-                           s=node_sizes[:ring + 1].sum(axis=0)[n] ** 2,
-                           facecolors=standard_color,
-                           edgecolors=standard_color, alpha=alpha,
-                           clip_on=False, linewidth=.1, zorder=-ring)
-            else:
-                ax.scatter(pos[n][0], pos[n][1],
-                           s=node_sizes[:ring + 1].sum(axis=0)[n] ** 2,
-                           facecolors=colors[n], edgecolors='white',
-                           alpha=alpha,
-                           clip_on=False, linewidth=.1, zorder=-ring)
+                c = Ellipse(
+                    pos[n],
+                    width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect,
+                    height=node_sizes[: ring + 1].sum(axis=0)[n],
+                    clip_on=False,
+                    facecolor=standard_color,
+                    edgecolor=standard_color,
+                    zorder=-ring - 1,
+                )
 
-            if ring == 0:
-                ax.text(pos[n][0], pos[n][1], node_labels[n],
-                        fontsize=node_label_size,
-                        horizontalalignment='center',
-                        verticalalignment='center', alpha=alpha)
-
-        if node_rings[ring]['sizes'] is not None:
-            # Draw reference node as legend
-            ax.scatter(0., 0., s=node_sizes[:ring + 1].sum(axis=0).max() ** 2,
-                       alpha=1., facecolors='none', edgecolors='grey',
-                       clip_on=False, linewidth=.1, zorder=-ring)
-
-            if log_sizes:
-                ax.text(0., 0., '         ' * ring + '%.2f' %
-                        (np.exp(max_sizes[ring]) - 1.),
-                        fontsize=node_label_size,
-                        horizontalalignment='left', verticalalignment='center')
             else:
-                ax.text(0., 0., '         ' * ring + '%.2f' % max_sizes[ring],
-                        fontsize=node_label_size,
-                        horizontalalignment='left', verticalalignment='center')
-
-    ##
-    # Draw edges of different types
-    ##
-    # First draw small circles as anchorpoints of the curved edges
-    for n in G:
-        # , transform = ax.transAxes)
-        size = standard_size*.3
-        c = Circle(pos[n], radius=size, alpha=0., fill=False, linewidth=0., zorder=1)
-        ax.add_patch(c)
-
-        # avoiding attribute error raised by changes in networkx
-        if hasattr(G, 'node'):
-            # works with networkx 1.10
-            G.node[n]['patch'] = c
-        else:
-            # works with networkx 2.4
-            G.nodes[n]['patch'] = c
-
-    # Collect all edge weights to get color scale
-    all_links_weights = []
-    all_links_edge_weights = []
-    for (u, v, d) in G.edges(data=True):
-        if u != v:
-            if d['outer_edge'] and d['outer_edge_color'] is not None:
-                all_links_weights.append(d['outer_edge_color'])
-            if d['inner_edge'] and d['inner_edge_color'] is not None:
-                all_links_weights.append(d['inner_edge_color'])
-            # if d['outer_edge_edge'] and d['outer_edge_edgecolor'] is not None:
-            #     all_links_edge_weights.append(d['outer_edge_edgecolor'])
-            # if d['inner_edge_edge'] and d['inner_edge_edgecolor'] is not None:
-            #     all_links_edge_weights.append(d['inner_edge_edgecolor'])
-
-    if cmap_links is not None and len(all_links_weights) > 0:
-        if links_vmin is None:
-            links_vmin = np.array(all_links_weights).min()
-        if links_vmax is None:
-            links_vmax = np.array(all_links_weights).max()
-        data_to_rgb_links = pyplot.cm.ScalarMappable(
-            norm=None, cmap=pyplot.get_cmap(cmap_links))
-        data_to_rgb_links.set_array(np.array(all_links_weights))
-        data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax)
-        # Create colorbars for links
-
-        # setup colorbar axes.
-        if show_colorbar:
-            cax_e = pyplot.axes([0.55, ax.figbox.bounds[1] + 0.02, 0.4, 0.025 +
-                                 (len(all_links_edge_weights) == 0) * 0.035],
-                                frameon=False)
-
-            cb_e = pyplot.colorbar(
-                data_to_rgb_links, cax=cax_e, orientation='horizontal')
-            try:
-                cb_e.set_ticks(np.arange(_myround(links_vmin, links_ticks, 'down'),
-                                         _myround(links_vmax, links_ticks, 'up') +
-                                         links_ticks, links_ticks))
-            except:
-                print ('no ticks given')
+                c = Ellipse(
+                    pos[n],
+                    width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect,
+                    height=node_sizes[: ring + 1].sum(axis=0)[n],
+                    clip_on=False,
+                    facecolor=colors[n],
+                    edgecolor=colors[n],
+                    zorder=-ring - 1,
+                )
+
+            ax.add_patch(c)
+
+            # avoiding attribute error raised by changes in networkx
+            if hasattr(G, "node"):
+                # works with networkx 1.10
+                G.node[n]["patch"] = c
+            else:
+                # works with networkx 2.4
+                G.nodes[n]["patch"] = c
 
-            cb_e.outline.remove()
-            # cb_n.set_ticks()
-            cax_e.set_xlabel(
-                link_colorbar_label, labelpad=1, fontsize=label_fontsize)
+            if ring == 0:
+                ax.text(
+                    pos[n][0],
+                    pos[n][1],
+                    node_labels[n],
+                    fontsize=node_label_size,
+                    horizontalalignment="center",
+                    verticalalignment="center",
+                    alpha=1.0,
+                )
 
     # Draw edges
     seen = {}
     for (u, v, d) in G.edges(data=True):
+        if d.get("no_links"):
+            d["inner_edge_alpha"] = 1e-8
+            d["outer_edge_alpha"] = 1e-8
         if u != v:
-            if d['outer_edge']:
+            if d["outer_edge"]:
                 seen[(u, v)] = draw_edge(ax, u, v, d, seen, arrowstyle, outer_edge=True)
-            if d['inner_edge']:
-                # if ('oriented' not in d or d['oriented'] == False) and (v, u) not in seen:
-                #     seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False)
-                # elif 'oriented' in d and d['oriented'] == (u,v):
-                    seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False)
+            if d["inner_edge"]:
+                seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False)
 
-    #pyplot.tight_layout()
     pyplot.subplots_adjust(bottom=network_lower_bound)
 
-
[docs]def plot_graph(val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - sig_thres=None, - link_matrix=None, - save_name=None, - link_colorbar_label='MCI', - node_colorbar_label='auto-MCI', - link_width=None, - link_attribute=None, - node_pos=None, - arrow_linewidth=30., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - vmin_nodes=0, - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='OrRd', - node_size=20, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - link_label_fontsize=6, - lag_array=None, - network_lower_bound=0.2, - show_colorbar=True, - ): - """Creates a network plot. +
[docs]def plot_graph( + val_matrix=None, + var_names=None, + fig_ax=None, + figsize=None, + sig_thres=None, + link_matrix=None, + save_name=None, + link_colorbar_label="MCI", + node_colorbar_label="auto-MCI", + link_width=None, + link_attribute=None, + node_pos=None, + arrow_linewidth=10.0, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + vmin_nodes=0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="OrRd", + node_size=0.3, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=10, + alpha=1.0, + node_label_size=10, + link_label_fontsize=10, + lag_array=None, + network_lower_bound=0.2, + show_colorbar=True, + inner_edge_style="dashed", +): + """Creates a network plot. This is still in beta. The network is defined either from True values in link_matrix, or from thresholding the val_matrix with sig_thres. Nodes denote variables, straight links contemporaneous dependencies and curved @@ -1192,7 +1587,6 @@

Source code for tigramite.plotting

     dependency in order of absolute magnitude. The network can also be plotted
     over a map drawn before on the same axis. Then the node positions can be
     supplied in appropriate axis coordinates via node_pos.
-
     Parameters
     ----------
     val_matrix : array_like
@@ -1242,11 +1636,13 @@ 

Source code for tigramite.plotting

         Node tick mark interval.
     cmap_nodes : str, optional (default: 'OrRd')
         Colormap for links.
-    node_size : int, optional (default: 20)
+    node_size : int, optional (default: 0.3)
         Node size.
+    node_aspect : float, optional (default: None)
+        Ratio between the heigth and width of the varible nodes.
     arrowhead_size : int, optional (default: 20)
         Size of link arrow head. Passed on to FancyArrowPatch object.
-    curved_radius : float, optional (default: 0.2)
+    curved_radius, float, optional (default: 0.2)
         Curvature of links. Passed on to FancyArrowPatch object.
     label_fontsize : int, optional (default: 10)
         Fontsize of colorbar labels.
@@ -1270,12 +1666,26 @@ 

Source code for tigramite.plotting

     else:
         fig, ax = fig_ax
 
-    (link_matrix, val_matrix, link_width, link_attribute) = \
-            _check_matrices(link_matrix, val_matrix, link_width, link_attribute)
+    (link_matrix, val_matrix, link_width, link_attribute) = _check_matrices(
+        link_matrix, val_matrix, link_width, link_attribute
+    )
 
     N, N, dummy = val_matrix.shape
     tau_max = dummy - 1
 
+    if np.count_nonzero(link_matrix != "") == np.count_nonzero(
+        np.diagonal(link_matrix) != ""
+    ):
+        diagonal = True
+    else:
+        diagonal = False
+
+    if np.count_nonzero(link_matrix == "") == link_matrix.size or diagonal:
+        link_matrix[0, 1, 0] = "---"
+        no_links = True
+    else:
+        no_links = False
+
     if var_names is None:
         var_names = range(N)
 
@@ -1286,17 +1696,21 @@ 

Source code for tigramite.plotting

     # Only draw link in one direction among contemp
     # Remove lower triangle
     link_matrix_upper = np.copy(link_matrix)
-    link_matrix_upper[:,:,0] = np.triu(link_matrix_upper[:,:,0])
+    link_matrix_upper[:, :, 0] = np.triu(link_matrix_upper[:, :, 0])
 
     # net = _get_absmax(link_matrix != "")
     net = np.any(link_matrix_upper != "", axis=2)
     G = nx.DiGraph(net)
 
+    # This handels Graphs with no links.
+    # nx.draw(G, alpha=0, zorder=-10)
+
     node_color = np.zeros(N)
     # list of all strengths for color map
     all_strengths = []
     # Add attributes, contemporaneous and lagged links are handled separately
     for (u, v, dic) in G.edges(data=True):
+        dic["no_links"] = no_links
         # average lagfunc for link u --> v ANDOR u -- v
         if tau_max > 0:
             # argmax of absolute maximum
@@ -1314,14 +1728,10 @@ 

Source code for tigramite.plotting

             #                       sig_thres[u, v][0]) or
             #                      (np.abs(val_matrix[v, u][0]) >=
             #                       sig_thres[v, u][0]))
-
-
-            dic['inner_edge'] = link_matrix_upper[u,v,0]
-            
-            dic['inner_edge_type'] = link_matrix_upper[u,v, 0]
-
-            dic['inner_edge_alpha'] = alpha
-            dic['inner_edge_color'] = val_matrix[u, v, 0]
+            dic["inner_edge"] = link_matrix_upper[u, v, 0]
+            dic["inner_edge_type"] = link_matrix_upper[u, v, 0]
+            dic["inner_edge_alpha"] = alpha
+            dic["inner_edge_color"] = val_matrix[u, v, 0]
             # # value at argmax of average
             # if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001:
             #     print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % (
@@ -1334,72 +1744,70 @@ 

Source code for tigramite.plotting

             #                    val_matrix[v, u][0]]]])).squeeze()
 
             if link_width is None:
-                dic['inner_edge_width'] = arrow_linewidth
+                dic["inner_edge_width"] = arrow_linewidth
             else:
-                dic['inner_edge_width'] = link_width[
-                    u, v, 0] / link_width.max() * arrow_linewidth
+                dic["inner_edge_width"] = (
+                    link_width[u, v, 0] / link_width.max() * arrow_linewidth
+                )
 
             if link_attribute is None:
-                dic['inner_edge_attribute'] = None
+                dic["inner_edge_attribute"] = None
             else:
-                dic['inner_edge_attribute'] =  link_attribute[
-                                                u, v, 0]
+                dic["inner_edge_attribute"] = link_attribute[u, v, 0]
 
             #     # fraction of nonzero values
-            dic['inner_edge_style'] = 'solid'
+            dic["inner_edge_style"] = "solid"
             # else:
             # dic['inner_edge_style'] = link_style[
             #         u, v, 0]
 
-            all_strengths.append(dic['inner_edge_color'])
+            all_strengths.append(dic["inner_edge_color"])
 
             if tau_max > 0:
                 # True if ensemble mean at lags > 0 is nonzero
                 # dic['outer_edge'] = np.any(
                 #     np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:])
-                dic['outer_edge'] = np.any(link_matrix_upper[u,v,1:] != "")
+                dic["outer_edge"] = np.any(link_matrix_upper[u, v, 1:] != "")
             else:
-                dic['outer_edge'] = False
-
-            dic['outer_edge_type'] = link_matrix_upper[u,v, argmax]
+                dic["outer_edge"] = False
 
+            dic["outer_edge_type"] = link_matrix_upper[u, v, argmax]
 
-            dic['outer_edge_alpha'] = alpha
+            dic["outer_edge_alpha"] = alpha
             if link_width is None:
                 # fraction of nonzero values
-                dic['outer_edge_width'] = arrow_linewidth
+                dic["outer_edge_width"] = arrow_linewidth
             else:
-                dic['outer_edge_width'] = link_width[
-                    u, v, argmax] / link_width.max() * arrow_linewidth
+                dic["outer_edge_width"] = (
+                    link_width[u, v, argmax] / link_width.max() * arrow_linewidth
+                )
 
             if link_attribute is None:
                 # fraction of nonzero values
-                dic['outer_edge_attribute'] = None
+                dic["outer_edge_attribute"] = None
             else:
-                dic['outer_edge_attribute'] = link_attribute[
-                    u, v, argmax]
+                dic["outer_edge_attribute"] = link_attribute[u, v, argmax]
 
             # value at argmax of average
-            dic['outer_edge_color'] = val_matrix[u, v][argmax]
-            all_strengths.append(dic['outer_edge_color'])
+            dic["outer_edge_color"] = val_matrix[u, v][argmax]
+            all_strengths.append(dic["outer_edge_color"])
 
             # Sorted list of significant lags (only if robust wrt
             # d['min_ensemble_frac'])
             if tau_max > 0:
                 lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1
-                sig_lags = (np.where(link_matrix_upper[u, v,1:]!="")[0] + 1).tolist()
+                sig_lags = (np.where(link_matrix_upper[u, v, 1:] != "")[0] + 1).tolist()
             else:
                 lags, sig_lags = [], []
             if lag_array is not None:
-                dic['label'] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
+                dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
             else:
-                dic['label'] = str([l for l in lags if l in sig_lags])[1:-1]
+                dic["label"] = str([l for l in lags if l in sig_lags])[1:-1]
         else:
             # Node color is max of average autodependency
             node_color[u] = val_matrix[u, v][argmax]
-            dic['inner_edge_attribute'] = None
-            dic['outer_edge_attribute'] = None
-
+            dic["inner_edge_attribute"] = None
+            dic["outer_edge_attribute"] = None
 
         # dic['outer_edge_edge'] = False
         # dic['outer_edge_edgecolor'] = None
@@ -1408,73 +1816,84 @@ 

Source code for tigramite.plotting

 
     # If no links are present, set value to zero
     if len(all_strengths) == 0:
-        all_strengths = [0.]
+        all_strengths = [0.0]
 
     if node_pos is None:
         pos = nx.circular_layout(deepcopy(G))
-#            pos = nx.spring_layout(deepcopy(G))
     else:
         pos = {}
         for i in range(N):
-            pos[i] = (node_pos['x'][i], node_pos['y'][i])
+            pos[i] = (node_pos["x"][i], node_pos["y"][i])
 
     if cmap_nodes is None:
         node_color = None
 
-    node_rings = {0: {'sizes': None, 'color_array': node_color,
-                      'cmap': cmap_nodes, 'vmin': vmin_nodes,
-                      'vmax': vmax_nodes, 'ticks': node_ticks,
-                      'label': node_colorbar_label, 'colorbar': show_colorbar,
-                      }
-                  }
+    node_rings = {
+        0: {
+            "sizes": None,
+            "color_array": node_color,
+            "cmap": cmap_nodes,
+            "vmin": vmin_nodes,
+            "vmax": vmax_nodes,
+            "ticks": node_ticks,
+            "label": node_colorbar_label,
+            "colorbar": show_colorbar,
+        }
+    }
 
     _draw_network_with_curved_edges(
-        fig=fig, ax=ax,
-        G=deepcopy(G), pos=pos,
+        fig=fig,
+        ax=ax,
+        G=deepcopy(G),
+        pos=pos,
         # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
         # or None, 'cmap':string,
         node_rings=node_rings,
         # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
-        node_labels=var_names, node_label_size=node_label_size,
-        node_alpha=alpha, standard_size=node_size,
-        standard_cmap='OrRd', standard_color='orange',
+        node_labels=var_names,
+        node_label_size=node_label_size,
+        node_alpha=alpha,
+        standard_size=node_size,
+        node_aspect=node_aspect,
+        standard_cmap="OrRd",
+        standard_color="orange",
         log_sizes=False,
-        cmap_links=cmap_edges, links_vmin=vmin_edges,
-        links_vmax=vmax_edges, links_ticks=edge_ticks,
-
+        cmap_links=cmap_edges,
+        links_vmin=vmin_edges,
+        links_vmax=vmax_edges,
+        links_ticks=edge_ticks,
         # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
         # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
-
-        arrowstyle='simple', arrowhead_size=arrowhead_size,
-        curved_radius=curved_radius, label_fontsize=label_fontsize,
+        arrowstyle="simple",
+        arrowhead_size=arrowhead_size,
+        curved_radius=curved_radius,
+        label_fontsize=label_fontsize,
         link_label_fontsize=link_label_fontsize,
         link_colorbar_label=link_colorbar_label,
         network_lower_bound=network_lower_bound,
         show_colorbar=show_colorbar,
         # label_fraction=label_fraction,
-        # inner_edge_style=inner_edge_style
-        )
+    )
 
-    # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95)
-    # savestring = os.path.expanduser(save_name)
     if save_name is not None:
-        pyplot.savefig(save_name)
+        pyplot.savefig(save_name, dpi=300)
     else:
         return fig, ax
+ def _reverse_patt(patt): """Inverts a link pattern""" - if patt == '': - return '' + if patt == "": + return "" left_mark, middle_mark, right_mark = patt[0], patt[1], patt[2] - if left_mark == '<': - new_right_mark = '>' + if left_mark == "<": + new_right_mark = ">" else: new_right_mark = left_mark - if right_mark == '>': - new_left_mark = '<' + if right_mark == ">": + new_left_mark = "<" else: new_left_mark = right_mark @@ -1493,92 +1912,126 @@

Source code for tigramite.plotting

     # elif patt == '<--':
     #     return '-->'
 
-def _check_matrices(link_matrix, val_matrix, link_width, link_attribute):
 
+def _check_matrices(link_matrix, val_matrix, link_width, link_attribute):
     if link_matrix is None and (val_matrix is None or sig_thres is None):
-        raise ValueError("Need to specify either val_matrix together with sig_thres, or link_matrix")
+        raise ValueError(
+            "Need to specify either val_matrix together with sig_thres, or link_matrix"
+        )
 
     if link_matrix is not None:
         pass
     elif link_matrix is None and sig_thres is not None and val_matrix is not None:
         link_matrix = np.abs(val_matrix) >= sig_thres
     else:
-        raise ValueError("Need to specify either val_matrix together with sig_thres, or link_matrix")
+        raise ValueError(
+            "Need to specify either val_matrix together with sig_thres, or link_matrix"
+        )
 
-    if link_matrix.dtype != '<U3':
+    if link_matrix.dtype != "<U3":
         # Transform to new link_matrix data type U3
         old_matrix = np.copy(link_matrix)
-        link_matrix = np.zeros(old_matrix.shape, dtype='<U3')
+        link_matrix = np.zeros(old_matrix.shape, dtype="<U3")
         link_matrix[:] = ""
         for i, j, tau in zip(*np.where(old_matrix)):
             if tau == 0:
-                if old_matrix[j,i,0] == 0:
-                    link_matrix[i,j,0] = '-->'
-                    link_matrix[j,i,0] = '<--'
+                if old_matrix[j, i, 0] == 0:
+                    link_matrix[i, j, 0] = "-->"
+                    link_matrix[j, i, 0] = "<--"
                 else:
-                    link_matrix[i,j,0] = 'o-o'
-                    link_matrix[j,i,0] = 'o-o'   
+                    link_matrix[i, j, 0] = "o-o"
+                    link_matrix[j, i, 0] = "o-o"
             else:
-                link_matrix[i,j,tau] = '-->'
+                link_matrix[i, j, tau] = "-->"
     else:
         # print(link_matrix[:,:,0])
-        # Assert that link_matrix has valid and consistent lag-zero entries   
+        # Assert that link_matrix has valid and consistent lag-zero entries
         for i, j, tau in zip(*np.where(link_matrix)):
-            if tau == 0:    
-                if link_matrix[i,j,0] != _reverse_patt(link_matrix[j,i,0]):
-                    raise ValueError("link_matrix needs to have consistent lag-zero patterns"
-                                     " (eg link_matrix[i,j,0]='-->' requires link_matrix[j,i,0]='<--')")
-                if val_matrix is not None and val_matrix[i,j,0] != val_matrix[j,i,0]:
+            if tau == 0:
+                if link_matrix[i, j, 0] != _reverse_patt(link_matrix[j, i, 0]):
+                    raise ValueError(
+                        "link_matrix needs to have consistent lag-zero patterns (eg"
+                        " link_matrix[i,j,0]='-->' requires link_matrix[j,i,0]='<--')"
+                    )
+                if (
+                    val_matrix is not None
+                    and val_matrix[i, j, 0] != val_matrix[j, i, 0]
+                ):
                     raise ValueError("val_matrix needs to be symmetric for lag-zero")
-                if link_width is not None and link_width[i,j,0] != link_width[j,i,0]:
+                if (
+                    link_width is not None
+                    and link_width[i, j, 0] != link_width[j, i, 0]
+                ):
                     raise ValueError("link_width needs to be symmetric for lag-zero")
-                if link_attribute is not None and link_attribute[i,j,0] != link_attribute[j,i,0]:
-                    raise ValueError("link_attribute needs to be symmetric for lag-zero")
-                                                                                             
-            if link_matrix[i, j, tau] not in ['---', 'o--', '--o', 'o-o', 'o->', '<-o', '-->', '<--', '<->']:
+                if (
+                    link_attribute is not None
+                    and link_attribute[i, j, 0] != link_attribute[j, i, 0]
+                ):
+                    raise ValueError(
+                        "link_attribute needs to be symmetric for lag-zero"
+                    )
+
+            if link_matrix[i, j, tau] not in [
+                "---",
+                "o--",
+                "--o",
+                "o-o",
+                "o->",
+                "<-o",
+                "-->",
+                "<--",
+                "<->",
+                "x-o",
+                "o-x",
+                "x--",
+                "--x",
+                "x->",
+                "<-x",
+                "x-x",
+            ]:
                 raise ValueError("Invalid link_matrix entry.")
 
     if val_matrix is None:
-        val_matrix = (link_matrix != "").astype('int')
+        val_matrix = (link_matrix != "").astype("int")
 
-    if link_width is not None and not np.all(link_width >= 0.):
+    if link_width is not None and not np.all(link_width >= 0.0):
         raise ValueError("link_width must be non-negative")
 
     return link_matrix, val_matrix, link_width, link_attribute
 
+
 
[docs]def plot_time_series_graph( - link_matrix=None, - val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - sig_thres=None, - link_colorbar_label='MCI', - save_name=None, - link_width=None, - link_attribute=None, - arrow_linewidth=20., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - order=None, - node_size=10, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - label_space_left=0.1, - label_space_top=0., - network_lower_bound=0.2, - inner_edge_style='dashed' - ): + link_matrix=None, + val_matrix=None, + var_names=None, + fig_ax=None, + figsize=None, + sig_thres=None, + link_colorbar_label="MCI", + save_name=None, + link_width=None, + link_attribute=None, + arrow_linewidth=8, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + order=None, + node_size=0.1, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=12, + alpha=1.0, + node_label_size=12, + label_space_left=0.1, + label_space_top=0.0, + network_lower_bound=0.2, + inner_edge_style="dashed", +): """Creates a time series graph. - This is still in beta. The time series graph's links are colored by val_matrix. - Parameters ---------- val_matrix : array_like @@ -1614,11 +2067,13 @@

Source code for tigramite.plotting

         Link tick mark interval.
     cmap_edges : str, optional (default: 'RdBu_r')
         Colormap for links.
-    node_size : int, optional (default: 20)
+    node_size : int, optional (default: 0.1)
         Node size.
+    node_aspect : float, optional (default: None)
+        Ratio between the heigth and width of the varible nodes.
     arrowhead_size : int, optional (default: 20)
         Size of link arrow head. Passed on to FancyArrowPatch object.
-    curved_radius : float, optional (default: 0.2)
+    curved_radius, float, optional (default: 0.2)
         Curvature of links. Passed on to FancyArrowPatch object.
     label_fontsize : int, optional (default: 10)
         Fontsize of colorbar labels.
@@ -1644,13 +2099,20 @@ 

Source code for tigramite.plotting

     else:
         fig, ax = fig_ax
 
-    (link_matrix, val_matrix, link_width, link_attribute) = \
-            _check_matrices(link_matrix, val_matrix, link_width, link_attribute)
+    (link_matrix, val_matrix, link_width, link_attribute) = _check_matrices(
+        link_matrix, val_matrix, link_width, link_attribute
+    )
 
     N, N, dummy = link_matrix.shape
     tau_max = dummy - 1
     max_lag = tau_max + 1
 
+    if np.count_nonzero(link_matrix == "") == link_matrix.size:
+        link_matrix[0, 1, 0] = "---"
+        no_links = True
+    else:
+        no_links = False
+
     if var_names is None:
         var_names = range(N)
 
@@ -1675,21 +2137,31 @@ 

Source code for tigramite.plotting

     # Only draw link in one direction among contemp
     # Remove lower triangle
     link_matrix_tsg = np.copy(link_matrix)
-    link_matrix_tsg[:,:,0] = np.triu(link_matrix[:,:,0])
+    link_matrix_tsg[:, :, 0] = np.triu(link_matrix[:, :, 0])
 
-    for i, j, tau in np.column_stack(np.where(link_matrix_tsg)):  
+    for i, j, tau in np.column_stack(np.where(link_matrix_tsg)):
         for t in range(max_lag):
-            if (0 <= translate(i, t - tau) and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag):
-
-                tsg[translate(i, t - tau), translate(j, t)] = 1.  #val_matrix[i, j, tau]
+            if (
+                0 <= translate(i, t - tau)
+                and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag
+            ):
+
+                tsg[
+                    translate(i, t - tau), translate(j, t)
+                ] = 1.0  # val_matrix[i, j, tau]
                 tsg_val[translate(i, t - tau), translate(j, t)] = val_matrix[i, j, tau]
-                tsg_style[translate(i, t - tau), translate(j, t)] = link_matrix[i, j, tau]
+                tsg_style[translate(i, t - tau), translate(j, t)] = link_matrix[
+                    i, j, tau
+                ]
                 if link_width is not None:
-                    tsg_width[translate(i, t - tau), translate(j, t)] = link_width[i, j, tau] / link_width.max() * arrow_linewidth
+                    tsg_width[translate(i, t - tau), translate(j, t)] = (
+                        link_width[i, j, tau] / link_width.max() * arrow_linewidth
+                    )
                 if link_attribute is not None:
-                    tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[i, j, tau]
+                    tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[
+                        i, j, tau
+                    ]
 
-    # print(tsg.round(1))
     G = nx.DiGraph(tsg)
 
     # node_color = np.zeros(N)
@@ -1697,152 +2169,170 @@ 

Source code for tigramite.plotting

     all_strengths = []
     # Add attributes, contemporaneous and lagged links are handled separately
     for (u, v, dic) in G.edges(data=True):
-
+        dic["no_links"] = no_links
         if u != v:
+            dic["inner_edge"] = False
+            dic["outer_edge"] = True
 
-            dic['inner_edge'] = False
-            dic['outer_edge'] = True
+            dic["outer_edge_type"] = tsg_style[u, v]
 
-            dic['outer_edge_type'] = tsg_style[u,v]
-
-            dic['outer_edge_alpha'] = alpha
+            dic["outer_edge_alpha"] = alpha
 
             if link_width is None:
                 # fraction of nonzero values
-                dic['outer_edge_width'] = dic['inner_edge_width'] = arrow_linewidth
+                dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth
             else:
-                dic['outer_edge_width'] = dic['inner_edge_width'] = tsg_width[u,v]
+                dic["outer_edge_width"] = dic["inner_edge_width"] = tsg_width[u, v]
 
             if link_attribute is None:
-                dic['outer_edge_attribute'] = None
+                dic["outer_edge_attribute"] = None
             else:
-                dic['outer_edge_attribute'] = tsg_attr[u,v]
-            
+                dic["outer_edge_attribute"] = tsg_attr[u, v]
+
             # value at argmax of average
-            dic['outer_edge_color'] = tsg_val[u, v]
+            dic["outer_edge_color"] = tsg_val[u, v]
 
-            all_strengths.append(dic['outer_edge_color'])
-            dic['label'] = None
+            all_strengths.append(dic["outer_edge_color"])
+            dic["label"] = None
 
     # If no links are present, set value to zero
     if len(all_strengths) == 0:
-        all_strengths = [0.]
+        all_strengths = [0.0]
 
     posarray = np.zeros((N * max_lag, 2))
     for i in range(N * max_lag):
-
-        posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
+        posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)])
 
     pos_tmp = {}
     for i in range(N * max_lag):
         # for n in range(N):
         #     for tau in range(max_lag):
         #         i = n*N + tau
-        pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
-                                  (posarray.max(axis=0)[0] -
-                                   posarray.min(axis=0)[0]),
-                                  ((1. - i // max_lag) -
-                                   posarray.min(axis=0)[1]) /
-                                  (posarray.max(axis=0)[1] -
-                                   posarray.min(axis=0)[1])])
-        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.
+        pos_tmp[i] = np.array(
+            [
+                ((i % max_lag) - posarray.min(axis=0)[0])
+                / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]),
+                ((1.0 - i // max_lag) - posarray.min(axis=0)[1])
+                / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]),
+            ]
+        )
+        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0
 
     pos = {}
     for n in range(N):
         for tau in range(max_lag):
             pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau]
 
-    node_rings = {0: {'sizes': None, 'color_array': None,
-                      'label': '', 'colorbar': False,
-                      }
-                  }
+    node_rings = {
+        0: {"sizes": None, "color_array": None, "label": "", "colorbar": False,}
+    }
 
-    # ] for v in range(max_lag)]
-    node_labels = ['' for i in range(N * max_lag)]
+    node_labels = ["" for i in range(N * max_lag)]
 
     _draw_network_with_curved_edges(
-        fig=fig, ax=ax,
-        G=deepcopy(G), pos=pos,
+        fig=fig,
+        ax=ax,
+        G=deepcopy(G),
+        pos=pos,
         node_rings=node_rings,
-        node_labels=node_labels, node_label_size=node_label_size,
-        node_alpha=alpha, standard_size=node_size,
-        standard_cmap='OrRd', standard_color='lightgrey',
+        node_labels=node_labels,
+        node_label_size=node_label_size,
+        node_alpha=alpha,
+        standard_size=node_size,
+        node_aspect=node_aspect,
+        standard_cmap="OrRd",
+        standard_color="lightgrey",
         log_sizes=False,
-        cmap_links=cmap_edges, links_vmin=vmin_edges,
-        links_vmax=vmax_edges, links_ticks=edge_ticks,
-        arrowstyle='simple', arrowhead_size=arrowhead_size,
-        curved_radius=curved_radius, label_fontsize=label_fontsize,
-        label_fraction=.5,
-        link_colorbar_label=link_colorbar_label, inner_edge_curved=True,
+        cmap_links=cmap_edges,
+        links_vmin=vmin_edges,
+        links_vmax=vmax_edges,
+        links_ticks=edge_ticks,
+        arrowstyle="simple",
+        arrowhead_size=arrowhead_size,
+        curved_radius=curved_radius,
+        label_fontsize=label_fontsize,
+        label_fraction=0.5,
+        link_colorbar_label=link_colorbar_label,
+        inner_edge_curved=True,
         network_lower_bound=network_lower_bound,
-        inner_edge_style=inner_edge_style
-        )
+        inner_edge_style=inner_edge_style,
+    )
 
     for i in range(N):
-        trans = transforms.blended_transform_factory(
-            fig.transFigure, ax.transData)
-        ax.text(label_space_left, pos[order[i] * max_lag][1],
-                '%s' % str(var_names[order[i]]), fontsize=label_fontsize,
-                horizontalalignment='left', verticalalignment='center',
-                transform=trans)
+        trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
+        ax.text(
+            label_space_left,
+            pos[order[i] * max_lag][1],
+            f"{var_names[order[i]]}",
+            fontsize=label_fontsize,
+            horizontalalignment="left",
+            verticalalignment="center",
+            transform=trans,
+        )
 
     for tau in np.arange(max_lag - 1, -1, -1):
-        trans = transforms.blended_transform_factory(
-            ax.transData, fig.transFigure)
+        trans = transforms.blended_transform_factory(ax.transData, fig.transFigure)
         if tau == max_lag - 1:
-            ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
-                    fontsize=int(label_fontsize*0.7),
-                    horizontalalignment='center',
-                    verticalalignment='top', transform=trans)
+            ax.text(
+                pos[tau][0],
+                1.0 - label_space_top,
+                r"$t$",
+                fontsize=int(label_fontsize * 0.8),
+                horizontalalignment="center",
+                verticalalignment="top",
+                transform=trans,
+            )
         else:
-            ax.text(pos[tau][0], 1.-label_space_top,
-                    r'$t-%s$' % str(max_lag - tau - 1),
-                    fontsize=int(label_fontsize*0.7),
-                    horizontalalignment='center', verticalalignment='top',
-                    transform=trans)
+            ax.text(
+                pos[tau][0],
+                1.0 - label_space_top,
+                r"$t-%s$" % str(max_lag - tau - 1),
+                fontsize=int(label_fontsize * 0.8),
+                horizontalalignment="center",
+                verticalalignment="top",
+                transform=trans,
+            )
 
-    # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
-    # savestring = os.path.expanduser(save_name)
     if save_name is not None:
         pyplot.savefig(save_name, dpi=300)
     else:
         return fig, ax
+
[docs]def plot_mediation_time_series_graph( - path_node_array, - tsg_path_val_matrix, - var_names=None, - fig_ax=None, - figsize=None, - link_colorbar_label='link coeff. (edge color)', - node_colorbar_label='MCE (node color)', - save_name=None, - link_width=None, - arrow_linewidth=20., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - order=None, - vmin_nodes=-1., - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='RdBu_r', - node_size=10, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - label_space_left=0.1, - label_space_top=0., - network_lower_bound=0.2 - ): + path_node_array, + tsg_path_val_matrix, + var_names=None, + fig_ax=None, + figsize=None, + link_colorbar_label="link coeff. (edge color)", + node_colorbar_label="MCE (node color)", + save_name=None, + link_width=None, + arrow_linewidth=8, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + order=None, + vmin_nodes=-1.0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="RdBu_r", + node_size=0.1, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=12, + alpha=1.0, + node_label_size=12, + label_space_left=0.1, + label_space_top=0.0, + network_lower_bound=0.2, +): """Creates a mediation time series graph plot. - This is still in beta. The time series graph's links are colored by val_matrix. - Parameters ---------- tsg_path_val_matrix : array_like @@ -1884,11 +2374,13 @@

Source code for tigramite.plotting

         Node tick mark interval.
     cmap_nodes : str, optional (default: 'OrRd')
         Colormap for links.
-    node_size : int, optional (default: 20)
+    node_size : int, optional (default: 0.1)
         Node size.
+    node_aspect : float, optional (default: None)
+        Ratio between the heigth and width of the varible nodes.
     arrowhead_size : int, optional (default: 20)
         Size of link arrow head. Passed on to FancyArrowPatch object.
-    curved_radius : float, optional (default: 0.2)
+    curved_radius, float, optional (default: 0.2)
         Curvature of links. Passed on to FancyArrowPatch object.
     label_fontsize : int, optional (default: 10)
         Fontsize of colorbar labels.
@@ -1918,7 +2410,7 @@ 

Source code for tigramite.plotting

     else:
         fig, ax = fig_ax
 
-    if link_width is not None and not np.all(link_width >= 0.):
+    if link_width is not None and not np.all(link_width >= 0.0):
         raise ValueError("link_width must be non-negative")
 
     if order is None:
@@ -1930,6 +2422,19 @@ 

Source code for tigramite.plotting

     def translate(row, lag):
         return row * max_lag + lag
 
+    if np.count_nonzero(tsg_path_val_matrix) == np.count_nonzero(
+        np.diagonal(tsg_path_val_matrix)
+    ):
+        diagonal = True
+    else:
+        diagonal = False
+
+    if np.count_nonzero(tsg_path_val_matrix) == tsg_path_val_matrix.size or diagonal:
+        tsg_path_val_matrix[0, 1] = 1
+        no_links = True
+    else:
+        no_links = False
+
     # Define graph links by absolute maximum (positive or negative like for
     # partial correlation)
     tsg = tsg_path_val_matrix
@@ -1942,34 +2447,33 @@ 

Source code for tigramite.plotting

     all_strengths = []
     # Add attributes, contemporaneous and lagged links are handled separately
     for (u, v, dic) in G.edges(data=True):
-
-        dic['outer_edge_attribute'] = None
+        dic["no_links"] = no_links
+        dic["outer_edge_attribute"] = None
 
         if u != v:
 
             if u % max_lag == v % max_lag:
-                dic['inner_edge'] = True
-                dic['outer_edge'] = False
+                dic["inner_edge"] = True
+                dic["outer_edge"] = False
             else:
-                dic['inner_edge'] = False
-                dic['outer_edge'] = True
+                dic["inner_edge"] = False
+                dic["outer_edge"] = True
 
-            dic['inner_edge_alpha'] = alpha
-            dic['inner_edge_color'] = _get_absmax(
-                np.array([[[tsg[u, v],
-                               tsg[v, u]]]])
+            dic["inner_edge_alpha"] = alpha
+            dic["inner_edge_color"] = _get_absmax(
+                np.array([[[tsg[u, v], tsg[v, u]]]])
             ).squeeze()
-            dic['inner_edge_width'] = arrow_linewidth
-            all_strengths.append(dic['inner_edge_color'])
+            dic["inner_edge_width"] = arrow_linewidth
+            all_strengths.append(dic["inner_edge_color"])
 
-            dic['outer_edge_alpha'] = alpha
+            dic["outer_edge_alpha"] = alpha
 
-            dic['outer_edge_width'] = arrow_linewidth
+            dic["outer_edge_width"] = arrow_linewidth
 
             # value at argmax of average
-            dic['outer_edge_color'] = tsg[u, v]
-            all_strengths.append(dic['outer_edge_color'])
-            dic['label'] = None
+            dic["outer_edge_color"] = tsg[u, v]
+            all_strengths.append(dic["outer_edge_color"])
+            dic["label"] = None
 
         # dic['outer_edge_edge'] = False
         # dic['outer_edge_edgecolor'] = None
@@ -1978,26 +2482,26 @@ 

Source code for tigramite.plotting

 
     # If no links are present, set value to zero
     if len(all_strengths) == 0:
-        all_strengths = [0.]
+        all_strengths = [0.0]
 
     posarray = np.zeros((N * max_lag, 2))
     for i in range(N * max_lag):
-
-        posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
+        posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)])
 
     pos_tmp = {}
     for i in range(N * max_lag):
         # for n in range(N):
         #     for tau in range(max_lag):
         #         i = n*N + tau
-        pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
-                                  (posarray.max(axis=0)[0] -
-                                   posarray.min(axis=0)[0]),
-                                  ((1. - i // max_lag) -
-                                   posarray.min(axis=0)[1]) /
-                                  (posarray.max(axis=0)[1] -
-                                   posarray.min(axis=0)[1])])
-        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.
+        pos_tmp[i] = np.array(
+            [
+                ((i % max_lag) - posarray.min(axis=0)[0])
+                / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]),
+                ((1.0 - i // max_lag) - posarray.min(axis=0)[1])
+                / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]),
+            ]
+        )
+        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0
 
     pos = {}
     for n in range(N):
@@ -2006,70 +2510,96 @@ 

Source code for tigramite.plotting

 
     node_color = np.zeros(N * max_lag)
     for inet, n in enumerate(range(0, N * max_lag, max_lag)):
-        node_color[n:n+max_lag] = path_node_array[inet]
+        node_color[n : n + max_lag] = path_node_array[inet]
 
     # node_rings = {0: {'sizes': None, 'color_array': color_array,
     #                   'label': '', 'colorbar': False,
     #                   }
     #               }
 
-    node_rings = {0: {'sizes': None, 'color_array': node_color,
-                    'cmap': cmap_nodes, 'vmin': vmin_nodes,
-                    'vmax': vmax_nodes, 'ticks': node_ticks,
-                    'label': node_colorbar_label, 'colorbar': True,
-                    }
-                }
+    node_rings = {
+        0: {
+            "sizes": None,
+            "color_array": node_color,
+            "cmap": cmap_nodes,
+            "vmin": vmin_nodes,
+            "vmax": vmax_nodes,
+            "ticks": node_ticks,
+            "label": node_colorbar_label,
+            "colorbar": True,
+        }
+    }
 
     # ] for v in range(max_lag)]
-    node_labels = ['' for i in range(N * max_lag)]
+    node_labels = ["" for i in range(N * max_lag)]
 
     _draw_network_with_curved_edges(
-        fig=fig, ax=ax,
-        G=deepcopy(G), pos=pos,
+        fig=fig,
+        ax=ax,
+        G=deepcopy(G),
+        pos=pos,
         # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
         # or None, 'cmap':string,
         node_rings=node_rings,
         # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
-        node_labels=node_labels, node_label_size=node_label_size,
-        node_alpha=alpha, standard_size=node_size,
-        standard_cmap='OrRd', standard_color='grey',
+        node_labels=node_labels,
+        node_label_size=node_label_size,
+        node_alpha=alpha,
+        standard_size=node_size,
+        node_aspect=node_aspect,
+        standard_cmap="OrRd",
+        standard_color="grey",
         log_sizes=False,
-        cmap_links=cmap_edges, links_vmin=vmin_edges,
-        links_vmax=vmax_edges, links_ticks=edge_ticks,
-
+        cmap_links=cmap_edges,
+        links_vmin=vmin_edges,
+        links_vmax=vmax_edges,
+        links_ticks=edge_ticks,
         # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
         # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
-
-        arrowstyle='simple', arrowhead_size=arrowhead_size,
-        curved_radius=curved_radius, label_fontsize=label_fontsize,
-        label_fraction=.5,
-        link_colorbar_label=link_colorbar_label, inner_edge_curved=True,
+        arrowhead_size=arrowhead_size,
+        curved_radius=curved_radius,
+        label_fontsize=label_fontsize,
+        label_fraction=0.5,
+        link_colorbar_label=link_colorbar_label,
+        inner_edge_curved=True,
         network_lower_bound=network_lower_bound
         # inner_edge_style=inner_edge_style
-        )
+    )
 
     for i in range(N):
-        trans = transforms.blended_transform_factory(
-            fig.transFigure, ax.transData)
-        ax.text(label_space_left, pos[order[i] * max_lag][1],
-                '%s' % str(var_names[order[i]]), fontsize=label_fontsize,
-                horizontalalignment='left', verticalalignment='center',
-                transform=trans)
+        trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
+        ax.text(
+            label_space_left,
+            pos[order[i] * max_lag][1],
+            "%s" % str(var_names[order[i]]),
+            fontsize=label_fontsize,
+            horizontalalignment="left",
+            verticalalignment="center",
+            transform=trans,
+        )
 
     for tau in np.arange(max_lag - 1, -1, -1):
-        trans = transforms.blended_transform_factory(
-            ax.transData, fig.transFigure)
+        trans = transforms.blended_transform_factory(ax.transData, fig.transFigure)
         if tau == max_lag - 1:
-            ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
-                    fontsize=label_fontsize,
-                    horizontalalignment='center',
-                    verticalalignment='top', transform=trans)
+            ax.text(
+                pos[tau][0],
+                1.0 - label_space_top,
+                r"$t$",
+                fontsize=label_fontsize,
+                horizontalalignment="center",
+                verticalalignment="top",
+                transform=trans,
+            )
         else:
-            ax.text(pos[tau][0], 1.-label_space_top,
-                    r'$t-%s$' % str(max_lag - tau - 1),
-                    fontsize=label_fontsize,
-                    horizontalalignment='center', verticalalignment='top',
-                    transform=trans)
+            ax.text(
+                pos[tau][0],
+                1.0 - label_space_top,
+                r"$t-%s$" % str(max_lag - tau - 1),
+                fontsize=label_fontsize,
+                horizontalalignment="center",
+                verticalalignment="top",
+                transform=trans,
+            )
 
     # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
     # savestring = os.path.expanduser(save_name)
@@ -2078,38 +2608,39 @@ 

Source code for tigramite.plotting

     else:
         pyplot.show()
+
[docs]def plot_mediation_graph( - path_val_matrix, - path_node_array=None, - var_names=None, - fig_ax=None, - figsize=None, - save_name=None, - link_colorbar_label='link coeff. (edge color)', - node_colorbar_label='MCE (node color)', - link_width=None, - node_pos=None, - arrow_linewidth=30., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - vmin_nodes=-1., - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='RdBu_r', - node_size=20, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - lag_array=None, - alpha=1., - node_label_size=10, - link_label_fontsize=6, - network_lower_bound=0.2, - ): + path_val_matrix, + path_node_array=None, + var_names=None, + fig_ax=None, + figsize=None, + save_name=None, + link_colorbar_label="link coeff. (edge color)", + node_colorbar_label="MCE (node color)", + link_width=None, + node_pos=None, + arrow_linewidth=10.0, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + vmin_nodes=-1.0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="RdBu_r", + node_size=0.3, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=10, + lag_array=None, + alpha=1.0, + node_label_size=10, + link_label_fontsize=10, + network_lower_bound=0.2, +): """Creates a network plot visualizing the pathways of a mediation analysis. - This is still in beta. The network is defined from non-zero entries in ``path_val_matrix``. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes @@ -2118,7 +2649,6 @@

Source code for tigramite.plotting

     significant dependency in order of absolute magnitude. The network can also
     be plotted over a map drawn before on the same axis. Then the node positions
     can be supplied in appropriate axis coordinates via node_pos.
-
     Parameters
     ----------
     path_val_matrix : array_like
@@ -2162,11 +2692,13 @@ 

Source code for tigramite.plotting

         Node tick mark interval.
     cmap_nodes : str, optional (default: 'OrRd')
         Colormap for links.
-    node_size : int, optional (default: 20)
+    node_size : int, optional (default: 0.3)
         Node size.
+    node_aspect : float, optional (default: None)
+        Ratio between the heigth and width of the varible nodes.
     arrowhead_size : int, optional (default: 20)
         Size of link arrow head. Passed on to FancyArrowPatch object.
-    curved_radius : float, optional (default: 0.2)
+    curved_radius, float, optional (default: 0.2)
         Curvature of links. Passed on to FancyArrowPatch object.
     label_fontsize : int, optional (default: 10)
         Fontsize of colorbar labels.
@@ -2189,19 +2721,30 @@ 

Source code for tigramite.plotting

     else:
         fig, ax = fig_ax
 
-    if link_width is not None and not np.all(link_width >= 0.):
+    if link_width is not None and not np.all(link_width >= 0.0):
         raise ValueError("link_width must be non-negative")
 
     N, N, dummy = val_matrix.shape
     tau_max = dummy - 1
 
+    if np.count_nonzero(val_matrix) == np.count_nonzero(np.diagonal(val_matrix)):
+        diagonal = True
+    else:
+        diagonal = False
+
+    if np.count_nonzero(val_matrix) == val_matrix.size or diagonal:
+        val_matrix[0, 1, 0] = 1
+        no_links = True
+    else:
+        no_links = False
+
     if var_names is None:
         var_names = range(N)
 
     # Define graph links by absolute maximum (positive or negative like for
     # partial correlation)
     # val_matrix[np.abs(val_matrix) < sig_thres] = 0.
-    link_matrix = val_matrix != 0.
+    link_matrix = val_matrix != 0.0
     net = _get_absmax(val_matrix)
     G = nx.DiGraph(net)
 
@@ -2210,8 +2753,8 @@ 

Source code for tigramite.plotting

     all_strengths = []
     # Add attributes, contemporaneous and lagged links are handled separately
     for (u, v, dic) in G.edges(data=True):
-        dic['outer_edge_attribute'] = None
-
+        dic["outer_edge_attribute"] = None
+        dic["no_links"] = no_links
         # average lagfunc for link u --> v ANDOR u -- v
         if tau_max > 0:
             # argmax of absolute maximum
@@ -2228,56 +2771,60 @@ 

Source code for tigramite.plotting

             #                       sig_thres[u, v][0]) or
             #                      (np.abs(val_matrix[v, u][0]) >=
             #                       sig_thres[v, u][0]))
-            dic['inner_edge'] = (link_matrix[u,v,0] or link_matrix[v,u,0])
-            dic['inner_edge_alpha'] = alpha
+            dic["inner_edge"] = link_matrix[u, v, 0] or link_matrix[v, u, 0]
+            dic["inner_edge_alpha"] = alpha
             # value at argmax of average
-            if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001:
-                print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % (
-                      u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0]) +
-                      " due to conditions, finite sample effects or "
-                      "masking, here edge color = "
-                      "larger (absolute) value.")
-            dic['inner_edge_color'] = _get_absmax(
-                np.array([[[val_matrix[u, v][0],
-                               val_matrix[v, u][0]]]])).squeeze()
+            if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > 0.0001:
+                print(
+                    "Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f"
+                    % (u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0])
+                    + " due to conditions, finite sample effects or "
+                    "masking, here edge color = "
+                    "larger (absolute) value."
+                )
+            dic["inner_edge_color"] = _get_absmax(
+                np.array([[[val_matrix[u, v][0], val_matrix[v, u][0]]]])
+            ).squeeze()
             if link_width is None:
-                dic['inner_edge_width'] = arrow_linewidth
+                dic["inner_edge_width"] = arrow_linewidth
             else:
-                dic['inner_edge_width'] = link_width[
-                    u, v, 0] / link_width.max() * arrow_linewidth
+                dic["inner_edge_width"] = (
+                    link_width[u, v, 0] / link_width.max() * arrow_linewidth
+                )
 
-            all_strengths.append(dic['inner_edge_color'])
+            all_strengths.append(dic["inner_edge_color"])
 
             if tau_max > 0:
                 # True if ensemble mean at lags > 0 is nonzero
                 # dic['outer_edge'] = np.any(
                 #     np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:])
-                dic['outer_edge'] = np.any(link_matrix[u,v,1:])
+                dic["outer_edge"] = np.any(link_matrix[u, v, 1:])
             else:
-                dic['outer_edge'] = False
-            dic['outer_edge_alpha'] = alpha
+                dic["outer_edge"] = False
+            dic["outer_edge_alpha"] = alpha
             if link_width is None:
                 # fraction of nonzero values
-                dic['outer_edge_width'] = arrow_linewidth
+                dic["outer_edge_width"] = arrow_linewidth
             else:
-                dic['outer_edge_width'] = link_width[
-                    u, v, argmax] / link_width.max() * arrow_linewidth
+                dic["outer_edge_width"] = (
+                    link_width[u, v, argmax] / link_width.max() * arrow_linewidth
+                )
 
             # value at argmax of average
-            dic['outer_edge_color'] = val_matrix[u, v][argmax]
-            all_strengths.append(dic['outer_edge_color'])
+            dic["outer_edge_color"] = val_matrix[u, v][argmax]
+            all_strengths.append(dic["outer_edge_color"])
 
             # Sorted list of significant lags (only if robust wrt
             # d['min_ensemble_frac'])
             if tau_max > 0:
                 lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1
-                sig_lags = (np.where(link_matrix[u, v,1:])[0] + 1).tolist()
+                sig_lags = (np.where(link_matrix[u, v, 1:])[0] + 1).tolist()
             else:
                 lags, sig_lags = [], []
             if lag_array is not None:
-                dic['label'] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
+                dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
             else:
-                dic['label'] = str([l for l in lags if l in sig_lags])[1:-1]
+                dic["label"] = str([l for l in lags if l in sig_lags])[1:-1]
         else:
             # Node color is max of average autodependency
             node_color[u] = val_matrix[u, v][argmax]
@@ -2291,48 +2838,61 @@ 

Source code for tigramite.plotting

     # print node_color
     # If no links are present, set value to zero
     if len(all_strengths) == 0:
-        all_strengths = [0.]
+        all_strengths = [0.0]
 
     if node_pos is None:
         pos = nx.circular_layout(deepcopy(G))
-#            pos = nx.spring_layout(deepcopy(G))
+    #            pos = nx.spring_layout(deepcopy(G))
     else:
         pos = {}
         for i in range(N):
-            pos[i] = (node_pos['x'][i], node_pos['y'][i])
-
-    node_rings = {0: {'sizes': None, 'color_array': node_color,
-                      'cmap': cmap_nodes, 'vmin': vmin_nodes,
-                      'vmax': vmax_nodes, 'ticks': node_ticks,
-                      'label': node_colorbar_label, 'colorbar': True,
-                      }
-                  }
+            pos[i] = (node_pos["x"][i], node_pos["y"][i])
+
+    node_rings = {
+        0: {
+            "sizes": None,
+            "color_array": node_color,
+            "cmap": cmap_nodes,
+            "vmin": vmin_nodes,
+            "vmax": vmax_nodes,
+            "ticks": node_ticks,
+            "label": node_colorbar_label,
+            "colorbar": True,
+        }
+    }
 
     _draw_network_with_curved_edges(
-        fig=fig, ax=ax,
-        G=deepcopy(G), pos=pos,
+        fig=fig,
+        ax=ax,
+        G=deepcopy(G),
+        pos=pos,
         # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
         # or None, 'cmap':string,
         node_rings=node_rings,
         # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
-        node_labels=var_names, node_label_size=node_label_size,
-        node_alpha=alpha, standard_size=node_size,
-        standard_cmap='OrRd', standard_color='orange',
+        node_labels=var_names,
+        node_label_size=node_label_size,
+        node_alpha=alpha,
+        standard_size=node_size,
+        node_aspect=node_aspect,
+        standard_cmap="OrRd",
+        standard_color="orange",
         log_sizes=False,
-        cmap_links=cmap_edges, links_vmin=vmin_edges,
-        links_vmax=vmax_edges, links_ticks=edge_ticks,
-
+        cmap_links=cmap_edges,
+        links_vmin=vmin_edges,
+        links_vmax=vmax_edges,
+        links_ticks=edge_ticks,
         # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
         # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
-
-        arrowstyle='simple', arrowhead_size=arrowhead_size,
-        curved_radius=curved_radius, label_fontsize=label_fontsize,
+        arrowhead_size=arrowhead_size,
+        curved_radius=curved_radius,
+        label_fontsize=label_fontsize,
         link_label_fontsize=link_label_fontsize,
         link_colorbar_label=link_colorbar_label,
         network_lower_bound=network_lower_bound,
         # label_fraction=label_fraction,
         # inner_edge_style=inner_edge_style
-        )
+    )
 
     # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95)
     # savestring = os.path.expanduser(save_name)
@@ -2341,27 +2901,25 @@ 

Source code for tigramite.plotting

     else:
         pyplot.show()
+ # # Functions to plot time series graphs from links including ancestors #
[docs]def plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None): """Plots TSG that is input in format (N*max_lag, N*max_lag). - - Compared to the tigramite plotting function here links - X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to - visualize the conditioned TSG. + Compared to the tigramite plotting function here links + X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to + visualize the conditioned TSG. """ def varlag2node(var, lag): """Translate from (var, lag) notation to node in TSG. - lag must be <= 0. """ return var * max_lag + lag def node2varlag(node): """Translate from node in TSG to (var, -tau) notation. - Here tau is <= 0. """ var = node // max_lag @@ -2370,7 +2928,6 @@

Source code for tigramite.plotting

 
     def _links_to_tsg(link_coeffs, max_lag=None):
         """Transform link_coeffs to time series graph.
-
         TSG is of shape (N*max_lag, N*max_lag).
         """
         N = len(link_coeffs)
@@ -2390,22 +2947,22 @@ 

Source code for tigramite.plotting

                 tau = abs(lag)
                 coeff = link_props[1]
                 # func = link_props[2]
-                if coeff != 0.:
+                if coeff != 0.0:
                     for t in range(max_lag):
-                        if (0 <= varlag2node(i, t - tau) and
-                            varlag2node(i, t - tau) % max_lag
-                            <= varlag2node(j, t) % max_lag):
-                            tsg[varlag2node(i, t - tau),
-                            varlag2node(j, t)] = 1.
+                        if (
+                            0 <= varlag2node(i, t - tau)
+                            and varlag2node(i, t - tau) % max_lag
+                            <= varlag2node(j, t) % max_lag
+                        ):
+                            tsg[varlag2node(i, t - tau), varlag2node(j, t)] = 1.0
 
         return tsg
 
-    color_list = ['lightgrey', 'grey', 'black', 'red', 'blue', 'orange']
+    color_list = ["lightgrey", "grey", "black", "red", "blue", "orange"]
     listcmap = ListedColormap(color_list)
 
     N = len(links)
 
-
     min_lag_links, max_lag_links = pp._get_minmax_lag(links)
     max_lag = max_lag_links
 
@@ -2415,8 +2972,7 @@ 

Source code for tigramite.plotting

         max_lag = max(max_lag, abs(anc[1]))
     if Z is not None:
         for anc in Z:
-          max_lag = max(max_lag, abs(anc[1]))
-
+            max_lag = max(max_lag, abs(anc[1]))
 
     if anc_x is not None:
         for anc in anc_x:
@@ -2434,46 +2990,45 @@ 

Source code for tigramite.plotting

 
     G = nx.DiGraph(tsg)
 
-    figsize=(3, 3)
-    link_colorbar_label='MCI'
-    arrow_linewidth=20.
-    vmin_edges=-1
-    vmax_edges=1.
-    edge_ticks=.4
-    cmap_edges='RdBu_r'
-    order=None
-    node_size=10
-    arrowhead_size=20
-    curved_radius=.2
-    label_fontsize=10
-    alpha=1.
-    node_label_size=10
-    label_space_left=0.1
-    label_space_top=0.
-    network_lower_bound=0.2
-    inner_edge_style='dashed'
-
-
-    node_color = np.ones(N * max_lag) #, dtype = 'object')
+    figsize = (3, 3)
+    link_colorbar_label = "MCI"
+    arrow_linewidth = 20.0
+    vmin_edges = -1
+    vmax_edges = 1.0
+    edge_ticks = 0.4
+    cmap_edges = "RdBu_r"
+    order = None
+    node_size = 10
+    arrowhead_size = 20
+    curved_radius = 0.2
+    label_fontsize = 10
+    alpha = 1.0
+    node_label_size = 10
+    label_space_left = 0.1
+    label_space_top = 0.0
+    network_lower_bound = 0.2
+    inner_edge_style = "dashed"
+
+    node_color = np.ones(N * max_lag)  # , dtype = 'object')
     node_color[:] = 0
 
     if anc_x is not None:
-        for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_x]:
+        for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_x]:
             node_color[n] = 3
     if anc_y is not None:
-        for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_y]:
+        for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_y]:
             node_color[n] = 4
     if anc_xy is not None:
-        for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_xy]:
+        for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_xy]:
             node_color[n] = 5
 
     for x in X:
-        node_color[varlag2node(x[0], max_lag-1 + x[1])] = 2
+        node_color[varlag2node(x[0], max_lag - 1 + x[1])] = 2
     for y in Y:
-        node_color[varlag2node(y[0], max_lag-1 + y[1])] = 2
+        node_color[varlag2node(y[0], max_lag - 1 + y[1])] = 2
     if Z is not None:
         for z in Z:
-            node_color[varlag2node(z[0], max_lag-1 + z[1])] = 1
+            node_color[varlag2node(z[0], max_lag - 1 + z[1])] = 1
 
     fig = pyplot.figure(figsize=figsize)
     ax = fig.add_subplot(111, frame_on=False)
@@ -2486,247 +3041,155 @@ 

Source code for tigramite.plotting

     for (u, v, dic) in G.edges(data=True):
         if u != v:
             if tsg[u, v] and tsg[v, u]:
-                dic['inner_edge'] = True
-                dic['outer_edge'] = False
+                dic["inner_edge"] = True
+                dic["outer_edge"] = False
             else:
-                dic['inner_edge'] = False
-                dic['outer_edge'] = True
+                dic["inner_edge"] = False
+                dic["outer_edge"] = True
 
-            dic['inner_edge_alpha'] = alpha
-            dic['inner_edge_color'] = tsg[u, v]
+            dic["inner_edge_alpha"] = alpha
+            dic["inner_edge_color"] = tsg[u, v]
 
-            dic['inner_edge_width'] = arrow_linewidth
-            dic['inner_edge_attribute'] = dic['outer_edge_attribute'] = None
+            dic["inner_edge_width"] = arrow_linewidth
+            dic["inner_edge_attribute"] = dic["outer_edge_attribute"] = None
 
-            all_strengths.append(dic['inner_edge_color'])
-            dic['outer_edge_alpha'] = alpha
-            dic['outer_edge_width'] = dic['inner_edge_width'] = arrow_linewidth
+            all_strengths.append(dic["inner_edge_color"])
+            dic["outer_edge_alpha"] = alpha
+            dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth
 
             # value at argmax of average
-            dic['outer_edge_color'] = tsg[u, v]
+            dic["outer_edge_color"] = tsg[u, v]
 
-            all_strengths.append(dic['outer_edge_color'])
-            dic['label'] = None
-
-        # dic['outer_edge_edge'] = False
-        # dic['outer_edge_edgecolor'] = None
-        # dic['inner_edge_edge'] = False
-        # dic['inner_edge_edgecolor'] = None
+            all_strengths.append(dic["outer_edge_color"])
+            dic["label"] = None
 
     # If no links are present, set value to zero
     if len(all_strengths) == 0:
-        all_strengths = [0.]
+        all_strengths = [0.0]
 
     posarray = np.zeros((N * max_lag, 2))
     for i in range(N * max_lag):
-        posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
+        posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)])
 
     pos_tmp = {}
     for i in range(N * max_lag):
-        pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
-                                  (posarray.max(axis=0)[0] -
-                                   posarray.min(axis=0)[0]),
-                                  ((1. - i // max_lag) -
-                                   posarray.min(axis=0)[1]) /
-                                  (posarray.max(axis=0)[1] -
-                                   posarray.min(axis=0)[1])])
-        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.
+        pos_tmp[i] = np.array(
+            [
+                ((i % max_lag) - posarray.min(axis=0)[0])
+                / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]),
+                ((1.0 - i // max_lag) - posarray.min(axis=0)[1])
+                / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]),
+            ]
+        )
+        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0
 
     pos = {}
     for n in range(N):
         for tau in range(max_lag):
             pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau]
 
-    node_rings = {0: {'sizes': None, 'color_array': node_color,
-                      'label': '', 'colorbar': False,
-                      'cmap': listcmap, 'vmin': 0,
-                      'vmax': len(color_list),
-                      }
-                  }
+    node_rings = {
+        0: {
+            "sizes": None,
+            "color_array": node_color,
+            "label": "",
+            "colorbar": False,
+            "cmap": listcmap,
+            "vmin": 0,
+            "vmax": len(color_list),
+        }
+    }
 
-    # ] for v in range(max_lag)]
-    node_labels = ['' for i in range(N * max_lag)]
+    node_labels = ["" for i in range(N * max_lag)]
 
     _draw_network_with_curved_edges(
-        fig=fig, ax=ax,
-        G=deepcopy(G), pos=pos,
+        fig=fig,
+        ax=ax,
+        G=deepcopy(G),
+        pos=pos,
         # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
         # or None, 'cmap':string,
         node_rings=node_rings,
         # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
-        node_labels=node_labels, node_label_size=node_label_size,
-        node_alpha=alpha, standard_size=node_size,
-        standard_cmap='OrRd', standard_color='lightgrey',
+        node_labels=node_labels,
+        node_label_size=ode_label_size,
+        node_alpha=alpha,
+        standard_size=node_size,
+        node_aspect=node_aspect,
+        standard_cmap="OrRd",
+        standard_color="lightgrey",
         log_sizes=False,
-        cmap_links=cmap_edges, links_vmin=vmin_edges,
-        links_vmax=vmax_edges, links_ticks=edge_ticks,
-
-        # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
-        # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
-
-        arrowstyle='simple', arrowhead_size=arrowhead_size,
-        curved_radius=curved_radius, label_fontsize=label_fontsize,
-        label_fraction=.5,
-        link_colorbar_label=link_colorbar_label, inner_edge_curved=True,
+        cmap_links=cmap_edges,
+        links_vmin=vmin_edges,
+        links_vmax=vmax_edges,
+        links_ticks=edge_ticks,
+        arrowstyle="simple",
+        arrowhead_size=arrowhead_size,
+        curved_radius=curved_radius,
+        label_fontsize=label_fontsize,
+        label_fraction=0.5,
+        link_colorbar_label=link_colorbar_label,
+        inner_edge_curved=True,
         network_lower_bound=network_lower_bound,
-        inner_edge_style=inner_edge_style, show_colorbar=False,
-        )
+        inner_edge_style=inner_edge_style,
+        show_colorbar=False,
+    )
 
     for i in range(N):
-        trans = transforms.blended_transform_factory(
-            fig.transFigure, ax.transData)
-        ax.text(label_space_left, pos[order[i] * max_lag][1],
-                '%s' % str(var_names[order[i]]), fontsize=label_fontsize,
-                horizontalalignment='left', verticalalignment='center',
-                transform=trans)
+        trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
+        ax.text(
+            label_space_left,
+            pos[order[i] * max_lag][1],
+            "%s" % str(var_names[order[i]]),
+            fontsize=label_fontsize,
+            horizontalalignment="left",
+            verticalalignment="center",
+            transform=trans,
+        )
 
     for tau in np.arange(max_lag - 1, -1, -1):
-        trans = transforms.blended_transform_factory(
-            ax.transData, fig.transFigure)
+        trans = transforms.blended_transform_factory(ax.transData, fig.transFigure)
         if tau == max_lag - 1:
-            ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
-                    fontsize=int(label_fontsize*0.7),
-                    horizontalalignment='center',
-                    verticalalignment='top', transform=trans)
+            ax.text(
+                pos[tau][0],
+                1.0 - label_space_top,
+                r"$t$",
+                fontsize=int(label_fontsize * 0.7),
+                horizontalalignment="center",
+                verticalalignment="top",
+                transform=trans,
+            )
         else:
-            ax.text(pos[tau][0], 1.-label_space_top,
-                    r'$t-%s$' % str(max_lag - tau - 1),
-                    fontsize=int(label_fontsize*0.7),
-                    horizontalalignment='center', verticalalignment='top',
-                    transform=trans)
+            ax.text(
+                pos[tau][0],
+                1.0 - label_space_top,
+                r"$t-%s$" % str(max_lag - tau - 1),
+                fontsize=int(label_fontsize * 0.7),
+                horizontalalignment="center",
+                verticalalignment="top",
+                transform=trans,
+            )
 
-    # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
-    # savestring = os.path.expanduser(save_name)
-#         plt.show()
     return fig, ax
-if __name__ == '__main__': +if __name__ == "__main__": - import os - from tigramite.independence_tests import ParCorr - import tigramite.data_processing as pp - # np.random.seed(42) + val_matrix = np.zeros((4, 4, 3)) + # Complete test case + link_matrix = np.zeros(val_matrix.shape) - val_matrix = 2.+np.random.rand(4, 4, 2) + link_matrix[0, 1, 0] = 0 + link_matrix[1, 0, 0] = 1 - # Complete test case - link_matrix = np.zeros(val_matrix.shape, dtype='U3') - - link_matrix[0,1,0] = 'o->' - link_matrix[1,0,0] = '<-o' - link_matrix[1,2,0] = 'o-o' - link_matrix[2,1,0] = 'o-o' - link_matrix[0,2,0] = 'o--' - link_matrix[2,0,0] = '--o' - link_matrix[2,3,0] = '---' - link_matrix[3,2,0] = '---' - link_matrix[1,3,0] = '-->' - link_matrix[3,1,0] = '<--' - - link_matrix[0,2,1] = '<->' - link_matrix[0,0,1] = 'o->' - link_matrix[0,1,1] = '-->' - link_matrix[1,0,1] = 'o->' - - link_width = np.ones(val_matrix.shape) - link_attribute = np.zeros(val_matrix.shape, dtype = 'object') - link_attribute[:] = '' - link_attribute[0,1,0] = 'spurious' - link_attribute[1,0,0] = 'spurious' - - # link_attribute[0,2,1] = 'spurious' - - # link_matrix = np.random.randint(0, 2, size=val_matrix.shape) - - # print(link_matrix[:,:,1]) - print(link_matrix[:,:,0]) - plot_time_series_graph( - # val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - inner_edge_style='dashed', - save_name='tsg_test.pdf', - ) - plot_graph( - # val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - # inner_edge_style='dashed', - save_name='graph_test.pdf', - ) - # pyplot.show() - - # print link_matrix - # data = np.random.randn(100,3) - # mask = np.random.randint(0, 2, size=(100,3)) - # dataframe = pp.DataFrame(data, mask=mask) - - - # data = np.random.randn(100, 3) - # datatime = np.arange(100) - # mask = np.zeros(data.shape) - - # mask[:int(len(data)/2)]=True - - # data[:,0] = -99. - # plot_lagfuncs(val_matrix=val_matrix, - # setup_args={'figsize':(10,10), - # 'label_space_top':0.05, - # 'label_space_left':0.1, - # 'x_base':1, 'y_base':5, - # 'var_names':range(3), - # 'lag_array':np.array(['a%d' % i for i in range(4)])}, - # name='test.pdf', - # ) - - - # plot_timeseries( - # dataframe=dataframe, - # save_name='/home/rung_ja/Downloads/test.pdf', - # fig_axes=None, - # var_units=None, - # time_label='years', - # use_mask=True, - # grey_masked_samples='data', - # data_linewidth=1., - # skip_ticks_data_x=1, - # skip_ticks_data_y=1, - # label_fontsize=8, - # figsize=(3.375, 3.), - # ) - - # lagmat = setup_matrix(3, 3, range(3), lag_units = 'months') - - # lagmat.add_lagfuncs( - # val_matrix=val_matrix, - # # sig_thres=None, - # # link_matrix=link_matrix - # ) - # lagmat.savefig() - - # fig = pyplot.figure(figsize=(4, 3), frameon=False) - # ax = fig.add_subplot(111, frame_on=False) - - """ - plot_graph( - figsize=(3, 3), - val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - save_name='/home/rung_ja/Downloads/test.pdf', - ) - """ + nolinks = np.zeros(link_matrix.shape) + # nolinks[range(4), range(4), 1] = 1 + + plot_time_series_graph(link_matrix=nolinks) + plot_graph(link_matrix=nolinks, save_name=None) + + pyplot.show()
diff --git a/docs/_build/html/_sources/index.rst.txt b/docs/_build/html/_sources/index.rst.txt index 60d44a8e..be82a31d 100644 --- a/docs/_build/html/_sources/index.rst.txt +++ b/docs/_build/html/_sources/index.rst.txt @@ -27,9 +27,12 @@ Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996. https://advances.sciencemag.org/content/5/11/eaau4996 -2. J. Runge (2020): Discovering contemporaneous and lagged causal relations -in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685 +2. J. Runge (2020): +Discovering contemporaneous and lagged causal relations in autocorrelated +nonlinear time series datasets. Proceedings of the 36th Conference on +Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, +AUAI Press, 2020. +http://auai.org/uai2020/proceedings/579_main_paper.pdf 3. J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. diff --git a/docs/_build/html/index.html b/docs/_build/html/index.html index cd842ff3..48222689 100644 --- a/docs/_build/html/index.html +++ b/docs/_build/html/index.html @@ -83,9 +83,12 @@

TIGRAMITEhttps://advances.sciencemag.org/content/5/11/eaau4996

-

2. J. Runge (2020): Discovering contemporaneous and lagged causal relations -in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685

+

2. J. Runge (2020): +Discovering contemporaneous and lagged causal relations in autocorrelated +nonlinear time series datasets. Proceedings of the 36th Conference on +Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, +AUAI Press, 2020. +http://auai.org/uai2020/proceedings/579_main_paper.pdf

3. J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. http://doi.org/10.1038/ncomms9502

@@ -177,7 +180,7 @@

different times and a link indicates a conditional dependency that can be interpreted as a causal dependency under certain assumptions (see paper). Assuming stationarity, the links are repeated in time. The parents -\\mathcal{P} of a variable are defined as the set of all nodes +\mathcal{P} of a variable are defined as the set of all nodes with a link towards it (blue and red boxes in Figure).

The different PCMCI methods estimate causal links by iterative conditional independence testing. PCMCI can be flexibly combined with @@ -196,7 +199,7 @@

J. Runge, Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685

+http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf

@@ -726,8 +729,8 @@

Further optional parameters are discussed in 1.

Examples

>>> import numpy
->>> from tigramite.pcmci import PCMCI
->>> from tigramite.independence_tests import ParCorr
+>>> from tigramite.pcmci import PCMCI
+>>> from tigramite.independence_tests import ParCorr
 >>> import tigramite.data_processing as pp
 >>> numpy.random.seed(7)
 >>> # Example process to play around with
@@ -738,7 +741,7 @@ 

2: [((2, -1), 0.8), ((1, -2), -0.6)]} >>> data, _ = pp.var_process(links_coeffs, T=1000) >>> # Data must be array of shape (time, variables) ->>> print data.shape +>>> print (data.shape) (1000, 3) >>> dataframe = pp.DataFrame(data) >>> cond_ind_test = ParCorr() @@ -751,14 +754,14 @@

-
-
Variable 0 has 1 link(s):

(0 -1): pval = 0.00000 | val = 0.632

+
+
Variable 0 has 1 link(s):

(0 -1): pval = 0.00000 | val = 0.588

-
Variable 1 has 2 link(s):

(1 -1): pval = 0.00000 | val = 0.653

-

(0 -1): pval = 0.00000 | val = 0.444

+
Variable 1 has 2 link(s):

(1 -1): pval = 0.00000 | val = 0.606 +(0 -1): pval = 0.00000 | val = 0.447

-
Variable 2 has 2 link(s):

(2 -1): pval = 0.00000 | val = 0.623

-

(1 -2): pval = 0.00000 | val = -0.533

+
Variable 2 has 2 link(s):

(2 -1): pval = 0.00000 | val = 0.618 +(1 -2): pval = 0.00000 | val = -0.499

@@ -803,7 +806,8 @@

run_pcmciplus(selected_links=None, tau_min=0, tau_max=1, pc_alpha=0.01, contemp_collider_rule='majority', conflict_resolution=True, reset_lagged_links=False, max_conds_dim=None, max_conds_py=None, max_conds_px=None, max_conds_px_lagged=None, fdr_method='none')[source]

Runs PCMCIplus time-lagged and contemporaneous causal discovery for time series.

-

Method described in 5: https://arxiv.org/abs/2003.03685

+

Method described in 5: +http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf

Notes

The PCMCIplus causal discovery method is described in 5, where also analytical and numerical results are presented. In contrast to @@ -836,17 +840,17 @@

4. PC rule orientation phase: Orient remaining contemporaneous links based on PC rules.

In contrast to PCMCI, the relevant output of PCMCIplus is the -array graph. Its entries are interpreted as follows:

+array graph. Its string entries are interpreted as follows:

    -
  • graph[i,j,tau]=1 for \tau>0 denotes a directed, lagged +

  • graph[i,j,tau]=--> for \tau>0 denotes a directed, lagged causal link from i to j at lag \tau

  • -
  • graph[i,j,0]=1 and graph[j,i,0]=0 denotes a directed, +

  • graph[i,j,0]=--> (and graph[j,i,0]=<--) denotes a directed, contemporaneous causal link from i to j

  • -
  • graph[i,j,0]=1 and graph[j,i,0]=1 denotes an unoriented, +

  • graph[i,j,0]=o-o (and graph[j,i,0]=o-o) denotes an unoriented, contemporaneous adjacency between i and j indicating that the collider and orientation rules could not be applied (Markov equivalence)

  • -
  • graph[i,j,0]=2 and graph[j,i,0]=2 denotes a conflicting, +

  • graph[i,j,0]=x-x and (graph[j,i,0]=x-x) denotes a conflicting, contemporaneous adjacency between i and j indicating that the directionality is undecided due to conflicting orientation rules

  • @@ -887,9 +891,9 @@

    larger runtimes.

    Further optional parameters are discussed in 5.

    Examples

    -
    >>> import numpy
    ->>> from tigramite.pcmci import PCMCI
    ->>> from tigramite.independence_tests import ParCorr
    +
    >>> import numpy as np
    +>>> from tigramite.pcmci import PCMCI
    +>>> from tigramite.independence_tests import ParCorr
     >>> import tigramite.data_processing as pp
     >>> # Example process to play around with
     >>> # Each key refers to a variable and the incoming links are supplied
    @@ -900,12 +904,10 @@ 

    2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)], 3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)], } ->>> # Specify dynamical noise term distributions ->>> noises = [np.random.randn for j in links.keys()] >>> data, nonstat = pp.structural_causal_process(links, - T=1000, noises=noises, seed=7) + T=1000, seed=7) >>> # Data must be array of shape (time, variables) ->>> print data.shape +>>> print (data.shape) (1000, 4) >>> dataframe = pp.DataFrame(data) >>> cond_ind_test = ParCorr() @@ -916,17 +918,17 @@

    -
    -
    Variable 0 has 1 link(s):

    (0 -1): pval = 0.00000 | val = 0.676

    +
    +
    Variable 0 has 1 link(s):

    (0 -1): pval = 0.00000 | val = 0.676

    -
    Variable 1 has 2 link(s):

    (1 -1): pval = 0.00000 | val = 0.602

    -

    (0 -1): pval = 0.00000 | val = 0.599

    +
    Variable 1 has 2 link(s):

    (1 -1): pval = 0.00000 | val = 0.602 +(0 -1): pval = 0.00000 | val = 0.599

    -
    Variable 2 has 2 link(s):

    (1 0): pval = 0.00000 | val = 0.486

    -

    (2 -1): pval = 0.00000 | val = 0.466

    +
    Variable 2 has 2 link(s):

    (1 0): pval = 0.00000 | val = 0.486 +(2 -1): pval = 0.00000 | val = 0.466

    -
    Variable 3 has 2 link(s):

    (3 -1): pval = 0.00000 | val = 0.524

    -

    (2 0): pval = 0.00000 | val = -0.449

    +
    Variable 3 has 2 link(s):

    (3 -1): pval = 0.00000 | val = 0.524 +(2 0): pval = 0.00000 | val = -0.449

    @@ -1540,7 +1542,7 @@

Returns
-

pval – P-value.

+

pval – p-value.

Return type

float or numpy.nan

@@ -2997,9 +2999,9 @@

Tigramite plotting package.

-tigramite.plotting.plot_graph(val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_matrix=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=30.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='OrRd', node_size=20, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, link_label_fontsize=6, lag_array=None, network_lower_bound=0.2, show_colorbar=True)[source]
-

Creates a network plot.

-

This is still in beta. The network is defined either from True values in +tigramite.plotting.plot_graph(val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_matrix=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='OrRd', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, network_lower_bound=0.2, show_colorbar=True, inner_edge_style='dashed')[source] +

Creates a network plot. +This is still in beta. The network is defined either from True values in link_matrix, or from thresholding the val_matrix with sig_thres. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes the maximal absolute @@ -3007,16 +3009,22 @@

absolute cross-dependency. The link label lists the lags with significant dependency in order of absolute magnitude. The network can also be plotted over a map drawn before on the same axis. Then the node positions can be -supplied in appropriate axis coordinates via node_pos.

+supplied in appropriate axis coordinates via node_pos. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param sig_thres: Matrix of significance thresholds. Must be of same shape as val_matrix.

+
+

Either sig_thres or link_matrix has to be provided.

+
Parameters
    -
  • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

  • -
  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

  • -
  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

  • -
  • figsize (tuple) – Size of figure.

  • -
  • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as val_matrix. -Either sig_thres or link_matrix has to be provided.

  • link_matrix (bool array-like, optional (default: None)) – Matrix of significant links. Must be of same shape as val_matrix. Either sig_thres or link_matrix has to be provided.

  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

  • @@ -3037,9 +3045,10 @@

  • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

  • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

  • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

  • -
  • node_size (int, optional (default: 20)) – Node size.

  • +
  • node_size (int, optional (default: 0.3)) – Node size.

  • +
  • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

  • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

  • -
  • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

  • +
  • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

  • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

  • alpha (float, optional (default: 1.)) – Opacity.

  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

  • @@ -3055,18 +3064,20 @@

    tigramite.plotting.plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={})[source]
    -

    Wrapper helper function to plot lag functions.

    -

    Sets up the matrix object and plots the lagfunction, see parameters in -setup_matrix and add_lagfuncs.

    +

    Wrapper helper function to plot lag functions. +Sets up the matrix object and plots the lagfunction, see parameters in +setup_matrix and add_lagfuncs. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param name: File name. If None, figure is shown in window. +:type name: str, optional (default: None) +:param setup_args: Arguments for setting up the lag function matrix, see doc of

    +
    +

    setup_matrix.

    +
    Parameters
    -
      -
    • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

    • -
    • name (str, optional (default: None)) – File name. If None, figure is shown in window.

    • -
    • setup_args (dict) – Arguments for setting up the lag function matrix, see doc of -setup_matrix.

    • -
    • add_lagfunc_args (dict) – Arguments for adding a lag function matrix, see doc of add_lagfuncs.

    • -
    +

    add_lagfunc_args (dict) – Arguments for adding a lag function matrix, see doc of add_lagfuncs.

    Returns

    matrix – Further lag functions can be overlaid using the @@ -3080,29 +3091,39 @@

    -tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=30.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=20, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=6, network_lower_bound=0.2)[source]
    -

    Creates a network plot visualizing the pathways of a mediation analysis.

    -

    This is still in beta. The network is defined from non-zero entries in +tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, network_lower_bound=0.2)[source] +

    Creates a network plot visualizing the pathways of a mediation analysis. +This is still in beta. The network is defined from non-zero entries in path_val_matrix. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes the mediated causal effect (MCE) and the link color the value at the lag with maximal link coefficient. The link label lists the lags with significant dependency in order of absolute magnitude. The network can also be plotted over a map drawn before on the same axis. Then the node positions -can be supplied in appropriate axis coordinates via node_pos.

    +can be supplied in appropriate axis coordinates via node_pos. +:param path_val_matrix: Matrix of shape (N, N, tau_max+1) containing link weight values. +:type path_val_matrix: array_like +:param path_node_array: Array of shape (N,) containing node values. +:type path_node_array: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param save_name: Name of figure file to save figure. If None, figure is shown in window. +:type save_name: str, optional (default: None) +:param link_colorbar_label: Link colorbar label. +:type link_colorbar_label: str, optional (default: ‘link coeff. (edge color)’) +:param node_colorbar_label: Node colorbar label. +:type node_colorbar_label: str, optional (default: ‘MCE (node color)’) +:param link_width: Array of val_matrix.shape specifying relative link width with maximum

    +
    +

    given by arrow_linewidth. If None, all links have same width.

    +
    Parameters
      -
    • path_val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing link weight values.

    • -
    • path_node_array (array_like) – Array of shape (N,) containing node values.

    • -
    • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

    • -
    • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

    • -
    • figsize (tuple) – Size of figure.

    • -
    • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

    • -
    • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

    • -
    • node_colorbar_label (str, optional (default: 'MCE (node color)')) – Node colorbar label.

    • -
    • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

    • node_pos (dictionary, optional (default: None)) – Dictionary of node positions in axis coordinates of form node_pos = {‘x’:array of shape (N,), ‘y’:array of shape(N)}. These coordinates could have been transformed before for basemap plots.

    • @@ -3115,9 +3136,10 @@

    • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

    • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

    • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

    • -
    • node_size (int, optional (default: 20)) – Node size.

    • +
    • node_size (int, optional (default: 0.3)) – Node size.

    • +
    • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

    • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

    • -
    • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

    • +
    • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

    • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

    • alpha (float, optional (default: 1.)) – Opacity.

    • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

    • @@ -3131,23 +3153,33 @@

      -tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=20.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=10, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2)[source]
      -

      Creates a mediation time series graph plot.

      -

      This is still in beta. The time series graph’s links are colored by -val_matrix.

      +tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2)[source] +

      Creates a mediation time series graph plot. +This is still in beta. The time series graph’s links are colored by +val_matrix. +:param tsg_path_val_matrix: Matrix of shape (N*tau_max, N*tau_max) containing link weight values. +:type tsg_path_val_matrix: array_like +:param path_node_array: Array of shape (N,) containing node values. +:type path_node_array: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param save_name: Name of figure file to save figure. If None, figure is shown in window. +:type save_name: str, optional (default: None) +:param link_colorbar_label: Link colorbar label. +:type link_colorbar_label: str, optional (default: ‘link coeff. (edge color)’) +:param node_colorbar_label: Node colorbar label. +:type node_colorbar_label: str, optional (default: ‘MCE (node color)’) +:param link_width: Array of val_matrix.shape specifying relative link width with maximum

      +
      +

      given by arrow_linewidth. If None, all links have same width.

      +
      Parameters
        -
      • tsg_path_val_matrix (array_like) – Matrix of shape (N*tau_max, N*tau_max) containing link weight values.

      • -
      • path_node_array (array_like) – Array of shape (N,) containing node values.

      • -
      • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

      • -
      • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

      • -
      • figsize (tuple) – Size of figure.

      • -
      • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

      • -
      • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

      • -
      • node_colorbar_label (str, optional (default: 'MCE (node color)')) – Node colorbar label.

      • -
      • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

      • order (list, optional (default: None)) – order of variables from top to bottom.

      • arrow_linewidth (float, optional (default: 30)) – Linewidth.

      • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

      • @@ -3158,9 +3190,10 @@

      • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

      • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

      • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

      • -
      • node_size (int, optional (default: 20)) – Node size.

      • +
      • node_size (int, optional (default: 0.1)) – Node size.

      • +
      • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

      • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

      • -
      • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

      • +
      • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

      • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

      • alpha (float, optional (default: 1.)) – Opacity.

      • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

      • @@ -3175,19 +3208,25 @@

        -tigramite.plotting.plot_time_series_graph(link_matrix=None, val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=20.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=10, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, inner_edge_style='dashed')[source]
        -

        Creates a time series graph.

        -

        This is still in beta. The time series graph’s links are colored by -val_matrix.

        +tigramite.plotting.plot_time_series_graph(link_matrix=None, val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, inner_edge_style='dashed')[source] +

        Creates a time series graph. +This is still in beta. The time series graph’s links are colored by +val_matrix. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param sig_thres: Matrix of significance thresholds. Must be of same shape as val_matrix.

        +
        +

        Either sig_thres or link_matrix has to be provided.

        +
        Parameters
          -
        • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

        • -
        • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

        • -
        • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

        • -
        • figsize (tuple) – Size of figure.

        • -
        • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as val_matrix. -Either sig_thres or link_matrix has to be provided.

        • link_matrix (bool array-like, optional (default: None)) – Matrix of significant links. Must be of same shape as val_matrix. Either sig_thres or link_matrix has to be provided.

        • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

        • @@ -3200,9 +3239,10 @@

        • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

        • edge_ticks (float, optional (default: 0.4)) – Link tick mark interval.

        • cmap_edges (str, optional (default: 'RdBu_r')) – Colormap for links.

        • -
        • node_size (int, optional (default: 20)) – Node size.

        • +
        • node_size (int, optional (default: 0.1)) – Node size.

        • +
        • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

        • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

        • -
        • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

        • +
        • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

        • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

        • alpha (float, optional (default: 1.)) – Opacity.

        • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

        • @@ -3218,14 +3258,16 @@

          -tigramite.plotting.plot_timeseries(dataframe=None, save_name=None, fig_axes=None, figsize=None, var_units=None, time_label='time', use_mask=False, grey_masked_samples=False, data_linewidth=1.0, skip_ticks_data_x=1, skip_ticks_data_y=2, label_fontsize=8)[source]
          -

          Create and save figure of stacked panels with time series.

          +tigramite.plotting.plot_timeseries(dataframe=None, save_name=None, fig_axes=None, figsize=None, var_units=None, time_label='time', use_mask=False, grey_masked_samples=False, data_linewidth=1.0, skip_ticks_data_x=1, skip_ticks_data_y=2, label_fontsize=12)[source] +

          Create and save figure of stacked panels with time series. +:param dataframe: This is the Tigramite dataframe object. It has the attributes

          +
          +

          dataframe.values yielding a np array of shape (observations T, +variables N) and optionally a mask of the same shape.

          +
          Parameters
            -
          • dataframe (data object, optional) – This is the Tigramite dataframe object. It has the attributes -dataframe.values yielding a np array of shape (observations T, -variables N) and optionally a mask of the same shape.

          • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

          • fig_axes (subplots instance, optional (default: None)) – Figure and axes instance. If None they are created as fig, axes = pyplot.subplots(N,…)

          • @@ -3248,8 +3290,8 @@

            tigramite.plotting.plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None)[source]
            -

            Plots TSG that is input in format (N*max_lag, N*max_lag).

            -

            Compared to the tigramite plotting function here links +

            Plots TSG that is input in format (N*max_lag, N*max_lag). +Compared to the tigramite plotting function here links X^i_{t-tau} –> X^j_t can be missing for different t’. Helpful to visualize the conditioned TSG.

            @@ -3257,18 +3299,23 @@

            class tigramite.plotting.setup_matrix(N, tau_max, var_names=None, figsize=None, minimum=-1, maximum=1, label_space_left=0.1, label_space_top=0.05, legend_width=0.15, legend_fontsize=10, x_base=1.0, y_base=0.5, plot_gridlines=False, lag_units='', lag_array=None, label_fontsize=10)[source]
            -

            Create matrix of lag function panels.

            -

            Class to setup figure object. The function add_lagfuncs(…) allows to plot +

            Create matrix of lag function panels. +Class to setup figure object. The function add_lagfuncs(…) allows to plot the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be -overlaid for comparison.

            +overlaid for comparison. +:param N: Number of variables +:type N: int +:param tau_max: Maximum time lag. +:type tau_max: int +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param figsize: Figure size if new figure is created. If None, default pyplot figsize

            +
            +

            is used.

            +
            Parameters
              -
            • N (int) – Number of variables

            • -
            • tau_max (int) – Maximum time lag.

            • -
            • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

            • -
            • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize -is used.

            • minimum (int, optional (default: -1)) – Lower y-axis limit.

            • maximum (int, optional (default: 1)) – Upper y-axis limit.

            • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

            • @@ -3287,13 +3334,16 @@

              add_lagfuncs(val_matrix, sig_thres=None, conf_matrix=None, color='black', label=None, two_sided_thres=True, marker='.', markersize=5, alpha=1.0)[source]
              -

              Add lag function plot from val_matrix array.

              +

              Add lag function plot from val_matrix array. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param sig_thres: Matrix of significance thresholds. Must be of same shape as

              +
              +

              val_matrix.

              +
              Parameters
                -
              • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

              • -
              • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as -val_matrix.

              • conf_matrix (array-like, optional (default: None)) – Matrix of shape (, N, tau_max+1, 2) containing confidence bounds.

              • color (str, optional (default: 'black')) – Line color.

              • label (str) – Test statistic label.

              • @@ -3309,12 +3359,9 @@

                savefig(name=None)[source]
                -

                Save matrix figure.

                -
                -
                Parameters
                -

                name (str, optional (default: None)) – File name. If None, figure is shown in window.

                -
                -
                +

                Save matrix figure. +:param name: File name. If None, figure is shown in window. +:type name: str, optional (default: None)

              diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js index 10ebd1dd..7d2439dc 100644 --- a/docs/_build/html/searchindex.js +++ b/docs/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst"],objects:{"tigramite.data_processing":{DataFrame:[0,1,1,""],Graph:[0,1,1,""],links_to_graph:[0,4,1,""],lowhighpass_filter:[0,4,1,""],ordinal_patt_array:[0,4,1,""],quantile_bin_array:[0,4,1,""],smooth:[0,4,1,""],structural_causal_process:[0,4,1,""],time_bin_with_mask:[0,4,1,""],var_process:[0,4,1,""],weighted_avg_and_std:[0,4,1,""]},"tigramite.data_processing.DataFrame":{construct_array:[0,2,1,""],data:[0,3,1,""],datatime:[0,3,1,""],mask:[0,3,1,""],missing_flag:[0,3,1,""],print_array_info:[0,2,1,""],var_names:[0,3,1,""]},"tigramite.data_processing.Graph":{addEdge:[0,2,1,""],isCyclic:[0,2,1,""],isCyclicUtil:[0,2,1,""],topologicalSort:[0,2,1,""],topologicalSortUtil:[0,2,1,""]},"tigramite.independence_tests":{CMIknn:[0,1,1,""],CMIsymb:[0,1,1,""],CondIndTest:[0,1,1,""],GPDC:[0,1,1,""],OracleCI:[0,1,1,""],ParCorr:[0,1,1,""]},"tigramite.independence_tests.CMIknn":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CMIsymb":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CondIndTest":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_bootstrap_confidence:[0,2,1,""],get_confidence:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_fixed_thres_significance:[0,2,1,""],get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],get_significance:[0,2,1,""],measure:[0,2,1,""],print_info:[0,2,1,""],run_test:[0,2,1,""],run_test_raw:[0,2,1,""],set_dataframe:[0,2,1,""],set_mask_type:[0,2,1,""]},"tigramite.independence_tests.GPDC":{generate_and_save_nulldists:[0,2,1,""],generate_nulldist:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.OracleCI":{get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],measure:[0,2,1,""],run_test:[0,2,1,""],set_dataframe:[0,2,1,""]},"tigramite.independence_tests.ParCorr":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.models":{LinearMediation:[0,1,1,""],Models:[0,1,1,""],Prediction:[0,1,1,""]},"tigramite.models.LinearMediation":{fit_model:[0,2,1,""],get_ace:[0,2,1,""],get_acs:[0,2,1,""],get_all_ace:[0,2,1,""],get_all_acs:[0,2,1,""],get_all_amce:[0,2,1,""],get_amce:[0,2,1,""],get_ce:[0,2,1,""],get_ce_max:[0,2,1,""],get_coeff:[0,2,1,""],get_mce:[0,2,1,""],get_mediation_graph_data:[0,2,1,""],get_tsg:[0,2,1,""],get_val_matrix:[0,2,1,""],net_to_tsg:[0,2,1,""],tsg_to_net:[0,2,1,""]},"tigramite.models.Models":{get_coefs:[0,2,1,""],get_fit:[0,2,1,""],get_val_matrix:[0,2,1,""]},"tigramite.models.Prediction":{fit:[0,2,1,""],get_predictors:[0,2,1,""],get_test_array:[0,2,1,""],get_train_array:[0,2,1,""],predict:[0,2,1,""]},"tigramite.pcmci":{PCMCI:[0,1,1,""]},"tigramite.pcmci.PCMCI":{N:[0,3,1,""],T:[0,3,1,""],all_parents:[0,3,1,""],convert_to_string_graph:[0,2,1,""],get_corrected_pvalues:[0,2,1,""],get_lagged_dependencies:[0,2,1,""],iterations:[0,3,1,""],print_results:[0,2,1,""],print_significant_links:[0,2,1,""],pval_max:[0,3,1,""],return_significant_links:[0,2,1,""],return_significant_parents:[0,2,1,""],run_bivci:[0,2,1,""],run_fullci:[0,2,1,""],run_mci:[0,2,1,""],run_pc_stable:[0,2,1,""],run_pcalg:[0,2,1,""],run_pcalg_non_timeseries_data:[0,2,1,""],run_pcmci:[0,2,1,""],run_pcmciplus:[0,2,1,""],val_min:[0,3,1,""]},"tigramite.plotting":{plot_graph:[0,4,1,""],plot_lagfuncs:[0,4,1,""],plot_mediation_graph:[0,4,1,""],plot_mediation_time_series_graph:[0,4,1,""],plot_time_series_graph:[0,4,1,""],plot_timeseries:[0,4,1,""],plot_tsg:[0,4,1,""],setup_matrix:[0,1,1,""]},"tigramite.plotting.setup_matrix":{add_lagfuncs:[0,2,1,""],savefig:[0,2,1,""]},tigramite:{data_processing:[0,0,0,"-"],plotting:[0,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:function"},terms:{"07007v2":[],"21st":0,"2xtau_max":0,"abstract":0,"boolean":0,"case":0,"class":0,"default":0,"float":0,"import":0,"int":0,"new":0,"null":0,"return":0,"true":0,"var":0,"while":0,ACE:0,ACS:0,Adding:0,But:[],For:0,Its:0,Not:0,OLS:0,One:[],The:0,Then:0,There:0,These:0,Used:0,Useful:0,Uses:0,With:0,_get_single_residu:0,_print_significant_link:[],about:0,abov:0,abs:0,absmax:0,absolut:0,accept:0,accord:0,account:0,accur:[],ace:0,across:0,acs:0,act:0,adapt:0,add:0,add_lagfunc:0,add_lagfunc_arg:0,add_to_null_dist:0,addedg:0,adding:0,addit:0,address:0,adjac:0,adjust:0,adv:0,advanc:0,affect:0,after:0,again:0,ahead:0,aic:0,aip:0,akaik:0,algorithm:0,all:0,all_lag:0,all_par:0,alloc:0,allow:0,along:0,alpha:0,alpha_level:0,also:0,altern:0,although:0,alwai:0,ambigu:0,ambiguous_tripl:0,amc:0,among:0,analys:0,analysi:0,analyt:0,analyz:0,anc_i:0,anc_x:0,anc_xi:0,ani:0,anoth:0,appli:0,applic:0,appropri:0,approx:[],approxim:[],arang:0,arbitrari:0,arg:[],argument:0,around:0,arrai:0,array_lik:0,array_mask:0,arrow:0,arrow_linewidth:0,arrowhead_s:0,articl:0,artifici:0,arxiv:0,assess:0,assign:0,associ:0,assum:0,assumpt:0,asymptot:0,attribut:0,au_:[],auto:0,autocorrel:0,autocovari:0,automat:0,autoregress:0,avail:0,averag:0,avoid:0,axes:0,axi:0,backward:0,bakirov:0,bandwidth:0,basak:[],base:0,basemap:0,becaus:[],been:0,befor:0,beforehand:0,begin:0,below:0,benjamini:0,beta:0,beta_i:0,beta_x:0,better:0,between:0,bia:0,bias:0,bin:0,bincount:0,bindata:0,bivci:0,black:0,block:0,blue:0,bool:0,bootstrap:0,both:0,bottom:0,bound:0,box:0,briefli:0,bucklei:[],butterworth:0,call:0,callabl:0,can:0,cardin:0,care:0,caus:0,causal:0,causat:0,caveat:[],cdot:0,certain:0,chain:0,chao:0,check:0,chi2:[],chi:[],child:0,choic:0,chosen:0,cite:0,ckdtree:0,clash:0,clean:0,cmap_edg:0,cmap_nod:0,cmi:0,cmiknn:0,cmisymb:0,code:0,coef1:0,coef2:0,coeff:0,coeffici:0,collid:0,color:0,colorbar:0,colormap:0,column:0,com:0,combin:0,come:0,common:0,commun:0,compar:0,comparison:0,complex:0,comprehens:0,comput:0,compute_ancestor:0,concret:0,cond_ind_test:0,condindtest:0,condition:[],conduct:0,conf_blocklength:0,conf_lev:0,conf_low:0,conf_matrix:0,conf_sampl:0,conf_upp:0,confer:0,confid:0,conflict:0,conflict_resolut:0,conserv:0,consid:0,consider:0,constant:0,construct:0,construct_arrai:0,contain:0,contemp_collider_rul:0,contemp_cond:0,contemporan:0,content:0,context:[],continu:0,contrast:0,control:0,convert:0,convert_to_string_graph:0,coordin:0,copi:0,copyright:0,correct:0,correl:0,correspond:0,cost:0,could:0,coupl:0,covari:0,creat:0,criteria:0,criterion:0,cross:0,cube:0,current:0,curv:0,curvatur:0,curved_radiu:0,cut_off:0,cutoff:0,cutperiod:0,cyclic:0,cython:0,d_z:0,dag:0,dash:0,data_linewidth:0,data_transform:0,datafram:0,dataset:0,datatim:0,debug:0,decai:0,def:0,defin:0,degre:0,delai:0,denot:0,densiti:0,depend:0,dependence_measur:0,deprec:0,deriv:0,describ:0,descript:0,detail:0,detect:0,determin:0,deviat:0,dict:0,dictionari:0,differ:0,digamma:0,dim:0,dimens:0,dimension:0,direct:0,direction:0,directli:0,disabl:0,discov:0,discoveri:0,discret:0,discuss:0,disk:0,dismiss:0,dist:0,distanc:0,distribut:0,do_check:0,doc:0,document:[],doe:0,doi:0,draw:0,drawn:0,driver:0,due:0,dummi:0,duplic:0,dure:0,dynam:0,eaau4996:0,each:0,eagleson:[],earth:0,easi:0,edg:0,edge_tick:0,effect:0,effici:0,either:0,els:0,eman:0,embed:0,empti:0,ensur:0,entri:0,enumer:0,epsilon_:0,equal:0,equival:0,eric:[],ericstrobl:[],error:0,estim:0,eta:0,etc:0,everi:0,exampl:0,exclud:0,exclude_contemporan:0,exclude_i:0,exclude_j:0,exclude_k:0,exclude_self_effect:0,exist:0,expect:0,explain:0,extern:0,f_x:0,f_y:0,factor:0,faculti:0,faith:0,fals:0,fancyarrowpatch:0,fast:[],faster:0,fdr_bh:0,fdr_method:0,featur:0,ffinkernagel:0,fig:0,fig_ax:0,figsiz:0,figur:0,file:0,fill:0,filter:0,finkernagel:0,first:0,fit:0,fit_model:0,fit_result:0,fix:0,fixed_thr:0,flag:0,flaxman:0,flexibl:0,florian:0,follow:0,fontsiz:0,form:0,format:0,forward:0,found:0,four:0,fourier:[],frac:0,fraction:0,framework:0,free:0,freedom:0,frenzel:0,friendli:0,from:0,full:0,fullci:0,fulli:0,func:0,further:0,gabor:0,gamma:[],gatewai:0,gauss_pr:0,gaussian:0,gaussianprocessregressor:0,gaussprocreg:0,gener:0,generate_and_save_nulldist:0,generate_nulldist:0,get:[],get_ac:0,get_all_ac:0,get_all_amc:0,get_amc:0,get_analytic_confid:0,get_analytic_signific:0,get_bootstrap_confid:0,get_c:0,get_ce_max:0,get_coef:0,get_coeff:0,get_confid:0,get_corrected_pvalu:0,get_dependence_measur:0,get_fit:0,get_fixed_thres_signific:0,get_lagged_depend:0,get_mc:0,get_measur:0,get_mediation_graph_data:0,get_model_selection_criterion:0,get_predictor:0,get_shuffle_signific:0,get_signific:0,get_test_arrai:0,get_train_arrai:0,get_tsg:0,get_val_matrix:0,gist:0,github:0,give:0,given:0,going:0,gp_param:0,gp_version:0,gpace:[],gpdc:0,graph:0,graph_bool:0,graph_data:0,greater:0,grei:0,grey_masked_sampl:0,grid:0,ground:0,guarante:0,guidanc:0,hall:[],handl:0,has:0,have:0,hbe:[],head:0,heavisid:0,help:0,helper:0,henc:0,here:0,high:0,highli:[],histogram:0,hochberg:0,horizont:0,how:0,html:0,http:0,hyper:0,hyperparamet:0,hypothesi:0,identifi:0,ight:[],iint:0,ild:[],implement:0,impli:0,importantli:0,improv:0,includ:0,include_lagzero_link:0,include_lagzero_par:0,include_neighbor:0,incom:0,index:0,indirect:0,infer:0,infin:0,info:0,inform:0,inherit:0,initi:0,initial_valu:0,inner_edg:0,inner_edge_styl:0,inno_cov:0,innov:0,input:0,instal:[],instanc:0,instanti:0,instead:0,integ:0,intellig:0,interdisciplinari:0,intern:0,interpret:0,interv:0,introduc:0,inv_inno_cov:0,invers:0,irrelev:0,iscycl:0,iscyclicutil:0,iter:0,its:0,itself:0,j_t:0,job:0,joint:0,journal:0,just:0,kcit:[],kei:0,kernel:0,kind:0,knn:0,kretschmer:0,kun:[],kwarg:0,label:0,label_fonts:0,label_space_left:0,label_space_top:0,lag1:0,lag2:0,lag:0,lag_arrai:0,lag_mod:0,lag_unit:0,lagfunct:0,lagged_par:0,larg:0,larger:0,last:0,later:0,latter:0,lead:0,learn:0,least:0,leav:0,left:0,legend:0,legend_fonts:0,legend_width:0,length:0,less:0,let:0,lett:0,level:0,levelof:[],like:0,likelihood:0,limit:0,lin_f:0,lindsai:[],line:0,linear:0,linear_model:0,linearli:[],linearmedi:0,linearregress:0,linewidth:0,link:0,link_attribut:0,link_coeff:0,link_colorbar_label:0,link_dict:0,link_label_fonts:0,link_matrix:0,link_width:0,links_coeff:0,links_to_graph:0,list:0,load:0,log:0,low:0,lower:0,lowhighpass_filt:0,lpd4:[],lpha:[],made:0,magnitud:0,mai:0,main:0,major:0,make:0,mani:0,map:0,margin:0,maria:0,mark:0,marker:0,markers:0,markov:0,mask:0,mask_typ:0,match:0,math:[],mathcal:0,matplotlib:0,matric:0,matrix:0,matter:0,max:0,max_combin:0,max_conds_dim:0,max_conds_pi:0,max_conds_px:0,max_conds_px_lag:0,max_delai:0,max_lag:0,max_lag_or_tau_max:0,maxim:0,maximum:0,mce:0,mci:0,mean:0,measur:0,med:0,member:0,memori:0,method:0,minimum:0,minu:0,miss:0,missing_flag:0,mlr:0,mode:0,model_param:0,modul:0,modulo:0,momentari:0,more:0,most:0,mostli:0,motif:0,much:0,multi:0,multipl:0,multivari:0,must:0,mutual:0,n_job:0,n_symb:0,nail:0,name:0,nan:0,natur:0,ncomms9502:0,nearest:0,necessari:0,need:0,neg:0,neighbor:0,net_to_tsg:0,network:0,network_lower_bound:0,new_data:0,newer:0,niehgbor:0,no_nois:0,node:0,node_colorbar_label:0,node_label_s:0,node_po:0,node_s:0,node_tick:0,nois:0,non:0,none:0,nonlinear:0,nonstat:0,nonstationari:0,nonzero:0,normal:[],note:0,nowack:0,npz:0,null_dist:0,null_dist_filenam:0,nulldist:0,num_f:[],number:0,numer:0,numpi:0,object:0,observ:0,observed_var:0,obtain:0,occur:0,old:0,older:0,onc:0,one:0,onli:0,opac:0,optim:0,optimz:0,option:0,oracl:0,oracleci:0,order:0,ordin:0,ordinal_patt_arrai:0,ordinari:0,org:0,orient:0,origin:0,orrd:0,other:0,otherwis:0,otion:0,out:0,output:0,over:0,overlaid:0,overrid:0,overwrit:0,p_matrix:0,p_max:[],packag:0,page:0,pair:0,pairwis:0,panda:0,panel:0,paper:0,parallel:0,paramet:0,parametr:0,parcorr:0,parent:0,parent_node_id:0,parents_neighbors_coeff:0,part:0,partial:0,particular:0,pass:0,pass_period:0,past:[],path:0,path_node_arrai:0,path_val_matrix:0,pathwai:0,patt:0,patt_mask:0,patt_tim:0,pattern:0,pc1:0,pc_1:0,pc_alpha:0,pcmciplu:0,peak:0,pearson:0,percentil:0,perform:0,period:0,perm:[],permut:0,perp:0,phase:0,phi:0,phy:0,physrev:0,pilla:[],plai:0,pleas:0,plot_graph:0,plot_gridlin:0,plot_lagfunc:0,plot_mediation_graph:0,plot_mediation_time_series_graph:0,plot_time_series_graph:0,plot_timeseri:0,plot_tsg:0,point:0,pomp:0,pos:0,posit:0,possibl:0,power:0,pq_matrix:0,practic:0,pre:0,precis:0,precomput:0,pred_param:0,prediction_model:0,predictor:0,preprocess:0,present:0,preserv:0,press:0,previou:0,print:0,print_array_info:0,print_info:0,print_result:0,print_significant_link:0,prior:0,prl:0,problemat:[],procedur:0,proceed:0,processor:0,properti:0,provid:0,psi:0,pval:0,pval_max:0,pyplot:0,python:0,q_matrix:0,qualiti:0,quantifi:0,quantil:0,quantile_bin_arrai:0,quantiti:0,r_x:0,r_y:0,rais:0,randn:0,random:0,rang:0,rank:0,rate:0,rather:0,rcit:[],rcot:[],rdbu_r:0,recommend:0,reconstruct:0,recstack:0,recurs:0,recycle_residu:0,red:0,reduc:0,refer:0,regard:0,regress:0,regular:0,rel:0,relat:0,relev:0,remain:0,remov:0,repeat:0,repo:0,repres:0,reproduc:[],requir:0,reset_lagged_link:0,residu:0,respect:0,restrict:0,result:0,return_cleaned_xyz:0,return_confid:[],return_data:0,return_dict:0,return_null_dist:0,return_significant_link:0,return_significant_par:0,rev:0,rho:0,right:0,rizzo:0,role:0,row:0,rpy:[],rtype:0,rule:0,run:0,run_bivci:0,run_fullci:0,run_mci:0,run_pc_stabl:0,run_pcalg:0,run_pcalg_non_timeseries_data:0,run_pcmci:0,run_pcmciplu:0,run_test:0,run_test_raw:0,rung:0,runge18a:0,runtim:0,s41467:0,same:0,sampl:0,sample_s:0,saniti:0,satterthwait:[],save:0,save_iter:0,save_nam:0,savefig:0,scale:0,schedul:0,sci:0,scienc:0,sciencemag:0,scikit:0,scipi:0,scitat:0,score:0,script:0,search:0,section:0,see:0,seed:0,seen:0,sejdinov:0,select:0,selected_link:0,selected_target:0,selected_vari:0,self:0,separ:0,sepset:0,set:0,set_datafram:0,set_mask_typ:0,setter:0,setup:0,setup_arg:0,setup_matrix:0,sever:0,shape:0,shorter:0,should:0,show:0,show_colorbar:0,shown:0,shuffl:0,shuffle_neighbor:0,shuffle_test:0,shyam:[],side:0,sig_blocklength:0,sig_overrid:0,sig_sampl:0,sig_thr:0,sigma:0,signatur:[],signfic:0,signficic:0,signific:0,sim:0,simpl:0,simpli:0,simul:0,sinc:0,size:0,skeleton:0,skip:0,skip_ticks_data_i:0,skip_ticks_data_x:0,sklearn:0,slice:0,slightli:0,slow:[],small:[],smaller:0,smooth:0,smooth_width:0,sort:0,sourc:0,space:0,spatial:0,spatio:0,specif:0,specifi:0,squar:0,stack:0,standard:0,standardscal:0,stationar:0,statist:0,std:0,step:0,steps_ahead:0,still:0,store:0,str:0,straight:0,strength:0,string:0,strobl:[],structur:0,structural_causal_process:0,student:0,style:0,sub:0,subplot:0,subset:0,subspac:0,suffici:0,suggest:[],suitabl:0,sum:0,sum_:0,summar:0,superset:0,supplement:0,suppli:0,sure:0,surrog:0,suscept:0,symb_arrai:0,symbol:0,symbolifi:0,system:0,szeke:0,take:0,target:0,target_predictor:0,tau:0,tau_:0,tau_max:0,tau_min:0,techniqu:0,tempor:0,term:0,test_indic:0,than:0,thei:0,them:0,themselv:0,theoret:0,thi:0,those:0,threshold:0,through:0,tick:0,tickmark:0,tild:0,time_bin_length:0,time_bin_with_mask:0,time_label:0,time_lag:0,timelabel:0,togeth:0,too:[],top:0,topologicalsort:0,topologicalsortutil:0,toward:0,train:0,train_indic:0,transfer:0,transform:0,translat:0,tripl:0,true_par:0,true_parent_neighbor:0,truth:0,tsg:0,tsg_path_val_matrix:0,tsg_to_net:0,tupl:0,tutori:0,twice:0,two:0,two_sided_thr:0,type:0,typic:0,uncertainti:0,uncondit:0,undecid:0,under:0,underli:0,undirect:0,undirected_styl:[],uniform:0,uniqu:0,unit:0,unlik:0,unori:0,unrestrict:0,unshield:0,unshuffl:0,upper:0,use:0,use_mask:0,used:0,useful:0,user:0,uses:0,using:0,util:0,v84:0,val:0,val_matrix:0,val_min:0,val_onli:0,valid:0,valu:0,var1:0,var2:0,var_nam:0,var_network:0,var_process:0,var_unit:0,vari:0,variabl:0,varianc:0,variant:0,varx:0,vector:0,verbos:0,veri:[],version:0,vertic:0,via:0,view:0,visit:0,visual:0,visweswaran:[],vmax_edg:0,vmax_nod:0,vmin_edg:0,vmin_nod:0,warn:[],weight:0,weighted_avg_and_std:0,welch:[],well:0,when:0,where:0,whether:0,which:0,whichev:0,whole:[],wide:0,widehat:0,width:0,window:0,with_mean:0,with_std:0,within:0,won:[],wrapper:0,www:0,x_base:0,x_i:0,x_j:0,x_t:0,xyz:0,y_base:0,y_t:0,yield:0,you:0,z_i:0,z_j:0,z_t:0,zero:0,zhang:[]},titles:["TIGRAMITE"],titleterms:{"function":0,condit:0,data:0,data_process:0,independ:0,independence_test:0,indic:0,mediat:0,model:0,pcmci:0,plot:0,predict:0,process:0,seri:0,tabl:0,test:0,tigramit:0,time:0}}) \ No newline at end of file +Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst"],objects:{"tigramite.data_processing":{DataFrame:[0,1,1,""],Graph:[0,1,1,""],links_to_graph:[0,4,1,""],lowhighpass_filter:[0,4,1,""],ordinal_patt_array:[0,4,1,""],quantile_bin_array:[0,4,1,""],smooth:[0,4,1,""],structural_causal_process:[0,4,1,""],time_bin_with_mask:[0,4,1,""],var_process:[0,4,1,""],weighted_avg_and_std:[0,4,1,""]},"tigramite.data_processing.DataFrame":{construct_array:[0,2,1,""],data:[0,3,1,""],datatime:[0,3,1,""],mask:[0,3,1,""],missing_flag:[0,3,1,""],print_array_info:[0,2,1,""],var_names:[0,3,1,""]},"tigramite.data_processing.Graph":{addEdge:[0,2,1,""],isCyclic:[0,2,1,""],isCyclicUtil:[0,2,1,""],topologicalSort:[0,2,1,""],topologicalSortUtil:[0,2,1,""]},"tigramite.independence_tests":{CMIknn:[0,1,1,""],CMIsymb:[0,1,1,""],CondIndTest:[0,1,1,""],GPDC:[0,1,1,""],OracleCI:[0,1,1,""],ParCorr:[0,1,1,""]},"tigramite.independence_tests.CMIknn":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CMIsymb":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CondIndTest":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_bootstrap_confidence:[0,2,1,""],get_confidence:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_fixed_thres_significance:[0,2,1,""],get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],get_significance:[0,2,1,""],measure:[0,2,1,""],print_info:[0,2,1,""],run_test:[0,2,1,""],run_test_raw:[0,2,1,""],set_dataframe:[0,2,1,""],set_mask_type:[0,2,1,""]},"tigramite.independence_tests.GPDC":{generate_and_save_nulldists:[0,2,1,""],generate_nulldist:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.OracleCI":{get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],measure:[0,2,1,""],run_test:[0,2,1,""],set_dataframe:[0,2,1,""]},"tigramite.independence_tests.ParCorr":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.models":{LinearMediation:[0,1,1,""],Models:[0,1,1,""],Prediction:[0,1,1,""]},"tigramite.models.LinearMediation":{fit_model:[0,2,1,""],get_ace:[0,2,1,""],get_acs:[0,2,1,""],get_all_ace:[0,2,1,""],get_all_acs:[0,2,1,""],get_all_amce:[0,2,1,""],get_amce:[0,2,1,""],get_ce:[0,2,1,""],get_ce_max:[0,2,1,""],get_coeff:[0,2,1,""],get_mce:[0,2,1,""],get_mediation_graph_data:[0,2,1,""],get_tsg:[0,2,1,""],get_val_matrix:[0,2,1,""],net_to_tsg:[0,2,1,""],tsg_to_net:[0,2,1,""]},"tigramite.models.Models":{get_coefs:[0,2,1,""],get_fit:[0,2,1,""],get_val_matrix:[0,2,1,""]},"tigramite.models.Prediction":{fit:[0,2,1,""],get_predictors:[0,2,1,""],get_test_array:[0,2,1,""],get_train_array:[0,2,1,""],predict:[0,2,1,""]},"tigramite.pcmci":{PCMCI:[0,1,1,""]},"tigramite.pcmci.PCMCI":{N:[0,3,1,""],T:[0,3,1,""],all_parents:[0,3,1,""],convert_to_string_graph:[0,2,1,""],get_corrected_pvalues:[0,2,1,""],get_lagged_dependencies:[0,2,1,""],iterations:[0,3,1,""],print_results:[0,2,1,""],print_significant_links:[0,2,1,""],pval_max:[0,3,1,""],return_significant_links:[0,2,1,""],return_significant_parents:[0,2,1,""],run_bivci:[0,2,1,""],run_fullci:[0,2,1,""],run_mci:[0,2,1,""],run_pc_stable:[0,2,1,""],run_pcalg:[0,2,1,""],run_pcalg_non_timeseries_data:[0,2,1,""],run_pcmci:[0,2,1,""],run_pcmciplus:[0,2,1,""],val_min:[0,3,1,""]},"tigramite.plotting":{plot_graph:[0,4,1,""],plot_lagfuncs:[0,4,1,""],plot_mediation_graph:[0,4,1,""],plot_mediation_time_series_graph:[0,4,1,""],plot_time_series_graph:[0,4,1,""],plot_timeseries:[0,4,1,""],plot_tsg:[0,4,1,""],setup_matrix:[0,1,1,""]},"tigramite.plotting.setup_matrix":{add_lagfuncs:[0,2,1,""],savefig:[0,2,1,""]},tigramite:{data_processing:[0,0,0,"-"],plotting:[0,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:function"},terms:{"07007v2":[],"21st":0,"2xtau_max":0,"36th":0,"579_main_pap":0,"abstract":0,"boolean":0,"case":0,"class":0,"default":0,"float":0,"import":0,"int":0,"new":0,"null":0,"return":0,"true":0,"var":0,"while":0,ACE:0,ACS:0,Adding:0,But:[],For:0,Its:0,Not:0,OLS:0,One:[],The:0,Then:0,There:0,These:0,Used:0,Useful:0,Uses:0,With:0,_get_single_residu:0,_print_significant_link:[],about:0,abov:0,abs:0,absmax:0,absolut:0,accept:0,accord:0,account:0,accur:[],ace:0,across:0,acs:0,act:0,adapt:0,add:0,add_lagfunc:0,add_lagfunc_arg:0,add_to_null_dist:0,addedg:0,adding:0,addit:0,address:0,adjac:0,adjust:0,adv:0,advanc:0,affect:0,after:0,again:0,ahead:0,aic:0,aip:0,akaik:0,algorithm:0,all:0,all_lag:0,all_par:0,alloc:0,allow:0,along:0,alpha:0,alpha_level:0,also:0,altern:0,although:0,alwai:0,ambigu:0,ambiguous_tripl:0,amc:0,among:0,analys:0,analysi:0,analyt:0,analyz:0,anc_i:0,anc_x:0,anc_xi:0,ani:0,anoth:0,appli:0,applic:0,appropri:0,approx:[],approxim:[],arang:0,arbitrari:0,arg:[],argument:0,around:0,arrai:0,array_lik:0,array_mask:0,arrow:0,arrow_linewidth:0,arrowhead_s:0,articl:0,artifici:0,arxiv:0,assess:0,assign:0,associ:0,assum:0,assumpt:0,asymptot:0,attribut:0,au_:[],auai:0,auto:0,autocorrel:0,autocovari:0,automat:0,autoregress:0,avail:0,averag:0,avoid:0,axes:0,axi:0,backward:0,bakirov:0,bandwidth:0,basak:[],base:0,basemap:0,becaus:[],been:0,befor:0,beforehand:0,begin:0,below:0,benjamini:0,beta:0,beta_i:0,beta_x:0,better:0,between:0,bia:0,bias:0,bin:0,bincount:0,bindata:0,bivci:0,black:0,block:0,blue:0,bool:0,bootstrap:0,both:0,bottom:0,bound:0,box:0,briefli:0,bucklei:[],butterworth:0,call:0,callabl:0,can:0,canada:0,cardin:0,care:0,caus:0,causal:0,causat:0,caveat:[],cdot:0,certain:0,chain:0,chao:0,check:0,chi2:[],chi:[],child:0,choic:0,chosen:0,cite:0,ckdtree:0,clash:0,clean:0,cmap_edg:0,cmap_nod:0,cmi:0,cmiknn:0,cmisymb:0,code:0,coef1:0,coef2:0,coeff:0,coeffici:0,collid:0,color:0,colorbar:0,colormap:0,column:0,com:0,combin:0,come:0,common:0,commun:0,compar:0,comparison:0,complex:0,comprehens:0,comput:0,compute_ancestor:0,concret:0,cond_ind_test:0,condindtest:0,condition:[],conduct:0,conf_blocklength:0,conf_lev:0,conf_low:0,conf_matrix:0,conf_sampl:0,conf_upp:0,confer:0,confid:0,conflict:0,conflict_resolut:0,conserv:0,consid:0,consider:0,constant:0,construct:0,construct_arrai:0,contain:0,contemp_collider_rul:0,contemp_cond:0,contemporan:0,content:0,context:[],continu:0,contrast:0,control:0,convert:0,convert_to_string_graph:0,coordin:0,copi:0,copyright:0,correct:0,correl:0,correspond:0,cost:0,could:0,coupl:0,covari:0,creat:0,criteria:0,criterion:0,cross:0,cube:0,current:0,curv:0,curvatur:0,curved_radiu:0,cut_off:0,cutoff:0,cutperiod:0,cyclic:0,cython:0,d_z:0,dag:0,dash:0,data_linewidth:0,data_transform:0,datafram:0,dataset:0,datatim:0,debug:0,decai:0,def:0,defin:0,degre:0,delai:0,denot:0,densiti:0,depend:0,dependence_measur:0,deprec:0,deriv:0,describ:0,descript:0,detail:0,detect:0,determin:0,deviat:0,dict:0,dictionari:0,differ:0,digamma:0,dim:0,dimens:0,dimension:0,direct:0,direction:0,directli:0,disabl:0,discov:0,discoveri:0,discret:0,discuss:0,disk:0,dismiss:0,dist:0,distanc:0,distribut:0,do_check:0,doc:0,document:[],doe:0,doi:0,draw:0,drawn:0,driver:0,due:0,dummi:0,duplic:0,dure:0,dynam:[],eaau4996:0,each:0,eagleson:[],earth:0,easi:0,edg:0,edge_tick:0,effect:0,effici:0,either:0,els:0,eman:0,embed:0,empti:0,ensur:0,entri:0,enumer:0,epsilon_:0,equal:0,equival:0,eric:[],ericstrobl:[],error:0,estim:0,eta:0,etc:0,everi:0,exampl:0,exclud:0,exclude_contemporan:0,exclude_i:0,exclude_j:0,exclude_k:0,exclude_self_effect:0,exist:0,expect:0,explain:0,extern:0,f_x:0,f_y:0,factor:0,faculti:0,faith:0,fals:0,fancyarrowpatch:0,fast:[],faster:0,fdr_bh:0,fdr_method:0,featur:0,ffinkernagel:0,fig:0,fig_ax:0,figsiz:0,figur:0,file:0,fill:0,filter:0,finkernagel:0,first:0,fit:0,fit_model:0,fit_result:0,fix:0,fixed_thr:0,flag:0,flaxman:0,flexibl:0,florian:0,follow:0,fontsiz:0,form:0,format:0,forward:0,found:0,four:0,fourier:[],frac:0,fraction:0,framework:0,free:0,freedom:0,frenzel:0,friendli:0,from:0,full:0,fullci:0,fulli:0,func:0,further:0,gabor:0,gamma:[],gatewai:0,gauss_pr:0,gaussian:0,gaussianprocessregressor:0,gaussprocreg:0,gener:0,generate_and_save_nulldist:0,generate_nulldist:0,get:[],get_ac:0,get_all_ac:0,get_all_amc:0,get_amc:0,get_analytic_confid:0,get_analytic_signific:0,get_bootstrap_confid:0,get_c:0,get_ce_max:0,get_coef:0,get_coeff:0,get_confid:0,get_corrected_pvalu:0,get_dependence_measur:0,get_fit:0,get_fixed_thres_signific:0,get_lagged_depend:0,get_mc:0,get_measur:0,get_mediation_graph_data:0,get_model_selection_criterion:0,get_predictor:0,get_shuffle_signific:0,get_signific:0,get_test_arrai:0,get_train_arrai:0,get_tsg:0,get_val_matrix:0,gist:0,github:0,give:0,given:0,going:0,gp_param:0,gp_version:0,gpace:[],gpdc:0,graph:0,graph_bool:0,graph_data:0,greater:0,grei:0,grey_masked_sampl:0,grid:0,ground:0,guarante:0,guidanc:0,hall:[],handl:0,has:0,have:0,hbe:[],head:0,heavisid:0,heigth:0,help:0,helper:0,henc:0,here:0,high:0,highli:[],histogram:0,hochberg:0,horizont:0,how:0,html:0,http:0,hyper:0,hyperparamet:0,hypothesi:0,identifi:0,ight:[],iint:0,ild:[],implement:0,impli:0,importantli:0,improv:0,includ:0,include_lagzero_link:0,include_lagzero_par:0,include_neighbor:0,incom:0,index:0,indirect:0,infer:0,infin:0,info:0,inform:0,inherit:0,initi:0,initial_valu:0,inner_edg:0,inner_edge_styl:0,inno_cov:0,innov:0,input:0,instal:[],instanc:0,instanti:0,instead:0,integ:0,intellig:0,interdisciplinari:0,intern:0,interpret:0,interv:0,introduc:0,inv_inno_cov:0,invers:0,irrelev:0,iscycl:0,iscyclicutil:0,iter:0,its:0,itself:0,j_t:0,job:0,joint:0,journal:0,just:0,kcit:[],kei:0,kernel:0,kind:0,knn:0,kretschmer:0,kun:[],kwarg:0,label:0,label_fonts:0,label_space_left:0,label_space_top:0,lag1:0,lag2:0,lag:0,lag_arrai:0,lag_mod:0,lag_unit:0,lagfunct:0,lagged_par:0,larg:0,larger:0,last:0,later:0,latter:0,lead:0,learn:0,least:0,leav:0,left:0,legend:0,legend_fonts:0,legend_width:0,length:0,less:0,let:0,lett:0,level:0,levelof:[],like:0,likelihood:0,limit:0,lin_f:0,lindsai:[],line:0,linear:0,linear_model:0,linearli:[],linearmedi:0,linearregress:0,linewidth:0,link:0,link_attribut:0,link_coeff:0,link_colorbar_label:0,link_dict:0,link_label_fonts:0,link_matrix:0,link_width:0,links_coeff:0,links_to_graph:0,list:0,load:0,log:0,low:0,lower:0,lowhighpass_filt:0,lpd4:[],lpha:[],made:0,magnitud:0,mai:0,main:0,major:0,make:0,mani:0,map:0,margin:0,maria:0,mark:0,marker:0,markers:0,markov:0,mask:0,mask_typ:0,match:0,math:[],mathcal:0,matplotlib:0,matric:0,matrix:0,matter:0,max:0,max_combin:0,max_conds_dim:0,max_conds_pi:0,max_conds_px:0,max_conds_px_lag:0,max_delai:0,max_lag:0,max_lag_or_tau_max:0,maxim:0,maximum:0,mce:0,mci:0,mean:0,measur:0,med:0,member:0,memori:0,method:0,minimum:0,minu:0,miss:0,missing_flag:0,mlr:0,mode:0,model_param:0,modul:0,modulo:0,momentari:0,more:0,most:0,mostli:0,motif:0,much:0,multi:0,multipl:0,multivari:0,must:0,mutual:0,n_job:0,n_symb:0,nail:0,name:0,nan:0,natur:0,ncomms9502:0,nearest:0,necessari:0,need:0,neg:0,neighbor:0,net_to_tsg:0,network:0,network_lower_bound:0,new_data:0,newer:0,niehgbor:0,no_nois:0,node:0,node_aspect:0,node_colorbar_label:0,node_label_s:0,node_po:0,node_s:0,node_tick:0,nois:0,non:0,none:0,nonlinear:0,nonstat:0,nonstationari:0,nonzero:0,normal:[],note:0,nowack:0,npz:0,null_dist:0,null_dist_filenam:0,nulldist:0,num_f:[],number:0,numer:0,numpi:0,object:0,observ:0,observed_var:0,obtain:0,occur:0,old:0,older:0,onc:0,one:0,onli:0,opac:0,optim:0,optimz:0,option:0,oracl:0,oracleci:0,order:0,ordin:0,ordinal_patt_arrai:0,ordinari:0,org:0,orient:0,origin:0,orrd:0,other:0,otherwis:0,otion:0,out:0,output:0,over:0,overlaid:0,overrid:0,overwrit:0,p_matrix:0,p_max:[],packag:0,page:0,pair:0,pairwis:0,panda:0,panel:0,paper:0,parallel:0,param:0,paramet:0,parametr:0,parcorr:0,parent:0,parent_node_id:0,parents_neighbors_coeff:0,part:0,partial:0,particular:0,pass:0,pass_period:0,past:[],path:0,path_node_arrai:0,path_val_matrix:0,pathwai:0,patt:0,patt_mask:0,patt_tim:0,pattern:0,pc1:0,pc_1:0,pc_alpha:0,pcmciplu:0,pdf:0,peak:0,pearson:0,percentil:0,perform:0,period:0,perm:[],permut:0,perp:0,phase:0,phi:0,phy:0,physrev:0,pilla:[],plai:0,pleas:0,plot_graph:0,plot_gridlin:0,plot_lagfunc:0,plot_mediation_graph:0,plot_mediation_time_series_graph:0,plot_time_series_graph:0,plot_timeseri:0,plot_tsg:0,point:0,pomp:0,pos:0,posit:0,possibl:0,power:0,pq_matrix:0,practic:0,pre:0,precis:0,precomput:0,pred_param:0,prediction_model:0,predictor:0,preprocess:0,present:0,preserv:0,press:0,previou:0,print:0,print_array_info:0,print_info:0,print_result:0,print_significant_link:0,prior:0,prl:0,problemat:[],procedur:0,proceed:0,processor:0,properti:0,provid:0,psi:0,pval:0,pval_max:0,pyplot:0,python:0,q_matrix:0,qualiti:0,quantifi:0,quantil:0,quantile_bin_arrai:0,quantiti:0,r_x:0,r_y:0,rais:0,randn:0,random:0,rang:0,rank:0,rate:0,rather:0,ratio:0,rcit:[],rcot:[],rdbu_r:0,recommend:0,reconstruct:0,recstack:0,recurs:0,recycle_residu:0,red:0,reduc:0,refer:0,regard:0,regress:0,regular:0,rel:0,relat:0,relev:0,remain:0,remov:0,repeat:0,repo:0,repres:0,reproduc:[],requir:0,reset_lagged_link:0,residu:0,respect:0,restrict:0,result:0,return_cleaned_xyz:0,return_confid:[],return_data:0,return_dict:0,return_null_dist:0,return_significant_link:0,return_significant_par:0,rev:0,rho:0,right:0,rizzo:0,role:0,row:0,rpy:[],rtype:0,rule:0,run:0,run_bivci:0,run_fullci:0,run_mci:0,run_pc_stabl:0,run_pcalg:0,run_pcalg_non_timeseries_data:0,run_pcmci:0,run_pcmciplu:0,run_test:0,run_test_raw:0,rung:0,runge18a:0,runtim:0,s41467:0,same:0,sampl:0,sample_s:0,saniti:0,satterthwait:[],save:0,save_iter:0,save_nam:0,savefig:0,scale:0,schedul:0,sci:0,scienc:0,sciencemag:0,scikit:0,scipi:0,scitat:0,score:0,script:0,search:0,section:0,see:0,seed:0,seen:0,sejdinov:0,select:0,selected_link:0,selected_target:0,selected_vari:0,self:0,separ:0,sepset:0,set:0,set_datafram:0,set_mask_typ:0,setter:0,setup:0,setup_arg:0,setup_matrix:0,sever:0,shape:0,shorter:0,should:0,show:0,show_colorbar:0,shown:0,shuffl:0,shuffle_neighbor:0,shuffle_test:0,shyam:[],side:0,sig_blocklength:0,sig_overrid:0,sig_sampl:0,sig_thr:0,sigma:0,signatur:[],signfic:0,signficic:0,signific:0,sim:0,simpl:0,simpli:0,simul:0,sinc:0,size:0,skeleton:0,skip:0,skip_ticks_data_i:0,skip_ticks_data_x:0,sklearn:0,slice:0,slightli:0,slow:[],small:[],smaller:0,smooth:0,smooth_width:0,sort:0,sourc:0,space:0,spatial:0,spatio:0,specif:0,specifi:0,squar:0,stack:0,standard:0,standardscal:0,stationar:0,statist:0,std:0,step:0,steps_ahead:0,still:0,store:0,str:0,straight:0,strength:0,string:0,strobl:[],structur:0,structural_causal_process:0,student:0,style:0,sub:0,subplot:0,subset:0,subspac:0,suffici:0,suggest:[],suitabl:0,sum:0,sum_:0,summar:0,superset:0,supplement:0,suppli:0,sure:0,surrog:0,suscept:0,symb_arrai:0,symbol:0,symbolifi:0,system:0,szeke:0,take:0,target:0,target_predictor:0,tau:0,tau_:0,tau_max:0,tau_min:0,techniqu:0,tempor:0,term:[],test_indic:0,than:0,thei:0,them:0,themselv:0,theoret:0,thi:0,those:0,threshold:0,through:0,tick:0,tickmark:0,tild:0,time_bin_length:0,time_bin_with_mask:0,time_label:0,time_lag:0,timelabel:0,togeth:0,too:[],top:0,topologicalsort:0,topologicalsortutil:0,toronto:0,toward:0,train:0,train_indic:0,transfer:0,transform:0,translat:0,tripl:0,true_par:0,true_parent_neighbor:0,truth:0,tsg:0,tsg_path_val_matrix:0,tsg_to_net:0,tupl:0,tutori:0,twice:0,two:0,two_sided_thr:0,type:0,typic:0,uai2020:0,uai:0,uncertainti:0,uncondit:0,undecid:0,under:0,underli:0,undirect:0,undirected_styl:[],uniform:0,uniqu:0,unit:0,unlik:0,unori:0,unrestrict:0,unshield:0,unshuffl:0,upper:0,use:0,use_mask:0,used:0,useful:0,user:0,uses:0,using:0,util:0,v84:0,val:0,val_matrix:0,val_min:0,val_onli:0,valid:0,valu:0,var1:0,var2:0,var_nam:0,var_network:0,var_process:0,var_unit:0,vari:0,variabl:0,varianc:0,variant:0,varibl:0,varx:0,vector:0,verbos:0,veri:[],version:0,vertic:0,via:0,view:0,visit:0,visual:0,visweswaran:[],vmax_edg:0,vmax_nod:0,vmin_edg:0,vmin_nod:0,warn:[],weight:0,weighted_avg_and_std:0,welch:[],well:0,when:0,where:0,whether:0,which:0,whichev:0,whole:[],wide:0,widehat:0,width:0,window:0,with_mean:0,with_std:0,within:0,won:[],wrapper:0,www:0,x_base:0,x_i:0,x_j:0,x_t:0,xyz:0,y_base:0,y_t:0,yield:0,you:0,z_i:0,z_j:0,z_t:0,zero:0,zhang:[]},titles:["TIGRAMITE"],titleterms:{"function":0,condit:0,data:0,data_process:0,independ:0,independence_test:0,indic:0,mediat:0,model:0,pcmci:0,plot:0,predict:0,process:0,seri:0,tabl:0,test:0,tigramit:0,time:0}}) \ No newline at end of file diff --git a/docs/_modules/abc.html b/docs/_modules/abc.html index a0b81dfb..580b4f31 100644 --- a/docs/_modules/abc.html +++ b/docs/_modules/abc.html @@ -93,7 +93,7 @@

              Source code for abc

               
                   __isabstractmethod__ = True
               
              -    def __init__(self, callable):
              +    def __init__(self, callable):
                       callable.__isabstractmethod__ = True
                       super().__init__(callable)
               
              @@ -116,7 +116,7 @@ 

              Source code for abc

               
                   __isabstractmethod__ = True
               
              -    def __init__(self, callable):
              +    def __init__(self, callable):
                       callable.__isabstractmethod__ = True
                       super().__init__(callable)
               
              @@ -153,11 +153,11 @@ 

              Source code for abc

               
               
               try:
              -    from _abc import (get_cache_token, _abc_init, _abc_register,
              +    from _abc import (get_cache_token, _abc_init, _abc_register,
                                     _abc_instancecheck, _abc_subclasscheck, _get_dump,
                                     _reset_registry, _reset_caches)
               except ImportError:
              -    from _py_abc import ABCMeta, get_cache_token
              +    from _py_abc import ABCMeta, get_cache_token
                   ABCMeta.__module__ = 'abc'
               else:
                   class ABCMeta(type):
              @@ -173,7 +173,7 @@ 

              Source code for abc

                       implementations defined by the registering ABC be callable (not
                       even via super()).
                       """
              -        def __new__(mcls, name, bases, namespace, **kwargs):
              +        def __new__(mcls, name, bases, namespace, **kwargs):
                           cls = super().__new__(mcls, name, bases, namespace, **kwargs)
                           _abc_init(cls)
                           return cls
              @@ -185,24 +185,24 @@ 

              Source code for abc

                           """
                           return _abc_register(cls, subclass)
               
              -        def __instancecheck__(cls, instance):
              +        def __instancecheck__(cls, instance):
                           """Override for isinstance(instance, cls)."""
                           return _abc_instancecheck(cls, instance)
               
              -        def __subclasscheck__(cls, subclass):
              +        def __subclasscheck__(cls, subclass):
                           """Override for issubclass(subclass, cls)."""
                           return _abc_subclasscheck(cls, subclass)
               
                       def _dump_registry(cls, file=None):
                           """Debug helper to print the ABC registry."""
              -            print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
              -            print(f"Inv. counter: {get_cache_token()}", file=file)
              +            print(f"Class: {cls.__module__}.{cls.__qualname__}", file=file)
              +            print(f"Inv. counter: {get_cache_token()}", file=file)
                           (_abc_registry, _abc_cache, _abc_negative_cache,
                            _abc_negative_cache_version) = _get_dump(cls)
              -            print(f"_abc_registry: {_abc_registry!r}", file=file)
              -            print(f"_abc_cache: {_abc_cache!r}", file=file)
              -            print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
              -            print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
              +            print(f"_abc_registry: {_abc_registry!r}", file=file)
              +            print(f"_abc_cache: {_abc_cache!r}", file=file)
              +            print(f"_abc_negative_cache: {_abc_negative_cache!r}", file=file)
              +            print(f"_abc_negative_cache_version: {_abc_negative_cache_version!r}",
                                 file=file)
               
                       def _abc_registry_clear(cls):
              diff --git a/docs/_modules/tigramite/data_processing.html b/docs/_modules/tigramite/data_processing.html
              index 4a09bbc4..d7d4a672 100644
              --- a/docs/_modules/tigramite/data_processing.html
              +++ b/docs/_modules/tigramite/data_processing.html
              @@ -54,8 +54,8 @@ 

              Source code for tigramite.data_processing

               # Author: Jakob Runge <jakob@jakob-runge.com>
               #
               # License: GNU General Public License v3.0
              -from __future__ import print_function
              -from collections import defaultdict, OrderedDict
              +from __future__ import print_function
              +from collections import defaultdict, OrderedDict
               import sys
               import warnings
               import copy
              @@ -92,7 +92,7 @@ 

              Source code for tigramite.data_processing

                   datatime : array-like, optional (default: None)
                       Timelabel array. If None, range(T) is used.
                   """
              -    def __init__(self, data, mask=None, missing_flag=None, var_names=None,
              +    def __init__(self, data, mask=None, missing_flag=None, var_names=None,
                       datatime=None):
               
                       self.values = data
              @@ -413,7 +413,7 @@ 

              Source code for tigramite.data_processing

                       Filtered data array.
                   """
                   try:
              -        from scipy.signal import butter, filtfilt
              +        from scipy.signal import butter, filtfilt
                   except:
                       print('Could not import scipy.signal for butterworth filtering!')
               
              @@ -610,7 +610,7 @@ 

              Source code for tigramite.data_processing

                   patt, patt_mask [, patt_time] : tuple of arrays
                       Tuple of converted pattern array and new length
                   """
              -    from scipy.misc import factorial
              +    from scipy.misc import factorial
               
                   # Import cython code
                   try:
              @@ -1205,7 +1205,7 @@ 

              Source code for tigramite.data_processing

                   vertices : list
                       List of nodes.
                   """
              -    def __init__(self,vertices): 
              +    def __init__(self,vertices): 
                       self.graph = defaultdict(list) 
                       self.V = vertices 
                 
              @@ -1446,19 +1446,22 @@ 

              Source code for tigramite.data_processing

                                            "found in links, use tau_max=None or larger "
                                            "value" % max_lag)
               
              -    graph = np.zeros((N, N, tau_max + 1), dtype='uint8')
              +    graph = np.zeros((N, N, tau_max + 1), dtype='<U3')
                   for j in links.keys():
                       for link_props in links[j]:
                           var, lag = link_props[0]
                           coeff = link_props[1]
                           if coeff != 0.:
              -                graph[var, j, abs(lag)] = 1
              +                graph[var, j, abs(lag)] = "-->"
              +                if lag == 0:
              +                    graph[j, var, 0] = "<--"
              +
               
                   return graph
              class _Logger(object): """Class to append print output to a string which can be saved""" - def __init__(self): + def __init__(self): self.terminal = sys.stdout self.log = "" # open("log.dat", "a") diff --git a/docs/_modules/tigramite/independence_tests/cmiknn.html b/docs/_modules/tigramite/independence_tests/cmiknn.html index ae9b8200..7c080bff 100644 --- a/docs/_modules/tigramite/independence_tests/cmiknn.html +++ b/docs/_modules/tigramite/independence_tests/cmiknn.html @@ -55,14 +55,14 @@

              Source code for tigramite.independence_tests.cmiknn

              # # License: GNU General Public License v3.0 -from __future__ import print_function -from scipy import special, stats, spatial +from __future__ import print_function +from scipy import special, stats, spatial import numpy as np -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest try: - from tigramite import tigramite_cython_code + from tigramite import tigramite_cython_code except: print("Could not import packages for CMIknn and GPDC estimation") @@ -152,7 +152,7 @@

              Source code for tigramite.independence_tests.cmiknn

              """ return self._measure - def __init__(self, + def __init__(self, knn=0.2, shuffle_neighbors=5, significance='shuffle_test', diff --git a/docs/_modules/tigramite/independence_tests/cmisymb.html b/docs/_modules/tigramite/independence_tests/cmisymb.html index 352dcb09..75c73fee 100644 --- a/docs/_modules/tigramite/independence_tests/cmisymb.html +++ b/docs/_modules/tigramite/independence_tests/cmisymb.html @@ -55,11 +55,11 @@

              Source code for tigramite.independence_tests.cmisymb

              # # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import warnings import numpy as np -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest
              [docs]class CMIsymb(CondIndTest): r"""Conditional mutual information test based on discrete estimator. @@ -108,7 +108,7 @@

              Source code for tigramite.independence_tests.cmisymb

              """ return self._measure - def __init__(self, + def __init__(self, n_symbs=None, significance='shuffle_test', sig_blocklength=1, diff --git a/docs/_modules/tigramite/independence_tests/gpdc.html b/docs/_modules/tigramite/independence_tests/gpdc.html index e90f6dcd..ce2baf63 100644 --- a/docs/_modules/tigramite/independence_tests/gpdc.html +++ b/docs/_modules/tigramite/independence_tests/gpdc.html @@ -55,18 +55,18 @@

              Source code for tigramite.independence_tests.gpdc

              # # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import numpy as np -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest try: - from sklearn import gaussian_process + from sklearn import gaussian_process except: print("Could not import sklearn for Gaussian process tests") try: - from tigramite import tigramite_cython_code + from tigramite import tigramite_cython_code except: print("Could not import packages for CMIknn and GPDC estimation") @@ -111,7 +111,7 @@

              Source code for tigramite.independence_tests.gpdc

              verbosity : int, optional (default: 0) Level of verbosity. """ - def __init__(self, + def __init__(self, null_samples, cond_ind_test, gp_version='new', @@ -465,7 +465,7 @@

              Source code for tigramite.independence_tests.gpdc

              """ return self._measure - def __init__(self, + def __init__(self, null_dist_filename=None, gp_version='new', gp_params=None, @@ -736,7 +736,7 @@

              Source code for tigramite.independence_tests.gpdc

              Returns ------- pval : float or numpy.nan - P-value. + p-value. """ # GP regression approximately doesn't cost degrees of freedom diff --git a/docs/_modules/tigramite/independence_tests/independence_tests_base.html b/docs/_modules/tigramite/independence_tests/independence_tests_base.html index 378ccd06..a68fcdad 100644 --- a/docs/_modules/tigramite/independence_tests/independence_tests_base.html +++ b/docs/_modules/tigramite/independence_tests/independence_tests_base.html @@ -55,13 +55,13 @@

              Source code for tigramite.independence_tests.independence_tests_base

              # # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import warnings import math import abc import numpy as np import six -from hashlib import sha1 +from hashlib import sha1
              [docs]@six.add_metaclass(abc.ABCMeta) @@ -133,7 +133,7 @@

              Source code for tigramite.independence_tests.independence_tests_base

              """ pass - def __init__(self, + def __init__(self, mask_type=None, significance='analytic', fixed_thres=0.1, @@ -873,7 +873,7 @@

              Source code for tigramite.independence_tests.independence_tests_base

              Optimal block length. """ # Inject a dependency on siganal, optimize - from scipy import signal, optimize + from scipy import signal, optimize # Get the shape of the array dim, T = array.shape # Initiailize the indices diff --git a/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html b/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html index 43d31e01..2d2863b4 100644 --- a/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html +++ b/docs/_modules/tigramite/independence_tests/oracle_conditional_independence.html @@ -55,10 +55,10 @@

              Source code for tigramite.independence_tests.oracle_conditional_independence # # License: GNU General Public License v3.0 -from __future__ import print_function +from __future__ import print_function import numpy as np -from collections import defaultdict, OrderedDict +from collections import defaultdict, OrderedDict
              [docs]class OracleCI: @@ -86,7 +86,7 @@

              Source code for tigramite.independence_tests.oracle_conditional_independence """ return self._measure - def __init__(self, + def __init__(self, link_coeffs, observed_vars=None, verbosity=0): @@ -725,7 +725,7 @@

              Source code for tigramite.independence_tests.oracle_conditional_independence if __name__ == '__main__': import tigramite.plotting as tp - from matplotlib import pyplot as plt + from matplotlib import pyplot as plt def lin_f(x): return x # N = 20 diff --git a/docs/_modules/tigramite/independence_tests/parcorr.html b/docs/_modules/tigramite/independence_tests/parcorr.html index a0af2fad..3c860372 100644 --- a/docs/_modules/tigramite/independence_tests/parcorr.html +++ b/docs/_modules/tigramite/independence_tests/parcorr.html @@ -55,12 +55,12 @@

              Source code for tigramite.independence_tests.parcorr

              # # License: GNU General Public License v3.0 -from __future__ import print_function -from scipy import stats +from __future__ import print_function +from scipy import stats import numpy as np import sys -from .independence_tests_base import CondIndTest +from .independence_tests_base import CondIndTest
              [docs]class ParCorr(CondIndTest): r"""Partial correlation test. @@ -98,7 +98,7 @@

              Source code for tigramite.independence_tests.parcorr

              """ return self._measure - def __init__(self, **kwargs): + def __init__(self, **kwargs): self._measure = 'par_corr' self.two_sided = True self.residual_based = True diff --git a/docs/_modules/tigramite/models.html b/docs/_modules/tigramite/models.html index d1218c12..d7b1ad59 100644 --- a/docs/_modules/tigramite/models.html +++ b/docs/_modules/tigramite/models.html @@ -55,13 +55,13 @@

              Source code for tigramite.models

               #
               # License: GNU General Public License v3.0
               
              -from __future__ import print_function
              -from copy import deepcopy
              +from __future__ import print_function
              +from copy import deepcopy
               
               import numpy as np
               
              -from tigramite.data_processing import DataFrame
              -from tigramite.pcmci import PCMCI
              +from tigramite.data_processing import DataFrame
              +from tigramite.pcmci import PCMCI
               
               try:
                   import sklearn
              @@ -103,7 +103,7 @@ 

              Source code for tigramite.models

                       Level of verbosity.
                   """
               
              -    def __init__(self,
              +    def __init__(self,
                                dataframe,
                                model,
                                data_transform=sklearn.preprocessing.StandardScaler(),
              @@ -341,7 +341,7 @@ 

              Source code for tigramite.models

                       Level of verbosity.
                   """
               
              -    def __init__(self,
              +    def __init__(self,
                                dataframe,
                                model_params=None,
                                data_transform=sklearn.preprocessing.StandardScaler(),
              @@ -990,7 +990,7 @@ 

              Source code for tigramite.models

                       Level of verbosity.
                   """
               
              -    def __init__(self,
              +    def __init__(self,
                                dataframe,
                                train_indices,
                                test_indices,
              diff --git a/docs/_modules/tigramite/pcmci.html b/docs/_modules/tigramite/pcmci.html
              index da8d8def..ad66f34a 100644
              --- a/docs/_modules/tigramite/pcmci.html
              +++ b/docs/_modules/tigramite/pcmci.html
              @@ -55,11 +55,11 @@ 

              Source code for tigramite.pcmci

               #
               # License: GNU General Public License v3.0
               
              -from __future__ import print_function
              +from __future__ import print_function
               import warnings
               import itertools
              -from collections import defaultdict
              -from copy import deepcopy
              +from collections import defaultdict
              +from copy import deepcopy
               import numpy as np
               import scipy.stats
               
              @@ -127,7 +127,7 @@ 

              Source code for tigramite.pcmci

                   different times and a link indicates a conditional dependency that can be
                   interpreted as a causal dependency under certain assumptions (see paper).
                   Assuming stationarity, the links are repeated in time. The parents
              -    :math:`\\mathcal{P}` of a variable are defined as the set of all nodes
              +    :math:`\mathcal{P}` of a variable are defined as the set of all nodes
                   with a link towards it (blue and red boxes in Figure).
               
                   The different PCMCI methods estimate causal links by iterative
              @@ -147,7 +147,7 @@ 

              Source code for tigramite.pcmci

                   .. [5] J. Runge,
                          Discovering contemporaneous and lagged causal relations in 
                          autocorrelated nonlinear time series datasets
              -           https://arxiv.org/abs/2003.03685
              +           http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf
               
                   Parameters
                   ----------
              @@ -185,7 +185,7 @@ 

              Source code for tigramite.pcmci

                       Time series sample length.
                   """
               
              -    def __init__(self, dataframe,
              +    def __init__(self, dataframe,
                                cond_ind_test,
                                selected_variables=None,
                                verbosity=0):
              @@ -358,7 +358,7 @@ 

              Source code for tigramite.pcmci

                       already_removed : bool
                           Whether parent was already removed.
                       """
              -        link_marker = {True:"o--o", False:"-->"}
              +        link_marker = {True:"o-o", False:"-->"}
               
                       abstau = abs(parent[1])
                       if self.verbosity > 1:
              @@ -1584,7 +1584,7 @@ 

              Source code for tigramite.pcmci

                           List of ambiguous triples.
                       """
                       if graph is not None:
              -            sig_links = (graph > 0)
              +            sig_links = (graph != "")*(graph != "<--")
                       elif q_matrix is not None:
                           sig_links = (q_matrix <= alpha_level)
                       else:
              @@ -1613,19 +1613,19 @@ 

              Source code for tigramite.pcmci

                                       conf_matrix[p[0], j, abs(p[1])][0],
                                       conf_matrix[p[0], j, abs(p[1])][1])
                               if graph is not None:
              -                    if p[1] == 0 and graph[j, p[0], 0] == 1:
              +                    if p[1] == 0 and graph[j, p[0], 0] == "o-o":
                                       string += " | unoriented link"
              -                    if graph[p[0], j, abs(p[1])] == 2:
              +                    if graph[p[0], j, abs(p[1])] == "x-x":
                                       string += " | unclear orientation due to conflict"
                           print(string)
               
              -        link_marker = {True:"o--o", False:"-->"}
              +        link_marker = {True:"o-o", False:"-->"}
               
                       if ambiguous_triples is not None and len(ambiguous_triples) > 0:
                           print("\n## Ambiguous triples:\n")
                           for triple in ambiguous_triples:
                               (i, tau), k, j = triple
              -                print("    (%s % d) %s %s o--o %s" % (
              +                print("    (%s % d) %s %s o-o %s" % (
                                   self.var_names[i], tau, link_marker[tau==0],
                                   self.var_names[k],
                                   self.var_names[j]))
              @@ -1752,7 +1752,7 @@

              Source code for tigramite.pcmci

                                           2: [((2, -1), 0.8), ((1, -2), -0.6)]}
                       >>> data, _ = pp.var_process(links_coeffs, T=1000)
                       >>> # Data must be array of shape (time, variables)
              -        >>> print data.shape
              +        >>> print (data.shape)
                       (1000, 3)
                       >>> dataframe = pp.DataFrame(data)
                       >>> cond_ind_test = ParCorr()
              @@ -1764,17 +1764,16 @@ 

              Source code for tigramite.pcmci

                       ## Significant parents at alpha = 0.05:
               
                           Variable 0 has 1 link(s):
              -                (0 -1): pval = 0.00000 | val = 0.632
              +                (0 -1): pval = 0.00000 | val =  0.588
               
                           Variable 1 has 2 link(s):
              -                (1 -1): pval = 0.00000 | val = 0.653
              -
              -                (0 -1): pval = 0.00000 | val = 0.444
              +                (1 -1): pval = 0.00000 | val =  0.606
              +                (0 -1): pval = 0.00000 | val =  0.447
               
                           Variable 2 has 2 link(s):
              -                (2 -1): pval = 0.00000 | val = 0.623
              +                (2 -1): pval = 0.00000 | val =  0.618
              +                (1 -2): pval = 0.00000 | val = -0.499
               
              -                (1 -2): pval = 0.00000 | val = -0.533
               
                       Parameters
                       ----------
              @@ -1880,7 +1879,8 @@ 

              Source code for tigramite.pcmci

                       """Runs PCMCIplus time-lagged and contemporaneous causal discovery for
                       time series.
               
              -        Method described in [5]_: https://arxiv.org/abs/2003.03685
              +        Method described in [5]_: 
              +        http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf
               
                       Notes
                       -----
              @@ -1923,20 +1923,20 @@ 

              Source code for tigramite.pcmci

                       links based on PC rules.
               
                       In contrast to PCMCI, the relevant output of PCMCIplus is the
              -        array ``graph``. Its entries are interpreted as follows:
              +        array ``graph``. Its string entries are interpreted as follows:
               
              -        * ``graph[i,j,tau]=1`` for :math:`\\tau>0` denotes a directed, lagged
              +        * ``graph[i,j,tau]=-->`` for :math:`\\tau>0` denotes a directed, lagged
                         causal link from :math:`i` to :math:`j` at lag :math:`\\tau`
               
              -        * ``graph[i,j,0]=1`` and ``graph[j,i,0]=0`` denotes a directed,
              +        * ``graph[i,j,0]=-->`` (and ``graph[j,i,0]=<--``) denotes a directed,
                         contemporaneous causal link from :math:`i` to :math:`j`
               
              -        * ``graph[i,j,0]=1`` and ``graph[j,i,0]=1`` denotes an unoriented,
              +        * ``graph[i,j,0]=o-o`` (and ``graph[j,i,0]=o-o``) denotes an unoriented,
                         contemporaneous adjacency between :math:`i` and :math:`j` indicating
                         that the collider and orientation rules could not be applied (Markov
                         equivalence)
               
              -        * ``graph[i,j,0]=2`` and ``graph[j,i,0]=2`` denotes a conflicting,
              +        * ``graph[i,j,0]=x-x`` and (``graph[j,i,0]=x-x``) denotes a conflicting,
                         contemporaneous adjacency between :math:`i` and :math:`j` indicating
                         that the directionality is undecided due to conflicting orientation
                         rules
              @@ -1984,7 +1984,7 @@ 

              Source code for tigramite.pcmci

               
                       Examples
                       --------
              -        >>> import numpy
              +        >>> import numpy as np
                       >>> from tigramite.pcmci import PCMCI
                       >>> from tigramite.independence_tests import ParCorr
                       >>> import tigramite.data_processing as pp
              @@ -1997,12 +1997,10 @@ 

              Source code for tigramite.pcmci

                                    2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
                                    3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
                                    }
              -        >>> # Specify dynamical noise term distributions
              -        >>> noises = [np.random.randn for j in links.keys()]
                       >>> data, nonstat = pp.structural_causal_process(links,
              -                            T=1000, noises=noises, seed=7)
              +                            T=1000, seed=7)
                       >>> # Data must be array of shape (time, variables)
              -        >>> print data.shape
              +        >>> print (data.shape)
                       (1000, 4)
                       >>> dataframe = pp.DataFrame(data)
                       >>> cond_ind_test = ParCorr()
              @@ -2011,23 +2009,20 @@ 

              Source code for tigramite.pcmci

                       >>> pcmci.print_results(results, alpha_level=0.01)
                           ## Significant links at alpha = 0.01:
               
              -                Variable 0 has 1 link(s):
              -                    (0 -1): pval = 0.00000 | val = 0.676
              -
              -                Variable 1 has 2 link(s):
              -                    (1 -1): pval = 0.00000 | val = 0.602
              -
              -                    (0 -1): pval = 0.00000 | val = 0.599
              -
              -                Variable 2 has 2 link(s):
              -                    (1 0): pval = 0.00000 | val = 0.486
              +            Variable 0 has 1 link(s):
              +                (0 -1): pval = 0.00000 | val =  0.676
               
              -                    (2 -1): pval = 0.00000 | val = 0.466
              +            Variable 1 has 2 link(s):
              +                (1 -1): pval = 0.00000 | val =  0.602
              +                (0 -1): pval = 0.00000 | val =  0.599
               
              -                Variable 3 has 2 link(s):
              -                    (3 -1): pval = 0.00000 | val = 0.524
              +            Variable 2 has 2 link(s):
              +                (1  0): pval = 0.00000 | val =  0.486
              +                (2 -1): pval = 0.00000 | val =  0.466
               
              -                    (2 0): pval = 0.00000 | val = -0.449
              +            Variable 3 has 2 link(s):
              +                (3 -1): pval = 0.00000 | val =  0.524
              +                (2  0): pval = 0.00000 | val = -0.449 
               
                       Parameters
                       ----------
              @@ -2209,6 +2204,7 @@ 

              Source code for tigramite.pcmci

                                                                 exclude_contemporaneous=False)
                       # Store the parents in the pcmci member
                       self.all_parents = lagged_parents
              +
                       # Cache the resulting values in the return dictionary
                       return_dict = {'graph': graph,
                                      'val_matrix': val_matrix,
              @@ -2380,8 +2376,11 @@ 

              Source code for tigramite.pcmci

                                   skeleton_results['val_matrix'][j, i, 0] = \
                                       skeleton_results['val_matrix'][i, j, 0]
               
              +        # Convert numerical graph matrix to string
              +        graph_str = self.convert_to_string_graph(final_graph)
              +
                       pc_results = {
              -            'graph': final_graph,
              +            'graph': graph_str,
                           'p_matrix': skeleton_results['p_matrix'],
                           'val_matrix': skeleton_results['val_matrix'],
                           'sepset': colliders_step_results['sepset'],
              @@ -2545,9 +2544,9 @@ 

              Source code for tigramite.pcmci

                           Total number of triples.
                       """
                       (i, tau), k, j = triple
              -        link_marker = {True:"o--o", False:"-->"}
              +        link_marker = {True:"o-o", False:"-->"}
               
              -        print("\n    Triple (%s % d) %s %s o--o %s (%d/%d)" % (
              +        print("\n    Triple (%s % d) %s %s o-o %s (%d/%d)" % (
                           self.var_names[i], tau, link_marker[tau==0], self.var_names[k],
                           self.var_names[j], index + 1, n_triples))
               
              @@ -2744,7 +2743,7 @@ 

              Source code for tigramite.pcmci

                                                                           (i, -abstau)))
               
                                       # Store max. p-value and corresponding value to return
              -                        if pval > pvalues[i, j, abstau]:
              +                        if pval >= pvalues[i, j, abstau]:
                                           pvalues[i, j, abstau] = pval
                                           val_matrix[i, j, abstau] = val
               
              @@ -3184,7 +3183,7 @@ 

              Source code for tigramite.pcmci

                       if self.verbosity > 1 and len(v_structures) > 0:
                           print("\nOrienting links among colliders:")
               
              -        link_marker = {True:"o--o", False:"-->"}
              +        link_marker = {True:"o-o", False:"-->"}
               
                       # Now go through list of v-structures and (optionally) detect conflicts
                       oriented_links = []
              @@ -3192,14 +3191,14 @@ 

              Source code for tigramite.pcmci

                           (i, tau), k, j = itaukj
               
                           if self.verbosity > 1:
              -                print("\n    Collider (%s % d) %s %s o--o %s:" % (
              +                print("\n    Collider (%s % d) %s %s o-o %s:" % (
                                   self.var_names[i], tau, link_marker[
                                       tau==0], self.var_names[k],
                                   self.var_names[j]))
               
                           if (k, j) not in oriented_links and (j, k) not in oriented_links:
                               if self.verbosity > 1:
              -                    print("      Orient %s o--o %s as %s --> %s " % (
              +                    print("      Orient %s o-o %s as %s --> %s " % (
                                       self.var_names[j], self.var_names[k], self.var_names[j],
                                       self.var_names[k]))
                               graph[k, j, 0] = 0
              @@ -3221,7 +3220,7 @@ 

              Source code for tigramite.pcmci

                               if (i, k) not in oriented_links and (
                                       k, i) not in oriented_links:
                                   if self.verbosity > 1:
              -                        print("      Orient %s o--o %s as %s --> %s " % (
              +                        print("      Orient %s o-o %s as %s --> %s " % (
                                           self.var_names[i], self.var_names[k],
                                           self.var_names[i], self.var_names[k]))
                                   graph[k, i, 0] = 0
              @@ -3250,7 +3249,7 @@ 

              Source code for tigramite.pcmci

                               }
               
                   def _find_triples_rule1(self, graph):
              -        """Find triples i_tau --> k_t o--o j_t with i_tau -/- j_t.
              +        """Find triples i_tau --> k_t o-o j_t with i_tau -/- j_t.
               
                       Excludes conflicting links.
               
              @@ -3312,8 +3311,8 @@ 

              Source code for tigramite.pcmci

                       return triples
               
                   def _find_chains_rule3(self, graph):
              -        """Find chains i_t o--o k_t --> j_t and i_t o--o l_t --> j_t with
              -           i_t o--o j_t and k_t -/- l_t.
              +        """Find chains i_t o-o k_t --> j_t and i_t o-o l_t --> j_t with
              +           i_t o-o j_t and k_t -/- l_t.
               
                       Excludes conflicting links.
               
              @@ -3384,7 +3383,7 @@ 

              Source code for tigramite.pcmci

                       N = graph.shape[0]
               
                       def rule1(graph, oriented_links):
              -            """Find (unambiguous) triples i_tau --> k_t o--o j_t with
              +            """Find (unambiguous) triples i_tau --> k_t o-o j_t with
                              i_tau -/- j_t and orient as i_tau --> k_t --> j_t.
                           """
                           triples = self._find_triples_rule1(graph)
              @@ -3399,7 +3398,7 @@ 

              Source code for tigramite.pcmci

                                           k, j) not in oriented_links:
                                       if self.verbosity > 1:
                                           print(
              -                                "    R1: Found (%s % d) --> %s o--o %s, "
              +                                "    R1: Found (%s % d) --> %s o-o %s, "
                                               "orient as %s --> %s" % (
                                                   self.var_names[i], tau, self.var_names[k],
                                                   self.var_names[j],
              @@ -3419,7 +3418,7 @@ 

              Source code for tigramite.pcmci

                           return triples_left, graph, oriented_links
               
                       def rule2(graph, oriented_links):
              -            """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o--o j_t
              +            """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o-o j_t
                              and orient as i_t --> j_t.
                           """
               
              @@ -3439,7 +3438,7 @@ 

              Source code for tigramite.pcmci

                                       if self.verbosity > 1:
                                           print(
                                               "    R2: Found %s --> %s --> %s  with  %s "
              -                                "o--o %s, orient as %s --> %s" % (
              +                                "o-o %s, orient as %s --> %s" % (
                                                   self.var_names[i], self.var_names[k],
                                                   self.var_names[j],
                                                   self.var_names[i], self.var_names[j],
              @@ -3458,8 +3457,8 @@ 

              Source code for tigramite.pcmci

                           return triples_left, graph, oriented_links
               
                       def rule3(graph, oriented_links):
              -            """Find (unambiguous) chains i_t o--o k_t --> j_t
              -               and i_t o--o l_t --> j_t with i_t o--o j_t
              +            """Find (unambiguous) chains i_t o-o k_t --> j_t
              +               and i_t o-o l_t --> j_t with i_t o-o j_t
                              and k_t -/- l_t: Orient as i_t --> j_t.
                           """
                           # First find all chains i_t -- k_t --> j_t with i_t -- j_t
              @@ -3483,8 +3482,8 @@ 

              Source code for tigramite.pcmci

                                           i, j) not in oriented_links:
                                       if self.verbosity > 1:
                                           print(
              -                                "    R3: Found %s o--o %s --> %s and %s o--o "
              -                                "%s --> %s with %s o--o %s and %s -/- %s, "
              +                                "    R3: Found %s o-o %s --> %s and %s o-o "
              +                                "%s --> %s with %s o-o %s and %s -/- %s, "
                                               "orient as %s --> %s" % (
                                                   self.var_names[i], self.var_names[k],
                                                   self.var_names[j], self.var_names[i],
              @@ -3549,7 +3548,7 @@ 

              Source code for tigramite.pcmci

                       """
               
                       for j in variable_order:
              -            adj_j = np.where(circle_cpdag[:,j,0])[0].tolist()
              +            adj_j = np.where(circle_cpdag[:,j,0] == "o-o")[0].tolist()
               
                           # Make sure the node has any adjacencies
                           all_adjacent = len(adj_j) > 0
              @@ -3559,7 +3558,7 @@ 

              Source code for tigramite.pcmci

                               return (j, adj_j)  
                           else:
                               for (var1, var2) in itertools.combinations(adj_j, 2):
              -                    if circle_cpdag[var1, var2, 0] == 0: 
              +                    if circle_cpdag[var1, var2, 0] == "": 
                                       all_adjacent = False
                                       break
               
              @@ -3621,13 +3620,13 @@ 

              Source code for tigramite.pcmci

                       # Turn circle component CPDAG^C into a DAG with no unshielded colliders.
                       circle_cpdag = np.copy(cpdag_graph)
                       # All lagged links are directed by time, remove them here
              -        circle_cpdag[:,:,1:] = 0
              +        circle_cpdag[:,:,1:] = ""
                       # Also remove conflicting links
              -        circle_cpdag[circle_cpdag==2] = 0
              -        # Find undirected links
              -        for i, j, tau in zip(*np.where(circle_cpdag)):
              -            if circle_cpdag[j,i,0] == 0:
              -                circle_cpdag[i,j,0] = 0
              +        circle_cpdag[circle_cpdag=="x-x"] = ""
              +        # Find undirected links, remove directed links
              +        for i, j, tau in zip(*np.where(circle_cpdag != "")):
              +            if circle_cpdag[i,j,0] == "-->":
              +                circle_cpdag[i,j,0] = ""
               
                       # Iterate through simplicial nodes
                       simplicial_node = self._get_simplicial_node(circle_cpdag,
              @@ -3639,9 +3638,9 @@ 

              Source code for tigramite.pcmci

                           # component PAG
                           (j, adj_j) = simplicial_node
                           for var in adj_j:
              -                dag[var, j, 0] = 1
              -                dag[j, var, 0] = 0
              -                circle_cpdag[var, j, 0] = circle_cpdag[j, var, 0] = 0 
              +                dag[var, j, 0] = "-->"
              +                dag[j, var, 0] = "<--"
              +                circle_cpdag[var, j, 0] = circle_cpdag[j, var, 0] = "" 
               
                           # Iterate
                           simplicial_node = self._get_simplicial_node(circle_cpdag,
              @@ -3725,18 +3724,22 @@ 

              Source code for tigramite.pcmci

                           dag = self._get_dag_from_cpdag(
                                           cpdag_graph=results[pc_alpha_here]['graph'],
                                           variable_order=variable_order)
              -            parents = self.return_significant_links(
              -                    pq_matrix=results[pc_alpha_here]['p_matrix'],
              -                    val_matrix=results[pc_alpha_here]['val_matrix'], 
              -                    alpha_level=pc_alpha_here,
              -                    include_lagzero_links=True)['link_dict']
              +            
              +            # = self.return_significant_links(
              +            #         pq_matrix=results[pc_alpha_here]['p_matrix'],
              +            #         val_matrix=results[pc_alpha_here]['val_matrix'], 
              +            #         alpha_level=pc_alpha_here,
              +            #         include_lagzero_links=True)['link_dict']
               
                           # Compute the best average score when the model selection
                           # is applied to all N variables
                           for j in range(self.N):
              +                parents = []
              +                for i, tau in zip(*np.where(dag[:,j,:] == "-->")):
              +                    parents.append((i, -tau))
                               score[iscore] += \
                                   self.cond_ind_test.get_model_selection_criterion(
              -                        j, parents[j], tau_max)
              +                        j, parents, tau_max)
                           score[iscore] /= float(self.N)
               
                       # Record the optimal alpha value
              @@ -3790,236 +3793,37 @@ 

              Source code for tigramite.pcmci

               
               
               if __name__ == '__main__':
              -    from tigramite.independence_tests import ParCorr, CMIknn
              +    from tigramite.independence_tests import ParCorr, CMIknn
                   import tigramite.data_processing as pp
                   import tigramite.plotting as tp
               
                   np.random.seed(43)
               
              -
              -    ## Generate some time series from a structural causal process
              +    # Example process to play around with
              +    # Each key refers to a variable and the incoming links are supplied
              +    # as a list of format [((var, -lag), coeff, function), ...]
                   def lin_f(x): return x
                   def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.))
               
              -    auto_coeff = 0.95
              -    coeff = 0.4
              -    T = 500
              -
              -    # links ={0: [((0, -1), auto_coeff, lin_f),
              -    #         ((1, -1), coeff, lin_f)
              -    #         ],
              -    #     1: [((1, -1), auto_coeff, lin_f), 
              -    #         ],
              -    #     2: [((2, -1), auto_coeff, lin_f), 
              -    #         ((3, 0), -coeff, lin_f), 
              -    #         ],
              -    #     3: [((3, -1), auto_coeff, lin_f), 
              -    #         ((1, -2), coeff, lin_f), 
              -    #         ],
              -    #     4: [((4, -1), auto_coeff, lin_f), 
              -    #         ((3, 0), coeff, lin_f), 
              -    #         ],   
              -    #     5: [((5, -1), 0.5*auto_coeff, lin_f), 
              -    #         ((6, 0), coeff, lin_f), 
              -    #         ],  
              -    #     6: [((6, -1), 0.5*auto_coeff, lin_f), 
              -    #         ((5, -1), -coeff, lin_f), 
              -    #         ],  
              -    #     7: [((7, -1), auto_coeff, lin_f), 
              -    #         ((8, 0), -coeff, lin_f), 
              -    #         ],  
              -    #     8: [],                                     
              -    #     }
              -
              -    # links = {0: [((0, -1), 0.8, lin_f), ((1, -1), 0.6, lin_f)],
              -    #          1: [((1, -1), 0., lin_f)],
              -    #          2: [((2, -1), 0., lin_f), ((1, 0), 0.6, lin_f)],
              -    #          3: [((3, -1), 0., lin_f), ((2, 0), -0.5, lin_f)],
              -    #          }
              -    links = {0: [((0, -1), 0., lin_f), ((1, 0), 0.6, lin_f)],
              -             1: [((1, -1), 0., lin_f), ((2, 0), 0., lin_f), ((2, -1), 0.6, lin_f)],
              -             2: [((2, -1), 0.8, lin_f), ((1, -1), -0.5, lin_f)]
              +    links = {0: [((0, -1), 0.9, lin_f)],
              +             1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)],
              +             2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)],
              +             3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)],
                            }
               
              -
              -    noises = [np.random.randn for j in links.keys()]
                   data, nonstat = pp.structural_causal_process(links,
              -                                T=300, noises=noises, seed=7)
              +                        T=1000, seed=7)
              +
              +    # Data must be array of shape (time, variables)
              +    print(data.shape)
              +    dataframe = pp.DataFrame(data)
              +    cond_ind_test = ParCorr()
              +    pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)
              +    results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01)
              +    pcmci.print_results(results, alpha_level=0.01)
              +
               
              -    # data[10, 1] = 999.
              -    # data_mask = data>0.4
               
              -    verbosity = 2
              -    dataframe = pp.DataFrame(data) #, missing_flag=999., mask=data_mask,)
              -    pcmci = PCMCI(dataframe=dataframe,
              -                  cond_ind_test=ParCorr(verbosity=0),
              -                  verbosity=2,
              -                  )
              -    results = pcmci.run_mci(
              -                  selected_links=None,
              -                  tau_min=0,
              -                  tau_max=2,
              -                  )
              -    print (pcmci.results)
              -
              -
              -    # lagmat.savefig("/home/rung_ja/work/sandbox/lags_final.pdf")
              -
              -
              -    # print(results['graph'])
              -
              -    # link_matrix = results['most_frequent_links']
              -    # link_width = results['link_frequency']
              -    # print(link_matrix.shape, val_matrix.shape, link_width.shape, conf_matrix.shape)
              -    # print(link_matrix[:,:,0])
              -    # print(link_width[:,:,0])
              -
              -    # tp.plot_time_series_graph(
              -    #     val_matrix=val_matrix,
              -    #     link_matrix=link_matrix,
              -    #     link_width = link_width,
              -    #     link_colorbar_label='MCI',
              -    #     cmap_edges='OrRd',
              -    #     save_name="/home/rung_ja/work/sandbox/tsg_final.pdf",
              -    #     )
              -
              -
              -    # results = pcmci.run_pcalg_non_timeseries_data(pc_alpha=0.01,
              -    #               max_conds_dim=None, max_combinations=None, 
              -    #               contemp_collider_rule='conservative',
              -    #               conflict_resolution=True)
              -    # selected_links = {0: [(0, -1)],
              -    #                   1: [(1, -1), (0, -1)],
              -    #                   2: [(2, -1), (1, 0)],
              -    #                   3: [(3, -1), (2, 0)],
              -    #                   }
              -
              -    # results = pcmci.run_pc_stable(
              -    #             selected_links=None,
              -    #             tau_min=1,
              -    #             tau_max=1,
              -    #             pc_alpha=0.001,
              -    #             )
              -    # print(results)
              -
              -    # results = pcmci.run_pcmci(
              -    #               selected_links=None,
              -    #               tau_min=0,
              -    #               tau_max=2,
              -    #               pc_alpha=None,
              -    #               max_conds_dim=None,
              -    #               max_conds_py=None,
              -    #               max_conds_px=None,
              -    #               fdr_method='none',
              -    #               )
              -    # pcmci.print_significant_links(p_matrix=results['p_matrix'],
              -    #                                          val_matrix=results['val_matrix'],
              -    #                                          alpha_level=0.05)
              -
              -    # results = pcmci.get_lagged_dependencies(
              -    #               selected_links=None,
              -    #               tau_min=0,
              -    #               tau_max=2,
              -    #               val_only=True
              -    #               # parents=None,
              -    #               # max_conds_py=None,
              -    #               # max_conds_px=None,
              -    #               )
              -
              -    # print (results)
              -
              -    # results = pcmci.run_pcmciplus(
              -    #     selected_links=None,
              -    #     tau_min=0,
              -    #     tau_max=3,
              -    #     pc_alpha=None,
              -    #     contemp_collider_rule='majority',
              -    #     conflict_resolution=True,
              -    #     reset_lagged_links=False,
              -    #     max_conds_dim=None,
              -    #     max_conds_py=None,
              -    #     max_conds_px=None,
              -    #     max_conds_px_lagged=0,
              -    #     fdr_method='none'
              -    # )
              -    # pcmci.print_results(results, alpha_level=0.01)
              -
              -    # graph_bool = results['graph']
              -    # print(graph_bool[:,:,0])
              -    # print(graph_bool[:,:,1])
              -
              -    # graph = np.zeros(graph_bool.shape, dtype='<U3')
              -    # graph[:] = ""
              -    # graph[:,:,1:][graph_bool[:,:,1:]==1] = "-->"
              -    # graph[:,:,0][np.logical_and(graph_bool[:,:,0]==1, graph_bool[:,:,0].T==1)] = "o-o"
              -    # for (i,j) in zip(*np.where(np.logical_and(graph_bool[:,:,0]==1, graph_bool[:,:,0].T==0))):
              -    #     graph[i,j,0] = "-->"
              -    #     graph[j,i,0] = "<--"
              -
              -    # # np.logical_or(true_graphs=="-->", true_graphs=="<--")
              -
              -    # print(graph[:,:,0])
              -    # print(graph[:,:,1])    # dag_member = pcmci._get_dag_from_cpdag(cpdag_graph=results['graph'])
              -    # print(dag_member[:,:,0])
              -    # print(dag_member[:,:,1])
              -
              -    # print("Graph")
              -    # print(results['graph'])
              -    # print("p_matrix")
              -    # print(results['p_matrix'].round(4))
              -    # print("val_matrix")
              -    # print(results['val_matrix'].round(2))
              -    # print("Contemp graph")
              -    # print(results['graph'][:, :, 0])
              -    # print("Contemp p_matrix")
              -    # print(results['p_matrix'][:, :, 0].round(4))
              -    # print("Contemp val_matrix")
              -    # print(results['val_matrix'][:, :, 0].round(2))
              -
              -    # results = pcmci.run_pcalg(
              -    #             pc_alpha=pc_alpha,
              -    #             tau_min=0, tau_max=tau_max,
              -    #           contemp_collider_rule='majority', #'conservative', #None, #'majority',
              -    #           conflict_resolution=True,)
              -    # results['val_matrix'] = results['graph']
              -
              -    # print(results['p_matrix'].round(2))
              -    # link_matrix = pcmci.return_significant_parents(
              -    #     pq_matrix=results['p_matrix'],
              -    #     # val_matrix=results['val_matrix'], 
              -    #     alpha_level=pc_alpha)['link_matrix']
              -
              -    # link_matrix[:,:,0] = 0
              -    # print(link_matrix.astype('int'))
              -    # print(contemp_pcmci_results['val_matrix'].round(2))
              -    # tp.plot_time_series_graph(
              -    #     val_matrix=results['val_matrix'],
              -    #     link_matrix=link_matrix,
              -    #     link_colorbar_label='MCI',
              -    #     cmap_edges='OrRd',
              -    #     save_name="/home/rung_ja/work/sandbox/tsg_final.pdf",
              -    #     )
              -    # pc_results = pcmci.run_pcalg( 
              -    #             pc_alpha=pc_alpha,
              -    #             tau_min=0, tau_max=5,
              -    #            ci_test='par_corr',
              -    # print(results['graph'])
              -
              -    # np.random.seed(42)
              -    # val_matrix = np.random.rand(3,3,4)
              -    # link_matrix = np.abs(val_matrix) > .9
              -
              -    # tp.plot_time_series_graph(
              -    #     val_matrix=val_matrix,
              -    #     sig_thres=None,
              -    #     link_matrix=link_matrix,
              -    #     var_names=range(len(val_matrix)),
              -    #     undirected_style='dashed',
              -    #     save_name="/home/rung_ja/work/sandbox/tsg_contemp.pdf",
              -
              -    # )
              -
              -    # Test order
               
              diff --git a/docs/_modules/tigramite/plotting.html b/docs/_modules/tigramite/plotting.html index 2314772f..f9d01bca 100644 --- a/docs/_modules/tigramite/plotting.html +++ b/docs/_modules/tigramite/plotting.html @@ -57,16 +57,20 @@

              Source code for tigramite.plotting

               
               import numpy as np
               import matplotlib
              -from matplotlib.colors import ListedColormap
              +from matplotlib.colors import ListedColormap
               import matplotlib.transforms as transforms
              -from matplotlib import pyplot, ticker
              -from matplotlib.ticker import FormatStrFormatter
              +from matplotlib import pyplot, ticker
              +from matplotlib.ticker import FormatStrFormatter
               import matplotlib.patches as mpatches
              +from matplotlib.collections import PatchCollection
              +
               import sys
              +from operator import sub
               import networkx as nx
               import tigramite.data_processing as pp
              -
              -from copy import deepcopy
              +from copy import deepcopy
              +import matplotlib.path as mpath
              +import matplotlib.patheffects as PathEffects
               
               # TODO: Add proper docstrings to internal functions...
               
              @@ -77,28 +81,28 @@ 

              Source code for tigramite.plotting

                   # Set negative values to small positive number
                   # (zero would be interpreted as non-significant in some functions)
                   if np.ndim(cmi) == 0:
              -        if cmi < 0.:
              -            cmi = 1E-8
              +        if cmi < 0.0:
              +            cmi = 1e-8
                   else:
              -        cmi[cmi < 0.] = 1E-8
              +        cmi[cmi < 0.0] = 1e-8
               
              -    return np.sqrt(1. - np.exp(-2. * cmi))
              +    return np.sqrt(1.0 - np.exp(-2.0 * cmi))
               
               
               def _par_corr_to_cmi(par_corr):
                   """Transformation of partial correlation to CMI scale."""
               
              -    return -0.5 * np.log(1. - par_corr**2)
              +    return -0.5 * np.log(1.0 - par_corr ** 2)
               
               
              -def _myround(x, base=5, round_mode='updown'):
              +def _myround(x, base=5, round_mode="updown"):
                   """Rounds x to a float with precision base."""
               
              -    if round_mode == 'updown':
              +    if round_mode == "updown":
                       return base * round(float(x) / base)
              -    elif round_mode == 'down':
              +    elif round_mode == "down":
                       return base * np.floor(float(x) / base)
              -    elif round_mode == 'up':
              +    elif round_mode == "up":
                       return base * np.ceil(float(x) / base)
               
                   return base * round(float(x) / base)
              @@ -108,10 +112,9 @@ 

              Source code for tigramite.plotting

                   """Makes nice axes."""
               
                   if where is None:
              -        where = ['left', 'bottom']
              +        where = ["left", "bottom"]
                   if color is None:
              -        color = {'left': 'black', 'right': 'black',
              -                 'bottom': 'black', 'top': 'black'}
              +        color = {"left": "black", "right": "black", "bottom": "black", "top": "black"}
               
                   if type(skip) == int:
                       skip_x = skip_y = skip
              @@ -121,48 +124,48 @@ 

              Source code for tigramite.plotting

               
                   for loc, spine in ax.spines.items():
                       if loc in where:
              -            spine.set_position(('outward', 5))  # outward by 10 points
              +            spine.set_position(("outward", 5))  # outward by 10 points
                           spine.set_color(color[loc])
              -            if loc == 'left' or loc == 'right':
              +            if loc == "left" or loc == "right":
                               pyplot.setp(ax.get_yticklines(), color=color[loc])
                               pyplot.setp(ax.get_yticklabels(), color=color[loc])
              -            if loc == 'top' or loc == 'bottom':
              +            if loc == "top" or loc == "bottom":
                               pyplot.setp(ax.get_xticklines(), color=color[loc])
              -        elif loc in [item for item in ['left', 'bottom', 'right', 'top']
              -                     if item not in where]:
              -            spine.set_color('none')  # don't draw spine
              +        elif loc in [
              +            item for item in ["left", "bottom", "right", "top"] if item not in where
              +        ]:
              +            spine.set_color("none")  # don't draw spine
               
                       else:
              -            raise ValueError('unknown spine location: %s' % loc)
              +            raise ValueError("unknown spine location: %s" % loc)
               
                   # ax.xaxis.get_major_formatter().set_useOffset(False)
               
                   # turn off ticks where there is no spine
              -    if 'top' in where and 'bottom' not in where:
              -        ax.xaxis.set_ticks_position('top')
              +    if "top" in where and "bottom" not in where:
              +        ax.xaxis.set_ticks_position("top")
                       ax.set_xticks(ax.get_xticks()[::skip_x])
              -    elif 'bottom' in where:
              -        ax.xaxis.set_ticks_position('bottom')
              +    elif "bottom" in where:
              +        ax.xaxis.set_ticks_position("bottom")
                       ax.set_xticks(ax.get_xticks()[::skip_x])
                   else:
              -        ax.xaxis.set_ticks_position('none')
              +        ax.xaxis.set_ticks_position("none")
                       ax.xaxis.set_ticklabels([])
              -    if 'right' in where and 'left' not in where:
              -        ax.yaxis.set_ticks_position('right')
              +    if "right" in where and "left" not in where:
              +        ax.yaxis.set_ticks_position("right")
                       ax.set_yticks(ax.get_yticks()[::skip_y])
              -    elif 'left' in where:
              -        ax.yaxis.set_ticks_position('left')
              +    elif "left" in where:
              +        ax.yaxis.set_ticks_position("left")
                       ax.set_yticks(ax.get_yticks()[::skip_y])
                   else:
              -        ax.yaxis.set_ticks_position('none')
              +        ax.yaxis.set_ticks_position("none")
                       ax.yaxis.set_ticklabels([])
               
              -    ax.patch.set_alpha(0.)
              +    ax.patch.set_alpha(0.0)
               
               
               def _get_absmax(val_matrix):
                   """Get value at absolute maximum in lag function array.
              -
                   For an (N, N, tau)-array this comutes the lag of the absolute maximum
                   along the tau-axis and stores the (positive or negative) value in
                   the (N,N)-array absmax."""
              @@ -173,26 +176,30 @@ 

              Source code for tigramite.plotting

                   return val_matrix[i, j, absmax_indices]
               
               
              -def _add_timeseries(fig, axes, i, time, dataseries, label,
              -                   use_mask=False,
              -                   mask=None,
              -                   missing_flag=None,
              -                   grey_masked_samples=False,
              -                   data_linewidth=1.,
              -                   skip_ticks_data_x=1,
              -                   skip_ticks_data_y=1,
              -                   unit=None,
              -                   last=False,
              -                   time_label='',
              -                   label_fontsize=10,
              -                   color='black',
              -                   grey_alpha=1.,
              -                   ):
              +def _add_timeseries(
              +    fig,
              +    axes,
              +    i,
              +    time,
              +    dataseries,
              +    label,
              +    use_mask=False,
              +    mask=None,
              +    missing_flag=None,
              +    grey_masked_samples=False,
              +    data_linewidth=1.0,
              +    skip_ticks_data_x=1,
              +    skip_ticks_data_y=1,
              +    unit=None,
              +    last=False,
              +    time_label="",
              +    label_fontsize=10,
              +    color="black",
              +    grey_alpha=1.0,
              +):
                   """Adds a time series plot to an axis.
              -
                   Plot of dataseries is added to axis. Allows for proper visualization of
                   masked data.
              -
                   Parameters
                   ----------
                   fig : figure instance
              @@ -247,55 +254,78 @@ 

              Source code for tigramite.plotting

                       ax = axes
               
                   if missing_flag is not None:
              -        dataseries_nomissing = np.ma.masked_where(dataseries==missing_flag,
              -                                                 dataseries)
              +        dataseries_nomissing = np.ma.masked_where(
              +            dataseries == missing_flag, dataseries
              +        )
                   else:
                       dataseries_nomissing = np.ma.masked_where(
              -                                                 np.zeros(dataseries.shape),
              -                                                 dataseries)
              +            np.zeros(dataseries.shape), dataseries
              +        )
               
                   if use_mask:
               
                       maskdata = np.ma.masked_where(mask, dataseries_nomissing)
               
              -        if grey_masked_samples == 'fill':
              -            ax.fill_between(time, maskdata.min(), maskdata.max(),
              -                            where=mask, color='grey',
              -                            interpolate=True,
              -                            linewidth=0., alpha=grey_alpha)
              -        elif grey_masked_samples == 'data':
              -            ax.plot(time, dataseries_nomissing,
              -                    color='grey', marker='.', markersize=data_linewidth,
              -                    linewidth=data_linewidth, clip_on=False,
              -                    alpha=grey_alpha)
              -
              -        ax.plot(time, maskdata,
              -                color=color, linewidth=data_linewidth, marker='.',
              -                markersize=data_linewidth, clip_on=False)
              +        if grey_masked_samples == "fill":
              +            ax.fill_between(
              +                time,
              +                maskdata.min(),
              +                maskdata.max(),
              +                where=mask,
              +                color="grey",
              +                interpolate=True,
              +                linewidth=0.0,
              +                alpha=grey_alpha,
              +            )
              +        elif grey_masked_samples == "data":
              +            ax.plot(
              +                time,
              +                dataseries_nomissing,
              +                color="grey",
              +                marker=".",
              +                markersize=data_linewidth,
              +                linewidth=data_linewidth,
              +                clip_on=False,
              +                alpha=grey_alpha,
              +            )
              +
              +        ax.plot(
              +            time,
              +            maskdata,
              +            color=color,
              +            linewidth=data_linewidth,
              +            marker=".",
              +            markersize=data_linewidth,
              +            clip_on=False,
              +        )
                   else:
              -        ax.plot(time, dataseries_nomissing,
              -                color=color, linewidth=data_linewidth, clip_on=False)
              +        ax.plot(
              +            time,
              +            dataseries_nomissing,
              +            color=color,
              +            linewidth=data_linewidth,
              +            clip_on=False,
              +        )
               
                   if last:
              -        _make_nice_axes(ax, where=['left', 'bottom'], skip=(
              -            skip_ticks_data_x, skip_ticks_data_y))
              -        ax.set_xlabel(r'%s' % time_label, fontsize=label_fontsize)
              -    else:
                       _make_nice_axes(
              -            ax, where=['left'], skip=(skip_ticks_data_x, skip_ticks_data_y))
              +            ax, where=["left", "bottom"], skip=(skip_ticks_data_x, skip_ticks_data_y)
              +        )
              +        ax.set_xlabel(r"%s" % time_label, fontsize=label_fontsize)
              +    else:
              +        _make_nice_axes(ax, where=["left"], skip=(skip_ticks_data_x, skip_ticks_data_y))
                   # ax.get_xaxis().get_major_formatter().set_useOffset(False)
               
              -    ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f'))
              +    ax.xaxis.set_major_formatter(FormatStrFormatter("%.0f"))
                   ax.label_outer()
               
                   ax.set_xlim(time[0], time[-1])
               
              -    trans = transforms.blended_transform_factory(
              -        fig.transFigure, ax.transAxes)
              +    trans = transforms.blended_transform_factory(fig.transFigure, ax.transAxes)
                   if unit:
              -        ax.set_ylabel(r'%s [%s]' % (label, unit), fontsize=label_fontsize)
              +        ax.set_ylabel(r"%s [%s]" % (label, unit), fontsize=label_fontsize)
                   else:
              -        ax.set_ylabel(r'%s' % (label), fontsize=label_fontsize)
              +        ax.set_ylabel(r"%s" % (label), fontsize=label_fontsize)
               
                       # ax.text(.02, .5, r'%s [%s]' % (label, unit), fontsize=label_fontsize,
                       #         horizontalalignment='left', verticalalignment='center',
              @@ -307,21 +337,21 @@ 

              Source code for tigramite.plotting

                   pyplot.tight_layout()
               
               
              -
              [docs]def plot_timeseries(dataframe=None, - save_name=None, - fig_axes=None, - figsize=None, - var_units=None, - time_label='time', - use_mask=False, - grey_masked_samples=False, - data_linewidth=1., - skip_ticks_data_x=1, - skip_ticks_data_y=2, - label_fontsize=8, - ): +
              [docs]def plot_timeseries( + dataframe=None, + save_name=None, + fig_axes=None, + figsize=None, + var_units=None, + time_label="time", + use_mask=False, + grey_masked_samples=False, + data_linewidth=1.0, + skip_ticks_data_x=1, + skip_ticks_data_y=2, + label_fontsize=12, +): """Create and save figure of stacked panels with time series. - Parameters ---------- dataframe : data object, optional @@ -365,11 +395,10 @@

              Source code for tigramite.plotting

                   T, N = data.shape
               
                   if var_units is None:
              -        var_units = ['' for i in range(N)]
              +        var_units = ["" for i in range(N)]
               
                   if fig_axes is None:
              -        fig, axes = pyplot.subplots(N, sharex=True,
              -                figsize=figsize)
              +        fig, axes = pyplot.subplots(N, sharex=True, figsize=figsize)
                   else:
                       fig, axes = fig_axes
               
              @@ -378,24 +407,27 @@ 

              Source code for tigramite.plotting

                           mask_i = None
                       else:
                           mask_i = mask[:, i]
              -        _add_timeseries(fig=fig, axes=axes, i=i,
              -                       time=datatime,
              -                       dataseries=data[:, i],
              -                       label=var_names[i],
              -                       use_mask=use_mask,
              -                       mask=mask_i,
              -                       missing_flag=missing_flag,
              -                       grey_masked_samples=grey_masked_samples,
              -                       data_linewidth=data_linewidth,
              -                       skip_ticks_data_x=skip_ticks_data_x,
              -                       skip_ticks_data_y=skip_ticks_data_y,
              -                       unit=var_units[i],
              -                       last=(i == N - 1),
              -                       time_label=time_label,
              -                       label_fontsize=label_fontsize,
              -                       )
              -
              -    fig.subplots_adjust(bottom=0.15, top=.9, left=0.15, right=.95, hspace=.3)
              +        _add_timeseries(
              +            fig=fig,
              +            axes=axes,
              +            i=i,
              +            time=datatime,
              +            dataseries=data[:, i],
              +            label=var_names[i],
              +            use_mask=use_mask,
              +            mask=mask_i,
              +            missing_flag=missing_flag,
              +            grey_masked_samples=grey_masked_samples,
              +            data_linewidth=data_linewidth,
              +            skip_ticks_data_x=skip_ticks_data_x,
              +            skip_ticks_data_y=skip_ticks_data_y,
              +            unit=var_units[i],
              +            last=(i == N - 1),
              +            time_label=time_label,
              +            label_fontsize=label_fontsize,
              +        )
              +
              +    fig.subplots_adjust(bottom=0.15, top=0.9, left=0.15, right=0.95, hspace=0.3)
                   pyplot.tight_layout()
               
                   if save_name is not None:
              @@ -403,12 +435,11 @@ 

              Source code for tigramite.plotting

                   else:
                       return fig, axes
              +
              [docs]def plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={}): """Wrapper helper function to plot lag functions. - Sets up the matrix object and plots the lagfunction, see parameters in setup_matrix and add_lagfuncs. - Parameters ---------- val_matrix : array_like @@ -420,7 +451,6 @@

              Source code for tigramite.plotting

                       setup_matrix.
                   add_lagfunc_args : dict
                       Arguments for adding a lag function matrix, see doc of add_lagfuncs.
              -
                   Returns
                   -------
                   matrix : object
              @@ -439,13 +469,12 @@ 

              Source code for tigramite.plotting

               
                   return matrix
              -
              [docs]class setup_matrix(): - """Create matrix of lag function panels. +
              [docs]class setup_matrix: + """Create matrix of lag function panels. Class to setup figure object. The function add_lagfuncs(...) allows to plot the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be overlaid for comparison. - Parameters ---------- N : int @@ -481,20 +510,25 @@

              Source code for tigramite.plotting

                       Fontsize of variable labels.
                   """
               
              -    def __init__(self, N, tau_max,
              -                 var_names=None,
              -                 figsize=None,
              -                 minimum=-1,
              -                 maximum=1,
              -                 label_space_left=0.1,
              -                 label_space_top=.05,
              -                 legend_width=.15,
              -                 legend_fontsize=10,
              -                 x_base=1., y_base=0.5,
              -                 plot_gridlines=False,
              -                 lag_units='',
              -                 lag_array=None,
              -                 label_fontsize=10):
              +    def __init__(
              +        self,
              +        N,
              +        tau_max,
              +        var_names=None,
              +        figsize=None,
              +        minimum=-1,
              +        maximum=1,
              +        label_space_left=0.1,
              +        label_space_top=0.05,
              +        legend_width=0.15,
              +        legend_fontsize=10,
              +        x_base=1.0,
              +        y_base=0.5,
              +        plot_gridlines=False,
              +        lag_units="",
              +        lag_array=None,
              +        label_fontsize=10,
              +    ):
               
                       self.tau_max = tau_max
               
              @@ -509,7 +543,6 @@ 

              Source code for tigramite.plotting

                       else:
                           self.x_base = x_base
               
              -
                       self.legend_width = legend_width
                       self.legend_fontsize = legend_fontsize
               
              @@ -531,76 +564,98 @@ 

              Source code for tigramite.plotting

                               # Plot process labels
                               if j == 0:
                                   trans = transforms.blended_transform_factory(
              -                        self.fig.transFigure, self.axes_dict[(i, j)].transAxes)
              -                    self.axes_dict[(i, j)].text(0.01, .5, '%s' %
              -                                                str(var_names[i]),
              -                                                fontsize=label_fontsize,
              -                                                horizontalalignment='left',
              -                                                verticalalignment='center',
              -                                                transform=trans)
              +                        self.fig.transFigure, self.axes_dict[(i, j)].transAxes
              +                    )
              +                    self.axes_dict[(i, j)].text(
              +                        0.01,
              +                        0.5,
              +                        "%s" % str(var_names[i]),
              +                        fontsize=label_fontsize,
              +                        horizontalalignment="left",
              +                        verticalalignment="center",
              +                        transform=trans,
              +                    )
                               if i == 0:
                                   trans = transforms.blended_transform_factory(
              -                        self.axes_dict[(i, j)].transAxes, self.fig.transFigure)
              -                    self.axes_dict[(i, j)].text(.5, .99, r'${\to}$ ' + '%s' %
              -                                                str(var_names[j]),
              -                                                fontsize=label_fontsize,
              -                                                horizontalalignment='center',
              -                                                verticalalignment='top',
              -                                                transform=trans)
              +                        self.axes_dict[(i, j)].transAxes, self.fig.transFigure
              +                    )
              +                    self.axes_dict[(i, j)].text(
              +                        0.5,
              +                        0.99,
              +                        r"${\to}$ " + "%s" % str(var_names[j]),
              +                        fontsize=label_fontsize,
              +                        horizontalalignment="center",
              +                        verticalalignment="top",
              +                        transform=trans,
              +                    )
               
                               # Make nice axis
                               _make_nice_axes(
              -                    self.axes_dict[(i, j)], where=['left', 'bottom'],
              -                    skip=(1, 1))
              +                    self.axes_dict[(i, j)], where=["left", "bottom"], skip=(1, 1)
              +                )
                               if x_base is not None:
                                   self.axes_dict[(i, j)].xaxis.set_major_locator(
              -                        ticker.FixedLocator(np.arange(0, self.tau_max + 1,
              -                                                         x_base)))
              -                    if x_base / 2. % 1 == 0:
              +                        ticker.FixedLocator(np.arange(0, self.tau_max + 1, x_base))
              +                    )
              +                    if x_base / 2.0 % 1 == 0:
                                       self.axes_dict[(i, j)].xaxis.set_minor_locator(
              -                            ticker.FixedLocator(np.arange(0, self.tau_max +
              -                                                             1,
              -                                                             x_base / 2.)))
              +                            ticker.FixedLocator(
              +                                np.arange(0, self.tau_max + 1, x_base / 2.0)
              +                            )
              +                        )
                               if y_base is not None:
                                   self.axes_dict[(i, j)].yaxis.set_major_locator(
                                       ticker.FixedLocator(
              -                            np.arange(_myround(minimum, y_base, 'down'),
              -                                         _myround(maximum, y_base, 'up') +
              -                                         y_base, y_base)))
              +                            np.arange(
              +                                _myround(minimum, y_base, "down"),
              +                                _myround(maximum, y_base, "up") + y_base,
              +                                y_base,
              +                            )
              +                        )
              +                    )
                                   self.axes_dict[(i, j)].yaxis.set_minor_locator(
                                       ticker.FixedLocator(
              -                            np.arange(_myround(minimum, y_base, 'down'),
              -                                         _myround(maximum, y_base, 'up') +
              -                                         y_base, y_base / 2.)))
              +                            np.arange(
              +                                _myround(minimum, y_base, "down"),
              +                                _myround(maximum, y_base, "up") + y_base,
              +                                y_base / 2.0,
              +                            )
              +                        )
              +                    )
               
                                   self.axes_dict[(i, j)].set_ylim(
              -                        _myround(minimum, y_base, 'down'),
              -                        _myround(maximum, y_base, 'up'))
              +                        _myround(minimum, y_base, "down"),
              +                        _myround(maximum, y_base, "up"),
              +                    )
                               if j != 0:
                                   self.axes_dict[(i, j)].get_yaxis().set_ticklabels([])
                               self.axes_dict[(i, j)].set_xlim(0, self.tau_max)
                               if plot_gridlines:
              -                    self.axes_dict[(i, j)].grid(True, which='major',
              -                                                color='black',
              -                                                linestyle='dotted',
              -                                                dashes=(1, 1),
              -                                                linewidth=.05,
              -                                                zorder=-5)
              +                    self.axes_dict[(i, j)].grid(
              +                        True,
              +                        which="major",
              +                        color="black",
              +                        linestyle="dotted",
              +                        dashes=(1, 1),
              +                        linewidth=0.05,
              +                        zorder=-5,
              +                    )
               
                               plot_index += 1
               
              -
              [docs] def add_lagfuncs(self, val_matrix, - sig_thres=None, - conf_matrix=None, - color='black', - label=None, - two_sided_thres=True, - marker='.', - markersize=5, - alpha=1., - ): +
              [docs] def add_lagfuncs( + self, + val_matrix, + sig_thres=None, + conf_matrix=None, + color="black", + label=None, + two_sided_thres=True, + marker=".", + markersize=5, + alpha=1.0, + ): """Add lag function plot from val_matrix array. - Parameters ---------- val_matrix : array_like @@ -627,57 +682,75 @@

              Source code for tigramite.plotting

                       if label is not None:
                           self.labels.append((label, color, marker, markersize, alpha))
               
              -
                       for ij in list(self.axes_dict):
                           i = ij[0]
                           j = ij[1]
              -            maskedres = np.copy(val_matrix[i, j, int(i == j):])
              -            self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1),
              -                                        maskedres,
              -                                        linestyle='', color=color,
              -                                        marker=marker, markersize=markersize,
              -                                        alpha=alpha, clip_on=False)
              +            maskedres = np.copy(val_matrix[i, j, int(i == j) :])
              +            self.axes_dict[(i, j)].plot(
              +                range(int(i == j), self.tau_max + 1),
              +                maskedres,
              +                linestyle="",
              +                color=color,
              +                marker=marker,
              +                markersize=markersize,
              +                alpha=alpha,
              +                clip_on=False,
              +            )
                           if conf_matrix is not None:
              -                maskedconfres = np.copy(conf_matrix[i, j, int(i == j):])
              -                self.axes_dict[(i, j)].plot(range(int(i == j),
              -                                                  self.tau_max + 1),
              -                                            maskedconfres[:, 0],
              -                                            linestyle='', color=color,
              -                                            marker='_',
              -                                            markersize=markersize - 2,
              -                                            alpha=alpha, clip_on=False)
              -                self.axes_dict[(i, j)].plot(range(int(i == j),
              -                                                  self.tau_max + 1),
              -                                            maskedconfres[:, 1],
              -                                            linestyle='', color=color,
              -                                            marker='_',
              -                                            markersize=markersize - 2,
              -                                            alpha=alpha, clip_on=False)
              -
              -            self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1),
              -                                        np.zeros(self.tau_max + 1 -
              -                                                    int(i == j)),
              -                                        color='black', linestyle='dotted',
              -                                        linewidth=.1)
              +                maskedconfres = np.copy(conf_matrix[i, j, int(i == j) :])
              +                self.axes_dict[(i, j)].plot(
              +                    range(int(i == j), self.tau_max + 1),
              +                    maskedconfres[:, 0],
              +                    linestyle="",
              +                    color=color,
              +                    marker="_",
              +                    markersize=markersize - 2,
              +                    alpha=alpha,
              +                    clip_on=False,
              +                )
              +                self.axes_dict[(i, j)].plot(
              +                    range(int(i == j), self.tau_max + 1),
              +                    maskedconfres[:, 1],
              +                    linestyle="",
              +                    color=color,
              +                    marker="_",
              +                    markersize=markersize - 2,
              +                    alpha=alpha,
              +                    clip_on=False,
              +                )
              +
              +            self.axes_dict[(i, j)].plot(
              +                range(int(i == j), self.tau_max + 1),
              +                np.zeros(self.tau_max + 1 - int(i == j)),
              +                color="black",
              +                linestyle="dotted",
              +                linewidth=0.1,
              +            )
               
                           if sig_thres is not None:
              -                maskedsigres = sig_thres[i, j, int(i == j):]
              -
              -                self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1),
              -                                            maskedsigres,
              -                                            color=color, linestyle='solid',
              -                                            linewidth=.1, alpha=alpha)
              +                maskedsigres = sig_thres[i, j, int(i == j) :]
              +
              +                self.axes_dict[(i, j)].plot(
              +                    range(int(i == j), self.tau_max + 1),
              +                    maskedsigres,
              +                    color=color,
              +                    linestyle="solid",
              +                    linewidth=0.1,
              +                    alpha=alpha,
              +                )
                               if two_sided_thres:
              -                    self.axes_dict[(i, j)].plot(range(int(i == j),
              -                                                      self.tau_max + 1),
              -                                                -sig_thres[i, j, int(i == j):],
              -                                                color=color, linestyle='solid',
              -                                                linewidth=.1, alpha=alpha)
              + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + -sig_thres[i, j, int(i == j) :], + color=color, + linestyle="solid", + linewidth=0.1, + alpha=alpha, + )
              # pyplot.tight_layout()
              [docs] def savefig(self, name=None): """Save matrix figure. - Parameters ---------- name : str, optional (default: None) @@ -687,52 +760,75 @@

              Source code for tigramite.plotting

                       # Trick to plot legend
                       if len(self.labels) > 0:
                           axlegend = self.fig.add_subplot(111, frameon=False)
              -            axlegend.spines['left'].set_color('none')
              -            axlegend.spines['right'].set_color('none')
              -            axlegend.spines['bottom'].set_color('none')
              -            axlegend.spines['top'].set_color('none')
              +            axlegend.spines["left"].set_color("none")
              +            axlegend.spines["right"].set_color("none")
              +            axlegend.spines["bottom"].set_color("none")
              +            axlegend.spines["top"].set_color("none")
                           axlegend.set_xticks([])
                           axlegend.set_yticks([])
               
                           # self.labels.append((label, color, marker, markersize, alpha))
                           for item in self.labels:
              -
                               label = item[0]
                               color = item[1]
                               marker = item[2]
                               markersize = item[3]
                               alpha = item[4]
               
              -                axlegend.plot([], [], linestyle='', color=color,
              -                              marker=marker, markersize=markersize,
              -                              label=label, alpha=alpha)
              -            axlegend.legend(loc='upper left', ncol=1,
              -                            bbox_to_anchor=(1.05, 0., .1, 1.),
              -                            borderaxespad=0, fontsize=self.legend_fontsize
              -                            ).draw_frame(False)
              -
              -            self.fig.subplots_adjust(left=self.label_space_left, right=1. -
              -                                     self.legend_width,
              -                                     top=1. - self.label_space_top,
              -                                     hspace=0.35, wspace=0.35)
              +                axlegend.plot(
              +                    [],
              +                    [],
              +                    linestyle="",
              +                    color=color,
              +                    marker=marker,
              +                    markersize=markersize,
              +                    label=label,
              +                    alpha=alpha,
              +                )
              +            axlegend.legend(
              +                loc="upper left",
              +                ncol=1,
              +                bbox_to_anchor=(1.05, 0.0, 0.1, 1.0),
              +                borderaxespad=0,
              +                fontsize=self.legend_fontsize,
              +            ).draw_frame(False)
              +
              +            self.fig.subplots_adjust(
              +                left=self.label_space_left,
              +                right=1.0 - self.legend_width,
              +                top=1.0 - self.label_space_top,
              +                hspace=0.35,
              +                wspace=0.35,
              +            )
                           pyplot.figtext(
              -                0.5, 0.01, r'lag $\tau$ [%s]' % self.lag_units,
              -                horizontalalignment='center', fontsize=self.label_fontsize)
              +                0.5,
              +                0.01,
              +                r"lag $\tau$ [%s]" % self.lag_units,
              +                horizontalalignment="center",
              +                fontsize=self.label_fontsize,
              +            )
                       else:
                           self.fig.subplots_adjust(
              -                left=self.label_space_left, right=.95,
              -                top=1. - self.label_space_top,
              -                hspace=0.35, wspace=0.35)
              +                left=self.label_space_left,
              +                right=0.95,
              +                top=1.0 - self.label_space_top,
              +                hspace=0.35,
              +                wspace=0.35,
              +            )
                           pyplot.figtext(
              -                0.55, 0.01, r'lag $\tau$ [%s]' % self.lag_units,
              -                horizontalalignment='center', fontsize=self.label_fontsize)
              +                0.55,
              +                0.01,
              +                r"lag $\tau$ [%s]" % self.lag_units,
              +                horizontalalignment="center",
              +                fontsize=self.label_fontsize,
              +            )
               
                       if self.lag_array is not None:
                           assert self.lag_array.shape == np.arange(self.tau_max + 1).shape
                           for ij in list(self.axes_dict):
                               i = ij[0]
                               j = ij[1]
              -                self.axes_dict[(i, j)].set_xticklabels(self.lag_array[::self.x_base])
              +                self.axes_dict[(i, j)].set_xticklabels(self.lag_array[:: self.x_base])
               
                       if name is not None:
                           self.fig.savefig(name)
              @@ -741,448 +837,747 @@ 

              Source code for tigramite.plotting

               
               
               def _draw_network_with_curved_edges(
              -    fig, ax,
              -    G, pos,
              +    fig,
              +    ax,
              +    G,
              +    pos,
                   node_rings,
              -    node_labels, node_label_size, node_alpha=1., standard_size=100,
              -    standard_cmap='OrRd', standard_color='lightgrey', log_sizes=False,
              -    cmap_links='YlOrRd', cmap_links_edges='YlOrRd', links_vmin=0.,
              -    links_vmax=1., links_edges_vmin=0., links_edges_vmax=1.,
              -    links_ticks=.2, links_edges_ticks=.2, link_label_fontsize=8,
              -    arrowstyle='simple', arrowhead_size=3., curved_radius=.2, label_fontsize=4,
              -    label_fraction=.5, link_colorbar_label='link',
              +    node_labels,
              +    node_label_size,
              +    node_alpha=1.0,
              +    standard_size=100,
              +    node_aspect=None,
              +    standard_cmap="OrRd",
              +    standard_color="lightgrey",
              +    log_sizes=False,
              +    cmap_links="YlOrRd",
              +    cmap_links_edges="YlOrRd",
              +    links_vmin=0.0,
              +    links_vmax=1.0,
              +    links_edges_vmin=0.0,
              +    links_edges_vmax=1.0,
              +    links_ticks=0.2,
              +    links_edges_ticks=0.2,
              +    link_label_fontsize=8,
              +    arrowstyle="->, head_width=0.4, head_length=1",
              +    arrowhead_size=3.0,
              +    curved_radius=0.2,
              +    label_fontsize=4,
              +    label_fraction=0.5,
              +    link_colorbar_label="link",
                   # link_edge_colorbar_label='link_edge',
              -    inner_edge_curved=False, inner_edge_style='solid',
              -    network_lower_bound=0.2, show_colorbar=True,
              -    ):
              +    inner_edge_curved=False,
              +    inner_edge_style="solid",
              +    network_lower_bound=0.2,
              +    show_colorbar=True,
              +):
                   """Function to draw a network from networkx graph instance.
              -
                   Various attributes are used to specify the graph's properties.
              -
                   This function is just a beta-template for now that can be further
                   customized.
                   """
               
              -    from matplotlib.patches import FancyArrowPatch, Circle, Ellipse
              +    from matplotlib.patches import FancyArrowPatch, Circle, Ellipse
               
              -    ax.spines['left'].set_color('none')
              -    ax.spines['right'].set_color('none')
              -    ax.spines['bottom'].set_color('none')
              -    ax.spines['top'].set_color('none')
              +    ax.spines["left"].set_color("none")
              +    ax.spines["right"].set_color("none")
              +    ax.spines["bottom"].set_color("none")
              +    ax.spines["top"].set_color("none")
                   ax.set_xticks([])
                   ax.set_yticks([])
               
                   N = len(G)
               
              -    def draw_edge(ax, u, v, d, seen, arrowstyle='simple', outer_edge=True):
              +    # This fixes a positioning bug in matplotlib.
              +    ax.scatter(0, 0, zorder=-10, alpha=0)
              +
              +    def draw_edge(
              +        ax,
              +        u,
              +        v,
              +        d,
              +        seen,
              +        arrowstyle="->, head_width=0.4, head_length=1",
              +        outer_edge=True,
              +    ):
               
                       # avoiding attribute error raised by changes in networkx
              -        if hasattr(G, 'node'):
              +        if hasattr(G, "node"):
                           # works with networkx 1.10
              -            n1 = G.node[u]['patch']
              -            n2 = G.node[v]['patch']
              +            n1 = G.node[u]["patch"]
              +            n2 = G.node[v]["patch"]
                       else:
                           # works with networkx 2.4
              -            n1 = G.nodes[u]['patch']
              -            n2 = G.nodes[v]['patch']
              +            n1 = G.nodes[u]["patch"]
              +            n2 = G.nodes[v]["patch"]
               
                       if outer_edge:
              -            rad = -1.*curved_radius
              -#            facecolor = d['outer_edge_color']
              -#            edgecolor = d['outer_edge_edgecolor']
              +            rad = -1.0 * curved_radius
                           if cmap_links is not None:
              -                facecolor = data_to_rgb_links.to_rgba(d['outer_edge_color'])
              +                facecolor = data_to_rgb_links.to_rgba(d["outer_edge_color"])
                           else:
              -                if d['outer_edge_color'] is not None:
              -                    facecolor = d['outer_edge_color']
              +                if d["outer_edge_color"] is not None:
              +                    facecolor = d["outer_edge_color"]
                               else:
                                   facecolor = standard_color
               
              -            width = d['outer_edge_width']
              -            alpha = d['outer_edge_alpha']
              +            width = d["outer_edge_width"]
              +            alpha = d["outer_edge_alpha"]
                           if (u, v) in seen:
                               rad = seen.get((u, v))
              -                rad = (rad + np.sign(rad) * 0.1) * -1.
              +                rad = (rad + np.sign(rad) * 0.1) * -1.0
                           arrowstyle = arrowstyle
                           # link_edge = d['outer_edge_edge']
              -            linestyle = 'solid'
              -            linewidth = 0.
              +            linestyle = d.get("outer_edge_style")
               
              -            if d.get('outer_edge_attribute', None) == 'spurious':
              -                facecolor = 'grey'
              +            if d.get("outer_edge_attribute", None) == "spurious":
              +                facecolor = "grey"
               
              -            if d.get('outer_edge_type') in ['<-o', '<--']:
              +            if d.get("outer_edge_type") in ["<-o", "<--", "<-x"]:
                               n1, n2 = n2, n1
               
              -            if d.get('outer_edge_type') in ["o-o", "o--", "--o", "---"]:
              -                arrowstyle = 'simple,head_length=0.0001'
              -            elif d.get('outer_edge_type') == '<->':
              -                arrowstyle = '<->, head_width=0.15, head_length=0.3'
              -                linewidth = 4
              +            if d.get("outer_edge_type") in [
              +                "o-o",
              +                "o--",
              +                "--o",
              +                "---",
              +                "x-x",
              +                "x--",
              +                "--x",
              +                "o-x",
              +                "x-o",
              +            ]:
              +                arrowstyle = "-"
              +                # linewidth = width*factor
              +            elif d.get("outer_edge_type") == "<->":
              +                arrowstyle = "<->, head_width=0.4, head_length=1"
              +                # linewidth = width*factor
              +            elif d.get("outer_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->"]:
              +                arrowstyle = "->, head_width=0.4, head_length=1"
               
                       else:
              -            rad = -1. * inner_edge_curved * curved_radius
              +            rad = -1.0 * inner_edge_curved * curved_radius
                           if cmap_links is not None:
              -                facecolor = data_to_rgb_links.to_rgba(d['inner_edge_color'])
              +                facecolor = data_to_rgb_links.to_rgba(d["inner_edge_color"])
                           else:
              -                if d['inner_edge_color'] is not None:
              -                    facecolor = d['inner_edge_color']
              +                if d["inner_edge_color"] is not None:
              +                    facecolor = d["inner_edge_color"]
                               else:
                                   facecolor = standard_color
               
              -            width = d['inner_edge_width']
              -            alpha = d['inner_edge_alpha']
              -            # if 'oriented' in d and d['oriented']:
              -            #     arrowstyle = arrowstyle
              -            # else:
              -            # link_edge = d['inner_edge_edge']
              -
              -            linestyle = 'solid'
              -            linewidth = 0.
              +            width = d["inner_edge_width"]
              +            alpha = d["inner_edge_alpha"]
               
              -            if d.get('inner_edge_attribute', None) == 'spurious':
              -                facecolor = 'grey'
              -                # linestyle = 'dashed'
              -
              -            if d.get('inner_edge_type') in ['<-o', '<--']:
              +            if d.get("inner_edge_attribute", None) == "spurious":
              +                facecolor = "grey"
              +            if d.get("inner_edge_type") in ["<-o", "<--", "<-x"]:
                               n1, n2 = n2, n1
               
              -            if d.get('inner_edge_type') in ["o-o", "o--", "--o", "---"]:
              -                arrowstyle = 'simple,head_length=0.0001'
              -            elif d.get('inner_edge_type') == '<->':
              -                arrowstyle = '<->, head_width=0.15, head_length=0.3'
              -                linewidth = 4
              -            else:
              -                arrowstyle = arrowstyle
              -
              -
              -        connectionstyle='arc3,rad=%s'
              -
              -        e = FancyArrowPatch(n1.center, n2.center,
              -                            arrowstyle= arrowstyle,
              -                            connectionstyle=connectionstyle % rad,
              -                            mutation_scale=width,
              -                            lw=linewidth,
              -                            alpha=alpha,
              -                            linestyle=linestyle,
              -                            color=facecolor,
              -                            clip_on=False,
              -                            patchA=n1, patchB=n2,
              -                            # zorder=-2
              -                            )
              -        ax.add_patch(e)
              -
              -        radius=np.sqrt(standard_size)*.005
              -        # Transformation found here: https://stackoverflow.com/a/9232513/13011987
              -        x0, y0 = ax.transAxes.transform((0, 0)) # lower left in pixels
              -        x1, y1 = ax.transAxes.transform((1, 1)) # upper right in pixes
              -        dx = x1 - x0
              -        dy = y1 - y0
              -        maxd = max(dx, dy)
              -        width = radius * maxd / dx
              -        height = radius * maxd / dy
              -
              -        circlePath = e.get_path().deepcopy()
              -        vertices = circlePath.vertices
              -        #vertices[:,0] = vertices[:,0] * maxd / dx
              -        #vertices[:,1] = vertices[:,1] * maxd / dy 
              -        m,n = vertices.shape
              -
              -        if "angle3" in connectionstyle or "arc3" in connectionstyle:
              -            vertices = vertices[:int(m/2),:]
              -
              -        #start = n1.center
              -        #end = n2.center
              +            if d.get("inner_edge_type") in [
              +                "o-o",
              +                "o--",
              +                "--o",
              +                "---",
              +                "x-x",
              +                "x--",
              +                "--x",
              +                "o-x",
              +                "x-o",
              +            ]:
              +                arrowstyle = "-"
              +            elif d.get("inner_edge_type") == "<->":
              +                arrowstyle = "<->, head_width=0.4, head_length=1"
              +            elif d.get("inner_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->"]:
              +                arrowstyle = "->, head_width=0.4, head_length=1"
              +
              +            linestyle = d.get("inner_edge_style")
              +
              +        coor1 = n1.center
              +        coor2 = n2.center
              +
              +        marker_size = width ** 2
              +        figuresize = fig.get_size_inches()
              +
              +        e_p = FancyArrowPatch(
              +            coor1,
              +            coor2,
              +            arrowstyle=arrowstyle,
              +            connectionstyle=f"arc3,rad={rad}",
              +            mutation_scale=width,
              +            lw=width / 2,
              +            alpha=alpha,
              +            linestyle=linestyle,
              +            color=facecolor,
              +            clip_on=False,
              +            patchA=n1,
              +            patchB=n2,
              +            shrinkA=0,
              +            shrinkB=0,
              +            zorder=-1,
              +        )
              +
              +        ax.add_artist(e_p)
              +        path = e_p.get_path()
              +        vertices = path.vertices.copy()
              +        m, n = vertices.shape
               
                       start = vertices[0]
                       end = vertices[-1]
               
              -        start_correction = vertices[1]
              -        end_correction = vertices[-2]
              -
              -        start = start + (start_correction-start)*radius*3
              -        end = end + (end_correction-end)*radius*3
              +        # This must be added to avoid rescaling of the plot, when no 'o'
              +        # or 'x' is added to the graph.
              +        ax.scatter(*start, zorder=-10, alpha=0)
               
                       if outer_edge:
              -            if d.get('outer_edge_type') in  ['o->', 'o--']:
              -                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                ax.add_patch(circle_start)
              -
              -            elif d.get('outer_edge_type') in  ['<-o', '--o']:
              -                circle_end = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                ax.add_patch(circle_end)
              -
              -            elif d.get('outer_edge_type') == 'o-o':
              -                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                circle_end = Ellipse(end, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                ax.add_patch(circle_start)
              -                ax.add_patch(circle_end)
              -        else:
              -            if d.get('inner_edge_type') in  ['o->', 'o--']:
              -                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                ax.add_patch(circle_start)
              -
              -            elif d.get('inner_edge_type') in  ['<-o', '--o']:
              -                circle_end = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                ax.add_patch(circle_end)
              +            if d.get("outer_edge_type") in ["o->", "o--"]:
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +            elif d.get("outer_edge_type") == "<-o":
              +                circle_marker_end = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "--o":
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") in ["x--", "x->"]:
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +            elif d.get("outer_edge_type") == "<-x":
              +                circle_marker_end = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "--x":
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "o-o":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "x-x":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "o-x":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "x-o":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
               
              -            elif d.get('inner_edge_type') == 'o-o':
              -                circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                circle_end = Ellipse(end, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3)
              -                ax.add_patch(circle_start)
              -                ax.add_patch(circle_end)
              -
              -        if d['label'] is not None and outer_edge:
              +        else:
              +            if d.get("inner_edge_type") in ["o->", "o--"]:
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +            elif d.get("outer_edge_type") == "<-o":
              +                circle_marker_end = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "--o":
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("inner_edge_type") in ["x--", "x->"]:
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +            elif d.get("outer_edge_type") == "<-x":
              +                circle_marker_end = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("outer_edge_type") == "--x":
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("inner_edge_type") == "o-o":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("inner_edge_type") == "x-x":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("inner_edge_type") == "o-x":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +            elif d.get("inner_edge_type") == "x-o":
              +                circle_marker_start = ax.scatter(
              +                    *start,
              +                    marker="X",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_start)
              +                circle_marker_end = ax.scatter(
              +                    *end,
              +                    marker="o",
              +                    s=marker_size,
              +                    facecolor="w",
              +                    edgecolor=facecolor,
              +                    zorder=1,
              +                )
              +                ax.add_collection(circle_marker_end)
              +
              +        if d["label"] is not None and outer_edge:
                           # Attach labels of lags
                           trans = None  # patch.get_transform()
              -            path = e.get_path()
              +            path = e_p.get_path()
                           verts = path.to_polygons(trans)[0]
                           if len(verts) > 2:
                               label_vert = verts[1, :]
              -                l = d['label']
              +                l = d["label"]
                               string = str(l)
              -                ax.text(label_vert[0], label_vert[1], string,
              -                        fontsize=link_label_fontsize,
              -                        verticalalignment='center',
              -                        horizontalalignment='center')
              +                txt = ax.text(
              +                    label_vert[0],
              +                    label_vert[1],
              +                    string,
              +                    fontsize=link_label_fontsize,
              +                    verticalalignment="center",
              +                    horizontalalignment="center",
              +                    color="w",
              +                    zorder=1,
              +                )
              +                txt.set_path_effects(
              +                    [PathEffects.withStroke(linewidth=2, foreground="k")]
              +                )
               
                       return rad
               
              -    # Fix lower left and upper right corner (networkx unfortunately rescales
              -    # the positions...)
              -    # c = Circle((0, 0), radius=.01, alpha=1., fill=False,
              -    #            linewidth=0., transform=fig.transFigure)
              -    # ax.add_patch(c)
              -    # c = Circle((1, 1), radius=.01, alpha=1., fill=False,
              -    #            linewidth=0., transform=fig.transFigure)
              -    # ax.add_patch(c)
              +    # Collect all edge weights to get color scale
              +    all_links_weights = []
              +    all_links_edge_weights = []
              +    for (u, v, d) in G.edges(data=True):
              +        if u != v:
              +            if d["outer_edge"] and d["outer_edge_color"] is not None:
              +                all_links_weights.append(d["outer_edge_color"])
              +            if d["inner_edge"] and d["inner_edge_color"] is not None:
              +                all_links_weights.append(d["inner_edge_color"])
              +
              +    if cmap_links is not None and len(all_links_weights) > 0:
              +        if links_vmin is None:
              +            links_vmin = np.array(all_links_weights).min()
              +        if links_vmax is None:
              +            links_vmax = np.array(all_links_weights).max()
              +        data_to_rgb_links = pyplot.cm.ScalarMappable(
              +            norm=None, cmap=pyplot.get_cmap(cmap_links)
              +        )
              +        data_to_rgb_links.set_array(np.array(all_links_weights))
              +        data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax)
              +        # Create colorbars for links
              +
              +        # setup colorbar axes.
              +        if show_colorbar:
              +            cax_e = pyplot.axes(
              +                [
              +                    0.55,
              +                    ax.figbox.bounds[1] + 0.02,
              +                    0.4,
              +                    0.025 + (len(all_links_edge_weights) == 0) * 0.035,
              +                ],
              +                frameon=False,
              +            )
              +
              +            cb_e = pyplot.colorbar(
              +                data_to_rgb_links, cax=cax_e, orientation="horizontal"
              +            )
              +            # try:
              +            cb_e.set_ticks(
              +                np.arange(
              +                    _myround(links_vmin, links_ticks, "down"),
              +                    _myround(links_vmax, links_ticks, "up") + links_ticks,
              +                    links_ticks,
              +                )
              +            )
              +            # except:
              +            #     print('no ticks given')
              +
              +            cb_e.outline.remove()
              +            cax_e.set_xlabel(
              +                link_colorbar_label, labelpad=1, fontsize=label_fontsize, zorder=-10
              +            )
               
                   ##
                   # Draw nodes
                   ##
                   node_sizes = np.zeros((len(node_rings), N))
                   for ring in list(node_rings):  # iterate through to get all node sizes
              -        if node_rings[ring]['sizes'] is not None:
              -            node_sizes[ring] = node_rings[ring]['sizes']
              +        if node_rings[ring]["sizes"] is not None:
              +            node_sizes[ring] = node_rings[ring]["sizes"]
              +
                       else:
                           node_sizes[ring] = standard_size
              -
                   max_sizes = node_sizes.max(axis=1)
                   total_max_size = node_sizes.sum(axis=0).max()
                   node_sizes /= total_max_size
                   node_sizes *= standard_size
              -#    print  'node_sizes ', node_sizes
              +
              +    def get_aspect(ax):
              +        # Total figure size
              +        figW, figH = ax.get_figure().get_size_inches()
              +        # print(figW, figH)
              +        # Axis size on figure
              +        _, _, w, h = ax.get_position().bounds
              +        # Ratio of display units
              +        # print(w, h)
              +        disp_ratio = (figH * h) / (figW * w)
              +        # Ratio of data units
              +        # Negative over negative because of the order of subtraction
              +        data_ratio = sub(*ax.get_ylim()) / sub(*ax.get_xlim())
              +        # print(data_ratio, disp_ratio)
              +        return disp_ratio / data_ratio
              +
              +    if node_aspect is None:
              +        node_aspect = get_aspect(ax)
               
                   # start drawing the outer ring first...
                   for ring in list(node_rings)[::-1]:
                       #        print ring
                       # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
                       # or None, 'cmap':string, 'vmin':float or None, 'vmax':float or None}}
              -        if node_rings[ring]['color_array'] is not None:
              -            color_data = node_rings[ring]['color_array']
              -            if node_rings[ring]['vmin'] is not None:
              -                vmin = node_rings[ring]['vmin']
              +        if node_rings[ring]["color_array"] is not None:
              +            color_data = node_rings[ring]["color_array"]
              +            if node_rings[ring]["vmin"] is not None:
              +                vmin = node_rings[ring]["vmin"]
                           else:
              -                vmin = node_rings[ring]['color_array'].min()
              -            if node_rings[ring]['vmax'] is not None:
              -                vmax = node_rings[ring]['vmax']
              +                vmin = node_rings[ring]["color_array"].min()
              +            if node_rings[ring]["vmax"] is not None:
              +                vmax = node_rings[ring]["vmax"]
                           else:
              -                vmax = node_rings[ring]['color_array'].max()
              -            if node_rings[ring]['cmap'] is not None:
              -                cmap = node_rings[ring]['cmap']
              +                vmax = node_rings[ring]["color_array"].max()
              +            if node_rings[ring]["cmap"] is not None:
              +                cmap = node_rings[ring]["cmap"]
                           else:
                               cmap = standard_cmap
                           data_to_rgb = pyplot.cm.ScalarMappable(
              -                norm=None, cmap=pyplot.get_cmap(cmap))
              +                norm=None, cmap=pyplot.get_cmap(cmap)
              +            )
                           data_to_rgb.set_array(color_data)
                           data_to_rgb.set_clim(vmin=vmin, vmax=vmax)
                           colors = [data_to_rgb.to_rgba(color_data[n]) for n in G]
               
              -            if node_rings[ring]['colorbar']:
              +            if node_rings[ring]["colorbar"]:
                               # Create colorbars for nodes
                               # cax_n = pyplot.axes([.8 + ring*0.11,
                               # ax.figbox.bounds[1]+0.05, 0.025, 0.35], frameon=False) #
                               # setup colorbar axes.
                               # setup colorbar axes.
              -                cax_n = pyplot.axes([0.05, ax.figbox.bounds[1] + 0.02 +
              -                                     ring * 0.11,
              -                                     0.4, 0.025 +
              -                                     (len(node_rings) == 1) * 0.035],
              -                                    frameon=False)
              -                cb_n = pyplot.colorbar(
              -                    data_to_rgb, cax=cax_n, orientation='horizontal')
              -                try:
              -                    cb_n.set_ticks(np.arange(_myround(vmin,
              -                                node_rings[ring]['ticks'], 'down'), _myround(
              -                        vmax, node_rings[ring]['ticks'], 'up') +
              -                        node_rings[ring]['ticks'], node_rings[ring]['ticks']))
              -                except:
              -                    print ('no ticks given')
              +                cax_n = pyplot.axes(
              +                    [
              +                        0.05,
              +                        ax.figbox.bounds[1] + 0.02 + ring * 0.11,
              +                        0.4,
              +                        0.025 + (len(node_rings) == 1) * 0.035,
              +                    ],
              +                    frameon=False,
              +                )
              +                cb_n = pyplot.colorbar(data_to_rgb, cax=cax_n, orientation="horizontal")
              +                # try:
              +                cb_n.set_ticks(
              +                    np.arange(
              +                        _myround(vmin, node_rings[ring]["ticks"], "down"),
              +                        _myround(vmax, node_rings[ring]["ticks"], "up")
              +                        + node_rings[ring]["ticks"],
              +                        node_rings[ring]["ticks"],
              +                    )
              +                )
              +                # except:
              +                #     print ('no ticks given')
                               cb_n.outline.remove()
                               # cb_n.set_ticks()
                               cax_n.set_xlabel(
              -                    node_rings[ring]['label'], labelpad=1,
              -                    fontsize=label_fontsize)
              +                    node_rings[ring]["label"], labelpad=1, fontsize=label_fontsize
              +                )
                       else:
                           colors = None
                           vmin = None
                           vmax = None
               
                       for n in G:
              -            # if n==1: print node_sizes[:ring+1].sum(axis=0)[n]
              -
                           if type(node_alpha) == dict:
                               alpha = node_alpha[n]
                           else:
              -                alpha = 1.
              +                alpha = 1.0
               
                           if colors is None:
              -                ax.scatter(pos[n][0], pos[n][1],
              -                           s=node_sizes[:ring + 1].sum(axis=0)[n] ** 2,
              -                           facecolors=standard_color,
              -                           edgecolors=standard_color, alpha=alpha,
              -                           clip_on=False, linewidth=.1, zorder=-ring)
              -            else:
              -                ax.scatter(pos[n][0], pos[n][1],
              -                           s=node_sizes[:ring + 1].sum(axis=0)[n] ** 2,
              -                           facecolors=colors[n], edgecolors='white',
              -                           alpha=alpha,
              -                           clip_on=False, linewidth=.1, zorder=-ring)
              +                c = Ellipse(
              +                    pos[n],
              +                    width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect,
              +                    height=node_sizes[: ring + 1].sum(axis=0)[n],
              +                    clip_on=False,
              +                    facecolor=standard_color,
              +                    edgecolor=standard_color,
              +                    zorder=-ring - 1,
              +                )
               
              -            if ring == 0:
              -                ax.text(pos[n][0], pos[n][1], node_labels[n],
              -                        fontsize=node_label_size,
              -                        horizontalalignment='center',
              -                        verticalalignment='center', alpha=alpha)
              -
              -        if node_rings[ring]['sizes'] is not None:
              -            # Draw reference node as legend
              -            ax.scatter(0., 0., s=node_sizes[:ring + 1].sum(axis=0).max() ** 2,
              -                       alpha=1., facecolors='none', edgecolors='grey',
              -                       clip_on=False, linewidth=.1, zorder=-ring)
              -
              -            if log_sizes:
              -                ax.text(0., 0., '         ' * ring + '%.2f' %
              -                        (np.exp(max_sizes[ring]) - 1.),
              -                        fontsize=node_label_size,
              -                        horizontalalignment='left', verticalalignment='center')
                           else:
              -                ax.text(0., 0., '         ' * ring + '%.2f' % max_sizes[ring],
              -                        fontsize=node_label_size,
              -                        horizontalalignment='left', verticalalignment='center')
              -
              -    ##
              -    # Draw edges of different types
              -    ##
              -    # First draw small circles as anchorpoints of the curved edges
              -    for n in G:
              -        # , transform = ax.transAxes)
              -        size = standard_size*.3
              -        c = Circle(pos[n], radius=size, alpha=0., fill=False, linewidth=0., zorder=1)
              -        ax.add_patch(c)
              -
              -        # avoiding attribute error raised by changes in networkx
              -        if hasattr(G, 'node'):
              -            # works with networkx 1.10
              -            G.node[n]['patch'] = c
              -        else:
              -            # works with networkx 2.4
              -            G.nodes[n]['patch'] = c
              -
              -    # Collect all edge weights to get color scale
              -    all_links_weights = []
              -    all_links_edge_weights = []
              -    for (u, v, d) in G.edges(data=True):
              -        if u != v:
              -            if d['outer_edge'] and d['outer_edge_color'] is not None:
              -                all_links_weights.append(d['outer_edge_color'])
              -            if d['inner_edge'] and d['inner_edge_color'] is not None:
              -                all_links_weights.append(d['inner_edge_color'])
              -            # if d['outer_edge_edge'] and d['outer_edge_edgecolor'] is not None:
              -            #     all_links_edge_weights.append(d['outer_edge_edgecolor'])
              -            # if d['inner_edge_edge'] and d['inner_edge_edgecolor'] is not None:
              -            #     all_links_edge_weights.append(d['inner_edge_edgecolor'])
              -
              -    if cmap_links is not None and len(all_links_weights) > 0:
              -        if links_vmin is None:
              -            links_vmin = np.array(all_links_weights).min()
              -        if links_vmax is None:
              -            links_vmax = np.array(all_links_weights).max()
              -        data_to_rgb_links = pyplot.cm.ScalarMappable(
              -            norm=None, cmap=pyplot.get_cmap(cmap_links))
              -        data_to_rgb_links.set_array(np.array(all_links_weights))
              -        data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax)
              -        # Create colorbars for links
              -
              -        # setup colorbar axes.
              -        if show_colorbar:
              -            cax_e = pyplot.axes([0.55, ax.figbox.bounds[1] + 0.02, 0.4, 0.025 +
              -                                 (len(all_links_edge_weights) == 0) * 0.035],
              -                                frameon=False)
              -
              -            cb_e = pyplot.colorbar(
              -                data_to_rgb_links, cax=cax_e, orientation='horizontal')
              -            try:
              -                cb_e.set_ticks(np.arange(_myround(links_vmin, links_ticks, 'down'),
              -                                         _myround(links_vmax, links_ticks, 'up') +
              -                                         links_ticks, links_ticks))
              -            except:
              -                print ('no ticks given')
              +                c = Ellipse(
              +                    pos[n],
              +                    width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect,
              +                    height=node_sizes[: ring + 1].sum(axis=0)[n],
              +                    clip_on=False,
              +                    facecolor=colors[n],
              +                    edgecolor=colors[n],
              +                    zorder=-ring - 1,
              +                )
              +
              +            ax.add_patch(c)
              +
              +            # avoiding attribute error raised by changes in networkx
              +            if hasattr(G, "node"):
              +                # works with networkx 1.10
              +                G.node[n]["patch"] = c
              +            else:
              +                # works with networkx 2.4
              +                G.nodes[n]["patch"] = c
               
              -            cb_e.outline.remove()
              -            # cb_n.set_ticks()
              -            cax_e.set_xlabel(
              -                link_colorbar_label, labelpad=1, fontsize=label_fontsize)
              +            if ring == 0:
              +                ax.text(
              +                    pos[n][0],
              +                    pos[n][1],
              +                    node_labels[n],
              +                    fontsize=node_label_size,
              +                    horizontalalignment="center",
              +                    verticalalignment="center",
              +                    alpha=1.0,
              +                )
               
                   # Draw edges
                   seen = {}
                   for (u, v, d) in G.edges(data=True):
              +        if d.get("no_links"):
              +            d["inner_edge_alpha"] = 1e-8
              +            d["outer_edge_alpha"] = 1e-8
                       if u != v:
              -            if d['outer_edge']:
              +            if d["outer_edge"]:
                               seen[(u, v)] = draw_edge(ax, u, v, d, seen, arrowstyle, outer_edge=True)
              -            if d['inner_edge']:
              -                # if ('oriented' not in d or d['oriented'] == False) and (v, u) not in seen:
              -                #     seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False)
              -                # elif 'oriented' in d and d['oriented'] == (u,v):
              -                    seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False)
              +            if d["inner_edge"]:
              +                seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False)
               
              -    #pyplot.tight_layout()
                   pyplot.subplots_adjust(bottom=network_lower_bound)
               
              -
              [docs]def plot_graph(val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - sig_thres=None, - link_matrix=None, - save_name=None, - link_colorbar_label='MCI', - node_colorbar_label='auto-MCI', - link_width=None, - link_attribute=None, - node_pos=None, - arrow_linewidth=30., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - vmin_nodes=0, - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='OrRd', - node_size=20, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - link_label_fontsize=6, - lag_array=None, - network_lower_bound=0.2, - show_colorbar=True, - ): - """Creates a network plot. +
              [docs]def plot_graph( + val_matrix=None, + var_names=None, + fig_ax=None, + figsize=None, + sig_thres=None, + link_matrix=None, + save_name=None, + link_colorbar_label="MCI", + node_colorbar_label="auto-MCI", + link_width=None, + link_attribute=None, + node_pos=None, + arrow_linewidth=10.0, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + vmin_nodes=0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="OrRd", + node_size=0.3, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=10, + alpha=1.0, + node_label_size=10, + link_label_fontsize=10, + lag_array=None, + network_lower_bound=0.2, + show_colorbar=True, + inner_edge_style="dashed", +): + """Creates a network plot. This is still in beta. The network is defined either from True values in link_matrix, or from thresholding the val_matrix with sig_thres. Nodes denote variables, straight links contemporaneous dependencies and curved @@ -1192,7 +1587,6 @@

              Source code for tigramite.plotting

                   dependency in order of absolute magnitude. The network can also be plotted
                   over a map drawn before on the same axis. Then the node positions can be
                   supplied in appropriate axis coordinates via node_pos.
              -
                   Parameters
                   ----------
                   val_matrix : array_like
              @@ -1242,11 +1636,13 @@ 

              Source code for tigramite.plotting

                       Node tick mark interval.
                   cmap_nodes : str, optional (default: 'OrRd')
                       Colormap for links.
              -    node_size : int, optional (default: 20)
              +    node_size : int, optional (default: 0.3)
                       Node size.
              +    node_aspect : float, optional (default: None)
              +        Ratio between the heigth and width of the varible nodes.
                   arrowhead_size : int, optional (default: 20)
                       Size of link arrow head. Passed on to FancyArrowPatch object.
              -    curved_radius : float, optional (default: 0.2)
              +    curved_radius, float, optional (default: 0.2)
                       Curvature of links. Passed on to FancyArrowPatch object.
                   label_fontsize : int, optional (default: 10)
                       Fontsize of colorbar labels.
              @@ -1270,12 +1666,26 @@ 

              Source code for tigramite.plotting

                   else:
                       fig, ax = fig_ax
               
              -    (link_matrix, val_matrix, link_width, link_attribute) = \
              -            _check_matrices(link_matrix, val_matrix, link_width, link_attribute)
              +    (link_matrix, val_matrix, link_width, link_attribute) = _check_matrices(
              +        link_matrix, val_matrix, link_width, link_attribute
              +    )
               
                   N, N, dummy = val_matrix.shape
                   tau_max = dummy - 1
               
              +    if np.count_nonzero(link_matrix != "") == np.count_nonzero(
              +        np.diagonal(link_matrix) != ""
              +    ):
              +        diagonal = True
              +    else:
              +        diagonal = False
              +
              +    if np.count_nonzero(link_matrix == "") == link_matrix.size or diagonal:
              +        link_matrix[0, 1, 0] = "---"
              +        no_links = True
              +    else:
              +        no_links = False
              +
                   if var_names is None:
                       var_names = range(N)
               
              @@ -1286,17 +1696,21 @@ 

              Source code for tigramite.plotting

                   # Only draw link in one direction among contemp
                   # Remove lower triangle
                   link_matrix_upper = np.copy(link_matrix)
              -    link_matrix_upper[:,:,0] = np.triu(link_matrix_upper[:,:,0])
              +    link_matrix_upper[:, :, 0] = np.triu(link_matrix_upper[:, :, 0])
               
                   # net = _get_absmax(link_matrix != "")
                   net = np.any(link_matrix_upper != "", axis=2)
                   G = nx.DiGraph(net)
               
              +    # This handels Graphs with no links.
              +    # nx.draw(G, alpha=0, zorder=-10)
              +
                   node_color = np.zeros(N)
                   # list of all strengths for color map
                   all_strengths = []
                   # Add attributes, contemporaneous and lagged links are handled separately
                   for (u, v, dic) in G.edges(data=True):
              +        dic["no_links"] = no_links
                       # average lagfunc for link u --> v ANDOR u -- v
                       if tau_max > 0:
                           # argmax of absolute maximum
              @@ -1314,14 +1728,10 @@ 

              Source code for tigramite.plotting

                           #                       sig_thres[u, v][0]) or
                           #                      (np.abs(val_matrix[v, u][0]) >=
                           #                       sig_thres[v, u][0]))
              -
              -
              -            dic['inner_edge'] = link_matrix_upper[u,v,0]
              -            
              -            dic['inner_edge_type'] = link_matrix_upper[u,v, 0]
              -
              -            dic['inner_edge_alpha'] = alpha
              -            dic['inner_edge_color'] = val_matrix[u, v, 0]
              +            dic["inner_edge"] = link_matrix_upper[u, v, 0]
              +            dic["inner_edge_type"] = link_matrix_upper[u, v, 0]
              +            dic["inner_edge_alpha"] = alpha
              +            dic["inner_edge_color"] = val_matrix[u, v, 0]
                           # # value at argmax of average
                           # if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001:
                           #     print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % (
              @@ -1334,72 +1744,70 @@ 

              Source code for tigramite.plotting

                           #                    val_matrix[v, u][0]]]])).squeeze()
               
                           if link_width is None:
              -                dic['inner_edge_width'] = arrow_linewidth
              +                dic["inner_edge_width"] = arrow_linewidth
                           else:
              -                dic['inner_edge_width'] = link_width[
              -                    u, v, 0] / link_width.max() * arrow_linewidth
              +                dic["inner_edge_width"] = (
              +                    link_width[u, v, 0] / link_width.max() * arrow_linewidth
              +                )
               
                           if link_attribute is None:
              -                dic['inner_edge_attribute'] = None
              +                dic["inner_edge_attribute"] = None
                           else:
              -                dic['inner_edge_attribute'] =  link_attribute[
              -                                                u, v, 0]
              +                dic["inner_edge_attribute"] = link_attribute[u, v, 0]
               
                           #     # fraction of nonzero values
              -            dic['inner_edge_style'] = 'solid'
              +            dic["inner_edge_style"] = "solid"
                           # else:
                           # dic['inner_edge_style'] = link_style[
                           #         u, v, 0]
               
              -            all_strengths.append(dic['inner_edge_color'])
              +            all_strengths.append(dic["inner_edge_color"])
               
                           if tau_max > 0:
                               # True if ensemble mean at lags > 0 is nonzero
                               # dic['outer_edge'] = np.any(
                               #     np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:])
              -                dic['outer_edge'] = np.any(link_matrix_upper[u,v,1:] != "")
              +                dic["outer_edge"] = np.any(link_matrix_upper[u, v, 1:] != "")
                           else:
              -                dic['outer_edge'] = False
              -
              -            dic['outer_edge_type'] = link_matrix_upper[u,v, argmax]
              +                dic["outer_edge"] = False
               
              +            dic["outer_edge_type"] = link_matrix_upper[u, v, argmax]
               
              -            dic['outer_edge_alpha'] = alpha
              +            dic["outer_edge_alpha"] = alpha
                           if link_width is None:
                               # fraction of nonzero values
              -                dic['outer_edge_width'] = arrow_linewidth
              +                dic["outer_edge_width"] = arrow_linewidth
                           else:
              -                dic['outer_edge_width'] = link_width[
              -                    u, v, argmax] / link_width.max() * arrow_linewidth
              +                dic["outer_edge_width"] = (
              +                    link_width[u, v, argmax] / link_width.max() * arrow_linewidth
              +                )
               
                           if link_attribute is None:
                               # fraction of nonzero values
              -                dic['outer_edge_attribute'] = None
              +                dic["outer_edge_attribute"] = None
                           else:
              -                dic['outer_edge_attribute'] = link_attribute[
              -                    u, v, argmax]
              +                dic["outer_edge_attribute"] = link_attribute[u, v, argmax]
               
                           # value at argmax of average
              -            dic['outer_edge_color'] = val_matrix[u, v][argmax]
              -            all_strengths.append(dic['outer_edge_color'])
              +            dic["outer_edge_color"] = val_matrix[u, v][argmax]
              +            all_strengths.append(dic["outer_edge_color"])
               
                           # Sorted list of significant lags (only if robust wrt
                           # d['min_ensemble_frac'])
                           if tau_max > 0:
                               lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1
              -                sig_lags = (np.where(link_matrix_upper[u, v,1:]!="")[0] + 1).tolist()
              +                sig_lags = (np.where(link_matrix_upper[u, v, 1:] != "")[0] + 1).tolist()
                           else:
                               lags, sig_lags = [], []
                           if lag_array is not None:
              -                dic['label'] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
              +                dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
                           else:
              -                dic['label'] = str([l for l in lags if l in sig_lags])[1:-1]
              +                dic["label"] = str([l for l in lags if l in sig_lags])[1:-1]
                       else:
                           # Node color is max of average autodependency
                           node_color[u] = val_matrix[u, v][argmax]
              -            dic['inner_edge_attribute'] = None
              -            dic['outer_edge_attribute'] = None
              -
              +            dic["inner_edge_attribute"] = None
              +            dic["outer_edge_attribute"] = None
               
                       # dic['outer_edge_edge'] = False
                       # dic['outer_edge_edgecolor'] = None
              @@ -1408,73 +1816,84 @@ 

              Source code for tigramite.plotting

               
                   # If no links are present, set value to zero
                   if len(all_strengths) == 0:
              -        all_strengths = [0.]
              +        all_strengths = [0.0]
               
                   if node_pos is None:
                       pos = nx.circular_layout(deepcopy(G))
              -#            pos = nx.spring_layout(deepcopy(G))
                   else:
                       pos = {}
                       for i in range(N):
              -            pos[i] = (node_pos['x'][i], node_pos['y'][i])
              +            pos[i] = (node_pos["x"][i], node_pos["y"][i])
               
                   if cmap_nodes is None:
                       node_color = None
               
              -    node_rings = {0: {'sizes': None, 'color_array': node_color,
              -                      'cmap': cmap_nodes, 'vmin': vmin_nodes,
              -                      'vmax': vmax_nodes, 'ticks': node_ticks,
              -                      'label': node_colorbar_label, 'colorbar': show_colorbar,
              -                      }
              -                  }
              +    node_rings = {
              +        0: {
              +            "sizes": None,
              +            "color_array": node_color,
              +            "cmap": cmap_nodes,
              +            "vmin": vmin_nodes,
              +            "vmax": vmax_nodes,
              +            "ticks": node_ticks,
              +            "label": node_colorbar_label,
              +            "colorbar": show_colorbar,
              +        }
              +    }
               
                   _draw_network_with_curved_edges(
              -        fig=fig, ax=ax,
              -        G=deepcopy(G), pos=pos,
              +        fig=fig,
              +        ax=ax,
              +        G=deepcopy(G),
              +        pos=pos,
                       # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
                       # or None, 'cmap':string,
                       node_rings=node_rings,
                       # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
              -        node_labels=var_names, node_label_size=node_label_size,
              -        node_alpha=alpha, standard_size=node_size,
              -        standard_cmap='OrRd', standard_color='orange',
              +        node_labels=var_names,
              +        node_label_size=node_label_size,
              +        node_alpha=alpha,
              +        standard_size=node_size,
              +        node_aspect=node_aspect,
              +        standard_cmap="OrRd",
              +        standard_color="orange",
                       log_sizes=False,
              -        cmap_links=cmap_edges, links_vmin=vmin_edges,
              -        links_vmax=vmax_edges, links_ticks=edge_ticks,
              -
              +        cmap_links=cmap_edges,
              +        links_vmin=vmin_edges,
              +        links_vmax=vmax_edges,
              +        links_ticks=edge_ticks,
                       # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
                       # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
              -
              -        arrowstyle='simple', arrowhead_size=arrowhead_size,
              -        curved_radius=curved_radius, label_fontsize=label_fontsize,
              +        arrowstyle="simple",
              +        arrowhead_size=arrowhead_size,
              +        curved_radius=curved_radius,
              +        label_fontsize=label_fontsize,
                       link_label_fontsize=link_label_fontsize,
                       link_colorbar_label=link_colorbar_label,
                       network_lower_bound=network_lower_bound,
                       show_colorbar=show_colorbar,
                       # label_fraction=label_fraction,
              -        # inner_edge_style=inner_edge_style
              -        )
              +    )
               
              -    # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95)
              -    # savestring = os.path.expanduser(save_name)
                   if save_name is not None:
              -        pyplot.savefig(save_name)
              +        pyplot.savefig(save_name, dpi=300)
                   else:
                       return fig, ax
              + def _reverse_patt(patt): """Inverts a link pattern""" - if patt == '': - return '' + if patt == "": + return "" left_mark, middle_mark, right_mark = patt[0], patt[1], patt[2] - if left_mark == '<': - new_right_mark = '>' + if left_mark == "<": + new_right_mark = ">" else: new_right_mark = left_mark - if right_mark == '>': - new_left_mark = '<' + if right_mark == ">": + new_left_mark = "<" else: new_left_mark = right_mark @@ -1493,92 +1912,126 @@

              Source code for tigramite.plotting

                   # elif patt == '<--':
                   #     return '-->'
               
              -def _check_matrices(link_matrix, val_matrix, link_width, link_attribute):
               
              +def _check_matrices(link_matrix, val_matrix, link_width, link_attribute):
                   if link_matrix is None and (val_matrix is None or sig_thres is None):
              -        raise ValueError("Need to specify either val_matrix together with sig_thres, or link_matrix")
              +        raise ValueError(
              +            "Need to specify either val_matrix together with sig_thres, or link_matrix"
              +        )
               
                   if link_matrix is not None:
                       pass
                   elif link_matrix is None and sig_thres is not None and val_matrix is not None:
                       link_matrix = np.abs(val_matrix) >= sig_thres
                   else:
              -        raise ValueError("Need to specify either val_matrix together with sig_thres, or link_matrix")
              +        raise ValueError(
              +            "Need to specify either val_matrix together with sig_thres, or link_matrix"
              +        )
               
              -    if link_matrix.dtype != '<U3':
              +    if link_matrix.dtype != "<U3":
                       # Transform to new link_matrix data type U3
                       old_matrix = np.copy(link_matrix)
              -        link_matrix = np.zeros(old_matrix.shape, dtype='<U3')
              +        link_matrix = np.zeros(old_matrix.shape, dtype="<U3")
                       link_matrix[:] = ""
                       for i, j, tau in zip(*np.where(old_matrix)):
                           if tau == 0:
              -                if old_matrix[j,i,0] == 0:
              -                    link_matrix[i,j,0] = '-->'
              -                    link_matrix[j,i,0] = '<--'
              +                if old_matrix[j, i, 0] == 0:
              +                    link_matrix[i, j, 0] = "-->"
              +                    link_matrix[j, i, 0] = "<--"
                               else:
              -                    link_matrix[i,j,0] = 'o-o'
              -                    link_matrix[j,i,0] = 'o-o'   
              +                    link_matrix[i, j, 0] = "o-o"
              +                    link_matrix[j, i, 0] = "o-o"
                           else:
              -                link_matrix[i,j,tau] = '-->'
              +                link_matrix[i, j, tau] = "-->"
                   else:
                       # print(link_matrix[:,:,0])
              -        # Assert that link_matrix has valid and consistent lag-zero entries   
              +        # Assert that link_matrix has valid and consistent lag-zero entries
                       for i, j, tau in zip(*np.where(link_matrix)):
              -            if tau == 0:    
              -                if link_matrix[i,j,0] != _reverse_patt(link_matrix[j,i,0]):
              -                    raise ValueError("link_matrix needs to have consistent lag-zero patterns"
              -                                     " (eg link_matrix[i,j,0]='-->' requires link_matrix[j,i,0]='<--')")
              -                if val_matrix is not None and val_matrix[i,j,0] != val_matrix[j,i,0]:
              +            if tau == 0:
              +                if link_matrix[i, j, 0] != _reverse_patt(link_matrix[j, i, 0]):
              +                    raise ValueError(
              +                        "link_matrix needs to have consistent lag-zero patterns (eg"
              +                        " link_matrix[i,j,0]='-->' requires link_matrix[j,i,0]='<--')"
              +                    )
              +                if (
              +                    val_matrix is not None
              +                    and val_matrix[i, j, 0] != val_matrix[j, i, 0]
              +                ):
                                   raise ValueError("val_matrix needs to be symmetric for lag-zero")
              -                if link_width is not None and link_width[i,j,0] != link_width[j,i,0]:
              +                if (
              +                    link_width is not None
              +                    and link_width[i, j, 0] != link_width[j, i, 0]
              +                ):
                                   raise ValueError("link_width needs to be symmetric for lag-zero")
              -                if link_attribute is not None and link_attribute[i,j,0] != link_attribute[j,i,0]:
              -                    raise ValueError("link_attribute needs to be symmetric for lag-zero")
              -                                                                                             
              -            if link_matrix[i, j, tau] not in ['---', 'o--', '--o', 'o-o', 'o->', '<-o', '-->', '<--', '<->']:
              +                if (
              +                    link_attribute is not None
              +                    and link_attribute[i, j, 0] != link_attribute[j, i, 0]
              +                ):
              +                    raise ValueError(
              +                        "link_attribute needs to be symmetric for lag-zero"
              +                    )
              +
              +            if link_matrix[i, j, tau] not in [
              +                "---",
              +                "o--",
              +                "--o",
              +                "o-o",
              +                "o->",
              +                "<-o",
              +                "-->",
              +                "<--",
              +                "<->",
              +                "x-o",
              +                "o-x",
              +                "x--",
              +                "--x",
              +                "x->",
              +                "<-x",
              +                "x-x",
              +            ]:
                               raise ValueError("Invalid link_matrix entry.")
               
                   if val_matrix is None:
              -        val_matrix = (link_matrix != "").astype('int')
              +        val_matrix = (link_matrix != "").astype("int")
               
              -    if link_width is not None and not np.all(link_width >= 0.):
              +    if link_width is not None and not np.all(link_width >= 0.0):
                       raise ValueError("link_width must be non-negative")
               
                   return link_matrix, val_matrix, link_width, link_attribute
               
              +
               
              [docs]def plot_time_series_graph( - link_matrix=None, - val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - sig_thres=None, - link_colorbar_label='MCI', - save_name=None, - link_width=None, - link_attribute=None, - arrow_linewidth=20., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - order=None, - node_size=10, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - label_space_left=0.1, - label_space_top=0., - network_lower_bound=0.2, - inner_edge_style='dashed' - ): + link_matrix=None, + val_matrix=None, + var_names=None, + fig_ax=None, + figsize=None, + sig_thres=None, + link_colorbar_label="MCI", + save_name=None, + link_width=None, + link_attribute=None, + arrow_linewidth=8, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + order=None, + node_size=0.1, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=12, + alpha=1.0, + node_label_size=12, + label_space_left=0.1, + label_space_top=0.0, + network_lower_bound=0.2, + inner_edge_style="dashed", +): """Creates a time series graph. - This is still in beta. The time series graph's links are colored by val_matrix. - Parameters ---------- val_matrix : array_like @@ -1614,11 +2067,13 @@

              Source code for tigramite.plotting

                       Link tick mark interval.
                   cmap_edges : str, optional (default: 'RdBu_r')
                       Colormap for links.
              -    node_size : int, optional (default: 20)
              +    node_size : int, optional (default: 0.1)
                       Node size.
              +    node_aspect : float, optional (default: None)
              +        Ratio between the heigth and width of the varible nodes.
                   arrowhead_size : int, optional (default: 20)
                       Size of link arrow head. Passed on to FancyArrowPatch object.
              -    curved_radius : float, optional (default: 0.2)
              +    curved_radius, float, optional (default: 0.2)
                       Curvature of links. Passed on to FancyArrowPatch object.
                   label_fontsize : int, optional (default: 10)
                       Fontsize of colorbar labels.
              @@ -1644,13 +2099,20 @@ 

              Source code for tigramite.plotting

                   else:
                       fig, ax = fig_ax
               
              -    (link_matrix, val_matrix, link_width, link_attribute) = \
              -            _check_matrices(link_matrix, val_matrix, link_width, link_attribute)
              +    (link_matrix, val_matrix, link_width, link_attribute) = _check_matrices(
              +        link_matrix, val_matrix, link_width, link_attribute
              +    )
               
                   N, N, dummy = link_matrix.shape
                   tau_max = dummy - 1
                   max_lag = tau_max + 1
               
              +    if np.count_nonzero(link_matrix == "") == link_matrix.size:
              +        link_matrix[0, 1, 0] = "---"
              +        no_links = True
              +    else:
              +        no_links = False
              +
                   if var_names is None:
                       var_names = range(N)
               
              @@ -1675,21 +2137,31 @@ 

              Source code for tigramite.plotting

                   # Only draw link in one direction among contemp
                   # Remove lower triangle
                   link_matrix_tsg = np.copy(link_matrix)
              -    link_matrix_tsg[:,:,0] = np.triu(link_matrix[:,:,0])
              +    link_matrix_tsg[:, :, 0] = np.triu(link_matrix[:, :, 0])
               
              -    for i, j, tau in np.column_stack(np.where(link_matrix_tsg)):  
              +    for i, j, tau in np.column_stack(np.where(link_matrix_tsg)):
                       for t in range(max_lag):
              -            if (0 <= translate(i, t - tau) and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag):
              -
              -                tsg[translate(i, t - tau), translate(j, t)] = 1.  #val_matrix[i, j, tau]
              +            if (
              +                0 <= translate(i, t - tau)
              +                and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag
              +            ):
              +
              +                tsg[
              +                    translate(i, t - tau), translate(j, t)
              +                ] = 1.0  # val_matrix[i, j, tau]
                               tsg_val[translate(i, t - tau), translate(j, t)] = val_matrix[i, j, tau]
              -                tsg_style[translate(i, t - tau), translate(j, t)] = link_matrix[i, j, tau]
              +                tsg_style[translate(i, t - tau), translate(j, t)] = link_matrix[
              +                    i, j, tau
              +                ]
                               if link_width is not None:
              -                    tsg_width[translate(i, t - tau), translate(j, t)] = link_width[i, j, tau] / link_width.max() * arrow_linewidth
              +                    tsg_width[translate(i, t - tau), translate(j, t)] = (
              +                        link_width[i, j, tau] / link_width.max() * arrow_linewidth
              +                    )
                               if link_attribute is not None:
              -                    tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[i, j, tau]
              +                    tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[
              +                        i, j, tau
              +                    ]
               
              -    # print(tsg.round(1))
                   G = nx.DiGraph(tsg)
               
                   # node_color = np.zeros(N)
              @@ -1697,152 +2169,170 @@ 

              Source code for tigramite.plotting

                   all_strengths = []
                   # Add attributes, contemporaneous and lagged links are handled separately
                   for (u, v, dic) in G.edges(data=True):
              -
              +        dic["no_links"] = no_links
                       if u != v:
              +            dic["inner_edge"] = False
              +            dic["outer_edge"] = True
               
              -            dic['inner_edge'] = False
              -            dic['outer_edge'] = True
              +            dic["outer_edge_type"] = tsg_style[u, v]
               
              -            dic['outer_edge_type'] = tsg_style[u,v]
              -
              -            dic['outer_edge_alpha'] = alpha
              +            dic["outer_edge_alpha"] = alpha
               
                           if link_width is None:
                               # fraction of nonzero values
              -                dic['outer_edge_width'] = dic['inner_edge_width'] = arrow_linewidth
              +                dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth
                           else:
              -                dic['outer_edge_width'] = dic['inner_edge_width'] = tsg_width[u,v]
              +                dic["outer_edge_width"] = dic["inner_edge_width"] = tsg_width[u, v]
               
                           if link_attribute is None:
              -                dic['outer_edge_attribute'] = None
              +                dic["outer_edge_attribute"] = None
                           else:
              -                dic['outer_edge_attribute'] = tsg_attr[u,v]
              -            
              +                dic["outer_edge_attribute"] = tsg_attr[u, v]
              +
                           # value at argmax of average
              -            dic['outer_edge_color'] = tsg_val[u, v]
              +            dic["outer_edge_color"] = tsg_val[u, v]
               
              -            all_strengths.append(dic['outer_edge_color'])
              -            dic['label'] = None
              +            all_strengths.append(dic["outer_edge_color"])
              +            dic["label"] = None
               
                   # If no links are present, set value to zero
                   if len(all_strengths) == 0:
              -        all_strengths = [0.]
              +        all_strengths = [0.0]
               
                   posarray = np.zeros((N * max_lag, 2))
                   for i in range(N * max_lag):
              -
              -        posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
              +        posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)])
               
                   pos_tmp = {}
                   for i in range(N * max_lag):
                       # for n in range(N):
                       #     for tau in range(max_lag):
                       #         i = n*N + tau
              -        pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
              -                                  (posarray.max(axis=0)[0] -
              -                                   posarray.min(axis=0)[0]),
              -                                  ((1. - i // max_lag) -
              -                                   posarray.min(axis=0)[1]) /
              -                                  (posarray.max(axis=0)[1] -
              -                                   posarray.min(axis=0)[1])])
              -        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.
              +        pos_tmp[i] = np.array(
              +            [
              +                ((i % max_lag) - posarray.min(axis=0)[0])
              +                / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]),
              +                ((1.0 - i // max_lag) - posarray.min(axis=0)[1])
              +                / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]),
              +            ]
              +        )
              +        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0
               
                   pos = {}
                   for n in range(N):
                       for tau in range(max_lag):
                           pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau]
               
              -    node_rings = {0: {'sizes': None, 'color_array': None,
              -                      'label': '', 'colorbar': False,
              -                      }
              -                  }
              +    node_rings = {
              +        0: {"sizes": None, "color_array": None, "label": "", "colorbar": False,}
              +    }
               
              -    # ] for v in range(max_lag)]
              -    node_labels = ['' for i in range(N * max_lag)]
              +    node_labels = ["" for i in range(N * max_lag)]
               
                   _draw_network_with_curved_edges(
              -        fig=fig, ax=ax,
              -        G=deepcopy(G), pos=pos,
              +        fig=fig,
              +        ax=ax,
              +        G=deepcopy(G),
              +        pos=pos,
                       node_rings=node_rings,
              -        node_labels=node_labels, node_label_size=node_label_size,
              -        node_alpha=alpha, standard_size=node_size,
              -        standard_cmap='OrRd', standard_color='lightgrey',
              +        node_labels=node_labels,
              +        node_label_size=node_label_size,
              +        node_alpha=alpha,
              +        standard_size=node_size,
              +        node_aspect=node_aspect,
              +        standard_cmap="OrRd",
              +        standard_color="lightgrey",
                       log_sizes=False,
              -        cmap_links=cmap_edges, links_vmin=vmin_edges,
              -        links_vmax=vmax_edges, links_ticks=edge_ticks,
              -        arrowstyle='simple', arrowhead_size=arrowhead_size,
              -        curved_radius=curved_radius, label_fontsize=label_fontsize,
              -        label_fraction=.5,
              -        link_colorbar_label=link_colorbar_label, inner_edge_curved=True,
              +        cmap_links=cmap_edges,
              +        links_vmin=vmin_edges,
              +        links_vmax=vmax_edges,
              +        links_ticks=edge_ticks,
              +        arrowstyle="simple",
              +        arrowhead_size=arrowhead_size,
              +        curved_radius=curved_radius,
              +        label_fontsize=label_fontsize,
              +        label_fraction=0.5,
              +        link_colorbar_label=link_colorbar_label,
              +        inner_edge_curved=True,
                       network_lower_bound=network_lower_bound,
              -        inner_edge_style=inner_edge_style
              -        )
              +        inner_edge_style=inner_edge_style,
              +    )
               
                   for i in range(N):
              -        trans = transforms.blended_transform_factory(
              -            fig.transFigure, ax.transData)
              -        ax.text(label_space_left, pos[order[i] * max_lag][1],
              -                '%s' % str(var_names[order[i]]), fontsize=label_fontsize,
              -                horizontalalignment='left', verticalalignment='center',
              -                transform=trans)
              +        trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
              +        ax.text(
              +            label_space_left,
              +            pos[order[i] * max_lag][1],
              +            f"{var_names[order[i]]}",
              +            fontsize=label_fontsize,
              +            horizontalalignment="left",
              +            verticalalignment="center",
              +            transform=trans,
              +        )
               
                   for tau in np.arange(max_lag - 1, -1, -1):
              -        trans = transforms.blended_transform_factory(
              -            ax.transData, fig.transFigure)
              +        trans = transforms.blended_transform_factory(ax.transData, fig.transFigure)
                       if tau == max_lag - 1:
              -            ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
              -                    fontsize=int(label_fontsize*0.7),
              -                    horizontalalignment='center',
              -                    verticalalignment='top', transform=trans)
              +            ax.text(
              +                pos[tau][0],
              +                1.0 - label_space_top,
              +                r"$t$",
              +                fontsize=int(label_fontsize * 0.8),
              +                horizontalalignment="center",
              +                verticalalignment="top",
              +                transform=trans,
              +            )
                       else:
              -            ax.text(pos[tau][0], 1.-label_space_top,
              -                    r'$t-%s$' % str(max_lag - tau - 1),
              -                    fontsize=int(label_fontsize*0.7),
              -                    horizontalalignment='center', verticalalignment='top',
              -                    transform=trans)
              +            ax.text(
              +                pos[tau][0],
              +                1.0 - label_space_top,
              +                r"$t-%s$" % str(max_lag - tau - 1),
              +                fontsize=int(label_fontsize * 0.8),
              +                horizontalalignment="center",
              +                verticalalignment="top",
              +                transform=trans,
              +            )
               
              -    # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
              -    # savestring = os.path.expanduser(save_name)
                   if save_name is not None:
                       pyplot.savefig(save_name, dpi=300)
                   else:
                       return fig, ax
              +
              [docs]def plot_mediation_time_series_graph( - path_node_array, - tsg_path_val_matrix, - var_names=None, - fig_ax=None, - figsize=None, - link_colorbar_label='link coeff. (edge color)', - node_colorbar_label='MCE (node color)', - save_name=None, - link_width=None, - arrow_linewidth=20., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - order=None, - vmin_nodes=-1., - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='RdBu_r', - node_size=10, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - label_space_left=0.1, - label_space_top=0., - network_lower_bound=0.2 - ): + path_node_array, + tsg_path_val_matrix, + var_names=None, + fig_ax=None, + figsize=None, + link_colorbar_label="link coeff. (edge color)", + node_colorbar_label="MCE (node color)", + save_name=None, + link_width=None, + arrow_linewidth=8, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + order=None, + vmin_nodes=-1.0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="RdBu_r", + node_size=0.1, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=12, + alpha=1.0, + node_label_size=12, + label_space_left=0.1, + label_space_top=0.0, + network_lower_bound=0.2, +): """Creates a mediation time series graph plot. - This is still in beta. The time series graph's links are colored by val_matrix. - Parameters ---------- tsg_path_val_matrix : array_like @@ -1884,11 +2374,13 @@

              Source code for tigramite.plotting

                       Node tick mark interval.
                   cmap_nodes : str, optional (default: 'OrRd')
                       Colormap for links.
              -    node_size : int, optional (default: 20)
              +    node_size : int, optional (default: 0.1)
                       Node size.
              +    node_aspect : float, optional (default: None)
              +        Ratio between the heigth and width of the varible nodes.
                   arrowhead_size : int, optional (default: 20)
                       Size of link arrow head. Passed on to FancyArrowPatch object.
              -    curved_radius : float, optional (default: 0.2)
              +    curved_radius, float, optional (default: 0.2)
                       Curvature of links. Passed on to FancyArrowPatch object.
                   label_fontsize : int, optional (default: 10)
                       Fontsize of colorbar labels.
              @@ -1918,7 +2410,7 @@ 

              Source code for tigramite.plotting

                   else:
                       fig, ax = fig_ax
               
              -    if link_width is not None and not np.all(link_width >= 0.):
              +    if link_width is not None and not np.all(link_width >= 0.0):
                       raise ValueError("link_width must be non-negative")
               
                   if order is None:
              @@ -1930,6 +2422,19 @@ 

              Source code for tigramite.plotting

                   def translate(row, lag):
                       return row * max_lag + lag
               
              +    if np.count_nonzero(tsg_path_val_matrix) == np.count_nonzero(
              +        np.diagonal(tsg_path_val_matrix)
              +    ):
              +        diagonal = True
              +    else:
              +        diagonal = False
              +
              +    if np.count_nonzero(tsg_path_val_matrix) == tsg_path_val_matrix.size or diagonal:
              +        tsg_path_val_matrix[0, 1] = 1
              +        no_links = True
              +    else:
              +        no_links = False
              +
                   # Define graph links by absolute maximum (positive or negative like for
                   # partial correlation)
                   tsg = tsg_path_val_matrix
              @@ -1942,34 +2447,33 @@ 

              Source code for tigramite.plotting

                   all_strengths = []
                   # Add attributes, contemporaneous and lagged links are handled separately
                   for (u, v, dic) in G.edges(data=True):
              -
              -        dic['outer_edge_attribute'] = None
              +        dic["no_links"] = no_links
              +        dic["outer_edge_attribute"] = None
               
                       if u != v:
               
                           if u % max_lag == v % max_lag:
              -                dic['inner_edge'] = True
              -                dic['outer_edge'] = False
              +                dic["inner_edge"] = True
              +                dic["outer_edge"] = False
                           else:
              -                dic['inner_edge'] = False
              -                dic['outer_edge'] = True
              +                dic["inner_edge"] = False
              +                dic["outer_edge"] = True
               
              -            dic['inner_edge_alpha'] = alpha
              -            dic['inner_edge_color'] = _get_absmax(
              -                np.array([[[tsg[u, v],
              -                               tsg[v, u]]]])
              +            dic["inner_edge_alpha"] = alpha
              +            dic["inner_edge_color"] = _get_absmax(
              +                np.array([[[tsg[u, v], tsg[v, u]]]])
                           ).squeeze()
              -            dic['inner_edge_width'] = arrow_linewidth
              -            all_strengths.append(dic['inner_edge_color'])
              +            dic["inner_edge_width"] = arrow_linewidth
              +            all_strengths.append(dic["inner_edge_color"])
               
              -            dic['outer_edge_alpha'] = alpha
              +            dic["outer_edge_alpha"] = alpha
               
              -            dic['outer_edge_width'] = arrow_linewidth
              +            dic["outer_edge_width"] = arrow_linewidth
               
                           # value at argmax of average
              -            dic['outer_edge_color'] = tsg[u, v]
              -            all_strengths.append(dic['outer_edge_color'])
              -            dic['label'] = None
              +            dic["outer_edge_color"] = tsg[u, v]
              +            all_strengths.append(dic["outer_edge_color"])
              +            dic["label"] = None
               
                       # dic['outer_edge_edge'] = False
                       # dic['outer_edge_edgecolor'] = None
              @@ -1978,26 +2482,26 @@ 

              Source code for tigramite.plotting

               
                   # If no links are present, set value to zero
                   if len(all_strengths) == 0:
              -        all_strengths = [0.]
              +        all_strengths = [0.0]
               
                   posarray = np.zeros((N * max_lag, 2))
                   for i in range(N * max_lag):
              -
              -        posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
              +        posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)])
               
                   pos_tmp = {}
                   for i in range(N * max_lag):
                       # for n in range(N):
                       #     for tau in range(max_lag):
                       #         i = n*N + tau
              -        pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
              -                                  (posarray.max(axis=0)[0] -
              -                                   posarray.min(axis=0)[0]),
              -                                  ((1. - i // max_lag) -
              -                                   posarray.min(axis=0)[1]) /
              -                                  (posarray.max(axis=0)[1] -
              -                                   posarray.min(axis=0)[1])])
              -        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.
              +        pos_tmp[i] = np.array(
              +            [
              +                ((i % max_lag) - posarray.min(axis=0)[0])
              +                / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]),
              +                ((1.0 - i // max_lag) - posarray.min(axis=0)[1])
              +                / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]),
              +            ]
              +        )
              +        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0
               
                   pos = {}
                   for n in range(N):
              @@ -2006,70 +2510,96 @@ 

              Source code for tigramite.plotting

               
                   node_color = np.zeros(N * max_lag)
                   for inet, n in enumerate(range(0, N * max_lag, max_lag)):
              -        node_color[n:n+max_lag] = path_node_array[inet]
              +        node_color[n : n + max_lag] = path_node_array[inet]
               
                   # node_rings = {0: {'sizes': None, 'color_array': color_array,
                   #                   'label': '', 'colorbar': False,
                   #                   }
                   #               }
               
              -    node_rings = {0: {'sizes': None, 'color_array': node_color,
              -                    'cmap': cmap_nodes, 'vmin': vmin_nodes,
              -                    'vmax': vmax_nodes, 'ticks': node_ticks,
              -                    'label': node_colorbar_label, 'colorbar': True,
              -                    }
              -                }
              +    node_rings = {
              +        0: {
              +            "sizes": None,
              +            "color_array": node_color,
              +            "cmap": cmap_nodes,
              +            "vmin": vmin_nodes,
              +            "vmax": vmax_nodes,
              +            "ticks": node_ticks,
              +            "label": node_colorbar_label,
              +            "colorbar": True,
              +        }
              +    }
               
                   # ] for v in range(max_lag)]
              -    node_labels = ['' for i in range(N * max_lag)]
              +    node_labels = ["" for i in range(N * max_lag)]
               
                   _draw_network_with_curved_edges(
              -        fig=fig, ax=ax,
              -        G=deepcopy(G), pos=pos,
              +        fig=fig,
              +        ax=ax,
              +        G=deepcopy(G),
              +        pos=pos,
                       # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
                       # or None, 'cmap':string,
                       node_rings=node_rings,
                       # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
              -        node_labels=node_labels, node_label_size=node_label_size,
              -        node_alpha=alpha, standard_size=node_size,
              -        standard_cmap='OrRd', standard_color='grey',
              +        node_labels=node_labels,
              +        node_label_size=node_label_size,
              +        node_alpha=alpha,
              +        standard_size=node_size,
              +        node_aspect=node_aspect,
              +        standard_cmap="OrRd",
              +        standard_color="grey",
                       log_sizes=False,
              -        cmap_links=cmap_edges, links_vmin=vmin_edges,
              -        links_vmax=vmax_edges, links_ticks=edge_ticks,
              -
              +        cmap_links=cmap_edges,
              +        links_vmin=vmin_edges,
              +        links_vmax=vmax_edges,
              +        links_ticks=edge_ticks,
                       # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
                       # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
              -
              -        arrowstyle='simple', arrowhead_size=arrowhead_size,
              -        curved_radius=curved_radius, label_fontsize=label_fontsize,
              -        label_fraction=.5,
              -        link_colorbar_label=link_colorbar_label, inner_edge_curved=True,
              +        arrowhead_size=arrowhead_size,
              +        curved_radius=curved_radius,
              +        label_fontsize=label_fontsize,
              +        label_fraction=0.5,
              +        link_colorbar_label=link_colorbar_label,
              +        inner_edge_curved=True,
                       network_lower_bound=network_lower_bound
                       # inner_edge_style=inner_edge_style
              -        )
              +    )
               
                   for i in range(N):
              -        trans = transforms.blended_transform_factory(
              -            fig.transFigure, ax.transData)
              -        ax.text(label_space_left, pos[order[i] * max_lag][1],
              -                '%s' % str(var_names[order[i]]), fontsize=label_fontsize,
              -                horizontalalignment='left', verticalalignment='center',
              -                transform=trans)
              +        trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
              +        ax.text(
              +            label_space_left,
              +            pos[order[i] * max_lag][1],
              +            "%s" % str(var_names[order[i]]),
              +            fontsize=label_fontsize,
              +            horizontalalignment="left",
              +            verticalalignment="center",
              +            transform=trans,
              +        )
               
                   for tau in np.arange(max_lag - 1, -1, -1):
              -        trans = transforms.blended_transform_factory(
              -            ax.transData, fig.transFigure)
              +        trans = transforms.blended_transform_factory(ax.transData, fig.transFigure)
                       if tau == max_lag - 1:
              -            ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
              -                    fontsize=label_fontsize,
              -                    horizontalalignment='center',
              -                    verticalalignment='top', transform=trans)
              +            ax.text(
              +                pos[tau][0],
              +                1.0 - label_space_top,
              +                r"$t$",
              +                fontsize=label_fontsize,
              +                horizontalalignment="center",
              +                verticalalignment="top",
              +                transform=trans,
              +            )
                       else:
              -            ax.text(pos[tau][0], 1.-label_space_top,
              -                    r'$t-%s$' % str(max_lag - tau - 1),
              -                    fontsize=label_fontsize,
              -                    horizontalalignment='center', verticalalignment='top',
              -                    transform=trans)
              +            ax.text(
              +                pos[tau][0],
              +                1.0 - label_space_top,
              +                r"$t-%s$" % str(max_lag - tau - 1),
              +                fontsize=label_fontsize,
              +                horizontalalignment="center",
              +                verticalalignment="top",
              +                transform=trans,
              +            )
               
                   # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
                   # savestring = os.path.expanduser(save_name)
              @@ -2078,38 +2608,39 @@ 

              Source code for tigramite.plotting

                   else:
                       pyplot.show()
              +
              [docs]def plot_mediation_graph( - path_val_matrix, - path_node_array=None, - var_names=None, - fig_ax=None, - figsize=None, - save_name=None, - link_colorbar_label='link coeff. (edge color)', - node_colorbar_label='MCE (node color)', - link_width=None, - node_pos=None, - arrow_linewidth=30., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - vmin_nodes=-1., - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='RdBu_r', - node_size=20, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - lag_array=None, - alpha=1., - node_label_size=10, - link_label_fontsize=6, - network_lower_bound=0.2, - ): + path_val_matrix, + path_node_array=None, + var_names=None, + fig_ax=None, + figsize=None, + save_name=None, + link_colorbar_label="link coeff. (edge color)", + node_colorbar_label="MCE (node color)", + link_width=None, + node_pos=None, + arrow_linewidth=10.0, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + vmin_nodes=-1.0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="RdBu_r", + node_size=0.3, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=10, + lag_array=None, + alpha=1.0, + node_label_size=10, + link_label_fontsize=10, + network_lower_bound=0.2, +): """Creates a network plot visualizing the pathways of a mediation analysis. - This is still in beta. The network is defined from non-zero entries in ``path_val_matrix``. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes @@ -2118,7 +2649,6 @@

              Source code for tigramite.plotting

                   significant dependency in order of absolute magnitude. The network can also
                   be plotted over a map drawn before on the same axis. Then the node positions
                   can be supplied in appropriate axis coordinates via node_pos.
              -
                   Parameters
                   ----------
                   path_val_matrix : array_like
              @@ -2162,11 +2692,13 @@ 

              Source code for tigramite.plotting

                       Node tick mark interval.
                   cmap_nodes : str, optional (default: 'OrRd')
                       Colormap for links.
              -    node_size : int, optional (default: 20)
              +    node_size : int, optional (default: 0.3)
                       Node size.
              +    node_aspect : float, optional (default: None)
              +        Ratio between the heigth and width of the varible nodes.
                   arrowhead_size : int, optional (default: 20)
                       Size of link arrow head. Passed on to FancyArrowPatch object.
              -    curved_radius : float, optional (default: 0.2)
              +    curved_radius, float, optional (default: 0.2)
                       Curvature of links. Passed on to FancyArrowPatch object.
                   label_fontsize : int, optional (default: 10)
                       Fontsize of colorbar labels.
              @@ -2189,19 +2721,30 @@ 

              Source code for tigramite.plotting

                   else:
                       fig, ax = fig_ax
               
              -    if link_width is not None and not np.all(link_width >= 0.):
              +    if link_width is not None and not np.all(link_width >= 0.0):
                       raise ValueError("link_width must be non-negative")
               
                   N, N, dummy = val_matrix.shape
                   tau_max = dummy - 1
               
              +    if np.count_nonzero(val_matrix) == np.count_nonzero(np.diagonal(val_matrix)):
              +        diagonal = True
              +    else:
              +        diagonal = False
              +
              +    if np.count_nonzero(val_matrix) == val_matrix.size or diagonal:
              +        val_matrix[0, 1, 0] = 1
              +        no_links = True
              +    else:
              +        no_links = False
              +
                   if var_names is None:
                       var_names = range(N)
               
                   # Define graph links by absolute maximum (positive or negative like for
                   # partial correlation)
                   # val_matrix[np.abs(val_matrix) < sig_thres] = 0.
              -    link_matrix = val_matrix != 0.
              +    link_matrix = val_matrix != 0.0
                   net = _get_absmax(val_matrix)
                   G = nx.DiGraph(net)
               
              @@ -2210,8 +2753,8 @@ 

              Source code for tigramite.plotting

                   all_strengths = []
                   # Add attributes, contemporaneous and lagged links are handled separately
                   for (u, v, dic) in G.edges(data=True):
              -        dic['outer_edge_attribute'] = None
              -
              +        dic["outer_edge_attribute"] = None
              +        dic["no_links"] = no_links
                       # average lagfunc for link u --> v ANDOR u -- v
                       if tau_max > 0:
                           # argmax of absolute maximum
              @@ -2228,56 +2771,60 @@ 

              Source code for tigramite.plotting

                           #                       sig_thres[u, v][0]) or
                           #                      (np.abs(val_matrix[v, u][0]) >=
                           #                       sig_thres[v, u][0]))
              -            dic['inner_edge'] = (link_matrix[u,v,0] or link_matrix[v,u,0])
              -            dic['inner_edge_alpha'] = alpha
              +            dic["inner_edge"] = link_matrix[u, v, 0] or link_matrix[v, u, 0]
              +            dic["inner_edge_alpha"] = alpha
                           # value at argmax of average
              -            if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001:
              -                print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % (
              -                      u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0]) +
              -                      " due to conditions, finite sample effects or "
              -                      "masking, here edge color = "
              -                      "larger (absolute) value.")
              -            dic['inner_edge_color'] = _get_absmax(
              -                np.array([[[val_matrix[u, v][0],
              -                               val_matrix[v, u][0]]]])).squeeze()
              +            if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > 0.0001:
              +                print(
              +                    "Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f"
              +                    % (u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0])
              +                    + " due to conditions, finite sample effects or "
              +                    "masking, here edge color = "
              +                    "larger (absolute) value."
              +                )
              +            dic["inner_edge_color"] = _get_absmax(
              +                np.array([[[val_matrix[u, v][0], val_matrix[v, u][0]]]])
              +            ).squeeze()
                           if link_width is None:
              -                dic['inner_edge_width'] = arrow_linewidth
              +                dic["inner_edge_width"] = arrow_linewidth
                           else:
              -                dic['inner_edge_width'] = link_width[
              -                    u, v, 0] / link_width.max() * arrow_linewidth
              +                dic["inner_edge_width"] = (
              +                    link_width[u, v, 0] / link_width.max() * arrow_linewidth
              +                )
               
              -            all_strengths.append(dic['inner_edge_color'])
              +            all_strengths.append(dic["inner_edge_color"])
               
                           if tau_max > 0:
                               # True if ensemble mean at lags > 0 is nonzero
                               # dic['outer_edge'] = np.any(
                               #     np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:])
              -                dic['outer_edge'] = np.any(link_matrix[u,v,1:])
              +                dic["outer_edge"] = np.any(link_matrix[u, v, 1:])
                           else:
              -                dic['outer_edge'] = False
              -            dic['outer_edge_alpha'] = alpha
              +                dic["outer_edge"] = False
              +            dic["outer_edge_alpha"] = alpha
                           if link_width is None:
                               # fraction of nonzero values
              -                dic['outer_edge_width'] = arrow_linewidth
              +                dic["outer_edge_width"] = arrow_linewidth
                           else:
              -                dic['outer_edge_width'] = link_width[
              -                    u, v, argmax] / link_width.max() * arrow_linewidth
              +                dic["outer_edge_width"] = (
              +                    link_width[u, v, argmax] / link_width.max() * arrow_linewidth
              +                )
               
                           # value at argmax of average
              -            dic['outer_edge_color'] = val_matrix[u, v][argmax]
              -            all_strengths.append(dic['outer_edge_color'])
              +            dic["outer_edge_color"] = val_matrix[u, v][argmax]
              +            all_strengths.append(dic["outer_edge_color"])
               
                           # Sorted list of significant lags (only if robust wrt
                           # d['min_ensemble_frac'])
                           if tau_max > 0:
                               lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1
              -                sig_lags = (np.where(link_matrix[u, v,1:])[0] + 1).tolist()
              +                sig_lags = (np.where(link_matrix[u, v, 1:])[0] + 1).tolist()
                           else:
                               lags, sig_lags = [], []
                           if lag_array is not None:
              -                dic['label'] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
              +                dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1]
                           else:
              -                dic['label'] = str([l for l in lags if l in sig_lags])[1:-1]
              +                dic["label"] = str([l for l in lags if l in sig_lags])[1:-1]
                       else:
                           # Node color is max of average autodependency
                           node_color[u] = val_matrix[u, v][argmax]
              @@ -2291,48 +2838,61 @@ 

              Source code for tigramite.plotting

                   # print node_color
                   # If no links are present, set value to zero
                   if len(all_strengths) == 0:
              -        all_strengths = [0.]
              +        all_strengths = [0.0]
               
                   if node_pos is None:
                       pos = nx.circular_layout(deepcopy(G))
              -#            pos = nx.spring_layout(deepcopy(G))
              +    #            pos = nx.spring_layout(deepcopy(G))
                   else:
                       pos = {}
                       for i in range(N):
              -            pos[i] = (node_pos['x'][i], node_pos['y'][i])
              -
              -    node_rings = {0: {'sizes': None, 'color_array': node_color,
              -                      'cmap': cmap_nodes, 'vmin': vmin_nodes,
              -                      'vmax': vmax_nodes, 'ticks': node_ticks,
              -                      'label': node_colorbar_label, 'colorbar': True,
              -                      }
              -                  }
              +            pos[i] = (node_pos["x"][i], node_pos["y"][i])
              +
              +    node_rings = {
              +        0: {
              +            "sizes": None,
              +            "color_array": node_color,
              +            "cmap": cmap_nodes,
              +            "vmin": vmin_nodes,
              +            "vmax": vmax_nodes,
              +            "ticks": node_ticks,
              +            "label": node_colorbar_label,
              +            "colorbar": True,
              +        }
              +    }
               
                   _draw_network_with_curved_edges(
              -        fig=fig, ax=ax,
              -        G=deepcopy(G), pos=pos,
              +        fig=fig,
              +        ax=ax,
              +        G=deepcopy(G),
              +        pos=pos,
                       # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
                       # or None, 'cmap':string,
                       node_rings=node_rings,
                       # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
              -        node_labels=var_names, node_label_size=node_label_size,
              -        node_alpha=alpha, standard_size=node_size,
              -        standard_cmap='OrRd', standard_color='orange',
              +        node_labels=var_names,
              +        node_label_size=node_label_size,
              +        node_alpha=alpha,
              +        standard_size=node_size,
              +        node_aspect=node_aspect,
              +        standard_cmap="OrRd",
              +        standard_color="orange",
                       log_sizes=False,
              -        cmap_links=cmap_edges, links_vmin=vmin_edges,
              -        links_vmax=vmax_edges, links_ticks=edge_ticks,
              -
              +        cmap_links=cmap_edges,
              +        links_vmin=vmin_edges,
              +        links_vmax=vmax_edges,
              +        links_ticks=edge_ticks,
                       # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
                       # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
              -
              -        arrowstyle='simple', arrowhead_size=arrowhead_size,
              -        curved_radius=curved_radius, label_fontsize=label_fontsize,
              +        arrowhead_size=arrowhead_size,
              +        curved_radius=curved_radius,
              +        label_fontsize=label_fontsize,
                       link_label_fontsize=link_label_fontsize,
                       link_colorbar_label=link_colorbar_label,
                       network_lower_bound=network_lower_bound,
                       # label_fraction=label_fraction,
                       # inner_edge_style=inner_edge_style
              -        )
              +    )
               
                   # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95)
                   # savestring = os.path.expanduser(save_name)
              @@ -2341,27 +2901,25 @@ 

              Source code for tigramite.plotting

                   else:
                       pyplot.show()
              + # # Functions to plot time series graphs from links including ancestors #
              [docs]def plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None): """Plots TSG that is input in format (N*max_lag, N*max_lag). - - Compared to the tigramite plotting function here links - X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to - visualize the conditioned TSG. + Compared to the tigramite plotting function here links + X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to + visualize the conditioned TSG. """ def varlag2node(var, lag): """Translate from (var, lag) notation to node in TSG. - lag must be <= 0. """ return var * max_lag + lag def node2varlag(node): """Translate from node in TSG to (var, -tau) notation. - Here tau is <= 0. """ var = node // max_lag @@ -2370,7 +2928,6 @@

              Source code for tigramite.plotting

               
                   def _links_to_tsg(link_coeffs, max_lag=None):
                       """Transform link_coeffs to time series graph.
              -
                       TSG is of shape (N*max_lag, N*max_lag).
                       """
                       N = len(link_coeffs)
              @@ -2390,22 +2947,22 @@ 

              Source code for tigramite.plotting

                               tau = abs(lag)
                               coeff = link_props[1]
                               # func = link_props[2]
              -                if coeff != 0.:
              +                if coeff != 0.0:
                                   for t in range(max_lag):
              -                        if (0 <= varlag2node(i, t - tau) and
              -                            varlag2node(i, t - tau) % max_lag
              -                            <= varlag2node(j, t) % max_lag):
              -                            tsg[varlag2node(i, t - tau),
              -                            varlag2node(j, t)] = 1.
              +                        if (
              +                            0 <= varlag2node(i, t - tau)
              +                            and varlag2node(i, t - tau) % max_lag
              +                            <= varlag2node(j, t) % max_lag
              +                        ):
              +                            tsg[varlag2node(i, t - tau), varlag2node(j, t)] = 1.0
               
                       return tsg
               
              -    color_list = ['lightgrey', 'grey', 'black', 'red', 'blue', 'orange']
              +    color_list = ["lightgrey", "grey", "black", "red", "blue", "orange"]
                   listcmap = ListedColormap(color_list)
               
                   N = len(links)
               
              -
                   min_lag_links, max_lag_links = pp._get_minmax_lag(links)
                   max_lag = max_lag_links
               
              @@ -2415,8 +2972,7 @@ 

              Source code for tigramite.plotting

                       max_lag = max(max_lag, abs(anc[1]))
                   if Z is not None:
                       for anc in Z:
              -          max_lag = max(max_lag, abs(anc[1]))
              -
              +            max_lag = max(max_lag, abs(anc[1]))
               
                   if anc_x is not None:
                       for anc in anc_x:
              @@ -2434,46 +2990,45 @@ 

              Source code for tigramite.plotting

               
                   G = nx.DiGraph(tsg)
               
              -    figsize=(3, 3)
              -    link_colorbar_label='MCI'
              -    arrow_linewidth=20.
              -    vmin_edges=-1
              -    vmax_edges=1.
              -    edge_ticks=.4
              -    cmap_edges='RdBu_r'
              -    order=None
              -    node_size=10
              -    arrowhead_size=20
              -    curved_radius=.2
              -    label_fontsize=10
              -    alpha=1.
              -    node_label_size=10
              -    label_space_left=0.1
              -    label_space_top=0.
              -    network_lower_bound=0.2
              -    inner_edge_style='dashed'
              -
              -
              -    node_color = np.ones(N * max_lag) #, dtype = 'object')
              +    figsize = (3, 3)
              +    link_colorbar_label = "MCI"
              +    arrow_linewidth = 20.0
              +    vmin_edges = -1
              +    vmax_edges = 1.0
              +    edge_ticks = 0.4
              +    cmap_edges = "RdBu_r"
              +    order = None
              +    node_size = 10
              +    arrowhead_size = 20
              +    curved_radius = 0.2
              +    label_fontsize = 10
              +    alpha = 1.0
              +    node_label_size = 10
              +    label_space_left = 0.1
              +    label_space_top = 0.0
              +    network_lower_bound = 0.2
              +    inner_edge_style = "dashed"
              +
              +    node_color = np.ones(N * max_lag)  # , dtype = 'object')
                   node_color[:] = 0
               
                   if anc_x is not None:
              -        for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_x]:
              +        for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_x]:
                           node_color[n] = 3
                   if anc_y is not None:
              -        for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_y]:
              +        for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_y]:
                           node_color[n] = 4
                   if anc_xy is not None:
              -        for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_xy]:
              +        for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_xy]:
                           node_color[n] = 5
               
                   for x in X:
              -        node_color[varlag2node(x[0], max_lag-1 + x[1])] = 2
              +        node_color[varlag2node(x[0], max_lag - 1 + x[1])] = 2
                   for y in Y:
              -        node_color[varlag2node(y[0], max_lag-1 + y[1])] = 2
              +        node_color[varlag2node(y[0], max_lag - 1 + y[1])] = 2
                   if Z is not None:
                       for z in Z:
              -            node_color[varlag2node(z[0], max_lag-1 + z[1])] = 1
              +            node_color[varlag2node(z[0], max_lag - 1 + z[1])] = 1
               
                   fig = pyplot.figure(figsize=figsize)
                   ax = fig.add_subplot(111, frame_on=False)
              @@ -2486,247 +3041,155 @@ 

              Source code for tigramite.plotting

                   for (u, v, dic) in G.edges(data=True):
                       if u != v:
                           if tsg[u, v] and tsg[v, u]:
              -                dic['inner_edge'] = True
              -                dic['outer_edge'] = False
              +                dic["inner_edge"] = True
              +                dic["outer_edge"] = False
                           else:
              -                dic['inner_edge'] = False
              -                dic['outer_edge'] = True
              +                dic["inner_edge"] = False
              +                dic["outer_edge"] = True
               
              -            dic['inner_edge_alpha'] = alpha
              -            dic['inner_edge_color'] = tsg[u, v]
              +            dic["inner_edge_alpha"] = alpha
              +            dic["inner_edge_color"] = tsg[u, v]
               
              -            dic['inner_edge_width'] = arrow_linewidth
              -            dic['inner_edge_attribute'] = dic['outer_edge_attribute'] = None
              +            dic["inner_edge_width"] = arrow_linewidth
              +            dic["inner_edge_attribute"] = dic["outer_edge_attribute"] = None
               
              -            all_strengths.append(dic['inner_edge_color'])
              -            dic['outer_edge_alpha'] = alpha
              -            dic['outer_edge_width'] = dic['inner_edge_width'] = arrow_linewidth
              +            all_strengths.append(dic["inner_edge_color"])
              +            dic["outer_edge_alpha"] = alpha
              +            dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth
               
                           # value at argmax of average
              -            dic['outer_edge_color'] = tsg[u, v]
              +            dic["outer_edge_color"] = tsg[u, v]
               
              -            all_strengths.append(dic['outer_edge_color'])
              -            dic['label'] = None
              -
              -        # dic['outer_edge_edge'] = False
              -        # dic['outer_edge_edgecolor'] = None
              -        # dic['inner_edge_edge'] = False
              -        # dic['inner_edge_edgecolor'] = None
              +            all_strengths.append(dic["outer_edge_color"])
              +            dic["label"] = None
               
                   # If no links are present, set value to zero
                   if len(all_strengths) == 0:
              -        all_strengths = [0.]
              +        all_strengths = [0.0]
               
                   posarray = np.zeros((N * max_lag, 2))
                   for i in range(N * max_lag):
              -        posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)])
              +        posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)])
               
                   pos_tmp = {}
                   for i in range(N * max_lag):
              -        pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) /
              -                                  (posarray.max(axis=0)[0] -
              -                                   posarray.min(axis=0)[0]),
              -                                  ((1. - i // max_lag) -
              -                                   posarray.min(axis=0)[1]) /
              -                                  (posarray.max(axis=0)[1] -
              -                                   posarray.min(axis=0)[1])])
              -        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.
              +        pos_tmp[i] = np.array(
              +            [
              +                ((i % max_lag) - posarray.min(axis=0)[0])
              +                / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]),
              +                ((1.0 - i // max_lag) - posarray.min(axis=0)[1])
              +                / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]),
              +            ]
              +        )
              +        pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0
               
                   pos = {}
                   for n in range(N):
                       for tau in range(max_lag):
                           pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau]
               
              -    node_rings = {0: {'sizes': None, 'color_array': node_color,
              -                      'label': '', 'colorbar': False,
              -                      'cmap': listcmap, 'vmin': 0,
              -                      'vmax': len(color_list),
              -                      }
              -                  }
              +    node_rings = {
              +        0: {
              +            "sizes": None,
              +            "color_array": node_color,
              +            "label": "",
              +            "colorbar": False,
              +            "cmap": listcmap,
              +            "vmin": 0,
              +            "vmax": len(color_list),
              +        }
              +    }
               
              -    # ] for v in range(max_lag)]
              -    node_labels = ['' for i in range(N * max_lag)]
              +    node_labels = ["" for i in range(N * max_lag)]
               
                   _draw_network_with_curved_edges(
              -        fig=fig, ax=ax,
              -        G=deepcopy(G), pos=pos,
              +        fig=fig,
              +        ax=ax,
              +        G=deepcopy(G),
              +        pos=pos,
                       # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array
                       # or None, 'cmap':string,
                       node_rings=node_rings,
                       # 'vmin':float or None, 'vmax':float or None, 'label':string or None}}
              -        node_labels=node_labels, node_label_size=node_label_size,
              -        node_alpha=alpha, standard_size=node_size,
              -        standard_cmap='OrRd', standard_color='lightgrey',
              +        node_labels=node_labels,
              +        node_label_size=ode_label_size,
              +        node_alpha=alpha,
              +        standard_size=node_size,
              +        node_aspect=node_aspect,
              +        standard_cmap="OrRd",
              +        standard_color="lightgrey",
                       log_sizes=False,
              -        cmap_links=cmap_edges, links_vmin=vmin_edges,
              -        links_vmax=vmax_edges, links_ticks=edge_ticks,
              -
              -        # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1.,
              -        # links_edges_ticks=.2, link_edge_colorbar_label='link_edge',
              -
              -        arrowstyle='simple', arrowhead_size=arrowhead_size,
              -        curved_radius=curved_radius, label_fontsize=label_fontsize,
              -        label_fraction=.5,
              -        link_colorbar_label=link_colorbar_label, inner_edge_curved=True,
              +        cmap_links=cmap_edges,
              +        links_vmin=vmin_edges,
              +        links_vmax=vmax_edges,
              +        links_ticks=edge_ticks,
              +        arrowstyle="simple",
              +        arrowhead_size=arrowhead_size,
              +        curved_radius=curved_radius,
              +        label_fontsize=label_fontsize,
              +        label_fraction=0.5,
              +        link_colorbar_label=link_colorbar_label,
              +        inner_edge_curved=True,
                       network_lower_bound=network_lower_bound,
              -        inner_edge_style=inner_edge_style, show_colorbar=False,
              -        )
              +        inner_edge_style=inner_edge_style,
              +        show_colorbar=False,
              +    )
               
                   for i in range(N):
              -        trans = transforms.blended_transform_factory(
              -            fig.transFigure, ax.transData)
              -        ax.text(label_space_left, pos[order[i] * max_lag][1],
              -                '%s' % str(var_names[order[i]]), fontsize=label_fontsize,
              -                horizontalalignment='left', verticalalignment='center',
              -                transform=trans)
              +        trans = transforms.blended_transform_factory(fig.transFigure, ax.transData)
              +        ax.text(
              +            label_space_left,
              +            pos[order[i] * max_lag][1],
              +            "%s" % str(var_names[order[i]]),
              +            fontsize=label_fontsize,
              +            horizontalalignment="left",
              +            verticalalignment="center",
              +            transform=trans,
              +        )
               
                   for tau in np.arange(max_lag - 1, -1, -1):
              -        trans = transforms.blended_transform_factory(
              -            ax.transData, fig.transFigure)
              +        trans = transforms.blended_transform_factory(ax.transData, fig.transFigure)
                       if tau == max_lag - 1:
              -            ax.text(pos[tau][0], 1.-label_space_top, r'$t$',
              -                    fontsize=int(label_fontsize*0.7),
              -                    horizontalalignment='center',
              -                    verticalalignment='top', transform=trans)
              +            ax.text(
              +                pos[tau][0],
              +                1.0 - label_space_top,
              +                r"$t$",
              +                fontsize=int(label_fontsize * 0.7),
              +                horizontalalignment="center",
              +                verticalalignment="top",
              +                transform=trans,
              +            )
                       else:
              -            ax.text(pos[tau][0], 1.-label_space_top,
              -                    r'$t-%s$' % str(max_lag - tau - 1),
              -                    fontsize=int(label_fontsize*0.7),
              -                    horizontalalignment='center', verticalalignment='top',
              -                    transform=trans)
              +            ax.text(
              +                pos[tau][0],
              +                1.0 - label_space_top,
              +                r"$t-%s$" % str(max_lag - tau - 1),
              +                fontsize=int(label_fontsize * 0.7),
              +                horizontalalignment="center",
              +                verticalalignment="top",
              +                transform=trans,
              +            )
               
              -    # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9)
              -    # savestring = os.path.expanduser(save_name)
              -#         plt.show()
                   return fig, ax
              -if __name__ == '__main__': +if __name__ == "__main__": - import os - from tigramite.independence_tests import ParCorr - import tigramite.data_processing as pp - # np.random.seed(42) + val_matrix = np.zeros((4, 4, 3)) + # Complete test case + link_matrix = np.zeros(val_matrix.shape) - val_matrix = 2.+np.random.rand(4, 4, 2) + link_matrix[0, 1, 0] = 0 + link_matrix[1, 0, 0] = 1 - # Complete test case - link_matrix = np.zeros(val_matrix.shape, dtype='U3') - - link_matrix[0,1,0] = 'o->' - link_matrix[1,0,0] = '<-o' - link_matrix[1,2,0] = 'o-o' - link_matrix[2,1,0] = 'o-o' - link_matrix[0,2,0] = 'o--' - link_matrix[2,0,0] = '--o' - link_matrix[2,3,0] = '---' - link_matrix[3,2,0] = '---' - link_matrix[1,3,0] = '-->' - link_matrix[3,1,0] = '<--' - - link_matrix[0,2,1] = '<->' - link_matrix[0,0,1] = 'o->' - link_matrix[0,1,1] = '-->' - link_matrix[1,0,1] = 'o->' - - link_width = np.ones(val_matrix.shape) - link_attribute = np.zeros(val_matrix.shape, dtype = 'object') - link_attribute[:] = '' - link_attribute[0,1,0] = 'spurious' - link_attribute[1,0,0] = 'spurious' - - # link_attribute[0,2,1] = 'spurious' - - # link_matrix = np.random.randint(0, 2, size=val_matrix.shape) - - # print(link_matrix[:,:,1]) - print(link_matrix[:,:,0]) - plot_time_series_graph( - # val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - inner_edge_style='dashed', - save_name='tsg_test.pdf', - ) - plot_graph( - # val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - # inner_edge_style='dashed', - save_name='graph_test.pdf', - ) - # pyplot.show() - - # print link_matrix - # data = np.random.randn(100,3) - # mask = np.random.randint(0, 2, size=(100,3)) - # dataframe = pp.DataFrame(data, mask=mask) - - - # data = np.random.randn(100, 3) - # datatime = np.arange(100) - # mask = np.zeros(data.shape) - - # mask[:int(len(data)/2)]=True - - # data[:,0] = -99. - # plot_lagfuncs(val_matrix=val_matrix, - # setup_args={'figsize':(10,10), - # 'label_space_top':0.05, - # 'label_space_left':0.1, - # 'x_base':1, 'y_base':5, - # 'var_names':range(3), - # 'lag_array':np.array(['a%d' % i for i in range(4)])}, - # name='test.pdf', - # ) - - - # plot_timeseries( - # dataframe=dataframe, - # save_name='/home/rung_ja/Downloads/test.pdf', - # fig_axes=None, - # var_units=None, - # time_label='years', - # use_mask=True, - # grey_masked_samples='data', - # data_linewidth=1., - # skip_ticks_data_x=1, - # skip_ticks_data_y=1, - # label_fontsize=8, - # figsize=(3.375, 3.), - # ) - - # lagmat = setup_matrix(3, 3, range(3), lag_units = 'months') - - # lagmat.add_lagfuncs( - # val_matrix=val_matrix, - # # sig_thres=None, - # # link_matrix=link_matrix - # ) - # lagmat.savefig() - - # fig = pyplot.figure(figsize=(4, 3), frameon=False) - # ax = fig.add_subplot(111, frame_on=False) - - """ - plot_graph( - figsize=(3, 3), - val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - save_name='/home/rung_ja/Downloads/test.pdf', - ) - """ + nolinks = np.zeros(link_matrix.shape) + # nolinks[range(4), range(4), 1] = 1 + + plot_time_series_graph(link_matrix=nolinks) + plot_graph(link_matrix=nolinks, save_name=None) + + pyplot.show()
              diff --git a/docs/_sources/index.rst.txt b/docs/_sources/index.rst.txt index 60d44a8e..be82a31d 100644 --- a/docs/_sources/index.rst.txt +++ b/docs/_sources/index.rst.txt @@ -27,9 +27,12 @@ Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996. https://advances.sciencemag.org/content/5/11/eaau4996 -2. J. Runge (2020): Discovering contemporaneous and lagged causal relations -in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685 +2. J. Runge (2020): +Discovering contemporaneous and lagged causal relations in autocorrelated +nonlinear time series datasets. Proceedings of the 36th Conference on +Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, +AUAI Press, 2020. +http://auai.org/uai2020/proceedings/579_main_paper.pdf 3. J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. diff --git a/docs/index.html b/docs/index.html index cd842ff3..48222689 100644 --- a/docs/index.html +++ b/docs/index.html @@ -83,9 +83,12 @@

              TIGRAMITEhttps://advances.sciencemag.org/content/5/11/eaau4996

              -

              2. J. Runge (2020): Discovering contemporaneous and lagged causal relations -in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685

              +

              2. J. Runge (2020): +Discovering contemporaneous and lagged causal relations in autocorrelated +nonlinear time series datasets. Proceedings of the 36th Conference on +Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, +AUAI Press, 2020. +http://auai.org/uai2020/proceedings/579_main_paper.pdf

              3. J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. http://doi.org/10.1038/ncomms9502

              @@ -177,7 +180,7 @@

              different times and a link indicates a conditional dependency that can be interpreted as a causal dependency under certain assumptions (see paper). Assuming stationarity, the links are repeated in time. The parents -\\mathcal{P} of a variable are defined as the set of all nodes +\mathcal{P} of a variable are defined as the set of all nodes with a link towards it (blue and red boxes in Figure).

              The different PCMCI methods estimate causal links by iterative conditional independence testing. PCMCI can be flexibly combined with @@ -196,7 +199,7 @@

              J. Runge, Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685

              +http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf

              @@ -726,8 +729,8 @@

              Further optional parameters are discussed in 1.

              Examples

              >>> import numpy
              ->>> from tigramite.pcmci import PCMCI
              ->>> from tigramite.independence_tests import ParCorr
              +>>> from tigramite.pcmci import PCMCI
              +>>> from tigramite.independence_tests import ParCorr
               >>> import tigramite.data_processing as pp
               >>> numpy.random.seed(7)
               >>> # Example process to play around with
              @@ -738,7 +741,7 @@ 

              2: [((2, -1), 0.8), ((1, -2), -0.6)]} >>> data, _ = pp.var_process(links_coeffs, T=1000) >>> # Data must be array of shape (time, variables) ->>> print data.shape +>>> print (data.shape) (1000, 3) >>> dataframe = pp.DataFrame(data) >>> cond_ind_test = ParCorr() @@ -751,14 +754,14 @@

              -
              -
              Variable 0 has 1 link(s):

              (0 -1): pval = 0.00000 | val = 0.632

              +
              +
              Variable 0 has 1 link(s):

              (0 -1): pval = 0.00000 | val = 0.588

              -
              Variable 1 has 2 link(s):

              (1 -1): pval = 0.00000 | val = 0.653

              -

              (0 -1): pval = 0.00000 | val = 0.444

              +
              Variable 1 has 2 link(s):

              (1 -1): pval = 0.00000 | val = 0.606 +(0 -1): pval = 0.00000 | val = 0.447

              -
              Variable 2 has 2 link(s):

              (2 -1): pval = 0.00000 | val = 0.623

              -

              (1 -2): pval = 0.00000 | val = -0.533

              +
              Variable 2 has 2 link(s):

              (2 -1): pval = 0.00000 | val = 0.618 +(1 -2): pval = 0.00000 | val = -0.499

              @@ -803,7 +806,8 @@

              run_pcmciplus(selected_links=None, tau_min=0, tau_max=1, pc_alpha=0.01, contemp_collider_rule='majority', conflict_resolution=True, reset_lagged_links=False, max_conds_dim=None, max_conds_py=None, max_conds_px=None, max_conds_px_lagged=None, fdr_method='none')[source]

              Runs PCMCIplus time-lagged and contemporaneous causal discovery for time series.

              -

              Method described in 5: https://arxiv.org/abs/2003.03685

              +

              Method described in 5: +http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf

              Notes

              The PCMCIplus causal discovery method is described in 5, where also analytical and numerical results are presented. In contrast to @@ -836,17 +840,17 @@

              4. PC rule orientation phase: Orient remaining contemporaneous links based on PC rules.

              In contrast to PCMCI, the relevant output of PCMCIplus is the -array graph. Its entries are interpreted as follows:

              +array graph. Its string entries are interpreted as follows:

                -
              • graph[i,j,tau]=1 for \tau>0 denotes a directed, lagged +

              • graph[i,j,tau]=--> for \tau>0 denotes a directed, lagged causal link from i to j at lag \tau

              • -
              • graph[i,j,0]=1 and graph[j,i,0]=0 denotes a directed, +

              • graph[i,j,0]=--> (and graph[j,i,0]=<--) denotes a directed, contemporaneous causal link from i to j

              • -
              • graph[i,j,0]=1 and graph[j,i,0]=1 denotes an unoriented, +

              • graph[i,j,0]=o-o (and graph[j,i,0]=o-o) denotes an unoriented, contemporaneous adjacency between i and j indicating that the collider and orientation rules could not be applied (Markov equivalence)

              • -
              • graph[i,j,0]=2 and graph[j,i,0]=2 denotes a conflicting, +

              • graph[i,j,0]=x-x and (graph[j,i,0]=x-x) denotes a conflicting, contemporaneous adjacency between i and j indicating that the directionality is undecided due to conflicting orientation rules

              • @@ -887,9 +891,9 @@

                larger runtimes.

                Further optional parameters are discussed in 5.

                Examples

                -
                >>> import numpy
                ->>> from tigramite.pcmci import PCMCI
                ->>> from tigramite.independence_tests import ParCorr
                +
                >>> import numpy as np
                +>>> from tigramite.pcmci import PCMCI
                +>>> from tigramite.independence_tests import ParCorr
                 >>> import tigramite.data_processing as pp
                 >>> # Example process to play around with
                 >>> # Each key refers to a variable and the incoming links are supplied
                @@ -900,12 +904,10 @@ 

                2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)], 3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)], } ->>> # Specify dynamical noise term distributions ->>> noises = [np.random.randn for j in links.keys()] >>> data, nonstat = pp.structural_causal_process(links, - T=1000, noises=noises, seed=7) + T=1000, seed=7) >>> # Data must be array of shape (time, variables) ->>> print data.shape +>>> print (data.shape) (1000, 4) >>> dataframe = pp.DataFrame(data) >>> cond_ind_test = ParCorr() @@ -916,17 +918,17 @@

                -
                -
                Variable 0 has 1 link(s):

                (0 -1): pval = 0.00000 | val = 0.676

                +
                +
                Variable 0 has 1 link(s):

                (0 -1): pval = 0.00000 | val = 0.676

                -
                Variable 1 has 2 link(s):

                (1 -1): pval = 0.00000 | val = 0.602

                -

                (0 -1): pval = 0.00000 | val = 0.599

                +
                Variable 1 has 2 link(s):

                (1 -1): pval = 0.00000 | val = 0.602 +(0 -1): pval = 0.00000 | val = 0.599

                -
                Variable 2 has 2 link(s):

                (1 0): pval = 0.00000 | val = 0.486

                -

                (2 -1): pval = 0.00000 | val = 0.466

                +
                Variable 2 has 2 link(s):

                (1 0): pval = 0.00000 | val = 0.486 +(2 -1): pval = 0.00000 | val = 0.466

                -
                Variable 3 has 2 link(s):

                (3 -1): pval = 0.00000 | val = 0.524

                -

                (2 0): pval = 0.00000 | val = -0.449

                +
                Variable 3 has 2 link(s):

                (3 -1): pval = 0.00000 | val = 0.524 +(2 0): pval = 0.00000 | val = -0.449

                @@ -1540,7 +1542,7 @@

              Returns
              -

              pval – P-value.

              +

              pval – p-value.

              Return type

              float or numpy.nan

              @@ -2997,9 +2999,9 @@

              Tigramite plotting package.

              -tigramite.plotting.plot_graph(val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_matrix=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=30.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='OrRd', node_size=20, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, link_label_fontsize=6, lag_array=None, network_lower_bound=0.2, show_colorbar=True)[source]
              -

              Creates a network plot.

              -

              This is still in beta. The network is defined either from True values in +tigramite.plotting.plot_graph(val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_matrix=None, save_name=None, link_colorbar_label='MCI', node_colorbar_label='auto-MCI', link_width=None, link_attribute=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='OrRd', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, link_label_fontsize=10, lag_array=None, network_lower_bound=0.2, show_colorbar=True, inner_edge_style='dashed')[source] +

              Creates a network plot. +This is still in beta. The network is defined either from True values in link_matrix, or from thresholding the val_matrix with sig_thres. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes the maximal absolute @@ -3007,16 +3009,22 @@

              absolute cross-dependency. The link label lists the lags with significant dependency in order of absolute magnitude. The network can also be plotted over a map drawn before on the same axis. Then the node positions can be -supplied in appropriate axis coordinates via node_pos.

              +supplied in appropriate axis coordinates via node_pos. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param sig_thres: Matrix of significance thresholds. Must be of same shape as val_matrix.

              +
              +

              Either sig_thres or link_matrix has to be provided.

              +
              Parameters
                -
              • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

              • -
              • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

              • -
              • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

              • -
              • figsize (tuple) – Size of figure.

              • -
              • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as val_matrix. -Either sig_thres or link_matrix has to be provided.

              • link_matrix (bool array-like, optional (default: None)) – Matrix of significant links. Must be of same shape as val_matrix. Either sig_thres or link_matrix has to be provided.

              • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

              • @@ -3037,9 +3045,10 @@

              • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

              • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

              • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

              • -
              • node_size (int, optional (default: 20)) – Node size.

              • +
              • node_size (int, optional (default: 0.3)) – Node size.

              • +
              • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

              • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

              • -
              • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

              • +
              • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

              • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

              • alpha (float, optional (default: 1.)) – Opacity.

              • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

              • @@ -3055,18 +3064,20 @@

                tigramite.plotting.plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={})[source]
                -

                Wrapper helper function to plot lag functions.

                -

                Sets up the matrix object and plots the lagfunction, see parameters in -setup_matrix and add_lagfuncs.

                +

                Wrapper helper function to plot lag functions. +Sets up the matrix object and plots the lagfunction, see parameters in +setup_matrix and add_lagfuncs. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param name: File name. If None, figure is shown in window. +:type name: str, optional (default: None) +:param setup_args: Arguments for setting up the lag function matrix, see doc of

                +
                +

                setup_matrix.

                +
                Parameters
                -
                  -
                • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

                • -
                • name (str, optional (default: None)) – File name. If None, figure is shown in window.

                • -
                • setup_args (dict) – Arguments for setting up the lag function matrix, see doc of -setup_matrix.

                • -
                • add_lagfunc_args (dict) – Arguments for adding a lag function matrix, see doc of add_lagfuncs.

                • -
                +

                add_lagfunc_args (dict) – Arguments for adding a lag function matrix, see doc of add_lagfuncs.

                Returns

                matrix – Further lag functions can be overlaid using the @@ -3080,29 +3091,39 @@

                -tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=30.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=20, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=6, network_lower_bound=0.2)[source]
                -

                Creates a network plot visualizing the pathways of a mediation analysis.

                -

                This is still in beta. The network is defined from non-zero entries in +tigramite.plotting.plot_mediation_graph(path_val_matrix, path_node_array=None, var_names=None, fig_ax=None, figsize=None, save_name=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', link_width=None, node_pos=None, arrow_linewidth=10.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.3, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, lag_array=None, alpha=1.0, node_label_size=10, link_label_fontsize=10, network_lower_bound=0.2)[source] +

                Creates a network plot visualizing the pathways of a mediation analysis. +This is still in beta. The network is defined from non-zero entries in path_val_matrix. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes the mediated causal effect (MCE) and the link color the value at the lag with maximal link coefficient. The link label lists the lags with significant dependency in order of absolute magnitude. The network can also be plotted over a map drawn before on the same axis. Then the node positions -can be supplied in appropriate axis coordinates via node_pos.

                +can be supplied in appropriate axis coordinates via node_pos. +:param path_val_matrix: Matrix of shape (N, N, tau_max+1) containing link weight values. +:type path_val_matrix: array_like +:param path_node_array: Array of shape (N,) containing node values. +:type path_node_array: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param save_name: Name of figure file to save figure. If None, figure is shown in window. +:type save_name: str, optional (default: None) +:param link_colorbar_label: Link colorbar label. +:type link_colorbar_label: str, optional (default: ‘link coeff. (edge color)’) +:param node_colorbar_label: Node colorbar label. +:type node_colorbar_label: str, optional (default: ‘MCE (node color)’) +:param link_width: Array of val_matrix.shape specifying relative link width with maximum

                +
                +

                given by arrow_linewidth. If None, all links have same width.

                +
                Parameters
                  -
                • path_val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing link weight values.

                • -
                • path_node_array (array_like) – Array of shape (N,) containing node values.

                • -
                • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

                • -
                • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

                • -
                • figsize (tuple) – Size of figure.

                • -
                • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

                • -
                • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

                • -
                • node_colorbar_label (str, optional (default: 'MCE (node color)')) – Node colorbar label.

                • -
                • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

                • node_pos (dictionary, optional (default: None)) – Dictionary of node positions in axis coordinates of form node_pos = {‘x’:array of shape (N,), ‘y’:array of shape(N)}. These coordinates could have been transformed before for basemap plots.

                • @@ -3115,9 +3136,10 @@

                • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

                • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

                • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

                • -
                • node_size (int, optional (default: 20)) – Node size.

                • +
                • node_size (int, optional (default: 0.3)) – Node size.

                • +
                • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

                • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

                • -
                • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

                • +
                • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

                • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

                • alpha (float, optional (default: 1.)) – Opacity.

                • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

                • @@ -3131,23 +3153,33 @@

                  -tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=20.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=10, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2)[source]
                  -

                  Creates a mediation time series graph plot.

                  -

                  This is still in beta. The time series graph’s links are colored by -val_matrix.

                  +tigramite.plotting.plot_mediation_time_series_graph(path_node_array, tsg_path_val_matrix, var_names=None, fig_ax=None, figsize=None, link_colorbar_label='link coeff. (edge color)', node_colorbar_label='MCE (node color)', save_name=None, link_width=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, vmin_nodes=-1.0, vmax_nodes=1.0, node_ticks=0.4, cmap_nodes='RdBu_r', node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2)[source] +

                  Creates a mediation time series graph plot. +This is still in beta. The time series graph’s links are colored by +val_matrix. +:param tsg_path_val_matrix: Matrix of shape (N*tau_max, N*tau_max) containing link weight values. +:type tsg_path_val_matrix: array_like +:param path_node_array: Array of shape (N,) containing node values. +:type path_node_array: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param save_name: Name of figure file to save figure. If None, figure is shown in window. +:type save_name: str, optional (default: None) +:param link_colorbar_label: Link colorbar label. +:type link_colorbar_label: str, optional (default: ‘link coeff. (edge color)’) +:param node_colorbar_label: Node colorbar label. +:type node_colorbar_label: str, optional (default: ‘MCE (node color)’) +:param link_width: Array of val_matrix.shape specifying relative link width with maximum

                  +
                  +

                  given by arrow_linewidth. If None, all links have same width.

                  +
                  Parameters
                    -
                  • tsg_path_val_matrix (array_like) – Matrix of shape (N*tau_max, N*tau_max) containing link weight values.

                  • -
                  • path_node_array (array_like) – Array of shape (N,) containing node values.

                  • -
                  • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

                  • -
                  • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

                  • -
                  • figsize (tuple) – Size of figure.

                  • -
                  • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

                  • -
                  • link_colorbar_label (str, optional (default: 'link coeff. (edge color)')) – Link colorbar label.

                  • -
                  • node_colorbar_label (str, optional (default: 'MCE (node color)')) – Node colorbar label.

                  • -
                  • link_width (array-like, optional (default: None)) – Array of val_matrix.shape specifying relative link width with maximum -given by arrow_linewidth. If None, all links have same width.

                  • order (list, optional (default: None)) – order of variables from top to bottom.

                  • arrow_linewidth (float, optional (default: 30)) – Linewidth.

                  • vmin_edges (float, optional (default: -1)) – Link colorbar scale lower bound.

                  • @@ -3158,9 +3190,10 @@

                  • vmax_nodes (float, optional (default: 1)) – Node colorbar scale upper bound.

                  • node_ticks (float, optional (default: 0.4)) – Node tick mark interval.

                  • cmap_nodes (str, optional (default: 'OrRd')) – Colormap for links.

                  • -
                  • node_size (int, optional (default: 20)) – Node size.

                  • +
                  • node_size (int, optional (default: 0.1)) – Node size.

                  • +
                  • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

                  • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

                  • -
                  • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

                  • +
                  • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

                  • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

                  • alpha (float, optional (default: 1.)) – Opacity.

                  • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

                  • @@ -3175,19 +3208,25 @@

                    -tigramite.plotting.plot_time_series_graph(link_matrix=None, val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=20.0, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=10, arrowhead_size=20, curved_radius=0.2, label_fontsize=10, alpha=1.0, node_label_size=10, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, inner_edge_style='dashed')[source]
                    -

                    Creates a time series graph.

                    -

                    This is still in beta. The time series graph’s links are colored by -val_matrix.

                    +tigramite.plotting.plot_time_series_graph(link_matrix=None, val_matrix=None, var_names=None, fig_ax=None, figsize=None, sig_thres=None, link_colorbar_label='MCI', save_name=None, link_width=None, link_attribute=None, arrow_linewidth=8, vmin_edges=-1, vmax_edges=1.0, edge_ticks=0.4, cmap_edges='RdBu_r', order=None, node_size=0.1, node_aspect=None, arrowhead_size=20, curved_radius=0.2, label_fontsize=12, alpha=1.0, node_label_size=12, label_space_left=0.1, label_space_top=0.0, network_lower_bound=0.2, inner_edge_style='dashed')[source] +

                    Creates a time series graph. +This is still in beta. The time series graph’s links are colored by +val_matrix. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param fig_ax: Figure and axes instance. If None they are created. +:type fig_ax: tuple of figure and axis object, optional (default: None) +:param figsize: Size of figure. +:type figsize: tuple +:param sig_thres: Matrix of significance thresholds. Must be of same shape as val_matrix.

                    +
                    +

                    Either sig_thres or link_matrix has to be provided.

                    +
                    Parameters
                      -
                    • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

                    • -
                    • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

                    • -
                    • fig_ax (tuple of figure and axis object, optional (default: None)) – Figure and axes instance. If None they are created.

                    • -
                    • figsize (tuple) – Size of figure.

                    • -
                    • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as val_matrix. -Either sig_thres or link_matrix has to be provided.

                    • link_matrix (bool array-like, optional (default: None)) – Matrix of significant links. Must be of same shape as val_matrix. Either sig_thres or link_matrix has to be provided.

                    • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

                    • @@ -3200,9 +3239,10 @@

                    • vmax_edges (float, optional (default: 1)) – Link colorbar scale upper bound.

                    • edge_ticks (float, optional (default: 0.4)) – Link tick mark interval.

                    • cmap_edges (str, optional (default: 'RdBu_r')) – Colormap for links.

                    • -
                    • node_size (int, optional (default: 20)) – Node size.

                    • +
                    • node_size (int, optional (default: 0.1)) – Node size.

                    • +
                    • node_aspect (float, optional (default: None)) – Ratio between the heigth and width of the varible nodes.

                    • arrowhead_size (int, optional (default: 20)) – Size of link arrow head. Passed on to FancyArrowPatch object.

                    • -
                    • curved_radius (float, optional (default: 0.2)) – Curvature of links. Passed on to FancyArrowPatch object.

                    • +
                    • float, optional (default (curved_radius,) – Curvature of links. Passed on to FancyArrowPatch object.

                    • label_fontsize (int, optional (default: 10)) – Fontsize of colorbar labels.

                    • alpha (float, optional (default: 1.)) – Opacity.

                    • node_label_size (int, optional (default: 10)) – Fontsize of node labels.

                    • @@ -3218,14 +3258,16 @@

                      -tigramite.plotting.plot_timeseries(dataframe=None, save_name=None, fig_axes=None, figsize=None, var_units=None, time_label='time', use_mask=False, grey_masked_samples=False, data_linewidth=1.0, skip_ticks_data_x=1, skip_ticks_data_y=2, label_fontsize=8)[source]
                      -

                      Create and save figure of stacked panels with time series.

                      +tigramite.plotting.plot_timeseries(dataframe=None, save_name=None, fig_axes=None, figsize=None, var_units=None, time_label='time', use_mask=False, grey_masked_samples=False, data_linewidth=1.0, skip_ticks_data_x=1, skip_ticks_data_y=2, label_fontsize=12)[source] +

                      Create and save figure of stacked panels with time series. +:param dataframe: This is the Tigramite dataframe object. It has the attributes

                      +
                      +

                      dataframe.values yielding a np array of shape (observations T, +variables N) and optionally a mask of the same shape.

                      +
                      Parameters
                        -
                      • dataframe (data object, optional) – This is the Tigramite dataframe object. It has the attributes -dataframe.values yielding a np array of shape (observations T, -variables N) and optionally a mask of the same shape.

                      • save_name (str, optional (default: None)) – Name of figure file to save figure. If None, figure is shown in window.

                      • fig_axes (subplots instance, optional (default: None)) – Figure and axes instance. If None they are created as fig, axes = pyplot.subplots(N,…)

                      • @@ -3248,8 +3290,8 @@

                        tigramite.plotting.plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None)[source]
                        -

                        Plots TSG that is input in format (N*max_lag, N*max_lag).

                        -

                        Compared to the tigramite plotting function here links +

                        Plots TSG that is input in format (N*max_lag, N*max_lag). +Compared to the tigramite plotting function here links X^i_{t-tau} –> X^j_t can be missing for different t’. Helpful to visualize the conditioned TSG.

                        @@ -3257,18 +3299,23 @@

                        class tigramite.plotting.setup_matrix(N, tau_max, var_names=None, figsize=None, minimum=-1, maximum=1, label_space_left=0.1, label_space_top=0.05, legend_width=0.15, legend_fontsize=10, x_base=1.0, y_base=0.5, plot_gridlines=False, lag_units='', lag_array=None, label_fontsize=10)[source]
                        -

                        Create matrix of lag function panels.

                        -

                        Class to setup figure object. The function add_lagfuncs(…) allows to plot +

                        Create matrix of lag function panels. +Class to setup figure object. The function add_lagfuncs(…) allows to plot the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be -overlaid for comparison.

                        +overlaid for comparison. +:param N: Number of variables +:type N: int +:param tau_max: Maximum time lag. +:type tau_max: int +:param var_names: List of variable names. If None, range(N) is used. +:type var_names: list, optional (default: None) +:param figsize: Figure size if new figure is created. If None, default pyplot figsize

                        +
                        +

                        is used.

                        +
                        Parameters
                          -
                        • N (int) – Number of variables

                        • -
                        • tau_max (int) – Maximum time lag.

                        • -
                        • var_names (list, optional (default: None)) – List of variable names. If None, range(N) is used.

                        • -
                        • figsize (tuple of floats, optional (default: None)) – Figure size if new figure is created. If None, default pyplot figsize -is used.

                        • minimum (int, optional (default: -1)) – Lower y-axis limit.

                        • maximum (int, optional (default: 1)) – Upper y-axis limit.

                        • label_space_left (float, optional (default: 0.1)) – Fraction of horizontal figure space to allocate left of plot for labels.

                        • @@ -3287,13 +3334,16 @@

                          add_lagfuncs(val_matrix, sig_thres=None, conf_matrix=None, color='black', label=None, two_sided_thres=True, marker='.', markersize=5, alpha=1.0)[source]
                          -

                          Add lag function plot from val_matrix array.

                          +

                          Add lag function plot from val_matrix array. +:param val_matrix: Matrix of shape (N, N, tau_max+1) containing test statistic values. +:type val_matrix: array_like +:param sig_thres: Matrix of significance thresholds. Must be of same shape as

                          +
                          +

                          val_matrix.

                          +
                          Parameters
                            -
                          • val_matrix (array_like) – Matrix of shape (N, N, tau_max+1) containing test statistic values.

                          • -
                          • sig_thres (array-like, optional (default: None)) – Matrix of significance thresholds. Must be of same shape as -val_matrix.

                          • conf_matrix (array-like, optional (default: None)) – Matrix of shape (, N, tau_max+1, 2) containing confidence bounds.

                          • color (str, optional (default: 'black')) – Line color.

                          • label (str) – Test statistic label.

                          • @@ -3309,12 +3359,9 @@

                            savefig(name=None)[source]
                            -

                            Save matrix figure.

                            -
                            -
                            Parameters
                            -

                            name (str, optional (default: None)) – File name. If None, figure is shown in window.

                            -
                            -
                            +

                            Save matrix figure. +:param name: File name. If None, figure is shown in window. +:type name: str, optional (default: None)

                          diff --git a/docs/index.rst b/docs/index.rst index 60d44a8e..be82a31d 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -27,9 +27,12 @@ Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996. https://advances.sciencemag.org/content/5/11/eaau4996 -2. J. Runge (2020): Discovering contemporaneous and lagged causal relations -in autocorrelated nonlinear time series datasets -https://arxiv.org/abs/2003.03685 +2. J. Runge (2020): +Discovering contemporaneous and lagged causal relations in autocorrelated +nonlinear time series datasets. Proceedings of the 36th Conference on +Uncertainty in Artificial Intelligence, UAI 2020,Toronto, Canada, 2019, +AUAI Press, 2020. +http://auai.org/uai2020/proceedings/579_main_paper.pdf 3. J. Runge et al. (2015): Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. diff --git a/docs/searchindex.js b/docs/searchindex.js index 10ebd1dd..7d2439dc 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst"],objects:{"tigramite.data_processing":{DataFrame:[0,1,1,""],Graph:[0,1,1,""],links_to_graph:[0,4,1,""],lowhighpass_filter:[0,4,1,""],ordinal_patt_array:[0,4,1,""],quantile_bin_array:[0,4,1,""],smooth:[0,4,1,""],structural_causal_process:[0,4,1,""],time_bin_with_mask:[0,4,1,""],var_process:[0,4,1,""],weighted_avg_and_std:[0,4,1,""]},"tigramite.data_processing.DataFrame":{construct_array:[0,2,1,""],data:[0,3,1,""],datatime:[0,3,1,""],mask:[0,3,1,""],missing_flag:[0,3,1,""],print_array_info:[0,2,1,""],var_names:[0,3,1,""]},"tigramite.data_processing.Graph":{addEdge:[0,2,1,""],isCyclic:[0,2,1,""],isCyclicUtil:[0,2,1,""],topologicalSort:[0,2,1,""],topologicalSortUtil:[0,2,1,""]},"tigramite.independence_tests":{CMIknn:[0,1,1,""],CMIsymb:[0,1,1,""],CondIndTest:[0,1,1,""],GPDC:[0,1,1,""],OracleCI:[0,1,1,""],ParCorr:[0,1,1,""]},"tigramite.independence_tests.CMIknn":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CMIsymb":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CondIndTest":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_bootstrap_confidence:[0,2,1,""],get_confidence:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_fixed_thres_significance:[0,2,1,""],get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],get_significance:[0,2,1,""],measure:[0,2,1,""],print_info:[0,2,1,""],run_test:[0,2,1,""],run_test_raw:[0,2,1,""],set_dataframe:[0,2,1,""],set_mask_type:[0,2,1,""]},"tigramite.independence_tests.GPDC":{generate_and_save_nulldists:[0,2,1,""],generate_nulldist:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.OracleCI":{get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],measure:[0,2,1,""],run_test:[0,2,1,""],set_dataframe:[0,2,1,""]},"tigramite.independence_tests.ParCorr":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.models":{LinearMediation:[0,1,1,""],Models:[0,1,1,""],Prediction:[0,1,1,""]},"tigramite.models.LinearMediation":{fit_model:[0,2,1,""],get_ace:[0,2,1,""],get_acs:[0,2,1,""],get_all_ace:[0,2,1,""],get_all_acs:[0,2,1,""],get_all_amce:[0,2,1,""],get_amce:[0,2,1,""],get_ce:[0,2,1,""],get_ce_max:[0,2,1,""],get_coeff:[0,2,1,""],get_mce:[0,2,1,""],get_mediation_graph_data:[0,2,1,""],get_tsg:[0,2,1,""],get_val_matrix:[0,2,1,""],net_to_tsg:[0,2,1,""],tsg_to_net:[0,2,1,""]},"tigramite.models.Models":{get_coefs:[0,2,1,""],get_fit:[0,2,1,""],get_val_matrix:[0,2,1,""]},"tigramite.models.Prediction":{fit:[0,2,1,""],get_predictors:[0,2,1,""],get_test_array:[0,2,1,""],get_train_array:[0,2,1,""],predict:[0,2,1,""]},"tigramite.pcmci":{PCMCI:[0,1,1,""]},"tigramite.pcmci.PCMCI":{N:[0,3,1,""],T:[0,3,1,""],all_parents:[0,3,1,""],convert_to_string_graph:[0,2,1,""],get_corrected_pvalues:[0,2,1,""],get_lagged_dependencies:[0,2,1,""],iterations:[0,3,1,""],print_results:[0,2,1,""],print_significant_links:[0,2,1,""],pval_max:[0,3,1,""],return_significant_links:[0,2,1,""],return_significant_parents:[0,2,1,""],run_bivci:[0,2,1,""],run_fullci:[0,2,1,""],run_mci:[0,2,1,""],run_pc_stable:[0,2,1,""],run_pcalg:[0,2,1,""],run_pcalg_non_timeseries_data:[0,2,1,""],run_pcmci:[0,2,1,""],run_pcmciplus:[0,2,1,""],val_min:[0,3,1,""]},"tigramite.plotting":{plot_graph:[0,4,1,""],plot_lagfuncs:[0,4,1,""],plot_mediation_graph:[0,4,1,""],plot_mediation_time_series_graph:[0,4,1,""],plot_time_series_graph:[0,4,1,""],plot_timeseries:[0,4,1,""],plot_tsg:[0,4,1,""],setup_matrix:[0,1,1,""]},"tigramite.plotting.setup_matrix":{add_lagfuncs:[0,2,1,""],savefig:[0,2,1,""]},tigramite:{data_processing:[0,0,0,"-"],plotting:[0,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:function"},terms:{"07007v2":[],"21st":0,"2xtau_max":0,"abstract":0,"boolean":0,"case":0,"class":0,"default":0,"float":0,"import":0,"int":0,"new":0,"null":0,"return":0,"true":0,"var":0,"while":0,ACE:0,ACS:0,Adding:0,But:[],For:0,Its:0,Not:0,OLS:0,One:[],The:0,Then:0,There:0,These:0,Used:0,Useful:0,Uses:0,With:0,_get_single_residu:0,_print_significant_link:[],about:0,abov:0,abs:0,absmax:0,absolut:0,accept:0,accord:0,account:0,accur:[],ace:0,across:0,acs:0,act:0,adapt:0,add:0,add_lagfunc:0,add_lagfunc_arg:0,add_to_null_dist:0,addedg:0,adding:0,addit:0,address:0,adjac:0,adjust:0,adv:0,advanc:0,affect:0,after:0,again:0,ahead:0,aic:0,aip:0,akaik:0,algorithm:0,all:0,all_lag:0,all_par:0,alloc:0,allow:0,along:0,alpha:0,alpha_level:0,also:0,altern:0,although:0,alwai:0,ambigu:0,ambiguous_tripl:0,amc:0,among:0,analys:0,analysi:0,analyt:0,analyz:0,anc_i:0,anc_x:0,anc_xi:0,ani:0,anoth:0,appli:0,applic:0,appropri:0,approx:[],approxim:[],arang:0,arbitrari:0,arg:[],argument:0,around:0,arrai:0,array_lik:0,array_mask:0,arrow:0,arrow_linewidth:0,arrowhead_s:0,articl:0,artifici:0,arxiv:0,assess:0,assign:0,associ:0,assum:0,assumpt:0,asymptot:0,attribut:0,au_:[],auto:0,autocorrel:0,autocovari:0,automat:0,autoregress:0,avail:0,averag:0,avoid:0,axes:0,axi:0,backward:0,bakirov:0,bandwidth:0,basak:[],base:0,basemap:0,becaus:[],been:0,befor:0,beforehand:0,begin:0,below:0,benjamini:0,beta:0,beta_i:0,beta_x:0,better:0,between:0,bia:0,bias:0,bin:0,bincount:0,bindata:0,bivci:0,black:0,block:0,blue:0,bool:0,bootstrap:0,both:0,bottom:0,bound:0,box:0,briefli:0,bucklei:[],butterworth:0,call:0,callabl:0,can:0,cardin:0,care:0,caus:0,causal:0,causat:0,caveat:[],cdot:0,certain:0,chain:0,chao:0,check:0,chi2:[],chi:[],child:0,choic:0,chosen:0,cite:0,ckdtree:0,clash:0,clean:0,cmap_edg:0,cmap_nod:0,cmi:0,cmiknn:0,cmisymb:0,code:0,coef1:0,coef2:0,coeff:0,coeffici:0,collid:0,color:0,colorbar:0,colormap:0,column:0,com:0,combin:0,come:0,common:0,commun:0,compar:0,comparison:0,complex:0,comprehens:0,comput:0,compute_ancestor:0,concret:0,cond_ind_test:0,condindtest:0,condition:[],conduct:0,conf_blocklength:0,conf_lev:0,conf_low:0,conf_matrix:0,conf_sampl:0,conf_upp:0,confer:0,confid:0,conflict:0,conflict_resolut:0,conserv:0,consid:0,consider:0,constant:0,construct:0,construct_arrai:0,contain:0,contemp_collider_rul:0,contemp_cond:0,contemporan:0,content:0,context:[],continu:0,contrast:0,control:0,convert:0,convert_to_string_graph:0,coordin:0,copi:0,copyright:0,correct:0,correl:0,correspond:0,cost:0,could:0,coupl:0,covari:0,creat:0,criteria:0,criterion:0,cross:0,cube:0,current:0,curv:0,curvatur:0,curved_radiu:0,cut_off:0,cutoff:0,cutperiod:0,cyclic:0,cython:0,d_z:0,dag:0,dash:0,data_linewidth:0,data_transform:0,datafram:0,dataset:0,datatim:0,debug:0,decai:0,def:0,defin:0,degre:0,delai:0,denot:0,densiti:0,depend:0,dependence_measur:0,deprec:0,deriv:0,describ:0,descript:0,detail:0,detect:0,determin:0,deviat:0,dict:0,dictionari:0,differ:0,digamma:0,dim:0,dimens:0,dimension:0,direct:0,direction:0,directli:0,disabl:0,discov:0,discoveri:0,discret:0,discuss:0,disk:0,dismiss:0,dist:0,distanc:0,distribut:0,do_check:0,doc:0,document:[],doe:0,doi:0,draw:0,drawn:0,driver:0,due:0,dummi:0,duplic:0,dure:0,dynam:0,eaau4996:0,each:0,eagleson:[],earth:0,easi:0,edg:0,edge_tick:0,effect:0,effici:0,either:0,els:0,eman:0,embed:0,empti:0,ensur:0,entri:0,enumer:0,epsilon_:0,equal:0,equival:0,eric:[],ericstrobl:[],error:0,estim:0,eta:0,etc:0,everi:0,exampl:0,exclud:0,exclude_contemporan:0,exclude_i:0,exclude_j:0,exclude_k:0,exclude_self_effect:0,exist:0,expect:0,explain:0,extern:0,f_x:0,f_y:0,factor:0,faculti:0,faith:0,fals:0,fancyarrowpatch:0,fast:[],faster:0,fdr_bh:0,fdr_method:0,featur:0,ffinkernagel:0,fig:0,fig_ax:0,figsiz:0,figur:0,file:0,fill:0,filter:0,finkernagel:0,first:0,fit:0,fit_model:0,fit_result:0,fix:0,fixed_thr:0,flag:0,flaxman:0,flexibl:0,florian:0,follow:0,fontsiz:0,form:0,format:0,forward:0,found:0,four:0,fourier:[],frac:0,fraction:0,framework:0,free:0,freedom:0,frenzel:0,friendli:0,from:0,full:0,fullci:0,fulli:0,func:0,further:0,gabor:0,gamma:[],gatewai:0,gauss_pr:0,gaussian:0,gaussianprocessregressor:0,gaussprocreg:0,gener:0,generate_and_save_nulldist:0,generate_nulldist:0,get:[],get_ac:0,get_all_ac:0,get_all_amc:0,get_amc:0,get_analytic_confid:0,get_analytic_signific:0,get_bootstrap_confid:0,get_c:0,get_ce_max:0,get_coef:0,get_coeff:0,get_confid:0,get_corrected_pvalu:0,get_dependence_measur:0,get_fit:0,get_fixed_thres_signific:0,get_lagged_depend:0,get_mc:0,get_measur:0,get_mediation_graph_data:0,get_model_selection_criterion:0,get_predictor:0,get_shuffle_signific:0,get_signific:0,get_test_arrai:0,get_train_arrai:0,get_tsg:0,get_val_matrix:0,gist:0,github:0,give:0,given:0,going:0,gp_param:0,gp_version:0,gpace:[],gpdc:0,graph:0,graph_bool:0,graph_data:0,greater:0,grei:0,grey_masked_sampl:0,grid:0,ground:0,guarante:0,guidanc:0,hall:[],handl:0,has:0,have:0,hbe:[],head:0,heavisid:0,help:0,helper:0,henc:0,here:0,high:0,highli:[],histogram:0,hochberg:0,horizont:0,how:0,html:0,http:0,hyper:0,hyperparamet:0,hypothesi:0,identifi:0,ight:[],iint:0,ild:[],implement:0,impli:0,importantli:0,improv:0,includ:0,include_lagzero_link:0,include_lagzero_par:0,include_neighbor:0,incom:0,index:0,indirect:0,infer:0,infin:0,info:0,inform:0,inherit:0,initi:0,initial_valu:0,inner_edg:0,inner_edge_styl:0,inno_cov:0,innov:0,input:0,instal:[],instanc:0,instanti:0,instead:0,integ:0,intellig:0,interdisciplinari:0,intern:0,interpret:0,interv:0,introduc:0,inv_inno_cov:0,invers:0,irrelev:0,iscycl:0,iscyclicutil:0,iter:0,its:0,itself:0,j_t:0,job:0,joint:0,journal:0,just:0,kcit:[],kei:0,kernel:0,kind:0,knn:0,kretschmer:0,kun:[],kwarg:0,label:0,label_fonts:0,label_space_left:0,label_space_top:0,lag1:0,lag2:0,lag:0,lag_arrai:0,lag_mod:0,lag_unit:0,lagfunct:0,lagged_par:0,larg:0,larger:0,last:0,later:0,latter:0,lead:0,learn:0,least:0,leav:0,left:0,legend:0,legend_fonts:0,legend_width:0,length:0,less:0,let:0,lett:0,level:0,levelof:[],like:0,likelihood:0,limit:0,lin_f:0,lindsai:[],line:0,linear:0,linear_model:0,linearli:[],linearmedi:0,linearregress:0,linewidth:0,link:0,link_attribut:0,link_coeff:0,link_colorbar_label:0,link_dict:0,link_label_fonts:0,link_matrix:0,link_width:0,links_coeff:0,links_to_graph:0,list:0,load:0,log:0,low:0,lower:0,lowhighpass_filt:0,lpd4:[],lpha:[],made:0,magnitud:0,mai:0,main:0,major:0,make:0,mani:0,map:0,margin:0,maria:0,mark:0,marker:0,markers:0,markov:0,mask:0,mask_typ:0,match:0,math:[],mathcal:0,matplotlib:0,matric:0,matrix:0,matter:0,max:0,max_combin:0,max_conds_dim:0,max_conds_pi:0,max_conds_px:0,max_conds_px_lag:0,max_delai:0,max_lag:0,max_lag_or_tau_max:0,maxim:0,maximum:0,mce:0,mci:0,mean:0,measur:0,med:0,member:0,memori:0,method:0,minimum:0,minu:0,miss:0,missing_flag:0,mlr:0,mode:0,model_param:0,modul:0,modulo:0,momentari:0,more:0,most:0,mostli:0,motif:0,much:0,multi:0,multipl:0,multivari:0,must:0,mutual:0,n_job:0,n_symb:0,nail:0,name:0,nan:0,natur:0,ncomms9502:0,nearest:0,necessari:0,need:0,neg:0,neighbor:0,net_to_tsg:0,network:0,network_lower_bound:0,new_data:0,newer:0,niehgbor:0,no_nois:0,node:0,node_colorbar_label:0,node_label_s:0,node_po:0,node_s:0,node_tick:0,nois:0,non:0,none:0,nonlinear:0,nonstat:0,nonstationari:0,nonzero:0,normal:[],note:0,nowack:0,npz:0,null_dist:0,null_dist_filenam:0,nulldist:0,num_f:[],number:0,numer:0,numpi:0,object:0,observ:0,observed_var:0,obtain:0,occur:0,old:0,older:0,onc:0,one:0,onli:0,opac:0,optim:0,optimz:0,option:0,oracl:0,oracleci:0,order:0,ordin:0,ordinal_patt_arrai:0,ordinari:0,org:0,orient:0,origin:0,orrd:0,other:0,otherwis:0,otion:0,out:0,output:0,over:0,overlaid:0,overrid:0,overwrit:0,p_matrix:0,p_max:[],packag:0,page:0,pair:0,pairwis:0,panda:0,panel:0,paper:0,parallel:0,paramet:0,parametr:0,parcorr:0,parent:0,parent_node_id:0,parents_neighbors_coeff:0,part:0,partial:0,particular:0,pass:0,pass_period:0,past:[],path:0,path_node_arrai:0,path_val_matrix:0,pathwai:0,patt:0,patt_mask:0,patt_tim:0,pattern:0,pc1:0,pc_1:0,pc_alpha:0,pcmciplu:0,peak:0,pearson:0,percentil:0,perform:0,period:0,perm:[],permut:0,perp:0,phase:0,phi:0,phy:0,physrev:0,pilla:[],plai:0,pleas:0,plot_graph:0,plot_gridlin:0,plot_lagfunc:0,plot_mediation_graph:0,plot_mediation_time_series_graph:0,plot_time_series_graph:0,plot_timeseri:0,plot_tsg:0,point:0,pomp:0,pos:0,posit:0,possibl:0,power:0,pq_matrix:0,practic:0,pre:0,precis:0,precomput:0,pred_param:0,prediction_model:0,predictor:0,preprocess:0,present:0,preserv:0,press:0,previou:0,print:0,print_array_info:0,print_info:0,print_result:0,print_significant_link:0,prior:0,prl:0,problemat:[],procedur:0,proceed:0,processor:0,properti:0,provid:0,psi:0,pval:0,pval_max:0,pyplot:0,python:0,q_matrix:0,qualiti:0,quantifi:0,quantil:0,quantile_bin_arrai:0,quantiti:0,r_x:0,r_y:0,rais:0,randn:0,random:0,rang:0,rank:0,rate:0,rather:0,rcit:[],rcot:[],rdbu_r:0,recommend:0,reconstruct:0,recstack:0,recurs:0,recycle_residu:0,red:0,reduc:0,refer:0,regard:0,regress:0,regular:0,rel:0,relat:0,relev:0,remain:0,remov:0,repeat:0,repo:0,repres:0,reproduc:[],requir:0,reset_lagged_link:0,residu:0,respect:0,restrict:0,result:0,return_cleaned_xyz:0,return_confid:[],return_data:0,return_dict:0,return_null_dist:0,return_significant_link:0,return_significant_par:0,rev:0,rho:0,right:0,rizzo:0,role:0,row:0,rpy:[],rtype:0,rule:0,run:0,run_bivci:0,run_fullci:0,run_mci:0,run_pc_stabl:0,run_pcalg:0,run_pcalg_non_timeseries_data:0,run_pcmci:0,run_pcmciplu:0,run_test:0,run_test_raw:0,rung:0,runge18a:0,runtim:0,s41467:0,same:0,sampl:0,sample_s:0,saniti:0,satterthwait:[],save:0,save_iter:0,save_nam:0,savefig:0,scale:0,schedul:0,sci:0,scienc:0,sciencemag:0,scikit:0,scipi:0,scitat:0,score:0,script:0,search:0,section:0,see:0,seed:0,seen:0,sejdinov:0,select:0,selected_link:0,selected_target:0,selected_vari:0,self:0,separ:0,sepset:0,set:0,set_datafram:0,set_mask_typ:0,setter:0,setup:0,setup_arg:0,setup_matrix:0,sever:0,shape:0,shorter:0,should:0,show:0,show_colorbar:0,shown:0,shuffl:0,shuffle_neighbor:0,shuffle_test:0,shyam:[],side:0,sig_blocklength:0,sig_overrid:0,sig_sampl:0,sig_thr:0,sigma:0,signatur:[],signfic:0,signficic:0,signific:0,sim:0,simpl:0,simpli:0,simul:0,sinc:0,size:0,skeleton:0,skip:0,skip_ticks_data_i:0,skip_ticks_data_x:0,sklearn:0,slice:0,slightli:0,slow:[],small:[],smaller:0,smooth:0,smooth_width:0,sort:0,sourc:0,space:0,spatial:0,spatio:0,specif:0,specifi:0,squar:0,stack:0,standard:0,standardscal:0,stationar:0,statist:0,std:0,step:0,steps_ahead:0,still:0,store:0,str:0,straight:0,strength:0,string:0,strobl:[],structur:0,structural_causal_process:0,student:0,style:0,sub:0,subplot:0,subset:0,subspac:0,suffici:0,suggest:[],suitabl:0,sum:0,sum_:0,summar:0,superset:0,supplement:0,suppli:0,sure:0,surrog:0,suscept:0,symb_arrai:0,symbol:0,symbolifi:0,system:0,szeke:0,take:0,target:0,target_predictor:0,tau:0,tau_:0,tau_max:0,tau_min:0,techniqu:0,tempor:0,term:0,test_indic:0,than:0,thei:0,them:0,themselv:0,theoret:0,thi:0,those:0,threshold:0,through:0,tick:0,tickmark:0,tild:0,time_bin_length:0,time_bin_with_mask:0,time_label:0,time_lag:0,timelabel:0,togeth:0,too:[],top:0,topologicalsort:0,topologicalsortutil:0,toward:0,train:0,train_indic:0,transfer:0,transform:0,translat:0,tripl:0,true_par:0,true_parent_neighbor:0,truth:0,tsg:0,tsg_path_val_matrix:0,tsg_to_net:0,tupl:0,tutori:0,twice:0,two:0,two_sided_thr:0,type:0,typic:0,uncertainti:0,uncondit:0,undecid:0,under:0,underli:0,undirect:0,undirected_styl:[],uniform:0,uniqu:0,unit:0,unlik:0,unori:0,unrestrict:0,unshield:0,unshuffl:0,upper:0,use:0,use_mask:0,used:0,useful:0,user:0,uses:0,using:0,util:0,v84:0,val:0,val_matrix:0,val_min:0,val_onli:0,valid:0,valu:0,var1:0,var2:0,var_nam:0,var_network:0,var_process:0,var_unit:0,vari:0,variabl:0,varianc:0,variant:0,varx:0,vector:0,verbos:0,veri:[],version:0,vertic:0,via:0,view:0,visit:0,visual:0,visweswaran:[],vmax_edg:0,vmax_nod:0,vmin_edg:0,vmin_nod:0,warn:[],weight:0,weighted_avg_and_std:0,welch:[],well:0,when:0,where:0,whether:0,which:0,whichev:0,whole:[],wide:0,widehat:0,width:0,window:0,with_mean:0,with_std:0,within:0,won:[],wrapper:0,www:0,x_base:0,x_i:0,x_j:0,x_t:0,xyz:0,y_base:0,y_t:0,yield:0,you:0,z_i:0,z_j:0,z_t:0,zero:0,zhang:[]},titles:["TIGRAMITE"],titleterms:{"function":0,condit:0,data:0,data_process:0,independ:0,independence_test:0,indic:0,mediat:0,model:0,pcmci:0,plot:0,predict:0,process:0,seri:0,tabl:0,test:0,tigramit:0,time:0}}) \ No newline at end of file +Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["index.rst"],objects:{"tigramite.data_processing":{DataFrame:[0,1,1,""],Graph:[0,1,1,""],links_to_graph:[0,4,1,""],lowhighpass_filter:[0,4,1,""],ordinal_patt_array:[0,4,1,""],quantile_bin_array:[0,4,1,""],smooth:[0,4,1,""],structural_causal_process:[0,4,1,""],time_bin_with_mask:[0,4,1,""],var_process:[0,4,1,""],weighted_avg_and_std:[0,4,1,""]},"tigramite.data_processing.DataFrame":{construct_array:[0,2,1,""],data:[0,3,1,""],datatime:[0,3,1,""],mask:[0,3,1,""],missing_flag:[0,3,1,""],print_array_info:[0,2,1,""],var_names:[0,3,1,""]},"tigramite.data_processing.Graph":{addEdge:[0,2,1,""],isCyclic:[0,2,1,""],isCyclicUtil:[0,2,1,""],topologicalSort:[0,2,1,""],topologicalSortUtil:[0,2,1,""]},"tigramite.independence_tests":{CMIknn:[0,1,1,""],CMIsymb:[0,1,1,""],CondIndTest:[0,1,1,""],GPDC:[0,1,1,""],OracleCI:[0,1,1,""],ParCorr:[0,1,1,""]},"tigramite.independence_tests.CMIknn":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CMIsymb":{get_dependence_measure:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.CondIndTest":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_bootstrap_confidence:[0,2,1,""],get_confidence:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_fixed_thres_significance:[0,2,1,""],get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],get_significance:[0,2,1,""],measure:[0,2,1,""],print_info:[0,2,1,""],run_test:[0,2,1,""],run_test_raw:[0,2,1,""],set_dataframe:[0,2,1,""],set_mask_type:[0,2,1,""]},"tigramite.independence_tests.GPDC":{generate_and_save_nulldists:[0,2,1,""],generate_nulldist:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.independence_tests.OracleCI":{get_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],measure:[0,2,1,""],run_test:[0,2,1,""],set_dataframe:[0,2,1,""]},"tigramite.independence_tests.ParCorr":{get_analytic_confidence:[0,2,1,""],get_analytic_significance:[0,2,1,""],get_dependence_measure:[0,2,1,""],get_model_selection_criterion:[0,2,1,""],get_shuffle_significance:[0,2,1,""],measure:[0,2,1,""]},"tigramite.models":{LinearMediation:[0,1,1,""],Models:[0,1,1,""],Prediction:[0,1,1,""]},"tigramite.models.LinearMediation":{fit_model:[0,2,1,""],get_ace:[0,2,1,""],get_acs:[0,2,1,""],get_all_ace:[0,2,1,""],get_all_acs:[0,2,1,""],get_all_amce:[0,2,1,""],get_amce:[0,2,1,""],get_ce:[0,2,1,""],get_ce_max:[0,2,1,""],get_coeff:[0,2,1,""],get_mce:[0,2,1,""],get_mediation_graph_data:[0,2,1,""],get_tsg:[0,2,1,""],get_val_matrix:[0,2,1,""],net_to_tsg:[0,2,1,""],tsg_to_net:[0,2,1,""]},"tigramite.models.Models":{get_coefs:[0,2,1,""],get_fit:[0,2,1,""],get_val_matrix:[0,2,1,""]},"tigramite.models.Prediction":{fit:[0,2,1,""],get_predictors:[0,2,1,""],get_test_array:[0,2,1,""],get_train_array:[0,2,1,""],predict:[0,2,1,""]},"tigramite.pcmci":{PCMCI:[0,1,1,""]},"tigramite.pcmci.PCMCI":{N:[0,3,1,""],T:[0,3,1,""],all_parents:[0,3,1,""],convert_to_string_graph:[0,2,1,""],get_corrected_pvalues:[0,2,1,""],get_lagged_dependencies:[0,2,1,""],iterations:[0,3,1,""],print_results:[0,2,1,""],print_significant_links:[0,2,1,""],pval_max:[0,3,1,""],return_significant_links:[0,2,1,""],return_significant_parents:[0,2,1,""],run_bivci:[0,2,1,""],run_fullci:[0,2,1,""],run_mci:[0,2,1,""],run_pc_stable:[0,2,1,""],run_pcalg:[0,2,1,""],run_pcalg_non_timeseries_data:[0,2,1,""],run_pcmci:[0,2,1,""],run_pcmciplus:[0,2,1,""],val_min:[0,3,1,""]},"tigramite.plotting":{plot_graph:[0,4,1,""],plot_lagfuncs:[0,4,1,""],plot_mediation_graph:[0,4,1,""],plot_mediation_time_series_graph:[0,4,1,""],plot_time_series_graph:[0,4,1,""],plot_timeseries:[0,4,1,""],plot_tsg:[0,4,1,""],setup_matrix:[0,1,1,""]},"tigramite.plotting.setup_matrix":{add_lagfuncs:[0,2,1,""],savefig:[0,2,1,""]},tigramite:{data_processing:[0,0,0,"-"],plotting:[0,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","class","Python class"],"2":["py","method","Python method"],"3":["py","attribute","Python attribute"],"4":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:class","2":"py:method","3":"py:attribute","4":"py:function"},terms:{"07007v2":[],"21st":0,"2xtau_max":0,"36th":0,"579_main_pap":0,"abstract":0,"boolean":0,"case":0,"class":0,"default":0,"float":0,"import":0,"int":0,"new":0,"null":0,"return":0,"true":0,"var":0,"while":0,ACE:0,ACS:0,Adding:0,But:[],For:0,Its:0,Not:0,OLS:0,One:[],The:0,Then:0,There:0,These:0,Used:0,Useful:0,Uses:0,With:0,_get_single_residu:0,_print_significant_link:[],about:0,abov:0,abs:0,absmax:0,absolut:0,accept:0,accord:0,account:0,accur:[],ace:0,across:0,acs:0,act:0,adapt:0,add:0,add_lagfunc:0,add_lagfunc_arg:0,add_to_null_dist:0,addedg:0,adding:0,addit:0,address:0,adjac:0,adjust:0,adv:0,advanc:0,affect:0,after:0,again:0,ahead:0,aic:0,aip:0,akaik:0,algorithm:0,all:0,all_lag:0,all_par:0,alloc:0,allow:0,along:0,alpha:0,alpha_level:0,also:0,altern:0,although:0,alwai:0,ambigu:0,ambiguous_tripl:0,amc:0,among:0,analys:0,analysi:0,analyt:0,analyz:0,anc_i:0,anc_x:0,anc_xi:0,ani:0,anoth:0,appli:0,applic:0,appropri:0,approx:[],approxim:[],arang:0,arbitrari:0,arg:[],argument:0,around:0,arrai:0,array_lik:0,array_mask:0,arrow:0,arrow_linewidth:0,arrowhead_s:0,articl:0,artifici:0,arxiv:0,assess:0,assign:0,associ:0,assum:0,assumpt:0,asymptot:0,attribut:0,au_:[],auai:0,auto:0,autocorrel:0,autocovari:0,automat:0,autoregress:0,avail:0,averag:0,avoid:0,axes:0,axi:0,backward:0,bakirov:0,bandwidth:0,basak:[],base:0,basemap:0,becaus:[],been:0,befor:0,beforehand:0,begin:0,below:0,benjamini:0,beta:0,beta_i:0,beta_x:0,better:0,between:0,bia:0,bias:0,bin:0,bincount:0,bindata:0,bivci:0,black:0,block:0,blue:0,bool:0,bootstrap:0,both:0,bottom:0,bound:0,box:0,briefli:0,bucklei:[],butterworth:0,call:0,callabl:0,can:0,canada:0,cardin:0,care:0,caus:0,causal:0,causat:0,caveat:[],cdot:0,certain:0,chain:0,chao:0,check:0,chi2:[],chi:[],child:0,choic:0,chosen:0,cite:0,ckdtree:0,clash:0,clean:0,cmap_edg:0,cmap_nod:0,cmi:0,cmiknn:0,cmisymb:0,code:0,coef1:0,coef2:0,coeff:0,coeffici:0,collid:0,color:0,colorbar:0,colormap:0,column:0,com:0,combin:0,come:0,common:0,commun:0,compar:0,comparison:0,complex:0,comprehens:0,comput:0,compute_ancestor:0,concret:0,cond_ind_test:0,condindtest:0,condition:[],conduct:0,conf_blocklength:0,conf_lev:0,conf_low:0,conf_matrix:0,conf_sampl:0,conf_upp:0,confer:0,confid:0,conflict:0,conflict_resolut:0,conserv:0,consid:0,consider:0,constant:0,construct:0,construct_arrai:0,contain:0,contemp_collider_rul:0,contemp_cond:0,contemporan:0,content:0,context:[],continu:0,contrast:0,control:0,convert:0,convert_to_string_graph:0,coordin:0,copi:0,copyright:0,correct:0,correl:0,correspond:0,cost:0,could:0,coupl:0,covari:0,creat:0,criteria:0,criterion:0,cross:0,cube:0,current:0,curv:0,curvatur:0,curved_radiu:0,cut_off:0,cutoff:0,cutperiod:0,cyclic:0,cython:0,d_z:0,dag:0,dash:0,data_linewidth:0,data_transform:0,datafram:0,dataset:0,datatim:0,debug:0,decai:0,def:0,defin:0,degre:0,delai:0,denot:0,densiti:0,depend:0,dependence_measur:0,deprec:0,deriv:0,describ:0,descript:0,detail:0,detect:0,determin:0,deviat:0,dict:0,dictionari:0,differ:0,digamma:0,dim:0,dimens:0,dimension:0,direct:0,direction:0,directli:0,disabl:0,discov:0,discoveri:0,discret:0,discuss:0,disk:0,dismiss:0,dist:0,distanc:0,distribut:0,do_check:0,doc:0,document:[],doe:0,doi:0,draw:0,drawn:0,driver:0,due:0,dummi:0,duplic:0,dure:0,dynam:[],eaau4996:0,each:0,eagleson:[],earth:0,easi:0,edg:0,edge_tick:0,effect:0,effici:0,either:0,els:0,eman:0,embed:0,empti:0,ensur:0,entri:0,enumer:0,epsilon_:0,equal:0,equival:0,eric:[],ericstrobl:[],error:0,estim:0,eta:0,etc:0,everi:0,exampl:0,exclud:0,exclude_contemporan:0,exclude_i:0,exclude_j:0,exclude_k:0,exclude_self_effect:0,exist:0,expect:0,explain:0,extern:0,f_x:0,f_y:0,factor:0,faculti:0,faith:0,fals:0,fancyarrowpatch:0,fast:[],faster:0,fdr_bh:0,fdr_method:0,featur:0,ffinkernagel:0,fig:0,fig_ax:0,figsiz:0,figur:0,file:0,fill:0,filter:0,finkernagel:0,first:0,fit:0,fit_model:0,fit_result:0,fix:0,fixed_thr:0,flag:0,flaxman:0,flexibl:0,florian:0,follow:0,fontsiz:0,form:0,format:0,forward:0,found:0,four:0,fourier:[],frac:0,fraction:0,framework:0,free:0,freedom:0,frenzel:0,friendli:0,from:0,full:0,fullci:0,fulli:0,func:0,further:0,gabor:0,gamma:[],gatewai:0,gauss_pr:0,gaussian:0,gaussianprocessregressor:0,gaussprocreg:0,gener:0,generate_and_save_nulldist:0,generate_nulldist:0,get:[],get_ac:0,get_all_ac:0,get_all_amc:0,get_amc:0,get_analytic_confid:0,get_analytic_signific:0,get_bootstrap_confid:0,get_c:0,get_ce_max:0,get_coef:0,get_coeff:0,get_confid:0,get_corrected_pvalu:0,get_dependence_measur:0,get_fit:0,get_fixed_thres_signific:0,get_lagged_depend:0,get_mc:0,get_measur:0,get_mediation_graph_data:0,get_model_selection_criterion:0,get_predictor:0,get_shuffle_signific:0,get_signific:0,get_test_arrai:0,get_train_arrai:0,get_tsg:0,get_val_matrix:0,gist:0,github:0,give:0,given:0,going:0,gp_param:0,gp_version:0,gpace:[],gpdc:0,graph:0,graph_bool:0,graph_data:0,greater:0,grei:0,grey_masked_sampl:0,grid:0,ground:0,guarante:0,guidanc:0,hall:[],handl:0,has:0,have:0,hbe:[],head:0,heavisid:0,heigth:0,help:0,helper:0,henc:0,here:0,high:0,highli:[],histogram:0,hochberg:0,horizont:0,how:0,html:0,http:0,hyper:0,hyperparamet:0,hypothesi:0,identifi:0,ight:[],iint:0,ild:[],implement:0,impli:0,importantli:0,improv:0,includ:0,include_lagzero_link:0,include_lagzero_par:0,include_neighbor:0,incom:0,index:0,indirect:0,infer:0,infin:0,info:0,inform:0,inherit:0,initi:0,initial_valu:0,inner_edg:0,inner_edge_styl:0,inno_cov:0,innov:0,input:0,instal:[],instanc:0,instanti:0,instead:0,integ:0,intellig:0,interdisciplinari:0,intern:0,interpret:0,interv:0,introduc:0,inv_inno_cov:0,invers:0,irrelev:0,iscycl:0,iscyclicutil:0,iter:0,its:0,itself:0,j_t:0,job:0,joint:0,journal:0,just:0,kcit:[],kei:0,kernel:0,kind:0,knn:0,kretschmer:0,kun:[],kwarg:0,label:0,label_fonts:0,label_space_left:0,label_space_top:0,lag1:0,lag2:0,lag:0,lag_arrai:0,lag_mod:0,lag_unit:0,lagfunct:0,lagged_par:0,larg:0,larger:0,last:0,later:0,latter:0,lead:0,learn:0,least:0,leav:0,left:0,legend:0,legend_fonts:0,legend_width:0,length:0,less:0,let:0,lett:0,level:0,levelof:[],like:0,likelihood:0,limit:0,lin_f:0,lindsai:[],line:0,linear:0,linear_model:0,linearli:[],linearmedi:0,linearregress:0,linewidth:0,link:0,link_attribut:0,link_coeff:0,link_colorbar_label:0,link_dict:0,link_label_fonts:0,link_matrix:0,link_width:0,links_coeff:0,links_to_graph:0,list:0,load:0,log:0,low:0,lower:0,lowhighpass_filt:0,lpd4:[],lpha:[],made:0,magnitud:0,mai:0,main:0,major:0,make:0,mani:0,map:0,margin:0,maria:0,mark:0,marker:0,markers:0,markov:0,mask:0,mask_typ:0,match:0,math:[],mathcal:0,matplotlib:0,matric:0,matrix:0,matter:0,max:0,max_combin:0,max_conds_dim:0,max_conds_pi:0,max_conds_px:0,max_conds_px_lag:0,max_delai:0,max_lag:0,max_lag_or_tau_max:0,maxim:0,maximum:0,mce:0,mci:0,mean:0,measur:0,med:0,member:0,memori:0,method:0,minimum:0,minu:0,miss:0,missing_flag:0,mlr:0,mode:0,model_param:0,modul:0,modulo:0,momentari:0,more:0,most:0,mostli:0,motif:0,much:0,multi:0,multipl:0,multivari:0,must:0,mutual:0,n_job:0,n_symb:0,nail:0,name:0,nan:0,natur:0,ncomms9502:0,nearest:0,necessari:0,need:0,neg:0,neighbor:0,net_to_tsg:0,network:0,network_lower_bound:0,new_data:0,newer:0,niehgbor:0,no_nois:0,node:0,node_aspect:0,node_colorbar_label:0,node_label_s:0,node_po:0,node_s:0,node_tick:0,nois:0,non:0,none:0,nonlinear:0,nonstat:0,nonstationari:0,nonzero:0,normal:[],note:0,nowack:0,npz:0,null_dist:0,null_dist_filenam:0,nulldist:0,num_f:[],number:0,numer:0,numpi:0,object:0,observ:0,observed_var:0,obtain:0,occur:0,old:0,older:0,onc:0,one:0,onli:0,opac:0,optim:0,optimz:0,option:0,oracl:0,oracleci:0,order:0,ordin:0,ordinal_patt_arrai:0,ordinari:0,org:0,orient:0,origin:0,orrd:0,other:0,otherwis:0,otion:0,out:0,output:0,over:0,overlaid:0,overrid:0,overwrit:0,p_matrix:0,p_max:[],packag:0,page:0,pair:0,pairwis:0,panda:0,panel:0,paper:0,parallel:0,param:0,paramet:0,parametr:0,parcorr:0,parent:0,parent_node_id:0,parents_neighbors_coeff:0,part:0,partial:0,particular:0,pass:0,pass_period:0,past:[],path:0,path_node_arrai:0,path_val_matrix:0,pathwai:0,patt:0,patt_mask:0,patt_tim:0,pattern:0,pc1:0,pc_1:0,pc_alpha:0,pcmciplu:0,pdf:0,peak:0,pearson:0,percentil:0,perform:0,period:0,perm:[],permut:0,perp:0,phase:0,phi:0,phy:0,physrev:0,pilla:[],plai:0,pleas:0,plot_graph:0,plot_gridlin:0,plot_lagfunc:0,plot_mediation_graph:0,plot_mediation_time_series_graph:0,plot_time_series_graph:0,plot_timeseri:0,plot_tsg:0,point:0,pomp:0,pos:0,posit:0,possibl:0,power:0,pq_matrix:0,practic:0,pre:0,precis:0,precomput:0,pred_param:0,prediction_model:0,predictor:0,preprocess:0,present:0,preserv:0,press:0,previou:0,print:0,print_array_info:0,print_info:0,print_result:0,print_significant_link:0,prior:0,prl:0,problemat:[],procedur:0,proceed:0,processor:0,properti:0,provid:0,psi:0,pval:0,pval_max:0,pyplot:0,python:0,q_matrix:0,qualiti:0,quantifi:0,quantil:0,quantile_bin_arrai:0,quantiti:0,r_x:0,r_y:0,rais:0,randn:0,random:0,rang:0,rank:0,rate:0,rather:0,ratio:0,rcit:[],rcot:[],rdbu_r:0,recommend:0,reconstruct:0,recstack:0,recurs:0,recycle_residu:0,red:0,reduc:0,refer:0,regard:0,regress:0,regular:0,rel:0,relat:0,relev:0,remain:0,remov:0,repeat:0,repo:0,repres:0,reproduc:[],requir:0,reset_lagged_link:0,residu:0,respect:0,restrict:0,result:0,return_cleaned_xyz:0,return_confid:[],return_data:0,return_dict:0,return_null_dist:0,return_significant_link:0,return_significant_par:0,rev:0,rho:0,right:0,rizzo:0,role:0,row:0,rpy:[],rtype:0,rule:0,run:0,run_bivci:0,run_fullci:0,run_mci:0,run_pc_stabl:0,run_pcalg:0,run_pcalg_non_timeseries_data:0,run_pcmci:0,run_pcmciplu:0,run_test:0,run_test_raw:0,rung:0,runge18a:0,runtim:0,s41467:0,same:0,sampl:0,sample_s:0,saniti:0,satterthwait:[],save:0,save_iter:0,save_nam:0,savefig:0,scale:0,schedul:0,sci:0,scienc:0,sciencemag:0,scikit:0,scipi:0,scitat:0,score:0,script:0,search:0,section:0,see:0,seed:0,seen:0,sejdinov:0,select:0,selected_link:0,selected_target:0,selected_vari:0,self:0,separ:0,sepset:0,set:0,set_datafram:0,set_mask_typ:0,setter:0,setup:0,setup_arg:0,setup_matrix:0,sever:0,shape:0,shorter:0,should:0,show:0,show_colorbar:0,shown:0,shuffl:0,shuffle_neighbor:0,shuffle_test:0,shyam:[],side:0,sig_blocklength:0,sig_overrid:0,sig_sampl:0,sig_thr:0,sigma:0,signatur:[],signfic:0,signficic:0,signific:0,sim:0,simpl:0,simpli:0,simul:0,sinc:0,size:0,skeleton:0,skip:0,skip_ticks_data_i:0,skip_ticks_data_x:0,sklearn:0,slice:0,slightli:0,slow:[],small:[],smaller:0,smooth:0,smooth_width:0,sort:0,sourc:0,space:0,spatial:0,spatio:0,specif:0,specifi:0,squar:0,stack:0,standard:0,standardscal:0,stationar:0,statist:0,std:0,step:0,steps_ahead:0,still:0,store:0,str:0,straight:0,strength:0,string:0,strobl:[],structur:0,structural_causal_process:0,student:0,style:0,sub:0,subplot:0,subset:0,subspac:0,suffici:0,suggest:[],suitabl:0,sum:0,sum_:0,summar:0,superset:0,supplement:0,suppli:0,sure:0,surrog:0,suscept:0,symb_arrai:0,symbol:0,symbolifi:0,system:0,szeke:0,take:0,target:0,target_predictor:0,tau:0,tau_:0,tau_max:0,tau_min:0,techniqu:0,tempor:0,term:[],test_indic:0,than:0,thei:0,them:0,themselv:0,theoret:0,thi:0,those:0,threshold:0,through:0,tick:0,tickmark:0,tild:0,time_bin_length:0,time_bin_with_mask:0,time_label:0,time_lag:0,timelabel:0,togeth:0,too:[],top:0,topologicalsort:0,topologicalsortutil:0,toronto:0,toward:0,train:0,train_indic:0,transfer:0,transform:0,translat:0,tripl:0,true_par:0,true_parent_neighbor:0,truth:0,tsg:0,tsg_path_val_matrix:0,tsg_to_net:0,tupl:0,tutori:0,twice:0,two:0,two_sided_thr:0,type:0,typic:0,uai2020:0,uai:0,uncertainti:0,uncondit:0,undecid:0,under:0,underli:0,undirect:0,undirected_styl:[],uniform:0,uniqu:0,unit:0,unlik:0,unori:0,unrestrict:0,unshield:0,unshuffl:0,upper:0,use:0,use_mask:0,used:0,useful:0,user:0,uses:0,using:0,util:0,v84:0,val:0,val_matrix:0,val_min:0,val_onli:0,valid:0,valu:0,var1:0,var2:0,var_nam:0,var_network:0,var_process:0,var_unit:0,vari:0,variabl:0,varianc:0,variant:0,varibl:0,varx:0,vector:0,verbos:0,veri:[],version:0,vertic:0,via:0,view:0,visit:0,visual:0,visweswaran:[],vmax_edg:0,vmax_nod:0,vmin_edg:0,vmin_nod:0,warn:[],weight:0,weighted_avg_and_std:0,welch:[],well:0,when:0,where:0,whether:0,which:0,whichev:0,whole:[],wide:0,widehat:0,width:0,window:0,with_mean:0,with_std:0,within:0,won:[],wrapper:0,www:0,x_base:0,x_i:0,x_j:0,x_t:0,xyz:0,y_base:0,y_t:0,yield:0,you:0,z_i:0,z_j:0,z_t:0,zero:0,zhang:[]},titles:["TIGRAMITE"],titleterms:{"function":0,condit:0,data:0,data_process:0,independ:0,independence_test:0,indic:0,mediat:0,model:0,pcmci:0,plot:0,predict:0,process:0,seri:0,tabl:0,test:0,tigramit:0,time:0}}) \ No newline at end of file diff --git a/setup.py b/setup.py index 245511b7..5b6006ef 100644 --- a/setup.py +++ b/setup.py @@ -73,7 +73,7 @@ def define_extension(extension_name, source_files=None): # Run the setup setup( name='tigramite', - version='4.2.0.2', + version='4.2.0.3', packages=['tigramite', 'tigramite.independence_tests'], license='GNU General Public License v3.0', description='Tigramite causal discovery for time series', diff --git a/tests/test_pcmci_calculations.py b/tests/test_pcmci_calculations.py index fb1c61e4..b2d2d0be 100644 --- a/tests/test_pcmci_calculations.py +++ b/tests/test_pcmci_calculations.py @@ -541,14 +541,17 @@ def a_run_pcmciplus(a_pcmciplus, a_pcmciplus_params): # Print true links print("************************") print("\nTrue Graph") - pcmci.print_significant_links( - p_matrix=(true_graph == 0), - val_matrix=true_graph, - conf_matrix=None, - q_matrix=None, - graph=true_graph, - ambiguous_triples=None, - alpha_level=0.05) + for lag in range(tau_max): + print("Lag %d = ", lag) + print(true_graph[:,:,lag]) + # pcmci.print_significant_links( + # p_matrix=(true_graph != ""), + # val_matrix=true_graph, + # conf_matrix=None, + # q_matrix=None, + # graph=true_graph, + # ambiguous_triples=None, + # alpha_level=0.05) # Return the results and the expected result return results['graph'], true_graph @@ -638,14 +641,17 @@ def test_order_independence_pcmciplus(a_pcmciplus_order_independence, pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test, verbosity=1) print("************************") print("\nTrue Graph") - pcmci.print_significant_links( - p_matrix=(true_graph == 0), - val_matrix=true_graph, - conf_matrix=None, - q_matrix=None, - graph=true_graph, - ambiguous_triples=None, - alpha_level=0.05) + for lag in range(tau_max): + print("Lag %d = ", lag) + print(true_graph[:,:,lag]) + # pcmci.print_significant_links( + # p_matrix=(true_graph == 0), + # val_matrix=true_graph, + # conf_matrix=None, + # q_matrix=None, + # graph=true_graph, + # ambiguous_triples=None, + # alpha_level=0.05) results = pcmci.run_pcmciplus( selected_links=None, @@ -685,7 +691,7 @@ def test_order_independence_pcmciplus(a_pcmciplus_order_independence, back_converted_result = np.take(tmp, perm, axis=1) for tau in range(tau_max+1): - if not np.allclose(results['graph'][:,:,tau], + if not np.array_equal(results['graph'][:,:,tau], back_converted_result[:,:,tau]): print(tau) print(results['graph'][:,:,tau]) diff --git a/tigramite/data_processing.py b/tigramite/data_processing.py index c8d586b5..c4814005 100644 --- a/tigramite/data_processing.py +++ b/tigramite/data_processing.py @@ -1395,13 +1395,16 @@ def links_to_graph(links, tau_max=None): "found in links, use tau_max=None or larger " "value" % max_lag) - graph = np.zeros((N, N, tau_max + 1), dtype='uint8') + graph = np.zeros((N, N, tau_max + 1), dtype='"} + link_marker = {True:"o-o", False:"-->"} abstau = abs(parent[1]) if self.verbosity > 1: @@ -1533,7 +1533,7 @@ def print_significant_links(self, List of ambiguous triples. """ if graph is not None: - sig_links = (graph > 0) + sig_links = (graph != "")*(graph != "<--") elif q_matrix is not None: sig_links = (q_matrix <= alpha_level) else: @@ -1562,19 +1562,19 @@ def print_significant_links(self, conf_matrix[p[0], j, abs(p[1])][0], conf_matrix[p[0], j, abs(p[1])][1]) if graph is not None: - if p[1] == 0 and graph[j, p[0], 0] == 1: + if p[1] == 0 and graph[j, p[0], 0] == "o-o": string += " | unoriented link" - if graph[p[0], j, abs(p[1])] == 2: + if graph[p[0], j, abs(p[1])] == "x-x": string += " | unclear orientation due to conflict" print(string) - link_marker = {True:"o--o", False:"-->"} + link_marker = {True:"o-o", False:"-->"} if ambiguous_triples is not None and len(ambiguous_triples) > 0: print("\n## Ambiguous triples:\n") for triple in ambiguous_triples: (i, tau), k, j = triple - print(" (%s % d) %s %s o--o %s" % ( + print(" (%s % d) %s %s o-o %s" % ( self.var_names[i], tau, link_marker[tau==0], self.var_names[k], self.var_names[j])) @@ -1701,7 +1701,7 @@ def run_pcmci(self, 2: [((2, -1), 0.8), ((1, -2), -0.6)]} >>> data, _ = pp.var_process(links_coeffs, T=1000) >>> # Data must be array of shape (time, variables) - >>> print data.shape + >>> print (data.shape) (1000, 3) >>> dataframe = pp.DataFrame(data) >>> cond_ind_test = ParCorr() @@ -1713,17 +1713,16 @@ def run_pcmci(self, ## Significant parents at alpha = 0.05: Variable 0 has 1 link(s): - (0 -1): pval = 0.00000 | val = 0.632 + (0 -1): pval = 0.00000 | val = 0.588 Variable 1 has 2 link(s): - (1 -1): pval = 0.00000 | val = 0.653 - - (0 -1): pval = 0.00000 | val = 0.444 + (1 -1): pval = 0.00000 | val = 0.606 + (0 -1): pval = 0.00000 | val = 0.447 Variable 2 has 2 link(s): - (2 -1): pval = 0.00000 | val = 0.623 + (2 -1): pval = 0.00000 | val = 0.618 + (1 -2): pval = 0.00000 | val = -0.499 - (1 -2): pval = 0.00000 | val = -0.533 Parameters ---------- @@ -1829,7 +1828,8 @@ def run_pcmciplus(self, """Runs PCMCIplus time-lagged and contemporaneous causal discovery for time series. - Method described in [5]_: https://arxiv.org/abs/2003.03685 + Method described in [5]_: + http://www.auai.org/~w-auai/uai2020/proceedings/579_main_paper.pdf Notes ----- @@ -1872,20 +1872,20 @@ def run_pcmciplus(self, links based on PC rules. In contrast to PCMCI, the relevant output of PCMCIplus is the - array ``graph``. Its entries are interpreted as follows: + array ``graph``. Its string entries are interpreted as follows: - * ``graph[i,j,tau]=1`` for :math:`\\tau>0` denotes a directed, lagged + * ``graph[i,j,tau]=-->`` for :math:`\\tau>0` denotes a directed, lagged causal link from :math:`i` to :math:`j` at lag :math:`\\tau` - * ``graph[i,j,0]=1`` and ``graph[j,i,0]=0`` denotes a directed, + * ``graph[i,j,0]=-->`` (and ``graph[j,i,0]=<--``) denotes a directed, contemporaneous causal link from :math:`i` to :math:`j` - * ``graph[i,j,0]=1`` and ``graph[j,i,0]=1`` denotes an unoriented, + * ``graph[i,j,0]=o-o`` (and ``graph[j,i,0]=o-o``) denotes an unoriented, contemporaneous adjacency between :math:`i` and :math:`j` indicating that the collider and orientation rules could not be applied (Markov equivalence) - * ``graph[i,j,0]=2`` and ``graph[j,i,0]=2`` denotes a conflicting, + * ``graph[i,j,0]=x-x`` and (``graph[j,i,0]=x-x``) denotes a conflicting, contemporaneous adjacency between :math:`i` and :math:`j` indicating that the directionality is undecided due to conflicting orientation rules @@ -1933,7 +1933,7 @@ def run_pcmciplus(self, Examples -------- - >>> import numpy + >>> import numpy as np >>> from tigramite.pcmci import PCMCI >>> from tigramite.independence_tests import ParCorr >>> import tigramite.data_processing as pp @@ -1946,12 +1946,10 @@ def run_pcmciplus(self, 2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)], 3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)], } - >>> # Specify dynamical noise term distributions - >>> noises = [np.random.randn for j in links.keys()] >>> data, nonstat = pp.structural_causal_process(links, - T=1000, noises=noises, seed=7) + T=1000, seed=7) >>> # Data must be array of shape (time, variables) - >>> print data.shape + >>> print (data.shape) (1000, 4) >>> dataframe = pp.DataFrame(data) >>> cond_ind_test = ParCorr() @@ -1960,23 +1958,20 @@ def run_pcmciplus(self, >>> pcmci.print_results(results, alpha_level=0.01) ## Significant links at alpha = 0.01: - Variable 0 has 1 link(s): - (0 -1): pval = 0.00000 | val = 0.676 - - Variable 1 has 2 link(s): - (1 -1): pval = 0.00000 | val = 0.602 - - (0 -1): pval = 0.00000 | val = 0.599 - - Variable 2 has 2 link(s): - (1 0): pval = 0.00000 | val = 0.486 + Variable 0 has 1 link(s): + (0 -1): pval = 0.00000 | val = 0.676 - (2 -1): pval = 0.00000 | val = 0.466 + Variable 1 has 2 link(s): + (1 -1): pval = 0.00000 | val = 0.602 + (0 -1): pval = 0.00000 | val = 0.599 - Variable 3 has 2 link(s): - (3 -1): pval = 0.00000 | val = 0.524 + Variable 2 has 2 link(s): + (1 0): pval = 0.00000 | val = 0.486 + (2 -1): pval = 0.00000 | val = 0.466 - (2 0): pval = 0.00000 | val = -0.449 + Variable 3 has 2 link(s): + (3 -1): pval = 0.00000 | val = 0.524 + (2 0): pval = 0.00000 | val = -0.449 Parameters ---------- @@ -2158,6 +2153,7 @@ def run_pcmciplus(self, exclude_contemporaneous=False) # Store the parents in the pcmci member self.all_parents = lagged_parents + # Cache the resulting values in the return dictionary return_dict = {'graph': graph, 'val_matrix': val_matrix, @@ -2329,8 +2325,11 @@ def run_pcalg(self, selected_links=None, pc_alpha=0.01, tau_min=0, skeleton_results['val_matrix'][j, i, 0] = \ skeleton_results['val_matrix'][i, j, 0] + # Convert numerical graph matrix to string + graph_str = self.convert_to_string_graph(final_graph) + pc_results = { - 'graph': final_graph, + 'graph': graph_str, 'p_matrix': skeleton_results['p_matrix'], 'val_matrix': skeleton_results['val_matrix'], 'sepset': colliders_step_results['sepset'], @@ -2494,9 +2493,9 @@ def _print_triple_info(self, triple, index, n_triples): Total number of triples. """ (i, tau), k, j = triple - link_marker = {True:"o--o", False:"-->"} + link_marker = {True:"o-o", False:"-->"} - print("\n Triple (%s % d) %s %s o--o %s (%d/%d)" % ( + print("\n Triple (%s % d) %s %s o-o %s (%d/%d)" % ( self.var_names[i], tau, link_marker[tau==0], self.var_names[k], self.var_names[j], index + 1, n_triples)) @@ -2693,7 +2692,7 @@ def _pcalg_skeleton(self, (i, -abstau))) # Store max. p-value and corresponding value to return - if pval > pvalues[i, j, abstau]: + if pval >= pvalues[i, j, abstau]: pvalues[i, j, abstau] = pval val_matrix[i, j, abstau] = val @@ -3133,7 +3132,7 @@ def subsets(s): if self.verbosity > 1 and len(v_structures) > 0: print("\nOrienting links among colliders:") - link_marker = {True:"o--o", False:"-->"} + link_marker = {True:"o-o", False:"-->"} # Now go through list of v-structures and (optionally) detect conflicts oriented_links = [] @@ -3141,14 +3140,14 @@ def subsets(s): (i, tau), k, j = itaukj if self.verbosity > 1: - print("\n Collider (%s % d) %s %s o--o %s:" % ( + print("\n Collider (%s % d) %s %s o-o %s:" % ( self.var_names[i], tau, link_marker[ tau==0], self.var_names[k], self.var_names[j])) if (k, j) not in oriented_links and (j, k) not in oriented_links: if self.verbosity > 1: - print(" Orient %s o--o %s as %s --> %s " % ( + print(" Orient %s o-o %s as %s --> %s " % ( self.var_names[j], self.var_names[k], self.var_names[j], self.var_names[k])) graph[k, j, 0] = 0 @@ -3170,7 +3169,7 @@ def subsets(s): if (i, k) not in oriented_links and ( k, i) not in oriented_links: if self.verbosity > 1: - print(" Orient %s o--o %s as %s --> %s " % ( + print(" Orient %s o-o %s as %s --> %s " % ( self.var_names[i], self.var_names[k], self.var_names[i], self.var_names[k])) graph[k, i, 0] = 0 @@ -3199,7 +3198,7 @@ def subsets(s): } def _find_triples_rule1(self, graph): - """Find triples i_tau --> k_t o--o j_t with i_tau -/- j_t. + """Find triples i_tau --> k_t o-o j_t with i_tau -/- j_t. Excludes conflicting links. @@ -3261,8 +3260,8 @@ def _find_triples_rule2(self, graph): return triples def _find_chains_rule3(self, graph): - """Find chains i_t o--o k_t --> j_t and i_t o--o l_t --> j_t with - i_t o--o j_t and k_t -/- l_t. + """Find chains i_t o-o k_t --> j_t and i_t o-o l_t --> j_t with + i_t o-o j_t and k_t -/- l_t. Excludes conflicting links. @@ -3333,7 +3332,7 @@ def _pcalg_rules_timeseries(self, N = graph.shape[0] def rule1(graph, oriented_links): - """Find (unambiguous) triples i_tau --> k_t o--o j_t with + """Find (unambiguous) triples i_tau --> k_t o-o j_t with i_tau -/- j_t and orient as i_tau --> k_t --> j_t. """ triples = self._find_triples_rule1(graph) @@ -3348,7 +3347,7 @@ def rule1(graph, oriented_links): k, j) not in oriented_links: if self.verbosity > 1: print( - " R1: Found (%s % d) --> %s o--o %s, " + " R1: Found (%s % d) --> %s o-o %s, " "orient as %s --> %s" % ( self.var_names[i], tau, self.var_names[k], self.var_names[j], @@ -3368,7 +3367,7 @@ def rule1(graph, oriented_links): return triples_left, graph, oriented_links def rule2(graph, oriented_links): - """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o--o j_t + """Find (unambiguous) triples i_t --> k_t --> j_t with i_t o-o j_t and orient as i_t --> j_t. """ @@ -3388,7 +3387,7 @@ def rule2(graph, oriented_links): if self.verbosity > 1: print( " R2: Found %s --> %s --> %s with %s " - "o--o %s, orient as %s --> %s" % ( + "o-o %s, orient as %s --> %s" % ( self.var_names[i], self.var_names[k], self.var_names[j], self.var_names[i], self.var_names[j], @@ -3407,8 +3406,8 @@ def rule2(graph, oriented_links): return triples_left, graph, oriented_links def rule3(graph, oriented_links): - """Find (unambiguous) chains i_t o--o k_t --> j_t - and i_t o--o l_t --> j_t with i_t o--o j_t + """Find (unambiguous) chains i_t o-o k_t --> j_t + and i_t o-o l_t --> j_t with i_t o-o j_t and k_t -/- l_t: Orient as i_t --> j_t. """ # First find all chains i_t -- k_t --> j_t with i_t -- j_t @@ -3432,8 +3431,8 @@ def rule3(graph, oriented_links): i, j) not in oriented_links: if self.verbosity > 1: print( - " R3: Found %s o--o %s --> %s and %s o--o " - "%s --> %s with %s o--o %s and %s -/- %s, " + " R3: Found %s o-o %s --> %s and %s o-o " + "%s --> %s with %s o-o %s and %s -/- %s, " "orient as %s --> %s" % ( self.var_names[i], self.var_names[k], self.var_names[j], self.var_names[i], @@ -3498,7 +3497,7 @@ def _get_simplicial_node(self, circle_cpdag, variable_order): """ for j in variable_order: - adj_j = np.where(circle_cpdag[:,j,0])[0].tolist() + adj_j = np.where(circle_cpdag[:,j,0] == "o-o")[0].tolist() # Make sure the node has any adjacencies all_adjacent = len(adj_j) > 0 @@ -3508,7 +3507,7 @@ def _get_simplicial_node(self, circle_cpdag, variable_order): return (j, adj_j) else: for (var1, var2) in itertools.combinations(adj_j, 2): - if circle_cpdag[var1, var2, 0] == 0: + if circle_cpdag[var1, var2, 0] == "": all_adjacent = False break @@ -3570,13 +3569,13 @@ def _get_dag_from_cpdag(self, cpdag_graph, variable_order): # Turn circle component CPDAG^C into a DAG with no unshielded colliders. circle_cpdag = np.copy(cpdag_graph) # All lagged links are directed by time, remove them here - circle_cpdag[:,:,1:] = 0 + circle_cpdag[:,:,1:] = "" # Also remove conflicting links - circle_cpdag[circle_cpdag==2] = 0 - # Find undirected links - for i, j, tau in zip(*np.where(circle_cpdag)): - if circle_cpdag[j,i,0] == 0: - circle_cpdag[i,j,0] = 0 + circle_cpdag[circle_cpdag=="x-x"] = "" + # Find undirected links, remove directed links + for i, j, tau in zip(*np.where(circle_cpdag != "")): + if circle_cpdag[i,j,0] == "-->": + circle_cpdag[i,j,0] = "" # Iterate through simplicial nodes simplicial_node = self._get_simplicial_node(circle_cpdag, @@ -3588,9 +3587,9 @@ def _get_dag_from_cpdag(self, cpdag_graph, variable_order): # component PAG (j, adj_j) = simplicial_node for var in adj_j: - dag[var, j, 0] = 1 - dag[j, var, 0] = 0 - circle_cpdag[var, j, 0] = circle_cpdag[j, var, 0] = 0 + dag[var, j, 0] = "-->" + dag[j, var, 0] = "<--" + circle_cpdag[var, j, 0] = circle_cpdag[j, var, 0] = "" # Iterate simplicial_node = self._get_simplicial_node(circle_cpdag, @@ -3674,18 +3673,22 @@ def _optimize_pcmciplus_alpha(self, dag = self._get_dag_from_cpdag( cpdag_graph=results[pc_alpha_here]['graph'], variable_order=variable_order) - parents = self.return_significant_links( - pq_matrix=results[pc_alpha_here]['p_matrix'], - val_matrix=results[pc_alpha_here]['val_matrix'], - alpha_level=pc_alpha_here, - include_lagzero_links=True)['link_dict'] + + # = self.return_significant_links( + # pq_matrix=results[pc_alpha_here]['p_matrix'], + # val_matrix=results[pc_alpha_here]['val_matrix'], + # alpha_level=pc_alpha_here, + # include_lagzero_links=True)['link_dict'] # Compute the best average score when the model selection # is applied to all N variables for j in range(self.N): + parents = [] + for i, tau in zip(*np.where(dag[:,j,:] == "-->")): + parents.append((i, -tau)) score[iscore] += \ self.cond_ind_test.get_model_selection_criterion( - j, parents[j], tau_max) + j, parents, tau_max) score[iscore] /= float(self.N) # Record the optimal alpha value @@ -3745,31 +3748,28 @@ def convert_to_string_graph(self, graph_bool): np.random.seed(43) - ## Generate some time series from a structural causal process + # Example process to play around with + # Each key refers to a variable and the incoming links are supplied + # as a list of format [((var, -lag), coeff, function), ...] def lin_f(x): return x def nonlin_f(x): return (x + 5. * x ** 2 * np.exp(-x ** 2 / 20.)) - auto_coeff = 0.95 - coeff = 0.4 - T = 500 - - links = {0: [((0, -1), 0., lin_f), ((1, 0), 0.6, lin_f)], - 1: [((1, -1), 0., lin_f), ((2, 0), 0., lin_f), ((2, -1), 0.6, lin_f)], - 2: [((2, -1), 0.8, lin_f), ((1, -1), -0.5, lin_f)] + links = {0: [((0, -1), 0.9, lin_f)], + 1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)], + 2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)], + 3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)], } - - noises = [np.random.randn for j in links.keys()] data, nonstat = pp.structural_causal_process(links, - T=1000, noises=noises, seed=7) + T=1000, seed=7) - verbosity = 2 + # Data must be array of shape (time, variables) + print(data.shape) dataframe = pp.DataFrame(data) - pcmci = PCMCI(dataframe=dataframe, - cond_ind_test=ParCorr(verbosity=0), - verbosity=2, - ) - results = pcmci.run_pcmci(tau_max=2) - print (pcmci.results) + cond_ind_test = ParCorr() + pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test) + results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01) + pcmci.print_results(results, alpha_level=0.01) + diff --git a/tigramite/plotting.py b/tigramite/plotting.py index 26f245de..53b05167 100644 --- a/tigramite/plotting.py +++ b/tigramite/plotting.py @@ -11,11 +11,15 @@ from matplotlib import pyplot, ticker from matplotlib.ticker import FormatStrFormatter import matplotlib.patches as mpatches +from matplotlib.collections import PatchCollection + import sys +from operator import sub import networkx as nx import tigramite.data_processing as pp - from copy import deepcopy +import matplotlib.path as mpath +import matplotlib.patheffects as PathEffects # TODO: Add proper docstrings to internal functions... @@ -26,28 +30,28 @@ def _par_corr_trafo(cmi): # Set negative values to small positive number # (zero would be interpreted as non-significant in some functions) if np.ndim(cmi) == 0: - if cmi < 0.: - cmi = 1E-8 + if cmi < 0.0: + cmi = 1e-8 else: - cmi[cmi < 0.] = 1E-8 + cmi[cmi < 0.0] = 1e-8 - return np.sqrt(1. - np.exp(-2. * cmi)) + return np.sqrt(1.0 - np.exp(-2.0 * cmi)) def _par_corr_to_cmi(par_corr): """Transformation of partial correlation to CMI scale.""" - return -0.5 * np.log(1. - par_corr**2) + return -0.5 * np.log(1.0 - par_corr ** 2) -def _myround(x, base=5, round_mode='updown'): +def _myround(x, base=5, round_mode="updown"): """Rounds x to a float with precision base.""" - if round_mode == 'updown': + if round_mode == "updown": return base * round(float(x) / base) - elif round_mode == 'down': + elif round_mode == "down": return base * np.floor(float(x) / base) - elif round_mode == 'up': + elif round_mode == "up": return base * np.ceil(float(x) / base) return base * round(float(x) / base) @@ -57,10 +61,9 @@ def _make_nice_axes(ax, where=None, skip=2, color=None): """Makes nice axes.""" if where is None: - where = ['left', 'bottom'] + where = ["left", "bottom"] if color is None: - color = {'left': 'black', 'right': 'black', - 'bottom': 'black', 'top': 'black'} + color = {"left": "black", "right": "black", "bottom": "black", "top": "black"} if type(skip) == int: skip_x = skip_y = skip @@ -70,48 +73,48 @@ def _make_nice_axes(ax, where=None, skip=2, color=None): for loc, spine in ax.spines.items(): if loc in where: - spine.set_position(('outward', 5)) # outward by 10 points + spine.set_position(("outward", 5)) # outward by 10 points spine.set_color(color[loc]) - if loc == 'left' or loc == 'right': + if loc == "left" or loc == "right": pyplot.setp(ax.get_yticklines(), color=color[loc]) pyplot.setp(ax.get_yticklabels(), color=color[loc]) - if loc == 'top' or loc == 'bottom': + if loc == "top" or loc == "bottom": pyplot.setp(ax.get_xticklines(), color=color[loc]) - elif loc in [item for item in ['left', 'bottom', 'right', 'top'] - if item not in where]: - spine.set_color('none') # don't draw spine + elif loc in [ + item for item in ["left", "bottom", "right", "top"] if item not in where + ]: + spine.set_color("none") # don't draw spine else: - raise ValueError('unknown spine location: %s' % loc) + raise ValueError("unknown spine location: %s" % loc) # ax.xaxis.get_major_formatter().set_useOffset(False) # turn off ticks where there is no spine - if 'top' in where and 'bottom' not in where: - ax.xaxis.set_ticks_position('top') + if "top" in where and "bottom" not in where: + ax.xaxis.set_ticks_position("top") ax.set_xticks(ax.get_xticks()[::skip_x]) - elif 'bottom' in where: - ax.xaxis.set_ticks_position('bottom') + elif "bottom" in where: + ax.xaxis.set_ticks_position("bottom") ax.set_xticks(ax.get_xticks()[::skip_x]) else: - ax.xaxis.set_ticks_position('none') + ax.xaxis.set_ticks_position("none") ax.xaxis.set_ticklabels([]) - if 'right' in where and 'left' not in where: - ax.yaxis.set_ticks_position('right') + if "right" in where and "left" not in where: + ax.yaxis.set_ticks_position("right") ax.set_yticks(ax.get_yticks()[::skip_y]) - elif 'left' in where: - ax.yaxis.set_ticks_position('left') + elif "left" in where: + ax.yaxis.set_ticks_position("left") ax.set_yticks(ax.get_yticks()[::skip_y]) else: - ax.yaxis.set_ticks_position('none') + ax.yaxis.set_ticks_position("none") ax.yaxis.set_ticklabels([]) - ax.patch.set_alpha(0.) + ax.patch.set_alpha(0.0) def _get_absmax(val_matrix): """Get value at absolute maximum in lag function array. - For an (N, N, tau)-array this comutes the lag of the absolute maximum along the tau-axis and stores the (positive or negative) value in the (N,N)-array absmax.""" @@ -122,26 +125,30 @@ def _get_absmax(val_matrix): return val_matrix[i, j, absmax_indices] -def _add_timeseries(fig, axes, i, time, dataseries, label, - use_mask=False, - mask=None, - missing_flag=None, - grey_masked_samples=False, - data_linewidth=1., - skip_ticks_data_x=1, - skip_ticks_data_y=1, - unit=None, - last=False, - time_label='', - label_fontsize=10, - color='black', - grey_alpha=1., - ): +def _add_timeseries( + fig, + axes, + i, + time, + dataseries, + label, + use_mask=False, + mask=None, + missing_flag=None, + grey_masked_samples=False, + data_linewidth=1.0, + skip_ticks_data_x=1, + skip_ticks_data_y=1, + unit=None, + last=False, + time_label="", + label_fontsize=10, + color="black", + grey_alpha=1.0, +): """Adds a time series plot to an axis. - Plot of dataseries is added to axis. Allows for proper visualization of masked data. - Parameters ---------- fig : figure instance @@ -196,55 +203,78 @@ def _add_timeseries(fig, axes, i, time, dataseries, label, ax = axes if missing_flag is not None: - dataseries_nomissing = np.ma.masked_where(dataseries==missing_flag, - dataseries) + dataseries_nomissing = np.ma.masked_where( + dataseries == missing_flag, dataseries + ) else: dataseries_nomissing = np.ma.masked_where( - np.zeros(dataseries.shape), - dataseries) + np.zeros(dataseries.shape), dataseries + ) if use_mask: maskdata = np.ma.masked_where(mask, dataseries_nomissing) - if grey_masked_samples == 'fill': - ax.fill_between(time, maskdata.min(), maskdata.max(), - where=mask, color='grey', - interpolate=True, - linewidth=0., alpha=grey_alpha) - elif grey_masked_samples == 'data': - ax.plot(time, dataseries_nomissing, - color='grey', marker='.', markersize=data_linewidth, - linewidth=data_linewidth, clip_on=False, - alpha=grey_alpha) - - ax.plot(time, maskdata, - color=color, linewidth=data_linewidth, marker='.', - markersize=data_linewidth, clip_on=False) + if grey_masked_samples == "fill": + ax.fill_between( + time, + maskdata.min(), + maskdata.max(), + where=mask, + color="grey", + interpolate=True, + linewidth=0.0, + alpha=grey_alpha, + ) + elif grey_masked_samples == "data": + ax.plot( + time, + dataseries_nomissing, + color="grey", + marker=".", + markersize=data_linewidth, + linewidth=data_linewidth, + clip_on=False, + alpha=grey_alpha, + ) + + ax.plot( + time, + maskdata, + color=color, + linewidth=data_linewidth, + marker=".", + markersize=data_linewidth, + clip_on=False, + ) else: - ax.plot(time, dataseries_nomissing, - color=color, linewidth=data_linewidth, clip_on=False) + ax.plot( + time, + dataseries_nomissing, + color=color, + linewidth=data_linewidth, + clip_on=False, + ) if last: - _make_nice_axes(ax, where=['left', 'bottom'], skip=( - skip_ticks_data_x, skip_ticks_data_y)) - ax.set_xlabel(r'%s' % time_label, fontsize=label_fontsize) - else: _make_nice_axes( - ax, where=['left'], skip=(skip_ticks_data_x, skip_ticks_data_y)) + ax, where=["left", "bottom"], skip=(skip_ticks_data_x, skip_ticks_data_y) + ) + ax.set_xlabel(r"%s" % time_label, fontsize=label_fontsize) + else: + _make_nice_axes(ax, where=["left"], skip=(skip_ticks_data_x, skip_ticks_data_y)) # ax.get_xaxis().get_major_formatter().set_useOffset(False) - ax.xaxis.set_major_formatter(FormatStrFormatter('%.0f')) + ax.xaxis.set_major_formatter(FormatStrFormatter("%.0f")) ax.label_outer() ax.set_xlim(time[0], time[-1]) - trans = transforms.blended_transform_factory( - fig.transFigure, ax.transAxes) + trans = transforms.blended_transform_factory(fig.transFigure, ax.transAxes) if unit: - ax.set_ylabel(r'%s [%s]' % (label, unit), fontsize=label_fontsize) + ax.set_ylabel(r"%s [%s]" % (label, unit), fontsize=label_fontsize) else: - ax.set_ylabel(r'%s' % (label), fontsize=label_fontsize) + ax.set_ylabel(r"%s" % (label), fontsize=label_fontsize) # ax.text(.02, .5, r'%s [%s]' % (label, unit), fontsize=label_fontsize, # horizontalalignment='left', verticalalignment='center', @@ -256,21 +286,21 @@ def _add_timeseries(fig, axes, i, time, dataseries, label, pyplot.tight_layout() -def plot_timeseries(dataframe=None, - save_name=None, - fig_axes=None, - figsize=None, - var_units=None, - time_label='time', - use_mask=False, - grey_masked_samples=False, - data_linewidth=1., - skip_ticks_data_x=1, - skip_ticks_data_y=2, - label_fontsize=8, - ): +def plot_timeseries( + dataframe=None, + save_name=None, + fig_axes=None, + figsize=None, + var_units=None, + time_label="time", + use_mask=False, + grey_masked_samples=False, + data_linewidth=1.0, + skip_ticks_data_x=1, + skip_ticks_data_y=2, + label_fontsize=12, +): """Create and save figure of stacked panels with time series. - Parameters ---------- dataframe : data object, optional @@ -314,11 +344,10 @@ def plot_timeseries(dataframe=None, T, N = data.shape if var_units is None: - var_units = ['' for i in range(N)] + var_units = ["" for i in range(N)] if fig_axes is None: - fig, axes = pyplot.subplots(N, sharex=True, - figsize=figsize) + fig, axes = pyplot.subplots(N, sharex=True, figsize=figsize) else: fig, axes = fig_axes @@ -327,24 +356,27 @@ def plot_timeseries(dataframe=None, mask_i = None else: mask_i = mask[:, i] - _add_timeseries(fig=fig, axes=axes, i=i, - time=datatime, - dataseries=data[:, i], - label=var_names[i], - use_mask=use_mask, - mask=mask_i, - missing_flag=missing_flag, - grey_masked_samples=grey_masked_samples, - data_linewidth=data_linewidth, - skip_ticks_data_x=skip_ticks_data_x, - skip_ticks_data_y=skip_ticks_data_y, - unit=var_units[i], - last=(i == N - 1), - time_label=time_label, - label_fontsize=label_fontsize, - ) - - fig.subplots_adjust(bottom=0.15, top=.9, left=0.15, right=.95, hspace=.3) + _add_timeseries( + fig=fig, + axes=axes, + i=i, + time=datatime, + dataseries=data[:, i], + label=var_names[i], + use_mask=use_mask, + mask=mask_i, + missing_flag=missing_flag, + grey_masked_samples=grey_masked_samples, + data_linewidth=data_linewidth, + skip_ticks_data_x=skip_ticks_data_x, + skip_ticks_data_y=skip_ticks_data_y, + unit=var_units[i], + last=(i == N - 1), + time_label=time_label, + label_fontsize=label_fontsize, + ) + + fig.subplots_adjust(bottom=0.15, top=0.9, left=0.15, right=0.95, hspace=0.3) pyplot.tight_layout() if save_name is not None: @@ -352,12 +384,11 @@ def plot_timeseries(dataframe=None, else: return fig, axes + def plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={}): """Wrapper helper function to plot lag functions. - Sets up the matrix object and plots the lagfunction, see parameters in setup_matrix and add_lagfuncs. - Parameters ---------- val_matrix : array_like @@ -369,7 +400,6 @@ def plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={}): setup_matrix. add_lagfunc_args : dict Arguments for adding a lag function matrix, see doc of add_lagfuncs. - Returns ------- matrix : object @@ -388,13 +418,12 @@ def plot_lagfuncs(val_matrix, name=None, setup_args={}, add_lagfunc_args={}): return matrix -class setup_matrix(): - """Create matrix of lag function panels. +class setup_matrix: + """Create matrix of lag function panels. Class to setup figure object. The function add_lagfuncs(...) allows to plot the val_matrix of shape (N, N, tau_max+1). Multiple lagfunctions can be overlaid for comparison. - Parameters ---------- N : int @@ -430,20 +459,25 @@ class setup_matrix(): Fontsize of variable labels. """ - def __init__(self, N, tau_max, - var_names=None, - figsize=None, - minimum=-1, - maximum=1, - label_space_left=0.1, - label_space_top=.05, - legend_width=.15, - legend_fontsize=10, - x_base=1., y_base=0.5, - plot_gridlines=False, - lag_units='', - lag_array=None, - label_fontsize=10): + def __init__( + self, + N, + tau_max, + var_names=None, + figsize=None, + minimum=-1, + maximum=1, + label_space_left=0.1, + label_space_top=0.05, + legend_width=0.15, + legend_fontsize=10, + x_base=1.0, + y_base=0.5, + plot_gridlines=False, + lag_units="", + lag_array=None, + label_fontsize=10, + ): self.tau_max = tau_max @@ -458,7 +492,6 @@ def __init__(self, N, tau_max, else: self.x_base = x_base - self.legend_width = legend_width self.legend_fontsize = legend_fontsize @@ -480,76 +513,98 @@ def __init__(self, N, tau_max, # Plot process labels if j == 0: trans = transforms.blended_transform_factory( - self.fig.transFigure, self.axes_dict[(i, j)].transAxes) - self.axes_dict[(i, j)].text(0.01, .5, '%s' % - str(var_names[i]), - fontsize=label_fontsize, - horizontalalignment='left', - verticalalignment='center', - transform=trans) + self.fig.transFigure, self.axes_dict[(i, j)].transAxes + ) + self.axes_dict[(i, j)].text( + 0.01, + 0.5, + "%s" % str(var_names[i]), + fontsize=label_fontsize, + horizontalalignment="left", + verticalalignment="center", + transform=trans, + ) if i == 0: trans = transforms.blended_transform_factory( - self.axes_dict[(i, j)].transAxes, self.fig.transFigure) - self.axes_dict[(i, j)].text(.5, .99, r'${\to}$ ' + '%s' % - str(var_names[j]), - fontsize=label_fontsize, - horizontalalignment='center', - verticalalignment='top', - transform=trans) + self.axes_dict[(i, j)].transAxes, self.fig.transFigure + ) + self.axes_dict[(i, j)].text( + 0.5, + 0.99, + r"${\to}$ " + "%s" % str(var_names[j]), + fontsize=label_fontsize, + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) # Make nice axis _make_nice_axes( - self.axes_dict[(i, j)], where=['left', 'bottom'], - skip=(1, 1)) + self.axes_dict[(i, j)], where=["left", "bottom"], skip=(1, 1) + ) if x_base is not None: self.axes_dict[(i, j)].xaxis.set_major_locator( - ticker.FixedLocator(np.arange(0, self.tau_max + 1, - x_base))) - if x_base / 2. % 1 == 0: + ticker.FixedLocator(np.arange(0, self.tau_max + 1, x_base)) + ) + if x_base / 2.0 % 1 == 0: self.axes_dict[(i, j)].xaxis.set_minor_locator( - ticker.FixedLocator(np.arange(0, self.tau_max + - 1, - x_base / 2.))) + ticker.FixedLocator( + np.arange(0, self.tau_max + 1, x_base / 2.0) + ) + ) if y_base is not None: self.axes_dict[(i, j)].yaxis.set_major_locator( ticker.FixedLocator( - np.arange(_myround(minimum, y_base, 'down'), - _myround(maximum, y_base, 'up') + - y_base, y_base))) + np.arange( + _myround(minimum, y_base, "down"), + _myround(maximum, y_base, "up") + y_base, + y_base, + ) + ) + ) self.axes_dict[(i, j)].yaxis.set_minor_locator( ticker.FixedLocator( - np.arange(_myround(minimum, y_base, 'down'), - _myround(maximum, y_base, 'up') + - y_base, y_base / 2.))) + np.arange( + _myround(minimum, y_base, "down"), + _myround(maximum, y_base, "up") + y_base, + y_base / 2.0, + ) + ) + ) self.axes_dict[(i, j)].set_ylim( - _myround(minimum, y_base, 'down'), - _myround(maximum, y_base, 'up')) + _myround(minimum, y_base, "down"), + _myround(maximum, y_base, "up"), + ) if j != 0: self.axes_dict[(i, j)].get_yaxis().set_ticklabels([]) self.axes_dict[(i, j)].set_xlim(0, self.tau_max) if plot_gridlines: - self.axes_dict[(i, j)].grid(True, which='major', - color='black', - linestyle='dotted', - dashes=(1, 1), - linewidth=.05, - zorder=-5) + self.axes_dict[(i, j)].grid( + True, + which="major", + color="black", + linestyle="dotted", + dashes=(1, 1), + linewidth=0.05, + zorder=-5, + ) plot_index += 1 - def add_lagfuncs(self, val_matrix, - sig_thres=None, - conf_matrix=None, - color='black', - label=None, - two_sided_thres=True, - marker='.', - markersize=5, - alpha=1., - ): + def add_lagfuncs( + self, + val_matrix, + sig_thres=None, + conf_matrix=None, + color="black", + label=None, + two_sided_thres=True, + marker=".", + markersize=5, + alpha=1.0, + ): """Add lag function plot from val_matrix array. - Parameters ---------- val_matrix : array_like @@ -576,57 +631,75 @@ def add_lagfuncs(self, val_matrix, if label is not None: self.labels.append((label, color, marker, markersize, alpha)) - for ij in list(self.axes_dict): i = ij[0] j = ij[1] - maskedres = np.copy(val_matrix[i, j, int(i == j):]) - self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1), - maskedres, - linestyle='', color=color, - marker=marker, markersize=markersize, - alpha=alpha, clip_on=False) + maskedres = np.copy(val_matrix[i, j, int(i == j) :]) + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + maskedres, + linestyle="", + color=color, + marker=marker, + markersize=markersize, + alpha=alpha, + clip_on=False, + ) if conf_matrix is not None: - maskedconfres = np.copy(conf_matrix[i, j, int(i == j):]) - self.axes_dict[(i, j)].plot(range(int(i == j), - self.tau_max + 1), - maskedconfres[:, 0], - linestyle='', color=color, - marker='_', - markersize=markersize - 2, - alpha=alpha, clip_on=False) - self.axes_dict[(i, j)].plot(range(int(i == j), - self.tau_max + 1), - maskedconfres[:, 1], - linestyle='', color=color, - marker='_', - markersize=markersize - 2, - alpha=alpha, clip_on=False) - - self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1), - np.zeros(self.tau_max + 1 - - int(i == j)), - color='black', linestyle='dotted', - linewidth=.1) + maskedconfres = np.copy(conf_matrix[i, j, int(i == j) :]) + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + maskedconfres[:, 0], + linestyle="", + color=color, + marker="_", + markersize=markersize - 2, + alpha=alpha, + clip_on=False, + ) + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + maskedconfres[:, 1], + linestyle="", + color=color, + marker="_", + markersize=markersize - 2, + alpha=alpha, + clip_on=False, + ) + + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + np.zeros(self.tau_max + 1 - int(i == j)), + color="black", + linestyle="dotted", + linewidth=0.1, + ) if sig_thres is not None: - maskedsigres = sig_thres[i, j, int(i == j):] - - self.axes_dict[(i, j)].plot(range(int(i == j), self.tau_max + 1), - maskedsigres, - color=color, linestyle='solid', - linewidth=.1, alpha=alpha) + maskedsigres = sig_thres[i, j, int(i == j) :] + + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + maskedsigres, + color=color, + linestyle="solid", + linewidth=0.1, + alpha=alpha, + ) if two_sided_thres: - self.axes_dict[(i, j)].plot(range(int(i == j), - self.tau_max + 1), - -sig_thres[i, j, int(i == j):], - color=color, linestyle='solid', - linewidth=.1, alpha=alpha) + self.axes_dict[(i, j)].plot( + range(int(i == j), self.tau_max + 1), + -sig_thres[i, j, int(i == j) :], + color=color, + linestyle="solid", + linewidth=0.1, + alpha=alpha, + ) # pyplot.tight_layout() def savefig(self, name=None): """Save matrix figure. - Parameters ---------- name : str, optional (default: None) @@ -636,52 +709,75 @@ def savefig(self, name=None): # Trick to plot legend if len(self.labels) > 0: axlegend = self.fig.add_subplot(111, frameon=False) - axlegend.spines['left'].set_color('none') - axlegend.spines['right'].set_color('none') - axlegend.spines['bottom'].set_color('none') - axlegend.spines['top'].set_color('none') + axlegend.spines["left"].set_color("none") + axlegend.spines["right"].set_color("none") + axlegend.spines["bottom"].set_color("none") + axlegend.spines["top"].set_color("none") axlegend.set_xticks([]) axlegend.set_yticks([]) # self.labels.append((label, color, marker, markersize, alpha)) for item in self.labels: - label = item[0] color = item[1] marker = item[2] markersize = item[3] alpha = item[4] - axlegend.plot([], [], linestyle='', color=color, - marker=marker, markersize=markersize, - label=label, alpha=alpha) - axlegend.legend(loc='upper left', ncol=1, - bbox_to_anchor=(1.05, 0., .1, 1.), - borderaxespad=0, fontsize=self.legend_fontsize - ).draw_frame(False) - - self.fig.subplots_adjust(left=self.label_space_left, right=1. - - self.legend_width, - top=1. - self.label_space_top, - hspace=0.35, wspace=0.35) + axlegend.plot( + [], + [], + linestyle="", + color=color, + marker=marker, + markersize=markersize, + label=label, + alpha=alpha, + ) + axlegend.legend( + loc="upper left", + ncol=1, + bbox_to_anchor=(1.05, 0.0, 0.1, 1.0), + borderaxespad=0, + fontsize=self.legend_fontsize, + ).draw_frame(False) + + self.fig.subplots_adjust( + left=self.label_space_left, + right=1.0 - self.legend_width, + top=1.0 - self.label_space_top, + hspace=0.35, + wspace=0.35, + ) pyplot.figtext( - 0.5, 0.01, r'lag $\tau$ [%s]' % self.lag_units, - horizontalalignment='center', fontsize=self.label_fontsize) + 0.5, + 0.01, + r"lag $\tau$ [%s]" % self.lag_units, + horizontalalignment="center", + fontsize=self.label_fontsize, + ) else: self.fig.subplots_adjust( - left=self.label_space_left, right=.95, - top=1. - self.label_space_top, - hspace=0.35, wspace=0.35) + left=self.label_space_left, + right=0.95, + top=1.0 - self.label_space_top, + hspace=0.35, + wspace=0.35, + ) pyplot.figtext( - 0.55, 0.01, r'lag $\tau$ [%s]' % self.lag_units, - horizontalalignment='center', fontsize=self.label_fontsize) + 0.55, + 0.01, + r"lag $\tau$ [%s]" % self.lag_units, + horizontalalignment="center", + fontsize=self.label_fontsize, + ) if self.lag_array is not None: assert self.lag_array.shape == np.arange(self.tau_max + 1).shape for ij in list(self.axes_dict): i = ij[0] j = ij[1] - self.axes_dict[(i, j)].set_xticklabels(self.lag_array[::self.x_base]) + self.axes_dict[(i, j)].set_xticklabels(self.lag_array[:: self.x_base]) if name is not None: self.fig.savefig(name) @@ -690,448 +786,747 @@ def savefig(self, name=None): def _draw_network_with_curved_edges( - fig, ax, - G, pos, + fig, + ax, + G, + pos, node_rings, - node_labels, node_label_size, node_alpha=1., standard_size=100, - standard_cmap='OrRd', standard_color='lightgrey', log_sizes=False, - cmap_links='YlOrRd', cmap_links_edges='YlOrRd', links_vmin=0., - links_vmax=1., links_edges_vmin=0., links_edges_vmax=1., - links_ticks=.2, links_edges_ticks=.2, link_label_fontsize=8, - arrowstyle='simple', arrowhead_size=3., curved_radius=.2, label_fontsize=4, - label_fraction=.5, link_colorbar_label='link', + node_labels, + node_label_size, + node_alpha=1.0, + standard_size=100, + node_aspect=None, + standard_cmap="OrRd", + standard_color="lightgrey", + log_sizes=False, + cmap_links="YlOrRd", + cmap_links_edges="YlOrRd", + links_vmin=0.0, + links_vmax=1.0, + links_edges_vmin=0.0, + links_edges_vmax=1.0, + links_ticks=0.2, + links_edges_ticks=0.2, + link_label_fontsize=8, + arrowstyle="->, head_width=0.4, head_length=1", + arrowhead_size=3.0, + curved_radius=0.2, + label_fontsize=4, + label_fraction=0.5, + link_colorbar_label="link", # link_edge_colorbar_label='link_edge', - inner_edge_curved=False, inner_edge_style='solid', - network_lower_bound=0.2, show_colorbar=True, - ): + inner_edge_curved=False, + inner_edge_style="solid", + network_lower_bound=0.2, + show_colorbar=True, +): """Function to draw a network from networkx graph instance. - Various attributes are used to specify the graph's properties. - This function is just a beta-template for now that can be further customized. """ from matplotlib.patches import FancyArrowPatch, Circle, Ellipse - ax.spines['left'].set_color('none') - ax.spines['right'].set_color('none') - ax.spines['bottom'].set_color('none') - ax.spines['top'].set_color('none') + ax.spines["left"].set_color("none") + ax.spines["right"].set_color("none") + ax.spines["bottom"].set_color("none") + ax.spines["top"].set_color("none") ax.set_xticks([]) ax.set_yticks([]) N = len(G) - def draw_edge(ax, u, v, d, seen, arrowstyle='simple', outer_edge=True): + # This fixes a positioning bug in matplotlib. + ax.scatter(0, 0, zorder=-10, alpha=0) + + def draw_edge( + ax, + u, + v, + d, + seen, + arrowstyle="->, head_width=0.4, head_length=1", + outer_edge=True, + ): # avoiding attribute error raised by changes in networkx - if hasattr(G, 'node'): + if hasattr(G, "node"): # works with networkx 1.10 - n1 = G.node[u]['patch'] - n2 = G.node[v]['patch'] + n1 = G.node[u]["patch"] + n2 = G.node[v]["patch"] else: # works with networkx 2.4 - n1 = G.nodes[u]['patch'] - n2 = G.nodes[v]['patch'] + n1 = G.nodes[u]["patch"] + n2 = G.nodes[v]["patch"] if outer_edge: - rad = -1.*curved_radius -# facecolor = d['outer_edge_color'] -# edgecolor = d['outer_edge_edgecolor'] + rad = -1.0 * curved_radius if cmap_links is not None: - facecolor = data_to_rgb_links.to_rgba(d['outer_edge_color']) + facecolor = data_to_rgb_links.to_rgba(d["outer_edge_color"]) else: - if d['outer_edge_color'] is not None: - facecolor = d['outer_edge_color'] + if d["outer_edge_color"] is not None: + facecolor = d["outer_edge_color"] else: facecolor = standard_color - width = d['outer_edge_width'] - alpha = d['outer_edge_alpha'] + width = d["outer_edge_width"] + alpha = d["outer_edge_alpha"] if (u, v) in seen: rad = seen.get((u, v)) - rad = (rad + np.sign(rad) * 0.1) * -1. + rad = (rad + np.sign(rad) * 0.1) * -1.0 arrowstyle = arrowstyle # link_edge = d['outer_edge_edge'] - linestyle = 'solid' - linewidth = 0. + linestyle = d.get("outer_edge_style") - if d.get('outer_edge_attribute', None) == 'spurious': - facecolor = 'grey' + if d.get("outer_edge_attribute", None) == "spurious": + facecolor = "grey" - if d.get('outer_edge_type') in ['<-o', '<--']: + if d.get("outer_edge_type") in ["<-o", "<--", "<-x"]: n1, n2 = n2, n1 - if d.get('outer_edge_type') in ["o-o", "o--", "--o", "---"]: - arrowstyle = 'simple,head_length=0.0001' - elif d.get('outer_edge_type') == '<->': - arrowstyle = '<->, head_width=0.15, head_length=0.3' - linewidth = 4 + if d.get("outer_edge_type") in [ + "o-o", + "o--", + "--o", + "---", + "x-x", + "x--", + "--x", + "o-x", + "x-o", + ]: + arrowstyle = "-" + # linewidth = width*factor + elif d.get("outer_edge_type") == "<->": + arrowstyle = "<->, head_width=0.4, head_length=1" + # linewidth = width*factor + elif d.get("outer_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->"]: + arrowstyle = "->, head_width=0.4, head_length=1" else: - rad = -1. * inner_edge_curved * curved_radius + rad = -1.0 * inner_edge_curved * curved_radius if cmap_links is not None: - facecolor = data_to_rgb_links.to_rgba(d['inner_edge_color']) + facecolor = data_to_rgb_links.to_rgba(d["inner_edge_color"]) else: - if d['inner_edge_color'] is not None: - facecolor = d['inner_edge_color'] + if d["inner_edge_color"] is not None: + facecolor = d["inner_edge_color"] else: facecolor = standard_color - width = d['inner_edge_width'] - alpha = d['inner_edge_alpha'] - # if 'oriented' in d and d['oriented']: - # arrowstyle = arrowstyle - # else: - # link_edge = d['inner_edge_edge'] - - linestyle = 'solid' - linewidth = 0. + width = d["inner_edge_width"] + alpha = d["inner_edge_alpha"] - if d.get('inner_edge_attribute', None) == 'spurious': - facecolor = 'grey' - # linestyle = 'dashed' - - if d.get('inner_edge_type') in ['<-o', '<--']: + if d.get("inner_edge_attribute", None) == "spurious": + facecolor = "grey" + if d.get("inner_edge_type") in ["<-o", "<--", "<-x"]: n1, n2 = n2, n1 - if d.get('inner_edge_type') in ["o-o", "o--", "--o", "---"]: - arrowstyle = 'simple,head_length=0.0001' - elif d.get('inner_edge_type') == '<->': - arrowstyle = '<->, head_width=0.15, head_length=0.3' - linewidth = 4 - else: - arrowstyle = arrowstyle - - - connectionstyle='arc3,rad=%s' - - e = FancyArrowPatch(n1.center, n2.center, - arrowstyle= arrowstyle, - connectionstyle=connectionstyle % rad, - mutation_scale=width, - lw=linewidth, - alpha=alpha, - linestyle=linestyle, - color=facecolor, - clip_on=False, - patchA=n1, patchB=n2, - # zorder=-2 - ) - ax.add_patch(e) - - radius=np.sqrt(standard_size)*.005 - # Transformation found here: https://stackoverflow.com/a/9232513/13011987 - x0, y0 = ax.transAxes.transform((0, 0)) # lower left in pixels - x1, y1 = ax.transAxes.transform((1, 1)) # upper right in pixes - dx = x1 - x0 - dy = y1 - y0 - maxd = max(dx, dy) - width = radius * maxd / dx - height = radius * maxd / dy - - circlePath = e.get_path().deepcopy() - vertices = circlePath.vertices - #vertices[:,0] = vertices[:,0] * maxd / dx - #vertices[:,1] = vertices[:,1] * maxd / dy - m,n = vertices.shape - - if "angle3" in connectionstyle or "arc3" in connectionstyle: - vertices = vertices[:int(m/2),:] - - #start = n1.center - #end = n2.center + if d.get("inner_edge_type") in [ + "o-o", + "o--", + "--o", + "---", + "x-x", + "x--", + "--x", + "o-x", + "x-o", + ]: + arrowstyle = "-" + elif d.get("inner_edge_type") == "<->": + arrowstyle = "<->, head_width=0.4, head_length=1" + elif d.get("inner_edge_type") in ["o->", "-->", "<-o", "<--", "<-x", "x->"]: + arrowstyle = "->, head_width=0.4, head_length=1" + + linestyle = d.get("inner_edge_style") + + coor1 = n1.center + coor2 = n2.center + + marker_size = width ** 2 + figuresize = fig.get_size_inches() + + e_p = FancyArrowPatch( + coor1, + coor2, + arrowstyle=arrowstyle, + connectionstyle=f"arc3,rad={rad}", + mutation_scale=width, + lw=width / 2, + alpha=alpha, + linestyle=linestyle, + color=facecolor, + clip_on=False, + patchA=n1, + patchB=n2, + shrinkA=0, + shrinkB=0, + zorder=-1, + ) + + ax.add_artist(e_p) + path = e_p.get_path() + vertices = path.vertices.copy() + m, n = vertices.shape start = vertices[0] end = vertices[-1] - start_correction = vertices[1] - end_correction = vertices[-2] - - start = start + (start_correction-start)*radius*3 - end = end + (end_correction-end)*radius*3 + # This must be added to avoid rescaling of the plot, when no 'o' + # or 'x' is added to the graph. + ax.scatter(*start, zorder=-10, alpha=0) if outer_edge: - if d.get('outer_edge_type') in ['o->', 'o--']: - circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - ax.add_patch(circle_start) - - elif d.get('outer_edge_type') in ['<-o', '--o']: - circle_end = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - ax.add_patch(circle_end) - - elif d.get('outer_edge_type') == 'o-o': - circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - circle_end = Ellipse(end, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - ax.add_patch(circle_start) - ax.add_patch(circle_end) - else: - if d.get('inner_edge_type') in ['o->', 'o--']: - circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - ax.add_patch(circle_start) - - elif d.get('inner_edge_type') in ['<-o', '--o']: - circle_end = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - ax.add_patch(circle_end) + if d.get("outer_edge_type") in ["o->", "o--"]: + circle_marker_start = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + elif d.get("outer_edge_type") == "<-o": + circle_marker_end = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "--o": + circle_marker_end = ax.scatter( + *end, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") in ["x--", "x->"]: + circle_marker_start = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + elif d.get("outer_edge_type") == "<-x": + circle_marker_end = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "--x": + circle_marker_end = ax.scatter( + *end, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "o-o": + circle_marker_start = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "x-x": + circle_marker_start = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "o-x": + circle_marker_start = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "x-o": + circle_marker_start = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) - elif d.get('inner_edge_type') == 'o-o': - circle_start = Ellipse(start, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - circle_end = Ellipse(end, width=width, height=height, fill=True, facecolor='white', edgecolor=facecolor, zorder=3) - ax.add_patch(circle_start) - ax.add_patch(circle_end) - - if d['label'] is not None and outer_edge: + else: + if d.get("inner_edge_type") in ["o->", "o--"]: + circle_marker_start = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + elif d.get("outer_edge_type") == "<-o": + circle_marker_end = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "--o": + circle_marker_end = ax.scatter( + *end, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("inner_edge_type") in ["x--", "x->"]: + circle_marker_start = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + elif d.get("outer_edge_type") == "<-x": + circle_marker_end = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("outer_edge_type") == "--x": + circle_marker_end = ax.scatter( + *end, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("inner_edge_type") == "o-o": + circle_marker_start = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("inner_edge_type") == "x-x": + circle_marker_start = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("inner_edge_type") == "o-x": + circle_marker_start = ax.scatter( + *start, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + elif d.get("inner_edge_type") == "x-o": + circle_marker_start = ax.scatter( + *start, + marker="X", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_start) + circle_marker_end = ax.scatter( + *end, + marker="o", + s=marker_size, + facecolor="w", + edgecolor=facecolor, + zorder=1, + ) + ax.add_collection(circle_marker_end) + + if d["label"] is not None and outer_edge: # Attach labels of lags trans = None # patch.get_transform() - path = e.get_path() + path = e_p.get_path() verts = path.to_polygons(trans)[0] if len(verts) > 2: label_vert = verts[1, :] - l = d['label'] + l = d["label"] string = str(l) - ax.text(label_vert[0], label_vert[1], string, - fontsize=link_label_fontsize, - verticalalignment='center', - horizontalalignment='center') + txt = ax.text( + label_vert[0], + label_vert[1], + string, + fontsize=link_label_fontsize, + verticalalignment="center", + horizontalalignment="center", + color="w", + zorder=1, + ) + txt.set_path_effects( + [PathEffects.withStroke(linewidth=2, foreground="k")] + ) return rad - # Fix lower left and upper right corner (networkx unfortunately rescales - # the positions...) - # c = Circle((0, 0), radius=.01, alpha=1., fill=False, - # linewidth=0., transform=fig.transFigure) - # ax.add_patch(c) - # c = Circle((1, 1), radius=.01, alpha=1., fill=False, - # linewidth=0., transform=fig.transFigure) - # ax.add_patch(c) + # Collect all edge weights to get color scale + all_links_weights = [] + all_links_edge_weights = [] + for (u, v, d) in G.edges(data=True): + if u != v: + if d["outer_edge"] and d["outer_edge_color"] is not None: + all_links_weights.append(d["outer_edge_color"]) + if d["inner_edge"] and d["inner_edge_color"] is not None: + all_links_weights.append(d["inner_edge_color"]) + + if cmap_links is not None and len(all_links_weights) > 0: + if links_vmin is None: + links_vmin = np.array(all_links_weights).min() + if links_vmax is None: + links_vmax = np.array(all_links_weights).max() + data_to_rgb_links = pyplot.cm.ScalarMappable( + norm=None, cmap=pyplot.get_cmap(cmap_links) + ) + data_to_rgb_links.set_array(np.array(all_links_weights)) + data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax) + # Create colorbars for links + + # setup colorbar axes. + if show_colorbar: + cax_e = pyplot.axes( + [ + 0.55, + ax.figbox.bounds[1] + 0.02, + 0.4, + 0.025 + (len(all_links_edge_weights) == 0) * 0.035, + ], + frameon=False, + ) + + cb_e = pyplot.colorbar( + data_to_rgb_links, cax=cax_e, orientation="horizontal" + ) + # try: + cb_e.set_ticks( + np.arange( + _myround(links_vmin, links_ticks, "down"), + _myround(links_vmax, links_ticks, "up") + links_ticks, + links_ticks, + ) + ) + # except: + # print('no ticks given') + + cb_e.outline.remove() + cax_e.set_xlabel( + link_colorbar_label, labelpad=1, fontsize=label_fontsize, zorder=-10 + ) ## # Draw nodes ## node_sizes = np.zeros((len(node_rings), N)) for ring in list(node_rings): # iterate through to get all node sizes - if node_rings[ring]['sizes'] is not None: - node_sizes[ring] = node_rings[ring]['sizes'] + if node_rings[ring]["sizes"] is not None: + node_sizes[ring] = node_rings[ring]["sizes"] + else: node_sizes[ring] = standard_size - max_sizes = node_sizes.max(axis=1) total_max_size = node_sizes.sum(axis=0).max() node_sizes /= total_max_size node_sizes *= standard_size -# print 'node_sizes ', node_sizes + + def get_aspect(ax): + # Total figure size + figW, figH = ax.get_figure().get_size_inches() + # print(figW, figH) + # Axis size on figure + _, _, w, h = ax.get_position().bounds + # Ratio of display units + # print(w, h) + disp_ratio = (figH * h) / (figW * w) + # Ratio of data units + # Negative over negative because of the order of subtraction + data_ratio = sub(*ax.get_ylim()) / sub(*ax.get_xlim()) + # print(data_ratio, disp_ratio) + return disp_ratio / data_ratio + + if node_aspect is None: + node_aspect = get_aspect(ax) # start drawing the outer ring first... for ring in list(node_rings)[::-1]: # print ring # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array # or None, 'cmap':string, 'vmin':float or None, 'vmax':float or None}} - if node_rings[ring]['color_array'] is not None: - color_data = node_rings[ring]['color_array'] - if node_rings[ring]['vmin'] is not None: - vmin = node_rings[ring]['vmin'] + if node_rings[ring]["color_array"] is not None: + color_data = node_rings[ring]["color_array"] + if node_rings[ring]["vmin"] is not None: + vmin = node_rings[ring]["vmin"] else: - vmin = node_rings[ring]['color_array'].min() - if node_rings[ring]['vmax'] is not None: - vmax = node_rings[ring]['vmax'] + vmin = node_rings[ring]["color_array"].min() + if node_rings[ring]["vmax"] is not None: + vmax = node_rings[ring]["vmax"] else: - vmax = node_rings[ring]['color_array'].max() - if node_rings[ring]['cmap'] is not None: - cmap = node_rings[ring]['cmap'] + vmax = node_rings[ring]["color_array"].max() + if node_rings[ring]["cmap"] is not None: + cmap = node_rings[ring]["cmap"] else: cmap = standard_cmap data_to_rgb = pyplot.cm.ScalarMappable( - norm=None, cmap=pyplot.get_cmap(cmap)) + norm=None, cmap=pyplot.get_cmap(cmap) + ) data_to_rgb.set_array(color_data) data_to_rgb.set_clim(vmin=vmin, vmax=vmax) colors = [data_to_rgb.to_rgba(color_data[n]) for n in G] - if node_rings[ring]['colorbar']: + if node_rings[ring]["colorbar"]: # Create colorbars for nodes # cax_n = pyplot.axes([.8 + ring*0.11, # ax.figbox.bounds[1]+0.05, 0.025, 0.35], frameon=False) # # setup colorbar axes. # setup colorbar axes. - cax_n = pyplot.axes([0.05, ax.figbox.bounds[1] + 0.02 + - ring * 0.11, - 0.4, 0.025 + - (len(node_rings) == 1) * 0.035], - frameon=False) - cb_n = pyplot.colorbar( - data_to_rgb, cax=cax_n, orientation='horizontal') - try: - cb_n.set_ticks(np.arange(_myround(vmin, - node_rings[ring]['ticks'], 'down'), _myround( - vmax, node_rings[ring]['ticks'], 'up') + - node_rings[ring]['ticks'], node_rings[ring]['ticks'])) - except: - print ('no ticks given') + cax_n = pyplot.axes( + [ + 0.05, + ax.figbox.bounds[1] + 0.02 + ring * 0.11, + 0.4, + 0.025 + (len(node_rings) == 1) * 0.035, + ], + frameon=False, + ) + cb_n = pyplot.colorbar(data_to_rgb, cax=cax_n, orientation="horizontal") + # try: + cb_n.set_ticks( + np.arange( + _myround(vmin, node_rings[ring]["ticks"], "down"), + _myround(vmax, node_rings[ring]["ticks"], "up") + + node_rings[ring]["ticks"], + node_rings[ring]["ticks"], + ) + ) + # except: + # print ('no ticks given') cb_n.outline.remove() # cb_n.set_ticks() cax_n.set_xlabel( - node_rings[ring]['label'], labelpad=1, - fontsize=label_fontsize) + node_rings[ring]["label"], labelpad=1, fontsize=label_fontsize + ) else: colors = None vmin = None vmax = None for n in G: - # if n==1: print node_sizes[:ring+1].sum(axis=0)[n] - if type(node_alpha) == dict: alpha = node_alpha[n] else: - alpha = 1. + alpha = 1.0 if colors is None: - ax.scatter(pos[n][0], pos[n][1], - s=node_sizes[:ring + 1].sum(axis=0)[n] ** 2, - facecolors=standard_color, - edgecolors=standard_color, alpha=alpha, - clip_on=False, linewidth=.1, zorder=-ring) - else: - ax.scatter(pos[n][0], pos[n][1], - s=node_sizes[:ring + 1].sum(axis=0)[n] ** 2, - facecolors=colors[n], edgecolors='white', - alpha=alpha, - clip_on=False, linewidth=.1, zorder=-ring) + c = Ellipse( + pos[n], + width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect, + height=node_sizes[: ring + 1].sum(axis=0)[n], + clip_on=False, + facecolor=standard_color, + edgecolor=standard_color, + zorder=-ring - 1, + ) - if ring == 0: - ax.text(pos[n][0], pos[n][1], node_labels[n], - fontsize=node_label_size, - horizontalalignment='center', - verticalalignment='center', alpha=alpha) - - if node_rings[ring]['sizes'] is not None: - # Draw reference node as legend - ax.scatter(0., 0., s=node_sizes[:ring + 1].sum(axis=0).max() ** 2, - alpha=1., facecolors='none', edgecolors='grey', - clip_on=False, linewidth=.1, zorder=-ring) - - if log_sizes: - ax.text(0., 0., ' ' * ring + '%.2f' % - (np.exp(max_sizes[ring]) - 1.), - fontsize=node_label_size, - horizontalalignment='left', verticalalignment='center') else: - ax.text(0., 0., ' ' * ring + '%.2f' % max_sizes[ring], - fontsize=node_label_size, - horizontalalignment='left', verticalalignment='center') - - ## - # Draw edges of different types - ## - # First draw small circles as anchorpoints of the curved edges - for n in G: - # , transform = ax.transAxes) - size = standard_size*.3 - c = Circle(pos[n], radius=size, alpha=0., fill=False, linewidth=0., zorder=1) - ax.add_patch(c) - - # avoiding attribute error raised by changes in networkx - if hasattr(G, 'node'): - # works with networkx 1.10 - G.node[n]['patch'] = c - else: - # works with networkx 2.4 - G.nodes[n]['patch'] = c - - # Collect all edge weights to get color scale - all_links_weights = [] - all_links_edge_weights = [] - for (u, v, d) in G.edges(data=True): - if u != v: - if d['outer_edge'] and d['outer_edge_color'] is not None: - all_links_weights.append(d['outer_edge_color']) - if d['inner_edge'] and d['inner_edge_color'] is not None: - all_links_weights.append(d['inner_edge_color']) - # if d['outer_edge_edge'] and d['outer_edge_edgecolor'] is not None: - # all_links_edge_weights.append(d['outer_edge_edgecolor']) - # if d['inner_edge_edge'] and d['inner_edge_edgecolor'] is not None: - # all_links_edge_weights.append(d['inner_edge_edgecolor']) - - if cmap_links is not None and len(all_links_weights) > 0: - if links_vmin is None: - links_vmin = np.array(all_links_weights).min() - if links_vmax is None: - links_vmax = np.array(all_links_weights).max() - data_to_rgb_links = pyplot.cm.ScalarMappable( - norm=None, cmap=pyplot.get_cmap(cmap_links)) - data_to_rgb_links.set_array(np.array(all_links_weights)) - data_to_rgb_links.set_clim(vmin=links_vmin, vmax=links_vmax) - # Create colorbars for links - - # setup colorbar axes. - if show_colorbar: - cax_e = pyplot.axes([0.55, ax.figbox.bounds[1] + 0.02, 0.4, 0.025 + - (len(all_links_edge_weights) == 0) * 0.035], - frameon=False) - - cb_e = pyplot.colorbar( - data_to_rgb_links, cax=cax_e, orientation='horizontal') - try: - cb_e.set_ticks(np.arange(_myround(links_vmin, links_ticks, 'down'), - _myround(links_vmax, links_ticks, 'up') + - links_ticks, links_ticks)) - except: - print ('no ticks given') + c = Ellipse( + pos[n], + width=node_sizes[: ring + 1].sum(axis=0)[n] * node_aspect, + height=node_sizes[: ring + 1].sum(axis=0)[n], + clip_on=False, + facecolor=colors[n], + edgecolor=colors[n], + zorder=-ring - 1, + ) + + ax.add_patch(c) + + # avoiding attribute error raised by changes in networkx + if hasattr(G, "node"): + # works with networkx 1.10 + G.node[n]["patch"] = c + else: + # works with networkx 2.4 + G.nodes[n]["patch"] = c - cb_e.outline.remove() - # cb_n.set_ticks() - cax_e.set_xlabel( - link_colorbar_label, labelpad=1, fontsize=label_fontsize) + if ring == 0: + ax.text( + pos[n][0], + pos[n][1], + node_labels[n], + fontsize=node_label_size, + horizontalalignment="center", + verticalalignment="center", + alpha=1.0, + ) # Draw edges seen = {} for (u, v, d) in G.edges(data=True): + if d.get("no_links"): + d["inner_edge_alpha"] = 1e-8 + d["outer_edge_alpha"] = 1e-8 if u != v: - if d['outer_edge']: + if d["outer_edge"]: seen[(u, v)] = draw_edge(ax, u, v, d, seen, arrowstyle, outer_edge=True) - if d['inner_edge']: - # if ('oriented' not in d or d['oriented'] == False) and (v, u) not in seen: - # seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False) - # elif 'oriented' in d and d['oriented'] == (u,v): - seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False) + if d["inner_edge"]: + seen[(u, v)] = draw_edge(ax, u, v, d, seen, outer_edge=False) - #pyplot.tight_layout() pyplot.subplots_adjust(bottom=network_lower_bound) -def plot_graph(val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - sig_thres=None, - link_matrix=None, - save_name=None, - link_colorbar_label='MCI', - node_colorbar_label='auto-MCI', - link_width=None, - link_attribute=None, - node_pos=None, - arrow_linewidth=30., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - vmin_nodes=0, - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='OrRd', - node_size=20, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - link_label_fontsize=6, - lag_array=None, - network_lower_bound=0.2, - show_colorbar=True, - ): - """Creates a network plot. +def plot_graph( + val_matrix=None, + var_names=None, + fig_ax=None, + figsize=None, + sig_thres=None, + link_matrix=None, + save_name=None, + link_colorbar_label="MCI", + node_colorbar_label="auto-MCI", + link_width=None, + link_attribute=None, + node_pos=None, + arrow_linewidth=10.0, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + vmin_nodes=0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="OrRd", + node_size=0.3, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=10, + alpha=1.0, + node_label_size=10, + link_label_fontsize=10, + lag_array=None, + network_lower_bound=0.2, + show_colorbar=True, + inner_edge_style="dashed", +): + """Creates a network plot. This is still in beta. The network is defined either from True values in link_matrix, or from thresholding the val_matrix with sig_thres. Nodes denote variables, straight links contemporaneous dependencies and curved @@ -1141,7 +1536,6 @@ def plot_graph(val_matrix=None, dependency in order of absolute magnitude. The network can also be plotted over a map drawn before on the same axis. Then the node positions can be supplied in appropriate axis coordinates via node_pos. - Parameters ---------- val_matrix : array_like @@ -1191,8 +1585,10 @@ def plot_graph(val_matrix=None, Node tick mark interval. cmap_nodes : str, optional (default: 'OrRd') Colormap for links. - node_size : int, optional (default: 20) + node_size : int, optional (default: 0.3) Node size. + node_aspect : float, optional (default: None) + Ratio between the heigth and width of the varible nodes. arrowhead_size : int, optional (default: 20) Size of link arrow head. Passed on to FancyArrowPatch object. curved_radius, float, optional (default: 0.2) @@ -1219,12 +1615,26 @@ def plot_graph(val_matrix=None, else: fig, ax = fig_ax - (link_matrix, val_matrix, link_width, link_attribute) = \ - _check_matrices(link_matrix, val_matrix, link_width, link_attribute) + (link_matrix, val_matrix, link_width, link_attribute) = _check_matrices( + link_matrix, val_matrix, link_width, link_attribute + ) N, N, dummy = val_matrix.shape tau_max = dummy - 1 + if np.count_nonzero(link_matrix != "") == np.count_nonzero( + np.diagonal(link_matrix) != "" + ): + diagonal = True + else: + diagonal = False + + if np.count_nonzero(link_matrix == "") == link_matrix.size or diagonal: + link_matrix[0, 1, 0] = "---" + no_links = True + else: + no_links = False + if var_names is None: var_names = range(N) @@ -1235,17 +1645,21 @@ def plot_graph(val_matrix=None, # Only draw link in one direction among contemp # Remove lower triangle link_matrix_upper = np.copy(link_matrix) - link_matrix_upper[:,:,0] = np.triu(link_matrix_upper[:,:,0]) + link_matrix_upper[:, :, 0] = np.triu(link_matrix_upper[:, :, 0]) # net = _get_absmax(link_matrix != "") net = np.any(link_matrix_upper != "", axis=2) G = nx.DiGraph(net) + # This handels Graphs with no links. + # nx.draw(G, alpha=0, zorder=-10) + node_color = np.zeros(N) # list of all strengths for color map all_strengths = [] # Add attributes, contemporaneous and lagged links are handled separately for (u, v, dic) in G.edges(data=True): + dic["no_links"] = no_links # average lagfunc for link u --> v ANDOR u -- v if tau_max > 0: # argmax of absolute maximum @@ -1263,14 +1677,10 @@ def plot_graph(val_matrix=None, # sig_thres[u, v][0]) or # (np.abs(val_matrix[v, u][0]) >= # sig_thres[v, u][0])) - - - dic['inner_edge'] = link_matrix_upper[u,v,0] - - dic['inner_edge_type'] = link_matrix_upper[u,v, 0] - - dic['inner_edge_alpha'] = alpha - dic['inner_edge_color'] = val_matrix[u, v, 0] + dic["inner_edge"] = link_matrix_upper[u, v, 0] + dic["inner_edge_type"] = link_matrix_upper[u, v, 0] + dic["inner_edge_alpha"] = alpha + dic["inner_edge_color"] = val_matrix[u, v, 0] # # value at argmax of average # if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001: # print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % ( @@ -1283,72 +1693,70 @@ def plot_graph(val_matrix=None, # val_matrix[v, u][0]]]])).squeeze() if link_width is None: - dic['inner_edge_width'] = arrow_linewidth + dic["inner_edge_width"] = arrow_linewidth else: - dic['inner_edge_width'] = link_width[ - u, v, 0] / link_width.max() * arrow_linewidth + dic["inner_edge_width"] = ( + link_width[u, v, 0] / link_width.max() * arrow_linewidth + ) if link_attribute is None: - dic['inner_edge_attribute'] = None + dic["inner_edge_attribute"] = None else: - dic['inner_edge_attribute'] = link_attribute[ - u, v, 0] + dic["inner_edge_attribute"] = link_attribute[u, v, 0] # # fraction of nonzero values - dic['inner_edge_style'] = 'solid' + dic["inner_edge_style"] = "solid" # else: # dic['inner_edge_style'] = link_style[ # u, v, 0] - all_strengths.append(dic['inner_edge_color']) + all_strengths.append(dic["inner_edge_color"]) if tau_max > 0: # True if ensemble mean at lags > 0 is nonzero # dic['outer_edge'] = np.any( # np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:]) - dic['outer_edge'] = np.any(link_matrix_upper[u,v,1:] != "") + dic["outer_edge"] = np.any(link_matrix_upper[u, v, 1:] != "") else: - dic['outer_edge'] = False + dic["outer_edge"] = False - dic['outer_edge_type'] = link_matrix_upper[u,v, argmax] + dic["outer_edge_type"] = link_matrix_upper[u, v, argmax] - - dic['outer_edge_alpha'] = alpha + dic["outer_edge_alpha"] = alpha if link_width is None: # fraction of nonzero values - dic['outer_edge_width'] = arrow_linewidth + dic["outer_edge_width"] = arrow_linewidth else: - dic['outer_edge_width'] = link_width[ - u, v, argmax] / link_width.max() * arrow_linewidth + dic["outer_edge_width"] = ( + link_width[u, v, argmax] / link_width.max() * arrow_linewidth + ) if link_attribute is None: # fraction of nonzero values - dic['outer_edge_attribute'] = None + dic["outer_edge_attribute"] = None else: - dic['outer_edge_attribute'] = link_attribute[ - u, v, argmax] + dic["outer_edge_attribute"] = link_attribute[u, v, argmax] # value at argmax of average - dic['outer_edge_color'] = val_matrix[u, v][argmax] - all_strengths.append(dic['outer_edge_color']) + dic["outer_edge_color"] = val_matrix[u, v][argmax] + all_strengths.append(dic["outer_edge_color"]) # Sorted list of significant lags (only if robust wrt # d['min_ensemble_frac']) if tau_max > 0: lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1 - sig_lags = (np.where(link_matrix_upper[u, v,1:]!="")[0] + 1).tolist() + sig_lags = (np.where(link_matrix_upper[u, v, 1:] != "")[0] + 1).tolist() else: lags, sig_lags = [], [] if lag_array is not None: - dic['label'] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1] + dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1] else: - dic['label'] = str([l for l in lags if l in sig_lags])[1:-1] + dic["label"] = str([l for l in lags if l in sig_lags])[1:-1] else: # Node color is max of average autodependency node_color[u] = val_matrix[u, v][argmax] - dic['inner_edge_attribute'] = None - dic['outer_edge_attribute'] = None - + dic["inner_edge_attribute"] = None + dic["outer_edge_attribute"] = None # dic['outer_edge_edge'] = False # dic['outer_edge_edgecolor'] = None @@ -1357,73 +1765,84 @@ def plot_graph(val_matrix=None, # If no links are present, set value to zero if len(all_strengths) == 0: - all_strengths = [0.] + all_strengths = [0.0] if node_pos is None: pos = nx.circular_layout(deepcopy(G)) -# pos = nx.spring_layout(deepcopy(G)) else: pos = {} for i in range(N): - pos[i] = (node_pos['x'][i], node_pos['y'][i]) + pos[i] = (node_pos["x"][i], node_pos["y"][i]) if cmap_nodes is None: node_color = None - node_rings = {0: {'sizes': None, 'color_array': node_color, - 'cmap': cmap_nodes, 'vmin': vmin_nodes, - 'vmax': vmax_nodes, 'ticks': node_ticks, - 'label': node_colorbar_label, 'colorbar': show_colorbar, - } - } + node_rings = { + 0: { + "sizes": None, + "color_array": node_color, + "cmap": cmap_nodes, + "vmin": vmin_nodes, + "vmax": vmax_nodes, + "ticks": node_ticks, + "label": node_colorbar_label, + "colorbar": show_colorbar, + } + } _draw_network_with_curved_edges( - fig=fig, ax=ax, - G=deepcopy(G), pos=pos, + fig=fig, + ax=ax, + G=deepcopy(G), + pos=pos, # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array # or None, 'cmap':string, node_rings=node_rings, # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=var_names, node_label_size=node_label_size, - node_alpha=alpha, standard_size=node_size, - standard_cmap='OrRd', standard_color='orange', + node_labels=var_names, + node_label_size=node_label_size, + node_alpha=alpha, + standard_size=node_size, + node_aspect=node_aspect, + standard_cmap="OrRd", + standard_color="orange", log_sizes=False, - cmap_links=cmap_edges, links_vmin=vmin_edges, - links_vmax=vmax_edges, links_ticks=edge_ticks, - + cmap_links=cmap_edges, + links_vmin=vmin_edges, + links_vmax=vmax_edges, + links_ticks=edge_ticks, # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - - arrowstyle='simple', arrowhead_size=arrowhead_size, - curved_radius=curved_radius, label_fontsize=label_fontsize, + arrowstyle="simple", + arrowhead_size=arrowhead_size, + curved_radius=curved_radius, + label_fontsize=label_fontsize, link_label_fontsize=link_label_fontsize, link_colorbar_label=link_colorbar_label, network_lower_bound=network_lower_bound, show_colorbar=show_colorbar, # label_fraction=label_fraction, - # inner_edge_style=inner_edge_style - ) + ) - # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95) - # savestring = os.path.expanduser(save_name) if save_name is not None: - pyplot.savefig(save_name) + pyplot.savefig(save_name, dpi=300) else: return fig, ax + def _reverse_patt(patt): """Inverts a link pattern""" - if patt == '': - return '' + if patt == "": + return "" left_mark, middle_mark, right_mark = patt[0], patt[1], patt[2] - if left_mark == '<': - new_right_mark = '>' + if left_mark == "<": + new_right_mark = ">" else: new_right_mark = left_mark - if right_mark == '>': - new_left_mark = '<' + if right_mark == ">": + new_left_mark = "<" else: new_left_mark = right_mark @@ -1442,92 +1861,126 @@ def _reverse_patt(patt): # elif patt == '<--': # return '-->' -def _check_matrices(link_matrix, val_matrix, link_width, link_attribute): +def _check_matrices(link_matrix, val_matrix, link_width, link_attribute): if link_matrix is None and (val_matrix is None or sig_thres is None): - raise ValueError("Need to specify either val_matrix together with sig_thres, or link_matrix") + raise ValueError( + "Need to specify either val_matrix together with sig_thres, or link_matrix" + ) if link_matrix is not None: pass elif link_matrix is None and sig_thres is not None and val_matrix is not None: link_matrix = np.abs(val_matrix) >= sig_thres else: - raise ValueError("Need to specify either val_matrix together with sig_thres, or link_matrix") + raise ValueError( + "Need to specify either val_matrix together with sig_thres, or link_matrix" + ) - if link_matrix.dtype != '', '<-o', '-->', '<--', '<->']: + if ( + link_attribute is not None + and link_attribute[i, j, 0] != link_attribute[j, i, 0] + ): + raise ValueError( + "link_attribute needs to be symmetric for lag-zero" + ) + + if link_matrix[i, j, tau] not in [ + "---", + "o--", + "--o", + "o-o", + "o->", + "<-o", + "-->", + "<--", + "<->", + "x-o", + "o-x", + "x--", + "--x", + "x->", + "<-x", + "x-x", + ]: raise ValueError("Invalid link_matrix entry.") if val_matrix is None: - val_matrix = (link_matrix != "").astype('int') + val_matrix = (link_matrix != "").astype("int") - if link_width is not None and not np.all(link_width >= 0.): + if link_width is not None and not np.all(link_width >= 0.0): raise ValueError("link_width must be non-negative") return link_matrix, val_matrix, link_width, link_attribute + def plot_time_series_graph( - link_matrix=None, - val_matrix=None, - var_names=None, - fig_ax=None, - figsize=None, - sig_thres=None, - link_colorbar_label='MCI', - save_name=None, - link_width=None, - link_attribute=None, - arrow_linewidth=20., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - order=None, - node_size=10, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - label_space_left=0.1, - label_space_top=0., - network_lower_bound=0.2, - inner_edge_style='dashed' - ): + link_matrix=None, + val_matrix=None, + var_names=None, + fig_ax=None, + figsize=None, + sig_thres=None, + link_colorbar_label="MCI", + save_name=None, + link_width=None, + link_attribute=None, + arrow_linewidth=8, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + order=None, + node_size=0.1, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=12, + alpha=1.0, + node_label_size=12, + label_space_left=0.1, + label_space_top=0.0, + network_lower_bound=0.2, + inner_edge_style="dashed", +): """Creates a time series graph. - This is still in beta. The time series graph's links are colored by val_matrix. - Parameters ---------- val_matrix : array_like @@ -1563,8 +2016,10 @@ def plot_time_series_graph( Link tick mark interval. cmap_edges : str, optional (default: 'RdBu_r') Colormap for links. - node_size : int, optional (default: 20) + node_size : int, optional (default: 0.1) Node size. + node_aspect : float, optional (default: None) + Ratio between the heigth and width of the varible nodes. arrowhead_size : int, optional (default: 20) Size of link arrow head. Passed on to FancyArrowPatch object. curved_radius, float, optional (default: 0.2) @@ -1593,13 +2048,20 @@ def plot_time_series_graph( else: fig, ax = fig_ax - (link_matrix, val_matrix, link_width, link_attribute) = \ - _check_matrices(link_matrix, val_matrix, link_width, link_attribute) + (link_matrix, val_matrix, link_width, link_attribute) = _check_matrices( + link_matrix, val_matrix, link_width, link_attribute + ) N, N, dummy = link_matrix.shape tau_max = dummy - 1 max_lag = tau_max + 1 + if np.count_nonzero(link_matrix == "") == link_matrix.size: + link_matrix[0, 1, 0] = "---" + no_links = True + else: + no_links = False + if var_names is None: var_names = range(N) @@ -1624,21 +2086,31 @@ def translate(row, lag): # Only draw link in one direction among contemp # Remove lower triangle link_matrix_tsg = np.copy(link_matrix) - link_matrix_tsg[:,:,0] = np.triu(link_matrix[:,:,0]) + link_matrix_tsg[:, :, 0] = np.triu(link_matrix[:, :, 0]) - for i, j, tau in np.column_stack(np.where(link_matrix_tsg)): + for i, j, tau in np.column_stack(np.where(link_matrix_tsg)): for t in range(max_lag): - if (0 <= translate(i, t - tau) and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag): - - tsg[translate(i, t - tau), translate(j, t)] = 1. #val_matrix[i, j, tau] + if ( + 0 <= translate(i, t - tau) + and translate(i, t - tau) % max_lag <= translate(j, t) % max_lag + ): + + tsg[ + translate(i, t - tau), translate(j, t) + ] = 1.0 # val_matrix[i, j, tau] tsg_val[translate(i, t - tau), translate(j, t)] = val_matrix[i, j, tau] - tsg_style[translate(i, t - tau), translate(j, t)] = link_matrix[i, j, tau] + tsg_style[translate(i, t - tau), translate(j, t)] = link_matrix[ + i, j, tau + ] if link_width is not None: - tsg_width[translate(i, t - tau), translate(j, t)] = link_width[i, j, tau] / link_width.max() * arrow_linewidth + tsg_width[translate(i, t - tau), translate(j, t)] = ( + link_width[i, j, tau] / link_width.max() * arrow_linewidth + ) if link_attribute is not None: - tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[i, j, tau] + tsg_attr[translate(i, t - tau), translate(j, t)] = link_attribute[ + i, j, tau + ] - # print(tsg.round(1)) G = nx.DiGraph(tsg) # node_color = np.zeros(N) @@ -1646,152 +2118,170 @@ def translate(row, lag): all_strengths = [] # Add attributes, contemporaneous and lagged links are handled separately for (u, v, dic) in G.edges(data=True): - + dic["no_links"] = no_links if u != v: + dic["inner_edge"] = False + dic["outer_edge"] = True - dic['inner_edge'] = False - dic['outer_edge'] = True - - dic['outer_edge_type'] = tsg_style[u,v] + dic["outer_edge_type"] = tsg_style[u, v] - dic['outer_edge_alpha'] = alpha + dic["outer_edge_alpha"] = alpha if link_width is None: # fraction of nonzero values - dic['outer_edge_width'] = dic['inner_edge_width'] = arrow_linewidth + dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth else: - dic['outer_edge_width'] = dic['inner_edge_width'] = tsg_width[u,v] + dic["outer_edge_width"] = dic["inner_edge_width"] = tsg_width[u, v] if link_attribute is None: - dic['outer_edge_attribute'] = None + dic["outer_edge_attribute"] = None else: - dic['outer_edge_attribute'] = tsg_attr[u,v] - + dic["outer_edge_attribute"] = tsg_attr[u, v] + # value at argmax of average - dic['outer_edge_color'] = tsg_val[u, v] + dic["outer_edge_color"] = tsg_val[u, v] - all_strengths.append(dic['outer_edge_color']) - dic['label'] = None + all_strengths.append(dic["outer_edge_color"]) + dic["label"] = None # If no links are present, set value to zero if len(all_strengths) == 0: - all_strengths = [0.] + all_strengths = [0.0] posarray = np.zeros((N * max_lag, 2)) for i in range(N * max_lag): - - posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)]) + posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)]) pos_tmp = {} for i in range(N * max_lag): # for n in range(N): # for tau in range(max_lag): # i = n*N + tau - pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) / - (posarray.max(axis=0)[0] - - posarray.min(axis=0)[0]), - ((1. - i // max_lag) - - posarray.min(axis=0)[1]) / - (posarray.max(axis=0)[1] - - posarray.min(axis=0)[1])]) - pos_tmp[i][np.isnan(pos_tmp[i])] = 0. + pos_tmp[i] = np.array( + [ + ((i % max_lag) - posarray.min(axis=0)[0]) + / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]), + ((1.0 - i // max_lag) - posarray.min(axis=0)[1]) + / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]), + ] + ) + pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0 pos = {} for n in range(N): for tau in range(max_lag): pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau] - node_rings = {0: {'sizes': None, 'color_array': None, - 'label': '', 'colorbar': False, - } - } + node_rings = { + 0: {"sizes": None, "color_array": None, "label": "", "colorbar": False,} + } - # ] for v in range(max_lag)] - node_labels = ['' for i in range(N * max_lag)] + node_labels = ["" for i in range(N * max_lag)] _draw_network_with_curved_edges( - fig=fig, ax=ax, - G=deepcopy(G), pos=pos, + fig=fig, + ax=ax, + G=deepcopy(G), + pos=pos, node_rings=node_rings, - node_labels=node_labels, node_label_size=node_label_size, - node_alpha=alpha, standard_size=node_size, - standard_cmap='OrRd', standard_color='lightgrey', + node_labels=node_labels, + node_label_size=node_label_size, + node_alpha=alpha, + standard_size=node_size, + node_aspect=node_aspect, + standard_cmap="OrRd", + standard_color="lightgrey", log_sizes=False, - cmap_links=cmap_edges, links_vmin=vmin_edges, - links_vmax=vmax_edges, links_ticks=edge_ticks, - arrowstyle='simple', arrowhead_size=arrowhead_size, - curved_radius=curved_radius, label_fontsize=label_fontsize, - label_fraction=.5, - link_colorbar_label=link_colorbar_label, inner_edge_curved=True, + cmap_links=cmap_edges, + links_vmin=vmin_edges, + links_vmax=vmax_edges, + links_ticks=edge_ticks, + arrowstyle="simple", + arrowhead_size=arrowhead_size, + curved_radius=curved_radius, + label_fontsize=label_fontsize, + label_fraction=0.5, + link_colorbar_label=link_colorbar_label, + inner_edge_curved=True, network_lower_bound=network_lower_bound, - inner_edge_style=inner_edge_style - ) + inner_edge_style=inner_edge_style, + ) for i in range(N): - trans = transforms.blended_transform_factory( - fig.transFigure, ax.transData) - ax.text(label_space_left, pos[order[i] * max_lag][1], - '%s' % str(var_names[order[i]]), fontsize=label_fontsize, - horizontalalignment='left', verticalalignment='center', - transform=trans) + trans = transforms.blended_transform_factory(fig.transFigure, ax.transData) + ax.text( + label_space_left, + pos[order[i] * max_lag][1], + f"{var_names[order[i]]}", + fontsize=label_fontsize, + horizontalalignment="left", + verticalalignment="center", + transform=trans, + ) for tau in np.arange(max_lag - 1, -1, -1): - trans = transforms.blended_transform_factory( - ax.transData, fig.transFigure) + trans = transforms.blended_transform_factory(ax.transData, fig.transFigure) if tau == max_lag - 1: - ax.text(pos[tau][0], 1.-label_space_top, r'$t$', - fontsize=int(label_fontsize*0.7), - horizontalalignment='center', - verticalalignment='top', transform=trans) + ax.text( + pos[tau][0], + 1.0 - label_space_top, + r"$t$", + fontsize=int(label_fontsize * 0.8), + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) else: - ax.text(pos[tau][0], 1.-label_space_top, - r'$t-%s$' % str(max_lag - tau - 1), - fontsize=int(label_fontsize*0.7), - horizontalalignment='center', verticalalignment='top', - transform=trans) + ax.text( + pos[tau][0], + 1.0 - label_space_top, + r"$t-%s$" % str(max_lag - tau - 1), + fontsize=int(label_fontsize * 0.8), + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) - # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9) - # savestring = os.path.expanduser(save_name) if save_name is not None: pyplot.savefig(save_name, dpi=300) else: return fig, ax + def plot_mediation_time_series_graph( - path_node_array, - tsg_path_val_matrix, - var_names=None, - fig_ax=None, - figsize=None, - link_colorbar_label='link coeff. (edge color)', - node_colorbar_label='MCE (node color)', - save_name=None, - link_width=None, - arrow_linewidth=20., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - order=None, - vmin_nodes=-1., - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='RdBu_r', - node_size=10, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - alpha=1., - node_label_size=10, - label_space_left=0.1, - label_space_top=0., - network_lower_bound=0.2 - ): + path_node_array, + tsg_path_val_matrix, + var_names=None, + fig_ax=None, + figsize=None, + link_colorbar_label="link coeff. (edge color)", + node_colorbar_label="MCE (node color)", + save_name=None, + link_width=None, + arrow_linewidth=8, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + order=None, + vmin_nodes=-1.0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="RdBu_r", + node_size=0.1, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=12, + alpha=1.0, + node_label_size=12, + label_space_left=0.1, + label_space_top=0.0, + network_lower_bound=0.2, +): """Creates a mediation time series graph plot. - This is still in beta. The time series graph's links are colored by val_matrix. - Parameters ---------- tsg_path_val_matrix : array_like @@ -1833,8 +2323,10 @@ def plot_mediation_time_series_graph( Node tick mark interval. cmap_nodes : str, optional (default: 'OrRd') Colormap for links. - node_size : int, optional (default: 20) + node_size : int, optional (default: 0.1) Node size. + node_aspect : float, optional (default: None) + Ratio between the heigth and width of the varible nodes. arrowhead_size : int, optional (default: 20) Size of link arrow head. Passed on to FancyArrowPatch object. curved_radius, float, optional (default: 0.2) @@ -1867,7 +2359,7 @@ def plot_mediation_time_series_graph( else: fig, ax = fig_ax - if link_width is not None and not np.all(link_width >= 0.): + if link_width is not None and not np.all(link_width >= 0.0): raise ValueError("link_width must be non-negative") if order is None: @@ -1879,6 +2371,19 @@ def plot_mediation_time_series_graph( def translate(row, lag): return row * max_lag + lag + if np.count_nonzero(tsg_path_val_matrix) == np.count_nonzero( + np.diagonal(tsg_path_val_matrix) + ): + diagonal = True + else: + diagonal = False + + if np.count_nonzero(tsg_path_val_matrix) == tsg_path_val_matrix.size or diagonal: + tsg_path_val_matrix[0, 1] = 1 + no_links = True + else: + no_links = False + # Define graph links by absolute maximum (positive or negative like for # partial correlation) tsg = tsg_path_val_matrix @@ -1891,34 +2396,33 @@ def translate(row, lag): all_strengths = [] # Add attributes, contemporaneous and lagged links are handled separately for (u, v, dic) in G.edges(data=True): - - dic['outer_edge_attribute'] = None + dic["no_links"] = no_links + dic["outer_edge_attribute"] = None if u != v: if u % max_lag == v % max_lag: - dic['inner_edge'] = True - dic['outer_edge'] = False + dic["inner_edge"] = True + dic["outer_edge"] = False else: - dic['inner_edge'] = False - dic['outer_edge'] = True + dic["inner_edge"] = False + dic["outer_edge"] = True - dic['inner_edge_alpha'] = alpha - dic['inner_edge_color'] = _get_absmax( - np.array([[[tsg[u, v], - tsg[v, u]]]]) + dic["inner_edge_alpha"] = alpha + dic["inner_edge_color"] = _get_absmax( + np.array([[[tsg[u, v], tsg[v, u]]]]) ).squeeze() - dic['inner_edge_width'] = arrow_linewidth - all_strengths.append(dic['inner_edge_color']) + dic["inner_edge_width"] = arrow_linewidth + all_strengths.append(dic["inner_edge_color"]) - dic['outer_edge_alpha'] = alpha + dic["outer_edge_alpha"] = alpha - dic['outer_edge_width'] = arrow_linewidth + dic["outer_edge_width"] = arrow_linewidth # value at argmax of average - dic['outer_edge_color'] = tsg[u, v] - all_strengths.append(dic['outer_edge_color']) - dic['label'] = None + dic["outer_edge_color"] = tsg[u, v] + all_strengths.append(dic["outer_edge_color"]) + dic["label"] = None # dic['outer_edge_edge'] = False # dic['outer_edge_edgecolor'] = None @@ -1927,26 +2431,26 @@ def translate(row, lag): # If no links are present, set value to zero if len(all_strengths) == 0: - all_strengths = [0.] + all_strengths = [0.0] posarray = np.zeros((N * max_lag, 2)) for i in range(N * max_lag): - - posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)]) + posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)]) pos_tmp = {} for i in range(N * max_lag): # for n in range(N): # for tau in range(max_lag): # i = n*N + tau - pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) / - (posarray.max(axis=0)[0] - - posarray.min(axis=0)[0]), - ((1. - i // max_lag) - - posarray.min(axis=0)[1]) / - (posarray.max(axis=0)[1] - - posarray.min(axis=0)[1])]) - pos_tmp[i][np.isnan(pos_tmp[i])] = 0. + pos_tmp[i] = np.array( + [ + ((i % max_lag) - posarray.min(axis=0)[0]) + / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]), + ((1.0 - i // max_lag) - posarray.min(axis=0)[1]) + / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]), + ] + ) + pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0 pos = {} for n in range(N): @@ -1955,70 +2459,96 @@ def translate(row, lag): node_color = np.zeros(N * max_lag) for inet, n in enumerate(range(0, N * max_lag, max_lag)): - node_color[n:n+max_lag] = path_node_array[inet] + node_color[n : n + max_lag] = path_node_array[inet] # node_rings = {0: {'sizes': None, 'color_array': color_array, # 'label': '', 'colorbar': False, # } # } - node_rings = {0: {'sizes': None, 'color_array': node_color, - 'cmap': cmap_nodes, 'vmin': vmin_nodes, - 'vmax': vmax_nodes, 'ticks': node_ticks, - 'label': node_colorbar_label, 'colorbar': True, - } - } + node_rings = { + 0: { + "sizes": None, + "color_array": node_color, + "cmap": cmap_nodes, + "vmin": vmin_nodes, + "vmax": vmax_nodes, + "ticks": node_ticks, + "label": node_colorbar_label, + "colorbar": True, + } + } # ] for v in range(max_lag)] - node_labels = ['' for i in range(N * max_lag)] + node_labels = ["" for i in range(N * max_lag)] _draw_network_with_curved_edges( - fig=fig, ax=ax, - G=deepcopy(G), pos=pos, + fig=fig, + ax=ax, + G=deepcopy(G), + pos=pos, # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array # or None, 'cmap':string, node_rings=node_rings, # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=node_labels, node_label_size=node_label_size, - node_alpha=alpha, standard_size=node_size, - standard_cmap='OrRd', standard_color='grey', + node_labels=node_labels, + node_label_size=node_label_size, + node_alpha=alpha, + standard_size=node_size, + node_aspect=node_aspect, + standard_cmap="OrRd", + standard_color="grey", log_sizes=False, - cmap_links=cmap_edges, links_vmin=vmin_edges, - links_vmax=vmax_edges, links_ticks=edge_ticks, - + cmap_links=cmap_edges, + links_vmin=vmin_edges, + links_vmax=vmax_edges, + links_ticks=edge_ticks, # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - - arrowstyle='simple', arrowhead_size=arrowhead_size, - curved_radius=curved_radius, label_fontsize=label_fontsize, - label_fraction=.5, - link_colorbar_label=link_colorbar_label, inner_edge_curved=True, + arrowhead_size=arrowhead_size, + curved_radius=curved_radius, + label_fontsize=label_fontsize, + label_fraction=0.5, + link_colorbar_label=link_colorbar_label, + inner_edge_curved=True, network_lower_bound=network_lower_bound # inner_edge_style=inner_edge_style - ) + ) for i in range(N): - trans = transforms.blended_transform_factory( - fig.transFigure, ax.transData) - ax.text(label_space_left, pos[order[i] * max_lag][1], - '%s' % str(var_names[order[i]]), fontsize=label_fontsize, - horizontalalignment='left', verticalalignment='center', - transform=trans) + trans = transforms.blended_transform_factory(fig.transFigure, ax.transData) + ax.text( + label_space_left, + pos[order[i] * max_lag][1], + "%s" % str(var_names[order[i]]), + fontsize=label_fontsize, + horizontalalignment="left", + verticalalignment="center", + transform=trans, + ) for tau in np.arange(max_lag - 1, -1, -1): - trans = transforms.blended_transform_factory( - ax.transData, fig.transFigure) + trans = transforms.blended_transform_factory(ax.transData, fig.transFigure) if tau == max_lag - 1: - ax.text(pos[tau][0], 1.-label_space_top, r'$t$', - fontsize=label_fontsize, - horizontalalignment='center', - verticalalignment='top', transform=trans) + ax.text( + pos[tau][0], + 1.0 - label_space_top, + r"$t$", + fontsize=label_fontsize, + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) else: - ax.text(pos[tau][0], 1.-label_space_top, - r'$t-%s$' % str(max_lag - tau - 1), - fontsize=label_fontsize, - horizontalalignment='center', verticalalignment='top', - transform=trans) + ax.text( + pos[tau][0], + 1.0 - label_space_top, + r"$t-%s$" % str(max_lag - tau - 1), + fontsize=label_fontsize, + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9) # savestring = os.path.expanduser(save_name) @@ -2027,38 +2557,39 @@ def translate(row, lag): else: pyplot.show() + def plot_mediation_graph( - path_val_matrix, - path_node_array=None, - var_names=None, - fig_ax=None, - figsize=None, - save_name=None, - link_colorbar_label='link coeff. (edge color)', - node_colorbar_label='MCE (node color)', - link_width=None, - node_pos=None, - arrow_linewidth=30., - vmin_edges=-1, - vmax_edges=1., - edge_ticks=.4, - cmap_edges='RdBu_r', - vmin_nodes=-1., - vmax_nodes=1., - node_ticks=.4, - cmap_nodes='RdBu_r', - node_size=20, - arrowhead_size=20, - curved_radius=.2, - label_fontsize=10, - lag_array=None, - alpha=1., - node_label_size=10, - link_label_fontsize=6, - network_lower_bound=0.2, - ): + path_val_matrix, + path_node_array=None, + var_names=None, + fig_ax=None, + figsize=None, + save_name=None, + link_colorbar_label="link coeff. (edge color)", + node_colorbar_label="MCE (node color)", + link_width=None, + node_pos=None, + arrow_linewidth=10.0, + vmin_edges=-1, + vmax_edges=1.0, + edge_ticks=0.4, + cmap_edges="RdBu_r", + vmin_nodes=-1.0, + vmax_nodes=1.0, + node_ticks=0.4, + cmap_nodes="RdBu_r", + node_size=0.3, + node_aspect=None, + arrowhead_size=20, + curved_radius=0.2, + label_fontsize=10, + lag_array=None, + alpha=1.0, + node_label_size=10, + link_label_fontsize=10, + network_lower_bound=0.2, +): """Creates a network plot visualizing the pathways of a mediation analysis. - This is still in beta. The network is defined from non-zero entries in ``path_val_matrix``. Nodes denote variables, straight links contemporaneous dependencies and curved arrows lagged dependencies. The node color denotes @@ -2067,7 +2598,6 @@ def plot_mediation_graph( significant dependency in order of absolute magnitude. The network can also be plotted over a map drawn before on the same axis. Then the node positions can be supplied in appropriate axis coordinates via node_pos. - Parameters ---------- path_val_matrix : array_like @@ -2111,8 +2641,10 @@ def plot_mediation_graph( Node tick mark interval. cmap_nodes : str, optional (default: 'OrRd') Colormap for links. - node_size : int, optional (default: 20) + node_size : int, optional (default: 0.3) Node size. + node_aspect : float, optional (default: None) + Ratio between the heigth and width of the varible nodes. arrowhead_size : int, optional (default: 20) Size of link arrow head. Passed on to FancyArrowPatch object. curved_radius, float, optional (default: 0.2) @@ -2138,19 +2670,30 @@ def plot_mediation_graph( else: fig, ax = fig_ax - if link_width is not None and not np.all(link_width >= 0.): + if link_width is not None and not np.all(link_width >= 0.0): raise ValueError("link_width must be non-negative") N, N, dummy = val_matrix.shape tau_max = dummy - 1 + if np.count_nonzero(val_matrix) == np.count_nonzero(np.diagonal(val_matrix)): + diagonal = True + else: + diagonal = False + + if np.count_nonzero(val_matrix) == val_matrix.size or diagonal: + val_matrix[0, 1, 0] = 1 + no_links = True + else: + no_links = False + if var_names is None: var_names = range(N) # Define graph links by absolute maximum (positive or negative like for # partial correlation) # val_matrix[np.abs(val_matrix) < sig_thres] = 0. - link_matrix = val_matrix != 0. + link_matrix = val_matrix != 0.0 net = _get_absmax(val_matrix) G = nx.DiGraph(net) @@ -2159,8 +2702,8 @@ def plot_mediation_graph( all_strengths = [] # Add attributes, contemporaneous and lagged links are handled separately for (u, v, dic) in G.edges(data=True): - dic['outer_edge_attribute'] = None - + dic["outer_edge_attribute"] = None + dic["no_links"] = no_links # average lagfunc for link u --> v ANDOR u -- v if tau_max > 0: # argmax of absolute maximum @@ -2177,56 +2720,60 @@ def plot_mediation_graph( # sig_thres[u, v][0]) or # (np.abs(val_matrix[v, u][0]) >= # sig_thres[v, u][0])) - dic['inner_edge'] = (link_matrix[u,v,0] or link_matrix[v,u,0]) - dic['inner_edge_alpha'] = alpha + dic["inner_edge"] = link_matrix[u, v, 0] or link_matrix[v, u, 0] + dic["inner_edge_alpha"] = alpha # value at argmax of average - if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > .0001: - print("Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" % ( - u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0]) + - " due to conditions, finite sample effects or " - "masking, here edge color = " - "larger (absolute) value.") - dic['inner_edge_color'] = _get_absmax( - np.array([[[val_matrix[u, v][0], - val_matrix[v, u][0]]]])).squeeze() + if np.abs(val_matrix[u, v][0] - val_matrix[v, u][0]) > 0.0001: + print( + "Contemporaneous I(%d; %d)=%.3f != I(%d; %d)=%.3f" + % (u, v, val_matrix[u, v][0], v, u, val_matrix[v, u][0]) + + " due to conditions, finite sample effects or " + "masking, here edge color = " + "larger (absolute) value." + ) + dic["inner_edge_color"] = _get_absmax( + np.array([[[val_matrix[u, v][0], val_matrix[v, u][0]]]]) + ).squeeze() if link_width is None: - dic['inner_edge_width'] = arrow_linewidth + dic["inner_edge_width"] = arrow_linewidth else: - dic['inner_edge_width'] = link_width[ - u, v, 0] / link_width.max() * arrow_linewidth + dic["inner_edge_width"] = ( + link_width[u, v, 0] / link_width.max() * arrow_linewidth + ) - all_strengths.append(dic['inner_edge_color']) + all_strengths.append(dic["inner_edge_color"]) if tau_max > 0: # True if ensemble mean at lags > 0 is nonzero # dic['outer_edge'] = np.any( # np.abs(val_matrix[u, v][1:]) >= sig_thres[u, v][1:]) - dic['outer_edge'] = np.any(link_matrix[u,v,1:]) + dic["outer_edge"] = np.any(link_matrix[u, v, 1:]) else: - dic['outer_edge'] = False - dic['outer_edge_alpha'] = alpha + dic["outer_edge"] = False + dic["outer_edge_alpha"] = alpha if link_width is None: # fraction of nonzero values - dic['outer_edge_width'] = arrow_linewidth + dic["outer_edge_width"] = arrow_linewidth else: - dic['outer_edge_width'] = link_width[ - u, v, argmax] / link_width.max() * arrow_linewidth + dic["outer_edge_width"] = ( + link_width[u, v, argmax] / link_width.max() * arrow_linewidth + ) # value at argmax of average - dic['outer_edge_color'] = val_matrix[u, v][argmax] - all_strengths.append(dic['outer_edge_color']) + dic["outer_edge_color"] = val_matrix[u, v][argmax] + all_strengths.append(dic["outer_edge_color"]) # Sorted list of significant lags (only if robust wrt # d['min_ensemble_frac']) if tau_max > 0: lags = np.abs(val_matrix[u, v][1:]).argsort()[::-1] + 1 - sig_lags = (np.where(link_matrix[u, v,1:])[0] + 1).tolist() + sig_lags = (np.where(link_matrix[u, v, 1:])[0] + 1).tolist() else: lags, sig_lags = [], [] if lag_array is not None: - dic['label'] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1] + dic["label"] = str([lag_array[l] for l in lags if l in sig_lags])[1:-1] else: - dic['label'] = str([l for l in lags if l in sig_lags])[1:-1] + dic["label"] = str([l for l in lags if l in sig_lags])[1:-1] else: # Node color is max of average autodependency node_color[u] = val_matrix[u, v][argmax] @@ -2240,48 +2787,61 @@ def plot_mediation_graph( # print node_color # If no links are present, set value to zero if len(all_strengths) == 0: - all_strengths = [0.] + all_strengths = [0.0] if node_pos is None: pos = nx.circular_layout(deepcopy(G)) -# pos = nx.spring_layout(deepcopy(G)) + # pos = nx.spring_layout(deepcopy(G)) else: pos = {} for i in range(N): - pos[i] = (node_pos['x'][i], node_pos['y'][i]) - - node_rings = {0: {'sizes': None, 'color_array': node_color, - 'cmap': cmap_nodes, 'vmin': vmin_nodes, - 'vmax': vmax_nodes, 'ticks': node_ticks, - 'label': node_colorbar_label, 'colorbar': True, - } - } + pos[i] = (node_pos["x"][i], node_pos["y"][i]) + + node_rings = { + 0: { + "sizes": None, + "color_array": node_color, + "cmap": cmap_nodes, + "vmin": vmin_nodes, + "vmax": vmax_nodes, + "ticks": node_ticks, + "label": node_colorbar_label, + "colorbar": True, + } + } _draw_network_with_curved_edges( - fig=fig, ax=ax, - G=deepcopy(G), pos=pos, + fig=fig, + ax=ax, + G=deepcopy(G), + pos=pos, # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array # or None, 'cmap':string, node_rings=node_rings, # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=var_names, node_label_size=node_label_size, - node_alpha=alpha, standard_size=node_size, - standard_cmap='OrRd', standard_color='orange', + node_labels=var_names, + node_label_size=node_label_size, + node_alpha=alpha, + standard_size=node_size, + node_aspect=node_aspect, + standard_cmap="OrRd", + standard_color="orange", log_sizes=False, - cmap_links=cmap_edges, links_vmin=vmin_edges, - links_vmax=vmax_edges, links_ticks=edge_ticks, - + cmap_links=cmap_edges, + links_vmin=vmin_edges, + links_vmax=vmax_edges, + links_ticks=edge_ticks, # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - - arrowstyle='simple', arrowhead_size=arrowhead_size, - curved_radius=curved_radius, label_fontsize=label_fontsize, + arrowhead_size=arrowhead_size, + curved_radius=curved_radius, + label_fontsize=label_fontsize, link_label_fontsize=link_label_fontsize, link_colorbar_label=link_colorbar_label, network_lower_bound=network_lower_bound, # label_fraction=label_fraction, # inner_edge_style=inner_edge_style - ) + ) # fig.subplots_adjust(left=0.1, right=.9, bottom=.25, top=.95) # savestring = os.path.expanduser(save_name) @@ -2290,27 +2850,25 @@ def plot_mediation_graph( else: pyplot.show() + # # Functions to plot time series graphs from links including ancestors # def plot_tsg(links, X, Y, Z=None, anc_x=None, anc_y=None, anc_xy=None): """Plots TSG that is input in format (N*max_lag, N*max_lag). - - Compared to the tigramite plotting function here links - X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to - visualize the conditioned TSG. + Compared to the tigramite plotting function here links + X^i_{t-tau} --> X^j_t can be missing for different t'. Helpful to + visualize the conditioned TSG. """ def varlag2node(var, lag): """Translate from (var, lag) notation to node in TSG. - lag must be <= 0. """ return var * max_lag + lag def node2varlag(node): """Translate from node in TSG to (var, -tau) notation. - Here tau is <= 0. """ var = node // max_lag @@ -2319,7 +2877,6 @@ def node2varlag(node): def _links_to_tsg(link_coeffs, max_lag=None): """Transform link_coeffs to time series graph. - TSG is of shape (N*max_lag, N*max_lag). """ N = len(link_coeffs) @@ -2339,22 +2896,22 @@ def _links_to_tsg(link_coeffs, max_lag=None): tau = abs(lag) coeff = link_props[1] # func = link_props[2] - if coeff != 0.: + if coeff != 0.0: for t in range(max_lag): - if (0 <= varlag2node(i, t - tau) and - varlag2node(i, t - tau) % max_lag - <= varlag2node(j, t) % max_lag): - tsg[varlag2node(i, t - tau), - varlag2node(j, t)] = 1. + if ( + 0 <= varlag2node(i, t - tau) + and varlag2node(i, t - tau) % max_lag + <= varlag2node(j, t) % max_lag + ): + tsg[varlag2node(i, t - tau), varlag2node(j, t)] = 1.0 return tsg - color_list = ['lightgrey', 'grey', 'black', 'red', 'blue', 'orange'] + color_list = ["lightgrey", "grey", "black", "red", "blue", "orange"] listcmap = ListedColormap(color_list) N = len(links) - min_lag_links, max_lag_links = pp._get_minmax_lag(links) max_lag = max_lag_links @@ -2364,8 +2921,7 @@ def _links_to_tsg(link_coeffs, max_lag=None): max_lag = max(max_lag, abs(anc[1])) if Z is not None: for anc in Z: - max_lag = max(max_lag, abs(anc[1])) - + max_lag = max(max_lag, abs(anc[1])) if anc_x is not None: for anc in anc_x: @@ -2383,46 +2939,45 @@ def _links_to_tsg(link_coeffs, max_lag=None): G = nx.DiGraph(tsg) - figsize=(3, 3) - link_colorbar_label='MCI' - arrow_linewidth=20. - vmin_edges=-1 - vmax_edges=1. - edge_ticks=.4 - cmap_edges='RdBu_r' - order=None - node_size=10 - arrowhead_size=20 - curved_radius=.2 - label_fontsize=10 - alpha=1. - node_label_size=10 - label_space_left=0.1 - label_space_top=0. - network_lower_bound=0.2 - inner_edge_style='dashed' - - - node_color = np.ones(N * max_lag) #, dtype = 'object') + figsize = (3, 3) + link_colorbar_label = "MCI" + arrow_linewidth = 20.0 + vmin_edges = -1 + vmax_edges = 1.0 + edge_ticks = 0.4 + cmap_edges = "RdBu_r" + order = None + node_size = 10 + arrowhead_size = 20 + curved_radius = 0.2 + label_fontsize = 10 + alpha = 1.0 + node_label_size = 10 + label_space_left = 0.1 + label_space_top = 0.0 + network_lower_bound = 0.2 + inner_edge_style = "dashed" + + node_color = np.ones(N * max_lag) # , dtype = 'object') node_color[:] = 0 if anc_x is not None: - for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_x]: + for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_x]: node_color[n] = 3 if anc_y is not None: - for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_y]: + for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_y]: node_color[n] = 4 if anc_xy is not None: - for n in [varlag2node(itau[0], max_lag-1 + itau[1]) for itau in anc_xy]: + for n in [varlag2node(itau[0], max_lag - 1 + itau[1]) for itau in anc_xy]: node_color[n] = 5 for x in X: - node_color[varlag2node(x[0], max_lag-1 + x[1])] = 2 + node_color[varlag2node(x[0], max_lag - 1 + x[1])] = 2 for y in Y: - node_color[varlag2node(y[0], max_lag-1 + y[1])] = 2 + node_color[varlag2node(y[0], max_lag - 1 + y[1])] = 2 if Z is not None: for z in Z: - node_color[varlag2node(z[0], max_lag-1 + z[1])] = 1 + node_color[varlag2node(z[0], max_lag - 1 + z[1])] = 1 fig = pyplot.figure(figsize=figsize) ax = fig.add_subplot(111, frame_on=False) @@ -2435,244 +2990,152 @@ def _links_to_tsg(link_coeffs, max_lag=None): for (u, v, dic) in G.edges(data=True): if u != v: if tsg[u, v] and tsg[v, u]: - dic['inner_edge'] = True - dic['outer_edge'] = False + dic["inner_edge"] = True + dic["outer_edge"] = False else: - dic['inner_edge'] = False - dic['outer_edge'] = True + dic["inner_edge"] = False + dic["outer_edge"] = True - dic['inner_edge_alpha'] = alpha - dic['inner_edge_color'] = tsg[u, v] + dic["inner_edge_alpha"] = alpha + dic["inner_edge_color"] = tsg[u, v] - dic['inner_edge_width'] = arrow_linewidth - dic['inner_edge_attribute'] = dic['outer_edge_attribute'] = None + dic["inner_edge_width"] = arrow_linewidth + dic["inner_edge_attribute"] = dic["outer_edge_attribute"] = None - all_strengths.append(dic['inner_edge_color']) - dic['outer_edge_alpha'] = alpha - dic['outer_edge_width'] = dic['inner_edge_width'] = arrow_linewidth + all_strengths.append(dic["inner_edge_color"]) + dic["outer_edge_alpha"] = alpha + dic["outer_edge_width"] = dic["inner_edge_width"] = arrow_linewidth # value at argmax of average - dic['outer_edge_color'] = tsg[u, v] + dic["outer_edge_color"] = tsg[u, v] - all_strengths.append(dic['outer_edge_color']) - dic['label'] = None - - # dic['outer_edge_edge'] = False - # dic['outer_edge_edgecolor'] = None - # dic['inner_edge_edge'] = False - # dic['inner_edge_edgecolor'] = None + all_strengths.append(dic["outer_edge_color"]) + dic["label"] = None # If no links are present, set value to zero if len(all_strengths) == 0: - all_strengths = [0.] + all_strengths = [0.0] posarray = np.zeros((N * max_lag, 2)) for i in range(N * max_lag): - posarray[i] = np.array([(i % max_lag), (1. - i // max_lag)]) + posarray[i] = np.array([(i % max_lag), (1.0 - i // max_lag)]) pos_tmp = {} for i in range(N * max_lag): - pos_tmp[i] = np.array([((i % max_lag) - posarray.min(axis=0)[0]) / - (posarray.max(axis=0)[0] - - posarray.min(axis=0)[0]), - ((1. - i // max_lag) - - posarray.min(axis=0)[1]) / - (posarray.max(axis=0)[1] - - posarray.min(axis=0)[1])]) - pos_tmp[i][np.isnan(pos_tmp[i])] = 0. + pos_tmp[i] = np.array( + [ + ((i % max_lag) - posarray.min(axis=0)[0]) + / (posarray.max(axis=0)[0] - posarray.min(axis=0)[0]), + ((1.0 - i // max_lag) - posarray.min(axis=0)[1]) + / (posarray.max(axis=0)[1] - posarray.min(axis=0)[1]), + ] + ) + pos_tmp[i][np.isnan(pos_tmp[i])] = 0.0 pos = {} for n in range(N): for tau in range(max_lag): pos[n * max_lag + tau] = pos_tmp[order[n] * max_lag + tau] - node_rings = {0: {'sizes': None, 'color_array': node_color, - 'label': '', 'colorbar': False, - 'cmap': listcmap, 'vmin': 0, - 'vmax': len(color_list), - } - } + node_rings = { + 0: { + "sizes": None, + "color_array": node_color, + "label": "", + "colorbar": False, + "cmap": listcmap, + "vmin": 0, + "vmax": len(color_list), + } + } - # ] for v in range(max_lag)] - node_labels = ['' for i in range(N * max_lag)] + node_labels = ["" for i in range(N * max_lag)] _draw_network_with_curved_edges( - fig=fig, ax=ax, - G=deepcopy(G), pos=pos, + fig=fig, + ax=ax, + G=deepcopy(G), + pos=pos, # dictionary of rings: {0:{'sizes':(N,)-array, 'color_array':(N,)-array # or None, 'cmap':string, node_rings=node_rings, # 'vmin':float or None, 'vmax':float or None, 'label':string or None}} - node_labels=node_labels, node_label_size=node_label_size, - node_alpha=alpha, standard_size=node_size, - standard_cmap='OrRd', standard_color='lightgrey', + node_labels=node_labels, + node_label_size=ode_label_size, + node_alpha=alpha, + standard_size=node_size, + node_aspect=node_aspect, + standard_cmap="OrRd", + standard_color="lightgrey", log_sizes=False, - cmap_links=cmap_edges, links_vmin=vmin_edges, - links_vmax=vmax_edges, links_ticks=edge_ticks, - - # cmap_links_edges='YlOrRd', links_edges_vmin=-1., links_edges_vmax=1., - # links_edges_ticks=.2, link_edge_colorbar_label='link_edge', - - arrowstyle='simple', arrowhead_size=arrowhead_size, - curved_radius=curved_radius, label_fontsize=label_fontsize, - label_fraction=.5, - link_colorbar_label=link_colorbar_label, inner_edge_curved=True, + cmap_links=cmap_edges, + links_vmin=vmin_edges, + links_vmax=vmax_edges, + links_ticks=edge_ticks, + arrowstyle="simple", + arrowhead_size=arrowhead_size, + curved_radius=curved_radius, + label_fontsize=label_fontsize, + label_fraction=0.5, + link_colorbar_label=link_colorbar_label, + inner_edge_curved=True, network_lower_bound=network_lower_bound, - inner_edge_style=inner_edge_style, show_colorbar=False, - ) + inner_edge_style=inner_edge_style, + show_colorbar=False, + ) for i in range(N): - trans = transforms.blended_transform_factory( - fig.transFigure, ax.transData) - ax.text(label_space_left, pos[order[i] * max_lag][1], - '%s' % str(var_names[order[i]]), fontsize=label_fontsize, - horizontalalignment='left', verticalalignment='center', - transform=trans) + trans = transforms.blended_transform_factory(fig.transFigure, ax.transData) + ax.text( + label_space_left, + pos[order[i] * max_lag][1], + "%s" % str(var_names[order[i]]), + fontsize=label_fontsize, + horizontalalignment="left", + verticalalignment="center", + transform=trans, + ) for tau in np.arange(max_lag - 1, -1, -1): - trans = transforms.blended_transform_factory( - ax.transData, fig.transFigure) + trans = transforms.blended_transform_factory(ax.transData, fig.transFigure) if tau == max_lag - 1: - ax.text(pos[tau][0], 1.-label_space_top, r'$t$', - fontsize=int(label_fontsize*0.7), - horizontalalignment='center', - verticalalignment='top', transform=trans) + ax.text( + pos[tau][0], + 1.0 - label_space_top, + r"$t$", + fontsize=int(label_fontsize * 0.7), + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) else: - ax.text(pos[tau][0], 1.-label_space_top, - r'$t-%s$' % str(max_lag - tau - 1), - fontsize=int(label_fontsize*0.7), - horizontalalignment='center', verticalalignment='top', - transform=trans) + ax.text( + pos[tau][0], + 1.0 - label_space_top, + r"$t-%s$" % str(max_lag - tau - 1), + fontsize=int(label_fontsize * 0.7), + horizontalalignment="center", + verticalalignment="top", + transform=trans, + ) - # fig.subplots_adjust(left=0.1, right=.98, bottom=.25, top=.9) - # savestring = os.path.expanduser(save_name) -# plt.show() return fig, ax -if __name__ == '__main__': +if __name__ == "__main__": - import os - from tigramite.independence_tests import ParCorr - import tigramite.data_processing as pp - # np.random.seed(42) + val_matrix = np.zeros((4, 4, 3)) + # Complete test case + link_matrix = np.zeros(val_matrix.shape) - val_matrix = 2.+np.random.rand(4, 4, 2) + link_matrix[0, 1, 0] = 0 + link_matrix[1, 0, 0] = 1 - # Complete test case - link_matrix = np.zeros(val_matrix.shape, dtype='U3') - - link_matrix[0,1,0] = 'o->' - link_matrix[1,0,0] = '<-o' - link_matrix[1,2,0] = 'o-o' - link_matrix[2,1,0] = 'o-o' - link_matrix[0,2,0] = 'o--' - link_matrix[2,0,0] = '--o' - link_matrix[2,3,0] = '---' - link_matrix[3,2,0] = '---' - link_matrix[1,3,0] = '-->' - link_matrix[3,1,0] = '<--' - - link_matrix[0,2,1] = '<->' - link_matrix[0,0,1] = 'o->' - link_matrix[0,1,1] = '-->' - link_matrix[1,0,1] = 'o->' - - link_width = np.ones(val_matrix.shape) - link_attribute = np.zeros(val_matrix.shape, dtype = 'object') - link_attribute[:] = '' - link_attribute[0,1,0] = 'spurious' - link_attribute[1,0,0] = 'spurious' - - # link_attribute[0,2,1] = 'spurious' - - # link_matrix = np.random.randint(0, 2, size=val_matrix.shape) - - # print(link_matrix[:,:,1]) - print(link_matrix[:,:,0]) - plot_time_series_graph( - # val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - inner_edge_style='dashed', - save_name='tsg_test.pdf', - ) - plot_graph( - # val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - # inner_edge_style='dashed', - save_name='graph_test.pdf', - ) - # pyplot.show() - - # print link_matrix - # data = np.random.randn(100,3) - # mask = np.random.randint(0, 2, size=(100,3)) - # dataframe = pp.DataFrame(data, mask=mask) - - - # data = np.random.randn(100, 3) - # datatime = np.arange(100) - # mask = np.zeros(data.shape) - - # mask[:int(len(data)/2)]=True - - # data[:,0] = -99. - # plot_lagfuncs(val_matrix=val_matrix, - # setup_args={'figsize':(10,10), - # 'label_space_top':0.05, - # 'label_space_left':0.1, - # 'x_base':1, 'y_base':5, - # 'var_names':range(3), - # 'lag_array':np.array(['a%d' % i for i in range(4)])}, - # name='test.pdf', - # ) - - - # plot_timeseries( - # dataframe=dataframe, - # save_name='/home/rung_ja/Downloads/test.pdf', - # fig_axes=None, - # var_units=None, - # time_label='years', - # use_mask=True, - # grey_masked_samples='data', - # data_linewidth=1., - # skip_ticks_data_x=1, - # skip_ticks_data_y=1, - # label_fontsize=8, - # figsize=(3.375, 3.), - # ) - - # lagmat = setup_matrix(3, 3, range(3), lag_units = 'months') - - # lagmat.add_lagfuncs( - # val_matrix=val_matrix, - # # sig_thres=None, - # # link_matrix=link_matrix - # ) - # lagmat.savefig() - - # fig = pyplot.figure(figsize=(4, 3), frameon=False) - # ax = fig.add_subplot(111, frame_on=False) + nolinks = np.zeros(link_matrix.shape) + # nolinks[range(4), range(4), 1] = 1 - """ - plot_graph( - figsize=(3, 3), - val_matrix=val_matrix, - sig_thres=None, - link_matrix=link_matrix, - link_width=link_width, - link_attribute=link_attribute, - var_names=range(len(val_matrix)), - save_name='/home/rung_ja/Downloads/test.pdf', - ) - """ + plot_time_series_graph(link_matrix=nolinks) + plot_graph(link_matrix=nolinks, save_name=None) + + pyplot.show() diff --git a/tigramite/tigramite_cython_code.c b/tigramite/tigramite_cython_code.c index 5deb88f3..b91d5d75 100644 --- a/tigramite/tigramite_cython_code.c +++ b/tigramite/tigramite_cython_code.c @@ -1,4 +1,4 @@ -/* Generated by Cython 0.29.20 */ +/* Generated by Cython 0.29.21 */ /* BEGIN: Cython Metadata { @@ -20,8 +20,8 @@ END: Cython Metadata */ #elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) #error Cython requires Python 2.6+ or Python 3.3+. #else -#define CYTHON_ABI "0_29_20" -#define CYTHON_HEX_VERSION 0x001D14F0 +#define CYTHON_ABI "0_29_21" +#define CYTHON_HEX_VERSION 0x001D15F0 #define CYTHON_FUTURE_DIVISION 0 #include #ifndef offsetof @@ -448,7 +448,11 @@ static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) + #if defined(PyUnicode_IS_READY) && defined(PyUnicode_GET_SIZE) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) + #else + #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_LENGTH(u)) + #endif #else #define CYTHON_PEP393_ENABLED 0 #define PyUnicode_1BYTE_KIND 1 @@ -557,7 +561,7 @@ static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 - #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) + #define __Pyx_PyMethod_New(func, self, klass) ((self) ? ((void)(klass), PyMethod_New(func, self)) : __Pyx_NewRef(func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif @@ -968,7 +972,7 @@ typedef struct { #define __Pyx_FastGilFuncInit() -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":697 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":697 * # in Cython to enable them only on the right systems. * * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< @@ -977,7 +981,7 @@ typedef struct { */ typedef npy_int8 __pyx_t_5numpy_int8_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":698 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":698 * * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< @@ -986,7 +990,7 @@ typedef npy_int8 __pyx_t_5numpy_int8_t; */ typedef npy_int16 __pyx_t_5numpy_int16_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":699 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":699 * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< @@ -995,7 +999,7 @@ typedef npy_int16 __pyx_t_5numpy_int16_t; */ typedef npy_int32 __pyx_t_5numpy_int32_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":700 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":700 * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< @@ -1004,7 +1008,7 @@ typedef npy_int32 __pyx_t_5numpy_int32_t; */ typedef npy_int64 __pyx_t_5numpy_int64_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":704 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":704 * #ctypedef npy_int128 int128_t * * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< @@ -1013,7 +1017,7 @@ typedef npy_int64 __pyx_t_5numpy_int64_t; */ typedef npy_uint8 __pyx_t_5numpy_uint8_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":705 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":705 * * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< @@ -1022,7 +1026,7 @@ typedef npy_uint8 __pyx_t_5numpy_uint8_t; */ typedef npy_uint16 __pyx_t_5numpy_uint16_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":706 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":706 * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< @@ -1031,7 +1035,7 @@ typedef npy_uint16 __pyx_t_5numpy_uint16_t; */ typedef npy_uint32 __pyx_t_5numpy_uint32_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":707 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":707 * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< @@ -1040,7 +1044,7 @@ typedef npy_uint32 __pyx_t_5numpy_uint32_t; */ typedef npy_uint64 __pyx_t_5numpy_uint64_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":711 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":711 * #ctypedef npy_uint128 uint128_t * * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< @@ -1049,7 +1053,7 @@ typedef npy_uint64 __pyx_t_5numpy_uint64_t; */ typedef npy_float32 __pyx_t_5numpy_float32_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":712 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":712 * * ctypedef npy_float32 float32_t * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< @@ -1058,7 +1062,7 @@ typedef npy_float32 __pyx_t_5numpy_float32_t; */ typedef npy_float64 __pyx_t_5numpy_float64_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":721 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":721 * # The int types are mapped a bit surprising -- * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t # <<<<<<<<<<<<<< @@ -1067,7 +1071,7 @@ typedef npy_float64 __pyx_t_5numpy_float64_t; */ typedef npy_long __pyx_t_5numpy_int_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":722 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":722 * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< @@ -1076,7 +1080,7 @@ typedef npy_long __pyx_t_5numpy_int_t; */ typedef npy_longlong __pyx_t_5numpy_long_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":723 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":723 * ctypedef npy_long int_t * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< @@ -1085,7 +1089,7 @@ typedef npy_longlong __pyx_t_5numpy_long_t; */ typedef npy_longlong __pyx_t_5numpy_longlong_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":725 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":725 * ctypedef npy_longlong longlong_t * * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< @@ -1094,7 +1098,7 @@ typedef npy_longlong __pyx_t_5numpy_longlong_t; */ typedef npy_ulong __pyx_t_5numpy_uint_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":726 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":726 * * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< @@ -1103,7 +1107,7 @@ typedef npy_ulong __pyx_t_5numpy_uint_t; */ typedef npy_ulonglong __pyx_t_5numpy_ulong_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":727 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":727 * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< @@ -1112,7 +1116,7 @@ typedef npy_ulonglong __pyx_t_5numpy_ulong_t; */ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":729 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":729 * ctypedef npy_ulonglong ulonglong_t * * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< @@ -1121,7 +1125,7 @@ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; */ typedef npy_intp __pyx_t_5numpy_intp_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":730 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":730 * * ctypedef npy_intp intp_t * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< @@ -1130,7 +1134,7 @@ typedef npy_intp __pyx_t_5numpy_intp_t; */ typedef npy_uintp __pyx_t_5numpy_uintp_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":732 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":732 * ctypedef npy_uintp uintp_t * * ctypedef npy_double float_t # <<<<<<<<<<<<<< @@ -1139,7 +1143,7 @@ typedef npy_uintp __pyx_t_5numpy_uintp_t; */ typedef npy_double __pyx_t_5numpy_float_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":733 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":733 * * ctypedef npy_double float_t * ctypedef npy_double double_t # <<<<<<<<<<<<<< @@ -1148,7 +1152,7 @@ typedef npy_double __pyx_t_5numpy_float_t; */ typedef npy_double __pyx_t_5numpy_double_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":734 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":734 * ctypedef npy_double float_t * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< @@ -1196,7 +1200,7 @@ struct __pyx_MemviewEnum_obj; struct __pyx_memoryview_obj; struct __pyx_memoryviewslice_obj; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":736 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":736 * ctypedef npy_longdouble longdouble_t * * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< @@ -1205,7 +1209,7 @@ struct __pyx_memoryviewslice_obj; */ typedef npy_cfloat __pyx_t_5numpy_cfloat_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":737 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":737 * * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< @@ -1214,7 +1218,7 @@ typedef npy_cfloat __pyx_t_5numpy_cfloat_t; */ typedef npy_cdouble __pyx_t_5numpy_cdouble_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":738 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":738 * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< @@ -1223,7 +1227,7 @@ typedef npy_cdouble __pyx_t_5numpy_cdouble_t; */ typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":740 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":740 * ctypedef npy_clongdouble clongdouble_t * * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< @@ -3455,8 +3459,8 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code__get_neighbors_with * k_z[i] = kz * */ - __pyx_t_17 = __pyx_v_i; - *((int *) ( /* dim=0 */ (__pyx_v_k_yz.data + __pyx_t_17 * __pyx_v_k_yz.strides[0]) )) = __pyx_v_kyz; + __pyx_t_18 = __pyx_v_i; + *((int *) ( /* dim=0 */ (__pyx_v_k_yz.data + __pyx_t_18 * __pyx_v_k_yz.strides[0]) )) = __pyx_v_kyz; /* "tigramite/tigramite_cython_code.pyx":78 * k_xz[i] = kxz @@ -3465,8 +3469,8 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code__get_neighbors_with * * */ - __pyx_t_16 = __pyx_v_i; - *((int *) ( /* dim=0 */ (__pyx_v_k_z.data + __pyx_t_16 * __pyx_v_k_z.strides[0]) )) = __pyx_v_kz; + __pyx_t_18 = __pyx_v_i; + *((int *) ( /* dim=0 */ (__pyx_v_k_z.data + __pyx_t_18 * __pyx_v_k_z.strides[0]) )) = __pyx_v_kz; } /* "tigramite/tigramite_cython_code.pyx":81 @@ -3784,14 +3788,10 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth Py_ssize_t __pyx_t_15; Py_ssize_t __pyx_t_16; Py_ssize_t __pyx_t_17; - Py_ssize_t __pyx_t_18; - Py_ssize_t __pyx_t_19; + int __pyx_t_18; + int __pyx_t_19; int __pyx_t_20; int __pyx_t_21; - int __pyx_t_22; - int __pyx_t_23; - Py_ssize_t __pyx_t_24; - Py_ssize_t __pyx_t_25; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; @@ -4012,10 +4012,10 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth * p = 1 * else: */ - __pyx_t_18 = 0; - __pyx_t_19 = 1; - __pyx_t_20 = (((*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_18 * __pyx_v_v.strides[0]) ))) < (*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_19 * __pyx_v_v.strides[0]) )))) != 0); - if (__pyx_t_20) { + __pyx_t_16 = 0; + __pyx_t_15 = 1; + __pyx_t_18 = (((*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_16 * __pyx_v_v.strides[0]) ))) < (*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_15 * __pyx_v_v.strides[0]) )))) != 0); + if (__pyx_t_18) { /* "tigramite/tigramite_cython_code.pyx":119 * weights[t-start, n] = var @@ -4067,10 +4067,10 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth * if( v[j] < v[i]): * p += fac[i] */ - __pyx_t_21 = __pyx_v_i; - __pyx_t_22 = __pyx_t_21; - for (__pyx_t_23 = 0; __pyx_t_23 < __pyx_t_22; __pyx_t_23+=1) { - __pyx_v_j = __pyx_t_23; + __pyx_t_19 = __pyx_v_i; + __pyx_t_20 = __pyx_t_19; + for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) { + __pyx_v_j = __pyx_t_21; /* "tigramite/tigramite_cython_code.pyx":124 * for i in range(2, dim): @@ -4079,10 +4079,10 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth * p += fac[i] * patt[t-start, n] = p */ - __pyx_t_19 = __pyx_v_j; - __pyx_t_18 = __pyx_v_i; - __pyx_t_20 = (((*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_19 * __pyx_v_v.strides[0]) ))) < (*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_18 * __pyx_v_v.strides[0]) )))) != 0); - if (__pyx_t_20) { + __pyx_t_15 = __pyx_v_j; + __pyx_t_16 = __pyx_v_i; + __pyx_t_18 = (((*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_15 * __pyx_v_v.strides[0]) ))) < (*((double *) ( /* dim=0 */ (__pyx_v_v.data + __pyx_t_16 * __pyx_v_v.strides[0]) )))) != 0); + if (__pyx_t_18) { /* "tigramite/tigramite_cython_code.pyx":125 * for j in range(0, i): @@ -4091,8 +4091,8 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth * patt[t-start, n] = p * patt_mask[t-start, n] = mask */ - __pyx_t_18 = __pyx_v_i; - __pyx_v_p = (__pyx_v_p + (*((int *) ( /* dim=0 */ (__pyx_v_fac.data + __pyx_t_18 * __pyx_v_fac.strides[0]) )))); + __pyx_t_16 = __pyx_v_i; + __pyx_v_p = (__pyx_v_p + (*((int *) ( /* dim=0 */ (__pyx_v_fac.data + __pyx_t_16 * __pyx_v_fac.strides[0]) )))); /* "tigramite/tigramite_cython_code.pyx":124 * for i in range(2, dim): @@ -4112,9 +4112,9 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth * patt_mask[t-start, n] = mask * */ - __pyx_t_18 = (__pyx_v_t - __pyx_v_start); - __pyx_t_19 = __pyx_v_n; - *((int *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_patt.data + __pyx_t_18 * __pyx_v_patt.strides[0]) ) + __pyx_t_19 * __pyx_v_patt.strides[1]) )) = __pyx_v_p; + __pyx_t_16 = (__pyx_v_t - __pyx_v_start); + __pyx_t_15 = __pyx_v_n; + *((int *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_patt.data + __pyx_t_16 * __pyx_v_patt.strides[0]) ) + __pyx_t_15 * __pyx_v_patt.strides[1]) )) = __pyx_v_p; /* "tigramite/tigramite_cython_code.pyx":127 * p += fac[i] @@ -4123,9 +4123,9 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_2_get_patterns_cyth * * return (patt, patt_mask, weights) */ - __pyx_t_24 = (__pyx_v_t - __pyx_v_start); - __pyx_t_25 = __pyx_v_n; - *((int *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_patt_mask.data + __pyx_t_24 * __pyx_v_patt_mask.strides[0]) ) + __pyx_t_25 * __pyx_v_patt_mask.strides[1]) )) = __pyx_v_mask; + __pyx_t_15 = (__pyx_v_t - __pyx_v_start); + __pyx_t_16 = __pyx_v_n; + *((int *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_patt_mask.data + __pyx_t_15 * __pyx_v_patt_mask.strides[0]) ) + __pyx_t_16 * __pyx_v_patt_mask.strides[1]) )) = __pyx_v_mask; } } @@ -4640,8 +4640,8 @@ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_t_5, 1, (PyObject *(*)(char *)) __p * * return numpy.asarray(restricted_permutation) */ - __pyx_t_10 = __pyx_v_i; - *((int *) ( /* dim=0 */ (__pyx_v_used.data + __pyx_t_10 * __pyx_v_used.strides[0]) )) = __pyx_v_use; + __pyx_t_9 = __pyx_v_i; + *((int *) ( /* dim=0 */ (__pyx_v_used.data + __pyx_t_9 * __pyx_v_used.strides[0]) )) = __pyx_v_use; } /* "tigramite/tigramite_cython_code.pyx":179 @@ -5607,8 +5607,8 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_3D_N_2calculate_mea * self.mean = sum_total / (self.dim**2) * self.mean_0 = sum_0 / (self.dim) */ - __pyx_t_15 = __pyx_v_ii; - *__Pyx_BufPtrStrided1d(__pyx_t_9tigramite_21tigramite_cython_code_DTYPE_t *, __pyx_pybuffernd_sum_0.rcbuffer->pybuffer.buf, __pyx_t_15, __pyx_pybuffernd_sum_0.diminfo[0].strides) += __pyx_v_value; + __pyx_t_16 = __pyx_v_ii; + *__Pyx_BufPtrStrided1d(__pyx_t_9tigramite_21tigramite_cython_code_DTYPE_t *, __pyx_pybuffernd_sum_0.rcbuffer->pybuffer.buf, __pyx_t_16, __pyx_pybuffernd_sum_0.diminfo[0].strides) += __pyx_v_value; } } @@ -6445,7 +6445,7 @@ static PyObject *__pyx_pf_9tigramite_21tigramite_cython_code_3D_N_6product_sum(C return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":742 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":742 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< @@ -6462,7 +6462,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__ int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":743 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":743 * * cdef inline object PyArray_MultiIterNew1(a): * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< @@ -6476,7 +6476,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__ __pyx_t_1 = 0; goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":742 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":742 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< @@ -6495,7 +6495,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__ return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":745 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":745 * return PyArray_MultiIterNew(1, a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< @@ -6512,7 +6512,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__ int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":746 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":746 * * cdef inline object PyArray_MultiIterNew2(a, b): * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< @@ -6526,7 +6526,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__ __pyx_t_1 = 0; goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":745 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":745 * return PyArray_MultiIterNew(1, a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< @@ -6545,7 +6545,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__ return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":748 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":748 * return PyArray_MultiIterNew(2, a, b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< @@ -6562,7 +6562,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__ int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":749 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":749 * * cdef inline object PyArray_MultiIterNew3(a, b, c): * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< @@ -6576,7 +6576,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__ __pyx_t_1 = 0; goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":748 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":748 * return PyArray_MultiIterNew(2, a, b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< @@ -6595,7 +6595,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__ return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":751 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":751 * return PyArray_MultiIterNew(3, a, b, c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< @@ -6612,7 +6612,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__ int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":752 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":752 * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< @@ -6626,7 +6626,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__ __pyx_t_1 = 0; goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":751 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":751 * return PyArray_MultiIterNew(3, a, b, c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< @@ -6645,7 +6645,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__ return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":754 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":754 * return PyArray_MultiIterNew(4, a, b, c, d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< @@ -6662,7 +6662,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__ int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":755 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":755 * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< @@ -6676,7 +6676,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__ __pyx_t_1 = 0; goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":754 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":754 * return PyArray_MultiIterNew(4, a, b, c, d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< @@ -6695,7 +6695,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__ return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":757 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":757 * return PyArray_MultiIterNew(5, a, b, c, d, e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< @@ -6709,7 +6709,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__ int __pyx_t_1; __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":758 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":758 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< @@ -6719,7 +6719,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__ __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); if (__pyx_t_1) { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":759 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":759 * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape # <<<<<<<<<<<<<< @@ -6731,7 +6731,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__ __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":758 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":758 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< @@ -6740,7 +6740,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__ */ } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":761 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":761 * return d.subarray.shape * else: * return () # <<<<<<<<<<<<<< @@ -6754,7 +6754,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__ goto __pyx_L0; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":757 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":757 * return PyArray_MultiIterNew(5, a, b, c, d, e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< @@ -6769,7 +6769,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__ return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":763 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":763 * return () * * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< @@ -6801,7 +6801,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_util_dtypestring", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":768 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":768 * * cdef dtype child * cdef int endian_detector = 1 # <<<<<<<<<<<<<< @@ -6810,7 +6810,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ __pyx_v_endian_detector = 1; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":769 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":769 * cdef dtype child * cdef int endian_detector = 1 * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< @@ -6819,7 +6819,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":772 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":772 * cdef tuple fields * * for childname in descr.names: # <<<<<<<<<<<<<< @@ -6842,7 +6842,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_XDECREF_SET(__pyx_v_childname, __pyx_t_3); __pyx_t_3 = 0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":773 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":773 * * for childname in descr.names: * fields = descr.fields[childname] # <<<<<<<<<<<<<< @@ -6859,7 +6859,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_XDECREF_SET(__pyx_v_fields, ((PyObject*)__pyx_t_3)); __pyx_t_3 = 0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":774 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":774 * for childname in descr.names: * fields = descr.fields[childname] * child, new_offset = fields # <<<<<<<<<<<<<< @@ -6894,7 +6894,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_XDECREF_SET(__pyx_v_new_offset, __pyx_t_4); __pyx_t_4 = 0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":776 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":776 * child, new_offset = fields * * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< @@ -6911,7 +6911,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __pyx_t_6 = ((((__pyx_v_end - __pyx_v_f) - ((int)__pyx_t_5)) < 15) != 0); if (unlikely(__pyx_t_6)) { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":777 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":777 * * if (end - f) - (new_offset - offset[0]) < 15: * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< @@ -6924,7 +6924,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 777, __pyx_L1_error) - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":776 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":776 * child, new_offset = fields * * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< @@ -6933,7 +6933,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":779 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":779 * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< @@ -6953,7 +6953,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx } __pyx_L8_next_or:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":780 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":780 * * if ((child.byteorder == c'>' and little_endian) or * (child.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< @@ -6970,7 +6970,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __pyx_t_6 = __pyx_t_7; __pyx_L7_bool_binop_done:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":779 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":779 * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< @@ -6979,7 +6979,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ if (unlikely(__pyx_t_6)) { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":781 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":781 * if ((child.byteorder == c'>' and little_endian) or * (child.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< @@ -6992,7 +6992,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 781, __pyx_L1_error) - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":779 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":779 * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< @@ -7001,7 +7001,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":791 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":791 * * # Output padding bytes * while offset[0] < new_offset: # <<<<<<<<<<<<<< @@ -7017,7 +7017,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (!__pyx_t_6) break; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":792 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":792 * # Output padding bytes * while offset[0] < new_offset: * f[0] = 120 # "x"; pad byte # <<<<<<<<<<<<<< @@ -7026,7 +7026,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ (__pyx_v_f[0]) = 0x78; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":793 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":793 * while offset[0] < new_offset: * f[0] = 120 # "x"; pad byte * f += 1 # <<<<<<<<<<<<<< @@ -7035,7 +7035,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ __pyx_v_f = (__pyx_v_f + 1); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":794 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":794 * f[0] = 120 # "x"; pad byte * f += 1 * offset[0] += 1 # <<<<<<<<<<<<<< @@ -7046,7 +7046,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + 1); } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":796 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":796 * offset[0] += 1 * * offset[0] += child.itemsize # <<<<<<<<<<<<<< @@ -7056,7 +7056,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __pyx_t_8 = 0; (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + __pyx_v_child->elsize); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":798 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":798 * offset[0] += child.itemsize * * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< @@ -7066,7 +7066,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __pyx_t_6 = ((!(PyDataType_HASFIELDS(__pyx_v_child) != 0)) != 0); if (__pyx_t_6) { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":799 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":799 * * if not PyDataType_HASFIELDS(child): * t = child.type_num # <<<<<<<<<<<<<< @@ -7078,7 +7078,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); __pyx_t_4 = 0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":800 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":800 * if not PyDataType_HASFIELDS(child): * t = child.type_num * if end - f < 5: # <<<<<<<<<<<<<< @@ -7088,7 +7088,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __pyx_t_6 = (((__pyx_v_end - __pyx_v_f) < 5) != 0); if (unlikely(__pyx_t_6)) { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":801 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":801 * t = child.type_num * if end - f < 5: * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< @@ -7101,7 +7101,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(1, 801, __pyx_L1_error) - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":800 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":800 * if not PyDataType_HASFIELDS(child): * t = child.type_num * if end - f < 5: # <<<<<<<<<<<<<< @@ -7110,7 +7110,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":804 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":804 * * # Until ticket #99 is fixed, use integers to avoid warnings * if t == NPY_BYTE: f[0] = 98 #"b" # <<<<<<<<<<<<<< @@ -7128,7 +7128,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":805 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":805 * # Until ticket #99 is fixed, use integers to avoid warnings * if t == NPY_BYTE: f[0] = 98 #"b" * elif t == NPY_UBYTE: f[0] = 66 #"B" # <<<<<<<<<<<<<< @@ -7146,7 +7146,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":806 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":806 * if t == NPY_BYTE: f[0] = 98 #"b" * elif t == NPY_UBYTE: f[0] = 66 #"B" * elif t == NPY_SHORT: f[0] = 104 #"h" # <<<<<<<<<<<<<< @@ -7164,7 +7164,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":807 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":807 * elif t == NPY_UBYTE: f[0] = 66 #"B" * elif t == NPY_SHORT: f[0] = 104 #"h" * elif t == NPY_USHORT: f[0] = 72 #"H" # <<<<<<<<<<<<<< @@ -7182,7 +7182,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":808 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":808 * elif t == NPY_SHORT: f[0] = 104 #"h" * elif t == NPY_USHORT: f[0] = 72 #"H" * elif t == NPY_INT: f[0] = 105 #"i" # <<<<<<<<<<<<<< @@ -7200,7 +7200,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":809 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":809 * elif t == NPY_USHORT: f[0] = 72 #"H" * elif t == NPY_INT: f[0] = 105 #"i" * elif t == NPY_UINT: f[0] = 73 #"I" # <<<<<<<<<<<<<< @@ -7218,7 +7218,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":810 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":810 * elif t == NPY_INT: f[0] = 105 #"i" * elif t == NPY_UINT: f[0] = 73 #"I" * elif t == NPY_LONG: f[0] = 108 #"l" # <<<<<<<<<<<<<< @@ -7236,7 +7236,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":811 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":811 * elif t == NPY_UINT: f[0] = 73 #"I" * elif t == NPY_LONG: f[0] = 108 #"l" * elif t == NPY_ULONG: f[0] = 76 #"L" # <<<<<<<<<<<<<< @@ -7254,7 +7254,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":812 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":812 * elif t == NPY_LONG: f[0] = 108 #"l" * elif t == NPY_ULONG: f[0] = 76 #"L" * elif t == NPY_LONGLONG: f[0] = 113 #"q" # <<<<<<<<<<<<<< @@ -7272,7 +7272,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":813 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":813 * elif t == NPY_ULONG: f[0] = 76 #"L" * elif t == NPY_LONGLONG: f[0] = 113 #"q" * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" # <<<<<<<<<<<<<< @@ -7290,7 +7290,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":814 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":814 * elif t == NPY_LONGLONG: f[0] = 113 #"q" * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" * elif t == NPY_FLOAT: f[0] = 102 #"f" # <<<<<<<<<<<<<< @@ -7308,7 +7308,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":815 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":815 * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" * elif t == NPY_FLOAT: f[0] = 102 #"f" * elif t == NPY_DOUBLE: f[0] = 100 #"d" # <<<<<<<<<<<<<< @@ -7326,7 +7326,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":816 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":816 * elif t == NPY_FLOAT: f[0] = 102 #"f" * elif t == NPY_DOUBLE: f[0] = 100 #"d" * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" # <<<<<<<<<<<<<< @@ -7344,7 +7344,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":817 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":817 * elif t == NPY_DOUBLE: f[0] = 100 #"d" * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf # <<<<<<<<<<<<<< @@ -7364,7 +7364,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":818 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":818 * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd # <<<<<<<<<<<<<< @@ -7384,7 +7384,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":819 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":819 * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg # <<<<<<<<<<<<<< @@ -7404,7 +7404,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":820 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":820 * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg * elif t == NPY_OBJECT: f[0] = 79 #"O" # <<<<<<<<<<<<<< @@ -7422,7 +7422,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L15; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":822 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":822 * elif t == NPY_OBJECT: f[0] = 79 #"O" * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< @@ -7441,7 +7441,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx } __pyx_L15:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":823 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":823 * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) * f += 1 # <<<<<<<<<<<<<< @@ -7450,7 +7450,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx */ __pyx_v_f = (__pyx_v_f + 1); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":798 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":798 * offset[0] += child.itemsize * * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< @@ -7460,7 +7460,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx goto __pyx_L13; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":827 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":827 * # Cython ignores struct boundary information ("T{...}"), * # so don't output it * f = _util_dtypestring(child, f, end, offset) # <<<<<<<<<<<<<< @@ -7473,7 +7473,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx } __pyx_L13:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":772 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":772 * cdef tuple fields * * for childname in descr.names: # <<<<<<<<<<<<<< @@ -7483,7 +7483,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":828 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":828 * # so don't output it * f = _util_dtypestring(child, f, end, offset) * return f # <<<<<<<<<<<<<< @@ -7493,7 +7493,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx __pyx_r = __pyx_v_f; goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":763 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":763 * return () * * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< @@ -7518,7 +7518,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":943 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":943 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< @@ -7530,7 +7530,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_array_base", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":944 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":944 * * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< @@ -7539,7 +7539,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a */ Py_INCREF(__pyx_v_base); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":945 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":945 * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< @@ -7548,7 +7548,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a */ (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":943 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":943 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< @@ -7560,7 +7560,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a __Pyx_RefNannyFinishContext(); } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":947 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":947 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< @@ -7575,7 +7575,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py int __pyx_t_1; __Pyx_RefNannySetupContext("get_array_base", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":948 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":948 * * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< @@ -7584,7 +7584,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py */ __pyx_v_base = PyArray_BASE(__pyx_v_arr); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":949 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":949 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< @@ -7594,7 +7594,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py __pyx_t_1 = ((__pyx_v_base == NULL) != 0); if (__pyx_t_1) { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":950 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":950 * base = PyArray_BASE(arr) * if base is NULL: * return None # <<<<<<<<<<<<<< @@ -7605,7 +7605,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":949 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":949 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< @@ -7614,7 +7614,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py */ } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":951 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":951 * if base is NULL: * return None * return base # <<<<<<<<<<<<<< @@ -7626,7 +7626,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py __pyx_r = ((PyObject *)__pyx_v_base); goto __pyx_L0; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":947 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":947 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< @@ -7641,7 +7641,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":955 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":955 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< @@ -7665,7 +7665,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_array", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":956 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":956 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< @@ -7681,7 +7681,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":957 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":957 * cdef inline int import_array() except -1: * try: * __pyx_import_array() # <<<<<<<<<<<<<< @@ -7690,7 +7690,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { */ __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 957, __pyx_L3_error) - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":956 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":956 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< @@ -7704,7 +7704,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { goto __pyx_L8_try_end; __pyx_L3_error:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":958 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":958 * try: * __pyx_import_array() * except Exception: # <<<<<<<<<<<<<< @@ -7719,7 +7719,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":959 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":959 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< @@ -7735,7 +7735,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { goto __pyx_L5_except_error; __pyx_L5_except_error:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":956 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":956 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< @@ -7750,7 +7750,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { __pyx_L8_try_end:; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":955 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":955 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< @@ -7773,7 +7773,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":961 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":961 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< @@ -7797,7 +7797,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_umath", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":962 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":962 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< @@ -7813,7 +7813,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":963 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":963 * cdef inline int import_umath() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< @@ -7822,7 +7822,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 963, __pyx_L3_error) - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":962 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":962 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< @@ -7836,7 +7836,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { goto __pyx_L8_try_end; __pyx_L3_error:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":964 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":964 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< @@ -7851,7 +7851,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":965 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":965 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< @@ -7867,7 +7867,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { goto __pyx_L5_except_error; __pyx_L5_except_error:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":962 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":962 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< @@ -7882,7 +7882,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { __pyx_L8_try_end:; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":961 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":961 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< @@ -7905,7 +7905,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { return __pyx_r; } -/* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":967 +/* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":967 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< @@ -7929,7 +7929,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_ufunc", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":968 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":968 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< @@ -7945,7 +7945,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":969 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":969 * cdef inline int import_ufunc() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< @@ -7954,7 +7954,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 969, __pyx_L3_error) - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":968 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":968 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< @@ -7968,7 +7968,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { goto __pyx_L8_try_end; __pyx_L3_error:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":970 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":970 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< @@ -7983,7 +7983,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":971 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":971 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< @@ -7999,7 +7999,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { goto __pyx_L5_except_error; __pyx_L5_except_error:; - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":968 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":968 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< @@ -8014,7 +8014,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { __pyx_L8_try_end:; } - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":967 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":967 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< @@ -22038,7 +22038,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":777 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":777 * * if (end - f) - (new_offset - offset[0]) < 15: * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< @@ -22049,7 +22049,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":781 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":781 * if ((child.byteorder == c'>' and little_endian) or * (child.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< @@ -22060,7 +22060,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__2); __Pyx_GIVEREF(__pyx_tuple__2); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":801 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":801 * t = child.type_num * if end - f < 5: * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< @@ -22071,7 +22071,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__3); __Pyx_GIVEREF(__pyx_tuple__3); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":959 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":959 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< @@ -22082,7 +22082,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_GOTREF(__pyx_tuple__4); __Pyx_GIVEREF(__pyx_tuple__4); - /* "../miniconda3/envs/tigramite-3.6/lib/python3.6/site-packages/numpy/__init__.pxd":965 + /* "../../../../../../anaconda3/envs/tigramitepipdistribute/lib/python3.6/site-packages/numpy/__init__.pxd":965 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< @@ -25242,7 +25242,7 @@ static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { stop += length; } if (unlikely(stop <= start)) - return PyUnicode_FromUnicode(NULL, 0); + return __Pyx_NewRef(__pyx_empty_unicode); length = stop - start; cstring += start; if (decode_func) { @@ -26308,6 +26308,7 @@ static int __Pyx_CyFunction_traverse(__pyx_CyFunctionObject *m, visitproc visit, } static PyObject *__Pyx_CyFunction_descr_get(PyObject *func, PyObject *obj, PyObject *type) { +#if PY_MAJOR_VERSION < 3 __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; if (m->flags & __Pyx_CYFUNCTION_STATICMETHOD) { Py_INCREF(func); @@ -26320,6 +26321,7 @@ static PyObject *__Pyx_CyFunction_descr_get(PyObject *func, PyObject *obj, PyObj } if (obj == Py_None) obj = NULL; +#endif return __Pyx_PyMethod_New(func, obj, type); } static PyObject* @@ -27128,15 +27130,17 @@ static int __Pyx_ValidateAndInit_memviewslice( (dtype->size > 1) ? "s" : ""); goto fail; } - for (i = 0; i < ndim; i++) { - spec = axes_specs[i]; - if (unlikely(!__pyx_check_strides(buf, i, ndim, spec))) - goto fail; - if (unlikely(!__pyx_check_suboffsets(buf, i, ndim, spec))) + if (buf->len > 0) { + for (i = 0; i < ndim; i++) { + spec = axes_specs[i]; + if (unlikely(!__pyx_check_strides(buf, i, ndim, spec))) + goto fail; + if (unlikely(!__pyx_check_suboffsets(buf, i, ndim, spec))) + goto fail; + } + if (unlikely(buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag))) goto fail; } - if (unlikely(buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag))) - goto fail; if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, new_memview != NULL) == -1)) { goto fail; diff --git a/tutorials/tigramite_tutorial_assumptions.ipynb b/tutorials/tigramite_tutorial_assumptions.ipynb index 0e2f25f8..b647a275 100644 --- a/tutorials/tigramite_tutorial_assumptions.ipynb +++ b/tutorials/tigramite_tutorial_assumptions.ipynb @@ -6,13 +6,15 @@ "source": [ "# Causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI method and create high-quality plots of the results.\n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", "PCMCI is described here:\n", "J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, \n", "Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019) \n", "https://advances.sciencemag.org/content/5/11/eaau4996\n", "\n", + "For further versions of PCMCI (e.g., PCMCI+, LPCMCI, etc.), see the corresponding tutorials.\n", + "\n", "This tutorial explains the causal assumptions and gives walk-through examples. See the following paper for theoretical background:\n", "Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "\n", @@ -55,13 +57,13 @@ " \n", " - **Causal Sufficiency:** *Measured variables include all of the common causes.*\n", " \n", - " - **Causal Markov Condition:** *All the relevant probabilistic information that can be obtained from the system is contained in its direct causes.* or, expressed differently, *If two variables are not connected in the causal graph given some set of conditions (see Runge Chaos 2018 for further definitions), then they are conditionally independent*.\n", + " - **Causal Markov Condition:** *All the relevant probabilistic information that can be obtained from the system is contained in its direct causes* or, expressed differently, *If two variables are not connected in the causal graph given some set of conditions (see Runge Chaos 2018 for further definitions), then they are conditionally independent*.\n", " \n", " - **No contemporaneous effects:** *There are no causal effects at lag zero.*\n", " \n", " - **Stationarity**\n", " \n", - " - **Parametric assumptions of independence tests** (these where already discussed in basic tutorial)" + " - **Parametric assumptions of independence tests** (these were already discussed in basic tutorial)" ] }, { @@ -261,21 +263,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeZzeVXX/34ct62TfCISEsLsgKou44VIFUXGrC1qr1YpK0Vr9tdal1lZb963WahGLVlS0dde6KyAqSJAdAgIJZCVknUwWQsL5/XHOmXuf7/N9lklmMpPJ/bxe83rmeb7bXc49n3POPfd+RVUpKCgoKCgYaThguAtQUFBQUFBQh0JQBQUFBQUjEoWgCgoKCgpGJApBFRQUFBSMSBSCKigoKCgYkSgEVVBQUFAwIjEiCEpE5onIr0TkNhG5RUT+erjLVFBQUFAwvJCRsA5KRA4FDlXVP4hID3At8HxVvXWYi1ZQUFBQMEwYER6Uqq5S1T/4/5uB24DDhrdUBQUFBQXDiRFBUDlEZAHwaODqyu/nicgi/7t5OMpWUFBQULD3MCJCfAERmQhcDvyLqn6rzXmLVPXkvVeygoKCgoK9jRHjQYnIwcA3ga+0I6eCgoKCgv0DI4KgRESALwC3qerHh7s8BQUFBQXDjxFBUMATgFcCTxOR6/3v7OEuVEFBQUHB8OGg4S4AgKpeCcjuXu9zV49R1SsGr1QFBQUFBcOJkeJB7SnmYiHCgoK2EJGDROQdw12OgoKCzhgtBPUAcMhwF6Jgn8A04B+GuxAFBQWdMVoIagcwZrgLUbBPYALFmCko2CcwWgjqAQpBFXSHicCBIjJaZL+gYNRitAzSHRSruKA7TPTPg4e1FAUFBR0xWgiqeFAF3SIIqhg0BQUjHKOFoHZiYZsDh7sgBSMehaAKCvYRjAqCUttQsGTyFXSDCf5ZZKWgYIRjVBCUo8xDFXSDMgdVULCPYDQR1D4xDyUiZ4vIS4e7HPsxSohvFEFE3lLewL334bv3DDlGE0HtKx7UY7G9BwuGB/slQYnIFSIyGut8ODBvuAuxP0FExgGb98ZSjdFEUPuEB4WVcULHs0Y4RGSmiCwc7nLsBva7EJ+/LeBJwKThLssQYBypTwcdIvJ7ERk7VPffRxHtMVtEXiEi44fqQaONoPYFC3FQCUpE5ojIH0Rk2mDds0u8Anh3tyeLyLdE5AVDWJ5usT96UKFQ9nnDKCAi54vIUcB4oGeInnEgcAoweSjuP5IhIrNF5OEtDocjMA/4R+BhQ1WO0URQ+8p2R4PtQb0beDR7P8wxEZgZX0TkQLfUm+C/vwB4cvbb7MEuUKvnV7A/ZvGN88+9Mm9QhYhMFJETBvm2rwJOxuo2JARFkpW241VEnikifz9EZag+6yl7aReUPwX+X4tjOUENZfuPKoLqyoMSkTEi8qa9UJ5WGBBBiciEDgI53T/3tnXcQFDAd4DH5SeIyGIR+VcglNN6//0A4C4R6arMIrJQRP6pwzmvBC7qstxQCfGJyM9FZEo35RluiMg5IvK0AVwyrAQFfAa4dZDvORvb+LcpxCci40Wk1mATkUNFpNvXDIXird7/VyJyfPbT0cBJXd5ztyEiTwR+BRw71M/C6twqdBd6thDUALADGCOG6W3OWwC8r/qjiEwRkT8dqsJlGKgH9SWg3csbY15hAoCITBORt+9m2RCRsV16IhOBWdn32ZXvAMcBxwOn+/ep/jnNy9ttO3wOeE+Hc/4KeH4X1uVEQGk2Zp4ATHXlNuBxISIfEZHHDPCaQ/xzvIic1uU1hwLfBd41gEcFQQ1XiG+PvCcROTgfmy6fczDjrD/EJyLvFpFXYS8//Wh2/ltEJAjkEuDpXT46FG+13Y7AXvETGFdzzm5DRI718GUVr/fPmTXHBhsTSHJTxYA9KNfLAx5Xo4mgwoN6DPB/bc6bAkwWkeok+ZuB/xmisuU4hIEJ8yzgsDbHe4CNJCvvkcDrdq9oAGzD3PtOqHpQE8nqle3qcSdwKLAKIyYwMoPu2+EZ7Q660j4GWAcs6+AJ9QCbyAjKJ8HHYgPvq8BZXZYrxxMwQo7B+PwOZX44Zg0DPAX49y6fc5x/bh5A2faaByUiTxKRMys/t5PfVvfJrfejgE9m3ydjfVX1oI4AFmJtlBupZwIn+v9zgFNE5G1dFKPWg/Lf84STsTXndA0RObzy019iIcwqZmHjs6vwuIh8VES6IjMRObWiEycC412Wq/1X60GJyAm5cSsizxWRc/231cCHuilLjtFEUDEHNZ1mSz5HKK8Z8YOIfAR4zkAf2G7epQ3G0BwyOE1apwBPJitrDXow5T9BRJ6DKcqJIvLWShiiAV72Ayq/xWSndqgDWB0miqWcQuYRicg/k1Lpd2BK4TZggYi8kTTAxvv5LUMuFYFvJa/HAIuBT2CW7RHZNc+QxuSMOcA9NIb4wrMbgym3BgUgIs8TkaeKyCmtyokpy7jPQuDbbebk/goj3VAeMzAS7waTgLXV893q/vMW10SSxJAQlIhMzUJqfwKcUzllLgPH5SISpNJDozEzxz8bPChMWU7B+nBqdn4Pqe4zgWdSTwBVtPKgJtGYOLHbBCUiT8eMqnyMT6p5Jpic3EJ7/ZbjZcAZXZ77ZeCp2fcI8T0S+FHl3PCgZmNvQo92upzG8OMTsLD/E73McxggRhNBhQc1iURCdWgiKExZtFM+rfANzPrtCm4pNYT4RGQOcBVwiYi8WZoXwHUiqEkYQU0EPgK8FhOYc4BHtbnuU8DLs3II8Gz/2k0CQT7gweoUVu+LSIQ/FhPk27BU53eSEZSIjAF6ReQrLZ5zCEZyfbRWAguBu1X1s8AVJE8NbJCcBf1e3VxgKY11DGU2FgsBV+XnLOBc4MqcJEVkemZYTM2ue0RW9jq8AJObkIOZwJzwOj2k1WpfyR7gdpqV/mnAq/36F7nRFegqxCcix4vI38rA04b/HPhX/38ijcZfhKo2DfCe80iJP9X5kJCf6TR6UOOxfjiWRoKaCPR4303HQo5Vgh8jItWkgLhvPl7HYGM496C6CvGJyKd8vOd4a1aXQJWQAzOwubyqAfWLFiHiCVTmhdtgNpZsFZhIatuqxzYG2/80+rnHx8FMYH523nTSVEAvcPhAw3yjiaB2YERzNBbCO0BETnJrPkcdQfU3qg/udnNY8drwk7GOa7IOReSF1UHuBBDClQvfQsyifyZGGo+t3K5bD+qR2HzPQtJAfbSIfKLFdYfjoRcv21Ig0kqbYs9uJf8y+6mOoB4rIv9C4/zUOBJBHeD/xyAd73XbCTy3RWhuIrAF2ECj0slxFHCX/7+exsEeBAmmlNZiZJeTRzz3CD+/Wo4pWLseQqMV+BXga95+uQcVlv8pUr9WbAamfCdk3w8EdorIk7D5k1Zh2knAHdgalCeKyHf89x5SKO2RNM771Ib4ROSTlfDSa4EPAy9u8exWmE6ynCcC08XmdJ8KXAz8HebhdxVtcCU2gyRDPcAhmac9B1iJtfl4TEGK/z8LOJLGPgwPahomgzOAGZWoxXzg/VFGEZlKfYgvftudEN8LMG8/xzGYPOblndTifuFBVQnjacDja87vSFCuIz+I6Zl8DjUMzrFYf+Z9dwgWTo+x30MaF/P9vmd5eSd6fW7AEknu8rbtCqOJoB4Azsesd8Ea5bM0v947GmcmgIhMplE4/g44v2KB9kNE3gO8AfhvrGPqlOp/0CwwPf43AxiXhYuOxDyo+/17Pzm4UEzya2LNU9WynoTFd59No5U6FxPOF9bVw8s91cl4PqacH4tZOnWTo/OAM7LnT/Ayz/TfxmJe6NNwJYWFCsdhwhtZXAeT5lEmeN2WYuGBZ9U8dwI2gGsJysOYTwfu9p/W0ehBjSMpuiOAezFjZqIbGucAF/rxKFcdQR3p/79XRC4RW3f2BGx+4yjgoOy68Fx/DVyXlfXTTsIzMAMh96DI/j+e1vM2PRjJbgZO9XPj9zCW5lXu2cqDegXwwiy0+0TgD3QfQgpMBY51eQ0P6tPALzGD8auYEdLtgtepGGHnBAXJi5qDKerwoA7we4/DyHklMCmz1ieSxl6O3NiYhnkGM8VS4q+iPsQXxJSH+Pq9OLGU+n45FZHfisjfZM+Ylh07CJPJ62gmqIa+coP3QEzOXy8i/+FeX7TJ/WLzSCf7+YdgMnmSiBwiIl8SkbqF2i/Bki8eotmDCoI6sFLfMTQagrnsHeH64AcYIQVB3eyfCxjAHPloIqgd/rnAP6dTbz2EIHxdRN4B3IQptcAkLDz151WLT0TOBv4JW3sUVs4UP3aAiPw/t4Bn07x4LQZDCO/vPfxxJLAEuCwrd2AC1kehbL5J41qigzEhXIsJ+tXZtTMwq3+eC2jVK5yKrSO5mmTxH495c3UENcvLEkpjIrDM7xOD6TBSu0zDhDgP8QXieeFBrfVyPF5E1opIriAnkghqtog8q9IvH8CyBIOg1tNMUGFxBkE9iBkRl2JWY3iOx2OkOkUaJ5enkLzs12Gh0ddinsx9pFBU9G2e4pwrhXP9WeEdHOSKZAZp3k8wGW7ymsWyM5+EGRErMYVyuNjc42yMdHtoTVATXU7fLxZKnoGFhW8WkRdi/fJ9rJ1bWrlimZ5fFJGY65vmbRQhnRmk0PdMb6PeaAux+c8z23hU0f/Rb3UEdSvJg9ruzxyPKcp7Ma97UnZ9NakHGqMfUd8jME97IUlX1BFUKw/qH4D13g9gsvlxsSUVE7zMiM05fR4zLldT7/HlmI6Nk/v8+3OxZKbwyMYC/wZcIyL/g3lrm7Fx8ShMZusW1D7Dn/1HTJZmu2xEiC+MilweD8HGWfBHDylkOh/rtwMxOZ6Akds6YDk21/XKmnLUoiuC8kIP+sLKyjPOEpHbReRO2b1Fbw/4ZzTkiZiQVrOdpmDKDmyeZh6wFfgWZkXMwph/lh9DRN7gxPNYTDHMxgS0B1NmPdi8w0dIE4on+LWrRGQ+iaByS+Q5JIJ6E/CfNBJUnBt1Oo5GQenx+vVhiu33lboe7r+fDtxbCWlMxazNQ/0TjOyWYh7eIZXzQ2nEoJ7obZHHy3u8/If4Z3gzY7GBtQ1TVCdiAv44bIDcjwnvU/26fwFLTgA+SCKo72IZmkf4ccGs/nMxixfqCarOgwLzto/Mzp2Pke7ZwPf8GXMxmQnPUbE+Phf4LSZjQUihZGJQL/N7aOYNP4LGBeVB0ndm91gAHCkiX4qT3FL+S2+jzd5eJ2NtfwmJEOZi/Z6TfBDU0Vjbv8vLEfO2PwCe5+Vd4vW/3EOAJ/nzczKZjSUZxLxhKPdjMbmYQyKDdaq6E+v3eSLyRWyc/JjG+YocsyqfVU8mkm7COBqL9WsQ2Aoss3WqW/ORaTbTj4FFGw4VkVDwUYfj/f4H+f/baSSLVgR1sI+XXf7bM8Tmq3b4M8M7ifH919ic4Ywoa+UZkXA0we8ThtwSbLxciOmP3/g1E7Ew92KM8N6JjZursDnUg7D+74eIfMjbpBcb9wdjffMqkgcVsjrDDYt5JA8qEAR1BzbG8rBxeFC9fu+3Y17qwjYGSj86EpSIvBdj6hdL83zOoMCF6DNYiOdhwLlZ2KFb7Kh8fxzWOeMkrTd5OuaBhMBH/e9R1RdhSnAaaX7iNLEU5o8BF2CN/2M/FqmmU4CfYDHWX2GEsA54jYg8ExP2M6lPDX0uZqktUdXtmBKvEtRyTDgm+7FqKCAICmzyfA1pEIYAnI8JWz4fMgVTAOMxRbcy2gIb0O+lce1RHUGtojkcEedNw9pzHnC/v7PrY1jYawJwJXAe8DZs4C3DvIt1pCSDUzGPoQ9TKGMwEn6ciBzr529W1UtdCeLX5204DvMcxmMK5480ykreJtOwtos5isMwhRB99yBmud+AKZwbMYI6HDNyQsmMw/plLKlvxmEKoJqMMwFTEj/GCONYTP5Ox+eCROQR/pyj/fxezDKO8N5kkrI/DE//FZFx7uU8xu/9ItL6oNOxsOqTgd/5c+/H5OcE/34OSan1ichf+v9jvV0Wisgjvd63Y4bORIzMb/C2DLnq9eOvxIwKqIRsxeY5xdujj9YhvtnYuNhaacswTJZjsjeFRC7hQd3u328A/gy4w58Z134Z+Lj//0hM2Vc9qIdoDvFB8hbAZOgIb4PbMVkGeJqIXIhNE3wd81g3AI9ymY5nRLk/h5HZDGCtqi5X1VmY7L3Mn7mDFLV4GxYZOByTmWtI6yiPAUvWEpG/wPTSizBiCy93IUY24UFF3aZjBHMvNg7DyIcU4rva65yHp4OgNqnqv6vqKuCHGFE95OV5rrTYHb0bD2qXqn5GVf8dG6BDgVOBO1X1blXdgTXw8wZ4j2qq8umYlRWkAxZrPQFbqLsEmzu4lJRemQv8lzErZTHm2ZyJDdafZueMwQZBDJwbMcX7HUzJRN7/w2lOsbwGq/dj/X9oVq6TMQE/kOTlVEMBvZgggimXY0gJA4GXYH0X63QOonFx3aNJHsi9mFA+CptPCvQTlKQ90FbTnHEUpBghvjmYhYiq/gNmqa3wMvaQQpTL/brLSGHamOzeQurDb2MZa1/H5gurXmPVgwpvZhZGxItolOMnRvkwhRkKdTI2sA8hKdLvYcorwok3kzyou2kkqIjRPxcjq7Aq6whqBvDPGHmciMnhJJxkyNLmHZtJfRzEPA1TVJEcsQpTyP8PW8S81n8/2T8fj2U+/hqTu+NoDCGNwdp/rog8GevvD2f124yFSf/W6/0TrF9C0dyI9Wm05yZM+R2AyfwfsejDtyXtivFrTGHOojEZIM/SA5Op1VmdVvlnnL+CNGcZHnJ493f494tJOiaSigJxn1YEtRo4SlLmXJ7GH0blTFJ05C4SQT0LCxNfpKovU9VzMfl7A2lroR7MqDoYk59TMBnJpyJu9s9zsf3w8rD6Rv9/C+aZR/JDGBvfAf7L67wOG5NrMF0SIbqoc+ibWRhRgo2J7X7/dV7eedjYOtT/D08ySLs3K/vlmHEaOQCtMni7Iqgficg/i8j7SN7DYOMwPBziWE5lklhEzhORRSKyiPqsttzlXosR1GIalX5Yyz/DFMJ0zCqJQZ4T1Mf8/IWq+lbMCnoyZkH/IympYQpJ6G/F5kQ+jSm3OOdEmglqCUZml6lqKMjqBP9kbGDfgQlqPC+Qh/gA1qhqL41hzf/BkkUuImVaVZMA5mPCtd6vHYd5sidLmoSdhSmbuZjQH4ANhFYZRweSyCJP3rgPI5Ut2W85Qf0OC81Eyjdevwij/R4bsAuwxJDbaURdiA8//2hsYIcH9U3/vBzzMHKCmoKFRvI1Yb9R1f/C+g5MiYYHdbeXOyzPiNHHII66nEgiREhrajZgg/hhmHIPTPO6bybNMfaSCOqW7Nx7/Po1eAILti6J7Jlh4T8RU0x4Wadi/bCGRpyNzZU8CDwklvU3FlNQ/46FmY7DdEMQ1AYSQQV59JLIYgcpRPd8LBx2FGbInePlvgmY7+HxuhBfP0Gpai6TOzGC6sNkPpJUwpJfhhk3X/Zyr8T0wFTM+LnXz9+EebyrMLI4ITPslvm1Qdg5QU3B+uZsjLS3etlOJcnSW7AQXCD6Zr5He8Z6Xc/A5PLRGGncl12zxOv5K9ISjCCo8G62+HmHeD0eJpY48lgs3B7nL8L6YxOmd2f7/baRiPtMrD/jrRE7/P5rvE2e4GXZgfXjDZjM5iG+wG+z/58FXKGqfdSgI0Gp6iLgclX9B1W9ptP5u4m6WGTDYlFVvVBVT1bVk0mWU47c5V6JWebX+bkvE8u6CoLaQOrE3FXdgrudwDJV3aCqYbVcjrXXMlX956wMU0iLPq9R1ctU9Qa/VxDpY0kKKnALNqGab1lT50Ftwgb7i7EOnyIiPU4cEeLLPSgwgQ0L5ouqej4mMMd5OOMFNK9LWUSaJ5qOKYGbgAtE5CKMoK6ncWK5Fxt4l9FIOIH12XmBSzESz42BtaoaqeR3YwPvetIWSX2YpXgqNpAejbX7NJJxEFiHWf0hU+MwBfAM4DZVfYBEUB/DPOLzsXmcsSSCOhgLNd6KKfudJFm5FSOr8F7nYYpgCqYIxmZ13+L/H0kyWPLBeASwQVV3YX15BI2kEwT1USDmZnMP6oukeYjlGFluwmThUSSPKuQhMAfL2Is2i88oYxD/fMywWe3POd3rt01VN5E87yswGZ+Jha0ux5R9GB4RPgLr4/Wk8bEKMwZ+jin2k/1+H/Dfwrh7rYf+Z3r9cj0Q8rwak5/rSPqtlxSS3+Seyy5Vvcvr+/dYuO8H2DwfwBcwIrsSU863etkmZXV6uMvZOExvhLcQhATwv/79SJIRvthD3oGQqwVezgjZvQ5bXzYH64N+glLVh4B5qnofzQQVhLfFy7oLmzedjhFCHybf47AQ+b+64bUJ08WHY/ozvNBdmM64FCOo2f7Z53Wa5fW+BevLU7F+u57kVeb6JkKKYOOy5c4/3WbxvUZEPiTZin8RmSV7sOdbBctpzHw6nKQoukVdCuXvsIZ5NxY+GAMcoKqLSUKRT/ZtxQbV52kkLrABE3MhYEK/E1NKk4Bnqup12fkRQ1+LKYI/xToMLHTwr6p6rarelF1TJaiwPG7ABPxSf957gHdgMegVJHKIAbuZNA8V9VuMWdfzsdBlCPFWr9MvgZdiBPUobFDdgQnmn2PzHbfTGArZjJHFQSTFliOe3S+cqvpHN3SCoHpJwnoNJuTzSSnfAH2qutivW00yIqCZoBb7cy/w7+Mwz+IUUmguQny3qeqZqrqS1N+rs3st9DJtyP5Q1VWqGvMofRip3I/F6FeRPChoJKhbMAX/lqzu80n9FkS+BOsHMKVzBKYIVmfn3e2fn8G8AbA+zwnqCSRleonX5yGSbCzyzyCotU7gt2FhoO0kw2oZRkaP8/pt999v9TbZQgoPv15Vb8SSXT6VPeM4r9dd3paROHCQl/tXJCL4sap+CCOa52Dy8nLM49qkqg/STFC7sLDvdar6HlVdgMlHLGSvWvJgffNyjPQ2kDyon6jqy7Cx14PpoyO8/uFBRyr8WK9fKOM7vU7/oqpfIm1pFQZkNQS/ETPIj/Ay3oeFHZ+NGSC3YUkwuWySkVwfyRPfiLXxDmzc7MT6bgUWSXkHJjsPYIZRTpQxThdicrsVk7/PYSHBL3oZ5pMWz6/GMpu/56S5CtMf31LVJ3u9ZpC1uz8z5kXnVuuVoyuCUtVXYIPrpyLyEhH5OuY+V5XD7uIa4BgROdJd3JfhWVQDQE5Qfw5M9IaIuOvDgPFZh4QCyYloK7BRVc+rdByYl/CP2e+R6juFNBeUYwsm9FuxHSe+T0olvzMLK+aoElR03nWYgH3fnzcXS3N+MhYX7vNyh2fQRxpoUb+bMI8gQqfzvcy3AivcorwJE+5YPHwvZs0egAna70nrm55K45qpSCzJ69VEUBmCoJ6CWds4WdyBGQM/9Of1kXkc3v63kyz8P+Y39Tb4NMn7CoI6kTQQop3yUOgD2W+fwcJfB2HGxUb/qxotYP081et6IaasNLt3HuLrVdWrSKHyVVg/BLmHDN3n16zF2nsepmSCyDer6lbMgn6Q1M5BUCGbjyWFuLao6hL//Q/AHaoa9eknKABVfRhmBP0djRmJV5F5UP57ZB+CtfMuvC1VdV0Wvr4LU3YXYp7RBlIfRVrzZj/+W1WNNvlB1iZgHmH8XyWorar6NSfLwF1YO/fQPBcSdY/oy3qSlxP3vgb4Cy/XBf78L2PkdBMWzhrr50eIL9rkHm+HaOdd/ndPpQwbMHnbjM0hx3i5z73UJZV6V7EF0wl9qrrTx8hGkuG6BCPH6zHvZpXXuyrPmzDZnUwjQa1Q1Teq6m0kgnrAz9mmqh8leZ4r/R5heEfZGtrdjcJtGHlVk1360W2a+RxM8MdjDHyLqp6jqt/u5vpOcGV9ARazvQ34hqre0v6qJvwN8BpMAFZnQroUs2DeSSOh1nlQdWnpUcY+Vf149lMvZp1OoV7wY7eCLZjl8hJSR1QzDgNrsDUoEZ461sv8K2wwr/fnzcYmI7/nYaZ7sKy7QKQh99dPVddjAhgLiLdhBLCIRm91GyYXazGCOgibwD0JU4CzMTK8jMa2inmfFdlvdSG+QPTPTR7e6oeqPk1Vn6Oqp3k5quHD2zES++tMAeZYA8wSkTdjYZelXu6coPoqzw2C2qqqF2CksYkUn/930sR0XT02kMK620h9nXtQ0Q5bcTml3oNajRHEL0ghvmWY0un34r3vIbXzctK2Miswg2SpXxcez+2YNZyHluP6foXvRB8Wv/rzr8Gs48nZ/S7FiAxMDvtqjDtIY+96Vf2dlykSf2IRe5+qXkLj5sARQoyyHEdS1N/AIiNgbbKNZtyFtWfs01c1lvLEg+1O/CvwuTNV7VXVL2JtexzwHVW90b2FWzCCGufli1BXENTS7N4zMc/wjW5U5LgWSw5ZirVvjKsYS+GxtfI0wovPdVlOUN/A2vFOLLS3Euvr/HwwuQm9eAcpM3V7dk4YVRHi2w4N3twqzPgJ+e/DxmCdkRoEVTc9ADRnvrXC5zCP6YNYjPL9InIJ8AZtMbk1UKjq/9F+F/JO118BXOGT67ll9Ww/vktsS49AqxBft7tER9rzVpLVmiMafat3norIFuBBF+66OvSJyE6Sq34s8Gk/f5nYSvDYgmUH5mWglqL+qexWvZiC/XClfjdgsf7/BP5WVTeLbd6ar8uJQR4EBWaQbBORPkzRR93yOueW9kzMmOnkQW1s4UnmWEfjnA1YvXeqaqvd59dgffJJTF7DYo0B/mBNmfoJyj83Ykknv8NCxa0QbbHeyzkOa/ttmGLf7scW4CE1VVUR+RxmcZ9ICrWF7N2nqj8Q29FgltflHr/uOLeqc4SSzdf4rMSs/FVe7+jXs6pt7n27jUZlDal/PwR83uXzj1iYKxTTRiy0CaZgW+mD8HRjbG7ADKHf0+hBhTxXrwtZOh5fa+jeaCxc30S9Jb7Yr9lKjSXv933IzwliOUFVq3ogDL48KecWzAgYi2WivdHrEYTS7ympatT789UCen9cJyK3YOHGmH+NZ0ZoupUH1YcZrNdmv4XBhKp+Dvp3l9iFycRhNIbKwdpwAybvf48t/D2cRoJa7ddGiK9qFMT8cX/1slec+hkAACAASURBVDJWsZVGfdKEbkN8z1fVH6jqQx4KegeWpjlUWX27DVX9bG4Ze3l3+f+5ZRdx2mqIr1uCimy55ZgybkVQWyq/tfKeAquwbWMOJHlQgY2k9UsxEVmHi7D499srXsL12LqiZdkA/BKWKhwIgVtHIqgYaH2k9FVIbfVVbEulmJQNa7edB7WV+mSXKtZSEW4P47R7NUqk24cnutQ/I6NsB80EFYMwlFzM43RC7kHFteFBbXGZW4/1WT4Xd4Ffs4DmEF8Q6XosVn9fKG0PjVSxHiPd/D5BVrFTwTa/vpVBsJLUPoEozzWqGkryGiwDsM5buYfWBBULpIMEY9xdSeZBVS/y9ptLWk7QQ32/tCKoC7E1N2tIYe0c64CVanOj6s+s0wGtCCo8qK+S0uh7sYSSexkYfotFKsJrrHpQreQx2i33sDbSPG52eJlWYvWuelCbMKPxOap6MynEVyWoA8hCfJV7XEyjPplHa0N0G2mvzVrs9lZHqvoLBr5WacTAhfHXNIa3BkpQfZjgKpVGdjd+R+X3rSRLvRVWYXNN/415W1W3fbr/3doilIKqblTL7qnityQXP87dqilTERo9qHv8mSH4IfBVD+piD/cuwIQ+V5S7qPegVpMGXjv8APP8BoK1NMp21YOqI6haD6qLZ/V7UG4MbMMG9LbsWDWEl187teZ4PHcd5q38kfZYjb1qJK7PCWoVZg1f1uEep6rq0spvcb/ciLsPs6C304zbaWF0eNt8m+QNbMDmK68mbe1TS25qiztz8qlLyKkN8anqg1nY7kDqCWp59boatCKoR2Kh/K34Gkk1PLHiCXaDyMa8CuvT7/v3uzH5aqU7ot1yT7/fg6rgVsxgW0v9HFTVYJ9Ko85qCJNTaXPXPdX2/EaLcse1Leegug3x1aKi2PY5qOqfVH7K08w74W6sgQ/EYud118VEY/69E0GtxNY/vBSbTM6xFfMKDqqJY3eDEOCqpZyjn6BUdaOIHJHVLQZC1Kk/JAUWxhCRxaSNY0NZNxGUWpbXMzsVWG2B+ICgqg+KSKTIKkm5DDTE140s5B4UpEGbE9QP/bO6WWsoy1C464FPZoroaowMfkAbuGX8dhFZkN13FVb3VWrLHtqiYghVy5cf24R58XVkcK2ItHy5pFpWXGAploId2W+xpq8VtmBjbiGtCaqloiMRdpWgrsO2OeuEXuDZmhIeUNU1HumIsO1FWILX7mIxNtd5i6rmrwO5i7T7Rh1iXF6Z/XY7zckYYMtVHsC8yerG0ytpnENehxl61Tko/B4X0/k1KifQ2hANGdrjOaj9BdfQ3buQUEsfRUT+ifoQFpjg7I4HtQ2YrymTKZ6pInIDaTeAAUFVN4jIL2hvkeceVDXckU/8o6o7ROQBMk9DVT8ttlP7a0iKulX7DCXWYAS1DavLHSTF9muarcfol+ivm+lu9+0+jAhioEbYYyupndaJyONoDvlcjM3vLPPzdmLJPoGbsASNTh5UIMqwyUn6l9QrqW5R50HFM2q9A1WtC/3VnbcS29LsNDp4UI5fYIbFf9I6xNfu2Sv8+obx5+TdDYEr9XPkV+OvkPeo0kBfYJo/4yFsT866Z9/WfEU/Qmb716mq6ntbPCPa6D9qDn+fRmMo2rka4gN4QFWru7jUPW9xm8OFoAYCVf1O57OasJzWCnh3PKhVWGZbnZUINu+3WwQFtV5jFQ0EVbl2l0+m5wL1JzQrjNx138bAX1Y3GIisqoc8vNS/rkpVY14mR4MHFQZIF9iCEULM9dV5UKjq1dULVfV+ETmgTahWPYllaZdlCWOi16/v1NedMGCC2g3EbgNtPShVXSwiKzGCqhsbP6dxN5oqlmNp/t28LXog+ClOUMMFJ7bdJsbsPkrjBgnRznUE1WkuvRtsw6IULe9VCGrP0Y6gdseDupL2oYr3Um/9DBZaEpSjoU6qemXNOduyz8sY+GTxYCAW9Z7e6URH9EtXHkCGSCPPv1fnoFqik8JU1cu7LYiq7hSRrQySx+oGyXNp9Gzi3gNtp1bYTHceVJy7ixoPSi2bsMkIyLCCofHkL6Zxw+HRhDqCWouRSic91g3yRKJaFILac/yS1usTttCopG6hMR28CWqps1e1OR5pokMCDw39jPpFqdBMunXYhm0y/CC2aHqvQ1XfJiIvpfElbO3wABa2qG4J1AmLSWnWkDyoq2mO8e8NbGIQPVZVrc5/DbYH1YeFYg+hA+m5R/kTGudJusUSussaHRA80vGGwb7vCEEQVD8ZudGyhsHzoNrqkkJQewif0L6uxeE+Mm/Irbz/2hvl2hOoarvkhYY6tcBmWq/Z2JtYS/eW/gN0rlcT1BbLfi77KVbXr8A26t3b+Dp7Nu/UCUFQg+lBTaDL8JuqPns3n3MttqdeQfeo86DAkikGo/8LQQ0zqh7UaEBHD0ptAfAx7c7ZS7ie9Dr3TtjObhBUDfpX1w8HVPVvOp+1RxhUD8rDkpA2XB4SOPm1igoU1KMVQZ1LWi6wJ8h3XKnFaHrl+0jErQxOR44kdBPiQ9NWJ8MGtb3guk1Tf4DBsQrrFi+OJgx2iA9sB4dxHc8q2NuIkGhDX6vqHdp5B5hu0NGDKgQ1hFDVf1Lbwmk0oSuC2gdxG7ZVzZ6ibvuX0YQtWKbXYNZxUPb0LBhcOAnFGyGGAv1LMVqhEFTBQBEvwxtV8B0HWm0dNRCso/GFhKMKntLcy+B6UP+A7bxeMMKgqo/XQdpvtQYdQ3xlDqpgoLiA7nfb2B/xURrXkoxGdFoUOyB4otEfOp5YMNpQkiQKBheDFHsetWizX9powtdpvyi2oKAb/JzG94k1QQZ/YfXQQ0QWqb36vaCgoKBglKLMQRUUFBQUjEgUgiooKCgoGJEoBFVQUFBQMCJRCKqgoKCgYESiEFRBQUFBwYhEIaiCgoKCghGJQlAFBQUFBSMSw05QIvIREVksIjeKyLdFZMpwl6mgoKCgYPgx7AQF/Ax4hKqeCNwBvGOYy1NQUFBQMAIw7ASlqj/Nts+5Cjh8OMtTUFBQUDAyMOwEVcFrgB/VHRCR80RkkYgsAsbu3WIVFBQUFOxt7JW9+ETk58CcmkPvUtXv+jnvAk4GXtjNq58LCgoKCkY3RsRmsSLyKuANwNNHwptYCwoKCgqGH8P+ug0ROQt4O3BGIaeCgoKCgsCwe1AicicwBnsTKcBVqvqGYSxSQUFBQcEIwLATVEFBQUFBQR1GWhZfQUFBQUEBUAiqoKCgoGCEohBUQUFBQcGIRCGogoKCgoIRiUJQBQUFBQUjEoWgCgoKCgpGJApBFRQUFBSMSBSCKigoKCgYkSgEVVBQUFAwIlEIqqCgoKBgRKIQVEFBQUHBiEQhqIKCgoKCEYlhf91GQESWApuBXcBOVT15eEtUUFBQUDCcGDEE5Xiqqq4d7kIUFBQUFAw/SoivoKCgoGBEYiQRlAI/FZFrReS86kEROU9EFvnfzcNQvoKCgoKCvYgR88JCEZmrqitFZBbwM+BNqnpFi3MXlTmqgoKCgtGNEeNBqepK/1wDfBs4dXhLVFBQUFAwnBgRBCUiE0SkJ/4HngmUMF5BQUHBfoyRksU3G/i2iICV6auq+uPhLVJBQUFBwXBiRBCUqt4NPGq4y1FQUFBQMHIwIkJ8BQV7CyLyRRFZONzlKCgo6IxCUAX7G04BDh3uQhQUFHRGIaiC/Q0TgUOGuxAFBQWdUQiqYH/DBODg4S5EQUFBZxSCKtjfUDyogoJ9BIWgCvYbiMjBwBgKQRUU7BMoBFWwP2GCf5YQX0HBPoBCUAX7Eyb6Z/GgCgr2ARSCKtifUAhqFEFEDhKRI4e7HAVDh0JQexEicpyIXDbc5diPEQS1X4X4RGSaiBw43OUYAjwe+PJwF2J/g4icLiJj98azCkHtXcygLBIdTuyvHtTF2AbMow0TgUlDdXMRme2JNQWN+C3w1r3xoEJQexdjSBP1gwIROUBE9mo/ishEEXnzAM4/UETGDGWZusT+SlCTganDXYghwHigZwjv/5/A2UN4/30Zh4vIa0TkWUP5kEJQexeDSlAiMgPYBbx+sO7ZJY4C/n4A538euHOIyjIQRNvvbwQ1lkTO+zxE5FUi8nfAOIaWoKZi5N6pPFOGsAx7Hf76o3d1OG0WcBrwmEF43lEiUrtxeSGovYvB9qAibLO3lc9EYKb4+1E8FHJYfoKIjBORBf71L4DDs2NnOLkOCsSwoNN5tJiDEpGpI8TDGyqMY5A9924hIoeIyL8M8m0fAZyAeVBDKfs91fuLyBwRmZ59PwxYNIRlyJ/9FhF55F541Hzg/A7nzGbwDITfAdPrDux3BCUil4jI7GF6/Bjg4G7j2iIyV0SOa3NKxN/3tvKZiL2qJSzH84C/rpzzH8ASEQlv5fbs2HuBJ3fzILfmVETazTU8EVgsIuO7KDc0e1CfAl7UTXlalPGQvTVpLCIvF5HfDPCycQyfB/Uw4J1hzAwS5mAKbRwwRkQO9j6Y5/+/pu4iETleRE4awHN6aB5bf0tjxGIyLZTrYEJEjgE+Abx8qJ+Fycq4DufMYhAIyuViKrCh7vioIygRObvDYHg60PS6BRFZlSnToUJY6d0SyrnYgGiFEI5+5SMil3dQ5i0hIod3+SqKeN6s7HtVAT7eP+N+mh2bjVm/3SCUwaw25/wF1rZndMhWmwjspJmgZgETReRQETm2y3LleAPwzwO5QERO808RkfcPYB7xK6S27RbDSVBH+eduE7iIfEJE8lDbHGAaSYYmYtGECzHP6lPZta8UkY/415cDrx3Ao+sIajKNYb+xNefsNpxk/6bm0FMH6xldYCKdx+dMOhBUyLSIjG8zrnqA7aq6o+7gqCMo4Fu0V2ZTsWw6oN/6nYMJ/VDGs2HgBDWZrKw16AHui/u5Z/akDte0wzKgmzcZh7KbmX2v1ikEcjbwR0yhkP3WbRs80T/bTfI/Hfga8H/Aq9qcNxlYR3Oa+VSsb14LvK3LcuU4FKsTACLy327xtsMvRWQm1g7vorF9apGR2M4BeiSDqkRbQUSOFpFLKz+f4J8d53Ky+yyshIzPJQsRY20dHhTYOOjB2vA4zNiIPj6UlDk7EwtN39JlFKMpxIdFLXIDcCwWFdkt41ZEznL9EzgReGnNqTOA+2mv2/L7flBEXtfluc8UkdOznyZgnumBIvLiFsbTVDKCEpFn5CQkIo8AfuVff0VjBKV6n/WtyjaqCMqFZAwp9FQ9PtaPz8x+fiPwdf+/W6seEZkpIod3PrMBTQTlE77PaHF+J4KaBKwCJojIWcAHAQH+WkTe2+oiEZlUtWhEJMp0c9saGKoe1AQSSf69iET8+l6M+G8DponIdz1+32/9isgjRORhXTyrlqB87mgO8E5/Tm58HCsiOeEeBiyh2YOagvXNAiqKVEROFXvJ4etFpBVJTq2U75XA6XUneojuw1j9J5BkcW6Le+eYCPQBm8nCSm6hXpF9ry5eHTIPyp8dinAecGrllCCogXj1b6PR0+mhcWxWPag4PgUjKEg6IMgLrK2PwcKObcP87olHH+WYRLMHBR3aV2qybT3c+CPghdnPdaQYZb+1Wm4nkbqowWF073W9GPjz7Hs8fyxwkd8rR3g7E0htez5wTnbOEUCk6Z8KbG3x7GnsLwRFaqxWiiSENlf6xwBP8P+7JigsrPR33Z4sIk/BJh+hUegvAn4qIt+osXi68aBWYQL1apL38HBgvrSe+H8+8IGsbAtJYaPNLco/J7Paqx7UBGC8GwiHk5RSLzaglgEPYAJ8sh+Ltr4IuMW9iTpMBFbSuk/nA8tVdSnw3zR6InOwtggcgWUTVgkqPKgjaTZujsQU2luxlx0CICJHiEjMo02L6zJruDamjoW8TvT/J5D69xEiMkVEeqT1RPgkrE1XAYdmxD4DeJKTxTHAlVk5hRqC8tCiZN9nichlIvKcFs9uheOBj/q9JtJoIBwJPA14kIER1Cz/ayIKV3hTaQ7xBUGF4ZUTVNR9hpcXKusRReTrFa9tQuUzUPWgxrU4r4r3YaHgHM/1zzyDbVKLe80AbqGZWH8E/Lzm/AnA4zqUCbHsudnAo7Ofo73GY+Mi71PBIhDbMSMpdO6hJP2GH4t1ahv90pOkOVtv/yAoVxZ/5V+n+GDXinVRR1ALgDjnlSJyroi0nSAUkbf7PZqUpse8z6y57B3AWf5/DLaDgIeAazArpqocuiWoycCZJKv6MP9tmYjUhS2n0ajI/xPzJKH15OivsOwpMMF7iMYQ3yRguX9GOcZiwr+aJIS5csbvcT2N1leOiRjBtSKohcDd/v96GiesxwGzMkUcBNUf3nGlFAS1gGaCmuJ/U/144HzgJyJyAo0eVNTvNBH5eE15Z5LCVbkH9RVM2Twf+GiLuvZgBsRKjOhuclmtKonZmbV+MDbOq0rvAzQutnwqcAbm/Q0EU7E+n4n1VY8T5Q+AN2NGw5UMjKBmkhRxlHt8dmwtpiDjnB6sr6diBLWL1B8TafSg4j5Vj/UM3LASkWeSvKS6EF9XHpTYesH4/Qgaw5QARwMraJS5SXX3IhHUrEo48RlAXeLHBOBIsQzbg3JjJCvfNEyW5gKPyshjYnaPBoLCyPQhYBPWnrnsHeH3fR021RB6YROwFNNz1QSW/YOgsAZ5sf8/lRTHzRVbCMJhIjLdOy1n/TOAZwErpSYjTEQuFpFvYIP7GOpDiS+gmWjArPkoy+s9PHg4sAb4pf9+T+WayVho7EAROaHGso4Q34nAluz3w/zeMzEPoIqpwFQROdMJ/ETMglpDa4Kai4VwwARvOY0hvrn+vAi/7PB7zcbmyaoEFe07A/gC8OxsMOcIgmpqa/cWPk8jQeXEOw7zlib74DsUC/HNFJFHuee4GBt047EBVkdQYbG/SUQ2i8jzgKdg7XUamQcFRB+9GOif7BaRfxORV3h9ox1zDwqSF9eUFeayOpnkQZ2Ejd+5JCURfXRgVp7oz2rbngA8S0TeKZbV+kRs/rGrOY4MIdPHZs94MfBs4FHAdV7mruegyDwoUt2CqOZgBs86ksIPD+pgrF63Z+WqhvgC/R6Ut+1UXMEC3yB5+p08qH6CEpGxIvKy7Ni/AZtdriO0neNoLEU9l7m6xAwwObnVy3i/iOThuxUi8nAR+VVGRBOwdj8NSx6pm9d6OtYmYXjGvGk8P9owl9FDsLHdh/Vpjz+zn6AwI+cFfp/JGEEtwRKU/rpCltNoHW0YVQSVK+MpwJ/6//lgjwZ/OTY/8hDWObGIdA4WL51CZpV4NGQ+FkZ7MTbPM5dMsETkYyLyKayTwxIbm3lws7Pn/xkW8z0S67jvY8qu6iVM8mdNw1K5X1053oMN1hkYua3Kfo+2WCgiT60o/1C6l2CKaRbmHdxDDUGJzd1NIlmdEzHLL09zj2NzsTZfjw3eORhBhRD2e1BuCY7Htk45ChvMeehxht97OTBPRD4gjVmGL8WU1Gr/XvWgQnnMxgbQ/RiRPwvz2o4iKdWFmDxMEZHnZoNoCta+B2Ky8hDwJ/7/L7x8uQcVg3mD1+E0v9dhWLhxRqXdZmDhTzCiXQDMkOZJ99cDn8WUzkpSSOatJFmfS1LaoYwbLHwR+bIbOgswBfVu4ONYiPfbmIV+poiMkRap8yJyu4iEl5cTVCi2yLw82cvaC0wSSwEfIyLvFZE89FrFTJoJKgyaIKj1XtdezFjIPabFNBLURPcop2H9B40e1HhM8c7zEOJkkqHRaQ4qD/GdBHxNRF6a/QbmnfZHLcQSs67A2nwRjeN+EjBOmueVZmA6C//8q8xLXoGNq6dg5PV9b4fLsTDfgqw+eBkOwLx1MMNoMXCS2Hx4dd63akQ9QDKIe0hjLoz9w/2ag7C+7MX03Je9TfK+HzwPSoZwXyqxbJbbReROERnILgWBUGZgSuXhWMflCmsKZo1D43zT3wLXYoosJllP8XK9GgtTHAXcmF0zF1Nmk8S2+/gz4HX+3JgbuBv4ggtbHl4Aiz8fCSxR1d9gk8JVy3kyZnXM8OdXrfsI8YER3BLSAAyhOgq4FFOqgchknIHNEQSWAmM9RHNa9nt1Ij/mhXJFOyY7J4Su6kGtwNpnKUbiF2KW8L0kr+LtbhAcA1xN8qDOx3aviEEFyWt+v39fR7MHBabs5vt98nTWR2T/H+blmgZ8D/Ncz6QxrAeWUPN8zJpd53WfhhHuwdkzoy+vwhTXJKy/cys+Qny3+PedJA/qGhE5CkBEnogpn0dgIb5lpPmw8zBvBRq93FDwUZ4FIvIqzKJ+uNdrBbZeLUKDV/o9fgB8Gluvhkcb8nY9AnibiBztdd+FZ8/58dP93iGfm7z+12Dp+P/o9WmCj5XpNIbvoJmg1nm5N2Jr8CLRYDUWAqyG+KZhijLkcK5YOD/fBuoU0jg50cudL+EQv1etB5X9HvdYgOmVo2j0oF6OyS5YYk81xAc2pztNUnbdDK/XWzED4DFYu4ON+UnAFZjxdbaX5+cYQc3CvLUcb/Z7/BJLYFiJrQX8m6zOUd4ZPiZfTSKoPj/Wg8nMH7HMv0k0JlXMxdrxo9g83PeA53lEKIzv3ScosUyoY8UWjP5jp/N3By6Un8Ea92HAudI+s6sO+cBfgDXcDbiicIX7H5gSAlPmAFeo6neAO0iDYQdwtoicjA2oF2CTqzeSCOFQTLBejKU3jwO+gynjQ0Xk937Oy7xs1bY+AVusepd/X0c9QS2le4L6GabUc/wpJqB51t5U0oB/EqZsIXlQzwK+mp0fyi4nqFXUrMMihcM2+L0iPfZ9WMjjQMyyOwVL6rjf6z7OPzf59cdggj4WGzwA/4vN7ZwqIo/DFOFlqvqgH68L8YEpu0diRPBgdvzcSrnXk9ZrTcUMk+f5915MEfwPZiHehFmRMWewAeufsf7/TEz+dvn/QVC5NRoe1A+AH/o5C/x+J5AG+q8xb/EgL8ddpBDVQSTLNQhqOxbGnAn8E0ZqUzCCn4ONMcHa+BIv3xRMyUzye56TlfV/sb4JbMDmzN7o7fR7zKMLOdiJySKYnPT6fedjYwksNHRAeAoicoyIHE/yvnvci8znQyAZPCv8e4SVQp5XePkaPCiv4/1+7+sxxf1VLEEqzn02NpbB5GU1jR7UeK/bpMzDzglqMo1zs0diJBEEdayIKGZQvRibKlgPHCO2dVOUN+73OuCTkrKPN6vqJzCvax6mG77m504DrlLVazDCmYPJzUnY+D3G27lHRDZi+uA/gd9gumMT1j9zaPagpmOke7EfjxAf2HhZiI3R5f683PufC/Sq6lJVXebtexamc072e+9RiO9DWGc+jvr5jMHAqcCdqnq3L9i6lKQYukUMpoewst6OWRzx++nYILwGeBMm6CtU9Qw/nqdB/hfWYV/GFv39DvNwlpGUecT5N/n320j5/v+BKeBlmGDVpbT+DFPQP/LvrQjqdkwhLqSZoCaRwltrVPW9mLILbPe2WE3yDKExpHAipmAgEdQJWGgwFOQsTBDnimUjnogpnlY7WUzBlGIo502qej0phf0ykhCvVVXFhHup/y3AZG0M1i8hwJ/CPIBXYdb9BlVdmz23Lkkiyv9YbGCHB7UT66MIm0zFCGejf38aabU8GNmcSfKib/bzD8MU8DqvdxDtZOC72Lq8adQT1HgSkX3Iz5vr9TgY8+KqczebSUZNKIlx/nuE+G70+z4HCyVHGy3EFODjgaWqus2fdRTWRw9m587GFPHH4jmSdmEYh1nEr8YU34+9LUMeFmPRg15V7fP2me7tcwzmVUzFSC62Cfpn4F+xNl/j5cgn4aseVERC/gmTszBM+glKRF7ozzwwa9d1mBe8PLvvVFK/B46lmaAm+T3CoI62wM+bgk0XzHCDuAcjgOP8WHi3X1PV/1XVd/pzH07aiSUfU+dg83hzSOME15G3Y8bSR0gEFZ7IBr9+CSnJ4Rgn1Tdjsnmcn7cEI/xN2LibTX2ILzaHnk8K8ak/89GkKYaTaZwPn4v1f+B3pOxCxQzka2mBbgjqPar636r6JSwTbShwGEngwISnurfbeSKySEQWUZ/ZFlbLSkyBLqZR6ffPyWAW4XgaXcu8UW9W1Zeo6gmq+jHgJ5g7vAxzgb/j500kdeKtGKG9FutMJSm/Om/we5hwxABtIKgs/n8tlqkzlvYe1P3+2Zcd/x6mRF5NoweV32c6SUCWkghqB5a6PBNr2zswYfsVZrWuwqzcBdRP6m7zv5isBVMey0gKFpJCDIK6x58fOxBsIYUyfoO196OxuH518d9WLBITSiOfgzrZ6xkE9Qn//B4pCWMrSVG9kDQ39CCwXlV/jinPrSSCOhwb6L2YlzOOJFdbSGHHyZjyHUsyasKDut+vP9qvjT6djim1VaTNeXu9jR7CEhAC95C819v8WRFqijYOo+BxNHruQapgyirCxLNJ6fU3YUlEeB3uwLy+F2L9sBHrl5UYQS4neb6h/AJBUC/B5j0Owsj/6XgSAEZwF9A6SSLG1qXY3ByYvK3wsvw/4JvZcw/zcnwI+LGqnoUl2EzH5Ps3pDTw0EWrsfmrp3qoLdL8Ad4otkls1YO6ExsnV/mxOzHjKDz3r6pqvjtMyNtcsWUhQVDHY3pjJRYOvY9G/DeWzLGFFGaOPox7bsHG1HpMLxyL6RIwQ2E95mV9xes1A5ObHv8epH8k1vd/wPonPKhtmGF0DhZeXInJyjV+3RpSiA8AVd1EMvIfgxFoLscN6EhQqnqTiDzd/7+30/m7ibpV8drwRfVCVT1ZVU8mDbgcM7AGC+G6HOuw8zz2vhAbuJeQLPKcoMKD2k4jWYI1PsAyVb2JFCYEU1BLgP9R1e2qepeq7sKU2xQv66tISnY9RnhfAZ4UVhEmVD2SUj0jPfNGTAncS0qff6oLs7oVvB0TBkjrmLZhVvKXMOVyHICIvA0TzlCCYMrmHkxpjcMGxo8wL+Je/34jFlaKQRBzUH/ErP2c4KM9twHbshDcEhFiFwAAIABJREFUjZj1np8bxLqM5EF9mZQB14clI8z3trod87gP8XL3w4+vISW4jMOUzKEY6d1IUhS3kLaSOh8La20lDaaHYwMSb5sN2TM+hg3CLRiBrMcG4vswZZcTVIQdJ2GhJWgmqLWkxbf3kdp4mt//ZuDDWHv2ugV9Lxbeeaefu4K0Dc9dXo4nY2QTRssybFxNICmRrZisxphagylXSKHD2Zi1frpb4WMwmYtxsQEjnVOw8fU5TAmFt9lLY/TlWmxsHODPPQkjtBuB93jZXoRFUc7za14itsN21YPK+2y5//5rLIoRz19LCjV9V1VD5tZhGWf/6+d83tvip9ic8gcxZf1LzDjPCQpMRsZiCjsI6i6v606vwxKsHyOikBtn0Oi5zfPn9WHyfwnWF8+iQlCq+mFVXeTn1nlQO3zcLcH69AvAW7wdVvuzNqjqnar66awND/Jja0ih+lMwAr+D5EEFQV2L9d9lmE45zc/7LIms8zYDiyyA6ZfLMx3YhG6TJF4jIh/KlGcs7Ht7l9d3wnKS+wum9Fe2OLcJYrsgiN8nJpy/iAngMdiAeQ7wMlX9pqo+gDVuHvsMgnoTRm45rsOUTQyK6MxtWId9VVX/r3JNH2aNfB2zDqNT/lJVz1LVh1Q14ug4qW0ieWRTsI69ARP8L/hvT8UG30cwdxkvW05QiimsENhV2HYsszAhPQQT3JxsFvp54zAy+wnmfo/F1i7ciQ2eW7Jr5pAWGVYJKogzt55UVZeT2vpWzNMF80r/j8Y5oq1An18XxtEdWIhlFxWCcryDxvDLPVhywUZV3U7yoDap6qX+W3hK4UE9iMlgeLdLyGRFVd+jqhuxPp7nx07yus6g2YOKUOEpmPLahBFzJEmsJQ3i+0hkER7UMh/E95EMkB9iivhr/n05afuZuzCPYQ7Wb9tUVTCiC6/z916XCNPEM7+Nhe8WkTICH8JClY/DZOdBVY31e5BCRQdic4K/VtWrVTWy2e7DPILVmJwuJcn5CkwRrsa8gtOA/1PV1diOEk8meWCPptmD2kaSsXcAn1PVW1X1r0jzYPeRQrE51pOSTXq9TsuA1ar6FQ9Lg4XNBQvDbcLafhFGUONIfTnF20GB36jqt1y+VpHm1qqvnYkybfU6xtKRp2GG2mJsHK6mHnUEtZE0HoOgLsZ04KGYwQqNBvqm7P+jSVnFN2FG5du9XAtoJKi3AP/m43MVJt83q+r5mFw0EZSqvgfLXJ5Jc2i1AV0RlKq+AlNMPxWRl4jI17EdAOoUxO7gGixGeqRPjL4MC710iwiTrAOuVlVx6yG8lvf655LsmvXUe1D/625oP/xeTyN1bDT4cszlrdt9YYuX6ytYW33Bf3+g5tzAOlL4cj6mXO/GFMtFGFHNwQb7a0gZbZtJBBUx/41RP1dCN2Lx7FA6OZmv8MG5DRsgu/zY8ZjQ3YZNqE7ACOtZGLnkqbBb/PpAeFBVpRDHAP5RVf/Ny/gtVf0lFpb5MJap9AsaQ5ZgCnazl6lO/n5E2qB2HKYMH0nyGIMA83LlBPUvmLcASQE3EFSGLXioWFUjU7FKUOuxvuxT1Z2+48UmTOFEyvJ6kgytJoW4woPKQ069AKp6gareTDIyVmBKeDNpsnqd/x/9sgyzeJXGV0Ssi/uo6mdU9duY9R/9GzIQ82hxv5CfLaQ1fNX+AvOyx2KkeBLWlpFVtoXkNXwdU/6xE0bs2p57lLMxWY82yQnqnsrYvZs0Huos+XWksGckWyyjMUJzLDY/dhq2Ie3rVfU5WGjxEV6vtSQPKvTK0uwe7/Pva6kQlBum92KyvoDGeeVbMdk7lOYQXyBCfEGAYGM/+mEpySiYhRFt6MFcpqPdHsQiIvdj7f2Aql6lqjd6uSLEtwUzfFaqasyfxRi7wT/7qIT4MmzzMrfaAgnokqDEtm85HBuM7wBuUdVzXJD3GKq6E4s3/wQbCN9Q1VvaX9WATZhLvJbGxrgec88/B/xQVXMi2UBjB4XFUTfAUNXfuxIHE/TwUuZTr4S3YMJwt6q+LrtvO4JajREQ2MC4wz2tR6rqSqxTQ/kuciseTJlEXHezl2dTpX43YjH+B7HwwzexGPZ2khWzw+u1lmShflNVz1DVe/z4DGCVD6xcuLZk10CNB5UhrltXPeCD4e2qeiHWvnUEdS82f1G3xctGLOX7A1js/h5MecSg7/egsmv6CUpVLycpkRuxuaoPkgyMHCEz0c59WPusy46vxxRP/rxN2GCeh3l2u9yrfwBTRO/zZ/Z7UH7dtTQqvnjmTtIuHr1Yu4VHvJpEKD/HDL8TM9nBy1sNm/dmn3e57F+FefDboX/cnoyN2ShX3fhZ7tesVdVVWB8twOQgsuw2q2qvqj7HQ5ioapQhkowOxZTxBh/Lf4O1cbRtVdndhY2HPuo9qFz+Qqn+gmw5iar+EWv/mZjeixDdLaQQ373YeI2kqfvJFt2r6mdV9UgsgzHCpzmOxoyh47x+B/t1fSQyqSWobDrhMBpDfCGb3wA+7uctwWTi/uy8QLRhLCW6GfOgtmfnrKY5xJejjqAi87SKrdhYqUZeGlD7FsMafA6z4GMz0veLyCXAG7wR9xgeIquGybq9diPwTRH5A1lHqqVcPt2/Vnd3qPOgtvmg64RerGFXY+53XQdEu2ypfLYjqJWk9OFjafYQIj30TrI0cFX9Q3bOKkwQ300Kn4EJzQXAYlU9EUBEDgVeGDFgVVUR2YYpqxVYaCff3SLCllGXXlJ21RZMGczGBmokSdQJYPxWN5eYI8JjOX4O7FLV2+ouUNWHROR+bA7hcODf/VBXBFU5dp+qvrVN+aIeucd0EGngbyGtbcrJ+8OYV/cmGttgsz9zhYjcRfIYvuh1u6BaAO+zdaSQeG/2fxBUj5/7P9Xrs/JX+yKMue96OcGU61PIlJaqXgsgIi09KO+Tu0iEEO1zJRaC76m7zvFrL8vZWOLM/Zm8ftKf3YqgbvTrD8TIpC7EBzYXfKXfs+7limuwfsyTcoKgejFv6mPY3NzHsbas7gqDqtbu6K2qD4rIddgc2B00ynwQVKsQH1jb5XOf/SE+tdTuMHAiTL8O03U5+UQbnosZ9s/D5C/3+Fb7c1oR1N3ATZkXG+OjbrpmG10QVLchvuer6g/cmt+lqu/AYprdvJphr0FVl6hqW5cxwwaaCap2o9Qa9JJCKQfS2oOC1IlRrnYEtQrLajqV1gR1HPAu9zCaoJaqf4Z7IrmVfC0W4luZnbtKVZ9eucU2zNJ90M+tEtREGgnqv7A4/vX+F9ZZhPjqPKgYGJ0Iai0VxaWq61X1mx2uW0MKZa7GvMZqiK8dQUW7dSpflaD6Kt/Dg4qsKABU9QpsMM8ntRd+TiiiyOo8GguRtcN6TJ63YnMpMb8aczV1fZDjGiq72LvFvQXzVuL667G+riomaB/iw+tQzTK7ksyDqrtIVZ+MhV0hhZ6qyOeE82tXqc2DxX5z1XaI8iynDdx7XEkjQS3HQsiHYW19EeZxbMLGxGXt7lmDq7DoyVU0ZjCvInnWrRDZdlH/3IPKcSdWj7U0L46Ntvm+qi72e1U9qBhD/SG+/AYevn5U9lPUIw8nB7ZhhD4oHlQTVPUXInJ95zNHLC6lcVAOlKD6SILdyoPa7gMduveg3k/a+r5qcW3APLY1DBw3eZlWdThvO0kx/4iUeQbNXuFmbCfxRcAiETkHW/h4DCnE19Q2bvVfRGcC+A4pEWQgyJXYVqy92nlQ27Nz49i6LrzpuhAfNIb44rnVXVi2kOYvAr0kRXQ/RmAH0Tlh6E1YxmEvqb1XYn39ORrnCpugqh9ocaiXxjDQBkyJNnkCqtorIt+mfq4ObA5zlZ+7U0T6sDmmd9HegwLrF8U8+nYE1co4jWSkuhCf0l1C1hLSnFvI8C3Y3NR2bN7y3VjyzcVd3K8BqrpWRG7HCOp72e8PuZ5d0vJi69+7wrOkcQ4qx+VYhGYtzf20CfMSow03YyHjaogPTIdtokZfZmUA66vrs6mRHFXDvRa7TVBemKY5hH0Fqlp9sdoW6ommDndgGTbtCGoLjdZBNwS1Cpu03YRNGFdTUq9lNwnKlcLVdB6MEeJDVc+rHKsSVG+lLNdj7fIYUoiv1nr3eblOZV5K85xLN8jLtA1T+jG4tmMJC/mWR3UeVDdtXBfia/iuqhu83au7Z4ehkO99+LfYvoSo6koRWYaFM1um4fq5v4D+UFe09wpsrrCdvHVCbA0U2OTl3V53sqq+sE0Zq9GWf8DqehBmqbdr7z4/fkCL82o9qAytCOp+4JXa4m2uFbyA5oyzG7ENALZjBuCPaB+K64TXAzdUIh+oasfXZpDmfcA84qYXKKrnDIjIXCxjMsd9wJczWQvDKZefdVgC1QNYvkDLBbaO89sci77a8xDffoLrSHu6tYWqrlXV95Fiu60IKrcOugnxBXm8RC2VuaqYIimgnbvfDp/F1ni0wzZqkhccfVhWT3iFa8jmVlT1XlX9rN9jKy08qL2AXIltx1KxFwH45PojK+dXCepGbC+6TujGgwLzKhue6ZPv78bWusRvP6+EqL9K6zeR1iH3oC4mvdF0d1H1oDoRQddQ1U/6HEgf5pW186DuwhYdr6feg9qAJZu08nhrCcqnLL7SZXk31IzHn/jndjWcPYAphrpnXF4lpy7xGVIYFLU0+8+3ec5KVf1I5bdtqpq/CiPaOZ9vfAjTPTtUdYda4lZLeJu0Mq66Iqg98qBGE9Qyhr41wMs6hfjyxt+OhRM6eVAPYllRdYj1WS33rmqHLuZuIPOgatBHI+m+msbNV/N7tPWghhhBnEdgk8EfzQ+6Z5ajgaDUFnJ+lg5Q1R0i8iDNHlTDJLGmNW7V6+sm5HN8nIG9R6mfoGoiBLuDtTSSfch5rQe1m9iMhZ1ahtddyd0sIrUEpapbpXGX+yrajdM9Qayzqgth7TVoTfLMIKCJoBwxJ7anKAS1F3AfaZuaKho8KI9Z99F+cP8ReEWrkINaxmTdrhuDiU4E1S9Q2pgFVL3HVixMuSchj93Fz7BB9DG6s/arHtRA0EdjkkR4BTvZw4Hs7TsQMsg9qMHAn9FIrENBUH0YQXWTDbyBFqFAVW1ntLUK8e0RVLVP7OWGA1kSs68g2rna16sZXIIaujmo/R2quktE5rWI81fnoACe3G4geYiiVSrw3sJF1K/VgGavsBVii6NfD1qpBgBVXSQid9A9Qe3EvNvdIahnkEKzsXhxq4g8ttPc0RAgn4PaY6jq+sr3XW5k7XGIL8NmbM1WNwlKX6RxrqUreH/8jNah692Gqv6s81n7JPowIqrqttXUR00GihhrxYMaSrSZhK6Gw9C0dcqIhape0uZwtwR1BTXrQPYyNmMDqaMyde/2AXaDoNTXATn6lbfayvu9jQvZvQzPgWATg+9BHUIXHpS2XsfVEar6zN29dn+Ej4n7ae7rOyghvlGBOg9qX0dXBKW2D9ewwgfY02jzMrQKtrN7HlSOwfYuBgRV3Z2U/IFisAkqshm7XeJRsPfQRFCq+uFBunfJ4htmXIVtJzSa0K0HNSKgqr8ZQJhtMMJjWxhc5T0SsYnBJeHv++eg7EhTMKio86AGC8WDGk6o7SU42iZP9ymCGiAeU51z2Q0Mqwe1l9DL4CqtH/rncGR7FrTH12jzrqY9xDYs+7HtfFYhqIKB4GbS3nujCoNATmDbF109CPcZyRhUD0pVN4vImC4XyxbsRajqF4fw9tuwhextIxyFoAq6hqr+hvQKhIIKfPHtUKxJGUkY7DkoCjntl4jXoLRFIaiCgoKB4EJKOK5gD6Gqy0TkjE7nFYIqKCjoGmobAxcU7DE0vVurJUoWX0FBQUHBiEQhqIKCgoKCEYlCUAUFBQUFIxKFoAoKCgoKRiQKQRUUFBQUjEgUgiooKCgoGJEoBFVQUFBQMCIx7AQlIu8VkRUicr3/nT3cZSooKCgoGH6MlIW6n6i+lrugoKCgYP/GsHtQBQUFBQUFdRgpBHWBiNwoIv8lIlPrThCR80RkkYgsAsbu5fIVFBQUFOxlSPfvc9uDh4j8/P+3d+bxklXVvf8upp4HegS6gWZSARlEojxwQDCIw3M2wgfR5xBMnKfEgWcSNYlDHFD0kzxjjBqN80CcUdAQJwSVUYRusGloeqDpmR5p1vtjrdVn16lT99a9fe+t4vb6fj73U7dOnTpnn332Xr+91l5nF3BQw0cXYz/stwZQ4D3Awar6slEvVJIkSdLXjIlAdYuILAK+o6qP7HFRkiRJkh7T8xCfiBxcvH0O9qN4SZIkyV5OP2TxfUBETsZCfEuBV/a2OEmSJEk/0FchviRJkiQJeh7iS5IkSZImUqCSJEmSviQFKkmSJOlLUqCSJEmSviQFKkmSJOlLUqCSJEmSviQFKkmSJOlLUqCSJEmSviQFKkmSJOlLUqCSJEmSviQFKkmSJOlLUqCSJEmSvqQfVjMHQESWApuAXcADqnpqb0uUJEmS9JK+ESjnSaq6pteFSJIkSXpPhviSJEmSvqSfBEqBy0XkNyJyUf1DEblIRK71v/zV3SRJknFO3/xgoYgcoqr3iMg84EfAa1X1qg77XptzVEmSJOObvvGgVPUef10NfBN4TG9LlCRJkvSSvhAoEZkiItPif+AcIMN4SZIkezH9ksU3H/imiICV6T9V9Qe9LVKSJEnSS/pCoFT1DuCkXpcjSZIk6R/6IsSXJEmS9Bci8gwROaKXZUiBSpIkSZr4c+D0XhYgBSpJkiRpYgowsZcFSIFKkiRJmkiBSpIkSUYXETlERD43xK9NJQUqSZJk70JEZovIf47hKQ8B/tcQv5MeVL8gIu8Vkb5Iu0+SZNxzMPDUMTzfJGDCEL8zxb/XFSIyU0T+YYjnGJAUKEDsCeG3AtN7XZZk9BGR/URkRm3bRBH5s1E63wmjcdzkIc1kYKaI7D9G55vI0AVqqCG+I4ALhniOAUmBMiYCwhBGCw91RORvROR/97ocI4mIfFhEnt/Frk8HPlXb9ghgREd/XqZDgP8e6eOOFCIySUQW9rocwyGWR6tte46IPBT68WR/nTNG55vEEMRGRPbByjgUgZo2xP0HJQXKmFx73Rs4DnhYrwsxwhwGHNnFfvOBmbVtQ+rAQ+BAbKTcr33t+cCHe12IoeJRjztFpO4V/CNwfLHfPBHpx3YetmbuGJ1vqB5UiPxQBWpEBwf92mnGmin+2lOBEpFv+oh7LJgGzBh0rxFERH4qIrNG8RTT6K7DH0j7vZ7E6HjQMzHvfOooHLtrRGSaiDy94aODGON2MEJMxO5jvV73x9pB8ALg7WNVqCEQbW2sBGoSMMGFvRvCJqYH1QfEzeh1aOCxmMEYC6bSwTCJyGdGesTvx3s8cEwX+35aRF4yjNNMo7uQyYFU9zwYTYEqX3vFqcDfNmyfS6tBf6gQZa7fxwNovZ4J2P0eFiLySBH54XC/PwC98KDA6qcbQviHKlAHiMi+nXaoz/0Oxl4nUCIyR0R+Vds8bA9KRE7Z81LtZgZjJ5KNAuWZjC8ZhXLMxtrboi72fSlw/jDOMZXuBarJg5o4hBEmsDu5YqC5vBCmXnspnQR4Hl0KlIic3LDtL0SkF6nIYUDrArU/rclOE4A98doX0l2bHSptAiUiRzeELAdERM4TkVd0kYE81JDdcD0o6BBKFJEDgSVDON7eJ1DY8wCPFZFyRDssgfJGcc1ITMr6sSbTY4GialwjXY55/nqGiDy8i/1XDeMcexri24ehhUEATmDgOZx+EahObasrgfKEhGsaPOt/Bs7c49INnU4C1eRBzRKR1w00sh+A6YyO99sS4vM2t5ihD8xOAZ4E7Byk3YbQdCuAeyJQnb5zCDBHRLr14vZKgQp3//hiWxiroRrluVgdjoQxj1HfE0TkzwfbWUTeIyJ7Eg6cSnNa/WgJ1Hx/fS3waxF5f33UJ8Zj/e3KYZxjT0N8AN8A/nSI5xwohNQvIb5OSSDdelBTsJ/nabrWeQ3bRpvdIT73Imb7+yaBmg9cwvDKOQNLchmSZx14m35lw0eTgQ1UA6po95uGeIrZVL8+PpDhn1h7rZdzuojcWmyaCuxs2l9EHiUiB/hzT2U/inrvZDvCXnU9WNtrBEpEDhKRs2kWqEE9KBH5UEP8NBr8SIQ44thnYGnQ9fM/W0ReWGx6IQ3zOSLyt12GCTolScS1jIYHtdn/Xw/8Ne3ezgLgl/7/ttjoy7Rc0sU5pgJHiYjWP6h1pE4eFFg4Zyhp11MZ2IA9ZD0oETm/SEFvCknFAKMxsUdETqh7y27YhlwXInK8iJQDh9KD+iLwRn9fT5KYgA1ahOENEmZghn+4fXwW8C8iUhfHycAyqvo8y18nAYjI6V2GTmcBR/v/A+0f976TbZgJPKzwbqYA93U45icxQV0DfKuYoxvMgwqB6vo+7DUChY2K30ghUIXLH8ZrShnC8AnS2OdC4NDaMaPRjaQHNYdmL+BJWGgyGsFMvEGIyDGFgXwrgyRa+L4tIT4R+YKHKqNxTe4irj0U5mPPAz1QnKMuUIdghgRaO9KJwDM6HVhEJojIO+nwA5ze0e8uOt+B2GRuuX8ZchnKpPpUYF86Z+nNxEai/eBBtbRTbwdzgX07DGreBDzX/2+a1I9rPqo4XslLgQtEZL6IPMG3XYh5M0PlW8DlDeeOvhsiWfegSq9iOIOE+M5w71/05RNr2ycDdwJz3cZEvU7ye/FzGgaqsNuDifqcXXw0UUT+RETOEZGP174Wfe5kEWkaiEfbiPIOJFAzvfz70rqEUpsH5R7ktSIyFXuQF2xA9yZpeI6tzrgXKBGZ4oZ3NlbpM4F7sNH6HzxMFo38ncA7iq9/GTjVO94M2o1Qm0CJyFQf8auInNehTO8oR5YenniKv51Ls0Ad4mW4yxv0boHCDP8T/DonMUBHFJGjsMYltf2ejwlbGeLbWXptPiIe7moL84BfYQ/ERr3VBerg4v/SYC5kYOOyCHg3RXik1gmPxuorzheT5pM8tHE41T2czdAEKu5Bp+/MxEbK5WBgYZej40ZE5HHS8ECyiBwmIh93Y1BnMna9pYhMB3ZhHm2TsTgU+F8isoDq+bJGgRKR+cBisYnwYApWL+cB/8+3HUnRvn1w1c3cb31wGOWNMhzi/UJo96CCGWKriPy80+BLRN5YGH8YPYGahAsU8EcsGrLRt4ctaHoQeQLwW+DTvqlMAJmAPYD+YuCRDecDmzN8cu2YU4vjRN+cyuACBbCiOHZT5t8E4NGYjXpP8f23UwlWR8a9QAF/B7wOMzxTsQ6zGBvRH+V/IVAH+ftgHtaAJmIjsd0d329qiMxEEXm3G7p/BD7k2zulSr8IKDvBXwHv9/87eVCHUD2zMg8PZXg5Yl2vMA6NSza5d3gZ8ETMmM/w7Qf49R1Ie4ivzFB7Dh0mcUVkXxH5jwFCXfOB1f4XzPXQa3znYCxccwkNAjXAscNobsbEaBkw30dvU6keSJ4ntrTMNKzzTcFCpe8rrlcYRKBE5E9F5BQReQ5Vm3iri3+dmcBSWgX2LqA+wh2Q2rW/GfiqiNQfSr4YeDVweMMhmkI8pwO/wdpCizH0NjEfGx2/FvOmwA2Yt/VnAzuw+n0H1ndKwxgC9SfAI0TkaOxh6tLYX0oHT6HGBExIg7oHdTCVt1TP4gtmYoOZ04FnishjaOeZtM5BxrEaBUpE3tJhQBBEXz6ptj08qCMw8T0Fa7eTqX4kcEHD8R7hr7/311lU4fCJXs5jcc+q8IyjX8+mXXTuBr7q/4dATcP66kSxOb7XicgMEXkq1pbL0O1+Rb8qz1X+X7av+Vi9DDow2RsEKm5WeFAhUA/DjNH/xZa42eX7HwxmcIvvhXEpG+JrMY8LrPM/A7tpD8PCcUtpmMtwQ7PI98Vv7EuLXfbHso72Lb5zKCZQkWiwyF+nYUZhBzbqahEoEXlmGDYReROwxfc5BosfR/grOnmTQJUG58TiHIjIc310DWZ4XkTn9QyPxEaKm4Gtvu3Z2Ajsif7+YOze/B43NiLyc+z5nf3pHD8PgdqkqrdjCRbzsQy7yykECrgCuAYzypOxjjKP1vDXYB7Ul7BBzwupOt6rqCa6S2Zihqhu4J4jIp8f5DzAbjG4ptyEjbbryRxxjleIyLdrnzUlAp0L/IAGgcKM491YPS6gChtHXV/qfzdj9/wFwLW0C9QsTKD+B5t3PIxWsT6Q7pMX7ir+bwrxhUB19KCo5m3fiHl2dY7A2k35HejsQb2J5gFBMAe7/4fVtk/G6jfKdzAmUJOw8t9C81xolGeW9+3ZwI2+bSJ2L44FZnvf3CYib6f1vtf70QyqNh/3YjouUJgonow9x/hhrC8+yveL703xcm+onSvsyS3+uszLF3UwIONOoDwGW06SH41Vdl2g4kaci1X4Gn8fsexZmCGYQ7NAHV38H0Z+GtbA52PhrKYGNh+7gTESOgW4F9heXgZwqFQPqy7DRKkuUFO9HD/FbvruCVcf6VxWbPsLrGHO8O9sxhpTGbqcRdV4o5M/rBi9n+j7ICInYiHQC/2z6Pid0ryPB36vqoqlkG/HDHycF6yTrvDPohzlT053CvOVHhSYQB2EGZUY7T3o5T8R62hbsA4ymy4ESkQ+KCLHiT2eMAur71m0tomma5+JCXP9mLOAF0h3Kbfh7QeHA1/DHr4tiXt2BvAMEXmEiFzt2+L63ld4Xo8HrsQFykOHL/bPDsXa3VqsTdcFKsKpG4Eb/Dq/Qmvy0VQ/zkLgWVho6XRsDmKah8DL0GsjHj4szxnXuhPrdw9i/TQWXn2KiLzX/z8Au9d3YG0hBisnU3u+yQeLh9IqsjMwb7uTQJXhribmArfRfv8n+fWsLbbdRSVQf6DZg5qBDX5n+Xl3YZGN3/l3p/vrbKqw6NNpD7sBICJR95E1G3U9DbNLIXpzsP4ZbSfC8dF3r8BCefGdoMwevB5rb1G/e59A4TdFRPZx1/tMLlSbAAAgAElEQVRI7KaWAtX0sNi9/hoVHzduDlXjLI1RGT+d5J9FCAFsVDPB56RmFJ7GkVio4uFiDz6+ChOYO7AEguClwIekdfI6RDVGbNMwsbkB60Rx4y8ALvL/D/XQ3jF+/ClUArXGrzOuq/SgDvFjPoCF1yb796JBnosZsAhVRsefA60PMIvIHKxT3OObVmMjb7COGMLTJFD3+6vSWaCiXsKArcIMaiR9HObnuwC4UlUf8ONOoQuB8vr7Syx8Gx30ONoFKsJf+4rIt13YZwK3UnX8kgNwg+7t9eUi8riG/SJTMOpkEZ0F6n4qD/VC4NH+vTAG5wNP9vDWQdgoPjyoF1AlRRyKGcx1VH1oF+0CtRm4DjOQ19OeHXsscKeqrgM+jyWyzMBC71/E6rqjQInIW7EB5dW0Gr6p2H2eQhXiKu/bRT7PNAHz7D+LZ6oV3z/cz7GP3+OFmKE+RKqszxm4B1QPMfvgYrAVSOZgArV7rshFYQ4mnPcW+3YUKBFZJCIfxQT+Dj/eLGCtqi7H7ns8DA/Wto4Efo211UlUfam0Kaf5a30OqvSgpvmxD6LyUudikZuZxf5gtrWsj0nF5x/0z4/zbXsuUCJyiYh8TEQeIyKvG2z/4SIi54rIrSKyRETetgeHetBfj8A6UTxZXs5BrcJGfluK/aNTzxGRC6hirJ1CfEdi3s/XsZswxb8Tx7kL6/wLgJcBHxNLhvgK1mgWYumaLwauAiI0FbyE1lGQUjWOUqAeg4XE7qAyWAdReTR/BbzG/w8BPMrrZrmXr0mgFmICtcKPNw8b7ZWhgK8Dp3s4crdAeQf8eXEtx1F5TwA/w0ZSu7DQT9TvIbQL1D1YXS6mCB/6/NJpIvJorNOuoDKaEeKbiN2byZgXcxIQKbHhQc3CjMVUrI6jHkqO9GOfS+XJRFuaRuV9lxPMz6Cab7kVOEhs1YkXURmKpdioE+At2GDle9Kehh33Z65/tj/wE+A4aX34dDrWtstna/bFDHgkVUzDwlIf8uteQyVQf0IVijoOa1PrqAZtPwPOFpHpVHW9CfguJjbLgAViKxssxPrEvlShua9j93MKNuqHmgclIvuLJZE8wQXgDEycXosleUwRSxApBWqCn6NMpNiOtYsJWF9fh7Wzo6gGqNGPLsXa4un+2bLis+mYp/Y+4Gxaifs0kKGdg7Xdsk19ELs3WzGBWoYZ+9VUg90/1K7nHCys/BysLc/C6i08sG20D4KOwwbK6tcTc3j1DNkV2H3Q4hjT/dgxJxseVDAXaztRB1OwaYZOHtR07J6sp4o+jYgHtVJVX4fdvKZJxT3GO9knsIn+44DzReS4gb/VkTBiZ9S2zaZ6JmI9VrlXAT/yfcpsmM9jD2zuwq45wh5Tvbz7YzfrZszYRKM6CYu13kslUAsxETgDM0YLgO9hRut4bGL72/5XGvXDMQF5FNZw/6L4bJG/HovNd30dE7hyRB2G9IXYSHoxVWM5xsvdJFDReBdiDXSlX+tUL8f+InIb1rBvxjrWHEyg1nh5H45Nrsbo6Ri/XgBU9c1Y/d6AGZkZPoJ9GDbaLAVqBnYPltPqQb0ce2bqWqzdfA/LbsKPGaHUEKk7/bNIVd6CeSHHY/1gAWbEtnk9ICIXiS3eeyI2qNiGDUpCyMKDWub1Wc/qfJzXzzJM5B8B/BM2UPgf4DNU2V1nY17FL2k3hHF/5mPt4k5V3YZ5L2W7nUYlUFuowsjQ+mByzJVuU9XtmAE/CLt34XFfgE2clyGo6zBv/3wqkd2sqt9X1Y9j7X4u5m0+tjjnXQCqGh7WZkwId2BiG6sp7Ac8Dwsd/ydW1/thSTP3YfX6ROADfq0rqfr73ZhBX4EJ6WVYRGGCn2c9VSTlZmxgOsU9pZlYm/tH4CaqfoF/51/9/5ifniciP6XIBqUzczBBmSTVbz+F8GzB2uVPsL6zlcqDuh2YKlUCRpzrSKyed2Ce4VW+fTutc3mbMPuwChvAHk2zQJ1A9ezhGqr6jPmkbdj9CQ8qmOX7h1cZzzluY3CBCkZEoK4BUNVLqCpjpHkMsERV71DVHdgk9LOGehCxVQgW+dvHYUb5ZCqB2oV1jDX+d62qngv8O9Yp7vPvfslfV2KiEz/CFY3lUEy4d2A3ZAY2UnwE1lE+hIU7lvu+keDwBOBzqvpRLHtqMvBxVd2qqp/EOhXAv2Ci8gtM1FZhBjhY5NueCHxPVTdio93jMSMLrY3kZKzB7yi23Ui7QM2i2YM6GDM29/vxj8Gyu1ZjBmyWb/sl8C5sMjyOB1b3ZSgDbI7ubKzBnoMJwAZVXY8LVBEiW4/Pl3mo42+w0SRUhvIrqvpu/3+9f28ilUAtxdrYH4v6mYUJ+S7M8K/FjOmBfu7XYPf/RK+vVdhA4yY/xkz/+xbwMSoDER3vrKLsE7xOw5M/C2sjR/i5TsXE9geYp1YS9+fJmEFZ6u9DEIIw2rN9nwVUEYI686juyeXYQOn3fozTsHZ9HVV7AjOot2DtOYzt5uLzdV7WhZgxi3Ivix38/q7H6jlCvlFvO7GowqO87DP8bwOV8T4Ba4/T/VpnYe1lFdbX1qvq470sM7Gow3Y/RsxJ3ub7x9zuDKzPzscGEMsxT/DlmKH/HJYcEAb6eVjfi3TtgQztPKyfrMPChD+gmufehUVKPuLn3OrHCnFYArxLRC7067wTq/cNXodvxGwF2P2aRxXBuRUb7K/C7iP+PegsUPcV1xJe8ha/7lnYPdnpnwtV5ADM/m3ycjQlSUzD7sNV2EDsq8BTReTNDMCgAqWqV4itwIAb0dFgAa0ZOhEa242PZq8VkWvpvJzNx4A/w27SKVij2IjduP2wDjkBuxFr/D2q+jLgx/7+MdjoHFofgttG1eHOwAQGP1eU51Bglaq+32Puq/zch/j5nos1RDBjdKeLC8WxAC5R1c9jDfQUv4b7i/0O9zoCCwWAhUEotkOVmbifn3cdlQh/k1aBeoDWEN8C3zcSDkKgYkQdHtU6/3wBNpgRqvm5t4rIOVg9liNx1FiHdZrTMSGOeanwoCb6rtu8DqZjgvEGTBDvoPJmynqM5I9SoL5LFVaCKrQGVs9zivqJQUek9T8M6/ArsTBYLDa8CzPGl2PPpdQ9qDMxg6n+3eMxA7PT58H+6HV1BLBVVVcA/wU8S0QuE5EzROTZVF7W+7AU8/AG76W1L4QHJVQi9lGqlPYttBIG5lt+LW/D2s/ZwI1e7vK+baEK84aR2524oKoP+ufzMGM/xT8v+zaYcb2daoBTF9mov5nYPS8F6kTsnj4SuyezsfayEht8hgGNQcoEKoGa4dtuw8TxbqxvzsQGBoep6lKqfnEB8BpV3UnllYOFS2+hSvKZLPYMWn35LPz492Bt6yQsDHYEFnpfrKoPumd5Jq0e1CYv5xsxT/tUqijEBi8fqhqDpQjxLfE6WIoNmFdRRYlaPCgPoR6F2SKovFSwet+ItbHDsTZ1LFU2HrQKFF7mrcB0EfmeWIZwebztqnqXqr4Ls1unUz3k20i3SRIvk9raae7mvrXL7w9G0/MtLcvVqOonVfVUVT2V9oqJfP+TsZu/GLs5a6nCFzGRuNaNw+W0pu7eAnxKVa9R1S1YnP4txeflc1BPwwweWMMIIyG0PucTI9xDsCyXY6lGjT/AYt8lIVDlHMUJtArUg7SGrCKefjk2mr2tON5vqYR0OdZAb8TCS+HhhUAtpz3E18mDCsLAnIqNRlf49hCo87CR5iwqYayzofi/LlDhPcV+M6hWevijn3MqNuK/ujhO7DuJ6oHkdUVnhlaPLkR+HVaHf8CMyVysY8W8xUrMOF6NGfRlmFHc5HVRelAPUCXEQCVQUBn1EKhHYuFOPE3+Lj//N7CBxKuKsj6KBg/Kw0f7UQlKeIq/pxohr8Xa3/ex9rPGz7kNWKSqP/Jzn4mJf9RJsMXfl9mepQcVZQLrc5FK3SRQd2B1toTaYxVFecOD2kg1Mj8Bq/sFWHuZ45+txAaIESVYT9Wed/i1z6byeN9Ma7bnelWNvhv9Yn5R9lXYs3WTsPDlu7EoDV6uS7DQZjwwHaHSeX6edVTp1Q8AH/LwKgBuc7bQLlAPYgLyaFoFCqr0cqhCfLdiWXsxUF2FhWWhGsSVyTb3UPXN+7BQ5NOxe7wRu0dlZu/1VPa3SaC2Yc/iPRULK8aAV2jNVN5Ce5JRG10JlKpegDWGy0Xkz0Tky9gTy7cN/M2uifhxsJDKkA+Ki9M/YSIyGROoKVQeFFiHvZ/Ka/qoqkZHQFVXquqHivcfUdVPUKWK74PFhAV7/iQm20sPCjoL1I9923I//h/L8xXHgvZ06U0eTnyAKpEiRkWL/XiKGdNPYiOozcDlLugbqQRqhao+wfe/G5vM/4DXz6FYg9rh17uaVoHajHX06CD3+vvTsLYQDTZGknMxA9zmQRXEsb4O/If/P5hAgRn0qOtbigSMct8y/r2VVk7CPIVNVHW51t/fSDUPFAIVSSwPYgOb8ML3w+plE7Dds+NmUIleR4Fy73kr5rWHoIANjJ6Jedy/o30AV3pQc0XkC349m2gd3MQ1RZu5D1itqk/D2sNukXYvAWyg9ni/3vh+XMNW2j2oTgK1CGuHr8bmhEo2UAnUvf7/SVi7OwoLda+kCsltwNrEfpjRu8m3Lcf6XhniKwWq9KBWY57ALlVdo6r/TdW/4hxBCNRBVKvqhwd1Otb2rqW6L5N9/4v8XnwL6w9HYcIXAhnz6vfU2msQHtRUqsHmdZjoTKdVoC6ldQAdIb4NPtCIB/+Xejs7g2owu1BE/hXL9L2d6h6u9Wv5DmazQqAoPr+KamDfSaDm+3ePonWqoS5QMMhCxV0JlNhyQAu98G8HblbVZ6rqN7v5fhdcAxwjIke423keFuroljnYigdRAYv9da13vK3UBKpbPIXzdOCVmOE9AptcjhHKQAK1GrtJShUWGkh46x5UGJYQ2c1U1xgCGYYkRGoj1pnuoxKFZVQCVYbCbsIa40xs1DoBc7lj1Hw71hHPxkQmEiu+D2z0kfdabER5G2aI3le7phCowTyoL6rq7/z/gQRqDmZEf4jV7w7aV4CO+YYyFt4iUKp6Pzbv9XEsAw0v42ZMoM7xbYd5WVZj92MZVm/Po8r0utfr/h2Yd/Ue7D5vLsq/nHYPCqxdxoPdUbafquoNqvpzqiVt3kUVoox94zGBc7B7EHMG5T73URnZUmxW0BCJwAZS+1O1qwhV76DVg5qICfuvat+/1/c7CrhfVX/i7aR+jqt83/VYgtB5wAM+D/1+LGkqfjF3k9fvNi/brX59m/zzUqBCaGMOKgRqDdYeykn6Fg+q2L4ca7ex4ghUAnUmltSwtDjXJGwQdww2xXAYJgZPpIoqhAelVGH+Olu9LA+6qH0T+HMqm7FboFT1dapark0YwrABbMAN7OshS1T1F1Tp+I8GXoGFD2+nsjdliA+qyADYPNwLVfVT2HJJ0Np+dniZI3v4s7R6UDBaAoVNxN2AGepTMTfw8zLwEh9d4yG312BG5xZswvvmgb/V8v3lqnoEVbbdboHy141UqxgMSaD8+L/Ern8qNif0m+LjCPHFKKTuQZ2MeSqLsdBEp8YJ1kB3FqPZaNwhKvdjRuHz/tk3fNK55DZs3bM1VNf/FiysF3M+cV3bqcJHG4EvYKs7hEAtVtXfY279i/38r8JWdoiJ73XY6HGxqq7BGmbJIroL8ZXCvR0zTpcWn8fIfS7wAVX9d3zppIbRaGRsRed4wNtYC6q6WVXfoaprMYN6q5/vBqpVIR4F3FHMI93h8wY/wwztO1Q1xO9fsdVFFmB1tYzK8P2BhnkbTAxPoxCoGtFeb8cSZR6g1YNahLW/h9MqULHPWiqBuq8ozzKaf9LkSsxLjBBfeMxx7NKD+rSq/rb2/Xv9mo6k3bsCQFUvdYN5J3bfv4tlBpZedsyzbFHVmEvdShV2vpOqX2zz65pOuwd1ADb3sQvrE3WBioF3WdYl2GBijc+rQSVQjwV+4e3pdj/3FEzoHotFci7D7NgTqdr1Wj/mFdjAqImtmBcUHvYGH7TFMW7HbMjGhu+Wngv+/XqCzHaqLNWbMftfelBlkkR41aux9vB/VDWiQNHeS4GKNv1VLPy5GOtTpeA1CdSAGtLVatWq+uzaprd74sQPqOKwe4Sqfo/WTLXhEBV2F1YZYWhDoE5lGALlbMYq89G0ClR4UCuw0UNdoKYCN6nqdhF5MoMLVNlR4lilQP1cVT/n759XP4Ab278XkdPi+6r6QwARiYyykijPvlQToLFPhASuwUTuJ97Rb5NqHbMwKhHuLev8QarEi8FCfGW9bKdaZiruV2QLTii21df2CzZhRiNCjfXwXhuqeoeIfMbLWtbRCdhCl2Ce45LiOxcU+6GqKiL3YMZqK60CVS71UgrUVdhD2Us7FC2udbOq7hCRR/voOD6LRwvqArUBa5MxT7gB6x8hkn9L64PhcQ3rReT0ojw/w1bI/zTtc1Db69/3812HGeu651Tnk1iYbBYmFNcXn63HPNTyXmzF2tVSzHuJeoxUeWhNkijnoMBEpkwUWYklwGwsjbmqrvX7WNqK1Vh7Og1L7wYb0ByAeW6bVfXXIvIbzK6+E8vQCy/net/3P4r+W2cr1YPBJSFQ92Htp8mGbcfqciD7dhnWNt+EDXQPxAYiWzHP7j7anwFc7ddWDgLrArWeSlS/D3xfRJ6GhalvL743ah5UG6p6BcNIBR9losIizFWGuG7CDHxTWKMb7sU60YW0LvsfzwmEt1MXKPCO56GbpthzsAp7kBfffzvVvAhe/sZRaQMXUoUBg89g8fHdFB0z1l4DH0WpapwrHr67v/heNNJOAvVHP94d2Ei2k0Ctx0aF5Wi+bMiRSBKGcQ5VvS6nIWTq17SZar5qUIHy721S1Xs9VBHrzM3w64h5yv8Z5DAbsTDUFqwO4rpDoG6jVaDieEs7HC+uNQzADcVnd1OFDR9O9fA52L06XlVXeX0cjtXh+uJaG+tFVa+Odupe5k+pxG8dleFvEqhPYOIH1cPbjajqLvdE7qV92Z8NWKisLlD3+Tku9v6x08sRddppDgqsf9U9qIfTPmiD6hm9KOsDWCh4rVbJFB/DElmOwvu/X9N2zINYSCU2P/DXgQQk7kc9ZH0P1kc2ASeoZXvWicHAqobP4hoWY89aCtY/XoWtrKJYe7mPagATg4XVDeWpC9Tahn2uw6JNZWbj6HhQnVDVTmGbXhEVtokqcwZVfTKAiGxgeL/UiqquEpG3AEepahl334p5H2Esy8YeD66VRmWgc2ym9YFcvLzlHFRXAqWWwl3fdnXTvthzX9+mEqhbaV0wMzpVmeoerMPqIJI/dojIZszgTsIM87EDGMOtInK8i0IQDflLqhpL9IcHNZXqPn+f9gn4YAPVcyv19OpBUdXXif1A3uUM7PU2nTfO+W4qg3kPdh/LUB+YgL+MzgOn3R5Uw2e/wOo/nuP6FYVAleFfVd0gIj/D2upw+BJwq0cCdmDebZuH5GFeROQjVD8iOCDueS6hVaDWYwJVhsO2AvcVIXDw5BSqPlLP4tun2Laa1utfgbXRppDZ9bSunAA2v/qLotxXiq0T+AqqVO3gF1jk4SO+712WX9WW0VgS965u7O/Cwo0hJE3EvRjMvkXful9VLyu2x3ypAnep6sm+fSCBWuv7r6X1GUtU9R4RWUXrWppNAjVRRPZrCsHDHgpUHxKCuREzDvUJ3HcyeNihI6r6bw2b42bdBywsPSTveFfT3niHwkqqBvJ6quywEUNVzwcoVn74tqq+oNgljGeTkVyJZdGV8e612EoAt2LexOsHOf+ttU3RkMvRZgjUDKr06PgtoyZKgerKg2ogDNdwBGprOYDztnAOdv+mlNuxB8U7Ecdoq3tV3Skin8XmHl6EzYmVHlR9/2GH0FX1vcXbtZjxbvKggrdg2aHdsoTWe7keE5dywLeN9rnMyByLPrLTy7tTRB4E9in65CpaH6qNY5WDseBT1NZ+VNU7qObmgkhsWFHbdzG1lXdUdbCfjQ/b9LXa9+6SYm3LDsS96Fag6u1pM9Z2ttLadn6DhXhLymzjpnsS/Ah7oF5pTjMHE7Y3iMgntfWZUGCcCZSP7n6DueHfbfi8U5hpT4hGtbUpfKeqZ+7h8S/Gw2daZbmNCu7NQHtceCAP6rdUP1cdrMRWbbgedi+2OpRy7PJylF7gWkxwYsJ+MNZTPeA6lgIV32nz2goPtimk1Igb2ng+q4m/wsKzL8IyMhfSmmgzGkRGWkeB8gHLUKIVt9GaTh91tKzYFmnuJeFBxbqa5Uh+M62rkN9IITo+aHgv5gHVy18Xok7EfW5agHpIeHlOoVr5ofxssMduyjBmN/vV+/LN2P3aQtHWPPJRz6huEqimVfnjOjbRmsCCnyeyK/+JakWMFsaVQAGoPfczllyDhT/+e7Adh0MtnDhWzK697yhQLsp1g/sUWrMFB5p3G4gyI2mrh5aWdHm8DVinKH9/arjnH26Ib6R4Lu0T58Buo7YcOEtVV4rILDqHgUaKtZjtGMiDGirvp1WgVmLzO39dbIs5qJJNWJaeisgmqiQJMA9+9290qWV+1rkY+Js9KHe0rRF5JnQPBqH7+/cHmwJoFCj1RDgRqSdqNbEFS7CJpd6+SXP7DJHfAEyqRVnWY2HvHVgmbuM5x51AjTXulp7f63KMID/EUo1LIsTXleHT9tT34VIXvrV0P1KN0ft6euNBDfecbXiSwkCfK/ZsDlidjUakoCQ82xETKFXdVHu/nfYs1U4Cta34vxylRzbhQOdVGrIZh0AMROph6rGm00/R1OkU4gu2DPAZYPdKRJ7kg4Kt2MPATdMYpUC1ZAf6YOokzNa0zZcHKVBJC2qL59a3bffR6WiPzOvsiUAt9dc9EajNwFubYuMDsAVLWhhJD6prVHW5iIx2FKH8iYex5Mu0pqJDFeIDGxzUBWq0qS8O0Cu6TX6J+unUl7vxoFB7DhAsNNgprBhhye00DGZc6DZRm78rSYFKumUV3c39jCT1hjsUgYqlgyLLcMj46HooE/0RcivTvcecpgzOEWbEPahuUNUvNWzeWJSjHuL7DKPvTW6GrkJro83H6O450k5zUMGWAT5rQ1WfOcBnMZccK843sZn2xJPdpEAl3fJ0xnaUeJiq1lNyP0x7ZmYnlvrrnnhQwyVW3x6v9ESgOlCG+Fo8KLUllr7S9KWRQm0pocGy80YdT2a4cdAdBw/xdeVBDYErqZbzamIl1SLRbaRAJV2hqiO1MHC352t7XkRVv9W0bweW+uuwPag9oKce1BgQXkk/CNS9VHNIdQ8qaacbD2rEBEpVzxb7FenTO+zyl3T+zbIUqGTcEuHBDezZJPhwiFHjeKWfPKgyBFufg0raGWsPKs7Z2Fa0WmexkRSoZFyiqg+KyNHYM0KD/rT0CJ+7qxUUHsKsxZ616jjyHStqK5CsZgjPmO2ljOgc1BDOOazBTApUMm5R+/G/2wfdMRkq6+gP76nOOxkgXJQAFk0YaMmkSxn+gtqdSIFKkmTMWEsfClTNm0oa8CzTW2hefxBt//mUkeB32AK/QyYFKkmSoXInrb/mmjyEUNXjB99rRM+3mmFmU6ZAJUkyJHzl6c/0uhzJ+GfYvweVJEmSJKNJClSSJEnSl6RAJUmSJH1JClSSJEnSl6RAJUmSJH1JClSSJEnSl/RcoETk70RkuYhc539P63WZkiRJkt7TL89BfURVP9jrQiRJkiT9Q889qCRJkiRpol8E6jUicoOIfFpEDmzaQUQuEpFrReRaYOIYly9JkiQZY8R+1XqUTyLyY+Cgho8uxn4hdQ22wu57gINV9WWjXqgkSZKkrxkTgeoWEVkEfEdVH9njoiRJkiQ9puchPhE5uHj7HOCmXpUlSZIk6R/6IYvvAyJyMhbiWwq8srfFSZIkSfqBvgrx7QkichOwrdfleAgwB5vzSwYm62lwso66I+tpcNao6rn1jf3gQY0U21T11F4Xot8RkWuzngYn62lwso66I+tp+PR8DipJkiRJmkiBSpIkSfqS8SRQn+x1AR4iZD11R9bT4GQddUfW0zAZN0kSSZIkyfhiPHlQSZIkyTgiBSpJkiTpS8aFQInIuSJyq4gsEZG39bo8vcQX3F3tz4XFtlki8iMRWeyvB/p2EZGPeb3dICKn9K7kY4eIHCoiPxGRW0TkZhF5vW/PeioQkYki8msRud7r6V2+/QgRudrr6csicoBvn+Dvl/jni3pZ/rFERPYVkd+JyHf8fdbRCPCQFygR2Rf4BPBU4DjgfBE5rrel6imfAeoPvL0NuEJVjwGu8PdgdXaM/10E/PMYlbHXPAC8WVWPBU4DXu1tJuuple3AWap6EnAycK6InAa8H/sNt2OAdcDLff+XA+tU9WjgI77f3sLrgVuK91lHI8BDXqCAxwBLVPUOVd0BfAl4Vo/L1DNU9SpgbW3zs4DP+v+fBZ5dbP+cGr8CZtbWRhyXqOoKVf2t/78JMywLyHpqwa93s7/d3/8UOAv4mm+v11PU39eAs0VExqi4PUNEFgJPBz7l74WsoxFhPAjUAuCu4v3dvi2pmK+qK8CMMzDPt+/1dechlkcBV5P11IaHrq4DVgM/Am4H1qvqA75LWRe768k/3wDMHtsS94RLgL8GHvT3s8k6GhHGg0A1jT4yd7479uq6E5GpwNeBN6jqxoF2bdi2V9STqu5S1ZOBhVi04tim3fx1r6snEXkGsFpVf1Nubth1r62jPWE8CNTdwKHF+4XAPT0qS7+yKkJS/rrat++1dSci+2Pi9AVV/YZvznrqgKquB36KzdnNFJFYx7Osi9315J/PoD3cPN44A3imiCzFphfOwjyqrKMRYDwI1DXAMZ41cwBwHvBfPS5Tv/FfwEv8/5cAlxXbX+xZaqcBGyLENZ7xmP+/Abeo6oeLj7KeCkRkrojM9P8nAU/G5ut+AjzfdyRE1rcAAAH0SURBVKvXU9Tf84ErdZyvBKCqb1fVhaq6CLM9V6rqBWQdjQyq+pD/A54G3IbFxy/udXl6XBdfBFYAO7HR2suxGPcVwGJ/neX7CpYBeTtwI3Bqr8s/RnX0OCyscgNwnf89LeuprZ5OBH7n9XQT8De+/Ujg18AS4KvABN8+0d8v8c+P7PU1jHF9nYn9InjW0Qj95VJHSZIkSV8yHkJ8SZIkyTgkBSpJkiTpS1KgkiRJkr4kBSpJkiTpS1KgkiRJkr4kBSpJeoyILBKRs0TkIBG5uNflSZJ+IQUqSXrPImzV8JWq+g+9LkyS9AspUEnSey4CLhSRK0Tk8wAi8ksRudR/i+k8EfmG/xbVSf75M0TkKhH5hYjUf14lScYF+aBukvQYETkTW0boU8Dfq+qLROQ24PHAvsBvMS/rFGw5nTcAV/p39gG+r6pnj33Jk2R02W/wXZIk6QH3quoqABG5XVW3icg9wIHAHGxV8R/7vvNERDRHm8k4IwUqSXrPTsxTKtEO/wuwBlsT8CmquktE9k9xSsYjKVBJ0ntuAt6LLTC6c7CdVfVBEfkwcIWIKPB74NWjW8QkGXtyDipJkiTpSzKLL0mSJOlLUqCSJEmSviQFKkmSJOlLUqCSJEmSviQFKkmSJOlLUqCSJEmSviQFKkmSJOlL/j+IWWq/1fOCdgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd5hlVZX2f4vU3XR1zk3qJosISBazYhZU1DGMYXQU4xhmdNTxc3QcE8oYR8dBUVRMqGNOgAEFJAmSc9MNHencXdXVkfX9sdaqve+pc2/d6q7qunTv93nquXXPPWGfvdde70r7HFFVCgoKCgoKOg17jHQDCgoKCgoK6lAIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI9GRBCUiB4jIH0TkdhG5VUTePtJtKigoKCjYuZBOXAclIrOAWap6vYiMA/4KPF9VbxvhphUUFBQU7CR0pAelqktU9Xr/fz1wO7DfyLaqoKCgoGBnoiMJKoeIzAEeDVxd89vZInKd/92ys9tWUFBQUDB86MgQX0BEuoDLgI+q6v8NsO91qnrizmlZQUFBQcFwo2M9KBHZG/gR8O2ByKmgoKCgYNdDRxKUiAhwPnC7qn56pNtTUFBQULDz0ZEEBTwWeCXwFBH5m/89e6QbVVBQUFCw87DXSDegDqp6OSA7cg4ReT1wgapuGZpWFRQUFBTsTHSqBzUUOBfYd6QbUdC5EJGni8jfj3Q7CgoK6rErE9QmYJ+RbkRBR+Mk4NSRbkRBQUE9dmWC2gyMGulGFHQ0uihGTEFBx2JXJqhNFIIqaI1CUAUFHYxdmaA2U5RPQWt0AXuPdCMKCgrq0ZFVfEOE4kEVDIQuoHMfpVJQsJujeFAFuzNKiK+goINRPKiC3RldwEMj3YiCgoJ67Moe1MOCoERktD/aqWDno3hQuwBEZC8RedRIt6Ng6LErE9TDJcT3E+CUkW7EbordjqBE5NCRbsMw4GTggpFuxO4EEXmOiIwZ7uvsygT1sPCggEnA1JFuxG6K3YqgRGQicP1It2MYMBYYN1wnF5HjhuvcD2P8Anj1cF9kVyaoh4sHNQqbYEMCDxlOGqrztXnNw0TkXYPYf8bOsL7awO5WZj4WGCcie450Q4YCIrKHiOwFjGEYCQr4s4gUI7I/ZojIh0Xk6cN1gV2ZoB4uHtSQEZSI7AP0YmHDnYmjgRcPYv+lwH8MU1vagojsgfX7w8GIGSqM9s9d5RmVrwI+g93PsBCUk3mX/7Xab6qIzBiONowERGSsiHx9gN1mAEcBhw1XO3Zlgnq4POpoKD2oA/xz5RCdr110AdPji4g8XkT2z3cQkUeJyMGZ57TJt4uIvL/dQhG3mlt6XyJyQhvKYgz2xPwGghKRiSLyiHbaMtLwvhtMJW7025B57IOBiPxcRI4awlPOBfbHCGqsGx1Dja7KJ9CXg8ll543AO4fh+g0QkReLyNeG+zoY+bygjX2G1XvdlQmqrYfFisgYEbl/BCvpRjGAdRYQkVEi8qYWu4z3zz4FJCLjdsK9dQHTsu9vA6pu/03ARcDj/HuEmSYAH6F9T+Z7wM3NfvR7/Tbw1gHOE31eDfE9H/hQm22pu/64nViIcD3ww0HsHwTVlrwNA57L0D6cdyYwhYx4RWSyiJwmIuNF5JzY0b9P8P+fLyLttiOUb5XU/xvIDZlh8+ICLtsXAa8Zzus4uhjY055OIajtxmZglIjsKSIfaLHfZMzzaBBAfxXDznjKwGA8qIOAj7f4vW4y/YRECoOCiDxORB7fxq5dmHKI646l/p4WAUf4/5EnC09nwLCTiIzGQomtciinYP30LBF5ZIv9xgJb6U+Mk4HRTjRvGKhNNXg+cM6Ae2UQkTe5N7SviPyszWMOBY5jcN7QTiMoERlf+T7Z/+3egXN+tzKmQVAhO+OAJwMfBB4NvC7b923Au/3/F2IvQ20nJBdzqtpn4zHjKjC6Zp/thoh8X0RmVzZP9M8H2jzHGBGZPvCetRgL7D2Ah97Sg/Iw4X7+//GDMAr6sCsTVHhQk4APt0gMh6Ls8wB8TcUZw9u8PgyGoCYAE0SkWWJ/PLAkzuf7HQjMqobc2sSfge+2sV9MzGnZ92jDgSISv9+HKZXbgckeqpvpv7WTFwmF8mCLfU7FPKgTgFvyH0TkgMybnAwspz9BTcLG5ETgvdWTi8isAdo4xc8d+y8VkdpQiYh0uQL5EtZns4EznIgHwhT/zJVkrAkaX7M/7FwP6hoRmZt9D2+jbWvbw8L5m7SPAvbLvs/C+jq/r32xMTwCmJiF/SaRFPw0TD6ua6MZ0Vd5VEKwuZb38xi2s19F5GQRqRqep2HhyxxTgcXA9DajIn8HfKXNNryoEp2JexkjIuc0CatPJSMoEfn3Snj8xcAn3XP9K+Z1Dgq7OkGNIgnRhCb7hdDmVTr/Bbx5sBcUkdeLyGAT0A0EJSJPFZE/umKvnivuoVlF0TiMoLpE5DSMYGYCZwFfbdHu/UTkJZVtQQa/b+MeqgSVe1BfI/XlHhjJ3AY8EbicRDpjRWRvEfnPFpbWWOzJD62qFA8BbgUeC6yu/PZTjHjAvOZ7aE5Qc0iyAYCITANuFpF3i8jTmlx/cuW4Gd6mOpyNyRrYvcW4zqzfvQHjgLsxJZ3jDKzPo7oyX2PXVg7KSW7QlX4i8uksvDm10rZQXM3mYR2eiRVCBMbR2PY6D2pfrP+PwORtXPZb/D8NOAbYr+ohRBiwck1oJJ/R2FN4Bu1BicixNZv/RH9jqHqv0e77sehQ37U9SlR33gnAaW2S2cmY9x+Ie9kXk9PIb5P12WgaPagX0LimcxqmfyNqsqGNdjRgVyaoKJIIgprkYZSDK/vVEdQcvG8879NuDucDpMHog9Qkb50UPorlQHJBfKL//QroqRw2EEHlHtQLsBBQF+ZFTRaRU5oonscAb8nadgbJg6wNc4rIWdm5QpgjnDAWGC8iJ3mbD/ft4THdhinug2gM8R0I/D/gf5rcXxcW3mhFUAcD9wLXeBvyvh9HUpoHYgRV9UYnYRNvLuat5sdP8b/HY30G9BHBZ33fydE+SaXJy5u0NfoArM+C4F8uIoeIyEki8pwmx44H7sJKfaeJyMt8+9TsnC8Fcqu41oMSkRMq5/4ysFhEpjA4PJOkoLq8Lfh5/g24k0avYyBMJyu+IRFQeDEzMPmcXvk9PChIspJX4k3D5CTOgZ9zX+D+yhypC5uPr3xCGx6Uh8Cvz0nRowujyAqbMg+ter6pwApgWd5u4LXA32ouGWNQ1XnVdp3s5zs+03U5QY2mUeeMAjaS8ufRR7NJshft7cJ0wL3AwSLy1sEYP7syQW0C3gd82L9PxFzeeyv7NYT4XMkcmP3+S+AZInIiNRCRuWJVa5/BBqNqdXcBi2piuY/y9kCjIM4BfgbU5U/aJagu4NmkKsb9/djvYJZSFZNoVPrvAV7p//dz7V2IL/S2Rvu3kBRFF6bEL/D/Q9GNxibC7f59CimMEQr6r5hlm4eHAl3AQix008xoOAS4V1W3YvmOfDzGkCb2QVQ8KBF5IWYpjsIISmgMScW55gBzReTJYotfzwLejimKvC/Dqn2eZPlMsWrGSX6/IWs5QX0U+Bxm0b6oyX2Ox5TaWsyY+DffPg5TFGB9mxev9CMosUq0ayqG21O8Pc08v2aYBBwuFloeBUwVkfXAF4B5WLhpMB7UdBoVce5VTMIs8mUkGYoQ30Ss9HkjaSzGYWvABOuT0H15nmcK1q+zPPx6DvUeVF1UZjRNPFMReamT31S/bi6Th2Ke8IRMpsdislc9X05QZ0kKnYcBGHnaQBz/GDeI+xGVWDj4CszgmkrylPLQZpWg9sH0a49vH+djPh0nKBH5LRZu78L6K4zSLwDPq7ajGZoSlNiCz7eIJSZ/IyLf8e+dsMCyHWz2z1ASk4CXQJ+CDYSwvEBEjsQqjXKregaWYO1n1YvlquZhVWiPxoR5YlzDldBhmNdQnewzSZPndBE5z/+fC3yryT3FhJgmlk/5VOX3cdgao7F+3dt8+2w/djL11tQkzMM8x8NYj8K8rweoISg//xjS5O7CQg9Ts9/3xwRznF+3l0YPKnCMf8YEXgZcDDzTPbkcXVjYbjM11qqI/BGznO/zTSvJ8kE0EtSBmLGyt4j8yA2IT2PEGiE+aFQm8f/BWKL998DHsMT8DdjknIx5bnuSwlr7e/uCDD+ErcKfSsqp5CE+gAXehn7GiIgcjsnJOswgeTSwv9/DeGCmX/8AGj2QPoLKogkHYHrgWyLyAxE5zM/xJxrJoR/EKuNCIYnf++EkxXg4Nk6nYvKxlsF7UDP8/EF6Ec6bicn6ShJBjfN73Asbo1tpJKjIjeZKPCeo2PdAP/4dpDlX50HVhvhE5G0i8sGs3d/FQuxhqE3238ZgoehbMQMvD1VCcw/qIUzufuXbc/nqFZEXiMgx3uaFWP+/jpqcKvAkrL8Ow+ZWyGxcuy7CNIpEUPt4f+SGH1go/VRvwwRgFSYD88miNQOhlQf1TazT3oMp9vdiiuGb7Z58hLHJP0N4J2LKBxoT8hOx+3w+8GssT7EQU6hgQnUycKyIjAIQkSPcXX+F7/M4zCrbizSgp2KD8mX/fpRYbP9M/54T1L7AK/2cB2PhqdcDD1UsotyDOgk4k0aMJynwDcAdvn1PUpL4YBH5Z2nMTUzCJs2rgaeREsDzqSeoEMacoBbTWOYe8efwoFb5fc7ALMaHsPDMscA2b8NsbALOw2TuZ0FSYuHCUzCvaDXwTRG5Pxrk4bRTgF+rasS6V5GUAn4vobAPxEhgK+YBnUCyHkdhE209cK6kyrEY23i0zt0YIZ6Gyc5YEiFOICmaGMP/EstxTMAIJmQm77O1/n297zNVRJ5ZMarOxdbdrMP6/Xhv2w2YLEau7wAaPahox1hMEf3er4HfwynAPwFXY8r/pSLyGrG1N3Ue62uB+SLyWKxv9yGREqRH4Rzk7VyHeQpHuxd5m4h8oea8genAFCfeaqgtCGqV3+cq4OtYIQWY/Ofh4MhBTSXlQh6iMU8WY3cg1m9xP1DvQTUL8T0f+JCIHOBtewgjgpDF+PwEVjhwDybTIV9x3mYENcnv/QQPz0V0J9r/VSz/fBxwKeYdzaCyoNYN6LdjcwBMXzxeRM7Nrh39V0dQUZEZXvs64CD3Fidj/Rce1FqMiP8FOFHaDB+3IqiZqnqeqt6vqmv98ysMYFUNFXxS3iki94hIHfMPhPCg4h4PwzyjRbiAiMg4TIAi/rvMPw/EBHMNPkn82GOcpC7FvKoDgd/5NcISniQi38G8qvkYuT2EEdaxwE/9HDNp7P/RmPc2FVikql/19uQDOQGzWqZhoYFqLmYcJiQ9WKXbPCzMASmUdQjwLiyME5hEUt5PyfpuAVbFc6SIvC/bP5R8laDGuRUXHmhYrZMxBTIT2OgEch9wI6Yg/oYp3f/E8jUPkHIZUQH3Jmz9RzfJoDjAQ2xgivkyVc2rvvo8KFewY7CcjWCGwPzsXl+BhVXAJuA4v/8XAUeLyNmY0ZDjO5hiX+ltDoLSrE+3kSb3WzEinEB/7ygIKnIJ40gLUX+NKfbRIvIbzDiZjpHYfX5OsCd6hAU8m8yDEgtdh7FxDia/+3k//Bkr1rgWCy0vwuTnxViRwkVYWHUvEfmEpBzC3t6Gd/v9dmPzJgypmdharT38nOswZfUuzFt9BI1VeVVM976cRiKoqge1nPTalFFY/ha/3moac1Dj/Fx3+7a7gENERF2pxr4XkMb6GIwU2vagSEbGHGwML8fIJwygE8TyfhFG78F0TRBMn6Hnnu63PJw31e/3qcCRGKFcjOkCsP66A9PRN2I678++7xwygnLyfDE2Np/2zXdj8+4p2b1Em6aKyAQRWYfJUZWgZmGG9f7ZfULKQa0Dnqeq/4fpzL8L4yQM/zq0Iqg/eVjvlSJypn9eiHX2sMInwBeBZ2EW0ctk8CvQN1W+PwbLfawgKf33YIJ4p3+fjYWfTlLVhZilFZPxAczi+TFmcbwAI6hf++8hrBOBl2GD/FVMAV4B/CtmrYAJfVRqRW7iT1iBwO2qus23raQ/Qd2LTbJD6J+LGY8pjG5MwVyAxXxzvBgTpryYIyamYAJ6rX+fjwnjU4B3ZtdqRlDjaZzIgvVfeFCzScbAEdgkWuOfoUxXYH09GvgLKdQ219vdnW27DIuvX0OqCsyRe1AxCWZg47YFMwCCoF5DejfUaEwRLvbvE4A3kEh9G6YIvu3nvdnb1YX15UJMDkb7/U71ff/g28eTPKhAhPi+DPy7t3MGKQIw2e/7GSTZWYfJQz7BY0yOwAhE3DO/DDMAorLxWZj3dhJwqaq+y9t6OCnPsTcWgorrH4zNmYgcjAbOx4yDk7AQzlL/P/BL/1xMCvFN9b5ci4Ubx4pXRYrIqSLyUZe1aX5/02nuQcWaoFCkoVgX0khQYSxN8+PWYvISRSR5RGMUng7A5upS+ntQ67H5F8bYGNLTLCZg8jAVG7N5mCER+d8vYCXu52He5SewefAn90ZzD+rRWH+f4G1foaoPqupaTO7G+D7rMble5fnX1dh8WYmNy6lYbndfjzbcj0VLrvHzrMHIb473RT+Cwqr5wlva7Pe4Kds2DyPbvKKwz4NS1dB1l2C1AVEwMU+arElrSlCq+v+wZO1YzKoaC3xCVf+t2TFDiJOBe1R1nqpuxp4e0HZizbE5+38TRlB3kBQGJIviC8DLMWVwg6rG+oi8LPLlwPcxgjrWjz0a+C3JIoPGnMVf/Zh3A78hDfYpJCWzxj8/5+fLnwxQR1A3YYriUEyB5CG4Bg9KVW/FFFNgMaZ4v0M9QYFZW1WCOgqbHGGdT8dCoLNF5Bb/fTFJCVSxD0YW07x9OAkv82vlizfDgwL4I40ERbbvfOAqLDx3EvAcLISQI89BRT/NwNfA+ITZjE2ssX5OsD7ai+RRH4WF0QKrgaNU9W7MUr8F6/MokplH8qBWYeO00LdHIj4PhUHyoBZgCuNob0+Q5hSSZRrh53VYeAhvR2Cpt3cxZqhMIy3WjsrQKM54bHbfkc8JgoLkDX+MlIf9R/8c4/t+AfiU98tVmIW/xfeJPElfiM/vZRympCdhHtXFvt8/YN7dVD/HAm9T1YOa5fcZYd4zgZ+TIgXhQR0pIouwcR/n11/t7fkURri9pPVr+Rq7bb6tb22hYzwmo88hhfAjfDoGk4F7sKrGr2L9ew+NJdjnAh/2yNRGUojvKBrJ+HnejuOxeZdXhN4CXKGqf8PmxYEkA3ANZiD2YOQ4CdODh5KWfRzq151HIu2D/DrjSZEAMBmKhc8HkTyotZiMnobNv8XYfFzo++6JjeW6rN1XkHTwY4DlqrqMGrSs4lPVW1X1y8A3VfXLqnpLq/2HEPvRuFp6ITWhABE5W0SuE5Hr6J9M3pL9Hwn88KDmOHNHwcDemCIR/wzkZd53e8jzK6q6DrO+xmHe1xHZ9SaSkvS3quqrVPVqzNUOz+PxJIIKi/Z3WH7vwuyaOZmCTa4/kQhSaSTEqgeFfw/cjFmH7wCO8PDBKEwIIw69F+bRbMNDfBgxLQSeKvbU8ukYUc4mVRsu9u2fpP4ttasweVubbbsCI/DcEFhBEu4/Y2G8d5GSr92Y5fkBb0OE9A7DQjbVa+YVhFFpeCJpkeYWTIHchY3pezAluIE0Nk+msT9XZ9bgvVi/9nh/9GB9dgmmFEOeevz/ydg4jsImb4xPeFDLscl8CMkLgERQ38FIOdoSVamXk/p2IaaswirOX+ZXXTf1CBKxh3Jbkd1vGFBHAk/APKLj3XMYjSn3C0jK7mrgdG/XQiwvBv09KEgEdSD0hWGf6+d5DUYy38eUfBTTTBdbDDoTI44gqAWk8V/txy7H8mSzMdnbk2Qknaqqd6nqFzE5fALm1f23tx9srm3C5vjBHgo80e8hZPTR/hkEFSGtezCPA2/jPVhOKMbos1muNO/nOTSGEF/p9388Jk9Ls2MuIBUcBEGFvK3Otoc++gUWGo+82mG+fxh6azFduCeJ7MLAOxWbF78jEVQPNv5rMbL+PTYmJwNX+vZ1WP/n8/5WEmGdheX9a9FumfnV0n+txHCiLiHbbz2OE8aJqnoiNqlyhKW1ldQZ38Y6/TyssuYQ7JlxPyYNbE5QG7CJGsKe4zJgiapucWUVAzARG+BnqWpOst2YgF2HhWli0FYA7/A836tVdX52TDMPqsuvcTdW0fcnd9sP8HNGDiquG+da6R7pCtL6kY2Ywp5P6uMHSOtWwoP6KSaEn8Ks8VtpDFEtxojzpTSSYn4vZP2Eqv5MVc8nGQIPYdbUWt/vDoww82rFblV9g6pe6O2LkJaSvInANVjxSTxtYAk2+R9JKnXf7Nd6JKbMzvXtG0hK4zCSV3kfjQuA/wH4P6yfI1kfRsZcGgkqxnM8Zo1e6NfeQvKgVmD9txemjEKu45Fc80iEss6/gxU3xCO9FpJk4UEslBNe14eBf87atBGTKWgkqCV+/Xju4Rxv0y2YrByD9elGEkmM9d9n+jmPVdVNWBhtibcn3n+mWJ9OIoUxJ3jffBZ7XNGlnvc+F/NUHsI8is+QQnxx7Q0k2boUU5DfwpTx73z7enzeuZEZWOl98ixsvEKhf8Xv8f9Ieb4j/doR/j3Sjd0xpDBveFBgxuA3sHA12Jzd6P2Ro0pQKzEyWYXpq2Mx/dHnaajqClUNOa4SVJwvPKitWArhn7D+vh0br1Wq+pCfJyeRQzDZmYzNs7sxnbkYI6gI8fVi6ZitNHpQv8cKQ7pJBRTR7m2kHN8RpGKufmiXoN4DXCwi/dZkeH7qijbP0y5iggX2JwlEuwgrZCVmgTxDVReRPIXHYZPjUp9EoXSqBLVMVfdX1apX8CuS4IMNwEo/53hMOebowQjhXszS+zY2wTaq6uea3EOeL4OkwG7Cwp6RM3g8lgu7FBOSOg/q/rg3J9SbSVYpmKILa3yRqn7S7ynW9VxJykc8w++vC7Ncb/B2RR6ubq1L9Ou6mt/CknwD5r2B5QHvq9k3DwdG7nAVMN/HsQ+q+kusr5+MKZAeb+cxJAWxGVNYW1V1m4/zFm/TfGxyj8EmdBR3rMquEdftwT0mVf0C1ifT6O9BzfLjzlfVV2JKYRn+DECS1YlvX4kptPCgHiCN7TpV7cFCSStIZBbzJ8rQT8TCzXh/RFjqBuB6VQ3vPyeo27BQ3bsxbzDm0wOYsn2Mt7c38yYPw+QBzJAIefuyK8H13ofjgc9jHsoEGsvE12HEsjcpfxVPQQmlOxkjiWWkSEtuUPyXqv5KVTd4GDaUejcWianK4EqSobPa+08xY0mxuXETVkzwGqw68SJMES/FlPlo77cII8ZcutNl6hf+fRW2Tq+qT1ZjsjWHtJ5xPNb392LEuKXideWohviqHtRyVb0Dk/fjSUZJru9ygpqBydkkP/Y0Vf1Xv985pBBfL5YKOs37agk2X/6WhR73q5wbVb3I+2sq/R9I0Ie2CEpVv4253p8XezXC3l5+ehtW/fPtds4zCFwLHCa2CHYfzCpv6yGaGW4kTfB5qhox7oipngd9yhr6u8ZgHVfnDaCqt6lq/hiWdaSy1vE1x3VjQtyDJWDfhU2qajFHjuWkdSCjsUm5AEuifxabkJFLOhH4iAv+NSRFH+14gEZhvJHGZOZd2TGRz+jFFMUKv24X9vDZ04Ef+ffRmGdV10+5VxvXXluz3waMFM53hYsrFrAw7D4kou4jKFXt9rZ+z9tTh/uxiXuy38+D2ARrIKjKMZuADar6dVJhyzJMUfyZ+me4xSRbnX2fSlIY4UHF+qXAGm/LQZiHq9nvSzEFdQl2/wcCDzghrsL7XFV/68fFtRZhRLjW/z+OFGrbqKrRDz+i8VmLMUYr1HCbh6fnZ/vcTyKo8KDAQrtfwZT7QzR/KOxdWIj0Haq6HBuTyG2OB9b79if4feMeNaRw02TM2Iv5DY0eVFWJ58ZaM4IKjPUowxJcflV1gaoe6/3wJOA8Vf2156pvwbzvMdh8nYXJVBjU8/0cGzGP6GPUP4H+59i8noORXBx/p9//ejLvqQatPKhbSM+lvMfPHwSV67vqPLgH6+uN2bYlfp0+gnLjLjzGxdj4h+fdTariq6KXAQiq7XfJqOpfvNLmaqwi7W5sweEPa6yBHYKqbhWRt2IFCHsCX1NL+A/mHFdhCxY/QWNu4u2YINyPud6BGJyqB1VLUDVYhwnFk4BNmVUaiEHoCc9ARHpoLOaoYjGWfASL8c9Xq9D5gx+/mhRPvltV7wVQ1Y9k5whFcQXJugUT0DO9XWdiRsEczNOMe96C5aKWZ8f+RVV/74QZT5CIUFGOLVgfT8TkrBVB9ZCUcwOyvlpNY2lr4K/ARap6WfVYx4NYFdSxWKw9lFfE8rfUtGljtl9M9AcxT2VJXTtJ4xv32Y2HULLfV9OfoO7AjICjSGHkPoJS1fNF5O2YlT6XRBavov9TUeJaC7Ew+TqMoMaQQoFR8Xc6cEvlXnIPKkf0z39jxs9kLFx0Ex46VNX3xM4ispDmBHU3jYuno1CkBzPAuv18VzU5HkypjcWJVET2dp0R7eyt7D/fP9dj3lp1vOO+3wL8wP9/Ef1f67IQM+rzkNStmAEgWFHP60i5P0ghSFQ1ci39ZFVVrxGRv2IPDj4R82CfTooS3FdzXznyEDNkhpKqPkh6/c09fv6QhzoP6k7MoL0T02d54chSv87fSDmoHEuAuzJPL+ZFM8N0FjvqQYm9ovsTmPV4hf9tAv4w1OQUcBf9cFU9RFU/ugPnea9meR1VXaWq93k4575s+zZMsKpFEnXMX4d12OTranJMTNjcuuuhtQe1BHvsimBEdGfl9/Cgfk5aU1FFD/ByVf2kqn4/2/43LISzSFV/76R0K6m8NrzLXlJOYiuJqDZhxDOWRk/zPiy30oNNzlB2a7CwSTNBrSrFBnhbVlBRfKr6vBbkBGZ1PgozdHr9e7d7X9DCg8raDVYVubgJOZG1a1Xle9WDqsbjX4cZYnNISm0DZoWGxbyKVB4/z4/7pablCIGVflyQ7zpSMj8vmUdVb665lxUYYVeNsmjvh9Wqre4kFTdUDRMwGWlm2N1F/7Fe4vvPamSlnmwAACAASURBVHHcYVgUJ+5hnRtrxCfNPaj/wTzoFZinWudBKfBVVV3j5/xLTf9GX+bz8BZM4fdiIcCzsDFYDNzfIiTXD369azDjIdIHca15DOxBQZKhmG9VArnH2xZjUEdQZ6rq07B+nETjGC/FDKo8xJfjj6TXmkCqFl1Ef/RiXvOOERRmqR0EPFVVn4GFdK7BiieG8g2ZI41FNFbJDMaDWksK19QRVE/lM87fiqAWY57T7ZglU61SC4K620Mx/eChmrpXZtyEWX2Ls30fUtVfVfbrxSzVbZhVNT/OiwnoZif7rb7vOWq5led6u5dn5+mlvm8iDzMQrqVe0FvhQVKp9Eb/no9x2wQ1wHVi/zzEB42E1SwPF+HACClFmC/auRJTgou1kmerIB4TFfcTIT4wuXw/LULlEVqrIa5o72rf7yE/71zqrfr7aD5vbiTzKhwLsP5pSlAeQrox21Q3HjFWDaSgqptVNWRnH+oJapmH9lohCKrqQZ2IhU6Xehv2U8t3b49uvBKTgxu97SEz99Eot1WEXEQodzUWpq46EHdh/bACMzhzg68aRdqAhZarIb64Xjf9+3qFqv4i2zQXC0vXOTIhOzsc4jtGVcMljAn0ThG5A7hMRF6hqr9t81ydjJPU4vOBsGTbwXJSiXRdv4Yg5IPRQyraqMMS0oLNg7EQU44FmDXZjnJvgKpuEZF4pE0rhAcFFgrMn6PXjYUAA+uiLap6hVd+3o95MBswQa/zoP5Ai7fkZm1+wUD71CBXZOFB5RVUdSG+KHog+60lQanqNhHZSH8PKg/xxXWfUDk89s09i9+TLVfAxv9iWsCt9WeJSOQlI8QHFpr8WKvj/Rx1obV1WG4ol9WofKzzoN5H8xDfL0lro8AU6Y+wdYaxELsZQhkuo/4J8c08qEAQTJWg7qG9BxAsA96tqnnO6g4a1yedh6VAUM+nDhK/BCaq6gJpfMzZV2l8hmAVh/o1w0B6kPo++gVGfuux6ElujKzFxjOIPmS36kGBGXZX04JcHI8l9XsVQ0NQOTlVtv+viNyLrc3Y3jc3dgwq5AQWsmv3VeTvw5T16dS/DiIGIZ88G2jyOgtvT48/WuSXwMe0/zq0S/2z2escBsIfaC30kBFUzfW7aSTwdTQq8i9hivY5JA+qH0FpWrQ7HKgS1P005uK+S/+ih9yDikKMdvo4KvXiOLLvPar6kIg8msZXEoDlxiAje1V9Yfb/AhG5ksYF4a2Qe1ArMC95sFWw1fOtqtkGNR6Uqja9litEzb5P9hD2GVj4c02zYzH5+gJWoFFnMKzF+rCa/w0syvbL23Q39oSVlnAv4NzKto2eH40lF+/Dqtq2Cx4Judr/35RtH2jsV5OtHVXVZWIPs66efxNeAi8iR1d+2yIih2SGSMh8TlBBYptU9SZSsUWz+7myxc9D5kG1asCl0t5rwR92UFuj0+6+G6EvQVz3vpNmHtRA70ZZDFxZQw6o6jx/+tD2vjbl49SvOcuRe1BVdNNIsO8jey+NWuI6QjYbaB7iG06EIovr/4AszNVkjPuKJFwptfs24jyMF+Oc56BQK71teHePGyIDvejyg9R7K3WIPl6nqioiBzQJsbSLdTQnqHbb1BTexlij1PR15q443yb2KodmIb43t8gTNvOgdhQX47lb7+edLeNghUANeiDLs9ai7veKcREElROlishSWqcm2kUYgU2LP3aYoABUtZq8353xAI1VSoG6HFQPjc9Rq8PFWOKxGR5F+5Z1Ayohm2YYiKD6CE5V60q9e7PP22ihgIYJq7C82TKsJHYbA7/Zc1Mb+9QhKvUgGSTVnFQtarz36u+Xtvq9gl7Mk4jHSu1oIdNfsQfM5mjqQW0n1mP51JZK1bGKGo/W7/O8/rv3ITyooSaQj9P4hoSdjjbyZ9uDMAKqRsgSWlcft4teLHdXLUbpw5AQVEEDvkf9a9I3Y/mmXPH9jgFCiKr69gF+H+7HT91J/yc0BLoZ2HsLBbZBVQf7PMUdhgv/XBH5Ee0r0+0lqG+QnvKQGyQfoT3FOyRwKzeexjEU51uNPXIox5B5UI6Bqvhy3M72GWUPkELNQwZVvZH+r77ZFRBjUZ3jQ+VB9TKA4VYIaojh1Tv9Ks1caXSTDYiq/nEnNm27oKqvafFzNwOHKHsxQR8qRba9WMEwE5Ta0zcC3cBW91I/0OSQ4cTPaJ6cHgoMtQcV68YGJChV/fBA+zQ5bq2IHNEiBFiQwXUWNL5VGsyDGor5XAiqw9DDwFUvDyd0M4AMeR5qzhCEmXYUP6P9JQMb2fFx6mYESXkAw2IoMNQeVBRHDKunqY3PxyxoD1WC+gRDl4NqOc+2N7lesH24gYHLuh9OaPAImyFbyzFiUFvY+qc2d9/EjnsGdavsdyWsJXmIQ4EIi7drRBTsPDQQlKo+oPZ0ih1F8aA6Cap6xki3YYjRTftl+A8n/Bc7bkjUrbLflRDlxkOFKEcuOqmzcAP+aLVhQCGogmHFEpqvOXnYwkvBdxSxcHtXxVqGkIB9jdgx9H+cV8EIQlWPH3iv7UYhqILhg9rL3gpq4GvUTht4z4cthtqDQlUHfJpIwS6FAXNQhaAKCoYJ2vq5eQ93zMNer1FQsL34LenFobWQXaXiUkSuU3uzbkFBQUHBLoBSxVdQUFBQ0JEoBFVQUFBQ0JEoBFVQUFBQ0JEoBFVQUFBQ0JEoBFVQUFBQ0JEoBFVQUFBQ0JEoBFVQUFBQ0JHoOIISkU+JyB0icpOI/FhEJo50mwoKCgoKdj46jqCAS4CjVfUY4C7sNeIFBQUFBbsZOo6gVPXi7BH+VwH7j2R7CgoKCgpGBh1HUBW8Fvh1sx9F5GwRuU5ErgNG77xmFRQUFBQMN0bkWXwicikws+an96vqT32f9wMnAmeVVzQXFBQU7H7oyIfFisirgTcCT1XVDSPdnoKCgoKCnY+Oe92GiDwTeA/wxEJOBQUFBbsvOs6DEpF7gFHASt90laq+cQSbVFBQUFAwAug4giooKCgoKIDOr+IrKCgoKNhNUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAjUQiqoKCgoKAj0XGv2wiIyHxgPbAN2KqqJ45siwoKCgoKdiY6lqAcT1bVFSPdiIKCgoKCnY8S4isoKCgo6Eh0MkEpcLGI/FVEzq7bQUTOFpHr/O+Wndy+goKCgoJhRMe+sFBEZqvqYhGZDlwC/JOq/qnF/teVPFVBQUHBroOO9aBUdbF/Pgj8GDh5ZFtUUFBQULAz0ZEEJSJjRWRc/A88HSghvIKCgoLdCJ1axTcD+LGIgLXxO6r6m5FtUkFBQUHBzkRHEpSqzgOOHel2FOy6EJE9gRNV9eqRbktBQUE9OjLEV1CwE/Ao4IKRbkRBQUFzFIIq2F3RBewz0o0oKChojkJQBbsruoC9R7oRBQUFzVEIqmB3RfGgCgo6HIWgCnZXFIIqKOhwFIIq2F1RQnwFBR2OQlAFuyuKB1VQ0OEoBFWwu6IL2Ed8NXhBQUHnoRDUCEJETheR54x0O3ZTdPlnRy5WL2gfInKZiIwZ6XbsLhCRPUVkp3BHIaiRxeOBp4x0I3ZTBEHtNnkoEfkfETl4pNsxDDgNmDTSjdiNcCXwfzvjQoWgRhajgLEj3YgdhYicMNJt2A4EQe1OeajTgDkj3YihhIjsjXnB44bp/OeIyJOG49wPY5wMPE9EDhKRJw/nhQpBjSyGlKBE5Mki8vOhOl+b19wHuFZERrW5/6tF5CvD3Kx2sDsS1BjSfT+sISJdIvJB7J5gmAgKOAaYO0zn7liIyBOc/OvwoH8+FXjTcLajENTIYhRDqzAuBJ47hOdrB12AANMARGQPJ60GZDHrTwOvy7bPFpEhzQO1GR/f7UJ8jCBBicgBInLAEJ7yCOBtwL7+fbgIahwVI9JlXLLvc0Xkm8N0/ep1nzHc13Gch5FzHYKgxgDjd/RCInKDiMyo+223JygReWOzztkJGJQHJSLTBthl9I41Z7sQCm+6f74Y+O98BxF5I7DNJ/VkYHn284VAW2ECEZk2kCIQkdcC3xhEu/vIVETGi8iV7bRlpCEih4rIBwZ52BhGLqR8N/DnITzfTCzvFPfTBRDEISLH1RkqIjJKRA4cxHXG0Z/UP0ZmZAH7AycN4pzbi1cCv9lJBSFdJO+0imX+OYahMQyOBNbV/bDLE5Rbbq3u8w1AvxyKiHx4qC37Ggw2xPdHEXnEAOeLuDwi8kwRecH2NEwMAxEipMk7LfucWtnn+f65n3+uzH7bj/atsPdgk7QV3gw811+n0Qp1Ib4Z2FPO2R6jxcNOlw3ymAnRVh+vfQc6xvET4MODbOJIhvhGAdu292AROVFE8rdqz8Q899n+fZyHmRf4998Aj/BjDxKRz/n25wJfHsSl6whqlv8FRtfss93wez285qd/9M/pNb8NNVoR1Hr/nEqbBNVMroNsVbW37vddnqCA7wGPbfH7RCoK1QX9A8CUYWwXDJ6gptI4MfrgSm4MZonEOU+nTe+kBm8kufKtEAIak2Ys/e8pJtssYAmNFVczSGGagfAMABGp9RRFZDZWBLAE2CoiEwdo91oaCWoSTvLATSKyX7+jWmMm8LgwiETkWBF53ADHfBN4mv//aeDUNq8126/Rbu5P2EkEJSKvFJHH1/y0aJDnyWX9hcBZ2feZ/rm/fwaRHODHzcC8dYBDsHwJvn2aiHxRRKqGVB36hfgwgyo3qkbX7NM2ROS4yqZ/BOoMy2lAL3YPA51znIhc1Ob1R4vIs7Lvgt3Pvh6+rJJQzJnD8fkvIvuJyCGV6//Y//93oKfJ5ScDq5q1bXcgqEm0JppJJOsfEXkJ8G3/2nbIzAdksCG2BoLy9QV/JyLNPIoJ9PdOAl2YEKwHukTkY8BBwAQR+XkeM69pe51FdnY7N0D/EF8fQYnIWSLyOlKSeQZwOzBZRD7lBDIh2396zWTIEb81Kyk+DLgD+Ih/7yMYL844y//fCxvzB2jMQU0C9vZ2TaciNyLyWRE5QUSakchkbE5FO6+iSVhLRGaIyPnYeMb9TCV5BAOhCwuVhqKO8NV52fdcHvfBPI5hISgPOR7qX08nMwpFZIL/u3Yw5wP+km2qEkXc9wHZ72HonOKfk7Lfck9/CvASLLQ0EOo8qPGY3Aa2m/g9wnGDiMzMNo9vcr5pwC20QVC+z4vdaBsIJwLfyHTEPlhl5L7YXPq7yv5BULNIsv46LMIR2J9keP0zNM0N7/YENZ4mCs07bDyNSv844Az/v13LHmwgX9vuzq7kqh7UUcD3gS+JyC9yBeOW8igyMq1gHEZOPcDxwPuAx2FK+rk0cdf9GvdlYaZ9XKEcB2xpcsxemTBXQ3xd2T0dAzza/38AUyoL/LzvwspVIfXzJcA90rx6qAsLDzYjqIOBear6HeAKkgUNFsZ9jP8/C/MOe+jvQYEl4MG86xzPBd4OfDDfKCKneH/E8fE5muZe6KHAMzH5G+uyOAXYX0T29RDrQXUHZl7TfGC2iMR9TgVe70R1KHBddliMf0tLX0QeKSLnyeALGl4P/JP/30XjnHpBtr1dzMLuLeQsJyDo70F10ZqgQpFOJRkfDcpbRP6fiMzNvu9NfZSjzoPaW2qKgyrnP19EqoUHYQjmsjq+ek2fnxMxA29G5TcVkeqciOPb8cinY/M370uw/hxDf50zCnjIt0e/zsYM4sAUklyPAdYAR9QYylPYHQlKLKH+BpygfMIvrrFU+irQHHNISut5uevb5DoiIq/EBKyfJyIib66GinyQLsMGNRfEgzEBfAHwHDLrmGSxNfOgxmPhvW7MOsSPD6E7R0T+oea4SZggxvlfi1XwQIo1V3Ee8CL/v9aDEpErMHIML2Qvb89SkkAe65+hWGZhpPGkJtftwoiuGUEdAtzr/6+k0QMaQ5rYBwL3A5vxsXblEnIQlnWVoCZiY9Q3EV2ergL+haRkJmYT8W4R+aD0z4lNw/o8lNEkbD5+HBvDY4BLm9xnjPVirI/nu+cZymIWRoC5wgiCaiAJEfmSiOSLxV+MkU3Vah4Ik0ih3C5gqoicJPaklP/GwlYTmh1cg+mYdxtjkBs+YLK0kMYQX8hRKOWQky5S30zLzlMNl78IL3ZwIgkSaseDqtsvDL6QhROxcclxGKa8c1mr89omYR7oYjKCkhSmrMpq3ONjaAER+TzwGv96fOU+9sXIt6pzRmHzayr2uLBRWF8e5Od8Asl7ijG4HbgWSx3kGFoPSkReNdhjRggnYGWo47BOOgXrxLyCJzpvuojEgM7Jfj8DeImI1Fr1IvK/wKewqrEJ9BcSMPe2mgeaiCnGyVg47tUuxHOB35FCIbmCjQkR5dxPrFgjuQf1dGCFbw8r8RRqikFIffBoscKAR2MTaQ3NQ5xzMDIAE+YHSQQViuQkv5/JmLUVBLGM/gQVltYk4KuYYdCg0CUtyKzmsOL3J2LkGgS1ikardHTWxoMwgtoCHOkT7D/8D2oIyvs6CGqO2ON1vo6N7QrMqIjrTSIpkbXAh0gJ+6eKyKexyR3ENJZGI0mw/m2WDB+HEdQS4Gj/vj+N1uwBmGyF8oyxrCq+xwIvE5FXeR8/Dri8xbWbYTLJ8wwP6irgF5gh8CcGV5Ic149+rPOgbqUxxBf3ehxwH40eVHg4eT9Xw1+TSPrhp8AT/f92PCiw/u4SkTznfRVwucvPFLI57f19AHA9jbqjnweF9ecKbP58RER+4MeHrI4VkfeLyGnRFmAjcKpY+PW3lfNFBOllWEh2KynaETIyhnqC2gcjqNBJ47C+PNDv89Wk9VGzsTlwn5/rnRW9tX0EJSJH1fw9Eqt6ezhgGsmCnAi81P/PlX4IxRlAt4hsxqyvhb59JqbYD8EUQR9E5FjMPf9nTKHMpFGhfUVEzsaU9FG+LZRueEaRs7gAm9wHA/NIjxGpI6ipYjmUS2j0sMZjBNVNUg6QlNZc4GARmSqNlYAxic/BFPwx3o4FwJgalxxMecTkDq8m2jfWr7+37xMu/Gj6e1AR7tjX27Eem6xHYEUOL4Q+cpjm97YaOMzDMXmBwLswA+Qu/96uB/W/wLnYRI++OBKrODtKUl6lC9jTrzEGk4sXYgT1KxLZQCNBxeR+spPFIRgphKKM3Mo0Gqvc5gLjq2Ej9+i/4X21mKRUXgc8z//fj6S44zoNVr6IfFdEpmDGxuuA87E+PAWrEJwlIieLyN51MuBytEJETszueY6PSRdGmKFfFmOEOiE7/iix5QfNEO0OoqrLQd3i1+nFZDbCcxOBm2gkqPicBqh/rxLUZBJBTSfJ50AeVBDUWOBMjJDCGOzCnuBxACaPk8EqC4G/YYTzII1GV10OKghqq38/xs8bBNWFpRmuEJE7MCP1Skw+HoEV71TH8WQ/72hs3swQkefRvgcVCIIa5fvuTxq/2djY34fNk4doNJS324O6ChPYd2d/76IxbDBsECu5vdO9l/duxylyV34SNqDLaVRak0g1/ZAS5u8FbsaUTAhAuP6vF5FPYkr0LoycwJTCRLGFp0/BrIgvYX18lO+z1d3fIJbcQzkDm2DzVPWtWC6qSlAR9z2AxvAHJKu6279fXemPqdgkfjsWRsr7AL/P6SQiXoxNhn2ksbwX+hPUYpJFOZYUIp2NCeBqTHhnkTyo5Vi/LMHG5hzf9gDubZA8mtOB35II6tPAf+K5Bif+x/l5rvVjqh5UTlAH+XU2+/cnkpQb2AR7AHgH8M9iRStnVvrgd94/z8BCcWOz600kEUJM7s/7PY73a+WTPkj9Dv/+YNaeSyIE50bRM7GwzTpvY4zNP5HCruFBQX+CeoSIPBsjs5Mxr7QX+DrmOXd7O56JeT/fI1VPzq4YWVOA//HvIUeHYjJxLEnxLMas6PEi8jQRuRC4Jju2Dk09KBEJY+E+b8cyrErvwuz4W2hOUPMxWZstIk/x+9rb2/1IEXmMX+sYYAONhUxRPJB7UDn5x/+xoHY65ukdg833kJF3Y/J/ACbTVQ8qDIlj3JAIgvoV8G/AH7FlBvFUli6/r/8A/oDJ61LM4D3d29xHyGI5q18DP/RNd2N9+RNS3zcQlHv/Uemak0pUQt+Gza08pbEfJqvnA+/HPNPni8gc9+C2m6BuB96tqq/J/4AbWxwzJPBJ8EXgWdggvkxEjmp9VD/kCmASpvQux5W+WDL0m9jAQFLs81T125gFFoK5FXi2iByPCcVrMAVyKcmiiYWDn8WU1/UYgS3AQlaxqPJ0Gj2fwJkYSczz71UPYAJm9U8lxbGrBBUhPoCLgd9XrjEXS/QfkW2Lc4zFQiPrsUn5IKa4DgCuFi/59bHJq82CoMZl3/M2T/E2bcYU/3Lgk1heYk8sF/dYLEexAlO6+/nnwW71HYnF6nuwyQzwcyx8cSb2wN0HVfVmVQ3ruM6DmuaT4lGY0giCehSNBDUJK4ke5ffw91joMbABMwDmYRb3NSSCWuvHR8n/NL/OMsxyH+/b5mTnCw/qeowQNmfteQzJKPwbFrbe0899L0mW9s72C4La7Pd8MKa4Nnp7/8Pb91jgHt//MiyHtNLbOs3/HptdYxHmbYIprhswj/4Uv/e/YjIUsvArv+fFqrrJtx3p9zQWeEgMUZa/h4g83febjimuOg9qBqZ8F/v3uhLmnKBCJsdhsnuXt/0wbK6+kjQPnoJ5HmCksoRGmR6Pzfk6D6or2z5NrBp0T0w+onDjLBFRLKLzCkzu1wBnZveeh/i+7u2bBixX1Xmq+nHMgH6Ct3+eX3sS8DlsTPfHdNpfSWR5GICIfBGruFuCFVPhfTLH/4/w/b64VyRWOHUptqZxHxKpqO+/2ttxACkvCB7iU9X7VPVmzOh5JmZcPIkdKJJ4GtZxDVDVnfF6iJOBe3wwNmOT9nkDHFNFtfChCyPXIK6TMEW4DEsK7wWsU9UYnFzov4YJ2veAT2BE8TJMEILg9sCE/AH/fhtmyfwK68eo8Dua/gT1C8ziHI0pTqgnqDuxAQ+CqoYFwoPailVwnUEjRmEKZK6kRcj5OY719i/G+qUXs6rBnryOt0mA/Tzk+xT6e1A5xvl5NmKKZa2qXo0pYzBLMDzX5aq6DiPJmzEimI4p61F+b5GH+C4Wjv134F+z8wXqPKi9sPE/zvfPqxTHk8Z8Ekn5TcRIPfd234UR1jxsoi0jhfjuJRHUKr//O72Nk0kK7MTsfEFQi7DYfXhZq71vptSEZ9Zj8gfWT3gbe0ghvluw/ns/VnQTT/CI3N9pwHxVXeNtPYyU5wjMwPJ0/+Lf3yqpMqsH82bf7/f8G2xMQqFf6+eKvlyLefEHY/Nmi9/7NveKjgd+6+Gv6aQoBjTmoCJUfL9/v5LGgp61WJh+ktjDTIPsZ2FyuAQr/48lAFtIxkWOQ/w6uUyP923jxJZyQKMHNRGTi2mY3Nzn9xoEFXP33ar6bVX9GjbOTwde6iHdUVg+a3/vk+P9fJFXBhtbMIL7i1+3y+9hNWl85pEM0sPc0HwzFp5e7X2oNBJUtDHPQb0m25aH+FZgYcQF2DgfTuNcCQ8qcC3wSP9/C2YA/Y0maEpQqrpOVbeBLcJqtt8wISzowEIa3UYARORsEblORK6jf5w0CGop5oXdgXVmKP0Q2uOxdU+jaWTyDdn/16vqGap6uKp+Dgs3hTJ/DUnQJ5Ks8ttIifdnkyb9o+hPUPdjHs/3VfUh39aMoPYgrTFp5kEt9/P0YmHBwEswJbQku/+coMJzWEIiqOMxQXqipAWQ8/weLvDfl2ATNsI7VWzwc40mKYFFWEjivmy/mIAPZL8dm7W1O7uf6/zaB2Ehujsr16zzoMCstsWulGOsLvbPqzAlPpGkVCdheaYtpBzR71R1sffDzVifd/n15mEW4hySPPVk7QkiP5AkExHiW46vY8Os0IhWBLFtwqoFN2GTfinWt/kEX+BtnozJ4DT86RgkggqD4FQSya3EFM+KbL/o68djYe9ebGyOwMZyIxZiepLf1yUY6Y32892Ezd1YoLuOZJ3fiynIWKQ6AVPoD2GG1UxM8b5QrOQ996CqBHU38HL/f5Nfc7W35fekRbr7Y/J3PvAjVf17zMCZgpHXnZhXA2n8l2Bk8XSx4ofxJMP9fWLLNKoe1D3YHP1W9v0UUrTlHar6dRLifHNI3udYrKLyJkzOo8AocD3wVVVdgM2L/THj76HsfN2k+XU7ZpSH7hgLrHIH4JOYHIc+OYRkDI72e3gpNj9m0RjiexCL/vzJ++okbFyWYjIQRRIAqOpGkjF5rJ87wvL90G4V39Wyc1+pUJeY134bVM9T1RNV9UQarQuwibmR9OiTP2Ad9iKxpyAfgg3KR/wxGxtpJKiwpkPgc8TjbO53byAEZxImwDcAv1HVB1V1GTbYE7N9TqWROH6NFVzkz1arI6i1mNJ6HiYEE0XkOWLrYHIP6kHvH/Xvm4BuVb1IVe/BrKUjROQMTOHlgr8II/N5mEI6wdt3HObtvMKv3UNSEOuxMbsEI5NqeXoviSwjlPo3TIHkhkCVoBZgxkA8Kqnb+2g6Kf8QBRlVgloKHC5p0fMY75enkRT6Zox4Xg48W1VPxyzTPUhKda733/zsfiPM+DPg66q6BVM+M7F+OwEzXMLK7CF5dKHIydocHtQKNwp7MSUQ5DEF84juVdVPY+O1zsf3XuAiLKcBJqtRvn6v91WEx6N/V2HzaQxJOfRZxK5E1mKhKTAjYCo2Ln/BQnSjgV7fN6II12Fy0oOFkK7289/mv6/DvCf83laTyqDHYUT3v1hEYya23uxHWJ5kL8wjuppEUHE/QlKCD2DjNA/4AhadiHue7f12uarent330zH9sMrD+8swo/PFWK5zNCaH7yXNs0CQ9VZsHIOQ5mAk90q///GYDMW95wh5muP79frnKsorOwAAIABJREFUm4B3kgpAlsYB7kC83r92YwbPqsr5ekgE9V9YjvI4v79Zsb+qvpdGHXAoNleCoFZiXs93sL6PKj4wXXi0999ijIgfwMbxWlKRRI4f++eTgMsyo7wf2iWo9wAXi8iLqj+IyJlia16GEgtJSV4w62Bxk32bYSo2cSKn83FMoKdh9/N6zM3+mv++ijSwkBTn60iEFLgSs6ZDYa0jhSsmA59R1Vuy/XswRbEeU/anYKE/gLGq+gtVXVV5HlWVoCZik/Amv/YPfduHsDjyazHl0UPj4tD13s6cfG/FBO7j2ESYRxK4xap6tqr+BJsox2GTcw42Sc7GhHkt6bFAW7wPIgeSCztYX24kKVXUsIRkCNyAGQxgucGLaVynsh4j2Y2qulxVt2IKOLyau2jE7X6OiLGPwQjv0STvfAtmda5U1V/7tsiVRJHITKw/F5Am+xq/hyu9n/D72B8rjPk6Zk3XeVATsKUJ+/v9rqTRgwLry2UkBRzVZdHupSQj4MeY9fpd/74IkzX1NkdFIsBeqiqYPER/RTFNHrIBK+r4DEbmkW/MCWoMNqbgBKWqG/we1qvq+araq6pvVtU/+H5LsBDQYswIygmqy+/z6369S926/w9S4c4oLPw/F1ia5Runkgjqh8Br/dpvw7yYuHY13BT3HV5c6MP7sZzmD1X1Jt/2UyzM/x5v90Xed4/0vlhBCvEFAf1SVf9EIuiYz7EUIrAG68v9vA8W++femOJf4P1UnVeBbmzuxRiuzraHzN6Eke7L/X9o1Al5ePMQbByDoE7BvKQF9PegPo6R32VYH+8P3KyqH/Jrz66cG1U9F+u/adXfqmiLoNyqeC7webFa+71F5DUicps37tutzzBoXIvFS+d6TPalmLU6GEzDw3qqKqq6muT6vt0/52X7r6Y+xPdzVe3OtqOq64FjVTUsmnXZ3/70nwTdmOfUgxV/vI1kPW+iHkGmgbmYBfY7rPppGamc+Z3A+ar6R2zAc0EOgsrLQm/E3OtQUqswJbOVxuel9WIT5TpMUff6/x/1e5oBvAUriw8vCky4eyvn6aX+icXRz//mcoaqfkdVb8RyG6/CrNB7SN5X4E7Myt9ChaBcef2OVDY8Buu/o7GJBOZBVSdIjMfVpCcgBEHdi5Fs3RM2urGJ+yCmyKfSSFC5B7VOVRdh8hg5jmk0EtRSbBzvIXlQYRAt9X1Q1Q+q6g3ZtRaRZHAxluuK+4381/1Yvy0jWfVrMSJb4ef9d1W9CAv/xLj286B8e3ha+Pmq4xS4G1O6r8JCg1UPahwmpx/CLHDco4xQZ/T7I2iU8YguAKzJ5iUkslhM/dxciXlnkHIj99MYkZmNlXCfhoXbXq+qL8GMzKOxvgiCCg8KvG9dFr+IGREbaQxrg/Xrldj4H5nd2x1+7DxMnpZSj6oHFXqux4/ZhMnlnZgeCYLKDfLol83YeC8jEdQCNzKWYHK4Ldt/naq+y3VkOBERoeih3oMCm/dTaf6MPmAQC3VV9S9YeOR92GC8BROkI1T1S+2ep81rbQXeilnutwMXqeqtrY/qh1f7sTnp3IsR3flYtd387LdV1If4aidbpT2R2F+DWTLVAYlz9ajqVap6nm/bFnm+GiyhMVd1BHCXqv5cVd/n1wqC2hP4pe/3fVK4J9q/oHJvQVCTsAnzP1j1zwr6E1S0ZRFwu6o+Ta0apxuz1Ff7JMrveT2NOcTIQdVZS9E3K6s/qOofVfVbqnqht606Fndg1ukhbjRU8SC2nud6UhnuKNJEryOo8ArWYn36EDZZL8TkptnK/B5go3vBPRipbMDDq5gymID1efTVGqxv+0J8vn29t/Er2LrDKTR6UJeRkuRA39Oge7HoQ1QQLsIURJWgLsI8vRNzjxaTkWqoPNq6AlNwN2EyPjPrq8+R8oTzaU5QYUQ84N7Raj9PD+npCd2q+kVVvSQ7Lu41jJkjSFGCx2N5pBjH6lOxw1tZSo01T5K7bVgICyws2PfaFff0Y63fzf4dLBJxNNbf92BVfxOxfs/TC6jqW1X1LcDBmioa47c7VfWpGHGdSpqrkVoIQmvlQdWG+Dx89gyMdIM4I1LRpxNcD+UkcwFmTKnrY7A+PAibNzHGeX9HvwRBxT51874Xk/kNNb/1oa3XSYg9YeCdWHjnCmwwJwB/aBU/3BGo6q9IYbDtOf7nIvJ7snyWe1FRDfjOyiF1HtSGFgSSYy02GN2YgFUJqhcLueTWQiivZliGlaru6fcwl8bY9RpMKLdiJddXAahqT+U612FViHmbbvfzdQHHRzxeRJ5GCkdEu8Em8f00kld4UHGt9Zhc7Onb4tl7EVPfSE0ekSSgVcVYRR1BnQfsq6oP1OwPpsSOIYVWQmG040FtUFUVkTVYuOePA7QvvCS8nULyHHtUdZuIrMfGLK55ITZuP8T6qcGDUtUeEbkH87wOwxdwq+Wh6rCSNEZrs//jfif68c0iHitpTlDvwfJt6oT/RFwefY7M9/3m0/yBt5GrimtEP1xOehxRnaHxFcxrOhjTO3NJedbLoe+pCEpF4anqWhG5HVPyz6Z/xVgQ1EtV9Yd+zAU1bViOeXB5rvMWzOtajIVDv4F5BWv8HudXT5KRWx2uw0L1n8UiVjF+9/m1Vzc5LgoaQv7WY33R7de8DEBEov/7EZRjLaYr/uDtDwM2sAzr/9UkAzuPJizHPOzQITFfF9AfvaQlKE3Rrgd1L8acT1XVZ2Alq9dgxRODXZ+006CqPdXwXAusplEAemjyEq0ahAf1QPY9b8dDOOFVzt+UoHzgV2PhyMdhCiu3VtZgluQSVX1RZuVUz/MmVb1WVe/Mtm3CrL8DScoLVf3HygTqxRT1BoygckGLkFYI2Dos5xOPa/qjb9tE8qBahfgGTVCqOl9Vb2uyP5gSC3LaRprw4UFtoTlBRV+vpb3XjuRrtHLrcgONXuI+pPDcUswjmebf875clh0zBSOoap6tiuW+/wY/xxpvwxIsGvG7AY7/IWmZQyDGbFWW87kFy9vUvcMnqsrqcBfmkUYIKpYB3I8pw71oVIgAuPw+niQre1AZE59j66mxyFX1KCxMNoX6EB/0L4SqnuMhUgFR4F4sJzMF6/vwwNZiUYzq0oeBcAVmqMRT3ENe52FGUjNnIPo7coHRx1XlHwbufVhfVQlvLbDQSX8DNj594+Fe70pSVKBh/FV1m6qe5vtBqkisrsfEj92jpo0NaPeFfMeoal++xgX1nf5IjctE5BWq2u9ZTw8zfJlGJbmB5g9LrSIIamH2vYpuGgejJUE5FmMLI5dgRQQ5VmAEs71vgL0Cs/5aJSl7SX3yIxotrpgUuVLtVdX5wBd98ebLMcs4PIk6Et2EVUcNZEh8ioH7q4p8PHtJSn8gD6o3UwZraI+gwmuC1Cd9HpR/n48loKtysEelrRH6A5PDrVhu4m5a46V4ngwvSBGRRZgR8y+tDwVVrXtDb/RPPvZrMO+5H5lg1vfmmu1gRHRW1rdR2boeU/TdGQnWocevOZrGtzLnbW0WMlqY7ZMjCniaeeE5bsQWvgKWihCRu7Bw+UZsjrwNK7z5Xhvnq+IKjMAj/xk69Ybs/zrE3Mlf7bKa/nNqEbZuLTy8Og8qSGs9aS1fjiUYia6ieU4scCvw+2pI0xHjtOMElZNTZfv/isi9mOWwM97yOGxQ1asqmwbjQf0ZE4Z4LFLdcdXQ2waaT+TAYsxy/g2W78sRcfntfUvp5cBzB1AIfQSlqj+q/FYlqPU0CvNNWJHDF0lKoJ8w+vXPGaixLcJ4rY7ZLCKrMes8CCpyH3h7qy/R20ijkmuXoHpISfxmHtT/w6IQfX3uoT9orFp9P24cOcn8FHi62iLmplDVuwBEZC2N681ahZUGQlwzt7bXYqHcfh6Uqt5Bo5eR/6ZYNVzgbMz7OAu7/4EMwpVYiO4E6g2rVgSVr8VqaJOIPE6taKUlVPX5NZtvwAiqFwttvblZNKON8y8RkaM8FfGTbPt80tt06xDVtDdn295PZRzcMPgXABF5X2V/MCM9Cl7Cy63qh6XAKFVdOVD0TFV/APygyc8hO0PiQbVqxKVS//bMhzuuJq2ebgkPiy0ReyL6Vuoty24GEeJzLAFuVNV+wunKF9IizMHiNwxMbrkHVUWVoG4ms2o9HPljETmX5Em0LCkdJsSDOHsxC/4NGUF8pWb/CEkGPkD/sFcdcgMkJ6heUi7gKql/advhpIe+orYIOMcFNH/NSh2iohSs/be32HcgBGnUlSTXyXnbUNWFwELPfc5iYII6E8sdH9DEsLqZ5stRagnK2/HX6rZB4JfAP2AFMtto/XzBAZGH4geBy4C/z/PlA3lwqvr9mm3fzP5X1y/VF4guxYu3tL6atV3sHIKC7e7UjoZbQVULYyAsJFvrU0E1xDdQkUScr5USeC31i5oHhOfmfjzAbm0TlKp+vsU5Iv/Wrkc6lHgQ7yMf0wvihybj1EBQqtruGr/c4IhxDm+sb9zrrqmqd9MifKeqv/OCn3bR50Gpau0bfduFqm4RkWtprLJsVjG3vegL8Q3Qlh4RWUl9eA9VfXnddv9tvYjkxD1UiNBbS0U7nPC5/J0Bd9w+VAlqCelhzjuCnUdQBX24E1uIW4dqiO9BWjwk0fFZWj+O6uvNfhsibKB9D6rVOXqxexlsDmko8K/Y8ogXtrl/1YNqFw+S+iT3oJbTXoiwJQYIxVYxpIpYVatPsx8SDyrDeqzyrx2DcBXb358LGWIv3olvuofldjVEvi/HUgZOTbSDIKgdLzMvaA+quor0LK8qGjwoVb1FRJ7aZN/Yp9/DencyvkZ6blsVoYQHUuZRCVhXajrs8LDaIbRv7W8vQX2MFK/PiyReRuNjrXYGqk9FGWoMtQfVTXrf10D4Fe2FXOvwWYbhbQyqWuvR7QJYR3+CWsLQGJpDVyRRMCToof8aje1Kpu4saOs1G900Vrs1wxfIKp9GCNUnA7RCtUiiLVTGss+D0vbW0Q013sv2kWy7CO9sKD2o/LMp1BZk3zLQfk2Orcs5FjTHevoXv11LzYO7twMlxNdhiLfd7iqo5tRqob74cYRxOekNwwNhEzueTwhyGCoPY1BQ1X5P5RhiDHWIL6rNRiIEXNAc/QwGtYdNn1uz72BRCKrDcA4jmEgdBuQvR+xoeP6m3YqjO0kLJbf3ettEJCr4dkUMaYjPy6shvTOpoDNwP+lBukONQlCdhJHKwQwj2vKgHm5Qe+bkDhGUo5uh8zA6Dd1Yvm0o7+9NtL8wvmDn4NU0PrB6KNFWlKEQVMH24kbgHSPdiA7GW0hPH9+loKoPecn2kHmIqvrloTpXwdDAi7SGq1AriqdaVqcWgirYLvjjSy4ZcMfdFL6KfldGvC6koGB7sJLmS3L6IINbXtG5EJHr1N6sW1BQMMwQkX2yh4IWFAwL2n4fVEFBQUGgkFPBzkAhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkTHEZSIfEhEFonI3/zv2SPdpoKCgoKCnY9OfZLEZ1R1KJ6YW1BQUFDwMEXHeVAFBQUFBQXQuQT1VhG5SUS+JiKTmu0kImeLyHUich393/xYUFBQUPAwxog8i09ELgVm1vz0fuzFciuwx/n/JzBLVV+7E5tXUFBQUNAB6OiHxYrIHOAXqnr0CDeloKCgoGAno+NCfCIyK/v6AuCWkWpLQUFBQcHIoROr+D4pIsdhIb75wBtGtjkFBQUFBSOBjg7xFRQUFBTsvui4EF9BQUFBQQEUgiooKCgo6FAUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6EgUgiooKCgo6Eh04tPMARCR+cB6YBuwVVVPHNkWFRT8//bOPMyuqkr0v8WUOanMhCQkkIRJBGRSUZ+IioANKKIN7YBDPxyw26lbBfS1dtti+/pJtw3aojatqDhgt4oD4sDQIKMoyBgSCFNmKvMIyXp/rLVy9j333Fu3KlV1L5X9+7767q1zz7DPHta019knk8kMJh2roJxXqOrKdhcik8lkMoNPDvFlMplMpiPpZAWlwLUi8nsRObdqBxE5V0Tu9L/85t1MJpMZQnTsCwtFZB9VXSwiU4BfAX+lqjc22f/OPE+VyWQyQ4eO9aBUdbF/Lgf+Gzi2vSXKZDKZzGDSkQpKREaJyJj4DpwI5BBeJpPJ7EJ0ahbfVOC/RQSsjN9R1WvaW6RMJpPJDCYdqaBU9RHg8HaXI5PJZDLtoyNDfJlMJpNpLyIyUUSe184yZAWVyWQymSpOBy5sZwGygspkMplMFaOB4e0sQFZQmUwmk6kiK6hMJpPJDDwi8kkRmdeLQ0aRFVQmk8nseojIS0TkvYN4ydcAWUENBUTk4yLSkWn4mUxmSHA4pjQGi+HAsF7s36sQnxj/KP4Aa3+QFVRjPg10tbsQmYFFRMaKyG6lbS8WkX0H4FoHlK+V2aUZAUwe5Ov1xiPqrQc1HLgA2Ks3hWpGHiwVuOe0FzCy3WUZDETkKBH5YrvL0Z+IyO0iMrGFXa8ETihtez8DY9l+jw5dU9KfeZnQ7nL0Fl8WbffStmNEZE67ytQLRjK4CqovHtSIXuw/JrlOv5AVVDWj/HOXUFDA/sBR7S5EP3MIML2F/fYGxpe2jaB3A7NVJlRcq1P4G+Cv212IPvA14LWlbe8CXhf/iMgwEXnxoJaqNQZbQQ20BxUKqt/GTlZQ1bRdQYnIXBH5wSBdbgyDHM4UkVta9HD6cu7dsDZsZfCPp76dB0pBdQHjBuC8LSMi00XkxIqf9qbNZesjk4ByP9qTQlgCHAn8+85cpOyl9RMjgS4R6beQWA8MZ2AV1NjkOv1CVlDY5F5pU9sVFDAb8wIGg9E0EE4icpGIHNSfF/PBfiwwt4V9/yQir+rlJUb756QW9h1P0d5Bby3NHvF7Hkv75zVfDpxXsX0KtUL9ucIY6ttvLwphCdaWfQ5fisjzgev6enwTQr600k/7gxEMYJIELYT4RGSfXpwvKygRGQE8UcrYiw7fKytaRHYTkfJ8Rl8Z29vr7wQNFRTwUqC/4/mTsL43u4V9DwWO6eX5Y6A09aDc0xpHP3lQIvJmERnb4Odxpc92MZLqe2tJQYnIeBE5srRtuoh8sp/K11tGU62g0nsZxk4oKGAarYWLe0u0w2TYkQX3v3p7EhG5QUSmikhDg9qN8D55UL3Iymsa4nNP8RERaVlJ7vIKCgsPTMfmYYK+elAHAlf0R6EwQTZYCmoMMLpBGGP4AJRjqn+eIiIN576SgbGsl+ePgdKTZToOEBooqD6EIM+n8Sr8XaXPdtFI+U6lNQ/qROAfS9tOA/5+J8vVV8ZQeMxBOcS3FzBSRD4mIn1RNOMYmHaLfheG1BHADb1J03Yj66XAAuD2JrsOK31WnWtM6dpRr62GIHvyoPb267dspGUFVVhWhybb+qqgptJ/oaFxmJD8VxE5uNmOIvICEfncTlwrOmKV9T8QCmqKf74NuF5EvleR6j0CeIf/u6WX54/7mdrDs2yRsFC2wEdiwuL6Xl53DI0t9RBwHedBuVBqNcRXNbH/tJ9nz/4oYC8ZDYwSkdeJyNm+rRziC6F8PnBYH64xDpsr6tPzPSIyWUT+tuKnkcAaivHwZv/sjQwZh8nx0TQPmQ8vfVbxPWozWkcBz5SPEZHDRWSeiHT5Z9RLT0kSe/tny8p+l1VQIjJFRM6jEFLpsvI9KigRucaFaMoU+k+Yhwd1HFCnoETken/bMMBBQF2Wkg/aN5e3VxACvUp4DpQHtca/rwTeRH2nPRL4un/fYfWJyMkiclEP54+B8h7g1+kPIjIysaJDmVR5UNMpPL1WGU3jLL1O8aCqQnxjsDquDE+KyCVJWKZKQYWFPavB8R+tSAV/QW8FvojsJSI/qSj7KOCrwHeS8pRDfNB3TyhVAn3h+cAFFfc7EniMoj5f4p8jPPPw7S2cOzWIlseXinBftHmz8Np4YIYfvztWj6upV2r/G3gjptDmAw/4IwqVHpSIxP9ZQfWCI7CKHg8ocIiI7OudKAT/NBHZUZku8Pdya/9E6oXRVKxz1XREEdm9D+GicRSWYE2oyhXjy4EDRGRvrMHH+G/7iMjRvuuL/K8nomON83NcLCIn+7ZhWHhkYpP5ld4yFbgWeIDi3qaU9kknU9NBdTi13m4NInIc8H+ATb6pLDTfAlzs36P9qgbzZGB8L4XoGJorqC20X0FVhfimANuo8KBEZAyWVPEC3zQSmFKqlzhujs/DjkuOF+CzwCQRea+ITPOffo4ZVr1hLnBqXNvnNPbExuviZL9yiC/tP9HHe5MsEPfT17ab7MfOLG0fgSmoKSIyk2IsjMC8qcur+p/X8bdcKaRyZbkb3qcBN0ttclO0+XQROalBOUdQGGWjgA3YOCorqDCeIzy/D4kMor5/3Ssih1DIovEi8i9JX2jILqeg3N2eh3WGUZhAeQKbCL0e86RCQV0AfCw5/FIss24sNndRtqhCyKYW/wuAM4GVUpHeKyLDxR4q3S3ZdhYQSmYS9XMp0bAf8b+0c/wF8K/+fQINrGK/zlwROTS5jxiAcygSI8KD+j3wP8mx+4rIlxqduwemAn/AnlWJa5et8mlYeAFqBcxMmtwTVm/HA4/6/4+Xfj+Iov5qQnxugIzC7ncs9sbpcvivkkRYNlJQ470sqfCeLSJHtHL+Btd8nYhcXrH9OBG5PzWuEqo8qOlYfVWF+EKoHicib8Dqbji19RJtOAf4Loklj7Xd7lhf/HvgLLeow7CK1TxOb3ijBTFPHKHEKG9ZQTXyoKDo43+UBg/zisjfi8g7k007q6Bi/JbnJ8ODOhVT2JOAVVj7RH1UXfMcTIEdQr0H9VJMZs2g1sgLJfNKoCbcKCJ7isixXp6QYaMxBbUZS5RI+0yXl3EisNG/j6TxHNRk4L+xEGsc/+c08LhTdjkFBbwTUzwTKRTUw1glTsMSHaKRRlC4vOL7TKLosDsUlIgcRrFKwHARudOF3X9gnhpAVYbObCxLbV8/z3BMEb7Mf59AvYKKjjfNy58qqLnAi9xjG0/j9PF5WCd/j9/HmtJ9haANBTWS2vj9S4FGlhgi8gcRaSSsp2KJD2nywxQP34XwmYZZ3v+GCxg/34xG9xTn8c+bMYEw1Y+d6d7mgRQewGFehvCg/glTcOkAa/hgrYgcKyKneNgpBMnrRaQqYaALWEStwPk+8IckBNIjJaH6GuDtIvKy0m7vxsLC+0j9vFCVB3U88EsaKyjFQs2fpAhDRebZxcApwFqsH7+R2kn1UGRHYv34NHxMUdTFMcBnKq5d5sDkHqAYf6PxvuShqT2pnoMCGOfC9kDgrSLynorrHIXd745jSuWtQUR+KPXh/pTJwHbq579CQR2KyYHRmKId6dueoairlPBEujA5tt7/fwa776m+faIbQftRW2dl7/F9wG2+T4yfMZhM2IxFm/5HjH/268aYWYQZcqmCKtfFCIqxvt3rYyotzPE3VFAeljrDrbQ9ku1v7OmknYaIpAJ+HtaIEykE8XxMmw8HLsIsvbDeQxmMxTr+JIqOmnpQH8XCfmANcoRfY39sfuhB6l18gP38M9zx06kXijvKLyIzgNf7v1O9LKmCmgesA15B4kGJyOki8lL/Ptbv+UDMkh0DPEmtggrLLBTUfD82OtVhyT6IyF+LyGv9+wS//0bPPByIGQVrKRIgLsCsyAgl7YMN3jUUA6obE3DNFFR4Yuswzzji3h/Aki4OwOrt5diKA1dSDJSJuKGQUJf0kHi7Z/g5Tk2OO5Ra4RaEgkrLvtY/FzfwdsrXnQDcnYR9wvt/RWnXEM6XACtEZA8Rme3bRlJv4Z4E/AjYo0KhzQTuxfppF0V9hiD7IKbgbsLmEm8F1kmxbFIoqJOwsO484EO+Le55PK09VH2Af4YATD2oqJMZuAclxQOw8al+zTm+/xuw/lRmP2zeKGiooLwtqsZsyiRgIYXnHoSCimhMN4VHMgYLgVdlHY7DQrIR4rvVtw/33/bzc04Evgw8Qq23Us7KC4U3kiLENxYbQ5uxvj3dr/cRP1ecT/1zH6x9auasEoMh5pwfxWRdVfZsHc08qG9iVs8RwE0iEhkig7k8/E4jIqOxQRqNkiqo8KAWUAykWI5+pX9Gp4oBWelBUSgasI68O2YVjcUa4haqraEIW4SCehVmzaZMEpH3iMgpmFfxYd+eKqiR3hnmYoLgQKxDTRCRa7BBdIof92r/nO3nGI0pqBiAY7A48W5Y50qt7nh4+HDMGt1DLMvwC8Bb/bcQJHVp3j6gDwHuV1XFLKt1WF+Dom6nAUswBVa2+FrxoNZhg2WEW7cj/LiZWFufjk2s/wDLAtsN6wvlsEON4BGRM4Br/D7mUCTXpIqtPJ8GVrePYG0ZwnRpco0jK44pM87LHv1utpf/6NJ+IbjH+jEnYiEWsL44TETuEJEZft9HYQpmHSbYPy8if+77zwT+iPWlLgoBVlYoN/m5bwPuo6iXKOvxmFf7FsxiB8uM+xpwMlYvlfLILfcuighF6g1s8TqJPjILE8DDgMfcuB6GjfHrvD6ifx5Mqb29bfYDnpeUZyzWVlVGxChsrDcTtpMwg6xqSa3Hkv9XYnM+qYKqkhnjsL40wf9+hxkpoaCi3JP8PNuoXQOyPJ7CKEw9qLGYAbWZInIUsnAmRT8IQ+QzWBuvotYAimuNxfrqDyj6xk4pqH1U9ROq+ingbOBrInJ8TyfsL0TkJBF5SEQWiMjHd+JUIczmugdxqG+Lh0X3xmK3q0vHhYIKLyAGZCMPKhTNOqpjzjsUlIicKiKx/36YFXygiHwDm6/6D/8tvItJ2Dppr8I6Jsn2UFDx/1RsIM7BOs8cLBQ0C5gpNjkcC6GDhoEWAAAgAElEQVTO8vsfjVl4afx5AkXnGokp9PspOmkkKnT5fd4FvNwHeAiAyS5cPpoI5RnAJlV92v9fBvzJv99OtYIqW/xjk/OV2eFBuQJc6nUSmXmrsfY+GzMENvr9dWH9oamCwkJcr8YEwhyK1N5ZFNbkDgUlIovEsrG6sPDNVgoPJ02fP9r3Hy6WNfdlqV8CZ0f6vH/OBq4CjinVR1i/2/3/M7EkoBkUhtjhmEf5TmCjqm72Y8Zg/SPCUTOBu7F6HYf1ic3UC85FmJFzO9ZPIvM0rjfD97kReMq3zcU80NMxId/ICzkKE3zrMUGfelDLKJbk2Yb15/AC98baaxjwn5gR1YUZb9v8mrO9j04TkcP9mLV+vegL4zBFcqYUmbNBjL1mwnYyFoFIIw5v8vKnCmoF1h9HY0r2YRIPSmxVl7v8mo/iYTzM89pMoaCCiX4/12EGUIQC0znyPSiM8kYKagoWxotxDSZrNlO02R6YcfJzakN8aVvdhM3DhuzocX63mYIa5sIMVX0UC2P8DU0yqPoL9wQuxSyrQ4CzxbJA+kIIg+dhk/wR9orsl5lYZ1zpf8/69ujk48TWxDvD/6/zoDzsNR7r8AuoVVBP+PdbgRkuSP4K+AsReT/mMv8U60Bvw9rkaky4hIV9DDbg5ybl2uCfqYI6A0s+mI8Jz/EUQm0uNm/0oH/fhimBeEDzIQqhE6HPUAwxIXovhYKa4OU7zuvwNj/nftR6UCOxuZ3UA7uPgn/DrPsVvn2c19FMTOBtwfpi3PeHMSG/o3OLyJFiGWI/wQTSQorBuBQbpLHczUZMqA33Mm/wc832/Wf5fQRloXmY19ULsDqO9Ol9KdprcmJ9zwLejrXRKkzpTnNjJOr7Ngov6C1YeOmF1K+yHm05xb3CLj+2vBLIGC9LKOvnYwLvCWySHKwffQiLiKzwbWux/vA8zJgRrH1/R63Q+TZwntSmjq/H+vIv/B4Pd889NeIeV9Xt2Nj+ndcLSdl3eGUi8nYReaOIfBATkLdii8Kux7zir2JttpRiXmUR1tah2Jf5McOwfhTzrLMo+mAYX+/HPMV3Y8J/EYVXPA4bj6dhRmKUcWpS9mZzUJOwMZn2pUv9cwXW3+6n8KCm+H0+Qe20wKuxfjfLyzjBy7gcUxblh2AnUhisR1EY4akHNdfvdZv/xfxs2YOC2rDnZC9vyIipWJr/EmoNyvg+FmuD1RTycac8qA+TVKiqrsMsnQ83PKL/OBZYoKqPqOpWLDOolSyfKkJBhYK7gsYK6jrgQt8+ikJZnYkNvk3AXwL/17enoZZFPvg2UTToYX5OxYTas1idTseUxWGYR/QFTAk9DExza/ZtmHUVGVE/xDrTWODjFM98hILajmXJXIIJ6IOoFQ4zvZyzMcF6HxYHHoMNroexFNSIh6cKKizn+Zhw3c2PeQpz2d+GCYPHKGLRj2JzZREqCusxBhcAqnoF5sl8BxMg4fVtdS8rQnxdwNOqerHvN1Ys3XYPLMPwS5gRBfB3FGunrfD2GOHn3uR1+htVfRZTWHMoHsqdhfUHsAE63hXgN33bYVgI9XnUxvJnYdbhM5gnks5dHez1uZpCYb7Bz/FV4B8oQrwv9Dq9ivoklNSD2hd4wvvccmpDbuFZTPFrNkrnHu9lCAW1DOvr6ud/ISYjbk3qBCy5Ywy1D4auV9Xvq+oqP9+LsD6eWsmPA6jqRdg4DCMn5riniD38+WJscdfvY48EjAMeU9W1WPt1Yd7fUX58hPgeo1BQf4mNk5n+21avixgvD/g1l2NtN9q3XQjcgPXt6W6kT8SM87v8O17Ghyk8jpY8KLGMuem4kPb2uwwznlMFtQ4zduclhsAErG2mYXLjECzx6hfUe1DL/d73xKI3E6hWUIcB92CG2lpMjsTjLakHBbXOyUiKfgNWpzFnlSrrsoKKyMlWzBht+nB4QwWlqreq6lKwtbZ82zZV/VazE/YT0yk8DzBLutdLlIilxZ7j/x6JVcp5FApqM9bYK7DO8Ziqfh4bXB+jaIDI9Hkaa9wIsUTlHkARettEYSEciDX+C13RPuX3sQ9mme4D/I2qLsCUyp9UdSOAqn4bs6IWY4LqHMw7GY8Nyphg7/Jti7EOeQ1WX1OwDhHeQBoC2hfzhoJHsfqOCeY9qA3xTcfCCEu8vkb4fa70/Q/BBsQqP+5AbL7hREx5Qe1gj/Apfq9/UtUPYorn89jAj/KlCiqEZFjC7wOiPz6ZnPJKVZ3v31f7vsO9njZhxkLMyWz0zzH+fZbfK14nE/z+DhGRyX6/d2Ge2v1YHwKr04d9+xKKQb3ev3dRKKhZmFDdx8t/E7C/GwfHAHdg7fhasedaymnVfwuchVm+UCjhIOZMRmJtO5paYZIyjKI9vuvnvtzv5wTgJx4qTRXUBj9/qoTXJd9XYHU2imKsKEVoD4pJ81uTbZOx8fk76p9div03YYppd0y5PkWR+BEKak/gx5jC7aLeg+rC+sB2LCQ527d9BQtBfs7POwPrj9dhQv5XFEkiZ2HtEfO6jdaf2w2TBw9h/e9k4DfpPqr6Piw0dj21HtR8zLh5UkTe5sc/6Ic9gs35/FhVV1OroLr9eodg7fR7P2arf1YpqPV+7ZgDizDxOgrZeyi17VwzjikU1PAkPB31Egrqt1hk6Z8x2XAJTWg1zfw2abJm2gBQNb+gdTuJnCuWzn0n1euuvRmzqp/GKrcba4jh2MCJ+O+K5A9VvY3Ce9ldVb9Sce61FBbtiRQWeKqgxgLLVfUO/z+stRFeppdQDNo7KeZigk2YZfpLVd3gxxzi144Q3+7YwN7sZX/aPYO7/T7XJudbjyms9dTGvn9FoTzH+HVTD2qmXzsUVDwjEYJ8N7+3bkwBzcOEDBRzc5dg82gTk+PKrEm+RwgmVVCrk/0iVPMGv1bMFS5wqzQ9Zzy3MQGb//pAYmhtSPZ90K8VwjjCntOwtpyHCY0lmFGykGLeYBY273WH10UoqPCA96VQUDFJLH7MGkx4zPTz3o2FanfHrPqvi8jPKNa7ezGmnBf5/zsUlCu5URRpveGtfgzzLKGYn9qaHA+moC7DlNR0v9+H/be0zTZSGCPB+uT7Coq+MwcTZEtVNZ1zi7a8xT+f9HtIFRF+H+Mo+vEmzLMDU1SP+H10UetBPePXGE+hoFIP6l6s/R7H2rcLM1Bf6V5gjIfDgC8lCT1TvY5fj3m6ESEYKSIflvpnqyb7dZd5WWZiBtxdJEa3qv5EVb+L1W14UE9hbTkWS/Efg7XHdorn+2JljZirHYf1n7v8PMvc84RiXjFVUBFyX+/XjjnZ8KCWU4T1D/Jzh9FbpaBC/m1xnRH9YBiwRVWfVdV7/Nz7Uf+qlBpaVVAfA64VkTPLP4jIaSJyc4vnaZUnqY29zqD2QTwAVPUyVT1aVY+mvrLAQoXTsUbdD+j2jrYOa4ilWEdeg4USrkyOvR14SyLsDsCsn5hn2AtbYFUwK+pnvn0ztcoyfdZnOWY9LMY6RReFgvo4RVw62EStAH0C6yRrS9uhPrPtdCyeHp1zKxZK+plfMwTEK7Cw7WpMiJ+ACRihCPGOxxTUUqyzxlPmqVUdCur5fq7wKGOe5TCsDidQuPll0kSVe/yzmYKahHl7t2Lt+aiqzqOW2Df1oFKewYT4rRQGwlbMILrF72ean2MOJtSiDyz0+57vZQnrcjmFpT3Cyz2GegVFcswjWN0/oaqbvZ9+x8s0E+tj6XFTKCkoETkQEyybk/PGPt0UffFpTKn/he+7EiyMr6rvdoW5CgvRLfRjVlEYiRv9fBMoEj3KHlQwB1P8D1JLtGV4UA9SpDJvoRgL3X5PqeI6BuvXkQW3Hqv/VEGlIb29/Jzrsf4yDVNQh1KEXMdR2/9CQe1N0d6RcDMHk53foJBTI4H/B3zWEy7OF5F3YIbTElV9xust+udTqlon00hCfN4H5mNz0vv7PS/zzyhrLOUVHtRYbI77At8ez459G/PUweZ0Izw+Bwslph7UF7HHZkJBQWHM/A9FP1pN7XxteFDxKNIB1M5HpQbKRuofqK6jJQXl4aY/A74oIhd6HPUdInI/1ijfbuU8veAOLPa6n7uKZ1FYCj0ithzRQ1gHE6yRhcIKXIsJpQ3ASjX+pKo7woqu6e9N/n9YVe9V1bAmHsE8iX2xRrjft6ceFNQ+Vb8CS9sPBbUdb2xVfUxVy2GYTdRapkuxQbmOWgV1L6W0Xz/fZdjAXoQp589jFlAoqG3ADaq6wQfDntj6WhFeeBlFCOwp/5uNDYLwoBYk99mNhUfn+76bKbzhvSgspkYKKoTQO7DBD80VVNzzPX79tK4p7TsCE041Csrbfn/MYwlh/DIv+22YQRCrV8z1+00V1H0Uq0hHW/0W+JCIvBUTXA9gbb3ej01j+WUFtSj57dPYJP+rsOe4oFb4pxGAydi81clY/452Cw8qDIz4vkxVf4h5g1Xhv9v8fqNOupPjQ0GNpwhxNlNQN5MkFzir/RzhoV3t+0zAhOsnMY9xDPUhvhlYe4HV1zqsXy2iCPFtxZTqDg/K+3jMzaz2sHsoqLR/QTGtMDW572W+7wlY2O+hZP8IZb0JU/4XYko2Na5XUcyFVymnuL+pFPV5CzYXt9nra7nXxcPA8Yl3lIb4VvtUwSvxRQJU9S0UiV57YIrmcQqjawOFB/UG3y8UIhTzrV/AlhKDQqkFoaDA5vHmUhv63Jx8D/m18woKQFVvwbJIzscsrvOATwEHqmpfl7xpdK1nsayaX2KD+/uqel/zo2qO3wqcS2GFPYVVZDqH8QhWwY1i880YhgmP0Vj21R3e+aG5glpOoaDux8Iez9KYsge1xD/XUoTrwEJ0UBu2C1ZjVngo5wexzr0KWJOUG4qEkrGYgngvRZ3Nxzy4BVim2XqsfT6b3Fs3Ntc335V7+T1OrSqo+7wNoVBQESqBQvBMBj6BCbdGCiqs6LDkNlbsAyYMv4Rlln0Vq/ulWFu9zI8/GBvMKzGFs1BVz8GSJsAUBFiYbDn2LOEIrM5Xe10/Qu0zUyGIFmICOk0gecaNh20UwvASTOkptR7UFKx+D6KIEJDs8zSFsOmmqMtGCupaLKnnieSYCCulHtQw4KhEUEIRzViCCcD1pbArfj+nJfv+CKvfQ7BkmM2Y8TuOegUlFCHgx7DxsBumVKYC4nUWbR9JEngdSHL/ERXoojbE/ATm7YymGAPhQb0ME8CLKB7oj2jDLV6Wa/24YymUUbffY4TvqkiTJFDV96nqf/k5digoN6xuSI7bgimRHfehqr9V1R+U9gnm+H1vdo859aCC1IN6NzBPVVcC/+XbYimkYB3FtMcVmIJq5kFBbSJXHS0pKLGXYX0O07o3+98W4LqKjtcvqOrPVfUAVZ2jquX3z7Ry/A0U2XZhCVR5UL1WUC48ozGOwuaPgkjLjIGXnn8FhRV+O7UTxFVspN6DivJv8N+ejxkNB1Msj5TydixWHvd+JaZ4VlM7ICNTE8zq+xnmLcXgfNgF7NexB3I3qOpNmCK7CKuPbkwYhDBNExfivFPoeQ4qHbxbsDDkpRTCPFVQ31PVGLg9eVBQH+IDQFWX+vzdN1T1XMxjX4oJnJjoPwJTStswwynCVtcCJ6vqA36ubZgXuBazVh+mEIjhaW/BlFyU5xZMYCyqKh9FP1qvqpswgR7XX461/ygaK6jwgLZifSfKcxXFJHrKz4BrEgNqIUXYNZ2DGoZ55Tvwuaa1vr2L+nA0qrpdVW/20NenMAF8CzbxH/1jvd/TBOrnpu717yso+sVaTGFs9Wtsxuq4i0I4LvPfQ7AuoTrE9yQm8JclMm4Z1kYvBG71ulngx+0HPKmqx2FzeP+CGXWvoFBQS7ExcAE231fFRqxfryttX4zVeXhQNXgZBevndfXtbPH7XY/V6S8pPOR0DopkW4yph9SSuUj2CaUWfWQd5u0djNVLKwqqXzyohdgk8CtV9TVY2OF2LHmir88nDQahJNZinSM6fnhQfVJQTjTy8dQqqPCglmBhtWeS36Kx71bVB1T1DTQnlFCQelAbsDj1vaq6RVUfTEOUgdozbLdiSipCWpFRVRVmCCs7zpV6UFBkCG7w821X1Qv8nN2lfSNtdTFmwa/ArNJmHtQ2auft0k4diiKs98nUpkg3U1AxUCoVVBlVfYcr7PDCV2MDLlKlD1XVJf59napeU3HdsX69x/x4PIz7NKa0Yp4BivmBRQ2KtENB+XnOcGs2fouVAg6kNsS3EgvLPI21+RdIogmqenEayk7uf5Gqnpr8fzHFenkRbpoCbHOFXOZHFJ5lI4EZ5/60C/uHsfDc0759u9/LTOoV1O+Af/T6C2EeijG8JbB635taBbU6qfel2DzRGJKEIr/2PdT2xe5k/0hTvxuTj3Pw8aSWbn8jNg5eQjHO4tGHq1U1QptlNmHJMWUF9ZRf/zaavxR1Q3JvNXg7TfdrRKZjzLtWeVB7Utx/6iHHHG0cEzJindr86YPYvR9Ebfr9gCmow1T1bFX9A+wQch/CHsC8QURe0/zw9qCW+baJegV1KfbsQF9DfGAdM9bz+1WyfZNvW0K9wIxr3U1rXEbxagiwe1BswJeVV0PU5s++WNp2P9WL10Ybp1mCUMwV1AjKEjUKygf5KsxbXYwNrnS/MouBK0oCLzr1D7F13+L4fTALNwbO1RQCMaUlD6oRqnorNq8T4a0lTXZPj3vGr7URu+8fJz8/gHmZ65L9uzFD4n6qiXovCy6w/hQhpgOp9aA2qOpH1OZUn1HV8/33RkZCM1ZThIWjDSpfJumhz3ifV6vvUQoLPe0fq7GQaCio8HweTyIrqYJaRxF2A+t/UykpqOT3SGjZXKFo76aIWuD3/a/ALcm+52De0Fzq+0YYeRGK+0VShkZE/yyPr8WYwfuoqn61yfHlFXFq8HvYgsmRr1AsZJ3OQYFlif4a6yepERDniOmHMFa2aBGWx423bmqXWKpSULHMWCXN3jaa3tQjDbZ/RUQWYtlGVeuPdQIrscp9AI/vq+rPAUTkRgoB3CtUda2IvBzYLW0Yig52E8WAC+KJ70bWU/kaZQW3BFirqioii0hef9EXtDo8++fUPvE+BniTWuotFIKyyipehXlAjybbwuqLB2rPKNVXWp4NFG/RDUIg3aVFEkk3JohXhrWoqldXnZP6OaheKSg/9zUicgEW7nmmxwMK1mKCbyG1r0S/GlN45XmI45pYv5tFZB0VhoGqLk5WOoo5rxAAVXNun2iwvSne5yPBYxW1nkmj/T9L6aWRTYjxkirPNVioOfWgtlMb5gojJTyo1GpfjYWcopw1y5qp6lYReZbqZXeux8K6Kf+OzS2mx2/AIkw/L+17CTZ/HhGFe4HXe+ixEdG/yn3jGlp7w3dTBeVswZa3Ssf/eszgC2Vxcyhhf4ynnCUdCVzxWZUufi3Fw/Nx3SDtf6Op9dB20JKCaoaq/lrql/vvJFZirucF5R9U9RcV+7eMqlZNdO6IbavqlaXf5mMCuiok0gqP4kpJVR/HEkH6FbXJ7rSzTNTaidZmCupx4PySAnoauFFVf+wZmc2SQqpIBUvQjYUP5tfvXscabPBEX++1gnLW0nhiu9m169paLZsSSvMQjZRTwgoae81HYfMgV2HhtWFUewURZuwTqhrzit3YfEyVR5fuf2Gz30uE4ZY+vhDtlSqo7pJwXYetPKKuxNPns0JgR59cSr0QvwrLFC6XPRY3TbdFBCMlhO0TpX1XU6sMFWubZtyLKfRvpBtVtVUlv6rnXdhC/T2sx4wbSf6Pax9LPaGYNmNjo6of3Ih5Ys9i469KQa0CnhaRmeoLQ6TstIICUNWHet6rbXyQ2jmigSa8h7qO4sKiz0pRbemfU3vcsX+peQDaLfn1VE98b6FITAkuxR4biOSS75SP64Ho1KlQ7casrrKHWsUaivfx7EbfFVSlsmnhmD556A24llrvdAeqepeIPEDhsR5ND3M/O0m0QZ+VXQWPAp/V2szWSVg7R9hvE/Uh4jS9ORIlgkX+Gf3oF9RHMN5HkZnWF6JP7bQc9ND7q3vcsTGtelBlQ+cKLMpwnv/f0/RBhPg2Ye1TpaCinsNILCuoCIGPp3r+eOi/sFBVb1RfPmiQrnc1Fptv+bmtDuZuqudcmlnyNajqt7T6gcRWaaSgoLVQaQjpsKB3xoMqZyW2cky/9T1Vfa+qLmry+yZVneiG0EYGVkGFAdYwxNdbfJ6s7HEdDRyceJebqJ8/W5eUo5wkEfOeW/waa1S1JmtRVVeVogS9Jdq4Ewz1VhVUTd9Q1cc9FJlm6DXjGsyg2Iyt3vLmin1iaii837SvLMUWCJjs16/MBu8XDypTi08QDgVeRrUHsIKBFX4pjUJ80IIH5WGfeIhxK31XULFiQW9YQ+sJAv3NAmzlkAEhmXvpNwXV4DrllOrlFAkrwdqkHOuoVVDxKMdAljM8tlY8+oGmLgW9gkiSqGKT/9Z0nKjqXwOISDk1Pd1ntc+Nhp7Zkvz2LPDvIvJlmsiSrKAyDdHiuagy7VBQqQe1ERNCLSWbYNbabMza65NHo6qf68Nha+nfEF/LqD0r9bUBvky8h2jQ8Dnv35Q2NwvxRR/prXHRG8Z52QZUWbfA5RTvkmvGFmrrKGUj9qxdT/Ohwd9RvcxcygRguzZelKAyvAdZQWX6xjepXQ19wFDVZ0Xk89Q+o6Iich3Fsyg9EQqq/JzHQJO+rn4osooB9qCqqBCeDUN8WjzAOpD8CHs7QVtR1Xe2uOtWGicrlVev6emarXiN8YBzI8oe8Q6ygsr0GlX9/iBf72MV28rvSmpGhFw3M/gKql0hvsGgm8aW+GDSLMQ34Hjyzy097tg5bKGx51tevWZnGQe8nFJWYsIRJM+alckKKrMrEANgsBXUClp4rfVzmG5qX9rYLu7E3rgA9SG+TD1VWXxBeYHqncKfhWs4V6mqTRctyAoqsyvwGWxpnDfSxFobAC6jTXNQg8Qq6l/zMuh4lm48J1TO4svUU/UcVNDfHlRcr0+h4KygMkMeT3P/FsXbdwfrukNdUHZTuxhoJ3AtnZFN18k086Duo3ZZrv66Xp8U1JB/DiqTyQwY3bQhSaIZqrpWVf/Y7nJ0OBtosLSQqi5U1X/u5+s9Sek1962SPahMJtNXbmVwQ6aZ/uEiBnGezpcwel9fjs0KKpPJ9AlVvb7dZcj0Hl8y7TlBDvFlMplMpiPJCiqTyWQyHUlWUJlMJpPpSLKCymQymUxHkhVUJpPJZDqSrKAymUwm05F0nIISkU+JyFMi8kf/O6XdZcpkMpnM4NOpz0FdPABPM2cymUzmOUTHeVCZTCaTyUDnKqj3i8g9IvIfIjK+0U4icq6I3Ckid9J5i1ZmMplMZieQ1t/s248XFfk1sHfFTxdi63utBBT4B2BaL94UmclkMpkhQlsUVKuIyGzgp6p6aJuLkslkMplBpuNCfCKSvrv+9cC97SpLJpPJZNpHJ2bxfV5EjsBCfIuAd7e3OJlMJpNpBx0d4ttZROReYHO7y9HBTMLm+zKNyXXUM7mOeibXUXNWqupJ5Y2d6EH1J5tV9eh2F6JTEZE7c/00J9dRz+Q66plcR32j4+agMplMJpOBrKAymUwm06EMdQV1WbsL0OHk+umZXEc9k+uoZ3Id9YEhnSSRyWQymecuQ92DymQymcxzlKygMplMJtORDEkFJSInichDIrJARD7e7vK0C19sd7k/DxbbJojIr0TkYf8c79tFRL7odXaPiBzZvpIPDiIyU0SuE5EHROQ+EfmAb8915IjIcBG5XUTu9jr6tG/fT0Ru8zr6nojs5duH+f8L/PfZ7Sz/YCIiu4vIH0Tkp/5/rqOdZMgpKBHZHbgUOBk4BDhbRA5pb6naxn8C5YffPg78RlXnAb/x/8Hqa57/nQt8eZDK2E6eBT6iqgcDLwLO876S66hgC3CCqh4OHAGcJCIvAv4Je2/bPGAV8C7f/13AKlWdC1zs++0qfAB4IPk/19FOMuQUFHAssEBVH1HVrcB3gdPbXKa2oKo3At2lzacD3/Dv3wBel2z/phq3Al2ldRGHHKq6RFXv8u/rMOEynVxHO/B7Xe//7ul/CpwAXOXby3UUdXcV8EoRkUEqbtsQkRnAa4Gv+f9CrqOdZigqqOnAE8n/T/q2jDFVVZeACWhgim/fpevNwywvAG4j11ENHrr6I7Ac+BWwEFitqs/6Lmk97Kgj/30NMHFwS9wW/gX4KLDd/59IrqOdZigqqCpLJOfS98wuW28iMhr4IfBBVV3bbNeKbUO+jlR1m6oeAczAIhQHV+3mn7tcHYnInwHLVfX36eaKXXfZOuorQ1FBPQnMTP6fASxuU1k6kWURlvLP5b59l6w3EdkTU07fVtX/8s25jipQ1dXA9dh8XZeIxFqeaT3sqCP/fRz1YeahxkuA00RkETalcALmUeU62kmGooK6A5jnGTR7AWcBP2lzmTqJnwDn+PdzgB8n29/mmWovAtZEmGuo4nH/rwMPqOoXkp9yHTkiMllEuvz7COBV2FzddcCZvlu5jqLuzgR+q0N8NQBVPV9VZ6jqbEze/FZV30yuo51HVYfcH3AKMB+LlV/Y7vK0sR6uBJYAz2BW27uwWPdvgIf9c4LvK1j240LgT8DR7S7/INTPS7HQyj3AH/3vlFxHNXV0GPAHr6N7gf/j2/cHbgcWAD8Ahvn24f7/Av99/3bfwyDX1/HYW8BzHfXDX17qKJPJZDIdyVAM8WUymUxmCJAVVCaTyWQ6kqygMplMJtORZAWVyWQymY4kK6hMJpPJdCRZQWUyHYKI7Csi633B40xmlycrqEymjYjIIhF5FYCqPq6qo1V1W7vLlcl0AllBZTKZTKYjyQoqk2kTInIFsC9wtYf2PioiGuu3icj1IvIZEfmd/361iEwUkW+LyFoRuSN92Z2IHOQvWOwWe2Hnm9pzZ5lM/5AVVCbTJlT1rcDjwKmqOsWIJDgAAAEuSURBVBr4fsVuZwFvxV7RMAe4BbgcmICtifd3ACIyCnsVxnew14OcDXxJRJ43wLeRyQwYWUFlMp3N5aq6UFXXAL8AFqrqr9XeI/QD7B1WAH8GLFLVy1X1WbUXMf6QYrHSTOY5xx4975LJZNrIsuT7por/R/v3WcALRWR18vsewBUDW7xMZuDICiqTaS/9tVrzE8ANqvrqfjpfJtN2cogvk2kvy7DXMuwsPwUOEJG3isie/neMiFS9/TaTeU6QFVQm014uAj7hobk+zxep6jrgRCypYjGwFPgnYFh/FDKTaQf5fVCZTCaT6UiyB5XJZDKZjiQrqEwmk8l0JFlBZTKZTKYjyQoqk8lkMh1JVlCZTCaT6UiygspkMplMR5IVVCaTyWQ6kqygMplMJtOR/H9cCSGyvNIxTgAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -293,7 +281,7 @@ " data[t, 0] = 0.4*data[t-1, 1]\n", " data[t, 2] += 0.3*data[t-2, 1] + 0.7*data[t-1, 0]\n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe)" + "tp.plot_timeseries(dataframe); plt.show()" ] }, { @@ -654,20 +642,9 @@ }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEoCAYAAAC0OiEVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxcZbnA8d8zSZq2dKG0pZSgDFKWwmETWUIpoIAgiIAgoGyC15vBihsXoYiGiNhbFUGkmiDK6qUgICCyyKJQahFk7YGyVQJ0mpbSplvSrPPeP96TZjKdmZyZzHYyz/fzOZ/pzDkz87R95znvebcjxhiUUkqVh1CxA1BKKVU4mvSVUqqMaNJXSqkyoklfKaXKiCZ9pZQqI5r0lVKqjGjSV0qpMqJJXymlyogmfaWUKiOa9JVSqoxo0ldKqTKiSV8ppcqIJn2llCojRU36IvJJEflUhu/ZT0QWisjTIvKkiHwiX/GpYMimHHnve1REVonI5fmISw0v2ZazUlPsmv5pwDYZvqcFONYYcxjwC6Ah51GpoMmmHAF8Dbg4x7Go4SvbclZSipb0ReRoIAL8UESu8fs+Y8wKY8wG72kX0JOP+FQwZFuOAIwxy/ITlRpuhlLOSk1lsb7YGPOYiLxrjJmZzftFZCvgKuC83EamgmSo5UgpP4ZTOSta0heRbYEVCa9VAAuTHP5XY8yVccdVAXcCc4wxr+c1UFXShlKOlPIrWTkLqqIlfWBvwI1/wRjTCxyc7k0iEgJuB+4zxtyXv/BUQGRVjpTK0BblLKikWPfIFZGdgL8Ay4wxx2bwvlOBm4F/ey8tNsZcmPsIVRBkW4689/4OOASoBlxjzEl5CFENA0MpZ6WmaElfKaVU4RV7yKZSSqkC0qSvlFJlRJO+UkqVEU36SilVRjTpK6VUGdGkr5RSZUSTvlJKlRFN+kopVUY06SulVBkp5to7Sg2qZc6samBcim0MUIGtvMRvkuFrnUAb0B732J7ktc37ps6e15vXv7hSeaLLMKi8a5kzKwRMBLYHarzHbUmdzMcB473HEUUI2Y/EE0Ur8CGwMmGLf23t1Nnz9AenikqTvspay5xZgk3O2ydsNQnPpwJVRQqzlHST/sSwDFgKLJ86e16sWEGq4U2TvkqrZc6srYBdgF3jth3pT+ijixfdsNUBvIs9AbzjPfZtzVNnz+sqYmwq4DTpK1rmzKoEwvQn9d3i/rxD8SID7O0w1wHrk2wbsbXnGGC8x1iK56mOMdillbfCnsAGe+zbJJ9/6TRiwAckPyEsnTp73oY071VKk345aZkza1tgdwYm9V2Bncl/88s6YHnc1gKsJXkyj986Sq0d3GvWGkn/iWAMts9iSsK2bcLzrQoRHvAK8LK3vQK8rR3Pqo8m/WHIS0o1wCeB/b3HT2KbY3JtExBlYELv2/peb5k6e15bHr47ULymssQTQd/JYTvs1dY0YOscf/Um4FUGngwWT509b2OOv0cFgCb9gPMSfJj+xN6X5Cfn6Cti2PblN4G3vG0pttNxObCu1GriQdcyZ9Y22Kuvvm1a3J9zdeI22OahvquBvpPBcv3/HN406QeIN/RxZ7aswU/IwcevoD+pv0V/kv+PdhyWjpY5s0YDOzHwRNC3hRn63JvVwAvYG8svAJ7Tq7ThRZN+CWuZM2sc9h6uh3mP+2HHrmerE3gdm9Dja+5vT509b93QolXF1jJnVhW2z2YfYN+4x0lD+Nge4EXgGW9bOHX2vA+HGKoqIk36JcS7rJ+JTfKHYWvx2S6V0Y69XH/R214AlkydPa87B6GqgPCa/7ZnyxPBLmQ/AulN+k8Cz2BHDWkiCQhN+kXUMmfWdvQn+MOAvbL8qA3ASwxM8G/qiA2VitepvBcDTwR7k928i5UMPAm8PHX2vJ4chapyTJN+AbXMmfVxbHI/3HvcNYuPWcvA5P4i8I7O4FRD1TJnVgX2CuAQ4FBv2yWLj2rD9gk84m1v6JVA6dCkn0deTf5Y4NPYRL9jFh/zBvA08BTwLPCu/oBUobTMmTUFmIFtdjwU269UkeHHvAc8jD0BPKFDRYtLk34OeTWlA4DjvG3/DD/CYMdT9yX5BdpppkpJy5xZY4CD6L8SqCWzSWfd2FFBj2BPBK9pJaawNOkPkdf5egw2yR9LZiMleo0xL8S6e5/vWNP21po3V6zoXLdpPHZiVQ12pE6lt1Vk8ece4CNvWx3354+SvL5m5qKF2g4bUAtqZwh2VnBN3Na3+N14hl6OkpWf1VIhrWNqJmy91ZTxn6geP8qpHFl1gIRkSgahL6P/BPD41Nnz1mf9j6B80aSfIW80xD701+Zr8TnCxhjT293WuaJjTdv6tpXrTfuqDVuZnthUSmf54FYGngyigOttr81ctHBVEWMrWwtqZ4yiP4EnJvT456VSjtaHqiq6KkdWVVaOGjGuclRVaMTYkYwYN5LqsaOoqE45laAH+Cf2BPAw8KpeBeSeJn0fWubMGgscRX+i9z0rsqO1jfYPN9D+0QY6W9sxsUD/e68EXqP/RNB3MtDaWQ4sqJ0RP/luP2/bF7tMw7BRMaKSEeNGMmKst40bxYixI6mo2qKrYBlwD3AX8KwOVsgNTfoptMyZFQa+iE3yh+FzQbLe7l7aP1zvbRvo7SyLFpP3GXgicIE3Zi5auKmoUZWwBbUzqoDp2MTel+T3BcYWM65iqhxV5Z0IRg04KYQqQmCvOu8G/gQs0hNA9jTpx/GGVJ4KnA4c6Pd9nes30b5yPW0r19PR2ma7YzOzAVuo+7a+xcpWYzu+erytN+7Pic+T7avGtvNO8rHlYimHeDFgMfC4tz09c9HC9hx/RyB4zTN70Z/cP+k9r87xV22gv+zEb+nKkZ8yla4cJb6+TY7/TowYO5JRk8cyevJYRk3cilBlRUYnAG9OQqfOHbDKPum3zJm1AzbRn4Ztnx9UrKeX9lUbN9foezalnOTai13qNllC3/x85qKFRV8DfUHtjErsD7bvxzsZu76L423TGVqS6sK21z6GPQm8MHPRwpSTxxbUzpgNfAU70uOymYsWrh3CdxfUgtoZY7DDdI/BDtWdTubDHOP1laNkCX3zayVUjiaQuhztwVDKkQgjtxnNaO8kUD1+dFRCkvQE0DJnlnz4ygcLOta0zageP2rDuPCksz/x85vvz/5vNzyUZdJvmTNre+BUY8xpIjLDz3u6NnbQvnIDbR+up2P1xmRt863YiVIvxT2+nS6xBYn3Y96Z/h9v37YL2SW0tcCT9J8Els5ctNB433UoNtn3WQx8buaihdGs/wJ55I2c2Qub5I/FjmnP9v4EfZPv4svRW8OoHFWQvBztShblKFQZYtQk7ypg0piVVWOq54vIn4BFLc+/e1Jby7p7+o6tGlNtJu25fWTatbffkJu/TTCVTdL3JkqdYmKxryBSKyKDrjuyafVGNraso33lOrrbBiw0uZyBP8oXgff7klY5WVA7oxp7U5bEH/FOGX5UMzb5P4YdDXVHwv4PgGNmLlq4ZCjx5sqC2hnbYDv3j8Um+2yWPG5hy3L0XhmXo13Zshx9IpPPqRxVxejJYxk5ccya3q6el1a/tvzI+P0VI6uYtMf2P9p13v9dmavYg6Ykk77ruh/HdqCOwy75e6/jOBnP4muZM2tbE4t9KdYTOz9UVfFJH3meTWva2Lh8LRuXr6W3oxvgPyTUvGYuWrgy01jKjZcUPw0cjU2OO2fwdoOdyj8m4fVW4PMzFy38p58PcV13B+B47Dj1ldhylFUTiFdDPYD+2vyBZLYY3rtsWY5WZBNLOVlQO2MCthwdhS1L0zJ5v1SEML0Dm/xDlSEmTt++cfcb7rzAz2e4rrs98HnszW1WYctRYFelzVnSF5GrsKNcVgLnGGMy7rRzXXdroB6ow/7wq7DLAfcAlwG/cxwnbWdMy5xZ47vbOv8Lka9Vjqra3U+NvqO1P9H3bOp+GztZ5FFgYZDakkvZgtoZO9H/wz2S7Dv8OoAzZi5amLJt1nXd8cAPgW8wsBzFgB8ATY7jDLra6ILaGVPpT/JHZxjzUvrXnlk4c9HC1gzeq1JYUDsjjC1HfdvErD4oJGyz63b3b7PrlJNTzQVwXXcscDlwIQPLkQF+BMzzU45KTU6Svog4wOXGmDNEJAJUGmOuz+QzXNcdh11AbAfs/UcTtQMPAF9xHGdA0C1zZlV0rms/FeR/Royp/qRUhAatgXW0trNxeSsbW9a197R3PY5N8o/OXLRwaSZxq8x549H3o/8kcCiZde4ZYPbMRQvnJu5wXXcM8Dz2hiKpytHDwJcSy5EX22Rsx/4Z2LZ5v8sPtwF/x6swzFy08B2f71NZ8srRPsDRCJ/FMJMMJ6iN32nSm5P32mHPxBVpXdcdDfwLe2WRqhw9CZzoOE6gho/mKulfALQbY24RkR2BucaYMzL5DNd178PWqNL9+NuAix3H+S3A0ovOORiorx476tMV1ZWDJo2Ote1sXL6WthXrlnRv7HyA/tq83hmqiLwhjYcCnwW+iv+lLG6auWjh+fEvuK77J+yleLIfap824HLHca71vn9r4GRsoj8S/x2Kr2LLUF9tvtPn+1QeLKidMRKYIZWhk0Xkglh3r6/mt9FTxq3e/76HB5Q513VvB05h8HJ0peM4W1Q+SpmvpC8iO2ML+DRjTIv32pnAz7GLL50NvG6MuU9EtgbuMsZ81m8QruseATyIj4WbTGdHe/Vt191XPbrq+BFjR44f7PjOde1sbFnX3r5y/ZOd6zbdDfxt5qKFLX5jU4WzoHbGhcB1GbylF6jq6/h0XXcGNgkPXo56e9vXXfaDb5s1rSdgKxt+aoit2I7mR7DlqCRHE5W7V04/4a7176/5Uibv2eGwXat2mntTD4DrugcA/8DfvQU2AWHHcQKzMKKv+2kaY5aKyIPAd4BLRKQWuB44xhjzgYi0YjvL8B7XZBjHucCoQePo6Wbs/TeOrp4y9ivpjutu66RtxfrlbSvX3b3po41/ZJAx4apkDHoST9CZMNLlbNLXzAAwxrDxmmurzZrW3/n4jhewFZJHgOe1HJW+no7ujNrZJST0JXzPWfhvbuwFTgB+n8l3FlMmN1GeCzwpIrcB9wIRY8xz3r5ngNnALdiOr4V+P9R13RBwEj5GQsg7S6gelfzKO9bTS/uHG9a0f7Th7o3LWufOWLDgP35jUCVjnjHmCzHDARWhAU3p3dgO3G5sORkBrAe+3neA67qCbYsftGkmtryFnjffSnfcYmA+cKf28QRPx5q2b1SMrJrZ1d71sQHlSDASCsVEMMYgGBOSilDvqEljLu87xCtHp+O/iW8McA7DMekbY14UkeewnRtzjTF3xu1bLCLvicgC4EPsP4Jfe/qOY4cwsSVPE6qs6PteOta0tXesaXt044p1PznwocdezOB7VYn547PRA/Du1CSwRIRFBp4yhgVAc6NpTtcWuRs+avkAoUmToLoaOgc0wb9Nf6J/Lbu/gSoFtz3zwf54TXwCb4qw0MDTXjl6d5BytBOZr390iOu6oaB06PpO+iISwl7KxLC1/gGMMbOzjGGS97mDGzOONXt+hhGvLoKVKx7vWNt29frm1Y+W42SWYeoq7FhoDEw3hulAX0dtS0TCz2DvHvYC8HTCj3cidmjvoKR6BOMuvYSOf/zDdD2zcC69vX/CjpvXcjQ8XIk3vNbAbsawG/3laIVXjhZh50s8laQcZToM02BPMkVfBsOPTJp3rsb+IN8GzgT+kKMYMpp6LbvuQfeuexjguH0COEZWpZVuieapwJe8DWBdRMLTGk3zR97zjMpRxQ41bHXWmb1bnXXmlY7jlOVCcMNYunK0HbYZ8NS+YyMS3q3RNPdNlMtmSRGT5fuKwteQJhGpww5pOwlby7/Yz6Qnn9bhfyx0n54gTopQyUUkHIpIeB/sgmx+R1b1TcDqs47MZsjiHa/LPw8TXjnaC3gOu1SKH+OAK+KeryfzBF4JBOa+v4PW9EXkKOCnwBHGmJUicrf3/ETgvhzEsJjM7/jzUg6+VxVJRMKV2LXjD8fO4p5Jdks7L4v78xIy/7G+kmyClgqGiIQrsOXoMGxZmkl2M73jh96+lcX7lwy2UkApSZv0RWR3bOfW2caYxWBv+ScivwQuIQdJ33GcDtd1n8SuteNHO3DrUL9XFU5EwiOwN4k/3NtmMPSbhTwK/KLvieM4Xa7rPoatjPixCS1HgRKRcBX95egw7IS+cUP82CeAn/Q9cRynx3Xdv2KXWvfTAtEB3DbEGAoqbdI3xrxBktmRxph5wLwcxnEb9j8xcYGtZELk5gpD5UlEwiOxk/b6amC1+Jvo4sc/gFmNpvn1JPtuxc6o9VOOBC1HJS0i4WrswnZ9lYVDyF05egb4RqNpXpxk3+3Yhfr8lCODHcIeGJl05ObT3dgFjHYjfbvsJuBmx3F0JmQJiUh4K2xi76uBHUTmN8pYi11DfzrJV1J8H/gecG+aIXf3Y1dF3ZP0TT2bgD86jtOcYYwqjyISHo0tR32VhYPJvBytw5ajXbD5JNEy4H+Au9KUo4eAN7FNR+nKUQdwt+M4b2cYY1GVzNLKrutOww7FG0vyy6pu7H/EgY7jaOdbkUUkPAb4Ana9mmPJ/KYhq4Cngae8x8WNpjkWkfBSBq6h3okdPDC30TQPOsrGdd2dsEPxxpO6HL0DHOA4TluGMasc8yoMJ2DL0efIvH9vNf3l6ClsOeqNSHgJsHvccV3YZWPmNJrmQf/fveXdX8aOWExWjnqwy2Xvn+1y3cVSMkkfwHXdfYCbsTW9vkurGPaH/1fgAsdxPkr+bpVvEQmPwv4wz8Auajbo0hlxWuj/YT4NLElW04pI+DygEfvj/zNwUaNpfjeTOF3XdbCzw3ejfx0eg62ZPQJEgrRWynDjNf8diy1HJ5BZk80K+svQU9hytMWkqIiEzwJuxF4p/AX4bqNpzmh2teu6ewA3Ya8c48vRJuwNfyKO4wRuHa+SSvqweRr0idj1LyZg75h0jeM4rxQ1sDLldZ4djf2BnoT/Dtj3GFgDWzrITMj475wMxBpN8+rMI7a8cvR57LpOE7CX9b9yHEdnbReBV46OxJajk/HfAfsBAysLb2dQjiYBJgfl6FjgPGz/ZhS4znGc57P9zGIruaSvis8bCnc49gd6Cv6Gwb2LXV/8aewsx/fyF6EKAq8czcSWo1Pxd8OTZux9CfoS/Xt+k7zyp1Q6clWRRSQcwnacnYGd9bqdj7e9jx3SOx94WX+cKiJhwXbkn4Ed9jjVx9s+AO7ElqMXtRzllyb9Mub9QPfD/kBPBz7u420rgLuwP9Bn9QeqvHK0D/3lKOzjbR/SX44WJWuXV/mhSb8MeR1pZwLfxXZSDWYNdljtfOxCZ7qmvOobR/9lbDna28dbWoF7sOXoqUbTHJhZrMOJJv0yEpHwROAC4JvAlEEO34AdPTMfeLzRNOtaRwqAiIQnABHsDcMHa77ZiJ0ENx94rNE0661Ji0yTfhmISHhnbG3sfNIPs9yEvUvUHcDDjaa5owDhqYCISPgT2LvnnU/6W1J2YIdYzwf+2miadV5NCdGkP4xFJHwIcBF2iFyqdUR6gYexif4vjaY5UBNNVP5FJHwQthydQuoZ8zHsHIg7gAcaTXO65Y1VEWnSH2a8YXInYqea16Y5dCNwA3CdDq9UibxydAI22R+a5tA27CSoX2U6iU4Vhyb9YcKbzn4e9vJ75zSHRoFfAb9rNM1rCxGbCg5v/Ztzsc2Bu6Q5dDlwHXBDo2luLURsKjc06QdcRMJTsR2zF5B+TfqXsUsR36WdsipRRMJTgFnAN0g/iWoxthzN107ZYNKkH1ARCe8OXIxdriLdIlUPY291+aSOqVeJIhLeFdsUeA7pV7T8GzbZP67lKNg06QeMty5NA1BH6k61Luya4L9sNM2vFSo2FRze8N0rsFeIqZYP7gb+D1uOXi1QaCrPNOkHhHf3qQux94Udn+KwVuA3wPVxN3pWajOvHH0DqMcuG5zMWuxKp79uNM1+7zWrAkKTfonzprifiL20TtVB+x/gGuAmP2uFq/LjlaPPY5v6UnXQNmPL0R8aTXNgbvStMqNJv4RFJLwv9kd4RIpDlgKXAffo0ggqlYiE9wZ+iV3aOJl3gR8Af9KlEYY/TfolKCLh7bA3az6f5JOq1gFXYptxOgsZmwqOiIS3xZaT/yJ5/88GbDm7Tmdflw9N+iXEuzPVd4HZJL8pcwxoAuobTfOqQsamgsNbCO3bwOUkv+lNDDuh6keNpnllIWNTxadJvwR47a2nYe8Fu2OKw/4GfE9H46hUvHJ0CvAzYKcUhz2BLUc6GqdMadIvsoiED8S22x+S4pA3sFPhH9bx0SqViIT3x5ajmSkOeQs7Hv9BLUflTZN+kUQkvAMwBzu5Kpk12GF1TTqDVqUSkfD2wFXYpROS9f+sxc7r+I3OoFWgSb/gvEvwr2NHUyRbnrYHuB64stE0rylkbCo4vHJ0HnAtydvte4HfAlcM5cbgavjRpF9A3qicG4HjUxzyF+DiRtP8ZuGiUkHjjcq5ATt/I5mHgP9pNM1LCheVCgpN+gUSkfDJ2B/qpCS7F2M71x4vbFQqaCISPgFbcdg2ye7XseXo0cJGpYJEk36eRSQ8DnsJfl6S3W3A97Ht9jq5SqUUkfAYbJPg15PsbgcuBX6rk6vUYDTp51FEwocBtwDhJLv/CZzTaJqXFjQoFTjeHdBuAz6RZPe/gLMbTfPbhY1KBZUm/TzwJsf8GLv0ceKIih7gR8DPtHav0vEWR6vH1uITZ9T2YkflzNHavcqEJv0ci0h4L+yyxnsn2f06cFajaX6psFGpoIlIeA9sOdovye43sbX75wsblRoONOnnSETCIewSCj8l+U1NrgUuazTNmwoamAoUrxxdiJ2dneymJtcDlzSa5vaCBqaGDU36ORCR8I7YtvvDk+xeBny10TQ/UdioVNBEJPwx4CaSr4bZApynI3PUUGnSHwJvgszZwK+BcUkO+SPwTb0BuRpMRMJfwd4AJ9kNcv4ERHSynsoFTfpZ8m4314Rd4CpRK3BBo2m+s7BRqaCJSHgbbLI/Pcnuddiblf+frpejckWTfhYiEnaws2fDSXY/hr0MjxY0KBU4EQlPx5ajZHdEexLbLPhBYaNSw12qG2urFCIS/jywiC0Tfge2A+5YTfhqMBEJHws8y5YJvxM7IOBoTfgqH7Sm75PXfn8Rdq3yxLH3L2CHYr5R8MBUoHjl6FvY2bWJla6XseVI75mg8kZr+j54k2R+D/ycLRN+E1CrCV8NJiLhKqARO3w38bf3B+BgTfgq37SmP4iIhCcD97DlzSliwHew96nVTjaVltfxfzdb3uTeYG9uco2WI1UImvTTSNNhuw44XcdMKz/SdNhuAL7caJr/WvioVLnSpJ9CRMLHA3ew5Q0qlgKf1+Yc5UdEwscAd7HlPI53gRO0OUcVmib9BF5H23eBX7Bl+/0/gFP1TkRqMF45uhB739rE9vsFwCmNpnlVwQNTZU87cuN4HbY3AlezZcK/AfisJnw1mLgO21+x5W/sJuAoTfiqWLSm74lIeBK2w/awhF0xbM3/19rRpgbjddj+Cfh0wi6DXWr7l1qOVDFp0gciEt4T29G2U8Iu7bBVvkUkvDvwINphq0pY2Sf9iISPA+ajHbZqCCIS/iy2wzZxwTTtsFUlpazb9CMS/m9sDT8x4f8DOEgTvvIjIuHzgYfZMuEvwJYjTfiqZJRt0o9IeBZ2Nm3iv4F22CrfvIrD79EOWxUQZZn0IxL+FvYORPFiwLex65Z3Fz4qFTQRCV+ArTjE65th+7VG09xV+KiUSq/s2vQjEv4udrGreF3YcdMPFiEkFUARCV8IXJfwcje24//PRQhJKV/KKulHJHwxdpXMeJ3AiTpCR/kVkfB3sJOu4mnFQQVC2TTvRCQ8my0Tfgd2hI4mfOVLRMIXsWXC7wRO0oSvgqAskn5EwpcDP014eRNwfKNpfrwIIakAikj4EuzyHPE6sFeKDxchJKUyNuyTfkTC9cCVCS+3AZ9rNM1PFiEkFUARCV8G/G/Cy5uwY/D1SlEFxrBt0/cWvGoAfpiwayNwXKNpXlD4qFQQRST8I2xZiteObRr8exFCUiprwzLpewn/KmB2wq4N2Br+wsJHpYLGK0dXAD9K2NWGbRp8quBBKTVEwy7pez/UudjFreKtB45pNM3PFj4qFTReOboS+EHCro3YisMzhY9KqaEbVknf+6H+Avhewq512Fm2zxU+KhU0XjmaA1ySsGsDcGyjaf5n4aNSKjeGTdL3fqjXAt9K2NUKHN1oml8ofFQqaLxy9DPsrNp467EVh38VPiqlcmdYJH3vh/prYFbCrjXY9U9eKnxUKmi8cvRL7A3v463FJvznCx+VUrkV+KQfV8NPTPirgSMbTfMrhY9KBdTP2DLh65WiGlYCn/SBS9mySWcVNuEvLkI8KoC8mbaJTTqrsVeKLxchJKXyQowJ7p3bIhI+D/hDwssfAp/RNcyVXxEJnwXclvDyR9iKw6tFCEmpvAls0o9I+HjgfqAi7uV1wEyt4Su/vDte/ZWBV70bgMO1L0gNR4FM+hEJHww8CYyKe7kT29n2dHGiUkETkfCnsHdJ2yru5W7ssExdokMNS4Fbe8e7+fRfGZjwY8BXNOErvyISngY8xMCEb4CzNeGr4awkO3Jd13WAE4EJQBS43XGcVREJbw88AmyT8JZZjab53gKHqUqc67rTgZOx5WU58EfHcVZGJLwd8CgwOeEt32k0zXcWOExV4lzX3Q34IjARWIEtRy3FjSp7OWneEZHxwGPAHsDBxhg3m89xXXcqdkbtyUAV9qTUAcQ2rFh17S2fPf8LGOMkvO3KRtOcuDaKKmOu604Bfg58CVuGKrHNf71tq9b8+qYjzz0GY/ZNeNvcRtN8aYFDVSXMdd3J2GG8p9OfjzqxLQvXAFc5jtNevAizk6uafjtwPPaHlhXXdScB/8bWvqrido0EeP2eRy/GmKqEt90I1Gf7nWr4cV13G+B5YAowIm5XNcDrf37se0nK0a1suTifKmOu644H/gXUkKQcAd8FDnVd9yjHcQJ1T+2ctOkbY7qNMauyfb/rumbG518AABiVSURBVALcBUxiYMLfbOOKjxJffwC4oNE0B68nWuWFV47+jy0T/mYbW1YllqOHgf/ScqQS3ApsT4pyhO1T/BR2FdZA8VXTF5GdgVeBacaYFu+1M7E1+4OMMR8MMY5jgANI/Q+Mc8bx/OfJZ+lcv5GKEVUP93Z1f7nRNPcM8XsBiDbUjQDGpdnGA2O9+Cq8rTLuz4nP0+3r2zqxTVeZbonv24idRLSmpr4pUDWOPPgMcCjpytFpn2Pp4/+kY+16KqpHPN7b2fWlRtNc7v9uKo7rujOBI+mv1acyGviu67rzHMdZnv/IcsNX0jfGLBWRB7FT1C8RkVrgeuCYHCR8gHMZOIpiC1P23IWvPnYz7WvWto3fYbv5iW1p0Ya60cC23jbFe5yMTdiDJfTB/nMDIdpQtw47qWi1tyX7c/xrq2vqmzqKE21enM3AUV1bmDx9Z8599A+0r1nbNnbqtnfuvc/ebQWKTQXHmXjNyj4Y4CTgN/kLJ7d8d+SKyCexY+MPxXbafscYc2fCMTcDv8ikI9d13Urs+iZjfMXRuYmRS577z8ilr75Gf5LflkFOGiqlNuyJYBXwAfCetzXH/bm1pr6ppJs/XNcNYRfYG5/B2552HOfwPIWkAshrIlyFHanj17OO49TmKaScy2j0joj8DZgBzDXG/Dhh30PAvtgk0WSMudnPZ7quuy/wNLb5ZFBbLfwLI1Y0+45Z5cRGBp4EEk8MK4t9UnBdd0/gWXxWHjw9wAjHcUr6hKYKx3XdXYCXyKwS2QtUO47Tm5+ocsv36B0RCWH/cjHsnakGMMYcl2UM23if6Uvl2qz7i9PpxS7hsH6QrQubKHoTNj+vxT832HbnauxlpN8t8fhR2Caqidg5DZLrfxjPGMDxtmQ6ow1172NPAO8CS4DXABdoKdAJYQL23zYTgv03HU5NXGpoJmB/q5mIYU8S63MfTu5lMmTzamBr4G1sm1fiQmfZyihRdYanM+qNfyfb1YVdbC1+W4W95E+XyNcBHcWuqQ5VtKGuAltgJ2JHQU30+eeKZJ+XoWpgF29LtDbaUOfSfxJ4DXBr6ptyffbO9oSXrxOlCqZsyoPJ8n1F4Xf0Th12wtRBwBHAFSJyk8nNwj1ryeAfrGOPg+mumdY97on5pzMwwa8PeuIeipr6pl5s2/xHwJt+3hNtqBNsG/hEYDtgR28Lx/15RwbpHB3E1th+oEMTvnsVcScB7/G1mvqm1iy/Zy3ZDUHWWr6Kt47MK0KV2CbQQBi0TV9EjgLuBI4wxiwWkQrgLeAiY8x9Qw3Add0R2I7c0Rm8bYHjOIcN9bvV4LwTw2QGngTCCX8el8OvXI49AbyKnRzzLLBssBN6pgMCPM85jnNQtoGq4SfLAQEvO46zX55Cyrm0SV9EdgeeAc4xxjwU9/os4CxjTE56rF3XvRd7JeHHRuB7juP8LhffrYYu2lC3Nf0ngV2BPb1tD3Izqmo5Nvn3bS/U1DdtMf3ddd35wGn4u3JsBy52HCcwQ+1UYbiuewtwFv6uHDcBlzmOc21+o8qdklha2XXdk7Ez4PzU0jqAsOM4K/MblRqqaENdCHsi2BPbCRx/MhjK3Ihe4BX6rwSeBd5uPeXC44D5+C9H0xzHiQ4hDjUMua57NHAv/srRJmAPx3Ga8xpUDpVK0g9hf8D7kr6foR34leM4lxUkMJUXXqfzJxh4InCA3UixDIcPawz8q3Pavk73lI9v37vNdhVmRMrzSjvQ6DjORVl+lxrGvLH6T2KHp6crj5uA3zuOc2FBAsuRkkj6AK7r7gC8jO34S9aR0gm8CBzhOE5XIWNThRFtqKvCjgBysOuaHOw9ZtWR3Dt2Aj2Tauie8jF6Ju+AGTESbDl6FZjpOE5nbiJXw43ruttiy8kkkuejLuB1oNZxnEANBiiZpA/guu40oBGopb9jt8fb/gDMdhwnEGNhVW54J4K9sCeAvi3Z0NC0DELvhMmx3jETXqlsXXl5xca1j9fUN2nlQaXkuu6O2OUVjsBWPATbtNgN/BHbJ5TtaLOiKamk38db8Og07FDC94Emx3HeLW5UqlREG+omAQfSfxI4iMxHELUDT2GXFHkMO1y09H4Mquhc1z0IOzdpMrAM+J3jOG8VN6rslWTSVyoTXofx7gy8GnDIbMJMC/A49gTweE19U2DvjKRUOpr01bAUbagbBxwCHO1te2X4ES79J4GnauqbdDVONSxo0ldlIdpQtx1wFP0ngakZvL0De0/de4AHhzBrWKmi06Svyo43y3g6/SeAI/A/iawHO5zvXuD+mvqmFfmIUal80aSvyp5357SD6T8JHIC/2ZgGO2P9XuDPNfVN7+UtSKVyRJO+UgmiDXUTsLX/o4HjsLOK/fg39gRwb019k69F75QqNE36SqXhNQXtC5wCfBHbLOTH69g+gHuBV3Q4qCoVmvSVykC0oW46dnHAU4BP+nzbu8CfgFtq6ptez1dsSvmhSV+pLEUb6sLYE8AXseu0+JkX8BxwMzBfRwGpYtCkr1QORBvqpgInYk8An2HwG3F0AfdhTwCP1dQ3ZXqLPqWyoklfqRyLNtRtA5yAPQEcw+DLSLcAt6HNP6oANOkrlUfRhroxwEnAV7FXAIM1AWnzj8orTfpKFUi0oW5H4GzsCWDnQQ7X5h+VF5r0lSowbxjoDGzyP53B79DU1/zz+5r6psCu7qhKgyZ9pYoo2lC3FXYE0Ffx1/zzMPArbO0/lt/o1HCkSV+pEpFh88+bwK+BW2vqmzbkOTQ1jGjSV6rEZNj8sx57V7nra+qbluY/OhV0mvSVKmFe888pwDexC8GlYoAHgeuAJ3TZB5WKJn2lAiLaUHcQ8G3gS0BlmkNfxyb/2/XmLyqRJn2lAibaULc9EPG2yWkOXQvcCMyrqW9qLkBoKgA06SsVUNGGupHAadjaf7rF32LAA9hRP09p009506SvVMB5Hb+HAN/Ctv+nW/fnn8BPgEc0+ZcnTfpKDSPRhrodgAuAOmBimkP/jU3+D2jyLy+a9JUahqINdaOAL2Nr//ukOfRVbPK/Ryd7lQdN+koNY17Tz2HA97G3fkxlCXAVcKeu8zO8adJXqkxEG+r2By7HrvqZyjvAT7HDPbsLEpgqKE36SpWZaEPd3sAPsOP9U6310wz8L3BzTX1TZ4FCUwWgSV+pMhVtqNsduAz4CqlH/CwDfgbcWFPftKlQsan80aSvVJmLNtTtDMwGziX1TN+VwM+B32jyDzZN+kopYPMqn5cAXwNGpDhsGfBD4Laa+qbeQsWmckeTvlJqgGhDXQ1wMXas/8gUhy3Gjgh6VMf5B4smfaVUUtGGuinA94BZwFYpDnsC+H5NfdOLBQtMDYkmfaVUWtGGuonApcCFQHWKw/4I/KCmvum9ggWmsqJJXynli9fm/xPgrBSHdGGXdP5pTX1Ta8ECUxnRpK+Uyki0oW4/7EieI1Mc0oqd3Tuvpr6po2CBKV806SulMuYt7/BZbPLfK8Vh72Engd2h6/qUDk36SqmsRRvqKrA3c/8JUJPisJeAi2vqm54oWGAqJU36Sqkh81b1/DZ2kte4FIc9Anynpr7pzYIFpragSV8plTPRhrpJ2EXdvgFUJTmkG7usw09r6pvaCxmbsjTpK6Vyzlva4afY2zkm0wx8q6a+6S8FC0oBmvSVUnkUbag7ENvZe1iKQx4Avq03bi8cTfpKqbzyRvqcDvwSmJrkkE3YjuCrdRnn/NOkr5QqiGhD3TigAXsLx1CSQ94EZukon/zSpK+UKqhoQ92+wG+A2hSH3AFcVFPf1FK4qMqHJn2lVMFFG+pCwHnAXGBikkM2YJdwnqf37M0tTfpKqaLxFnObA3w9xSGvABfU1DctKlxUw5smfaVU0UUb6g4Gfgvsm+KQ3wOX1tQ3fVS4qIanZJ0pSilVUDX1Tc8CB2A7edcnOeRrwJJoQ92pBQ1sGNKavlKqpEQb6qZix/afmeKQ+cA3a+qbVhcuquFDk75SqiRFG+o+jR3ls3uS3SuBupr6pvsLG1XwadJXSpWsaEPdCOy9eH9E8rV8bsfO6F1T0MACTJO+UqrkRRvq9gZuBvZLsrsF+O+a+qYHCxpUQGnSV0oFQrShrgq7dPMPgcokh9wMfLemvmltIeMKGk36SqlA8W7XeAvJ79gVBf6rpr7pkcJGFRya9JVSgeO19f8QW/OvSHLIjdilHJIN/yxrmvSVUoEVbaj7FLbWv0eS3R8A59fUNz3uHfs57EliGXbIZ1l2/mrSV0oFWrShrhq4AjvKJ9mE00bgx8BbwBjvtaeBI2rqm8ouAWrSV0oNC9GGuoOwnbnJxvW/D3w84bXza+qbbsp3XKVGk75SatjwbtD+Y+AiQAY5fDWwe7mt56Nr7yilho2a+qZNNfVNFwOHAm8PcvhE7E3ay4rW9JVSw1K0oe5j2Hvwplq5s8/hNfVNTxcgpJKgNX2l1HB1C4MnfIAmbwhoWdCkr5QarpIN40xmd+DqfAZSSkqyecd13UOB07Ftbu8BNziO825xo1JB47puLXAGMBk7euN3juMsLW5UqlCiDXUXk1mb/W419U1vJb7ouu6BwFeAbbFj/H/nOM5g/QUlKydJX0RqgV8CXcBy4BxjTHemn+O67s7Yu+fMAEZ7L/d42++B2Y7jbBhywGpYc113J+ySvIcBo7CjOPrK0c3ApY7jrCtagKpgog11+wAnAJ/B5pV0zTjfq6lvuqbvieu6H8eWo0/TX456gW7s6p7fdxynNU+h502ukv72QKsxZpOIXAW8ZIy5O5PPcF13B+BlYGuST6vuBF4AjnAcJ+MTiioPrutOxd5XdRtSl6NXgZmO43QWMjZVXN5wzhnYE8DRwP70D+vsBXasqW+KAriuuy22nEwieTnqAl4Hah3H6chz6DmV8+YdEWkAXjHG3Ov3Pa7rhoBnscumJls9r087cK3jOD8YWpRqOHJdV4BngAMZvBz9xnGciwsSmCpJ0Ya6rYFzAAe4tqa+6XXYXI6exJ4gkq3h32cTcKPjON/Kd6y55Cvpi8jO2LPeNGNMi/famdhbmh1kjPnAe20n4E7gUGNMl98gXNc9CbiN/inS6XQAOzqO86Hfz1flwXXd47G30vNbjqY5jhPNb1QqaFzXPRq4F//laLrjOM15DSqHfI3eMcYsBR4EvgOb2/CvB06KS/jjsEOkzs4k4XvOwd8/MNjLsC9k+PmqPJwFbOXz2BhwYh5jUcF1Jv19ioMxwEl5jCXnMhmyOReoExEHexaMGGOeAxCRSuAO4ApjzJuZBOC6bhVwTAZv2Qp7klBqM9d1K4HPM/jU+z6jgbPzF5EKIq+p+ST858ZRBCwf+U76xpgXgeeAfwG/NcbcGbf7y8BBwI9E5B8icnoGMeyNHVWRiYMyPF4Nf9Oxta5MHOC13yrVZ1eSd9yms7frupm+p2h8J30RCWGbVmLYWv9mxpjbjDGTjDFHeNudST8kua3J/Mda5dXslOqzNbZsZmpkrgNRgTYem+cy0Yv/5umiy6R552rsD+ttbJtXrmQ7fKj0ZpWpYtJypHIhm/IgWb6vKHwlfRGpA07GtnXNBS4WkVxdFrf6jSNOp+M4mZ6N1fDWSuaX5QY7bl+pPq2kH+6bTAhoy0MseTFoshWRo4CfAicYY1YCd2NnteVq5MNi/He+9XkmR9+tho8lZH5ZvshxnMDU0FRBvEPmFYEXglQJTZv0RWR37Ljns40xiwGMMb3YJRcuyUUAjuP0YIeD+v3xbcBOgVZqM8dxYsD9+G/XbwNuzV9EKoi8SsDd+K9AtGOHqgdG2qRvjHnD66B9KOH1ecaY2hzGcSv+L48qsScJpRLdiv0R+lGBXWtdqUS3Yydd+RHCVjYCo1SWVn4EeB67kFE67cCPHcdZnf+QVAA9CfwTuy5KOu3A/+qsbpWM4zgLsGVpsGaeduCXQZvVXRJJ37ukOg1YRerEvwl7B/ufFyouFSxeOfoysJLUiX8TsAi4qlBxqUA6B2ghdTnqwC4AeUWhAsqVkkj6AI7jfAQcANyD/WH2tal1Ys+oc4GTg9RhogrPcZw12AXX7iJ5Oboa+ILXl6RUUo7jrMVOAr2DgeWoy3t+DfC5IK74W6o3UdkLu77OBOz6/Lc5jrOquFGpoHFddw/sUOMJ2Frb7Y7jrCxuVCpoXNfdHfgidpnl5cAfHcdpKW5U2SvJpK+UUio/SqZ5RymlVP5p0ldKqTKiSV8ppcqIJn2llCojmvSVUqqMaNJXSqkyojciUcqHkQdEjIQqCFWNIBSqQEIVhCqrvMcRSIV9DPU9T3hdQhVUVIYQEfsYEioqvMdKSf56RQgJQSgkhCpChEJCZWWIipAwwnus3vy8wj5WJL6e/LEqFKJCoKoiREiEqgohJDLwtZB4x8rmYyoGHCuIQEUIQggVIbtcbkVICHmPIlAhQkigQrB/T4GQ916J9SImBrFeMDEk1gMmBr09SV+XWA/E7Ot2fw/EejE93faxu3vzcxPrhZ5uTG/vwGM2H9sFsRimpwsTixHr6tn8GOvtJdbdg+mN0es9bvm82z7f/L5eYr0xTMzQ29WL6bWPsYTnA/Z39xLrNd57Db09MXqNoStm6DV4j4auGElfjxF/TP++RtOccuVirekrpVQZ0aSvlFJlRJO+UkqVEU36SilVRjTpK6VUGdGkr5RSZUSTvlJKlRFN+kopVUY06SulVBnRpK+UUmVEk75SSpURTfpKKVVGNOkrpVQZ0aSvlFJlRJO+UkqVEU36SilVRsQYU+wYlCoLIvLfxpgbNI5+Gkvh49CavlKF89/FDsBTKnGAxpJMXuPQpK+UUmVEk75SSpURTfpKFU7R24s9pRIHaCzJ5DUO7chVSqkyojV9pZQqI5r0lcoTEdlGRB4Tkbe9xwkpjvuZiLwmIktE5DoRkWLE4R07TkSiInJ9jmM4VkTeFJF3ROTSJPurReROb/+/RCScy+/3G0fccaeKiBGRT+UjDj+xiMjHReTvIvKSiLwqIsfl4ns16SuVP5cCTxhjdgGe8J4PICKHADOAvQEHOAA4vNBxxLkSeCqXXy4iFcA84HPAHsCXRWSPhMO+BrQaY6YB1wBzcxlDBnEgImOBbwH/ynUMGcZyOXCXMWY/4AzgN7n4bk36SuXPicAt3p9vAU5KcowBRgIjgGqgClhZhDgQkf2BKcDfcvz9BwLvGGP+Y4zpAuZ7MaWK8W7gyFxf8fiMA+yJ72dAR46/P9NYDDDO+/N4YHkuvliTvlL5M8UY0wLgPW6beIAxZhHwd6DF2x41xiwpdBwiEgKuBi7O8XcD1AAfxD1f5r2W9BhjTA+wDphY6DhEZD/gY8aYB3P83RnHAlwBnCUiy4CHgAtz8cWVufgQpcqViDwObJdk1w98vn8aMB3YwXvpMRE5zBjzdCHjAL4BPGSM+SD3FWySfWDisEE/x+Q1Du/Edw3w1Rx/b8axeL4M3GyMuVpEaoHbRMQxxsSG8sWa9JUaAmPMUan2ichKEZlqjGkRkanAh0kOOxl41hiz0XvPw8DBQEZJPwdx1AIzReQbwBhghIhsNMaka//3axnwsbjnO7BlU0XfMctEpBLbnLEmB9+dSRxjsf0q//BOfNsBD4jIF4wx/y5wLGD7OY4Fe0UoIiOBSST///NNm3eUyp8HgHO9P58L3J/kmPeBw0WkUkSqsJ24uW7eGTQOY8yZxpiPG2PCwP8At+Yo4QM8D+wiIjuJyAhsp+QDaWI8FXjS5H4SUdo4jDHrjDGTjDFh79/hWSAfCX/QWDzvA0cCiMh0bN/PqqF+sSZ9pfLnf4GjReRt4GjvOSLyKRG50TvmbmApsBh4BXjFGPOXIsSRN14b/TeBR7EntLuMMa+JyI9F5AveYb8HJorIO8D3SD/CKJ9xFITPWC4Cvi4irwB3AF/NxYlQZ+QqpVQZ0Zq+UkqVEU36SilVRjTpK6VUGdGkr5TKORFpFpEuEZmU8PrL3po2Ye/5gSLykIisFZE1IvKciJzn7TvCm5ikckiTvlIqX97FTjACQET2AkbFPa8FnsSu9TMNOwP3Aux6NCpPNOkrpfLlNuCcuOfnArfGPf85cIsxZq4x5iNjvWCMOa2gUZYZTfpKqXx5FhgnItO9VSVPB2739o3GzgK+u1jBlStdhkEplU99tf2ngDeAqPf6BGyls6VIcZUtTfpKqXy6DbuO0E4MbNppBWLAVOzJQBWINu8opfLGGPMetkP3OODeuF3twCLglGLEVc406Sul8u1rwGeMMW0Jr38f+KqIXCwiEwFEZB8RmV/wCMuIJn2lVF4ZY5YmW6nSGPNP4DPe9h8RWQPcgL1hiMoTXXBNKaXKiNb0lVKqjGjSV0qpMqJJXymlyogmfaWUKiOa9JVSqoxo0ldKqTKiSV8ppcqIJn2llCojmvSVUqqM/D/LjiDpYiWtHgAAAABJRU5ErkJggg==\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD5CAYAAADLL+UrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxjZb3H8c8v6d7OvpbODGFnvB1FNillAIW5OrIvIuCG16WREQUHxHGrdbkFBNwYTREVUAG5CAgIgqBAHQdkl+KwDYSZCZ1973S6JM/94zmhaSZpkzY5zfJ7v17nlSY5bX4DJ99zznOe8zxijEEppVRx8Ix1AUoppdyjoa+UUkVEQ18ppYqIhr5SShURDX2llCoiGvpKKVVENPSVUqqIaOgrpVQR0dBXSqkioqGvlFJFRENfKaWKiIa+UkoVEQ19pZQqIhr6SilVRDT0lVKqiGjoK6VUEdHQV0qpIqKhr5RSRURDXymlioiGvlJKFRENfaWUKiIa+kopVUQ09JVSqoho6CulVBHR0FdKqSKioa+UUkVEQ18ppYqIhr5SShURDX2llCoiGvpKKVVExjz0RWTSWNegCoNuSyrbCmEbG/PQB36UykoicrqI/FJE/iQi/53tolReSnVb2ldEfiUid2S7IFVwUtrGctmYhr6IfAg4WEQuHW5dY8zdxpjPARcAH812bSq/pLktvWGM+YwLZakCks42lsvEGDN2Hy5yOHCUMeY65/k8oDVutf8xxqyP+Z1rgN8bY551r1KVTZ2ti0qBCc4ycZjHCsDrLCXRn/+xcs2kJ4OdkxafcMRawPvs6nXjfvCX5XMEPIiIAD8758S1M8dXCyBAz/m/ubf2lk+f8hLQPcJlB7DBWXbULlk6dl8mlXXxeZWvSsb4898NvBB9Yox5ETg50YrO9/YK4AEN/NzV2bpIsOE8K2apA2aSOMgnAlWj/dzVW3ZwzL51AAcCHDp7Bn/83Onxq42LfVJdVgpwzGg/29Hb2boougNYz8DOINHzDcA23UnknUF5la/GOvQ3Ap8VkY3GmBXDrHsRcCIwQUT2N8YEsl+eitXZusgDTGMgyOODPfrzqEM8XZOrK7jl6RVMrq7ggOmTh1x3867dXPnQE3R0buRnjz7DRccflokSyrD/DepSXL8vZiexGngTeCP2sXbJ0p2ZKExlTDp5lbPGtHlH5Z7O1kVV2KPlg53lIGA2A4FWOnbVFZ0NJNgZOMvq2iVL+8awNpWnNPSLkNMEM4OBYI9d9h6jsrYDW4FtQzxuA3YBYWfpj/k5necGKAcqR7lMwJ75TMNea3BTGHuGEN0RrAQ6gBeBt7TpSCWjoV/AnAuk+5E43Cdk8aN3AyFgjbOEgLeBzSQO8x21S5aGs1hPVjk70WpgOgM7gWkJnse+VpnFkrZjw/9F4N/O0lG7ZOm2LH6myhMa+gWis3VRJfAe4PCY5SAyf91mOwNBvobBwR79ebMeaQ6ts3VRNTb8ZwA+YB9g35jHOWT+/91b2B1A7M7gtdolS/sz/Dkqh2no56HO1kVlwDwGB3w9mQkJAwSBl2OWN7FNCaHaJUt3ZOAz1DA6WxeVYC+Kx+8M9nGWGRn6qB7gPwzsDJ4FntKLyIVLQz/HOV/+dzE44N+D7S0yGruAVxgc7i9jj/y6R/m3VZY5Zwo+7I5gX+xZ3buxBwPjR/nnI9iuif+MWfQ6QYHQ0M8xna2L9sH2HY8G/HsZXfvv29gwjw/4NbVLlkZGV63KNc71hTkM7ADe7SwHYm9kG/GfZvBO4LnaJUt7RletGgsa+mOss3XR3sD7geOdZTS9Z4LAU8DTzvJs7ZKlW0dXoSoEna2LKoC57LkzGGkzUQ92G1uOsyOoXbJ0XQZKVVmmoe+yztZFcxgI+PdjT9FHYg0D4f408EztkqUbR1+hKiadrYumM7ATOAQ4Cueu5hF4g4Ezgb8Dr2iTUO7R0M+yztZFsxgI+OOx7a/pWs/gI/hnapcs7cxQiUoN0tm6aCrQABztPB7JyJoYVwMPAQ8Cj9QuWbo5Y0WqEdPQz7DO1kV1DD6S3y/NP9HLwClzNOjX6BGTGivO/R7vwe4EosvsNP+MwW7PDznLE3pH8djQ0B8l5wtxDHaguJOwvSjS0Qs8ATzqLE+k0numvaHRg+3BU4a9u7QM22VzB7Bt/vJleXuzk3JXe0OjYIfXiG5H5c7zXcDW+cuX7RHOna2LZjNwNnA0tsNBOl2Gd2CbgKJnAiv1wMYdGvoj0Nm6aDKwEDgF+BBp3N1qjOkzEfNcX1fPS12d29ZsfXPD7khvuBbbJ7uawSE+1ONQXzCDvYlqC/au1y1xS/xrg54n+pKr3OOE9TRsb5052KPv6M/jSG07ih44DGUnw2xLnlJvV/WM8VMrptTsUz6+or6ksuxwT6m3wuNNecqONxk4C/ibdkDIHg39FDjd4A7ChvwpQCMpTkBjjIn07ezZ1L1xZ3fXum3l3Zt2TjFhM9ajmw4lgv0CRrt2roj+PH/5sk1jWVixaW9orGJwkMcu0dfLx6zAFHhKvTvKxlVI+YTKmtKacspqKigbV4G3vAQ7WnpCEeBJ7BnAXcCLehaQORr6STjNNvMZCPqU2uZNxLB76y66N+6ge9NOdm/ehQkXTHf4jex5M9fLQFCbk0auvaGxBjgUOMJZDsQG+pSxrCubpMRjdwA15ZQ6j2XjKiitLkM8exxPrQTuBP6IvVu4YL5QY0FDP0Zn66IpDG62SenOxnBPP13rttO1bhu7NuzA9Lu2TfZh+0v3Oo9hbFPTuKF+KQt6gFcZ2Al0AO3zly/THkZx2hsay7DdI4+IWd7F2M9X3c/gbakfqMFuT0kPyTNOoLSqnLJx0Z1BBRWTq+3OwJ4ZhLA7gDuBf+i4Qekr+tB3ulSeA5yBvSCV0pevZ3s3XWu3s2vdNnZv2ZXux24GVsUtq7EjTvYw+MsX/xj9uXf+8mUJ/+e1NzSWYL+sk+KWiSm+limvYi9OPwY8Nn/5slAG/3bOa29o9GKbBWMD/hBGP4RGrJ3YgdSi21B0e9rE0NvPoMf5y5clPFJxOgyMZ/htJtHrk8nQzsxbUUrllBoqp9ZQOaWa0upyRGQjcDd2B/BI7ZKlvZn4rEJXlKHv9EM+GzjPGDNfhmhcjDLhCN2bdtK1djtd67bT3510++plcJDvEe7zly/rysS/IxvaGxqrGTyJylzn8UBG3378OnYH8Ch2J7B6lH8vp7Q3NM7ENgkege3bfhj2aHmkwtgj20QHCNGftyXb+Y+19obGcpIP7T2qs1FveYmzA7BLaU35dhG5F7sD+EvtkqVpH4kVi6IJ/c7WReOA040x5wMLRGTYcUj6e/rYtc6G/K71O+Lb5sPYZox/Yfsfv4A94tqQ7KgpnzlHrXuT+As8bYR/9g0G7wTeGn2l7nF6zxyC7a57MjboR+pV7Hb0FHakyyDQOX/5soJrvnD+u+1F4m1p1kj+pre85J0dQMWU6t1l4yruF5E/An/WeQQGK+jQd8YbOSkSjnxSPLJQRIad6q9nWzdd67bRtW47PYObbWK/lE8Bz89fvkyPJoD2hsYpDHxp34Xt3XQ46Q/w9RYDzUGPzF++bFUKn7vZzSPd9obGSuAD2Os+J5P6nLix1jB4W3p6/vJl2kURaG9oHMfAmeZc7LAQR5PmHcHeshIqplRTOaUmXDGxqr18UlWbiNyT7AzgiRM/UDP9kNmz9736pryd+zZVBRf6na2LSo0xJ0R6w02eUs9C8XiGbZLYvaWLHaGtdHVupb+7D/RLOWpOj5SjsXcmH4c9Ck63q+qz2Dbbu4CX4sO9vaHxh9j28YuzGfztDY17MXA0fyLpBdBmBrajfwFPzV++bG3GiyxgzsXvI7Db0XHYmyGr0vkbpVVlVM2c0Fc5pfrhqunjf+zxeh6Jna3tmdMXfs/0Ry6dMrd23j4/vPH1jP4DckxBhH5n6yJPuC98bHh33yUllaULPCXeYb+UPdu72Rnays63t/T3dfW2A8vQL2XWONcKGrBf2uOB95HeJOuvY8P/Lmwf7uhkL3OAa4DLMhX8zsXLQ7Ehf4rzc6qexp6pRIP+zVxtc89X7Q2NpdjrJcczsBNI+dqJt7yEqunjd1VMrHqweub4K0oqy55a/firb/Vs3TW7cmpN16QDZxy03zU3F2yng7wO/Tcu/dTRwDfKaiqO95aXDLvn7+vqYefbW9kR2rq1d3v3vcC9wEPzly/TNj+XOc0kRzHwxT2K1C8UrwXagY/EvHYF8PWRBqxTzwJsyJ8E1Kb4q7uAv2K3pfu1m6r7nN5qhzJwJnA89u72YXlKPFROrdnetW7HeJwsrJxas23SgTP22++amwvyZsS8C/2VX/nktEh/pKVsXPm5ZTUVw3Yv7N/dx863t9K1dtsb3Rt33g7cBzyhNxPllvaGxgrs0f9x2PBtJP3+4d+dv3xZcxqfKdijxE9iu+2mOuPUamzI3wf8ff7yZbvTrFNlkdPp4BDgOE+p98xIf/goTHrXlyqnjds4wTd1nwN++ruCmzZy1KEvItXAz7FdFR81xvx+NH+vo6NjNvYLOB07pPDt5W2toUg48vnSqrKLyydWHTTceB7h3n661m6LdK3b/mzXuu03EzH3zV++7M3R1KXc1d7QOAM4FXv/xAnE9G1fvnILvimVzJxQnuhW/sXzly+7FhJvS/X19avbGxr3Bz7hLPukUI7BNindhw37F7XJJn+0NzSOQ+TDJRUlTeGe/mNMxLzTrPj8qm1MqCplzuRKvJ7B21LVjPGrx82atN+B193SB8m3Jxf/KRmRUuiLyBeAecaYC53n3wf2NsZ8QkQ+AWw1xtwrIn8wxnx0JIV0dHR4gSsBP9FTs841lDzzeLiqe6OUVpQOmfSR/jC71u/o2bVxxz92vr31+khv+IH5y5fpJN4FoL2hcTzwYeB04KR7nl9Xs2N3P+MqSjhwRjX7TquirCRm8/B4Pjup7RdzidmWIrt20fvkv3p6/vrwpsiGDXul8LE7sYN/RZtt1mf4n6XGQHtDY7mnzPuhkorSi/q7+4557KUN5as2d1NR6mH/6dUcML2aqvKBk4Lq2gkvlZx82ns8RzYOziarCwgAl9fX1+dNy0GqoV+FnWN1HvZ0+HvA0caYbhFZAjxgjHleRG5x+sGnraOj42pgcexrJQ/8HxP6k08GZYxh9+au7u5NOx/aGdr6494dux8vxD7yakB7Q2P5fS+s69zW3f9O016JR9hnWhUHz6xmfGUpgKn2f17KDjvsnd/re+UVdl597XB/fj3wf8A92PsGdA7YAtbe0Ohdvmr76jfe3vHO9RsBZk+u5ODaaqaNs5eYaubtv6b0S5cNdf/ANfX19ZdmudyMSbl5R0Suwu7lFgILjDErndc/AWwxxtwnIrcZY85NtwjntGkFcRdfzOaNTGn/wx4DMPXt6o10b9z57O7NO/93+6rNd+updmHwi8+DHWRsJnbu1plxP88AZnqEeZEk/8dnTarg4NoaZsyayvhLLsE7y3ajN8aw/RvfIrJhQ/yv9GC7hd6MvahfcDdDFSO/+AQ7LMQe20/sY2mJ59C+JGNlTa0pY25tDbOnVzHxnDPwfOCDyT6uCzi4vr5+TYb/GVmRTr/pX2OD+bRo4DvuBK4TkZOwp8IjcQ4JrrbL5Kns6vFSXWmIhCN0b+/d1rNh64+6OrdddeRfHh52ohGVm/ziG4cdkyb+bswDSGFcmmSBD7Bmy27WbNnNzLJpnFRV806HehGh7JhGdt91NwCeKVPeiGza1Arcofdg5C+/+Cqw2038tnQQKfTgSRb4ABt39tL+2mbGd5dx0uyDhhrytBqbYcOeSuaCdEL/28CG+N8xxnQBnx5lHdOTvdEz90h6Q0HCjcchk6e01dfXt4zys5QLnCOtOhLfaj+Su1hTdsDCY2n40iepnDx4bpvyoxsgHKbsqPfhnTbtjvr6+huyWYfKHL/4pjJ4LKjosg9ZHAV04t57rV5wxaWzpxzgG27VGdmqIdNSCn0RWQxUYPdmLdij+0xKepHMzDsUM+/Q6P/VdRn+XDVKfvGVMfhIK/qlPIjRDTY2Eu0nfP/iZ+eeduKXE73pmTiRylNOjj7VbSnH+MXnxYZ4ogMFt+cWeAX46sfuCRwgHs/VKayfN9vTsKEvIh/AHsk3GGN2iMh4ETnEGPN8Buu4HbszGep0rMtZT40h53T6KAZugmkgs7M3bQM6sV+itQke12LvlI0943sT2wng7rmnnTgL+Cy6LeU8v/hKsP3pj3eW+aR+r0QquhjYZhJtR+sAH3BbzO9sAb4FXB8wwT7nemNBZdOQoS8ic4AbgJOMMdHujz8BLgYuyFQR9fX1qzs6OgLE9d6JE8iXCyWFxC++SvYcPmG0IR/GDqsQO/vWCuCVgAkO277uF9/Bzo/dwP8CVwdMMHqDlG5LOcoJ+UMZuAt7PpmZ8CdI4hnd1gdMcMhOHn7xRW++MsD1wDcDJvhOl8FCzKYhQ98YswrYN+61G4Ebs1DL5c5j0r6wWfhMFccvvipsyB+P/WK+j5FP+rGdBHPtAm8ETHA0E15sxh5ZXRYwwUQjceq2lAP84ouOkRM9YEhrjJw4u7FNLvHB/mrABEcz2u1m7LhbFwVM8Lkk6xTU9pRzwzB0dHREZ7KagT39uj2f9qL5xi++auxomNEv5pGkNxAawNvYuQXiv5BrhzvSGgm/+DwBExz2fgzdltzlhPzhDB4ILaUxcGJsAV5kz4OFVan8P0+X003YpLKdFsr2lHOhr7LL6VUzDztY2QnYIWvTHfJ4FXbc+0exI0q+mY1wV7nPL7452CD8b+x4SWkNeQxsxJlOE7s9vZSNcFcD0v2yqzzlF9/+wLnAediJTtLxJjEzXAVMMJjR4lRe8YtvBvag4TzsWWI6NjBwsPAosEJD3l0a+gXML7464KPYL+fhafzqSgaH/JAzWKnC5xffROBM7IHDCaQ+4fk6Bof8y3pWOLY09AuMcxPL2dgv57GkduPKawwO+bxrp1SZ51zvORl70LCQ1C7odzI45F/VkM8tGvoFwC++8cBp2C/nAob//xrGjiD5B+CvARN8O7sVqnzh3Gz3Qey2dCqpXYhdjt2W7gde15DPbRr6ecrpP/9h7JfzJOwd00MxwOPYG1HuiO2LrIqbcyfs8dht6SzsQGXD+TdwK3CbXuPJLxr6ecTpedMIfA47uUgqN7Y8jf1y3q7NNiqWX3zROQc+Smpjx7zOQND/J5u1qezR0M8DzpHYGcCl2JulhrOCgS/na9msTeUX58DhWOy2dPIwqwOEsE03twLPaNNN/tPQz2HOhbRPA5cQd2d0AkFs082twIv65VSxnCEQzsKG/XA9uTZhJ5O5DWjXLpWFRUM/B/nFNxP4InAhMNTk7+uwwxHcCjyhQa/i+cVXA3wGe+Cw9xCr7gTuwm5LDwdMsM+F8tQY0NDPIU4b62LshN1DdY+7Hzvw3SMBE8ybuTmVe/zi2wu4CNtmP9SF2aexk3/cHTBBnZioCGjoj7E02lh7gd8B1wZM8CU3alP5xy++/8JuSx9j6DGU7gWuxjbf6BliEdHQHyNptLFuAX4BXBcwwU43alP5xTlweD92W1o4xKo92LmAfxQwwRVu1KZyj4a+y5z5Yf+H4dtYg9jT7t8ETHDnEOupIuWMavkRbNi/d4hVNwNLgaUBE8ybGZ5Udmjou8QvvnLgy8AShm5jfQp72n1nwAT73ahN5RdnOODzgR8Ac4ZYdSX2wOGmgAl2uVGbyn0a+lnmnHqfBVyFnf8zGW1jVcPyi+9o4EfYeQ+SeQL4IfAnvdCv4mnoZ5FffIdhv6Dzk6wSbWO9NmCCL7tWmMo7fvHtDVyBHUgvEQPcjZ068p+uFabyjoZ+Fjjd5X4AfIrEo1xuBX6GtrGqYTjXgL4GfIXE4yv1Ar/BHji86mZtKj9p6GeQMwjaYuyXNNHohGHg50BLwAQ3uVmbyi9Ou/2nsBO/z0yy2p3AVwMmuNK1wlTe09DPAKfd/lzgSmB2ktUeABZrVzk1HL/4jsM2CybrkfMccEnABB9zrypVKDT0R8kvvqOwX9CjkqzyH2zY/8W9qlQ+8otvP+wF/zOTrLIW+Aa2N45eoFUjoqE/Qn7xzcZeWDs/ySqbgG8D12vXSzUUv/gmYMP8yyQefqMHuAa4ImCCO9ysTRUeDf00OQNYfRV7Q0xlglX6gZ8C3w+Y4BY3a1P5xbkr+zPA94BpSVb7A3B5wATfcq0wVdA09NPgF99Z2EDfK8kqfwIu0zHs1XD84nsf8EtgXpJVnsK22y9zrypVDDT0U+Ccfv8MO/plIv/GfkH/5l5VKh85Qyd8E9uc402wSgjb++sWHcdeZYOG/jD84ns/cCOJb3dfj/0C/1ovrKnh+MV3MPBbEg+w1429iPtDHTJBZZOGfhJ+8VVg+0hfkuDtPuyYJv8bMMHtrham8o7T534RNtQT3WD1e+BrOoexcoOGfgJ+8b0Xe0T2Xwne7gA+HjDBF9ytSuUjv/jqsHfMLkjw9lrgMwETvN/dqlQx09CP4UxA/lWghT0noDDYbnPfCpjgbrdrU/nHL77zsHdgJxpV9Y+AP2CCG92tShU7DX2Hc2PMzcDRCd5eBXxS74BUqfCLbzJ2/PpEg6Ntx85//DsdTVWNhaIPfWcIhc9i76pNNF7OTcCXAya4zdXCVF7yi28B9sJ/om69jwIXaJ97NZaKOvT94psB3EDiuWk3AZ8PmOCd7lal8pFffFXYO7QvSvB2L3bynB9rN0w11oo29P3iOwO4Hpia4O37sRfY1rpblcpHfvEdgb3wf1CCt1/AXvjvcLcqpRIrutD3i2888BPgggRv78J20fyltreq4TjDKHwdO8ZS/I1WBjvq6ncCJtjjdm1KJVNUoe8X3zzsUAmJpi1cjr1Y+7q7Val85DQN/hFoTPD2m9ht6R/uVqXU8DxjXYBb/OI7FfgnewZ+P/aW+GM18FUq/OI7BDs2TqLAvwF4jwa+ylUFf6Tv9M75KtDKnlMXrsC2tz7remEqL/nFdya2/b4q7q31wOcCJniP+1UplbqCDn1nKIXrSTxQ2vXAxQET7Ha3KpWPnIOHrwPfT/D2w8DHAia43t2qlEpfwYa+X3wzgbvYc0arMLbf/VL3q1L5yJn7+FfAeQne/hnwFZ0oR+WLggx9Z+ycP7HnfLVbgY8ETPBh96tS+cgvvr2Au4Ej4t7qB74YMME296tSauQKLvSHaHN9BTg1YIKvul+Vykd+8R2OPXiIv7t2M3BWwAQfdb0opUapYELfaXP9BnbquXgPAR8NmOBWd6tS+covvnOwwynET4m5AjglYIIrXS9KqQwoiNB32lx/TeIBrn4KLNY2V5UKZ+z7bwPNCd6+Hzhfx2FS+SzvQ3+YNtdFARO83v2qVD5yxs+5CTg7wdvXYCco1xnSVF7L69DXNleVKX7xzcJuS4fGvdUHNAVM8DfuV6VU5uVt6PvF91Fsm2v89HP/wba5vuF6USov+cX3PuzZ4sy4tzYCZ+jdtaqQ5F3oOxdsv4Wd3Sre/cB5Om+tSpVz8HATUB731ovY3l5B14tSKovyKvSdi2w/JvGY5VdjJ5fOyzbXUEuTB3vWUontbhr7WIkdJykSt4QTvDbc6/3Y2Zu66prbinpsd7/4moBfsOfwHPdgh+fY4X5VSmWXGJMfIwg7w9j+Cvhk3Ft92MlObnS9KCDU0lQJTEuyTGLPAE8U6FXs2UyVbQbYgd0BbAe2xfycyrINWFfX3Nbrct0Z4RffV7FDH8e7AviGTnaiClVehL5ffOXArcAZcW9twZ6CZ6zNNdTSNB6Yjg3tqSQP9OgSfxNYsdkAvB23hOKer69rbsuJMzCnefAH2JmsYvUD/xMwwd+6X5VS7sn50PeLrxo7hs6CuLfWAgvSnZEo1NI0AfANsUwccbEqmTD2/1eyncPrwFt1zW1ZvZfCaR78GXBh3Fu7gbMDJvjnbH6+Urlg1G36IrIv9k7YCcaYRP2b09LR0TEbOAeYvn3N2u3estIzwr19h8WtFgROTHRXpHOk7otZ9iF/Qr0HO3tXt7PE/hzGtut7sLM0eRIsiV6Pf60CGIe7zUleoM5ZkukNtTStBF7FDpkR+7ihrrkt7aOT2G2pf3fPxrKaqqN6d+46M261ncDJARN8LN2/r4pL7PaEHUr79vr6+tVjW1X6UjrSF5EvAPOMMRc6z78P7G2M+UTMOneMJvQ7Ojq82DZWP1C9a9NW7mn6FhtfeTN+1Zf/q37mGWee/Z7xwMHOchAD4T5ppDWMUB+2a9+GBMsmbHBHwzv+cdDPbl5YDbU0lWHDf/wIl8nY5q34i6DZsJU9dwSvAK/XNbftil85flvq7+nlwcuu4s2/PxG/6mbgQwETfCqbxav8Fr89xbzVBQSAy+vr63Oi+TIVqR7p3wS8IiJfB44BTgKOznAtVwKLo0/+c+dDbH49yD77TmbK1BqmTq2mtnb8jr3qJkz0eGRFhj87Vg+2KSIa3MkCPbpsH8lR6FhzLsBucpYRCbU0lWL7tu8Vs9TFPd+L0e+IJwLvc5b4GlZhdwIvA88DT3P6Fz6Ft+SS6Dqrn3g+UeB3YpsHXxplbarwDcqmGNUxr1/qXjmjk3Kbvohchf1HLgQWGGNWxr0/4iN957RpBTF7UWMM7d+/jtPeNZK/OKQe4C1sE1F0eTPm5/XF3pUx05weTvE7gugOYm/gQOxF84wwHi/hCVPpnzSd8MRphCdN57n7l/N4qx2RY9xe083e8w8/5ou3/fyfmfpMVZgSZVMCXcDB9fX1a9ypanTSCf2Dsf/404wx98S8PgXbG2IBcIMxpjXdIjo6OhZj+9kPYiIRym67jprytFoQehkc6rGBHsR2M9RQzzGhlqbJ2PA/ENtcF308gAxcfzAeL8ufXcfz/wpy5g+aqJkx9dqafz34tbrmtr7R/m1VuJJlUwKL6+vrr812PZmQTujfApwI+I0xd2ayiI6Ojiux89juofof91C27q34l/uxPT5ejllew4b6Wg31wuHctDabPXcGB2LPEtI6IujvC1NS6o0+7QVeAJ6JWV7K13sPVOYNlU1xrqqvr7882/VkQkpt+iKyGCaEnbUAAA9pSURBVHu0dQ52+IOMhj72SnhC/bU+THklkXGTINL/m8oVT10FrNQjtOLg7MDfcpa/xr7nNBvth90JvBs4zHhLjpVw/7hkfy8m8AHKsKOzxo7Q2h1qaVoGPOosT+lOoKilOu/xuqxWkUHDHumLyAewY9I3GGN2iMhzwKeNMc9nqohCbDdTY6PjhednS8/ul0u2rq/ybl2Pd8sGSraux7N7j04+qeoGdCdQpAoxm4YMfRGZg93QTzLGrHBeuwA43hhzQSYL6ejouJrEV8ijrqmvr8+bK+Rq7CTalqR7JyVbNuDduo7St998o2Tbxir2HFUzFboTKDKFlk05c0duofWFVWMn1W0p1NK0F3BYzHIk9sabdOhOoMAVWjblTOhHdXR0zMJeO5iBbSe7PV9Om1RuSXdbCrU0CfYC8fExS7pnA9GdwF+Ae+ua215Nt26Vmwolm3Iu9JXKFRnaCbwK3Ossy7I9vpBSw9HQVypFGdgJbAEewO4A/lLX3LY1sxUqNTwNfaVGaJQ7gX7gcZyzgLrmtj0GD1QqGzT0lcoQZydwEPAh4BTgWFIf32oFA81Ay3Nl/gFVeDT0lcqSUEvTROCD2B3Ah0l94LlN2Pme7wIeqGtu252dClUx0tBXygWhlqYS7Mi0pzjLQSn+6jbgDuAW4DE9A1CjpaGv1BgItTQdyMAO4BjsRDPDeRs7begtwHP5OKS3Gnsa+kqNMWeE0eh1gIXAhBR+7WVs+N+iF4FVOjT0lcohzsQ0xwBnY28ESmWegSeB3wO31zW35c3AX2psaOgrlaOcHcCJwMeA0xl60C+w8yg/jD0DuKuuuW1HditU+UhDX6k8EGppqgZOBc7HNgUN1xV0N3AP8FtsDyC9AKwADX2l8k6opWkqtvnnY9imoOGsBn4J/Kquue3tbNamcp+GvlJ5LNTStDdwHnYHUD/M6mHgbuzIkH/TGeaKk4a+UgUi1NI0Dxv+5wFzhln9daANuLGuuW1jtmtTuUNDX6kC48wr3Ah8GjgXqBxi9R7g/7BH///Uvv+FT0NfqQLmDAXxSewEIHOHWb0DG/6/q2tu25bt2tTY0NBXqgg4g8HNx4b/2UDpEKt3Ybt9Buqa2551oTzlIg19pYpMqKVpOrbppwnYZ5jVnwJ+Dtxa19zWk+3aVPZp6CtVpJy2/wXYo/9TAc8Qq78N/Bi4Xpt+8puGvlKKUEvTLOCzwOeAvYZYdTu23f8n2uc/P2noK6Xe4QwBfTLwBeC/h1i1F3u379V1zW0vu1GbygwNfaVUQqGWpv2AL2HPAKqGWPVPwFV1zW3/dKUwNSoa+kqpIYVamqYAF2J3AEON+rkMuBL4s97tm7s09JVSKQm1NFUBFwCXMnSvnxXAD7Fj/WuPnxyjoa+USovT7n8mcDlw6BCrao+fHKShr5QaEeeGr/djw3+oi77bgeuwF323uFGbSk5DXyk1aqGWpkOAy4CPkny+323ANcCPdYKXsaOhr5TKmFBLkw+4hKF7/GwCrgCW1jW3dbtUmnJo6CulMi7FHj+dwA+AG/SCr3s09JVSWeNM8/hFbLv/pCSrvQV8F7i5rrmt363aipWGvlIq60ItTROwzT5fAcYlWe01oBn4g/bzzx4NfaWUa5z5fS8DLiL55C4dwLeAP+mkLpmnoa+Ucl2opakWWIId3rksyWpPY8P/QQ3/zNHQV0qNGWdi929ix/dP1tXzH8A365rbHnOtsAKmoa+UGnOhlqYDgO9gJ3WXJKvdCyyua257za26CpGGvlIqZ4RamuqBFuwwD4n0AT8FvqdDO4yMhr5SKueEWpoOA74HLEyyygZss9Cv6prbwq4VVgA09JVSOSvU0nQMcBXQkGSVF4CL65rbHnWtqDynoa+UymnOwG7nYsN/VpLV7gQuq2tue8O1wvKUhr5SKi844/lfhr27N1Ef/17sgG6tOqBbchr6Sqm8Emppmo0dsO38JKusxd4DcLPe2bsnDX2lVF4KtTQ1AD8BjkiyytPY9v5l7lWV+zT0lVJ5K9TS5AE+jj3yr02y2m3A5XXNbatcKyyHaegrpfJeqKWpBvgadv7e8gSrdGMnbb+yrrltt5u15RoNfaVUwXAmcbkK+EiSVV4DLqxrbnvYtaJyjIa+UqrghFqajsVOyv7eJKvcgh3SYW2C35VCHuDNM9YFKKVUptU1tz2OvcD7WWB9glXOB14OtTR9wbkuAECopWkudmTPgqVH+kqpghZqaZqInZbxCyQezO1JwA/8G3gMOBKYV9fc9qprRbpIQ18pVRRCLU3vAwLAIQnejgCPAAuc5w8CCwuxmUebd5RSRaGuue1JbJPPJcDOuLc9DAQ+wAeB010qzVV6pK+UKjqhlqZZ2Bu7kg3hDLAKmFvX3LbLnarcoUf6SqmiU9fctqauue0s4BRgTZLV5mDH+Skooz7SF5HTgZOA6cBSY8xDo/l7HR0ds4FznL+3Hri9vr5+9aiKVEVJtyU1nFBL0zjgJWB2klV2Y4/2g4WyPaUU+iLyBWCeMeZC5/n3gb2NMZ+IWWcScLUx5jMjKaSjo8OLvWPOD1THvNWFvfhyeX19vU6WoIal25JKVail6cfAl4dax8Aft551UZAC2Z5KUlzvJuAVEfk6cAz2yP7ouHW+CSwdRS1XAosTvF4d8/qlo/j7qnjotqSGFWppKsUesf8CqAP2cpaZxDR9C5xVsn41/dP3OBnIy+0p5eYdEbkK+49cCCwwxqx0XhfsYEd/NcaM6NZm57RpBYP3ovG6gIPr6+uTtb8ppduSGrVQS1MJdvC2OeHxUw7pnX3gtaa0rKxnv3cn+5W82p5SPdIH+DX2y3RaNPAdFwEnAhNEZH9jTGAEdZzD0F9SnPfPAa4dwd9XxUO3JTUqdc1t/cBqYHVHR8dRQNkwv5JX21M6of9t7GTEg37HGPNT7Oz0ozE9xfVmjPJzVOHTbUllUsFtTyl12RSRxUAFdm825EWPEUo0NkYi67Lw2aqw6LakMqngtqdhQ19EPgB8GviUMeZRYLyIJLqNeTRux7aLDaXLWU+poei2pDKp4LanIUNfROYANwAfMcZEJxr+CXBxJotw+roOdy0gkC8XStTY0W1JZVIhbk9DtukbY1YB+8a9diNwYxZqid75lrQvbBY+UxUm3ZZUJhXU9pRzY+90dHTMwl47mIFtJ7s9n/aiKnfotqQyqVC2p5wLfaWUUtmjA64ppVQR0dBXSqkioqGvlFJFJJ07cpUqWhVH+I14vHhKy/B4vIjHi6ek1HksQ7z20RN9Hve6eLx4SzyIiH30CF6v81giiV/3ehAPeDyCx+vB4xFKSjx4PUKZ81j+znOvffTGv574sdTjwStQ6vXgEaHUK3hEBr/mEWddeWcd76B1BRHwesCD4PXYCWi9HsHjPIqAVwSPgFew/04Bj/O7EgkjJgKRMJgIEukHE4Fwf8LXJdIPEfu6fb8fImFMf5997Ot757mJhKG/DxMOD17nnXV7IRLB9PdiIhEivf3vPEbCYSJ9/ZhwhLDzuOfzPvv8nd8LEwlHMBFDuDeMCdvHSNzzQe/3hYmEjfO7hnB/hLAx9EYMYYPzaOiNkPD1CLHrDLwXMMFEcwEDeqSvlFJFRUNfKaWKiIa+UkoVEQ19pZQqIhr6SilVRDT0lVKqiGjoK6VUEdHQV0qpIqKhr5RSRURDXymlioiGvlJKFRENfaWUKiI6iYpSLhGRzxtjrtc6Bmgt7tehR/pKuefzY12AI1fqAK0lkazWoaGvlFJFRENfKaWKiIa+Uu4Z8/ZiR67UAVpLIlmtQy/kKqVUEdEjfaWUKiIa+kpliYhMFpG/ishrzuOkJOtdJSIvicgKEfmpiCSd3zSbdTjrjheRkIhcl+EaPiQir4jI6yLytQTvl4vIH5z3nxQRXyY/P9U6YtY7W0SMiByejTpSqUVE5ojI30XkORH5t4h8OBOfq6GvVPZ8DXjEGHMA8IjzfBARORpoBN4N1ANHAMe5XUeM7wGPZfLDRcQLLAUWAu8CzhORd8Wt9hlgizFmf+BHwJWZrCGNOhCRccCXgCczXUOatXwTuN0Y817gXODnmfhsDX2lsuc04Cbn55uA0xOsY4AKoAwoB0qBdWNQByJyGDADeCjDn38k8Lox5g1jTC9wm1NTshrvAE7I9BlPinWA3fFdBezO8OenW4sBxjs/TwDezsQHa+grlT0zjDGdAM7j9PgVjDHLgb8Dnc7yoDFmhdt1iIgHuAa4LMOfDVAHrI55vsZ5LeE6xph+YBswxe06ROS9wGxjzH0Z/uy0awG+A3xcRNYA9wMXZeKDSzLxR5QqViLyMDAzwVvfSPH39wfmArOcl/4qIscaYx53sw7gQuB+Y8zqzB9gk+gPxncbTGWdrNbh7Ph+BFyQ4c9NuxbHecCNxphrRKQB+K2I1BtjIqP5YA19pUbBGHNisvdEZJ2I1BpjOkWkFlifYLUzgCeMMTud33kAOApIK/QzUEcDMF9ELgRqgDIR2WmMGar9P1VrgNkxz2exZ1NFdJ01IlKCbc7YnIHPTqeOcdjrKo86O76ZwD0icqox5mmXawF7neNDYM8IRaQCmEri/38p0+YdpbLnHuBTzs+fAv6UYJ1VwHEiUiIipdiLuJlu3hm2DmPMx4wxc4wxPuBS4OYMBT7AU8ABIrKPiJRhL0reM0SNZwN/M5m/iWjIOowx24wxU40xPue/wxNANgJ/2Focq4ATAERkLvbaz4bRfrCGvlLZcwWwQEReAxY4zxGRw0XkBmedO4CVwIvAC8ALxph7x6COrHHa6L8IPIjdod1ujHlJRL4rIqc6q/0KmCIirwNfYegeRtmswxUp1rIY+JyIvADcClyQiR2h3pGrlFJFRI/0lVKqiGjoK6VUEdHQV0pljTOUwW9jnpeIyAYRuS/mtYUi8rQzDMXLInK18/p3ROTSsai7kGnoK6WyqQuoF5FK5/kCIBR9U0TqgeuAjxtj5mK7TL7hepVFRENfKZVtDwAnOT+fh+2JEvVV4AfGmJfB9moxxmRkjBmVmIa+UirbbgPOdW4uejeDBzKrB54Zk6qKlIa+UiqrjDH/BnzYo/z7x7YapaGvlHLDPcDVDG7aAXgJOMz9coqXhr5Syg2/Br5rjHkx7vUfAl8XkQPBDnomIl9xvboiogOuKaWyzhizBvhJgtf/LSIXA7eKSBV2pMk/u11fMdFhGJRSqoho845SShURDX2llCoiGvpKKVVENPSVUqqIaOgrpVQR0dBXSqkioqGvlFJFRENfKaWKyP8D2JaeeZV0ndkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -691,12 +668,11 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -713,7 +689,7 @@ "### Causal sufficiency\n", "\n", "Causal sufficiency demands that the set of variables contains all common causes of any two variables. This assumption is mostly violated when analyzing open complex systems outside a confined experimental setting. Any link estimated from a causal discovery algorithm could become non-significant if more variables are included in the analysis. \n", - "Observational causal inference assuming causal sufficiency should generally be seen more as one step towards a physical process understanding. There exist, however, algorithms that take into account and can expclicitely represent confounded links (e.g., the FCI algorithm). Causal discovery can greatly help in an explorative model building analysis to get an idea of potential drivers. In particular, the absence of a link allows for a more robust conclusion: If there is no evidence for a statistical dependency, then a physical mechanism is less likely (assuming that the other assumptions hold). \n", + "Observational causal inference assuming causal sufficiency should generally be seen more as one step towards a physical process understanding. There exist, however, algorithms that take into account and can expclicitely represent confounded links (e.g., the FCI algorithm and LPCMCI). Causal discovery can greatly help in an explorative model building analysis to get an idea of potential drivers. In particular, the absence of a link allows for a more robust conclusion: If there is no evidence for a statistical dependency, then a physical mechanism is less likely (assuming that the other assumptions hold). \n", "\n", "See Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "for alternative approaches that do not necessitate Causal Sufficiency.\n", @@ -779,7 +755,25 @@ " Variable 4 has 3 link(s):\n", " (4 -1): pval = 0.00000 | val = 0.628\n", " (4 -5): pval = 0.00562 | val = 0.028\n", - " (2 -2): pval = 0.00702 | val = -0.027\n", + " (2 -2): pval = 0.00702 | val = -0.027\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd3xb1fn48c/xyB4SjhICCYSEMEIaKAHCLGHGacuGFr4tFAj2D4PJl4sxNTRll69KCLcYF0NMymppKbRAgNpmQ9mjEPYIhGYAiexI2cOWzu+Pc504jmRJtq4kW8/79dJL1r3nXj2WLT06556htNYIIYQQbsrLdABCCCF6P0k2QgghXCfJRgghhOsk2QghhHCdJBshhBCuk2QjhBDCdZJshBBCuE6SjRBCCNdJshFCCOE6STZCCCFcJ8lGCCGE6yTZCCGEcJ0kGyGEEK6TZCOEEMJ1BZkOQAiRWqHS6YXAAc5tILAaeBN43zO3PpzJ2ETuUrKejRC9Q6h0ugeoBC4FWoE+mC+ULc5jDfwOqPHMrV+fqThFbpJkI0QvECqdfjDwFNDfucWyHggBx3nm1n+SjtiEALlmI0SPFyqdfjLwHLADnScagAHASOCtUOn0I9yOTYg2UrMRogcLlU7/IfAKJokkazWwn2du/aLURiXE9iTZCNFDhUqnFwBfAaMB1YVThIH3gQM9c+vlg0C4SprRhOi5LsA0nXUl0QDkA3sBP01ZRELEIMlGiB4oVDo9D7gRGNTNUw0Ebu5+REJ0TpKNED3ToZiuzdvRWlM8/w2eWRLYsu3Rr77j9Pp3Yp1r11Dp9HGpD1GIrSTZCNEz/YwYnQKUUtx6+D7MeuMzNraGWdfSyo3vfMnswybEOpcCTnErUCFAZhAQoqc6BHPNJaoJOwxm2i7DuW3BIta1hjlz/E7sNiRmh7V+mJqSEK6RZCNEzzQ+XoFf7z+OqY++RmFeHi+cEjeXTEpNWEJEJ8lGiJ5pcLwCAwsLOGXsSAYW5tM3P26LuTc1YQkRnVyzEaJnSqi7c56CPJVQ0a52nxYiIZJshOiZNqb4fDIxp3CVJBsheqbFKT7fFyk+nxDbkGs2QvQgzTWVhcB5jB/nJaLJa2pCrVods3zV5Lj9CAAiwNspClGIqCTZCNEDNNdU5gFnYGYN2J3+ZnLnyIDR5C38GrVhQ3dOvw54ottBCtEJSTZCZLHmmkoFHA/8H/DD7QoohR40sLvJpgV4rTsnECIeSTZCZKnmmsqDMUlmamfl1MZN3XmadcAcz9z6SHdOIkQ8kmyEyDLNNZX7YJZvPileWRVoamHNmsJuPN1GwO7G8UIkRJKNEFmiuaZyP6ASOIv4416eAa7K++77/YA/YGZvTtZ64FeeufXdaoMTIhGSbITIIOeazDGYJHN8Aoe8DVxZVD77OYBQ6fR3gQOBX5Lcap3rAb9nbv1TyUUsRNfISp1CZEBzTWUBcDpwBdEu/G/vM+A3wKNF5bO3edM6a9tcA1xO/ISjMU1nl3vm1t+RbNxCdJUkGyHSqLmmciBwPnAZMCaBQ5ZiEsn9ReWzWzsrGCqdfixQA+wM9GfbWaFbgM2YpHWxZ279m0kHL0Q3SLIRIg2aayqHA+XAxZilnOMJAH7gjqLy2QlPTRMqna4wvdeOd+4HAyHgWaDBM7f+jWjHBWurdnXKfuwt88uHgkg5STZCuKi5pnJ3oAI4F7NuTDxfAnMwNZm0XLgP1lY1ANOchyuBk71l/n+n47lF7pBkI4QLmmsqD8RcjzmNxGZUfhO4GXi8qHx22M3Y2gvWVp0AzI+y6w/A1d4y/5p0xSJ6N+mNJkSKOD3LpmN6lk1N8LAnMUnmlY4X/tMk1qJplwKnB2uryr1l/sfTGZDonaRm04lQSfFAYCiwwVPXEMx0PCI7NddUDsLMW3YZMDGBQ1qAPwO3FJXP/sTN2OIJ1lZNBD6MU+xx4BJvmX9JGkISvZQkmw5CJcXDMV1ITwV2xfTgKQBWA88Bfk9dw/uZi1Bkg+aaynzgKOAcTFNZImNcVgN3AbcVlc9e5mJ4CQvWVilgBTAsTtF1wG+B271l/k57xQkRjSQbR6ikWAFXArMw6/z0jVIsAmzCjN4+x1PXsCp9EYps4Ewlcw5mEOVOCR72LeYayNyi8tlZ9z8TrK26B9OBIRHvAaXeMv877kUkeiNJNkCopLgf8HfgaBKb9mMTsBw42lPX8JWbsYnMa66pHIGZQuZsYP8kDv0EmA08WFQ+e7MbsaVCsLbqbOD+JA7ZABztLfNH7UYtRDQ530HAqdH8HTgWMxAuEX2BUcCroZLiH3jqGgJuxScyo7mmsj9wAqYWU8y2AyTjeRmTZP5VVD67J8ym/EKS5ftjxgxJshEJy/lkg+l1czSJJ5o2eYAXeCRUUjzVU9cgVcQezlmg7DBMgvkZMCSJw0PAQ8Cfispnv+VCeK7xlvmXBmurvgD2SOKwRLpzC7FFTiebUElxEXADXZsxF6APMBnT3fVfqYpLpFdzTeV4TBPZL4Hdkji0FfN3vx94KpmR/lnoeRJPNmuBahdjEb1QTicbTO+aZJpHohkI1IRKisdJ7aZncGow+2KmdDkJOCTJU7yNSTAPFZXP7i1NqM8DFyZQbj1wirfML3OriaTkbLIJlRTnA+eR2BQi8QzHXDh+NwXnEi5orqncCTgOk2COA3xJnmIJZmzMA0Xlsz9NcXjZ4MUEyw0A6oK1VYd4y/zfuxiP6GVytjdaqKT4KMxgtcHR9i9du4GfPPk2L558MN5+fQhtauHIR1/niZ8cyC6Dt7u80wrUeOoaLJfD7tWUUiMw0+0PBl7SWq/o6rmaayoHAEdgksvxJDbYsqO1wCOYWsxLPeRif5cFa6sWsP2MAh8D+0Qp/i5wpLfMv871wESvkLM1G+BwOukUMGpQf87fezTXvf0lfzhiH659+wt+tdeoaIkGzOt4rFuB5gKl1D1er/fc/fffn4KCAhobG1/EDJpMiDNVzCS2JpcjiD5WKp4IZhzV/Zh5ynLpw/QfbJtsIpjlEB4ExnUoOxn4W7C26hQZ5CkSkcs1m/mYrq0xtUQiTH30dX65587c/9lSXjrlUPrk58Uqvh4YJNdtukYptezZZ5/daf369YwbN4599tnnU631hM6Oaa6p3JFtm8ZGdCOEDzEJ5sGi8tnfduM8PVawtmoQ8ARmXrcW4LfeMv/vg7VV44HXiD7LwJ3ARbIsgYgnl2s2u8crUJiXx/VT9uT0hnf5Z/HkzhINQCGmq2zCI8SbayqHYL4hHujc9gXCwO1AbYYmZsyUPx177LG/GDdu3G7z528/CbEz7mUfzDfvfTEfiLEmkUzEBuAl4Gng6aLy2R9341y9grfMvzZYW3U0ZlG3td4yf8DZ/mWwtupETCeCjtc4L8TMkHBDOmMVPU8uJ5s+iRR6dkmAHQf05dPgWo4a1en0UWE6abZprqnsB+zH1sRyILAn0ccr/BFYiPkgzAla698qpe7DrOfCoH59BjXXVF6FSSyTMN1yO832CXgfJ7kAr/bwrsqucGooi6Jsfz1YW/U/mKa2jv+z1wdrqwqBa6SGI2LJ5WQTd/qQD5tX8+KyZp4+cQrTn3iLU8eNZMcBMfNJXsdzNtdU9gX+grmeM4TkBsIdRS9PNs5F/C21lZeqfjXl/IdfAWAnz6DRwO+6+RTfszW5PFtUPnt5N8+X07xl/keDtVWXArdF2f1bYGCwtupySTgimlxONouAvWPt1FpT8eon3HTwXowe1J+Zk8bw2zc/p+6omC03YbZvQnsW0xGhK3rFzNLNNZUFmG7GI4DRmMTS1hQ2nna1lf59uv3vuBEzVUxbgvkox5oiXect81cHa6vGANF6Xl4GDAjWVl3sLfP36p57Inm5nGzewiyFG3VQ532fL2XUwP5bms5m7L0LD37xBq9+t5LDRkZdQv7rKJ0DDu5GfA8011TOwUz4Ge/WnM5uuc01lYWYsUUjnNuO7X7ueCsigRrdX17/kBvmv8zQEWYi5S++X8lhv7uHeeefwF4jO22+/ICtyeWVdC2lnOMuxzQZXxRl34WYhDNDeqmJ9nK5N9qxmPbnZOa/iqUVuMNT1/C/7Tc211QGAU8Kzh9PGAhg1iVpS0CrU3RuBezAtgkkarbtjhNv+xsXXHU9hx56KMOHD2fZsmXMnj2b3dcs5qKjD2grthhYgEkwHwD/Liqf/V2qYxHxOevg3IxJPNE8DPzSW+bP2tmuRXrlcs3mRVI3meBGzLWZjs7DJLTuXtiOJx9Tu9jR5edxzY8njef888/fZlv/woLNs39+7B+Ap4APispnhzISnNiOt8yvg7VVV2AWVbsmSpEzgP7B2qozvGV+6YghcrdmAxAqKf4jMIOuDf5rbzEwJtoYm+aaytHAfSQxQDHH/BdTS1nQ7v6rovLZ4YxGJRLmJJ3fx9j9LHCyzDQgcj3ZDMd0FEhkSd9Y1gG/8NQ1PN5ZoeaaymlALZ3PKtyKaQobStdnos5GK9navPclWxPLh1Jb6R2CtVUXAzUxdr8C/MRb5k9V067ogXI62QCESop/jdNtswuHt2DmiDo0kZkDnK6+s4BKYjdhrsRcF+lL7Ivubbe2i/RDuxB7dzWxfUeF76NsC2TzKpUidYK1VecDdxO9efo/wEneMv/S9EYlsoUkm5LiPKABM5dWMjNAa6AZ+IGnriGp2W+ddezvwizUFc3YovLZ2w2s6+R8/di2d9gIUjObdZu1bJtQAkXls6WnkdhOsLbqLOABovfyXAGc5i3zv5LeqEQ2yPlkAxAqKR6ImQH6YBKr4WzC1ECO9tQ1fNaV53TWVDkf06PH227XN5hkI38Y0SMFa6tOxqxaGm2WjlbgEuAuGfyZWyTZOJwazvWYgWn5RH+jaMycWq8CZ3rqGlZ293mbayqHY5rxpgNfAZcUlc/+orvnFSKTgrVV04DHiF3Dvhso95b5N6UvKpFJkmw6CJUU7wxcCZyMGfm+GZN8WjCj02/01DXIKoVCxBGsrZoC/BPYKUaRNzDNajk5y3aukWTTiVBJ8Q6YJq6NwLexOgEEbGsypjlsIHCrz7L/nr4ohchewdqqkZixZrGW3v4Ok3BeT19UIhMk2XRTwLZ2wnSfbt/s9ghwns+y12YmKiGyR7C2qi9QDZTGKNKCWRPn7vRFJdJNkk03BWxrFtHX8vgvcIHPsp9Nc0hCZKVgbdX/w6zVVBijSC1wqbfMv1kppTDN2BGtdVO6YhTucXsalVwQayqOXYFnArZ1d8C20jE/mhBZzVvmvwszk0aspR7KwpHICzsM6v8IsKqoqGi5x+MJKKXOj1Fe9CCSbLrv/jj7ZwAfB2zrp+kIRohs5i3zv4pZnfataPsXBUKHDhk24rRFixYN/vjjj7n++usBfpjOGIU7JNl0k8+yVxBlZcMOdgKeCNjWnwO21el8+UL0dt4y/zLgSOCejvtGDB3IhtBK9tprL66++ur0BydcI8kmNV5IsNwvgE+kliNynTMT9AygHDPQE4DB/fqy4PpSZv300C1lDxq78z7OkgaiB5NkkxrJTL/hA/4ZsK2D3ApGiJ7AW+bX3jL/H4GjMTNnANC3sICBfbZ27tx39IijgMZgbdXotAcpUkaSTWokO9dTIWbQqBA5z1vm/zdmqfC7Oil2HPBRsLbqPKnl9EySbFJjIWaSwWT8141AhOiJvGX+Nd4y/4XAtLkvvrvygVcXbNn3/KeL8D/5ClrrIcCfgCeDtVU7ZypW0TUyziZFArb1D+DUBIs/A5wqgz6F2JZSKj8/P3/j/fffXzB+/HiGDh3KO++8w5VXXslDvzqOPUdu6V8TwsxjeJ+3zB/JXMQiUbm8LHSqvUJiyeZR4DSfZUuWF2J7kUgkstjv949tvzHY3IRv8DYTsnswtZzyYG1VhbfM/2IaYxRdIDWbFHEu+HecoDNC9KbKUp9l17kflRA9j1JqIDAOYMrYnQdfecIRv5648/ATdhjUv7PD5gNXeMv8n6cjRpE8STYpErCtQkzVvv0S05swCafju2QTcKjPsv+TpvCE6NGCtVUnYjoQ7NhJsVbgTuA6b5lfprjJMpJsUihgW38A/rfdpn8ATwD3Rim+CJjss+xgGkIToscL1lYVYSb0/J84RVcBvwOqZb2c7CHJJoUCttUfuAo4HFgAXO+z7JUB26oDLohyyBPAyT7LlgucQiQoWFs1FZgD7B+n6DfAr4GHZVXQzJNkkwYB2+oHvEb0OZ5u8ln2b9IckhA9WrC2Kg8zI8dNwKg4xV8HKmTNnMySZJMmAdsaB7wLDI2y+xyfZT+Q5pCE6PGCtVUDAAuzuu7AOMWfBGYD/5aaTvpJskmjgG2dhFmXvaPNwFE+y34tzSEJ0SsEa6t2BK7HzLcWb7D6m5iVdR/3lvnDbscmDEk2aRawrd9i3hTb7QIO8ln2N+mNSIjeI1hbNRG4BZiWQPGFTtn7vWX+Da4GJiTZpFvAthTwF+CsKLs/Ag7zWfbq9EYlRO8SrK2ahkkkExMoHsD0crvDW+Zf6WpgOUySTQY4vdZeAKZE2f0UcJLPsqV6L0Q3BGurCoDzMD1ExyRwyDpgHmB7y/zfuBdZbpJkkyEB29oRs1phtGnTb/VZdkWaQxKiV3KSzunAFSS26mcYeAiY4y3zuz7wOjhjmgImAD/CzH6dD3wFvAS8653X2OJ2DOkgySaDAra1L/Aq0XvRlPgs++40hyREr+UsTXA0Jukcn+BhC4D7gL94y/zJzuweP6YZ06YBtwK7AoqtM5Bsxsw0sgH4DXCvd15ja9ST9BCSbDLM6aH2KOYfrb1W4HifZSe6CqgQIkHB2qr9gErg55iaRDytQD1mNpAnvWX+zd16/hnTCoE7MNdu43XZXgd8AJzgndfY3J3nzSRJNlkgYFtXAL+PsmsNcKTPst9Lc0hC5IRgbdWumHE6JWw7r2FnVgIPYhLPf5IdsxOcMa0PZpmRA5J4zs1AEzDZO6/x+2SeL1tIsskCTg+1e4BfRdm9AtNDbWF6oxIidwRrq3YAyoCZwPAkDv0Yk3T+4i3zf5fQc82YNg84k8QTTZsW4DPgAO+8xm7VrDJBkk2WCNhWX+BZzLxqHS3CJJyE/pmFEF0TrK3qD/wSMzg0Wm/RWCJAI+b6zpPeMv+6qOefMe1ozJyIySaaNuuB//POa7yxi8dnjCSbLBKwrSLg38DeUXZ/iGlSk1mihUiDYG3VXpjWhrOBZJah3ohpJnsUeKJtuYPgjGl5wCfAnt0MbR0wxjuvsUctoyDJJssEbGsUpofaLlF2v4rpNLA+vVEJkbuCtVX5wDGYxHMq0C+JwyOYL5CP8dWiJoKhWmBQN0PahKndXNfN86SVJJssFLCtPTHLTA+Lsvsp4BSfZfeKvvdC9CTB2qqhwBnAucBhSR2stea75Ypvt7aGX/XmZ4we1J+yfXYF4LTGd9l5YD+qD98HgFlvfs7IgX25eOKYjmf7r3de43Ybs1m8CetEBvgs+3Pgx5jqckc/AeYFbEv+dkKkmbfMv8pb5r/bW+Y/HNgDuBFYnNDBSil22hEGbr1cc9BwD28tDwEQ0ZqVGzfzWXDtlv1vrQgxZbgn2tl8wRnTxnb5F8kA+cDKUj7Lfhs4GdPlsaOzgVucXmxCiAzwlvm/9Jb5fwvshmlmm4eZZ61zffps+XHKCA9vrTDJ5rPgWvb2DmJQYQGhTS1sCkf4YtU6JhUNiXaWFuAH3f8t0keSTRbzWfazmAWiorV1WsDV6Y1ICNGRt8wf8Zb5n/eW+S8ARgJHYGYFWLRd4dYwrN3aYDFyQD8K8hRL127grRUhDhzuYbJvKG+vCPFe0yr28Q6iT37Uj+kBmCluegxJNlnOZ9mPYPr/R3NtwLauTWM4QohOeMv8YW+Z/xVvmb8CGIeZ6+waNm1+j9CqVr5cCC3bXm6dMtzDmytCJtn4PBw0fChvOY8Pit6EBlAI+Fz9ZVJMOgj0EAHbmgXcEGP3dT7LvjaN4QghkhCcMe0M4G5guzaxuz9ZzMLV63ljeZDnTjiY1S2tnPf8AgYXFvCLPXaieJeYY0xv885rvNTNuFNJajY9x++A22LsuyZgW9fJNRwhslaI6M3hTBnhoXFxAG+fQvLzFN6+haza3MLbAdOsFkMriVwfyiKSbHoIn2VrzHWaP8YocjUgCUeI7PQp0CfajgnewTRv2swBw4dus21IYQFF/aIeAmYmgc9SHqWLpBmth3GSSTVQHqPIjcDVTnISQmQBZ82adUD/FJ1yHWZSzs9TdD7XSc2mh3GSyEzg9hhFZgE3SA1HiOzhndeogQZiNKV1wWrgixSdKy0k2fRATsL5X0wNJ5rfADdKwhEiq9wDrI1bKr7NwH1OAusxJNn0UE7CuZTYnQauAvyScITIGvVAKibSDQM1KThPWkmy6cHadRr4Q4wiVwB3B2yrIH1RCSGicZZ1Lif6NFSJ2gDc7p3XuCw1UaWPJJsezkk4lwF2jCLnA/8I2FaqLkwKIbruSczyAxu7cGwY+A64PqURpYn0RuslnOayWzCJJ5pXgBNlPRwhMis4Y9oA4HVgPIn3TmvFdAqY7J3X+I1LoblKaja9hFPDuZzY33oOB14O2FYyi0AJIVLMO69xPXAIpoaTSJPaeuBLYL+emmhAaja9UsC2LsZ0jY7WOWAxZgG2HtM/X4jeyBl78z/AzcBgzKJshc7uCKbnWh7gB271zmvckIk4U0WSTS8VsK0zgD8TfdRyM/Bjn2W/ld6ohBAdBWdMK8C0PBwJ7A/kY2oyzwEveuc1pqK7dMZJsunFArZ1NPA40ZehXQec6rPsp9MblRAiF8k1m17MZ9nPY74trYiyeyDwVMC2zktvVEKIXCQ1mxwQsK3dgUYg1jKytwJX+Cw7nL6ohBC5RJJNjgjY1o6YuZn2jVGkHjjLZ9mr0heVECJXSLLJIQHbGoq5hnNkjCKfYsbiLExfVEKIXCDXbHKIU2uZBtwfo8jewJsB2zoqfVEJIXKBJJsc47PsTcC5QCXRpzvfAXg6YFsXpjMuIUTvJs1oOSxgWz8F/kr0rtFgVgW1fJbdkr6ohBC9kSSbHBewrYnAfGC3GEWeA37us+zm9EUlhOhtpBktx/ks+yPgIODlGEWOAd4P2Nah6YtKCNHbSM1GABCwrT6YZrMLYhRpBaqAW51JP4UQImGSbMQWzjIFMzGDPGPVeucD58pSBUKIZEiyEdsJ2NY0TMcBb4wi3wA/81n222kLSgjRo0myEVEFbGsX4CHg4BhFWjDr59wuzWpCiHikg4CIymfZizEzDcRabroQuA14eMrYnQ9USs1TSi1QSn2vlPpr2gIVQvQIUrMRcQVs62TgXmBotP1nz5u/ds9jfjro7LPPZtSoUYwdO5YNGzYM1FqvT2ugQoisJTUbEZfPsh/DLOr0brT9I4YMHPTyyy9z0kkn0b9/okuqCyFyiSQbkRCfZX8NHAbUdNx3zQmHc9WU3Qg1BZCashAiGkk2ImE+y97ks+xLgJ8Ba9q2D+7Xl6l77kpBntpS9pPrSi8O2Jb8fwkhAEk2ogt8lv0wMBl4L1aZAX0LbwaeC9jWrmkLTAiRtSTZiC7xWfaXmG7RN67esCl872sfsKl160Kf9732IYE166cCHwZs6zxnwKgQIkdJb7ROhEqnFwADgU2eufUbMx1Ptpq4s++uot0nlE6ePJmbbrqJa6+9lg8++IARq5Zx8+lHtxWbD5T6LHt5BkMVQmSIJJsOQqXTPcAlwBnAXpg1X/KBb4FG4BbP3PrPMxdh9lFKXXnggQfeNHHixC3bvv76a8aHV3HTqVPbF20CLgP+LANBhcgtkmwcodLpCpNkbsI0L0brwxvGjJz/J1DqmVu/Ln0RZi+l1ADgRGDAcRN22/vYvcfMGNS3j/f4fXZjaP9+0Q55HijzWfYXaQ1UCJExkmyAUOn0PsB9wAmYZrN4NgJLgWM8c+sXuxlbTxSwLQ9mdoFzOim2GZPY/c7qoUKIXiznk41To/kbJtEkMyIxDHwHTPLMrZcZkKMI2NYpwF2Ar5NiXwAX+iz7hfREJYTIBOmNBhcCPyG5RAPmOo4PM1mliMJn2Y8CE4G/d1JsD+D5gG3dF7CtzpKSEKIHy+majdMZYAkwqBunWQec4plb/0xqouqdArZVDNxB7OWnAVYCVwD3+Cw7kpbAhBBpkes1m6swNZTuGAjUOM1xIgafZTdgajl+zKqf0ewA3A28FLCtH6YrNiGE+3K2ZhMqnZ4HNAOeFJxuHXCYZ279ghScq9cL2NZE4E7MXGuxaEynjVk+y16WlsCEEK7J5WTzI+BJYHC0/U8uWs7v/7Nwm20fr1zDQ8WTOW70dpcWWoA/eObWX+FGrL2RM2/aDOD3xF4RFGA9cDNwi8+ypau5ED1ULiebWcDVmEXA4rr30yU8vPBbnvjpQeSpqC1mH3jm1u+byhhzQcC2hgNzgF/GKfotptnzAbmeI0TPk8vXbA4gwUSzMLSO2e8t5M6jJsVKNADj5LpN8nyWvcJn2WcDx2K6QceyE2YBt7cDtjU1DaEJIVIol5PN+EQKtUQilLywgOun7MXoQZ32ju4DDElJZDnIZ9nPYToQzMT0Sotlf+CFgG09GrCthP6GQojMy+Vk0zeRQr9750v28g7itHEj4xUNJ3pOEZ3Pslt8ln07sDtwK+ZaWCwnA58EbOuOgG2NSkuAQoguy+Vk09kHGQCvfNvME4uWc/OhExI5X14i5xTx+Sw76LPsCmACZh66WAqAMuCrgG1VB2xrp7QEKIRIWi4nm0Wd7QxtauHilz6iduoPGNynIJHzRYBQSiITAPgse6HPsk8DjgTe7aRoH8wkql8FbMsO2NaOaQlQCJGwXO6Ndh3wG2IM6rz1/a+Y897XjB0yYJvt1n5jOTV6k9qnnrn1CVWBRPKcrtK/AP4P2DlO8Q2Y2Qpu9ln2CrdjE0LEl8vJphgzr1kqLuqHgbmeufUXpeBcohMB2xoAVACXE/9vtx64HTNGp8nt2IQQseVysikEgiS2pEA8a4Fpnrn1r6XgXCIBAdvaAbCAS4k/t91aTNK5TVYKFSIzcjbZAIRKp9dh1lzp081TfQeM8syt32awYVN1xQTMB+FHw2bOWZ/A7eYAABVxSURBVN/N5xBRBGxrGKamcwnxvzhsAu4H5vgsW1ZbFSKNcj3ZjAS+IvnlBdpbB5znmVv/cNuGpuqKvsBnwJh25VYCCzEdE75pd1sE/HfYzDkbuxFDznOWJ6gEykns7zkfuAV4RZaoFsJ9OZ1sAEKl06/BTGs/IF7ZKFqBD4HJnrn1W17IpuqK2zEfesn4HqgHZg2bOefbLsQigIBtjQB+jekSHXVN6g7exCSdR32WHXYzNiFyWS53fW5zI6ZbbbJLE2tgDXBS+0Tj2KsLcewInEfnC42JOHyWvdxn2ZcBY4Fq4v9dpwAPA18EbKs8YFupuIYnhOgg52s2AKHS6UMwtYr9SKyG0wKsAo6NtqxAU3XFycCj3Qhp8LCZc9Z243jhcAZ6zsSsyDo0gUNWArXAnT7LXupmbELkEkk2jlDp9AJMc8r/w4xMjzWScx3wAWZ1zpg9m5qqK+4Bzu1CKN8Auw+bOUeadFIoYFuDMUsaWMAuCRwSwSxBcRfQKE1sQnSPJJsOQqXTx2KWHjgBc6G5BdPcmI9p378BeCFK09k2mqorFKZ55rQknn4DcNGwmXPuTT5ykYiAbRUAZ2DG6eyf4GH/BeYCf/JZ9vduxSZEbybJphOh0umjMEsVbwC+9sytT+rbbVN1xUDgVSDZdW6exkxE+fSwmXPkD+SCgG0pYCqmB9v0BA9rBR7DrDL6gqyrI0TiJNm4rKm6YgzwNjCsC4d/DNjAX6RrtHucZaovwyzgltAaR5hu7HcB98rsBELEJ8kmDZqqK44EniX2daB4AsAfgdphM+fIXF8uCdjWSOACoAQYneBhm4EngL8C//JZ9gaXwhOiR5NkkyZN1RVlmMkhO1qF6UbtSeA0m4AHAHvYzDmfpDA80U7AtvIxTWsXAj8GEl2BdQ2mF+Jfged8li1LTgjhkGSTRk3VFXdiert1dJBzuxSzcFgiGjDXdZ6V6zruCdjWrpjazgWYsVCJasJ0EPkr8Go6r++ESop/ABwDHAUMxswB+BzwrKeuobOlt4VwjSSbNGqqruiDaU47ot3mdcCoYTPnhJqqK/KBn2KuH/wowdN+hEk6Dw6bOSfZgakiQQHbKgROxNR2jk3y8CWYGcb/Crzn1vQ4oZLiycBtwA8xPSjbz6CwHlNDexG4zFPX8JkbMQgRiySbNGuqrijCTAb5Y2AFcPGwmXMeiVLuAMyYkJ+R2LWeAOYD7W/A68NmzpGeUi4J2NbuQClmxodkO358gUk6f/NZdko+8EMlxQq4CJiNSTCdNfuFMc2x53rqGh7upJwQKSXJJkOaqisGAOF4tZGm6opRmHnW/h+JXdcB803675jE8640s7nDqe0cA5wFnIJpskrG+8CDwEM+y17c1ThCJcU3Yppgk5lqZz1Q4alruLOrzytEMiTZ9BBN1RWDMDMSXAqMS+LQrzFJ5yHgQ0k87gjYVn9MbfUsTFNo3yRP8SrwOPAU8GmiTW2hkuLTgfvo2kSyG4DpnrqGl7pwrBBJkWTTwzjXdU7AXNc5Ik7xjj7FJJ2Hhs2cI232LgnY1hDgJEziOZ4YS493YhEm6TwFvOiz7KhjrEIlxUMxtdhka1TtfQuM8dQ1SM854SpJNj1YU3XFgZjrOqeR/AJwC3BqPMNmzlmU6tiE4Szudjom8RxB4t2o26zHdCp5CnjKZ9nL2naESopvJvH1e2JZB1zpqWu4vRvnECIuSTa9QFN1hQfzTfpM4DiS/yb9FqbG8/dhM+fITMcuCdjWKODnmMQzuYuneR94ipaWZwq+XPgv1bXms45WADt66hrkw0C4RpJNL9NUXTEMOBXzoXYUyX+TfgvTPfYl4NVhM+esSmmAAoCAbY3HfDk4C9i7K+dQ69eH85cszVfh7afsW7xmAz9/+j+8ftphW7b5313IwMJ8Lpm0W8fia4GjPXUNb3clDiESIcmmF2uqrtgR04RzJnBYnOLRRDDfpF/GJJ9/D5s5p7k7MSmlRmJG54/DfKN+TGv93+6csydzJgSdAPzEuR1GEjXTvOZm8pdvP4NRksmmFfB76hp+m/xvIERiJNnkiKbqitGYMTtnAgd041QfsTX5vDxs5pyEp9xXSh00aNCgN0844QQmTJjAsmXL+POf/8zatWtP01r/sxsx9RoB2/IC0zCJ58eYWcdjUqtXU7B02Xbbk0w2AE976hqmdSd2ITojySYHNVVXjMM0s/0cmNTN033Btskn5ngRpdSM00477e4pU6bwxhtvcNhhh3HUUUdxwAEHhCKRyDCttSxQ1o4zR9sUTOL5KVH+VvnLviVv1fYtnV1INks8dQ2JLConRJdIsslxTdUVe2OSzpnAnik45X8xiec1TFfrz4EVw2bO0UqpCZiJKl/HzO12z5IlS/odcsghLF26dDet9TcpeP5eqam6Il9H9CGYv9MRatOmSSoYIq+5OepFuVjJZlBhAeWTxkR7iqCnrqHTWpQQ3dHVKe9FLzFs5pxPgWubqiuuA8Zg5mQ70rlPZvBom12Bc5xbm1VN1RVfBG677HPgz8Dnxbc+OHHDwB36tba2snz58ggQc4ntXNJUXdEP2APTaaD9bQ+Vp7YOFO3fD104DNasgc2btzvPDv0KWbVp26EzwU0t7Dq4O72kheg6qdmImJqqK3bGJJ22BNSlXlMd/eOdT7nm6f/wzDPPUF5ezt5q7Vc3njq1EVML+sK5Xzxs5pxe1azWVF0xGNipk9vOmGSdl+g5VaCJ/O+j5+mjHnudaw/cgyN3LiK4cTPHzX+Th4sns9uQqL2lF3nqGsYm9QsJkQRJNiJhTdUVwzEDE9uSzySS7Fr92Hufc9VTb9HY2MisWbPo9/1X3HH2dPLztvt83YRZDfNzYBkQinNblank1FRd0Z/Ok0jbbVCqn1utCETtjQbwWXAtla99QmhTKwCXTBrDz3bfKdapnvDUNZyY6viEaCPJRnRZU3WFFzicrbWfyXTSbXfBkuX8/J4GGhsbueGGG3j88ccB2GenYdRbZ9G/T6IrMse0hvhJaTNmtoVC5779z8ne9wNGkPgEqanV2kr+wq9QLa3dPdNm4DpPXcNNKYhKiKgk2YiUcZqJDsGMFdkb0+FgPM50Kne++B8Weccya9Ys1q1bt+W4M844gz+ecACTRg3PQNQ9ShDT6eJTtXbt+rzFS3+lwuEhKTjveuBAT12DrP4qXCPJRriqqboiDxgF7Pnkgi9/9Jt/vlC2YXPr4JZwpCBPqTwU/GBnHw+VnUrfAumv4liCSSqfOfdtt0DbrN2hkuICoBlIRbKR6zXCdZJsRMY41zp2x/S+2tO5tf3szWBobmnBzLK8zLmPdlsybOactYmcLFRSfDlwLcmtY9PRWqDEU9fwt26cQ4i4JNmIrNNUXaEwK2DugUlGXsx1kfa3jttS8Q2/q8LA98ROIG235lSuJxQqKe4LLAa62v6oMbWniZ66BlnZVbhKko3oFZx1foawfVLqmKDyMRfEN2NqGt29b8I0b2WkJ1yopPgIoJGuLTOwHjjIU9fwcWqjEmJ7kmyE6OFCJcXnAX8kuYSzATjDU9fwlDtRCbEtSTZC9AKhkuJi4GG2dueOZSOmRvMTT13DG+mITQhIYqSyECJ7eeoaGoC9gAcwCWU1ZokIMNeUVmNqM3cAe0qiEekmNRsheplQSbEXM9bpIMy1qmbM5Keve+oa1mQyNpG7JNkIIYRwnTSjCSGEcJ0kGyGEEK6TZCOEEMJ1kmyEEEK4TpKNEEII10myEUII4bruzem+sUmjNegwoEFHMI8jzuMwaI3e8jgCRGKW2/YcYbY5d6TDvQ6jO5br9L7tvO1vzrZI+8dAxIkr4jxuX27L9nb34fDW+0iHx85xuuO2cNgcH3Zej/b3EY12YtJh8xITjjgh6nb7cfZraCvnHLPNsU55HY6gtUa3mtcu0mpiiTiPt243sURaI2gdQbdGP05HNJFw2Lk3ZcLhiPPYxBUJR4i02x9x9oc7PO54fNj8p2y51+1+TuZeA63OfQS4VuukVhbNpL6TS7TKyyevoA8qP5/8gj6Yx4XmvtA83rq9zzbb8wr6kJenyMvPIy9PofIU+fl55r4gD5XH1sfttytFfsG25fsU5JHv3BdseZy3dXu+ue/rPM7vcExbmTylKMxX5CtFYZ4iL8+5V4rC/DzyFRTm55GnoDAvj/w8c992nFKQrxR5zr1SbPPz1n2Y36Ntf55C4dxrjYq0mvdbJIzSEXAeq3Bn281nRNuxurUFImF0y2aIRNCtHe5bNpv9beW2lDf3kdYWdDhCpKUVHY4Q3tyCjkSIbG419+F2P29uJRKJEGlXJrLlWE24JUwkrIlsNvfhlrDZvjmc0P6I1myOaMJb7ulwv3V7i45Wzvx8p/4m5vtLajZCCCFcJ8lGCCGE6yTZCCGEcJ0kGyGEEK6TZCOEEMJ1kmyEEEK4TpKNEEII10myEUII4TpJNkIIIVwnyUYIIYTrJNkIIYRwnSQbIYQQrpNkI4QQwnWSbIQQQrhOko0QQgjXSbIRQgjhOqW17vrBSpVqreemMJ4eT16T7clrkjnZ9NpnSyzZEgfkVizdrdmUpiSK3kVek+3Ja5I52fTaZ0ss2RIH5FAs0owmhBDCdZJshBBCuK67ySYr2hqzjLwm25PXJHOy6bXPlliyJQ7IoVi61UFACCGESIQ0owkhhHBdQslGKVWslPpcKbVQKVUVZX9fpdRDzv43lVJjUh1oton3mrQrd7pSSiulDkhnfJmQwP/JLkqpF5RS7ymlPlBK/TgTcfZmSqkdlFLPKKW+dO69McrdrJT6WCn1qVKqWimlMhWLU3aIUmqZUqomhc+fNZ9b2fJ5kdH3qNa60xuQD3wFjAX6AAuACR3KXATc6fx8JvBQvPP25Fsir4lTbjDwMvAGcECm4870a4JpEy5zfp4AfJPpuHvbDbgZqHJ+rgJ+H6XMocCrzt8sH3gdmJqJWNqVvQ14EKhJ0XNnzedWtnxeZPo9mkjN5iBgodb6a631ZuBvwEkdypwE3Of8/AhwjBvflLJIIq8JwA2YN9zGdAaXIYm8JhoY4vw8FPg2jfHlivbvxfuAk6OU0UA/zAdOX6AQWJ6hWFBKTQZGAE+n8Lmz6XMrWz4vMvoeTSTZ7Awsafd4qbMtahmtdSuwCihKRYBZKu5ropT6ITBaa/1kOgPLoET+T64FfqmUWgr8C7gkPaHllBFa6+8AnPvhHQtorV8HXgC+c26NWutPMxGLUioPmANUpvi5s+lzK1s+LzL6Hi1IoEy0TN+xC1siZXqTTn9f5w1kA+emK6AskMj/wFnAvVrrOUqpQ4AHlFITtdYR98PrPZRSzwI7Rtn1mwSP3x3YGxjlbHpGKfUjrfXL6Y4F05T1L631khRXKrLpcytbPi8y+h5NJNksBUa3ezyK7atWbWWWKqUKMNWvld0NLovFe00GAxOBF5030I7AfKXUiVrrd9IWZXol8n8yAygG8+1aKdUPGAasSEuEvYTW+thY+5RSy5VSI7XW3ymlRhL9tT0FeENrvdY5ph44GHO9IN2xHAIcoZS6CBgE9FFKrdVax7yInqBs+tzKls+LjL5HE2lGexsYr5TaTSnVB3MhbX6HMvOBXzk/nw48r50rTL1Up6+J1nqV1nqY1nqM1noM5oJfb040kNj/yWLgGACl1N6Y6waBtEbZ+7V/L/4KeDxKmcXAkUqpAqVUIXAk4EYzWtxYtNa/0Frv4rxPLgfuT0Gigez63MqWz4vMvkcT7MXwY+ALTE+G3zjbrse8IDgBPQwsBN4Cxqa6J0W23eK9Jh3Kvkgv742W4P/JBEwvqAXA+8DxmY65t90w1xyeA7507ndwth8A3O38nA/chUkwnwC3ZiqWDuXPJUW90ZzzZc3nVrZ8XmTyPSozCAghhHCdzCAghBDCdZJshBBCuE6STZoppU5WSk3ownFaKfVAu8cFSqmAUurJdtumK6XecaYg+UwpdYuz/Vql1OWp+Q2E6J2UUlOd99mMdtt+6Gy7vN22y53310dKqQVKqXOc7S+6Nc1MbyDJJv1OxlyES9Y6YKJSqr/z+DhgWdtOpdREoAb4pdZ6b0xXyq+7GasQWcnpquyGD4Gft3t8JuZiedvzXoh57x2ktZ4I/Ijo41dEB5JsUkAp9ZhS6l1lJjYsdbatbbf/dKXUvUqpQ4ETgdlKqfeVUuOUUvsppd5wJr17VHUyWSFQD/zE+fks4K/t9l0B/E5r/RmYEdFa6ztS+XsKkU5KqXOc98UCpdQDznvoVqXUC8DvlZno8zGnzBtKqUnOcUc676/3nQklByulRiqlXna2faSUOiLG0y4G+imlRjhT1xRj3ndtrgIu0lqvhi3dlu+Lch7RgSSb1Dhfaz0Z06VzplIq6pQXWuvXMP3aK7XW+2mtvwLuB36ttZ6E+VZ1TSfP8zfgTGeg1STgzXb7JgLvdv9XESLzlFL7YGYhOFprvS/wv86uPYBjtdYVwHXAe8575yrMewnMeJ2Ltdb7AUcAG4D/wUzLsx+wL6ZbbyyPAGdgJiz9D7DJiWkwMNh534okSbJJjZlKqQWYwVijgfGJHKSUGgp4tNYvOZvuw1TLo9JafwCMwdRq/tWdgIXIckcDj2itmwC01m0j+x/WWoednw8HHnD2Pw8UOe+pV4FblVIzMe+vVsyAxvOUUtcCP9Bar+nkuf+OSTYdWw8UvXsaLldJsukmpdRU4FjgEOcb2HuYwWLt/yn7JXnO0e2aAS7ssHs+cAvbvgkAPgYmJ/M8QmSxWB/s6zqU6Uhrrf3ABUB/4A2l1F7azPv2I8x1zgecJrpT2r3PDmh3gu+BFsy1mefabV8NrFNKje3uL5eLJNl031AgqLVer5TaCzPHFMBypdTeykyyd0q78mswcyGhtV4FBNu1H58NvKS1XuI0s+2ntb6zw/P9Cbhea/1hh+2zgauUUnuAmdxPKXVZyn5LIdLrOeBnbU3SSqkdopR5GfiFs38q0KS1Xq2UGqe1/lBr/XvgHWAvpdSuwAqtdR0wD9hfa/1ou/dZx6lhrsY0b4c7bP8/4I9KqSHO8w5pu04rOudWj45c0gBcqJT6APgc05QGZrGoJzFTen+EmWQQzHWXOqeKfzpmbqY7lVIDML3HzuvsybTWSzELTXXc/oFS6lLgr865NPBUN383ITJCa/2xUup3wEtKqTCmxaCja4F7nPfeerbOc3apUuooIIyZjqce06usUinVAqwFzonz/K/F2FWLeS+/7ZyrBbNEgohDpqsRQgjhOmlGE0II4TpJNkIIIVwnyUYIIYTrJNkIIYRwnSQbIYQQrpNkI4QQwnWSbIQQQrhOko0QQgjX/X+EP9ouMlkbxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "## Significant links at alpha = 0.01:\n", "\n", @@ -820,19 +814,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3xT5f3A8c+TtKVYLoY2iBcuAiI4RScK6nA67zp1uum8zrvOOESPtS66m9O5RSue0THj5l2nTsF5nf5w8+5UUKeCDrnKTRTSEgoUSpvk+f3xnEIpSZq0SZo23/frdUhyznNOvk05+fZ5znOeR2mtEUIIIbLJ1dUBCCGE6Pkk2QghhMg6STZCCCGyTpKNEEKIrJNkI4QQIuuKujoAIUR2Nb7y9NDI/DmH6PXhMToaLVNud4Pq55lXtPfY90uP+9Gyro5PFAYlXZ+F6JkaHqieGF228NpYXehkmhp77VCgpLTRNaDiRfewUVPLLql6pwtCFAVEko0QPUxk2cKizU8Efx9dsfgamptK2t2huKTJPWTk1N5nX3lT0dC9IjkIURQgSTZC9CDRVcuKN913x2PRlUvOTHdf9+AR03tfcM25knBENkgHASF6kE2PTL2tI4kGILpi8Zmbnwj+PtMxCQGSbIToMRoeqJ4YXbH4ms4cI7pi8TUND1RPzFRMQrSQZCNEDxFduiDuNRqtNSc8/z7/WhHauu6ZxV9zxssf7niQ5qaS6NIFnUpYQsQjyUaIHqDxlaeHxtbWnhJvm1KKuyZ+i1++/wWNkSgNzRF+9+FCqr+zT9xjxdbWntz4ytNDsxqwKDhyn40QPUBk/pxD4nVv1oAC9hnQl+OHDGTqp1/SEIly9l67sWe/neIfrKmxNLJg7gTkHhyRQZJshOgB9PrwmO1eu93oXQaC241asRKAnx84giOfeZdil4vXTz8s+fHq145JWkCINEmyEaIH0NFoGZiajB7gQQ/aBYrM6a3D61AbN1JWXMTpw3elrNhNL3c7LejO8YTIFLlmI0QPoNzuBr1Tb2IjR6D32H1rogGI7b4bWikAXApczvOk3O6GbMUqCpPUbITo5uqmVQ1S/UqP1P1HxC/QqwQ90ItavQZdUoLuVbz1Wk4iqv+AedmIVRQuSTZCdFN106qKgauBm7XSfZOV1d4K9Lp15sWAATB8T/TKr1BNTTsWLiltLBq136zMRywKmQxXI0Q3UzetSgGnAAEgpQv5am0Y9fU3UOSGfZxdYjH4ZjWsCaFafQ+4Bu0xo98t93ZoFAIhEpGajRDdhJNkjgduAQ5OaadNm3B99TVq82bA3OC5lcsFu+0KAwaYWs6GDWZQzmGjpmY8eFHwJNkI0Q3UTas6CrgVSN5nuUUkgvpmtanRtFqtYjF0JGpqOC1Ke8HI4ejwOtzFZQ/LdAMiG6QZTYg8Vjet6nBMTebIFHeJubZElrBowUgVjcUtoEfvDb1LE+3fDNwD/M7jC6xJM1whEpJkI0QeqptWNQFTkzk2jd3eAq7uf8oV/0s2n40eMRz6Je1PALARuAOwPb7AxjRiECIuSTZC5JG6aVUHYmoy309jt+XAz4EnyydVbz2hnZk6r3Fm6txaldFDBkP5gFSPvRq4Gbjf4ws0pxGTENuRZCNEHqibVrUf8Fvg9DR2+wq4Dbi/fFJ1nD7MRuMrTw+NLJg7QdevHUM0Whbt33uCLin6bpohVnt8gRvS3EeIrSTZCNGF6qZVjcbUHH5M8vssW1sN/AH4S/mk6sZ03zMc9F8C3J9i8U2ABdzr8QXky0J0mPRGE6IL1E2rGgn8GjiP1IeNqgNuB+4un1TdmeFkFqZY7iPgXI8vsKAT7yUEIMlGiJyqm1Y1DPgVcCHgTl56q3XAnUBN+aTqDRkII9VksziNskIkJclGiCxzbsb8LuADfggUp7jresAG7PJJ1fUZDGk1prdZn3bK/Rh4FfhrBt9bFCi5ZiNEltRNq9oZuAC4khSHlXE0ADXAneWTqtdmI7Zw0P8xcEAKRRuB8R5fYG424hCFQ2o2QmRY3bSqgzC1mHOA3mns2gj8GbijfFJ1tm+oXMi2ZLMemEX8e3pKgSfDQf/BHl9Aph0QHSbJRogMqJtWVQacjanFHJTm7k3AX4A/lE+q/jrTsSXQci3mbeAnmKa1WcDYOGXHYGpal+YmNNETSTOaEJ1QN61qH0yCuQDon+buzZguyLeVT6pemenYkgkH/ecDQ4DbPb5A1Fk3GtMDbacEu53n8QUez1GIooeRZCNEmuqmVZVgLvRfCRzRgUNsAv6GqckszWBoKQsH/SrefTPhoP9C4KEEu20EDvX4Ap9lMzbRM0myESJFTrflKzDNSQM7cIjPgSDwtwz3LsuYcNCvgEeA8xMUWYrpMBDKWVCiR5BkI0QSddOqioATMBf8TyT1u/xbNAEzMCMpv9N67LJ8FQ76+2Ka0/ZKUOQ/wNEeX2BL7qIS3Z0kGyHacC72HwechhkQs7wDh/kSc9H/wRz0LMu4cNB/AKbDwA6jRjseAS6SIWxEqiTZxNE4c8bQyII5h+j68BgdjZYpt7tB9ffMKxo19v3S489Y1tXxicyrm1Y1EDPV8mnAMZguv+mKAS9imspeKZ9UHX9CmW4iHPT/BJNUEvF7fIHbcxWP6N4k2bTScH/1xOiyBdc6Q7L32qFASWmja0DFi+5he08tu1RmM+zu6qZVjQJ+gEkwh5J+E1mLr4H7gHvLJ1WvyFB4eSEc9P8euDHBZg380OMLPJvDkEQ3JckGiCxbWLT58bsTTja1g+KSJveQkVN7n+O7qWjoXpEchCgyoG5alQsYz7YEM7qTh3wVU4t5vnxSdY+c6yUc9LuApzGfVzwNwESPL/BJ7qIS3VHBJ5voqmXFm+67/bHoiiVnpruve/CI6b0vvPZcSTj5q25aVSlwFCbBnAoM6uQhw8CDmOH9C2I05HDQ3wdz82ei4W1WYHqofZO7qER3U/DJZsMfrDuiS+ZVdXR/9/Ax1X1vtGVSqTxSN61qAHASJsGcCJR18pAR4E3gUeCp8knVmzt5vG4nHPQPBmaTOFnPAr7n8QUK7rMRqSnoZNNwf/XE5o/efjWlprNEikuaiscdfnSiazjOX9bHAZ+VT6pe0uH3EXE5XZP3AyY4y3jM8Codvf7SYiPwMvAs8HL5pOpwJ4/X7YWD/vGYpJuo88QTmFEGCvdLRSRU0GOjRZfOj3uNZuXGzXz/xQ9447RD8JSWsG5LM0c88x4vfP9ghvRtM65ic1NJdOmCa4CtycZJMMcDZ2KabvqS+J4FkSJnqP4hbJ9YxpHeYJfJrAKeB54DXi+fVC33kbTi8QVmh4P+i4C/JyhyDjAPuDVnQYluo2BrNo0zZwxtfP5v8+P2OgOmfvolX67fxB8P/xbXvvM5Q/r05roDhsc/WElpY/Fxp+3fuOLzMZg5QE7BJJgWUaB3T72InC1106r6AwezLbFMAHbJ8Nt8jkkuzwEfdvfuyrkQDvpvBn6TpMhZHl/gqRyFI7qJgq3ZRBbMOSRRogG4ar+hHPnMewQ/W8qsb8LccfqO05HooiJ0v77ofn1Lo8s/n4Mi0fGWSqJJrm5aVTGmOawlqUzA9BbrbHNYWzHMHfDPAc+VT6pelOHjF4LfYn43ZyXY/kg46K/3+AIzcxiTyHMFW7PZ8Lurb44uW5jsrzNeXVnLGf/3Ef84YRzf26MCDbDTTi0JBnqn3HrzFnBs+aTqpk6G3a3VTavqCwxttQxr9bgfKTSHLVqzlj/OnMVJY0dy0v4pt0xuBl7BJJgXyydVy7henRQO+ntjrt8cnKDIFuBUjy/wSu6iEvmsYJPN+t9eVR1bueT6ZGVufG8ez365mqv3G4bvoL2JDd8TSlKd0XcHGnPz33JgWZvHluf13WHsrHic6ykVbJ9M2i6eTLzXOwuXs37TlvaSzQrg35gE86/ySdWbMvHeYptw0L8r8AGwe4IijcApHl/g37mLSuSrgm1GU2530lkH59at542v6njl1Amc+MJsfjhiV3b5cimxoUOgNGHrW9K3BHZzlkMSlNlQN63qa6AeM3tiy9L2dcL15ZOqO3TPT920KjfQC9PTKNHS23ksA/Zgx2SSqQv16dqA+dKb5SyzczgJWcHy+AJfh4P+UzCdY+LNgVMKvBAO+k/2+AKv5jY6kW8Ktmaz8U+/PisyZ3bcXjVaa45/YRY3HjiS7+1RwT1fruHDNeu5d+JoiMbQu++GHpCRP9KzYRM7JqUI2xJFoqXDVbZcWr1+Y/SW594Or16/sfbqo8fff8TooS8B88snVUe7OrZCFQ76j8fUIBP9FbYZ+L7HF3g9d1GJfFOwycbpjfYFTY073DPw0BcreOurtTxw9P4ANJf14Zin3+aWUyYysV8vVN1a8HjQe+wGLlfOYy8wyzA3E7bUWv4rTWL5Jxz0n4BJOInuWdsMnOTxBd7IWVAirxRssgFY/6vLpse+WXlGe+VivXsT3XPYthWNjbi//hoV06ZZrXdHBggWcazHJJaW5DK7fFK1DIHSTYSD/pOAZ0iccDYBJ3p8gbdyF5XIFwWdbFIdQUAXFxPZa2SblRpXeB1qXX0To/d+WevoDxLs3gSso2MzO/Y0UWAlprbSdlkKLJb7XLq3cND/fUzCSdQs24BJOG/nLiqRDwo62UBqY6NppYiMSTBAsGYTiqtVkbtWKXUvOyaVN8onVX+vblpVb2Aw5g74IZgL6q0fB5P4L8LuopH4iaRlWdXRDgyi+3A6DTxN8oRzgscXkGk6CkjBJ5vIsoVFmx+2H29v1Ofm0Xu3d33mIxS/cRUV/RQzgkCL+8onVV/eXhzO8PcDMd2D+zlL/1bPU13XmZsgGxMsm9u83gLUYmojrZNJqLt23RaZFQ76T8VMh50o4WzEJJz/5C4q0ZUKPtlAavPZNI8cASUpVTweU273J8qlbsZ0EfaXT6rOyWyGzr0uZWyfgPpjElCiRNKyNEmiEJkUDvpPA6aT+BYLSTgFRJJNK2amzoXXxOrWnNy2l1pk2FD0TvFuJYhrE3CPKnJ/RylVXT6p+umMBytENxAO+k8HniJxwtkCXOTxBRIN7il6CEk2cTTOnDE0smDuBF2/dgyxaBkud8OWsuITNXpCGofZDFziKi56qXxS9fpsxSpEvgsH/T8CngTcSYr9BrhVpifouSTZpChkWzZwbYrF3wQu9Vr24iyGJES3EQ76z8BMTZAs4TwGXObxBRpzE5XIJbkjMXUrUix3HXCUJBohtvH4AjMw890kG+nhPODVcNAvtwn0QJJsUrc8xXIDvZYt94oI0YbHF5gO/BDT9TmRw4BZ4aB/n9xEJXJFkk3qUq3Z3BCyrXSu7QhRMDy+wPPA4cBXSYoNA94LB/3H5SQokROSbFKXarJxAQ+HbKurRkAWIq95fIGPMZPkfZSkWD/gpXDQ78tNVCLbJNmk7hugZbbNeuBizHz18ewN/C4XQQnRHXl8gVXAEcA/khRzA3eHg/6p4aA/WccC0Q1IskmRcx3mK+AFYB+vZT8E/BRYm2AXK2Rbh+coPCG6HY8v0ACcCQTaKToZeD4c9PfNflQiW6TrcxpCtnUo8L7XsnWrdWdhunTGswQ4wGvZG3IRnxDdVTjovxj4C8nnVfoM+LHHF5iXm6hEJkmyyYCQbT2F+Qstnke8ln1hLuMRojsKB/0tzWoDkhTbDFwPBOUG0O5FmtEy4ypgTYJtF4Rs69xcBiNEd+TxBd7ETJm+IEmx3sCfMdNN75KTwERGSLLJAK9l12Ku3yRyT8i2hucqHiG6K48vsBA4FGhvCunvA3PDQf/J2Y9KZII0o2VQyLbuBS5LsHkWcLjXspsTbBdCOMJBfwlwN3BpCsWDwPUeX0CmC89jUrPJrGuBLxJsmwDcnLtQhOi+PL5AE3A54MNcp0nGB3wUDvoPzHpgosOkZpNhIds6AFOLiTf5jQaO9lp2e00EQghHOOgfjRmk88BFq9diz3yPk8buxfcPGNW2aDPwK+BOjy+QbAw20QWkZpNhXsv+BPh5gs0KeDRkW+U5DEmIbs3jC3yBuY4TGLnLAH3OIfslKlqMuWfn1XDQPyRX8YnUSLLJjqnAywm27Q7cH7KtzkzfLERB8fgCTR5f4Ebge02RaKKeny2OAOaEg/5zchCaSJE0o2VJyLYGAnOARN0zr/JadjCHIQnR7SmlBu1UUnzLd/YafPSdZx83fHB5//Z2eR64zuMLyJQfXUySTRaFbOs4YGaCzY3AwV7L/iyHIQnRY4SD/vMwPdb6tVO0CbgT+IPHF9iY9cBEXJJssixkW3cClQk2/w+Y4LVsOQGE6IBw0D8MeBSYmELxVUAV8ISMPpB7cs0m+34BfJxg2z7I9RshOszjCywFjsScZ5F2iu+G6dX2djjo/3Z2IxNtSc0mB0K2tTfwX2CnBEWu91r2lByGJESPEw76D8Ykk71SKK6B+4BfeHyBUFYDE4Akm5wJ2dYlwP0JNseAY72W/VoOQxKixwkH/WWAH9Nc1iuFXeqB3wB3e3wBGd0jiyTZ5IjTVHY/ZtK1eGqBA72WneqMoEKIBMJB/3BMp4DTU9zlf8A1Hl/g39mLqrBJsskhZ6rot4FxCYp8iBk/rTF3UQnRc4WD/mMx972NSXGXZwC/xxdINvK06ABJNjkWsq2hmLnXE40i8ABwWesJ2oQQHRcO+osx04D8Fmj3xhzM9ZzpmK7Sn2QztkIiyaYLhGzrGMz9N4l6A/7Ua9l/zWFIQvR44aB/IHAbZiTpVHuAvgT83uML/CdrgRUISTZdJGRbVcAdCTY3A9/1Wvb7OQxJiIIQDvrHAX/CjLeWqreA3wOvyD06HSPJpos4HQaeAs5IUOQrYJzXslfnLiohCkM46FfAuUA1sGsau36MSTrPyMjS6ZFk04VCttUXeB9zc2c8b2G6RDflLiohCkc46O8L3ARcR/xpQRKZjxlh+jHpMp0aSTZdzLnhczaJx3d6ELhUOgwIkT3hoH8PzLBSPwV6p7HrckwX6/tlptDkJNnkgZBt/QB4NkmRX3ot+7ZcxSNEoQoH/V5gMnA1qfVcaxHC3Ef3oHSbjk+STZ4I2datwC+TFDnPa9mP5yoeIQpZOOjvh5lu2iLxNCGJvItpkXjK4wusz3Rs3ZUkmzwRsi03Zu6NkxIUaQKO8Vr227mLSojCFg76e2NG/bgBGJrm7puAGZjE85bHF4ils3PjzBlDI1/MOSRWv3YMsWgZLneDq/+AeUWjx75fevwZy9KMpctJsskjToeBt4H9ExRZCxzqtWyppguRQ86NoecANwKjO3CIL4GHgIc9vkDSRNFw3x0TI0sXXhurW3MyTY07ju9WUtroGuB9sWjPUVPLLrvhnQ7E0iUk2eSZkG3tAczCDIcez2JMwpGRaoXIsXDQ7wJOw/RgSzTsVDIaeA0zUsgzHl9gc8uGyNKFRZse//Pvo8sXX0NzU/s944pLmtxDR07d6Zyrbioatld70yt0OUk2eShkWwdgajh9EhR5FzhaxlAToms49+kcC/wcOKqDh6kH/g481PuQk/7b9NwTf4uuWHJmugdxDxkxfacLrXPzPeFIsslTIds6CXiBxEPaPAWc47XstNqBhRCZFQ76RwAXARcCgzt0kJjeSG1tH9bVw4aNkOb3snvEmOp+N/3xhg69d45IssljIdvyYeZYTyTgtewbcxWPECKxcNDvxtRyLgZ+SGrz6ewoEuGmJ2YyuFcRvpGDIBbjRzM/YveyUmomfguAX86az65lvfjZvsPMPsUlTSUHHX50Pl/DkWmh85jXsoOYG8YS8Yds64pcxSOESMzjC0Q9vsC/PL7AucAgTNfp2WkfqKiI8d8awez1m+GA/Yi5XKxtbOKL8MatRWavWceEgTtv26e5qSTy5YJrOv1DZJEkm/z3c+DpJNuDIdv6ca6CEUK0z+MLrPP4Avd4fIEJwL7AFGBNqvtPGL47s5d8BY2NfFFbzxhPH/oUF7FuSzNbojEW1Dcwtnz7QUdia0MnN86ckW737JyRZJPnnGsyP8H0UIvHBTzmXOMRQuQZjy/wuccXuB7YA2gZLSTpxfxdd+5LkcvFyuWrmL1mHQcP3Jlx3v58sGYdH9fW8y1PH0rcbb6+mxpLI/PnTMjWz9FZkmy6Aa9lbwZOxfTVj6cIeDpkW0fmLCghRFo8vkCzxxd43uMLnA7sDlhEY8sTdQaYMGIPZs1fbpKNd2fGD+zP7DXrmL1mHeNbN6G1Eqtfm+qMpDknyaab8Fr2GszoAuEERUqBF0K2NT53UQkhOsLjC6zx+AJ/dNdueIpPP4Oly2FdPcS2dS4dP3QQH6xYzf/CGxnj6cNBA3fmgzX1fLC6ngm7xE82RKNlOfoR0ibJphvxWvYXwInAxgRF+gD/F7Kt/XIXlRCiw1zuBiIRqK2DRUvgk7mw+EuoW8uE8r7MXB7CU1KM26Xw9CqmvqmZD0KmWS0ut7shtz9A6iTZdDNey54FnAJsSVDEA/wrZFt75S4qIURHuPoPmLfdilgMwuvgy2Xss2UTdVuaOGjgtsGn9/H0pV9xEeWl8QcY2OF4eUTus+mmQrZ1MvAM5npNPMuBiV7LXpG7qIQQ6WicOWPo5mcf/YKmxtJOH6yktLH3aT8Zna+DdErNppvyWvaLwPmYsZbiGQL8O2Rb6Q6PLoTIkdLjz1jmGuB9MRPHcg3wvpiviQYk2XRrXst+Ekh2U+coYGbItjw5CkkIkaaiPUdNpbikc1O/F5c0Fe05amqGQsoKSTbdnNey78PMn57I/sArIdsakKOQhBBpKLvshnfcQ0Z0KlG4h4zI++kGJNn0AF7LtoGbkxQ5CHgtZFve3EQkhEjHTuf+7Cb34OHTO7Kve8iI6Tud+7ObMh1Tpkmy6TluAewk2/cH3gjZ1qAcxSOESFHRsL0iO1103bnuEWOqU25SKy5pco/cp7o7TC8A0hutRwnZlgL+ClyWpNgCzFw4K3MTlRAiHc5Mndc4M3Xu2EtNZuoU+SBkW27M9LPnJyn2JXCU17KX5iImIUT6GmfOGBqZP2dCrH7tGKLRMtzuBlf/AfOK9h47K597nSUiyaYHchLOX4BLkxRbganhLMxNVEKIQibXbHogr2VHMV2ik028Nhh4M2Rb++QmKiFEIZNk00M5UxNMAu5KUmxXTKeB/XMTlRCiUEmy6cG8lq2B64HbkhUDXg/Z1kG5iUoIUYjkmk2BCNnWL4FbkxRZD5zutezXchSSEKKASM2mQHgt+3dAVZIi/TDTE5yXo5CEEAVEajYFJmRbk4A/tVPsRuB2pxlOCCE6TZJNAQrZ1mWYmz9VkmJB4GqnZ5sQQnSKJJsCFbKt84EHSTwfDsDzwDley96Um6iEED2VJJsCFrKt44EZmOmkE5kFnOK17FBuohJC9ESSbApcyLa+DbwEJBugcxFwgteyF+cmKiFETyO90Qqc17I/Bg4Bks1dPhJ4L2Rb43MTlRCip5FkI/Ba9jJgIvB2smKY0QZOzU1UQoieRJrRxFYh2yoFHgHOTFJMA78Gfu8MiSOEEO2SZCO2E7ItF1BN8qmmAf4BXOS17A3Zj0oI0d1JshFxhWzrWswgnsnuxfkf8AOvZS/KTVRCiO5Kko1IKGRbZwB/A3olKbYOcy/O/+UmKiFEdyTJRiQVsq3DME1muyQppjFD3NwhQ9wIIeKRZCPaFbKtPTAJ5+B2ij4FXOK17IbsRyWE6E6k67Nol9eyVwLfBR5qp+iPgXdDtrVn1oMSQnQrkmxESryW3QhcAlwNJBuccyzwYci2js1JYEKIbkGa0UTaQrZ1JDAdqEhSTAN/AG72WnZzLuISQuQvSTaiQ0K2NQR4Fvh2O0XfA871WvbSrAclhMhb0owmOsRr2csxQ9w81k7RQ4FPnG7UQogCJTUb0Skh21KAhRl1oL0/Xv4KWDI/jhCFR5KNyIiQbR0NPAF4F68J88dXZ3PiviM4ab+RbYt+DpzttezPch6kEKLLSLIRGROyrUHAo8Ax/1m0gvrNW+IlG4BGTG3oL3ITqBCFQa7ZiIzxWvY3wPGAX+uk3aNLgSAwPWRbnpwEJ4ToUlKzERmnlBo0rLz/nw4cOuiEX5z0nT6DB/RLVnw5cLHXsl/LUXhCiC4gyUZkTci2+gN/Ac5KofhfgBu8lr0+u1EJIbqCJBuRVU5vtUuAPwG92ym+HLjMa9n/ynpgQoickmQTR+MrTw+NzJ9ziF4fHqOj0TLldjeofp55RXuPfb/0uB8t6+r4uqOQbY0B/o4ZzqY99wHXey27PrtRCSFyRZJNKw0PVE+MLlt4bawudDJNjTvO4VJS2ugaUPGie9ioqWWXVL3TBSF2a86003cCP0uh+ErgcpknR4ieQZINEFm2sGjzE8HfR1csvobmppJ2dyguaXIPGTm199lX3lQ0dK9IDkLsUUK2dSrmGs2gFIo/CFzntex12Y1KCJFNBZ9soquWFW+6747HoiuXnJnuvu7BI6b3vuCacyXhpC9kWwMAG7ggheKrgCu8lv3P7EYlhMiWgk82GwLX3RFdMq+qo/u7h4+p7uu/64ZMxlRIQrZ1MqaWs1sKxf8GVHote012oxJCZFpBJ5uGB6onNn/0zqspNZ0lUlzSVDxu4tFyDafjnBs77wIuSqF4PfBL4B6vZUuNUohuoqCTzfpfXz499s3KuKMRv/jlam7/76Lt1n2+dgNPnjCOYwd7t1vvGrTHjH633Jt2M5zYXsi2TgTuBXZPofinwM+8lv2f7EYlhMiEgk02ja88PbTx+b/Nj9vrLI6H5q1g+qJVvHDyeFxKbb+xpLSx9NTzR0u36M5zbgSdAlya4i4PAz/3Wvbq7EUlhOisgh0bLTJ/ziGpJppF6xqo/ngR93xv7I6JBqCpsTSyYO6ETMdYiLyWXe+17MuAE4AVKexyITA/ZFuTQ7ZVlN3ohBAdVbDJRq8Pj0mlXHMsxuWvf8otE0YzuE/iG+B1/dqUjidS47XsmcC+wD2YKaaT6Q9MBT4K2dbEbMcmhEhf4SabaLQslXK3fbiQ0Z4+/GjErskLpng8kTqvZa/3WrYPGA/MTmGXscDbIdt6xJnuQAiRJwo22Si3u6G9Mu+squOFL1dzx2H7ENu5P9FBuxvfogMAABWCSURBVBDzVhDzeIj160usbCd0r17ooiK0272ltqYyThub6CyvZX+ImV76cqAuhV1+gmlauylkWztlNTghREoKtoPAxj/95qzI3Nl/T7R93ZZmjvjHu9x71FjG7+JBFxcRHTkC3O5kh40Cm4FNrZaW109UTJ4SzOCPUJCcm0FvA34KpJLcvwZ+AzwoXaWF6DoFm2yc3mhf0NRYGm/7XZ8sZsrHSxjer9UfxkVuJp/4HU4/cO90364J2Lti8pSlHY1XbC9kW+OAPwOpdsyYD9wIPCuzgwqRewWbbCD5fTbxaCC65zAoS7tlxq6YPOW6dHcSyYVsywVcDASAihR3ex/TVfqtrAUmhNhBwV6zAXAPGzWV4pKmVMsrwL1qFcRi6bxNPabZR2SY17JjXsu+H9gbuBtI5RdzCPBmyLZeCNnWvlkNUAixVUHXbKBjY6PFvBXEdhmYavEVgA94qWLylML+sLMsZFvfxkxhcFSKu2jgEeDXXstenrXAhBCSbCLLFhZtfviPj6cz6rNWEB0xHErjXu5J5D3glxWTp7yWdpAiZc7MoMcCtwMHpLjbFiAIVHste1W2YhOikBV8soGOzWfDsJFPRnpxHuk3Rb6GSTrvdSRWkRrnes7ZmCbMYSnu1gQ8ANzuteyl2YlMiMIkyaYVZ6bOa5yZOnestrSZqbO2pvJWzAjEHfFP4FcVk6d83JmYRXIh2+qF6Sb9K1LvRBDFTGfwB69lz89WbEIUEkk2cTS+8vTQyIK5E3T92jFEo2W43Q2q/4B5RaP2m9V6sM3amsoSTO+mb3fi7WYAv66YPGVeZ+MWiYVsqx9wPVAJpNqdUAPTgdu8lj0nW7EJUQgk2XRSbU3lvsBHQOvmt8+BfsDgFA8TA57BzFz5rnQkyB5nGJtfA1cASe/QbeN5TNJJZdgcIUQbkmwyoLam8nqgutWq8cBczBfaTcAuaRzuA0zSmVExeUpzxoIU2wnZ1ijgVuBMUhuJoMW/gN/JfTpCpEeSTQbU1lS6gdeBw4EnKyZPObvVtjJgEvBzwJPGYVcC04B7KyZPWZvBcEUrIdsaA/iB80ivpjMLqAFmeC075Xu1hChUkmwypLamcjimVjK+YvKUxXG29wcs4DqgbxqH3oSZIGxqxeQpcrE6S0K2NRzzB8HFQHEau36N6Tb9V5nATYjEJNlkUG1N5Yh4iaZNmQrgBkxtJ/EEOfH9E9PE9ppc18mOkG3tgelIcAXp/X6agL8DNV7L/igbsQnRnUmy6SK1NZW7Yv6SvhTok+buc4E/Ao9XTJ7SmOnYBIRsayCmJjqJ9H8/72Ka2P7htWy57iYEkmy6nNO8dikwGRia5u5rME04wYrJU6QJJwucKQ2uBq4hvWtuAKswY7b91WvZoUzHJkR3IskmT9TWVBYBpwHXAt9Jc/cm4HHM6NJyP0gWhGyrL3AlJvGk2qW9xRbgKeB+4C2Z4kAUIkk2eai2pnI8JumcCRSluftrwF+BFysmT2l3NlKRnpBtFQE/wNR0Du/AIZYADwIPey17RSZjEyKfSbLJY7U1lXtgrhlcQfpNOJuAF4EngZcrJk/ZnOHwCp4zyvTVwLlArzR318C/MYnnWa9ly+9H9GiSbLoB516dCzC1nVEdOMQG4DlM4nmlYvIUuS8kg0K25QUuB64Cdu/AIdYBT2ASz4fSzCZ6Ikk23UhtTaULOAHTS+qYDh5mHWZonCcxXailt1SGhGyrGDgd09kj3etuLT7DJJ2/eS17TaZiE6KrSbLppmprKvfD1HTOI/0mnBZ1wNOYxPNmxeQp0QyFV/BCtjUO08R2Nh37/UQwQ+NMxzSzhTsaS+PMGUMjC+YcouvDY3Q0Wqbc7gbV3zOvaNTY90uPP2NZ+0cQovMk2XRztTWVAzG9pK4ivTHY2lqNGYH675jBQNOa+1rE53SdPgczMsG4Dh6mGXN9J63E03B/9cTosgXXOlNm7Jjwtk6ZsffUskur3ulgbEKkRJJND1FbU9kLOAk4CziF1IfRj+crTFfdJ4HZMlpBZoRsaywm6ZxP6nPrtNVu4oksW1i0+fG705oM0D1k5NTe5/huKhq6V6SDcQmRlCSbHsjpUHAyJvGcRMeb2QBWAG8AbwJvAYsk+XROyLZKML+fi4ETSW8A0NZ2SDzRVcuKN913+2PRFalPc97CPXjE9N4XXnuuJByRDZJserjamsp+wKmYxHM86Q0yGc/XmKTTsvxPmtw6LmRbu2JqOpcAoztxqGbg3+4IbrVk4XEq0rF84R4+prrvjfYNnYhDiLgk2RSQ2ppKD6a31FnA0XT8L+rW6oC32Vbz+VQ6GqQvZFsKmIBJOmcCO3fmeGrzZtTGjbg2bITGxtQn7CkuaSoed/jRcg1HZJokmwJVW1PpBX6ISTxHkt4EYsmsB95hW83nQ+lenR6nme1oTNI5nU4mnuWr6zj/vud47/RDt64LfLSIsmI3V4/dc4fyrkGDZ/S79d60m+GESEaSjWgZgfoMTOLp6P0hiWwC3sMknjeBDyomT9mU4ffosTqVeJT5Z3ndOs6/ewbv/fCwrZuSJRtKShtLTz1/tHSLFpkkyUZsp7amcjDmi+0szPTW2bACmA8saPW4AFgmTXCJJUw8TlJpqZsqtX0lddk3dZx/z9O896Ntf0ckTTZA0dgJZ/W5+rdPZfpnEIUr3UEeRQ9XMXnKCuAu4K7amsoBwETgu8ARwIGAKwNvM9hZ2o6C0FRbU7mIHZPQfKC2kHrB1dZUKkwyafmsBiu3a+tzrfU6pVRKtRwVSb8VU9evHZP2TkIkIclGJFQxecpa4Hlnobamsi9wGNuSz3g637uttRJgH2dpa11tTWW8JLQU2NDdesQ53dMHt1qGtHk9GChLtH/b2ksyKsHluETrAYhFE763EB0hyUakrGLylA3ATGehtqayN6YH1RGYBHQo6U91naqdMcktXtOerq2pXA/UJ1nWtbN9Y6KE5YxJ16vVUprm8z7AHmyfSNIdxbvDPP37UL9l+9pNeEszQ/sm+VW53DI9hcgoSTaiw5xpC95wFmprKkuAg9hW8/kO0DfV4723eCUffLmK+d+s5XenH4GnLOW8pYD+ztJRuramsh7Tm87N9gkjk7W3nOvTt4xddurFm1/VccTu5YQbm3h1ZS1X7pt4YljVf8C8HIYoCoB0EBBZ48w+uj/baj4HkcIQ/FNmvs+Pxo1mWEWnevwWrlgMtjShtjSiGrdAYyPzV6zmhv98zrot5mbPq8cO48cjd4u/v/RGE1kgyUbkVG1NZR9gJLA3Zm6e1o/9nv5wHho44yC5Pp2iZcBcYK574+ajWPXVBLZs6dRNU3KfjcgGaUYTOVUxecpG4BNn2aq2plIdctuDl9Zvarz8sJGDvxw50LPugCGDBmGS0Ai6eVNWB20BVmK6irdeljuPyyomT1nfUrjh/uqJzStXvorpaNExxSVN7mGjpnYmaCHikZqNyHtOc9xQttWCWmpCewHldG6E664SBVaROJGsAELpdvfe8AfrjuiSeVUdDUrGRhPZIslGdHu1NZXFbOsg0HrZOY31pe28TROmptHoPG6J8zrZ89Vsn0y+qZg8JeOjK0eWLSza/LD9uIz6LPKNJBsh2DofUH9MN+UI2yeLpu50H4/MZyPykSQbIXooM1PnwmtidWtOpqlxx5pbSWmja4D3RfewUTJTp8g6STZC9HCNM2cMjSyYO0HXrx1DLFqGy92g+g+YVzRqv1nSvVnkiiQbIYQQWZeJQRWFEEKIpCTZCCGEyDpJNkIIIbKucyMINNZqtAYdBTToGOZ1zHkdBa3RW1/HgFjCctsfI8p2x461edRRdNtySR9bjtt6cdbFWr/GjC2FNo+a7cttXd/qMRrd9hhr89rZT7ddF42a/aPO59H6MabRTkw6aj5iojEnRN1qO852DS3lnH2229cpr6MxtNboiPnsYhETS8x5vW29iSUWiaF1DB2Jv5+OaWLRqPNoykSjMee1iSsWjRFrtT3mbI+2ed12/6j5n7L1Ubd6ns6jxvRj1s66m7XO1PTXWddr3OVaudy4ikpQbjfuohLM62LzWGxeb1tfst16V1EJLpfC5XbhcimUS+F2u8xjkQvlYtvr1uuVwl20ffmSIhdu57Fo62vXtvVu89jLee1us09LGZdSFLsVbqUodilcLudRKYrdLtwKit0uXAqKXS7cLvPYsp9S4FYKl/OoFNs937bNTMPgbtnuMhMquF0KpTUqFjHnWyyK0jFwXqtosvXmO6JlXx1phlgU3dwEsRg60uaxuclsbym3tbx5jEWa0dEYseYIOhoj2tSMjsWINUXMY7TV86YIsViMWKsysa37aqLNUWJRTazJPEabo2Z9UzSl7TGtaYppolsfafO4bX2zjlfOPL9HL014fknNRgghRNZJshFCCJF1kmyEEEJknSQbIYQQWSfJRgghRNZJshFCCJF1kmyEEEJknSQbIYQQWSfJRgghRNZJshFCCJF1kmyEEEJknSQbIYQQWSfJRgghRNZJshFCCJF1kmyEEEJknSQbIYQQWae01h3fWakrtNZ/zWA83Z58JjuSz6Tr5NNnny+x5EscUFixdLZmc0VGouhZ5DPZkXwmXSefPvt8iSVf4oACikWa0YQQQmSdJBshhBBZ19lkkxdtjXlGPpMdyWfSdfLps8+XWPIlDiigWDrVQUAIIYRIhTSjCSGEyDpJNkIIIbIupWSjlDpBKTVfKbVIKeWPs72XUupJZ/sspdSwTAeab9r7TFqVO0MppZVSB+Uyvq6Qwv+TIUqp15VSHyul5iilTuqKOHsypdQApdS/lFILnUdPgnJ3KKU+V0rNU0rVKKVUV8XilO2nlPpKKTUtg++fN99b+fJ90aXnqNY66QK4gcXAcKAE+BTYp02Zq4B7nOdnA0+2d9zuvKTymTjl+gJvAe8DB3V13F39mWAuQPqc5/sAS7s67p62AHcAfue5H7g9TpnDgP84vzM38B5wZFfE0qrsVOBxYFqG3jtvvrfy5fuiq8/RVGo244FFWuslWusm4O/AD9qU+QHwsPN8BnB0Nv5SyiOpfCYAt2JOuMZcBtdFUvlMNNDPed4fWJXD+ApF63PxYeC0OGU0UIr5wukFFAOruygWlFLjgF2AVzL43vn0vZUv3xddeo6mkmx2B1a0er3SWRe3jNY6AtQD5ZkIME+1+5kopb4NDNZav5jLwLpQKv9PbgbOV0qtBF4Crs5NaAVlF6311wDO48C2BbTW7wGvA187y0yt9byuiEUp5QKmAFUZfu98+t7Kl++LLj1Hi1IoEy/Tt+0vnUqZniTpz+ucQDZwUa4CygOp/B84B3hIaz1FKXUo8KhSal+tdSz74fUcSql/A4PibPpFivuPBMYAezir/qWU+q7W+q1cx4JpynpJa70iw5WKfPreypfviy49R1NJNiuBwa1e78GOVauWMiuVUkWY6tfazgaXx9r7TPoC+wJvOCfQIOB5pdSpWusPcxZlbqXy/+RS4AQwf10rpUqBCmBNTiLsIbTWxyTappRarZTaVWv9tVJqV+J/tqcD72utNzr7vAwcgrlekOtYDgUOV0pdBfQBSpRSG7XWCS+ipyifvrfy5fuiS8/RVJrRPgD2UkrtqZQqwVxIe75NmeeBC53nZwCvaecKUw+V9DPRWtdrrSu01sO01sMwF/x6cqKB1P6fLAeOBlBKjcFcNwjlNMqer/W5eCHwXJwyy4EjlFJFSqli4AggG81o7caitT5Paz3EOU+uBx7JQKKB/Preypfvi649R1PsxXASsADTk+EXzrpbMB8ITkDTgUXAbGB4pntS5NvS3mfSpuwb9PDeaCn+P9kH0wvqU+AT4LiujrmnLZhrDq8CC53HAc76g4D7nOdu4C+YBPM/4K6uiqVN+YvIUG8053h5872VL98XXXmOynA1Qgghsk5GEBBCCJF1kmyEEEJknSSbHFNKnaaU2qcD+2ml1KOtXhcppUJKqRdbrTtRKfWhMwTJF0qpO531Nyulrs/MTyBEz6SUOtI5zy5tte7bzrrrW6273jm/PlNKfaqUusBZ/0a2hpnpCSTZ5N5pmItw6WoA9lVK9XZeHwt81bJRKbUvMA04X2s9BtOVckknYxUiLzldlbNhLnBWq9dnYy6Wt7zvlZhzb7zWel/gu8S/f0W0IckmA5RSzyqlPlJmYMMrnHUbW20/Qyn1kFLqMOBUoFop9YlSaoRS6gCl1PvOoHfPqCSDFQIvA993np8DPNFq2w3AbVrrL8DcEa21vjuTP6cQuaSUusA5Lz5VSj3qnEN3KaVeB25XZqDPZ50y7yulxjr7HeGcX584A0r2VUrtqpR6y1n3mVLq8ARvuxwoVUrt4gxdcwLmvGtxE3CV1no9bO22/HCc44g2JNlkxiVa63GYLp2TlVJxh7zQWr+L6ddepbU+QGu9GHgE+LnWeizmr6rfJHmfvwNnOzdajQVmtdq2L/BR538UIbqeUupbmFEIjtJa7w9c42waBRyjta4Efgt87Jw7N2HOJTD36/xMa30AcDiwGTgXMyzPAcD+mG69icwAzsQMWPpfYIsTU1+gr3PeijRJssmMyUqpTzE3Yw0G9kplJ6VUf2BnrfWbzqqHMdXyuLTWc4BhmFrNS50JWIg8dxQwQ2tdC6C1brmzf7rWOuo8nwg86mx/DSh3zqn/AHcppSZjzq8I5obGi5VSNwP7aa03JHnvpzDJpm3rgaJnD8OVVZJsOkkpdSRwDHCo8xfYx5ibxVr/pyxN85iDWzUDXNlm8/PAnWx/EgB8DoxL532EyGOJvtgb2pRpS2utA8BlQG/gfaXUaG3Gffsu5jrno04T3emtzrODWh3gG6AZc23m1Vbr1wMNSqnhnf3hCpEkm87rD4S11puUUqMxY0wBrFZKjVFmkL3TW5XfgBkLCa11PRBu1X78E+BNrfUKp5ntAK31PW3e7wHgFq313Dbrq4GblFKjwAzup5S6LmM/pRC59Srw45YmaaXUgDhl3gLOc7YfCdRqrdcrpUZoredqrW8HPgRGK6WGAmu01vcC9wMHaq2faXWetR0a5teY5u1om/V/AP6slOrnvG+/luu0Irls9egoJP8HXKmUmgPMxzSlgZks6kXMkN6fYQYZBHPd5V6nin8GZmyme5RSO2F6j12c7M201isxE021XT9HKXUt8IRzLA38s5M/mxBdQmv9uVLqNuBNpVQU02LQ1s3Ag865t4lt45xdq5T6HhDFDMfzMqZXWZVSqhnYCFzQzvu/m2BTEHMuf+AcqxkzRYJohwxXI4QQIuukGU0IIUTWSbIRQgiRdZJshBBCZJ0kGyGEEFknyUYIIUTWSbIRQgiRdZJshBBCZN3/AwwhipIboYjVAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
                          " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXgb1dWH35Es2bGVxI6SOE4gilgTEgKY1ez7UvYaMKXQsoPhK4G2gM3SshRsoLQNhZp9a2kx4LIWCrQEKOBQwKxpwhIUEUBxQLGSSI4tWZrvjztOHEfLyJZk2T7v8/iRNXPvnWNZmp/uPeeeo+m6jiAIgiBkE8tQGyAIgiCMfERsBEEQhKwjYiMIgiBkHREbQRAEIeuI2AiCIAhZp2CoDRCEkUTXSy2unk8/2kNf0zFLj0ZLNKs1pI0rW1yw7dyFRYdWe4faPkEYKjQJfRaEwRO6/5a9o97PL475vzuKcFfhJg3sRV2WCROfs87YZn7JmZe+MQQmCsKQImIjCIOgx/t5wbq/Nd0YXb50HpGwPWUHmz1snb7V/DEnn39FgWvrnhyYKAh5gYiNIAyQ6LdeW+e9Nz8S/frLE9Pta918y8fH/GTeKSI4wmhBAgQEYYB0Pjz/hoEIDUB0+dIT1/2t6cZM2yQI+YqIjSAMgND9t+wdXb503mDGiC5fOi90/y17Z8omQchnRGwEYQBEl30W10ej6zqHP7OQl5d/t/7Yk0t9nPDCu5sOEgnbo8s+G5RgCcJwQcRGENKk66UWV2zV90fHO6dpGr/bezZXLVxCV0+UUKSH37z7ObfstV3csWKrvj+q66UWV1YNFoQ8QPbZCEKa9Hz60R5xw5sNtpswlsOmT2b+hx5CPVFO3noq7nHF8RuHu4p6Pvt4d2QPjjDCEbERhDTR13TMStXm8sot2f/Jt7BZLCw4fs/k461elXI8QRjuiNgIQpro0WhJvOPWbbci9o0PPRiixFbA8VtUUGKzUmhNsVqdYDxBGEmIz0YQ0kSzWkP9j1m3nIF1s6kU7LIjlvJJAFg00CxWwtvvybrjzkk8YJzxBGGkITMbQUgTbVzZ4r7PLeWTsc6Yrs5ZrRTMmUX39K2IrCmhe6vZrDvlEgDsC1/CumJT14w2fsLiTQ4KwghDZjaCkCYF285diL2oC0Ab68A6a5uNzq+ZfQhrfvhzotO3AduG6OjwfkehF/aLK7AXdRVss/3b2bdaEIYWSVcjCANgza/OeTy2auUJtl13QivaWEBCM3ahc6uqTfpoXUEcz85HCwRg5XcQDGGdstkT4667Z0BZCARhOCEzG0EYAFb31k0FO8zR+wsNQJFvCcT5EqcXOeiZsiWMHw9bbwUzt9Fj06Ys6WiqG5MLmwVhKJGZjSCkSWdzgwY8BJwW77zeEyWw7SH0uGdvcq7gq0UUL3yy/+FVxnh3ldU2fpphcwUhL5AAAUFIn5+TQGgAehYtwbbGGldseqZti24rQot09T08AbgEuKSjqW4BcCfwVFltYzizZgvC0CHLaIKQBp3NDScDtyQ637N0Gfr3fmyL/gvdXZs2sBYQ2TzpHs4DgGZgeUdT3YGDNFcQ8gYRG0EwSWdzw+HAnwEt3vlYaN3XsW9Xqii1cBe2RQvjjhOZMdfM5R4EXh2InYKQj8gymiCYoLO5YS/g7yT+zLxvKRmzT9Exp07s+ezj3fXVq2bZAt/PikBN/4bRiZsTc5RhCXbEG0cHLiqrbbw9c9YLwtAjAQKCkILO5oa5wGtAaYImK4Fdi2vqv+p70OsPWoBlwOb9OxR+vIDCxW/GG6uxrLaxflAGC0IeIstogpCEzuaGLYGXSCw0a4Ej+gsNgMvpiKGW3Tahp2LrRJe8qKOpLnnmTkEYhojYCEICOpsbpgIvA+UJmnQBRxfX1LclGebxeAejzmnECuOWHSgG/tHRVLd9OrYKQr4jYiMIcehsbpgAvAi4EzSJAicV19S/lmKoD4HlmxzVtGSzm1LgxY6mui3MWSsI+Y+IjSD0o7O5oQT4BzAnSbMzimvqn001lsvp0IHn4p2LTJ+9CuhO0LUCeKmjqW5KqmsIwnBAxEYQ+tDZ3FCIijrbI0mzi4tr6uP6YhIQV5Si5e7CWFHJaUAsQb8tUTOcRP4iQRg2iNgIgkFnc4MV5dA/NEmz64pr6uenOfQCYNOaNZpWEjzmkiBwdpK+c4HnOprqEtSVFoThgYiNILA+39mfgGQZmG8Hrkl3bJfT0YWKaIvH0WW1jQ8Av0wyxF7A4x1NdfYkbQQhrxGxEQTFDcC5Sc7/FZhXXFM/0I1pifw7R3n9Qa2stvFWoCFJ/x8AT0mGaGG4ImIjjHo6mxt+CSTbSPk8cHpxTX0i34oZ/oHKDtCfzYEdjN+vBO5OMsYRwPMdTXVjB2GHIAwJIjbCqKazueFMkiTWBN4ATiyuqY8M5joup2MlkKgi5zEAZbWNOnABCfbmGOyPilKToAFhWCFiI4xaOpsbfgTck6TJh6hNm50ZumSipbSje38pq22MosoXvJxknD2ABR1NdZMyZJcgZB0RG2FU0tnccBHKD5PoM/AFcFhxTX0gg5d9JsHxXbz+4NTeJ2W1jd3AcahNpYnYEXito6luapI2gpA3iNgIo4rO5gats7nheiBZ+PK3wCHFNfXtGb78IlRizngc2fdJWW1jJ3As8FSS8WYB/+loqpuRCeMEIZuI2AijBmMfzZ3AVUmarQIOLa6pX5bp6xvZBFIupfVizHBOQs3AErEFSnC2GbyFgpA9RGyEUUFnc0MRyvGeLLw5CPyguKZ+URZNSSQ2h3j9wU02bpbVNkaAnwD3JhlzM+B1Sd4p5DMiNsKIp7O5YTzwT+D4JM2+A/YrrqlPFDGWKV5DlSXoTxFwULwORtDAuSRf+isHXu1oqttl0BYKQhYQsRFGNJ3NDVNQ5ZX3S9JsGbBXilIBGcHldIRRwhePTZbSejHCoi9BbT5NxATglY6mur0HbqEgZAep1CmMWPoUPkuWqv8j4PDimnpfbqwCrz94GvBwnFM+YDOj6FpCOprq6kiebWAdcGxZbWOy8GlByCkysxFGJJ3NDTsCb5JcaF5HLZ3lTGgMnid+pucKoDJV57LaxkbgoiRNxqCSdyacKQlCrhGxEUYcnc0N+6F8I4kqbAI8jZrRZHIfjSlcTocfeCvBaVMloctqG/8InEX8FDgAduDvHU11NelbKAiZR8RGGFF0Njccj9oMOS5Js/uBE4pr6tflxqq4/CvB8d3MDlBW23g/cArQk6BJAfC3jqa6X3Y01Wlp2icIGUXERhgxdDY3nA08ARQmadYAnF1cU5/oBp0rEkW97Z7OIGW1jY8C1UA4QRMNlfvtEamJIwwlEiAgDHuMWjT1JI/UArikuKb+DzkwKSVef9AJfJ/gtNPldKxKZ7yOprpDUNkGkgnKB8DxZbWNy9IZWxAygcxshGFNZ3ODHbiD5ELTA5yaL0ID6/02SxOc3jXd8YzIs8OIv4enlx2Bdzua6uLu5xGEbCJiIwxbOpsbpqMiymqTNUNlbn4kN1alRaKlNNN+m76U1Ta+ARxI4hkTgBNVouDn4scRcomIjTAs6WxuOAJ4n+Q+jlXAgcU19Yk2UQ41/01wPC2/TV/KahvfBXZBvTaJsAC3An8RP46QK8RnIwwrjGSa15A8mSbA16iEmouzbtQA8fqDVcQPgf4OKDcSdw4Io3z03cCpKZqKH0fICTKzEYYNnc0N5aiMAKmEZjGwZz4LjcH7xA9bngS4BjNwWW3jOlQCz0uAaJKmvX6cAwdzPUFIhcxshGFBZ3PDPkAzapd9Mp4FflpcU9+RfasGj9cffBfYOc6pGpfT8VgmrmEIyWMof00iosClwB+MPGyCkFFkZiPkNUaxs0uBBSQXmihwOXDccBEag4z7bfpTVtv4CsqP80GSZlbgd8CfxY8jZAMRGyFv6WxuKAWeBG5G3QwTsQIVCHBzcU190iSWeUhGI9ISYfhk9iJ5ITaAHwNvdDTVDWoZTxD6I2Ij5CWdzQ2VQBuqNHIyFgA7FdfUv559q7JCopnNzl5/sCCTFzJKTZ8K/IL4iUB72Qnlxzkgk9cXRjfisxHyCiMbwDnAbSRPOwNwI/DrPEg9M2C8/qAF6CB+LrcdXU7Hh9m4rrGxs5nUfpybgOuMEtWCMGBEbIS8obO5oQS4k9Thuh3AacU19f/IvlXZx+sP/ov4VTrPczkdd2fruh1NdTNQKW52SNF0EXC6sYdHEAaELKMJeUFnc8NM1JJSKqF5B7VsNiKExiDRUlpG/Tb9Mfw4ewJ/S9F0NrCwo6nuxo6mulSzTUGIi4iNMKR0NjfYOpsbLkftOdkuRfPbgX2Ka+q92bcspwyJ2MB6P86PgV+S3I9jRSU7betoqks7d5sgyDKaMGR0NjfsBtwDzE3RNIgqC9Ccfatyj9cfrAC+jXMqBox3OR3BXNhhZI5+FJiQomkUFSF4rfhyBLOI2Ag5p7O5YSzwG+BnqHoryViEKnS2JOuGDSFef3A5sFmcU/u7nI7XcmVHR1PdNOAu4EgTzf8HnFFW25hoZiYI65FlNCGndDY3HIO6SV1EaqH5M7D7SBcag0Q37J1yaURZbeM3wNHAT4FUJbO3A1o7muoaO5rqirJunDCsEbERckJnc8PUzuaGJ4Cnif8Nvi/dwLmotDOhrBuXHyTa3T8jl0YAlNU26mW1jQ+jAgOeS9Hcgsrc0NbRVJexrAfCyEOW0YSs0tncYEEJx03E30vSn9eA84pr6j/NqmF5htcfPA14OM6pp1xOx/G5tqcXo+bNqah9T6UpmseA3wK/Lqtt7Mq2bcLwQsRGyBqdzQ2zUWnu9zTRvAMVEfVAcU39qHtTev3BfVFC258PXE5HTpfS4tHRVFeB8uUcbaL5EpQvZ2F2rRKGEyI2QsbZZuqkORPHlTxy0ZF7b3fMbrM3Sbly90sLWbW2k55YjKtOPBhUvq5LimvqV2qaVopKjT8NeF7X9Zw5x4cSrz/oApbFOdXhcjpSRYflBGOW82PULKcsRfMY8Hvg+rLaxtXZtk3If0RshIzS2dywP3D364u+3Hp1ZxdH7xp/60y4p4cL735y7T0XnHhS/0qamqbthYpU+52u66Mi0snIg9ZF/ISj411Ox5ocm5QQY5ZzJ3CMieZ+4HrgTgmTHt2I2AgZobO5YQJwC3AmwOuLvqRXbMI9PVgtFqwWFY/SFY5EfzL/0fc7gp2nvblk2RJN04p1Xe/sO54xwzlZ1/U7c/23DBVef3AZ8YumzXU5HR/n2JykGLOcU4A/knqWA+ABrgSay2obh1tmbiEDiNgIg8LIZ3YhcBlGUscVgbXc/PcFrAtHqK8+kL8v/IQTqrZns4mlAO9NP+c3Qf/azrcAj67r92iaNl/X9XkAmqbNBI4DJgIv6Lr+7yH5w4YArz/4GrBvnFNHu5yOVFFhQ0JHU90U1CwnVXbuXtqAy8pqG0fN/1VQiNgIA6KzuaEIOA+VwqQ8WdsVgbVMKR0bQn2zvb24pn6jMsWapk3RdX1F1owdJnj9wYeB0+Kc+j+X03FHru0xizHL+RFqlmPWv/QicHlZbWNWsloL+YeIjZAWnc0NdtRS2VUoJ74Z/gFcUFxT/1XWDBsBeP3B64Cr45z6rcvpuDTX9qSLMcu5Hag22UUH/gJcXVbbONLy3Qn9ELERTNHZ3FCAihK7GvMbDdtRjv4nRmM4c7p4/cGzgHvjnHrc5XSclGt7BkpHU93eqNxpVSa7hFGzohvLahtXZc0wYUgRsRGS0tncYAVOBn4NbJ1G17uAuuKa+lQpTwQDrz94MPBynFP/dTkdw2p3vrG0dhzQAGz7Rfsqfv9iKz+YuzVH7rhNom4Bo/0fy2ob1+XIVCFHiNgIcTF2/v8QuJbUqf/78jpQX1xT/1ZWDBvBeP3BrYDP45xa6XI6kvrF8pWOproC4Czgmjc++2rK6s6uZGLTy9eoGfSfy2obo6kaC8MDERthI4yyzEcD15G6gmNfFqJuEP+WJbOB4fUHC1F7beJR7HI6hu23/Y6mOscD/3l/vtNRfMoxO21rNmnnx8A1wNMiOsMfERsBWC8yh6I24KVTHOt9lMg8LyIzeLz+4LdARZxTM11Ox7DNF6dp2hTgKkehvezZS34U2WH6lB8Dm2SXSMAyVODBfWW1jbIsO0wRsRnlGCJzMPArYO80un5i9HlKRCZzeP3BVmCPOKcOczkdL+XanmzR0VS3FXADkE7gQyfwEHBbWW3jaCg7MaIQsRmldDY3OIHTURmZUy6i9+FT1NLGY8U19bITPMN4/cG/oQIy+nOey+m4O9f2ZBujxPTNwP5pdn0RmA+8KBkJhgciNqMIYxazJ3A+cCJQmEZ3DypY4JHimvqeLJgnAF5/sBFVH6Y/N7qcjitzbU8uMCLXjkCVoZiTZvfPUGHTD5XVNq7NtG1C5hCxGQV0NjeMR9UkOZ/0P8zLUX6cB4tr6iOZtk3YGK8/WAv8Kc6pR1xOx6m5tieXdDTVWVEZFK4ndYG9/qwB7gNuL6tt/DLTtgmDR8RmBNPZ3LALSmB+BBSn2d0H3AjcU1xTL9l6c4TXHzwCeD7OqTddTkc6PrVhS0dTXSHKlzMP2DnN7jrwLGqJbUFZbaPc4PIEEZsRhpEY80cokUn3gwrwPWpjXVNxTf2wDbUdrnj9wblAvHxhi11ORzr7nYY9xvJaFUp0qolffiEZH6Nq7zwim0SHHhGbEUJnc8P2qMSYp2Gu/HJ/PkRl7/1LcU19MJO2CeZJsrFzmcvpcOfannyho6luc+ACVEBLusXkOoAngMdRsx3xOQ4BIjbDmM7mhmLUN77zMVd6uT9dwKOo1DJvSwjz0OP1BzdD+cn6s8LldMTbfzOq6GiqG4OqFjqP9P2PoIq5PckG4RE/ZI4QsRlmdDY3TELt8D8GtQlzzACGWYKaxTxcXFPfkUHzhEHi9QedqKXM/gRcToeZImWjAmOJ7QCU6BwNaAMYRoQnh4jYDAM6mxu2QRWnOhY1gxnIBysCtKBE5nWZxeQnXn+wBIi3jNntcjrMpnkZVXQ01W0B/B8qB9tAlpABVqGE5zFEeLKCiE0eYiTB3J0NAjNzEMN9iVome7C4pn5lBswTsojXH7QCiXwKFpfTIR/YBHQ01Y0FfgpcRHoZyvvTKzyPA6+I8GQGEZsM0dncsH1xTf2A68R3NjeMQaWNORa1LDB5EOZEgWdQs5h/yU7/4YXXHwwDtjinxricjkSJOgWDjqY6C3AYqpbSoaQfxdYXEZ4MIWIDBB59wNX1wTt79Kz6fhbRnhKsBaGCCRMXF+2468LSk89IWkHQ2JV/CSrPk7O4pr7T7HU7mxsmAkehBOZQ0t8L05+vgXuA+4pr6r8Z5FjCEOH1B9cAY+OcmuByOsTHlgYdTXUTUXV1TgQOYvDC8xKqjMbrwOJsp8rpevEJV8+Sj/aIrV41i1i0BIs1ZBk/YXHBzLkLiw47YVhVNx3VYrPyhrq9uz9ddHFPu+8ovWvdJqlbtKIxXQWTpzxXOHPO/MlXNr7R/7wRDXYPcIpxaJ/imvpN2vVpX4BK238AysG/F2AZ5J8RBF4A/gy8IKlkhj9ef7Cd+DPbqS6nw5dre0YKHU11TpTwnMTghQdUgMF/2CA+H2YqrDp078179yz7/OKYf+VRhLs2TStlL+qyTJj0XIF7m/klZ1+W8J6TT4xKsen+dFHB9/NvuDH8+ZJ5erjbnqq9Zi8M27fZbv7Ei+qvKNx2dg9AZ3ODC3gK2LFP00uLa+p/2/uks7mhEJWuf19gH5S4xPvGmi7fopbJngYWyA7/4YumabNRSz5bA1fruv691x/0AtMB7vjDb+le18WEiRM5/Zzzt3A5HZ5+/XcHfq/r+iah75qm3QMsAhbruv5i1v+YYUQWhAdgLfAmG8Tn3bLaxrQ+mz3LPi/o/OsdN0a/WjqPSDjlvQmbPWx1bTW/+EcXXFEwY+u8/qI56sQmvGypbeX1lz0S/mLJien2tW896/FJl157SvSDZ/ZFRa04+zX5BypNRq+47EF6yS6T8QlKXJ4G3hM/zMhB07QfAycAp+u6vtrrD35Kn0zcq1cHmH9zI7+6oXG2y+n4X59+04HDge10Xb84zrjXA2HgPV3X46XAEdhIeE5E+U0zITyg9rEtRAnPf4DWstrGUKLG0W+9ttDdjY9El3+Z9r3JOn3Lx4t/eskp+Sw4o05svrnglJu7F3146UD7lx13xILCqc59ydwbMhEx1Bv0aeDp4pp6SS44gtE07UjgK+DzL1euXmixWHYACHSsYv5vb2LeLy+ntGzCzjMmjl2i63qn0ecC1JeZ41C1hVqBqK7r0X5j36Hr+oU5/YOGKVkUHlBRhu+xYebTWlbb6O89uebGi2+OLl084HuTdctZt4y74g+XDd7M7DCqxGblDXV7h1596d9mls76oxXaGX9gFUXuzbNhWi8h4J8ogXm+uKben6K9MMzRNO1wYC6wJfBr4OL/eVccUFxSshvAsYfszyFHHInLvQUHHHLoPnNmTD1e1/Vf9BvjD7quX6xp2i+BZl3XlxvHf4ZK7dKl6/pNOf3DRgD9hOcgzFcWTYdvgY80rH79K28Na9cW0NUNA7kv2+xh+y77HJSvPpxRJTbLTzvq8chXnhP6H/+2K8KPPlzG05VbUGqzsjoS5Zi2L/nrDi6mFdmxTZlE6SF7Yx1bkg2zVrDB//JKcU29hLaOYjRNm7Ls+7V/I04xsZXtK47YbfbWb+u6HjciTdO0Kbqur8i2jaORjqa6caikoPsaP7sBaX9pNUUsxhXNL7O5o4janbaCld9T/cI7TCsp4ra9ZwNw1dufUlFSyIVzZmzU1TJl8yfG33Bv2stwuSAbSp2XBB59wNWzcsXR8c5NLbJxytQybva0c+M2U7nZ087pB+/JzF23w1psp3DGVLRYNF7XgbAOeAu1RPZP4B3xvwi96Lq+wusPxv3CMbl8ijWR0PT2zZ5lo5uy2sY1qOqgL8L6HG27sUF89mTwWxcUFgu7bevi6bYl1E6bSmzFSlZ1hVkb3uCO+e/KADfuvu0mXWOrvjuq68UnXPkYFj1qxKbrg3f2iBfe3MuZ05wc+/6XPPC1n/fWdnFP/c+wjymGbrVtRo/FINKNHu5Gj3SjR8IQ7gY9pU4EgDfY4CRsK66pD2fozxJGJolmt5KuJk8wSha8ZvzQ0VRnAyrZEBy0D1A60PF332IaVz7xb+juZsmqtcwqc7CiM0ygO8KYAiufrQ4x1xknM0+4q6jn0492R8Rm6OhZ9f2sZOdtFo06dzlnfPIVjxy6K0XOKWiFY9C71xFb60eLxdDGlkEshr5uQ/VZPRJG7163/oeeCKgdx6+gBOYTmbkIaZKo9spAkq4KOcDILPC28XOLkcVgDhtmPvsC5WbHm+Iso8BawNe+7/jvygC7Ti7l21A376wMMNZewOwyB3Zr/C16sdWrkt7rhopRIzZEe1I6XF7rCDLZXoDHUYZWqD7XWuEYLPZpoGlojgkQ7kIPdhBb9a06b7Oj2ezgGA+A3tMD4NAKCmKoiDJBSBeZ2QxzjMwCHxk/txtZqrdmg/DsDmxFnE3dOhDZ7Sh22XcxC1dF+O/KABfMnoGvpIv/GmKz2+Qkk6ZoNCvO5cEyesTGWpAwvh3gf8Eu3uwI0bLbTE5p/ZCfrPyOqZMnAaBpGtjHYJ00Az3aQ/SrjxKOoxUUABxi/ACsCre29N1l/IG9qjpvY+GFvCDRzEbEZphilKf+zPi5F6Cjqa4Y2E7rDF+trw0cw5gxMGYM0bn7EJuxPbtU7cXCzz9jUdjKzDIH0xxF3PGJl7G2An68zdTEF7Nak97rhorBpkoZNhRMmLg40Tld1/nV5z6u2rKcWccfy88vOJfLbroD3WpjfaxepIvoSg+xFZ+rsESb6b2aE1C5z24F3gE6wq0t/wy3tlwRbm3ZO9zakqlNn8LIIZFPT94rI4iy2sbOstrGdwsKHH9l+Tfw2RdEw3Z65h4IwK57VPGvl15kvHsrYqddQulYB6vDEd75Ti2rJcIyfkLCe91QMmrEpmjHXRdqRWPiLk88uiJARZGNvSeMpXjnXTj/JzV8utTDa+8tQi8ah15QiK7rEOqA8Do0TcPqnIo2fiJY0t7z5UClJ7kBFTCwOtza8mq4teW6cGvLweHWFlmXFxwJjptO8ioMHwpmzl2IvagrNnkakVMvAYu6Lc/abjarVvnZeZddiVXuS8/BJ7Bd2VjG2QpwFiWIurYXdRVsO/ftHJpvGtln05+CApwXXkzxXvtvfFyPQU83Wk83Wp/XTI/F0IMd6J1rMmVmEHgWldL8n/aq6kRLKsIIxesPPobaSNifH7ucjr/m2h4h+3Tc+POnuk+sPVafFH95TPv6S+y3X4EWSR7Ims/7bEbNzAagcOac+Zq9MPl/q6eH1S2PbXpcs4BtDHrReGL2EnRLATqgWSxYxjmxTNqsC/uYTAQEOIAfAX8HVoZbW/4abm05XmY8o4pE1SZX59QKISf4AqGC7rOumJZIaFgbwP5AQ0qhwWYPF7i3mZ95CzPDqBKbyVc2vmHfembKf0bPN8uJheJV5gU0DQrs6EVjNyyxoaFZbUXWCVMslkmbL8RWeAcqGGCw2Zj7C8/fRHhGBeMTHM/Y9FnIK27RC8fsEvdMTwT7gzehBVJnrrJO3zKvyw2MKrEBmDjvyivsW818PGkjXaf7syWpB7NY0e3F6GPGE7MXo1sKwFqwh9U59RzrFPcb2riJ01Bhjlehii4NJkrEAZyMCM9oIJHYyMxmhOELhM4FNsnY3UtBy11Yln2achzr9C0fLz7lwisyaVumGVU+m17M1LMZV30y42tOTW/gnm60cCfahiPfAJcCj1rdlXq4taUA2IkNsfb7AGUD+iM2EASeQ/l4XhAfz/DH6w9+DUyLc8rtcjqW5dgcIUv4AqETgGYSfOm3vvYstmceSD6I1LMZHhiVOucZlTo32sNQOGcHJv/qBvODRdahRbr6Ck1f3gB+ZnVXftD3YLi1xQLMRgnPwajaJIPZSxFiQ3CBCM8wxesPriV+RJqUhR4h+AKhQ1D1r2zxzmvd694puuOqr/TvfEcS7tr0niCVOhRyEvoAACAASURBVIcngUcfcHV9+O7uPf7vZhGNlmC1huwu99LSs867T9O05JlddV3NZqIp053FgLuBq6zuyrgLsOHWlrHAkajqgUcwOOEJokpF32avqjaxJijkA15/0IqqexKPApfTkbGMsMLQ4AuEdgf+DSTa6f8FsFtFaUlH14tPuHo+/Wj32OpV6+9NlvETFhdsO/ftfEy2mQwRmyRE2j2vAvslbaTrYS2yrlnr6T4Jc5vuOoCrgbus7sqE094MC89LqAqi/7RXVUsKnTzG6w+Wot4j/Qm5nI5E+2+EYYIvEJqN2l+XaPl8FbBXRWnJiPuCKGKThEi751fAtSaahugJn2oJh04Dfmhy+I+Ai6zuytdSNewjPCcCP2DgwvMZ8EfgIXtV9dpUjYXc4/UHXcCyOKe+dTkd8fw4wjDBFwjNAN4EEuWaCQIHVZSW/DdnRuUQEZskRNo9e6H8LWbwA/tYOjumAbcBZjOvNgOXWt2Vy800Dre2OICjGJzwrAHuB/5or6qWctN5hNcf3B71RaQ/S1xOR15m8xVS4wuEpqBmNFslaBIGflBRWvLv3FmVW0RskhBp99hR01qzWVS/AfaydHZ8C1yAmhUlCmPtSyfQAPzW6q40XanTEJ7epbaBCI+OCiiYDyywV1XLm2GI8fqDe6NuSv152+V07JFre4TB4wuESoFXgR0SNIkBJ1SUljyZM6OGABGbFETaPc+jfCagQozvAx4jQRQJaqlqH1u5e2XU0zYZuBE4ExIFqm2EB7gEeMbqrkzrH9NHeE4GjgbSTdr2CWpG9heJYhs6vP7gkaj3WX9ecjkdh+XaHmFw+AKhYpTPdK8kzc6qKC25P0cmDRmjblPnAHjFeLwHON5W7n4K+DGQSAy2AV6ItHvGWd2VK63uyrNRtSsWmriWG3gK+GfU05bWkom9qjpor6putldVH2+M04ialZllDipa7utwa0tDuLVl83SuL2SMRKlqJHvAMMMXCNlQ2xCSCc0vR4PQgIiNGf4F/Ao4z1bu7gGwlbsfB85L0qcSeCbS7hkDYHVXvoN6w/0UaDdxzUOBj6KetlujnjYzy3AbYa+qXm6vqq4HNgfORc1azDIBqAM84daW5nBry57pXl8YFJI9YATgC4QswIOo5e1ENFSUltyaG4uGHllGGwSRdk8dyteSiOeBE2zl7vXLUlFP2zhU+pqLSbwU15eVqJv/Q1Z35YDClsOtLRpwADAPtcRmZkmvLy8Adfaq6sRV44SM4PUHL0fNSvvze5fT8fNc2yOkjy8Q0lBRnxcmaXYXUFtRWjJqbsAysxkcNwG/TXL+B8BzkXbP+v0RVnflGqu78jJge+BFE9eYjIoca4162nYbiJH2qmrdXlX9ir2q+lhUado/kN6yzBHAB+HWlgfDrS3TB2KDYBrJ+Dz8uYbkQvMYcOFoEhoQsRkUtnK3DlyGEoNEHAi8GGn3bFRaz+qu/BR1Ez8GMBN+vBvwdtTTdn/U01Y+QJOxV1UvtVdVXwJsBvwM+NxkVw21DPhZuLXl5nBry2BzugnxkWW0YYwvEJqHWnZPxIvAaRWlJaMuE4Qso2WASLunAPVt5fgkzd4HDrWVu7/vfyLqaStCRaFdBRSbuOQaVFj1H63uykj6Fm/AyM92OGqJ7dA0unagIu1ut1dVmw7XFpLj9Qf/ggpA6c9ZLqdjVDiShyu+QOg04OEkTVqBQypKSwaT/X3YImKTISLtniJUJFmy8NT/AQfbyt2+eCejnrbNgJtRNWzMsASYZ3VXvpSOrYkIt7bMQs12foo50QP46slXF97xoytvna3r+pO6rj+VCVtGK15/8A3iRy8d43I6ns21PYI5jFIBTSReLfoY2K+itGTUJlIVsckgkXZPIfAocFySZkuBg2zl7oRJ9KKetn1QDsZEm8D68zTwc6u7MiPZAIwlsnnALzG5ofWFt9qWPrmg9ZG7r7zwGtkcOnC8/uBKYFKcU7NcTseIy5c13DGCAa4Erk/S7Etg74rSkrhfMkcLIjYZJtLusaFCHk9J0mw5SnAS+kuinjYrcA5wAyocORXdwC1Ao9VdmZFperi1ZQpq/flcUmwSfa3tEwJrOzl2v91eAS6zV1W/lwkbRhNJknDGgDEupyNlanEhdxjhzfOB/0vSbAUqseaoTwslYpMFIu0eK3AncHaSZiuAQ2zl7qR7YKKetgnAdUAt5gI6vkbNSB5LNwtBIsKtLdug/DPV8c6v8HfQ8GALXd1hrjjjRFwVk0DN8K6U3Gvm8fqDuwLxkjB+6XI6tsy1PUJifIGQHXgIlbEjEQFg34rSko9zY1V+I2KTJSLtHg34PWo5KhF+4DBbuTvlLCDqadsBlU5mX5MmvI7KKv2hyfYpCbe27IHyKe1jsksE+BPwG3tV9SaBEcLGeP3BU4BH4pz6p8vpOCLOcWEI8AVCDqCF5AE1fuCIitKSd3JjVf4joc9ZwgiLvgS1DJYIJ/CKkV06KYZo7I/6JvW1CRP2BdqinrY7jNnRoLFXVS9E1fc5GlhkoosNJbZLw60tZxubS4XEbJPguNnwdCHL+AKhSagUVsmE5iuUj0aEpg8iNlnEVu7WbeXuq4ArkjQbB7wUafcclGo8q7tSt7orm4GZwG9QfppkWFDZpz+PetrON/xAg8LYIPocKnjhLFSm61SMQ+WW+6dsCk3K1gmOf5ZTK4S4+AIhFyoj965Jmv2PEVr8bLDIMlqOiLR7LkI5ExPRjUptEy/jb1yinrYtgFtJHv3Wlw9QS2vxUtgPiHBrSzFwEVBP4t3vfVkL/AK4V6LWNsbrD74D7BLn1GEupyMj4e3CwDAqbL4IJCtg1wocVVFakk4C3FGDiE0OibR7zgTuJXFush7gFCPRp2minrZDUf6cbU12+RuqYJuZWYkpwq0tTlQI6IWA3USXl4Fz7FXVw6qOerbw+oMaKhItXgaBLVxOhyfHJgkGvkBoT1TZh2RZM54HTqwoLenMjVXDDxGbHBNp95wM/IXEocQx4Fxbufu+dMaNetrsqBDMa4CxJrqEUP6k36dTsC0V4dYWN2rPQbxd8P1Zi4qcu2e0z3K8/uBk4mcEDwPFLqdj1KU3yQd8gdCRqDIBY5I0+zOqJs2gsnmMdERshoBIu+dYVHqbZDOA+cCltnJ3Wm/gqKdtCipM+QyTXZaiAhmey1SoNEC4tWVn1CxuRxPN/wWcPZpnOV5/MFEJ8sUup2O7XNsjgC8Q+gkq72EyX+fvgEsrSksGlJF9NCEBAkOArdz9NCqiK1lFzHmowIF4u8kTYnVXrrC6K88E9gDMRMNsCTwDPB/1tJldhkuJsalzN9Sm0FSCeTDwSbi15fxRHLGWKBJNggOGAF8g9EvUPppkQnM5qviZCI0JRGyGCFu5+yVUHrW1SZrtD7wbafdUpju+1V35NkpwzkTVxEnF4cAnUU/bLUbNnUFjr6qO2Kuqr0c5vd9P0dyByi31r3Bry4xMXH+YkSgSTcKec4gvELL4AqGbUdk4EhEDzqwoLbl5tJUJGAwiNkOIrdz9H+Ag4qco6WU68Gak3XNquuNb3ZUxq7vyAdS35t+hAhCSUYDyoXwa9bT9JOppy8j7wyi6tjtwNalnOQeiZjm1Rkbq0YLMbIYYXyBUhsozeGmSZl3A8RWlJQ/kxqqRg/hs8oBIu2c26k2eKiXJH1B+nFSiEZeop20Wyhd0iMkuC4GfWd2V7w7kevEIt7Zsj8odZ2a2tgA4y15VPeIjsbz+4IfA3DinDnA5Ha/m2JxRhy8Q2gUVCDAjSbPVwNEVpSUZ2zowmhCxyRMi7Z4y4K+o5axkLABqbOXu7wZynainTQOORaXSmWGii45ykl5hdVeaWY5LSbi1xYYqOvdrUpfGDhltm0ZqxJrXH7QAQeJHPE1zOR3f5tikUYORtfl81Be5ZAE7PuDwitISKY0+QERs8ggjgef1qA2SyfgKOM5W7k7lB0lI1NM2BrW58gqSh3X2shoVVn3HYAu29ZLmLKcFON1eVR3MxLXzCa8/uBkqE3h/QsBYl9MhH9IsYOQ4u4vkGdpB+c0OqygtGfEz7GwymtbE8x5buTtqK3dfAZyIutEkotePk+pDkhCru3Kd1V35G9RG0GYTXcajZkMfRD1tBw/0un2xV1V/jApiuJLUvpxqYGG4tWWrTFw7z0iYE02EJjv4AqHtUBm2U32G3kblOROhGSQiNnmIrdz9BOomnCw9/xjgkUi753dGWeoBYXVXLre6K09GRb6ZSYW+HfBy1NPWEvW0zRjodXsxItZuRM1uUvmGZgPvhFtbUi01DjckOCCH+AKhU1DbAmalaHobqkRARpaPRzsiNnmKUedmV1Q+pmRcArwYafdMHMz1rO7K11A3/P8jeXRcLz8EFkc9bddGPW1mS0gnxF5V/QlQhVrWS1YkrBR4PtzaUj+C9uQkSuwoYc8ZxBcIFfoCoT+hyjgke88GgZMqSkvmVZSWSMG6DCE+mzzH8OP8BqhL0dSL8uN8MNhrRj1tE1G+o/NInMetL1+h/D8tmchCEG5tmY3aULdziqZPAGcMdz+O1x/8lPizmx+6nI4nc23PSMQXCLlR0Wap3lOfACdUlJZ8mn2rRhciNsOESLvnJOABkn8jW4eq6PmwUU9nUEQ9bTuhlhL2NtllASqrdNLqo2YIt7YUogqvnZmi6SfAcfaq6qWDveZQ4PUHy1FVW+Mx2eV0DCjqUNiALxA6GngYNStOxkPABZJMMzvIMtowwVbufgy1zJTMUTkGFd31VKTdUzHYa1rdle+jirCdApgJvz0AFUBwW9TTlixDbkrsVdXdqLLaF5J8M+oc4N1wa8thg7neEJJIyD8VoRkcvkCowBcINaLSMSUTmt732hkiNNlDZjbDjEi7ZwKqRECySoGg6p9fBPwlQ7McB8qf8gvMlRDwG+3vs7orB5WxONzasg9qyWxykmYx43o3D6f9OF5/8PfAxXFO3etyOs7JtT0jBV8gVAE8Suoy6ktRy2aDXn4WkiMzm2GGrdy9CvgBcHOKpqWopYNnIu2eqYO9rtVdGbS6K69ARYQ9a6KLE7WH4b9RT1vKstfJsFdV/we11p4ssagFaAQeDbe2lAzmejlmnwTH42WAFkzgC4R+gMrFl0po/g7sLEKTG2RmM4wxauPcT+pNmQFUFuk/Z2KWAxD1tB2B2nWdKGy3P38BLre6Kwe8Gz7c2lKEStZ5eoqmH6P8OMlCx4ccrz84FvW/ifelb0uX05HX9ucbvkBoCuo9WZOiaQ8qK8UfJJFm7hCxGeZE2j07oNLcmKl58g/gPFu5OyMVOo2CbfNQZQQcJrqEUFFuf7C6K7sHck0j3PkC1E0l2f6iDuBke1V13pZT9vqDhwDx7POh0tTIh9MEvkDIggokuYXUQQDfoMKa38q6YcJGiNiMACLtniLUDf9yUi+Nrkb5CB7K4CynArWE9ROTXb4ALra6K/8x0GuGW1v2RflxktX7iaFS/9ySj34crz94Ler/1p/HXE5Hqm/nAuALhGYCd5N4ObIvLwM/rigtkcCLIUB8NiMAW7m7y0hzswewKEXz8agQ6uci7Z5pmbi+1V3ps7orfwrsCbxnostWwHNRT9tzUU9bojouSbFXVb+O8uMkyzpgAW4C7g23tiQrgjVUJLpBSlbhFBgbNH8NfEhqodFRef2OEKEZOmRmM8KItHsK2TDLSXWDXY3KQPBgBmc5FlRJ6gaSzzp6iaBq7dxgdVcmKyQXl3BryxiUH+enKZo2A6fZq6rzok681x+0oV7/eP62nVxOhzitE+ALhPZBzWZmmmj+FXB2RWnJy9m1SkiFiM0IJdLu2QU1g5ljovkLwLm2cvfXmbp+1NNWivo2+X+kFj1QforLgEfSzUJg+HF+hhKtZNd6FjjJXlXdlc742cDrD+6OqhfUnzXABJfTMahw8ZGIUdzsJsBMSHgM5df7dUVpybDOMDFSELEZwRiznKtQfotUN/w1qFnOA5ma5QBEPW2zUQXbDjLZ5S1Uwba2dK8Vbm3ZH5WSJFmeuH+hItWSZdXOOl5/8JfELz38T5fTcUSu7clnjJozJ6HeR+UmurwPnFNRWmJmSVfIEeKzGcHYyt3dtnL31aiSzKlSyIwD7gNei7R79siUDVZ35SJUZdBqVP62VOwJvBv1tN0V9bSZWYZbj72q+lWUHyfZEtTBwIvh1pbx6YydBRJlDhB/TR98gZDrkYcffOfquksfvafpjvJ4X451Xefaq6/gzttvC6PKmu/WKzSapm2uadrFmqbdpmnatjk2X+iDiM0owFbufg/YBZXQM9XyzD5Aa6Td80Sk3WN2D01SrO5K3equ/DsqpfuvUXXck6EB5wKfRT1tP4t62kyXULBXVX+FKpeQLLR1L+Bf4dYWp9lxM4lRmTOR2MhmTtanmrkE+N9mm0/fecyYYjpDIWKx2CZtH7jnLvbd74DWh+6/56aK0pJbK0pL1qc30nV9OapUw2YkzyYuZBlZRhtlRNo9laj8adubaB5FOWKvtZW72zNlQ9TT5gJ+C5xgsssnqASfC8xew8gi8DTJl+8+AQ6xV1UnSoSZFbz+4Czgf3FOhYHxLqdjyH1KQ4kvENoTlQB2owzNzz/7NOPGj2e3PfbEarVitVpZ5fd/9+MTj3/3w/fb3kW9p08GrLqub5TjTNO0HYBpuq4/n6u/Q9gYmdmMMmzl7jbULOc6kie4BOXnqQWWRto910TaPWMzYYPVXem1uitPRAlBqlBtUEEOr0Q9bY8ZQpUSwydzFGoja7JxXw+3tmxuZswMkihU993RLDS+QGgXXyD0AvAmfYTmrTde5/Y//I7XXvk3283ZnvvuamKFzwdw7wSnc+YHbe/9AJVJ4zXUe/r63r6apu2hadrlqKCCr3L59wgbIzObUUyk3bMTapYz12SXlcC1wD22cndGQoiNJbJalPil2v0NqoxCI3CL1V25LlXjcGuLHZUq58QkzbzAQbkqU+D1Bx8GTotz6iaX05GqbtGIwxcIzUX9/4810/7bb775Yuq0aWdVlJa83v+cpmmFQLGu62YKAAo5RMRmlBNp99hRYcNXAmbLAnyOyrDcksH9OZNQPqVzMFewzQv8HHgyVah0uLWlALiX5HtxfMDB9qrqeMtbGcXrD3qAGXFOHe1yOp7L9vXzBV8gNAv15SXZF4G+RIAbgYaK0pIBpTsShg4RGwGASLunDFUNdB5QaLLb28BltnL3Jt8wB0rU07Yz8EdU7R4z/BuYZ0S9JSTc2mIxxr0gSbPvgUPtVdXvm7x22nj9wa1RDut4THA5HSP+G7kvENoKFShyCuaX8t8Azq0oLVmcNcOErCI+GwEA+5QtJtmnbFG++6HHXIhaWtvoW8j5v6jntrvv56UFG+nK7qhQ6Wcj7Z7ZmbDD6q58DxUtdhpqtpGKg4APo5623xsbSeNir6qOoTaYxtvb0stEYEG4tcWs0A2EoxMc/3ikC40vEHL5AqF7gSXAqZi7/3SgIhP3E6EZ3ojYCADouv4Z8OD7H33it5W7zwB2ANZH7pRPnsTaYIhoNG7k9FHAR5F2z32Rds9mg7XFCJX+C7Atasd4Kv+QFZVc9LOop+0sI2XOJhjJOC8nfvLLXsYDLxsbRLPBMQmOj9jlM18gNM0XCN2BWn49C3MZJdagMlC4K0pL7qkoLdk05lkYVsgymrAeTdP2B0p1XX9K0zQ7EA2v+HIfVKG2XQEuqvsVtzVel2yYLpRD/jZbufvjTNhlJOv8A6ponBneRYVKtyZqEG5t+Tlwa5IxuoAf2quqXzBtaAq8/qATaCf+zbbK5XTES18zbPEFQpNRS7MXYH5pNoQKe/5tRWnJqmzZJuQeERsBAE3TpqBS24xBRQadCDTrur480u7Rqk8/775tt9ri2LLx4ydc+rPzzQ77CirFyD9s5e5B5/qKetqORInOVia7PAzUWd2VcZfjwq0t56GSeCYKSAgDh9urqk3v70mG1x88FfhznFMrgQqX0zEivr37AiEncCkq8KTYZLcu4A7g5orSkpXZsk0YOkRshLhomjZF1/WNNjsakWvnopah0kkl8yVwO3C/rdy9ejB2RT1thagls6sBM+Wf16L2Xcy3uis32UEebm05DeWjSrSkHAQOsFdVJytlYAqvP9iMyvHVn/tcTsfZgx1/qDGiy85DFTIzuycrgiof3lBRWjLgKq5C/iNiI6RNpN0zDpWD6heY/+YK6sb9IPBHW7k7UUSWKaKetqkof86pJrt8hopa+2f/E+HWlmrgb4AtQd/vgX3sVdVLBmIrgNcftBvjxLsJH+dyOp4e6NhDiS8QKgR+CJwP7JtG1yhqI+ZvKkpLZLPlKEDERhgwkXZPBSqE9WzMOX378gJqie2lwezViXra9kKFNO9kssuzwM+t7sov+h4Mt7b8AGgBihL0+xrYy8i9ljZJSkB3ARNdTseQZqFOF18gtCVqlnsmybNs9yeG8uldV1FakpNNtEJ+IGIjDJpIu2cmyt9zEolnB4lYgnIIP2wrdw/ohhv1tFlRN70bMXfjC6OCA260uivX1zoJt7YchhKjRH/Dp6gZzkbVHsOtLQcBr/cWZvP6g5OAP6HKVj/vcjrWev3BP6JCr/vznMvpSBQOnVf4AiEbKnT7fFQm73RpBq6pKC0Z8AxRGL6I2AgZw5jpnG/8TE6zewBV4uB2W7l72UCuH/W0laF2pF+AuZnWNyhH9qO9WQjCrS01qCW1REED7wEH2quq1xjtTwfuAfa1V1W3Anj9QQ21ZFgMdAMvArsBU+KMd67L6bjHzN83VPgCoemo2evZQMUAhngSVcQsI9GJwvBExEbIOJF2TxFQg8pGYHZ5q5cYKlvzXcArA8nBFvW0bY9aojvAZJc3UAXbPoD1UWp3Jmm/ABWG/QtUih2Aq+1V1b2/4/UHP0DtVUrFVJfTYWbzak7xBUJW4DDUF4cjSX9PXgy1d+g6KWImgIiNkEUi7R4NVbflIpQTOd0blh/1rfhxYEE6whP1tGmogm23AtNNdImhyilcZXVX+sOtLVcANyRpv4yN85stsFdVH9j7xOsPPk7qEgoh1MzqSZfTkdMyB4nwBUJTUBsvz8Xc67bJEKg8dPeK41/oi4iNkBMi7Z7pwIWoRJtmE372ZRUbhMf0jCfqaSsGLkNlDkjk/O9LB3C1Hum+K+b/9iZUsk8zdANl9qrqdQBef/AGVLJSM+io2dVjwJ9yvd/GFwiVAkegxPEYwHSxuj68hJoNPldRWpKRjODCyELERsgpkXZPCSpc+SJguwEOk7bwRD1tM1CznB+avMZHuq7Pi7UvO53k2aL7crC9qvrfAF5/8HTgAZP9QAnO2S6n4/40+gwYww9zrPGzHwMTmO9R4ct3S2SZkAoRG2FIMJbYDkL5dY7EXFmBeKwCnkLNClIKT9TTdjDKn2NK6HRdfyz2/TelRCOHmmjeYK+qvgLA6w/uhfkSzzpwlsvpSEec0sIXCGnAjmwQmB0HMdxrqFnMk5LqXzCLiI0w5ETaPVuhUpucgfmd5/HoFZ7HgX8nEp6op82Gili7FpV4Mym6rnfrwUChHlpNv2TY/XnbXlW9B4DXH5yMyoOWcnjgTJfT8aCJtmlhhCrvhxKXYxiYD6aXAPAQcJdkXxYGgoiNkDcYmQlONH4OJv2Non3pQAnPE8B/bOXutf0bRD1tk1FBAGdhYmal90SIrV0F3Z2JmsS6v+ucG3qrdU6kwz8rdt2dV1BgS7bvKK7Q+AKh04BoRWnJX1PZ1B9fIDQO5X85FhUxl1JMU7AQNYt5vKK0JOEfLgipELER8pJIu8cJHIcSnoMYmE+hlyjQBrxu/LxhK3evzygc9bTtitpYuoeZwfTuTmJrVkF004nT939+NNK16H82AMttzWibzUg4DHCGy+l4qPeAMRO5BbW0eG9Fack5ZuzxBUKboWYux6LCvdPdWNufIGqX/10VpSUfDHIsQQBEbIRhgCE8x6IyFAxWeHr5hA3i87qls6MdFbhwE/E3X26EruvonWvQgx3Q5zO0+uVXWPvvVwGwXHM72txd43UGONM1cex6H40vEJqE2mHfuzfok4rSku3jXdsXCE0F9jF+9gXitkuT71H7Yp4GXq4oLRlW6XOE/EfERhhWRNo9E9gw4zmYzAgPwBfA6+ix/2rdwUpi0TM0EzMEPRpFD65CX6ey3nR99gXf3/8wANrPfoXlgCM3bh+JoM//Nbbvvn180qXXnlK47eweXyC0E2rJr69PRQdKUVmrt2CDsOyD+RILqfgCJS5PA29VlJYMugyEICRCxEYYtmRReEDXVxDr0bVouIJoD+ixpE4dPdxFbO0qYmtX8+21DaDraD+uxfLDn4KmeurdXcRuroP3VU23wtk73GK58Z4PUJsgx8QZdgGqWunUjP1dygfzNPAMsLiitERuAEJOyNyHUxByjOF3uR+43xCe3qW2wQuPpk3BakO3GpMbPYYe7UGLRUGPQiy6kQBp9iKszqloY8ZSuOUWdH+xFPwb8nXqoSCxG38Biw0XiM1ObN8jfmFJnlXBbLqdZHQD/0IJzLMVpSV5kalAGH3IzEYYcfQRnkNRob8DSR6ZGl1XohPrQTME6KkXXub6+XcTDXQQi+pQPpUliz7h3oP2YP+wqhunTZ2O/dIbsGyxbVbMQoWA9/pfXqooLQmmaC8IWUfERhjRGJtHt0D5O3p/tsjKxXQdesJo0TARr4cVf32Uv02bw9N/vJVHZk7BomlY9zscW+3laGPMFBlNi6WopbGngTcrSkt6Mn0BQRgMIjbCqCPS7tmMDQ73fRl42pyN6QljiUWwTNiMaMcKPnziMY664kYe3346U8ePxXbepRQclLHSNf8D/oOKpvtPRWnJ8kwNLAjZQMRGGPVE2j2TUNmpe8VnR9LPUA2RdViKSrBOdBEOrGSP3ffkp5Yujtl1Z7Vstrl7oCbGgPcxhAV4o6K05Lvkvh1KpgAADQNJREFUXQQhv5AAAWHUYyt3f4dK7PkkQKTdMx7Ykw2hxrthZqOktRA9GCDS8T1X3jKfrSwxjp48Hmw2ogtfhUgEyxbbpGveM8BpFaUla9LtKAj5hMxsBCEFkXZPMbArasYzNxoIHK4Vj5lqsRdu0lYPh3n63LO47D/v8fQOLhwFG2fc0SZOxrLL3lh33gvLDruiFaasetBWUVqyc4b+FEEYMkRsBCFNVtRdUNO58D+PFkyZgm26G5trBjbXDOybz8C/ciVVR5/E72dNo3JccfKB7IVYtt+ZwnN/+SJTNnMBM+O0igLjJC+ZMNyRZTRBSJOiHXdduO79/3b1+L4t6vF9y7q331x/runrVfgjPfzq840rPZ+/+USOmtwvJ2a4G33R+11jPnjrvNKTz/D6AqFpwIGolDwHAZuhkpHujPLVCMKwRWY2gjAAlp921OORrzypyj6nxDbd/cTmf37uxP7HjfozW6PEZ0lFacmrg72WIAwlMrMRhAFQOHPO/J4V3x6jh7vtAx1DsxeGC2fOmR/vnJFG5jPjRxCGPemHdwqCwOQrG9+wbz0zrlCYxb71zPmTr2w0W81TEIY1IjaCMEAmzrvyCvtWMx8fSF/71rMenzjvyisybZMg5CsiNoIwQAq3nd0z6bLrTimcvcMtmr0wbKaPZi8MF87Z6Zbe8gLZtlEQ8gUJEBCEDLDyhrq9uz9dNK+n3XeU3rVuk80zWtGYroLJU54rnDlHls6EUYmIjSBkkMCjD7i6Pnx39x7/d7OIRkuwWkMFzkmLi3bY5e3Sk8/wDrV9gjBUiNgIgiAIWUd8NoIgCELWGdw+m67vdXRdVS5EBz2manroMeN5FHQdff3zGBBL2G7jMaJsNHas36MeRe/fLulj77h9f4xjsb7PgZhhV8x43rfd+uN9HqPRDY+xfs+Nfnr/Y9Go6h81Xo++jzEd3bBJj6qXmGjMMFHvcx7jvA697Yw+G/U12uvRGLquo/eo1y7Wo2yJGc83HFe2xHpi6HoMvSd+Pz2mE4tGjUfVJhqNGc+VXbFojFif8zHjfLTf8/79o+qdsv5R7/N7Oo860GM8xoBrdD1Zdee8onDnc3TNYsVSYEezWrEW2FHPberRpp5vOG7f6LilwI7FomGxWrBYNDSLhtVqUY8FFjQLG573Pa5pWAs2bm8vsGA1HgvWP7dsOG5Vj4XGc2u/Pr1tLJqGzaph1TRsFg2LxXjUNGxWC1YNbFYLFg1sFgtWi3rs7adpYNU0LMajprHR7xvOof6O3vMWDQ3jUdfRYqrUN7Eomh4D47kWTXZc3SN6++o9EYhF0SNhiMXQe/o9RsLqfG+79e3VY6wngh6NEYv0oEdjRMMR9FiMWLhHPUb7/B7uIRaLEevTJra+r040EiUW1YmF1WM0ElXHw1FT52O6TjimE13/SL/HDccjerx26vc79WUJP18ysxEEQRCyjoiNIAiCkHVEbARBEISsI2IjCIIgZB0RG0EQBCHriNgIgiAIWUfERhAEQcg6IjaCIAhC1hGxEQRBELKOiI0gCIKQdURsBEEQhKwjYiMIgiBkHREbQRAEIeuI2AiCIAhZR8RGEARByDoiNoIgCELWGVRZaE3TztV1/e4M2jPskddkU+Q1GTry6bXPF1vyxQ4YXbYMdmZzbkasGFnIa7Ip8poMHfn02ueLLfliB4wiW2QZTRAEQcg6IjaCIAhC1hms2OTFWmOeIa/JpshrMnTk02ufL7bkix0wimwZVICAIAiCIJhBltEEQRCErCNiIwiCIGQdU2KjadrhmqZ9qmnaF5qm1cU5X6hpWrNx/m1N02Zk2tB8I9Vr0qfdCZqm6Zqm7ZJL+4YCE++T6ZqmLdA07X1N0z7SNO0HQ2HnSEbTtAmapr2sadrnxmNZgnY3a5q2SNO0xZqm3aZpmjZUthhtx2ma9o2mabdn8Pp5c9/Kl/vFkH5GdV1P+gNYgaXAFoAd+BDYrl+bC4A7jd9PBppTjTucf8y8Jka7scDrwEJgl6G2e6hfE5QDstb4fTtg2VDbPdJ+gJuBOuP3OuCmOG32BN40/mdWoBXYfyhs6dN2PvBX4PYMXTtv7lv5cr8Y6s+omZnNbsAXuq5/qet6GHgUOLZfm2OBh4zfnwAOysY3pTzCzGsCcD3qA9eVS+OGCDOviQ6MM34fD3ybQ/tGC30/iw8Bx8VpowNFqBtOIWAD2ofIFjRN2xkoB17K4LXz6b6VL/eLIf2MmhGbacDyPs+/No7FbaPreg+wGnBmwsA8JeVromnaTsDmuq4/l0vDhhAz75NrgFM1TfsaeB74WW5MG1WU67ruAzAeJ/dvoOt6K7AA8Bk/L+q6vngobNE0zQLcClya4Wvn030rX+4XQ/oZLTDRJp7S94+XNtNmJJH07zU+QL8HTs+VQXmAmffAj4AHdV2/VdO0KuDPmqbN0XU9ln3zRg6apv0LmBLn1JUm+28FzAI2Mw69rGnavrquv55rW1BLWc/rur48w5OKfLpv5cv9Ykg/o2bE5mtg8z7PN2PTqVVvm681TStATb9WDda4PCbVazIWmAO8anyApgDPaJp2jK7r7+bMytxi5n1yFnA4qG/XmqYVAROBlTmxcISg6/rBic5pmtauaVqFrus+TdMqiP/aHg8s1HU9aPR5AdgD5S/ItS1VwD6apl0AOAC7pmlBXdcTOtFNkk/3rXy5XwzpZ9TMMto7wNaaprk1TbOjHGnP9GvzDP/f3r2FWFXFcRz//shAAzUsiB4sURK1SaeUoMhLZtEFQsHKsjQrQgpMaiwwKBOkRPGpi2E3nQcjBS0se9FUSKw0HS9h1wcrqBTEa4QNvx7Wmtod5tqcM3M4/T8wzD5r77PX3ofz3+uctdb+H5idl6cDW51HmGpUu6+J7RO2L7Y9xPYQ0oBfLTc00Ln3yRHgJgBJI0njBkd79ChrXzEWZwPvt7LNEWCipD6SzgcmApXoRuvwWGzPtH1ZjpMGYE0ZGhqorutWtVwvejdGOzmL4XbgG9JMhmdz2WLSC0I+oHXAd8DnwNByz6Sotr+OXpOSbbdR47PROvk+GUWaBdUE7ANu6e1jrrU/0pjDFuDb/H9QLh8HvJGXzwNeJzUwXwEreutYSrZ/kDLNRsv7q5rrVrVcL3ozRiNdTQghhIqLDAIhhBAqLhqbEEIIFReNTQ+TNFXSqP/wPEtqLDzuI+mopE2Fstsk7c4pSA5LWp7LF0lqKM8ZhFCbJE3KcfZwoezqXNZQKGvI8XVQUpOkWbl8W6XSzNSCaGx63lTSIFxXnQHqJPXLj28Gfm5ZKakOeBm43/ZI0lTKH7p5rCFUpTxVuRIOAPcUHs8gDZa31DuXFHvX2q4DJtD6/SuhRDQ2ZSBpo6Q9SokNH81lpwvrp0t6R9L1wJ3AMkn7JA2TVC9pV056t0HtJCsENgN35OV7gbWFdU8DS2wfhnRHtO1Xy3meIfQkSbNyXDRJaswxtELSJ8BSpUSfG/M2uySNzs+bmONrX04o2V/SpZJ25LKDksa3Ue0RoK+kS3LqmltJcddiIfCY7ZPw97Tl1a3sJ5SIxqY8HrI9ljSlc56kVlNe2N5Jmte+wHa97e+BNcAztkeTPlU930497wIz8o1Wo4HPCuvqgD3dP5UQep+kK0lZCCbbHgM8kVcNB6bYfgp4AdibY2chKZYg3a/zuO16YDzwO3AfKS1PPTCGNK23LeuBu0gJS78E/sjH1B/on+M2dFE0NuUxT1IT6WaswcAVnXmSpIHAhba356LVpK/lrbK9HxhC+lbzUXcOOIQqNxlYb/sYgO2WO/vX2W7OyzcAjXn9VuCiHFOfAiskzSPF15+kGxrnSFoEXGX7VDt1v0dqbEp7D0Rtp+GqqGhsuknSJGAKcF3+BLaXdLNY8U3Zt4v7HFzoBphbsvoDYDn/DgKAQ8DYrtQTQhVr68J+pmSbUrb9EvAI0A/YJWmEU963CaRxzsbcRTetEGfjCjv4BThHGpvZUig/CZyRNLS7J/d/FI1N9w0Ejts+K2kEKccUwK+SRiol2ZtW2P4UKRcStk8Axwv9xw8A223/mLvZ6m2vLKnvLWCx7QMl5cuAhZKGQ0ruJ+nJsp1lCD1rC3B3S5e0pEGtbLMDmJnXTwKO2T4paZjtA7aXAruBEZIuB36zvQp4E7jG9oZCnJWmhnmO1L3dXFL+IvCKpAG53gEt47ShfZWa0fF/8jEwV9J+4GtSVxqkH4vaRErpfZCUZBDSuMuq/BV/Oik300pJF5Bmj81przLbP5F+aKq0fL+k+cDavC8DH3bz3ELoFbYPSVoCbJfUTOoxKLUIeDvH3ln+yXM2X9KNQDMpHc9m0qyyBZLOAaeBWR3Uv7ONVa+RYvmLvK9zpJ9ICB2IdDUhhBAqLrrRQgghVFw0NiGEECouGpsQQggVF41NCCGEiovGJoQQQsVFYxNCCKHiorEJIYRQcX8Bhdr1kzAOAbMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOyde1yT5fvH3w9jE2EYcyaSBxxqHjstSynLyrLMTrYKO58t7Nw3E6zslx2g8/lLmlbakYqszPxadqA0shSttLSUiVmIOjd1TNkYz++PeyjCxjYYMOB+v168rPu5n+e5Btuu577u6/pciqqqSCQSiUTSnMS0tgESiUQiaf9IZyORSCSSZkc6G4lEIpE0O9LZSCQSiaTZkc5GIpFIJM2OdDYSiUQiaXaks5FIJBJJsyOdjUQikUiaHelsJBKJRNLsSGcjkUgkkmZHOhuJRCKRNDvS2UgkEomk2ZHORiKRSCTNjnQ2EolEIml2YlvbAImkPeGYNK47cApgArzAr8DSpFmLXK1pl0TS2iiyn41E0nQck8YNBJ4BxgCVQDxQDewFOgGvAA8nzVq0s9WMlEhaEelsJJIm4pg07lJgNsKpaAJM2wc4gTFJsxb92lK2SSTRgtyzkUiagGPSuMkIRxNPYEcDEAcYgWWOSeOGt4RtEkk0IVc2EkkjcUwadxxQCHQO89TtwICkWYt2Rd4qiSQ6kSsbiaQROCaNiwM+RKxYwiURyIusRRJJdCOdjUTSOCYAXQGlEefGARc6Jo07LLImSSTRi3Q2EknjuBrQN+F8L8JhSSQdAulsJJIwcUwaF4+opamHqqqc9emPfPn39v1j8zeWcdGiFXWnxgPXNpeNEkm0IZ2NRBI+ZyFqaeqhKArPjBrK/T+uY1+VlwpPFY+s+IsnTxzib/oRjknjDm1WSyWSKEEqCEgk4XMG0CXQwSFdEzmzT3ee/8VKRZWXiQMOw9Ql3t/UfcCJwMfNZKdEEjVIZyORhE+3YBOmmvtxyvwf0MbE8M2EEwJNiwEOiahlEkmUIp2NRBI+AVc1NSRoY5mQlkKCVkMnTcBotYamJRlIJG0GuWcjkYTP3lAmxSgQozSYGV2NCKVJJO0e6WwkkvCxR+g6XmBPhK4lkUQ10tlIJOGzHKiIwHVigV8icB2JJOqR2mgSSZg4Jo3rAWxCqDw3hc1JsxalNt0iiST6kSsbiSRMkmYt2gqsa+Jl3MCbETBHImkTyGw0iaQRxKT2LlIS9cNwuzXe0r+h0h3uJTzA+81gmkQSlUhnI5GEiSs/5+7Y/qaba/4/pqsBz/KVEHpIuhooAX5rDvskkmhEhtEkkjBw5efcCDxde0xJiEdJDKtcZh9wSdKsRXLDVNJhkCsbiSREXPk5E4GZdcdVVUV1ewKe5zaPpnLUuSjeKjp9XVCp/ePn25NmLWrqno9E0qaQ2WgSSQi48nPOAebj5wHNW779D++aP/oACXWPVfU5nIrMRw8MVHuriNEMSzXq1zejuRJJ1CFXNhJJEFz5OaciunL6+7y8o+i0VyHaBTzhm6PH11Stqt8R1dQOV8doYoEbgXsA7HlZRkRW2lHAGuAGQ2bu3831WiSS1kKubCSSBnDl54wAluBfw2wBYInPyPbA/j435wFnA4OAqn1jL91deeqFZ9Y5bxOQlmrUq/a8rDXA0FrHqoFXgFzpdCTtCelsJJIAuPJzjgS+BQx+Dn8NjI/PyG5Q26zU5jwU2Er9ZJxjU436YnteVjX+W0t7gDcQTqckTNMlkqhDZqNJJH5w5ecMB77Bv6NZDpwfzNEApBr124FCP4csvn8DZRZoEeG2P+15WXPteVmDglstkUQv0tlIJHVw5eechFi5dPVz+Ffg7PiMbGcYlyzwM2YptTkV4JMg52qAq4Df7XlZ+fa8rCPDuK9EEjXIMJpEUgtXfs5YROfMzn4O/wWcFJ+RXR7ONUttzsOAf/wcGtrl/UcURGJAOPwXuMOQmVsV5nkSSashVzYSiQ9Xfs4ExKa/P0dTApwerqMBSDXq/wV+8HPIYsjMXQusCPOSk4FrwrVDImlNpLORSABXfs4VwAeAzs/h3xErms1NuIXfUJrv3zcacb3hjTdFIml5pLORdHhc+Tk3A/MQ+yN1WQmMjs/I/reJt/nIz9hRpTZnH+A9AicKBMJf0oFEErVIZyPp0Ljyc6YAefhPP14KjInPyN7R1PukGvWbgGI/h8YYMnNtwKchXmoPkI1wUBJJm0E6G0mHxJWfo7jyc2Ygqv798QVwVnxG9q4I3vYLP2On+/6dG+I1EoETgbiIWCSRtBDS2Ug6HK78HAV4FnggwJT5wHnxGdmRaP1cmyV+xk73pUD/D9gW4nXOARbb87KSImaZRNLMSGcj6VC48nM0wKvAHQGmvAVcEp+RXdkMt1+GaC9Qm+7AMENmrgd42885qwNc6yTgW3teVo8I2ieRNBvS2Ug6DK78HC3iC/36AFNeAa6Oz8hulvqVVKN+H8Lh1GWM79/XgbqFb0uBm/2MgxDvXGrPyzJFzEiJpJmQzkbSIXDl58QhMsIyAkx5Epgcn5Fd3cym+A2lARgyc38DZnDAsfwFPG3IzJ2JsNtfxlo/YJk9L2tYM9gqkUQMqSAgafe48nOMiBYBpwSY8gDwaHxGdrN/GEptzuHAz3WGKwBDqlHvAbDnZQ0ADgV+MWTm7t83sudljUXsJ8X7ubQdGG/IzC1qFsMlkiYinY2kXeNTbv4YCBRquis+I/u5lrKn1ObUANupL/B5UqpRvzTY+fa8rJHAQvzrtrmACw2ZuYubbKhEEmFkGE3SbnHl51wEFOHf0ajADS3paABSjXovQuSzLqf7GauHITP3R+BkwF+RaTywwJ6XNbHxFkokzYNc2UjaHa78nBjgYWBagClVwBXxGdn5LWfVAUptzkyEmGZtlqYa9SeFeg17XlZfRN3OAD+HVUS23UuGzFz5AZdEBdLZSNoVrvycQxAZZ+MDTLEDGfEZ2V+2nFUHU2pzDgD+rDNcBXRNNer3hHode15Wd0R9zjEBpswDMg2Zua5GGSqRRBAZRpO0G1z5OQMRjc0COZq1wHGt6Wh8bADqinrGIsJjIWPIzN0GnEpgnbSrgB99CQcSSasinY2kXeDKzxkP/AQMDDBlPpAen5G9seWs8k+qUa/SQAp0OBgyc3cBZxFYW+0IYKU9L+vCcK8tkUQSGUaTtGl80jPZwCP4F9MEmI5IbW7uGpqQKbU5L6O+YsCaVKP+iMZcz56XFQu8BNzUwLRngCyfWoFE0qJIZyNps7jyc/SIqvuLAkzZg0gECFVRucUotTmTga1+DqWkGvX+xkPCnpd1DULFOpBQ51Igw5CZ29SWCRJJWMgwmqRN4srPMSG6XwZyNH8BI6PR0QCkGvXlwG9+Dp3WlOsaMnPfAEYCgcKFo4BV9rysU5tyH4kkXKSzkbQ5XPk5YxCtlAOFnP4HHB+fkf17y1nVKL7yM9bkDpyGzNxfgGMRxaz+6A4ssedlTbPnZcnvAEmLIN9okjaDKz9H48rPuRdYjP8KeoDHgXPiM7IdLWdZo/nJz9jRkbiwL3HgQmAK4PUzJQZ4FPjEnpdVV81AIok4cs9G0iZw5ef0B95ANA7zx17g2tYq1GwMpTbnEEQ6dm12At18GWsRwZ6XdTKQDwRqR2AFLjJk5vrrJCqRRATpbCRRjU8N4GaEKrM/AUqAUuCC+IzsQL1fopJSmzMWkcRQdzO/d6pRvyWS9/L1vXmXwGKklcDtwKtSdUDSHMgwmiRqceXn9EFIsrxMYEfzLaJQs005GoBUo74KWOPn0FGRvpchM3crcAYizOiPTsBMYKE9Lys10veXSOTKRhJ1+GpnrkW0bu7SwNRngKz4jOw2WzdSanPOpn4zt/tTjfpHm+ue9rys8xBSNocEmOIC7gdeMGTm+tvvkUjCRq5sJFGFKz8nBVgAzCGwo9kEnBqfkf2ftuxofPziZyziK5vaGDJzP0VkqwVaDcYjHPmP9rysiCQsSCRyZSOJCnyrmQyEGnJD2VEzgSnxGdkhC1ZGM6U250nAd3WG/0w16gPJ7kQMe15WZ+AF4IYGpnmBp4GHpKCnpClIZyNpdVz5OYcinEygAk2Af4Dr4zOy21VjsFKb8xCgbpq2CiSmGvUVfk6JOPa8rPMR+2I9G5hWAtxsyMxtbRFTSRtFOhtJq+LKz7kAsVrp3sC0ecAdbaR2JmxKbU4r0LfO8MhUo355S9lgz8vqAjwGTCawxhzAm8DdhszcHS1imKTdIJ2NpNlQFCUGMAJ2VVWrah9z5ecYgOeBK2uP73N72L23km6J8cTExGwDJsVnZH/SYka3AqU258fA+XWGb0416me2tC32vKx04FVgaAPTbMBdwFsyTVoSKtLZSIKiKMoZwJ3AcYhN+9dVVc1sYL4ReEFRlMu6du2K3W6nurr6beD2ivce24VwMI8BKTXnrNm8lWtfzGdDuZ0uXbpgs9nQx+lm79lbeauqqpXN+gJbmVKb8/+AB+sM56Ua9ZNbwRzseVk64F7gAUDXwNQvEaG1khYxTNKmkdloklDIffHFF8+2Wq2Hbtq0qRMwIcj8i8aPH3/Z+vXrmT9/Phs2bGDSpEmX9zAkfobQNHudWo4G4NOf1nLqeRfx008/8eGHH7Jx40ZOG3vWDQin1N5p8Yy0hjBk5roNmbmPAEcSuDEbiLqdNfa8rCn2vCxtzaCiKAMURblKUZSHFEW5WVEUTXPbLIl+5MpGEhRFUT4bPHjw+F27drFy5UpSUlLKVVUNJH2CoiiX9+7d+61t27ZRWVm5vHv37iM2bNhAjx49KHl5ComdO9U7Z/Gq9Vz81Fuo1dVl1aq6Z/jw4YfPmzePIUOGbFBVtV13miy1OdOor9LsBA5JNepbtQePT6jzOoSCQ1IDUzcC/9fj9qd2JXU1fnraaacxcOBA3nnnHf7666+TVVX9vkUMlkQtcmUjCYXL/vjjjzP27t0b6vz8v//+e/zt49IHf/PwzRv27NmDx+MhJiYGb7Xf7849Zx4z8DrU6lHVqto9Jibm8MGDB7Nx40YQWmHtnU0I2Zra6IG0ljflYAyZudWGzNzZwGCEvlog+gFv3nv2ibNGjhzJcccdx4UXXkj//v0BElvCVkl0E9vaBkiiH1VVdyuKErJIY8V7j8UCR/y7c/d7pz6Ql/jss8/y6quvMrJfCkkJnetO/xiRabbZO3HalKuvvlqTnZ1N165dOeecc0AIbLZrUo366lKb81fqi4weBWxoBZPq4ZO7mWjPy3oT0Zytt795E0cO67Fu/rfk/t8ST1pamtbfHEnHRK5sJBHDlZ+juPJzLgXWlTv25I79v1mJN981Bb1ezyMPPciLN1xQe/pKYHR8RvaE+Izszb6xz+bOnbt80KBB/44dO5aPPvqImJiY9A4S8/e3bzOoxa0IgiEzdyEwBJFJWC8Gf1hSIrOuPZfjTD33O5orTziy1fafJNGDdDaSoCiK0he4p9ZQoqIo9yqKcryiKOsURfnnghHDpgE/Au/YnXtTz354Nldl3sbAgQO5+uqrGXNEf378czNvfrvS1u2qBx0JE6fFJ0yc9nete1wBzALmA0+sXbuWxMREtFqtjoYzotoL/jK6UvyMtTqGzFynITO3JjsxaJHtOUcf/pg9L+tre17WCc1vnSRakWE0SSjMmDhx4pVms5nExEQeeuih+O++++7xr776auPll1/e78QTT6TwnVn7hSPzl67mmJNP59577+X5559n+vTpAEx58UV22mwlr86efdyiRYuSPvzww1GIXioAVzzwwAOj9uzZM2rfvn1MmDCB999/n8rKyuWqqrb7UBpCIaEuh7W4FWFgyMxdCZxlz8s6CXgEOBnA4/VSVWtvbq+nClVVT1UUZZk9L2sR8IDvXEkHQq5sJKHgtFqtFBUVceWVV7J69WrKyspQoN+RRx5JYWEhR/U98BCeEKdj5cqVXHHFFfz888+sXr2a1atXU1lZSbWqHjd06FCWLVsGsKrWPdbm5+dTUVFBbGwsjz32GJMmTdqKUH/uCPzrZyyqnU0Nhszc7xF9csZuKN+5uu89L7DMupXY2Fg6d+7M5Le/4IbXPq2ZPg5YYc/LKrDnZQ1rLZslLY9MfZYERVGUBOA0QHvucUMOP+2I/uemJRtHvrxoWUyX/kfy0UcfUfbaA+jjREqzt7qa79aWYC3fWfxh0a9zC9eW1DQC26jRaH684IIL4goKCj5VVfX8WvdQEGGZYxFhs43AF6qqulv0xbYSpTZnf+CvOsN/pxr1fVrDnsaiiYk5O/2EExY+/fTT+8dsNhs3XJbB2pxb6k5XEQ3dcgyZuf76+kjaEdLZSILiys/RABcAdwP74+4bt9r46MffOP2oARxjOkjD8VfgP/EZ2UvqXktRlNOBY4A3VFXd3ryWtx1Kbc4ERG1NbaqATq1daxMOiqJ0AeYCh3XTx3ftkaTvpYvVxF183BBuOnV4Q6d+j8hy+8iQmduuFSM6KtLZSALiys9JRISx7gRMIZxSBtwHzIvPyJZNt8Kk1OZ0UL+hWXKqUb+tNeyJBPa8rFjgMuD/CO09tB3Ry2imITN3U/NZJmlppLOR1MOVn9MLuA24icDdHA86BXgCeCo+I7tFZPHbI6U25++I4snaHJNq1Le5ltd18cnZXIvQW+sVwikq8DlitfM/2TG07SOdjWQ/rvwcM/Af4BJCy1QsA14EZsZnZHeESv9mpdTmXAKMqTN8TqpRv7A17GkO7HlZcYiHmGk03FaiNqWINhRzDJm5bXaV19GRzqaD48rPiQHGI5zM6BBP+xXRvfG9+IzsDrGB3xKU2pzzqNNyAZiUatS/2hr2NCf2vKwE4GogEwg1K80DFCAa7S2V7Q3aFtLZdFBc+Tn9EW2YrwZCFbr8HNGb/uv4jGz5xokwpTZnLjC1zvD/pRr1D7WGPS2BPS9LAUYhnM5FQKgSN2sRIbY3DZm5u5vJPEkEkc6mA+HKz+mDCJFlAA2mBtWiEtEp89n4jOw/mss2CZTanLcjZGBqMyvVqL+pNexpaex5Wd0RCtM3A6khnlaBUJ2YDyw2ZObKPcMoRTqbdo4rP6cH4olxIvWFHhtiO6IvfV58RraMk7cApTbnRcAHdYY/SzXqz20Ne1oLe16WBjgLsdo5m4bbVNdmL/AF8BHwmSEzV+4jRhHS2QSgZPRQDULm3Z1WuLZNyaW48nO6AhciHMyphKcU8TsiVPZ2fEb2vmYwTxKAUpvzBGBZneHiVKP+2NawJxqw52WZgEnA9cChYZzqBb5FrHg+NmTm+pMDijrs15+pIL53AJyGOYvbzRe0dDa1KBk9NAawALcCxyO+pDUIKZFPgJy0wrX+ZEVaHVd+ThdEH/uJwFjC171bgtj0Xyz3Y1qHUpuzLwe04mrYmmrUR6UgZ0tiz8vqhHiAmozY4wmXn/CF2wyZuesjaVsksF9/5nAgC5GNuN/ZAF8BuYY5i1e0lm2RQjobHyWjh6YBC4A+HPhj18aNeFqaATyeVrg2Ir84V35OMmAE/gj3S96Vn9MN8ea8BJFRVr8FZsOsAt4D3o/PyN4U5rmSCFNqc3YC6q4mVUCXatRXtYJJUYk9L+sIxL7OlTSuMdsfHNjnWdmaWW3268+MRygunA10pn7IUEWEBxcBVxnmLHa1rIWRQzoboGT00OOALxFOJljvlJoNyavTCtc2WkbElZ9jQoSrapq8FAHj4jOydzVwTjIiPbnmZ2gjbr0OoUeVH5+RHXVPeB2dUpvTBnStM9wj1agvbw17ohlfzc7pwATgPKBbIy7zN6KB35fAD4bMXFvkLGwY+/VndgMKEcoK9boK1mEvYtU72jBn8Y7mtq056PDOpmT00J6INMpQKuVrcAEvpRWurZumGvzE/Jx4RHrrvUBcncNT4zOyn6g1tycHO5eB4d7PRwliBZMP/CbDZNFLqc25BehZZ7hPqlH/t7/5EoFPFudEhOOZgIhQNIY/EPtmS33/bmyOlY/9+jNjEf2fjiT0dG8PosZthGHO4janqNChnU3J6KEK4sliJKH/wWvYC5yeVrj2h1Amu/JzFMSH4BkCp3XOBb7mgHPpF6ZNtfkH4VzeA1ZIB9M2KLU5N1H//ZGWatTX3cuRBMBXu2PmgOMZ0oTLlSOcTs3PKkNmbpMLme3Xn3kfkA0khHlqBZBjmLP40aAzo4yO7mwswBv436MJ6RJphWuDOgRXfs4g4AXgjEbeJ1S2I1Jn3wOWxWdktxm14LaOoijxCBWGUYisqX+Bt4B8NcCHzNcB9SbEE7kOWPX18lVnpfXr37fO1IGpRv2fdc7tDeQA8cAcVVX9Str4Wjc8zMEh1yrgRVVVvwvjJbZZ7HlZh3PA8Yxo4uX2IpINalY/RYbMXEdY9lx/ZgqihUaw0FlDNvQ3zFkclclKgejozuZzRDOnxuIChqcVrvVb7OjLEHsAoZrcXF1Rf0eszuYD38RnZMuN5FZAUZSr0tPT595333306NGDkpISZsyYwZo1a7JUVX08wDmld9xxR59zzz2XuLg4lixZwlNPP60u/n650rNX79pTh6Ya9b/XOi8GWH733XcP79WrF3ffffcKVVWPC3APU0pKSsnLL7+8f2z16tXMmDFjoaqq50Tm1bcd7HlZPRFZmxMQDd+a+rlUEWH4mrDbauDPhlY/9uvPnAw8iXhQaAwuYIphzuL/NvL8VqHDtoUuGT00HlGDUo9/93m49JdNfGJOI0mrYZfHy3nFJbxzVCo943S1p2qAixEZagfhys+5D+Fows0QC8avCOdSCHwvCy6jhl1lZWXcfvvt/Pvvv4wfP5758+czYMCAOwG/zgbwulwurr32WlwuF6+99ho3TZqkvDvvde6ZNr32vLqf00kjRowYbrFYiI+Ph4ZDwFq9Xk+vXr247LLLAHC5XAAdMjnEV2/zX+C/9rwsAyILbDRiRVpXcTsUFIS22zBEhhxAlT0vax2wxvfzm+/fTYbM3GqE+vV+RzNt+Tp66zuTOVRETy2LV9IzIY4XRonF6P3L15OS0IlbhvWtOSXedw3pbNoIYxHpzHU36TksTstlhxl4wlrOY4cfxhPWciamGOo6GhCO5ErqOBtXfs51iJ7sTaUa8aRU27nIqujo5LNNmzZdjGgwF/P999+PSExMrOlyGohpr7766lGIvborPv300/vS09NZtOTruvP2OxNFUfp06tQpLzc3l6ysLF544YWQjPN6vSQkJPD333+zc+fOEuC5sF5dO8SQmWsH3vb9YM/LMgLpCMdzIqJzbGMeFmM54IBqU2F/+d71JHc/km3bwRdVOr57Ep9Yy8kcmkq1qrJzn5s97gMBip+2OXhsRL3coCPs15/ZrS1lpnVkZzORBnL0r+tp5PxVJby+xcbK3Xt5sH/AurpeJaOH9kkrXLu51tjVjbTJC6zkgHNZ2lAqtCR6UFXVqyiK7tRTT02/5557GDhwINdccw2qqtbtvln7nPeA9xRFMcfFxd03efJkpkyZwlnnW+pOjYX9+y9vTJ8+nby8PGy20LJ0q6urcbvdTJkyhfT0dF5//fW0Rx55JF9RlBMD7Sd1RHxpz5/5fmoKSY9FOJ4aB2Rswi0SiIkx07sndNLBZtEtfURyEvctFwvNdXYngw16trrcOCo9dI7V8OeuCo40dql7LQ9iVTavCfa0KB3Z2aTRgOaSNkYhy5TMtWs2M/eIPuhi/E9VtLGVnYcNPcZdVLBVl26pidNu9js5OHuA2+Izsn9q5PmS1mX98uXLufXWWxkzZgyPP/44X3311aGKonRWVdWv5JGiKEdptdqV7733Hvn5+ZRt275nwiWX1n0IqlnZnHvMMcecOnjwYO677z6GDNmfZHWUoigzVFWdTn02b9y48bfRo0d7gI2JiYkXr1+/nnnz5qVv3ry5H7AhIq+8HeJrT/2D7+dJX5bb4RxwPCf6/r8RF0/a72xS4uOIjVHY4tzLT9scHNc9iX8rKvl5m4NEXSxDDXp0mnqKU50JrQld1NCRnU3QyuNCu5Puulj+rKhklKF+wlr8sUeTdMG5h8RotR8DHndRwXpgjaZXvz+rbeV21b3PgDes/fok4FGaP2tNEmEURekHnO1yuU63Wq2a2bNnL5o6dWpMz549Yzdt2nSDoijHAX8Cj9asJhRFGRYbG7v63XffZdWqVTzxxBO8NHvuppiYmCNmvvgc635fy7hzz2fs2efUfE4HjRgxgiFDhvDLL78QFxdHnz59+PTTTznvvPMyFUU5BJFK+7SqqjVJK/GI7MQioHTPnj0jNm/e3Cc5OZnNmzd3QzqbkPHV26z3/cyB/UrVJyAcz9GI0FmPoBfzHPy9MKJ7Esu3Ofhpm4PJQ/tSlrCPn3zO5vjuSf6uoEF8X7QZOrKzaVBJ9nfnPpbZKyg42sQlv1g559AudO8kHjA7DRpM16uuQdezp4i7Kgqqx62t3rV9GJ7KYUqMBs2hhwGgqtVuqqqcqntfnFq5N16t3AueBtP0wykulUQPU8aMGXNTeXk5u3btYuzYsSiKwpYtW7zArU888cThL7zwAlu2bHkf4XQA3nrjjTeIj4/niy++YOTIkbz45GNHLPzkI1b8+AP3338/Dz+Qzdizz6lZ2fzvlVdeueqVV17pBXQeMmSI7u233+a8884DcIwZM+Z2k8nE7NmzPQjFZIDLhw8f/ijA1q1bGTduHMnJyaxZswZEAaOkCfg6h37s+wHAnpfVjQN7NkfU+m8RC/NUwd9bDrrO8d2T+HnbLn73hdF66uN4eU0pidpYLj/8sEC3D1UNOyroyM5mT6ADqqoy/a8y7u+XzGFxWm7s1Y2cknKeHdyLLueej8FyMXQ5lJguh0KsDqrcVO/Zjkarw7vbBhUHtlkUJUaHVtdV0eogQbzX1OpqN+59ldX7XHoq9yqqe9/+zUJgVnO+aEmzURkfH8/06dNJTExk/fr1jBkzhqqqqnsURXn24osv5rHHHoOD33fJO3bsoCYjDeCXX37h/Q8+JC0tjSFDhtClyyHg+5yqqvorvk1nRVH6ORyODR999BHAcuCbE088McuXaWavdQ+PVqvl9ttvx2AwsGHDBk477TT27t37H1VV5X5gM2DIzN2BUGxdmSQAACAASURBVJz+tmbMF4LrzYaSKezeM5nq6oPiYiOSk3h5TSl9EzujiVEwdNKyy+1hncPJc6P81qRWA2HV97Q2HdnZbCZAA7H3tjpIidPuD51dcZiBgnIHxV26McFyMTEpA1DiaoXVtJ3QdO2FGi9WtV73PvBUBryxEhOjIy5ep4kT2Y+qqlbj9WyjuvpHRRdndxcV9NClW7ZG6HVKWobpCxYs+HfBggUjEKGsUuBNYGfv3r15/vnncTgcb6mqWlbrnJvvvPPOg2pdzj7vgjNOPm1Mqqa6iunTp3Pj5NvA/+e05N9//73n4YcfHogoHn1Ap9Px1FNPwcEpsXOLiorii4qK0hGr5s3A26qqfhOpFy4Jji8Et9l+/ZmrEHUyB8XlhxgSsVW6uahfj4PGKjxejPWzYPFdo019R3TYos6S0UMzgFcJQzW2x6O5dBp8DBpj4H05784tqLZ/qN6xJeCcENnIwRpN63TpFqkI0MZQFKUzMBMhEnmTqqoNapyV2pzz/1z3xwWPTJ9Gz169eeTJZ9FoNJZUo/6jIPe5BNEa401VVV+N2AuQRBSfeoCVptffVQImw5zFZUFnRgkd2dkkIuRdQv6j93njLTS9hqBoA5+ieiqp/ud3vGUlRYiQR2Mk0P1hR2TFLEX0uFihS7d0zD9eO6bU5vwA0Vm1NhmpRv37rWGPJPLYrz/zV8ReTlP4zTBn8ZGRsKelCKeDY7sirXDtHsSXd8goqGKPpiFidaCqaHqYEmKS+2aA0hc4B/g/hIx5wLqLIBgQPWtyENpMm91FBS+6iwpOcxcVdORwaHvD42csXJFYSRSjamLnVpsGV1b36kcjnxb3IjQd2xQd/UvqNURHzpCUV1UUqHJDAysbqtygKKCqRyqK8rmmR99vgXs1JvNDAD7HcAQHF4o1Jl++FyJsciuw011UsAChj/aFLt3SptpYSw7C3wNgm8o6kgSmzFGRzKNvXY5W1wkg5pcitPOebMwfuCDStjU3HTaMBlAyeqgGWIH48g/WNC3kPRt2+ZUr+wCYpjGZ69U1uIsK+nBwodiRNP4LxoXo6jcfWKhLt7SpjJWOTqnN+T/gzDrD56Qa9X5VnSVthzJHhQGRoXZQ+Es78yE0f/4S6mVcwH8NcxZPiax1zU+HdjYAJaOH9kPojwVtM9Bp0GB6ZN1XPxvNh7rPSfXWv2qnMdelCpHaPENjMgfsvOguKjgE0WOnZvUzgsYpxFYh+uPMBz7RpVvazGZiR6XU5vwJoclVmxNSjfqi1rBHEhnKHBV6RBh9ZN1j2jefRrN6WSiXqUIkDh1lmLM4cLprlNLhnQ1AyeihpwGfIr7QG1xRHHL+BZ6kCy/S0uVQYhIPrrNh9w5Qq/8Gejd0DUQDpKeApzUmc8B6nxrcRQVa4CjgJERLhFMJPwSqIjoDzgfm69ItsnI8Cim1OTdQv2neoFSjvkOqNLcHyhwVccBC4LR6B527qjs9mulR3PuCJSpVAtuAEwxzFjc51bU1kM7GR8nooUciwk81kh918SI2b/N6z5rzWYyu03MoHLFfQQClRI3ttJjYTk/F7HUcjdjID6abtA2hGD1LYzL72xj2i7uooCZZYAJwFo1b9awCXgHe0aVbGpu0IIkwpTbnTkQySG2SU4162UqiDVLmqNAi9lfO9XO4QtlSckGnZ+95ACH4GWjvuAIoBs43zFlsDzAn6pHOphYlo4fqgBsQm+79EC0INAgn8wXwQFrh2nV1z/OUW/OBS2oNLUCtvitm767TEVlowbSSNgD3AR9oTOaw/iDuooJ4hJbaBMQbums45yMq2ucBebp0y9owz5VEkFKbMwYRKqm7utalGvUhP4xIooMyR4UG8dm6zM/hSmBcSlLCN/brz1QQn+HpiELzGuG0WMSe8gzgS8OcxW36y1o6mwD46nCSEW+KLWmFa/3+ojzl1q6AP613LzAPb9VzMZV7zgPuJXjNzQpE5lqjqrt9mW4nc6AFbs8wL/E9ovr8o1oK1pIWotTmNAB1+xXtSTXq6+nLS6KbMkeFgogcTPJzuAq4MCUpYUHdA/brz9RxIDt1i2HO4nbzOZTOpol4yq3JNCwbUQ28h9eTF1PpvAiYTPC6if8BUzUm86+NtctdVKAgnpJqHM+gME7fhlC1naVLt2xqrA2S8Ci1Of1J/pemGvV9W8EcSSMpc1TEAM8Ct/s5rAKXpyQlvNuyVrU+0tlEAE+51UFoas0fUVX5eozbdSn+l9a1UfFpXmlM5tKm2uguKhiEcDoWRHw4FFTgc8RqZ7Eu3eJtqh2SwJTanMchCnZrsyrVqDe3hj2S8PGFzmYB1wWYclNKUkKHFNuVziYCeMqt0xB9aELlM8Xtmq1UVd5C8N41buAl4DGNyRxaa8ZgFywqOBohQX85IRa0ApsQGl+v6dItcrO6GSi1Oc9ErGpr83WqUT+mNeyRhEeZo0KHEF+9JMCUKSlJCU+1oElRhXQ2EcAXSvuHEApDa7ETOCbGZR8IPA4cE2T+LiAXeF5jMkdEIcBXz3MFwvEMDfE0D/Ah8LIu3RJScYAkNEptzkuBd+oMf5hq1F/cGvZIQqfMUdEZUbg9PsCUh1OSEvx1Uu0wdFhttEiiTTaVI9Kmw6ErYNGYzF8i9lYuR6weAnEIIp36L6+1+HqvtbjJUkO6dMsuXbrlZYSCwmhER8dgWU9a4FJgqbuo4Gt3UcEJTbVDsp+6Kc9QP2FAEmX4CjYXEtjRPAA82HIWRSfS2USONxpxzk4AjclcrTGZ30Fs4t8B7GjgnJ7AbOAXr7X4PK+1uMm6Wbp0i6pLt3ynS7dciihIvQ/R9yQYpwLL3EUFn7uLCkLdB5IExl/aunQ2UYxPguZLxGfBH3elJCU8kpKU0OFDSNLZRI7POLhDYjCWAQfJxmtM5kqNyfwCosbnEYQOUiCGAJ8A33mtxRFbXejSLeW6dMtjQBqibudzCCpOOw5Y8eCNE1cmxncuVhTFoyhKlaIo90bKrg6CdDZtiDJHRXfgG/xI0CA+MzekJCU817JWRS/S2UQIbbKpkvrx9kA4gWxtssnv3ovGZN6tMZkfAPojNuUbygIbBSzzWovne63F4aQ3N4gu3eLVpVs+06VbxiOc3+M0vOLi0dc/MH+84LNjtm3bFvvVV19pEOoGktDx52zabMV4e6bMUdEL+A4hI1WXKuDSlKSEOS1rVXQjnU1keSPEeXpgsafcenZDkzQmc5nGZL4ZsXnfYKdG4AJgrddaPMtrLT4sRDtCQpduserSLVmIYrMrAb86Xak9unPLLbdgsVgAGJrWZ5C7qKBvJG1p5xj9jMmVTZRR5qjohyiAHujncCWiYDO/Za2KfqSziSwrgd/9jO/yM9YZ+MRTbr082EU1JvN6jclsAU5AdOoMRAxwI7DBay1+1GstDqX2J2R06ZZKXbrlLUQH0muok9Dww5xc/mMZQ3W16F59aFKXFOBPd1HBy+6igog6wHZKXQFOaGN95ts7ZY6KIQhH09fP4QpgvD9lAIl0NhFFm2xS8b+6eQf/q4FY4C1PufW2UK6vMZmLEHI05wIN6Zh1BqYBG73W4ju91uKm9js/CF26pUqXbpmLeLK7GZH2jaGLnv69U+pO1yJUEza6iwqechcVHBpJW9oLpTanFhjg51A9LT5J61DmqDAjQmf13uSIB8ozUpISvmpZq9oO0tlEntlAbQnwauBVRHuAFQHOecFTbn3IU24NmlmmMZlVjcn8GSJWfF2de9XFiJDNWOe1Fl/utRZH9O+tS7e4demWmYi9pbsQMjeBiAP+A1jdRQWP+Gp8JAdIo37biG2pRr0Mo0UBZY6KExHJAP5CnduBU1KSEmTPoQaQzibCaJNNdkQa5H+BucDJ2mTTKm2yaTuin8XXAU6dDrzoKbeG9DfRmMxejcn8OqKNwVT8h+pq6IuQvlnptRaPDemFhIEu3bJPl255bljGbZdMeeGN1TXjG//ZyrPvfEql+6DSnQREavUf7qICi0/DTQKD/YzJVU0UUOaoGItQffcniPoPcHJKUsJqP8cktZAKAi2Mp9wahwirTQgw5V3gGm2yKSy1V6+1uCuQDdwGBAubLQGyNCbzynDuEQxFUYrvueeeY44++mhOOukk3n33Xd577z3umziW804+PtBpnwC36tItbbIhVKQotTmzEEW7tZmZatTf3Br2SPYrN98GPIN/dRArMCYlKcHaooa1UeTKpoXRJpv2IbSTAqVFXopIHAhVswwAjcm8U2MyT0GsdObScG3M6cAKr7X4Xa+1OC2c+wRh14oVK3j33XeZPHky33//Pdu2bSMxoXNDLWzPB353FxXc4i4q6MjvR38rmz9a3AoJsL+75mvA8/h3NH8AJ0lHEzpyZdNK+PZnchF9bvxRBJyjTTY1KmbvtRYf4bt+g+nVCHmaV4CHNSbz9sbcqwZFUQyIjLnaobFt9q/f3hwf12kacBOga+ASRcAkXbplTVPsaIuU2pzLgbrLv7NSjfrFrWFPR6bMUdETUWoQaDm+CjgzJSmhSZ+XjoZ0Nq2Mp9w6BXgiwOH1gEWbbGp0B02vtfgUREFmwDiWjz3Ak8CzGpO5WdpEu4sKUhEK1uc0MK0KYe8junTLvuawI9ootTkVxJ5b3eZ6qalGfSiyQZIIUeaoOAHRxjlQd91C4PyUpISG9kglfujIYYuoQJtsehK4HpG1VpeBwE+h1OIEQmMyf4uQ07gY+KuBqYmI9rMbvNbim73W4mAN3sJGl24pBc5DhBHLA0yLRSQQ/OIuKhgdaRuilBTqOxoXDWcaSiJMmaPiBuBbAjualxHpzdLRNAK5sokSPOXWCQjV5UBhpjzgLp8sTqPwOZAbEAq0yUGm/4mo1flIYzJH/E3iLiowIFYwNwaZOgeYoku3tFvZllKbcwwiaaM2xalGvRQ3bQHKHBVa4DlEPZg/PMDklKSE2S1nVftDOpsowlNuPQ34mPpPuTX8DFysTTY1qXOn11qsB+4GpiCkcxpiOXCvxmT+rin3DIS7qOBkRGdDf9IfNZQj1LDf16Vb2t0bttTmvAURXqzNO6lGfaNXtJLQ8IlpfoAolvbHVoT8jKyhaSIyjBZFaJNNXwMjCJyFdBywKpimWjA0JrNTYzLPQMijvITYJwnECKDQay3+zGstHtaU+/pDl275DjgaEcIL1EsnGbHqW+AuKugTaRuiAJmJ1gr4FAFWENjR/AQMl44mMkhnE2Vok01/IDbz3w0wxQAs9JRbH/aUW8PpDFoPjcm8TWMy34booxNMOHA88KvXWvy611rcuyn3rYuvKPRBRLfSH4LYsNZdVBCo7W5bxZ9atyzobEbKHBWXIdp8BHovvw6MTklK+KflrGrfyDBalOJLjZ6MkJsJtFm/BLjMp07QZLzW4uGIfZTTgkytBF4AcjQmc0T3Uny1Njf57AgUTsR3/ym6dEtYxa/RSKnN+Q9QV6h0WKpR3+gsRIl/yhwVGkRJwD0BpngR0ksvyYZnkUU6myjHU24dgYgpB3oC+wexjxORpb6v8+dYxJe9v14dtXEAjwEvaUxmv715Gou7qKAn8CKBlRZA1OVc0pbVB0ptzi7UlxqqBuJTjfpGJ4NI6lPmqOiKiBgEkmyyARenJCV803JWdRyks2kDeMqtRoS2WaBmZFWIJ7UXfMrTTcYn2nkZomNoapDpfyO03d7UmMwNNXoLG3dRwQTEvlKgFgU7gEt16Za62VxtglKb83REW+Ha/JVq1B/eGva0V8ocFWchMhsDvY9WAxNSkhI2tZhRHQy5Z9MG0CabbIj9igfxL0MTi0jdfM9Tbm0o9BQyGpO5WmMyv4XIErubhpt49UbEuFd7rcXjfaujiKBLt8xHtMD+MMCUbsAX7qKCB9qo3M0pfsaWt7QR7ZUyR0VimaNiJrCIwI4mHzhROprmpS1+ODsk2mRTtTbZNAMYh1ju++MSYIWn3HpipO6rMZkrNSbzswgJ/BygoXDZMOAz4FuvtXhEpGzQpVt2IV7bXfjPnFMQ2WyfuYsK/EnARzOn+Bn7toVtaJeUOSpOAX4FJgWYogJZiBbOrpayq6Miw2htEE+5tTdiH6ehL/RXgCxtsimi1c5ea3FPxArreoI/rBQA0zQm85+Rur+7qOBE4H0CP6VuBi7SpVt+jtQ9m4tSmzMBsFM/AaR/qlG/sRVMaheUOSriEQ9GtzcwbRfCySxqGask0tm0UTzlVh3wFEICPRBlwK3aZNNHkb6/11o8GJEccEGwqYjmcTM0JnNZJO7tLirojtjoDZQ15wbuBF6J5iLQAPs1W4A+qUZ91NodzZQ5KtIRquf+up7WsAS4LiUp4e+WsUoCMozWZtEmm9zaZNPtiJYEFQGmpQAFnnLrfE+5tWck768xmf/QmMwTgFE0XBujQbSO3uC1Fs/wWov9NaAKC126ZRsio+jRQFMQzevedBcVhNWqoYU5xc/Yt9LRhE+Zo6JTmaMiF1hKYEdTgSgnGCsdTcsjVzbtAE+5dTDiae64BqbtQcSnX9Emm/yJfjYaX0LAeYj6BX8FirXZDjwMzNSYzE2ukXEXFYwH3kQUu/pjLWDRpVvWN/VekabU5lwK1N1fuyHVqA/U60jiB58SwFzEnmEgvgeuTUlKkOHJVkI6m3aCT03gFkRoq6Gn+SLgxqa0LQiE11ocC1wDPETgPZUaShDqzu9rTOYmOT93UUFfRLZaIOFKJ3CVL7MtKpD7NU3HJ6A5DbgfkZHpj0rfnOdTkhIimpYvCQ/pbNoZnnJrH0QIaXxD0xCrkMd8nUMjitdaHI8QzszCf9/22qwEpmpM5q+ack93UUEcIv37pgBTqoGbdemWV5tyn0gh92uaRpmjYigwDzA3MO1n4OqUpASpMxcFSGfTDvFJ3VyMkHRpqJXAemCSNtnULIrOXmuxEbF6uYWGO3QCfAFkaUzmVU25p7uo4EpgJtA5wJRs4PHWShwotTn1qUa9s9TmfATxu6nNW6lG/ZWtYVdzoShKf0Tqce2/vxV4QQ3y5aMoSg9EoocWmKeq6i9ljopOiLqv/6u5pqqqLPz0Y5Z9V8i2beV07WqsPnzQ4Lk3Zt4yKSUpoSGRWUkLIp1NO8ZTbjUguoDe0NA82077G9MeeTz39Xfe/zOEL4A4Dt4fqVJVtUFtNq+1uC9in+ZyDm4Z7Y+3gQc0JnOje7u7iwqOQKRdB9oofhqhq9Zib/5Sm7MHon3ECMSX7S6E2nVtbkw16ttVzxRFUeZceeWV15nNBxYgzz33HKWlpUepqvprA+cpwNJrr732hPj4eF5++eXP/7U75yFW5H1rz/1h6XdMuf0W7rzzTnr16sWWLVt48cUX2bBhw1RVVQN1wZW0MDIbrR2jTTbZtcmmG4FTEc3QDuLVee8w5ITTSDt21DWfffnNumGDBy73pVT7RVGULlqt9u8ePXr8W/NjMBi2KYoyvSE7NCbzJo3JfCUi5PG/IGZfDqzzWouf9VqLuwV/lfXRpVt+A4YDnweY8h/gNXdRQaA4f3PwIgfqokzUdzTQPos548eNG8eWLVtYuHAhCxcuxOFwgNDVa4jrhg8ffsLdd9+NxWLh6GOOHYVoM9HX3+SYmBgWLlzIfffdx6pVq/j666+JiYmZoShKS/6NJQ0gnU0HQJts+hYhqvkItSrwn3zxFfJmvsqff/7J0qVL2VdZeRywzlNuvSpA+4LUgQMHdlu7di3z5s1j3rx53HXXXSBaAwRFYzKv1pjM44AxiL2aQOgQ4ZONXmvxNK+1OOz0ZV26ZTeiBujtAFOuAT707fW0BMODHP8HGFFqc95WanMG66La5lizZg3Lli1jyZIl7Nq16y5VVTcHmqsoSk+dTjf78ccf5/777wcgPiE+4N7fyBNGretxWM+Hv/jii6J169Z9/9Zbb5GQkEDnzp07AfGRfzWSxiCdTQdBm2zap002PYBwDEUAQwYdjsViYdSoUbWnmhBppGs85dZLPOXWeu+RFStWMHbsWMaOHcv06dOtwPPh2KIxmb9G9OyZiMhKC0QXRC3NX15r8Y2+bLeQ0aVbPMBViFWFP84H/ucuKmhy7U8IBNs76IQQW30B+KvU5uzb7Ba1DEplZSUPPvggK1asYMmSJXTr1u1ZRVH8pukriqJodbq506ZNY86cOezYsaOha1cDz8TExJiXff/dl4MGDUp/+eWXT/r666+ZNm0aFRUVqKq6u1lelSRspLPpYGiTTWsQhZi3FsydteeLD94MNLWmoVqxp9x6ri/pAIABAwYwc+ZMpk6dyiGHHGJCiGGGhU/oMx/RpfI2RP1NIFIQraN/81qLLwhH6FOXbqlGZMYFCvWNBr7xqRLsx11UoHcXFRzhLioIlGgQLs4gx2v/DhMRxYftgdU33nijesIJJ6weNmyYo7i4uGa1cnPdiWWOCu0d99w7a/CgQWOOOeYY3nnnnf3Hflj6PR+8907t6f8DjkpJSvhPSlLCXmD71q1bef/991mwYAGTJk0iLi4ORVG6NvPrk4SIdDYdEJ+o58uamJghWq12YZDpRwGfAj/OfCb32O3btzN16lTmzZtH165d+fbbb4mNjZ2jKEqnxtiiMZndGpP5JUSL6hkEVkMA4QDnA0u91uJRDcw7CF26RdWlWx5GZMX5SwowA0vdRQWpAO6iglGIFdevwGbf/zeVPRG4Rlvkq6qqqouAEaqq3vPVV18xYMAAgF6KolytKMqM2NjYY8ocFRcAa6u91TdkZGRw1FFHsWrVKt544w2OO+443nrrLV545kmezHlk6/lnnfHaYQb9VSlJCWtA7CUCxzscjlMKCwvPePLJJ3ft3buXo48+GoRiuCQKkM6mA6NNNm059rSzb/V3rLKykr17DyrBOf6aSy9+PfPqyzbs2lGes2zZsjFZWVk7tFothx9+eBdEK4JGozGZ92hM5geB/kAeQlMtECcA33utxZ94rcUhf5no0i3/RSQg+AtpDQCWuYsKhiDCgof6xrsBc91FBU1qwU14zsaF+B20BxaMHDmyQKPRVCYlJc2ePHkyy5YtA/Aedthhb9x6660P9B9weCHiIWLAiPQTePjhhzGZTJjNZq677jpWrFjBlVdeyeZNm/at/PGHHkbDIdcBtd+3tw0dOnRu165dv1UU5cvjjz/+kLS0NDZs2ACwqcVfscQv0tl0YBRFGQk8WfP/JZs2u67MvOOfjz5bxGHDjiNl6HDe/vDj/fO/L/qJWfPe6d8lMTH78osmzOnUqVM3g8HAnj17oOEVSchoTOatGpN5Mg33sKnhPERobbbXWtwrlOvr0i3vAufiv1VCT4SsSZ8642kEb5UdjGBhtBpU4NJUo77Rqd9RRvIdd9zB6tWr+eKLL1i1ahVPPfWUq/+AwwsHDhzI+PHj0Sd22d+D6bQzxrLhn238vWMXHy/6kp07d/Lzzz8TExNT6PF4Zo4fP56BAwfCwQ8jmgEDBrBgwQJ+/fVXHnzwQSZOnMiOHTteU1W1zXZxbW/IOpsOjKIon0+dOnXciBEjOP300/n444/Jz89nyZIvd9xyy63dTCYTa1cu54XcGQA89uxLbNuzD7PZzPbt2znjjDP44YcfmDr13vV79+4boqpqRDXXAHx9cR5H7K00xD6EgsDjGpM5WFot7qKCE4CFQJK/2yIERGvzti7dckVwi/1TanPORrRlCMYdqUb9C429T7ShKMoExOseDOzu2auXde67H2gWfvrJud5Kl7JixQouu/p6Lrwko+6p6r59+948ZlB/7a5dDgPib/voa6+9duytt96Ky+XqparqP757dENI0pyEWIlaES04XlVVVRZ1RgnS2XRgFEV5pV+/fjclJh5o7vnvv/+ybds27+uvv66ZOXMm11x8vvW6yzNMAEsKv+eiazMZPnw4SUlJ/Pnnn8QqKu+++jID+6ctQoR+PtcmmyKqQeVLCBiHcDoNiS2C6Cj6KPBfjcncoBSPr/hzMSIBIRh7gR6+lOqwKbU5n0WkczfEi6lGfUM9WNokZY6KGMRq8m7gZIDvC78h+z93MWDgIGbPexuN5iDf/g3wn5SkhIPUJBRFyUYkFrykquqTSNoU0tl0YBRF0QBDOfgpfhcw86STTjr9+++/t9//n9sPnT7lzgsQm/dD7I5drPptDXucFfTp1ZMjhwyq+0VRisgcm6NNNpVH0l6vtVgDXIFQI+gdZPpmhEDjOxqT2a/zcxcV6BCpxtcgUo+DcYMu3dIoReZSm/Nhnz2BWABMSDXq241YZJmjIgG4GtFhtX8Ip6wHpgCfpSQlyC+mdoZ0NpJ6KIpyKKLwslBV1TLYryo9EaHo3C+Ey3iAjxCrne+0yaaIvdG81uI4xAbxNAK3FqjhV2AqsFhjMh9kg7uo4BnEF2GoLNWlW04Kx9YaSm3OaQTuv1MMjE416kPd14lqyhwVhyEy/24GQkk93oHQOpuVkpTgaUbTJK2IdDaSsPCUW7WIp9XpBF9d1PA7wum8Gck21V5rsQGhLH0HwVcm3yDUpfe3i3YXFfxB8P47dRmgS7dsCPMcSm3OQI7tb2BkqlH/b7jXjDbKHBVHIUJll1K/dYI/tgEvI+T/I9q+XBJ9yGw0SVhok00ebbJpNiJV+HbEZmwwhiCq+P/xlFtnecqtIcnbBENjMts1JvNUny2vIyrKA3Eq8JPXWpzvtRbXhHQa09PnqkacA2DzM+YBxrdlR1PmqIgpc1ScXeaoWAKsRvx+gjmatYikgdSUpIQZ0tF0DOTKRtIkfHI2ZyIq3scTXNW5hh8Rq533I9VTx2stHoZoHndukKlVwKzq3TvnqK5dwTo81uVfoLdPmSBkSm3Ozoj9sNpfxG22K2eZoyIJuASR9DA4xNO+RChufyH3ZDoe0tlIIoan3JqK6F1yA9A9yPQadiJWJW8Bv0Rib8drLT4Zkbk2MshUp6qqz1Tv2PIv3qq7gcNDvMUFunTLJ+HaVWpz9gFeQ8jRPJhq1AdTGSEVEgAAEkhJREFUwI4qfBv+5yL27sYRvEcRiNXb28AzKUkJvzWjeZIoRzobScTxtSm4EMjEl+oaIlZEz5f5wA9NSaH2pUtPAHII7kS2qao6o3pbqQNVzSL4SucXXbrFX4uAdkeZoyIO4VgmIhxNqFpxOxEdY/+bkpRQ1kzmSdoQ0tlImhVPuXUoIivpasQTfahsQ2iyfQR8rU02VTbm/l5rsRa4DpHt1CPI9A2qqt5fXb6pEniAwC2Hy3TplsMaY09boMxRoQVORziYCYT3d/sTeBaYl5KU4GoG8yRtFOlsJC2Cp9yqBy5DrHbCXRXsQVT7zwcWaZNNYYta+nri3AXcS/Avz59VVZ1aXb4pDrEHVNfe13XpluvqnlQyemgscArii3oY4EbsTX2RVrh2dbg2tyRljgoNYhU6EbiI0FKWa1OI2I9ZmJKUEHElCUnbRzobSYvia1UwApFQcAmhFVPWphJYgnA8n2qTTQ22pK6L11p8KKK4MpPgWVOLVFXNqi7fNBRRI9MVIW1/uS7dclCIr2T00POBl4BDEA27aipdKxEJCauByWmFawO2Qm5pfJX9IxEO5mKCr/zqUo6QhXkjJSmhoWZ4Eol0NpLWw1Nu7YaoybgQ8VQdbip+NbAU4Xjma5NNpaGe6LUWpyE6l14aZKqKSF54QGMy17t+yeihMcBTwE003BVSRUjeXJlWuPajUO0MRJmj4nhEfZEJKEBswDf4YS5zVCiISv7RiN/3aQjx0XDY6bvfe0BhSlJCu1E8kDQv0tlIogKf4zkXsUcwlvBXPCB60CxDOKBlwB/aZFODIR2vtdiMyFw7Pci13cB8FOVIYDCqCopC1c6dO3fMeqVz5R+/h7px7gKuSitcWxDi/IMoc1R0RyQ91A3j3ZaSlPBSnbkKomh1NAccTGP2mvYgHPp7wBJZ5S9pDNLZSKIO3/7OWQjHcw6iPXRjsAM/IBzPMuBnbbLJX2sBvNbiMxBOJ3DBqaJAl0OJSTwUYnVQ5aZ693bYvR17wQfsXhByNnQFMDStcG3IK7EyR0UsIvQ4AxGqq8v/EHVOQznYuYSagl6XvQi9tveARSlJCRGphZJ0XKSzkUQ1vjTqUxGO5wIguSmXA1ZSa/VTe8/Hay2OQexfPAr0PehMRSGmxwCUOH29i6r7nFSX/cXW3EepXPdHKHZUASvSCtemhzK5zFFxCkKBoaGU7A0InThjKNcMgBtYhHAwn6UkJbQLrTZJdCCdjaTN4BMDHYlwPBMQTc2ayl8cCLstA9bHuOw6RLr2A9R8eR/SHU3XwP3ZvLYtVP5ezNb7s0O9rws4Nq1w7bpAE8ocFb0Q+0H1mr1EkCrgK4SD+TglKSFoLyCJpDFIZyNpk/iy2o5AOJ3zEOnJkdD624lQiv4NtXqj4t57jFLtuTqm5xAUbeBtJNVTiXfL72y+JuT+apXAo2mFax+ue6DMUdEJIVAZis5YuHiA5YhU5UKgSK5gJC2BdDaSdoGn3NoFseo5ERiFSK9OiMS1Y1x2Yvoeg6IEln1TVZXqTauYdc75vFh6cDb2uopKZg/rzSld65X3bEgrXDug9oCvYv8fwq9zCcQ+RK1PjXP5MSUpwe++lUTSnMS2tgESSSTQJpt2A1/4fvCUW2OBoxCO50TfT+Oq/hUFqtzQwMqGKjcqCmd268KZ3Q7kM7xbZufTbbs42VB/rwfoVTJ6aFpa4dqSWmMP0TRH40IkRdQ4l59SkhIapb4gkUQS6Wwk7RJtsqkKkQywEnjeF3brywHHcyJiwz2oSrWqxFC9Z3uDezbVu7fj3vL3QWNWVyUvlW7ng6NNxPhfFbmBYxEp2zU0JntMBX4D7kMoKrsbcQ2JpFmRzkbSIfCpSVt9P28BeMqtSUA6B0Jvx+NHaFKN7YyyewdqfFLAbDR2b8f+1rz9Y55qlTvX/UNWWjKHxQXcdtFQXzpnOkJHLtRWDfjmHgncmJKU8FkY50kkLYZ0NpIOizbZ5ECk+i6C/aG3AYgVzxH7/43V9quu1ils3QBdugWss6md9vxs6TYGxHfi3O7+SmL2E0Md55aSlPB3maPiCOBVRLV/N0J3PKNCnCeRtDjS2UgkPnyhtz98Px/UjHvKrfHoOg+u9nCxstt2ffXu7d1QVVQU3Fv+xv7WvIMczY+OCv63fQ+fmk3BbulF7LEcREpSwlrgBIAyR0XtxIcTff8dKPHhl1Bfq0TS0shsNIkkTEpGD50F3Ojv2C6Pl/OKS3h2cE/MXRqSSgNgN3BdONI1PiWBIzl47+lQxN7UNSlJCX+Fei2JpCWRKxuJJHy+QSgN1MtlfqfMjs1TxfS/Du4XdnPvbpxTP6TWCSgK58YpSQlVQLHv58VwzpVIWhO5spFIwqRk9NAuiOZujRELrc2atMK1R0TAJMn/t3fvMZJUZRiHf2/3zALGBUUjEkVxFMJlhUWIESMsIhrURCFBxRuKF4IY0SgowURXjVG8YDSoKF5YNxEQEpUgeEMYIrgIAguMgCIhsIoI0QAL6MxUff5xzuzWNj0zvTtd3cXM+ySdqjp1quvrmj71Td1OW+P144lrsyVlbHziYbbyiKSLx4FzFx6N2ZODk43ZtlkDLKSbF5F+F8ZsSXCyMds2F9HlTrIeTQKXj41P3N2/cMyazcnGbBuMjU9sJPXGvC0J53Hg+P5GZNZsTjZm22hsfOJK0g+ubU3CeQw4amx84oF5a5otIr4bzWyB7lq178mkn2regdmf9p8iHdG8fmx84veDis2sKXxkY7ZAY+MT3wAOJz378hhbHuk8Qurm/0LST0E70diS5CMbsz65a9W+AvYi/Yz1HqRfwbwBuGJsfOKfw4zNbNicbMzMrHY+jWZmZrVzsjEzs9o52ZiZWe2cbMzMrHZONmZmVjsnGzMzq93Cfjztvw8GERAFEBAlabrM0wVEEJumS6Cctd6W71GwxXuXHcMoiM56cw5n3rf6ymVldRooc1xlnq7W21ReGRbF5mHZMZ2Xi86yokjLF3l7VIdlEDmmKNImpihziFGZT54fMFMvL7PFsrl+FCURQUynbVdOp1jKPL25PMVSTpdElMR09+WiDMqiyMNUpyjKPJ3iKouSsjK/zPOLjunO5Yv0Tdk0jMr41gyD9LBL5LLVEbM94d842x34/lCrTWtkGWq3aY8sI02PpuFomt5cvmyL8tbIMlot0Wq3aLWEWqLdbqXhSAu12DxdLZdoj2xZf9lIi3Yejmyabm0ub6fhdnm63bHMTJ2WxGhbtCVGW6LVykOJ0XaLtmC03aIlGG21aLfScGY5CdoSrTyU2GJ88zzS55iZ3xIiDyNQOZ3aW1mgKCFPq5irPO0jZpaN6SkoC2JqEsqSmO4YTk2m+TP1NtVPw3J6iihKyqlpoigpJqeIsqScnE7DojI+OU1ZlpSVOuWmZYNiqqAsgnIyDYupIpVPFj3NLyOYLINi05CO4ebyqehWL42fHXfP2r58ZGNmZrVzsjEzs9o52ZiZWe2cbMzMrHZONmZmVjsnGzMzq52TjZmZ1c7JxszMaudkY2ZmtXOyMTOz2jnZmJlZ7ZxszMysdk42ZmZWOycbMzOrnZONmZnVzsnGzMxqp4jY9oWlEyLiu32M50nP2+SJvE2Gp0nbvimxNCUOWFqxLPTI5oS+RLG4eJs8kbfJ8DRp2zcllqbEAUsoFp9GMzOz2jnZmJlZ7RaabBpxrrFhvE2eyNtkeJq07ZsSS1PigCUUy4JuEDAzM+uFT6OZmVnteko2ko6UdIekOyWd1mX+dpIuyPOvlbR7vwNtmvm2SaXeMZJC0kGDjG8YeviePE/SFZJulHSzpNcNI87FTNLOkn4j6a95+PRZ6n1J0oSk2yR9Q5KGFUuuu6Okv0s6q4/rb8x+qyn7i6G20YiY8wW0gb8BY8AyYD2wT0edk4Cz8/ixwAXzve+T+dXLNsn1lgNXAeuAg4Yd97C3Cemc8Afy+D7A3cOOe7G9gC8Bp+Xx04AzutR5OXB1/pu1gT8Ahw0jlkrdrwM/Bs7q07obs99qyv5i2G20lyOblwJ3RsRdETEJnA+8saPOG4E1efwi4FV1/KfUIL1sE4DPkRrcfwcZ3JD0sk0C2DGP7wT8Y4DxLRXVtrgGOKpLnQC2J+1wtgNGgfuHFAuSDgR2AX7dx3U3ab/VlP3FUNtoL8nmOcC9lekNuaxrnYiYBh4CntGPABtq3m0i6QBgt4i4ZJCBDVEv35PVwDskbQAuBT40mNCWlF0i4j6APHxWZ4WI+ANwBXBffv0qIm4bRiySWsBXgVP7vO4m7beasr8Yahsd6aFOt0zfeQtbL3UWkzk/b25AXwPePaiAGqCX78BbgXMj4quSDgbWSloREWX94S0ekn4LPLvLrE/2uPyLgL2B5+ai30g6NCKuGnQspFNZl0bEvX0+qGjSfqsp+4uhttFeks0GYLfK9HN54qHVTJ0NkkZIh1//XmhwDTbfNlkOrACuzA3o2cDFkt4QEdcPLMrB6uV78l7gSEj/XUvaHngm8K+BRLhIRMQRs82TdL+kXSPiPkm70n3bHg2si4iNeZnLgJeRrhcMOpaDgUMknQQ8FVgmaWNEzHoRvUdN2m81ZX8x1Dbay2m064A9JL1A0jLShbSLO+pcDLwrjx8D/C7yFaZFas5tEhEPRcQzI2L3iNiddMFvMSca6O17cg/wKgBJe5OuGzww0CgXv2pbfBfw8y517gFWSRqRNAqsAuo4jTZvLBHx9oh4Xm4npwA/6kOigWbtt5qyvxhuG+3xLobXAX8h3cnwyVz2WdIGIQd0IXAn8EdgrN93UjTtNd826ah7JYv8brQevyf7kO6CWg/cBLxm2DEvthfpmsPlwF/zcOdcfhDwvTzeBr5DSjB/Bs4cViwd9d9Nn+5Gy+/XmP1WU/YXw2yj7kHAzMxq5x4EzMysdk42ZmZWOyebAZN0lKR9tmG5kLS2Mj0i6QFJl1TKXivp+twFye2SvpLLV0s6pT+fwGxxknRYbmfvrZQdkMtOqZSdktvXrZLWSzoul19ZVzczi4GTzeAdRboIt7UeBVZI2iFPvxr4+8xMSSuAs4B3RMTepFsp71pgrGaNlG9VrsMtwFsq08eSLpbPrPdEUtt7aUSsAA6l+/Mr1sHJpg8k/UzSn5Q6Njwhl22szD9G0rmSXg68AfiypJskvVDSSknrcqd3P9UcnRUClwGvz+NvBc6rzPs48PmIuB3SE9ER8a1+fk6zQZJ0XG4X6yWtzW3oTElXAGcodfT5s1xnnaT98nKrcvu6KXcouVzSrpKuymW3SjpkltXeA2wvaZfcdc2RpHY343TgpIh4GDbdtrymy/tYByeb/nhPRBxIuqXzZEldu7yIiGtI97WfGhErI+JvwI+AT0TEfqT/qj49x3rOB47ND1rtB1xbmbcC+NPCP4rZ8Enal9QLweERsT/w4TxrT+CIiPgY8Bngxtx2Tie1JUjP63wwIlYChwCPA28jdcuzEtifdFvvbC4C3kTqsPQG4H85puXA8txubSs52fTHyZLWkx7G2g3Yo5eFJO0EPC0ixnPRGtJheVcRcTOwO+mo5tKFBGzWcIcDF0XEgwARMfNk/4URUeTxVwBr8/zfAc/Ibepq4ExJJ5Pa1zTpgcbjJa0GXhwRj8yx7p+Qkk3n2QOxuLvhqpWTzQJJOgw4Ajg4/wd2I+lhseqXcvutfM/dKqcBTuyYfTHwFbZsBAATwIFbsx6zBpttx/5oR51OERFfBN4H7ACsk7RXpH7fDiVd51ybT9EdXWlnB1Xe4J/AFOnazOWV8oeBRyWNLfTDLUVONgu3E/CfiHhM0l6kPqYA7pe0t1Ine0dX6j9C6guJiHgI+E/l/PE7gfGIuDefZlsZEWd3rO8HwGcj4paO8i8Dp0vaE1LnfpI+2rdPaTZYlwNvnjklLWnnLnWuAt6e5x8GPBgRD0t6YUTcEhFnANcDe0l6PvCviDgH+D7wkoj4aaWddXYN8ynS6e2io/wLwDcl7ZjXu+PMdVqbW113dCwlvwROlHQzcAfpVBqkH4u6hNSl962kTgYhXXc5Jx/iH0Pqm+lsSU8h3T12/Fwri4gNpB+a6iy/WdJHgPPyewXwiwV+NrOhiIgJSZ8HxiUVpDMGnVYDP8xt7zE293P2EUmvBApSdzyXke4qO1XSFLAROG6e9V8zy6xvk9rydfm9pkg/kWDzcHc1ZmZWO59GMzOz2jnZmJlZ7ZxszMysdk42ZmZWOycbMzOrnZONmZnVzsnGzMxq52RjZma1+z+iUdY8o6rNZQAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -864,7 +846,7 @@ " var_names=var_names_lat,\n", " link_colorbar_label='cross-MCI',\n", " node_colorbar_label='auto-MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -890,22 +872,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd9gdRfXHPyc9kFASICG00HuTAALSQ5EiTapUwaCAgKj0KiBNUIooRaQpRURB4CdIU1EpkSKhIwQMhN4h1JzfHzOTO3fu7O7sTd73vUnm+zz77O7s+e6ZnZ2dM3OmrKgqGRkZGRkZnYZePR2BjIyMjIyMGLKBysjIyMjoSGQDlZGRkZHRkcgGKiMjIyOjI5ENVEZGRkZGRyIbqIyMjIyMjkRHGCgRuUREXhORcV7YEBH5i4g8Y/dz9mQcMzIyMjK6Fx1hoIBLgU2DsMOBO1R1ceAOe56RkZGRMZNAOmWiroiMBG5S1eXs+VPAeqo6UUTmBe5W1SV7MIoZGRkZGd2ITmlBxTBMVScC2P08RYIiMkZExtptXJFcRkZGRsb0g042UMlQ1QtVdZSqjgI+7un4ZGRkZGRMPTrZQL1qXXvY/Ws9HJ+MjIyMjG5EJxuoG4E97PEewA09GJeMjIyMjG5GRxgoEbkK+BewpIhMEJG9gVOBjUTkGWAje56RkZGRMZOgY0bxTSuIyFjbF5WRkZGRMR2jI1pQGRkZGRkZIbKBysjIyMjoSGQDlZGR0REQkcEiMmP1OWRMFbKBypihISLz9XQcyiAis/Z0HDoIswGISJeXSyKytIgM6mo9GVOHbKBqQERWExHpBj0jROSwrtYzPUFEPrcrhsxSg9MLmCAiy3Vh1NqGiCwEfCAi/Xo6Ll0BEdnczWVMxKBg35V4HDitG/RkTAWygaqH+4Czu0HPn0kYVi8is4jI+d75YBHp06UxmwqIiIrITm3SewMXAD+qwZnL7genCIvID0QkSdbjLCQiJ4nI2yKyaB0u4Fbon6tUqqGrv4g8KSLni8h9NXUhIkNFZGhd3lTgJuCEGvKDg32XwKsQdKmenoKIHCsivbtJ1ygRmaOr7p8NVAXE4HwRGWCD5u4Gtcsnyi0JfEdEFhWR/YH3gCPqKBKRb4rIUnUjOBX4zVTyB1SLTMGGdj8kUf4MYN160WE94ChgDuDLNbmugEz9lcwO2HcOrFZTF5jJ7y/UIYjIbLZi8eOavEn2sE4Z8w2772rDsUe1yLSBiCwQC0v55kSkn60AJaehraCeAAwXkf1EZB0RSVpk28rWtQkPALXyRi2o6gy1AWNLrvUHBta830qAAivbvXZh3OcAvuf0YBbMLZNf3sqd4XHOrKnT8fpgCr6+FfIbAytYzvXArIl6xHImYVwru7YZz6TnwxSMjlOpy5N/IAh/DFiphLe3p+fRGunR2+OtXTMN3LY1MGeNNHyybv7FrG2pwBPAvG28r2R9HufXQK8avF7A5hjDdjKwQIX8PlbP5W2UB6sChwGrAwsmPtOawBLALDbsNeD9GumxHTBXYvyOsZwNPf67NdL/ZGCrNt7ZRdh5tYk8Adax+1GFcnVezvSwUW6g1H5w8wLz1XwBtT44m/gK7A5sUiE7KzAf8MNA150VPGc0T/A4h9ZIqyUiz7dBzfS4K6UwAfoFvHEJnE2BdwLefonPNszjHJggP8STPxZY3XveQj7wjyB+W6d8qMABHucESoxgWV4Ezqnxvp+wnCEJsgNoVCrc9mainr4e5xN7XmpIaTbYCsydqKuPx/mz3R9ewdnJyt2Q+j173PGevnsT39kmdv9TL+zTCt4pkXd9XYK+31rZoz1eqa5Y/qqRHn78NqOicmA5/TGtWAXmt/tBMdmZ0cXXH3gZ03m+fUIHdbtrALpm9WWYD6cMpwITgK8E4euLSFlf1EC7P9YLW1NELipTZt2WTwJPRS6PqIhriPUwLb8yfethCiofpXlPRIZj+jBmDy5NLuEM8059N2mKC81/hhOAe73zMn/+msH5H4DzY4IBnOvnGsz7e0hECldAsX+UfoPW5y9MD4+rdskw1z9Z+OsaD//B/EjUR6WrVES+hWmpOXwOnAS8VUFdMDg/PkHXNcBnXtAmdv9pBfUju1/E3qdOObiQdzywUMrc1w2o2sXu/Xw4iXLsGQnbrkTXHCJyM7CzDTrRu9y3QlfsftpGP9bNwIsi8nRFv9SPaeStB8tuODMaKB/XAusXXbQZbKs6NxSRh0XkeWDxGjT3Hr4WuVY2mi/2gWwF7CMiK1XwfL/0Bd5xYYe9/alkiEnAmyKyc+QaIrIFppUVYumKAR0TiRuGviLSUlCKSF/gFREZJiKLAX+xl36OHb5cgRYj5hUwZd/J7cCOQdgyCfpcwfqmF1b2Uf8V824mBuGh4S/CYnYDGJ4gvzim9d8CEfllybtbC1vwW0zC9uvZdxS73+LAWUHwfiKycUUcdygID41diP5270Z3Hl8hD0z5q4KPUgNFoxLi0lFEZD97PJvXrx3DQwVxKKpQL4RpwUQhIkeXXBtY8D4LORVYHOM+DfXMLSJzY7xFDnMDqOoHsRvNNAZKRPpjmpIhRhfI7wCsEbn0USTMx4rASIy7zr+fxIaoi8jsgD+yytU0t/VkimoyZQVaUQYfRGPwABiftT8yMVqY27jHjK77SFsKZcu5tCSOh4jIcSJSVaD4OIfmQt3BZfqlgWe88EeA5URkhYr7xlpZzlg3pb+IHCki40Rka0z+eQnj6nNI+SfZIOAQmmvS0SH09v27FuF7NP96ZhkRiVVsHDdW8BxeFjER2bLk2jzAvsTf98a0ViqGYvprADYsGBzwNKZfM8StZfEswUEiskjJ9bCQP0ZESisxYiYQvxwELx4bBOHBDUgZa/e7YypMDpfbe8e+72eIj4CcTUQeE5FNgvD+EVkfLa1zEeklIutiyrQzI5zjRWRQLA+JSJ+iCofFEiISGvCxmD7dsEJXjEQ/4zAqOuy7asP0QzwFPEuFb9nKjw3OnR/9Z8ArVPQpYYz2tt71SZhCL6kfKnZ/u11FpLMyIvcTu1/fC5vNxuHEgHtAwH0gOF8okF88ou8UTMFY+myY2qrPOzY43z/CGR3Rd6p37DrgDwx4CxWk4WlFcaQxcOPXnvyBmI+h6p19F/giom8tuz8ikP97ILcSxhD7YX0q8undGD/8SVb+KWDnAtntvfve68VtyoCaEj33BfF6zzuOdvJjDEaYFl+1+3F2v6GVHQfMFsnL9wLfjNznjUDX2t61Fr0lz/VlT253jNE+yAu7ChhcwN0L2//kbdtjKgG9I/L+9/EGZjDRlHSxMgOwgyASygJ/2yB8ToyxuQQzAOengfyidn96wHH9i48C50X0PBh5rjW9635f6kUBt6WfE+PKHotxpyqm4hjqnBRwJgXXJwOvAvsWvefKFpSIHA98HdheROrMQZlq2JrFzzEfxzLAziKS4j7xcZzdH4QxtC39Qd5Q2mUxhdXvvcsDMIXH7zAdkFXxfY14bXAnTO1HAvkQF2MyqF+zHoSZWHi0mLksbqh26HJ4NjgfH5zvQis+V9WPVFWwLUYR8VtYLg/47p4NaW0lnCetc4hci8DvE3jJO3a1vrBldop3vChwC8XuHIcN7N61NE5Q1XMwBTKYDwIRWVFaVxA4loY3YWkv3NWqf2xbDq4vKOwr/AhTEfLRlBYi8ivndhUzd21dTKvN5YHXMP2HgyM1T9/V8r7d/xNT4XL3/2fAQUS+T+twdL9P7wUJ5kXZ/Bnmqz7A3+zxsnY/h3ceW63jJlW9BNMH6yOch+X3l76BKTRTatj/8o6vUNV5aHgNJmC+t+dDkn2+wZiC8TH/EqbfbXNPdiER2YvmfqehNN7Z0zSmFtwAPJwQb4AjveOmFqWYCfofY4zo+7SWOYcU3NPd5yPgxcj1lSNhfv+de597YMpAH9+1fcI+VrGba0UdizHyPga4/j3rmgxdmm8Bw1X1AopQVsuzVu+Y2HF3bJgC81bv/AiC2myEE7agQqu+CKZwGIgxOorxQSvwXEQ+rN248N5BuNCorS9s9z+K3Hdxj7NpRN883v2WwjT1l8AYH6VR69kcU8vya6zbRO7X29N3mA17FTNcVoEfRZ7v/bI0tGGHRHQtFfDc6KVfeDJb270/yuiukjTp4107PojDGdjRb5jOVsf5lsdxraBJ3rOEtc/7g/teac+v9O65Bs2j0/xtfszHejwmX00EDsUbsm/lrgMu9HhrYvrKlEat93y7X6Yg/Sd58dwifC8Vef+lSPhaAcevPZ8DzOFd+7l37UqMAVdMBSNMm20sZ8EwHoG+m71rt9iwebywkTasH7B+7NmC+82OmU9V9u0qpmUy3Ds/2e7H2Hc9H8btpTTysWLcfH3ss2+BceMdXKJvKVpbJPN6xz/weYGca51tZs8f9a6dEeh62IbvbO9/aRBvBb4ecFYPrp/iXXszuLYvcJl33S/TdsaUV/MHHAU2tvJzBeEPAedX2oAEIzEKU9CeCKxaJT8tN0zL7WLvfDfgvIjcGExzcywwviRT3hJcWzG4/m5w/gZwecH9TsEWnjYj3OtdG2r3J+DNn7Lbwd691rVhg9xLizzbg/YdXGtlPoxkAj+DzxlcO9xuSsOo/JiG6/OEyPNNLCvobNhgzKAO/9o6AW9rTM2yF40CuC/mg3PDuv/nwi3nQO9+A4P7jcS0MF/z4nVuJI1X8Dhurtj/PM7ZwX2vD5+bVhfQOsSH5SvBEGrsfCO7zUfc1enS8XxM68mlz5/sfnt7/SZ7/pg9f8XjfiW45/Z4Q9yDa7NgKyuYvh0XvjnNlYCHfU7wXK7APs7unTt6cZpdwLt7nFkwbkDftSiYqRVuiLhL/2ssxx86/kvv23fP3ZTHI9/Mzt71L9mwcJrDeUEa/Z/df9/uJ9CYU7SH9278tFo4uKeL330Y9+sX9ln606gcKqYFNsYev+4/Q3C/sPLgVxBCA3UfdmpEEB664hcqSCeluTFyf3Dt797z+eE/Cd51mM/Xt9fC6RhCynSMREOxYYrctN4wH1xooM6t4IQtqMdtgnyXYBJqJNN+VpWINPtRXS3xfz7Pe4lHBC/0b4HMOsDrnsxjkeeZEHnp/vaFn8EtZ44KzplWbk9MEzs0Rg/Z4y1p9rd/m2AOjQ13fujNIx+Se9Y+eHNbvMzsWgxb2fBDfV4kPfrT/Czn2HyhNFpRwz35AZga7BeYCodiKjKrAStamYcxhm8Dj/dWRRr6W/8gjo8WyDVVgKxsL4zRviqUD/LO49ooFBe1x8MiOmYN3o0ChwXx+5N3zY9rL4zrcEr+D3iulbGv3f/L7rcN4tAy0RPjCXDXdwzkL7X7Ez35S2l4OPbHGgl7bVmPu1dE11Le9Y9t2DKBzldt+Bhav3u3ue/6Q0wFItY/FXIGeMeTXRp6z/yVAu4NtFaAFg50fd+75huGSzD5e/lI/GKt/vkKnvdOjxeWIa4CHua5EZH0ONG7vjHNFQ4FDkq2AUlCZnma02iuPcxDkPGn9ca0cfFt5DJ2gXxYw2gqICLy//Vk/m7DXg55mI7zAfZ4A3vN75R82sbtdu/FPp3wAYTbBbG4lsjfQFAzDnjHW7mPItwtCvQ8iuknujSi+5oCPW5i5pGe7MI0PsJtSuL4qcf5OY3Jk841NCiQH0B1Oq4QcGKDJtz2lN0791xYkP+3gPe23d9P0IFPY4Klv/nxbskblhca7Fi8Vww4zuX0+0BubhoF0S4RXSMxrfHdK9Jy84rvxt8+wvSNKsHAEhoDAtTptOFreeHRWnigY14vz7iKxyWe7MOBfDg5XCno3rDXQs/LlM2T6wdsGXAvK0nDbSP5al/v+lk2zF/JZJFI/ITm70Vpde296PYlafhQJI4nReI4iOY8eXqYPmXld0v8kwVNBrkT05S/BrOuV2EhMi02jOV9DlNw9cMMGV62gtOykgR2lFGBfGykkQK/KZAPaxBz0Bgd+HfgryUZOXS/nQ7c5l2Pxf1aTz5mNPoSmYVdkvEvK0oLyzu5hPuViPw+mBGHrha6ecApMzRKcwvtERqFf2Hzn0ZB7/P2x/T/KMHKFrSuiBDbwg/NhYej4JTGSLazgPkj8YuOFvW2JSKcIdj+CG9r6mMsSY/XS3R9EJGfFfNNhf19vltnRIm+r5foGxKmv+VE+3cxBZ8QWUaJZpeRS4s5/XQqiaNvqP13+DKmAPUr248FcYp9Z9EVWjD5vfCbqfjWwhF6bvtagfzeQRwH0uzyj67GECkP/Pd3O43vI6zI+JzHI/H8Uom+Z2ntx6pMk5b7JAmZzsQjMbWrh4Bj6yiZmg3TX/E0pgZ2VIJ84VJHBfKrRhLxjwTN65IX5xu40qHFEe6UF4ap1cQ+Ur+FMd7uJ2EKgpYaU5keu11QEb+WTm1vG1nCK6ohr1vC2ZVWo63AqRVxDA2UAsvZaysWcJzc9yLclqVgMC7AlWgMBPC3RzAVk+i6hZjRV0VpWJhPMJOslcaAGLetTMVabCW6Cteao7EcV7itWaFrywLel0s4Lu+GfXu/qPlcf/Lu878KbjhIQLGu0kBuUYyRGh+Rd1vhUGgagyT+L+RVxK8fzdMu3BZd5gkzss+XC6eZlFXqip7rpor4rUfrFIrUfPJVT9b1V+9Txmm5R5KQKbC3wPioe2MGCFxJicXuqY36BirW8b1TBcfvY5ky/j9R3zCaRy5VZeLzPVk3Au6+BD29Is+lVKwLWJaZKzhhoeoK9sqBNTQPKlC80UQF8p+7Z7H7Sp+2d+/QH57ybGsF8qXpT2ufhl9w3V3C6wOsZ4+d23iFqmebine2WgFvQAVv7QinpSUZcF4oSP/TKngrFMRx3YQ0GeXJv4vpu6paSDam6wXK3eJu3bxfe5w/VqV/ic6oLhqu1e+28a6d3IUB7/qE+P0p4FyDWcGkKi0X8ziFra3Se7RDsso3BO5pl99VG/UN1Igg8U8l0fBiXHRJGSTgzQncZnmrVMguRcMN5kZttUy6K+BuhGn9bonxq5+dyGunsLsqlLXHhS1RjxtWEn5SIf8d7FByezxHgg4F7rDHLQtxJvC/QWNY8lUVsuvRaGV8ZMOWtOdvVOkK3kHSCtFtvrO5PVk3sGBMgi6hMTL0UBJWVAe+RGNyr9/CrOwmiDzXD1PSxUvz5O/Tk/f7TUZXcJwRXQcz90ox0w5uS9TZPyWeGI+D0jr6ToELE57rXRr94W77WUL87gk4P0p8rkEeZ6EUTss92iF5ERg6Nfyu2KhvoFzmuNjuS/u4Au6U2kgb8exHjaX+MX1+bmh25UrgBfqSfmEQZMbfuY+1guPXjM+2YUnPR/MKF5tiR6lN43yhNI8IrWWgPN78pP9SQ4EXvPOtSF+lu268htu49cZbiSOB9xMnh+m3qVyN2sq6gi75dx8edwgFqzwUyA+l2TWbmoYL1H3HvixmikKdCsKmNAYZ1Vp5x4tnWdfCnJjh6uHK7ynvWYG37LFbwWUYwQjUAq5bOcXNu6usxFie3/dbqSe2TdXfV1U1tibadAVV/QQzwXwfTCdkyjpqDotVixTqrVpxOZT/GoBdiKJqkcqp1ocZir26qk62s+9LV0RW1c+9RTIOsWFVKzY7PIsZoXkKZtSm1oxruziMmr/9VtUJNXVMSQNVrbMy/mE0r2hSClV9xTt9wa4d17L2YwRT8ruq1lm9+t/Akar6dg2O01O1snko/ybwUxH5GHhbVV9PpH5YN24Y4/mu1ftoTe7bNNZ0fL9MsAiq+nzJtbex+dWuQvMFZlDRqom3/9zu78XMJXw1kXcaxki59SaTVsxQVRWRrTB9vKmLGjehY38P3gO4CTP89rkanD9Rshp6F2LWLr7/GsArqjoZplQnUw3cJ6r6RR1l9v6nishpXWyc/HtviJnvdXoX6oN6FZ4pmAbx2guzskgVTqP6dzAtUNV3aV6Sqsuhqr+oSXEGajHMHL4UHbUNruUJgIjsYs+rFpUOsSI1fnVjK47rY9z9KcbwEMxoTzBlVnJlRFVvAm6yyxadhVnzM5V7Y6psDNK15UH3Q0TGqmrhf3W6QN9VmEEVKbXVaaHveExT/Zzu0FcHttY+SVWjq3L3JETk25iJiE93o07FDKio+yv4jGkEERmtqrd3o75zgQO6qzyY0ZFbUFOP2j8Dmxqo6vHdqa8NtNWU72qo6i97QO3PaP4NR0Y3ozuNk0X0NzcZ7SG3oKZe3zLAKFVt+UHXzAb7r5/PVPW/PR2XjIyM6R/ZQGVkZGRkdCRmmj/qZmRkZGRMX8gGKiMjIyOjI5ENVEZGRkZGR6LHDZSIbC8ij4nIZBEZFVw7QkSeFZGnRGSTnopjRkZGRkb3oxOGmY/D/Puk6b/0dnTcTpgFHkcAt4vIEnUngWZkZGRkTJ/o8RaUqj6hqk9FLm0FXK2qn9jlP57FrL6ckZGRkTEToMcNVAnmw/xy2WGCDcvIyMjImAnQLS4+Ebkds9pyiKNKFtCMLRUSnbQlImOAMfZ0QP0YZmRkZGR0GrrFQKnq6DZoEzDL5TvMj/mJW+z+F2J+fZGRkZGRMYOgk118NwI7iUh/EVkY88+g+3s4ThkZGRkZ3YQeN1Aiso2ITMD84uFmEbkVQFUfA64FHsf8DmD/PIIvIyMjY+bBDLcWX0ZGRkbGjIEeb0FlZGRkZGTEkA1URkZGRkZHIhuojIyMjIyORDZQGRkZGRkdiWygMjIyMjI6EtlAZWRkZGR0JLKBysjIyMjoSGQDlZGRkZHRkcgGKiMjIyOjI5ENVEZGRkZGRyIbqIyMjIyMjkQ2UBkZGRkZHYmOMFAicomIvCYi47ywISLyFxF5xu7n7Mk4ZmRkZGR0LzrCQAGXApsGYYcDd6jq4sAd9jwjIyMjYyZBx/xuQ0RGAjep6nL2/ClgPVWdKCLzAner6pI9GMWMjIyMjG5Ep7SgYhimqhMB7H6eIkERGSMiY+02rkguIyMjI2P6QScbqGSo6oWqOkpVRwEf93R8MjIyMjKmHp1soF61rj3s/rUejk9GRkZGRjeikw3UjcAe9ngP4IYejEtGRkZGRjejIwyUiFwF/AtYUkQmiMjewKnARiLyDLCRPc/IyMjImEnQMaP4phVEZKzti8rIyMjImI7RES2ojIyMjIyMENlAZWRkZGR0JLKBysjIyMjoSGQDlZGRkZHRkcgGKiMjIyOjI5EN1HQMEekvIotM5T02FZGh0ypOGRkhRGRLEbm4p+OR0TkQkaVEZO4quZnSQIlIvzY4i7Wpa6Easr1EpG+N2x8O/Ld+rJrwf8A3ReRqEblmKu/VURCRPiIyoKfjUQYR2VtEevd0PLoYZwF793QkpjeIyDwi8puejkcX4QhgPxGZvUxopjRQwCcislqqsIjMAzwjIqukGhARmdMatfF2pfYUnAe8lBovoLIGkggFdgR2qEu0aZJshNu4v4rIgm3SLwImTMv4TEtYw3QxsHCi/Loi8knXxmraQUQG28O2KnddDRE5W0T+1dPxKMH6wC7tkkVkURFZpyZnrXb11cQg4HjMr5QKMVMZKBHZWUSWs6fz16C6AmQssEEi5wrgGXs8XyJnc2BuEZFE+amqeXtN7M9rcERE7rWGYwdMmtySwFtQRL4vIguLyGOpuuzh1lbff0RkgUTuBsCewFARqTQAIrKiiLwuIseIyAhbKUnR8zMROUhENhCRJ1M4Hly6D0+U3wuo3foPISJfFZHLEmV7icg/ReT6mjqGAu+JyLEVciIiS3rng0VkUA09z4vIQBHZTkTqrjqwPfBlEfmaiHxRk5sMEVlVRO5rgzq4WqQUJwB/TRW23oZ7RGS2GpxeItK/jbjNaverlEqp6gy1AWMLwntjWgoP2L0m3u8PwCWOA3y1Ql6AQzx5BXap4LgWjJP/GLP+4ACgTyA7O7CEPb7QPYd9viWAM4HFKvT1s3om2v1vUtPE6tdge6VEfgsr49LkhzXSfkBE186J3E88zvoJ8lsGeibY8FUT3p2/zQL0Soyj45wH3JWQr5z8h8BqbXwbCuxj81fpO7DPsSSwWc3vZSDQF1gqTJsC+VH+NeBp4JFEXS5NdvL0zFMjPT6ynNNSn6+dDTja+057WZ3HJPC+Z2Xdij+l+Qr4BabFtbM9/3Od5/LS8DLgeuACp7uEczLwRfBOSjlWblxKvuqSF9KTG8UGao5IYfJde20ksFDFS3Pb1iW65wAWinC+l5Axjrf7/1JiNDB/H1Z7/CsrMwr4kaevNPMD21m5e+z+89RCCNg98nyFPE/mYLs/1+5P9a4vGuGNBsZHdB2cmA8+9DhfSZDfIdDzBdDHHg8u4AyOpQVwRIK+YZ78s5UfqnGT+Tr+VeObmAWYq8Y761vwXKUVH8t9DbgNWCfgTiqQX8fLz4en5kMr378gnql5JCk9PPkDgLe88zWB75fIbwxshWnJKLCePVfglEB2qB9vYAFMxUWBc4C1Kt6ZBM8zi3e8QcKzhXy/XFiigOOXqb1s2MnAmxW6tg/0/L5QNjWTTy8bxQZq/oLM3Bt4F3g/IRM/S4mxAR4s0HEkpjXwjQhnQStzEs1G45rYhwNcZ8PnBt4s0HdSSRx7Ay9buf9gWogK/M7u+5dwY0bebQMr0u9vEc6Bdr9tRbr72ykFer4MjCjg/xt4yL8e4e8H/Al42OPNa/fDMC6JsDVbFMdLK/KoeM/ub4U1T+DbBbquqNDlKiOXhNwSzpACXasAZwCzFPBGeLKv2nR35+OBARHOui4uga4ngXcqnm3Xgni+7sn8GFggwg0NfmF6eJzrrewITEuv9L2V5A8FxgWy+9rwm4Czi3gRHcMxZcvagewdKfkRUx6MpNmDE25rFXDDMnVjzKLfimkpJqdLYfyqXkpw47515KfFBmwKPIUxDocnyBcZqKULEn8SEZcH8BUaxiCpILH3ismfhGkRtHAjsg+HYYH8b2346RUfwD5BJl7DHq/mybyHcQko8AMvfCgwR+T5zvJk9gv0nVCQJkVpqMBbdr9vwFm44tm+XpDpf4/583IZ9ziPs7Z3fBqmIvE7T/YKu18E+AD4tScfq3G67TJP7iBgzyCuLe4vp6ckXxc+kyfT0sIB/unJvghc7Z1PAOYM5Fcr02W35RPjGH4PL1q5kcB69sBoybYAACAASURBVHhde+3jAl0tlTpP398T0kSBExPTf5C9fpf/LjBegweAm63cKwFv+7rvzG69PNlvFsiE6dI3ouPnFXr+UJKGe1uZoyO89+x+qwhvXmD5QP4oPNcdQb6vSJdoxTjFQCxhtyUpqZl3xYax7v/FFBD9gEeAZSo4Y4PzuTCDDw7H+GR3q8rUkUR8kEa/jWLcVFsDS1Yk/HmRsFmB1zG1v35FcSmJ10Ulsr/3jh/B1Pw/o9FKejXCWdXu9/fCXG1sGU/vdoGe0L01joiPHFO5cDKH2jgcE3CPDjgTKtLkA4K+QBv+VxpGz23/ivBnxbpMMH0mQ+3x7hj/e5HeFzGjj/oAX/fCj/LSXIErg3i9750LpiVSpGNVAnczrf1+d4f5A1iBoACjudKhNl1/GoQtWpGHFePqOT8Imy2h4Jk3DLNyd3rHZ0V4LwbnBwCbRvTdhslfYZ+vAr29OJ2C+WadS/+hguc8xePs6em5seR9KQUuxQqOYtz6x2J+JVRULoVlyPr23v08HW8k6OpTEEeXdmG++E5wfg3GCzIrcJwNu53mlmS4TYzoGxbIODfi8HYN1B8wH+4ewG+62UCtAdzqnR9BhX+fVgPlJ8Z+NuwfwP2YGnPTxxPhbeWFPRDcz31kD9HoQ1JMP9GP7bUfBpyN7P5nCZlKgc/tfeax6fEr79oNgewV3vG/adROy7bF7f4QGi7DTex+dUxTPazF/bYgffewYbPScFUWpe/3vGt/tZyNIulVtg3CuK6KWjMv0jAa/naTd+y7KVYI0rBoOwev3857FudWuS9In0+880nAlVU6grS6NbjuWjmneeng3MuzFLwbxdT8f2mP37H7pYDZsC7agvh8SGsf1qr2nS1meUOD67+34beEz+XljYEB5zPMYJWXitIE0++zHGaEpgIb2/BFMZVoV7Bu5D3Pad591sC4tn8Z0fEzj/MtLx3LKi0KHFlQFr1cwfO3aN8uphK7RRDmDH+Y74tcswps6MVruE1jv7X8V7t3fdkjC+6zQSRsfJFeT+f6mHwWymwJbEiRAU0wEst7xwt2s4H6OnCxd74bcF5EbgxmuPNYYLwX3itIjO/Z8H6YDtYTgutLYTL6Y16Y3wxfP/YC7PFEL1w8zuIhx24XRsJcfD4FlrHHbwcFx1Xe8W8DfuhOu7ckw/6H5sy+G/CEPXbN/t2J+OrxRrbR6Dvz0yP0h48EFg7e2VqR+yoNI3kVxt22JY2KwSq0tr6UyAAAu11Aa81fMZOT3fFKQdyPLLiXv42j2ce/OuaDv8+ePxAxEqti+g0VU+D/ETixSIflHk2zy/cWYG7vvuHADsW6Zon3F/4P840oZjCD0pynBxXE52Mao2Dd5jr7fcPhXz/dhv87CJ+VRgtpxeDaOpbzOyLxiBjQ54m32o8DLvfkfhK53/zAc8CXaHwLijFg7ngZTOXDuUlfoNGi8VunJ2JaE77LeNVA35doLvR9nV9gyrAwjn3tvQQzaMK15I61+9DAh+Wd2z7wjgVTQVdaW687Yco/Jxe71+jg/DDi7kG3/YzGdxG+y/2wLcFCG5BoKDZMkesCA7U9rQbq3ApO2IK6y0uYY4Nri5QkrAKbRe5f9dG0pFWFDgW2sfud7X57m9l2KZB/1+6/bPfugz8C44o7qkLfEzZervY7p82Qq9M8+i22/TTyfG9718NWnRa8pwUr9Kzsyf7GS+uYMfJrqmNpFDI/xoxIc7qOBb5Bs5F3rUV3f/HDKrZ/+8+HqcEfAvzbnofD5N/1ji/FuAqH2PS/KZDdmlb3ycJBngpr1m6bh9ZRdApsi3HNroQxVn6eC7czveNPrc7laXUFKa2F2fzYARGYvt/1vGtfeMffxhT+rmK0uuUMwbjlVw7ue3FwfmxB3topkLuK1jj31+pv9DPveBv7vsTGz28x+oOj+mOMo3OdnYNp1Umgxx/J9gKNVrhrmbeMDsQbOGW3pm/Bu//BNLoP9qFhkJRGv1Js2wZT7mxv7/XPiIz7Nj7GVB77AssGMkWDt5rimmQDEg3FbzDN5D5e2DzAYV1soKaFi+9mL2Fio8W+X5CIhxTcv+llRDL3etPAQK1aUhgrZuDIECuzMY3a2tGewSnT98+S9Gup7QRbyyhGTK2r0A9eoMcN4S7qDxjmya4H/Crgx/ouFPiblwauBupqmmNsevnyUwYNePdeEGOon4rc3+/HuyV8PpsWEzAFfJkRvjjgFfaN2u21QP4vFA8I+bqXpxQzQmyxgL+tvXZphP9WkG+/CLgfBPJNLfeC9100SOm3mFq4Yg1UjW/nwAJdmwVypQOPLOfJCl3rFOg6NJAL59ONLHiePoGcX3mJjjYFfh1w/JF337AyCwTpMAvN3QKxzU1t2SzQFzNQU/qiA1nXZfEI5W76a2vZgGRB4+65E+NWuAbT3NymjrK6m32Jz2FGdblBEstWcEIDtRMwmeJh5LGmtQJLlejw3XZhn0VsxMummFricwW6nPtk54AXmxSrROb1YGrcc9rjoqb+PDYzHl3ybGVuwcHYzucIr8gonlqWjnYfm0+UMikx5IzAGu6IvGJaT18KOM73fnsJz98O9o7PoPVDDdPh0+DcuUTPj+j6dlEeKUmHFYm7+s7GG3VYwL2jTBemlXAxcHZFmoy3+zUIXLkeZ6GC/HE6jdbD6IT097d9C3SFlRDXWnStwj/W1KPACgW6Ct20dpsvkP/CpXERp+R9xdzVbmupfEd4scFH59Doq94w4N0SyD6OWc2kJZ5YI+iVP7Nj5kT5/L8As5flyZa4JwmZTrUjMYXXQxQ0rbtiw9QCnsYUrEclyEeHmZfI+6PX/KbwsBLO8MiL3gDjhy8ciu+/XG9b0MusOwbyztD8X8D5UsJzrUazG6FyNQXLc4M4bk/9cCzPrxH+1H0UNd6Dr6syf2HcVO/UiJ9iKgoLeBw33+SXJbxBmFqo68fwJ0AOJihUaa0cjKN5BKRzh22SmBYpzxYbGn4dcGYF7+a6urz4vYNZwsvvfyjL+0LzYBtX+9/VpvFviAw1juVDu00iMsHbctaLyL+M8TSML+CcWaCnymjMXcJbMyK/DXZeUhu6yuI4dwnvbHffCO88jGtfgR0C3lBsgwDTZzwZrz8vkL0kFncaFcDjU8uCJn6SkOnQ3QLz8fXGDNu8EjtvoJM26hso38XnXGqTqV7iI6yJVy5vQ2P+hRsO/j6N4bAbUNBhSKsbcrkaz3cg8HibaenrLJyPEshvZY+XLvvYKnRFJ4JW8FomYwZy69u869x9B9Ho0zg7QU8fYH57vCqwYuKzPOCFnWuPFyzLX7T69EsHJ2H6vsKC5ylKWsqW59ybo2m03Fom0xY8n+vHdG6gixJ4/mjENTAjhMs7yRsrj4Rbi6fC40T7ERPi5/qkn7f7B7H9gIl50Pd4/DUxHf9B84CWySXysQpu5bNhKvnP2OMnAu7JNEbmFZbnkTz2TnB9DiJTgGgY1ZZpCSlbbYKneEPgnnb5XbVR30DNDnzNZsZaE5ExBiYp8we8AQStpQp5NynWucKiEyW7IC13xHQIt0zaLZBXIn1wiVzXtzNrTd5Blle5/lcQzy1pjGAsHXjTxrP4H/LfvLDUdQSdET2dkpa8J++Gym9m85YbhRrtR/V417m8i3HBFbq1I893rz12LuFoaybgbU6j1VpY4w84fe03GvZxVrmAW4x2gi7Xp3ejly4HAtclpMc79viLFF1WdkXs2oH2HseW5WOM4XVxfIvGxOLoHKKCe/iTm4/EdJ0MosI7RXN/auFqIhGe6/9KWp+yhd8OyVM+dGr4XbFR00BNpS7nLjq5i/V8y/tglqtTGHdz2m9KQR9VArd/aqEV8AQ7F6YGR7EL+NrjlpGJU5kO7uNXEloWBfeo5Z2guXPcVZyOq+AMSzVKAW9tbF8TxpNQWoBPozR1gyxurcFZCWO070s0UOK/uxp6foadC4XxjtzVxvOtSWLlDLPKzcp1dVju4hg3/rJUtF4jXDdq9JYanLvrpGW49WEqoKpvTg1/eoeq/k9Ehqjq212sarKnc1wX62obqvrnqeB+gllhoy5PMSsK1MHXMH0bDtP6VwurYua59MW4qGpDVT+oKf8/7/RRjAvthgrOq5iWa924/d07fhAzarBLoapPiMhHGGOTynkYeNj+w22NBHnF/gEE00pI1XOwd/p1e59aUNV/1pC9p+79Pe4zNH4DVBcujnXyzKGY+WRtQdpIy46GiIxV1VE9HY9pCRE5ENNPkvqfqIxEiMjDwA9U9fZK4ekEIjIQ05KtZeQ6HSLSC2NHZqxCazqCiByEWWvyne7QN1UtqIxuw4PU+9NuRiJUdaWejsO0hqpO6uk4dAVUdXK1VEZXQlXP7k592UBNB7BN+jp/AM7IyMiY7jFT/fI9IyMjI2P6QTZQGRkZGRkdiWygMjIyMjI6EtlAZWRkZGR0JLKBysjIyMjoSGQDlZGRkZHRkehxAyUi24vIYyIyWURGBdeOEJFnReQpEdmkp+KYkZGRkdH96IR5UOMwP0+7wA8UkWUw/3JaFvOfn9tFZAlVndbL0mRkZGRkdCB6vAWlqk+o6lORS1sBV6vqJ6r6PPAs5r83GRkZGRkzAXrcQJVgPsyfMB0m2LAWiMgYERkrImMxvxvIyMjIyJjO0S0uPhG5HfMX2hBHqWrRisuxhVGji0Sq6oXAhW1GLyMjIyOjA9EtBkpVR7dBm4D535LD/JjfNmdkZGRkzAToZBffjcBOItJfRBbG/Gjr/h6OU0ZGRkZGN6HHDZSIbCMiEzA/FLtZRG4FUNXHgGuBx4E/A/vnEXwZGRkZMw9muB8WZmRkZGTMGOjxFlRGRkZGRkYM2UBlZGRkZHQksoHKyMjIyOhIZAOVkZGRkdGRyAYqIyMjI6MjkQ1URkZGRkZHIhuojIyMjIyORDZQGRkZGRkdiWygMjIyMjI6EtlAZWRkZGR0JLKBysjIyMjoSHSEgRKRS0TkNREZ54UNEZG/iMgzdj9nT8YxIyMjI6N70REGCrgU2DQIOxy4Q1UXB+6w5xkZGRkZMwk6ZjVzERkJ3KSqy9nzp4D1VHWiiMwL3K2qS/ZgFDMyMjIyuhGd0oKKYZiqTgSw+3mKBEVkjIiMtdu4IrmMjIyMjOkHnWygkqGqF6rqKFUdBXzc0/HJyMjIyJh6dLKBetW69rD713o4PhkZGRkZ3YhONlA3AnvY4z2AG3owLhkZGRkZ3YyOMFAichXwL2BJEZkgInsDpwIbicgzwEb2PCMjI2OmgYicLiLz93Q8egodM4pvWkFExtq+qIyMjIzpGiKiwIGqem5Px6Un0BEtqIyMjIyMQsxYrYgayAYqASKyvYjktOohiMhuIjJrT8ejpyEig0Rky56OR0a3o2MNlIjMKSLHd9X9c6GbhmuBhbtLmYjMLiI7dZe+6QCXAzu3QxSR4SLSfxrHp0jXcl2sYkvM4KGMmQuziMgsPR2JAmwOHNcOUUTmFpFflclkA1UBEeltDz/vRrV7AFd1o75ug4gsKiKLt0Gdu02VE4H92+QmQURuFJG/A4+KSHI8xaC3iPRLpLzleO3Ec0aFTcOV66S95fUSkb26Kl7TEKcDd3WHIhE5TESurUEZOBXqvgR8s0xgpjNQIjJARJYRkRUSKYPtPrUQQUSWFJGV68du+oAtWC9qc3TRs8DTIrJgTd7UuPhmnwpuCrYEvmKPk/KJiNwD/Aq4BHgxUY+rLPWtFbsZH8cBD2I8HXUwF3CJiHRkegYVkS4tT+w3vQewH7C9iCwgIvslUHtbfnL56OETyy1cCHymMlAishgwCXgMeCSRNpvdL2pH1KTgD8CDdpX2uh8NtOFzFpFhbehx3N4icnYNyhrAPsDlIrJdDT1re6d1XXa1XRwicqI9TC6ARORLdfUESI3nWsBewOpA6rtzrsq2aq22cna65xXoOIiIisjPatJWsvsv1+yrdOXfvKkEW5APFpFtanBmrVF2+PAL7lpG1P4NYsUalLkwi3a7iuORwM8TeK4Cf18NXYjI0jQqFD8skpupDBSwRBscZ6D+D0BEdk/gvG73ewHbt6Gzn9U1IEVYRO4GXrHHSb8lEZERIjJQRObD1OQPrGHknNz6wHWJ+jYGbvGCkvKeiBxjD9tpQR1t93U+7n+LyI9q6rndO041ULfZ/eBSqWa4/NBuf8RPMYVBly26bBd9RkQWFJH/iMh2IlK3BXtQDX0CbGxPBwB1hmO7fJGUt6zXZTKwO3C9iOyYqGeI5Sd9zx6G15RHRPa2xvAc4GER2TCRGraAUr83l39XKpVqxfdouO2PKCp7ZjYD5Sd6ao1mtuD8sjJhERkDfBiEaUpz2dbOlqRRc6o0NrbG6Gf8t8QuEVWBl4CfYQpxt2LHKwn63gQuSrh/iFuBQf6tEnT1A5yxGCMiW9uaYQrXHxiR1Ofl3feYUsFW+HlpgUTOR3Y/ooaeqWpBAc6tPTRFWEQWEZEnbWf24rbwKyyIbOvzeXt6D7A8pgJzuYhsKiJT019RhHlopAs0WgApcAYq1eAvZvfn2f3ViTxnoHcFsO6zlPKnKV4iMqhI0MPFdv8Nu987KYbNZQjAbom8OhUsH98Kzj+KCc1sBsp/CamDHuYIA0SkX4kr4YIYB1g2QdeKwJOY5ja0/iMrht9g3ESIyAE2LHUE4NwYl2cdDCGxgKtASt47JTgfDbxJ4+Nrgphh2L8SkaE0fzhbiUhY0YhhSkEn9QZy+AXv8m1wUuEqLL93ASIyX1UfinXhbgysaYP+lqhvW0xr6wDgaUzhV9a69GvhvqEeifFAlBZ6vpvZVupURBaqiGNY808pxB2SDZSIDKf9flD3vbiK3TL2nlWu1tAN/sc2dKcakGjrLqEy2K6BCvFBLHBmM1B+wfpFlbCI7EncSFyBGR0WyrtC55MI582E+D1k9/va/SUicluRsMVq3rFzb5yVoAtgG8Af6PBEIq8JInJgxfVvR4JTWhqr2P2Rdu9qWUWu2isxo4K2jNw/Vmnw47g4zVMJnhaRyo/PGoeRXlBqf0aTwbQu16rCwLUOVhKRm20rcQKthjzEVpgWrK9vXxE5qYJ3ht3P5YXNKyKrF8h/au8dliuuYK9ytcby0VciYbF7O6wuIqXv2oOLz99E5PuRePuYiJnu0ARrRKsGCIStuiF2X+UhOSQ4LzWQBa2yLSRtMFOR+7HQeIvIpngtNBHZR0Q2aaePU4uWNFLVGWoDxhaE/wDjivG35YC+BfLiyR2JeYHu/EmXpgHny/b6I3Z/u8c5NCHuz4Y67NarhBM+k8biFnD6eLJvBbreKuH5afCvQOesJbz3Pbnr7f5KTO18nqo42vPDMMNtFTi7gOOe40FP38aYQTHLV6RJ7XS0vKMCznWJ+fSdiL5dKjh/KIjnn9t5trLn8/L/8xg3nc97u4Czmr2+kd2vimmhO96BCfG8JtB1ZI1n2zf1vVnu5gF/swK5PcvSEBheoedo+73cb88PsLwFSzj9Ax07An8oke8ViddEu9+jhDfEyqwFvEFruTUiIe2/G+g9sUD+NBsnP65XAfMX6ZjhW1Ai8riIbAacbIP+411+FPPRx+D7SH+iqv5/pvoUcFyn31BMpt4SY9zOA04TkfMj8dtIzOK4AC94l/7PO452Mgduq8tpuHBusjW7Owvi6Y+SmhPYgUYnZ1mtzncH/j64Vub7990u22EGjsyCMSi/LeCEHflv06jJz1tQ21W7d0Nyv6mqt1luaq26Lvx3czcwXERWLSOIyM6WF/YPFLpOxYxA3brg8hK2tR/jlb3Psl/YOHfnFZh35qPon2uO41r9T9AYMASR70ZEdhSRH4vIBpj3F7q1orV/67b0+4OHYYx+EkTkAeCmILgoj/gDLz4CtgD+7IUdWqJnfuBEYCywqoh8k8Ygo7IJ5C6ND7P7sTR7S0LEWleL2v2lJbxl7H4A8IiqiqqOBp6y4VHXeNDaD0dEH10wIORQzMCPJTCDTfqo6s6qOqEwdik1jZ7cMC62pzCti8MT5McG54rxnTuLfSemNuLOx0fu0de7rl746sDjwHg/3Lv+dcuZBOzshe/g3e/YML42fHNgnCfXH1N7Vczoq8Mi+hbDuHjW98J2wnw80ZokzS1Dt82DyeBVtWqfs0dw/v0S3h/8ewObeLyrI/KzYQrPKbVuzNB2X9+YCO/mgvd2Z9lzRZ6tsoVhOevRqKUubPPHc/Z84xLe9V5a+PoOKOF8uyiOFe/6fnv9rYjOe0v0LYIx7Et68qva/XMFnNFBnATj/nTnR0c473nXP4ykyQ0FuuYMn53G96fYhbAjvAOAfxSk4f4FnNc8mc8ieea4Ap7vcdjXO77T7pcr4I3yZLe0+0HAByXva4THedxLE1e+9CngbWyv7w3cHFy7H1i9gDerp2/lIO3V5h8JOO7alcDksm9rCqdSwNS2z8FY79Im+rTeMJPA/msfth/GUi9TwYkZKH+7FZjPO/84co/twsxvwxcHnsEYBY3wvuHxtvXCV/PC/xFw7g3idzjWHYX5B1ZZAfR6GI5xr4z1eLsBi3nX56M1TfrjNbtL0tbnbBC5T9FHoMAR3kezZsVzrU1QOGEMgK9rX2BAwLsL0yIL39u/3XMWxG+Qd99LMMPur65Ii68F8ZkNM0rOnb9Ywv0V8Lw9XsbjRAtIKzfZ5rvdA70flKTjEp7cwu757flDwAMFuo7zeLN7x/3svojX5DKL5JszIxy/8H/Nhr3thb1ExA2PaVk5mets2DyY1oICWxbE8e9B+l1gt9/ad79QID8vjUqIAvt6135qw34e0TMfZtKr480a6FXgSxFeWIFc14b3AT4vyR/O6J6G+Z5XsOHr2/A9C3hbe7p+H1y7FfhqAW+4x1sG4xFRzEAOP/7icZqev+hZ/C3FxfeKqh6IKVTKmphdgdWAZ1X1OVX9FFNobFXzHuEEsttV9SXgAXsea2a7ARQHYWr7Dh9hWi3zFejym7WfesdugMTvMH8KvkhE1rBhTW4PVT1VVR+1p9HRah7mioR9TPPEz8uBW0TkUhG5FFPIOSxjdX6iqpNdoIhcXdJhfA/GnfeYPffdWS1zGaQxWfAqGu6w9wOZVWiGey7fNfh6ILMR1uVoh+fvYe9/JiaP+HOuHrf74XbI9BCa4YYPb62q31TVvbGuJhH5togsLSKLBpzR3vHRqvoeze88ujqEHQ32TWBDAFV9nEa6TI5xHBUz+u5WjGvUuZjK5qH5HdzvqKo/eOddYM6CEYBurt9vMS0cgF/Yb3BPYJSIxNzcVSPoYi5Mf/SW61wfgfGc/M4exyZyDqLhhnoAQFVfU9U9bdiNNl9sG/AeDc6/o6r7Yv43txcw3rpT3byll2nMR5pbVS/wuGr3sYExJ+BNdFXVD2kdhLRehBe6cT+x/M+B3mKW1bq4lWbc+6p6mP2eXVeGm/IyZRkoEVlMzERZMN+LQ/jNP0vxnLnBmMbDMpjnmgS8imkd+vDf+fUF9ypGlQUDNvSOW9wqXblhmo0Xe+e7AedF5MZgWg1jCVx22Jq73YZ54XcSsfL22k7ASxE9Q2iuBfQPrvsd3xt74c4dcS5wB15tEniYklqFzQRTrmEKqsMwAzzUTx97fakgjkpzLdVtf4voOt+7vh2mgBtlr7lWzyz23LU6FqDhMn2IYAADpgWuQVjYGgqv32fDz/HCXM3yjYArNDqUX8NrLXrcPhiDuoWVu9nyXrD7b9rwRQKer+eN4Npp3rUDI8/1a2B7T340ZkDFxsC/I3H8CaYwGh6Ej8LkbwWWivBms/f+HJg3uLYO1t0D9A6ea0rrPOC4gT4KDLRhPte1qFpaexhPyyfA10rScbvg2q+Av9hr7wXXetvwCyO61sR879sBcxTocy62Wb1rv4jlO5pb0dvZdPff598jcfiZvdYyMAv4ZagHM7Xgiph+jxe6cqMtkAivKHwRe+1M4GyM0XQtwhZ3f8DdD7gQU1F/B29AE2YdvYci+r4R3HNl79qNXvhqITe2pRqKDVPkpvWG6UwPDdS5FZzQxXegTZBvB+EjMHNWFNNH1ddmoNkxAxRi7oimvingJO/a+sG1r3rXnPvsBBrut2NdfO35d4ArIzr90Ty9MIWOYmp2rxOMgqPxUZ5PozB/PYjbh8BsBem3uJWZHHxcJ0Yy8NLe8U0Fmfx0AncXDTfjSV6cXsIMe/ef98SAp5iFX/3RjgNorjjMVfBc4z2Zv9AokAbG4u1/9N62LI2ffJ7ope9FXp5STEHtOIsF9/oTcEVE1wn2+t4lcRhcku+fxgzL9ws015I8MpA9A9NfFntfh3v6ivpxrgF+WPCdPV2Qjm5k64fBtUsxLRcFPirgxiqlCtxTED/XFzbMe5YRnj4Xtm/Au9vF0e5913zLKFXvXq9Frv3cf3de+BBMBbgoz7nK0uPh9SAv9I5di9wvNrrvZfdM4bWAuwOm4uNXvIdj5mvuStxo98EMoHLyW9rwufG6M4rycbiljuL7poic5jfrRWQeETmsjDQNMIHm+SzzYxK3DpwL4zM/UFVf1oYrbW+Me2YiZrTfppjObgLOZzS7dvwRRm7OjHPtTJkboQ332WQaTe0TROQ1TIbdHvilqu4a0fkJpr9nMiZju3vNi3GFfRDIu9E/QqN5HboCB6hxSbVAVZ/BjHQM5+Rsjqn9+bK+y+J5/5qIjLRuhB/S6gKZiOmsPoaGq3UExl3oRiNdhamF+hhhw+63529jXFz+aLh3Y89Fs8tvNKamCvWWvxoHjBSRJTBDh4/D9Ftcaq87F58/ofKZ4B5bEB8p6VzNJ9gJxyOD6/9U1fcpxiRMZecHInKgHWV1EMYg/NgXVNUfqup9wPeBx6wr7KvB/bZVW7JEMI7WkaUu7+4RkV/Gux7OqxlIY95gzG34XYK86Llo1yqIn0tzf2TpXGJ+WbG5PT9Mm9110JjA7OK4jnctttLBnzF9WuGcNqHxjh/DiDv+7QAAIABJREFUtEoBUNW3VPVq7OATETnJjrjdyM5j2gY4HuNZCUcl+m7uz0VkWTFLSj1tw9YI5F3ZE47wc/F136VzF+8SyH2IacX677qvjdsVRNJEVT9XVX/Upyu/X8JUil6l4TauRqolw/il78RY1WswzbVtUvntbJgM+xymqe0GSSxbwQlbUMMxtd0BBfJh7cJtXymQF0zzVoFjvHDXae5aONtH9OyFqZGEuqJzgQri+duA21LLteGXljzbfRW6/hfIR91BAWeMJ9+XhmvyY+DLJbzBHu8sTKHzv4r4rYgxcC9Y3gsJ8XMty1j6Xwn8McJZNyJ7JI2O9h0jOp6guQNZaXWlXB7R9RPv+hXuWbywdSvS5Ikgf7i5SDuUcBbDtEZdq7kvxvAqsGkJb38rc4b/3dmwFjekve5cg5OD8HGYll/LNXt9e0wl5AorN5ufliVxfJLmwU6uUqIUz3faNvK+FdN/V6THvduLaLSuv+VxWzwxHnc8puBWGvMKP8UY875Yd7onPyyI11o0D0oom4sYey43P3E/zHcYdnWsF+Es6h1/kaDvzOB8dWD2srzcdJ8kIfPBHYlpoj1EMFS6KzdgM4z74r/AUQny0Ym6JfIt/SFlGd/jnQgc76WPYl03mMJisUB+ERo+9XArnIhbkcGi8cTU0ucv4BwYZsQIf64C7nYlnO94chtg1vVz52UTEmNp8kTiu3vMyr+KqYWXvjdMzdhNBB3v6buQ+LD1WSJx87fRJbr8qQzfCnixUWnz0OifmDJK1ONUTTQOKxVn2/0mJZz5ra5bIs+2QQlvZyszKZI/RxZwXEH+aRD+IqalcwVxF/famIE5iqlcLO/p+m5JHP9Bw9i67Td2XzYFIPaeJyZ+m4Mi9yicGoPpa30jiJviTRsJ5AcE996U5qkp/Up0nVqSj4sWK4iN1PVdwNGRkpE0mMM7Xjzl23Zbqovvlxi3z5qYzsOBInKlpC1eOFVQ1VtUdQlVXVRVT65m1L7/81QvFRPD+8BxdlkVt+zReHvPpVX12UDPc6r6BZE/oqo3gq4GdqJg1WdVvUnN5LfFgINtsJtMN4sr+UoQW5bpDFUNJ+f68NeWu4Nmt0Cha8qmSYgPI2ExuPsOBu5U1dKlglT1I8yQYoCFMB3Hn1t+y5qEqvqRvefIgluWLV/l/2bFuZVus/f9LBRWMwLNrVUXGyVaNQk1fKcuXYsm1bprA4HQvQfG4BXhLbsfICJ97MhEh9gyX3h57kURWVtEnheRkzEuoI9UdTeNuLgxlQ/nyutNY+VyMANRijCQ1onQzoU1voQXQ8v7KsCCkdGNr5bIv4pxw79M8wjgl2LC2rxYAJiCf7x3XhhPVT284NKEWH60+DtmoBo03It+WfkC5XAjfd/2wqKLwhaijjULLOSGFHRS9uRGzRaU5YQ15crlajDLxSumkHO8tRJ4QrPLp3R5G4/3V8zgDaWipRDh3olx+ZxFhYvU47gBDJ/Z/dAK+UOCNPS36PyogP9jn5MYR19HdEJnBW8v77isVj1nwXMNStDzNo2Rm1dVPVtw/8IBHBFeOP/EddJHa+OWE5ubo5ipGGW6VvVkHwy4Q0p46xbom6WEM3sgO2WkaUUcn/I4/jJnS1bwRmMK5pEe5/oKzojIM11r92Wt7EuszIkBN9VVdxbGSLxZ45txLsXb7D46ETfgCLZV723PUzDQyovnc7Smy5yp36mqtm+gbCRKC62e2GjDQFme34dSmPCefGxtv8K+loIXeFXNOLoVKSbV4bWZHq5vyE2ajPbhefIDMaOeWgxVor6j2+BcXZdjeRdZztaYuTZKMEQ7kO8TPhORIbYRXm8vjjdg+k9GVXCejhRylc+GKch995crHDaviF/MYJTmfxp9VrGtrHDdooBTttZk2H93KWkVSPc9f8ueu5GslZUl7x6KqcREXWCB7KFBPN33U+ia9fJedGGAkjhdj3Vp2+2PNb4ZNyLPGceFEnkTUuNo5VfBDEBaN0iXQjdk9D51hKeHjTYNlPfykzIx8b6rOpl/KQqGRJdw3ECM9+rw2kyLfsGzlfZbebxBAW/rRF6TYUvk7O1xXqjxbK7QWx/TIV2pz8q7ZYPOoKTWX5CnHmszLyolHe0VPK0qXD25rWoUPrNiWvS/r6MPWDoin5r2iumnuR24NIGzq+XsZs/fTs1X3j1615Rv+l4wA0fKWofLYfp5NvZ4pd8LZiDHLDQvn7Yu8I0acZyMGa2sVFQ8PZ6/mkZyOtIY1PLPOuWI22b4xWLbgZpZ21Uyz2OGGdfiebJPquobNaPmhsWHs+O7As4vfTrYHJkAVXXD3sdijPgNifp833TKX4vBdO7fjPnY1k/k+M/yMY3VC6owr6fjb2r6s+qgbn/tUZi+uHtU9fs1uQ4banH/gsNxmI7r1PeEqn6oqutiRso5uP9gFX4DaqYlzEbjtxUvYOb9VOFYTGH+LmbIespUE9evu5Ddv0LxFIQoNN4/WoYpw7nVYFRZPlHVcap6J40+1ztVtfSfT6p6vb2n368zQVV/kxjHDTDD3ifY+5X1Ufrwv5Nw+kcZXD/xY1ZfUjniULQqd0Y9HMa0+3FXIVT1eRHpVfclt6lLReQKzBDfwtWaC/AicIqqjq/BcQMDDlHVK0olLVR1IsZt1C5ewdTqU3S9AmYOjqq+XSXvYWuMCyb1J5IOD2EKvPE1eWDcP/2p7sRGVcMfEMaWFSqCPxBmArBPVd5U1fftit5namM5nqo4ngggIl9gKgrjEmjOWIy3+7VJr4y0BVX9yC7y/XBN6mTLT/09OzQPRkmuLKnqXQAiMg7jTk6Fbyt+UEOfishymD7Byr+KlynNaBOqeno36upy4+Tpci2Zyl+sB7yFqqVa8FPgWm1Mnu5q9FHVL+xadP9KJdU0TqjqDSIym5ZPso3BFcK1WmqmPJDfYUZfja+pE+r96fdvmDlRAO+r6q9SSLZlkmScArhW6P2lUgaXYgYCvGh11vVWtIulMVNi6iDlZ6Yh/FGWqaNep8C2wu6oQXHG/RU16wrW0fVYtVQc2cXXjPBfNFX4BWbxzIyphJoZ9t1lnKa4b1T1aVVds0p+KnXVNU6oqiuACv8RVYKB9h51XVTrYuZPpeJujAtn1TZ0tQO3cOqzVYKq+pmqvtCdFTqr98kEt2rIeZqav5O3XQwub9R1N7eDde0+/IdWlyK3oJpRq4BU1deByyoFMzLaR7jyegrqtIKmQFX/Vi3VJP8aBT+06yJ0hxHsEbTRpwlmyaBn6/R9twtVfZianpRpgWygPNimaLe/hIyMErTzJ+ALqO9mmh5wF90zQGi6gDVMi/d0PLoS0s0t4C6HiIxV1VE9HY+MjKmFXTz0CVVdplI4I2MGRG5BZWR0Lpale/oXMjI6EtlAZWR0KNT8bTcjY6ZFj4/iE5HtReQxEZksIqOCa0eIyLMi8pSIbFJ0j4yMjIyMGQ+d0IIah+n4bPp5mIgsg5ncuCxmMcbbRWSJbhrOmpGRkZHRw+jxFpSqPqGqT0UubQVcraqf2DH/z2IWI83IyMjImAnQ4waqBPPRPFt6AvH/5CAiY0RkrIiMpfm/KhkZGRkZ0ym6xcUnIrdj/job4qiSRSpj85GiY+JV9ULMX1EzMjIyMmYQdIuBUtXRbdAmYP626TA/aasYZ2RkZGTMAOhkF9+NwE4i0l9EFsbMmE5ZJDIjIyMjYwZAjxsoEdlGRCYAawA3i8itMGXZoWuBx4E/A/vnEXwZGRkZMw9muKWOMjIyMjJmDPR4CyojIyMjIyOGbKAyMjIyMjoS2UBlZGRkZHQksoHKyMjIyOhIZAOVkZGRkdGRyAYqIyMjI6MjkQ1URkZGRkZHIhuojIyMjIyORDZQGRkZGRkdiWygMjIyMjI6EtlAZWRkZGR0JDraQInIAiJyl4g8ISKPichBPR2njIyMjIzuQUcvFisi8wLzquqDIjIY+Dewtao+3sNRy8jIyMjoYnR0C0pVJ6rqg/b4feAJCn77npGRkZExY6GjDZQPERkJrAzc17MxycjIyMjoDkwXBkpEBgG/Bw5W1fci18eIyFi7jev+GGZkZGRkTGt0dB8UgIj0BW4CblXVsxLkx6rqqK6PWUZGRkZGV6KjW1AiIsCvgCdSjFNGRkZGxoyDjjZQwFrAbsAGIvKw3Tbr6UhlZGRkZHQ9+vR0BMqgqvcA0tPxyMjIyMjofnR6CyojIyMjYyZFNlAJEJHlRKR/N+laUEQ6e+RKRkZGRjdgpjJQInKeiHytDeqjwA9r6BksIre2oQdgHnuPWq5NEdlAROZpU2ctiEgvsajB6WtHZHY5RGSgiGwnIkO6Sd9CIrJqd+hqF/Z19ambrzJmHojIr0Vkg5qcRUVk4a6K00xjoERkILA/cGSbt1ihhuxwYGMRURGZI5UkIr2BG+3poDqRA+4AXq1DEJFNReQUEVmwpq4vgMnAL2tw/gF8WlMPIrKziNwpInPWoH0buA54U0TWrqFrF/vO9qoZzRuB+2tyEJFZ2uDMJiLfqVk56I15X58BB9fUt4mI7CkiQ2vyhorIMjU5y4rIf0Xk3hqcXiIyQkTmFJH5a/KuE5F1a8ZxLxH5h03TVM6sIvKsiMxaU1c/EfmdiKzWTZW7PTHlSB08CzwnIuvVVSYiB4nIt0qFVHWG2oCxBeF7Ago8VPN+F1veCzU4y1iO2/ol8hbyOIvW0Pcjx6vBWS6I4yyJvB97nCdr6PN1bZfIGeVxxgK9Enkne7wftRnHkTV4Ey1n9hqcXS3nPaBPm3FcIJEzMuCtnsgb7nGOSI2jH892ODXz8c5t8o5vM44ftaFrlTa+s17AVR5vciJPrPzNwO5tpv8fa3Ae9HgL1+BtlpKOM00LCnA1wJVSWzW2lrq3PR1Ro9Yatn5GJvLGe8ebiUjl+xGRY4FjvPPZEnXNbfeT7T615nSEd7ykXYIqBWO94+sSOYt7x6sAYxJ5fmvrmEIpDyLSLwhKms5gW0HD7ek7KRyLK+x+MPCZiKyeoCvsBz0gUVfY+tk1kTfaO14xhWDdq+qd75LImyM4nysphpDckvHu3Qs4zjtPSkfrth9YVx/Nef/aRM7SwE6++kTeAna/GXBZqudBRBYBJtnTrRI5gzHLzzkktbJFZADGgLrzwvw4Uxgou1TST7ygtxOp7uWOwQzJT3VZuPUCNwaeBip9tCLiD/l/AzgH2DBB1wne8VPAu4lx3MLuF7P75asIBYXG4Qm8vlbPTxPj5uDSe2u7H5GgS4DvRPRXYfPwVgkcMGnu6xpZRShIx5RfySwWnH+eoEtoLiAhvVBfDeMS/zawo4gsl8DZJzjfOirlwcbx50Fwqtv5SOBj716h/hg2sfsfAs8A5ybGceMg7LuJcfSxuYgslCDXbh+2c+G+afd7JPL+S33j64zhaOAGYMsqgk3HHwTBSxcS6jQBp4eNiIsPuA3TnNyERnN0o4R7XW5l+9j9S3Wayvb4YuCQBM5plrcTpk9Dgb1rNMt3w7T2lApXGKbWo5i1Dd09vkjQ5dyCWwC3k+jq8OIoNp4KDE3gnQsciBk4osDLCRzngpnd0z1vAu9+rPsX+K3l9a/g9LZyfwB2tMdPJeh60squjqkYKHBjAm8P4GpgJUzr6T8JnKFe+vfHFOi/TszHbwGL2Pd2DQkuI+BMq2sbT++gCs6Onux8wMPAvgm6BgTfmgKnJPC+AfzTHt+TmIdH2/u/A8xeI+8v4D2b2y6p8c0sAhwCvJbAmSVIj3OA7ye+a1c+urJhWALnF14cv2aPS93VwLxW7lJgmD0+tlA+JfLT00bcQIWZuFbBGvAWq+D0t3K72vOHEnXd6+laAvg7cFJiHK/3zh8Gtq/grIvXF1QjPZ715VJ4QD8r94E9dz7y0goCMKuV28Oen23PJfWdeef7JzzbjZh/jQHsYHnrVnCWxetX8PJIVQUhFsfSZ6NhaK60584AjEiI45vAaHs+JjEdR/lymH7O4xPS8XpMq1IwCzwrsEIF5yArt5L3LlLy46aYVuQoe/4T4LAKzmxW1/H2fBd73ruC5/KEy48/T+Qda+V2p1GheTrh2f4CvGKP+9vnHFzBWdDefzd7fkZiOg7CDHzqRaMyfnpiOqo9d4btsgreWVbuL/b8Fnse7acvjfj0uFFsoH5ij1chKCAK7rNx8AJWsue3VvDODwqfByxvjgrebdgC0p7vDrwMDCjh/MDeewEv7AQqBgbYwuaeIH0UWLOE4zKuhrwKXUsSDDCxvOhgFk9mJ/tRDrTnh5DQ8gJeADYL0kMpqdkBQzAjDBcL4nh+ha6ngvRwhn+HCt7LAe9gy5uzhOPufZ8939Ker12ha0PgTu98LstbsYL3aBDHPYHLKziL23uvYs97A6/7+bqAdwBeixXTci7NV947es873x5b8JVw3He9rRfHlHz8XeDn3rkroEdV8NygIleJuTZBl6vkbhM8658reCsBj3nn51blfSv3fPCuXWuorMK0MqYrYuEgjm8lvDPFVqxcehTl/Rm+D0pEFsP4qE8FUNV/Y/veRGTfEqrzLy9k94/YfdUghLlp/meVG4SwWgVvKDDBO/8rpjlcNuT5DLt/3Qv7Hw3fcBGOwaxz6OCGv65Rwhls9+d5YQvBlGHMRdgVsxq9j69RPSR+NHCAqrqO27Pt/o0KHoD/x+Vn7H7REvn5MbXaZ72wozAj7MrwKMYNHOoq7CuzPvjPae7PPBvz7ssG79xt965D2fUrhf1SIb6Cl9aq6tLv4ZI49sIYMr8D/CVgN9ufW4Qd7P4Zq+sLjLt0yYo4LoqpeX9izw/BTBEofGfegKXnveCbgFVFZFiJLjcY5jkvjmOpHuCyJvCKO1Hz2587gPVL4jgLZmrLnqr6kQ0+zF4rGxLv5iL9LwirGtw1hub+RfftfFYSR8EM4rrMC/7A7sve9ZzAo6r6fBD+UUzYwx3Atar6sj3fG5hLVaPjAqaZgbJzEb4rIseIyLF2dFknYHlMrWpKwabWdNMo4GPYwsq+6HFWpZHBW2AL6q/TPN/nErs/riKec9Fc+L5o91+UcJ63cfvYC0sxUAB3ugP78VwOLFUi7wyzP5hjot1/r4S3HHBXEPYKxv8chS0Ev4opFF0cy9LB8dbAuDne9IKvwvQzlD3bIxhXmI/XaYx0LEJvTOeww0SMISkbgTYCU0N+0gXYvPUGJWmCLRxV1RX+EzGVhQsqRnvujveuE7EaZmTio16Ym5tUNphmTuBQbf5n2wTglAp9B2Pe9/+3d6bRdhVVAv42BGgMgQAJUxgCAmoEGUSgkUkGhTQSBVvi0mZqG0HslhZlaKSXC5ulOKALGlREBSMCImAwMigo2AKJJpFAZErCIEMIQVCZgsTs/lG73qt7btUZHo93z3upb6277r11zz5nnzp1a9i1axcAqvoqMAc3akwxFtfx7Ov4WWdmNm4kkcJ7mi0K0o6mvyx3ISITcCP6YoflJvo9OGMchvvf9HXQrEK/g/JGe3vgh6oaOrc8Q38nMcUJONOgp/I/Q38enxWk3WrvZfc2ns7/GbjO0OORY0M2xbn4A6Cqz6tq8Tx9DOYIajouE3+N6/3fNhgntcWkD9hCt0qPsQgT6XTfDol6ygS9s2sLPy3GjWpSeM8j35NEVb9lH/dICZn7akfFapWWXweRYks6ez7gGqj9U+6ltljwJbq91ibT7YEV4jscpwY6+p5ZWUM/Dni6kPY88HYROSIhcwauIi9WGl+ALo/HEO8x5nuAvmGbRZmnUJzlwLGpJQnmlr5P4VqKGzGUeTNtDSwIOkmeObgOUOxaq+Eqi+KixkuB1YCTE3JjcBPYNxd+ej+dI48iF0Nnp0BVn8f1frctkTuZbs/CaU6V+EJOEfEVdXHpwXdxa5xSXIkzf79SSH8Yd88p3gx81e7H8xLwlpJlJOvh7uvCQvpSyj1LN8FNLRQr4NF0P5OQzehe+P08MCk1OrQyspzOhdi/wDXiT8RkjJ2An6nqQz5BVVfg6vEy9/u3EHSyjIXAbhXenhNwJu5aDGYD9YiqXq6qt/nXaz2hjUguwPWuJgEfaro6HWeGejSSfjrwARFZJ/KbH9oeXkhfAowrMWmthbMBP1VI3wG613oEePfVFwrpsZ49di7vElqsrP3I69nEtXYF5hVGXeAmnGPrgTzr4Jw2ir3IqugQxZEhuD8bpM1T/t6K+ejXTqR6dmOBEyKV/1wS5ssgH/cs/OTNhKmR14dxef2bQvr9wNtEJCV3IYFbdMDjpNfL+XKzIkwMetgnEGfn4Nwht1G+ZiVa5nA9+0tiP1hjCIWKNfgvFEfRHv8si272MykfZRyYSB9Hd0MSsgvdbve+PKYq1rWAuUGHzPMcMLUkQsR/ETfLvRxJA/qsB8fTbQL3ZvwPEmcDYGmhU/FL3Khr/RKT4jq4zlGRiykvI/sAd4cJqroE93+IhkuyNZpCtem8j8FsoNYTkTkiMs1e368WqWRXYKGqPqSqf8O52NZaRBawNfEGyttKY+aADYCHixWdqi7HFcqUKWYikQKpqnfjvPK6eshBr+1rkYr1CformSIT7L3jj62qL9BpvigyGdc7KjIXeIV0pTCW+Kh4CvEC7ok1UH6t1j8kZPw9Ff+kfm5vAnG2o7+yCZlPeg5qM2CRqt4eJqrqLFyvfouolCtXPw7mFjw+L/ZNyE0ift+P4DzKYngdfhL57T9xjjgxbgX+FqlY/wysVjKfdDtx/Q8BkHiMw7G4ZRi3R34rY2fgIvtvhTwLbBbrQEYWLIcke/0isiNubrOjwQ7M/3d3CTmOJD6H7DuHqR281yHeMB9u+hwd+e1AO2/HCEtVX8TNzW0TkQFn2Sl26Hyd9X+kTbNn0D8HHfI08OGY+djm1vYlWGwbMJ10R2sX3ECmzCrUwWA2UMfibK6ftVetFfwVTKBzovBxIpWTiBwnIrNFZDaB/d8y90XiNvgX7T1mp92B7uGrZw7pyufHpCcW7yLeQ/M9+JiZRoG9zNGjyJHA/IT99rKEDuAaoK5YZ1ZoZiR0BNfTjTk2LMKZ67pGlSLyRdzz6BjNWSP6MSLmUgmCrhYrVvuz/YR0A7VH4relwIYJE869pBuvR+lf1Fkk1vASNFhdI8vgz35Q5HyXAW9ILOI90c4dGxXvRrpX/QidC7m9joord19NyG1C3Czk7zcWl3I/LNBxhM9AMvbg7sQ7TN6aEGs0fKcyNkf4JLAsMarxz/mPkd/KOD6RfgOuw3px8YfAGaYrakrgIBAzcQswI5wzD/g98O+JhedvJj2P9hcizlZWHkfhlgMU8R2tWAdtOvQ1mkUeI10eDwN+mvgtymA2UPtEXq+VWIXS1fqq6kWquouq7kJQaajqClU9IvHHnobrJcQmHjckXYin4XoynYq6OZ/V6TYLep4kbpo63HSN9Sq8KSBWaZ1JujE5h7gZCdxEdsr8Nz92TuvFbk1kAtRP2tMfmSLkY8DLkd4xpOfzfKVzdkLHJ4h3UrwTR6xXtwT3rGMeV2UeiCuAYxI29a1Jl5HziXdU/PxA1x/bGuNZuAq7yNFEesfGTZA0zT6GGw3FuINIOCcRuQI3txmbJ/AVYKzDdwluPiyGr2diJqMtiJTH4P8QiygxAfhprBI3uaeJWx5Owc0/xZ7bRtDnEBFj78i1XsJVuLEO5D/h3LvLTOAxj7c9SUe68Z3mjobNnv00Op1aQg7AueDHdERV7yz+YHn7MJ2hzTyLCRwdCjwHTAhM517H9XEdrVsTclEGs4ESe62CG4HUCdNTxeN0eqRtSoMJtjKs4FxP/A+wNWk76XW4EUOxUPqeatfDNu4lPgn+2RI1vZNGygkh5Sa/DFgj4d21DWlX7fnA4RG5G3FrVMpCRMXMT/eSHoE8hYs3+M5C+nLgJVVN5Uu0gcJMKar6h+IPNul7NXBL5HrTcT27GN5Dr8O8Y/nzDiIjUWMT+t3iQ7Y1fVImjpmkXf2jUZ9V9RJcPnfModloZS/SLsYXAJsWKxKs8ouYLr236Ezcmr0m+BF9R0fL5ul2Iz0n8wk7rmgSnYi5iSfYnPiobFecGbsLmz95lELMwaDhT0Wrn5VIP6VEP/970XkIXOcgdU5vLSmORMfj/jep/8yhxEfEsTIaMpZ4uRtDujH0MT2LnWpf95VNB3QxaA2Uql5qr0tU9WRqBg6s4HfANiKypRUUHwZosFhOYcsIEdkWN0IqTpoDHcPaosfbX4GrY39s42bgXRFvpqeJjz58RbYc2DM0T4mIj2X1vYTcClxnoaNhE5G9caPDlAfXzbjCPimQ2RbXq78+IQOWF5FGe3PSo4z59v7xQvpoOl1li7wAnCrdQXFTc3Ue/6fva2ysVzeFhGuszad8kW5PrXNxq/pTI9EZdv7iKOox0s4CEHGKsee+FDdHmGIS3cF+/TNMVSSX4+JE7ltIX0ba6QKcWbCjjIuI95CMbm2iqk/g9N+hYGb15qPUXOSFuDnFokn0LMpjTnaVn2DeKtpAGT+nu8P6Q4CIt6DnG3b+opdo1TYvj1IwiVrH5wCc6bALG2VfiVumEDIFN1pLxWZ8EjeqKZpgZ+FCj6XY3vTqc8Sy5/c+EnH7zEljDt2erBsA1yZMl0kGcx3U50XkLHt9ezDObRn+CZwZ4z7cAq+uHvJrYHVwa7iCtLfiTDtl0ayvJ3C3Nk6mZL1J0HD1VVA2b7MH5S6nfiQa9kiOsXMmF+AZRVPkZFwo/WiPVVX/jKtIwhGKj7JdtrbHdxr6AvKanXxDEiNe0+Gf6S7ob6bbmzHEj+L6AvAGlU/ZGp377D00hR2IM1cUvbpCYmu2Sl3Wg1FNMUjwEZSvCVpKd8fuQFynIWXiA+c8VPx9C2B6wZ061FFx9913PRt1CXBRybWW0G2q9g1Mcj0LrgPxPToj0t9o79FFw6bjDwjKo5Wr0aQtFeA6ssXRvp9yiI30PbE1hCmTfagjxNcClgV8vZ9uD9ELcHEdUvbLAAAOn0lEQVQLy0aHi+gOFlAMtFvEdxKLfgGpuUagr2NRtFj4Ru7Gbok+vkZ3vp1K+VrEpBKv6YUreKNxBeAIXCV9I7Dpaz33APUpDaFTONbv27R/kPYT4IoKue0oBI6180ypkDuIzpAiY4E/V8jsa+f2sat8aJbSYJrA1+24jez7atQL6fIUzvPLfz/S5E4rkVmzeG6cGeaPFdfaBXgs+O7j7x1bIuNj+T0YpF1V4758vp0ZpJ0dfk/InWhyqwbnebZG/ivOVOm/+4C365XIbEUQKsjSPkV1yKV3AHMKabcBl1fIfQe4Kvi+Lc5rtkxmPK7y3zRI28P0ToahwlVQCpwXpL1IRQBa4EvA4uD7dlTsQ0Z//MeLCs+jqoycbsdNtO9vrCmnBOHFcKMnBT5dIuMD3R4RpE0DfldxrVNMzocA8zEa65RHDb4LrvHZqkLuJoJ6zfLojgqZsbhRtgRp1wAfKJOLnqupQESZ27HgmLgh8lScR09pzLrX60WDBsqO/xEw1T77eHPvrZDZxI7b3r6PxtnRqwJwrgksC75Ppzp2VV+sMPv8FSoqukD2Hl8B4OYB6vzZ/mjHjbLvJ+DMl2VxuSQ8N64xXFjjzya40dLa9t1HS9++Qs7nh4Tfa+THp3Hu/OAagxk1/tg+dpuPL3egfZ9cR8egXF0V6lxTzsd7+0iFjG/8xtv3de37zyrkziPoWOEWx9bJx8uB4+2z7+TNrJDxUawvDfJEgQ0q5KaF5R1nXiotV7EyYd+XV8gcHeZb8P2dFXL/hhuhj49du+azXsu+n10hs58dt61990FsSzcLxC3q9tcS3FKDOuXxQuCTqXxNyBTrgy3s+95VedJ1rqYCEWV+Ze/rE4T/9+lD/aJ5A/UV4Mv2ec+aBcv3fl6271vh/PvrXE9xduuOh1gh43etHG+ylTIm95jJjcNVxkp1IFMfqHIT3NBegd/WvC+1z77iqyyQOBPbR8P8oDqw7rrBsRPt/fM1rnUocEOoLxY0tELuaqz3F8htUyGzf3Dsx+tUPiZ3gh07BjcXoQRBQyvy/wL7PM++r1YhU6xI6pbHo7Bgw/TvTPvJhtfyI/OqCtKXx5sa6uijlPttV/5e45mFZdB3DK+vca0t7dgHabYVR5gfPvL79ypkVgnLu/136jT0fqR1BM75qq6OCwIdbzS5pIWjeG+Wj0fV0TF6nqYCEUVm4OZELsLMJbjeUWmP6vV60byB8hHBazcYJhdux9xETnF2fF9g5taQ+Y/gOp+j5jbmgYyvLCv3wDK5ubio758xuZNqyIyxY784gPwIX6Xh+hNypWapQGYibjT48UC2TgN1Jc7z0Y9obqshs3FwjY/Ze+lWECbnt9E4KJBfu4bcmXasb+BeqJknN9CZl+NryKxL93Mr3XbC5BYUZL7d4FnfhZvXqFuxbh9cx5u716wht8SOPavBtVYJruVHfHfVkPM7K4R7RtXZO84f27XDQInMGnQ/szpyu9qx5wdypfukFXT0W7u/UudZd51nIEIFRcbg7PTH0G8W2hw49LWee4D6NG2gvN3/8roPzeRG0/mwKzdKKzw4//raAORKe6uBzL64dQe1K5GEjqV7YKXkBnit0QOQe7XB876nIFvHVPpwcPyfqBiZmMyownWW4qI2V8l1VSQ17+vMgtzmNeXGNL1WJP9frilzY0HusppyUwpydToVsQq5dLRmcpsWZOpu+De5ILdZTblQ5h01Zfx88gP2/kwNGcE504TXO6rm9c6jYRnBRd1/IZA7p27Z6jjPQITa/KJhAxUpJOfXlJGCXHIvn5JrKWaCqCH3m0Dm9Ab3dpHJrGggszy41nMDzMepNWVOpWHhN7k3BXKPNJCbMYBr+R1sa5cPk9uC/hHKjxrIvTW4t8pGzWRWxS28bHRvJrvQ5B4e4LNeWlPmqIJcXUtA2Nhv10DHmSZzJ/DRBnJ+FFW6/1XJM2tStrxM6Vx0Rf7XrUO2LsiVbqwZyB0SyBzcQMfFAymPHecYqGBbXwysgVqFfjNMbe9DOhupyt5ZpGCVzrWUyNaq/E1mN5Mp3ewsIrcjJZslJmTWwkVHju6OWSL3pwFWrH8xuYkNZM4byLWC513rTx3IrIlbS7P7AJ51pfk3VUYGKDevwfF7BuWxiZzfPffgJnmJm1NqWq4m4MxopRv2ReQ2Mh0rtz0vyO1tcqVewAWZnag52irIbY/bS+nchnK+IW2S937OXanYwTlSppQaI97Uy3tBjRhEZLa6kEdDdb19SMfEix3/FVyYmUfVbZ7Y5FqK22+nbHuLmNzquEqrat1Uz7B721FV51Ue3C+zOc68l9zLJyKzCq4n+QZVTW7a12tE5GDciCYVEzIldyRu6UKjBe0i8nXc3Fpxi5kymTtwI/SfqerSquNNZmPgSVVNbW3RCkRknDZcVGpyChyuqte8DmoNCiKylrp4mE1kRBs2FiIyA9fJPaCRguE5cgM1fLDC/y5VvbXXugw2IrJ+3UY+k2krInIK8C1VLYt0sVLgQ6api2wzsHPkBiqTyWQybWQwg8VmMplMJjNo5AYqk8lkMq0kN1CZTCaTaSWtbaBE5Msicr+I3C0i14pI11bqmUwmkxm5tLaBwu3psp2qvg0X4yq2s2Mmk8lkRiitbaBU9efavwHXTFwIkkwmk8msJLS2gSpwLIldJgFE5DgRmS0is0nvzpnJZDKZYURP10GJyM10784JcIaqTrdjzsBtbHdY05XMmUwmkxm+tHqhrogcBRyP2/H2parjM5lMJjNyGNVrBVKIyEG4SNf75MYpk8lkVj5aO4ISkYW4PV18fLaZqnp8D1XKZDKZzBDS2gZqMBGR+cCyXuvRkHG4XVyHE1nnoSHrPDQMR51heOr9jKoeVExsrYlvkFk23ALIDsegt1nnoSHrPDQMR51h+OodY7i4mWcymUxmJSM3UJlMJpNpJStLA3VRrxUYAFnnoSHrPDRknYeO4ap3FyuFk0Qmk8lkhh8rywgqk8lkMsOM3EBlMplMppWM6AZKRA4SkQdEZKGInNZrfTwispmI/EpE7hORP4jIJy39cyLyhIjcZa/Jgczpdh8PiMh7eqT3IyJyj+k229LWE5FfiMgCe1/X0kVEzjOd7xaRnXug75uCvLxLRP4qIie1MZ9F5Lsi8rSt2fNpjfNWRI6y4xdYqLCh1jm6j5uITBSRl4M8/2Yg83YrVwvtvmSIdW5cHoaybknofGWg7yMicpeltyKfBw1VHZEvYFVgEbAVsDowD5jUa71Mt42Bne3zGNx+V5OAzwGfjhw/yfRfA9jS7mvVHuj9CDCukPYl4DT7fBpwjn2ejItAL8DuwKwWlIengC3amM/A3sDOwPyB5i2wHvCQva9rn9cdYp3fDYyyz+cEOk8Mjyuc57fAP9r93AAcPMQ6NyoPQ123xHQu/P5V4L/blM+D9RrJI6hdgYWq+pCq/g24ApjSY50AUNXFqjrXPj8P3AdMKBGZAlyhqq+o6sPAQtz9tYEpwKX2+VLgfUH699UxExgrIhv3QkFjf2CRqj5ackzP8llVfw08G9GnSd6+B/iFqj6rqs/hNv3sWp3/euqsDfdxM73XVtU71dWi36f/PgedRD6nSJWHIa1bynS2UdAHgcvLzjHU+TxYjOQGagLwWPD9ccobgZ4gIhOBnYBZlvQJM49815t0aM+9KPBzEZkjIsdZ2oaquhhcwwtsYOlt0dkzlc4/cZvz2dM0b9umf3Efty1F5PcicpuI7GVpE3B6enqlc5Py0KZ83gtYoqoLgrQ253MjRnIDFbOvtsqnXkTWAq4GTlLVvwLfAN4I7Agsxg3doT338k5V3Rk4GDhRRPYuObYtOiMiqwOHAldZUtvzuYqUnq3RX9w+bsuByyxpMbC5qu4EfAr4oYisTTt0bloe2qCz50N0drzanM+NGckN1OPAZsH3TYEne6RLFyKyGq5xukxVrwFQ1SWq+ndVXQF8m37zUivuRVWftPengWtx+i3xpjt7f9oOb4XOxsHAXFVdAu3P54CmedsK/c054xDgw2ZOwsxkf7LPc3BzONvidA7NgEOu8wDKQ1vyeRRwGHClT2tzPg+EkdxA/Q7YRkS2tB70VOC6HusE9NmNvwPcp6rnBunhHM37Ae+1cx0wVUTWEJEtgW1wE55DhoiMFpEx/jNuMny+6ea9xY4Cpgc6H2keZ7sDf/Hmqh7Q0ctscz4XaJq3NwHvFpF1zUz1bksbMqR/H7dDNdjHTUTGi8iq9nkrXN4+ZHo/LyK72//iSPrvc6h0bloe2lK3HADcr6p9prs25/OA6LWXxuv5wnk7PYjrRZzRa30CvfbEDa/vBu6y12RgGnCPpV8HbBzInGH38QA98L7BeSzNs9cffH4C6wO3AAvsfT1LF+AC0/keYJce5fUbcHuKrROktS6fcQ3oYuBVXG/3XweSt7h5n4X2OqYHOi/Ezc/4cv1NO/ZwKzfzgLnAe4Pz7IJrFBYB/4tFuBlCnRuXh6GsW2I6W/olwPGFY1uRz4P1yqGOMplMJtNKRrKJL5PJZDLDmNxAZTKZTKaV5AYqk8lkMq0kN1CZTCaTaSW5gcpkMplMK8kNVCbTIiwa9X4ispFFY8hkVlpyA5XJtIuJwH6q+pSqnt1rZTKZXpIbqEymXRwH/IuI3CIiPwAQkTtF5HwRmSciU0XkGgtsuoP9foiI/FpE7rBIDpnMiCAv1M1kWoSI7IsLYXMx8D+q+hEReRAXtXpVXHSAibj9gaYCJwG/NJlVgBtUdf+h1zyTGXxG9VqBTCZTyVK1QLciskhVl4nIk7hNCccBbwFutmM3EBHR3PPMjAByA5XJtItXcSOlEE18FuAZXBy596jq30Vktdw4ZUYKuYHKZNrFfOALuOC8r1YdrKorRORc4BYRUeBe4MTXV8VMZmjIc1CZTCaTaSXZiy+TyWQyrSQ3UJlMJpNpJbmBymQymUwryQ1UJpPJZFpJbqAymUwm00pyA5XJZDKZVpIbqEwmk8m0kv8HCuBfCArAmh0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd9gdRfXHPyc9lIQSCBBKqKFKSUSaJvTei/QiEARU5CcISBMpgoUiItIR6SIKIr0pHQMCUgyQgBh6EQi9nd8fM5M779zZ3dmbt9w3zPd55tnd2XP2zM7OzJk5c2ZWVJWMjIyMjIx2Q5+eTkBGRkZGRkYMWUFlZGRkZLQlsoLKyMjIyGhLZAWVkZGRkdGWyAoqIyMjI6MtkRVURkZGRkZboi0VlIicLyKvicjjXtwcInKLiDxjj7P3ZBozMjIyMroWbamggAuBDYK4Q4HbVHVx4DZ7nZGRkZExg0LadaGuiIwErlPVZe31RGCcqr4sIvMCd6rqqB5MYkZGRkZGF6JdR1AxDFfVlwHsce4iQhEZLyITbHi8iC4jIyMjo33RmxRUMlT1bFUdo6pjgI96Oj0ZGRkZGfXRmxTUq9a0hz2+1sPpycjIyMjoQvQmBXUtsJs93w24pgfTkpGRkZHRxWhLBSUilwH3AaNEZIqI7AmcCKwrIs8A69rrjIyMjIwZFG3rxddZEJEJdi4qIyMjI6MXoS1HUBkZGRkZGVlBZWRktBVEZFYRGdDT6cjoeWQFlZGR0W54HfhdTycio+eRFVRGr4OIDG+BZ6CIbNwV6ekMiMhXRKRvT6ejTTAQWKqrhYjIBiLy9a6Wk9E6soKaDojIaSIyuBvknCMih3S1nO6EiCwlItIi+ysicqaIDKnBszNwXYvykiEiA0RkUAusjwLb15Q10K0NbFeIyOwi8mQrrJ2emGbcQF6u0tbICqpF2Mb1e8DlXSxnZmAvYJsE2ktF5CR7PkBE1u/KtE0nngT+Ph3838YsN0jFbKmEIrKWiDxUN0EiMgV4E3imLq9FUhpFZLCIKGYpxkt1hYjIWBFZsQW+ZUUkuc2wdWRdumE0VBciMrCn09BVEJHDROS33SRrdxHZvauenxVUTYhIf9s4ODPTw10s0sm5PYF2B2AvEXkROAu4sY4gEdlNRB4XkZlq8i1dp+HysIbNz2TTViDn/USeeYGj7XnK5PsmwEqhXBEZWsE3ApgFmD8lXd6z3funOgbsbI+tNvx3Av+owyAihwL/AjaqwTYOuMLyF+6dGcj5jj3t6vUvrl516UhNDL4biT9GRFap4O0jIpuLyN41xZ4A7CMi29j9SF9ITOtuIrJjTVkXABdMhzWkHKo6QwdgQsm9EcA6NZ+3N6by7G+Pmsg3FFi8pqxDgVudHKB/Bb0C73r0SWnz+C+xfL/ETFSPr6A/FjjYk/fNGrIczyTg0kSeOYDlPN6xiXzf93iGJ9Cfbmmv8uL2K8tPTEOnXjiphbz4cU36t+zxamCLGvK+aKFs+O+2WCLPZh7P4Yk8H3o8peUv4BsF/AL4MXAV8LsK+gWsjI+BTbFrQhNlHWN5rwC2qaCdxdVdTKdxNi8/f1PBu5uXF6cDC7bwrVyofD/MvqW12o1AxqI1+AYCtwCDgAsL6eoU0t4YKFdQLmPXAs5q9eMn8l1h6T8F9q+g3RlYISJrV0qUlKX5IOAZUFU4beM6a0Tep3XzAli2gqcvMDbgeS4h/+6MyBqXmPcHejxLJtCf4dEfA6yB6ZUWfmvMaCFM30YJsoZ79M8DU6hQosBUryw53hsSZC0HzOTxlHZ4LM/mGNOj/16nJvAtAvyfx3MoZo5tWAXfex7Pwwly+tr6G+b95xV8i1q6Z+xxREpZipT7mypo57N0c9rjujQ6M79ooX7dX0LfD1iwgG9Qwnu96NHPmVg+fBl/snVtcAXPAh7P1+1xnhhtoVlGRAaJyP4icpmI3GjnN/bvDqeAHsDvgPEi8r6IrFNBe36dB4vICHs6nz32w/TYyvB74J+R+N8BB1Twht/nY2CnCp4vMCMvMCMnh1Z2gl+5aOLemrIOxygbH/OUPdA6iIyN3IqaxERkqIjs70X5/w1L+ROz/9yjgB8Cn1fwzByJ+2uCLFcu7gEWwozqTy8iFpGVMb3ytzFlyeGTBFmP0dEsmuIN+WfMCDSWljKz7iTMSBxMWV4EuAxrai2Bn48risiSFfSbYX5gGqLqe7lv7N5h8Qp6wJj4g6iquSxnFj7OPQJwzj2aIjPA10ruPQr8p+DeNxOe7df3N4DjUxNlsQVwMvCBiHy7hO4g7/zvwCRVfSVKWaLlrgTGYzTyUHvcG/hDak+jHQLlI6hHae5pHF9AKzSbcSpHUDF64JaaPFNS5BXIcmHhRL7+3nlhb61A3pOU9HwxTiVF6VsSGFjzvW4iYmKhYX4V4CF7foClXz+hzFwcfi+M6agp7zEjJ8E4sfwJM7eTVDYs/1oYx4rtPb6jS+j/TGO05ZtzL0yQFebfKhX0M0V4FNPYbl6jLF7lnV9QQL8esGeBvLlL5OxYUj4KLQfA8iF9Qv7NQaPH78IXFTwXWLqT7fFbAX/haKPsvYCla9b/sm81GjPnGuP7es0yVSgP2ArT2Xk1OW0lgv9eJ767AuZX8BOBZ4FDE+ibFBSwJmakMSUlYy3PIzTmg0736N8HVq75AR8EVgVGRuh/EqGf5J2XDfFDvne8820j9HNhvMA6vHvwjAEFsv7g0fzKHp+wx39F6AdF0neud36SPW4Q8EU7Bf63i8g6xN77q0e/h5fmb5Tk4YIBn2LMQEcWyFKMSVYxDfHggLfK3LEN8EdgY4/n5wW0/rMfs8cXMb1QBd4skTO2IB+XKeF5p4BHMZ1XV176YE00dOzguHCIdz7ZHvsHsp7waM4N+Mvq1y6W5tqI3MK5TeCrGOuCT79LCX1ROVRK5pZLeFw4DlgCGBPhfQUzsgt5Vikpi0qB0i5I3200yngsfWcAO0f45sGMmO4oebddA56nC+ieKcy/kow9DrjUFoDN7PFi4ISyCteVAWNvnoQxFwzAjICaehIBz4TgOixoF8U+JLChlTcwkqHDUj6+V2gmRZ7RxFdQCbahY+Nyg/fcqzDmgoE27sOA92bv/F5gk6rK41X679q4jQOeARjF5vM5u/cj9vgJMFPAt2xE3ncjcQcGfH7jdqI9PonxKFPgkUieH23vuUb8Gfstz7PX+yU2KK4xfQmroIAFPNowH66JfMM/B88fDAy1564xf4LGPMpjFEyeAyO9597l5f3mXvwSEb7YSGgN73ynhLxQzPzJGUFcP2B3r+zMG9z/ii0zTXUoqNf+PZev/7PHNQvS930a83A7AmMizzqugHd1jFnV72gdC5wCLBfUyT50rPNvYcxf7nozS7sJwYgj8t6x8ILLPy9tG2Lmk2eJ0K/p01ueJbz7SxbIWaTkG/vKemyEd76CeunanENiMgOe14P7n2A6d4VteJVCWAaz3uQweyydAO/qgBl13ORdHwYcVsETKqjrg0xyPdddvLj97PHCokzHzGUsSuRDeLJG2/tD7fH8ig/4o6L7mHmQ14C7vYL1OUZJ34dpKFxlvcMeHw+e92hB4XyrID2xuPAdBtGYAH7Iix8f8C1NowF2NFtF8vdKjyec8BVbBgZ67zbB0s5V0Cgciu2tA6fauN2wjXZJhV2GRmP7OmaU43//r0XSfo33jJ/b4y+C51+HcXIYipmbcbxOYVxqjydgzH4LFryX87gcSOAkUPJOfugXXA8MeNYJ7m9i40O+ubDl1t4PTWd9CtKwhCerwyjBxg2kYc6MeihiG3aXf178JbacxMrvAhjHl9swc6Fbe8/4oT0e4dG7+6PpmP4xmPbnSOBM7x1f93idor2C5vff3zt/3nvvcAQudFQ+He55sr7if8sC+q0TysY8wXu7cD2exYeO3rsKrFvwvK+XyPqgss1PVAzJHi5dGTCjiXO9612AX1fwhAqqg/3Txrnfjixs491w943Yhy74wH28uJmA1TA9BFfIFLOG5OXgecM9Pqdg9rDHiwJZK2CVTCRdJ2MUmGKcIsbS3Ig+gVEoW2CG6H4eFL5bEHdPJP+c+c5vcH8Q8I3BjHqW8mhG2uMyXtz9Hs9JXvyxwfPOsvG3emkdhVmD5L/z7B7Pr23ceBqeROF3c3zz2bgjMCbl8J3PjHyDa+09V8mP9u65MvZShG8XWzYU2Da4d6Grg17cXtgRlL331TB9JY3QvsAKkfiRJTyDSu6pe09770kv/hCPJ5zvHefdWxOvc+PF/yESp8Boe+7PwYXpnzmW/iAN99m4++21Kx/HAH8BTsPMXSodR6nf8p63fvDMN238Opj66q7DzpjPN20ERTAq9+QsQMclForXqcCY/R7Amgoxik4wnr8+z7fLvqUXv2lwz+WRYOrrhd49KXoe8LOgbXVhLPCVyja/isA+fIorFD0ZMJU3VFCnR+jGAxNseD645w/pjw/uhT2PcEi6MrB8yQee18ZNJvjo9nxMhGcCsKqNv9rGObfe0Ly2GMZcGB1Oe2Frj2c7bA8tCNMUjaU7Hng59m72XDCV5D7vGVcG9P7o6Ac2bh7MAuJfAa/ZuFHArzw+Z8a4xR5H2fgz/DQEsvpgzCAv0lAWozGmzKYKZ3kOt/FH0GgwZqExwloA47Cg2LkjjDk5zLuJdBwtuvCXQN4PvHtLRehdWB7j5v99Gorq8yD/Xw6u96MxYpsv8szB4XcEjgnS53fWNsd0cr4WltFI3itmfsqVBTcHObiID1Omw5HA+jRGSU18dFy/trIne49IPWqaKy14ZpMsImZ+7FoxGhaDH2Hag5UDGUMLnqkYk/Ikj/ZOG7+OvQ5NxIPp2BEpynsX5vTqwl7A7RH62LTBOpjyeHx4z+ObJ7jn6nY4l3xiJH3ve/e/U5TvSW1+EpHpkb9J3GNqM+CeVIHTE+gcE59rDKOT13Qcuk6tytQg49eLxD1i417EmqG8e4d650ti5v2OpDE3sV4ga3jw7DC8Yo/bBHwXlvCcUpJ3zuSxsc1rxfTSFM+U4dG7ie47gB/ZuIcT8tC973H2eBTGlOQU1NUFfGGHwjfDnBfKw1Tk8QHPDfZ4DY0FmH7jPoLivAvDXYG8fQroXvPOzwh4NozQd/juBY3QvgHPrhglvJcXt23AV+gk5F1fF5F3F8bkE1PSSjCnEvnOsXBd+H6W/ms0LBlz2OOeQRqbTFdhPbTX4ejaxQ+keUT8diSNP0toA5SOaxj/7dHtCUwNymPI60zJTwFTKmQtZOOOLvpW9n5otSkMAd9T3j03j353wLN2wPNNGp0sxZTL1QOefmVtdofnJRMa5fASphfaH2OGehJjDiucdO7MgGm0JmOGi85JotALyfLEvPiOocAFlY7uvp8VfTyPPnSdDnss/4zwbGLv7R3Q/hz4oVcQQwVVZFt24WCMIhka8DXNfZW9k8fX1DukMXH9VIT+POA5GnM9YQU8qECOyzN/YefeNBRUmbuw/3w3f3MwZsK76f2Iz3v5YWpA3+QQE4QLvPSODXh3quC9MpK+hWhuBLZI+WYVspry0abvMBojSxd2LpOFcUToQ/McpwtHlXxrpaPp04XRNh1Nu1QENArsbePdaDe6GwwdF/0+EchbHs/5goYDjQsx5X1syTuFc9suFHpWVnyzzRPovxrENbU19v6cYRkKwjQzYMDnO1k9F+Er3NygrByW5UfTc2oRG9vje5jh/QSM+ahPnWdMb8Bo56cxGr1y+xRK1kEV0Bd5wHwn8WP45pbl8Ly+PPq+mDmqmPnIKaipeBP/CR/+cgq2oCE+X1JZWGieEPdDzJzQx77b6QU83y2RNZm440HU5boiP4ZhJo0viNCv59HFvCvDuS5n0vgFzR5qijG7FjXGmxekz4UjCvhiXm+KmeMrXFpB80S+H8aV8O1RwFNY5i1fkWvyWhXfa+0IT3QNXME3dgrVucF/tYBvUQrc6yO04dxfLBxZkkbnYfpmlayAL+bJWsgTo0vkW63ovez9xQl2+cB4CH+O6XC8EOG9rETegnTsDLqlG9FRXuFzkoiMieFEjLfXTZjewj1EGtB2C9RXUHNEPsQBFTw+7VEpBdPjPTXgL93DLaB1po9VE97pT3Uqgsd7VIyP8oW/vwpo3bqMfRLkhXJ+kEB/l0e/ZwW9b24YE5FXuIyCuMLuW0IfesKFoXD7GUwPfhm8vRgTy1NhI1TCs0OLZWNyhG/thPStid06KjF9RSPR56jY3zL4ZpMx1pOzC2gHErcauFA4Dw/8zNL8I+RLyMdwvqeQp6I87V3CFyvrqekrsjqcUcHnm6Y3x8xBzplSjl1I3YF6Esb0sLaqro+Zk3gQeEBElk58Rm/B1Ehc1Y7ls2FMBrdhKkAyVPX7GCXg8PsKlv/Q2JbI/YCvdEsiVX0L08F4GjM/5LbgSfmXUNG/jf5bwvNpcO3+uZOyddIWwXVKGb0eM7cIZr6tDO/Z42HEf4tRuLO6qn6GmVi+FONsg6qWbanztD1ea4+rYlzC3fMK80NV51fVJ2jk2fIlcqYXH3vnd9jjgQl8e3nnn2FGMrFth0JMxnTMkqCql2AciELsp6qlvzax38xhYeAcVR1fQPuxqr5T8KijVbXsFyxu2yn/vfYrS5sn9xXS8tuhaHfysv9uuW/cym9Gwjz5N8bB4wcVfK9552+r6tOq+mYtyYm9sqYFXjZ+H4xnS+X2MT0VqDmC8nopzoV1XA0+f5RSq6eAabiSdlanMU/mPMMqN0AN+AfVkHWy907TNpOs4JmNhgfkFzZuPUrMOB6vb+b7GyW7Plj6/tTbiXox++yF7HW46v4nic+ZjcArroTWOcPMYq8vAP5UoyxOS28C/ZaY3UgWpOHkUvW9BNPoKA2nkKGJ8u6oen4BXx8a89nLJdAPpOOcSOlu5QV5mFQvPdr+GO+95an+k4BborAwDUcHSSnzQTm8ipKd6TEdoxOwc6xeKJ3uwC6Ut+eO95tYj8gK3lUsvduK6oEW8r50Q4VC/laYggSsg3UfbsdAawpqFhq7U4+rwTdtK49uejc33zWyC2W4+avVMHMjC1Eyx+DxXWP5kn7N4PHN1pV5SGMeybnobmOvL6DCTDIdMp2iSFakHu89GO/M2ryWP9WM80+vAZu/xvOPIfF3KZ2Ul+tSQ2H7eWDDTAn0q9fJg0DOEth1czV53R5/v02kFxpu4tdXlQ/sAupA1syJshb2eBW73i+R92cYL8LKfI/yd1KhGdUZz+mK0IqCsnxul4iknqTlubObFZTz6pu3C2WMAy5uge/6VvMBY2arpdhqPNv9VmSQvZ4TM68qmLmRTnf6wc7jdUeZiMg+nYpfT1i6TbFLA9o91FXW9nu7ZRJd5tSFcS8XzPRH7e9t60zUZb6Afl4SN+/Gutjb8z7Aai2+4yTsrhHdEdzq9hkWIjJBVcd0k6zBGNf3xVW1S//U6clUYA5V/V93yEuFiNyKmbPslnxIhf3lx2eYhqpbCr+InIBZr9fteSEi/TDmqQ+7W3a7QEROAU5T1ee7Sd4EjENFW5X93oh+1SQZqVDVD0Wk6j80nY1ua2hrIvX35d0KNU4N3d1wPNrN8qZBjZPAZ5WEMzBUtY4DQmfgvxiX/4zpRFZQnY+TMWupugVtqpzATIB/pacT0Q5Q1SswG4ZmfDmwM8ZpImM6kU18GRkZGRltidR1UBkZGRkZGd2KrKAyMjIyMtoSWUFlZGRkZLQl2k5Bici2IvKEiHwhImOCe4eJyLMiMlFE1u+pNGZkZGRkdD3a0YvvcczmhGf5kXbPv+0xG2jOB9wqIkto+V5oGRkZGRm9FG03glLVp1R1YuTW5sDlajZ0fA54FvOH24yMjIyMGRBtp6BKMIKOO2hPsXEZGRkZGTMgesTEZ7fBmSdy63BVvSYSD/HV/9FFXCIyHvNrbyj+XURGRkZGRhujRxSUqq7TAtsUYAHven7ML+hjzz8bOLsFGRkZGRkZbYLeZOK7FtheRAaKyMKYXxQ/2MNpysjIyMjoIrSdghKRLUVkCubvo38VkZsA1Pxd9ErMXyNvBPbPHnwZGRkZMy5m+L34MjIyMjJ6J9puBJWRkZGRkQFZQWVkZGRktCmygsrIyMjIaEtkBZWRkZGR0ZbICiojIyMjoy2RFVRGRkZGRlsiK6iMjIyMjLZEVlAZGRkZGW2JrKAyMjIyMtoSWUFlZGRkZLQlsoLKyMjIyGhLZAWVkZGRkdGWaEsFJSLni8hrIvK4FzeHiNwiIs/Y4+w9mcaMjIyMjK5FWyoo4EJggyDuUOA2VV0cuM1eZ2RkZGTMoGjb322IyEjgOlVd1l5PBMap6ssiMi9wp6qO6sEkZmRkZGR0Idp1BBXDcFV9GcAe5y4iFJHxIjLBhseL6DIyMjIy2he9SUElQ1XPVtUxqjoG+Kin05ORkZGRUR+9SUG9ak172ONrPZyejIyMjIwuRG9SUNcCu9nz3YBrejAtGRkZGRldjLZUUCJyGXAfMEpEpojInsCJwLoi8gywrr3OyMjIyJhB0bZefJ0FEZlg56IyMjIyMnoR2nIElZGRkZGRkRVURkZGRkZbIiuojIyMjIy2RFZQGRkZGRltiaygMjIyugUiIj2dhozehaygZiCIyF4issB08G8oIt8Xg8U7M20ZGcAXIrJFTycio+chIpuLyMpVdFlBASIyWkSG1KDvKyI/bEHOABEZXzNddX4rcg7wvbrp8nAscAqwPvD0dDynSyAiS08H7yoiMkdnpqczISI3iki4g38Z/SJdmZ7OhojMak/bquMjIoNEZImeTkcRROQyEflTT6ejC7AZ8GMRWaWMKCsogwnAT2rQLwqcJCIni0jhprU+RORbwJHAWTVMHROAI2qkC+DzmvQ+Btvj0FQGO9pa1Z7vLiKnpPLZY5LSsA3cEyIyXETmq9OhsLgPuCxR1twiMriasgOPiMgAez5URJLrlt25f31gl0T60cCkOukreE5/ERlUg17qmulEZDERWQFwaxG/qMOfKGOwiPS15/PWyXvgx8BE+2rLdXbaHERkoKek62B7YNPpkHuniMxfg/4oEVmrVXk1MDOwIXB3GdGXWkGJyE0i8nt7uXEizzBgQXt5ILBMorjzaCib4RUy1vAu3xGRbyTKAE9BpTYoIrKsiCwEuBHKeTXkfQHcKyI3AhcA36+QtaqIfA1j7lkFeDNRjqvcdwMvYvIlqXEVkQ/t6XqJsqYAH4jIvSJyiVM8FdgW+FhEXgDeBpJHysBz9vh5oon2R2AavRoypkFElrO8l5Co6GwZ/AK4q6a4O4F/0ugARhWUiOzndXT6icjBNWS8D/xSRA4FXgK2qsHr8ntt4LEafHVxIfAqgIj0EZEdnFJNwHupQkSkn3cuwFggaYQoIsOBY4DTrNJfI4FngIi0okBntsfyPFDVWgHYtS5PTwZgQsk9DcKsCc8LedatoF8swrNKCf0QSzPKHk+wxzmA3YH+Af35wNJe2n5iz48C/mg+cdI7vRZJ58ot5EehPEzhV2A7ezzEHofY+6Oxu5tEeDeMyBqVWAYq01bxTiOAHYEDS3iOCHjOBzasKe82e4zmgaWVQM6fa9aHoZbvqoTvJcAPgLMxiqxOHu6G6QCHefndkjy4zZ4vV5UPFd/rPmDBRN6b/TKZQD87sKJ33Qfom8D3hHs+ZrSswOqJ7/aWPV8YWKaEdicvD5YABtnznRPzYqrH/1NXx4CFSnjO8/MNY4VZs0LOzMH36l9IW/KQpSNhGeCeOhWipwP1FJQrQHsApyTybFry/H2BX0R41i/hWcbSuMJ2gT2uYI93RNLzY+/8jNg7lcjzG7y3A94dKnhviOUhMLCA/mV7f1d7vMvjmauo0gL/KZBTVwEosDpWIZbQPxHwLAy8VZSXwErA9UXlqUb6PnJ5UUI7KCJnBDCgQsYcwOY2rUlpxJiXiupImRLta2m3AG4N+PctyYPbgG082q0xc1aFDVhRPfbfC+gP9Cng/SjGUyLrd14e9MUq74q0fezJ+BtmxKcEHVVMXf8TMMym+c/BO02t+F6/82h3B/7bYjkMw/UJPLvacvh/VfKA05LLYMlD3sX0Ai8IwpSUl+2qgPkV/ETgWeDQBPpaCgpjK384lmkYM5NP+zlwdwsffEtbgG6M8LxhaVyP1VXwifb454iMn9KxsQ/DIiVpfMTSvA78weO5DjMKG1TA5/eC7gvkHVfAc0VJGi+2x21q5ONRRBpKe28hjCl17wjf48CvY7yW/3lgTY9+BeBTez4IOChSV6oaSQHmjMgKGyEFVi35Xg9WySrgOzmg/9Q7HxmhF+DyAlm/KJKHabTvDej/4Z3/Fxhc8M3utd8mlHdAyXuFvfFY3j8CXBnhXTXC18/eG46n1IBZbDm4ztLtH/DNXrMNaPpmwDvevWMSeWa232nFVDmRNF5Co4MYC/9IbOP+hjHlqs3bpnJVkifxDkSJ4AeIV6i/lr1sVwZb+CcBiwADgEex5q0SnqiCwgzViz7I25GC8FZAc5x3Ph+RYX7J808BrnYygI0wDcKQEh4XDk2UEYZBmJ5ZP3s9go4mAcV4ATpT3+32+ASmJx329jb1+PoGz3m0IM/LFJQL+wU8Z1XQH16Q7+ti7P5lvN+w9DsBV9jzfpge73wFPG70J568FAW1uX9d8f1uBpatUbldEBsewDa0lmfOgO5u4I4grk8NOS6sGEnfPBG604PrNT0ZyyXKE2CWiDxnWTipJO8V+ACjZIbauC0L5Hzf49nXe0ZVOYxaUqrey2uLBtLonCrwl6oyZXmXt/GXVcgqNNfb+3tU8M8CbOa1w98E9ozQXeydP1IjT4ZGaUsSPYQE22p3BoxWvsm7Pgw4rIJnQnDt7L+PATdhGu7/2bhzSwqCi38YWzGDDP4YOM/Gr0lzo6DAajQ3DK5xXwj4a1WBBo700hSz8ReFJYLrmEnqIuAFe/5/wb2Hrcz56djTc5XsewH9GC+dswLjgM+8+zPZ/Fgo4DvC4xuZ8F4fYisCMBvGBu6+h0/3fAH/wsF7uPjCnrkNJ2HmB4d5cbvY4wP+M+1z9wiulwZWKXn+G8Df6agIVw5oQnPuQEydUDwzJh0bPsWMeMPvP7CgvPvhGAKTXZI+B+8AACAASURBVKS+bRTw7EPDLOm+/zqejAmWJpT13+DaNaAzW16njBXj1DIQ0/F71uPZwZPzEY2R/mjs3EkkTPZ4jvfe68KK8rBdKwrKC+dhnChi9w4Nrs/HjJjWoaGgq8IHQboWx9SVRez9sO35ZXD9M/e9I88uMsErgQ6hecrjRntsGgyVKqjgoSN6WjnZdGwDnOtd7wL8uqaC8jPnWhs3BjNkX9+/7/H4w+elvfgfhx/Ek3G2Fz8b1qwBXBrwHGSPy4XPolGh/OH+sfY5U2keAY0rKSihueZfEZqnbXCVWLGOFsCDBYXzv15+NNnz7bv79I8R2OwxZluf5gLMSO6lIP7ZgnMFDrfHEQXvXxS/WwFNqvJf3Tt3zh+/9uLmtO+4o8sTe32PR7N1yfPnwfReNwVO9eJ/TkOBH48x2Z1Do8w4uaFTheIpUC8shGloVqZ5ROzCcRgPwpBvErB7UCdcB0G8cvOiPW4QlCVf6f0b03kJzW+u3iyPHY0Cv7XHn0bq/S8xPzl1c26fYjxG3fPeBnaw5xN9WV7a/oUZUfehegS1O/BVOo5cw/m+e4jMEdtwIc0dCQVWs8/aL8h710kMOzk3FjxfMXVvVhpl4tjg/r0YxaWY/+01PaOgDVi6ROYK3n2/0zjWHpcqbb8TFcMUYHQbKKhtaVZQp0foxmN6ZhOA54N7/kRi2FCGH/t2jDmkwwfy6JtGSZEPuGPAEyoi11A5xeA38rvZ42DgO/b8XRoeY1cFz1rAHl0luKmk4PhhC0wPbifM6G93GiObP3p0j0Z4Z/PebSY6mvEWxrgYR/PP4ysr4Ap8BZjD0r7s5fPuEdpLvHO/ss4L7EXD3PQtjMuzP1J0DcqJ9vlbJeTdTTQ8wTbHNPDOVPshsLh91tEej9/heQszwrgK00EKG5gVaChfF64KOlyh0nBlpw+NjoYfzqIx0nLh2975Dwvy8KcYBXF75JnvYBq+5+z1U9hRt5dOpzx/iXE/d7z+PNwDgWJdP5BzEvAb7/rlgjIVWgy+iKR5DcyaRsEbSQfBN7XdgGkjFsXMf47x7h1gj85EOB8dzY6fBHlxKh0V43E0LDku7BS8U6zjsI53/gaNkZDfEf52wLNswbteb+V8jFlIu12EJkzDERSbwwuD+8aVbX6iYtgJ0/uITWBvRjd59tE5Jr7NvYx6PLgnwK/KMjXy/N+GNAHfwgH9/DU+5Na+XOwwOxL2xZhWBtjrIwO+ysJS8G4b1+XFjhRs+DRFFs3OJ2GY3aO9GXjHnveneC5BafTqL8R6udFQagti7Pa+KcnNv41NzTsbnN190+C9HgQ2oTHv50KHOauAJ+ZOX6jkbdyOBekaY+X7cd/D8/gDJtv4gwqeMYt3/jOP7xsRWn/Uc1fkOw8ukPEiZvRRVKYuDug7eFkWlKlw5B4LoVmzapS0fkDfD9OIhyau4cF1bH7vGUyHydHcS8MEej9wJsUOQH7YwjufG6N0j9RGuz0R03FMKce3JNR/v1M+p0frK7OiUaIL45Lb/JrK4SVMb64/xib8pM3o/VKfMz3BFojJmN6Oc5IoXBdgeUIFtZ6XUQtF6LcoyNTVCp7fB7Ng19GF655GBPQDEwqKGwUMALbweJvcM4lX6LWAT73rJkVhw3Exfo9v9ZI0rgGsV8A3soivRNYNmDU6YW9P6TgPM5hgQpW4k8LlRLwXve87E8WdkXEe/QiMMvtaSV64CeqdA1n+6GNqEX+kPO1SImupgH4YpmN1ER295Vw4zObtCcQbvME0TG9hWCwod0d5fL7pMJR7GrBWwXf+qEDWNOeKCM+VJfkRLVMUmynL6s0jFTybFMi6sKYcpdHJivFcUVJPauVDCh+NTsztAc8aEdolvfPBHu1aNOrVEJpH/S5sWZbOpnTXIjZrdN7DDOcnYLRm1D2wqwJmpPA0xu7d5MEVoQ8VlBvOf72Afs2CjF2uREas8doO0zufOUI/ANPLejrCN9IVjAhf1PU0IQ/2DSrf34HvYhqnNUr4Yh5ZqTJjfKmLJ32ecxLomzyeSmi3cvfp6ImpmB7sscQ9MgcAB2PmfsL3ug3TWRsd8PwhoPNdvV2P84uIrD7EG4fSfCduzrsMOLWC76kqWZi5iZgjxWOYkdpriWk8OJDzpD32KeKnYW4OHScU+GfNMuhGAE1eklQ7KRUtudi9hGdihP5NrCWogKdp+UnFO6XkuxLv/Kn/3IBniP2+S9BYruGPnH03/C0Lvp2//KWpLays20lEpjE9EWMvvwnjAXQPJQsK2yVQsg6qgN7/AGO988JdJjA9/3DuIFqYA75wDskVlrkJ5s5sfH8aPZiJJBTMgH9uy1O60jvgWYzG3FZSZdBGgb8P06NynkKlCy4DXheWSKDvT0evu3EltIti167R2MnCd9IonbS1fEfYPNkJM5EelYfpzHV4F8zaOcV0DrbCMycWpNXnb3IGqKBXTGfkqAo+V5Ze8PiiFoPId9ok+GaVi6eD9N1IyTobS+9Gaw9F3q9wgTLN82yufi1eQD+E+OLkSVVl3qP1Oz0vFNDOCszk8f2Qjh3IOxLzzg//SkjfFjRMqdMcRvzn1vhuGtxbELg5wuPWRUWXTVSWlSQiU9Euo+FeLRiXzslUrEPq6UB9BbUADZPRksDXSfRiLPp4JfSz2A+7H2YF+dw15DxeR5bHOw+JW8gEfL/CTG5Ht6opSOOp3vVKNWS5fExWpD5fDfr9wwoKzNOJZW8SHSv1AhjLQ500JiknS+sWW76KcSh6xV6XfjPs3Ic9/xmwfY20fT1I57BEvtftcSAJVhiMk1A4B3tWjfxLKhs05nFd53Ek3u4RFXKe8M6fT6nPGCesETTmzL4KzFtCvxYNJ5vv2rZjLWD5CjmLYkapTtm7ebPd7f1Pq+qbl4//ArZOLCPOuWuB1DLfgT9RSHQnAsz6hdcp2bqnpwM1FZRfUFvgcQvXmnoSnfxOinHHXQb4YU/ncUEarwK+2iLvcsBGLfCtClxYg35nr2F2JrXoNk0tvoczX7kwC8YasViNZ2xMwmjc0vbxywONXvLBFXzbAru08H7vYq0oVs4HiXyDbUjqkHl8/rzSV0lTbCcBn2DNWwn0rgG/3Csbg6iwFmG8BC/08uLvNd+tD6bTWWf/wcq9Q0t4xwHfqcm3M4mK3uNxe/q1VK/cGoWWISLrAJeqatJvJ7obIjJBVcdUU3aKLMGYCC7X6c3YcjmKWVC4aFfJ+DLA7uB+taqOFpHVMN6onfbXV/t/p0UxnptzqepenfXsRPnvYUyfW6vq1d0pu6sgIucB36r7nURkdYxpN2V3/6Uw7vIrqeq9ic+fFfhYVT8RkUWBqar6Wp009gbYtofU/BeRLTGWlIVaktcZ7aiIjFLVidP9oC5Adyqo7oItJE+qauqvPjIqICLLYJYdzDC/JReRJTGjr0d6Oi2dBRGZCTMCrf1rDBGRruw4fhkgIpOBy1T18O6Q16+apBrtqpxmYHyIWSuR0UlQ1SdEJPlHjb0Bqvrvnk5DZ0NVP6DF/zZl5TT9UNVu/ZNzpyiojG7HMIxdPaMToarv9nQaMjIyGsgKqhfC9iIzMjIyZmh8qX/5npGRkZHRvsgKKiMjIyOjLZEVVEZGRkZGWyIrqIyMjIyMtkRWUBkZGRkZbYm2U1Aisq2IPCEiX4jImODeYSLyrIhMFJH1eyqNGRkZGRldj3Z0M38cs8vzWX6kiCyN2UZoGcwfHG8VkSVU9fPuT2JGRkZGRlej7UZQqvpUwc4Um2P2uPtYVZ8DnsX8XjsjIyMjYwZE2ymoEozA/LDMYYqNa4KIjBeRCSIyAbMTcUZGRkZGL0OPmPhE5FbMf4lCHK6q1xSxReKie2up6tnA2S0mLyMjIyOjDdAjCkpV12mBbQrmh28O8wMvdU6KMjIyMjLaDb3JxHctsL2IDBSRhYHFgQd7OE0ZGRkZGV2EtlNQIrKliEzB/B31ryJyE5jfIQBXYv5SeiOwf/bgy8jIyJhx0Sk/LMzIyMjIyOhstN0IKiMjIyMjA7KCysjIyMhoU2QFlZGRkZHRlsgKKiMjIyOjLZEVVEZGRkZGWyIrqIyMjIyMtkRWUBkZGRkZbYmsoDIyMjIy2hJZQWVkZGRktCWygsrIyMjIaEtkBZWRkZGR0ZZoSwUlIueLyGsi8rgXN4eI3CIiz9jj7D2ZxoyMjIyMrkVbKijgQmCDIO5Q4DZVXRy4zV5nZGRkZMygaNvdzEVkJHCdqi5rrycC41T1ZRGZF7hTVUf1YBIzMjIyMroQ7TqCimG4qr4MYI9zFxGKyHgRmWDD40V0GRkZGRnti96koJKhqmer6hhVHQN81NPpycjIyMioj96koF61pj3s8bUeTk9GRkZGRheiNymoa4Hd7PluwDU9mJaMjIyMjC5GWyooEbkMuA8YJSJTRGRP4ERgXRF5BljXXmdkZGTMsBCRuUTkvp5OR0+hbb34OgsiMsHORWVkZGT0KojI2sCtqio9nZaeQFuOoDIyMjIyMrKCagEicpmIDO7pdHwZISK3isjAnk5HT0JEZhaR3/V0OjK6BW09chKDV0RkQFc8Pyuo1rA9MF93CROR/xORXbtLXrtCRARYG1iqRf7N7DO6DCIyk4isKiLLdKGY+YBdcyfpSwEBEJGxItIt7bWIzFyDfBgwHJijBTkLi8jHZTRZQdWE11P4vBvF/tKGGQoisomIfLMGSz97nKsFWQtiPD9nrctbQ8bXgPeBe4EbE3kGicgCItJXRFZKFNXXHmdrIZkzLERkTxHZpwW+B0Wky8rFdMK10XcCX+9qYbaevFejIzfcHlvZG3UEMKBM8X7pFZSIrCYi64vIaYksriAPTN2wVkSOFJGtRWS4iAxqLaXtCxFREWllb8S/AJfbieAUuLyr3VsD5rTHoS3wpsIf0aTWrQOBF4DNgIcSeZyJc6ZE+l4Fq6xrmXFFZE7gXOC3LYj8KrBsC3zJsKawVsqeP5rp0rZDRE6gUQa/KiJfJIzSXXvYilXD1ZERVQRfStih7D2Y3u73EtmG2OMuwFuJPD8BzgJeAU6pk0YPyaYpEdlHRBZpUQ52i6jtEmldGfqpXQKQKuPb3uW4RDZXQecspWqWNRx42F4mNRIiMkZEvlVHDuC7xKZ+r3fscbUaclw+tKSgRGQl26nolvmNFuScAXwkIgvV4Jm29ZmI7FBTHhhTVSVEpI/NvxVE5JIaz98WeLuFdC3onSfN84jIUBEZICLnikidqYjDaOTD6pgyXJUvrj38Yw05iMhawN/s5Qsi0j9G96VWUJRo7hK4D3I4gIj8NZHPNarDbOHuksbBPve3wOkisqiIrJDAM781j4iIKDAauCKBbwAwjxe1WMq8iIicBZzpRVWWQ1uA3e4hY2vm34be+ZBCqo44CThPRHarpGyglRHUZ/a4Zw05TkG1Ogd1kz22Uv4rISKriMhYe67AFyJyfY1HuG+0aA0ev7xeWoPPIdpARrAOZpSxHbCjiDybyDfcv7Cm3ZT3860Fs1QRi9lk+21MG7An8GJi+kK4tFV1BqeZRmvWyWOD66hV5MuuoFqp4GEDt1ERoS2ESsf9ALcB/gmsWiVIREaLyDbuMjF9J9jj3ZjdN/6ZwPN9jHmkQ4NV1Kvx8BHNFSBlgnV8cJ1SDtf0zrcDxonIDiLSt4jBw7ve+bcLqTriE3sM01oGf0QzvJCqI1wZnB0g0WzsFNTIRBkhXK94sRRiMf9nUzH/ZPu5PV+whOVm4M6gwdrQlufbE0S+YY9L2Yn0lBHzcgk0TfDSmOqF5r7PYfaYqkQ/sfJ+ZK9/AaQoN78+XVo2X2OxvD3u4SIk3cPOH+Htb49V5dGfu6vjXBFaDN6JEX3ZFVQrNt2mIa+ILCsiX43Qusn8FyL3Pk2QNQH4gz2fQ0SOLiO2lc3NBR0PLG3jqyq4a+S/EsQX7hjvREbiSpW+iPSLRKf0XsOR6hyYnnL0lysicojtHEDHSrRLgixofJ/VajgvtNLhCXkWT+Bxo9ZpowYR+aaIhN+vA0RkERG5y4u6Q4zLelU9cI3dNsBB9rxsHtB5ZoWT+pvRsaMRS+MKwHft5a+BycBzFemLPSd1ntKVvaVFpNRkKiJ7AU1mRzHOMVVwHdvv2GOqYvu/4LqwY2DnuGJ1dmSirCmRuCqLw/Leecueq6oa3dS7UEHZicqtRGQLv1ERkW1bTUQ7wU7C7hTElSpsEXkJuBp4EzjHu3UX8GCExfWiY7bnVpTjj0VkQsl939zmK4+qeRf3fX0l8DmwcQumyBdEZP6S+ydF4lLmy1wal7BHZ+4o8mQ7EUCMd9YPE54/DXYu7UMv6qEU0yUd3+3zxNHdPMH19iKyegXPtEbSjmbGA5cD51Xw/Q5YI4h7jxJzroisYk/foONE+D9LGmY3+nTv795nZEX6imhKPexExG+Un7LH/yTIgsbI6UjgfSlYHmCtCecQL7/3J4xs3De7xz2yKmEFHYcyJfA74OxI/MQKOUuLyBDibVJh2yEiGwIHeFH32/IYLRciMkREYh64hdsZlWXqRcBKwArA3SLizAH7lvC0PURkHptJR9DoqTlc5WznEb7BwLz2cgdV9U0/RSMA1/OeE+Mk8Qvv3tdiowlrFpSSAj+6IB7MHoUxLC7l7tzf8c7/DLyEceg4i4J5Cq88QLML/BIUw8/flTFzUZ+LyKVFnR/fVq+qz2B61q6HXDU6fBczkvwjppF4pYzYKpXFMGZEH+Mq5EDHvHqd6hEowDcxLsQOBwIXV/CsGFyfZY9VThOhcnIoM0c6b7qbaf7LdVFj6UZQtwN/VdV77XXhWj6vMV4ROJXmulnE1w941V4+BzgT2iwiEir/kHcemk24uxeQ/7kiKYUjIluXR2FM7u/Z6KrRmmD2I/VxKuUKqvCZFWa+JzBz6oMxzmILe/fKOrduXvGYIP5+q/BCXAO8JiKuntwBbKaqLbmZz6eqR6jqj4EdgHNFZFwJfbdARDYQkYki8qy05tr8FGZ+xi+8rkJtScfGwof/48Nb7dGtdYmZraBhvpkT8xv7QzEmwiuAnwOvR8wKHwIHYxrgL7z4aXMnYjyJYj0wN9w+FvN+R3npvFwiHj2RXv7nqjqCxgiiaKTnj7bCeaiyyfc3vPNHgeuAJTFlrOh7ul78bfb4X2B9e35kgonqY1XdBjPyHS4iZZ5J/kjJH62WTlAHI6xTMR6e54hIoUnRmqHmAX4a3CrsUYrIUsAWBbeX9syaId+mQZSf15OL5NEYBU3AfCdofIeiRZafeOf/i6Slf3AtwIc27aMw5emFgKYo/31Zo1TVVyQLxBhsJ3AU8DLNnasi07vfKfgAU+d983JR52oQxhqxDqYN2d2+Z9W6q1UwgwNotD3/AcqsE+57uDw/n0ZdXLKZvAM+xNT1y1T1eUwn7XnSvF6F5nWh60TonBJfBuMctIGq/qXswWUKaqA1g6GqzwGbYuzPXbpeoAy2MT0D45W1NLCDiCxd8zGzYXr4e3lxVSaEBfHMUNrYYfdwjBNCkSnH9T5nAz5R1c9V9U0a5sDZgJ0jfCdhGgRnE95IVc/y7n+OUXB+GgXYBNhbVY9S1VdV9VjgHx5ZrGG+KRIHDaVbNPHp97rDcnRRwVwTmMbnZABV/QSYSqNMPRUSi8h6NEYUO9rj0zQUVNEalve9c9fD/gBTmV4vSBt0NBn6zygcqVmTxgf28nVVPRDTWGyMsUQUwTU2b2LMxClYDjNSuCWRHmsxuNZebg78QFVjpqqQbzlM+m+no5naPatosbqvuFzd2tKLCxs9v6yshxllhOWnqNMzraOmqqFyic5PYkZy/y64V9Qg+ybfV2xdftqL+yxksPA3qr7aO68aXd/rnW+DGcF/RKNN6QDbVrs2agxGcV+FUcIAV1bI+xGmjH8EoKqTMJ6AKQpqgKqG32tfEdkx6Ei78n4T0M/W/1KUKaj/w/PgUNWpmMIdTtp1J1YGnlXVyfblLrdpqoOmtUuRgh3CnyPxaT/ANGhFjbHfs/cr7Zve+QCJe0QthJkQnUNVb7Bxvi05tPMuh1G8YUXxJx8ftTbiWURkpIh8A7N1kA/n8ebeKdYTgobiOhkzVAdjKphqz5cPGWxh/RbGe+kqGz3VI9kp5KHhaXamqjo38/BnlYuK+SWLk9MXMxJyDgf/hQ4dizI4hX4OxqQ1H/B7GubaGO73zteyx0qXYMyo8SJVfUhVv0Ejr8sq7hUYE8xW9trNtZS5cY/0zu9U1ZO9679SPI/3GEYxfEZDEdxPo6EtWpzpp999P99LK1T2fj2ZHdMxuIuG6RKgaM1RbGLf1affF/CE9X1NTOM5BthPRJ70zFCIyKU02oBfYNohB9fwx6wTZ9LoeDytqv5C7ML1SSKyo3+tqhNV9W8YJbmXmO20QqvBFphO+922fRyoqjd4Zb7Imch9Vzeq9duLlykfsb2HGWX5npmn2uM6mG/mt513ljwrDlWtDMCIFLquDpiexLne9S7Aryt4JgTXm2JMKIqp7Cva+BO8+EEBzzo2fijQ14tf0OPRiOxTvPuLe/Gb2LiLgKPt+Xz2nnrhueB5c3j3/ubFD8K4uyuwR8BzQ/BMxdiMw7j+mEI8xPLd5t07IvJufwdO864V44xwsj3fFxgd8Gxm783uxS0apOO2gOcQG/9TL27xSPpdXXTf6m17vQSwqMd7hr3fBzOSnQOjTOb38z9Iw67e91cwv6kJ3r0DX0W5GOHRhHl0gP1mfSJ8A22+H2ivv4LpCBzkvbcCswZ83/Du9QnSeKk9jgt45vJ4RmCU2MWYni8Ys3GH53m8d9Io30vYuJW9521VIOtVe9w8Vj4K6vdEjNK8K/ZNvPNx3r19grIzl40f4MVtg1HKQyq+5ZX23h8i9yZ7vBNt3EGB7CsifE3l2sZvb+PeBB4LeNy93YueZ8/XwJZje31P0fth5rsfw9SVDSLPfR+YxbteHtOx9tO/pnf/XC/+/tj3bJKRRGR6KaNTaLsyYOy8oYI6PUI3HmMimwA8H9xbMyyYNn5DTI9AgR0Dnp2AyyNy5g4+xmjv3leCewt691azcb8EfmXPR9oK4fPcWFJ4r7LXv7HX22HMPn0C+t/a+694vBcHct6MyJkF46ruaLa2x4EY274Cwz36q+w798OMbGMF3j1DSvJQMY3tEMwozcVt7/HMZuP+5PPZe3vb6/cKytCsQX4sA1zm8SvwUsCzXZC+Qd69gWEavOe87d1zHaH57PVKmB5xqOycEr8oiL/Qe9ZqJXXk38AyQdwmmLoQfg/FrOeJfavbY/HefaesFw7ix9r4jYN4Vx/utseZvXvzY9oYl8+rx8p8JA3D7L3ZIvfmcWWURqPulOX3g+8ZKm313n9+L26piJxr7L0JkXvPeLwTvfjj/XsldVzp2DHb1b8X8Oxs478Ted5Ue+8v9riEK8eBrPCZs2HaRNdePQCsYe/1xZh4w/I7OHjmrt69y8rKVCykroM6BLhZGotGp0HMDtH3RHi6AlPoOPE5P8bjrANU9WxVHaPmR4VvBLedF81Tqvq6x3ODqjqzzCUisouIHC0ia2Aa9KaJZDUmJ9+W73s5hTsD+GYPl6bXabifboCZswDjLjoM06CHcENmZzJ0XpVXAFNU9YuA3k02j/Xi1gtoxoVCVPU9VT2cxsJfZ5JbFNugqOqrHv02qvqYqn6GZ9+Xjnuq/cbSqhfnTHy+mfMW+16+Keh57/wd4DTM+hxnknjLukS7uYLo3JkaUzU05tCWoNm7LSzPoTPA4SJyhj0fi1FEf4+I8+co3FZLju8hjKLTjizT5r3CNUS7eefPR2Q5vIfZdmqM51iwEWaiPazvw2h4ll4duQcdPTynQVXfwbxTuN7oTnu8LYh/CfgXjTmReb17gzDf0ZUn3wQOdj1fBLfbtDQt41BV563ptquag4ZnoO/QMiSoM67OOW9Zv2w8F0mDM6nH3Kf9Obpp5kZVPVxVnfn5FRHZyLY1A62p+g4ac6z+N+tg+nWmQPud3cL/2FzmAphR+Sb2+vySNPt4D1OPXH1YGdhHzIa8rwPvh+VXVT+kY92b36bxEMworx5SNRkmA17COAb0xzQOT2J6AvulPmd6AqZ3Phljgx+A8QJbpoInNPHNi9HiexXQh715F8YX0C+MqXiKNb3Y+GMdnz36Zi3Xi9+ChlnDhecS8mFjmkdFCvw2Qvs9mnuCYVisRNbOAe0G7ryEZzOPfn6MWeMF+67nl/At5/F9F9MwvYJnVo3w3GTLweuW7w8J6TuzIB+WscdvRcpdjH5h71ww84V+OTrVp7fxr4Rxgawx3v1VaZgqXVxTDzngdyYbZ7obhmloDi/hWd/m4ypeOp9y36+E7xbMPNHgsP6U8Pze0qzsxY3DuFSPsvfmCngEo8CGY03lmPU+VbL+hnEbd3l3AmaOSzFzjAtFeLYp+NZROZhRxgqYue35vPi1PN4DC3gXByZ5dG70/yKmw7YPsECQD+dEypS7PrskL06PvNNq3vlKBKPe4NkunI9ngSmR16FNst9PMd6jexTxNT0nldAKWcYW9ncwJoPtiNiguzJgeoNP2w9bWOk8+qahdwV9OPx3YfYKvnOAb9vzvhj7+5k0zHazBPTX0jBV+eGlhDSuVpDGEyO0q9h7wwt4dqFcAcxewFdWOF36/mcL/l89vlVK+HyT3oeYUcY/KvKij+VzFeCGhPTNaytKrPJ9DvQvqXAu/K8sL2y+9ceMUBzd0OAZh0b4ZvXu/8Q924vbviI//mnpXKfJmZDXLeEZi2nMHe3+nrw5S/iusDQ72Otp71fCc76l+YYXtyumvrj60C/C9x8a5sEOpvASWSdjlmw42lcxjikKnFfA07+gvH9cImdgmJaAd+cCviE0phUUswZOMU4cTXlgecJy65vpzilJ45GRd/qBPV5Vwhfy+PNIr5bwfebRzeRdr17EEwtJJj4xv4k4ETN8vMeGj4E7tNmkjuWTeAAAIABJREFU1KVQ1etVdQlVXVRVj++C559KZMt+VW1azxFgKo0NUD/DNPyTbOsyn6q+5xOr6mYaMU3Q0fRRhJDPuZw3mZlU9X5VFRpeVFOD+79X1cJ/W0XeW+2xyUvPgzNTzYZRMv4iwanN5NPwgXc+CKPc3i+gden7wvI5U+IwjPlv4RKel1X1RC/qc4z55HPgC417dc6KGdE4b7LSnSVU9X+q+qmqHuRFux0tnLmvyctMVafa7wWmUQlR9RsKly7neu+8vT6M0Dp8hJkL9LcYcigr984j1nlupaxLdObSQXZngYMxiu0DWx9WU2MmDvEmjR0p/uDFH1Ii600aa4nAvKPbSDZaDu23vz9yq9DTV1WnmYDDNV4Wodepw1Qa5rAXaJj7Py7IA2j20vXd1cu2DDue5iUlzrxb9icHt+O4q5v+1MXpJXx+Xf4zjaU4pfU5ROoc1CRM5q2tqutjTEwPAg+0sA6pN+CEapIm9AMQEX/u4EYwDWIJ3+rYndEtzi8i9BAqqMsxI9lCV2NV/cg2fG7V95kUr90I4f98TzBOJI+V0Gtw7buqFxZQq8xXwbirO1T+F8jyOYzCzI89X8VHY41OX8xcxZ50dLP1Zbynqvd79+v8r8g15K7z4da4vBuhbYJ03DoqnNsJEZY114Es+3Pph8QV+j8rOqAuL+YWkVVJU1CO5gRMp+lnmJHbAgCqGu6e4BCbJ4LGvFUMQ2msnfNxPB3rXIhbPDqHaLnw4JT7JyJyWHAv5gofltuHaGwbVLRsBZoV5TAac12FCsp+x51pKBhXp/+kqk3z+B7fOMx8aGwwUPa7Ib+e+zvcfBASliJlmAUsUhDvJsvWrzNs685ATROfx+e8cxTruVJB/2uPfppJJ1GWM2002YBLeBbw5IyqwdcHMzkq1DDPBu+1WQXtUExDul4kTwYnyDrJ52khfT9o4b1mTZEXeR8l4t0V8CyIaRBfc3mAaSAK8x9Twd3zj0lJm+UbTcdlBM68OraEZ4mC95q7QtalBXyt5OEtFTz3BPQfYNznB5bwrGBpb8CYmZwX2wo1y8eklDqGmaP30+hc5GeteP7/6Gg6K8w/YL+iPCfish7hX8nS7mSPv0jMh70j71ZWfg/AjLB2C/gK5zRjIWkEparRrVDU7G6wA8UL4notVNVfAPx0IWEDMU/GMnOWL+ttjBvxvRWkPs9/vcuUndEd3xeq+roatGqefa/spqq+o6pr0/yH2NvUePlUoV4vy+AB7zz19wJge9La8O57voL+2uD6IFVt2gHDh6q+gHHkmMtef6iqG1Tk/3AaizmPKqELZT2kqkd7Ue53ME+WsPm93WllSRsLo4vwFIllPAFlIzxojPZfx+wLOBCzKLWMz41Qp6jqB1jvUlV9pEa6VsUsESjdcNUi3INyqpVXlkcXYHZx8H+/8/MCWjAmt0doNjFfg3HjroL7vs7TtnRvSg8drC2qOqms/Krqaar6XRo7qTh5XWLiK4Sq3kqzS+yMhspGVVUvw1ScaTx1FICq7qHV81wh3gyOXQ1nfkn6k7CabZ0c9iK+U0QMfn5XbZzq4LtJX5PIA83mlCqz53aY3uT5AKoa7uVWhJSdJaZBjUnxZRq/t3hfG3NTdbG5eksqInAmnpVJ21nepfFYmrfCeS6BdQGav1FVPl6LafD3xuxO8VZC/XIdHbetWepPCadBzRxukilWzTzzt7zr1yjeBs3RfEtVz6ShoM9V1cLd91X1CVVdUYPfU6jqFtpxH8IivIExrT5qr1M7GCk78zdB7XDKk1PauY09YIYOtGji08bwWynwqInQX2LpHyCysLcL3m0Y3mLZLpb1L8xCaaXA5FvA9wlwaU1ZzoV4cje818FePVLM+rgUvrmAMTXkTFvAWDN9zkz0SE0+36xSxwTsPPFWbVHWNsBvEvl2wSwlSKpflmdZK+eJGu/ynr2enwKPuk4sT31a/M5/a4Gnlhk8wv8rEncJouPuG027SlTw7oQxc69cO41d+bHaIXSGgqpBf3GrhaW3hNQC7dHPSsk8QQHPcsA+3fQ+A10DjnHRPq0LZa1GiUt/SfoUeLgm3yI0dtpIzn8aLtzL1uBxDdf/uuF7TZt7TXyXA+imTpwnd09gppo8V7egoF5NzYtOeKf9u0uWH8QKn2EhIhPU7CjRCu/6mO2GkkwrIrI2xsMt3EUiI6Nl2N8zfKyqtX5yKSLXAxumll+P7xzg+6qaNF9gN0X9NqZnXbQ7fqdAzA8o3wV2UtVLq+h7C0RkNsyas0k1eObAON70rfuN60JEFsfOxXe1rA5ys4Iq5V0Es5ap2z5IRkYIEXkf0yOvq2huA9bqhsZLoMN8Q1fL+gLjOVn0y4wvDUTkZMx+iFtWEk+/rAGYDQvKXPs7FWX+9l96qOpkSfvVd0ZGV+J/VP8tN4abqf4x3nSjOxSTL8vqw87yHuzVUNVu+/2Rml8cdZtygjyCyshoe4jIY8ByeSRvICIDtdy9PGMGQR5BZWS0P3ag4PflX0Zk5fTlQVZQGRltDlV9go7bP2VkfCkw3Qt1Oxsisq2IPCEiX4jImODeYSLyrIhMtB52GRkZGRkzKNpxBPU4sBXmPzPTYDel3R7zy4/5gFtFZAkt2Yk7IyMjI6P3ou1GUKr6lMb3vdocszvDx6r6HPAsZmuWjIyMjIwZEG2noEowAvA3SJ1i45ogIuNFZIKITKDxP5yMjIyMjF6EHjHxicitwDyRW4eratFGnzEX26iPvKqejdnPLSMjIyOjl6JHFJSqrlNN1YQpdHS1nZ/GLswZGRkZGTMYepOJ71pgexEZKCILA4tj/uqbkZGRkTEDou0UlIhsKSJTMD/w+quI3ATT1oJcifnx2o3A/tmDLyMjI2PGxQy/1VFGRkZGRu9E242gMjIyMjIyICuojIyMjIw2RVZQGRkZGRltiaygMjIyMjLaEllBZWRkZGS0JbKCysjIyMhoS2QFlZGRkZHRlsgKKiMjIyOjLZEVVEZGRkZGWyIrqIyMjIyMtkRWUBkZGRkZbYlepaBEZAERuUNEnhKRJ0TkgJ5OU0ZGRkZG16BXbRYrIvMC86rqwyIyK/AQsIWqPtnDScvIyMjI6GT0qhGUqr6sqg/b86nAUxT89j0jIyMjo3ejVykoHyIyElgReKBnU5KRkZGR0RXolQpKRGYB/gh8X1XfjdwfLyITbHi8+1OYkZGRkTG96FVzUAAi0h+4DrhJVU9OoJ+gqmO6PmUZGRkZGZ2JXjWCEhEBzgOeSlFOGRkZGRm9F71KQQGrA7sAa4nIIzZs1NOJysjIyMjofPTr6QTUgareDUhPpyMjIyMjo+vR20ZQXzqISH8RGdTT6cjIyMjobmQF1QJEZDMRmbObxF0CPNtNsjIyMjLaBl9qBSUiZ4vIH1tgvQY4pIaccSLypnWPr4tlqbkYWUSGi8hvRaRvC/JqQURGiMjcdpePVJ45RWTBrkyXJ2sTETlLRIbX5BsiIjPV5BER+YOItG29EpF5RGQx6w3bthCR2Xs6DV82iMj+IlKrMywio0TkwK5KU9tWpK6Gbbz3BraqyecqzvI12EYCcwBTRWSlGrJ2BpaqIcdhNLAPcFgNWduIiIrIKTVlTQFeBV6qwfM34D/WKzM1fTPbPRi1jjIE/gKMB14RkaQ5VxEZDLwDvC8i89eQNQzYBhhSgwcRWbTuiFxERovIkyKyXA2e2YGXgWeAn9XgGywi54jIgyIysAafiMhhIlJrmYeI3Ay8JSIL1+DZ1KZztxo8fW15urJm+s6xfIvV4NnE8qxRU9bOlm/F1A6TiAxs0cKzDLCoiHytBs+hwMki8qmI1C33F4vIRaVEqjpDB2BCQfxwQE0W1Hre7ZbvtRo8WzlZqfKAAcDkumkEFvNkXViDT71wdiLP4QFf30S+9zye6PeJ8Bzk8UwE+rXwXmsk8ixf93tZvo0sz2U18uJgT9aWLX6vPRN5Rgd8X0/kO9rjGV0jjbu3kIfHebK+02J+9Enk2alu2Q1l1eC5tQWeTYL3+lki38kez6o15B3ZQhqP9WT9qAbfbzy+gYV0qQ/sraGoAfQrD/C9xGf18Xg+r1ERTgoK2oAEnvEBz8EJPMsFPNcC/Wu+Vx0l+ljAd1Qi300tyDozkDUugUdafK+nWuAJZY1N5Hs94LulBVmXJMo6IODbN5HvEuCemrKOqZuHsfzoqryfjjKvQaisXxG+v7co6zet8CXyjMJYQiqVRomspA4FMDC13UgqNL05EFFQwEw2Y+7xMmn2hGfNa2nXo17P1ckYAjwPLJbAc7Hl2dvjlwqe7Tzaf9jjeQmytrG000ZfLRTOJD5gjKX1e4cpSvQi4HEajexWCTw7ejJuBR5N4PEbO9dJGJbAt3ALeTHMoz+vBt8CgawLE3gGefRT7fGQBL7+wH8wo8ofWL5BLZSNJRN4tq6bh5ZvgqU/KJXP+16bAf+XWL9m8dL2hD0+lCCrSRkCc7WQh6cm8MxnaU/BjlIS8/Dvls/lxcIJPH0t7RW2rtzfYl6cWEifkvg6ATPXcgJwvX3paaGzZaUW3kjc2TZjOlT01ALjnb+YwON6C2/b68nAQS3IUmCeCh5nYtoUo4TfBK6sKev9xLwYbPnWBxatm4cYReAU4qIVPAL8G9gCmK2mrOvs+Ur2unTU6zVCs9b8zjda2pmAjxNl7WXptsZTjAmyfmTlCbCx5RtawbOEpfvYXv8QeDBB1grAk971RGDphO/lvvOAFsrGCGAR4OUqnkj5vRv4IIHnG8C99nx/9+0qeDazdM9g1pCmvteR3rvdYo9fSXyv1zFtyFGUNOSRPJwJmNWWxUrzJaZN/In3jMr2GjjL0i4PzOXKcgWP65Td7Mm6tpA+pQDUCbbi3AHsC+zmh86WlZiemILyC/Ql3kct7MnT6C04vuvt9eYV8l0vfvZQdgmPq+C/stfzYP59VWpPBr6NMT0OtNdLA28kFuqT7fl/7fWCFTzn4vU6a77XDwPZpT1DGqOu5ex1pRL1vte29top1IUq+JYF/uNdX5kgyz17t+Cbl46wgT0t3dpBnq5YwtPf0rxrr9280joVssYC9wND7PUpVe9l6T7z6Wy537SCZzjwKebfbUllI6SjYeUonSej0Tma316vDjycWA4vtNcz2+vxFXw7Y5xnFrTXB/p1oITvZRpKw3WALkrMj4Xtuet8llobgEnAF7H3LOFxnYjN7PWqmFF21Xv53yupg4WZdpimlDAe0QrMHaWvyqS6AXiXRPtldwTiCuo64Hh73h+jQBUYVfIc15jcZ69dT+CuCvmvBhXcKcPCXo2tMB8EcTcmfHwFHvGuBfgAmKWEZ3W/gGB6rikFTYP3+mZVBcI0pv8J4m5KyMPTgeO86yOsrEVKeIYBb5aluYDvp8C53rVTPsUTucbTUoF1a8o6ytI5pTGrvd6ihGd9S/NQ8L12rpD1TeAP3rVTADuU8LhG51Qv7jfAL2uWjaEYx5iUBu/w4Lp0ngzbofKu+wOvVZSNofbZPytKcwHfQf670zBXrV3Bdx/NnZ7CUUNQNlwHcE57vVMF3zV4zjbuvShxKgLWsjRLBHyFZQrTAfwMz0qQmIcPBO+1P3AvBdaGrnAzfwyo45rbrbBrkTbGeLqgqp+q6u/s7X+XsJ5rj9+wfG9gRjUfVoicGzNhHGKREp5hwBtBXNNvRQow2Z2oKQFTMKbMIqxvj+9bnsnADsCDifKcrCvs6RYlZFtj5tZ8HEf1coclgbu865PscVIJz0KYiuDj+DIh1u19Hbx/jKnqh8ArmG9ShFmBf6rqLWXPj2AVYEe1v4xR8xPOi4CyNUAn2ONq9vgcxmJR5fK8F6bhxsr6wJ5eWMKzBqYn7a9zmRczT1GGTzEenk7WO5hOV6FLvIgsbk999/dv03jPIrzqX6jqp8DVwJYlPG5N3Ote3Gia65yfvv7AzzEjKCfrC+BUzH/pivg2wnzntbzoo4BNK9YpbmdlqD2+CfyaknIoIstizJD/idweXSLrFuBDVX06iC9bHjAUmGrzwOEXJfQObwB7eO91hqquFjxnGrpCQd0O3CgiPxKRb/mhMx4uIhuIyEQReVZEDm3hESOBf9sPXhu2AjjsjVFAUYjICvb0ei/arZ8q+9HiCpgep4+f2mdGv5m37uF7wa2XMPMPReiLscW/78X9F1i5qAKJyKz29G+R22VrShbAzGH4eAtYTUTmKpC1NUZpvOzigm9QhAmYXqePI4F3S9aIrIKplGFnYA7MSLMIQ2j+XsOAtyvSuAzNHYEXMR5VRXgJmKKqH8O0BuyPwNEislAJ3xqY0U/seUXYFrjDNSYWu8K0dYRFeA8zp+HjbeBXJTy3QdO3vQvTkEe3+rJpGIExSfl4jPIy7xSUnx8TMUq0CG5h+d1B/GuY+ZcibAJco6rTOlOq6jrCW5fwKc2K713MHGwRvo7ZdeaRyL2oYhORARg9sG9w6zjM1EIRFsSUVR9H2meWpXEk8HDJ/Y4oG461EjC9uVi4vROe3RfTa14EYzd9lOoJ2wnB9SbA9RG6YzA9iSYzBA1TxzpB/DyUrIcCNiAy5KVkKIwplNH7mB7ffAV855XJosDzCriZYE6Bhvky6smDscU3mb3K3svevwHYKIhb0PIdXcKjBF5PwBkVsp4CvhuJfwD4RsV7jQ7iq97rNuDSgjKzegHPEMx8Yb8gfhvg6hJZGpZfGvNSRWXKLT+YNYhfDWuyLpH1akH8ugU8zgQZvtepNn7mElmx8nsfBUsKMCMsxc4/efHOcSRqUsQsLr0siHPmuqIy/xXgX5H48RVl40pg19T39e6/DgwP4q6oeK/jCFy2MSO33wMHFPAMJzCF2/jRwKcl6dsNuKIg3T8u4XsbmLPofhg6fQSlqmsWhLWquSuxMvCsqk5W1U+Ay4HNaz5jJPEh8L8wPfVdIvdmAd5X1VuD+NeB2Uu2jZkJ+HMkfhhmV4lYL3SkPcaGy49jHB/qYE97/Gl4w+4K8DWMDXga1JgvJ1FsJpkbMy/xcRC/ZkVa5qLZjDLVHovK4gb2GI54/w7TTC8x9MfMb4W4h+LR0ILAaar6UBD/HeCFGIPt3a+BGU1Pg9raSHOP2+FBjN39syD+NWCd2C4b/9/euUfdVVQH/LclkAUEQwARSAIJLIJAREBAXIpieQi0iFWEoEVAXYjoUkS0CL6qsUBV6gOU2goiooAiFbSogI+qPKPyRkwCgRBCIiCQWh5Kd//YM7nzzTfn3HM+vnz3fMn+rXXXvXfu2Wf2mTvnzMyePXuStOuzvP6CPYR+UJHX27E91FZk6Q/Q3xx/dCHtEYaa/VJmYd6B+XV9N7xXRRu4m/L/8gDVVoqo+0NZehxBDDOjBwvEaZh5fiXaMzHdk8sENqW8k8LEcN7JhbwEG4U+W5BblOiTy11G2cx/QnivGilvTmJpAFDVnwI/x5xkSmyMmWRzbqvSL3AwZQvKScC2hfQ4vTIRs5o0YtQbKBF5XtVrFE4/FTM/RR6gZZw6bBhc2gY+mmhKN8MMCqYQVX02pFfZ/9+NeRnlco9gN1UpjNEz4f1Dhd9eBHyhIq+1gWMK6V8P76V5qJdjDX7J3PlFqq9rM4Y/FMDWhsSKOAQR2QTrheY33WPYw2LYvEsaj00zG7XanNcS7KbM5V6IlXtp3m4J1Q+8UygH5r2I6gfrJpin5J8rfq/ij4RGNuNGzDpQMvPtFN7nFn67AbMOlIhrx3KWAtNEZJgpJ4SF+gu2fizn18CBFXlNrpCJZp1h84AisinWk7+pIDcVGzmUOBUgbwxVdQn28CzFe4zmvbq5nFJDdBVmks2ZH973K/wW61lJ/2je26nw20Tg6vB8WYmqLsWuqyQDdl8uLaTfgq37KnECvTJJ83oGc6V/T/5bCDX2Rsr/8/1Uz3kfDtyadN76sirmoP6KVezS67lSqjjDLlZEjhWReSIyj+EV8RTg/FyG3g1Uat13wP7kEv8JVM2v/Q1m2iixkPINtDVwacWfuBmFEZSI7IiN/Bbnv4UH+3LKTg8bUzEywBrx2RW/TSObnA55/RF78JbiFP4Qa0SXZDKKjRZL8fXeUZF/ZAnlDkq8gUsN1CJsTdQQwkNpfaxxyHkU2FBEvlT4bTOGTranHEXB8Sbk9Urgc/lvqvoU1iDuXTjfueGY0oTyZsm5c34JHF/IK96T7yzI7It5kpbu23tDXqWH3qcwp5E8r+iUUepETQfurcjryZDXsI5eoGpksJzCgzfk9TQ9Z5OU+DCuarzuyBNU9UdYR+M7heO3xsxk+WgSevWspONaVDuvPIV56g0hzHcfRNnR6z5gZxEpOXNMIcwrFvgZPYtOStwktuSkdD+wV0UMy/2wkX5jVkUDNRP7Y+LrFfQCdj5Xco+0aZRHNl9V1d1UdTeyHruqLlTVfEIbVV2OjRpKE3yTqZ7wPh84KTfXiUg0qZ1XIbeEcq/mi8A+FTInhnPnk8ZxyD/sBkp0LD24NgL+VCFzO1aph8iF0ckRZGbBhBdQNmvNx1z7c7MgWK/vUBHJJ6njg78qSGaViep44P7koZhyOXZd78vSYx7n5AJJZ2FYbxLYHfhdhX43AS8qBFiN11kVePVazGEjZ1eCt2WB08P7zmlisFzsRc+UmvN94BOF9Cuxel/ipPC+eyEvKJu06jiVak+4aGYeYjYKo/QnGerdmfI48G2xwL8pN2AN77DOi6qeHT7uWzjfEwz1xEvJ84hci3XKSsQOb+l58xqqPVS3qEg/DkBVSxaA+AzcKE0M9/KhVNffHwHvF5HcVLoecHY+wgvETvKQ+zIE1j0cmxtuTtPJqufywir6H0bhPBMwG/FMek4SO/aRaRSMNBz7LrJJSHqL2G6ukIkhZPLJ/9p1S+HPui5LixPre1TIxLUrH83SLwEuq8nrNArREMK5KmOrYQ3E27K0zwa54roFrOenwLpZ+k+pWEyKjYIU+EyWfiTwzRr9LqA8cd1vAvrh/HfsoVQnsw32QJRCXsXIIPScTd6apW8V0otrdbAR4J2F9KuB/Wt0fAzzukvTtqN+8n9nMieUpE4/WJPXNwvX9Y9BbqMKmd0oLKJt8H/9ELiocK57amQuDeed3jKvzwMnZmlxkWxxLVFShqW6UZfXV4HjCnXjzzX3V1yYvXaW/jPg3TV5/Rn4tyztZX3u5Vh3Xp2l30nmFJT9fiWZgxI2UFmcl1G/11htt/F86l0xG6E2VH4PNvl9FxbGp2rUMBLiUDw1vcX1A2dV6PQU9mD4YfZTnCCt4mpgTxFJe+y7YSONki0e7Y0IPpn99Cbq185sC2xRYf4puR5HPsNwk+IHgi7FdQuqenT4OC/7aSvKzimozRmcwnDb9fpUjxjAvNNmp/ObIhJNfgeVRYDQew0utpETqCj3oONCrH6sNF8lo+aiG7Sas8lFDJ/U3g/4sdqasxKLyUyewbV/Hwpm3ITJDDcNbgv8SFXvrdDxZmwOMDWhzQTmq2pVbx1sDjKfuzo9nLNqEvxhYBex7TSAlXOT/TiT4fXwYqrnVcDMVksxB6eckht25H6Gm97PguFzXQl3hveVbuOJlSNf95eyiOGOHHOxjmvV/fUb7HmT1sMZ2P9eVZ/AOrfHZs+AqdiC4aq87ga+xfDy2J6yaTJyOeZJmfJ6rFFtPP8Eq8ZJ4gIR+Uby+i52A9T9UY1R1f9S1Vmquo2q1i68HAFxoVq6qG1LbB3DfxSOj5xCMhcWHnz7U3YkAFY6SoC5Nke2wNZo9f0Tw/AcEYn7WR1ec/hl4X2liUpE3hw+Xlcjt4RkHqjpfjSBlQ+U0IBMo/7h+juSB3m4kc6mfjHuEeE9XVD4BQBVvbJGLjrJpA/H7eh5PFYxiaGejfHGPbNG5hrMBJw+GN6Bmb2reByYJEM37YvzanWLyfdg+BqT2dSXO5iZN81rSyo6EwmLqV/IWSLOW6YOBdFzr86bcAGwfeZotZSaDqCa08oKbEsNAEQkmqVLDg2RB4D3RdNg8BKt3ZdKzaEAhppEY4N/TY3oHcArsuv6B4Z7rOY8w9B51NgY/KRwbOSD4f2wJG0aw9cy5dxD4rATGt4V1K/huhDYO1kvCfZsyzvx/Wkz3GrywvaOSV8foE+csFX5ooWJLxz/FZKhMtbwVA5nwzE7kazxwP74yqFzIvdawvYK2IjrNGpMWuG4GK/tyUQ/bXBdc+N1kMUVrJGJ0aVjTLW4ZunoPnJDzo15fNUG8MR6hM8QzCjY5HelGayUF83jga2Ljcx2SeSeoH/A1fy6muT1pnDc5PA9xn2r3ZqgkNfXgHP6yMRo+xOz89TeA5hDgRK2gcHi9H27j0wMX7Re+P4S7MH1pT5yD2XXdTRwfh+ZaGZ/S5J2HzBjFfxfrycxfdOLul8btRwbKX+ULDYlNVvr0Att9b3wPd5f/dZ2juS64r385vA9hk46so/coSTTB4QYpHUy4binMWcvsIHQI/QJ01Q8T1uBGoVeCsxOvm+KDQ9vwSaeK+PBrcpXv5uzcPzH6cXpi5HIa/dvwjxdFPhAUha1ASvDcXsEuWn0Fjhe00dmyKLM8Pn2BnnFCnoevQdZbUVL8jo5fJ/bsHLGm3MCvVhx5zaQW4yZDyZg3krar95g3liK9Yq3Cp8rbfGJ3OWEyMuJvv1ixb0ZG+FC85iFMfr6DSQdA/pEmAbmhOM2wMx0SjaHUJCJDfSHw/e4oWTt9i7Ygt30QanYur9+ZXgtobOSXNfL+sj8gmReLnyu7ZSl5w+fY/zI4lxX4bpio3EH/Tub62R5/TM28utXN+L9+85c3wbX9WBWhv0CNcfN/tZqmdcVod6vm+TVr27sQ+9entHyuhQbmce5rtqYhcXztBWoUeiXJCMlzP36Rmwt0K9ouNnWaL9o30DFkPrrEvaLaigX/5BPY2ap+Q1kYpDRY+hFMXh/i7x2xMxBsxrIHBxklmFuxXc1vK7TMRNmm+0FpoRjT8B6ugr2QQGYAAALkklEQVRs2OK6bg/vlY4fiUy6+dkl9BbA9pObiwWhPabFdcUbdBtsVKj0GU1m1/WSFnnFrWDSjf8OayAXt0DYqWlemY5xK5rtG8i8F1s+cnqL60r3zfrf8P7iBnJXhGO3TOT7RfZOt/3YGXNyeXWLsnhxi+vaNJGLuyT/qYHcrzDT14REvnavKHrb1MzBPPMUOL7Fde2dfK7dBy+p84cnMrXR7At1/k4adMqK52krUKPQw/S2edgwVNxZ4ft0YPFo5dVSr7YNVPzz41C/b+UMcjslf4oC5zWQiTfb3YncCxvI7Z3l1Xd0ivX4l2ONpwKnNbyu6JkV97G5tKFcql/TMtTsVbtPVIVcbaTtRGaXtjrSa3gVm9f7ZEv9Ph3em+zrs3Zb/YLc3EzuNQ3ljhhBXrOzvPo2oBX/c9/dDzBHq9GoU8UQTZnMFplM385mkHtvJrdBA5nolXdjeP/bhnldEo6PW7s02WDwXYXyaNKZOyaT2bmBzNdH8n8NO89IhCoUeozeUPoAbB1K+vuK0cqrpV6tGqggkxbswoYyk2j/x2+S/4nUhMWvkWvkusnQDRo3byjzT1leM0ZQhkUX/YLMr0ZSoRn6UD5lBP/z0zTb1XctLARM27J4FRZhu+11pY3oxxvKTMG8XNvmNTnJ68yGMhsz9H8+qKHciB5ciczSJvdJkPlYll+tWTCRuy+RadTzxxbst21A109kzm5RFidm19X0GZDKfLahTPq8abNs57JErm9jXTzHSIQqlPk1oQeFtZ7nJr9NxSIwj1p+LfQaSQM1FYt3piR7qzSQm9Gycq7HCG6eIHtwm7yCTLrdctMKPRHzbnsXfTb7y+Q2xJw+DmlTOUfy4Mrk+vYkCzKfapnX82hglspk1sGWRrTaWXqEZdF4d95MLo5Smo6u8+27+45OgtwLEpl3tNDveGwU2qY+Tcc6MJWbQFbIxXm/l7SQWZ9eR+SqFnKfxZxF+nZqE5lJ9ILHfrCFXJyXu3Uk9RD41xYy84LMsKCyjc8xUsGCMq/E3FUfxRZ4bpf8duJzUfI56tW6gUpkWy0qCzKfp3nPOt7gZwG7t8wneodNbyknwG6D+C8a6hdHoq08P7E5vNrJ5YLMbMxjbatBX3eNjm8DPjICuS83bWgyOaXFZDYWH1Ix79JixPwKucU0NBcPsOz3oeW8Cb25pFZ1cYyvaxtaRBQPMluHDkybRvTitp2k/BVNcqNC8HufhUWNWJGkb4eZ+Or2nlkliMg8tZBHqxUisj+22LO0+HZcIyJxG4jRq5xOpwjraZ7VZnt7jStEZD428iqF2lpjCOsmp6gtxB/ZOVb3Z8Bq3EAJ5hlXFUvPcRxnXDNh0Ao4IyOMLrxxchxntWWsYvE5juM4Tiu8gXIcx3E6ybhpoETkMyLyexG5VUQuE5HSPiqO4zjOasK4aaCwSAazVXUnLOr4hwesj+M4jrMKGTcNlKr+RHv7sVxPfXh+x3EcZ5wzbhqojLdhuzYWEZFjRWSeiMyjYjM5x3Ecp9t0ah2UiFzN8F06AU5V1e+HY07FNkp7gy/kdBzHWX3pVAPVDxE5CjgOC8WyRq/SdhzHWd0ZNwt1ReQAbOuHV3vj5DiOs/ozbkZQIrIAi6z9SEi6XlWPG6BKjuM4zipk3DRQo4mI3I5tKT5e2ATbEHI84TqvesabvuA6jwXjTV+Ah1X1gDxx3Jj4RpmnxlMA2fEY8NZ1XvWMN33BdR4Lxpu+dYxXN3PHcRxnNccbKMdxHKeTrKkN1FcHrUBLxpu+4DqPBeNNX3Cdx4Lxpm8la6SThOM4jtN91tQRlOM4jtNxvIFyHMdxOska1UCJyAEicreILBCRkwetT0REpovIz0TkLhG5Q0TeF9I/ISJLROTm8DookflwuI67ReS1A9B5kYjcFvSaF9I2EpGrRGR+eJ8S0kVEvhj0vVVEdh2Avtsl5XiziDwhIid0rYxF5FwRWR7W6sW01uUqIkeF4+eHEGFjqW9x7zYRmSEiTyZlfU4i89JQnxaEa5Ix1rl1PRjL50mFzhcn+i4SkZtDeifKeVRQ1TXiBawFLAS2BtYBbgF2GLReQbfNgV3D5w2w/a52AD4BnFQ4foeg/0RgZriutcZY50XAJlnavwAnh88nA2eEzwdh0ecF2BO4oQN14SFgq66VMfAqYFfg9pGWK7ARcE94nxI+TxlDffcHJoTPZyT6zkiPy85zI/DycC1XAgeOcRm3qgdj/Twp6Zz9/jngY10q59F4rUkjqD2ABap6j6o+A1wEHDJgnQBQ1aWq+tvweQVwFzC1RuQQ4CJVfVpV7wUWYNc3aA4Bzg+fzwden6R/Q43rgQ1FZPNBKBjYB1ioqvfVHDOQMlbV/wYeLejSplxfC1ylqo+q6p+wzT6HrdJfVfpqy73bgs7PV9Xr1J6i36B3jaNORRlXUVUPxvR5UqdzGAUdBny77hxjXc6jwZrUQE0FFiffH6C+ERgIIjID2AW4ISS9J5hKzo2mHbpxLQr8RER+IyLHhrQXqupSsEYX2DSkd0HflDkMvZm7WsaRtuXaJd3zvdtmisjvROQXIrJXSJuK6RgZlL5t6kGXyngvYJmqzk/SulzOjVmTGqiSrbVTPvYiMgm4FDhBVZ8AvgJsA+wMLMWG8dCNa3mFqu4KHAi8W0ReVXNsF/QFQETWAV4HfCckdbmM+1GlYyd0F9u77a/AhSFpKbClqu4CnAh8S0SeTzf0bVsPuqBz5AiGdri6XM6tWJMaqAeA6cn3acCDA9JlGCKyNtY4Xaiq3wNQ1WWq+qyq/h/w7/RMTAO/FlV9MLwvBy4Lui2LprvwvjwcPnB9Ew4Efquqy6DbZZzQtlwHrntwzPg74C3BnEQwkz0SPv8Gm8OZFfRNzYCDqM9t68HAyxhARCYAbwAujmldLue2rEkN1E3AtiIyM/Si5wCXD1gnYKUN+WvAXap6ZpKeztP8PRA9eC4H5ojIRBGZCWyLTX6Olb7ri8gG8TM2KX570Ct6jB0FfD/R963B62xP4PFoshoAQ3qbXS3jjLbl+mNgfxGZEkxV+4e0MUF6e7e9TpO920TkBSKyVvi8NVam9wSdV4jInuFeeGtyjWOlc9t60JXnyb7A71V1pemuy+XcmkF7aYzlC/N6+gPWozh10Poker0SG2rfCtwcXgcBFwC3hfTLgc0TmVPDddzNGHviYJ5Lt4TXHbEsgY2Ba4D54X2jkC7A2UHf24DdBlTO62H7iU1O0jpVxljjuRT4C9bjfftIyhWb+1kQXseMsb4LsPmZWJfPCce+MdSXW4DfAgcn59kNaxQWAmcRotyMoc6t68FYPk9KOof0rwPHZcd2opxH4+WhjhzHcZxOsiaZ+BzHcZxxhDdQjuM4TifxBspxHMfpJN5AOY7jOJ3EGyjHcRynk3gD5TgdRES2FJH/ietZHGdNxBsox+kIYcuEfQFU9X5VnaSqzw5aL8cZFN5AOY7jOJ3EGyjH6QAicgGwJXBFMO19SEQ0xFpDRH4uInNF5Nrw+xUisrGIXCi2+eJNIRJ+PN+LxDY3fFRsU73DBnNljjNyvIFynA6gqkcC92NhaSYBlxQOmwMciW2RsA1wHXAetjHhXcDHYWV8xKuAb2FbcxwBfFlEdlzFl+E4o4o3UI4zfjhPVReq6uPYHksLVfVqtc0Bv4PtIwYWRXyRqp6nqn9V2wzzUuDQwajtOCNjwqAVcBynMcuSz08Wvk8Kn7cCXiYijyW/T8ACojrOuMEbKMfpDqMVuXkx8AtV3W+Uzuc4A8FNfI7THZZhW5k8V34AzBKRI0Vk7fDaXUS2H4VzO86Y4Q2U43SH04CPBNPciOeLVHUFtknhHGzH1IeAM4CJo6Gk44wVvh+U4ziO00l8BOU4juN0Em+gHMdxnE7iDZTjOI7TSbyBchzHcTqJN1CO4zhOJ/EGynEcx+kk3kA5juM4ncQbKMdxHKeT/D9/nn9ZvqnjvgAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -929,7 +896,7 @@ " data[t, 1] += 0.5*data[t-1, 1] + c*data[t-1,3]\n", " data[t, 2] += 0.6*data[t-1, 2] + 0.3*data[t-2, 1] + c*data[t-1,3]\n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe)" + "tp.plot_timeseries(dataframe); plt.show()" ] }, { @@ -973,20 +940,9 @@ }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeXwcZf3437ObTHoms2mZpmmhHKUgLKfKfUk4FZFLDlEkVH8gUkS/WOVrXSVWv1pU1KKgX+ui4JdDDgFBrgLlBrkZKFehHA3ptk0m2yudZHd+f3xmmj1mk93NJrubzPv1mtdmZ2d3nuw+z+d5ns+p2LaNj4+Pj8/YIFDuBvj4+Pj4jBy+0Pfx8fEZQ/hC38fHx2cM4Qt9Hx8fnzGEL/R9fHx8xhC+0Pfx8fEZQ/hC38fHx2cM4Qt9Hx8fnzFEWYW+oij7KoryqQLfs4+iKE8oivKooigPKYqy43C1z6fyKaYPOe+7T1GUNYqiLBiOdvmMLortZ5VIuVf6pwONBb7nY+A427YPA34JXF7yVvlUE8X0IYC5wHdL3Baf0Uux/aziKJvQVxTlaOAC4IeKolyZ7/ts2+6wbXu989QC+oajfT6VT7F9CMC27Y+Gp1U+o42h9LNKpKZcN7Zt+wFFUd6zbfvQYt6vKMpE4KdAa2lb5lMtDLUP+fjkw2jrZ2UT+oqi6EBHxrkg8ITH5Xfbtv2TlOtqgZuA/7Ft+/VhbahPxTKUPuTjky9e/ayaKZvQB/YEjNQTtm0ngAMGepOiKAHgeuCftm3/c/ia51MFFNWHfHwKJKufVTNKuVIrK4qyA3AX8JFt28cV8L7TgGuB55xTr9q2Pa/0LfSpdIrtQ857/xc4CKgDDNu2TxqGJvqMAobSzyqRsgl9Hx8fH5+Rp9wumz4+Pj4+I4gv9H18fHzGEL7Q9/Hx8RlD+ELfx8fHZwzhC30fHx+fMYQv9H18fHzGEL7Q9/Hx8RlD+ELfx8fHZwzhC30fHx+fMYQv9H18fHzGEL7Q9/Hx8RlD+ELfx8fHZwzhC30fHx+fMYQv9H18fHzGEL7Q9/Hx8RlD+ELfx8fHZwzhC30fHx+fMYQv9H18fHzGEL7Q9/Hx8RlD+ELfx8fHZwzhC30fHx+fMYQv9H18fHzGEL7Q9/Hx8RlD+ELfx8fHZwxRU+4GjHW6lyxQgHpgRsrR7Bzjkd+oBgim/J3v843AWmCd85h5uOfXNcxd2Dvs/6zPsNG9ZEENMI30fjQDmMrQ+hBAJ9l9xqsvxRvmLrSH9z/1GSqKbfu/0XDRvWRBLTCdfkGeOSDd8xPL1cYUuskeyO8ChnOsaJi7MFG+5o1NciwKvPrTNMq/c+8juw+tBl7H6UcNcxd2lq95PuAL/ZLQvWRBANgR2AfY13ncE2gClDI2rZT0AMvpnwQM4DXgA391Vxq6lyyYBOxFej/amcpYFJSKj0nvQwbwesPchRvK2qoxhC/0C8TZRu9K/6DcF9gbWY2NRdYjwj9zIMf8ySA33UsWNJIu3PcF5jB6FgmF8h7ZC4o3GuYu3FLWVo1CfKE/AN1LFowD9iB7BT+uxLfaAqzKONoRlUufcyQK/DsJTEJ0uu4xJeO5ezRSemGzBngMeAB4EFEPjbnO5qhnppMu3PcBZg3D7daS3n9WAR1I/yqmDyUQlVEj2X3Gqy9NKPH/k0CE/4PO8WjD3IUbS3yPMYcv9FPoXrJgMvAZ4DjgEGA3+o1ZxRIjW5hnCviucgrE7iULgoBG+gCeDnwCCDuHPsTbrEQG7gPAQw1zF64doD07ANcgu6efNcxdeNcQ7z1iOEJ+F+BY4GjgU4i+fSj0kLvvuOfay70q7l6yYDzpk8E2wPb096FPALVDuEUv8CT9C4nnBrIzdS9Z8C3gPOBZ4LKB+txYYkwLfWeA7oUM0OOAgym+U3YDLwAvpjy+0zB3oVWCppad7iULdGB35winHA1FfJyNfD/uJPBEw9yFm1PudT8iMF2+3TB34W+KbPqw071kQT3QQn8/KnYVbwNvk96PXgHWjIZdkuPYMJv0/hN2zhVjhDaBh+mfBN5xv6fuJQv2Qb4/lzeB4xrmLlxZbPtHC2NO6HcvWTAVESjHOkdTER/TQbpwfwFYORoGZiE4k+YMsgfxboi7ab5sQVRB7iRwNbBfxjVXAN9vmLswOcRmDxnHcL83IuCPBQ6icPfnPkR1kdqPXm6Yu3B9CZtaFThq1F3J7keFTp7v09+HNgN3ZLzegQj+l4fU4CqnIoW+YRizgM8CkxFr/63hcHhTMZ/lGF73o3+AfprC9NfvkT4wX2yYu/DjYtoyVnDURXsjk+tRiKqsroCPiCO/febv9HfgvHx2T4ZhBIDjEWHSCzwdDoefLaANaXQvWbANcAzSj46hMHXXZuBl0vuRUW51TKXjGLs/g/Sho4GdCvyIONkOFnHg5Ia5Cx/K5wMMw2gCTkTUn2uA28LhcHeB7agoKkroG4YRAi4HvuacqkFWgb3AfCAaDocH9RXvXrJgBjI4j0M6jFZAM94C7gXuA55qmLuwq4D3+njg6HoPoX8S2GcIH/cAcOpAK2LDMI5AdgszARUxaieBx4GLw+Hwm3m0uQY4gP5+tC/5LxZ6gGVIP1oKLG+Yu7Avz/f65MCx9RzlHC2I/aAYeoGvNMxdeFOuCwzDmARcBnwbUbvVAhbSjyLA78PhcFUGNJZM6CuK8lPgMCQY4xzbtgtamRuG0QA8j6gLvLxjNgI3AV8Lh8NZje5esqAJ+CJwJrLdzpcNyMC8F7ivYe7C9wppt0/hOKvmI+lfwRW6jX8bOKJh7sL2zBcMwzgTWIK3J0kCEcgHhcPhVzzaFUAmpzOB0xBDZL4sRxYK9yJeJpsHud5nCKSo2Nw+dCiF7SYBLm+Yu/DHmScNwxgHPIUY5L3UlJsQmXFSOBwuu7qxUEoi9BVFCQMLbNs+U1GUC4Aa27avKuQzDMO4A1G/DPTDbQS+GQ6H/wrQvWTBFOAUZJAeQf7GoJeQwXkvspofFcbWasSxC+yEDNwzEWN6Ph5TPcDODXMXfuSeMAxjV0R9MpA9wUYWJrPD4fBG5/6fcu59BrLoyIc46YuF9/N8n88w4OwmD0b60bnkr367uWHuwjNSTxiG8WfgSwzcjzYCl4fD4SsKb215KZXQ/wawybbtvyqKMgv4hW3bZ+b7fsMwPgPcRT6Rh8nEhhkv/PNbgUTvKcgkkY8BbR1wPzJA72+Yu7Aj8wLLjCnIDmMyogfMPCYhW7xgjqNmgNcyDwURWpnH5hznB3p9varpVZ8ewbEDtFOYrvy6hrkLz3GfGIbxGLLLG2zy31wXj12rL3+oCxH2O+Z5vxfoXyw87ecrqjy6lyw4D9np5YsN1LgOAoZh7IW4heYTc7AZmBUOh9cU3NAykpfHgaIoOyGuY7Nt2/7YOXc24lGxPxBCDK4grouNBbbjq+Tj7ZFMor++dHwg0ev9owZrUerGQ914ApO0NwMhfXlgyvR3lZAeV5TAZGTr/lnLjNXjLdyrMQGdbZmxLtITYQ32d2cFThRJpB8VwgfuH4ZhTEGM9IPu9sZ1tY+f+vbj38jj803gHuDfwAMNcxeuLrB9PiNPoS7EvYjgdzmL/N22E8AJQLTAe5aVvIScbdsrFEX5F3AJ8D1FUQ4ErgKOtW37Q0VRuuj/shuQrHx54XhZnEQeg1XduI66LRuCwZ32JKBtg1I3wRHy8qjUpP1WuzjHaEdBJtlGJE9LPtiWGTNJnwxWIwFU76c8rhqpyaFh7kK7e8mCi5GFxKSMl3sQg34SGZAK8ATwo5RrTkAG8KB63Umxd1DsnKrYjYir343IrtD3sKku/ozYYzLten1IH7IQWVOL/NbzMlytv0T+Qn8ScA6jUeg7/AJ4SFGU64DbgAts23Zd4B5HLN1/RVQuTxTwuWHyjHrtGzeZ2v2OpWb6DgV8vI8HCrKqDjHwRNFnmbGPSJ8IUh8/UjW9JPaQeDSiKoHAobZtj0MWDc8g/WqZoijP17e29QzyESeRPVl40jtBY7yZZgPeAtyNCPq7G+YuLMo92Kf8KIHA7sAs27aTwBuIquZRRVEeA96vb23Lqc82DKOZwoz3AIcYhqF4OZdUKnkLfdu2X1AU5VlkMP7Ctu2bUl57VVGU950vNobMfvkyBdkmDUqydhwBvVgvrbzoRdRTcY9jA7JKSJTgAFmRjnOO8Sl/D3RkXjceUVMNFzVIGP32wOEer9uWGWsnfSJYgQQdva5qeiGBRocDX1IUBWTXcrxzAFjxaOQ5ZDHxInB/fWvbuoz3553qoHvG7iSDNYzr7nhuXDy2GLijYe7Cqva99tnKT4AZTj/azTlcF/D2eDTyOOKZ8yLwWH1rW+qWbwoyxgvNrTUe8eipCvIW+oqiBBCBlURW/WnYtn1ZkW0oLLeNkpeDTi8iqN183h8gwqgDb4G+Hoirml51W3nLjNWQnhBrCtkJsTL/LlR3ngs3IncG4jmR2bb36c+Y6GZPfEPVdC93xoEGjYps17du2ePRyG/qW9u+nXJN/v0oEGR9826sb97t/nA4/Le83+dTDQzkKtsMnO4cABvi0chu9a1tHzrPi8mzZVNltsBCGvsrJMjpbeBs4C8lakM3BUTIJu0kgcF/m1pEuE0hXa+/ComMfMV5XAO8X4FGzbxRNb0P2V3F8n1PykSROhnMQFb0s1IeC93qZjLLOT6Xci5pmTF3N2AARrJr9bsEa+tJ9C5FVvz59MuLkMAZF7PAtrm7Op9RQDwaURAvrCeQQLp8XG8nAT+lXzMRp3AB7laoqxry9d45HzgZ8dQ5AvixoihRuzSRXa8iK7m8WN21nmmhyT01wWAx6Y3dVelnU871WGbMQCaBrROCqumFCpGqId+JwjJjE4HtSJ8IUh+nF3H7gN1r7Zxc9/HOybWrTkquXYVtroHchtVcZO7K7kMCdPLN+dOD2Ax8qhBHyM9BFgnukW+MRSqpHlkrEfVOISmiX8snS0AlMajQVxTlKOBnwBG2ba9WFOUW5/kXgH8OtQHhcLjHMIyH6dffDsjGHmvDux+vmzdnpv4A8qPvknLMAXagsIx945DgnE+lnrTM2Af0TwTuZPCOqulVF4FXLKqmb0QiTZd7vW6ZsTpgW/ongh3oT5y1M87vYFtbSK5rJ7l2Fcm17SLkGdJ6YRPiX5/K7cDCAj7DBp4eSiN8Rg5HyO9Gv4A/jOKSJabyFPA990k4HE4ahvFPZOWfjwzpAa4bYhtGnAGDsxRF2RVZDZ1j2/Y9Kee/CXzZtu0DS9EIwzDOAv6Eh/dFIKDQ3NjAhHH9m4GkbT8ZUJRTVE3P8pt2BNFO9E8IuyHpk3djaLm8QYTNq0hE79PIVvIdVdOrxnI/EsSjkSnUqi3U1p1IX+8hWD2lKRgSrCE455O9NTvv84wSrHkK+Q2eVjW9HcAwjLeRNL1pePWhLVZfR51as7dXH/IpP/FoJIAUMEoV8lNL9PEvABfUt7b9J/MFwzCORrwT85NFSfvZQEA5sZr6UUUkXDMMowYRpnNImWEDAYUdp29DsFYlOG4iSrAGO9FHomcjdp+1BZiV75dtmbFaZBW6V8Yx1OIgaxG3MPd4LoehctQSj0Z00rfZ4UI/Q5nYgDK5kWSHd+qjwMydqQ0fjDLe0yvzA+DpTT1W19r4xq9usXrHub26lH3IZ/iIRyNuZla3Dx1K4Q4Hm5HVexOyyMskBnwf+GuG185WDMNwY0A+TYomZDT1o4oQ+gCGYcwB/kNKSt2ZUzUmTppEzcQGHBcsAGzbpm9jN3aftUzV9COGcl/LjDUhJRBTJ4JdKd4i34usJLZOBO5KdDQRj0a2RXLVnAl8soiPWI5kolwGPDru5Is2WU/fPS/58XttqRcp9VOo3eswAlPzV9fatk2P1UeP1cv4ulrGT5g4rH3Ipzji0UgNYiM8E8mhVaiQ34gIaLcf/ae+tc2KRyPPI8ZclwSwGPhxfWvboMZ7wzBmICrdEM4idCRk0UhRMUIfwDCMvZEArx2BSXNm6tRMChGoydbKJPt66dvQZauaXkzFnQFxVES7kT0ZFBsksJL03cCrjjG1qnBW9KchoeqHFPj2V0kR8vWtbVlG5Hg0Mh5R2ewJmNSoP6k77qsvKrV1n0bSHB9IEXrccvQhH28ctc2BiKA/ncJ22nGcgD3neKG+tS0r/1E8GjkD+BviIPIQcHF9a9trhbTTMIxdgGsRFdPEcsmi4aCihD5s3V6dBHx5zkz9lNqGbdJmVhfbtuntXoOq6aUu6O2Jk5CtGRH++yE+4wdQXHDUBiTIzZ0Enq5Ub6F4NKIhnltnIjnM8/FlthG7hzs4H/MIpsp1vwBii1lR39qWFu3r/AbbId+7e+zLIN5fldKHxiqOEXZvZLFwBvIb5kMXUlHN7Ucv1be25eUp4yxQautb21YV3mLBkUXHAHPnzNS/OFr6UcUJ/VQsM5asmRRSKnV2tcxYENFfH5Ry5JuxMRUbUQnd7xxPliq9QTHEo5GJSC6bsxCvqsFcam2kFsIjyOB8vL61bUQmMWdXtjf9O4EDyMjPP8gKDaQ62v04RdtVTfcL55SAeDSyK7JYOJP88mB10t+HlgGv5tK9jzSVLosKodKF/iNKjXp4NenRLDM2HRE+7iTwSQqIQ3DYiHR+dxJ4c7g9hOLRSB2SN+lMxB03H1/lZ5B8NTfXt7ZVjN0i5Tc4EjhPqVHHD9CHMt+eBJ5DJoAHgKfKOQFXG/FoZBb9gn7vfN6CeMvcADxU39pWkWrPapRFuah0oT8NeF+pUeuq1WJumbFxiOB3J4GDKTzS9UNE+N8HLFU1Pe8spgORYkg7CzGk5VNW8hVE0N9U39r2binaMZw4fegDpUZVPfpQPh+xEUmtfCtwj6rp8eFsbzUSj0bcqnVnIZPtYGwG7kT60b15JNMrO6NBFrlUtNCHrV/2v0mvq5oAZquavrIsjRoCjl56R0T4u5NAIS6ONuLl5O4CnlY1vaBiHvFoZBvgQuAb5Jeo7B1kJXZjfWvb64XcqxJw+tBNZCeN+wgxJOa7E7OQ7/w24E5V0/OyU4xGHD394cCliApwMNVGL1J85gbgrvrWtg3D28LS4/SjOxGbnosNhFVNr5pxUfFCH8AyYwHEFzvVb+90VdP/UaYmlRTLjG2D1Po8xjmaC3j7euBh+ncCK3KpguLRyBwkX825DJ5J8CNEUN6AeElUfkcZBMuMfZn0CMqVwO5I4M/RzrFHnh+XQFRwtwL/VDX944EvHx04u8PTEGE/mKtuEumbNwC317e2lWSHWm4sM/YK6f3kQlXTry5XewqlKoQ+gGXGrkSKuLjcqmr6aeVqz3Dh7AR2Q/TrxyCrqULyDLlGyTuApT23X9WL7CguRXT1A3kYrAH+gWy7n6gUI1qpcCqmxUgvtLK/qunPplzTRH+x7aPJL7+QjQQF3QrcVo070MGIRyOTgbnIomEw75snkT70j/rWtqzSpNWOZcZ+QHrKj6rR50N1Cf0DkIHl0gPoBeZsrzocm8Ah9O8C9srnfbadJLlqxaa+5c9ssjeYA4Wvr0eEVUUb0kqFZcZuQ1xQXX6tavp/5bg2gERmngKciqT3yIcXEBXQraqmvzGE5padeDQyA5gHXMDApQhfBv4PsfWM6iLxlhmbjWQbdrGBmdUShFlNQl9BVrGp7nhnqJp+c5maVBYcz5RUVVBacIvd10vig+Uk3nkJe+OANscPgd8Af65vbRszxknLjJ2BrEJd3gd2GMw7yul/eyDC/xTyt8MsRybV61VNf7PwFpeHeDSyB/BfDFw+0EZ03L9EdobVIUxKgGXGMqN+v6lq+h/K1Z5CqBqhD2CZsV8iHdFliarpX8t1/WjHWYnuARxjb1r/+b73jIMS7xlBenPXglEatqFm5737As2z71OCwVsZYwZJJ130OtJVPLuomv5WgZ8zh/4dwKcGudzlKSTK8yZV0ysul79jnG1BVIHHDnDpFuT/uLK+ta1qJrJSYpmx7wP/k3LqDlXTTypXewqh2oT+UYjvtMsHwPZjOctlPBr5BPAd4CsMUBQ8MG0WwZ33ITB1RmZUYQIxtt0G3K5q+qjTwWZimbH7EX29y0Wqpv9+CJ+3HaIyOhVRxQ0WmdmDfN/XIsFgZc3HHo9GapFI2UsZWH24DrgK+INXGo2xhGXG9kZKLrrEgamFetKVg2oT+uOQ0OxUw+au1bRtLhXxaOQw4LtI5Gwu+gLbzHyrJnzwlIC2TT6umTaSwOo2xCA5KnWzlhn7LrAo5dSdqqZ/oUSfPQ1JI3IKEhw2WOK+j5A8Mdeqmv72INeWFMc4ez7iIDFQRrt3kMp5f6tvbauaWrDDibPL7iA95uYQVdOfKFOT8qaqhD6AZcbuQ3TZLhermr64XO0ZaeLRyC6IDnUgYW8CVwOL61vbPk4xSJ7qHPmminge0UffqGq6d87jKsQyY3shuYFc1gNTSr1Ks8xYI+IxdQ4SBDcYTyCr/5uHMwjMSWN8HuKBMlDCsyeQvnZXvjlvxhKWGfs7YvNwuVzV9B+XqTl5U41C/1LgipRTd6mafmK52jNSxKORRiACfJPcq8eVwJXAX3IFvzgGyT3pnwC88o57sQwRSLeoml51gTWpOJPgx6QLvENVTR+28omWGdsREf7nkpEbyIPNyGR7LfBwKau1xaORzyAG/D1zXGIjO71f1be2PZXjGh/AMmPnAtGUU0+pmn5QmZqTN9Uo9PdE3MNcNgCN1aBLKwZH33o+cDlSzNyL/yAT4e2FulxaZmxXRBVxCvnlxd8I3IKkwF5WreUjLTN2PXB2yqmfqJoeGYH7BpDYi3ORIKfBchx9iHzX16qavqLY+8ajkdlIH8llbNwM/AUxzhZ9n7GEZcZmIOo5lwSi16/IjLku1Sj0FWSVlqqjPkzV9MfK1KRhIx6NHAf8GvhEjkueAP4bSV085B/SMmPb0++Rks+K5X1EIP1tKAKpHFhm7Byk7S5Pq5pekvKfBbRhMiL4W5FKUQNhA/cAvwUezNd5IR6NNAALgG/h7Xq5GdHX/ybf9Nc+/VhmzECiul1OUTX99nK1Jx+qTugDWGbsOuDLKacWqpr+w3K1p9Q4Hjm/Inex+PeB+UjE47D8gJYZa0Y8Us4mvyRaj9Kv/qn4gDnn/0vNtZ5EVmllSavsBPycA3yVwSNelwO/A65zitdn4aRLmAv8hNwJ/v4OXFbf2vZhUY328coUcLWq6ReWqz35UK1C/yuIx4PLM6qmH1Cu9pSKeDQyBfgRkgzNq1jJRuBnyBZ8xOrwWmZsF0QYncPAXh4gxeNdffQjlaz+sczYq6QHWZ2qavpt5WoPbFX/fAZR/5wKjB/gchP4M/D71NQP8WjkKGSHmCuP0DPAJfWtbU+XoMljGsuMHY/swFxWqJo+u1ztyYdqFfrTgdSQ5ySwTalSDo80jt7+QkTge9UJtRGD0YL61rayJfZyisa0IALpZAbPCfQBokL5ayWqfywz9mskl4zLH1VNv6Bc7cnEyRV0OpICYSB7SxK4o+/dV2/re3nZ6cDnc1z3EfA9JFtqxU7G1YQT7NdJeqbWnVRNr9i041Up9MEz090XVU2/pVztKQYnAvKziConV2WhR4Fv17e2vTBiDcsDy4w1IALpXPLT/z9GfzSqp0pipLHM2HFI2m6X91RNL6by2bDi2LEORPTyp5KxC7StHvre+A+Jd18F21OWbwJ+AfzS97MvPZYZewjZnblcoGr6H8vVnsGoZqH/KyQS1eVPqqafX672FEo8Gtkd2YIfk+OS95Dgq9sqPaeJk5LAVf/MHORyE1iCqCTK6vtvmbEJSLBf6iptdiXuSlwsMzYTqYNwvp1MTkmsfI2+5c+AlaMOSY16C33WJUOpFeszMJYZuwxRu7rcpmr6qeVqz2BUs9A/FinK4LIS2LHSUzI4qpwfIl43Xnr79cBPgd9WQ0WhVBz1T6o+eiD1jw3chRgkHyrX72aZsaVI5KxLVeRGX/+PX+9rW1tux9rsafRVGpuo3eNQAo3TEoiN5beIH3lFj49qxDJjn0RKbLqYiLq5IjPWVrPQ91ql7axq+jtlatKgOIWir8dbP2sjRrkf1re2VUXZtYFw1D9fRCaAgwe5/HVgMQN4owwXHomzblc1/ZSRbEMhxKORAHAx8HO8ci2Nn0xt+CACM2Zn5lgCeBzx5nnAF/6lwzG+x4ApKacPVDW9Ig3lVSv0ASwz9iBiWHSpyPSmju7+m0hwjNfq9xFEb/+Sx2tVj2XGdkbC/r9O+sDIZMRVP5YZ2xdJN+ESR1IyVNwqLR6NzETsIi0eL29k/KSr6448K6ioda0MXO/4GUT43+ML/9JgmbEbkaR1LhFV039SrvYMxGB1LSud+zOeH+15VRmJRyPNiLFwMdkC/2OcxFyjVeADqJr+tqrplwHbIsI/1/+qIamzV1hm7J+WGWtxjJjDyUvA2pTn9UieoooiHo2cBbyKt8C/CZhTf+b879bp234HsatcgOygvNgf+BfwnGXGTnZWqj5DI1MW5bLVlZ1qX+nvg1Qpcqmo9KbxaOQ04I94p0+4FTh/LEZBOoL8YERNcQretg2X15AJ8/rhUv1YZuwG4MyUUz9WNf3y4bhXocSjkRDwB9Lb52ICF9a3tt3g9V7ne25BJtLjBriNgSRfu6XcaZ6rFcuMbYu4KLv0ITvGiitQVO1CvyLTmzqh74uRHPdZLwMXAddXulfOSOAMlguQ/EJlUf1YZqwVyTvj8qSq6YPZIYadeDTSgsQ5eAXEPQScm280rWXGPo04EOTy4Qd4A3EiuLES1VuVjmXGlgO7ppz6gqrpd5arPbmoaqEPnqu0b6ua/ptytScejRyORAt7eVU8Cpwz2muIFoNlxsYjv+PFwN4DXOp6/fxK1fRHS3TvzFVaDzC5XIIvHo2MR1wAL/F4eQvwfeB3xQRYOcU/FiDeVblY4dz/ukrZNVcDlhlbjCzoXCoyPcxo0OU9l/E8V8rYYSUejdTFo5ErkCpUmQK/F8mVc6Qv8L1RNX2zqulRpO7oYcA/kKyFmSjAicAyy4w9apmxY4aq91c1/UPE+8JlHFCWUPp4NLIP0qe9BP5LwCfrW9t+U2xErarpL6mafhqSfuIGZBLNZMtRmvwAACAASURBVCdkV/W2ZcYusMxYzopsPmlUhCwajNGw0j+adCPK86qm51uztCQ4RaT/jneuEwP4cn1r28ser/kMgLMC/wbw/xhY9fMsopP+V7HeKJYZewApOO9yhqrpNxfzWcXgFDb5LtBGdjZMG4mo/VF9a5tVyvs6eZX+G0msl8u2sgqpNPYnVdOrKnZkJPGwMa5UNX2HcrUnF6NB6OtAql/7FmDSSGzNHZ/pbyNbYTXjZRuJuF1QbUFWlUYBqp+XEeF/W6GJ3iwz9kvE4OnyM1XTf1BoW4shHo3sgKgED/F4eSWiEhzW1OGWGdsJuAyJrM5VpOdD4AfA3ys5kV65cMq5biB98tRUTe8uU5M8qXqhD2CZsQ7S8+vvpmr68uG8Zzwa2Q4xsh3h8fKHwFfrW9seHs42jDUcNc5hyMp0IJe45YhB8qZ8J3+P/Pr/UjV9IKPnkHHiN85FopIneVwSRbJhjpgHiGXGZiFJ2eaSvZBxeQmYr2r6AyPVrmrBI7/+sFZkK4bRoNMHeCXj+V7DeTPHWPsC3gL/emBPX+CXHlXTbVXTl6mafizia57LM+ITyO+w3DJj51lmLJfwSiWzDw2rPjYejajAnxCvoUyBvw44tb617byRFPgAqqa/7+SD3xFJ3eC1S90buN8yY/c69YZ9+hlRWVQMo0XoZ+rLh23AxqORucADZOuYu4Az6lvbvlLf2lbR5dJGA6qmP6tq+heAfRCjr9eWdTb9BslvONvvXCxHfKtdtrPMmFea6yHj1E24H/iax8v3AOH61ray5vVXNX2VqumXADsgwt/Li+dY4EXLjF3r2F98RnjxUAyjRegP+xcdj0aC8Wjkl0h+nExD2wPAHvWtbSNm+PMRHG+U0xFvlOuR3PKZbIcEOK2wzNglTt6mzM/Zgvipp5KrCEnROFXRnkHq5KayCTFan1Df2tZR6vsWi6rpHY7w3xW40eMSBbEDvGWZsf9xci6NZUZsAVoso1Xol3RLFY9G6oE7SDf0uUSA4/zUteVF1fTXVU3/ClKXYAnpq3aXZuBKYKVlxr7v1KhNZVgXD/Fo5FjgacQlMpV3gU/Xt7ZdU6kBe6qmv6tq+lmIWs0rPmIcEj+wwjJjF+epUhuNZPahPSotzcVoMeSqSCnBVK+DKaWopBWPRrZHgoHCGS9tRrwqqqpwy1jBMmPb0W+QzOVn3oW4Iv5W1fTNlhmbj7hGuvxZ1fSvD7UtjsH2IuA3ZC+0liH6+6pJx+EY1D+HfHefyHHZCsQb6JaxlNTN+W7Wkp56paKy/1bUDFQsqqZbiE42lSGv0uLRyCGID3imwG8HDvMFfuWiavoHqqZ/EzFIXolM0pmEkLTKb1lm7FwkpiKVUvShWkS19Duyx9sS4JhqEviw1aD+L+T7+X9IKpRMdgJuBp6yzNihI9m+cuJMcJkqnooy5o4Koe9QUl1aPBr5KrCU9Lw+IGl496tvbcuMvvOpQFRNb1c1/TvALETAr/e4bCbiHvnLjPNhpzBMUcSjkUak0E9m3V0bqfr29VIHW40kqqb3qZr+v4jB/EfIbjuT/YFHnaypFV0wvIRUtDF3NAn9knzR8WgkEI9Gfo7kLc/US96CrPB9/X2VoWr6GlXT/xvYHvgxksAtk0xVxQSy9e95EY9G5iD6+yMzXtoAfL6+te3KStXfF4qq6RtVTW9Dvqur8U6f8QXAsMzYjwbxohoN+EJ/hBiyMTcejUwCbkN0wZm0IS6ZfmHpKkbV9E4nbfJOSEH6wVbaXvnrB8TJjvkMsHPGSyuBA+tb2+4u9DOrAVXTVzs+/mHgnx6X1CETruEUpR+tVLR6Z1QYcgEsM9aEFCVx6UHSMeSVH9yJsL2T7B9oC5LC1stdzafKsczY9kjqhrNzXJJADLA/y8cxIB6NXABcRXYem8eBU+pb29YU39rqwjJjhyDV4g7IccktSFbcj0auVcOPkzZkA+mL6oZKya0/moS+guTgSdXBf0LV9Ezf6yzi0ciBwO2kp3IAMVCdVN/a9kzJGupTkThlExeRe2VvIqkdrvJKOhaPRmoQg/FFma8h6R3Or29t21Ki5lYNzrg8G9lV6R6XbETsAb8bTWmcPXLrl73Oh8uoUe/ksJoPqkuLRyNnI+mQMwX+S4jB1hf4YwBV019Aym1+M8clGrJqfdMyY19O9b2ORyMacDfZAt9GVIWtY1Hgw1ZPn+uR+Infkx05PRExoL/g7AxGCxUbpDVqhL5DQQaUeDTyAySKM9OP+3bgkHyrEvmMDpyFw1/wNkS6bAdcBzxvmbGj4tHIDOBJshPAbQROrm9tWzRaDLZDQdV0U9X0i4D9yM47D2IHeMwyY1HLjGV6zFUjFWvMHe1C3zNwJB6NKPFo5MeILjeTnwGn1be2DUs9Vp/KxlHdvJlx2qsv7G1v3vAA4ya+RXY/+wA4uL617Y7haGM1o2r6c4iO/xt4e1Cdi+ymzq+0SNYCyUsWlYNq/lK9yKxK1ZR5gRMd2YboEVOxgK/Ut7b9oNiqRD6jhsx+dD5izN2qc7Y3rcd67Hbo2ZiZx+cpRC3oF83JgarpCVXTr0FUPn/1uCQEXIMEdu07oo0rHYPKonIx2oT+6oznaXp6R+D/FKkRmsp6oKW+te36YWybT/WQ2Y8mqJr+bZykY/amONZjt2NvTK+NEZg2q6fu+PN+P+7ki2L4DIqq6TFV089Fks+95nHJfsB/LDP2uypM5DagLConY0boOwL/50g+kFTiSCh8RRU68Ckrnv1I1fR3e26/6rItD/y93d6U7n0XaN6R2gM+O04ZN+F64F7LjGX66PvkwClwvw9SRzozDiYAzENqI5ww0m0bAutIz/iqVUqt4dEm9LtIz/s9yTJjEx2BfwXSqVLpBo6ub217eqQa6FMVZAr9JoB4NLIjsIxkojn1xcCM2dR++liUwFbX/GOQAKTLHZ9tn0FQNb1X1fQrkN2UVy2B6cBdTu5+bWRbVzhOfFBmTEZFrPZHldB3vC/SBqyd6JuG1KrNTItsAkfVt7Y9O0LN86keslb68WhkJ+ARxHunHyVwS+0nj/q5Eghm+pirSNrtV0d59GlJUTX9Q1XTT0WyeL7rcclXqZ6I3sxEdL7QHya2DljbtrGW3vA/wCUZ13QhOnw/aZqPF2mDNdm9dhaSAjmzOtT/YSfPqpvSfBkSye1VInMn4N+WGbvFMmMzh6W1oxBV0+9B3Dh/SrYL7QzkO/2TZcbqR7xx+VORev1RK/Rt26bvlUexN3afnvF6JyLwXxj5pvlUCVsHa3J9F9YTd+yDCJpUrkfqKfQBqJq+HInmPZvswQ5wKvCGZcb+yzJjmZXXfDxQNX2zqukLkEydXoberyM7qYLzI40QvtAfIVbbtk3fy8tIvPtq5mvrgCPrW9teLEO7fKqH1eAI/Mdvhy2bazJe/xuSjyltBepEn/4fope+iuzSjW706fOWGTt4eJo++lA1/Xngk4gjRuZ3uh3woGXGfm+ZscwC8+XGF/ojgZ1Mru576RES72XWw2AN8Bnff9onDzqT8c6E+OFnJVW9FjgvU+Cn4kSfzsNxOfS4ZA/gccuM/cUyY1NL1ejRjKrpW1RNvww4mOzgOYALgZctM3bYyLZsQDwdAsrNqBL68WgkYD166+GJlVk7wRgi8LOW/j4+mfTcftUnrMduU9iSJfCXAHMHEvipOCvUA8kdfdqKRJ9+vcqjT0cMVdOfRtw7f012Hp8dgWWWGfuNZcYyg+bKQUUackdNls14NBIE/hcZSP3U1m2hd8u+9a1tr5elYYOwetG8cUjB7hkpR7NzjEfq/tYgqXprCny+EanXuc55zDxSz3dOm7941GQ5LJZ4NLIHXhXTJky+nU3rTys2WtsyY9OQLJ7n5LjkMaBV1fQVhX726kXzFGAK2f1oBjCVofUhEDuYV5/x6kvrp81fPCJCxUnQdi3ehW7eBs5VNf1J59r9kBidDuB7I5Hm2DJjRwP3p5xapmr6EcN938EYFULfEfh/IXNAjZuAeuAJL4zbPvzJkW7T6kXzAsiASxXkmQOyGRmslYJJ+kB+F6kbawCvTZu/uCLygQ8X8WhkL+BB5HfbSnCHMDV7HPqFuinT7xzqPSwzdjhSM3c3j5c3ApcCf3SLiedYFGT2p2ZyF38faXpJ70Orgdfp70fvTpu/OK+dUj5YZmwiki/rYo+XbSSlcxtSqN2dyB8GWoa7YLtlxvYkPdvmG6qmlz0HT9ULfSfwagmZK/xxE1EPOYnA5NA7qqYPa3Tk6kXzxiNZ9PYB9nUe96ByBmKp+ICUScB5XD5t/mKvouNVRTwa+QSy2k6bhIM77kHNnoehKMrXVU3/cynuZZkxFXEj/hFSkhHbtrE3rqdv7cf0rXpvxZY3X15Bn/UJst1Eq50e0icB9/hoKDsEy4wdgdQ53t7j5beQKmZKyrmvqpr+t2Lvl2ebppGu4ulSNb1xOO+ZD6NB6P+MzNQK4yaiHnoygUkawAZV0yeX6n6rF81rAPamX7jvi3hrFF1Au8pJIquozEH8drWoi5z0yE+RIWCDO+1JzR6HoigKwA9VTffKylowzi5wp+CUaUcFp06/NLkxvmNibQd2ttF4LBEnvf+8BhjT5i/OO4+R471zBdmF6EFW/alCfy2wSz7V0IrFMmNBJJFjqr1mnKrpZa2tUNVCPx6NzAN+l3H6I/XoL08LTNJSfaEnqppe8IhavWieTrpw34ciC2UPQBIp89gOrEo52pE0EX3OkSjw7yQwCVFVuMeUjOep5xtJHxRDxUIE6QOIyuS5Um7rS4VTAOUxJBBoK4FtZj5ae/AXDnMEPkjFrHmFfv7qRfNqkLS6qf1ob6BkCxGHDaT3HffvDqTkZzF9KIEIrEa8+4xXXyp12olVSP95EHhw2vzFmcbRLBxd+hIG3yX9WdX0rw+9iQO2pYN0A+52qqaXtU5H1Qr9eDTyReAmsmfvg8adfNHDpAfT7Khq+nuDfebqRfOagWOB44BDEF3pkJpJuiDPHJCrgNWVIAxXL5oXRFLauoN3OiKsws4xh6HtZkxEl+pOAu/k2s6vXjRvdyTlbj2wcNr8xcOyDY9HI+OA+4BMN78/1Z104aOKEkjNuvoPVdMzA/2ycIT8/kg/OhoR8OOKbqSioIyfmCSZfNfu2WSQoz9Vir1l9aJ5E+ifELZB1C1uH9qDDHtJERj096FHp81fvMHroi1rV03f/OzDz1vvvT69ZptmJhx0HIFJnsG7w1rG0DJjL5NeQOXTTk2BslGVQj8ejRyBDFY15fQm4Ij61rb/WGbseWRF5XKg4+qVxupF8+oQ4e4K+j2G0Kx3gReAF93HafMXe0VmViXOd7ULsDv9gziMuMkVw/vIwH0AeGja/MVbk1OtXjTvESTdrstCIFJKrxDH+H8TEimbyh3AaeNOvugIp20uj6qafjgerF40b1ukD7mCvtg0wJuUiZNXq7PmbBucOr0mOLWJYEhHCW6da28Cvqlq+roiP7/sOLvncMaxOzLBF0ov2bvJPoCNrz758IZ/33CEe6EysZ7Jx59FsDGrTO9rwD7DVZ/XMmP3I33C5QRV0+8ejnvlS9UJ/Xg0sieyHU/tJH3A5+tb2+4FsMzYPcDxKa+fpGr6HQCrF82bjQj4Y4EjcQxpBZAEltMv4F8EXpo2f7GXH/aoZ/WieZNI3xG4K7rpBX7Ui/RPApcj/u2p/AU43x3UQ8Ex/i8mux7uk0gSvs2WGduD9OpHb6qavits9ag5lP5+tHsRzTDJWCQAb02bvzhhmbE5yE7nAI/3rQa+rmr6XUXcsyJxXE5n4j0ZFOIM0Y2zm5xwxImXb3rkzrRdhaKOY9JxZ1DTtF3m+65QNT0zA29JsMzYdcCXU07NVTX9L8Nxr3ypSKFvGMYewBeQYtQfAdeFw+F18WhkFjKzZwqUr9a3tm1VAVhm7GbgiwB2r8Xm/zy8aIvx7CRkgBaik7eQgZ86MF+dNn/xmLa45cPqRfN2AI5yjhYKc021ED/xzIClu4Ezps1fPGgpS8MwVOAsZELaAjwD/DscDtvxaOS/kUReqSxH6iJ3AlhmbAecLI+2bZPsWvtR/JZrrkAE/REUprv+mGwB//5AOxfHCHgp4m6oelxyLXCJqundHq+NCpzd5YFIHzoa+BSFBJTW1EJfxgI+WMPEI09G3WHX1LM2YtR9O/MjDMPYGTgN6b8dwN/D4fDH+TbBMmNXk25YvlDV9Kvz/h+GgYoS+oZhNCORdiciHT2IuHglano2XDn91XtOU8RTJpXv17e2/cJ9snrRPGXS58+5N7F61TG9H62gr+MDSOYdT5NEhMO9iProhWrxQKlkHG+VvZGBexSySi7WnfUZ4IRp8xevzXWBYRinILlvJiPGbBvxgX9Lf+ORf41bH4tkvGUVcFB9a9sH7omNrz61u53oM3o/XEHfRytIri9oI7cWCcq5F1g6bf7i9kLenIqz4/grYgTO5EPgPFXTHyz286uJ1YvmhYDP0D8JzC7qgxSFCQcfR91un0o9u0DV9K0LAcMwpgL/g6zS3WC1LYiMuBL4aTgcHnTxN2qFvqIoDci2fDfgANu2sxLfDIZhGNsggQxTgawshNqHL/fWd7yZef53wCX1rW326kXzdgXOdI5dCrh1OzI43QE6bC5cPoIT13Aw/YN3HwrzHPoYOHLa/MVvZL5gGMaFiNteltpOSfTaM166Swkk0zRE3cgK33DUNscjfehE8jfAJoCn6e9HL0ybv7hkdZYdv/4fOIeXMf1qYL6q6Z5GzdHK6kXztkd2kUc7jwUZidVd92HCoZ9DURQbCKua/jqAYRiTkR3ZdnjvsjYjOZVawuHwgOrG0Sz0axFVzBXALwsV+oZhKMBDwEF4f8lMWfEUEzvTPJ1u3ry26zJsTkcG6V553s5CbALuAH1tpMLGfbxZvWjeVMS+cp7zmE/q4T5gt2nzF2/dkhuGsQ/wBDlUL8Etm5jxyr9ST22xk8nje9Z11yF96GTyNyh+RPpiYdhtOpYZ+xSy6veK5l0BnK5q+phMGe7sJvdCVLgXk6dNKTh1+pr6U752pqrpD7nnDMP4B3ACA0/6m4Bfh8PhHw70+aNW6G/9MEW5luKE/vHAzchW3BN1/Vr0tx9D6bPo3dTzSmJTz2bENW5watUOeq1bkAH6SKZOOGEsDTj3rh/gmIQIo2AJDgVRW2Uem3OcH+j1bqArGG4pu9vnUHBcRtdRmOfLDdPmL/6S+8QwjOcQry3vXYNt0/jes0xa9z59ieSWvu71D9uJ5KfJx94QCNokEw/SL+iXl2OxYJmxcYie/1Ky/08LifS9ZrhTDFQqqxfNuwDZ+RRC0N2ZGYaxH7IAnZjH+3qAHQfS8Vei0M/ME+6Joig7IQbN2bZtf+ycOxtZ2e9v2/ZQgw3OYZAv2Zo8lVV7HE/oiduTwU09e2ZdEAgQUOsI1NWh1I1L1k6bGaiZ2kSwIUTA7ntR6d08CVlJXpIwlnoJ9GrGThhLu/BOipXr70qbKJLk2OUNwNZ0qoZhTEM8PnKriRSFzh32Y3NtPRNffaxOwR6w5J4ysR51+12o3XY2NdO3+6Bum5nHFNi+kqNqeg8w3zJjdyCr/lTHBBXJ63OEZca+PhJJxSqQvGRaCj0ZqrizyN/elEDUgH8s8J5lJa8vyLbtFYqi/AtZRXxPUZQDEUPZsUMV+IZh1CBbqUF1ujXrO6np6wmM33lXgvUNIuTVOpQ6lUBNmkag38JvrYd0983RiIJETTYiQVT5kDpRrENcAVci/vOpj2Yw3DLsq8Zp8xfbq6+4eK5SW/crO9E7nUQiQfqOxg1dn4j8vvcjibZcTkRUPgMPWEWhtmMlSlZW3q2sBm6unTVn2cRjTr8lJSK3olbOqqY/YZmxvZCEYudnvHw6sK9lxr6oavpLI9+6srKEQPBYpbb2OHtLj2t8Te1DW5A+MhEJntwakeuomc8k/4ljIrJgHX1C3+EXwEOKolyHVKu/wLbtUhQV34M8B1Tf5ClM3mc/1Cl+3YkSkDpRDMT6hLE0cyJIfVxTiknB6mwfH5r7/XOA6bZtW4qiPIfo5x8HnlQbm3N66zicSH5bcvpC06hb80HqqS7gFuBGYJnjK79Dwf/ECKNq+kbgAsuMLQP+RPqOdTbwtGXGvgX8aayoe0Jfu+xgxKW2xrbtdkVR3D70BPCy2tg8kOF1JoUH1u1vGEYgHA6XzHA/3OQt9G3bfkFRlGcRl7lf2LZ9U+rriqLcg7jl7aIoyh9t2742z48OkV0CzbsNtXXUNG7DMC26NiIzf65jA6IzTZTgAFltjHOO8Sl/D3RkXjce+f6KjQDNh8n0B8t4sdmZFNyJYAWidnkN+KCACeEIxAceRVFUxKh/EPBdAKuz/U0keOoN4B61sTnTbpT3SmDzTvsQ2n0fJoRCSWy7i2DwOUUJdCODfi+rq2M5SvXUNFE1/QYnCv0fpIf81wHXIOqe88eIumcBzuSnKEozEq/zRee1jVZn+9PA80j/vFltbO5JeW8IifItJAbDdq4fNHakUshb6CuKEkAEVhJZ9adh2/Zni2xDQUm+khM1Apu6ss7bAIEaCAQTBGoSdrBGdZ6j9G6+TulZv4wBBHqF6bcLImEsraU/KVZqIqwpA5zTSnT78UjsRGb8BMguwZ0AUrMndnhMBoNlU9yFflfcX1id7X9TG5u/mvJ63v1o0oRxTGycDKImmkJ/CgWXJHZyZcbHVnQWVVXT37LM2AHAb4D/l/HymcAnHXXPaC8XumaA1yYirp1uIfU/WZ3te6mNzW75xWITDlbPCoHC1Du/QgTF28DZSFh8KTAp4Mvum6SjTAxBohcCQRH0wRpQAiD6V9dDZis2nIFk3HvcOV5TQ02jZtUTDLf0IrrovHP9JIylNaRnT5yBJMealfFYfLIw2SUcQHY6gU5nMjAAw66b9DEN06ZQoz6MRGDmc8+zgVShn70SKJ4AW3MKbZ2btrW6OlYi7r5uP1quhpoqZluvavpm4HxH3fNH0tU9OwPPWGbsYuB/R5u6x+psr0E8t95AgtZmMrhcqUNqGrgeYN0UbggOUEWrfMjfe+d8xId5f2Qb/mNFUaJ2afw9XyU/v2wAVndvZFpo0qZadXwhOXNUpN1HOM+TVlfHy/QP3sfVUFPRUZPVSDDc0oesrnOusBPGUgXJlJg5EaQ+Fpwi2A7UNNp1Ew5FnXCoXTcBaooKzs0MRLobyZY5aL9Yv3kLEzbW9tZPqFMURSlkkM9yDjeXSqfV1eHqjB8HnldDTWXNlQ6gavr/Oeqem8lW9/yRfnXP+rI0sARYne0qkpbhcOc4mOK88N5K+ft9xC26ENnyUjXp8yEPP31FUY5CsvsdYdv2q4qiBJEv6r9s2/5nKRphGMbtwEl5Xr4euGDOjKkP0Z/cy33cncITqLm8S8okALyhhppG1Wqo1DiTgkb/BLADouZxk2U12ADBWmx1AtRNkMeaQj0zs+gCTlQbmx93TxiGMRPZhea7M+ncflpouloTnEN6Hwo7/0cxbAGepX838JQaaipbIj7LjI3HW90DMoa/qGr6Kx6vVRxWZ/s4YD/6hfxBDC13v40sFE5UG5u3jnPDMK5GPHryUedtAi4Lh8OZNT36212BfvoDCn1FUXZFOu85tm3fk3L+m8CXbdvOzIRYFE6ulL+SMVMHAtAcqmfCuH4hsanHSlqJxK76zB2ykiNZXR0BYHtQ/gYcPESD7zrSJ4EX1FCTNZQPHAtYne0KMBvbPhw7eTyKcihKYJtB35gPyQRKPGYrm8zliqQ9cI/Xg+GWhGEYBh4ZL7360Rarr71OrdlXDTVlqcSsro7JQAsotw+xD9nITnarSkgNNX00lA8sBsuMnY2s8DO9m3qQ6NU/V5q6x+psH4+o+lwhfwClKz96H/CtFF3+VgzDOAyZDPKSRRt7rE/P2GF2zijoqhP6I4VhGAFkhbQXjsopEIAdm6YSVOsIjpuEEqzBTvSR6NmA3WttAXuW14CF9CybyP93EdjdSKKvQ/AOYx+MzYiAuRO4TQ01fTDI9WMCR8jvgqjODkdULIUVn7Ft6O2x6duiMMHDvmzbKBu7UNavQbE9d9LrgWd7qFm1holnbEatSzi2tWL7UWqWTacN74P9ZaT/HIqoE4rxmnLrCNwGPDhSCwnLjO2CePd41Yz4O3BBOXP3WJ3tk5DVuyvk96MAta9DDFhGf6rvTN4Fvg3clbq6T8Xx1b8X6c8qDFkW+UI/F4ZhbAu8hKgLAjOn1DNx8mRqJmqkBMhg2zZ9G03s3i3L1FDTEV6flSb0hTNUTb956+tdHVOQQXuIc3yKwjvYs8CtwK1qqGlFge+tahxBvwcSvXgm3sWoB/wI5Ptb5hxPBtuXb0lMmXUhdRN+m3bllk0EujtQ+gpTlVsE2UQt6pQZjJvcUHA/yhL6sFLV9K1qH2dXuTv9k8ChiPGwELqBu5B+dJ8aahrWAvOWGZsA/Bb4msfLrwMnqpo+Yn3Z6myfiARmngl8lsIjstvp70PLgDfVxmbb6mz/DzKmXTYjgXy/zHDR9MTJsPkyoAM1Q5RFvtAfCCd39R+B/efMmDqhZvKUzEhbAJJ9vfSt77TV0DRPV6nBhH7W9V0d45GVhTsJHERhlXxeon8CWF7A+6oKq7N9Z2SAunnq86UH2SW5g/NptbE5S8A5xrn7kFXWB9j2ZYGP33hZ6fcAOgARtHl7eyVm7E4x/Wgwoe+F1dWxHf2TwCHkjm3wYiOiVrgVuEcNNQ3bqtsyY19G/Pcz1T2dwGmqpj88bPfubK9D3GPdTKZ5BdQ5fEC6kF/htWK3Ots/h+xeJiE7qkvVxuaCdubOIvT3wFFzZkwdPwRZ5Av9fDAM4/A5M6Y+UqtNS5tZXWzbptdcjRpq8hz8hQr9rPd3dQSRlaw7CRxK/iqL5Uh0563AK9VuDLY627dFXF7PBD6Z59s2IYFU7uB8Vm1s34Bd7gAAIABJREFUznupbnW268AarwHt5E3aj/SJIGfCtMSM3RmsHwVXvVaTGadRjNDP+j+6OhoRvbQ7CXya/FazPYiK4VbgLjXUVPJCKZYZ2xVR92ROTH3ARaqmlyy1gONOeQSyWDiF/GNE3iVFyKuNzSsLuOdEQFEbm4c0eRqGsd+cGVOfGYIs8oV+vlhdq5M1kxuVImfXfwGfSzl1sqrpRXsaWV0dCuK3/QWkpupBeb51Bf0TwHPVMgE4Qvc0ZJAeksdbepCB+Yjz+Lza2DwiumrHg2gnRPgf6DzuheN9MfhKfx3BVa91IZkV7wceCIZb3rPM2O5IHIHLW6qmF1KnIQurq2McYvM4BXGBzirY6kEvUqviVuAONdRUsvq4jrrnz8jvnMlVwLdVTS+qPKXV2R5Afo8zkVxA+fyv7wJL6RfyI2709mKIsuivSH4el6+pmr5kmJqaFxUs9DseUWrrDi9Sj5ap0ztY1fQnS9i2GcigPRUZxPlE5H2AowJCXPkqyrfX6mzXkP/pLCRicbD/qQ8RkjcAd6qNzRUT7JYwlk5AVtVHJrbZ8RJlolafsx+t7yS4bmXmR6ywa9TXkw1Nn6dukgQBwuOqph9aqjY6u8lDkD50KvntJBNIDdhbgdtzGQ8LaocZU4DLyC4fCWJwPl3V9LwC3xxbz95IHzoDKUIyGB8hLuE3AC/kMrCWkyHKontJj/Y+sdz1jStZ6E8D5X2lVq3zsJj3gr3tABbzD5AIXJfZw2Wgsro6dCTG4FSkAEg+wT4fA9cDf1BDTSuHo135kGJIOwvJRDqY6sFGVvM3ArflkQSt7Eg/4n2lti67H1k9KB1vEkjmzsBhA9RNxFYnvBRYv+aEYLhl1TC0MYAEProTwPZ5vM0GHkV087eqoaYhlfW0zNjJwHVk69jfRgRVVpWyre/tbC+0at0aRLV0I/CE2thcUQugTAaRRX1gzxxAFr2ITIQu+6uaXopElUVTsUIftg7Ym0A5DGxF7Hc2wPVqqOkrnu+RlUsP6QJs8ki4ozk63M8jqpFjyE+I3gUsBpaOlPrH6mzfEUmTfR75GdKeQVZi/1Abm6suctnpRzc7/Yit/Wjt+0uDWzbsiyTaypenEOPgbcFwy7uDXVxEWxUknYA7AeSTKvtjRPj/SQ01dRR9b0nVfCfZK/RuxC5239ZrO9uDyGLnUrLTbHgRR763G4CHBsl2WXEMIIvuUUNNn8v5PjPWTnoVr+1VTX9/eFs7MBUt9F2sro6jEVWCy1tqqMlzRWGZsRDiheCyUdX0ES+SYnV11CN2hVMRd7TBogeXI3rUvw2X54bV2b4fMkhPZXD1zSvISuxGtbH5veFoz0hjdXU8gNTldflacNVr1yJC9mjnOJj83Xddr63bguGW10vYVGDrBLA7sog4lcG9gXqRFfRi4JliFhGWGdMR4XxwxktJ4Dsk+/4MnAt8h635iXKyGVnU3ADcm4+7ZKVjdXXsi2TpdFkH6F7qWsuMBRD35NTo3vFOIZyyUS1CfxKSmC31y5vutapxvBJS3SbfVTV9p8zrRhKrq2Mikjb4VESdMlC+mjgQBX6vhpqyoo4LvrcY1E5AhP1gOul3kAF6o9rYXHIhVm6sro4fIqUGXf6mhppSk7aRMJZOBA6zx9dfQe+W3QuID3gDZwcAvDAchWesro459O8ABvOkeg4R/jcVmg/IMmNuSuZzt560bbCTgO0WIclFL+J5dCNi6xlVxdodW0wn6S7dYTXU9FrWtWZsG9JzW3Wrml6q7LZFUxVCH8Dq6nia9Jq4Z6ihpiw3TMuMHY7onV2eUjU9X2+bYceJCTgLmEe6rs+Le5GBe2+hhl8njP0rwH8xsIqgA/FprlhDWqmwujoOQzxDXFaqoSZPN0zLjN0DHE/vFpSeOMr6NW8pyUS+VcneR4T/rcBTwXBLyXXWVlfHrsBFSKbRgXaya5ACK9cUkgLCUZN+B9tehJ0M5JGO4iHg/4Db1cbmzsEurmasro67kd27y4VqqCnLDdMyY2EkDYfLkD3ASkE15YF+NOP5YTmum5bxfMgeDqVEDTVtVkNNf0FUCocgngu59JvHIQE7b1pdHZdYXR2Dhv1bne1Trc72CCJ4/khugW8gK7lZamPzpWpj8/OjWeA7PItst122dwKqvJB+VFuHPXkbks27fRXRdX8LmTgGEuSzkHD/x4FVCWPpHxLG0gMd99KSoIaa3lBDTRchKbG/hRhcvdgG+AGw0urq+IfV1XGYozbKidXZrpDsO4xk3xHYiYEEfi+SYj2sNja3qI3NS0a7wHeoalk0GoV+U8bziviiM1FDTbYaanpCDTW5aQx+Qu40x7OBK4FVVlfH1VZXR1buIKuzfWers/0PiGvo5chg9+JBZDLZU21s/utI+dNXAmqoqQcxSqeSS+WVNWCD4ZYPg+GW3wXDLUcgxrn/h0QQD2SUbAK+gVP1K2EsvSxhLC00XUNO1FBTXA01/Q7JbuouErykdBCxDSwDXrK6Or5mdXWkZaS1OttrrM72M5DJ8RFELZgDBZSgRaDmDrWxOUu1McrJkkU5JtKKFPrVpN4JIUaT1C93ihpqSltZWGbsp8B/p5y6XNX0Hw9/C4eO1dVRh0QSz0OiTgfiIeA32Ml1iL7+JHKnJ+hDdKy/Uhubx1qh7DSsro6FyMrX5U9qqCmtsLij2thCukF3oqrpm7w+M2Es1RABeSoieAdL75xEAq6uBe4IhltKmnPH6uqYDVyIeGcNtDvsApZg2/8L9mcRj65ZA1zfgxIYJwI/rWD8ZcCiSsvUOVxYXR0q8t2lTpqzM3NwWWbs28CvU05dpWr6vBFo4oBUzUpfDTV1IR4lqXhFi1bk7JoPaqhpixpqul4NNe2P2C+uI10dIdg22PaR2Mk7kYLPJ+Mt8NcDvwR2VBubvzLWBb5DPjvGEOkCf0MugQ8QDLeYwXDL9cFwy8lIFbIvIjaSXEVKAkjAzg3Axwlj6TUJY+kBpVL/qKGmd9RQ03eQBHDfQEpUZmPbIezkpWC/iewkcwn8/wCnowRCKIFrSE9HoAA/B66yzFhFl5QsFU5m1KcyTnv1o4qURVUj9B0yo2q90sRW5BddKGqo6Vk11HQOokf+IZJR0EkV7R45+QhZ/W+rNjZ/V21s/nB4W1tVZA7WOU56hFSKVhEGwy0bg+GWW4Lhli8hqQe+gBh0cwVPNQDnO+16PWEs/V7CWFpYauocqKGmDWqo6RpknBwJ3A4knUUDeRhn70SE2f5qY/M/1FBTj6rp3wC+iUQHp3IhcIPj+TMWyEcWVaSqudqEvpHx3CvT46gQ+i5qqGm1GmpaiJ08GDv56OADVXkclM+ojc2/UhubS56oq9pRQ03rESO3SwCpH5tKZh8qKuApGG7pCYZb7gyGW05D0ixcDOQsuIHo5X8OfJgwlv47YSw9PWEsHUqNYmCr/ehh7OSp2MlvSm2JAfvRRlB+gBI4VW1sfizTwK9q+h+QnUpmVbAvAndbZqzgEppVSNXKomoT+plpi72KoVTk7FosVmf7BKuz/UfIFj2X8RrZZSugKIegKK9ZXR1XWl0dU0eomdXGYP2o5IM1GG5ZGwy3LA6GWz6JJIS7EnGn9CKA2AZuQtQ/f0gYSz+V49q8sDrb90WMuFczoJ5fASUwEUX5KfCK1dVxkpeRUtX0pYgRPDNCuwV4xAnyGs3kI4t8oV8CMgOGdnXylgBbDXAlWaWVG6uzPWB1tp8NvAn8GO/av4+D8gJKQAxr/bpWFTHKvWt1dSxwgsN8+snsR5mrtGEdrMFwyyvBcMt3EHfLLyBql1weQBqil/9Pwlj6VMJYembCWJp3wR+rs3261dn+FyRYy8tTqQu4G5Turf2on084bXvC6urIeq+q6QaScTaz7OC+wBNOeurRyluku+1u5wSRplKRsqjahH4M6aQu40k3PjWQnu9mUzlLwBWL1dl+AKIzvB7vakwGcLTa2HwoivIppBiFl7FuMuIK+o7V1fENq6uj0Opgo5URX+l7EQy39Drqn1MQ9c8lSMWmXByAGH9XJoylP0gYS3PWHrY628dbne0/QPz3W8k29CeA3wGz1cbmE1CUnYBfIV5LmRwIPGp1ddxldXWkpYJw8sgcgrh5pjIbeNLJ5zPqcKKcM5M47ur+4aRgyNzt+Cv9QnFyiQy0SqvI7VS+WJ3t21qd7X9HjHr7e1yyBinIsI/a2PwgbNXX3oWoDM4FvIy2TcAfgNetro7TU3dHY5SyrvS9CIZb1gTDLb8Nhlv2BvZByhrmymLaDCxEdP9/SRhLt0Z2W53tiuNr/4Zzjdcu7x5gD7Wx+VtuMJUaalqnhpouRYL5rsU7+OwEROVzrdXVsXWxpWr6WkStc1/G9U3Ao5YZG0AtWdUM1I9CpGfcjZc7545LNQ7+gVZpVSn0rc72iVZn++XINvlLHpf0AlcAO6uNzX/0ylCohpoSaqjpr/+/vXMPb6wq9/9nJe2e4TJDd6Z0QrgVYQaQzU0EQZRbQC7KxQsqCpSjovw4eEQFi4qoKGo9gscL4hUtI0cQDgiHI4NQYDhH5CbXjCDDpQxMJlMhqTADM7tN1u+Pd7dNdnbapE3SpFmf5+mTJmsnezVd+91rvet9vy9y0X6eQtG5MXZB/MQPuJlUvGp/QPPhH0O7uplU/gU6q+Mo7MQfDTvxcxH3z/soFBvMZx4yi38kmxhYMfL8I19A6/9FcjKCMo2fBI61IrF3W5FYYFlPy46utuzovyCTiCDdd4VIPzztZlKXevWm8VbUJyBSDPksBP7kDg+dNMmf3Kw0pS1qRqPvv7vmf9H+gd4wX3QQnt/+NMQ/eBHBSpw3Am+2IrEvlBONY9nRjZYdvQypJvUtROnQz37AHW4m9SdPw6Wl8HI+8v2r7cj3NYZ/HM2KLzbsxN2wE78x7MSPRsb5FUgpygJ0qI1cxzaH6K0W96GUXx0TZAJwDpKFvbycc1t2NGHZ0ROQfYCgAkQWorT5nJtJ9bqZVLvV0eUiek//4Tt2HvBf7vBQUEH2ZqYpbVEzGv2nfc/zv1x/rGzJwg+zjZtOvh0pFn4VwVWTHgOOsCKx91mR2DOVfr5lR4ctO/plZHb/M4rjqkGkhB/1Ltpyir/MJQLHkTs8ZJHnm/Xwb1TWnbATfzLsxM9GZv+fBwa1UuS27CTXtTN68wDxRq1zjI5chfjtL5+Ohr1lR/8P8dmfSLGRA5nJfwe4382k9rI6ukSCWbJ08wkBv3CHh77kBVzMBZrSFjWj0fffMfPDEv2bRpNtis0KnivnciSTdv+AQ4aAM4H9rEjsrpmez7KjScuOnoXosl8fcMg85KK9182k9pjp+ZoI/zga2xTdjcJs3Jesjq6GERHzsn8vy0Z3PTW3eGlKL9waQgGX8cbXCA09FwoPPXN6OPnkddnEwPHZxMC0rndv3+hmYC9E2iFIrXNf4K9uJvVVdK7d6uj6DvAJivcGLgF+4G10NjuV2CK/msCs0YxfvD+2OT+CYS9fW8N80TBexORhJHuxqBkxvkusSOyXViRWuobfNLDs6N8tO3oyskEcdDPZH3jYzaS+2CKz/lLjyD+GGmri4KaT7W46+Q1CoXsIhfw5KTCykdArqwmnX0JlxxU84kh27ePZxMAp2cTAtOQSvH2jXyP7RudTGEkHsnH5NWTPaB+vAPh7kUp2+XwauNpbVTUz/o32rfNyGhp2HDWj0Q/8or2CBfllyVyKl1+zgqdeeBHiGw2SOr4e2N2KxL5Y6wLjlh19ADECpyACdgXNyD7AfW4mFZRWPpfwj6OxWVrDztC8WrR/AS6k+Np9mezIeaF/DH5JbdpQSnZjD2Sj9W/ZxMDp2cTAtG7unjz495CxfE3AIXsDD7qZ1NfRueVI6VD/ftSHgf92h4fqXtWuimyg8IY2D9jSk6LwR4Q9QYPQdEbfsqMbKNycbEf8iv4760qro2tGxaKrgZtOLkF01b9OYeUvkEpVh1mR2MlWJFb1equl8Jbr1yBG4IaAQ/ZDluoXzuHY/nJn+rNu9L0wzHOARwiumPUTYIm19Y6XtjlHfBspY3gyMu6CWAr0A3/PJgY+kU0MTGvGbdnRly07egoSYeR3dbQhwQkPoXMbkA3htb5j3gUMuMNDs15Najp4IeRB42g3CsM1X7Q6uvyrolmj6Yy+h/+L7qTBLlbvQv0UUkc1KOb+Z8A+ViS2IqCtLlh2dB2isf4hime+7Uhi1/1uJjUXE2yawr3jppMxJiqo+XV41gLHWJHYv1qR2LgOTtiJj3qib+9EbhJXExx3/ybgF8CqbGLg7Onq/Fh29EZkAnF1QPOewAPo3IfQ+jCKV98HALc3q+EneMXYUGPIz1wx+lvTQMtyN52MArcgdUb98glDwHusSOwsKxLbUPfO+fBm/b9Hws2Kyk8iG3QPuZnUVz0d8blC0Rjy9GLy/eSbKF2Rqua46eTJiFvgXQHN1yMJVv6EqALCTvzhsBM/FZl9/prgKK4dgMuBZ7OJgc9kEwNBkh+T4iV3nYrUdfCHuIaBL4O+AZ07B5GEyOetiOG3Kz1vA9DQtiiIuWT0G+Lu6qaTJyEX6nEBzTchpeX+p769mhrLjv7DsqMfQtwC/u83f4Nu33r3rUaUM4ZWWh1dFYc5zhQ3ndzKTSeXITfhiK/5VeB04INWJObfkylJ2ImvCjvxjyGKoj8nWOo5hsTYP59NDJyfTQxU7G+37OhNyKz/qoDmPYDl6Nw9aO13PTWr4S9nHBmjXwX8IXSLkAGVT12/aDedXOAJW91IYegWwHrg48B7rUislLJiQ2DZ0euRWf/vApr3Rgz/xXNg1u8fQx00QMivm04eiozdUwOaVyAJVsumW8847MSfDzvxTyHJaD8mWGunC/guExo/U9Zmzseyo2nLjvYAx1OswhkCPge6E639RX32o/kMf0OOo8loVqPvX6JuQ6HQ2lqro6tuxtVNJ9+B/GP/JaD5z8DeViR2ZbMUHvc26D5C6Q26ryAbvW+pe+eqh38MKWZxhuamk/PcdPLfkXBafzani4RIxq1I7IWiN08Dr97vp4GdEJnnoMztRYh+z2A2MfB1ryxk2Vh29BbAQbR8/OwGei907iUKS7Y2m+H3j6MFFAqtbUQCNhqGZjX6frb3Pa/Lxeqmk5abTn4bKcHnl5EdRWr1HlrPyJxqkrdB99uAZgf4i5tJBd3ompVZMfpuOrkXUpLwPIrVMJ8A9rcise9VO3cDIOzE13oyz91AHxKG6KcDicR5NpsYODebGCi7OpZlRzOels9xwBpfcwjYDvRrAYb/jiYy/Pn4s+tnxUU4GXPF6PtnRjW/WN108s2IjMIFFF+oTyIl5r5diwu1nngbdKchafj+kDsLuNLNpH40R0I7/RLLNR1HnvbSeYjB9+dFaKS+8QFWJFbz8Rx24kNhJ34BIlX+TWTvwE8EWRU86en6ly2nYNnRW5EJxC8DmheAHvEZ/rcght+/p9Ho+I1+Q7l2YM4YfeWf6df0i3bTyRMQ/fCgTc0fIBIKk5XFazq8NPw9kPhuP+cgAm7NXC2pjUIXYdKTDK4Jbjq5BXAdop7q3x9ZjegunW9FYnWV4w078VfCTvwriPH/KsVZtyCr2t8B92cTA4eW+9mWHf2nZUfPRKqC+RPI2kHrAMN/e5MZfr/Rb6hNXJgzRr8+7h0v9v4LwB8o1ilPAu+yIrFzrUgsyD/a9HhL9TOQbEr/33gIEtoZlDzUDPizU2t2sbrp5HbA/yJ7Jn6WIZu1d9fq/OXgafxcjLh9LkKCEfzsD9ydTQzcnE0MBJULDMSyo7chrrQ/+poUaNA58ox/k834lTH6dSLf9zdCDRTt3HRyHnAl4vf0L2uvRWKmb6/2eRsRy45ei5TJ828qbg/8n5tJfbT+vZoxfqNfk9Wip7/0IMWrxAwShnl6IxW0DzvxV8NO/BtItM/lBJd1PB54IpsY+Hk2MbBNQHsRlh0dRvT3Lwk+Qucb/n1pHsPv19E3Rr8O/K3a8gtuOrk1cAdSmSqfLOLaOGWsAlGrYNnRR5HYar9423zgt24m9b0mE27z70lU/WL1KlqtoDABbOxc+1qR2HXVPme18Hz+51BauiOEqMM+40X6LJjqMz0BtwuR3JCADeSmNPz5UitrrI6usnMp6kWzGv3JVAKrerG66aSD+O/f4WsaRqoQXd4soZjVxrKjLyPZov6iGSCa77eOVVZqQPxjqGbuHc8t+DVEnMwvdXAzcHC1QjFrTdiJPx124u8HDkbE3/xsjriDVmUTA2eVU8Tdyw05CHi+uLXI8A+4w0ONNKbqZouqRbMa/cnu9lVblrvp5HGIMma3r2kVcGCruHMmw7Kjo5Yd/SxSQs+f6HMkorboD4VsBPxjKP9acKlS4RQ3ndwMMfZfDWjuQxL2gvzlDU3Yid+LGP73EyxVsRip9PVENjFw0lSRPpYdfQJZOd5R3Frg598HmfE3iuGviy2qJs1q9LeepO2vM/1wb2b2WaRGqH+Zehdi8Ge9mlIjYdnRqxAlRX8s9k5IPP8H6t+rSZlsDD1WDRehJ5Z2D/BBX9MIcIYViV1gRWJBQmhNQdiJ67ATvwFx+ZxDsSQBwK5Ilvo92cTApMl8lh1NA8cClwYfof2GvxFcPTW1RbVgrhn91wlecpaNm05aiDbJZRR/Pz8Hjm41/325WHb0QSSxxq+rsjlwnZtJXeJmUtMq4FEDJrtYSxUiLxs3ndwP2bB9q6/pZSQcMyj0tSkJO/GRsBO/HCnN+U2Cs3vfATyYTQz8cDJZB2/leB4iQxEQrlpg+G9xh4f8UXT1ptQ4ygF31rMj5TLXjP7dVkdXkJZIWbjp5CLkgvcXcM4BnwHOsiKxWdfob2Q8ueY4srT38yXgZjeTagQZ3cmM/ozcdm46+QEkJLMoOxNJtiqlc9/UeJE+X0FE3X5FsZxzCKma9fdsYuAjk7l8LDt6NeI+CigIM274DwKuc4eHZjMx0K+zNcZDjVRmM5+mM/puJrUFsFmJ5mlfrG46uTtwP+BPNnkVeLcVif2wVTdsK8Wyo65lR88GPkmxmuNxiGjbzvXvWQGljP4Gprla9NyCFyJJV/4x+j/A261ILGCzcm4RduJrwk78E4jwmD8WH8TffzUwkE0M+CtMjWPZ0YeRlVJAzYlxP/+xwJWzUXPXK41YahzNeLVYK5rO6BN0Z1XjE4ZpfdFuOnk0IqngN0TPAQdZkdjy6Xxuq2PZ0V8Ah1Gsr74EuMfNpHare6cm8I2j8TF0t9XR5foPngo3nZyPaBR9I6D5UuDEWpfCbDTCTjwRduLvBt6NXEt+DgceyyYGvlVKw9+yo0PAUYgiaAAatD4VuNQdHipbFqJKbEFxNNYYDRvk0YxGv9SddQ2ieVM23szs08hsZKGv+R5EP+dvlXfRMIZlR+9FZmsP+JpiwAo3k3Lq3yugijM0r2jO3cBHfE2jwCesSOy8ZtdgmglhJ/5HRKDvYiQyKp924ItI3d4Tgt5v2dERy45+GpEnD7gha9D6XEQHq56UmoCuRyaRDUkzGn1/xtsYt1sdXWW7X9x0UiEzsB9S/D1cCRxlRWI1015pJSw7ugZxm/nL6XUBd89SYZaS46iSD3HTyV0Qt6C/JGYaONKKxH41jb7NOcJO/I2wE/8qYvyDvuMdgZs8SYfuoM+w7OiViNxHwHWpQetvucNDZ1at01NTagxNa7VYL5rR6C8t8XrZMzTP4P8Q+KyvSSNJRZ+wIrGG/ac1I5Yd3YhUfPq5r2kRcKebSQXVEa4lQePoJSqQ8PCK3q+gWOX1KWTDdtbqHzcqYSe+CjgaCWP1F1gBkXT4WzYx8KUgCWfLjt5PsMsQz/D/1B0eCtI0qgUztkWzQTMafZ+w07gbb6CcN7vpZAjxD57ja1oPnGBFYpeZDdvaYNnRHHAWcsPNpwO43c2k/FnPNcHNpGyKpRAA/lTuatFNJ3dFDL4/Quc2JI/j2Zn1cu7ixfdfB+yOSDX7XV+bIZo8j2UTA0f432/Z0ZXIytGfEwLoEFr/zh0eOrza/Q6glMicMfpVJmi3/xGro2toqjd6Bv8nwNm+ppeBd1iR2C1V6J9hEiw7qoFzEUnhfBYAt7mZVNFFXgOKx5D4Ysty7XiRXncjFdvy+Q1S9L5hBNMaGS/E83NIbse9AYfsikT4XO0XcrPs6NOIqydAvkJbaH2TOzxU68puvnGkQEJMn67xeWdEUxl9L0Qq6O465cXqGfyfAZ/yNf0DONyKxBoyZXou4hn+XoojXTYH/sfNpI6ucReCxpAmUAKgEK94zl0UrxR+BXzcisQaqkpSMxB24o8h2dwfB4IEyj6CFG7pyY/tt+zoc4jhD1hV6QVovdwdHlpSk04LQeOo7NXibNFURh/Z+AsqoTbpcsoz+L+gOOlqHXCYFYklqtM9Q7lYdlRbdvQi4EJf03wkgev4Gp6+1Gpx0o17T3zvboo38H4BfLKZJRVmm7ATz4Wd+JXI7P4XAYdshaykbsqf9Vt2dDVi+AP2YvTWaH27Ozzkd8HNGDeTmkdxiDc0cKjmGM1m9IOW5RuR4uOBuOlkGInG+ZivKYUYfBOSOYtYdvQSZPO84GXghhrq9QQty6eaOOyFzPD9oZ4/RTK1jcGvAl7lrk8i2baPBhxyPLAyP6PXsqNJZHP3ieLD9Y6e4a92vd0l+O2nUpoy9xZnk2Yz+kHLqRVWR1dgSTnP4P8aUYDMZy1i8KtebMVQOZYdvYzijfU24NoaFWSpyEXoppP7IDoq/rjsnwBnG4NffcJO/D6kMtfnKNbysZHw3+uziYEuGJf/OBwIKFOq34zWt7rDQ4EJYNMkaAw9XMsSm9Wi2Yz+HoVPS2++uelkG3AVcJqvKYkYfKOS2UBYdvRypAhHvj80BCxzM6mCVdpMirC7mdQCJCY8nzcosVp008l9kdmbX8r3R8A5JtKrdoSd+GjYiX8fEVcLksZ4HzLrPxmRgUYmAAAXJklEQVTAsqOvILpP9xcfqt+G1jeO6fS4mXVhN7Nu1xlk8e4R8FpDR+2M0WxGPyikr+iL9gz+MoozJF8CDrUisYbeXW9VLDv6S2RVlj9zVsCv3EzqLAA3k7oMeM3NpB52M6mgsMupOKjoFaUChfo8pcwBijXT/wP4jDH49SHsxJ9GNnrPp7hmQyfw+2xi4JpsYqDTK8P4LgKjgfS70PpqN5M6APQboJ9C5150h4dKaXlNxsGFT6d2ETYKTWP0vdjqPX0vrwMKNmHddLIdWfp92Hfsi8gM/5maddIwYyw7ugw4heJarFe4mdR3kIS6eUgVpRK665NySMBrRatFN53cH4nm8fuCLwM+Zwx+fQk78WzYiX8PKZT+YMAhH0Jm/SdZdvRVxPDfU3yYPhmpkzG2WtwWrb9ZSV/cTMqiyOjzBjOUda8XTWP0kS+5cCmmVEF4lGfwf0dx0YoXkBm+SZhpAiw7+nvgAxQrdPb6np/kqa5Wgk9FtXiG5qaTb0NuBH4J6H8HzjMGf/YIO/G/AW9HZLr946MLuDGbGFgWXrPSAo6huIbz2HF56FMq7MZbKBZau2smsu71pJkKV086Q/OKn1wDvNd3zCAShz9Ys55Nk8HenjAS/ret7yfm/WyG/I/akFqcbRU+34Aknr3iPfp//K+nu/v6GyLO3LKjN7mZ1IlI1aWidHyPzZFojmvK+Uw3k5oPHOh7eR0wHsHlppMHAcspFuD7DvClRjT4g709WzIxbvxjqZOZjSEQHaFSYybo9fXdff01+57CTnwU+HY2MXAL0I+s+vI5FYiH16w8M7vtHscistbxST5yGzezbkfLXlxuneJiW6RUw4dqjqG0brgxHIibST1OgXtHZVFqa6ujK+MZ/N8DJ/re9hxi8FfXraMeg709C4DtKDTk/gsySuOttjJMXLzPIe6zsZ/V3X39dYtUcTOpYxB3yq6U/p5usuzoSWV+3iH4tdlV6MdWR9enAdx08u2IwfeXyLwE+Eq9Df5gb08IGSP+ceMfT/4b1GzjMjGGxm6qY2NoZXdf/2vVOpFXeP2LwFcImMTmVGiZju56GOjtCU1WtE39wLIXn1vOOd1M6g4KbiIKlNrR6uiqu52ZDk1h9N1MakukmEmee0fdbtmL3+WFZV5H8Qz/WcTgB1TeqS6DvT1RZMm3b97jTrU+7yywHqn+tJLCm0Gq2jM7z23zIsHJeAWHAou9DbypPvNixDhMoEKHWB1d/+umk29FXAFb+t52MfC1Whv8wd6ediQMMH8c7R3Qn7nACxSOnwTwVHdff2DodTlkEwP7IrP+gn2/3BYRdIdfLSOQtZYdnTKJyyv3uZ4C94561LIXz4ZS7LRoFqN/FP6dcRU6jdzo1UhZPr+0wirE4AcIMk2fwd4eBXRTaNzfQrB4VyuRpvgiTnT39Wem+4FuJrUZ4p4qJ6TuY5Yd/XUZn/kYsNfEKyqDUp3kRt+ERHv4E6++ZkViXy+702Uy2NuzudeP/HG0J5KU1qrkkOs2QeGkYlW5LsdsYsACLkJ09cMAuQWd6IWlFJD9qB0te/Gks3VPBtyXC6A+a9mL/6PMk8w6zWL0f0VhRm0WFYqQG/0MMhPL52nE4AfJtpaN529fSvEMvtr1XV9BcgfW+H6SwD+RKJZRRImwkt9zyCyxM+9nke+5/3V/aOJMSSD7LncA93T39a+v5M2bXl7zBRUO95Vx6J2WHZ3MZzsWcfE6E35qQP0Gnb0AMfhv8r3lIisSC6qCVRGDvT0dSJx5/jjajeq69UYoHEP5v6eQMMfpjKGs188IpcdM0E+palLTYT0ifXEHMpaenGpVmU0M7I/M+nfPqRB6652gvZwuqR9Z9uJ/m+wIN5P6Bn7pEBXa1urompG9qScNbfTdTGoxcC3FdWsfRecup1ij40WkDulLlZ7Lm8U7iNb3MUg890wy+LLAaoKN+fjvM1nSVpvB3p42xJ3SiShI7o58J2M/M7nhjSAhbWM3gYdKzeAGe3sOQP7vC9oXx37Teca/7aaUevckn62BmGVHAzTWx8fR7fhDfjXvh9yXEUOcT58ViU2rCpO3l3M4Mo6OQtL1Z8IwE+Oo1OTg5XrutUyFt5LpRFZO3RSOoSUU3HgrJomMnzuAO7r7+tcGHTTy6G3bZO6/77E3Xli9dfuiRXQccQxt2y+B8KR5fW9YdjTwmp+wRerQwvxBnrfsqH/C0NA0rNGXL1m9oNqteeH5W6LCbejsKNmN69EjrkZnNYWzpQwij1y2ls5gb08EOJIJQz9dYaZNwOPIsu8R7zHR3dfvTx9vWryb4jYUXsAOkpk4nZvjPxEf+thNYNXYDG6wt+fPSFjeGFdEP3vx1aF5875O6SiMH1h2tGgjbvJxtCmHzvln3FcBZ5Trw/e+l72Q8XM0kkA43YzhNUyMn7HHF2sZCVNvBnt75iMb8/njx2H6e2ArmRhDK8ZWk+uX9//l5bvuHI/UCs2bx6Ij4ljdu6IXdEKoVOCisi17ccH+0JS2CL2np/HfFDSy0b9btc87tG2LDtRE4XO01oxuGEaPbAI9PrnZiJSmKym8BuMum7cycYG+jcqX2a8iQlD5F+dT3X39/pjhlsCLMOmm8EawJ7IpWcl3u5qJJfy/Upx9fQNwauyCvgOBb1NcnvAKy4766yTgZlJ/Vu3z3l5yHLkF9+XbgOOtSGzS/+Vgb88iZBY/No6ms6fzLIXG/ZHuvv4pa0LMVbyw0zdTOI72oXQt4yBG8VaTHQcc8JnhBx4okM5Q4TYWHXII87ffAb3lIvSWnRDyDVEV2tLq6NqQ/1IZtiiHCsWsjq51FfR11mhIo59IJA5Zum3nirYFiwi1FU+acqMjjL6WBq2BXA54vxWJ/SHoswZ7e7ZhYiZ/FJX5rf+B78IEnmukpXSjMtjbYyNujiOR732XCj8iS7Eb4P+AE2IX9A0jCXhXIO6odcDulh0d3zhOJBJbAp9aum3n96YeR1mAh5C9oKJ9B8/ttT8yho7xfi9XsyULPMnE+HkEeLS7r98UWpmCPJfr2Bg6lEpWlaGQZx7yUAr7wAPZcpcl6FCYXMc2MH/hWNuDlh09IP/wRCKx/9JtOx+YcgwptcLq6Dqskr9vtmgoo59IJHZBCp0cuHTbzs3bOxYX3FnH0FozMrwOVAhyo2dZkdjPxtq82fw7gWORC3Svog8ozeuImuJyZNb37FxaWs8mg7093cjFeyTiovErVpbLSuDY7r7+F0HE1yw7Oj4zTyQSChFu6wOsssaRzj0DHGxFYuMz7cHensXAu5mYLFSyn7EKGUPLEZfDhimON5TBYG+Phey1jd0E9meaG+IL996HhXvuiVKKHKBQF7U5R4xv3CcSie2Ay4Ejy7RF2uroarScm0CqYvSVUgchSTQustFyuta6IndHIpHYHnGbbAWEl27bSRl3V6yOLuW5GA5C9HZOpnSV+iCeYOIC/XN3X39TpFI3M97/a28mLt53UlnExzBi+O/zNyQSiQuRkL0tAJZuuzVtCyJTzfR3tiKx57w9nvch4+hwyjco68mbLHT39T9Xwd9imCZeZNRhyBg6ktKFygOZv912dB56GCoUygE7h534IEAikegEHkPkGtoqsUUz+oPqRLWMfgzIaK3fUEpdAjyitb6+3PcnEokQIoe6D15W3XaLFrLFggWU8qORy6JzOZ389vmXImJL25d5ugziN14O/Km7r7+qsfyGyvE29w4GPoOs0MqRB8kB+3b39T8+9kIikTgY+d+OqyYu3bYT1T6v5DjSI5t08ju9pyGG/mjK34R9FFkNLgfu7e7rd8t8n6FGDPb27ICMn4soMygjvGDBUOyk9x4ZduJPwPhKcTlyM7GgfFvULDP9qmjvaK3zY1THYsQr4UQkdnm8P8nMq+w832J0wzBFO+ajLoTa2fjCKgWcN1X3gAeYmM0/2N3Xn62wf4Ya0t3Xv3Gwt+du4GbKH5Mh4MvIDX+Mn5Jn8AFe3zTK5qjgcTTisnHNag38tozzvULhZCEwVNAwe3T39a8e7O2ZRwVReNnXXut6cdlVK7v7xoPC3oFMQMYT5cqxRZALUPRsTMq6wJRSOyMhibtordd6r30UUR18m9b6Re+1nZA77SUV9uM0fOnmuRw8v+4VuhcvQo+4iO1WqHAYQu3okY0M/6HktfoqcBMitHRHd19/ULFlQ2ORo1hOeSrGNdM9H2zRZnEy/U/etM0iQmPLcG8coRQ6l2X4v/onm509CvwBuBX4q5ksNAWVumfX+wIzTsHnapzKFpEb3UTh5KOhKcvoa62fVUrdApwL9Ho+/B8DR+cZ/IVIFtxpWuuyl7qJRMJCltVFjI5qnlv7CrHIVmw+X268Optj4+pVDP/ht+ReLwi0eAOZKV4DLG+kpCfD1HT39evB3p6PIGqW2yMX78a8n03I1WYjUT1/6O7r/0HeR5xIwAozl/OPIVmeb3zh2aAxBPB3RJ772u6+flNOs/m4ElFSfQ+yGvSPoU3IanArZG/o42Nv9Fw7JxOQPBZoi3I53ti06bXN5rUvaZZwTajAp6+UeguyWfUOZJl7rtb6Wq+tDZlZX6q1vrOSDiQSif28z51aKXDEZYsbfoZyx+25i8zCrgFuqTTN3zB3SCQStyKRNlPS/uRDzHuoQGZ9EBlD1wCPm4it1iSRSHQj0WGVJBvmgHbHcZomjLtsn77W+mGl1APIhmvfmMH3OAVJlrlIKXURcIWvfTI68OU1l6Td4vX39NA2+FRu3sMrzgD+u7uvf0p1RUNLMJUa5zgju+1HbouFtK15/vb2Zx6/CLjfGHoDMvuv1MWYRSLFqiYXXWvKNvpKqRDyB+aQGOhxtNbLkJq006Gii01vsZCRPQ7I7fqhj033fIa5SfnjSCmyOywlu8PS+5ac+fmisE9DyzKdG7+i8sCVWaWSEKNLkVn5KuCjVexDpsJ+gEjuGgz5VLpZvwkZewbDGMNUrpukkP3EpqEsY6uU+hRSpOQkZJZ/vgpKT5seT5TbjzyC6l4aWpubqWwyMIrsJRkMY7yICAFWwgPN5M+HMoytUupI4FvA8VrrdcD1SAyrvzThtHAcZxS4hfKXVq8CV1fj3IY5xU1UlneyAQlDNhgAcBxHI5Le5fr1NyCqrE3FpEZfKbUbEtFwmtb6CQCtdRaRXOitYj+uovxZWjuSCWkwjOM4zjqkaEs5k4dNwH96F7nBkM9/Un6sfxiZbDQVkxp9rfVTWutOrfUffa9frrU+qIr9uBVROZwqvn8DcIHjOE2zU26oK2ci8dhTsYHiimsGA47jjGXvTzWOXgcudRyn6TKzG0IrwptxfRDZjCsl1PY6kh/w43r1y9BcOI7zCCLL8XqJQ7TXdrzjOGYT11CKjwEvUXoSuhGZpH6tXh2qJg1h9AEcx/kHIpV6I7IbPpbyvhGZmX0L+HCzbZoY6ovjOD8BTgfWMuEy1N7vjwKHO45zb4m3Gww4jvMqotq7DLE/Yz5+F7FN3weO8/Yjm46G0tMfI5FI7AWcgISIrgGWOY7z8uz2ytBMePIepyB1fl3gPuBW48c3VEIikVgKfACp/7AWuNpxnKYpgh5EQxp9g8FgMNSGhnHvGAwGg6H2GKNvMBgMLYQx+gaDwdBCGKNvMBgMLYQx+gaDwdBCGKNvMBgMLURVCqMbDHOd+fufpVUoTKjdIhQKo0JhQm3t3qOFCstjaOy573UVChNuC6GUkseQIhz2HttU8OvhECoEoZAiFA4RCina2kKEQwrLe5w3/jwsj2H/68GP7aEQYQXt4RAhpWgPK0JKFb4WUt6xavyYcMGxCqUgHIIQinBIdIbDIUXIe1QKwkoRUhBWyN+pIOS9V+WyKJ2DXBZ0DpUbBZ2D7Gjg6yo3KkVrx983CrksenREHkdGxp/rXBZGR9DZbOEx48e6kMuhR110LkfOHR1/zGWz5EZG0dkcWe+x+PmIPB9/X5ZcNofOabJuFp2Vx5zveUH7SJZcVnvv1WRHc2S1xs1pshrvUePmCHw9R/4xE20/1YMlVZDNTN9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYUwRt9gMBhaCGP0DQaDoYVQWuvZ7oPB0BIopT6ptf656ccEpi/174eZ6RsM9eOTs90Bj0bpB5i+BFHTfhijbzAYDC2EMfoGg8HQQhijbzDUj1n3F3s0Sj/A9CWImvbDbOQaDAZDC2Fm+gaDwdBCGKNvMNQIpVREKXW7UmqV92iXOO67SqmVSqknlVI/VEqp2eiHd+xCpdQapdSPq9yHY5RSf1dKPaOUuiCgfZ5S6lqv/X6lVHc1z19uP/KO+4BSSiul3lqLfpTTF6XUDkqpu5RSjyilHldKHVeN8xqjbzDUjguAAa31EmDAe16AUurtwMHAXoAD7A8cWu9+5PENYEU1T66UCgOXA8cCbwZOUUq92XfYx4GM1noX4PtAXzX7UEE/UEotAP4NuL/afaiwLxcCv9da7wt8GPhJNc5tjL7BUDtOBPq93/uBkwKO0cB8wALmAe3AulnoB0qp/YDFwJ+qfP4DgGe01s9prV3gGq9Ppfp4PRCv9oqnzH6A3Pi+C2ys8vkr7YsGFnq/bwUkq3FiY/QNhtqxWGu9FsB77PIfoLX+C3AXsNb7uU1r/WS9+6GUCgGXAudX+dwA2wIv5j1/yXst8Bit9SjwT2BRvfuhlNoX2F5rfUuVz11xX4CvAacqpV4C/gh8uhonbqvGhxgMrYpS6g4gGtD05TLfvwuwO7Cd99LtSqlDtNb31LMfwNnAH7XWL1Z/gk3QB/rDBss5pqb98G583wfOqPJ5K+6LxynAb7TWlyqlDgKWKaUcrXVuJic2Rt9gmAFa6yNLtSml1imlttFar1VKbQMMBRz2XuA+rfV67z23AgcCFRn9KvTjIOCdSqmzgS0BSym1Xms9mf+/XF4Cts97vh3FroqxY15SSrUh7ox0Fc5dST8WIPsqd3s3vihws1LqBK31Q3XuC8g+xzEgK0Kl1Hygk+D/X9kY947BUDtuBnq833uAmwKOWQ0cqpRqU0q1I5u41XbvTNkPrfVHtdY7aK27gfOAq6pk8AEeBJYopXZSSlnIpuTNk/TxA8CduvpJRJP2Q2v9T611p9a62/se7gNqYfCn7IvHaiAOoJTaHdn7+cdMT2yMvsFQO74DHKWUWgUc5T1HKfVWpdQvvWOuB54FngAeAx7TWv/3LPSjZng++nOA25Ab2u+11iuVUhcrpU7wDvsVsEgp9QzwOSaPMKplP+pCmX35PHCmUuox4HfAGdW4EZqMXIPBYGghzEzfYDAYWghj9A0Gg6GFMEbfYDAYWghj9A0GQ9VRSg0qpVylVKfv9Uc9TZtu7/kBSqk/KqWGlVJppdQDSql/8doO8xKTDFXEGH2DwVArnkcSjABQSu0JbJb3/CDgTkTrZxckA/f/IXo0hhphjL7BYKgVy4DT8573AFflPf93oF9r3ae1flkLf9Vaf7CuvWwxjNE3GAy14j5goVJqd09V8kPAb722zZEs4Otnq3OtipFhMBgMtWRstr8CeApY471uI5POtbPUr5bFGH2DwVBLliE6QjtR6NrJADlgG+RmYKgTxr1jMBhqhtb6BWRD9zjghrym14G/AO+fjX61MsboGwyGWvNx4Ait9Qbf618AzlBKna+UWgSglNpbKXVN3XvYQhijbzAYaorW+tkgpUqt9b3AEd7Pc0qpNPBzpGCIoUYYwTWDwWBoIcxM32AwGFoIY/QNBoOhhTBG32AwGFoIY/QNBoOhhTBG32AwGFoIY/QNBoOhhTBG32AwGFoIY/QNBoOhhTBG32AwGFqI/w/oHqIfgyVbqgAAAABJRU5ErkJggg==\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADjCAYAAABpYsTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXgb1bm435HsY8d25JGSjIUJCTsBDGUvBQoBQykFSillaaEUN/SWLim3QEOX1L9bN11IS+lt6EYb3A1KuW2hQIEuYaeUsoMhIZAEEjC2klhjJY7tsaX5/fGNYkke2ZIta3H0Ps88skYj6Wh8zne+851v0WzbpkyZMmXK7Bp4Ct2AMmXKlCmTP8pCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IQou9DVN8xe6DWWmB+W+VGaqmQ59rOBCH7ghk4s0TfuQpmm/0DTtL5qmvW+qG1WmJMm0L+2tadpKTdP+ONUNKjPtyKiPFTMFFfqapr0fWKBp2jXjXWvb9p22bX8KuAy4cKrbVqa0yLIvrbdte1EemlVmGpFNHytmKgr8/VuA39m2fSOApmmHAN9JueaTtm2HEp4vBX6cp/aVKR0m0pfKlMmGpD5WqhRa6B8KvBB/Ytv2S8BZbhdqmqYB3wXus2372fw0r0wJkXFfKlNmgiT1sVKl0Db9LcDlmqYdmMG1i4FTgY9omnbF1DarTAmScV/SNG2Wpmk/Aw7XNO0rU9+0MtOEbORV0aKVUyuXKVOmzK5DoTX9MmXKlCmTR8pCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IcpCv0yZMmV2IQqdcK3MBOldudQDKOeoch4rgG1Ab/2iZdECNq9MCdG7cqkGVDLSj6qc5zsAs37RsqECNq9Mjinn3skzvSuXeoEgMC/lmAvUkizEx3oca8K2gQgQBkznMfFIPZf0vDzISwNHWM9hpA/tkfD3TDLrR3HFYSy2M/G+NJCTH1smZ5SFfo7pXbm0nmRhvkfK890p7hVWDNgArHGO1fG/6xct21rIhu1q9K5cWsPo/pPar6oK1sDMeIuRvpTYp96pX7SsLHwKQFnoT5DelUtnAUc7x5HAPsgg9BWyXVPMFkYP4DXAG2Vz0sTpXbm0DjiCkf60P9KXZhWyXVPMNtz70uv1i5ZZhWzYdKcs9DPAZVAeDexd0EYJQ8AgYDmPUaAeWdrnk0FgLSMDtwN4tH7Rsnfy3I6ip3flUoUU40jsSwdReKeKYZL70jBQh/QnLY/tiALrGVlhvgI8DqwrrwxyQ1nop5CnQdkDbEw5NgG9yIBLHHypj/G/rXSDoHfl0gpksPpTDj3Dc7liLfAQ8DDwcP2iZW/n8LOLHmf/5gCS+9JhjG9Dz4btwJuM9KF4f9rK2P0n6bF+0bJYmt/gQVav4/UZt/MBcjdu3kb60UPO42vlSWBi7PJCv3fl0n2AE8jdoLRIFuSjhHv9omV9k2nzVNK7cmktYl5Y4BwHOo/7M3n78eskDNz6Rcs2TfLziorelUuDwHuRfnQMYvarm8RHRhFh56YgxP/uLVbh17tyaRVi9lzgckx2NfoOjjKB9KdXi/U+FBu7nNB3tODjkfqpZyOa2ESIImaM/wBPIbUz3wQ2p9OaShlHa52P+wCeM8GPXU/yJPDm5FuaPxzvmcOQvnQWIugnylqkHz0FPAu8gWx2Dk+ymUWHc98ace9Lcyf4sd0kTwKry5OAO7uE0O9dudQPvB8R8mcgy9BsSRyUTwHP1y9atiNnjSxhnE3t+KA9CJlUjwK8WX7Um4ws31fVL1q2MYPv7cnn4O5duXQGcArSl85CvLGy5S2S+9LT9YuWmTlrZAnTu3LpTEZWmgcCxwLHATOy/KjNwCNIf3qAcSYBZ4Vr7wpjeloKfUeT2J+RgXkC2QmgSQ1KywzVINqvH6hBOmzqo9u5sa7xIO6UiUfU5dx454cRH/7UozfN+QjQr3Qjq47ibH4fBywETkK04GxdVZ8F7gTuAF5OHbS9K5d+DzHF/fdUCv7elUsbGdHmTyU7AdTDSD/6D/BU/aJlXTlv5DTG2Wc7GulHJyHjuSbLj1mH9KM7gH+nrsZ7Vy69BPg4cM50jy2YNkK/d+XSSsSeGjfb7JvhW4eBRxEPgVGD0jJDGrKRNSfNMdvlXLYdstiJ4j5JdCE2586Uo1vpRpILp6NJvQcZtAuBdyNRn5nyOiOD9kkkAO0NxLXxeuBLuRL8zublEYz0pSOyePvTyEolLug3lM0MucUZ60cyolCcQHZ7J93AX5C+9ED9omVW78qldyP/73uBD9cvWjaY00YXESUt9B2zzZnIwHw/mfvIbwXupbrmb+qY96/xzpk7G9jTOeYDBskCPRvhVEZWFV0kTwRJk0P0nQ091hP37IdtL0QG7rFkvlHchUzU5yec+y7w1YkKWMdscxrSl84EdsvwrTuAfwB3A/eW3VTzj7NPdwQjK4H3krksiCCC/jxGxvlfgPOna2R6yQl9Z6n3fuBSZICm97TxeNFqZqLV+vD4ZnV6Zu32psff0MeMujpN0/ZE0iGUKRwWMgm8bsei62Jb3xmMdq73x7rfXGBvM48CO1v/8Lb6Rcv+X6YXO2bAE5C+dAGZC4pNiJC/B3hwupsDSg3H6eAwZAI4FWgme4+8PwIfnY4b6ZMW+pqm1QI/QQbwQ7Zt3zKZz+vo6NgDGYAGEAJu3+PJ295ClnOXAh9FNHD5/hl1aDP9aLU+tBrnqPXhqfGhzaidTFMmwxCykbQV0QR3AP0uj27n3F7rR0wsHufwJvztGed86rlqxF3Ol+FRTwFWOrZtD2INbI31bvXGwl2z7W1hr70tTGy7CUODkL7fXl2/aNkPwL0vNTU1bepduXRfxH77cWCvTJqDmJTuQYT9S2WTTengbA6fAZyLrOJG3EU1bay+9CtgUdz+n64/TVnDp4iMhL6maZ8BDrFt+7PO82XAfNu2P65p2scB07btuzVN+4Nt2xdOpCEdHR1e4DrgCiTxGN7BHdRs2WDN3Lx+W0VV1SxtZgDPTD/aTD+emQER9hV5kUc7ECHudmxxORfJduOzmLHMUBWjJ4MA4naXeuxObgO8RjH4999i9/VCVQ3azAC2xwt9vdjbw2Db2Jp2+VvHXHggCX1JG7ao3frmYN07r26tHNzemMHXbAf+zojZJjR1v6hMvnBiB05BJoBz0DRD0zR2ysHR8vCHoQNPvmbQ15Akmxz6gJ8B1zY1NZVMGpJMhX4N8CpwCLIc/iZwnG3b/ZqmfQW4z7bt5zVNu9W27Y9NpCEdHR3fB65OPDdz8+s0LDgUrboGTZuSKPUY4qmzAdkUfANxG3yHBKGudGPau3HlEssMzUBs4okTgdvkMKGl2OBD/4cd7h454a3EO+8APHs1oQ0PETVDbKusJ1I1E2tIxmJVpBtj9YPjfXQI+D/gLiRuYNpu5pVxzECa9pSmaYfHz7kJ/75Z8//Vs+97jhvjo65vamq6ZqramWsyNu9omrYcGaRnAKfZtr3OOf9xIGzb9j2apt1m2/ZF2TbCWTatJkUIeIYG2Wf+7mieSQn8PiTd62ZkA3AjIuRfRXzvNwNhpRvTctOmmLHMkA/ZON8f2N+OxQ5gcMdB9mD//rY1UM/ADuzBPuyBfuzBHTC4A3tgB/Z2E2LuipUnuBcV+x2GNqsRTdOI2TaD1jCDlkXFo7fj7d+W+pZBxC30N8Dfp6MNd1ck0t6qIfE4QaAh3aNt24dqmubqSmzbNtg2MY+Xrfu8h4FA2rixPmBBU1PTW7n+HVNBNn7TNyOC+Zy4wHf4M3CjpmlnIkvhiXABLlpfrLIKOxadrNCvdY4xg2gsM7Qd8amO5wLvQSaJt5CNu52PSjfKGuAkiLS3zkQioVOjMfdjknlpYl0bsLo2oAWCqGPPxFM1gxlVlcyoqmRo7yaGX35CLvQ3DFYYezzhnX/gHz0z/Y8BryjdKAv8EiPS3lqN9JvUvnQAGawkNS29r4CmaaBpxKpqiFaPmTWiFpFhP8i85YUjG6HfimjFSe+xbbsPaJlkO4x0L9hTY9Zxo8455o13oWWGNpMyETiP8b/f3tUnBkfT2h33UPuJRLFmjGfuflQc9B60quQYqoo9DwLbxrvHAXjq6qsQP++FzsuDlhl6AYnVeAh4ROnG5qlsZ5nMibS3ziY5F1T82IspzAI6VFW3aevex+4xVFOfdN7j0cCG2IilpGGq2pBrMhL6mqZdjXh9XAB8A9Huc0nSJplH05hZU019bTUer5f4bbVtu8+jaS8g2mBqxGot+StOEg/CShu0Y5mhEKMnhtdxcoZPl0kh0t6qSNa04oPyACaXbCx7PN4n+5tOCsXmzD+72lNBVTRGhXdEadCqa6k8MG16nCokavgY4PMAlhnqQCaAhyhPAlNOpL3ViwhxN0Uh37UFXgWWvHPIGfuhad+Pn6ypUtTXVlM7Q0JKNDSisRhbI30lE5A5rk1f07RTgB8B77Fte5umac8BLbZtP5+rRqTa9OfO0ampklW+5q2korYeNI3hHdsse2jwAaXPOSP1M5zI2RrEqyQxtas/zbnEv3Xym888njM8tZrQGqUb4Ty2I2uc5fSxjETWvofcVm/qRTbSuxHzWupjFxI5+Y2E92xAnADu3Hj0BXNJ6EsN/pnU1zoav+ahsk4Hj5fo4A5iA1knOy1PAjkk0t5agfjTL3SObIKqMqGPkT7j1o+6kYDM2xLeEwa+Dtzka2kbSpRN9bXVNPjjzdOoqNPRvBXYwxbDfb07gL2UbhS9l9eYQl/TtHlIBz/Ttu3VzrnLgIW2bV+Wy4Ykeu/otTMw/DMBjYpaH55KkSl2dJihbeHNSp+T1hw0ESwzlJozPIBoFo1IWbq5zuMeiFfKVE4QIVxKFQIblW7kPXtnpL11BqPTJ0xWyEcZWfUk/tZXfS1t4+Y4irS3fgy4BYlf+DbwfV9L284AqcS+NENVsochHqTe6lq81SNmXssMxYB/Au9iYsvz8iSQBY6QP4KR9AnvJTcFf97AvQpXyNfSNqZWG2lvPRj5P9rATcBSX0vblsRr4v3J49HYZ7fZaJqGVqFEgXAYimzttWPRs5VuPJqD3zOljGkOsW17IykVomzb/hUStJBrrnUer4j0D9TO0evQNIgO7EDzVoKmER3cYSG5TXKKI0xN59gw1rWWGapABH/iRDA35XE3Jm5nNJzjxJTz/ZYZWsvIRLAaeAZYn8uYgEh7aw0i5BciA/PdTHxzNYL7BLbe19I2mZJ4PcDtwJd8LW1umTh39qV+a6h2aDhKZYWX6GC/KBAeL7HB/hiyoni/c20jYto5Efnt72L8/2GTc7iZg1Yp3dilM2dG2lvjOXLiCkO2OXISGUBMLqmCfa2vpW0yLtU9SN6txb6WtufSXHMtQCxmX9E3YNXWzajCHh4iNjy0U9O3Y9EKp31FT9GlYejo6JgLXDDP8H+mWlUmJk2zQfsb2B8t9sFkmaFKRPAnTgTzETv3gUw8Z7gbJjIRPo2TERTYlOlEEGlvrUWyYcYH5jFkH4HbiWhLqQOyazxNayJE2ls9vpa2cVc98b60W8B33sya6hQ/a+1FsD+sdGOd23stMxRANNGFZD4JJBJP5Hc3cLfSjdezeG9J4gj5o0hOhJZtLEYYeInRysLGTP7n2RJpb/UAdib9tKOjY+5sX+23Ar7aS5Nf0d4G+yKlG4/lun1TQdEJ/TiWGTof0ebihIDdp4NbnWWGEnOGJ25+Ttpl0WEzKROB0o13YKdXzSFIsrJmJGVtthvgGxnRaB8GNkyFcM8Vlhnan9Fa2HylG2Pm60/5jMlOAmtwJgDgienQjwEi7a3zEAeP9yF1FLLd0NxCcvGTl6dCuOcKywxVI/sBie48Zynd+GuBmpQ1xSz03W7umUo37i1Qk6Ycx3S0J6Nd0w5kkqkNYtvC3dH1L4ajb78eYLA/2z2RDSRUuPK1tL0xmbYUAssMPUlyZauvKt34ziQ+bzKTQA+S2fFu4G9KN3on2o5CEGlvbUCUho8iq8Rs2MyIsvAQsLqYhbwblhm6CfhUwqk/KN3IOii1UBSt0AfXm3uL0o1LCtWeQuF4Js0heRI4DLGXpt0Is/u3E33rNaJvvYZtZuVUsI5kIZ+xRlysWGbo88CKhFMdSjcOyeHnxyeBk5F9gkzLcA4h9zpuBhpzT6lQRNpbdeDDwEXICjFTZ4ZukoX8mmJeFWaCZYbei1TlijMAzFa6UbS1rxMpdqF/ItJZ4vQARmqBjl0Vx+tof8SOehRwlD3Yf0S0c92M6Ftrsbd0ZvQ5Wm09ntm745ndOKgFgv/21On3Aw8Cz0wXM4RlhmYjK8fECmp7Kt2Ykrq8lhnaD0n9fTYyGWRaue1lRsxATxayrzv7PWchGv0ZZGZ6fIdkIb+21IV8Ks64W4/s08U5R+nGXQVqUlYUu9D3Irb8QMLp45Vu/KtATSpKIu2tPuAcZHCexng2ek3DY8zDu/u+eIw90GakdajYjmxGPugcz5XyhGuZoUcQARzns0o3fpqH751ojeYuxIf8FmQCnvLB6gTbnY70pQ+S2UbsE8AfEJPV69NNyLthmaEVOF5bDj9XunFFodqTDUUt9AEsM3QLkJi589tKN75WqPYUC47//AeQwXkmEjE9FjYz6l7zzt0/VLHvu+q16toDyX4Dt5eRYtMPAi8UInZgolhm6FqkwlacvyrdOCvPbahENjw/SHZlPdcCtwK3Kt14LZdtciJhFyJ96Twym5ReBH4P3FaKezyTxTJD7wfuSzj1FjCvFFKql4LQvxj4XcKp55VuHJ7u+umM43lzPLLPcS6ZBbY8jQzO230tbTuzADrpjw9FvHdOQAZ9tgFKYWQZH18JvFzMk4Blhg5BhFWcfmCW0o3+ArVHQ2z/cTPQ8WRmK38K0f7/oHRjwkXWI+2t8ZoDF5LZ//51RgT9KxP93umAM362Iilg4hyqdOOlAjUpY0pB6M9CdvwTPSPmKt14u0BNyjuOJnYucA0SLDUeqxkZnBlphY4AWoBsRJ6MTAKzx3qPC1uQVcC9iBZdVCHpzm98E4mbiPMBpRv3pXlLXnH6+hnIBPABxg9kigGrkBXAn5VuRMb7DkdxOBHpS5msct5GTDe/B57ZFUw3mWKZoXgx9ThfUbrx3XTXFwtFL/QBLDP0LyRKNM6nlG78slDtyRfORloL8EVSIqNdeAOx//4eeGmyg9PZrDqIkUngJJL3VsbDRmy9dznHmmJY+lpm6GfApxNO3ah0Y3Gh2pMOywzVIML/Y8hEMF7A3CCy+XsLcF9qQj8nBcJ5iLA/apzP2ooUk7kNeLTUXCrzhWWGPoOUio3zqNKN1Ej6oqNUhP7XgGUJp+5UunFuodoz1UTaW4PIJtFnGds/vxsJYPs98O+p1MKcSeAQkieB+jHflMw6RiaAxwrlFWSZobOdNsTZAOxTDBNSOpwVwHnAxYxOz+GGiRT2vnXw77952u6LfBJRHOaP8Z7twB1IX/qnr6WtXFRoHCwzNB9RtuJEgTnFnjSxVIT+4cCzCae2I36x0yI9cRzHxno1UrB7LPe4e4H/BVb5WtoK4k3jeFbFMySejAijTJNnhZFNsLuA+/MZnGSZoVpEk01MGneg0o01+WrDZLDM0B7IhuvHkIAwV+z+7Qyvf5Ho+g6bYWusoLGnkeIfd/pa2gqyt1HKOPmWDk44dZHSjT8Uqj2ZUCpCX0Nsi7slnD5N6cY/C9SknJGFjdVCNrR/4GtpezkfbcsGJ5r4SMST6IOMIZBSGEb2AfIWnGSZofsRt8Q41yjduH6qvzfXWGboYET7/xiOFh+LbCX62nNEN60Fe0yrzN3A9xHzTfELgSLFMkPXAUsSTv1W6cal6a4vBkpC6ANYZuiXwKKEUzco3biqUO2ZLFnYWMPAT4EbfS1t7+SjbbnAWfqehUwAJ5N5EreXGDEDPT0V3kCWGVqM1IiI84DSjeZcf0++6Hvibo2BHZ+PhbuvsXu3pK/85vHinXcA3r0PfdNTP/tG4FdKN7akvb7MuLgEkG4BGorZi62UhP6HgT8lnFqrdCPTUPeiwakPm4mN9Q1k2d3ua2nbnoemTRlOAfT3IRPAmWS+Ifw24plyC/BiruzulhnaB3E/jDOMuG6O6/1STDhZLc9HFIf0bsyVVXj3PpSKvQ9Bq07KhzaIbNj+DPhXMe9rFCtO3MVmkve3jlW68WSBmjQupST0fcgsmqgx7lcqKWsj7a1VwJXAVxg7+OUpZNn9Z19L27RIgZCIYwY6DvFMOQfJLJoJLyPmrVuzyY45RjvWkJwf5zylG7kuAzolOOmAPwZ8izFrOmsbvPMOeKri0BMP1SrVgnE+tgMR/r8rtQRwhcYyQ39AMo3GaVO68f8K1Z7xKBmhD2CZoVXAKQmnrlS68aN01xcDjs3+PGA5Uv8zHbukjdUyQwcwEp2aaXDSo8gE8EelGz0T/N4fIKutODcr3ViU7vpiIdLeehxwA8kZQ1P5N/A94C++lraosyf2XiQQ6yOMbWrrQ1ZXP1O68ewY15VxsMzQJ0guLPWM0o3x3GILRqkJ/auAxA23vyndeH+66wtNpL31SGSAvjfNJYPAb5DN2ZLwHplKnKRoH0AmgQ+QHO3oxhDiyXQLcE82kbWWGWpGSiXG6QIai9XEEWlvnY+kkEiXwtcG7kRKR6bNTWWZIQO4DIlVGC/24ylE+79N6cZkqlNNa5x72p1yerfJREtPJaUm9Bcg0aZxBoFAsXXISHtrI7L0/gTuOdZNJM3vj30tbamdpQxgmaE64EOId8r7GH8FEEH2fG4BHhovMZxlhhTiupkY9XqE0o10JfMKgrMH9GXgKtzzK1lAO6I4rM30c524i9MQ7f+DjH1/w8CPgRXFFmVdLFhm6D9ISpM4LUo3flWg5oxJqQl9DUlpumfC6aLJuukkQbsaGaRu2QmjSATfN3wtbVvz2bZSxjJDDUh+mIsZ26wRpxMJMroFydXk2sktM3Qnsq8QJy9ZNzPBsdt/Ain8Hkxz2Z+BJb6WNteSj5limaG5wOVITqfGMS4dQMwY15fKXlq+sMzQN4DWhFNFm3WzpIQ+gGWGbkMEQJzFSjduLFR7YKfd/iLgOpLzuiRyH3C1r6VtdZrXy2SAk6f+YufIJEPlasSE1q50I2lVZZmhryBCNc4vlW4kFu0pCJH21pMQs2A6j5zngC/6WtoeTvP6hHA22c9CtP/Tx7g0hqyqvqd046lctqFUsczQB4DEkolPKd3IREHJO6Uo9JcgwjVOu9KNTxaqPZH21mORAXpsmkteQYT9/flr1fTHWfUdDVyCTLhzxnnLECKofoKkgbAtM3Q6kPh/eVbpxpFT0d5MiLS37oNs+H84zSVdwNeAX091JLbj1vppZAUwViqQB5E2/61Y90PygWWGgkgBmTiDwEylG0WXzqIUhf6pwD8SThUk1XKkvXUPZGPtY2ku2Yos926ajq6XxYSjoZ6KTAAfYvzCHy8jAW/3ITmBdn4UMlCtqWhnOiLtrfWIML8S9/Qbg4gDw3d9LW3b8tk2Z2/lcmRPId0qFiRl9XLg9mIUdPnAMkPvkGyKK8pUy6Uo9Gch/vpxhoG6fOXhibS31iFh19fg7l0yjER7LvO1tBV14qXpiJNb5xzE/HM6Y5cpjNc0TZwkDle68fwUNS8JJyp7EfBN0q9U/gBc62tpm5KyjpniBCFdiPT9sWoLb0SCClcq3SjpoMJssczQXxGvsziXKd34daHak46SE/oAlhl6k+SglKOUbjwz1d8baW89DxHo6Ta7/gJ8KdMc9mWmFseV7uOIjTrTClWfVrpx09S1Soi0t74b+AXpBehTiN3+8aluSzY4ZrXTEeF/8hiX7nIeP5YZ+iawNOHUj5RuXFmo9qSjVIX+HcgyPs6U5td3lt8rEAHixovIAH1gqtpQZuI47omnAp9hfPfEAWRi/7nSjfW5bouTOmEpYs5xW4W8jXh/3VrseewtM3Q0IvzPw901GUY8fr43FfezmHBJFVOU+fVLVei3At9IOPVTpRufnYrvirS3nox0Wrdw9xAygG8uVIrjMtnhpCb+lHOkc4UECXa6H7H935uLgvCR9tYFwG9xT7DXj9jEv+draetzeb1osczQvoircgvJKasTGQZuBpYp3diUr7blE8sM7YnUZ4izHagvtuRrpSr0z0LSFsR5UulGOu+ZCRFpb61G3Pm+6PLyEGK3/Lavpa2kknSVERwb9YeA/0ZyAY3Fm8BNiEtn1qYKx+f+c4hQdwuwugX4cmIN41LEiaf4PPJb03n8WMhE+p1UF9pSxzF9bSX5tx+gdCPjoLl8UKpCvxFZBsfpB3y5qsYUaW89HNHIDnZ5uQO4xNfS9kIuvqtMYUkzUNMxAKxEgpMyyvsfaW/dHYmYPc3l5S5gka+l7d4Mm1sSOB4/ixCPn3QJ4XYgZrTvTTR/UjHikh+s6IqqZJLcqhh5h+RcFzNIzpg4ISLtrd5Ie+tXgCcZLfBtJCHa0WWBP31wfMtTA4zSCfRqRIt9zTJDv7PM0FheLETaWz+KKAluAv9PwCHTTeADKN3YrnTjf5HN80tJdouNU4PsXWywzFCrk0V3OpCapO6IgrRiDEpS6DsDNTVHyqRurhMY8whi0knNQrgRONnX0vYlX0vbwGS+p0xRktqX/gy8G/g1ot2n4kVcQl+0zNA9lhk6IfHFSHtrINLe+nskW2VqGu0IIgjP97W0TesCJko3hpRu/BY4ENlDcbPl+5D9uQ2WGVriFIQvZYpe6JekeQfAMkPfAr6acGpClbScFAqXI1G1bkE9vwau9LW0lXOMT1MsM3QB4g8fZ2clLcsMBZCiN1cCc8f4mMeB7w7c+RMLO9aOu1vvQ8Blhfa5LxSWGaoC/gvxXGpIc1k3kqzwplKsge2SFHIrUiy9aARtKQv984A/Jpx6WOnGwmw+I9Le2gD8EvfatFuB//K1tJVEYY0yE8fxPkmMrTCR7K12wjUK0e6vxcWUaA8PMfzyE0TXv3ZsqMQAACAASURBVOj6FUjxnB8WuxtmPnC0+c8j9zJdFbVNQBvw61KK8LXMkBfoJVmBnJ+Lwj+5opSF/t4k2wojgD9T96hIe+u5iEfGbJeX70U22IoyH3aZ3OL48ZvAzITTe7tt1jrXnoPYo48BiIW7GXr6H9jbTbePfxG42NfS1pHzhpc4lhmqR7ynrib53ifyOvA/SE7/knCLtszQ4yR7hJ2rdOPOQrUnlZK06TtsQAR9HB9j+10DEGlv9UXaW9sRu22qwN+BJJk6qyzwdx0cRSF1c961vKDSjZjSjTuAY+2hwVOHXnjkdevhP7oKfO/+R1D1wSsaq8/9/IcsM5SJd9AuhdKNXqUb30Aqyl2HeOGlsi9SJe0FJ5NlKZCaxmO8UpV5paLQDZgoTpbETSR72eyG5FJ3JdLeegiSKsGtbOETwKW+lrZynvBdk9Tl925jXTxwx40GsgE5Kr2DVuOj8shT8cxuBFEsvglca5mhnyN7T2+nvmdXRunGVuDLlhn6IWIGu4LRiecOBv5qmaH7gauUbhRzivKs+lK+KWVNH5JTmcIYNzfS3vpB4F+MFvjDyMbSiWWBv0uTTV86DHHzPD71NY8xb4065SLLEfiJ1CFmjPWWGfqhkxeoTAJKN7qcXDX7InmJ3Mw57wdesszQ/zqb7MVIal8a1wKRT6ab0B91cyPtrVqkvfVapH5oXcrLq4F3+1ravl1Of7zLk9FAjbS3fhjx1ElNMxwCzqk78/IDtUq1JxJ965YGWSGeQOssM9Tm2LXLJKB0Y5PSjf9CzCK/Q2JkEvECX0DiJT7npNYuJjJWIArBdBP6STfXSaXwayTvfWpCqJuAI30tbal+tWV2TcbrS1qkvfVrSFBVqi/5P5FAq7sAlG68o3TjWiQa9avIhJBKHfB1RPO/2jJD4xWB3+VQuvG60o2PA0ciMTSpBIAbgectM+QWAFcoykJ/Ckl7cyPtrUGkqk9qZswo8HlfS9unfS1tbhtHZXZNxupLM5D8OMtc3rcCOMPX0jZKsCvdMJVufAep6fw5wC23TgCJ9H7NMkOfKkKtteA4xeoXAucDb7hccjDwd8sM/cUpp1loilrol6zLJoBlhi5CCmDHuVPpxrlO7py/MHoJbiKRkP/MVxszoXv5Yg9SRKMWWf5XTfCxAjEphBMOM/HvhiUrSsbnOZ9YZuhApLRlnA1KN/aOtLc2IqbBo1PeMowoDz/P4juqgc8i2v+sNJe9hmRu/eNEsjN2L1+sIRPJTCbej6qQqPQdpO9L4YYlK/IePOXcw6uQe+gWTDkE/C+SzbMgAZVOPqcBkjejfUo38lr1LB2lLvRPQqIc4zw5cMeNy5FkaalL8FeBD/pa2vKe8a57+eI6ZAKal+bYg9GpH6aK7aQM3pTnW4C1wBrg7YYlK0q3g2SBZYZ05PfHGRi488fvxbb/wujo2h7gPF9L20MT/C4fIriuZvQ+U5znEMGWVHu2e/niaiQy2K0Pxf/OVyqDfsbuSz2In/0a4I2GJSty5mfvJF38NvCJNJdsRhw0bi6Ef79Loaf9lW4URXGlUhf6+yPCHNu2GV79ZG/01afdNsb+Dlzoa2lzjZ6ZLN3LFzcA+5BeqJeqj/Z2ZMCmHq8XQsubShztbAdO6uPoW68x9NTf+hldEnM1cLavpc0tiVi23zkHEeyfxdEKY4MDxHp7iG3vJba9l2hP6K2ht9a9bu/YXov0pXTpC4qdQWQVswa5h/G+tLZhyYoJl1V0Crn8kPTpsZ8H/lvpxsMT/Y6JYJmhJ3GC9xxOUrrhti+Rd0pd6M8EInZ0mKFnVxF7y3Ui/RFwda68c7qXL9aRIhjHIEv+o4Hdc/HZJUQMWM/IwN05iBuWrCjZNLmWGVpv2/Zew2v+Q3RNauJNQCK1P5arPEzdyxfXAId7ZuqneerqL4n1bdsnFinZ2zcZNjFasVgNdGWy0nQm7IsQj6l0+ZH+BHwp05TYk8UyQ3cikdtxiibFckkLfYDBd9b3WU/eW2OHR+2jDQOf87W0TbjeaXxQMiLcjwamaqOo1zkGncNK8zjWa1GgHsns6Hc56klf1i5XbEbSCT8CPAz8u2HJipLYMB/c/NYTQ8+uOjbW6arEX48UKJ+QqaB7+eJKoInkvtTE2IXbJ8oOJHdUtv0n8e9hxPTk1pfi56ai7YlEkH2WxxEz7mMNS1akXa07OX2+hOT0cfOGGkDy+VyvdMPKeWuT2/JTJMgszheVbvxwKr8zU0pa6EfaW4+iasa/GexP7XxZ21xdBuUxiFdALjr2MKLNbHSOxL83ApsalqyY8gpczoaxD/cBHD/mIgnFDiR9PpRssJD6BA8jA/eJhiUrduTgc3NKpL11rlZb/5Ld15uaCnkI+LSvpa09089y7vP+JAv4w3CvmpUdmoY2ow7N6+2M9W17glh0PaP7Vc9U78U4G8Z1jN2XgkhfWoA4KkyWeEr1h53jUbeVpVMS87vAx9J8zmrgiqk0t7iUdF3uuPEWnJIV+pH21guR2rXJA6mi8k2Gh07xtbSNWYTZEfLHIRk2T2Byg3IQ0UjexF2wd+dyEysfOIN6N2TAph6pXlHZMAT8h5FJ4F8NS1YUtCZspL313YiHTnJAlreij+jw+30tbY+N9X7nXh0GnA2chJj/JloUJIaz8empnxWt3POAw7wBYw9PXT2eOh+e2plonp16yDuIZntrMaXudaN7+eJZjEwACxClYgGwNxN3HbeRhHYPIf3pkYYlK7bGX7TM0HsQT55Uz6s4v0JMPlsS3lMNHKp04z8TbFP8cz6FxALF+Y3SjXSbznml5IS+k//+6yTPogB4GuZTceiJ/1U9d79fuL23e/niABLGfbbzmKrVZUIMeBkJw38KEWAdDUtWTOlysZhwvJH2J3kiONA5l5ozZTyGgacZGbiPNyxZkTfXNkd5+DUpBb013ywqjzjlF9V7HfJfbu9zTH+nIErDWUx8X2cd0ofi/em5xEnQsVefg+SYPyjNZzwGLFa6kZroq+jpXr64Ckm74KZcpPNsGouXSJgE/P/19a1I0Zrv4+4m24NMnL9SuhGzzFAbsj9wyGTy+bvU8f6H0o33TfTzcklJCX2nwPQPgcWpr3n3PZyKpvegaZ5rlW4sh50a2AGIkD8LyZWSrblmzEGZK6IdqzzISmMG4nKX+DgD0YZiKUfU5dx454cRW2mft6k5p7ndu5cv9iKa2/GIxnsS7sntxiIKPINEud4JPJ3OVNG9fPHJwLqGJSsmlKs80t76aaRId9I+hye4F5VHnYZWqW5VunFxwvftzoiQb8bdbjwWnYz0o6eQ35bRzq2Tp/0SxE3RrUBLDPgZ8PXpUHPWGbu7A8ci/WghYn7NlpeBBzz+OQ/6zr38LK2i4pNuFw1v7XpmeNO6P1cfdvz/IO7TX3UC6yaEZYaORJSZOB1KN8Ysr5kvSkboR9pbK5Ci1Jcmv6JFK444xVsx/0AA7CHrBrP9ur8iA/NsxJUyU94hWcCPOyijHatmIPZKt8PPaAHuJtBryIW9NztsJJAr4hy9CX9ncvQC3d6m5jFXON3LF89jZNCeRHb/D4C3EeF/B7J83xlc1r188Z+BQ4GTGpasyCpzZaS9dQmSzjcJ7/5HUHHQe9A0DTsW+6f5y299lZG+dHgWX2GSLOCfyraNbjhFx5cifv5usR1bEf/0X5ZK/vlM6V6+eDZwIiMKxaFk55gQ9tT5/lN99CkHqr0WzNMqRm5f/zMPM/Dik8w882IqjN1BYhAWTLT4iWWG5pJcHjKkdKMo3G1LQuhH2lurkMjbc1NeClcctvBWz257f25o4+sMbVzL0JuvWUSHMzUxbAH+irjiPd6wZMXb0Y5VPsBAhPZs0gv0+FHqNT0ny2ZEg0083k55HvI2NUcBupcvnsvIoD0JMQllShhZMt+BpMJ+EzHLvIYI/tTw91E45sFvISl8Exn27Lb39ZVHnnrt0NsbGHpzLUNvvGrZg/2Z9qU+4B/APYhpYd1UbqY6MSo/BM5Ic8mzwOeVbjwxVW0oNI659r2MKBWHkekkoHmGKuft66nca4G3ct7+bLvrV8TMLWiqmrqzLqFi9m4Af1K68ZGJtM3JotqdcGqL0o1cbGZPmqIX+pH21lpkkCclVLKjsdBg77ZfazNmnh/ri+xJhr9Dq6x8pdI/64mq3fd4TTXsNqh5PPOR3CjxYyJ2/jJjEwW6cJkchszwQP+6tXOsUPdB2LGTyLzgRJRkU90aYGHDkhXdaa6PmwdXIMFQO7Fj9oC1re9ndkXVcfZg/zFEM1aQNyKT0D3AQw1LVrgVUZ8yHHv/WYjw3zvNZb8BrlW6Me2LAjkxNCcwsqo8gkw2iTWNRPmhVc2g7qyPUzGrAeB9Sjf+kW1bprXQ1zRtb2Q5WW/b9oRmxUQ6Ojr2AC4ADO/g9kjjS/efq9mxI0GibqODQ0QHBvtjQ8NVuPxDtYoKPDNq8M6okcea2miFr36rt67O0lSVT9O0iXpV5INBxMe63zkS/44iv9eDCDuPy+F2PvVcNeKKmW9z0nhYwDo7OvzmcG/vsLW5e7ehnq0HR/u2VdtWsgVJm1GL3e+6rdKBaPw9kNyXtFh0y+7P33WsJzr0YZC+FBsaJjowOBwdHIqSspGbBhv4NyLk70Y28AuuNTkeJ1cj49Btn2EbUnJwRSnVm50s3csX1yPC/xzgg7iURk3Xl7TqGmZ+8BN49dmrgXcp3RhK7E9I5tTbm5qaNo16M9NA6Gua9hngENu2P+s8XwbMt2374wnX/HEyQr+jo8OL2FivAGo9QwMYrz5C5Y6wDM5Bi+igBbYIdm9tHd66mSOPjpD3qGydRybNEGIm2uxybEUEd1x4pz4m/Z3rjdWxiHasUojw903wCCDmrakO9sIeHraGt2/zRLdvq4j2bUe9+3SiPd0MvPQUw2+PCrB8csg3633mCR9pxelLxKLMXvcENWYnseEo0YFBhgctiGUkr7cBf0ME/X0NS1a4pUkuCiwzNA/xUjk/zSWrgS8o3SiqhIP5oHv54grEweBc55gHUPe+86FSMfjKMwy9sRbskSGo1fqY+cFP4Kmr/+Jrb2+eS7w/jdCHbJ5f29TUlLQ8nA5CvwbJcXMIsnz6JnCcbdv9CddMVuh/H9FWAPB1vsLMDc+BqsFTU4u3dqYI97o6vNVTmnp8EDFFxAV3OoEePyLepuaCa3uFINqxqhLxbW9MOHZPed5IjnMPRefsBZXOQsXqJ7b5LYY3rWPY7GG4N8wgFRvDx314Hl6x/lSbncx+5SGs7Tuwh8c33Xhm6lTO35+K4B7P9/3zT+8uNXdcywydgqQfOTjNJX9GSg6+mb9WFQ874yo0z3m1zed+We25vxcg1reNwTXPM7jmuZ3av6c+QO1Zlw6+2TtQFU2vJFzf1NR0TeKJkhf6AJqmLUdmuTOA02zbXpfy+oSFvrNsWk3iLGrbBF55kIaD0/XbCTOIbAC+kXBsSPg7lE+Ne1fA8XBKnQjiE8R8ZDN31NI7EVvTwFMBngpienBE6MeJRdF2mGh9PWANMjQwQF/NLPo1xQAVVG5ag24PUbnnAdhDFlgW9pCFPTSIPTQEdtT01OlrK+fuc4xWNxNNFjCPgL1Q+YMlN6lbZqgS2btowz1QbAfwZeDHE0nhXMpYPZ1VSOK6huEtXbdUzA4mpVaxo1GsdS8z2PEU0Z4QnoBB7JTz2bwjbfquPmBBU1PTznoJ00XoL0AE8zm2bd+VcH4W4g1xGvBL27az9m3t6Oi4GlmWJhOLcoBnK55R1dLSY6OBtzKGt2IHHm/Y9lS8g8f7Bt6KV+0K9RKq5kU83k3KHyy6VAC7KlZP52yGBo4mFj0B214AzEfTgmgePx7vDDxeDU+G4RW2jdYfQevrQRsa2VeNAQM7olTtd2i2zetDip9sSjgSn7+l/MGC5G3PBMsMNQDfAVrSXPI48EmlG3lPOT4VWD2dPkYif+ciK9GGlMeMnTWsLV3bIm9tmrnNO4OhWW7hETu5uqmp6Qc731fEQj+bKj2tiDkj6T22bW8lObHQRHAtEl1dXYXt34+oxwPDFp6et9CilkwBFQoqqrArqpxHBRWVog1qmgeJ5ovnsT8m9bOtcFcP6QfyemBTKWp4xYrV01mBeEe5RV7OGqW5TxRNw66px/Z48JjvoMXEnKN5FWrP+YxsQWT8r61FhMgB6S6wwl3bcO9Hm5BV5TrlDxbEZ17pRjfwScsM/RzxXEpNSXA88KKTK+YHSjeKvla01dOpIQLdrS+NKZmzRc0OzqzzzWa72QeOadCjaTT4Z1JTVUnMttnS28e2/sGi8MHPhIyEvqZpVyPeHhcg6Q/+nON2jNocq6zwMne2TkWdjuatIGoNEKushmFLBL426f3DgHO8K83rW61w1zNIdOgzSHTdxvJEMDZWT2cd7oNxP7JP0TCBBgzEPJFuj2aNLORsTSNm7I23ph6vqsaODjPcl9PSCjORFAnp0iT0WeGu55A+FO9Pa/M5ESjdeNIyQ8cClwPfI9nkU4U4UZxvmaFPKt14KV/tGgurp7Oa5BQN8Xw9B+BeNSvXvNGzvf/xLZH+ixNPzp1Tz4yaOipm1GHHYjR4vahI35jmyWJiXPOOpmnxTaH32La9TdO054AW27Zzlucj1aZfX1tNoG4GakYNlXUje4BW7+YBYtEfIfky6pDB9h6SNfkYU1f7dysjE0B88O6SE4Gjbe2PuMQdwsjATJfPfLIMIRvsXYjAStW83wS+uu6dnsc0O7q6mqGaaoaprVaomX60qlqUPrKgHNrWg90bQhseAM0DHg9oXtA82B4veCvl8ExZGentSMbIxP60VvmDU25fd6JFfw58wOXlIaQW8HenOv1wUpt6OuNBe4cz0pf2YmrGchRRNLsReXFEyusmcg9uXNvZY+DIpqrKCmbNnEHdjCoq9QY0R/GMDvRh9UVunTFrt52TQzGbd8YU+pqmzUOSF51p2/Zq59xlwELbti/LZUMSvXeC/pn4aqpA06j0zUbzeIkNDzG8bWs/sJfyB3feTMsMXYNoLoJt3wD2dYhZJ37MTXneSHamrbHYQvJq4BmmoWnIEfILSE6pEBzrPVnQj3iHrUGE9zvIgOlKeDRVoNF22pKYwbAfsVl/XwUa+yG5L/nrZjCnXpTCipkBPBUKOxZlqHez7dm8QUtcEaRig0wE3gqoqMT2VEJF5bBdUb2ZSjWAp7ISTZuDpmXi458J25FI2sT+9NpUTAROYNfFSBbKgMslLyK2/mdy/d0AVk/nHoz0o4Vkn54jHcOMlGhcx4ii0J3w91YVaIw57TgGSf0N8i//BfA1FWjcmXkz3p9qqyrZfbYU5vPW+PBW1WDbMYYiPcPEhq9W/uCPdv6+Ihb6Ywo+27Y3khLpZ9v2r5CUpLkmnmv6im39g7W+miqwbYZ6N8cj5rYDlyQKfFc0DaU3dCM3/Gm3S6xwlxfZ1HGbEOYhrm6ZZvibDZzuHHG2OKahp4EHgMeUP1habn8i5A9EBuRCZHC67r1kQTfu5Rc3xgdhhsTzIf0f8CUVaEx1PUzqS3GhP7ytJ96XLKBVs3b8FjgyfthoJ2jYOzf5NAA7Krbc4cH4bkAFknIaABv68VQ8jKrpsGf4NtkzZvajeRoZ6VcHk74Ieip1SG6ZExPObXNMQ88ghWn+qfzBCZcXjOOkYv6dZYb+AfwYOC/lkkOBJy0ztBxoU7oxqWhjq6dzPiMCfiHZJ+JLpZfRpRfXAOtVoDGbALR4X/oXsFgFGp91ueZagL7BoSui0Vit1+shuiNCtH8btm3HNLTbgJ9M+JfkmaJLw9DR0TFX07SP7hMMtHk8WuLu3hnKH7w/9fpRmj7coHTjqsm0wZkU9mdEIByFLDsnakeMIHV67wHuU/5g0QX4WD2dHsQmvZCRvDgT0UyiiIY1SrirQGN4rDdm0daDgKAKND4w1nUdHR1zgQv2bPBfpSq8iamPv6L8we+O+txw92kMW3/XBrfDYB/a4HZLi0Wz3YfoRzxi7gfuju5+8GuIInEUCRMMmU8Eo5oJPIjkjPqr8gfHrBuR8YeaoY8gwt9tYl8DLFK68a+MP6+nc0+SFYY9J9i0N3FXFLrjK7/J4Hj7nAP8brzP6+jomDt3dv0faqoqE+vx3qb8wY+O+twi1vSLTujHscJdN5PsZvY95Q8uGXXdFAj9NO1JnAjiA3giE4GNZPK8xzleKIQpyBHyTYxoXycyjq+8CzsQAfcokgJhDbBOBRqLalVjhbuuRPLTxPm78gdPH3WdGToNmZwF237A+3bHZxkRXgvJ3qS1FknZcDfwuLepedgKd2lIfEKiUnEk7maW8VjNSF/6l/IHJ+x9Y5mhWch9usTlZRsxBS1VupGUt8BZFe5FsrlmXpZfP4yMi0cQ09IaYK0KNBa0wE4qVrhrITLpxukGGlNNcGWhPwGscNf5wO0Jp15S/uAoJ2vLDKWmyJ0Soe+GMxEcwOgVQTaZN99GtLZ7gAeUPzhlndwR9McjRSI+Qvbmmu2M1Ct9GHg6y6V0QbDCXfsjewZxBoFAaqyGZYZORzT0OA8o3WiOP4l2rIpvXi9kYpNAGLgPmQDu9zY173QhSpgIUlcE2UwEptP+e4D7lT+4dZzrXXEKgPwcd/fH9cDlSjcetHo6D0H60oVkb5MfIqWMZrEJeDescJdC9vESS4kervzBJMcWywwFkb2pOFuVbhSFh08xC30/cnMTd+/3UP7gW0nXic3xSwmnWpVufDMPTXQlYSI4CjgZOJPMzSSDyB7APcjSfdJh8o4WdgQjgzObUofbkKpMDyGD89lSEPKpOAJ1Hcl25DOVP3hv0nVm6GLgdwmnxkytO8lJYBjRau8G7vY2NY+qxu60e09E+J+IZNTM1BYeQ9JP34MoFR3ZrCgtM6QjK+jLk16wbcAGOxYmu/QaFpKsLi7k/60CjSUZIGmFu+4APpRw6qvKH0wKSrXMUBNSxSvO60o3kiJ/C0XRCn0AK9z1GKKZxrlc+YMrk64xQ78leTn6KaUbv8xH+zLBCnd5kICYM5FBm00hjg5GVgH/ysaLw+rpXAB81Dky7WwRxFTzEDI4n1OBxqIP1skEK9z1E+AzCadWKH/wC0nXjDYV3qh0Y1SVtnQ4k8ABjJTkPJHMvcRWM2IGeiJefyDlN8Q9qOJ96QQyrwS3kZEJ4J+ZOhZYZuhUbPtmsPdITEaWAYOIkH/IOZ6Me1eVOla469NIorU4jyh/8KSka1JNhfCo0o3EDfqCUexCfymS3C3OH5U/mJRB0DJD/0RK18U5S+nGX/PRvolghbt2R/yjzwJOJXNT0DrEnexX6TyYHA+JixBBny7oLJEII5rXw8DzKtA4raotxbHCXWcDdyWcek35g0kFXCwzdD1SkSrO15RufHui3xntWKUjXl1nI//zTDXjrUhhnzuA+7xNza6eM85q+H1IX/oAmZuCNiMeeL9Q/uBrrp/d0zkLMQFehNjpx4uGHEQ8YB5C+tKTKtCY1/oC+cIKd81H8nTFGQZmJ6bjsMzQpUjt5Ti3K924MD8tHJtiF/pHIaXm4vQiN3en9mmZoQ6SswkeNVW+xbnGCndVIyaBeN3V+Rm8bRj4C+Kn/k/s2BwkUvoi4Lix3uiwAxF+vwf+pgKNEy7+XEpY4a46xD0vscTgvsof3GlWsczQLcDHEl5fpHTj5lx8f7RjVQXy/znbOdKmdUihF/gjcCvwsNsKAHaaFd/NSF/KtB7rg0hfugM7phCzxUXIZJLBKkVzouO1VWjaJbtCsRYAK9z1CuLSHOfDyh+8Y+fro/caf6R048p8tW8sil3oe5BgikSb+PHKH9zpOmaZoa0kazi7K93ozFMTc4azdD+IkUF7HOmiEXf+z+x+JD3GeFrYELKBeBtwVylsmE0FVrhrFXBKwqnPKn/wpztfN0MPIPswcT6gdOO+qWhLtGPV/oxMAJmaaTqRyfpW4LmxUnpb4a55jJiBTiFd0ZyRvmQh/S0Tc1QXmic4IvB3EgIum6p7VkxY4a4fAF9MOPVz5Q/uzEFmmaEbgP9OeP0rSjdGuQkXgimLMc8Fjg07teDDUfE/LDNURbLAt3HJ41MKKH/QVv7gy8ofvE75g+9FPGsuRgKQxP5q206RB2czTaokpRP4MWAVshHXoAKN56hA4+93VYHvkFr27qiU57ulPB+35u5E8TY1r/U2NV/vbWpeyMj/+jZEs09HIxJp/AzwSrRj1dejHatcvWaUP7hR+YM/Vf7gmUhMwNmIeTACuPUlxdgC/xngGmCeCjTuhub5CJqWmsDIAO61zNANzticzhRNX8qWotb0AaxwV2ra5V8pf7AFwDJDqba1bqUbuUoNUBQ43jcXIHsbmWzIDgKrQPuaCuyWs/xI0wEr3JW6ufac8gd35l2xzJAJ1Ce8HnSyVOYNpzDNCYg9/QIyi514ErgFuN3b1Dxme62ezuOB6xFT0LjNQXznv6kCjaO0d6dS1++Q4uSpPA9cpHTjVZfXSh4r3NWAWCF2ngLqlD84BGCZoYdJjqw+XelGYt8rGKUg9JtJ1vafV/7g4QBO1sAnkl7TjWy8Y4oWp9DDRxHNrmn8dzgK/8hyO4Z4a9yE+GxPyw3abLDCXakBMxYwU/mDlmWGZiD7HXGigCpkgRFnAjgVWQV8iPEDAaPIWLkVuMPb1LwNdsZnnIFo6gsz+/ZR/elxpC/9n/IHd3rhWGaoAvgq8P8YbTnYAXwBuNlJ+zCtsMJdnSRr9Icqf/AlAMsMrSVZSTu0WLKXloLQn414G8QZQmZUyzJDH0I8HOLcp3TDLXNgyWD1dPqBTyODJXWJmMgbwFrQ9kHTxguM2QSsBH42bu6iaY4V7nqb5KCjdyl/8EXLDO2FBB7F6VS6sTtFQrRjVS1S3PtjiEvoeLb3AVvT7onpjZ1UzzwNTTtwjGs3A8+DZgDvGidtuQn8FrhR+YM7C69YZugEZLXhGLk5qQAAIABJREFUFol7O/BppRs5zWddaKxw173IZBrnUuUP/hbAMkMRkgO45ijd2EIRUNQ2fQDlD25BClPEqWRk17xo7WbZYvV07mn1dP4QEdDfIb3AfwQZ/PuoQOPpaNp+yPL6N0A6F7k9gP8B1lvhruuciXRXJdXkdZjzWNR9ydvU3Odtav69t6n5bKStn0EC50Zhax5idbOqY8a+H2GG7wtjCPzVyJ7PPBVofJ8K7HYYmnYwkoqhJ817dGAxsNoKd/3aCnftC6B04zHkXv6fy3suAJ63zNDxLq+VMq59yTJDtSQL/CHS38+8U/RC3yHTgVpy7mJWT+dRVk/nbYgf/pW4L+FjiLb0bhVoPEkFGu+OZ6V0NoAfU/7gJxAN9gtIUJcbNcASYIMV7vqWFe6aSK6XUue5lOcl15e8Tc1bvE3NP/M2Nb8Xidj9CtBheyuJ+RqINeyH7TMkJbQb0eEXsO2zgSYVaFyZ6E+v/MFXlD/4RaR+8cWIz70bHuBSYI0V7lpphbv2UroRRqK+LyfZVAbijvyIZYZaLTOUaUBZsZNpX+oupjrEpSr043b7otbO0mH1dHqsns4zrZ7OB5E4hAtx/1/sQErc7acCjReqQON/xvpc5Q+GlT+4AkmLexwSgOMWBVmH2GE3WOGub1jhroxrhk4DplVf8jY1vxltPPCBaOOBq2PGPjG7LuBe+MW20Xb04tm8AW/3a+/yvrPmBm/n6quiHatcV33KHxxQ/uCtyh9ciKysr0eCxkY1AfgksNYKd/0MO7aH0o2VSOqI1HvtQSrvPehsApc6o/qS43pd1H2pVIT+iynPFziPRX1zU7F6OpXV07kI0cTvIf2mWjfwNWAPFWj8ggo0ZpU+19H+n3C8nBqRKFM3W74PqX28wQp3LbXCXT6Xa6Yb06UvaVZP59lWT+cjiPfO+U5t6GRiMbTtW/GE1uExOxOLxe+LpJx4K9qx6rfRjlXHO2kkRqH8wTXKH7wG0f4vQTJgplKB7EW9ZoW7bsSObQOOJTm7aZz3Iuaekt5/Q1bniSsaPxJTVNR9qVSE/saU5/EixKnumUV1c+PEBygi7H9JciRfIquBRcB8FWj8tgo0TtoOqPxBU/mDNyDFcK4heVM8jo64hG6wwl1fdqJXpyubUp7PcaJZS6IvgZgEkb2du3B3lwRp/5e1vp49PZHQlVp0aHWa66oQQf4Y8GK0Y9Xnoh2r6t0uVP7goPIHb0G8yS4B3FI4KOBzwDrs2HXYseuQILHUfucH7rHM0FLLDJWKHErCiSN6K+V0A0Xel0rlZqfaV+M3NTX1a1HdXACrp/NQJJDjLtL72T+IDIwmFWi8eSpSIyh/cIfyB69HhP+Xcd9YCiCbyBuscNc1VrgrmxTRJYHjbpgYAOVFgpdKoS/tbvV0/hoxCZ6Q5rIO4DJgTxVovK5y/qFvepuaf4SkKjkJiehNlym1CbgReDvaseqmaMeq1NqxACh/MOoI/4Oc73JbiVYhe1TrsWOnYNsnMzqgSUOUjT9ZZqhUV5lusqmo+1LRu2wCWOGuKpI9U2Kg7YamJZosxJUzj8Wcx8Lq6TSQDn057pNrFPF0+L4KNOY9V5BjylmMaP/pbPrdyCRwU6JvdqljhbtWM2LWAXgXmudexHwR5zClGy/kt2XuWD2dNcj/6VrSJ+hbhQQx/m28ClDRjlUGUqDo04yfqvkppBTg771Nza7KiBXuqgQ+AXyd9MVT+oAVoA2iaV9n9JhYA5yrdMPNdFS0WOGu25A9uTiXonkuIrno/CeUbvwmvy1LT0kIfQAr3NVDUpZC7QI0LbHISlEEZjlBVVciNnk37cVGfOa/pQKNb+Sxaa44m7j/jeQRSadtdQLfBn6p/MGST9BmhbseJHk/5QI0T2JfkuhK3Sho7QAnqOqjwHeRmrtu/BX4ugo0pnqSjEu0Y5UHOA24AnEDHmvl34nY52/yNjW7popwCox8Eun76dq7HfgLaGegaaneY9uAjyvd+Evmv6KwWOGuHyLjPc4SNM9VJJt4iiYwC0rHvAOjl1GpGSXdChrnDcdufx7wCpJdz02APgAcrgKNnyoGgQ87bf7/g2h830IGZSqNyLJ/jRXuKvXNNxjdl45Oef5SEQj89yCpin+HuwB9GThdBRrPmojAB/A2Nce8Tc1/8zY1n4u4VH4DEe5uNALLgY3RjlXXRTtWjaqqpfxBS/mDP0PMmItxN2vUAReDXYFtbyJZ6ZwJ3GmZoW+WkFtnal/ah2SBP4Ds1RUNpSz0U7X6ggl9q6fzCCSP+B8Rm3kqryPFl09VgcaiMBmkovzBHuUPLkWE/3WM9rMG8Qn/qxXu+oMV7horWrjYSe1LqWmIC9mX5ls9nb9HBL5bfpwtwGeBw1SgMWe5XLxNzW95m5r/BxH+55KcoygRH06sR7Rj1S+jHasWpF7guHveiAjAL+KeBNEH9h5gb2a0tWEpcLdlhrKpzFUoUvtSasrsF5VuFFUholIW+qmdbULazmSwejp3s3o6bwaeJjm5UpxexF3yYBVovGs8W2sxoPzBLcof/DIi/K/HPcr3AiQi8won/XWp4aadJVKIvlRn9XQuQ2zbF7lcMoT8P/ZTgcafTlVFM29T87C3qflOb1Pz6Yhb549wVwAU4mm2Otqx6s5ox6pRtRyUP9iv/MEfIorQl5AJK5U5YMewY7EU4X8G8JRTdrCYSe1LqXsaee9L41FKAzZ1I7Eh4W8byJsGbfV0zrB6Or+GuKy1MDq9cRT4MbCvCjTeoAKNRbG5nA3KHww5vtl7I78lNaKwHvgp8KgV7ir2gZlKal9KLRCfN03fCdS7DFiL2MLd8t7fCRykAo3XqEBj3vLXeJua13mbmq9EBFkr7kIbZBX7eLRj1WPRjlVnO3sFO1H+YJ/yB7+PKBJfQzZ1E/HIYUdTBP8+wJOWGbogBz9nqkjtS6nurgU1O7tRSkJ/LNYo3ZjyPPGO3f4iRBtbhnvKhPuBQ1Wg8fMq0FgUCZYmg/IH31H+4OeBY3DvwMcBzzlpHWbkt3U5I3GgRhkdwDUlWD2dJyLeMe2451p6AThFBRrPVYHG1/PRJje8Tc1bvU3N30RMP58DNqS59HjENbkj2rGqJdqxKimnvvIHtyt/8NuIq+fdbl/lFF1PKO5CDfAHywxd52T0LHZSY1zKQn+KmPIllNXTuTvwN8TP2c0tbTXwARVoPEMFGl+Z6vbkG+UPPoPYmK9itKYWT6/7ohXuOjXfbcsxa5RuTKl7qtXTOdPq6fwFktfGzRe+G3H1PVIFGh+cyrZkg7epeYe3qfknwP6Im2I6gXYgcDOwPtqx6kupwV7KH9yIrA4+Qlofdtsp9LJT+C8B7rPM0KzJ/o4pJnGii5I+D1bBmC5Cf0pnU0e770Dc21LpQTwV3uVWaGI6ofzBYSe6N52mti/wDyvc9Vsr3DXH5fVSYKr70vFIzpbLXV4eROIi9nMSoRVlDQTH7n87Ui2qmfSbvokeP9+KdqzauTHrpAr5EzJB/ASnfFcyTlWvEcF/KvC0ZYYK7pqdIS8r3Si64vBloT8GVk+n3/Gk+D2jA5iGgRsQu/2NKtBYUBe/fJKBpnYJ4t7Z4iSgKiWmqi8pq6fz20j6BDcPr9uBBSrQ+FUVaNw2FW3INd6mZtvb1PyAs+l7OFK8xW2i8uEk+HNKPO5MO6z8wV7lD34OMROm8WVP0vr3BP5lmaGLc/lbpoiiM+3A9BH6OS8LaPV0noZ0QjdPiocQj5yrVKAxnOvvLgUy0NQCyBL/ASvclerGVszk3FRo9XQejCRF+wqjx9yrwIlOFtU3cv3d+cLb1Py8t6n5Ysb2+KkH2hDhf020Y9XOPSDlD/4bycz5ZVwzwyZp/dXA75w0zcWsVBSd5w5MD6G/wcnjnROsns4aq6fzR8iSNbVy0iBi025Wgca1o968C5KBprYQsfW3Ouk0ip2cKRCOZ85VSFHxw1wuWQEcoQKNj+bqOwuNt6n5jQw8fmYhGT7XOQneqgCUPzik/MHrkBxAaUxGSRu93wButsyQyvkPyQ1lTX+SpMv8mLMb62QvfBax0afyAnCU44JZNAURioVxNDWFDNCnikTrT9eXXle64ZpiIFusns55SL3a60ne3AOJen2fkzbbTSMueRI8fvZE+oSbYrYbEun9arRj1SejHasqAJQ/uB4pCXkx7oFdJGj9lwH3WmbINTNoHkjXl/LqRp4NpST0U9OVxpn0Esrq6aywejpbkSLrqUIphmyuHaMCjUW3E19MZKCpHQI8bYW7LnR5LZ+k9KWdFoJc9CXN6un8OLLqOdnlktuAQ1SgMTXj5LTEKfN4HeKj/w0kv04q85F8VK9E/3975x4eV1km8N97ZnKaNr1k0pKEQEuUy1KNIAJdkUvBoiB3VFzYxQ0uD67gro+ruBHxgroq4bKiuyDu4iX6uGCXXbTcZDFa3UVAKAhMESmX0Es6bWkmpW2anmTm2z++M8lczqQzycxk0nl/z3Oek3PON+e8mXm/93yX93vfaO8liWiv4w8f/gd2+PCO4LuPjfWvAB6ZpsQs+ezSOrexuSrnZvYHoz+llr430H8ENpb4l8lNNv0Kdrz1czNxgdV0sY+W2lzgLi8eu3Uah3vKpUsLsROyPyI39tIg8JduU9slpciTMNMIdazY4Yd5eDPWoyfILfZw7GTwM4lo7wWJaK/44UGuwIaFDojAOTbW/1bsQq7AcNBlpCy6VE5q1uj7LbIrsa27oBgnd2DjmzwymfvXOlkttTsDilwFPOLFY/sK7VsO8unSk5O9oTfQ/z6sW+8HAy7/Etu6D/oeago/v28XdrXtv2AjmmbTAdwD/D4R7T3TN/6/xc6LfJ187p3GtGLz8J5dLvkDyNdrnLQulZsZYfT9ZB5BUSufdhubg9IATny/gf4DsSFpbyM3PvlW4Hw/EmZVds9mEm6kdQDb4r+S3Ap+LHY17/kVFivI6O/B9viKwhvob/AG+r8DPBBw32Fsovoz3Ka27AxLNU2oY8XmUMeKT2AXet1BsKvnccCDwG8T0d7lfuaua7FxeQImiA0Y04Axq7zBrVeWT/oM8jUgHqrQ84tmRhh9MuPsWETAVrSi8MMfR7GKk83PsS2yVcXeV8mP3+q/HTiB3CxLC4CfefHYTX4yjkoQVFF7i11I4w30L8P2FD8WcHkN1jPnX3TiPz+hjhWvhTpWXIHtEf4Hga14TgJWJ6K9qxLR3sPdSOtD2HUBAb1wAxgHY27zBrfeUIFUjEG6tAEb+roqmSlGP9/b9P5Cb+C7z30DG/44O3nDLmzEwAvdprY83gLKVHEjrU9hW/f3BFz+NPAbLx5bXE4ZvHisARu3PZuCdQnAD5L2f+SmwExiM6ad4Da1VVUc9Wom1LFine/nfxTw33mKnQusTUR7bwptWrsTO1F+Y3BRA8Z8BrjLG9waFMSuVATZpvvdxuaqjag7U4x+e8C57cDvC/mwN9A/D6tInw24/L/YAGnfnwmhj2c6bqR1EPgANs56dnjgE7DDPWeUUYRDcs4U0Wv0BvpD3kD/jdggadk9k5eAE92mti/W0grtUhLqWBENdaz4AONDO9nUYRsI60Kb1n4ktGntNdjV4QHRRw0YcxHG9HqDWxeVWlYvHgsTnOCm6BGISjJTjP7RAed+4TY27zM2iTfQ347tBmaPG49gc46e5ja15YsaqJQBf7jnFuBkbFc4nYXAg1489lUvHitH9qQgXYq6jc3r9/VBb6B/PjaK5NUBl7+Dnfh/bIryKUCoY8WaUMeKs7A68mhAkQOA7wJrQpvWvoENXBcweWoA8y6Mecwb3HpYicU8guxQ2CJ7sRnyqpaZYvSzVjMW1jLzBvpPwvYGsjMjbcG6Yt5QrUGtagF/Qdcx5LboBJs96WEvHss3tDdZgoJ1FaJLb8Yan+x0kcPAxW5T21VuU1vZw3vXGqGOFf+HDdn8l0DQZPjRwK9Dm9be5Gx56cPYxV4BmEMx5glvcGtOspcpEKRLqysR5n0qzBSjn+17m2Qfs+PeQP9HsG/c7GiPTwPHa4usOnAjrduBc7ABubInPE/DDvecWsJHBjUgJhzP9wb6T8U2Ht6SdakfONltavtpyaRTcvADu92JXTh5HcE+/u+X0b3PhDat3UlitJPARWCmEWN+4w1uvahEogWF1ihqbmg6EJObn7Kq8Ft6WZEc5XdupOXEwPID/SHs4o9PBVy+G7isGlpkfV2dc4DF2BglS7Bjgw3YkAWzJrkPY5U9nrYNZh0HnRts7+6Z9hCwXjy2HLtiNbt1n8S2/K93I62TVlg/4ud2IC33quxEZGG+ROjeQP8VWNfe7IV7TwAXuE1t+RKJV4y+rk4XGydqSdo2j8nr0Szs2PkQk9AlYKi9u6dshiUR7V0MXI9t/QcRM/Xzbkk2Lf4rRLJ7+T7ySTfS8q2pyOHFY78iY9W1gMhhbmPzy1O5b7mZCUb/TLK7/+J83m1s/lpO2YH+BVi3r+wuONgVt1+phPtcX1engzVc6ZVwcdZxySeWpsgwttK+jk3d94K//RH4U3t3z65KCOHFYy3Y3/DdAZd/BFzhRlontTrai8fagE2ZZ+U/3UhLTjo+b6A/jI2b84mAW90F/I3b1FbWZCsAfV2dgp3nWDLB1kpuys7pZASrSwPYye0X0rf27p7tpXhIItp7AvAt4Pig60ZkTbL5sM2E3XOC7yDfQOTayXja+A2IQTLWD8mrbqQlKGx2VTETjP612NSE44hzjNvYnBEN0RvoPxSb2GNp1i32YFv3K0stW19XZwtW4Y7FrjBMb7VXyue8Umwkq/L6W3+pW3X+BO4XgS+Qa8xWA+93I61FR1b14rGzyO5+i3OZ29jck1FuoL8R+Cnw3oDbfB74eqk9vfq6Ohdg9eh47ARhemNhpqahzMc2gnXptfbunqLm2Px8vJdiW/5BKSdJzl30mJnf/A5EAqJxyg8RudxtbC6qMejFYweRM8cgt7iRln8o5j7TwUww+v+LXZzhIzsQiaS/nf0x1/8i1/++HzjPbWpbM1U5siplapuOAE/Vxi7GewSpyhsF1k31ZeDFY+/FtvqzU+S9AJzlRlqL8rry4rEbyfa8EafFbWweW5vhx2JaRW7gvSHgw25TWz4f8oLp6+qsx44Hp/RoWcDzapG95PYynwei+3oZJKK9c7Eu2VeTG9UUE541nFzU7hEKB6zslwcROc9tbM52Ic6LF49dQPZ6E3FOdxubewu9x3RR1Ubf94PdRcaPKD9zIy0XjpUZ6P8ocCslHHOtUKVMYIca1vvbBmAHVvG9fezzXUtgu5uRrK2xgONSu0duweaAXe3v/ziZl4AXjx2ObZ1nL4LaBpzrRlofTytbBxg30hpYeb14bB02yYdPZnfcG+g/HfhPcrOkbcA2HoqOtd/X1RnGTgCn9Oh4rDdZqZN8b8bKmdKn7RSmS/n2o9g5pon0Jt+5Uvdy38Cup0np09Pt3T2Bv3Ei2tuOndPLmaw14pBceMheZs0JCPQnTyJySnp+ZC++ZaEbaQkcivLisZVZzxhBnLluY3PVB2asdqN/IjnxUOQDbqTlv/0x138mOPb9ncDlhYy5ZlXKVMUsRaWMM14Bs7cNwOZ8iltp/HHjudgKezD2BXckdqjsSGxkxKm+FLZhK22q4j7f3t1TUJfai8cWAj8jo8cH2HmIS91I63/5Y6w/AO5xI60/D7hHBDvGnIbc7EZargbwBvo/jh0fzv4/H8Wu1N5njCf/ezyUTAN/DLnxnYplN/AamfqTrk+b2rt79k7xGSXB/w5mY3WplXFdSm1HENASL5KdWLuQ0qc17d09GRPxiWjvKcAtZLlVGgQTacPMyX6vA/AqyNtDm6I7Ewe99XvAMjfS2pFdKI9DQF7nkmqj2o3+bdhAXSmSiNNIcjSMHXMNSlR+LfCNicZc+7o6m7Chf8/194EaUAAj2ExLT2ATJqQq5oZKTXxWgr6uzllYY3ZkwBYU0qAQtpP5EohO9BLw4rF6rFHPTl9pgM9gJ8Y/C9zrRlrPC/j8JdihonHEOZ7k6DNYYx8UoOtHwN+6TW15PZt8L6x3Y3XpbHKzrRWKwQ5lPIGNHNvHuFEfLKc3TCXp6+oMYVdFpxoU6dtknRt2Yxdgrsbq05Pt3T1eItobwiZZ+TrQnCpsADPvAMz85tw7JRODsmfHOtPQ5E8Oy6Ls1r4Xjx2BTXOZhlzlRlq+M0n5K0q1G/1NQNv4GVmLSZwBPEzuhO0QcKnb1JYT18VvffwZtmKeg13sUWzLNb1SprZnq6WFNR343+uBZPYK3oINVd1Q5O0GsEnDUy+CZ7PHcb14zMHGtfkcgEkmECfnZ0wAi91I6+aszz4MnJ52agiTbMG68WaHfTDYF8iNQY2Hvq7Og7B6dI5/z8nEdnmVcT36PfDU/tRQmAx9XZ2LyOwZLMXqUrEvgyHgd/gvgUWnnvri7MVLvoR9sY85BiRnL8BE2kAcTDIB4iCS7Tcg33QjLRnu31489mWso0FaMecgt7F52t13C6Fqjb4XjzVjx4XHMXwDkpeQG4snZ8zV910+mXFDf2iRImilnCR9XZ112AV1y7E5ck+i+B7B69gJ1Z8BD6evI/Disb8Bvrvz0V+HnTkNNBy9LPuz17iR1uvTygvWEIwbZ8MDkFyAbQCkswub7OTetP/HwU7ip3QpaCXmRGzB6lBKn55s7+4Jyh2rZOF/90uxepTSp+wFl/tiN/CL+ra2Z5tOPOmDofr6Md99484huXAJw6+8yN5X1zH/9HOzDf82N9Ka0SXw4rEXyZxjetWNtFa9q2aKajb61wFfGjthjAGzldwwy78D3u82tW3xWwpnYSvmGQTH4A9iO3bsNlUxtVKWEH/e5BjGK+3JFP7bgK20D2K9Je5v7+7Z4cVjp2+9458fGn19q9N49kXMedux6eXXAX+WWsjlxWMnYScCLcYAZh25k8N9wLluU1u0r6uzATt8eA522KbQcBC7gcfI7BFu3F+GZ6Ybv3d5JOMvgeUU/tsAjIbnzXt57tKl7XMWL5kVmjMHE3bZ/vgT7Hn+GRqWncz8087OMvxyjBtp+QOAF4/Nxv7GaQXkOjfS8uWp/WeVo5qN/rinha2kSbLCRhhj7tn63Rv/KbEjfga2cp5A4YtUngXuw/r2P1Gsf7Ayefxx3bczXmlPofB5lRHgV+FFLetGX9/yd/aU0HjuXzDnrRkN8JPcSOsjAF48dg9wAZDSJUOunvwh/sDdl+95bs07sS360yh8wvE1rB7dB6yu5SG/SuO/BI5gvEGxnIwh4YlxDziA2UsO4Y3nnsN49mebe8JpzDvljHTDv8qNtJ4P4MVj/4B1IElDmtxIS9HrRqaLqjT6XjzWiPV+SVXSjOujO+LsenT1H4ae+X0Dua21vLfFxuK5D7ivvbvntZIJrEwJ/yXwNsYr7WnY5CqFI0LkvEuYvXQsiObtbqT1SgAvHtsFNATpUnLPbnY//fgrOx/pjZNMZnQXJsBge4apRsNabclXB2keVKdidWkFeRZtTcTcE1cw/+SxtXlDbqS1AcCLx14g0337FTfSWuzQ8bQyZaMvIhdgu7/NwK3GmP+Zyv2i0ejixQsX3D27vm6ZrZ/WoSO5d5jhP0UZij6Ft6HgNTlbsD7e9wK/1DH5mYE/J7AcuBDbQi+s5eY4NL3/r6k/bClAvG9L/Li59e4XFi1ouCxdl0xilOGX/8Se6FMMv/yCIZkspHe4Exvk717gwfbunm3F/l9K5fHnBI7D6tGF2KGhgph/2lnM/fPl/pGcFdu+Y33LwvnRLGX5khtp/UqJxK0IBRl9EbkSeJsx5ir/+J+AQ4wxH04rEwFuMsZcPhlBotFoCOhuqHc/ftDC+fUSdkEEM7KXoegadvziHsxoQXkpnsZvzWPH5jVV3QzGr7THYyvshdiufH7CYRZ+6HJmLXkzW+K7hpsj8+qdUBicEGZkL3v71zOw8nuY4YLC5rzC+LDNb9u7e6p+4Y0yMX1dnUcyrkuBMXvSWfC+D9Bw9DK80cTGcDh0sOOEkFAdZtTDmCQv9b9+izFc3dHRMWOGhws1+nOwfqlvw3pifBV4lzFmT1qZm4GfGGOemowg0Wj0JuDThx64iLqGeYTrrcdf0htmZOcAm2+4Jt9HR7AunPdih200AfV+TF9X51Js1MtT8xaqc5ONF1/huK0HUzd7DnUNdrrAJEYZeeN1+m+4BpJ52wKPYL2G7sUGB9Nhm/2UDV/9eHto9uy7vW3b8g/riRA55yLql74DCddRN38hIoIxSUYGt7Hx9UGG9o7c3NHREZRYpyopaNWpMWZIRO4EvoZNKP6elMEXO9txPfDgFAz+Yvzk0iLgpPteO04qnV02j2EXz6wsVdQ+ZUbwAvsa7hnxnPjK77Poymtw52TpEkAoDMmMRvuLQA/wE53rqR0Wf+HWvr6uzlex7rjBGEP8/rtpPOAgGtqWpE3uCojgWJ36WDQavaWjo2NGNDiLCTXwfWwApPONMenxov8eu0BlgYgcZoy5fRJyfAh/Mc/AziEWiRBKjgJCYngXe5637vemzo3LiHcr8OP27p4XJ/EcZeZzNONDPNuBl7HDMK8Bm7yOdx47evChnWbOXLbtHOLg+lmMYpBQmMTwbka2b4MRDxMKD0li9AfYhsMT2qKvPfq6Oudi5yPBztmkdKkPGxerf3jZ6Scl2t708WFPeNOox8juQZywS9IbJplMsmvPXrC260PkePVUJ8UY/S9i46dkfMYY823g21OUY2zxw8DOIUZHE0TmjSIi7OzfyK7n1zLy3otJHnDQv3ccddQXpvgsZWYzgF349Up7d8+O7IvRaLQ79feQl2D9tkGaF4zihByGdrzBG7/4OSPLLyDRdshtHW9/x2cqKbhSdbhYT7GXge1BL/5oNHoM2Ohzr24eoLVpHnXhEHu9EWIDGcm5stcPVS0FGX0R+TR2NeOHsMly6SdFAAAHEklEQVRIphxeNout6Qdv7NnLG3t8V+fQHHjXmalL+wx6pezftHf3pOLR5CNDl4a9UdZvGxw/ceoFqb+ysrEptUZ7d88A8Pg+io3p02gyycbXc9oZKWaMbdpnjlwReTfwEaDTGLMamC8iQbkhp8JK7Cq3idjtl1OUiVBdUkrJfqdPExp9EVkC3AFcZIxJ9WW+BXyylEJ0dHRsAPY1F3D7TJkoUaYP1SWllOyP+jTh8I4xZj02lnr6uR8CPyyDLF3+/mNkRmjcjf3Su3I+oSjBqC4ppWS/0qeqC8MQjUYPxs4dtGDHyVbOpLeoUj2oLimlZH/Rp6oz+oqiKEr52OdErqIoirL/oEZfURSlhlCjryiKUkMUsyJXUWqW+uM/ZsQJ4dS5OE4IcUI44Tp/7yIhu3dSx1nnxQkRCtscrKGwgzhCKOTvwxJ8PuQgDjiO4IQcHEcIhx1CjuD6+1ljxyG7D2WfD97XOQ4hgbqQgyNCXUhwRDLPOeKXlbEyoYyyggiEHHAQQo7NTBNyBMffi0BIBEcgJNj/U8DxPyvJBGKSkEyASSLJUZsvKTEaeF6SozZY3tjnRiGZsBF4kwnMyMjYsUkmYHQEk0hklhkr60EyaSNmJpMkvdGxfTKRIDkyikkkSfj73OMRezz2uQTJRBKTNCS8BCZh98ms44zrIwmSCeN/1pAYTZIwBi9pSBj8vcFLEng+SXqZ8Wu3m7684cK1pa8oilJDqNFXFEWpIdToK4qi1BBq9BVFUWoINfqKoig1hBp9RVGUGkKNvqIoSg2hRl9RFKWGUKOvKIpSQ6jRVxRFqSHU6CuKotQQavQVRVFqCE2ioigVQkQ+aoz5N5VjHJWl8nJoS19RKsdHp1sAn2qRA1SWIMoqhxp9RVGUGkKNvqIoSg2hRl9RKse0jxf7VIscoLIEUVY5dCJXURSlhtCWvqIoSg2hRl9RyoSINInIwyKyzt9H8pS7QUTWisgfReTbIpI3v2k55fDLzheRTSLyryWW4UwR+ZOIvCQinw24PktEfupff1xE2kv5/ELlSCv3QRExInJcOeQoRBYRWSIivxaRp0XkWRE5qxTPVaOvKOXjs0CvMeZwoNc/zkBE3gWcCBwFdADHA8srLUcaXwV+U8qHi0gIuBV4H/AW4BIReUtWscuBuDHmMOCbQHcpZShCDkRkHvAJ4PFSy1CkLJ8HVhpjjgEuBm4rxbPV6CtK+Tgf6PH/7gEuCChjgHrABWYBdcCWaZADETkWaAH+p8TPXwa8ZIx5xRjjAXf5MuWT8W5gRal7PAXKAfbFdwMwXOLnFyuLAeb7fy8A+kvxYDX6ilI+WowxmwH8fXN2AWPMo8Cvgc3+9pAx5o+VlkNEHOBm4DMlfjbAQcCGtOON/rnAMsaYUWAHsLDScojIMcBiY8x9JX520bIA1wGXishG4AHg70vx4HApbqIotYqI/BJoDbh0bYGfPwxYChzsn3pYRE4xxvy2knIAVwEPGGM2lL6BTdANs90GCylTVjn8F983gctK/NyiZfG5BPihMeZmETkB+LGIdBhjklN5sBp9RZkCxpjT810TkS0icqAxZrOIHAhsDSh2IfCYMWaX/5kHgXcCRRn9EshxAnCyiFwFzAVcEdlljJlo/L9QNgKL044PJneoIlVmo4iEscMZAyV4djFyzMPOq6z2X3ytwCoROc8Y82SFZQE7z3Em2B6hiNQDiwj+/QpGh3cUpXysAjr9vzuBnweUWQ8sF5GwiNRhJ3FLPbyzTzmMMX9ljFlijGkHrgZ+VCKDD/AEcLiIvElEXOyk5KoJZPwg8CtT+kVEE8phjNlhjFlkjGn3v4fHgHIY/H3K4rMeWAEgIkuxcz/bpvpgNfqKUj6uB94jIuuA9/jHiMhxInKHX+Zu4GXgOeAZ4BljzL3TIEfZ8Mfo/w54CPtCW2mMWSsiXxGR8/xi3wMWishLwKeY2MOonHJUhAJl+TRwhYg8A9wJXFaKF6GuyFUURakhtKWvKIpSQ6jRVxRFqSHU6CuKUjb8UAY/TjsOi8g2Ebkv7dz7RORJPwzFCyJyk3/+OhG5ejrk3p9Ro68oSjnZDXSIyGz/+D3AptRFEekA/hW41BizFOsy+UrFpawh1OgrilJuHgTO9v++BOuJkuIfga8ZY14A69VijClJjBklGDX6iqKUm7uAi/3FRUeRGcisA1gzLVLVKGr0FUUpK8aYZ4F2bCv/gemVRlGjryhKJVgF3ETm0A7AWuDYyotTu6jRVxSlEnwf+Iox5rms8zcCnxORI8AGPRORT1VcuhpCA64pilJ2jDEbgW8FnH9WRD4J3Ckic7CRJu+vtHy1hIZhUBRFqSF0eEdRFKWGUKOvKIpSQ6jRVxRFqSHU6CuKotQQavQVRVFqCDX6iqIoNYQafUVRlBpCjb6iKEoN8f9yCTOuU3Gk1AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -1013,12 +969,11 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -1059,20 +1014,9 @@ }, { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeZwbZfnAv5PdZI9u221LKW2hHC33gIJAXKCAcrRcEl2q1RVU0BbxrEj9UXBLV6hQwPVCbVVAYbVYqqOCFkFEKpRwFIGRq5yFtvS+0s1uZjfz++OZNMlkkk2ySTbZne/nM5/dzPnu5nmfed/nfQ7FNE1cXFxcXIYGnoFugIuLi4tL6XCVvouLi8sQwlX6Li4uLkMIV+m7uLi4DCFcpe/i4uIyhHCVvouLi8sQwlX6Li4uLkMIV+m7uLi4DCEGVOkrinK8oign5HjNcYqiPK4oymOKojyiKMohxWqfS2WQjxxZ1z2oKMpmRVGuK0a7XAYX+cpZuTHQI/1PAqNzvGYDMN00zdOAW4EFBW+VS6WRjxwBXA5cXeC2uAxe8pWzsmLAlL6iKGcDVwDfVRSlPdvrTNN83zTN3dbHCNBTjPa5VAb5yhGAaZrvFadVLoON/shZuVE9UA82TfMhRVHeMk1zaj7XK4oyDLgR+EJhW+ZSSfRXjlxcsmEwydmAKX1FUfYF3rftqwIedzj9AdM0v5dwnhe4F/i+aZovFbWhLmVNf+TIxSVbnOSsUhkwpQ8cC+iJO0zT7AU+nOkiRVE8wD2AZpqmVrzmuVQIecmRi0uOpMhZpaIMVGplRVEOBv4KvGea5vQcrrsYuAt4xtr1ommaXyt8C10qgXzlyLr2l8DJQA2gm6YZKEITXQYB/ZGzcmPAlL6Li4uLS+kZaJdNFxcXF5cS4ip9FxcXlyGEq/RdXFxchhCu0ndxcXEZQrhK38XFxWUI4Sp9FxcXlyGEq/RdXFxchhCu0ndxcXEZQrhK38XFxWUI4Sp9FxcXlyGEq/RdXFxchhCu0ndxcXEZQrhK38XFxWUI4Sp9FxcXlyGEq/RdXFxchhCu0ndxcXEZQrhK38XFxWUI4Sp9FxcXlyGEq/RdXFxchhCu0ndxcXEZQrhK38XFxWUI4Sp9FxcXlyGEq/RdXFxchhCu0ndxcXEZQlQPdAOGOp3LFinAPsBEYIL1M7aNQL6jaqAqj997gC3WtjXh9y0O+7fVz5jbU+y/16U4WHI0hmT5icnTSPovR07y47TPlaMyRzFNc6DbMGjpXLaojtQOaO+UEwDfQLXRxnaSO/Q6QLe2/9XPmLt5ANs2ZLHkyC4/Tp/LRY52kPwiWE9cjnRXjgYWV+kXgM5lizzAFOA44Hjr5weBsQPZriKwEfgfCR0YeRnsGtBWDRIsOZpMXIZicrTvQLarCGwmWYZicrRzQFs1RHCVfo50LlvkBY4iVcE3DGS7Bpi1pHbiV+pnzA0PaKvKGEuOjiRVjoYPZLsGmHdJlaOXXTkqLK7Sz0DnskX1wDHEO+Xx1udCT6N3I6aU2Lbe+rkVMBCbag/Qm/C7/bPTsRrEzrtPFtuoAv9NUeBF4GFre6x+xtzOAj+jIrDMM05yVFPgR+0mLjuJWyY5ykamMsmRff/oAv9NUWR2+TDwECJHewr8jCGFq/QT6Fy2aDjwEWA6cBoyEuuPh1MvsAFnhb73c/2Mubv78YyC0LlsUTXSYWOddyxislKt7Uj6p6QiwBNIx30YeLZ+xtzeDO25BvgMsBKYVz9j7o5+PLukdC5b1IDI0TTgdOR/V9WPW8bkyEmh791XRnI0ivRydBT9kyMDkaPYS+DZTAvHncsWXQ1cal1zTf2Mudv68exBwZBW+pbHw7GIkp8OnAJ487zddmA18FzCzzWZFFslYXXmycQ7b2w7lPwU2g7gEeIvgTfqZ8w1rWediij7GC8C59bPmLsu7z+giFhydAyi5KcDU8lfjnaQKkevDSI5qsJZjg4jPznaichR7CXweoIc+YEnE859GZheP2Pu2rz/gEHAkFP6ncsWjQHORjrnNGC/PG6znuROuRpYGxO2oUTnskU1wOGkduKDc7zV28Q7rgf4ve34u8C0+hlzX+5PewtF57JFo4GziMvRhDxus4FUOXpnCMvRYaTK0SE53mot8YFED7DMdnwdovj1fjW4gilLpa/r+iTgPMRP/X3gj6qqhvK5lzVCPZH4aP5EQMnhFm9iG3nVz5i7MZ+2DCUspfgR5AV7FjK6yxYT2EPq4vh24IL6GXOfyOYmuq7vD5yP+KlvROQoLxOINUI9kfho/iRyM/29RaocvZ9PW4YSncsWjULk6CxElqbkeIvdpC6O7wQuqp8x99/Z3EDX9QnABUAj4nn0R1VVK9bTqKyUvq7rjcB8YDbS8b1AN/LGngf8UlXVPgM/OpctmkBcyZ9FbouUa4AVwIPA45VkSy5nOpctOph4xz2T/Bf8uoCZ9TPm/jndCbqujwS+C1xJshxFgWuBxaqqGlm0eTxxJX92jm1+A5GjFYgcbc/hWpc0dC5bdBAiR7FtTJ63igAt9TPm3pfuBF3XhwPXAV8jWY5MoBW4PRs5KjcKpvQVRbkRWfzcCFxqmmZOnhq6ro8AngX2B2odTukE/gJ8RlXVlEZ3Lls0DrgYmAmcmsOj9wD/RJT8g/Uz5r6RS7tdcsfyRz+O+EvgVHJb3DORRbmb7Qd0XW8AngYOIr0c/R2YkUaOxhKXo6lkPyvcA/wLa8BQP2Pu61le55Inlhx9gPhscirO33k6TKC1fsbcG+wHdF2vB4LIzCKdHD0CXKSqajTHpg8oBVH6iqKowHWmac5UFOUKoNo0zZ/mcg9d1zVkRJWp8+8BrlZV9eewd+r3CaSDfpTsp9vPkzyaj+TSVpfCYrk0ngqcA3we8frIhjvrZ8y9LHGHruvLkKl4ps6/B7hOVdUfWs9vBD6OyNGZZL+g+AIiQ7HRfHeW17kUgc5li2oRZ4yYHGUb1NZRP2PuZxN36Lp+D9BM33L0PVVVUwYf5UyhlP6XgU7TNH+jKMqBwM2mac7M9npd188A7geG9XmyGe2ctOaRb1T3Ri5Cpt7ZeElsA/6BdM5/1M+YuyHbtrmUjs77brmeqqr5iqJgmiZEo7KlpxfwxhY+dV0/BVHC2cnR649+o7qn60JksJFN7MV2ZJEwJkdl6U001Om875Z5VFXdmIMcmUBVghydCDwK1GfxuDBwkKqqm/rb7lKRVcI1RVEmI6OaKaZpbrD2tQC3AH7EZh5TpDvJ3V77OaCuz7NMk/HvBGuqeyO/zOKeTyMvkhX04RPuUiZ4PB9VFLGmKIoCVVWYHg/EOm7qAKXb5ulyCdlM702T8Wufqqnu6cpGjp4lLkdPu3JUAfRfjj5L9ubGXuBC4Nf9bXapyErpm6b5hqIo9wPfBL6jKEoT8FNgmmma7yqKsh3xkMD6mXUAhK7rHiBAFqYZX/cu6sLbM029nweWAvfWz5j7VrZtcCkTFOVBxC6bsEsBRQGPB9M0o0Sj3USjJrAL+FLsPF3XFcQW36dpxhsJUde5LdN5LxKXI3eNp9JQlBWImS5hl6McgcjRFbHzLDn6FNmb+BqQ4K/BpfQtbgYeURTlbuCPwBWmaT5lHfsPcA3wG8Tk8ngO9z0623YY3mFEFQ8eM2mq9hri031vufhwu6QnrLUPA8bZtv2AcYqi7AesN01zvBIbqiWgKIqHqqo6qqpAFtkeSDh8OFku4vV464l6qvBEkwbta4gr+v/l/pe5lJI0cjSOuBytM01zQhZy9DTiIBLjYHLPf3SyruueSlnQzVrpm6a5WlGUp5DOdrNpmvcmHHtRUZR3FEVZCWxC3nzZsg8yReq7DVXVrD/oZEZsX8vwHWtvUGA58PxQDGYpN8Ja+zgkOtexIyZsfdrbHfqpEx9BFl5jQVxjENfePjE9Vaw7sImR29eaw3e+e7NimssQv3lXjgaYsNa+L8lytB/FlaPTkEXfO6zPY5BUD7lgWu0Z8DQY2ZC10lcUxYMo5ygy6k/CNM1r8mxDTqHXkdoRbBmvmlvGq22V6CNb6YS1di9wBOIql7gNRPrfxHWgnOTIEDnq3TJe/Z6qqkMyEdxAYsnR4aTK0bgBaE7ecmRh5nndgJCLeec2JCJtDdBC/M3YX3aSW4QsQI+r8ItPWGvfh+QOeSySMKscinU8B9yV8HknuSfH8yDeFy5FJKy1jyFVjo6mPOToReAXCZ93kbsCrwbyyhgwEGTrvTMb8WP2A2cA1yuKcqdZmMiuF8n9y3+uAM91sQhr7VVI3hP7qCuffDJ9YSABfE7b0cAXM1y7BbgbWFIXmPOK7djL5N5Zn3cK0HLJj7DW7sFZjiYW4XGZ5OgIJKo/HVuBDmBxXWDOS7Zjr+XRlpezyRRQLvSp9BVFOQtYCJxhmuZGRVHusz5fBGj9bYCqql26rj+C5NrJhk7gt/197lAnrLXvhwSxTLd+5hvOHqMbeAl4j/SdcSOwoy4wx1HRhrX2W9Lc+xFgsWfUvg97aoftAxxqBLXpwL1ef2ADgKqqEV3XH0LkMhvCuHLUbywbfEyOppF9YF06upEXeCY5ep/McnRjmns/Ciz2NI79h6euYQwiR9OAP3j9gXUAqqr26Lr+APBJsrNAdCEDkYoho9JXFOUIxKPhEtM0XwQwTbNXUZQfAN+hAErf4m5kQSWb6lOeAj53yGDZUE8mnkvmuH7cbj3iHpu4rakLzOnvaOcOFOWzSu2w/RRvTVjx+tZS7duteDwHIuZE++LdrUZQ+4DXH4h52/wWcdXLRo4UXDnKGUuOPkw8t9Xx/bjdBpJl6AXg1QLI0V2gfE6pGzZR8dZ0WXK0S/F49gd+hbMcfcjrD/zX+nwPkqgvGzkyEW/GiiGj0jdN8xUc3tymad4O3F7AdtyHJDA6nMx22TBwl6qqbiRkFoS19oOIK/kzyd0VLYKM3hM75fN1gTlbCtjMvVSPP/gV0zR1y+WuDpGHTFQBVyPeFwB/RrKiHk1mU08Y6FBV9e1+NXiIENbaJxEfyZ+FZL/NBYO4HL1g/Xy+LjCnKAXS6wJz1kSe/NPziqJMRNx4D+vjEg8yiP209flvwKtI+cpMctQF3Keq6pp+Nrmk5LKQWzSsKdXHkOjH4ThPqwwkc+FVpWxbJRHW2uuQSk2xUVhfSjORncBTJI+8XqkLzCnlgnmVoihn9n1aEo/GflFVtVfX9QCSungk6eXobSTQ0MWBsNZei8y8Y3J0ZA6X78JZjkqW38oIah5FUableNljsV9UVY3quv4J4L+I84qTHPUgNR6+kndDB4hyS638AcQjYwrxqVUUsfM9AHxZVdWijDIrFcumOhNZEzmd7LMMmsAzxBOGBQswre43RlB7ELERZ8Ofvf5AwL5T13UVCRQ8nPhU3kRGZiuAKyopV0opCGvtY5FI1PMQZ42+06LEeZZ4GulgiQcKjhhB7a9I4r1s+LvXH0hZU9R1/SjgTmTmmChHYaRIyxWqqlZcHq+yUvqwNwz6IiT/xSjkbdququrzA9qwMiKstVcjI7DLkLwf2c7YNhFX8g8Va3rdH4yg5kdC2o/u49Q/ARd7/QHHKEhLji5A8jqNQhYGf6Sq6uoCNreiseToHESOPkb2JR43k5DAsC4wp+xeoEZQOwFZBzqmj1MfAC7y+gOOAaKWHE0HvoCYutcBP1ZV9ekCNreklJ3Sd0lPWGs/HBG+z5FdmcdeJCVGLI30f+sCc8oyVNwIamOBNmAWffvbPwl81OsPuD72eRDW2g8lLkfZuOX2AquIj+afK2M5GgNcD3yZvl14nwVO9/oDe4rdrnLCVfplTlhrHw7MQEZjp2RxyVrinfORusCcsi7rZgQ1H2IXnU88aV8m3gSavP5A2Y0uy5mw1t6AJKS7DFtSuzS8S3yw8M+6wJyyriBnBDUvouivJ7tKee8AH/b6A0OuZGVZLOS6JBPW2hVEwV+G+Av3lWfkFWQt5M+Iy1vZv8mNoKYgbnG3kd67wiDZ5LAdOM9V+NlhyVETIkefom8XxNeIy9HLlSBHAFbMxg9Iv+AcITkAdCdw/lBU+OAq/bIirLVPQJLVXYYkncrEbiSG4k7gyUrpoABGUDsa6aTpFmxfR2qT/i5hXwQIeP2BV4vcvIrHCryLyVFfHlx7gHsR+/cTFSZHRyBydG6aU95Camvfk7CvB2hOiO0YcrhKf4CxFtMuBC5HhLcve/a/kQ66vC4wp6JskUZQGw58D/gqzvbWXYhd/6def6DbCGrHIf7T24Evev2BxxyucWFvKo0LEDk6j77t2f9B5GhZXWBOxeSNATCCWgOwAPg6zjosBNwA/MjrD3RZg4zrkBH+LK8/8M+SNbYMcW36A4QV2dgCXIu4qGZiPTLtvrMuMKciC24bQe1C4GdI4Xs7USRS8rt2040R1EYDPV5/YFfxW1l5WIOGTyNy1NeofgPiynpnXWBOPjlmBhwjqJ0L/Bw40OGwibzIrrObboygNgrodeXIVfolJ6y1+xCviXnAQRlONRDb6h2IW1xFlukzgtp44EfIYrQT/wLmeP0B1yU3B6xBwyWIHE3OcGoPUiTkDuDBcojFyAcjqI0DfojEpDixEvim1x9wXXL7wDXvlAgryvEy4P+AAzKc+gLip/67YqU7KAVGUPMgGTMX4eyV8xYSXa15/QF35JElYa29Bkk7cQ3Oo90Y/0Pk6J5yjMfIFmvB/wvArTh75axF5Gi5K0fZ4Sr9ImOlRpgFzCW9T3QPknTudmB1JS2mOWEEtSOBJcCpDod7EY+dBV5/wC1ekiXWoOGLyBqHk4kM5H/bgdSvfmYQyNFhwGIkQthOFBn5tw41P/v+4ir9ImHV8LwCSQiWrhqQgYzGbq4LzHm7RE0rGkZQq0FmMvNwrpHwDPClhGyGLn0Q1trrkdzwVwPj05xmIGs+N9UF5rxZoqYVDSt242rgu0CNwynPIXL0bEkbNkhwlX6BsYKpvoJMOdPlFu9GRsKL6gJz3itV24qJEdRORf4mJ1/pPYj3xE/Shbu7JGMFU30Z+DbpS1FGkAXwm+sCc9aWqm3FxAhqTYgcqQ6Hw0g23h96/YGKXJsoB1ylXyDCWnsj8DVgDukjAsOI58GtdYE5FZeoyQkjqNUhNZO/luaUvwFXev2Bd0rXqsolrLWPQFxav0X6wjZdiNnjlrrAnEGRZtwIarXAjUj/ccpq+SDwZa8/8FZJGzYIcZV+P7HMOFcjwpouz/gexF5/Wzkmp8oXI6gdjwS+OI3uNyJ+1MvcBba+scw4VyHKvjHNaZ2I2+ttdYE5gyaa1AhqH0DkyGl0vxlJg/17V44Kg6v088QKcQ8gi0mT0py2C/gJ8MNK9sSxYwS1KmRhegHOmRl/Bcz1+gPbS9qwCiWstV8I/Jj0LrwhZHH2B5XsiWPH8vD6FjLCd1oDugv4ttcf2FrKdg12XKWfB2GtfQrSSdOFf+9AXgY/rgvMGVSKzwhqByNlCZ08c94ELvP6A/8ubasqk7DWfggSw5Au7/tORM5+WBeYs61kDSsBRlCbhASKneFw+B3g8qEeOVssXKWfA5b75TWI25zTyGQr4o54e11gzqCK/LP8pS9FZi5OZRfvQIJjdpe0YRWI5X45F5Elp6I325GcMj8t9+yWuWLJ0WcQc6dT/MZvga97/YGyzg5bybhKP0v6mIL3ICP7trrAnEGn9Kwc5YuBZofDWxD3ObfIeBaEtfZzkRenUxRtr3Xs+nJPiZ0PViqEnyMZP+1sA2Z7/YH7StuqoYer9PsgrLUfjEzBL0xzyr+Br9QF5gzKrH1GUJuGZPJ08hH/O2LOGTSLisUirLUfiAwMUso7WvwHkaMXSteq0mEEtTMRc85Eh8P/AL7g9QfWl7ZVQxNX6afBmoJfjQQaOU3BNyLeFr+r9MhHJ6wAmUXANxwOh5G//ReuR0VmrLQJVyFxCk51ZzcjcvbbQSpHXuD7yP/AThdi5ro9XdlLl8LjKn0Hwlr7dGSa7ZT9Mmodmz8Yp+AARlA7AFgG+B0OPwN81s1r3zdhrf1sxOvGqUhMFDF1XDfY7PYxjKA2EcnV71Tx7TlEjl4qbatcXKWfQFhrn4RMwT+e5pQngCvrAnMGbUZII6idgxQvsQcGRRHXuu95/QGj5A2rIMJa+/7IQmy6zKJPIqacQZsR0ghqHwV+T2o0sQncBFzv9QciJW+Yi6v0YW+646uQXB/ppuBzkSn4oJyGWj7T1yE1Ru0RkW8Dn/H6A6tK3KyKwkp3/E2k3q9TicutiOfXnYNcjr6DFDGxFwR6F2jx+gMrS94wl70MeaUf1toPRUa2JzgcNolPwQeVv30ilnfOPcB0h8P3A5e6gVaZsXzuf4ezScxE8snMG2z+9olY3jm/xTnuYAViznEDrQaYIav0rYjaSxF/YadR2VOIKWdQZ/IzgtqJwH2kRhVHkZnPTe4iW2bCWnsLMjhwil94BpGjp0vbqtJipeS4DzjYdshEZo83uHJUHgxJpR/W2kcinfTTDoe3IemBfz1Yp+CwN0jmCmQNwx5othn4tBsRmRkro+pPkcGDne2I59cvK7XqWTZYcnQ58n+wp0HeiphzHix5w1zSMuSUflhr/zAyDbePSAA04EuDKU+OE0ZQGwb8Avisw+EngE96/YFBkb2xWIS19hMROXLy8Por8MXBlFzPCSOo1SMz5c87HH4KmOH1BwZFyufBxJBR+mGtvQpZYGoDquyHkSyZSwajr3QiljvmX4EPOBz+IZIozfXOSUNYa/cgOe5vJLX/dCMOAT8bAnI0Eam9e7zD4duBq7z+QHdpW+WSDUNC6VsudHfjnNzpRWBmXWDOoPcXtuz3fwH2sx0KIQmu/lD6VlUOYa19PLJQeZbD4f8Bn64LzHmxtK0qPZb9/q+klv/sRFJy/K70rXLJFsU0B/WAhLDWHkBKEo52OPwTYG5dYE5XaVsVZ8eSebVI55mAhKgnbsORF3M1MjvJ9fdeJDfOluox+9b4Jkz6kOLxJL3ozWjvWz3btsyKrHvnKWB346yFg1sg8iSstV+ApKNwqob2c+CqusCccGlbFWfHknk1JMtQ4u8j6L8cbQW2VI8e6/VNPPAEBzl6p2f71isi7729CtjlylH5MmiVvpUR8wfIYqWdLcAX6gJz7i/W83csmacgCiJRiTsp9nTVkQqGd9/x+MYfkLK/Z+c2ute+CdG969UG1ksC6eTrkBGsbm3vNM5aOGgXt52w0nEswrky2Dbg8rrAnKIlm0uQIyfZSZSpdKU5C0b12P3wjT8ARUkO4+jZuZ3utW8kylEPcTnaAqwnWY7eHmpyVE4MSqUf1tqPQaIBj3Y4/DBwaSHLFVqjrKOB4xAb53GIzby+UM/IC0XBt/9BeEePTTkU2bQeY0PO5Xn3kNx5Y9v7g3FkF9baj0Lk6FiHw48ClxSyxvGOJfN8OMuRk0tx6VAUfBMPxDsmtVSvsfl9IutzXqvtxFmONgxGOSo3BpXSt3zvr0Ry2tvdx3qAa5H6tHmPMnYsmdeAdMTEjnk0zhWkBo6qamoPmkJVQ3IFR9OMEnnvbXq2FdRBaTupHVhvnLWwIgORLDmaBbSTGqHdixTnvrk/rpg7lswbRqocqZSdHFVRe+ChVA23y5FJZN3b9GwtaCGvHTjLkRvQVUAGjdIPa+2jEZvrxxwOvw58JtcAmR1L5o0muVMejyTPcircnC9R4H3ElBLb1ls/tyImlx5E2fRk83vNgVMOrBo56m5FUQ5JfJAZjXZG1q/9Q8/WTbsRs9I+tq3QM5M3kZnVw8AjldB5rQL3vwY+4XD4LUSOnszlnjuWzBtFqhwdTnHkKCY7iVt+cjTpkP2rGsd0KIqSlPvfjEbDkQ3v/qFny8adpMpQMeTobUSGHkLkaFC7VBebQaH0w1r70cCfcS5M8Rvga9kUN9mxZN5Y4GwkHcFpwIH9bNouUjugvVNubJy1sGDBO0ZQ+wjwR1KLa78OnO/1B15Ld+2OJfPqib8MxiI+6Kq1HeNwz1wwgdVIx30YeLxx1kLHBXTLjn0jUmFpJfCtxlkLi14bNqy1H454NzllxfwdElnbZ2bVHUvm7YPI0TTgdNLXvs2W3cB7OCv02L6NjbMW9vTzOXsxgtppwJ9IdYB4C7ggU3bMHUvm1ZFZjkb1o2kmkqEz9hJ4vHHWQscFdEuOrkeC51YBcxpnLdzYj2cPCipe6Ye19o8BHUCD7dBu4Iq6wJy07mM7lsyrBj6MdM7pwIfIf/S1FlFqzyX8XN8fG2Vk1XIFMVONRDwwEn/WE/eukE1R/KBcqihKUqIr0zTfxoz+AYgknS+bieQ1Dyf8DNs/m6bZ1btrZ0Pv7h0HmN1dB5uGMcXs7TmMaPRI8hvZdSEKPfYSeD62uLdjybyPAI8knLsGmN44a+GbeTwnK8Ja+3mI/X6E7VAI+Apwdzrfe0uOTkJkaBpwIvnL0bukytG6Utq6jaD2SSQXk93U9Djwca8/kPcL2FLE+xF/CcS2o8lv7aILKUATewn8N0GOTrGOxXgTkaM1+bZ/MFCxSt+yu84DvkdqBwsi0/AUJbFjybxJSMechvhbO9XpzIQJvEZyp3wunenCUtxjEC+L8cjoJ6a87Yrc6WeWNl4FFCXFs8I0o1Dk79g0zR5MM0y0t9vs6TFNI1JjGkaD2WN4zJ4ezN4ezB7Z6DXkZ2qbtgD/RDpuBPGHT2QjcG7jrIXPFbLtlhxdjaT7tcvRM4jv/ev263Ysmbc/8cHCWeQ3C3KSowE1XRhB7UtIaUz7/6ID+KLXHyiKe/OOJfM8yMza/jI4ktzWObYiA4aHkBe2fdC3GTi/cdbCQZ0LKRNlqfR1XT8Msc2PBDYAv1dVdW+Wx7DWPgwpxP1Jh8t/heQqj8BeP/jTiI/CjsqhKT2Il0HiyOv5xlkLQ5YyH01cmU9I8/t4nIuoFxAFxWPPYgtmNIq8o8oPM9qb8CKIvxRMI4IZ6SZqRMJmpLsuwQ0QpBN/vHHWwoezeYau61OAixCFvBGRo70vZ8ut95dAi8PldwFfjsVwWHJ0KiJH03H2DEtHD/ASqXJUVvWUjaA2F7jZ4VArkjCt5MJkmRxPRV6sZwMfzPEWe0idQXQCzY2zFq7I5ga6rkyjPaEAACAASURBVB+C1NhoBDYBS1VVLbq5sViUldLXdX1fZMQ1EzE9+JAvyERG9O2TX39oP8R+b//ye5HSfj/r3rT5UOBcpHOejnOO/HSsBlYoNTX/rjn4sG0er+9AxCYZ84lOVOxFVuZZoCjYrDmYpmmNpMvnu80Xs6eHaKR778vAjER6Fa/3Vu++4+8E3vE1NaeMPHVd3wcp0fdZJKe7DzFTRa39t05+/aGxiM3anlI7iqRS+FH3ps2TicvRR8hNjp4DHkRSCgfTrV+UA1bStO8jaUoS6UVq195d+lY5Y627nUn8JWDPDpstPcAXG2ct/E26E3RdH42sLX2OuD4KIx3rZuAWVVUHLCAvXwqi9BVFGYlMp44CPmyapp7rPax/8H+BcTgr0866zq3PjF+/+khFFocS2dYb7vpaz+7dk5AXhlNeGYeGe1BqarZXDWt4saph5AbPsIYeparqAETJ20PMBwoD2GltuxJ+dqJ4TlAUJSnhl2VquR/MN5FO29emIDWA66wt8Xf753THCumFkisbkMXFt4C3epSq99+vHX9tV1XtmKhS5ShHteHtqyese2aKkpqOYkdvV9fXenbtnoDI0XE5tGMrUuB7BfCPxlkLK6JYvBHUqpBcObNth7qRhGl/LX2rssNaH5iCKP+zgI+Su7m2HbjKvmai6/oI4FngAFLdv0GU/xPANFVVKyqLaqGUvheZ+twC3Jqr0td1XUFGRaeTbvRsmkxa+7jpNcJ7FYzZ20tvV9eG3j2dG0k37VMUlJpaPL4aFF8NnppaU6mt2+WpqVWUqir7ol2x2I14WaxHpoc7SFbgsZ8p+5xGskZQq0FsrM22Q7sQD53/2K8pFpaZy4d8/2OJe2zYf0/8vA8l8Ec3lGq6PTVEqmro9sgW8fg4YO0Tps/otMlR98bePXvWk72ijyJlD1dY2+pCemGVAiOo+ZC1k0/ZDoWAC73+wKMlb1Q/sBbUP4TMzK4g9aWeDq1x1sKkEqm6ri8HzsdZ4cfYA9yqqur1ubd24CioeUdRlLvIT+mfAywn1QMniUNefxjMKNGuLnq7ujGNhGSQigdPbS1KbR0ea1NqavF4i2qBCRFX5hsSfk/8vMHX1Bwq1AONoNaAuGSebTu0GZjm9QcKutBZDKwXxQhsL4aendub6e05T/HWoPh8KF6f41pFfzCB3k3vQjSNHGXmPeImm382zlpYsdXErLTI9yHmq0S2AtO9/sAzpW9VYdixZN7XgB/ncIkJVMVG+7qun4zM2rLxJgoDk1VVLViEf7HJKsumFZzxAjDFNM0N1r4WZGTvN03z3X6241Ky+AdvG3Uww994FlDwDGuIK/baOhRfTYrnSj+JIkEha6ztHWxK3dfUXNKFOKsc3d8QN9NE1gJnZ/LBLyd8Tc0mcZPVXs+YziXzxgHnJZ6reL3EXgKx2Zq8EGrkWI7fuQIo9SOIvPu2LCJnxgT+jZSMXAG8NBjSBBhBrRH5m06xHVqHyNHLpW9VQcl1pBe2fa+fRUyX2RBFnE4W5/jMASMrpW+a5huKotyPFH3+jqIoTUilnGn9Vfi6rlch/7Q+e++emlE0jhyF1yHpU57EFPvrxJV77Pe3fU3NkUI8pBAYQW0csm5yjO3Qq0hH7e+Ltxy4HZnBnIHIQ9Q0jC7TMLropKtX1jd8yDrCDqqqv1R/1AfeBg424ZDt3lE/9Jo9tb5oN75oJK1AKdW+jArfUz+MqpGjqRrZaHi8Ph9iJjgMcSut6OAeI6iNRUaxdnPo64gcvV3yRhWeXyCeemciC/lRxJ8/tiXK0U6k8hew19Q8g9SaG+kYhiz0VozSz9q8oyjK8Yj/66mI8vmmaZr32s65ixzNO7qufxB4DOf6oslt6DGYsvs1lOqcygBEkVG6XamXnWJPh9VRHyXV3XQ1MhWvWPcxJ6wEdr25RJjqun4UEp/RAKCYUbzRCDXRbmqiEWp6u/FFu/GaPZjRKOFXXoDeuAleqa2junE0VSNH4fFlMuPyBrKAF9v+52tqrghbvhHUxgD/InXg8AJiGqyIxedsseQoCvRkO0Oz3Hz/S26BYr2AT1XVisgcmrX2NE1ztaIoTyEd62YHhf83ZPRwuKIoi03TvCvLW49Gvpi+21DtJVJdSw2OusBEOuSLSKKm2M83KkGxp8PqqA+TqvAfQxbbdpW+VcWlcdbCfCoujUY6HwCm4iFSVUukqpZEG5zH7KWmt5vaI4dTu+ltaszutdWNY8Z4auuy7eSTre0S6/OuyKrlTxJ/CQR9Tc1l951YpkGnmeITyOL/jtK3qrj0Q45yTWcRRQYbZfe9O5G10rdC+3uRPzAlgMM0zfNSLsry1rmcvG7YAezTvYXhPbsfVCTgJabcX/I1Ne/Jsw1lSUJHtaf2/TvQ7PUHKs5HOBOhjjYPkujsUMTLKXFRfEtDS2umwUFWchRVqghX1xMeUQ8j9u8Fjjxs96tdSDToMcj/+ljAT3Y+4COAc6wNwIysWv4iokz/A/zT19Q8oCNoI6iNRBag7Z5JDyFpFQZVv7HkKIAktdtEspNFQeTIhomYkSqCXOwktyFueWuQCMY7CtSGneTwj+7x+Hi/bkJkH1WdXqDnlyUZOuo/gE8UKxx+gLkBuCbNsZ5QR9tGxH88isx0vpTQgXeSX8cLWwvLMV//v8QORFYt3x9oAk62tuPpu88oxF8cV1j3+S/yXT4IPF7KmacR1IYjg4QTbYceAS4abAMHi1ZgfppjPaGOtk2IbT+K5BO6vKGlNTZL3EX29vwY1YgnX0WQrffObCQM2Y8ssl2vKMqdZmH8PV8gd5/tQZ03w+qof8O5owYGqcIH8a9ORzUSFR1jCiI3l1qfXyJ3pb9aVdW0Muxran4PWGZtRFYtr0cieE9O2LKpfPZBa/sOEIqsWv4vrJeAr6k5Ja9PoTCC2jDgAeTFlchK4GODVOFD33KUGHg5BfHUmWl9fo0szc0JvKiqasEynBabPjuJoihnAQuBC03T3Ij49vqQnCb9RlXVCDJ6zZY9pCbjGjRYHfV+RKEkMtg7Kkix7Vz4UOwXq9P9jexzT3SSoxz5mpo7fU3Nj/mamm/yNTV/DIkvOAK4DMn5lDbdcAINwIWI99uayKrlb0RWLb89smr5xyKrlvfpzJAtRlCrQ2YtU22HViE2/EFl0rGRqxwdH/vFiq79M9nLURgomzQV2ZBxpK8oyhHAUuAS0zRfBDBNs1dRlB8go5ZC1Qa9G3GvyhicZVFFwhR8MJHQUU+zHRrUHTXU0aYgo9ExiFtktvVef2r7fA8SbJSNHHmQzp03llnoVWu7EyCyavkoJI7iVMT99AQymy8PQaq9XQkYkVXLnyAeAPa8r6k5Z48QI6jVIn3zo7ZDTwPnev2Bskr0VigsOfIjqVw2Aan1HZ253fb5d4hlIxs5UpAcThVDWSRcs3z1n0EW0jLZ0zqBn6mqenVJGlZCrI76Z+ILgjGeRvyn+yzeUWmEOtrGIV4wlyMj5mzpBGY3tLTek7hT13UPkhrhODIPaMLAr1RV/XpuLc6dyKrliQVVppF9agAQxbUCiVb/h1NKDjtWaoU/IikEEnkOONPrD1RsFHE6Qh1tY4nLUS5ZdMPAVxpaWu9M3Gn56j+GvLz7kqO7VVW15y0qa8pC6QPoun4gIpgjcTY7dSOeOqeqqpqPK1bZYgQ1L9JRL7AdWg2cNZg6aqijrRqxuV6O/L05BV0gSn1GQ0urY0FyXdf3R/ysR+EsRxHEDNOkqmpJ10as9BPHEM/DfyrZR4/uRswWy5C1gBQznxHUqq3jAduhF4CPev2Bsi9XmS2hjrYq5P94GRLcmeu64DPAxQ0tre84HdR1fTzwPOLC6TQQjSD2f7+qqp05PntAKRulD6Dr+hHAEsTGFvOb7kUi6DqAb6uqOqj8ia20tncRX5CMMag6aqijbQrSQT9H3xlMe3HuaLcD32poac3o/aLr+qGIHJ1IshxFgD8A31JVdcCLtkdWLR+GOEbEZgFOZRqdCCHrPsuAFb6m5k5LjpYAX7Sd+xJwxmAJ4At1tB2CyNHnSV7YdyKdHC0GvtHQ0ppx8Kjr+mTr3Cbi1eGiyAB0OTBHVdWKq9dbVko/hq7rZwKfRt6y7wI/VVV1UJY4M4LaDcC1tt2DoqOGOtrqgYuRTnp6H6f3ICPZ3yOKOZEw4p7ZkcvzdV0/A8mjMhpJlvYzVVVfyeUepSSyavnBxF8AZ5JFlDri2PAAigdFUexFhV5F5KiiI21DHW11SPzG5Uhdg0z0Ii/EuxGnk0S6gC83tLTelcvzdV2figzKxiL66OeqqmazaF+WlKXSHyoYQe3LwM9su98ATq3Ujmotpp2AdNBPk1pz1s7LwK+BexpaWjda17+AlMoDiQtpbmhpfbFITS5LIquWexHzz8VICu1x6c9OrZxmmuZaRVFO9voD64rYzKIS6mg7HpGjFvrOk/8aIke/bWhpfd+6fjXxOJc3ETn6b5GaWzG4Sn+AMILaRYgdP7G3bgGavP5A0Xy3i0Woo20MMqq+nNRQ/5TTgXuRTvpkQ0trkhCGOtomIWaKrcCdDS2tFRHeXiwiq5ZXIRkxL7a28UknyCh/70epnBbtRlxYlwF/LWR672IS6mgbjSj5y+i7NGIncTl6wkGO9ge+hNSvuLOhpXVQmYbzxVX6A4AR1JqQQKvE9K2dwEe8/sBTA9Oq3LEW085EFH2AvhclH0ciuf/Q0NJaEUqo3IisWu5BYjguBj6N4tnXQeHbL9uDmMx+DTxhuZqWDVbahI8icvRxMhcuAXFhvgO4t6GldVC6nxYTV+mXGCOoHY7kZRmdsLsXCYl/YGBalRuhjjYvMqq/Fkk+lolNwG+AOxpaWsvWnl5pGEFtimmaTyiKsrd0aBqFb+c1RGH+1tfUPKCFPyxPrs8gctTXIvZmJJjujoaW1oq1p5cDrtIvIUZQ2w8ZpRxkO/Qlrz/wq9K3KDdCHW0+ZEFrHnBwhlN7EdPCHcADDS2tWZemcukbI6jtiwwckl64pmneghn1ILOAA/u4TdJ35GtqLtl3lMOgIYrEKfwauL8vry2X7HCVfomw8un8m9QEagu8/sD1pW9R9ljK/vOIss+kTNZgjSIbWlrXl6BpQw4rTce/SM3L9H2vPzAP9sYDnIAUA2mhbxfZTYi3yx2+puaijaItZX8pouwzDRreQOToNw0trRW7EF2uuEq/BFhRkn8lNdr218govyy/hFBHWw2yoHYNcECa03oQN8tfASvti2kuhcMKvvoztpKSiML+nJMcWYvA5yDf40X0HcT0JJa9vFB1AbIcNPQgi7K/Ah7rI/2xSz9wlX4JMILaLwB7qPbfkIyZZWf6CHW01SKLav8H7J/mNAN5ad2ULqrRpbAYQe3HwNdsux8CLvD6A32aPqyUEDEPK7WP0zsRz587gJX5LP5ag4YvIIOGdLUJepC8Rd9vaGl9K9dnuOSOq/SLjBHUZiM1OxN5BvHUKSsPFisI5ouIsk9nEoggo7GbGlpaB0Nd3orACGpfILWGxX+B03JNoGaZfz6EjP4/Q98+8GuQ5HZ3+pqa+3yWNWiIzRAzDRruQJS9O2goIa7SLyJGUDsVsb8m5pd5C/iw1x/YNDCtSsVS9rOBudh9wON0I2H+i9LlvXEpDkZQ+zCyHpToEvsu4Pf6A/3ywLFqBHwcUdL2rJx2diGzu5/4mppTRuWWsv8SkoE3XYqE2KDh5oaW1rX5ttslf1ylXySMoHYAMqJPTO+6Bwm+Kovo0lBH2zDiyj5dxGcXkn9kkbs4W3qMoDYBkaPEl3EYOMXrDzxXyGdZaSA+j5hk0q3hgHjVaMAPgf9E3vxfLTALUfaZBg2/RJS9O2gYQFylXwSsvPgrSSjyYXGx1x9YPgBNSsJS9lcC3yZ9zvEwYpa6paGldUD9uYcqVrrtR5Ec8Yl8xusP/L5Yz7UWf89ERv8fJ03QnRmN0rtjy3vRnVuGY5rpTETuoKHMcJV+gbGyHd6NuMolcoPXH/juADRpL1Zem88Bi5DkUU50Aj9HlP3GUrXNJRlLjn6NjLoTWeT1B75TqnZEVi0fB3zZ2vYFCQKLhnbSu20j9KatEugOGsqUXHOZu/TNt0hV+H8lfaHmkhDqaDsKUeb2qlwx9iCpi29raGktm/WGIcxXSVX4KxC3x5Lha2reCFwfWbX8JmBmtLvr/3q3vn+42ZWmiJui4Kkf/qJSP/xrdedc/u9SttUlO9yRfgExgto5wN9JTqL2CrLgNiBJw6z0xtcBV+P8kg8hnhm3NbS0Vlxu8MGIEdQ+grhiJuaCfx04aaAK6liL/fMQu32qr7+i4BkxmqrGfVCq9orZw4jd/+/5lH10KQ6u0i8QRlCbjJQ2HJWweyfSUV8biDaFOtrORxT6QQ6Hu4AfAD9oaGkdFIVaBgNGUDsIWbgdk7B7N+LxNSA5Z0IdbdOQFOCHOBzu9Ywc01vVuI8vQdnbeQ24BfhNKdM9uDjjKv0CYAS1BiSS8eiE3SZwntcfWFHq9lgpZX+EFJ5w4u/AVxtaWt8sXatc+sIIavVITp0P2A5d5PUH/lLq9oQ62iYA7YC9OEuMh4ArfYccvRkJ+Po6mdN0vAMsBO7yNTW7eXQGCFfpFwAjqP2G1HKH/+f1B24uZTusrIVfA9qABodT1iMd849uuoTywwhqvyS13GGr1x/4XinbYaXMvhK4EefqXe8D30RSZO+Vo8iq5dVIvdpvAlMzPOJd4PtIrp9BVe+6EnCVfj8xgtqlSOrgRJYibnUl++eGOtr8iGucfZQI4lf9Y2D+UC9IUq4YQW0mksMokT8CM7z+QMns4aGOthMQrxu7uzHI7PV24LqGltadme4TWbX8Q4jy/xTp8/2sA24CfuVrai5pkfqhjKv0+4GVG/9Z4sW3Af6HLNymcW8oLKGOtlHIlHk2oDic8jQwu6GltaCBPC6Fw1oPeo7kUfWrwIm5pljIl1BH20jgBuArOMvRakSOnsnlvpFVyw9A0np8kfRFdjYANwNLfE3N4Vzu75I7rtLPEytwZhXJJd3CSEf9X7Gfb/ncfwZZjHUKsNqJ5D5Z0tDS2lvs9rjkh5WB9XEkFXKMbmThtuj1XC05+hRiu9/P4ZTdSCrkn/VHjiKrlk9EPH9mkb4y1kYkhuQXvqbmznyf5ZIZV+nniRHUfoL4Uicyy+sP/LLYzw51tB2OeFOky5XyO+CqWIFol/LFCGq3IbEdiXzV6w/cXuxnhzrapiBydHaaU/4AzClkJG1k1fLxSNqPK0guF5rIJuBW4OeVUtu3knCVfh4YQS0A/Mm2+w/AzGLa8a2EVtcg02WnqfIa4MqGltaHi9UGl8JhBLXzgfttuzXgE0WWoxpk1D0P51H3m4gcPVisNkRWLd8PSQNyJVCX5rQtwG3A7dlk93TJDlfp54gR1CYhKW0T/fHfAo7z+gMZF7f6Q6ij7VAkv7nTQm0Esevf3NDS6i6IVQBGUJuIyNE+CbvXInK0rVjPDXW0HYIMUJwWag1kYfX7DS2tJbGtR1Yt3xe4CllLGJbmtG1Wu37iLvj2H1fp54BVuehR4JSE3T1IxsOnivXcUEfbJ5F0tE7ucw8jo7I1xXq+S2ExgloV8r2dkbC7Fzjd6w88XqznhjraPoHksHdKjvYvRI4GpHi9VeDlW4jLsZO7MYif/7XA790I3/xxlX4OGEHtBkToErna6w/cWoznWeac25ApsJ2NiEvcva7PfWVhBLVWYIFt97Vef2BhMZ5nlSu8BYnRsLMZUbYd5SBHkVXLxyBy/XVgRJrTngWu9jU1/6tkDRtEuEo/S4ygdiYSgZjozvZ3pFRdwUcdoY62ycg0/HiHw8uAWQ0trTsK/VyX4mIEtdOQUXVifqZ/AtO8/kDBvaxCHW0HIXJkL6QOsi71xYaW1qKZk/Ilsmr5KOAbyAsgXdrm+4HvFLOY+2DEVfpZYAS1RsT/PrGE4Abgg8WogBXqaGtGpuH2kU4EmAP8vBxGZS65YQS1EcCLJNeL3QR8wOsPFNzTKtTRdhFwF9BobwqSgO/H5S5H1sj/u8hs1ynIK4qYPuf7mppdb7UscJV+FhhB7U6kolAMEzjL6w880p/7rlswWwFGI6XlJioeZVLdfqO/4K2vtRfNIGr0RDo3bn+ntytiINkXq60t0++9iAdE4rbVYd/eYxPnL3YXyoqEEdQWI37qiUz3+gP98pKx5GgUlhyhKJPq9xv9Oe+w2pPt50Z7eiOd72/LR44yyU2KbBVajiKrlk9GUjfMSHPKHsTH/zZfU3NJAiMrFVfp90Eat7qbvf7A/2W6bt2C2TXEOqFsE2yfY/tqAJTqKur3G011baonphEK07lpO0RL8l2FiHfgdYCOzHJ04NWJ8xe7uVLywAhqZwP/sO1u9/oDdh/9JCw5Sic7ib/XQlnJ0R7iL4P1xGVIB17JV44iq5Y3IT78KS80iw1AK1LEvTfhujqklsRbvqbmAcl6Wy64Sj8DRlAbhQhpolnnJeB4rz+wV2jXLZg9EonMPQ6xwR8HHElyPvS0VA+rpX7fUShVnqT9pmnStWUnkZ1lM3DpRdLk6rbtjYnzF7tRv2mwzDo6yXVnX0PMg3tdI9ctmD2CVDk6imzlqL6WunGj8DjJ0dZdRHaUTZxTLxJT4iRHaUtxxYisWq4gZRxvBqakOe1/SBBYrL7F08j/MwJ83tfUXLRyk+WOq/Qz4GDW6Y1s23rejqee8pDcMSfn+4zafUZS05jqoRY1euh8fxu93RWRfrwLeJnUTvzuxPmLh7yAOZh1TGP79gu3B5/sIVmO0imwPqkdM4KaUakevRUmR904y9FaJzmKrFruQ3JOzSe5/kAijyDrY/ck7AsDJ/qamoueLqUccZV+GiJP/ul8RVGSzDqdb70VCr36Sjof4pzINA3vjRgvdL6/7dZopGctsujWg4yOenL8vQbpDPuk2ZyOZTWqzJJNiD/6w8DDE+cvfreA964IIk/+6WxFUZLMOp3vvBMKvfxS4eRo3Ciq61IDa3sjht75/vZboxHjbQorR5lkKna8kKVYNyMeTg8hcrQ28WBk1fKRSJT6N0mf2sEgeSH4ZUTxl800ulS4Sj+BdQtmHwRM8/h8F446+ZRzq2pr986Te3bvZtsTT4CZk3fmesQunrTV7dt4gHd4/dWKothd0XoQr4ofDYRXhbUgOBLpuGORkaeasE1Kf3VWvIq8AB4CHp04f7FjBLPVjh8hCeVWAl+ZOH9xwfK/FJt1C2YfCExTvN7zR59y6gVJchQKse2JxyGakxxtAN5D5GevTNWNbZzgHVE/V1EUu3dOL5Ku47aGltaSBzFZ398I0stRpkIr2fAa8cHEvybOX7wDILJq+SQkU+hnsXTbntdeo2v9eryNjTQceSRVtUnvhLt8Tc32OsSDniGt9NctmF0PnA5MA6YDhwMMP+YY6ibuv/c8Mxpl+5Or6NmVNhV9FBk5PGdtq4H/xoQxRqijzYukS/i2wz3WAp9saGkN9udvKibW2sVRJHdgFecsn33RCzxFvPM+OXH+4oj1nLOQF0OMtcD0ifMXv5x/64vHugWzY4uE0xFZOhJg+NFHU3dA/D1pmibbg0/SsyNteEUUeTGuJlmOkuriWsVyvoeMblOaA3yqoaW1aJG9/cVau3CSo3F53C6K2OsfQuRo1dhzzjkauCWybduZO5+JZ4L21NQw8vjjqR6eZAb7vK+p2V4PY1AzpJS+NQI5knjnPB1bwinf2LE0fuiEpOv2vPE6e9bszXIQQXytEzvmixPnL86YCjbU0TYaSablVFHor8DnyzFIJhvWLZi9L1IqMrEDH0v6cHon9gD/RjrvbsT3OpFtwAUT5y9e1e8G9xNLjg5H5Gg6IkdJQ0jfmH1oPDE5HmrPW2+y59VXYx8jiL06UY5eyEKOGpHiKh9xOLwCuKRSC9yvWzB7LKly9AFyk6NO4N94PP8aNnnyJXvWrDkm8aBSXc2ID34Q3+jRsV1h4IShFOBVlkpf1/XjkNX5Mcgo77eqqm7I517rFsxuBM4krugPSHeuUl3N6FOnJk0Be/bs6dz+xON3mr29zyCd86WJ8xfntCpm1axdQXINXZDR7v8h0/Dy+yL6wboFs73AScBZSOreD5PbekEXqfbZMDBz4vzFWdWL1XX9WKAZMTO8i8hRXmYia5bzUeKKPq2pS6muZvQpp1JVF08e2RvuDG97/PE7zZ6eZxAF/3JsZpMtoY628YgcHWs71AtcBywaCHNOMVm3YHY1Ek0ck6Mmclkv8HhSTWkeDyOOOYaacXsnFu8Dk9Pl8Nd1XQUuRkxV64C7VVWt2PWpslL6uq4fAPwQOBfp8AoyIuq19t+gqmrGkZA1Cjveusd0clA2w485xqybuP/eNAumafYqiuL3+gPP5vHnABDqaDsSeJDUl817yDT8iXzvXUlYU/rTkc57FjK9z4cocMXE+YvT1i3QdX0CIi8XIDM5D/GFzJ8CC1RVzbiAZ8nRB4nL0clkK0dHq2bdAQckylFUUZRTvP7Ak9lc74SVZfUfwEG2Q+uBmQ0trSvzvXclsW7B7AbicnQ2qQOprGk44gjqJu19d6/0NTWflnhc1/X9kCJFAVLl6OfAfFVVy8YPNlsKovQVRWlC/jkRRAgvNU0zp9GwruvjgOdJv/IfBp4ApqmqmuITvm7B7GOAmdZ2SA6PfhtYMezQQ98dNnnKjbZjN3r9getyuFcSVt3avyFRt4msBD5RqdPwQrBuweyJyAzsbKQDO1VtysQvgCvtrny6ru+DyNFYnMP2u5C1hDNVVU3xCV+3YPbRxOUoFxfKtcCK+kMmv9Vw2GHftx27xesPzM3hXklYdWv/hvxNiTwBfLyhpbXgqUAqhXULZo8nPpA4Gxify/U1EyYw/OijURSl09fUvDe1s67ro5HU1/uRXo6eA85QVTWnGdtAUyilPwHYbppmWFGUG4HnTNO8Nr7BiQAAIABJREFUL9vrdV1XEHvuh0lfRBnEXneTqqrfA1i3YPahSKm3mWT/xg8j6ZFXICPw1/adfm418gUm3kMHTkgMwsqFUEfbucB9QL3tkAZ8plT5yisBa1R9NHCuUl39bY/Pu29vuAv6ls0HJs5ffEHsgyVHDyHrJunqsYLI0Q9UVf2u9fzJxOXomAzXJdKFyNGDiCy9uu/0c6uAZ0iuefAqEoSVV1qCUEfb2YgN327XfgBZ+HfLClokrNmdp1RVXeWp8e3X29Xdp6eUd/RoGk844T++puapsFeOHkAGJX3J0e2qqub9Qh8ICm7eURRlAfC8aZp/zPYaXdfPB5aSzYJNjxEe+fe7bvJEuj6GcyEIJ15COuYKYKU9L4gR1L6NpJ5N5NR8c5uHOtouQQJC7DOWXyI5y/uMOhyKbL792luHH37YVZ6aGqKRCF3vv0/X+g30dqbVa1GgOjba13U9nYJMpcfoGvng3Td5uvacj3MGSideJj5YeGzi/MVJL24jqH0dcTVN5CNef+DRLO+fRKijbSbwW1IHQnchWVYrIuKq1Gz+6byFDUccfk1VTQ1Rw6Brw/t0rV+fSY5o9Pu9w6Zf1gOg6/rpSOqVbBaQu4BDVVV9ryCNLwFZLYgoijIZeAGYYprmBmtfC6Io/aZpvmvtOxixgdrNJH1xKemr5sSJRhnxyL01nkiXPRe5nW6kc94PPJgpKMgIavsD19t239UPhX8VkhvEzveA+YNtwbaQ1O0/8SRPjThTeXw+6idNon7SJCLbd9C1fj3dmzfbR20hm3nnErKRIzPK8H8t83m69lzfx5kRRMHH5OiddCcaQW088h0n8rt+KHynFwhI6oFrXDlKT93+E0+qismR10v9pAOon3QAxo4dhNevp3tTqhzFFL7FZ0mdoacjitj8f1qItpeCrJS+aZpvWNGp3wS+Y9nwfwpMS1D4I4DfAJeYppm1jUvX9WrgfJLz1DtStXMLVbu3e9Ic7kUWupYCf04X+OPAD0hWFDuQ+qE5Eepo8yAd0u6DbwJfb2hprRihGCiqR4xYhoNLq29UI75RjUQNo7d78+ZQ+L11Rm8otAn4XOwcXdergIvIQo48u7ZRvWtrJjl6GJEjzR5rkYFbSE6FvQvneIyMhDraFCTAaJ7D4W81tLS253rPoUb1yJHLENNMEt7GRryNjUQP64lGNm3e3bnuvZ7e3aFNwGWxc3Rd9yAeX+nkw049MmitmP6dS6j0zcAjiqLcjUyhrzBN8ykARVGqgd8D15um+WqGezhxDPK27JPeEaOJ+mrxRPZaZ0xkLWApsHzi/MU5LYwaQe0cUlO1zss1R74VdPUr5MtPegTw2YaW1j/kcr/BSGTlUgUp9zjOYdsPGOeprh4HbDVNc5SiKCmdzuP1VtVNmDCybsIEkMphqxMOH0mWHTXaMIpoTR2e7r3WGRNZXP89Ikebc/nbjKB2BtBi293q9QdycjO2gq5+AVxuO9SDxHF05HK/wUgfcjSObOSoutpTO2H8yNoJ40GygD6TcHgKme34Thyv63qVk4NJOZK10jdNc7WiKE8BQeBm0zTvTTj8acAPtCqK0gr83HY8E6PJUulTVc3uj34K39pXzNqXn/66Ykb/mG94vhHUakh9Oz8DLMnlPqGOtmFIZaLz7IeAQENL6z/zaV8lEVm5tAZxwZyCpcDTbOnyoiShKH0O1kEWfi9H1klA8sln1+mqqtj10U9R887L0dpXV1+l9Br3TZy/OC+brBHUvMDttt3PO+zLSKijrQ4ZvHzMdmgP0NzQ0tqvnPuVQGTlUh/y8j4M24CA4snR4UiBlh9bn0chL9lciCL2/2ytCwNK1krfemP2In/gzYnHTNO8G7i7sE1zJjpsBF1HnkTXkSf9wsnlLge+DRya8NkErsylZF2oo20MYu/9sO3QJuDchpbW1alXVTaRlUv3Q7xTjrV+fgA4gsIm2MqWtHkx+sKsH07XkSeZXUeetFhV1f54Un2T1JiDK73+QNayGepoGwX8BTjVdmgrcF5DS+tT/WhfWRJZuXQcyTL0AUThD4Qc9VdZV9T6Si7/4NuQsmtrkKnsHQVqw3ayt5/FiPRH4RtB7WAkgjGRJV5/4Ols7xHqaJuELPIdYTv0JjCtoaX19XzbVw5Yo64jSFXw+eTZKQZ/R2ZYMXaQuxyBeF/khRHUDiDVCeBOrz+QdcBdqKNtIuJ0oNoOrQXOaWhpzdVcWlZEVi71InJkV/D55NkpBg8hHlIxdpD7i6cKmdlXBNl678xG0iL4gTOA6xVFudMsjL/ni+Sezre/Scl+RPIUcQvOC2eOhDrajkY66v62Q88D0xtaWiuqVmdk5dLhSMqExE55FJljJvKhC7HFp9umAl/NcP3LwGLgbt/UmfY8RfnkTnlKVdX+yHA7yV4e28nBCSDU0XYEMnCwp3TQETla14+2lZzIyqUNOMtRrjbyvuhGUiekk6MmZAaWjlcRM+5vfFNnbrUdW4OsxeXC85Viz4cslL6iKGchmSHPME1zo6Io91mfL0ICjfqFqqqGrut/Bz5BFp4XyBv1t32elQYjqF0AXGjb/R2vP5BVsrNQR9vJiElnlO3Qo4gNv+ztetZi2LHE88icQv8V/FrkBf4e6Tvjbt/UmWmVbGTl0uMcdncjQW6Lgf+ku15V1V5d1/+KrC9lI0d76J8cnYN4eSQyz+sPZLUIHOpoOwmJsrUX//gP8LGGltbtqVeVF5YcqcTlaCr9l6N36VuOdvUhR06BmhFgOSJHj2WQo6iu639CPMOymTl2Il6LFUNGpa8oyhHI4tIlpmm+CHvz0fwAGdH0W+lb3I0kQ8smGKIasX/mjBHUqkn1oV+FBLv0Saij7XTErFBnO7Qc8dIp26LikZVLxyBh6rE00rmmPYjRhYxEn0/YXvBNnZmta2MmFiMLmUcho7HFwG8dRmPpuMe6Phs5qiJ/OapCzJ2JPEN8UTkjoY62U5ARvj2m4C9IHp2yjdaOrFw6Gkl5EEtgOCHzFWnpJlWOXnSYweXDr5BBpIqM3JcAd/mmzszWu68D8erLRo48FE4PloSMSt80zVeQDIX2/beTo3dCH/wFK+1BH23qBG5TVTUnl7oELsfKmW8RRRbd+vQeCnW0HYekQLYr/F8AX21oaS2r6V1k5dIqJNI0Ngo7iexGwImsw6bcgTW+qTOLElHsmzrz7cjKpR9EzAGdmUZzaViBuHE20Xc6j5/km3ETcc212+CzcgIIdbQdi8wU7Qr/18AV5RatbcnRCcSVvJ/c107WkyxDzwOvFVGO3rVmjbXAnjzk6BHEhHwafcvRElVV12Y4p+womyybuq6PR4RhFM6KP5Yo6yxVVXMOPzeCWgPwOskLSHd4/QG7T3QKoY62w5Bptz3h1fVAW7lER0ZWLp1AfCR/NqkmqEysQRJ4JY7eKy4hXBaJ+7qRF0NeibKMoFaPVG6amLD7Hq8/cElf14Y62g4BHid1lnUj8N0ykqPxwDmIHJ1DasLATLxOshw9X6FyFEvcty/p5ehF4FRVVfPKzzVQDIR7lCOqqm7Qdf0kZAZxBjKiVoinMv0F0JqPwre4imSFH0YKKmfEyoX/D1IV/jUNLa035dmWghFZufQoJP3AeaTmWc9ECKk7+iDwoG/qzDeL0LySo6rqRkuOfoK8+GIpunsQWfolcF0/MiN+g2SFHyHVEywFKxf+Q6Qq/PkNLa1tebalYERWLj2CuBx9MIdL9yAj4xWIHL1RhOaVHFVVt+i67kf896eTLEc9yMzs2kpT+FBGI/1ErH/2xcSLqPy6P0ULjKC2HzICSZxSL/T6A9dmus7yw3+MVD/sW4G5AzUyi6xcOhLJCnkZMt3OlueJJ557wjd1ZkWlhM0VXddPBD6JyNF7iBylzZ/TF0ZQGwu8gUSExrjV6w9cnek6yw//36Rm8Pwx8M0BlKMRyP/nMsQkli0vEM8u+rhv6syKU3y5oOv68UgG1rHIQvOdqqq+NbCtyp+yVPqFxghqPweuSNi1BZji9QfSetqEOtoakBwsdqV6J3B5qTuq5SlxGrIucTGpawtObENmKSuAf/imzsyr+piLYAS1HwFfT9i1HZjs9QfSetqEOtrqke/gFNuhDuDSUle6suToVESOZpBdYrHtyCwlJkcV5UrqkkzZmHeKhRHUjgC+ZNu9oA+FX4PkF7IrfA1JaVsyhR9ZuXR/xH3sC8DkPk6PIusesdH8M76pM8tqgblSMYLaFCRcP5Eb+lD4XsTd1K7wHwC+UEqFH1m5dCKyAH0ZfReHMYnL0YPA08VadHUpPYNe6QM3kRz89ToZ8uuEOtqqEBfSs22HHgU+XQrvCiuXzceQDjqNvr1uHkHcTh8okMubSyoLSe4vb5PBg83KunoXkmo8kf8gxU+KngvfkqMLictRX143jyJtvj8HN1mXCmNQK30jqE1FgsgSucbrDzjasq20tj8jNfPms8BFxfbDt9wVL0PSXPTlMbEWMTX9xjd1ZsXaFysBI6j5SZWJa9NVVbPk6EfAZ2yHngcuLHa1q8jKpccicvRZUoO/7LyHKPq7BssirEtmBq3SN4KaQmo1rCeRQKp03ADMsu17DUmelndyr0xYoeufQ2ysThGpiXQjZqc7gEd8U2eW1B48FEkjR6uRoMV0tJKaTuINJLVCIYLYUoisXFpPXI76qij3/+3deZxjVZXA8d95qaQX0xvdtHSzCDPoCDxQsaFECaKII4xigYwGiqUVBWRR9kEd64OlDAIiyiKyiDZNSWAap1gV2ZRSoFRWH4vQYDfQNE3vUL2lKrnzx31VJC8vXanqpCqpd76fD5/0S17lHctbJzf33XtuFjtUeT1wnw4BRsuYTfrYJfLBMfmz480toePxPR3tZ1Baf+c14MBka9twF4OV5c+cOBk7lXSw3tjj2CliNyVS6bpfnj/GfI7SjV3OKregr6ej/RRKi7Atxbajqtdk8usmfR1bNTY4rTjoKWw7+rUO30TXmJy94y+Tf4bi1bed8eaWQ8PO7+loP5bSUgwrgVSyte25asaW7cpMxc4AOY3NL55ahS0r8MtEKv1kNWNQlent7nSw0xMLa7ncHW9u+Y+w83s62o/EzsoptAbYL9na9vdqxuZP2z0FOIPNDwWu9mO6PpFKP1HNGFRjGqs9/S9RnPBzwLfCTuzpaP88tvdTaB12SKdqCd+vfXMaNuFPLnNaHjtb4nrgjrE+/7kBHEZxwjfAuWEn9nS0H0xp4a312Hr4VUv42a7MNOwCsW9iS52HMdgpltcDtyVS6bqtCaVG3phL+n4vP7hC8oZ4c8vzwXN7Otr3B26meHZPFlsts+La+puT7crMxPbGTqZ8Aae3sCtIf55IpYe1g5OqLr+X/93A07+ON7eUJPCejvZ9sVMzC/+e+rA7Xj1SjXiyXZkZwOnAqRQvDiv0NnZG0VWJVLqh6sGokTPmkj52LH+XguMcdrpdkZ6O9j2xhd7GFTydB45Mtrbdt6VB+PVLzsKOt5ZbSLUaW5P98ipVqVTVcwjFZS0MtkZOkYICahMC5x6dbG373ZYG4e8w1d+OgkXa+q0FfgJcplN21WDGVNL3e2dtgac74s0tRbtY+QXUfkdpj+mEZGvb5mb3DMpfTHUOdhbQuDKnrcSWcvhZIpWuyawgNXz+jJ1gO7o53txSNNznF1C7B5gSOPfkZGvb5mb3DMovnnc2cALlOw2rgB8DVyRS6brfx0HVhzGV9LG7exWOweYJ9PJ7OtonAbdROtPh3GRr23XDvXC2K/Me7HjvVyi/U9Cb2Ol/P0+k0g2zvVoEfZbi6bMGO513QE9H+7uw7ShYQK0t2dp21XAvnO3KbI/dq+KrlO80LMfW8/9ZIpV+e7jXUtE0ZpJ+mV5+Jt7cMrDHqL9o5heU7mv7I+Ci4VzXH7P/AbZMQrnf51LsZvLXJlLpmi7MUVvG7+UHq68uiDe3PNN/4LejayitqX8ZgQ+HSmW7MlsD7dh59uVquC/DttOrE6n0uuFcR6kxk/QJH4MN/gGeTunKyg6GUTHT31ziROw4b/Drfb9XsWUgrtcZFA3jIEoXNwXb0cmUrra9BTh9mO3oq8AFlJ/CuwTbabgukUrX7a5aqjGMiXn6fu/sMYq/kt8cb25J9x/0dLTvh61RUzhT52lgn6Eui892ZT6CLddQbgXtIuyw0ryxXr54LPHb0aPYXcb6/V+8ueWw/oOejvZ9sGWSC3vjzwLNyda2IQ3ZZbsye2Hb0Zwyp7yC/TD4pU7fVdUyVnr6wTFYKOid+RtYBKdmrgUOG0rC96fNXYDtmYVZiO35dyRS6ZoX1FJV92mKEz7YIRcAejraZwL/S3HCfxvbjipO+P4+s/+DvdkfVkzvn9h2NF87DaraGj7pb2YM1oOB8ra3UHrD7ehka1tFBaayXRmHd76Ch61+7PFjuFyTfWMq045ujze3PAnQ09HehK23s23gnLnJ1rZ/UAG/HX0ZO1QTVnpjHfZD5iea7FWtNHzSZ/Ax2Auxm0YUOj/Z2nZHJW+e7crMwX4F36vMKRngzEQqPdxNtlV9OIDS3aMKtzH8AfCJwOsXJ1vbflPJm/sbdV8Zco1+C4AzEqn0sHeIU6oSYyHpB5fFd8abW54C6Olo/yL25m2he6lgb1z/K/j52HnSYV/BnwdOSaTS9w85YlWPgu3ornhzy2MAPR3th2KnURb6A6UF+kr4tZa+j92AJaye/YvYdvT7oQas1HA0dNLv7e6cQ2kFxO8D9HS074qtPVLoVeyK27KlZP2v4Mdip8bNCDllPbYHeKl+BR8bers7P4Dt6Rfqb0fvo7SmzutAenMb6vjbEh6NXZcxM+SUDdhvD5foTVo1kho66VPai78/3tzyuL8A61aKl61ngcOTrW0ryr2Zv4nJlcBHy5xyK3C6fgUfc04LHD8Ub27p9hdg3Urxyu0+4D+TrW3Lyr1ZtiuzO3ZIMDis2K8TOC2RSg97k3alhqthp2z2dnduh53lUPjB9dlNC5++G3vj9vDAj5yYbG27Ouy9/Jrk52PnX5f7Cn5qIpW+Z4sDV3Wlt7tzG2AxxauoD9208OnbsKWtg/Pxv5Fsbbs87L38DXHasZVUYyGnvAR8I5FK373FgSs1TI3c0z+F4vj/AfwW2/sPJvx5lNkXN9uV2Ru4CfiXkJc3YD8MfqRfwceskyhO+C8BdxC+AOsm4IqwN8l2ZfbE3tR/b8jLm7Azvy7URXpqtDVkT7+3uzOJHZ8vrCd+4qaFTz9H6QKsp4CPBufj+2P352DHbsM+/G7DfgVfVMXQVR3p7e6cgG1HhdMnT9208OnHsQuwCtvFM9gFWEXlD/x2dDo2qYeVT7gL27t/uZqxKzVcjdrTn0txwl+VXfLSvcDDlC7A+kJIwp8NzAc+GfLe/8QO5dxV1YhVPTqa4oS/pnfporuAP1H8t9G/ACuY8LfBfov8dMh7L8Ym+9urG7JSWyZs/Lqu+ZukfLPwOZPPX202rLsBeHfg9KOCC7CyXZnPYcsvhCX8K4HdNOGPfX6BvqIbuCafvza/7q3rgdmB0+cmW9teKHwi25U5GNuOwhL+1cCumvBVPWrEnv5ngZ0Ljnuzi56bAXwscN4Pkq1td/YfZLsyE7DT504Oec+VwFf0jzRS/p3AZjvZxc8ngf0D511UuAAr25UZhy2iF5zxA3ZTnK8mUumKFmwpNRoaMekXTdPsW738EfK5rwXO+T1wXv9BtiuzG/YmW7AULth7AMckUuklVY5T1beidpRbs+Jhcn1fD5zzIPCd/oNsV+b92Ju5Hwx5v4eAo3Q6r6p3DXUjt7e788PA3/qPTW+W7OLn11E8H/8V4MPJ1rYV/gKZE7BbEo4PvF0fdg/UixOpdNnFWmrs6e3u3B07NAMMtKMeivcwfh3YM9natsxvR8cBPwUmBt4uh+1gXKDtSDWCRuvpD/TOjDH0vrF4DcU3dAcWYGW7MtOB64CWkPd5GTgikUr/pabRqnoVaEevBNvRwAKsbFdmGna6b3AaMNgS2q2JVPrhWgarVDU1zI3c3u7OWcCX+o9za1dgNm2YGjjtjGRr21+zXZn9sVM1wxL+jcCHNOFHU29359ZAa/9xfu1KzKb1wXZ0TrK17eFsV2ZfbDsKS/gZ4IOa8FWjaaSe/nH48eazG8mteMNQXAjtnvis91yT7cqcD3yL0iJpPcBJiVR6/ohEq+rVl/EXY+Wzm+hbuTTYjh5smjHrimxX5jzs8F+wY7QOuzBwXiKVbpyxUaV8DZH0/Wmax4P9Ot637FXAFP6hrolN3fq7Eh/3EPCRkLf4C3BkIpWuqH6+Gpv8aZonQEE7MkXt6K3YlOn/5Uyc9ADhdXMexw4LvhDymlINoSGSPnAwsD1AbtUyzKbibUKdSdN+Gps87U5KqxkabD39Nt3cRAEH4pfbyK1ejtlUvGmak5x6WWzK9Nsp3XAH4BLg21pZVTW6Rkn6JwLkN64nt/rNohecyVv9LTZl+rcpXQK/FDha692rArYdbdpAbtUbRS84k6Y9EZs64xyK6/AALAOO1WJ7aqyo+ymbvd2dOwEvmXxeel99EdP7Tt2z2FYz18eSU4NT6MDWO5mbSKXLllFW0eJXZV1sTN7pfXUhJvtO3bPYtJkbYpOmTgj5sXuwazjeDHlNqYZUlz19z/P2xc7UmT4rltx+cq5HcivfeCfhOw5NM2bjjJ8YlvDbge8lUun8yEWs6pHnefsAaWDrbZomzZ7S97aTW7nsnYTvODRNn4Uz4V1hCf8C4Ls69155nrc3tuLqTOA14FrXdV8c3aiGr66Svud5/wpchS2pMBHAiBjTu4ncWttpl3iCpq23RZpKChqux34NXzCCIas65HneTthNTPYDJgBikLzpzZJbsxzw29GM2Ug8OJrDBmxJjsxIxqzqj+d5O2Db0Sfw2xF2Md6pnufdCJzjuu7qUQxxWOpmeMfzvO2AJ7GLZAYqZY7PbWC7Fc/S98ZiZNwEm/CdkuUFi4HPJ1Lpp0YuYlWPPM+bhZ1bvxVF7Wgj2658ltzSRX47mo04JfucvIZtR4+PWMCqLnmeNxO7ansG4RviZIFngX1c122oPRLqYnGW53kO8BtgCoFf8MbYBBZN342+xESaps8KS/h/BPbShK88zxNgATCNknY0nsXTd6Nv3Ltomr5NWML/MzBHE77y29HNBDoOAQng37B7aTeUipK+iOwrIg+LyFoRWSUifxaRvaoYxyHYioehw019TeNZ8r5PYZpKXr4KODCRSi+vYiyqcR0M7EG5dhQb57ejkiGd64ADEql02X1vVaR8CphD+KY4hSYAX/M8b8eaR1RFgyZ9EZkM3Alcjv3k2xb4HnYLuGo5huJiVyVMrInlE2eTR8gjbwEnJFLpk3T+vSpwFMXF90oYJ8abE2eTxyGP9GBLbR+v22GqAq2UFtYrxxBe7qVuDTqmLyJzgPuMMcH6JIjIecDOxpij/OMdsTtPxY0xfSLyB6ALu2HJHsAjwJHGmIGplJ7nxYE1VPpLNnmAP7m775Gq6HwVCZ7nNWHr2W+28zDAGATTvdvue4St4FYR5Q81r8IONVfqCdd196xRSFVXyfDOC0BOROaJyEEiMm2I1zgSW+9kJnYc7KzA63tgqxpWRhwQZ+8hxqDGvl2wva7KiGDEmeOP3yrV732UH8cvZw/P84b6M6Nm0KRvjHkLW4fEANcCy0XkdhEJbk1Yzi+NMS8YYzYAt1C6AcVUhvLHasX9np1S/aYCw1mbEdxnQUXbFOy0zKHIUek3zDpQ0Y1cY8xzxpi5xpjtsLtPzQZ+UuE1Cte7r6f0lzPcOaP1MddU1QttR6oahtMeZJg/NyqGPGXTGPM88Cts8l9H8Vh8WKGqwaweRhybXNfVlZKq0GqG/rXcUN0JCarxrWboi1YdbC5sCJXM3nm/iJwpItv5x9sDRwCPYhdT7SciO4jIFGwd+6H6O6W17wfzp2FcR41tzzH0r+WPuK7bMD00NSIWMvSOwGON1AmtpIf9NtAMdIvIOmyy94AzjTH3YhcxPA08hp3aOSSu6/b5P1fpH9/b2N2vlBrgum4euI3Kx/XXATfULiLViPxOwAIq70CsB+bVLqLqq4syDJ7nHYS9yVvJzZANwPau666sbVSq0XiedwDQSWXtaCPwHtd1tYKmKuJ5Xgr4LYOs+fBtBHZ2XXdJbaOqnroowwD8DvgrMNhCq/VAuyZ8VcYDwMPYuiibsx74oSZ8FcZ13S5sWxpsmGc98ONGSvhQJ0nf/0r1RWA55RP/BuAh4OKRiks1Fr8dHYHd+KRc4t+AXSR4/kjFpRrSMdiNmMq1o43YIe3zRiqgaqmLpA/guu4KYC/gVuwfZv+Y2ibsJ+qFwKGNdMNEjTzXdVcBe2OHC8Pa0SXAIf69JKVCua67Bnsv8yaK21HWP74UOMh13YYrA1MXY/pBnuftji3CNg14HZjvuq4WVVND4nnersCh2Ha0FLjRdV0tqqaGxPO89wOHYcssvw50uK67dHSjGr66TPpKKaVqo26Gd5RSStWeJn2llIoQTfpKKRUhmvSVUipCNOkrpVSEaNJXSqkI0Y1IlKrA+L1ONOLEcOIJHCeGODGcprj/mEBi9tHpPw48L06MWJODiNhHR4jF/McmCX8+5iAOOI7gxBwcR2hqcog5QsJ/HDdwHLOPseDz4Y9xxyEmEI85OCLEY4IjUvycI/65MnBOrOhcQQRiDjgIMceWy405guM/ikBMBEcgJtj/nQKO/7OSzyEmD/kcmDyS77Nboub6Qp+XfB/k7fP29T7I5zB9vfaxt3fg2ORz0NeLyeWKzxk4Nwv5PKYvi8nnyWf7Bh7zuRz53j5MLk/Ofyw97rXHAz+XI5/LY/KGXDaHydnHfOC46PXeHPmc8X/WkOvLkzOGbN6QM/iPhmye0OfzFJ7zzms/N4vKVi7Wnr5SSkWIJn2llIoQTfpKKRUhmvTQXZqWAAAFJ0lEQVSVUipCNOkrpVSEaNJXSqkI0aSvlFIRoklfKaUiRJO+UkpFiCZ9pZSKEE36SikVIZr0lVIqQjTpK6VUhGjSV0qpCNGkr5RSEaJJXymlIkSMMaMdg1KRICLHG2Ou0TjeobGMfBza01dq5Bw/2gH46iUO0FjC1DQOTfpKKRUhmvSVUipCNOkrNXJGfbzYVy9xgMYSpqZx6I1cpZSKEO3pK6VUhGjSV6pGRGQrEblXRF70H6eVOe8iEXlGRJ4TkctEREYjDv/cySKyRESuqHIMnxGRf4jIQhE5N+T1cSJys/96t4jsWM3rVxpHwXmHi4gRkTm1iKOSWERkBxF5UESeEJGnReTgalxXk75StXMucL8x5r3A/f5xERH5KPAxYA/ABfYCPj7ScRT4PvDHal5cRGLAlcBBwK7AESKya+C044DVxpidgUuBC6sZwxDiQEQmAd8AuqsdwxBj+W/gFmPMh4A08LNqXFuTvlK183lgnv/veUBLyDkGGA8kgHFAHFg2CnEgIh8G3g38vsrX3xtYaIx52RiTBTJ+TOViXAAcUO1vPBXGAfaD7yJgY5WvP9RYDDDZ//cU4PVqXFiTvlK1825jzFIA/3Fm8ARjzCPAg8BS/797jDHPjXQcIuIAlwBnV/naANsCrxYcv+Y/F3qOMaYPWAtMH+k4RORDwPbGmDurfO0hxwKcBxwlIq8BdwOnVuPCTdV4E6WiSkTuA7YJeek7Ff78zsAuwHb+U/eKyH7GmIdGMg7gJOBuY8yr1e9gE/aGwWmDlZxT0zj8D75LgblVvu6QY/EdAfzKGHOJiOwDzBcR1xiT35ILa9JXagsYYz5V7jURWSYis4wxS0VkFvBmyGmHAo8aY3r8n/kt8BFgSEm/CnHsA6RE5CQgCSREpMcYs7nx/0q9BmxfcLwdpUMV/ee8JiJN2OGMVVW49lDimIS9r/IH/4NvG+B2ETnEGPO3EY4F7H2Oz4D9Rigi44EZhP//VzEd3lGqdm4HjvX/fSxwW8g5rwAfF5EmEYljb+JWe3hn0DiMMa3GmB2MMTsCZwE3VCnhA/wVeK+I7CQiCexNyds3E+PhwAOm+ouINhuHMWatMWaGMWZH//fwKFCLhD9oLL5XgAMARGQX7L2f5Vt6YU36StXOD4EDReRF4ED/GBGZIyLX+ecsAF4C/g48BTxljLljFOKoGX+M/hTgHuwH2i3GmGdEpF1EDvFP+wUwXUQWAmew+RlGtYxjRFQYy5nA10TkKeAmYG41Pgh1Ra5SSkWI9vSVUipCNOkrpVSEaNJXSqkI0aSvlKo6EVkkIlkRmRF4/km/ps2O/vHeInK3iKwRkVUi8hcR+bL/2v7+wiRVRZr0lVK18k/sAiMARGR3YELB8T7AA9haPztjV+B+HVuPRtWIJn2lVK3MB44pOD4WuKHg+GJgnjHmQmPMCmM9Zoz54ohGGTGa9JVStfIoMFlEdvGrSn4JuNF/bSJ2FfCC0QouqrQMg1Kqlvp7+38EngeW+M9Pw3Y6l45SXJGlSV8pVUvzsXWEdqJ4aGc1kAdmYT8M1AjR4R2lVM0YYxZjb+geDPym4KX1wCPAF0YjrijTpK+UqrXjgE8aY9YFnj8HmCsiZ4vIdAAR+YCIZEY8wgjRpK+UqiljzEthlSqNMQ8Dn/T/e1lEVgHXYDcMUTWiBdeUUipCtKevlFIRoklfKaUiRJO+UkpFiCZ9pZSKEE36SikVIZr0lVIqQjTpK6VUhGjSV0qpCNGkr5RSEfL/X+cGsl046QAAAAAASUVORK5CYII=\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADjCAYAAABpYsTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeZxbVfXAvzeZZLa0ne6FLuz7IFiWUKQWUBAEJFqLoyOIIi2gqBUtWnFqR61YlCKi0oII6vgrlEqQRcUFcMQSNrEMFEpXulC6TjuZLW+S+/vjvGmWeckkM0lmknnfz+d9Mk1ekjvTc88999yzKK01NjY2NjZDA8dAD8DGxsbGJn/YSt/GxsZmCGErfRsbG5shhK30bWxsbIYQttK3sbGxGULYSt/GxsZmCGErfRsbG5shhK30bWxsbIYQA670lVIjB3oMNsWBLUs2uaYYZGzAlT6wJJ2blFI+pdQ9SqlHlVIX5npQNgVJurJ0pFLq10qph3M9IJuiIy0ZG8wMqNJXSl0EHK+U+kZv92qt/Vrra4GrgU/lemw2hUWGsrRBa31NHoZlU0RkImODmZIB/v7dwO+11ncBKKVOBn6UcM8XtNY7Y/59C/CLPI3PpnDoiyzZ2GRCnIwVKgOt9N8H/K/7H1rr14BLrW5USingVuDPWutX8jM8mwIibVmysekjcTJWqAy0T3838EWl1Alp3Hsj8GHgk0qp63I7LJsCJG1ZUkqNVkrdDbxfKfXt3A/NpkjIRF8NWpRdWtnGxsZm6DDQlr6NjY2NTR6xlb6NjY3NEMJW+jY2NjZDCFvp29jY2AwhbKVvY2NjM4Swlb6NjY3NEMJW+jY2NjZDCFvp29jY2AwhbKVvY2NjM4Swlb6NjY3NEGKgC67Z9JG2FYsdgNu8Ss3HEqAF2F8xa154AIdnU0C0rVisABdROSo1/90GNFfMmmcM4PBssoxdeyfPtK1Y7AQmAFMSrklAJfFKPNVjqgVbAweAfUCz+Rh7JT4X9297khcGprIeS1SGJsf8PIz05KjbcEhFkL7LUkdWflmbrGEr/SzTtmLxCKwnYfc1kcG9w4oAG4E3zWtN988Vs+btGciBDTXaViyuwFqGYmWrdMAGmB5bicpSrEy9WzFrnq18BgBb6feRthWLRwOnA2eYj0chk3D4QI4rx+ym5wR+E9hku5P6TtuKxR5gKiJLZwDHIrI0eiDHlWNasJaldRWz5oUGcmDFjq3008BiUp4BHDmggxIMoBMImY9hYASytc8nncBaohO3CWismDXv3TyPY9DTtmKxG2nGEStLJzLwQRVdxMtSF+BB5EnlcRxhYAPRHeYbwHPAentnkB1spZ9AniblXuCdhGsLsB+ZcLGTL/Gx++dQsknQtmJxCTJZRyZcVWk+ly3WAs8AzwLPVsyaty2Lnz3oMc9vjiNelk6ldx96JgSBzURlqFue9pBafuIeK2bNiyT5HRzI7rU3mbF6fhTZmzfbEDl6xnx8214E+saQV/ptKxYfBZxD9iZliHhF3kO5V8ya19qfMeeSthWLKxH3wvHmdYL5eCz99x+vI2biVsyat6WfnzeoaFuxeAIwHZGjM4HTEGu5r4QRZWdlIHT/vH+wKr+2FYtLEbfn8RZXf3ej72IaE4g8vTVY/w6DjSGn9E0r+ANI/9TLEEusL4QRN8YLwItI78zNwK5kVlMhY1qth2E9gcf28WM3EL8IbO7/SPOHGT1zKiJLlyKKvq+sReToReAVYBNy2NnVz2EOOsy/26FYy9KkPn7se8QvAmvsRcCaIaH021YsHglchCj5i5FtaKbETsoXgVcrZs1ry9ogCxjzULt70p6ILKqnA84MP2oz0e37PypmzXsnje/dm8/J3bZicTlwPiJLlyLRWJmylXhZeqli1rzmrA2ygGlbsXgY0Z3mCcBZwNlAeYYftQv4FyJP/6SXRcDc4eqhMKeLVum3rVh8HFFr/hwyU0D2pOwn5uH32cC5wAzECs40VPUVwA88AryeOGnbViy+DXHFfS2Xir9txeJDiVrzHyYzBbSXqBy9ALxYMWvejqwPsogxz9nOQORoBjKfKzL8mPWIHD0CPJ+4G29bsfizwJXA5cWeW1A0Sr9txWIXIgzdFtgxab61C2hEIgReRCalHXWSZUxLahoyac8FvEjWZ7qsIzppA0gC2iYktPGnwDezpfjNw8upRI2GqRm8/SVkp9Kt6DfabobsYs7104gaFOeQ2dnJe8CjiCz9s2LWvFDbisWPIf/fTwKfqJg1rzOrgx5EFLTSN902lyD/WRchESvpsAf5z30MeKpi1rz9uRmhTTJMN8lZRCfuWaR/ULwT+DfwiZjnbgXm91XBmuO5AFHylwCHpPtW4G+ILD1pGwz5xzynm0p0JzCd9PNlDgD/QHRItxHyKDCrWDPTC07pm1u9i4CrkAmabqTN68jEfBzZ3tnJRIOIthWLyxDrfwaifD9AsvhwpcDphHAY4uW3vmLWvAUZfKdCrMSrgCtIX1FsISpLTxe7O6DQMIMOTkVk6cPAh0ilJ0pKIBKRK8rDwKeL8SC930pfKVUJ/BIJVXxGa93Qn89ramqajEzAcYhF99CRa57cimznrgI+DYxJ46MM4GlkYj5eMWvexv6Myya/tK1YPB74GPBxEietUqgSOR7Q3ZM1Ksc3VcyadztYy1J1dfWWthWLj0b8t1cCR6QxHI24lB5HlP1rtsumcDAPhy9GZOkSYsNFY2VJ60RD4n7gmm7/fzJ5ys9vkT3SUvpKqeuBk7XWN5j//gFwmNb6SqXUlUCz1voxpdSDWutP9WUgTU1NTuDHwHVI4TGcRjvD9m8LDd+7uaUk3JlOSvou4AlkYv6tYta8lr6MxSYz2v1LKpCwzbJervI07ilBEoY6zKtdax1B68PQ+ljgBJQqVY74nB8diciEBTTqixtPuPgEYmTJETbwHNjeOWLPxj0uo+3QNH6tIPAUUbfNzr78bWwyo92/xA2MJ315SSVjbuJlqUNrbaD1oQdlCYYpZ3yMR6wsAXdsn+L9Rkfl6DjdZNIK3A3cXF1dXTCeg3SjKR4A3lJKzUe2w5cgkRkgcbWvmT/35xf/MXBT7BOVLTsYtWutm9Q1SNYBDyGT84VijJEfSNr9SxTy9z/MvKZY/JzOzqvPKKXEpZPqHocDrVT3Nv2eygPvqtbhUbe8u+MAY3a8XorEhydjJ7AC+BOSN1C0h3kDRbt/SXdBwmTydAg5LPvQB1n62rDmLWd2VI4+2+LWSqI66xvZHmuuSNu9o5RajPySFwMXaK3Xm89fCezTWj+ulFquta7JdBDmtmkN8asojq4Qh637J0r30OPNwHLgt4h/3t5q95F2/5ISJNY8mUKfQubhcQOKjkQI42T7lDMxykw3vdZMXv8sLqNHGHYnEhb6W+RQv+h8uPmi3b/EQbRseDKlnm6wxaBAa00kotl5yCm0DZ+Q7LZW4Pjq6uqteRxan8kkbvo+RDFf3q3wTf4I3KWUugSxtvvCFSQofIBIiZvWYePxHHgXjcJwV77uDgUXAE/Yh2eZY07K45ED0zPNx5MZ3KWe41CVI3B4qiDShQ6HIdwFkTA63AXhroOPneWjiZSUxbxR0VI1iVG71gJguMo3uoz2HwEr7ByMzDF3gIcjctQtS1PJPIlqwFCl5ThGjhNXTrgLHQlDOF6WVLgLo8xDV2kP9RRLJaLDbs/PyPtHJpO9DvGZx71Ha90KfL6f4xiX7IX9ow6no3wkweGHECkpfaK6unplP79ryNDuX3Io8Qr+dHJTgTMM7EAsno6Eq93iuVRXGAndtPTXRjpaxzuGjaxVJW5UCumtUCU4HPH+xpYRk0BrgiMOpctduaK6uvqeLP3+RU+7f8lI4hX8mfS9/EYqNBJH30JmcmMlZwbi17c8H4h0tHkcEX2NKnG5KHEl9SmVoyhxOuil3vP4Pv6+eSctpa+Uugn5Q10BLESs+2yS9JCss3wkneUHCz++l+XvLRra/UuGIUo9dmL2pUSAFa1IiYTuao6JP28v983Ny0GWEfCXaCN0KS53UjdBBNjhHovhiI/SC7vKaB57MGfPlqUktPuXlCIhj7EKPt1kx97oJFoszkqmtpb75ualnr4R8Cvd2f4BnOUnp7pvt3s0bSUpLX0oIHnqVekrpc5HLPlpWusWpdRwpdSpWutXsziOh5DFJNVfttW8zwZo9y85ColB7p6YJ9L3A7CdJFfom4F95b65A3puYgT8RwLXAJ9XKRS+hq53Syd0tZVUliW7B1uW4mj3LxmP5EachcjTqWSWLR3LfiRTOpk87Sz3zR3QYAsj4B+LhH9/UZWWH5/yXlVya7Or6kaKSDelVPpKqSnAvcAlWuvu8MefAV8Drs7WIKqrq7c0NTXdTUL0TgJ3F8pBSS4w/fGnAT7gcuCkPn7UXqQGzAtI7PmL5b65u7IyyCxjBPxu5Pe9FlngeiOi4DPBEo8XW5ZS0u5fchwiRz5E2ffFYGhDyk50y9ILwJaBNhCsMAJ+B1Io71okXj+dRa2+4sxLF9DU5KKI5Cml0tdav0NChyit9f1I0kK2udl8TBoLm4PvHNSYMcvnIZPzclKHG1oRAv5LdEIGgPWDcVLGYgT8ExA5uI7MfKXXuLy+FTQ1dbsfbVkyMY0GL1FZSmnhWhAhWkq8W5beKPfNHdTRTkbAPwz4HHAjUr0zXW4Hvmf+XFS6adCVYWhqapqEnB2MR/xkDxXSKtpfzDjmjyIT86NkdvD6FvEKfnW+/KPZwAj4zwC+AnyK1JZYGxIpFpsIeJPL64uLnrBlaUkZYt36kJIlSWMOLdhCvCy9Uu6bG8z6IHOEEfAfBXwZ+AKpy2uEkbyMC4gWbbsf+ILL64tTjsUiT4NO6Q9F2v1LJiMlBy5HLPt0DtgjSHXQvxN10xRc6KER8LuAmYiyn9bL7U3Ar4AGl9e33wj4X0QOr3/k8vrm53akhYEZZXMJougvIrUvOpb/An/BVPTlvrkFVzjOCPgVUrLjq8jfIJXLaiuwDPi1y+vbbgT89yJnRn8CZrq8vkG9g+kPBROfXUyYMc7VRP3zp6X51jZkYj4KPFHum7snNyPMPeZh2mzgBlK7rTqRQ7K7gVUJ1tdvEGX1nVyNsxBo9y85jKjbZgbp9Y7oQkpA+4E/lfvmpmxYM5gxAv5KpI7SjUhAQzI08GdElv6coNh/g0Qo1RSzwgfb0s8rZo2aTwPXk76i34m4MvzAP8p9c9tzNLy8YAT81cDXgc+QupTy28jkfMDl9VkubuZk73B5fQVT9yRbmJnUlyCL5oVpvi2IKL1HgSfLfXP35Wh4ecEI+CchVv0XSd0N7z3g18A9Lq9vU5LPUoDH5fUVfb0uW+nnATNS4jok4imdVo1rkYnpBwL5ioHPJUbAfzpikftS3NaFNLa4G3g60adqA+3+JRMQJTcbmJzGW3YgsvQo8M9y39yCrydkhu/ejMynVKXVn0bcgY+6vL6COdvKNbZ7J0eYltjHEKs+nXDD5zEVfblv7pu5HFs+MQL+c4BbgI+kuK0duAe43eX1FVRz9HxgugM/iMjSTHqft2sQg+FR5KynKIoQGgH/8cC3gVqSu7AiiDvwxy6vL5u5REWDrfSzjFn6oNsSS5URq5GOSyuBxwrx4CwZMQdqtyA+5mTsA+4Cfu7y+gZlrsBA0u5fMhzxVd9Aal81SLz8g8Cj5b65b+d6bPnECPhPQXaJnyT54WwI8cv/xOX1rcvX2AoRW+lnAdMSOxeZnD5S/133IP7FpeW+uRtyP7r8YSr7SxFlf2aKW7cjfW3vGQo+1Exp9y95HyJLnyV19E078AfgV+W+uS/nY2z5xAj4vYiyvyzFbS1IE6efuby+ojGccomt9PuBGVN/FTJBe0t2WYUI58PlvrlFVSHUzHaciUzQU1Lc+jbSN+H3Lq+v4H3L2cSsdzMTkaUP9HL7WsRX/UChH8ZaYQT805ECj6ncojuBO4Bfuby+ggtVHkhspd8H2v1LTkKiBmpJXWu+DWhALLH/5mNs+cYI+D+MKPKpKW57GWlc/shQjLRJRbt/yUQkiegaUletDCM++l8iB7JFd8htBPzvA36EJCUmYxNwG/Abl9dX0JFsA4Wt9DOg3b/kaCQ1+zOkTvx4E5mcvy33zd2fh6HlHSPgn4oo8gtS3PZPZBL/w47Eiafdv2QM8C3gS0gF22S8ixxy31Pum1tw2Z/pYAT8hwH1yPlFsnnVhMjbg8UeR59rbKWfBu3+JZOA7yIp3cn+Zl1IxMQvgWeK0RKDg+FyP0DyDazQSNjlj11e3wt5G1iBYLoEv25enhS3Po3I0qPlvrlGPsaWb4yAfzQwH9npJAu9fA4xHJ60DYfsYCv9FLT7l4xFQsRuIHki0XZgKXBvuW/u9nyNLd8YAf845ID2OpLXxXkYqHN5fWvyNrACwUzM+zISXz4qyW0HkH7Uvyr3zS3av6ER8Fcg7tFvkbwuznPAfJfX96+8DWyIYCt9C9r9S6qQUqpzSR490YRsSf3FaokBGAG/B7FKv0lyy/QZ4Gbbsu+JWSn1WmTBTFbwbDuwCDmYLZiiZpliBPwlSG+O75G89MYbiKH1mG3Z5wZb6cfQ7l9SidTvmAeMTHLbOmAB8GAxZMomw4zIuQrxoyYrb7wasVz/ak/QeMzkvM8isnJ4ktv2IMr+V4VeXqM3jID/AuBOkke5bUMidn5r++xzi630ORguNxsJOUym4LYilv39xWzZw8FD2rtIXvVyM2K5/sHl9RVFtme2MOvWfwL4PskV3AHgJ8Ad5b65RZ2nYAT8U5Da9DOT3NKMLHx32dE4+WFIK33TGrsKscamJLltFyKUdxdbfH0iRsA/EjmkvQ5wWNyyx3z9V3acfTxmgt5FwA+B9ye7DbF2byvkCqnpYAT8pYhb8Basw5o7kS58t7q8vqLLNRjMDEmlb1pjsxDLPVk3nf1IPPDPitnPCgddOVcj8fZjLG7pQKy1xS6vryhDUPtDu3/JBxHDIFlSlYEc9i8qpnIbyTAC/o8AP8e6mbpGDqvrXF7flrwOzAYYgkq/3b/kZKR5wllJbmlDLJCflPvm7s3bwAYII+A/DfgF0krPij8BX3N5fRvzN6rCoN2/5BBEuSVzXUQQBVdf7pu7KV/jGihMV84SxL1lxUvAl+wD/4FlyCh9s3XcLcjBo9XvHUJK+v6o3Dd3Rz7H1k3zsvkKGVspErcc+2j1XOJjCVKLZF/C1Vw1e1Hc4ZgR8I9CXBFzsE6I2QB8xeX1PZHVX7IIMHeKXwQWAyOS3PYQsGAgK6Y2L5ufTJbSkS0XYgAlytK+qtmL4soUm66cbyBnYuUWQ9mLROT82s7IHniGRD39dv+SGYh1b+XKCSM9Metz2T2oedn8MqT++ZSYx9hrEuL7TJXp2x+CmJO2ZPQ4l/uQSUcpZ0mPhBitdUgbobt0V9ctZefV2gdrCbT7lxyPyNL0JLc8AXw3l2U3mpfNdyEhj4kyFCtXw7A+l8kG7Ziy5Bw2IuyedMRRDre7R2iz1lrrLmOFNoyvlJ1X+16OxmKTIUWt9M1+obchdU2seBSYV+6bu7Y/39O8bL4DGEfqSTiuP9+RDVSJC/fEwyipss4N6tq/l9C2d9BGCMSPvxYpKbHGfHwTWFs1e1FbnoY8aDDj7b+FWLNW2aMvAHPLfXP/05/vMXd7o7CWoe7rEHKn0NNDOXAfMomSMeNRqqedEm4LEtq6mUh7K0i2+nqiMtQtT29VzV5kF0vLM0Wp9M1IillIpIRVCOa7wJfKfXMfyfSzzUl5BHBGzHUa6Tegzh4OJ8rpBKcTFfuz03nwte6fHWXlOMoqUI6eukJHIkRCnaAjgJK9hlKomJ/leXNya61BG2g6gTaUCqJUM0q1KKXakQWjA7EIkz22IdFAu5EIqV3AAfe0mYNOINv9S85G6t9Y1bRvRUoJ/KIveRvNy+YfQrwsnQ6M7vtoc4+jchilk4/AUdqzZJDuMgi9u5WuvWm3R9hBdDGIvbZUzV5khwPngKJT+u3+JZORmiWXJrnlbuBb6RZCa142fwLRCXkmuZqUSqFKXCiXK6Jc7i7lckeUyxVRJS6Us6RbmTuUw+nA4XDicDitLCzrz3ZYWmOiuzUSUDEoMIhfBJL93P3vPe5pM3OWyGM2MfkR0rHK6o/9BHBDum7B5mXzqxD5iVXyk7Iz2qR0mlfI4ufEx9ifuxBDZuTBy+Gock+YNMo1doKl4Bl7dhJ6dwuEs+K2bwPeQjJ0n0Oyvt+smr1o0AhroVI0Sr/dv8SJ1MhZhHW5gDXA7HLf3H8n+4ycTUqHA+VyR5S7dI/DXbpflZa1O9ylYeVyO1VJSQVOZxUwSqWtxdNFrPPkCr8oDKldSLndjRbXO+5pM/uUT9DuX3I5EtVk1f1sJ/AV4KFkhfWal80vR+L1Y2UpWXhwX9gJvJNwbYn5eQ/QlS0laQT85yHNf45IfE2Hw7uMne8+YOzcvgPpAd29UEwAjiN1B7lM2An8C1kAngXesHcDmVMUSt8Mw7wH67BDA4lSuTWxKXTzsvmTgUuAc+jPpFQK5S4NOsor9jjKytsdZRUot9utSkrKcTirlFJWEQ25pXCs+1yikfT+TVgvCtvc02bGmaVmu8s7SR6GeR/wzcRw3uZl80cBFyPtIc8ATiZ5H9feaKenQo+9tlbNXpSXREGz9tKPEYPKil8C30rVAa152fxhiPI/3rxOMB+PIXnxvnTYgyj/Z5GFoMleBHqnoJW+GYb5XaRWjlUY5nPAtd0VC80D1zOQ9muXkrrLUw9UiQtVWoqjtLzTUVGxy1FWEVLu0gocjrFKqb5O8P7QiiSRNUcfVRVKnaaUsorMWYPWi0FvQKKWumIeuyye6/GasWeXO9zSfDwRfRJaH48slEcBh6NUOQ5zsXE4ZOFxKFAO2e0oB5j/Vk4HylmCKnEZyuU2cDpdSqn+KIC+YCBKdKPW+i19YO8I3dHqw3qnuA7ZKT4NB892jicqSx+gb4erIeBV4MWY662q2YsGPLTRCPg/iOQZHG7x8kbgGpfX93RfP98MKT2C6GIQuygkq32Vir1AI9GdwOrB8HccbBSs0m/3LzkXCZ2zyvo7gMTjL+vcuasCuBCZmJfQWxSNcpiKvQxVWoajtCziKCvvUO5Sl3I4cq2UdiKWafe1FanAuI84xc5+5NDzYA0gI+AfhrgjrrT43A4kR+GOXMVJmwvqROSw8wOIxXsWyeuk90Q5UK6Sncpd9qqzovIN58jR6xzu0jKko9QY8zH256psjF13GUQO7AXD0hMUweV+1DFs1PdC27esDR9oPgeRpcuAIzP8qgjio45V8KsT494HGrMa5i2IQWW1kP0cKXuck0x1c0Edgyj/sxBZmo6EoWb0Ucgi8E/gT1WzFyXtSd28bP5EoKJq9qKiaipvRcEpfTN07odIMogVjxgtLT+OtHecgUzO80iieFSJC1VegaP7KqvA4U5fR2VAJ/HKPFapd//8rnvazD5NfjOrdjlwtMXL/wG+4PL63urLZ/cH06/tRSbtuUgBt2R9CayIILu1RwB/1exFcVnBzfd853fK5a4uPfzoWxylZeMRqzH2OiTVh2ut0e1BdEszlu6uEjeqYjiRjnbCB5oJBw9AJCPvwQbiFfwrVbMXDeqSHkbAPxlp8WmVh7AekaW817g3dwWnInI0A/ggyWvxJ2M1IkuPIIvtwf/05mXzbwK+BnwwUc6KjYJS+u3+JccA/4eESB5Ea402jN1dwdZndVfXcUB14nuVyx1V7qaCV66sGu7bkGiDtebj24hS3wrszUUoohHwK0RQf0xP32gnkgV552DJgjQT1M5EJu0M4GysMziT8T+ik3YtsjMahiwMFyUq1NCqleXAYfRcDI7QkfCRkQN7q+iMzz/TWqMjEbRWRDo6iLS1pj04VeLapdzuf6P1w5H2tr9WzV5UUEXVjID/cuTMwiqR42eIdT8ocjSal813Iu7ZboPig2S289tIVJZWmdcZSAXZGVWzF23O5ngHEwWj9Nv9S65EDo08IJMzEgoR6ewk0hnqQOuDQcPKXdpTwZdkpeJEEFHoscr9LeBt97SZebXgjIB/LJJJbNVEeg3wKZfX91o+x5Qpzcvmu5GJdi4yeT9A6kbzsewk3lX3LHBJ1exFvWpps0BaA2Zklmk0EO7sJBIyNOFwelFUSuGoHIZz+Aicw0bgcMdtYjYju6zua3Uuw0v7gxHwlyGlnr9k8fJO4CqX1/fX/I4qM8xF4GSiBsUMkncoSyRRljYgir8oexL3W+krpY5EshRHaK0/2d8BNTU1TQauQP4TdlYG33tiwo7V3wE+q7VGd3UR7ugg0tEJWouCr6iMumfKKyQhqe+EESsgUbGvRVwwA75KGgH/+cDvsXZf3IMUSBsUFlkmmIvAaUiz9Y8j2/lM+AdwaXdkS6IslRjtKw/b/O/PI/5qR6Sri0hHJ+GOjvTdNiUlOIeNwDmsCqdnWCay1goEkAXgOeB597SZA56NagT8JyCuwfdZvPw3ROEPSC2q/mCeMZ0EfBi4HHFXZXLQ/jbi6jn4uyfKE/BQdXV1wVUKTUvpK6WuB07WWt9g/vsHwGFa6ytj7nm4P0q/qanJibgprsPMbi3t2M/4Ha/pks6gCnd0EunsRLnLRMlXenBWePprwbcjLoNXzOtlYE1fY7tzjXnAthBx2yRao/uBa11e34q8DyxHNC+bfwQyYT+OhNWmM2n9wQnHfqr5yNMXESNLJUY74997LVLats8R6ewk3N6B7krb8H4VeMzhGbaq9LCjtXI4qhEleTJycN2XgyCNHOp2LwL/Adbly6gwXYNfQMJTE3dXXYgh95NiaZLTvGz+WOTw/eOIUZHO2dJqYMbWsz/TQoJuMmlFkj1vrq6uHhQu1HRIV+lXINbuycjk+z5wtta6Peae/ir9nyB9aQFwhYJMXN+IxoGjtBxHZWXSMgJp0gL8l6iCfwV4a7BuuRMxAv7xwAqsD9ieBz7t8vo25XVQeaR52fxxwGXK4bgap5qmwxEnEWvZ7Rw+7vVdJ33opO6yESrSxZR1T6Nb9hPpTOusvAPZNTwOPJ5qmx9atdKFRJCdgriqzgam0rf4892I8n8W+CSYsbkAACAASURBVAtigOTiLKgcqe9vFem1CahxeX2BbH/vYKF52XwPcBGKTzlcJR/TXRG3Tr7T+8/2M2a+GHGVfjXFR/60uro6WWDJoCNt945SajGyyl0MXKC1Xp/wep+VvrltWkPsKqo1h2x+nmGj03XLxbGPeOX+CmJFFaTVYgT8ZyAHTomZjRrpYbvA5fUVdQvHboIN9UcgPld0RKPDYXQ4gg7H/9e2HHIc+w+ferBeUNWON/FseCXVR3cAfsTV8bf+FJUzD5BPQ84ozjYvq+Y0vbEV+Kt5/d09bWa/O0yZNe8fQRamRB4E5gyVRjnBhnqH1rpNKVWqtTblKIzuipeljhETwrtPmOHEkdSV1wocX11dXRBnAJko/eMRxXy51vpPMc+PRkIoLwDu1Vr/KNNBNDU13YQcJMV/p9HJ0cG3USUpjaYWxFf6AlEFv2kw+N6zgRHwX4XkIyRuR3cAV7q8vr/nf1QDR/Oy+R5nRWlLYraxOWkjEa3aOt3DPeHSCg5Mqqarsqr7Bib+91FURw9d/i/gt8DDVbMX5UTZhVatVEg4bewicFKGHxNBZLx7EXgx012qmWz1MJLjEEs7cCNw31BrcN/y2++1Kqcjzr1lRnBpHY40dyl3W6dnzMS28UfRMfLQVB91U3V19e25HW12yMQhXofUOYl7j9Z6D+Lr6g+WCVPaVUqoS1Ma841a63eUUo1EfaFNian0xYAR8LuQstBW28qnkS34zvyOamAINtR7EMv0dGd56SWIAozz8ymlUCVOhwM8Tt1Kh6uCiLss9gaaD61m5IYXMMo8hDxj/l25e9NV+YjJNg2Qt83rfoDQqpUjkRyG7oXAS+pKrQ4kUekspKdzc2jVyr9jLgLuaTOTHiia/vsbgDvoOeffAj7h8vreyPgXK0CCDfVu5DzmdK31uTh6ZoErpVBOp8LpHOlEj8TRRUtZr0FlVtV8ByVpKX2l1E1AGXJyvRD4Y5bHkVR57as8hPJIO62lVRgO18JjTjn9e1n+7kGHEfCPQTovnWfx8h3AN11eX0GcRWRKsKG+DJmUsaWGT8BU8srRezRll7uc5vEnEHHFl/5tG3s4RuUIQp4xoNQjEz8xe8CScExXzV/Mi9CqlSXImdm5wEeQkMOetYujVAGfNC9Cq1auIboLeNY9bWY7HOxq9Uvk0DaRx4HPFqs7J9hQX4LITrccnYHIlhuwrE2ViFaOjv1jjykzyntNASiYJjG9uneUUucjJ/zTtNYtSqn/Ap/XWr+arUFY+vR7UlB+s75iBPynIr7lwxJe6kSic36X/1HljmBDfSWSWHOh+Xgy/SjCFXa4Ht564kUXa6eroGXJPBeYjiwAHyEzd1Anshv8O8rxaaXUaRb3fB/4XrFE5wAEG+pdyI7pQsRgmkr6eR9WPLt/7DE37zv05H9QRLoppdJXSk1BihddorVeYz53NXCu1vrqbA4kMXrHgoI6Ie8LRsD/aaR8bWKW6lbg4y6v76X8jyq7BBvqHUiky4XmdQ59C3lMZD9wnae2bnkxylJo1cpJyN/rI8j5We8FyawrrbYisffZ3q3nnWBDffdZyYXI3+R8Mq/PY0UXUnfoNk9tXbjY5Cmle0dr/Q4JRaW01vdj+iWzzM3mY9JY2Bx856DA9Ln+AOnAlEgjMMvl9RXM9jGRYEP9RGRSXogkyyQeJKbDW8BLmEXKgL8T9eu/CHzKU1vX7a4pOllyT5u5FSmRcF9o1Uon4q7o3gWcRdwZh3UfBbOHwhvAIaFVKw91T5u5PU/DzxrBhvqRiHLvNhoO78PHbEFkpluefkW0btU7iCw9H3N/UcnToCvD0NTUNAk5OxiP+MkeKpRtU18wAn43cC/WMdO/AL7u8voGVRXG3gg21FcQddlcSOaRKpuJFil7CXjZU1sX53cONtSvQcrw3gHc7Kmt6/E3GiqyZB4Kfwj4CErNUsoxIvEei6Y5GgmEeBj4Y6qD4IHEdNmcSVSWziSzzNpdxBe9e8lTWxdnQAUb6h9E5OQx4GpPbd3eHp9C8cjToFP6Qwkj4B8OrESs31hCwA0ur+/X+R9V5pgum/cRnZjTycxlsx54Ckn7/7entq7XBqvBhvpfAX/11Nb5Mx9x8WFma/8ci0g6rSNm45yUPI8k/610T5s5oMXGgg31RxGVpfPJrJrmTkSWnkKS3LZ4autS/vLBhvpvIuVXlvR2bzFgK/0Bwgj4JwJP0rPmyW7gYy6vb1X+R5U+wYb6YUiJhIsQ103qPgXxHEAyXp8C/uaprVvfy/1W3+/w1NYVzSFkfzAC/kqk+uxlCS+FtNbz0ZFyJMon3aZBLyI7gIfd02YmrUGfLUxr/iKk38WFWLRkTEEn4gLtVvSvZSoXQ02WbKU/ABgB/0nAn4HJCS+tBy52eX2DspFDsKHeiURFXIW0E0w3MiKMJNB1T8wXPbV1RRlymm/MaquPI26PWPYDPpfX90z3E6FVK49B/t8+SUJ58hT8GzlLWJHNSrLmIez7gc8BnyGzjOXXiMpSo6e2rr2X+21isJV+njEC/hlISGZi4O+LwKWDMeEq2FB/HDI5ryT9RvEbiE7Mpz21dQNeUbLYMAL+oxHjIbF5zlbgIpfX93qy94ZWrTyS6AKQuGBY0Yq4f+4D/t3XjPdgQ/0hwGcRw6FH34sk7ERcf08Bf/fU1hXcAfRgwlb6ecQI+D+FpPwn+rsfRzJs0+/YkWOCDfWjgE8hyt6q4Xwi/XbZ2KSPEfB7EblJtJBXAx91eX3b0v2s0KqVhwGfQBaAs9N4yzokgu8BM6ooJcGG+nLEFfg5xH3T20Fsv102NsmxlX6eMAL+rwM/tXhpGfClwZBha/pWP4JMzo/R+2HsFqQZyWPAC7bLJj8YAf+lSMZ2Yj7HP4CZ/cmwNfMBPoEs+L0tABHEAr8PeDS2JLnpvjkbkaUrgB4RRQk0I8Xu/IjLpuD6QRQKttLPMWYM/veQ2kWJ3AIsGugiV8GG+lOJ+lZ7O5BtQyKOHkDcNrYFlkfM3WIDkFjysQHpX5u18N7QqpXHAlcjspGy2hhS2bYhvH/PX8J7dpyGuG+O6uU9YaQMxQPAY57auo7+jdgmHWyln0NMhf8jeiZvdAFfdHl9D+R/VEKwoX48UItMaKuuSYk8g0zOlZ7aupYcDs0mCUbAfyXiVkl0j9yK9K/NyWQ26wJdgNTvuZyEMhk6EibSeoBISzO6ZxVTK/6HyNIfEmPmbXKPrfRzhKnwb0cal8fSilQ1fCrfYzLj6S8F5iBunN56/a1DJufvPbV1m3I7OptUGAH/NUgrzNg0Ww182eX1/TJf4witWjka2RF+IdLRdmrkwF4irQfSyQPYiexGHvDU1v0v1+O0SU5WuoXbxGME/A7gLuD6hJcOICGZ/8nneMxqg1cgbRZ7i5jYjzTTeABYNRSSVQY7RsB/A5KdHUsE+JzL6/t9PscS2vD6XqQ4YhoNXaRxvGNYFaq88j2lHG8gvaZtBhDb0s8yRsDvRFrRXZPwUjNwocvrezFfYwk21JcivtWbSe1fjSAleR8A/mTHPQ8ejIB/LrJjjCUMfMbl9T2Ur3GYu8TLkPpQKUM8VWk5jmFVOCpHWDWO34MEL/wyncgfm+xjK/0sYqbC/waJQ45lD/Bhl9eXtXLUqTDLFV8LfIOeLRZjaUIUfYOntu7dfIzNJn2MgP9byJlQ3NPAFS6vLy/lJzLYJW4BfufwjPhLybhJHwA+Dxyb4v4wEhDwM2BVsXS6KwRspZ8lzE5Xv0cmSCzvIQq/KddjCDbUVwFfRs4RRie5LYKE+/0EeMV23ww+zPOgOiTqK5ZO5DzoyVyPIYNd4j+BxUhuxsFILrNF5HTgK8DHSR2b/xKi/B9yT5tZUMUFCxFb6WcBs1Lmg4Av4aXtwPkur++tXH6/GYnzNeBLJK8nbiBW/WJPbd2gLPNgk7LMdjtSkymnPZHNXeJsZJeYKkzzMWBRQgliS8zkry8hu89ULah2IGWOl7qnzbSjenKErfT7ienDb0CSWWJ5B1H4OctMDTbUT0Em57Ukb63XjvhQf+qprRuU5XNtohgB/y1IV6tYWoFLXF7fs7n63gx2iQ8Ct3pq61Zn+h2hVSsrEdfnV5E2hklvRRK1fuaeNvOVTL/HJjW20u8HplW2DPhiwksbgfNcXl9OStQGG+qPBb6F1MJJFoF1AIkg+pmntm7Q1fOx6YkR8N+ItCaNJacRXwOxSzRdPx9GlP8lvdz+b8T184h72sxwf7/bxlb6fcZU+LfRs43aeuBcl9eX9cgEM3P228As4uO1Y9kNLAF+kdh4xGbwYgT8VyGKNZYDwAUur++FbH+fuUv8JmKwDNgu0az8eSNy8OtJcetaYBHwB/e0mUYuxjJUsJV+HzEC/u8gvtdYtgHnuLy+Tdn8LrPd4E+AmhS3bUUWoXvtuiWFhRHwfxypXx972NmOhPj+O5vfZfZBqEOs7GQN6A8gDVl+lk5Dm2wQWrVyOKL4byT1wfFGJAP5gdhaPzbpYyv9PpBkG74b+KDL61uTre8JNtS7kclZR3IraB0yCX5n1TLQZnBjBPwXINUyY4vbGcih7V+y9T1mAbQaxHhIdkC7C9kl/nKgdolm/9+PInL/oRS3bkWihu51T5tp55VkgK30MyTFNvw8l9eX8aHTtoVzSoBDkDr1lcjkLy0dNWxq6QjPNcrpOMTqfZGu8O7Q/uBLnfuCWxCLrRTx77cg2ZLdV3PCv/cBzRMXLLUXiAHGCPjPRqpUxjajiSBltldk+nnbFs5xIE3npyD++VKg1DWs4qiy0cO/6ChxHm/1Ph2OtIRa2l7p2HtgHRHtMN/nQorrpSNLOVG6oVUrqxH36WdJfnb1HlK99lfZbPJSzNhKPwNSbMM/4vL6GhPv37ZwjkJKyk5JuCbH/DyRmBo4qsRJ+ZgRuDyJVXOFcGeIjj0tdLX1uyBh7ISOncy7Ef/pm+a1c+KCpbaQZBkj4D8F6eGaWHL4GpfXd5/Ve7YtnFNJT/mJvSYhCltwKMpGDcc9ohKleh4BRYwuOva2YLT02xvYibUs7UV2ot2ytHXigqUZV2UNrVp5OJIv8AWSl/vei+xSfu6eNtM+y0qBrfTTxAj4Pww8QcI2PNLZOWv30//chfghrZR7soiIHpSO9FA6chjK0TOPRYcjdOw9QGh/3vus7CM6aWOvDRMXLLXr5/cBI+A/FmkSElfGWkciN+166q/PIJmsVsp9VLrf4RpWTtnoEThKetbU01rTuS9I576WdAqlZZM24C1EftYQlaW3Jy5Y2qsVE1q1ciJy+DyH5IfP+5HziDvc02buycagiw1b6aeBEfCfioSOVXY/p7XWLU2vvdOxbdtkeu8ElJKSilLKxlThdFvvYEP7W+nYcwAdGVSl6w3irbjuSfzWxAVLDwzkwAYzRsA/HngeODz2+bZNG7cF33xzDLGWeh9wuF2Ujx1BSbn1xxitHXTs3k/EGFTrtUYOaBMNizUTFyzdnXhzaNXK8cDXgRtIftbVCvwSuN09beaOXAy6ULGVfhJM/+ixrpEjLxwx9bRFDperMvb1A6+9Rse2/kVl9urKCXXt7diz/7mu1o5tyBY6ZD7G/hz7GAaGAyMTriqLfycL+cwG7wD/QtwXzwDrh7KLyHTzTXaUlp4z0nvWbc6KiriD1LZNmwi+2c/z/95cOV3h1s59Lc+H9reuI7n8xD52IUZOKjnqfi6X1Xp3Ac8hcvQssLrbRWSWef4KcuibrDNXBxJ2eptd4E2wlT7RSQmcgVQQPAM4TTmdw6vO9OIaES9PLW+uoX3TpnQ/vgNRglvMx3eUw7G94tDRZztLXTVKKSuTbC+Shn+vp7Yu6wkp5oI2DOvJPAk4DjjevKxXpMzYTnQBeBZYW8yLwLaFc8YiMhR7jRt+6qmUTYg/l2/ftpWW115L96O7kKiVd2KuLRUTRh1XUll2lVLKyv3TiUS53JqLUF5z7sQuDrGyNIGoLJ1A7y0T02Ef4hrrlqf/jb3wQg+SXPZ1kmcTh5ASD4vc02YO6WTFIav0ty2cMx4JDbsUOAeLNoEjpk6ldNz4uOeSWGXrkG5Am4mfkO8Au2MVXLCh/jLgDuBIi2FpxCr5jqe2bsD9kebiMJnoAhB7TejHR+8gfhF4s5AXgW0L5wxHGn5fCswgwXUDUHnssVQeGR9+Htq9m+aXX0r0q28HXkHcHQcNBfPaMXHB0oNGQLCh/jSkzn6yxvVPAF8dDE3qzcVhHNEFIFaWDuvHR+/HXAScFRWBkdOmnaWczpuA8Unub0UOfH9ideAbWrWyvNhDQIeM0jeF7hRkYl5GLzXBPcefQMXhh8c917nzPfa/8sp24MWY66WJC5bu7e37gw31RyHp5MnSzgPAlz21dS/19lmDgW0L51QRvyPonshH03tHrkR2Isq/eyF4Y7AvAtsWzjmSqCzNIHmiE2UTJzH85JPjnutqaWFf4Plm3dX1IvACpjxNXLB0e2/fHWyoHw38ECmMZuWm24Ao+8fT/HUGlG0L51Qgh9eJhsVxJD+wTUYLSj3nHjeus2LKlGklI0aMswqMQHbTtwJ3dSv50KqVFYgMXuyeNrPHWUKxUNRKf9vCOeXA+cjkvBRxXfRK+ZQpDDvxpLjnIqHQhpbXmz4y5rr6dZmMwUyK+QrwY6wP6XYj4Wj3F0OT8W0L55QiC+oM8/oAmbuIdgP/APzAk8kOhrctnDMTiSL6b99HnB5mPsVZiJK/FDgxnfe5Ro2m6vTT4yKydDi8v23jhstb1637V6aLW7Ch/mPAr4ExFi93IPX3FxdDk/FtC+c4kf7NM4BzgQ8ibqP0UarTNXJkpHT8+PLSceNwlPaYgtuB7+9++ulXyidPvrHy6KM/CzwCzCzWGv9Fp/S3LZxzKGJNX4YUdUpX4bQDr5RPOWyX54QTLlfxp2HbAK/L69uWyViCDfVjkaYqVtZ9BPExftdTW5dG67nCZNvCOW7gdGTSzkBcaRWp3pNACFkAHgH+NHHB0oMld7ctnPNX87PPm7hgacZVH3vD3M18BJGli0k/ZLILWO0aOWpd1RlnXKYcjlgZ7EBqMwUyGUuwob4MKbPx5SS3PArM9dTWbczkcwsJ0914MvGLQDIfviUlVVWUjhtH6bhxOCuiYtiyZs3+jq1bRww/5RRKx40D+Lx72sz7szX2wUTBK31TEN5P1AI7LYO3v4SkwD8BvDruootPQkIzY8PAWpF6Ohl1vQo21J+PNFWxyqj9D/AlT21dXjppDSa2LZzjQv6PuifuOaQutBWLRv52jyDRQasQV9Iu4NyJC5a+kYXxHUNUlqaTfmTKWqTG/BPAqnEXXTwccdkdnnDfLJfX93AmYwo21J+AlBp+n8XL64CveGrr/pzJZxYD5tw/kahBMQPJSE4Lp8dD6bhxuMeN48CrrxLp6AClGH7qqZSOHdsCnOKeNrPoFtGCVPqmf/4MpLPPJ7BWrFa0IWnvjyNug4P+UyPgPxSZpLEuoAhwucvrS9s3GmyodwELkdLHif7W/Uh42W/tjlWC6TaZSvwiMDzVe1wjR1IyfBjtW7ZCNHfhPWDGxAVLM25Ys23hnOOQMtWzSN3iL5YwsvA8Djw+ccHSgw2/jYC/DHgacQfF8i2X1/fjdMdluga/gNR5StwddQH1iCvHLjzGQb1wAvGLQLIDXQAcZWWUT55M28aN6C4zd8HhYMT734979OhG4LxiK+ncb6WvlPIh7otxwC+01k/15/OampomIy0HxyEHfA9VV1dvAdi2cM4UpA7HVcghTzpsQSbmY8AzVnVCzM5XTwNnJ7z0VZfXl1hYLSnBhvojgD/Qc7KDWKWf8dTWbUr384Yi5iJwBtJi7+PIwXAcpRMmMPzEEwi3txN8ex2h3QfP3LYD50xcsHQj9CpLo5DGN58jefRLInuBJxF5+uvEBUubrW4yAv57gWsSnv41cK3L60trwplNTe6mZ3MekMieT3tq6zJyEQ01zEXgJOByRJZ6eAFKPB5GnnkGEcOgdcNGOrZvl2gqh4MRp52Ge+TIm9zTZt4OqeWpkEhL6SulrgdO1lrfYP77B8BhWusrY+4ZCfxEa50o7GnR1NTkRA47ryMm8xUj1Fr21kuNZW+9XKrgvDQ+SiMW++Pmtbq3wzIj4L8TKekay10ury/xuaQEG+qvAO6hp5WqkcO173lq6+w64ECocbkTicqwukqQ2PJ2HYl0tLz55uHGvuYPRwzjEiKR9wOUTZrIsGOjBnlo3z6Ca98m3NoKsD5SVjFj/yXXzCVRlsLh1tL1q/9W/tq/I0pcOEkjbmJ4g6jR8HxvpSeMgP+LiBzE8g+kEUpa///BhvppiPFwuMXLy4Hr7F4JQqhxeXeBuG75KY/52Y3IUgfQ0bp+w+iO9977UCQU+iiRyDmAw1U1gqqpUw9+XlcwSPDtdRj79qFKShhx2mkhx4iRU9cPO+bzJMqTuH7vBm6urq4umN1Aukq/AqmZcTKy/f4+cLbWuj3mnp8CDVrrPrU3a2pq+gkJDUncG1+n4n//QoV7TRkPAk8hE/PPsYd9vWEE/LWI7z2Wp5D2dL1/sfQUvYOe3bMA3gU+66mt+2e64xnsmJNsAhJbPcV8PAzxpSZT5IkTsk8ZnFprjdZdQIlyOOJcZzoSoX3rNto2biTsKtt94ILPjNHuaLRfya5tVD7/JI5Qr0EtBhK29xjwxMQFS9OOcTcC/jOQM6HY+kxvA2e6vD7LXUEswYZ6BxLJ9X16hr22IYbJb4rFNRhqXK6Qg9huGeqWp0PoqcCTXckKsPWK1rqLSKREOXtGGHfu3Enw7XXoSATPmWftemf8KWOxyHQ2+Wl1dfU3+jqOfJO2e0cptRhZ5S4GLtBarzefV0i869+01n1q2mxum9YQv4ri3PMuw59JeuZlIBbYbxFFn7Ff0wj434fUQYmNrtgMnOby+npNjgo21J+CWF5WJWufAD6fryYU2SLUuLyMaKGvxMl4mPlaOhbygBDu7KR13TpaDQct031QIkNVoQ5GPHEfKpLUIHsGkaU/TlywNGMr2gj4xwAvI3+rbtqQqK+m3t4fbKg/1Px+qxry/wNqPLV1b2Y6roEk1Li8BKkiayVH3UXkMonkyiu6q4vWTZvo3LWbyNkXsq9qSrJbW4Hjq6urC6LMQyYW132IYr68W+Gb3IiERo5QSh2ttb67D+O4ggSFDxAeNYHwsFE4W+JynwLI5Hhw4oKlfc5aNQL+KmAl8Qq/E5jZm8I3D9i+hDSkSAz8DQHzgDsHq0VmWlhHIL7s9yNuhO6J2J9M2wHHWVrK8JNOwmVAR3sLxjCJstTuMoyJR+Hesjb29reR3ggNExcs3dTX7zQCfifijknUCl9MU+FfAtyPdez9ncDNgznuPtS4fAIiS6cjmebdyn0i/SxGOJCokhI8Rx+N+4ijeU+nVJWViA67PT8j6x+ZKP06JDQu7j1a6zvp2UUqU3qUQABAKToPP5HS9f8jNOU4usZNvvf48y66tp/fhRHwO5DJnnhI+CWX1/dyqvea2ZD3AR+zeHktYpHlPFkoE0KNy0cjCVOxl5WCyRcayYvosLjCxPtoM9rKR1Cd+0tHlu4fPgrDGZ/M2Xn4iZTs2Exo8rF0jZn4O88Lf/lcljJ/FwIXJDx3p8vr+79Ubwo21Jciu+SvWby8B9kpPpaF8WWNUONyD3Igeiai6M9Edn8DSTJZMhCZsXIVpVPNNNTurFi32zP+xPaSXjckKaOEBhNpKX2l1E3IH+oKRMD/mOVxJC2A1HnU++g85lRMf1q2WhHeTE+lfa/L6/t1qjcFG+pnAA2IBZPI/cCNntq6Ae3eY7pnTiU6Ib2k7jnaF/YRrTO02by2I9vcxIlnNSG73NNrMla25gFwKdLI5uKEl1cBSzeOOO6QsKPkR1bv7xo7if2XXAPiw3114sUf77fCNwL+y4DvJDz9HFL3PSnBhvpjEdfg+y1efgY5C8ooGTDbmO6Zk4hX8CeRXeu9lagMdcvUFqQDnJUiT7xCfZQlB7IgLER25rG8BSwFfrtl+JFXIzv63kj7HHGg6VXpK6XORxoWT9NatyilhiulTtVaZzOx6CHkj9/DxUP0kKXVvK9fmD1JExuav0zP6J2DBBvqnchO5xZ6CnwLEk3xh/6OLVNMwT2WeAV/Cv0rdRtBFHisQo/72T29pqUfn99n3NNrwkCbubCBuNL+D7jTPb3mFYCwnA/dgpUsKdUtT9mSpaOB3yU8/R5whcvrS9qOMthQfxVS6z1xjGFgAVIRM6/RIKbLbzLxsnQa/fe578RChmJ+3tcXpd1f3NNrIkBHqHF57O7xCaQ+1t8PjqmpKbluipIVecoXKZWDUmoKcC9wida6e6L/DNmOXp2tQVRXV29pamq6m4TonQTu7u9BiRHwT0GURKzi3ov48S19psGG+grEX3u5xcsvIvHSeatiaLpqLjXHcz59L1fbioz/BeB1opNxq3t6zWAPLQ0ii/Ay9/SaOAsrj7JUgex4Y//+YUThWxZNM6NzfkRPyxLkb/9pT23df/ozrkwINS6vRNxSPqTcRF/Pc0LAq4gsrQY2IfK0xT29phAqVv4c+Ll7es3biS/kS57ySUqlr7V+h4QSwFrr+xFXRra52XxMGgvbnw83Av4SRHnH1urQwKddXt9mq/cEG+rHIaF7VhU5FyN1c3LeYDzUuPwIRMn7kNIAmW6vw0ATcgj+gvm4xrScCxGfaaklI6eyZLIECWGO5Zsur+9fVjebtXPuxzrZaiVwbT5qMIUal49FchR8iMLPtIolyNnVC0Rl6X/u6TWFmhV8Uy+yBPmRp7wx6MowNDU1TULODsYjW+WHsrGKGgH/d5G09VhucXl9P7S63/S5/pmede/fA67y1Nb1K/M4FeZWeypRRZ+oXHpjM1EF/wLwint6Td6b6w40OZQlH1L/J5aHgBqrjNtgQ/0opGLo9ISXOpCyHPfknF+jaAAAFP5JREFUMtIr1Lj8aESOLkeyzjMxGnYRbyy85J5e02sp8WIkV/KUbwad0s8FRsB/FpI0E5uF8WfgUpfX12OVDzbUfwD4Ez2rKq4GLvHU1mX9PzrUuNyF1ArxIYfM6UZE7Cc6IV8AXkh0edhkD7NG02rid4xvA1NdXl+PQ3yzNMef6Vk25D3g0lz0TzDPek4najSkVQYaWYReJl7Jbx4In7tN7ih6pW8E/MOB/xJvse8E3ufy+noox2BD/UwkQicxpOtvwCc9tXVZa/odalw+HLgImZgfJX3/fBNSSvdR4OU0tqc2WcAM9f0rkpfSTRcwzeX19VDewYb605EEwsRwvjeBj2azDHKocXkpUqbkcsRoODT1Ow6yBdmFPAr8qwDOc2z6SS4bGg8W7qSni+bzSRT+XOCn9KyOeT8wOxu1c8xoAR8SEXU+6aWRR5CdyqPAo+7pNQPe/m6I8jXiFT7Ad5Mo/EuBB+kZ/dII+Dy1df12kZhuwPOREiCXIH2P0+F/iCz5gVdtS35oUdRK3wj4u6soxnKXy+t7MvYJMyTzp4h/NZGFwML++lxDjcsnI+3tvkh6URLtSA0gP/CEe3pNQZVzKDaMgP9UJPImlmeQxiZxBBvq5yAhmYm+8weBq/ubXRtqXF6FyPX1pFdttrsMdLfRsKk/329T2BSt0jfDMxNLQrxBQrhcsKG+HHHnfDzh3i7Euv9NX8dg+lY/jEzOj9H7AdpuJFroUeBv7uk1bX39bpvsYYZn/oH4XVkzcJXL64ttVO5Aetd+y+JjFgPf7k9LzFDj8qnADcBn6L0jXCviiuo2Gobk4atNT4pS6Zu1UH4HVMU8HULCMw/GDZvtDP9Ez/r3QWBmXyN0Qo3LRyF5DNdjUQ8+gfVEfar/KeAwymLmNqQ5RyyzXV7fwVrqZkmF+xCFHEsE6Wz1i758cahxeTkSMXI9vdf934nIsx/4h3t6zaCt12MzcBSl0kes+Q8mPHezy+s72Ec12FB/NBJVkaiUtyMROhlnHIcal5+BTM5Pkzr+OYgUjVsGrLZ9qoMXI+C/FLGuY7nf5fWt6P5HsKF+JBLCOSPhvnakFtOfMv3eUOPyo5C48C+QujdvF5IkdjdyEGsbDTYpKTqlbwT876dnPP5TxBSFCzbUn4W4URKLjjUhURVpd8MJNS6vQBJubkDC5FLxGtIM/fcDVcrAJn2MgH8sYr3HsgH4Svc/gg31hyHdtBLDInciIZkvpvt9Zm2hSxBZ+kgvt29F6sPc655esyPd77CxKSqlb2bd3kv877UHuLo7Hj/YUP9xxD+baIn/A3HppFVLPdS4/FjEEvs88W6kHsNCCoT9EnjOtuoLip8S32g7DHzG5fW1AAQb6qci9VoSD+bXAhd7aus2pPMlocbl45ED/jn0np/xFCJLT7in1/Ta5MfGJpGiUvqIBTY14blrXF7fuwDBhvobkdpBiSGZv0XS4HstqRBqXH4q0tno0l5ufQfZct9nJ0sVHmZhvisTnq53eX0BgGBD/cXACnoW4noOuNxTW9drr4dQ4/IpSA2hq0jdmGYfsuNYalUfxsYmE4omOcsI+A9HCofFxkUvd3l9nwYINtR/h57VNUEU+ILeQjJDjcuPQ9xGV6S4TQN/QSyxP9v+1cLEjNZ5jfj8jteQjmqGuVtcQc+WhiuQEh0pD1BNy34+slNMlafxIiJLDxZI4TKbAqAoLH0j4FeIrzxW4TdjNqcwk64SFX4YKYl8b6rPDjUuPwwpd/s5kodc7iFqidmJU4VPHfEKXwPXmgr/YiTePlHh/xSYlyokM9S4fCRSZ/+rJC9Z3IG4H3/lnl6T9RINNjZFofSBGqScQSzfcHl97wUb6q+jZxuzIDDLU1v3l2QfaLaA+w7iZ0229X4RKcu6wg6PKw6MgP8UILHJ9V0ury8QbKg/D4mUiZUHDXzVU1v382SfaXab+iqi8JOV2lgP3AU84J5ek/NqmzZDl4J37xgB/yiklknsgdszwPmd61ZfibRFjKUVuDBZ3XIzxn4ecj6QLAHmv8iC8Bf7YLZ4MPM7VgFnxDy9FTixc93qk5FD1EQf/tWe2rpEGQMOdjG7DnHljLW6B6l98z3gt/bBrE0+KAZL/zbiJ1QnMKdz3epPAonZtJ3Ax6wUfqhx+TDEHfQNYHiS73oT2fqvtIucFSVfJl7hA9zQuW51d5ntRIV/vZXCNyumXo3IyqQk37UTcTkuK+Ba9DYFSEErfSPgPw9JXonlB53rVh+H+EVjffAG8AlPbd0/Y282Mx6vB75N8mbhmxFr7Pe2NVacmGU7EnsrPNy5bvVG4Fl6GgI3eWrr4sp8mGU3PoUc+CfLxG4Gfox0ahpyPQ5sBp6CVfpGwF+OJKfE8kbnhqaXkTT02N8tjGRGHiy0ZlpjXwC+i3Wjc4AdiDV2r22NFS9mIEBiz9r9xo537gD+Ts+M2O96ausOnhOZ1S4vQ2QlWcObVqTb1k/d02uaszV2G5tMKVilj/jUj4l9wti17S4ikZXEh8Fp4HOe2ro/wsEJOhOxthJLLnezD7gVuMsuejYk+CSSCXuQSFvL4kiweTk9a+HfSsyOINS4fBpwB9YtNUFcir8EbnVPr9mZtRHb2PSRgjzINQL+auQw9eCiFQ7uX9m1Y/OF9Kwpfm13WKZZ3vgXiFVmRRCJ9LndPb0mrcxcm8LGCPhHAmuIUe7a6HwhtPmtscARCbffCXzNU1unzQY4i5CSCYnJfiC7y/uA77un16Rd1sPGJtcUnKVvdi+6h5ixRzradnbt2Pwheir8r3pq6+41a5pcj9RD91h8bCeyGNxq160fctxKrMLvMozQO2utFP69RBX+xxDr3cotqIH/Axa4p9esy9GYbWz6TMEpfSQE7mAp5EioA2Pb+lJ6xj9/21Nbd2eocXk1skgklk8GqVD4a+AH7uk1Bdfg2KZ/GAH/B5HGNgDocBehLW/vQ+tEhd8AXOeecuyEUOPyOxF3kBWPAt91T695LTcjtrHpPwXl3jEC/klII5RhANroJLRlXQeRcGLxtB+4pxz7Q+AW4GasF7f/ALPd02tez+WYbQYnRsBfirQNPA5Ah8MY29Z36FBHoiz90VHhqSkZc+jnkUYoVslV6xFZ+qfFazY2g4pCs/R/xkGFHyK0bYO2UPi3uyYf83dkQh9r8RktSGeju+1Y+yHNzXQr/EgE492NWCj8J12HHrFAlbj+Ts/+DCB++9uAers2jk2hUDBK3wj4zwU+AaC7DIztG6DLiD9Aczrvcx165DCl1DNJPuZR4Mu2K2doYwT8EzFbGorC34TuSAzSUk+7Jh31knI4Xsa6KNqLwLXu6TX/y+1obWyyS0EoffPw9nYQv6uxfQPaiK+C7BhW9ayzauxHlVJWTcffRZT9H3M/WpsC4IdAudYRunZsRrcH415UZRWvlYydOEEpVWfx3lbEbfhzu4qqTSFSEEofqWv+/oNWWSgmT8pZQsmYQ7Y7SssTW9V1sxT4lp0QYwNgBPynAZ/TWtO1cxuRtpgGZsqBc+S4XY7KYdVKKaswzCeBG9zTazbnabg2Nlln0B/kGgF/JbBWa31o13tbiASjutvhqcJZNSasHI7EMrcgdXJmu6fXNOZrrDaDGzPz9mlgRte+nYT3RLsMqvJKSkaN71LOEitDaBdSJXO5XWDPptApBEv/G8Ch4X07owq/xEXJ6Ak4SsuhZ11zA4nHX2SXTrBJ4HJgRji4P6rwHQ6cI8fjrBwG1vPhN8A33NNr9uZtlDY2OWRQW/rmgdvacEtzRdd77wDgqBiGc9R4lMOyn8l/kMO1N/I4TJsCwAj43cDrkY62o41t60FrVGk5JaMnoEos2yXYYZg2Rclgt/R/EOlorejauQWUwjlyHE6PZQ+KFiQEb6kdhmmThBt0V+ho491NoDXOEaNxDB+FheveDsO0KWoGraVvBPxTtRF6KbR1nVIOJyVjDkG5LNuJPgZc755esy3PQ7QpEIyAf5SOhNcZW9eP1OEucQ2WWXYrfAX4gh2GaVPMpGXpK6W+A3wGsYIiwBytdSAXA2pqapqM1lccHlFfVe9uUo6KYTirxlhZZB3AXMS6H5wrl82A0tTUNBm4YqKjvKb03TUjcZbgGjsR5bQ69+c24Bb39JqQ1Ys2Nt3yBIxDmuA8VF1dXXDF9Hq19JVS05AY+XO11p1KqTGAW2u9PZsDaWpqciLljq/zGC2V4za/gKPCg6M8sVkRAK8DNe7pNU3ZHINNcRArS65IqHLylgBKKZzDqqxufw+4yj295qm8DtKmYIiVJ+J7LrQCdwM3V1dXF0zOhuVpaAKHALu11p0AWuvdWuvtSqlN5gKAUur07ixYpdT3lFL3KaWeUUptUEp9Jc2x/Bi4CajscJb9f3v3G2NHVcZx/Pub2d2W/lmENrTE0tRYRMgGJW2NYBQNYkATxIQYiCSQGIghagxWJeqLUmMi2IZg8E8MGpEXQMMbKhQRkaImQsQYyiIQEEspECytqWlFdu/M44uZXXYv9+7etXPv/pnfJ2nOnTPn7nm6PX1m7py5Z3hz+cp2l3N+DGxywrcpjI+lTClHB1ejgeYVFgD4NfA+J3ybxvh4aqpfWtbf0POIjkEnZ/rLgD8CSyieInRXRDwiaS+wMSJel7QR2BYRH5W0BfgE8DGKdXKeBVZHxGi7PsqPTU/T9Es98d/7WNE4jCQyJYwmA1cNnnPxrf/vX9YWvnZj6bj/HGTNG/tRkhJAI+nf2p+PXu+Jf5tKu/HU5Cjw3qGhoXmxvMu0Z/oRcQTYQLEE7QHgLklXTvO2+yLizYh4neLaV/PTh5p9lha/1EODazk0sII3ksW8OLiefYPr2z2w3GxMy7H0xpIVvLJ0LSPqY9/yd/OP40877IRvHWg5nposLdvNCx1N5EZEBuwGdkt6EriCYi36sYNG82fniV+Kyjro56R2Ow4uPZmDAMVE7nQHD7O2Y+no4hM4uugdHks2E23HU5N5M56mPdOXdJqkic+ifT/wIrCX4hMAFM+cPRbtnx0qjf0nhWLSzWwqUz+H1mPJZqbT5xrPm/HUyUTuMuA2SX+TtAc4A9gCXA/cLOkPFGfzx2IHxXWxqRwt25lNxWPJqrTgxtOc+XLW8PDwNoqZ8Ha2Dw0Nbe5VPDZ/eSxZlRbaeJpLyzB8oyzb3gvb84hsvvJYsiotqPE0Z870xwwPD6+hmAlfRXGdbMd8uRXK5haPJavSQhlPcy7pm5lZ93QykWtmZguEk76ZWY046ZuZ1chcunvHbM5avOkLoSQl6R8gSVKUpCR9/WU5gNKiTMa2m+qVpKR9SbHaZ1+CEpGmZdmn1vVpghJIEpGkCUki+voS0kQMlOWi8e20KNPm+tZlf5KQCvrThESiPxWJNLkuUdlW423SSW2FBGkCCSJNQECaiKQsJUglEkEqir+nICnfqzxDkUOeQeQob0DkkDVa1itvQF7UF/sbkGdEY7QoR0fHtyPPoDFKZNnkNuNtRyDPicYIkefkI43xMs8y8tEGkeVkZfn27dFie/x9GXmWE3mQjWREVpR50/ak/aMZeRble4OskZNFMJIHWVCWwUhOy/qciW3e2veT2Pu2tejH+EzfzKxGnPTNzGrESd/MrEac9M3MasRJ38ysRpz0zcxqxEnfzKxGnPTNzGrESd/MrEac9M3MasRJ38ysRpz0zcxqxA9RMesRSVdHxE8dx1scS+/j8Jm+We9cPdsBlOZKHOBYWulqHE76ZmY14qRvZlYjTvpmvTPr14tLcyUOcCytdDUOT+SamdWIz/TNzGrESd+sSySdKOlBSc+V5Qlt2t0o6SlJT0v6gaS2zzftZhxl20FJL0u6peIYLpD0rKTnJV3XYv8iSXeV+x+TtK7K/juNY0K7SySFpI3diKOTWCStlfSwpL9K2iPpk1X066Rv1j3XAQ9FxKnAQ+X2JJLOAT4EnAkMAZuAc3sdxwTfAR6psnNJKfBD4ELgDOAySWc0Nfs88K+IWA/cBNxQZQwziANJy4EvA49VHcMMY/k2sCMizgIuBX5URd9O+mbd82ngtvL1bcDFLdoEsBgYABYB/cBrsxAHkjYAq4DfVNz/B4DnI+KFiBgB7ixjahfj3cB5VX/i6TAOKA58NwL/rbj/mcYSwGD5+njglSo6dtI3655VEfEqQFme1NwgIv4EPAy8Wv55ICKe7nUckhJgO/C1ivsGeCfw0oTt/WVdyzYR0QAOAyt6HYeks4BTIuLeivuecSzAFuBySfuBXcCXqui4r4ofYlZXkn4LrG6x61sdvn89cDqwpqx6UNJHIuL3vYwDuAbYFREvVX+CTasf2HzbYCdtuhpHeeC7Cbiy4n5nHEvpMuAXEbFd0tnA7ZKGIiI/lo6d9M2OQUR8vN0+Sa9JOjkiXpV0MvDPFs0+AzwaEUfK99wPfBCYUdKvII6zgQ9LugZYBgxIOhIRU13/79R+4JQJ22t4+6WKsTb7JfVRXM44VEHfM4ljOcW8yu7ywLca2Cnpooh4vMexQDHPcQEUnwglLQZW0vrfr2O+vGPWPTuBK8rXVwD3tGizDzhXUp+kfopJ3Kov70wbR0R8LiLWRsQ6YDPwy4oSPsCfgVMlvUvSAMWk5M4pYrwE+F1U/yWiKeOIiMMRsTIi1pW/h0eBbiT8aWMp7QPOA5B0OsXcz4Fj7dhJ36x7vgecL+k54PxyG0kbJd1atrkb+DvwJPAE8ERE/GoW4uia8hr9F4EHKA5oOyLiKUlbJV1UNvsZsELS88C1TH2HUTfj6IkOY/kqcJWkJ4A7gCurOBD6G7lmZjXiM30zsxpx0jczqxEnfTPrmnIpg9snbPdJOiDp3gl1F0p6vFyG4hlJ28r6LZI2z0bcC5mTvpl101FgSNJx5fb5wMtjOyUNAbcAl0fE6RS3TL7Q8yhrxEnfzLrtfuBT5evLKO5EGfN14LsR8QwUd7VERCVrzFhrTvpm1m13ApeWXy46k8kLmQ0Bf5mVqGrKSd/Muioi9gDrKM7yd81uNOakb2a9sBPYxuRLOwBPARt6H059OembWS/8HNgaEU821X8f+Kak90Cx6Jmka3seXY14wTUz67qI2A/c3KJ+j6SvAHdIWkKx0uR9vY6vTrwMg5lZjfjyjplZjTjpm5nViJO+mVmNOOmbmdWIk76ZWY046ZuZ1YiTvplZjTjpm5nVyP8ANF55+5/TLpIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -1105,12 +1049,11 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -1129,21 +1072,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOxdZ9gkRbV+383LJjJLlJwkKirBAIKAGRQxIwbAgF6zoqJgQDFeIxiuYsCIooAJUUBRUBbJipKWzLKEZdmczv1RdaZP11R194RvZ/bbep9nnp7urq6urnBSnTpFEUFGRkZGRsawYcygC5CRkZGRkRFDZlAZGRkZGUOJzKAyMjIyMoYSmUFlZGRkZAwlMoPKyMjIyBhKZAaVkZGRkTGUGDfoAihIzgbwGICVAFaIyD6DLVFGRkZGxiAxNAzK4yAReXDQhcjIyMjIGDyyiS8jIyMjYygxTAxKAFxI8iqSx4c3SR5Pcpb/3TCA8mVkZGRkrEZwWEIdkdxMRO4luTGAPwB4q4j8OZF2Vp6jysjIyBjdGBoNSkTu9ccHAJwL4MmDLVFGRkZGxiAxFAyK5BSS0/Q/gEMBZDNeRkZGxlqMYfHi2wTAuSQBV6YfisjvBlukjIyMjIxBYigYlIjcBmDPQZcjIyMjI2N4MBQmvoyMjIxBg+RYkhsOuhwZBTKDymgMkhNITh50OTIGD5Ki88ajCG8HMHfQhcgokBlURic4H8C/B12IjKHBaGNQmw+6ABllZAaV0Qn2BvC4QRciI2OEsFbSQ5IHkhzKbx/KQmUMFiQPJvnlQZdjGEFy0qDLMGgYYsaBFiSjX7gYwP6DLkQMmUEBIDnV/N+M5G59zPsckqf3K7/VhBMAnBi53jVB8kzvvd0XaTAg+WqSH/X/dwGweMBFGgaM98exAy1F/7E2M9yhFLzWegZFcjO4bT4UvwBwfR9f8WIAr+hjfqsDKxPXexnA28KZCNc0nOx/ALDBSL2E5AySq43gk3yL7/vdYHxwDPOeSnJCl3kPEmszgxrK9lrrGRSAicH5SHiprRiBPEcSI8GgxmFk6rbv8ARWJ8xtsMqRDFw5D8BJI5h/iK8AeEOXzypjSq2jnAvgB91kTHI9kp/sqlRrKEi+kOSg16RmBjWkWAU4F2p/PhJSVIrgDytWJa73UjdjsZoYFMn/JXlyfcokvgrgbv/f1sVIR1bevmlCkjsZJtotuh3/dQxqEoDdu8z7IADv7/LZXkGgFXrtotX43l8COHA1vi+GzKCGFDrIpvhjGxEmeT/JT/XwjhTBH1b0rbwkx/k5vXFYfXbu/wFwag/PTzX/V5cGBXQW2eUmuKj/vWCkGJRN0yn6QpNIbkDy7E4f88cNsPqDVQ96W4nMoFY3SI4nuVVNMh1ISpRiWsImAPYz+Z5M8iU1796Q5I7+dG028b0ebk5vHIDJJPchWTsYSR5FH5wxcX/3ivuPdFlWhZ2T7FqD8uaqTsbYsyryOjHyvb0y/F4ZVBUTShI8krtW9IF+0aQno/O5X63fKeiewQ4U3snriV08Gk51DAVGNYMC8E4Ad9SkCTWoVJ3YAfVRAB+oyfcnAP7j/48WE1830MWcauLbue4BT4h/hmqT4HUA9kjcm2Pz6iL6RV8YFICH4bS5ptiY5HNDpubPvwxgnSB9r1K3mrSE5NM6eC6qQQUu+FUEfptoYdx3btJBOarQqhuSb2jogGIZVJt2SHKXBgLvoHEugFldPFerQZGcRHK1uqOPdgbVxOsqqkGRPJykVfNDYvAYqmFjekUJvieeMxqUUdOfR3L74NrMEVibUzkHRfLVHeSlg16dJJoQCk1TJ8WmBtU88/9JcBEwOkEbg/KT2GP8/07GzZbhBd+3XpxIfwHcPIyFMqZ+m2HGkLzA/288/4W0iW8xyRf6/1VlTdXfmwF8qYNytODHUop5fBPAFk2y8ccpAMaR3CtSvqO7KNv/kHxep88FebTFCPQWomeZ8y3gTZMkn57SUn1dhfk10RhfB+CvzUudhteix5LchuT0VLrRzqAEAEhOJPlj8/91Jo0OMmVQWie/BfB3kkfavAzqGJRlGikT3/NRJqZ1eD7azUD3wRGGTiT1OtRpfN9L3SD52sAUpfWpDKpJn9PB0q3ZYan5PxNAYyHAYwXggoeiaPc7AHzb/+/V4+rHAM4h+ZTEfZJ8pZFWtW+GRL9XDWomgOf6/9F2IfnbCOGvMvH90h/Xr2DkKfNrR27vJD/uHWIEwPMQsZaQPLiirBogVpmzZVAAcHWQfDK6a/s9kNb2a+GF2LkRE++LAFxozmea/1Ua8e4AfuPz1jwnhsJvrCgNitsUNwJ4D4DbAJyZSjQqGJRXPR8fuaUDeDMAL/X/9wfwfyaNdtyUk8QvEq+tY1CWmKQIfhOpLkRK0umn51NXXnx0npDfRllL0j62KxIMiuTkQNpTIvD0qnmoCiwz/2cAmOClxiNTDwSwBFjrYjMU5slxXgt6hhV29DtI3sJi8Xes/Fq+K0j+l+S6wf2VcG7afyW5EQoGFTLsXhnUseZ/qp4PB/DUViJydwDP8afj/Dzb9ol2Ss2F9IvQvReFCTVl/lRvvJsTeRwTuTclltC/ozGDoluuIHDC6gb+2jiSnZoxVdid7PP4BMmH0C54WYtRFW1ZH0Wf0rG6JdJ1pFiWuuE1ok6/SzXUVH2PDgYFFx/ul5Hr2kmPBlrSQtjBlBjVuZmHxGBBTZksMUkR/G7qP8WgZlbNtXgCPashwe/WSUI7mmXO+szRcANtrC/PLiRf4+9N9NdC097PYIhjtEDkId7MeSDJ3TyTbGNQAKYjEDZI7kHye+Z8HZLPRtF24xFnAuPhNOxLUBZ2lNFsB2BTzTbyvNXwdkD7vMsKuPkrAHgAzrQE9F+Dsqjqi3bM/AjAaeb6d+EIW4zILOrwXZ0yLmuZWA4AJL9R9QDJF5Dcj+TX6XbvXi/y/hTBnIzOnCd0/nUSHFMAgHcDuN+UR99Z9e3KfDWP/VFmMvCmPsugrCdqiKko+riOufUTaS2WVty7Ec483QmULiYZ32hhUMvgOw7Jw7wUuxOAZ/v76iI+Ae0MSs+1wVJ18kxPBLUj7a/2dk8Ytye5l7Gnlkx8JE8h+Xi6LSt0/qH1LpI7k/wSXUQB8cTySyQvI7mdyatqgLQt9PQDcqwvzxPRzPOrxVBZniOrIyAxU5Stz8nm3mkAzgrSa9nsN04nuTnT82x/gNPaLobzFnw7ChPdGDgGNVHL7hm15v9SAHY+7dVwpg8tj9WgLHZKlMUShVY/I/kKkseZvhMOyJAgCjzBNeUEetCg/HcfUJHE9sVHjWkMKGvEtuzjUEjxsfnelLbR6kdewOhWo7IMSoWq4/wxNY5/BeBvAI4HcE+QrgmD6sTEp/W2LgoGEJpLNU0VLVbBc30vgOlYsP3tQgA7mnPbnueZPq/PaR/X98/waWvbgiZKCMlNSGoA6e0Sj6Sg/TfJ+EYLg1qOgqipGeZMtO/SOwnda1CAIxTaKXYBoAP+erhOfzWAD/trlpisBPARAK8BcDDc/MPeAD4GACS3BXAkgLeimJM60J8fADeYwvLGsI898aajX8ENZHWTr5KsFOoYsCcSc2SMT8C2NCijzYV9TCVW2w5aV/uRXBrcmwy3aLa1Di0iddrYiRuiGHST4TSnCaYcYwEs88Q6VZdanhlwThYh/m5PTHmOMZdVeiaAswF8A8DL/LVwQIbbVoxHmRGoNjbBCziX+/NONKitAVzmGdXLI/dtO02H66eKb5M8gOQlKIerOg8FUYrN840DAJJLSVpNRZ1NDocTMKJefT7N9om+BpQZVJimapyodjrDlMW6pLcYlNeyFCUTH90Ef2l8kHwVSW0v7UcbomBQYbk0v+1YdsqyUA1qPQC/B7CvP5/q32nXbyle4e+Nh5u7tou6YwwqNi5DKGO0Tg2XAJgN1xbrkfwuyUpPXVNebbNRr0FZBlVVwe+A16q8VG473ESST0AxWGJcfTzKJgGrKWzkj+/yGkvMxDcfRYfYFkVD3wrgoeBd1sxmTXdVAy9kPvuZ/3/0x6eFA96byA5nu4kwnMRvqkE9G4V5J3xGB5H1amoxKLg6tYFqdXBaM9iY4GjncCahqKN1UJj4tJ31OBPtdantpO3adD2J5vkhcy0mCGzpNeywTkLzSsigNP2hADZGQaCsK/XrSb6yoozqtbU+gB9G7o8heTsLD82TAqn7DQCeEXlOCV/Ma88Kf9abUdv7t/54qxfSYv2r5FxA8m0ktQ9ZBhVql23lYREdwmqEGsj5bPN+G9x5AQvngdDEtwvaGfP3AfwPybegmP/aAwGDIqnWDu07L0J6SUJLg0J5TKpgY/t0CKUxKQb1epM3EPE6NYgxKKWX//XHYwC8ENXQfLQMaxWDqnJj/giAN/n/d8NpJnYQ2Q6SYlDrB+cxbO3LoQRPB5JlUOGAejQ4twSu6fqSkCjuj/a5uZiUdgYcsfisP9cyfj1IV7VwdhMUGutZ/tqzAZwSJN04eO4I/36g+E7r8KEManeSV/r/2oY6MG25JprrU1CY+PSaMk5rFlbCq+NB37kFnF09bJsQMeL8/UjZxsP1u1DC1LkxXb81AWUTn+JTKDNqoVuYuT+Ab6G9vSzUQ27TxP0ZcP3WCmCWENVNgId1sATlvmrvx7wzS/mTHEPyXQB+HqT7IoBX+f8pIQ6IjxPVClNenSl6aBmUFYBTc8sCJ6Rtba6FGtRpwfm6SNex9sdwmYaOF/WCi7Xte/zR7uM2BUUbfMEflenfyrS7fshY4PNZAeBOc80KTmR7nEEdg1qGtYpBdWIjXoj2OShFrPO1aVAJm61KK1q/2gBLzPvCAR0yVkscJrNYtzCO5JYknxZ5994kDzPnjwdweZBmEwAg+S6S2lHU4WMSyX0RDHaS+3rmEHpKqefaDnDzX98Kbp8Rpke7nfpwAIfo+yPp1cTyeAD7kDwVbtEqEGdQVoPaD86sNiGSdplJ9zt/VAavdf0Fn65ui40YwVWGEDKoql1oV5p0qUFridgUuAXhujalyuSnxOsJifvKNC3Rt++y0vnPIs+H/XkxymNRzX37oOxYogjr5XEoBCZlWCq4qMZsmdB3Tdqb0d+wWjo2o158jLvTh/RjA7qQX2EEGs1vPRjhjS4e4BhP3F/kLz8xeP+x/qiepDEG9T5/tEzZalCt8pn/KS1K6zSsg/lIC84fBbCQ5EUkQ2FDHaDWCgY1xZuuOmFQVmWfgDIxiTGojVGe75iUSBfuOqtmigkoOnvYQcLzGSgI42S49QKAIxp3Avgz4iao3Umu7001k+HC/lgc64/PRsGI9BsegCMe+wTPXB65prbk78Cp9zHzRGz33R2Dc+vpFSMqoVb4YfM/jAKieej1KueYMZFrKhRYwrwX6hnURSSbLDCtW49lGVRMgwLKDH4rlL0cdd3fEV5yvZrkgf7edDgBKeVqv4s/joUzNy9BmSnZOn43Cg1REfbfRSgTLf1/aOL901Aef7cF9ycB0Cjn65prMWyPwhW+KVYhbSGwc5rrkfw7yS3N+6fSOUBVmcfGw9VZag5qXZStCwvgTN17oZiDfieqaXZKO9b3K6YCGMtydA37v5QPXWDiXVEwMbU86LTGbSi3/+kkdUHzHv7ewQAOD96pWmVvDIrOU6NfIUhS7zic5H/o1pB0uqbHDuZO9tSxKvtElAdhjPEcDLfS/VZ/nnI42Dg41zUJk1A0ZKiNhFL4F1B81zooJMynmzShGfKXcB3943CLaQ+Hk26SZaRzhNDJ/flwnTAlZYeYhDTBSSFc82OJTMxN/vjINUVsMnYi3AC6B0WdjUHRZmE6oNA8lEFZLflI1DOoveEcWmKw82kbRe5/FMBd/r9+/wlIOw6kPAiB4jvOhdPg9kIRlWIdANciogV7aB/VoL7zUBaA7LhSBmYREt7FcNq+En3t9ynGm4wmAGfpsOVel4VX5ykA7vX/rzRpjqrIL4YxSGu3lkHtBGcmvxMFvZgG4AbzfkFcmy1FpiBp++C6ADYKtLFt0VmYtKqQXk8ybaF0K6X1tBiUL89NcG7kb/OXx5HcGsBf4MbVUrj2fdjkoQJC2N4xoSIZWq2WQZE8Ba6xX0K/s2i/4bnqV+Gk+l0BvNxz7EYQEduInTIobaRNUB6QbaFFDK7zxxSDSq0psEwwHJAxwqFpDjfXrFYSSq2/8vdtJ6hkUChLS5PQWSy0L6G7oJqhU4MiVp9V0QVi29LPhCOyd6DanDYRZRdzoGjzFoMSkeuQJqqdoq1PichHUJjoTvDHZyLdhypjwbFYwhDOf06GYywpBqXtrksSZgL4tLlvacUitNdJbA5qbxSei4eR/Bfct8UQcx4B3HfMQ1n7HAc3FzUFzr065THaKVJMbZyfK52Bcn+1DAoo6tCOCTWxXxPJdxoKAXksXPnDdlfB9ZZ0saO4AuXIGq9CoW2nFn4rLG0Kwz3pc7fDMeu/wfWp8QAeNGleQ7cdjNWOdNFyiCTNbtKgK0XkqyLyFfRvoIZ4MoBbROQ2EVkGFwqmzhMkhQ/6Y5NvswzqTYibpGJQaTwkgEoUYsTlfriGVQIRPvv5iveF0upf4EwAIVG4A46AWYkkxaD0/b816VLEK4U3oDuiYBc528EQalfd4ClwhPF2VJt7rbQ52XswKtMOB25M84nh7RX3nhzks9D8Vw3tXNQHN65iUNMBnOP/a7usIHkcXN0+iIpV+x4bIc4oWkRERATt2ntsDurjKDwG3wNnRjwccaQ0qEVwdWXrTlA4ICxB/xhUCj+FaxugLERpXYamW5tGiXbMc3I62vvoXJKWNkyEM+f/Fp1hDhxDmhvkZcu3beLZqXQLmY9DOdqIwvahR+DoxgSUGRTgdqK2fUkZ1L1wc8qK5Dht0qC/JflRkh9DMZncb2yOwswBOE+n0mZsJI+ni4QwC9XajaJJYM33Avjf4FqTXUaViIQSvxKaN5prH/fHOXCNo0ygyqShUEbz7+D6vQD+iXZCeicck7XtmmJQITOaj+aEuCcEGq9l5l3HKzP4lT9qRIH7Eum+E5z/AI5BxUJYNY0RFwoSFnNR7rc2rMxyoEX4rWkoFqOsqRClHpUr4OriUDgNKjQ/3xCcvwfl/qN9egycJnO7ydciZM5NIhNYpAI7L/JlsH1zHAphWTU+oL+x4lKw5t+t/TGcV90LwAv8fxVEHojktQfiFgid594Jjg4uRXPm+09/pIjcDeBf9ibJbVBoev9EHNPgTOvfgDNdWxryH5SFu0d8OXdDO4M6AWWBZJV/dgkK+vwO9MKgRGQWgEtF5GQRubIufZeIdaySDVdEviEi+4jIPmiviBgs8Z6N8rqbMJ1VQ5uo0rpmKcWgLNQJYI5/lw7EqrkVhXrv/Ce4vhKF3dfiLjiTnZXo6kIyKZag3rwXc2PulShYwtSPeU511dZwMl9t+NyucMTbCkraLz4O4LXmekqaVQZ1EQC7JunLvlxKZBei3C6pYMJWy3otnNNHUy3z1/6ohHxruHET7sJr+5AlRMrIdH5nDFyZdU4rLPO+cGNWPfw6CfT7fjjGG+tLi/zPMveXowhya2lBE2+6Jqgam3bMvw2uzqwZ7BUo1qkBrv4no9yvAFdXB6NMnHUO52/+eDic09JSNJy6EBGdptC6tO1EOIeGvVGNtwTn1jy5CGXXf8t4Y3TZlns6nGC2BI4m/82XrycNCgBeR/J0689OcmOS76t6qAPcjbJr4xYoBka3sAPkXFQzNV0NfgAKbeVSc/9X5eStegul2VjsMWVa98NJek0lYKBo/FALEDjiab/xUW8e/QfKzFiJ5go4U0EKS1HPIGLaWKoPNZ3cbbIlSifQQa6EuekWFVvAER+7nuMxAPDC2Vn+2p/Qrn0ptK7/jXL/PUdEFqMQfqah0ERsWYGyjV6vfwvAZagPUByDJdDhYnCgzPDmRf5r31sfTnu4x5/H2vfrKNaoNaUtd8JFk0iZmxbB1WvMarKXiMw252NQRHcBnINKN3uxVcWcC3EHynU4N7gvIrIE7RFZ5qLdu/RAmDh9Hqvgvr+TuXULy6BSW7zU4Qco+s4OKLetZVDhtwOOOf8tuLZEROaJyAG+fCeSjC0ybtaJROSVcF4cF5I8muRP4AbNf6ufbIwrAexAFzpkAtzE6nk95qnE9rdwZjztdBpdwXZcZV5zUDTob8z9683/E5Geq1EGdVHk2t1wZpcXoXNow9sQN0tRdgPWxabXokyUlWi+CmmVHnAMr45BxRhwSoO6TUSIega0PpxEbDdCi3X0plBC0CmDmgo3t2e1lhhDmI70wt2lcFrSu1EmDNr37gJaprwTUGgpVqtpY1AicpyI3IKi/uu8Ci2sOUaJjDplbIgycW1ZEkRE60+3lZ8E4DoR0e+KaX12WUNTBrUEjpnPRLwvLYSrh5jmGBL9MSKiIccgIl9FdwF1O2FQD6PcZmGfUQEh7DOPws1LHmiuzUN7NIiH0VyDsgJkTIM6Ae2Y3SDfBSg047Ddl6FYAB1TAsYhLhgpNL9on27qZj4TTsJcB25B5o0i8gIRObf6yWbwnf5EuDhT/wbwUxG5scvstExKGH8pIneiGHx6tJKKqrCPoqgw29GuQNFplyGIxWbwKACIyLNQTAIqg7gF7bbqqoaz0DKpdKgalI3crAQl1HL0/YJqc0cTBrUwci02cC6B349GRB6O3AecWecxOKJ2k4hcDuAwOAYQ83gCAnt6AtpuWmedmJquRnlMpBiUZdSWmC0RkQe9JrsykqY1uEVksYgoI56DQnOLaVAKHcRhud4ZKafCmnu1v+kGjg/DMXAtX0gkNkRZ67aCQ0wz2UBEVsGtmasj8irkLUZ50XQI9Rh8feReSPS17XqN8r4UzlP3urqEcHVq4/iFbaPjLyyrmgY/a64tQPs85nJfnutRD23f76HQ8lPmY10cf2HivsUSFHUb9smlcEIxkLZSpdoJKPpRjLY0lnLOhGus/eE632SSP2Cx503PEJHfiMiOIrKdiHyil6xQHhxaoUvN+VFwnUO9US6Bq6h5KBhYq5OLyK9FZFJxKtfBbfoVwjIH7ajqkTMXTgr8DYDP+WvvrfmO8gUneeu9cHGbfqe+V4mJrYsqBmXDMKUQI9jhMz8C8FwRmRNJexG8JCYip6NYN7LEX7tQRB5DelD9JnHdQju8DpbY5HQKl6NMKGPzdyGDslt42DaxdW3NrDG8FYWJy4aiSjGosFx3R/J8AM77zAodSsDmAq3+NBvOBDMBwUaUIvIQyt9k+7f9FnUsWs8/dxXaNVe7S/CfvMkTcN9kI8Eo5vhyal1vAreVuZrg34h2wle195bFTZFrFktFZE+0h1mKIRQyw7ZJMagYQV4I53DwB3Ntms/jiyjMpym8EABE5DUiov3yE4hPl2i5dUyvb8p+apB2MYq6jTEo1WStMGqnRd6OcuBuy3fG+jJHx0ZTE98RInKBiKwSkZUichIchx4pr75eIChXhtV8AGC5iPzcS7ra+ZeKyDgRWeHtxa+HMw22RU9AUWcxCTI2gK+BIwDz4Rp5mYi8298LV56fj4LYrIAzoV4NN8luF2jG3HxtvD/Ab9HgJVqFLfM9KON21KPJHMh9pl4tvgXgZSJit8zWQRpKjW9A3IMt9X47MDYBWh1+I5Ql1CrMFJHfoNBgPgEfbT5AyKBSOyLbem/ToCzEYaX/byXl0MMuxaDCCXh9/9UowuAAjrhvi8KRBHDeV8/xJr1Y+ey1WP9eB8VOw6lAykC5jUMvwWVoj+TyCICr4Opar9+PYsv1c43AFuZrrSPhWjeIyC7BpVAD1fZKaWK2/UMLQdhHl/p3hoS9TfgRkWXe2jPbXJ4OR5+qLCDniwiDvqN5XolCILa4Ac7sr/3uERT1HFrGrAYV1slS33cPR3mu/B2mDA95oV5h6VClCb7rdQMi8kd0v1ZpJCEoE1t1CW8xqMgzJclLRL4tIncg3iG0zmILzux7dQD/x08GqgSlnf9GtHvnvQJF51/hG/YJIrJURML5Pv0e1TZDE99dKEedAMru6j+quJdCymW9zqSyD4ATvERuod9aYlAici/cJn1h/4oxqEkor9U4Hz7WmxdCYkR3LsrzhDAa31R//iERCb31/gVnirOmsBSDipn4Ol1H+Dc/j6cI6+td/hgKG4Dru1aIOU5ElovI7ShbBxZ6oUyfCWHb1moBStgWG0ZhzalVDMpq3apBTUA5esZKf30hivFJk09Mu9Wx2Zq/FpHYRqYhQu0mZZ78l8/TrgMKx0SUQXnYsGO2/NYxByj3L2uCVXzFHzV6fp0jiO1DOjZWiMjZKAsgY/y9a1GOymGdNEKeoQz49zDM2vezbyFulrfaY6UJvqeFbRGCMwxY5ecAFLqotopIpCb6YwRR086O3PsACm8j7TRaFu3I2qC7iciP7cMisgAFQUiZg4Ay8dHOren1ffeIyF/8/0/AEeTvoSAclmC8HUWnvxXp7aJ1UL0tuG4HVMw0eVWgySlSGpSan8I6aGsPz7zPhzfHiMjVIlK3lm0lXOzAl0buVS1k3RduIbCVoO1gs/3Iain6fWejmfOP7tcUfr/WsxICNQXF+qkuRQAAiIgN5JsSKOqWe1hCeTnKxHkXAM8y5yGDaiOEHreavmHjBBJurFoNCijGb2xSXfP9BuoXnVuHAW1PXQQdY1CbIm6Sb5XDazErUHY7t317Dor5P8ugwrmu0Cyp5dF6UMakjLVq/Z19DmjvK1bbtP363SjWcC5GeT+1aFlF5FaUzYnHo7y2Uf/b94wcgxoyaEw4HVA/g5u8U0KR0qC+i0CaVojznAoXr9LfewRBpHAvoSrTDhnG/OC8DlVu8XYO6gY4U8hD5h6MjV+1gYe9KUm/33bqi/3AeiaAl4jIPSh2u7XQZ2y/+RXcRoy2bE1R55WmA0tNXaHUbOuokyDBq0TkXyLyUzivKWuqTs6rishjIjIf5QG2zGg5s03ae1D0HRVKfisiTawOl/ljikGFfXoh2pcQCNKEq45B2TFi07YC1YrIFSIyw5zf5KVmxXlwzkWzEu8CXN2/J3L9djjmuwzluiaK/h37BtUAxPb/GETEOhjNM8cXwXsBGrxYRO6HmwMNl4nEhKZrzaltg7tFXQoAACAASURBVHkonBesYHMByovBw3ZXgST0zNP2r/PqjO0arPgaCi/S98HNx0NE/owiMLOY50IGFbbDBVpea7r252qCXPsYlIioNKkd+GgR2ct05KgGJSLHiltxnco3ZBS2zqzKHhJIbZjQ9BaTzk5CeRIZqF8Hpvn8Q9wCZn3POWi2il879XZqHxaRi0VEXXRfC7ca3gbu1XeOReEWfreInIPuoIM0xbT/ASdo6CZtdiBuhHJUhKooGOHCy5ZJRUTmiMizzb0mjj+2HMt8PvQSpIUSlk7cllt5op1QaZ+aZ9It922v7aQRv1chTbjqGJR1ANI8PoHAiaIKfvzth0K4sGa0l/s0c0QkVjevEZG3o12Dorg5mjCKf10kCXXd/iacZmDxWRSONEtF5FxDVJWW/MIfxb9fMQ/VawuB8tKO96AQPqywdY+I2Pmb0IM5pAUhg4rN+aZQYjDifAru9f//T0QOMve0n4xD+yahKbwZ8Y0TLazQUsmgOpE61xREB5+IrPTBfLtZWa64A04qVBwDJ4EcLeXwPUBho9fjcpKLESdWs0XkEi2qP1a5VAsKl/YSEfPmknCLjRjUyy85LyIi55P8N4ptK/RdY0Xkcl+fof2+Uw1qSUIahjg37KNNFGabbnnwXNJFXkS+SfKtcIT3DSji1cXwVtRsiyEiq8xWXEmN2KcbF+kbdUg5VYT5LEPB5HWgfwRO4FmFhOsu0mNArQOtuVER+RfJXUWkyRxlDNr/76Lb4n0/EYk5dVhYa4edg9Iy/TM4X0ryPCTWZYrIHN9eP/CagcVyFPXR6RzhNUgLAVuLm8e25bjMRzAHygwqrI+fwNUB4eKShgv1tV+oplenQdn663TB7//ACRkpBlWiNb6vV/X3SSjX89fQvrVKC6ORQdUxoE4WOZYgIlsH5w+RDB0d9N4SkuFcznzECVqMQKe2f9b0qfVFTbANnBbxPdTXl+1MmtZ2cku4/oTmoYUAR3zq7OcQESH5QZRdxkNishDVO98+4POKbZZn3/WTuvIEqFxU3AVzAjwBkmDeTkSu8n1K50LmotiZdbJPs9wIYipZh1pDJYMK0QNzKr1L3ET67xs8Y5eGhE4SUTQwnU6RuHdpa5falKBUASKhHYfMyUD7g2VQJQ3Ja8Q/9RHU7X1duL2S5FEo5q7qaJrSnBfAreEMI+MkISJfAgCSp8Fpf6eb259T7auD/JYG53ejfaPTFkYjgwrtxy1I2SOqX6gaNKF31aOId2g7MFSKrep0gmZaUqpcswHAE7KUZ57CSvE6uJRBrYcyU/haxcCMQcPY1EJETiNpTTshg3omquMCHo36DQM7wTZwxLdOG+gGi5FY8yUi96hGKc4Z6DP+1pUom+CsBnU+ykgR4pEw+XdjsVCCehrcN2jg1dA5pzESzAlwEn1Kq6hjWES1M1MM4cLUPaVYsB1CtS01K34fXiAUkZ8DrTFcx6DOAPAXcXFVgWZCQgkicgOAG0jqso0HUOzWO2IYbQxqLDozMfUDnTC9+YgzKDu5/AG4eFcpHAbn/LEcLkZW12jIsO0A1IGkEmfKxbopFqIzjfZquO//SVCuWo9ScREtetE6w/xm9yuvSN6rUARDjaGt3fxcqTqrnAXXR5QIhn2uEy++XlGl1Yb4Oly8OJ3Xuxto7dwMEbk5/WjXuBndx7kbIyIPk7wODSPxe2sAUJg+q6JVqNOHpl2G9rh2QM0YEreMoMpZpROoELNOl9aBjjCqGFRoEllN6GRQP4rAxBcyCSlWgEchIjY0SdsixBFAa1dfEVnsB1e3AzpEYw0KaLXvhSS36sIcM5pQ2ee8gwtIbu8vhXWc8hAdCQZ1KpynbBOsQrH+yWKkttGYACforI/yup+m0HJdgM63imnSf3+C+mAIp8FFDFld0G153rw6XjaqGNSA0A8NapgRegwB6X7Tqbmj0RxUCHHhkNZmNO1z0XVmInI9ydh+ZH1nBN601iSGIuAY1BVo13RHhEFJ4fn6EMohplpJarJQ8/ipiO/uXIXZKNYeRtHE4UlEPlh1fwTwBDjNMVxcPCLIDKp3dDJ4HkR3WyYMEquAtsn+2FzFAUgH0U3hUTTfryqjQKcMqk0oSjD5QS87WSUiR0Sur46NCDvFDijW+yxD+zYZdVgsIm/te6lGGFKxJGckkBlU7+hk8LwLa54GtQjt8ezaTHzitjnoFFcgHs0hoxpN+5w6BjRdHD5oRtCRd+EgIW4Rfy8Y8fmb0YDMoHpH48GzJpqmvJkhXO3flzkon3dqS/aMNBr1ORFZQXJaB3Ozg2YEawyD6gMGMV++xiEzqN4xGgdPHdZmB4U1CuLiOzbFtfVJRhQpj7/vo/neaf3ESPbzplrtWo3MoHpH31yX1xDsh2aRzzNGDiPlNHD+SOXdALsgseWLuEC3ycWcI4iRYlBPQXPHkbUag54UHQ34HICtB12I1QVxQUI7WduS0X+cDLcebNRAXLDZNW1+tiuIyD/W8mUSjZE1qB7hXVU7iZ6QkdETROQBNNuqO6M3ZCYyYGQNKiMjIyNjKJEZVEZGRkYcf0M5QHHGakY28WVkZGREIG5H6uQ2Lhkjj6xBZWRkZGQMJQbOoEieQvIektf433MGXaaMjIyMjMFjWEx8XxCRMJxORkZGRsZajIFrUBkZGRkZGTEMC4M6keR1JL9Ncr1YApLHk5xFchbcLpgZGRkZGaMYXB0LmkleBGBm5NYH4SJaPwi3KO5jADYVkdeNeKEyMjIyMoYaq4VBNQXJrQFcICK7DbgoGRkZGRkDxsBNfCQ3NadHArhhUGXJyMjIyBgeDIMX36dJ7gVn4psN4ITBFicjIyMjYxgwVCa+jIyMjIwMxcBNfBkZGRkZGTFkBpWRkZGRMZTIDCojIyMjYyiRGVRGRkZGxlAiM6iMjIyMjKFEZlAZGRkZGUOJzKAyMjIyMoYSmUFlZGRkZAwlMoPKyMjIyBhKZAaVkZGRkTGUyAwqIyMjI2MokRlURkZGRsZQIjOojIyMjIyhxDBstwEAIDkbwGMAVgJYISL7DLZEGRkZGRmDxNAwKI+DROTBQRciIyMjI2PwWCNNfCR/N+gyZGRkZGSMLIaJQQmAC0leRfL48CbJ40nOIjkLwM6rv3gZGRkZGasTQ7OjLsnNRORekhsD+AOAt4rInxNpZ+U5qoyMjH6D5C0AniQijwy6LBlDpEGJyL3++ACAcwE8ebAlysjIWAuxHYCtBl2IDIehYFAkp5Ccpv8BHArghsGWKiMjI6N7kPwsyc0HXY41GUPBoABsAuAyktcC+AeAX4tIdoToASTHkTxz0OXIyFiLcQiALQZdiDUZQ+FmLiK3Adhz0OUYZdgAwAkA3jjogmRkrGHo18T8OABj+5TXWolh0aAy+o/cthkjBq+h5z5WjfHI47An5MpLgOTjSd446HL0gNy2GSOJWwH836ALMeQYj6xB9YRMxNLYD8Cugy5ED1gr2pbkBL80YY0DyaeQ3GzQ5egSWwF4yqAL0U8YjbBfYyczqB6xVhCxLrFq0AXoEWMBgCQHXZARxscBzBl0IbrEFQC+P+hC9IA1fYyE0Dn5fjGVccg0tifkyktjTR984/1xtEtwM0cyc5ITSX57BF/xTJL7jmD+ILk+yU+OQNZdOxOQ3HgIhadxwbFXZA0qAZJPILlfXbrMoNIYLQxqtLfxyhHOf0sArx3hd4z0kopDALx/BPLtZYzMAfDqfhWkTxgbHHtFZlBpXArgb3WJRjvx6gVrDIMiuRnJbwSX+22u6KQ8Y1ajh9dIt9OEEc4fAEZakxip/Ht1xx62ucN+a1B9M/GR3ILkpA6f2YNk38a/13oe16/8miAzqDTWGAYFJyEfF1zrSYMiOZdkG3Em2SRQ798BnNfNe7tARxoUyStJVnqf0eE/3gQ1Qa/1UMZBY6TK3usYEZJHkNy/L6XpHcNs4rsLwOkdPnMtgJf06f0AcBWAX8ZukJw8Eu04qhkUyV4W/w6MQfl5jzEkp5Gc3uCRWFl7nYPaEMC0oFw7APh3g2f3AfC0Lt/bKTptp30AHFyTZhyAHeHqcLK/NpKa6BqhQZHciaTVmnodI4SLu/mDHvPpF/pmdfACTb9NfC2Nk+Q2DZ/pSOtqgFRfOhHAX/v8rtHLoLxqe00Pku8gw7x/B8BhcI3+ngbpVwGOsZlrOth6aeNwcPW7s/cDIyFIKHOfCGBKcG0ksEYwKAC7BOfDsRVC/9BPDarfLuuAb0dvPr+toRm93+Mj1eYjIsCNWgYF09lIzqxiVCR3iNh3V5n7DIh/Kp+pFffeSPLvDfLYGcD6cBrMugDWqXvGlNUuLO7axGc6fjhQh9HM1Y2TRN2gtQxqanBtJKCE5x0knzNS+dcmItdt0s8N1iQzeBNEnSRIjifZZBxalCwYJC8muWmP5VOo6b1Jn+y3EJHKr9O+0Khco5lBjTfH+wC8uCLtfwGcElyzFX4MgCVVLyO5CYDHSD4hkeQVqNlChORpcCa0w+AY01REOiHJSSQt89Cybmeu9WLi02fCd3c7n/Vzkgc3JX4+un3Td0UZFMltSO6WeKZucAxKg/o8gNNGMP86PALgOyTHkvxyg/RDrUGRPNTvjtAUJQ2K5JO8U8DX4OqmE4Tj70AAqf7YFNqOE4Jje8LCOaLfQmWqzUfEm3bUMCjv5WK/RzubdpSNarLYJDgXny/RbAdflbSvStxfL3aR5IuM9naSuTUFCQYFYC6AL/nnp8PNq4RImvhInkBy/UQ5gWJQVXqweSbQhAG+CMBFAN7WIC0ALADwTpJNmEJqYPwVwPX2QszpI4Eog/LriQ6i3xomBpLHVc0PkNyQ5DvCy+Z/R0Tfa/ezahh6J0RqJzjN/UQvWFihIsynKw2K5KJuy0dyHZIzGib/PYAFJF/YMH04B/UPuDmyHRAZCyRnML2+TPOaYMq7uGE5UtB60jap6s+q8a0us/xnUzdIHsguw8aNGgYF5+XySnMeMqi6b50EtNT535rrY2G0EJIvJXld5Pm6/NsYFF2Inp8DeHwk/TpwxDHWCacCUHfPUxCfp6rSoM4E8LKKsmrdvYPkZHM9JCQ/QmcbS0YHFMm9I9rVZwCc0SDPFJGMLeBd6o+daFDTzLXLAPwJwDtjD/lv+Abc/MCnIve3BvAzOE2pdMv8n+zTvlQdEkieXeEhtT6AJ6JgpNGiJW+Q7yR5jLk0DoWw9SIAVfsZ7UfyrSavTwdjJ4XJwXlTE+SPACwEcE+T9AavrE8CID4HNQ5pxvJ0pNeXaR/6MIB5/v/yhuVIIapBkdw1Mr2g/SFpmiT5bZLJncm9o1bopNU23hpYOw5Gl2HjRhODAsoL/8YHx9YApwsEGxJLlTQ2AHA4ymYuywAOBbC7yWs7kl+Bc+nUa1v443SSSsBjGtS2/hjTAqo0KAB4wB9TZrM6xlwl/eq3vwluEJaumw45A0ZCI/kFkjFmq3hjojP/E84hJMSBJDdIZUZyQ6T32yGA+Yl7TRnUJLj+oNdU61TCEGpSlvC+ypTzdJJ/AnAqnKknVlbFTiRfgKJvAM48nNIClIGEHpcTjWauc1wxRvA5ANacNx4FgwIideXLp/iS+f8yAIeT3JzkhxLlLWUVvUh+nuSWkVsqVHVitgPMGPDmyxRDjM1BjUWaQVUxVu1DVpt+vi9DlfWiCUIT340APunz/rjX4O/z96rmzl6LakH1hwAeDa61+gPJfb0Q1ZErO8mjEfTXFEYbg3qW+R9qUK8w924A8JZAOpgUHPX5/wbvWBacvwnAW1AmTuf744fh1gQB8Y5S5cL8fri5qAkk143cr7OJa/l3InkBAJD8MEmtoyoGZSXIMf7ZVwP4s5aX5HZwncwy+rcj6PAsuyVvAeAZiXduEZHmtkNRfzGcG74vwHSSMXf3TjQoy6C0DceRfAWA+SS/R/Kp/rqtC9umuwE4CM3nA38FP2dqTKghoVBEGRSceUvNzeGE/ZYk7zNp7TgYH+T1TpKfJHkECoJs3cIfM/+VnhwF4GMkn5kos6LNVOc1gXfAE/MAc0y6qMk8AVvv5wH4S/DO6SS/ibgGNQYRBkVyHqrnJWP3Pkg3d/wQ3Zx1p6iag9I2+yDKdVfn3BGlA16Af2nNszv4449r0mmeatVosy6kMNoYFFg4D4QMKsSnUB70yphUOlPNJJTQl/v3HFBRDJVAlSBoHkuDdJNsuoq8HomYePSZFLHV7z4UwHPpvMNOhTFJMO3QEUqQAPA9lBnqLXDEMdREdX5BEtpSaiX62wFcyXZvyqpo302ksNgg65ZBWYeJs/3/V6PYdqKNQXlpXeutZWoKGHdMElcNSudOS9og3cLICXDengDwFJJC8hKSR8GZ/dSsEnp97Q9gJsk90M74Qg3qRLg+cy7KmqXCPq99ZaE/1pn7Phi5pgxvReSeDQr8cE3eFrYfPgFAOHb3AfAGFDRjTyMYjEXRpwG02nQGAgbrNUfx4z3lqq5rM7txuqliUDSaoRU46ube30PycSR/bTL6MQphNIQk/ldB06lQ9EAqYYhRx6BQEAPtAK2OwrLnW8rEp0TvO2HGvgOoBnWZXo6UYZLv4G/353f5Y+gJ2NLWKswOujhvH7qFu0qQ6jq43n+vP6oDhg78rwO4is79PWQKtp7GRhhNVT3qYJ6BMqFT1E3ahuFvqryDWvXJtLPGSpIHBN+gczsb+uOe9A4ZJF8P4H98OsugpqIYL2Hd70jnLWbNrVqeV8NpT1WItb1qCKpVhsLNdXCa1oQg3TPgNBhLPMKxoFrXtSjmR2DSpBi/ft88FFqUZVBaPwv8sSkTiX3/ZiSXkfywuRZaL9zD5NRgbIewfSNGVJVmaB7vRCHY7ADgqUF6/c5wfkY1irtQ9qi1UNPlxiTv1oskjyT5scQzrWT+qG1+gzEXHmPytvkcXpMn4PqLXd7wUqS3Unmy0Yy79eJszcVFBO8SRiODaplh/NESjbbtz0mqOW6yl2oPq8h7AtoHSZRBIW4nT2lQpyFtclNTwKZwwRXn+vM3kXyVSXcRgBvpQscI2hmHDrJQMj0DwKEkraRlB/QYtH+LvT/BS41qTrKml9h283UMKpx7aDEokm8maaVuy/CPpHe0IGkH5So4YcKa+sQLBHP9M9cAeL2/9y3zfwO4+cb74DzbFLHoHmfDDXSFjq2tI2lDjCcZdbxAYS4O23N7OOKj1229hww01KCseWk+4JYumDSp9XxKyP+NQoN8PMmv+f/6zdpmi0jub0w7lQgEpY/4snyA5I6aJExP8vlwWleVe37SQkFyJxQ0w6azfX5nn5ZBunX99RjDSgUAVoFnP5QdUE4C8CE/lurmqGxfsAJdyFTmA9iIxoGC5LfYvtZuR9SAZSemc/0xNj85hs7RzK75CoUHK3RWRp8YjQxKG0MrxXa0LwemFQB4nj9q5zolkudX4KTGKWjmiTMJcY+1pUBrnY/ATUIC6XkZoOiAr0P7OorPougk9/j3qpPC3on8YlLP5+HVbpKHAniSuTcW7QTLdjglWmou/Ii5F1v3MYnO6+g1ifJtFZxbxv0xuP2fFJZB/QzORPhMlE1L+nwoReuA02+L2eqPA3AxgNkom3NiBOSFKNvWQ2Jdh8/V3A+dYdSTTfuZFVZCghBqUPa+9uf/mLR1DGo2yt/1Jn/Ub9ayChwBas1ZVWi6QGROyuf1ryB/xTdQxHw8ii4UF+jc7u2SDTW3bgcn6FnchKLP7WGuxwTPyX7uSOtPhTptgyYmZ2VQu/oy/Y7k+1Eelz9JPHskydeiTFssPQrH2yoAt6PscPN6AMcH6db3ZXkfyW0Rh3Wnv8UfY7RkPJzp9l6f584wy2dIPohqeldCv4IiDhNuIXkD3EQrkB5sIaomLVfBSWkzUJboiXhHnoi4pqAENXSzrYLmE4v8fBOKTjLf56vle1IkPQA8N3JtOwCgW9PxfhS2YqB90tyWCaiut9h2ClvBR7yg89D7V3D/BXBanvbNlXROIjugXQMNz3eH04AsdM7LDqZdUBAB7R+W+K3y5/vADa6jUdagkp6FBhNIvgz9W8A40Qs1O4rIzXACxeaIm3rHo/y9oQZl+6wKFpuZNCnPUGXiSxDv3yGDuhSubz2Obi3QBJSdKhRanrr1TSGDspryNgB+T/IMuPk3a7rU585svZA8GMV2Dyqcnhwpk8XL4OYbtZw6JifC1UkTx42Wic8fD0O71eYQexKY/8O9yWz7hxrUKgC3wdWNXRoTCgnatz+F8tjX949HWXDUNDH+8TIA1oMz3OusydhpoSMNis0WTg4DdgOgdtJG7oyo93a5GU4VttJLylw1PnFPGVSni+fuTly/NUhjGaiaVa5C3NQWgzpQWJPMD9HO5G15Og3fsj28dAXXRnsF918G4IvBtdPgFk2Gc3gxs2hojtQIImFadZXW/jGGxZqvJebeXDgpNWRQNwK4IPJ+xSS4dWJ9Y1D+uJ4fh0okJwC4JEgbjtOWBkW3OWK4UBgoOxWlFoBq/SxHnBir+XginClcCevmAH4D4A44a0QKMW9VoGiPkGlshHJ4r+UAjvT/rWPDOJJPR5kwX4RCgNI+Y78ppumpKUzryjIoIM1grZajyykqhVSSl7FYBFylSFjNOWR0Aqdph45G4bdZi0BqyYstg7bzSZG0ZwX519K6QNstoZZBkdzR/3ZC2XwzNEiYDfTbft6HVwicpL8r3OD9GtwAnIG0s0JMVVYi2SSMjMXsxHXbfnfADWBltGp+WIXE5HIFQkKQio4BdMagToUjQnfCEZbHoV0DOwtOM1RsiMKEFCLWf1NS7IcT1zXaxFgU5l4rrDyIOIO6D+0OBjH0I16doCCiS+EkVO1fExB4maFdg7ImvjrzSpUGpUR1GZzA1gLdEgF14HkLnKOEvncCnOYwGcX8XgypyP3q5h3Tauaa/0tRtJN1DZ8Mp82FzipaRy/yRzuWY3PISsiVWGvfr4vssAnax2CdFeUAFAJjlfNE6Ak5y/wXOGEwZFDhuLHevDF6dijKDGoVyV+iPXhwDE2E8eT8YRMN6nQ4NW1flBedDRNiHaNK6niow/wFzqSygX/XzXBEdjrSHe33kWvKSI/o8P23Rq69Ca7xddDOg5OWlOCrd9VK9L6CvQpH1SdpYQ4cU18CR+C3QjuDugnphZFTAIDkGXSu1LHOnxIY6tbkHALgp5Hrc+HK/WxzbQM4xhUyhhhSc4GdYBEKrfYalAnOeBRu3faahTXx1a3FGoP2eUCFMu7lInI5zOJ3AFea/7uizKDGolnQ49RY0nqO0Svrsry7eY81/6Y0G9UWYnQtRjRDBqVee5UMSkQeQbv233TqAQDe10Faa0K9AY5BPY0uTJeugRxLMiWoxMbPkQgYFNILx0M0ib+ZHEdNGNSHReR7IvJdxFW6YUCsY9iK+UVw785I+s+gXVOxHiYL4Ew+E+E6/3y4jt9JlOOqVexVuCVy7QE4Aq0dagFcZ1RCpi6+TTWo2Dv6gb+isFkvgTOTTISrv+loZ1C3Ih2YV6XaN8KZSvoZZyw1lzYHzgEj3FtsKZrFVmsaZufjSA/6RSibckJJPxzgVU4STcb8GxLXrQZljxav9UfLoIDquQcdE5MRX4C+FckvIa5Bhel1ztF6qzbyIgwQE3BfnLjXJDZeWO9Npx46wZ9QrqPnwNGBZ8AJXxoBZxzazcKKUIu9G25Oz35zJ2brZCglg+RyhNrOKiLX+wlFiEiMsA8DYh1DK3qeiISRzGNmv8+g3SxnF8M+Bif1qKv5o/4dyqAuNs9di3ac7vPrZAW84ubItSVwmtgJ/nwR3GDVjq8SZFMNKhUWqFcsQdHP1KQyDQVR3QZlqe8OpBmUZUh2M0GLX5n/P4zcTyEqvYvIA4hr3JNQEMG6hYc31dzfVkROFpHzEDdnhksDdjD/N0C7BhUSUKtB9eK5e6w/an8KnVQA4Gp/DBlUFSyDStGYjRBnULF+uwRlE2eoQanZNbaz8j8T77eYAGC2iBBurO/j51G0nudEnumKQZFMaU93IZibFpGDYepIRBajGEvro6CJB1a8MnRsuh+uv1ktcwzKpsQoSH4UzSwsSVN50876Orp4YnbR68YVlbe6EVMjNQCmSlhqq/4D4gRnhYiEbpO2fmIa1HS0R54A2ufq5sBJN+PQ7o0XhlKyUKn9wsi9kIjf5cuohFaJh9WgUmszgLh3FZB20GiKpSjq0a61UqL6OBQmzLfAzXelNBPbkVPu0LZeLqkp280oNEfNS+vqvyiIbUyqt/M8bZ5PAa6MXLNtagUIrZfPowjjFM7zWdPaq9CuQbW8S+mihahGNBn9WVqidRRjUOr+rgyqyRzcVJLnwPWPKxHv7xNRZnha97F++ymk4/W9DNULTK+EG+e/g4m5GZYXhdCwBC5W52koGFQs/6tQ9qTT/hb7VotUWKA/Ik47QiZuHUyqdudWITi0FOiYs8L7BBSCeSxwtuLkintn+/JU7rzdqLOKyCvhJrUvJHk0yZ/AufNWEdfViSrV+hEAEJGN4SJvH49Cw7FRpWNqqzZ2TIMKTXxWAg8lqIPgOsBYtG+ZnmqDu/wzYxCPw2YJ8QtF5EE4oqBhXFaZoxLAqkVxoRSuuB9lT6lOsRRFPSoxseFjxsB953UAzhCRVSi+zcZPBNy8j+JJKE/SzoHr8C3mJiLfRLVjzw4o6lYn11Ub+pGI6ORxyKAOhIs2od+1wn/Dbf48DJh7f3D+LThnEMBNctv7iwCsFJF3oZjHvN2XM6VZhgxqbxTE6OXm+l+Rltw7Mdsog1oQuafmmg3QzqBCqVu/bwac+ewzcH01Jp1vCucBGiLGoB6AG6vzUGhPSwGMF5GfoJ2IWw11mYgsEJFnI17fD8HVrT7zGArNvooOHYJy5H9th24tFynLiJ2TBopvGINy2wtcv1K8CvEtM2LMdku4en0q3He9IJLGIsYnPi0ij8EpDsl6a8Sg/ErwLeCI8UkAXUU9vwAAIABJREFUbhSRF4jIudVPrjZUmbBaMaZE5EoRmQ3gCriV3HYNTiz2l51QfgyugTeAa/zQxDcJhReYtak+BGfiWYH4BHV0TkpEthKRxeIQk0Lt4FGGaOcENN+VqCYoipg0DLgBFBuo7wfw1cQzW6LwmLIa1Df8MYxvdq+I7Gk0WGUyIdN8EHEsAbDUd/iwrN9PPBNCB4m+27ZViUGJyKUicjecd9VMuP73ANwgf5WI2H61PtrnbleYcn5XRGzfW4SivZRpfFFE1kU6enaq7QDg3cF5KmLFXcF5al5gEXwAXxG5D+77WyZo31ffCWdeDb0JLUEci3gg4ImIj+dwPU1IiC0Wwo3VBSIyH67f/NXUc0j3lif+23bRhcyLfN5671EUwumx/tjG7EVkmYjYdtL+VbkRagVWIE6z6N+nUwmWQVkNaiGcE4XCCrJ/SLxTF/juDbd04CYRmSsi5yfSK86KXNOyL0eFKbipun8mnIS7P9yk12SSP2DFFuerEyJyF8pS/g/NvTb3Yk/0r0B58MQa286dqIlvL7i62BRuvY7VoP7k/9uOeKknvCsRn+foxGniMRRSeoxBxZwGbMdTBhWzkTdhUCvhTTgicjrcWpIYForIJXAD4Hz4ejSMdhzKzCecw9H3hQxqLuJYbMpfYkgicjvSAkwqDtipcMFxNY/o8yLyqIjMges7i0TkchHREEBHAThWRB4RESVYushyJcpzhBYLTXlXBGlS47Uf6xNnB+fvhitvKaqBiEwRkb+a8zkIiKyIfAFOWwsZ1H0mzSrEx9wklNvLulHH5oxC8+qb4Or26SgCPe+Eainfvs8KebZ874DT2BejrEFZBgW4+joSzWHrJ1zHVOUluhLlvqPMPmXiCxnUkiCtnZ+06+TUNDgB7QJ2lcBrEdOQlptjbxqUiBwhIheIyCoRWSkiJ8EFU62a0xgkmmp2tnPETBxjALwZbt3SPXChUNYXkftRLCbVCevJKFe6wmoyMU+mpgxqDzi1Wifc6xhUTIPSb4xJx5ZB2YE5H+X5LIvZibIuAQAR2V1Efoj2bww1qJDx6LeFc4UpDWqRllFENDqALeteiEe1eCBSNojIKT5aQ1MsRzBvJiI/956vFjrXthLFN4Z1GtOgtD1SfaWJK6/iT5FrH0SwBQWAh0Xk9SibCFOIaQEqGVvmGZo69fvsONRFvvDvttJ8zFTU2rxQRCgiZ6Lor5/31x8WkZQJW8uqSDGoR0XkJjih61CUGZSd7/qRiMTmHJsgnHu15+HmnStRpt+6b1uKQe2KcuSN35i0X4P7LmVA/4KJRCMij3khLXS+qfIOvtf8r2JQy9AHDaoNIvJHNPeFXx2wDXMuXETe1HYSilWJ/xoSZayInCEid3hJseUwICJ/MeneBedNpwMuxqBsZ1+Mwv4etsE3Y+UWkeu9JqaDWaWX+d5bByhLctrZrAZVFUrGMihlBDrXliKmsxvkBbR/Y8igQg1KvyckaLUMKrgGAPAmt5h3VkwCTEWH2BeF9hpiBerXRN2Igjk01aBWBsfUeFUC8AVz7awgzVK4vnKwP/+AuXcu2rXqZYCzNiTeabEE7XNBurjZErGLgzStoLLmmjXxXYRyu1pt6Ry4Oasqa8A/EuUN+9GyxP9wzAJuG4rdUGZQlgB3uih+FYq5qZvg6vGO4J2AozFAIWiFDErL8yOUFYeY8LABnDlyHgCIyFu8eVwtHSIiOg9ox0iJQdX0DWvOXYUywwLKwnz/GRQAiEinC15XC7yW91MRubomacvuHlS2dpCwfkJiolrU10TkVyYPQfsmXvbZsSiIfSjxzK8pd+i9ZHf7tTZllapXmWdUc4pJ4pYQPAwAIqLrlaIMSkTmeVdbBNdDRtYpg9L3hUTfalo6UA+Cm6i19fB9OKnQQr/PbtG9AGXi8kkRic7RiMjfkR5ItQxKRHZDQTCtBhX2qTkoYsStCo6p8arE4FIU8djCRcdHoBwp/nIU37MC7ZP1VfNaIZag3ZFkOZxTw3UotnyZBfcNKjzp93zPPDcJRd0sR1nYs/NNd4rIe+GYTehUoYQ9JdDsirLwk9Kg7HXbJ6ehaDd1svlI5JkmEHjGKyJz4RZJayw+y6D0/Zf640oYk5uOORH5infwCJ+zWOZp1ZtRdjwJTXi7wAWpVlycyC+G2eb/6XCOQ88z1/pn4lvDcGl9EgcR+ROAT8du+WNYP6HEoBJ1OJiXiYiaRqypTbEAaQZV1wH0OU1ny2RDolgGpe/4Ppx3k55/E8Ucgy2fJTahia/OJBmb+LbP/AxOytN33I/2tS86MO1g/wbcHMQCOBv5rwF8VEQuEZE7RaQlnYvIMSISLoHQ+vpN8B5rnqlbdP08lD2xFG0mvhgM4xYkzKbeHHWU/28Fniqo+WcpCo1iaZD3Y95hAHALLy81TgOCdgYV0wRSxHcx2sNhado/whMrEVnhpXM7FwkReTOKfvN+FEQ/JF5te0/5OgrNluqkEt112jOCM80lqymlnCS0/yxG2UnivCBtWEefiZWhXBy5WwU9EZmHQuCYZBMFz81Hsx2aU+ZXiMh8EbFRakr0TkRuEhcFQ8+vRXqfKKDo019Foe3uL84rch7KJnutr5Ex8Q0hToGLenFgh8/FXLgbMShxnjkMOs8UQwiAdhPfSXAEIsWg6kxF4t+t72w1blAOZVAtU4AnDgtNHscj7olno0rMM2WqdUUWkdDbCnDrkf7m7x8tzoVapdsniMg9QfplcJ19BYoBf484p4RpIvK/4pwPOokNqQT3BvitDjyhbMygROS6xPxCExOfBZHWoOogCIK9GoJv5xuXory4cplJ/8+gr4xBO4OKuW+nXKKXAPh9oE3r930RaTpjr6tJ8SoUY3IFypqOff+YxH9dXP1npE3QEJFTUZjZbf9Lmfgsg9oMXvMQkdvgTJFqQrZlmeO1PIudI+8Jy6Z94vNoXxryCNx89KfRjH7HNOGUoNEkv5S2syeKEG4fhR/f4kJiKfSbf4+ify2Hi/wfFXxHzXYbIvKzLh+dHbmmEn2dBhUrhyVUt8BJkEBBiK4SkdkkU2abr9e9IjhPSR9WgwqdEJ6DIqJFTEp/C4p9sc6GkxJf7/OKeV7V4XloZ8R2nqsEERGSu4jIcr/Q9Pou32ux0uRt5y0sUwrt5E2xHJ0xKCA9BxWDts0BcJ9wOckvwC1Gt21rF2UvFZE7zbivMj3FGFSMGaUWc/8cwVo5EbmD5JYicj/bd2RWWA3Alq+lQYnIHL+Z5lzEd+8N89H3N9lzSN/5AhTaVh2D0nZubTYoIs8CAF/X1lEpVq7/+HSL4Ih9iqaM8X31Hvi1jUYAuN6/T9c13R55Xt+3MqT9ERN8srwRRPuriFxnAjnMhduT7dggmdbtUeI9Y0VklaeFYxEZ46OGQfWAcD+iaXAT1T9CO/PoKDK1iNiQNNqwqubGNKjfNpjXCzt0SqLR64vEueHbECi3o7pTL4R38RaRBQAW+E6eYlBnob0z2vysc4dCGVTKhfv24H6v21Y8Cu9EICIPo6gP1aBmoHMmo1iBZnH5FOORdjxJQgoPRcVfxK3rU5QYVKSMMdwAp0GE8epizCjKoEQkFmQX4taKAWnCZ+nPiSgWXmvf0z6j3zIfTlK/NsizCWGNQbW2eYaIWwZl20bLUNfO9plUuQ6DM1X/FQkGZb69qt9v5dOmNhlUrIOib1dFhmlSj9cgHiEdKIIiCNzcYxjtPFw+oVAzX2ZQIUTkGpK7mPMFAEDyiWg3/zXxaEpBO+4jwbnanpu6m6fmwUKMg1tQd0fivuIfcKFwYqv0Q0RXr4vIa0keifoN5yyU2NV5Pa0Ijl3Bm01iDhAXA1gSmGU7RacmvunoTIOKYZ+AOQHVDCq1IHx3ACAZmjdjzKjbgMK1GpSI/BtFlJWwLvVbHvOSephnt1MV1vV8W7jxotuvqLYdlqGqnXdDIfDei7LpsAURuRBoaVx1NKXKWWUcGuzMICKLSb4XwCtFJNx/zaKWQfk6uR0RBuWFyio6pn0zpCE619jG/Nd6BgW4ycDItZhbctcMynR29URKzUHVZmX+jzP2aosHABwk5YgGqXItA/B/ftH1ZLgQPil0a+KLvVfQ7NtTUle/cEh9klr8E+2aeBVmIL22rBH8XE0Iu6SgztU/RIlBSznqAeAWv5+A7vBzxDXlFP0puY6LyDKSz/Z9FXAR4u3czC8Q33+tDm+H30CxgVVBx1lSgxIRa+bcBc3ato6m/B7AsxL3noCGXoMi8hnUO2zE5uNjOAOd9XeFjuGwXpKOEplBdYaT0EzTSGFf4xVT5zqcwi/hg4cmmNOeAB4Qt5i4MURkAcnUuhHFSowco0hhRBlU4CzQbR5f6vCRGXCD8hf9eL/Bcm/TB9qJQJ3b+BK4cD47Re59G24pRdPIASV4k/GPIreiEruIPIpAeBGR35n/PwzuXYz2NVZNyvUw0mulUmi0zqlHjdzmswKJiC3S/90lPoR0+DL73rPh5qY7RejgpbgXib6QGVQHkB5jD4pbS6PoSoMSkR8A+EHF/arowrXZV9y7Cc780Y2k2gtGWoMaBGb4QRpuA9MLnoEysbUM6qaYlcDCl2dnb+7+V3CvahfcXrAm0h+t18oo3B2gnwJKT/AOXrHNUfuFqEYpInukHlgTO8hoQbca1EjiMpjgugF2gxtM4UT9SCOMR7em4xzEt9+oQhPv0T+b02eg7JHYOBq9nwvqZlPNbtCtc8PAICI3k9xL3JqgfqBbz9E1EXOQDlYcRWZQg4MyqI+gvE/SwOC9/Z6XuLcSAEiO5PbxMajNv6u5mmGDiLxkNbzDMqudEQ8HNAzoNCzQoFAKON1H5jQTFbvJjjZ4GvKF2oQGmUENDq3QJIMuSIdYraY2EVnq51SqNlvLSEBE/lOfamA4GS7o9LDjipHIVFx8z4wKZAY1OKypGkFKgxppW/pQaJkZ/YN3JLhm0OVogOSW5Bkji8ygBoekS+uQY1DOChsP6L0Zazc2bLB4PmOEkBnU4HAa/BqMNQyfhIuEvTpxOMwCyrUQswddgLUVmTkNFuzvMozVA5KzRGSfQZcjowDJvQFMjoTjyegBJMdUxE7LyBjVyBpURl8g9XtvZXSBzJwy1mYM0xqcjIyMjIyMFjKDysjIyMgYSmQGlZGRkZExlBg4gyJ5Csl7SF7jf88ZdJkyMjIyMgaPYXGS+IKIfHbQhcjIyMjIGB4MXIPKyMjIyMiIYVgY1IkkryP5bZLrxRKQPJ7kLJKzAExazeXLyMjIyFjNWC0LdUleBBe5N8QH4QIxPggXy+1jADYVkdeNeKEyMjIyMoYaQxVJguTWAC4Qkd0GXJSMjIyMjAFj4CY+kpua0yMB3DCosmRkZGRkDA+GwYvv0yT3gjPxzQZwwmCLk5GRkZExDBgqE19GRkZGRoZi4Ca+jIyMjIyMGDKDysjIyMgYSmQGlZGRkZExlMgMKiMjIyNjKJEZVEZGRkbGUCIzqIyMjIyMoURmUBkZGRkZQ4nMoDIyMjIyhhKZQWVkZGRkDCUyg8rIyMjIGEpkBpWRkZGRMZTIDCojIyMjYygxDNHMAQAkZwN4DMBKACtEZJ/BligjIyMjY5AYGgblcZCIPDjoQmRkZGRkDB7ZxJeRkZGRMZQYJgYlAC4keRXJ48ObJI8nOcv/8q67GRkZGaMcQ7NhIcnNRORekhsD+AOAt4rInxNpZ+U5qoyMjIzRjaHRoETkXn98AMC5AJ482BJlZGRkZAwSQ8GgSE4hOU3/AzgUQDbjZWRkZKzFGBYvvk0AnEsScGX6oYj8brBFysjIyMgYJIaCQYnIbQD2HHQ5RgIkZ4jIo4MuR0ZGRsaahqEw8Y1yzCO51aALkZGRkbGmITOo1YMpgy5ARkZGxpqGUc2gSP6X5Pt6eP4Kktv0oyh9yCMjIyNjrcKoZlAAdgBwcA/PPwXAvn0qS8YaCJJC8tBBlyNjzQPJLUg+ftDlWJMx2hlUP9AP7SdrUGs2dhl0AYYNJHcg+fNBl2PI8Tvk5TI9YSi8+EYYvTKHzFwyxnf6AMmxIrJyJArTD5AcD2CZiHTcv0nuBUd8N+l7wQYMkh8C8KCInNmH7Kb2IY+1GlmDqkfXDIp+YVdPLye37zWPjJ7RMYMCsILkAX0vSf8wDmgxqk7xOoxC5uTxMf/rB0aVAkByI5KrlemuDQxqkBqU1u/Yrl5M7g3g5h7ePxQguXU/mPUA0Q0RB4DN+lqK/kL7Zjcepvf1syBDiH4FKB1VDArAAwB+vDpfuDYwqF4RJawkt2lAdMcGx04xo8vnAAAkv0zyoF7y6BNuB/CMQReiB6i28VqSJ3Tw3IrwAslXkhyGcad9shsGtbCfBRlC9ItB1Qo2JNch+fQG6SaQnNkg3c0kn0fyiU0L2SG2HKF8oxiGgTLi8LH+utVE6POYTHKSuX4bgDrir0SgW0lqQpfPKU6EM8d0BK/K91v6m97n/FYnTiZ5BIAz/a8plkeu/QDA1v0oVI/ohUGNynV9JL/o/642BgU3Ri9tkO4UNNNctwdwPoBZDdIOPdYGBkU4U0u3czlaR9cCuCi4N7nmWSXyUQ2K5PdJnlTxfGMGRfI9JM+I3FraNA+DBwC8n+SLSb6ki+djWJNNfABwWBfPxBgUEJk8JzmJ5GoxCXoN7pn+tBtms47Jq61dSW7bZdEGjbf5Y99NfCQ3JblFJE3TMb55eIHkSSTf2G3hgrzWTZRvoBhVDIrkk0iuH16G7wRdzoPoMzsA2DW4V+elVadBvQrAcdGXOiKydYPyKY4DEOusy0huQAfpoA42AfAzAD/toAwguR7J50RujQnSzSH5yop8Nif51g7fXScw9IJlHZRD6zjVP2JM4dMA7um0UF1iXwDnVJSlBZITSX4guGyfiRHYW0mu558fR3IgDhXeLDaV5Dr1qUsYCQ1qFoB/6wnJ8SRPQXMaHEt3GoCPdl26Mi4AcFef8qoFyY1JPlKXblQxKAD/APD5yHUlXN2YrSxBD7WRpgyqag5qG5Kx+y8D8OVWIciZJH/o/788wgTmJfJfCuBBAM/z503rYAW6G6jvAfDryPWwr20M4MCKfHYFkGRgIUjuDGCR/39ook41bTem07ehubQbrWMz9xRjCo/rokyNQfIQY6JeZW7VEe+N4NrUwpa/JRR4onuqP53oj+8FcH8H5fw6ye/04r1q5mq+C+AxmDkzkmNInlPDtPqqQZHcHc6KYzXnLQB8BM1pcIsOkXyY5HP96aLaB5sx6B0bliP1jjeS7GSe+XEA1q1LNNoYFFAMDAVRdIzwHkieRfLKivwsgwql6F41KMURkWuhJrgPgJf7/99EOxNIMSgtsxLAph5pK1AmZLUguQeAlwbXqupgrE9zAMljzTPvBXAhGqwj8RLyWADrmcu/h6lTkvuR3M//PwTdmT1j7x7rifLGwS1lBNbEIwAO96cx55e2vlnz7teETJjkZhUa8h8AHOv/236c1KA8YXsxyia9Z8MxLYXVWjcC8H7/X5l5WDc2/6eT3D+4fLwvZ1dzxv777yM5EcDukST7w33TTPPMFSStCa3f24xfF7mm5t+mDlSWVq8HYC//v8WgVGuNYGEDJpV6NkSqbs4A8KmGeQANactoZFCxb5rmj5Mi954JR/wBACQfFwx8kny1/7/UX9B3rPTnKULaIs5KIBOYZk+8g8J0c054BuTfHTMFLTJpLZQY6TvGe7NLiyB681/IJFfCdyKSm5q0QvKYxHd8HkA4/6D5bk4XfeCjJE/017R+vgbgO+YZDS00zTOgKoLxHQDPQrvH3JPM/7/5H9CBplKlhXmcAxcpYA7JDcx17Wfh83v44wyf/3SSTwue0XePY7XX1lfQTlTuQdzMq1DhxApWVZ6iewL4JIAJLJxmfgPgSJNmMknVsKaiYEwxbS3EL9DMQSAJurkT26barycgTgvWC9IBLqSZ9XrbnOQ1Xtuq9ZyrQNW3a9maCGGbANg5uKxb+FgN6h/BcyeymPKoE5LHAVhcVxYAezId33TfCiYZYu1iUKaTht9kNajYJGBYUbMBvNqcE8D3/P+ZnkHoINRGvz4iRdv7O6MgkDFMZHli+YMAPmHOLaHbDXGHA33XtOC6agtaB+MBfB/AEpJH00UF2Apuw0ibrzXxHRvkmXJhjfUnnev4HID/AjgZhelSvyvcjkSJx1S0f0+IDX2akEHNNIzN3utEK6wb1IeiMI3sRvJpJD+DYhFr+HyrjXy9Xwvgz/5aqEG9C9VeWxNQaKBjTdtVmVli2mxSw4Grf9WQUhL4BgA+7ceFJbb/8ceq+p6GHtYKkdwFwCNwY1ah5Z2I9nnPsQDOM/dB8kC9HWS/J1wcz5/VlGFyTGuli8EXFax8v1QT5nR/bUqF9vsrAHv7dNpPlDEtNgLzdsFzXwbwCv9f+8oxJJck3pOywoSo0pSitIHkZcrs6RaH7xFLF2LUMCg410qgWoO6mmTo7qxakBgp0RIL22mmATgG7SacjQEcyvZV+appxEyLG5rTSXATy5rfpkHy21EwxYuCMoHkbQDUJr2Rv6b1oARC62AcgCf4/y8HcDUKs4wtvzXxhQNNNatPk7zYXG/VfY3WoxjriUzLFu0Z/Q7+dCoi7ek1Pv2eabbcpg6tyWa5v7d/5FuqkDSHklyJMtHeEY4gvBsuDBCQZlD/C+CP8E4wJKfAByX2/fAQtBMb+251/NH8VsC5KwPtGmzs/fa7NvF5vpHkg0F6y3BSDEr76kTEtYGOzMQdorTTAMmNADxsyhP2HWua1DGs/TfGHE6D75tMz1suAvB8UwbN5wZUm++e6o/ajxcASHnM2npVBqDlfyqAm/T1kWfVhKttvw8K5rw+yd1M2n6sb0t5Ah6AwjJyFICzfBkqHbdGE4PSBgi/aSKAQ8z5Zr4jK+wA0kZ/zFRamN/mKBjORE+I14HTSl5JchrdQrkxAD4elM1irvmvTFMJRzjxuQUKBnU+2juiHaj6bSoZqyZmNSgl0mp+U2lugvnuj6CQRsV/k84XTCb5FABvQtnRodP+NBbtDOMiFBrIBPg2CTrxcQDm+/9qVtI6/v/2zj1ak6I69L8NwziDvFGIF9AxhuCDSESDXEwiAZOLxqD4xBsiAhFuglEiXqJhxaULlYVyASUQgwjhoaJBFCFEERA1CugARkBQkOfwGMBhgHkwM8zs+0fVPr27uvpxzpmZ7/BN/dY66ztff9Xd1dVVtWvv2rXL8rx5PG82lb3/R5n7ddE1X5c+67NdehOO6Xv3HZafY0zngb5Li3dnZEKDdwMRMzE2TCzO7JLToKysdwS2TcrZd4xtc1X2rM8i6ZyidrLGfd866RDt+NG5C0twzX6Jz1M0u71NwpKKv2nJi+UnfUfPS36v3S6ThY2AzaLWsqLD5Gsei9sCa6QjHJBUzh8WgNhbCJ5LPz+Kn37ub+dcwogNLKxu+vnHzxOsP3ZsiImvj7PTA66Ozmu5T6v37TgJKOO5UV22jmhP6iOTW4BbReTq+N2bf6ygllE15rQib0olyFIvlDkE7eQ46nMKm0Cnm7vNA1jHk/PMsd+63MS/TVXJ90t+m5iDotlJb+V+y3XKShCMX4nfjwCuJXRgT7h0qWY3JNJGer/UpPcLSxs1pz2pzyOZBmXXsXdo5fBs6u94o5i31vVdElzcLW+PAjf0PIfdJ32Wc+P1Tovf2wRel6aWE6hWF86gKgvTyFPnGqi0iqwGJSKfIJiVoV5vh2hQJhT+HPhS8tt51Oe7TgduylzjxJZrP0B4//u4Y88nmN3+D5VnquG1nD4BlZuPTllOeK9WDi8Vkc85U5X1EWYas3acOn54zPnDytNbdJ5sOSfXjoa6zqcalBdQ1lasPrSZ/sxkOVVqZlWCtuhpNeOPo4B6DZW5L8dGhNHma2MH6hvQwy6NVb4tqQuMf6Sak0lHq7sCB8fjvhOYqAgS1makHZJV0lRAfcel8RqQH1Ha/w8S3HmtYz4c8N6JNlfSJaBmk68slj638NSbBdL61NeIZsX8LAQeic+Sjq78fN8ewDXU879ZvIY1QLunaZDp/NRZ8TO7vktEtgIWAG+J13qaMFfk0+QWRG9KU2OyvP9t/GwbgXd6VorITiLyp+6QNfQ/o+q8rfPdWkS2FJF3xXN9nmaJyO7UR7nbA0e25MVrTZu2DDgs9E26RhDC83sLRTpSHqrN+kFidj2aiKyhXnf7THxDNKgVhPplbe/nhAXbZrGwQYGda9ccIjysbvg8T8YcOlRAWbp74qdvw+n7yGpQEhaQt24bIiJ/0PHbbKrpBxsUpPW9VeMcJwHlK9grBp6zCflK4U1Gbyd4zHjPNVufk45WjwQOIYxq/cs3u/Fs4Or457GR1znx0xwbPuXSPIfQoGdTf1bL5xqC2dCb+H7l0r08Se8xQbsJeS8360hy8yKmkexCmFj29HlAmZbyG0K+/5r2UdwsqvK2ObAXEBr466i89o6Jn1bpLyMTEy+ef6+IHJ8ctk7na8C/Ehp02nnlPOW2JJkTydAmoPai2/Xd3O6NXIe9V/xfgMOAL8fj3rtwY0Kd8u/496hbAnznkZr4/G87EOq6xZHLmadmUx8AKkx43h3NcNd6L8i+0JJGqHskTjiROPzzpBpUbm+rOYR27IXIXMC8Lw9w6fznEOFhafwgYDsJzjMpOeFZEy7SHs9vG5dGiP1YbDvpZq61vlBETheR/elfmvKTjt/887UJqA1Kg4IBC8AiaQOCYCbbhKpyv4zQafpOzjqxLpdK74Flc2CzCR1pagKwhvN6ETmZyuThNaDnElTj9OXu7f73AmobKldUzw9pbsBn5bU1Ye4ppWuka3XoBprzFHfEz3PJYxrUYkInfAbtjWEWVQf0T/HzbkLjPYCqzNJ5iZfRHnJoJ6rJasN3LruRF1ApjxEmfvtoe7Yv0W3/vx1ARFZIiD7gzS2z4u8rqUblfuDkBccO9McaYvDAAAAcrElEQVREtKgrJxDc942dcPVdVR8AvkE1r5ATUFtRF+ZWjz5Gu1kvh++nclFK/P2MxpwY9frZJxy/T1VWNwHXE9rXTvH49wlrf/y1rAPu8zyFakDlzZLHE5yWJpDg1JXbMDN9j6m7vtUnvy5xK6r3ldNa0vr5NwQPwnSh9mTICajU4WTqAkpETol21z1E5P196aeKiOwnIr8UkTtE5MP9Z0yKvyCYkVK2o1rwBsEGvJAwct44SecFlDXUP2Jy/An5jsi/oKPi5ydU1ad9DsGcNqFBSVh8ZyNrITSg7aJtfAvyNu2cULVnfSewP+0deg47t2vU+ETL8bkEYb1aVT8D3Eu7uv9nDB94pGQ1qEiqQfsGtT3hffW1k9/Qsj9SYs7NeYKZF1nu2T5LGGRYGc8mDCA+7dKYCdre2RLqEae94DgU6FqPB/CAhHU3x1AfSP0byUBDVR+n0uC8puYxL8FNqQRUq0mohU3jNfreg59jekvm98kIqAep18WlVHMnm1OZzKDqeG3/Ly/YobKMeEwDyoaNivOtSqWhphzSctzIRe/w1pNcbMk50dEjNQ2bCbjh5TdgnrkmoOJ104HDtEx8D6nq+wmVdY8B6SdN7FBPA15PsGW/S0RyNu2pspT8yvQ3Jd8XEyrOXOrmmnSi3cip411cSF5A5Ua1qZD434Tn8HNQaYe3jJD3LWmfcO3CKlObQMmxkYhc3pOmLS+bAScQFkrafds8er5K0yTRh3lKtrpsEzwUPyMi86O3Wypov0q/BrUo+e7NlHNb/jc+RrsAPZbQkaZ58nVzC0KdsmvcT11A9S0EzUXkn9eSdpfMMXMQ8PfJzVcspRJQQ03whtXLNiFofML9X1sPFudCtiW4ZP+EfieJO6mXwzIqAbUF9Xdmwu4z8fOt7rd5wAc77pMLHCxUVhc/n/7JNG0HuTbs69//y/z+SuBRCUs9cjH+assQonZ3WppIRD7gvqYa1OuBk5NTpmXi+ymAqp5CtahwbbMHcIeq3qmqKwmbYqXCo4+uTmQJzRHHUpodw2NUo4zrk9+6RuGTIeehl3tB6WTwFlQalJGOAs3Msw2h05zsPlTWWNKRUtdiyo1pjhhT2gSeCWYr2ycJ76rNpNBnRruFKu+PM2wPqtcS1i69klBm6Tqi++gXUL9JvvtIH/7d5rTMZbRPji8nL6D8e92SuoB6gPrC574AujfQ9Kw7uCVtrlO3gZSf/2lbT2PlmM1Th+XEnDomE9UhnQ+8hKAJnEpw1X6rNANLe9JBlVA9lxdQTxA0g7Y68hDdC2BzZt/foT7naJzG8LVK1ua8ef6HA89dSL6upuvkXkrTpA5wiisPL8DmkI9c0rpYvFdAqeqVIrJv/P+MvvRTZAfqkXQXkISXF5HD4yh3PtUcUBvphPMSVb0jOfYQzY53ceaYkQqodNQ8lHmZY7nFlTlvJZuDatOgVhJMdLczeQG1mmq0k7qBdq0cz9WhNPZYm4CyDsK0yicJ7/Z+mgOEIdxPeIYHVXUrVb2V5rNACLHT5oyxA3XtdRFNAZWaT6wunO7yYXjtONfol9MS01FV18R7p9HEfR3dhiDkGhqUiLyXHgGlqk8QBLSnbduP3LWsnlrHszQeyw3orE3fmv4gYW1i6rCSki5gz2ExKlOTqS0SXUoor71pDiw8qfCaTdWvbE71zhYTBhFt89FPx/c4GdKwRsYSuueDf+3+tzZ3jTvmBy5dzw5hoJMyIaBE5D/oNrlfJCE48Z7x+zIqp5OUVueioU4Sh4rICd4uKSFceltMpsmSG33UXoSqnqGqr1LVV9GU5Cn3JN+tYn2TMHo6hGD2SSOf5wTUsQSzgO9EdqH+AierXd07II0XUOfHz6WEl2kVLX3Zacc6GQG1jGpuIDdf10auDn2danU7NEejZrawTmC1S7clsDK+5y5ygscane8QjoufXsheQ7uAej51AZPbEiCtX3Zfc0q52/3m79umQfUFHU7xA5P3EN6B1cEHqa+TGrIFSTqge2VLnnIaVCqgniDUw5xXoplyv0xTQ/gV/fRpUMeoaro2KmUp/f3H79I0Jz5EVcZeg1pCMIe15W2ocPqR+79NUHszadvvhrW5v8+ku5N+0+8JmWN+oPkG4D8Jg41rM2nfTL0M30Y1fZIyPQGlqn9JMJ9cLiF+21eBMxlWqYawgLrdfEfyEjxLXLvi7eN+9P0nhFBBqOoBqvqHqvpvLZd6jErl/ko851Oq+hLqQvR26ua1h5kctwxI4wWUNajl1Ee3aSXz53gBtSv984ebU0WUGLJzp5HTOJ8GriM0piuodwgHUXfZx+XTGpV1brlGAmEgkTOV2nm+A7dr/leSrm1/p0Ooez8+Rv3d7565t2lQ1oD/gar+7u/S9Zn4vtmSJ7umkQ7oznP/p3VxyOaBaVnsSL4O5Jw87FyrByaguvbPuhX4eHJsiANMnwZl7+XAjjSb0yOgVPV2mu/iVOoCygS4OcdkBZSqmkDpG/T5QVG6KPaH8Vp9ws4P2hbHc3Iu4I8wzMU/nQfPDQp/QLJO0GF14nOE559LczrgQ7Rr7MMEVFw5vSOhgX0EuEVV91fVbww5fwA/BXYWkRfGycwDqVYfDyF1cZ1osKp6taskOfwzeA0qFZDWKWi8no0mr6WqfL9gGAsGpPEN3CpK2vmkbt1ZDUpVb1HVri1FUnKDg7b5gaszx54mrMWZrap/Sr1D/29VXayqvpO1emiCYSWAqn6YdvfrNsEI9ZH+k8lvEARUl6eiX8/1CHWN6R6a2oFpUCagFpHXQLyAss5mQoNS1QMaZ1RsSV6bQ1W/4r6mdSS35URKTtsZ6iiTCqI7aNegjId7fvfcRQgfNIt2LeWL8dOumS7Uv4Aw17hr/L/r3g8CqKq/xtOqeg1VHfKLv8205x1xck4iaUDklKsIc4F3Zn77uWsvf0VTuBtegzqXZjQZ45GW4ynpQCwnoJbT7uQwh1BOxxAsFr9PM/rHt+gI8TTUxPd5wrzCXoRgg3NF5HzpiDk1GVTVgl1+hzC6+pqqDtEyjFyH8dmB5/r5rMVUGlR6TYl5tTKzEcijBPX/HlVtCweSmrh6d5Kk3vBXExqnXzuyhvr8xonJOSuYvJOE4UfPF8TPtjxfkDm2SlVXx/cKVWf87+SFuOXzyvjpnyO3lgvyk8uTEVCNLbQd5p35LFVdCHyUajJ4KU3z4N3JvVZRCdBlBHPH31HXeK3+tM5BJdwW89y3fiidG+3zfIO8tjN03zDfTg4gmO/6NKiFDBdQqwjlfSRNDep0Qp2yRbb2XmxQY3OF56rqD+JAbXnXvVU1N5q3+um9+OydHRzvZ9aHJ8g4k0Xnr6tbbvsaVf1XVX05YRsVw8+b2XUuJphuoTkY8f35k6r6HfIMjVpuA3sr15yA2oIQOzLHtoS+YAXtm1Y+zHQFlKq+WVUvVdU1seP5CMGz5tt95w5FVS9T1d9V1Rep6mTcKaHZYaxkWOBFqE+Gei++rIByPMulW0jVIF9NMKuY2juH5iT0kAriG/ia2FFanh4jNIRLLYGqnpyccxEhaoDfOmQoS6g8u0xAtGkyd2eOZefkVPUdLWYK6wDMHOGfI2caUar35MMObUQQhr5z9QLKPIr6OsebCGW3KuZ7FZWAXkmzvtl82xMxvVI90/WxU3kUF8EhCu+942efgFququfFzvXUnrTpYKhrvycjVx5nZY4Z3uHon6icYu4n9AnH0W6ehVAWQwXUpwnv9RSai3Tfp6rvoFrcugJqZjVzLknf12XUBUEf1vZtqcoWVH3nPYSyegtBMO1C+5z0QeS33fFl4fNq5Zp67llbfF9y/NNUnnqT0VBPovKcze31ZvdbQt3UfDzwwThlcmx6EqG+Pwygqm1OZU8Qgm5n3f6nHElCVa9k8q7g64r0Zdioawjz4+edhNXYbRpUWlZvJ4yMn4zXOA+CzVdV7yJqDaq6Ino/2hzb2dS9mNqiVtv9f0I1EDCz1MuS/Lw9+f1UVf0vVb1bVc936dq0kZQ1VJs4nk23vTq3xmmyMdesM7cRob9fLnKA0gwOC6FMUkHqBZSt7bCyvZy6Bv0YBFu/qh6bmIY3ib8pzbpxd/xc5K5n5jpLa2bTY2M+UVVb/d83t+A14b4tvtP30Rc5AoLQTfNgz/5x6s5ED+C2B1fVq6hiDT6lqotU9UZVPd2d83kqrfza2FkN6UA/pKpfJB+3zgsiq/f+mq+kEga1OhEHBX1r9zxXxc/zCPPHu1EfAF9C0KAWqOpDtHtl3k/V33jaBJQN1FIBZXXAv+vTVPVyqv6kq3z9YPsbqno0lZn061TzYZZuQkCpql8kfltcrN3GrtTXn16cJojv8EZaBlLTCnWkqn2uiuuLnIB6Px2Tb5Hvqup74v/fVNWfERrksZlr1jQoVf1uHBkfBXxBVY9L0q9J0i8A9lLVQ6lXOKts6cZoy+N5r1ZVGxVZg3wY1/Goqm0KaBW6TTj7aAe/dP+/juYGYtboV0fzhNUVawC2GM/PVdgK8T57e4rNldnzTTQ8DSF1DG/SMA3qHCqTx8Y0n90LqLQjW5bU4Zy50vBC09/jIGfKFLueqv44SWsd9BmZOdE+DcrPt/UJqNQMk5u3SRdXrqDZCW4FoKofix2YeWptksn/XfGzK46iYc4qQ6KVWBrfT1mH+P1Muok2q6o3UGkyuXylx9p29r2GOLGvqr+icpv2zidWdnbNLq/eS+M1fb32FoOnM8fTd76SICy94E0tP10mVt+X2UDC5n2XUc2D3et/o1m3vFaU88TeFadtq2q6a7cd3zNaiBqMSyy+9GWsUtWlqtrnjebX69gc0yWq+imaI/HsQjxVfTx24CmNUXGcaIW68LP7vCt+fiE57nkEOF5V2zq0PgHlO4UJwRK14draFNcJpc4IfoFi7TpUjS7VoPrc8CfqoaqKqmZHmaqahhNSDU4wR7jrdGlQlg8r/7Scvkc73oPtLGKnoap+i4ncnF+qQeUGdX0CyrfTtndr9dOPqts0109S9yR9mBCo15O+M4uanvPks/mFtI2Yu/Qs95sFQO565q76sgRAVffOpE8HlXaPXJm1pU3ZyJulVXUJIbqIsZCq47a61xZ70ga2e1EtHUnz4sswq0Fp4N3Uy8nq3orkM4fdY5Gq/jpec6lGRwxV/WOqPe6g6stSAeXr8nWEcn4BYf7/KYLjyH00OT9zLMtYCKjMvEbX6MHYjLpnWloW51CPV/VtJmfSvK3jN99gzBRoDcRMDw0BpaqrVDVdtOnJmTr8+b6cbkt+85W9YdqiqtSW928RtiX32o4S1jSkay9+Qj2obcoQZ47cM6Ud2XyaTgJdGlTacV2ide9Cz8S8lgbX3Xk019HlBhU2Ml0ahW9OaPwz1ZxP6t5ce8b4DrsCy9rzfpT6di1pnnynu0ZV0+1HPkU18U+c//oSmc4l5ml/6nNTuLo6yx2zubyl8XujvFU1Z76F9jiCbfV+iAZlA7O2954TXCYwXhy1qpoGpao30x3eCFX9B0L7gXYBZflvix5heTuH6r10CSjz5E23B8nlz8egvCx+XpckW+TSX6Gqc1X1XlU9iiC4X0bTOWIbwlKOQZsjjoWAytBrPogdRutITVWfijZd+75SVSfj+v5e2ieo20bBc6m83Kayu2WfBmW8mvq6oC6sczHX2YuBV8S5hpNoju7u1hCdwB9b4+ZbcqQb3eXIrV3x7/m1hCC/qdZsoz6lR4NS1a5y+3fCEgtL+0g0fRkvotmA/b1aUdUTVfWw+NVG312msFzdsLZs7+NM2uuBku94JwZkqrrcRtfu2EGqmk7M22+XZAaKRmNJgB+x0x7Cyguop1T1WvJaYZ8GlSsvS7s3IcZjTkC9nPw27GZys3djZe7vM8RNPydYJ/IRBzMraRdQNi/6Hte+rA9I5+MgDFr8PfrWQpnp/e/i4MqWW5gG2TXFY3PuNU9DVX1MhzkGAeMroPpip62tc1rR4BzRVkl95bmPah2M39ajT0CdSbDH+0nLoQJKNDhuzKZyhoBqYzFjOTF8iqrOj5V0uYa5OuLxyWyhnuMXqnrQgHReQClhV9/DXT5+oMHbrjZic53mHKpGYR2D3yn3o3Sgqg+qamvIJw1xJHNlMUSb95hGbZHycwLKz0mYmXpuPM/ysISqfa8kmBjnA/tqcFLImaAvJ2jWjVBE06QrliM0Q2MZJqD+L8HRAjICyj1z2ukN0aAe1+DokdPkbtL6HKhhAsNHk0jvk0YbydEpoCJdAirn+fYU8DM/DaBhPg6qsrN60fde2iwbBxOevcsb2e6Rc02H0O+k894N+jL4TOR9DF+I5lmrAqoHX5EXqqp/D1ZpOwWUqr6XpgdgOqLrJHbo17vvl8UYj2aLHrpr5xEE7WUqDA0TVdOgtD0u5AnUHUCMuaqq8flWExqf7+ymEv19CEPdfY22TtZjAuoBQmQLcNqGaSZue4oXEcJH+dFsm7azB/1el5NlY4Lga+tvzKR3HNVeXxAXNqvq0L2j0mfqmoOygYO1mcm0f2tfaXubuI+qXhG3LenCr4UzLk6OraTdMaahAUXtpC1avJWPEPLet9Ytq8Co6goR+b0uC5QjazlR1VwbbTCOAurzHaaGmYIfVacNY5CAasHO7YpocSLN6NXTZTrCfUhFPZOwVYnR6jqtIUBsqgEcQd38tjqpI6fSHWZoqnyUer6HkNbdLg1qtRsp50bTNtDIRS7J1i9VXduC+ixCtJaraO9vbiV4yv2YegSZIXEEPW2u8q1OTFPsK6z8n47XWB0HPrUoEMmAIMf2Md3EgEBVF8Uo6yY8ujSo+1uOt2EOCxKv2yegWueGVbVrjh3gHQQnjGkNdsZRQE1VOE0mQOp08aPkdJQy1MTXQFXXxIbSGoVDVaezO+baZhsGPGfUFo0vk9/DqOv8VNtKlwCsk404tbn0YAhp/T2M5qJz6yB9Z94qoFp4Z+a6ax03t9aVxmI2QrVO6C9Idpe15B2XSs1J5qCSO6dvIX4XqQYFwZpxaSZtF1kNyzmSQBDa2b5JVW9kYL6dVq3AzwjOTK1BWiNTlg+qmi6bmRJjJ6CmKLF/i6lvnzEVFhPs7i+naX5QmDC/TZqcV9QUuKs/SY0p3TNpiEN5N8MCXbZxB5Mfea5PUuH5H5k0y4BDVfVsdyynbbS+Fw1LMCYTFHi9oqptnX1b+94+1VhUdSnty0MeEpGujSy7SOegUNUzp3Cdc+lxplDVt3b9PgVmEcrwVPr7/5Gvcx0nAfUkHTszdqEti8TWFRrWTe0mInMynmNDI2CsK2Zp+zqrkRPz1rdYtev8nddidtYFQywAuXhyOXPNuDpBNRhgTsud401yk9lF2pw6prWJafS86/JuXes4k+aQqDKfpb7ma70zTgLqxczskXGDnFuzhtAh69NhI73/jBVOGwhDBNSFNM1f19M0cW0wAmot8G6GBdaFIKBOYvIOMM8oohPEkJ0X1hnjJKDa3BkL656RCdQxpFdAqWouUsFeNM1f4/he3kxzt9tpE13vB5n54zTC0b0JC9NmbARUXHM0jg3ymcAFTN05pVDnWsLWHJNC8+G2xk6D8mvwCuPP2AiowuiIzg5TXQdVcESz72S2guhi7ARUYcOiCKhCYXz5IM3twwuFZwxFQBUKY0pcJ5NbS1QoPCMoJoBCoVAozEiKgCoUCoXCjKQIqEKhUCjMSIqAKhQKhcKMpAioQqFQKMxIRi6gRORjInK/iPws/r1h1HkqFAqFwuiZKW7mJ09iU7JCoVAobACMXIMqFAqFQiHHTBFQ7xORn4vIWSKydS6BiBwuIvNFZD75zdkKhUKhMEbINHfkHXYTkSsImwKmHEsIjvkoIRLzccDzVPXQdZ6pQqFQKMxo1ouAGoqIzAMuVdVdR5yVQqFQKIyYkZv4ROR57usBwM2jykuhUCgUZg4zwYvv0yLy+wQT393AEaPNTqFQKBRmAjPKxDcdRORmoLGFeqHBcwhzfoV2ShkNo5RTP6WMhvGoqu6XHpwJGtTa4ilVfdWoMzHTEZH5pZy6KWU0jFJO/ZQymh4jn4MqFAqFQiFHEVCFQqFQmJGMk4A6Y9QZeIZQyqmfUkbDKOXUTymjaTA2ThKFQqFQGC/GSYMqFAqFwhhRBFShUCgUZiRjIaBEZD8R+aWI3CEiHx51fkaFiOwkIt8TkVtF5BYR+UA8vo2IfFdEbo+fW8fjIiKfi+X2cxHZfbRPsP4QkY1F5EYRuTR+f6GIXBfL6KsiMjsef1b8fkf8fd4o870+EZGtRORCEbkt1qn/WepSExH5+9jebhaRr4jInFKf1g7PeAElIhsDpwGvB14KvEtEXjraXI2Mp4GjVfUlwJ7AkbEsPgxcqao7A1fG7xDKbOf4dzjwL+s/yyPjA8Ct7vsJhH3JdgYeAw6Lxw8DHlPV3wFOjuk2FD4LfFtVXwzsRiivUpccIrID8H7gVTGG6MbAgZT6tFZ4xgsoYA/gDlW9U1VXAhcAbxpxnkaCqj6oqjfE/58kdCg7EMrjnJjsHODN8f83Aedq4FpgqyQ24lgiIjsCfw6cGb8LsA9wYUySlpGV3YXAvjH9WCMiWwB/DHwRQFVXqupiSl3KMQuYKyKzgE2BByn1aa0wDgJqB+A+931BPLZBE00HrwCuA7ZX1QchCDFgu5hsQy27U4BjgDXx+7bAYlV9On735TBRRvH3x2P6cee3gUeAs6Mp9EwReTalLtVQ1fuBE4F7CYLpceB6Sn1aK4yDgMqNPjZo33kR2Qz4OnCUqj7RlTRzbKzLTkTeCDysqtf7w5mkOuC3cWYWsDvwL6r6CmAplTkvxwZZTnEO7k3AC4H/ATybYO5M2dDr05QYBwG1ANjJfd8ReGBEeRk5IrIJQTh9SVUviocXmrklfj4cj2+IZfcaYH8RuZtgDt6HoFFtFU00UC+HiTKKv28JLFqfGR4RC4AFqnpd/H4hQWCVulTndcBdqvqIqq4CLgL2otSntcI4CKifAjtHr5nZhAnKb404TyMh2rK/CNyqqie5n74FHBz/Pxi42B1/d/TA2hN43Mw344qqfkRVd1TVeYS6cpWq/iXwPeBtMVlaRlZ2b4vpx37Eq6oPAfeJyC7x0L7ALyh1KeVeYE8R2TS2PyunUp/WAmMRSUJE3kAYBW8MnKWqnxxxlkaCiPwh8EPgJqr5lX8kzEN9DXg+oUG9XVUXxQb1z8B+wDLgEFWdv94zPiJEZG/gQ6r6RhH5bYJGtQ1wI3CQqq4QkTnAeYT5vEXAgap656jyvD6RsE/bmcBs4E7gEMKgttQlh4h8HHgnwYv2RuCvCXNNpT5Nk7EQUIVCoVAYP8bBxFcoFAqFMaQIqEKhUCjMSIqAKhQKhcKMpAioQqFQKMxIioAqFAqFwoykCKhCYcSIyDwR2UdEfktEjh11fgqFmUIRUIXC6JkH7KOqD22oa/gKhRxFQBUKo+dw4K9E5EoROR9ARK4RkVNF5L9F5EARuSjus7Rb/P2NIvIDEfmxiOw30twXCuuIslC3UBgxMaLF6whRGz6hqgeJyK+APyJER7mBoGXtTgjPdBRwVTxnI+A/VXXf9Z/zQmHdMqs/SaFQGAGPqOpCABH5tao+JSIPAFsDzwFeAlwR024nIlJiuhXGjSKgCoXRs4qgKXm05X8BHiXEW/xfqrpaRDYpwqkwjhQBVSiMnpuB4wmbBK7qS6yqa0TkJOBKEVFC9Owj120WC4X1T5mDKhQKhcKMpHjxFQqFQmFGUgRUoVAoFGYkRUAVCoVCYUZSBFShUCgUZiRFQBUKhUJhRlIEVKFQKBRmJEVAFQqFQmFG8v8BeJVG5edCFh0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOx9d7glRZn++04ODDlnyZKzoqAgIoiCgIoRFlExrwEQEV1dAysoIkYEdQMuGFBWREHgpyCKgKCSM4yScYgDk2e+3x9V3+mvq6u6+5x77r3n3qn3ec7Tp7urq6srfLmqKCLIyMjIyMgYNEwY7QJkZGRkZGTEkBlURkZGRsZAIjOojIyMjIyBRGZQGRkZGRkDicygMjIyMjIGEplBZWRkZGQMJCaNdgFSIDkbwFwASwEsEZFdR7dEGRkZGRkjiYFlUB77iMic0S5ERkZGRsbII5v4MjIyMjIGEoPMoATApSRvIHlMLAHJY0he73+3jHD5MjIyMjKGERzUpY5IrisiD5NcE8BlAD4kIr+vSX999lNlZGRkjB8MrAYlIg/74+MALgCw++iWKCMjIyNjJDGQDIrkTJKz9D+AVwHIJryMjIyM5QiDGsW3FoALSAKujOeKyCWjW6SMjIyMjJHEQDIoEbkPwA6jXY6MjIyMjNHDQJr4MjIyBh90GFc0hOQkkjuOdjkyHMZV58oYOZCcRnKL0S5HxqjiSLiVXsYTjgTw19EuRIZDZlAZveJEAHeOdiEyRhXbjHYBhgEzRrsAGQUyg8roFSuNdgEyMoYBHO0CjDRIHkTygNEuRwyZQY0wSK5CH544FkBybZKx2dw9fwPJiSSnDqFYow6SW5JcYbTLMcoYM/24C4zHb2rChQB+OdqFiCEzqAhI7mX+v5rkB/uY/ZMADuljfsONNYYhz8MBfG0Y8h1WkBSSqjneAeDLo1meAcB4JObj8ZvaYCAjujODCuCXVrJLKn0VwDf6/JrhIPrDhWWJ60MZyLMArDqE50cTVmtasd+Zk9yC5Gb9zrfmffNJrj1Meb9mOPLN6DsWjXYBUsgMqgoBXLipPx8OiWosRT4NB4OaBGD6EJ5vDZKrDPH540iuYPrDZHt7KHkncAeAm4Yh3xSmAXhBj88mv9+Hn19EckpPGZMPkHx1j+UaCjrfRHL9EXmhM6P/ZSTelUBmUGMISohm+mNlEJLcVpdi6hFjiUEB6BCc0qUhZDcRI8SgADxJcu8hPP9lAK8EoD4zW+7hYFBEF3VD8gMkjx7iO3ulA3Xfr+Oo16i49QHs2eOzQ8EEACA5HcDtI/TO7QDsNELviiEzqDEElZDVlBMbhDcDOFlPSE7uMvBhLDGoif7YkyRsQXJ9kt+B16B8sMR2Q823BV44xOdnYeQYVLfbC3wTQzdB9/oddc/pOEoyKJKbGZ9eDCntvTW833DNbh7xx1kohNThxmj7vTKDGgSQXJFkk2NbJb86BgWUCdUiAB9qePfnSR7sT8cSg9L6CBlUL4PqNQDei8LE9xY0mLNIrkXy6Zr7K5E8t+G9a3Vb0ACz4ExhQA8Mymvc+7Z812L/zFaJvC4hGfrvhrpnjmoN+wwxH4s2GtTdAL5bc3/IDMpj5R6emQm3WMbExpQDBpL3kVyni0cygxoQ7AHguIY0bTQooEoUNm7I91Pm3UNmUH6ZmZEIc1ZCE4aF98Kg9BllUG3MpBujfs7V9nCMrg5rAQDJ3XsMQLAalCW4bevgxwAub5l2iT/eTvJlkfu7AVgtuDZUBkUf9v9bb9pq/Vwko+kkX4f2Jr5KHyD5cf+3XwyKJB8kuV+btP6o2tPk0k3ynS3zCQvwghpm17dN+Ui+FM6nuA3JXUm2Yc6tGRTJh40/dtixvDGoTkcgOTmRJtSgVLr8E8nP1+T9XIv3L/THKIMiuTfJF7fIBwDeCWBu8PwaJL/eZ+duSoPSd3YzuLS/qQ+qjXTaRKTaMAkluu+B0+K6hdWgViT5hi7eDSQIEMnXRupvifn/1sh6dyug2hZDJXDrA1jg/6faOUboYt//FgD/B0CnajQxqFjZT/HHRgZFcgLJTUi+1AezfJ/kNH9Py0cA66GdT0uf0fH/q+D+HuhtBY1zUNRJ1yC5C8nK9BSS57C84/j7/HEKgD8D+EQiv38xbdqKQfl+uA76EL1K8ks+YvXkumCY5ZZBAVjkTX6zAiKhjEslO+2wLwbwKZIXRvICAmaRwJKG+78DcGmLfABHVELsC2dqfKBlHm3Qswbl7f+rm0va31SDqvQ/75c61FzqhzlUie5K6MKXZhjDBBQMan8AP9UkNc++kOSGDRrJlj7tFST39RFvto8sBfCf8GvDeaFqCqptMVQG9d/mf6W8JDcA8FTLvJR4XeCP/9eQvo4JtdGgXg/gXgB/APARAEcD2NTfUwFII+TeGcuA5MokdaJqqEG9Ikg+HYFWVQe6xWdfCMeoV29KX4PvoahTkNyfbq+8twM4wqRT7VrL+GQiv2MBbO3/L/J5nkpyl5oyaL8bSoCY4gQAX4JbMu2jqUTjlkGR/IFKUgYaQq6dcBqq9unJ5h5QJUIHJfJqw6CUkNRpDm0J8uLItdZmN++7aUOsh+qDsvWrz3wGhkF5LUHv7Q7g5+YZrefnW74vBsugppL8OMnf2AR0K3yEhEefm4xicFrmQM+IhORDJC0BvA3A3wH8b025VHJ9OZwJ8FiU238JXP1tT/I9AF4UlEsxVAZl+2M4ZgCvBZk2AslFcMRRz3/tTZIh8Wry/9WVvQ2DsoEMWne7+qO2pzLd9eyDJFW72xbAa2vytZiB7ia1HgnXF6bBz/0j+SaSb+4iD6DQcBWXAFDNydIe9U8qo3omkZ/VxNWyczyAd9WUQeuxYnIn+a8k6/yJMWhfS2pw45ZBwUlW07wJQAmHDgbt+FPhO7EZfCFBThHiXbyEraaAVbqw308kmVKTlSCvSHKKt13v6K/N9FITEGdQHbB5XsXTAL7eoqw9aVDG3m4Jru1v1sR3CoDH/f+QKGmaGRGBI3yneFOIkHzc3Ao1qDfB7dJs8SSAfzd53Q5nEgRcH9F3lxgUCql4XThGE2JTGGGG5ai1hUFaokz8lgCY7/+fCeBHkTIAffRhwDAoFoEdk8J7cHVigzVeDbdCSrfS9VAZlNU4tT7/yx8rApinB78geTmA5+n8XbZfhhpUiOnojkFZwUaZxo8A2MAe+rLVjamQQQFF3T1H8gSSP0HRH3UxgOkkZ0Rok2VQlkHU0ZWOmTty70gUDLMttPzhOOhgPDOoxXCDaC0A36Ob1R46qqejqPRwIqZ2rCSDglOtdZCeDO+sJ/kIySNILiO5buTZKQCeITmV5NdIXklSzRI6KJ+Ec67fB+CvJH8N5+dSX1eTBrUTg7lLJP+LzsmpTLXNBM0OwyZ5lpE6bb4xaTDmZLblU3MV4DQDHViWQe8aPL+Srytr3gwJnAZMrMHCmVvSoEy51yD5AfOslbC3AqBRl5NR+FKsRngoXD+oA00Z3wbgaZJv9OdhGz6HsoltKcrEQ8s3xZd/w4Z3VwtDbk7yEf8/Fnyi/psJAC6n81Pot+/i7x0V5GnrIBq4481om0duLSP5HyT/J3bPPL8/45OuLYMKiXjMFDcJrl2V+Z4CLwT5cVFhUCyvG1ky8dFNMdnZviAYd9p+U1Fm6LbtJwbHGDrfRvJ0/1f71VwARwF4IwBdFUT9ZDPgVsb5U5DfCijGQrcMqtNvSL6M5J8AaJ9arUmQNND2XS41KGVQ2pm2jaRZDQVhVCJmCXIo0YZYHeVOpwN5bQAvg+vsG5v72qFUupkGR+ReBhflBwCr0YX7TkR5zb7QkVirQXmEA/pf4JycahJYRvLtrI8GtBrUuwHoHlCW2ZwXeU4H+EosQvvD/qbl2z7y/BfgnLyWiK4MV1e715R3U/NfmYk1TVip+ki4eUSK0Eeoz00GcJH/H4Z4vyg4B8mvmNMJKNp9Y3/8iT+GfWsWyoN1CeKDd6rXUP/uz23wz0oN7bkTCiIWC9+fRvIgFPV+OIq2vIpugvp/Bs9cr69HtY1Vk/8ugLsi7zsUzpF/REjoUdagLoHXaOn8OtqOVkPvjAkvSMVM2CqUWWama20+i6Jf2z52hDH/hia+owDcELxjKckdveVDx8t6KPedZYaQa97fZ3o6wnzz/yOahz/aAC2lQUeY8xfA7FDu+850FDTOMuA6P3lMgzoMzj//kD+fA+DsmjwssgaFolJj0tTVAK70/8/2WpbVoL4AR9BTmIlyp7MDQm25fzTXtEE0z6kopCYrdZwYeVcYTbQUKJnSgKq213HKJsyPy+Ciiw4y6dbwJrJv+Us6GFNEVZ8L361E8joAx3mTZqixaflW9nmsBx84gIK5XGzS67XVWISLr+6fDTVfoGCAOmiVQWk7hAQxJGjTzPUb4RhmGOJt11XUOnhpkIcy4E5b0S1IbJkj4OaILUZBcJYgbub6ZfBeq0XejPJakiGm+venVpPfGm51a2W830U5Eq8uQjRmbQhXZqlDSOiXeQ1FfUr/9Mefo9hU0I5ry6zWQXzM3+GPdrwd5o9E8Q3vNvfPRiEghkESqXpcB46pftxcs31nGrzWgaKOtgQQ0zKBuEAq5pjSWlaCYxoW2hZT4IRWG934cZaDlCz0HVYAUkHGCju1mj3J/f1fHQ/LtQZlG6MOb4GTzrXzTQGwUcMzK6DMoKLRPYaJaBnU7GcZlC1fjJlYk8MUk74ujPet5v+OcNLsw+aaEr/nSX7RMxntfO/3Rx08ylQnkdwa5cihsHwHoCot/xCFpKrYIDg/A4CaemIDThnUWQDu9iYqDaiYHhyBom1m0i2IOg1lgmLrBwDeTjIkIprPVogzKLtKgRI3K9Fajc4y9w+g2ifX9/nf5s+XIG32sYKT0AV+PAtXpykiBxTaU8z0DBQmS1v/bRkUUBVgdEyUCCzJHVBFaKITuOWG/uzPF3oNblcUEWi2nHZ+0h5ImBsbkDLp23ld9hvr/GThotCrBoKi9udJ5jy16oUGFFkao33gw0jPw/wgCi1OofUyFcAmkWdOiVwDirFl+6QyKNuXrUa/CclP0U0DUEH4EvN+oBcGRbel9wdInkc3e/1cfz5Sa6gNFYvhbM2qjraJWHsaZZNWU1j4CigTrLVIfjWSTjUHHUAb++M0xBnUBJRVeqAsga6MYruKLbzG8xtUB9e/AR3b+moAHgvu2yi1T/qyWPv6cQDeETzzEQC3ospAViS5B8lHUXYAK2KTTuu2jI8xqNBnYrfsUCJqzQ+qQa2AQlq1GlTTe/X/Qf7/7EgZLEFZyfuXUhGHMQHmicg1ZXCCtInZzsVZDY6oaICC+vGUqO1rzEmqtR6ZyFcJvxKxB1FmUJYxhiHYRHWcRRkUgL9F3h1GsJ6OMoOfDuDXQRmswGF9oecA+FjkHU1ICQTaDtMBTGaxRFepLxm/Z6zdVkNhCrPQOloFvj95//Tv/f8fAtC5d3eY5z6ZKGsTtG2nIN4nU6vbx6xRSttsu29tLBxHAfg8nD/9QpSh5syeNKj/getUJ8BFPX3CZxRzZg4iFgE4DUVkVZsN8qz6PgVlYhUjau8D8B0UPp2XIx7Tv2VwruYTq0HZ8k1AdbDuZv5boqgT8V6FiPTnta25cHNAQqankWwqFU9GIa1qufcInnlT+A6PleBMVGuh6vvS+yFCU4C1RccYVGhutYNCtaWdg2vzUK6vLVEmeiFonNyhdvrPMDHKUvJr4Eyhr0O5HhU72vf4Y2x+kQpGM5FmUDsmrgOFVL/Um/IuhwvQANw33YK0BqXa10w45jkdZeGoUyci8rvg2RiD0vK3mQzaFI04A9V+ERvXyvx6WUQ3Vd+daFK4Cbc3kbwARQTeJJLPofAlx7S3rREfG1aD0rD8VVFM7LXrVcY0nm5hGVTse0uRmCS/SzdX9Nf+0iR/fVc439YSn5eO3zUA/Nb/13avi1DsiUGtLSJnicg/ROQZfzwbQ1/XrBVIHkDyTpL3kIzOhm6ADiQbUt4Ey6CmotxQdRV8oz+mBlhoylJMQ3ye0UTUmw5sOPMbzH9bxrPgTCYb+/NDkNYItdNPQaGBXOP/t92uYnv0ts+VlcLDaKkQ4SaH1kR3ayT9GnCO73nm2u4Ivonl+WBTUTBT2/4fQZXBA+UxZBnss5G0+0euqXCzAQqJWH0GJ6BgLCE2TlwHnMlPiZD2Z+1PM+AYT2qag47vmXAMeTUA/2Hu1y07BUQ0KG/iVq1uGslwzlGn3DX5zoEru43smwWnZX0XwLdM2jsbyliHTyeuT/RRhCuiMM0dgoLOrABXZ5/x57NQfM8/Gt5phWIVpmzoeUzYaYPP2hOSl5myAq6vtwmZ1/DxTiAZyTf5cv0S7junoCzAbeDN6iUGxS6XSapjUL/3Zr0jSB7sjz+Em7E9rPAd+ltwjsmtAbzF+z26gYbk6vJEbRmUVuAJAA5s+a7ZDfdjdvvnfJm0DWz5ZqB+OZFYWPcjqDqM/4Gy9pZqby2fJURT0EyMLH5Uk38drjL/rXTcD1PysXAE7eGGdF80/y2RmIGCyDyJgkGlhAdb/isTaV4JJzgoYXseAETkQZP/afDm2RrUOaJXRsH4tE8s8QRjBhyxXy/2IMpBDTrJ0/aDpo0mQwa1HpxgpJN656O37cWVQVns7Y/roix8tZk03y0OQLEqgx2rql2G49UKN1qe1ERWS7Q39T5cbbfJcN/2/spTzfgPlOvilf5oNajQpwoAoNujanPG166chGJO3pNw434mqsEYH0PRLmr9mAbX/61wmWRaSYIiIp+CG7gz4ezdMwF8SUR6tXt2g90B3CMi94nIIrjKeF2XebQxBYR4Darh3G0Gk5ppUu94n/mvWyM8irQPqmmtr9C8cxyc1GgZlMAxKLsq9kTENUGNYrLlnIbu19zqeksOEbGExRKgIW00CCc0bABHrH9bn7Sz8gDgouDs9hwanfQECgYS859YLEQ6eOVeOElTfUF2WSrV9Bah3Jdik66bAngUyuiXwAkx68IRkpRWr/gc4pNDlUHdHLm3AYa2U/J0phdUjTEo7SNrouzjmof+w2qythzKoEIhdD0UY/uZ4NiB194tgV4PLnJVx5IG9sTaIoZOX/G0M+bnVQa1AarBToqL4QKd7g6u/xNlOrMQ7jvfgCqDOh5OSLSYBieUXevPT0YvDAoARORWETkTwP+IyJkicktd+j5iPZQH7oOISHwkjyF5Pcnr0bzOVcg8YmbDjeG0E2tqCOd8xKCDIxU1ZAetErzHfJm0XN3sWRS+5xmYVTE8lsHNk7EMqhsNZzrqNajYGmtD1XosUxqqrV0DDabBrXEIpH0Se5v/E+HmdTzoz1X4eBKFBG2nDsRAFBJ06LN7FG6QqwZ0tbmnDHAJynV5kfl/Npz5tu0eR+qUV8FkGzhCsnGLZxfAmdAsVgFwD+I+sENQ9Vl2gyeRjhKcg+r6jaoRPIX6gKZwkmobXFJzz2pHx/vjLsE164u+BM7fG5t3ZrUlC42CfQauzpNzhQJ8CS4wQVEK2CH5VriABaAskIaw7WtNpvegHJZu6z3mow19nZfCCWAqRDyCXhmUwbWsX0Sw34hJ+RX7tPeR7Soiu6LKvUNYBnULChU1BiVuJ6GYhFgHJSYbt0ir3zEHjnhqGzQR98/5Y8wP8iyqDOpGOGnK+j36yaBiEl3bGeQpDEX6DiFwTHoCCsKQ3FcqwC5wAxEwDEpEboD7RvUppIQKwkvZIvITc/2rIrIArm3WhZPK/27ua9suRrkuLZG5HsUcoG6g2vBqqI6VVNThQhSEWgnRVgAeFJEmH2nMJ1iHneFWTUlFdqoGZcfJEXBBSm9EOajo1yijSeON4drmJB3cgzIhDk2M80TkMlQ1qGdRDYQ5PJL/ymivQT2M8gKxoTb57+geVjGZi3I4v0WKBltteycAEJFH4YTBJQA+wOoeZwDaE6wTAFzKYpuBDrx/qkmi7BYPomyCWB/NfoQm2I59MgqJ5AuRtFrRv0Dh5LP7SNmVE96E7ra1VqI/H+WVIpqgHdRKLBo6PRfOJKBmgd8D+D6AK1DWPK2JL+WDUHQWt0wgtqhtXT1sCTMhOIHV4HyPQ90hFnAMSutMGVNMwovhlQB0MVmrQUFEFqIgNPcgDsIFPIQbAGp5dELqPXASpdrjtU8+jTKDUiIzGU6DUkbWzRp8VtgICYkKn1o+tQgICmFNtz/fBs1O++fRXhhQPAvH+FPLbz0N17/DCb8PiIj6cwEAIvIbFNF0m6G3tQrbaiyAM//a9gq33rHtavE0nFBrNbLzI/mv1EV5SnRSRMJxGvqUmqbSAK4/qD8+tq2QTkxPtXm4u8IEX7ZlaFgRpxWDEpH/hVvt9+skT/Kzu99B8jY4h27dis294M8ANqdbKHUKnNktjKHvFmoO+IaInIeC8cQkJSU8T6NoQCsV2QpfiPqoocVwKrou/6HOwgVI239jCInSr1FEHM2FW8pJgxxERATVDmPt+02O5JkomPrVkfsxBpXSuA4UkbtE5KLE/dnmnafDmUfOgNNQ2izpFINlUMpk6hhU+D0avKHReLYude5ScuV5EXlURK4ILiuR0XI8KyILfX8EvJYjIiHBW+CvL/Htqn0hbMNUBBpQXkNQy3+uz1f7r65VqfW2DE5jOwDFYr5Ac1TaIriJyG8Prj8YnF+IYgw8A8eIUytOPA0nVIVOfWVooQVCmfp89Mag2mosgKvPj5jzsF2UqMc0qJNhTG2+fUOsiPYM6hE0tw/grENAO9o9CQW9rNANEVH6kNKqw++2fEfpa1SLb23yEZE/wal2J8JJYB+AC2PcUkS+3Taflu9aAjcD+jdwkttPRKRbk0EKqkFogy+GYx4HolivSn0W1rZtO8inUMwXWQhn903OuRCRp1GsDqCmgOfgCJyN1rJRdCFC094cFJ0mFtIcu27bu8mRbM2Fsc4T64whg3oCrn9cHEn7AHydisgLUDh354vIUhH5iIjcgTQT+Fmy5A6CQqNTAlG3p1FoVp7tj8t8Ga2kqdpUt4RP+5CaYMLB/lMUE2W/b66H80S07UJpNrYP2D/8+2zbaL8IJwnfD2eCme3PF4vIIq+R2G9N9Ted1L1IRG70gq3FGcH54Sgmjz8DNxZDRmMFhNh2Hkp7wufmm2MvO/MuhGOWn2pKiOqeS2G7xoQcoGi/0H8erriyIhzDbNwNWkQW+Lpv2g5H363j62AAusjAT4K0k1D03fDb7HvsWH3E/P823GoXitjq8dG5UK0YFMm1SH4JTqr8o/8tBPC7Blt0zxCRX4vIFiKyqYh8sfmJWsRMT1ohi0XkGBG5WERu8tcWAJgiIvPgOtdv4PwGH/NlW4xClV7oCVUqgk8Httb11XBzjJ6F02jmoHA6hkEoNsx9AVxgwk/gtNmPo9AuUtqQMhadXN1p74jqH8J2mFhnj7V76IO6QURiC4QuBnCQiMT8LKHkmtqfpo1EOQ2ubp6Ac1LXaY12LOxi8o+Z8ZrMVyniEDKoEqH3zOB2/99GHoYMIaVBhRoK4AjR91B2iF8Dtx2NbcNdAHxSRP5mym+11zoG9RCcD0mXnWq7hfgieEHIj6kYg9K17KwUrj6bb/ryIvKcEsj5KDaYtAj7ajjHbqEf/22+JWT0odlM2ynUJGL+ZIjIt4JLK/ny3FtThlcjsQpGglk9B7fdjlp2HkNBf8LFBqwGlRJsv4RyPdsFoK8TEbu1j+1LU30Zo8JeWw3qXriw1n1FZH+4cOzr4IInup2fNOIQEdsR1FShnShKqP2AcbYykQP8QLDENrTXp5igdsqJPr8TRGQPc30hCu3BEuffoBxJNF9EDhWRd4vIr0TkMVQZlM69ES27P58E50i2ZogmPN5w3xK3bsJ63w1gVRG5MbgeZVBeCl8R1ajBGIOahkJTXQY3YE73bXhZmLdHuMr9fSLyF5P/DZEBHlueqA3UR6gMru0mjA+hvPyM1re2+/kmXYhlKNfVD72G+nOYNhSRv3hfDtA9g5ooIn9Fde5ViBIB9f3TMpZFqK4WomXqCAVGuLKMIGRQ1/njQhG5CoGZ2vsSLcI+bM2cMVhTY9gfQkah9RIKNm03J52MchtawUTned7TUllQa8ZzIvJhEbnGn09E0d6LUOyFBpQZVFQwFJETYULSRWQO/PxCH+5uYeu6dvpPWwa1vYi8xXdCJdofhVv/60qzOu1YwD+AEvGOSRdNEjBMZ9B8YnNVtkDhgA7rWgf5Is9AZ6A84H4YSBUxaUvv62C6PZIGcJ3xfHHTBD6HIjBkM7jIqRBbo+hsqUAOHVxXouw0t4MwFnn5PUMILbTTVpiIiMxF2WQAVAfKs57ovKR4TA4XEZ3Zn5LSFsIR+LP8ubaBDqoYM3oQ8c0J9RtS/UfNU0/48jQRFN2PapkXSBTaF7RsGpkV2z21xKBExPo9UybKbhjUX+An7/v6PRnlyESLmIRvx8ViVLdlV1N4jJknGZSIPALghQ1mWLstirad7tUVI8R7wpsxRcSa9ez/teEsTMeba6EPSk3NbQIUFHZczEbhQ1LXR1thR90XsfR6bSHKvilr4ktaLrzgYCeofwFlweoAf+wvgxKRGBGDiHwXbhXwc9rkM8II55/ohNtw0mZITG5BehWA/wcfJhk+L1WHOETk7yKifoFwcFoNSrU8W5ZwImVMowntt/PgFpMMt+bobGMgIt8RkU/7//dGyvUbb2Y6Dm5i9i8AXIYqlLiGcxisT60bH83zcMw6RbTDdgrzvhoARETrta3peYmIvFFE3gMXNKCMSuu04rfyAlpsS4s14ebchP1HoyFnaRlb+AggItpnw7TKoB4KzmOMP9SgSq9IXG9iUFaC3w0mNFpETopoJyf7Y4ze/B8KoSJmTnserl/H7tnyVQJgxPkwFRUBT0QsE9HnbwRwKtxYB4rvPklE/gjXR16CMjoEV0Qe89YXu2CyMpfn4Nrjvf7cMqi9UL8KvRUKbFtovcTaPgZtO1t3e8KZfZV5LRSR500ftRpUU9BSxzcszh/2mDnXyNi+a1BJiMjlKBY1HBiIm3+y1JwfLCI0DEPB4LntxM13ieUpUti8Fak6DCs+ZATa4exg1rIch6rdPBaZExKShSLyQhGxkuE2cHkJSNgAACAASURBVD6IFGy5roWX2r3J50T//1S4BW6tVKV1OwEFU7pLRHoNEX8e9ZFTP4cze+pKH/rts+HW3AtXGklF7D0anHeIhIi8TURO8//tbqWtICLPw42F/YLryuSa5uqlEPYxO8kRKPrQPBT+zP/2x2VI+DqQZuJat1821+aZY6duRWRZg5ayooiotD8RhWB2v39+sbgALKBK/Cb5a/Mi9/ZFeVuI96DwgcWgofz/QDUq9X4Uc6cWiDPDlwQTETnZHxeZ8gJuHMf8lHZcP+2fFTjmFNOgbhSR1LQFoCqg6rjVum+rQWk7Wtr4R0/bnoYz14bCwCQUfaVJ8Ps2mqew2IC34WVQQClMddDQKKVi6HVgHdPbodCIwkYOJZySBuWh2thpkc4abpVh02snrYToishtDaYkOxDnR8qt+VwnIjZsWPOcaLSJ0MbejQY1DzUMSkQuE5EDUNRXhzmLyJxIuWP1BRGxPo69EPfbKB5F1bRYC3H+nZhvYRU4R3IvCIUb/dZnzPkC/151/msk2DKkiVeqfXSeymxz7RgAO4jIzMC8VQtvnlVMhAsLvxPFSvoWpX7qv2cRXPkXB/d+a7RliAtoiEWL6n0l8BeKyEuD2w+Z/LuZ/wS4uZKV8SVuqsDuAKaK88fo9bPNuyyTCAWhF8EJXX/z9+07BIXvdGrkfh20L6R872E+H4QzJ+p4C+llKXDD9/+6OauroVh8FnCa5mmpxON5w0KgHYOKRT61gtfI7jPnt6C8X4vFN1FeeaDjgzLXUuU9J9EBw/S9rF/3ShTL7nQTkakd3BJPG4W4DIVppw2aNCjFDXCRRzEzlMX9DfkcKyJ/qJP+RWQdT/jq0Gryr4g8LeVQ9W4QBhc8BicMaR08jWJy8zSfRgUiy6DCddGaTHz2nU9IEeXaKyaKyFMislVCW4j1f10Wp3E+nDj/Zt2YXw3VOgBcnaUYVJOQNQHp6Lk/JwS+WJBH+Ox1InIh4ou5LoFbNX0/dLdIwHw4F8enUQSR1EJEvuUF0EfgBAD7rctQjX5syu9Jcaup6PntInJcKn1XS5+PQfwR6Q3IUuGXQ0U0T2+XtswrqUFFcFXiepi+66WCVLIkeS8Ku3sbdDQof1wDZXPYKSLSzcr385A2RXUgIs8COIbkd/yl2CDfAfWTp1+C3pa/iWE7uEmwbU0s3eIPiAS/iMgtJF/j/y9CEY79FxSrYABlBhX6itv6+/qFJoE4dv9GuKkGSujDEOzWqNH8pqHoR91M0AVcXXU71UYZlDLF3VIJUfVF7wxgjndV3EGy7Srn+wL4kzhfd2z1nFr45w4kaeeFrdqF5tYTxjuD2gfDN9hSaPu+mA8q5me6GIXzMsSvUISDfg7Ni5gmISKNkwAD/BFOGtXw+dC/0m29t9WgFCfBMfzK2mVNkn7gQxgSvDYTNSf2Kf86/25M03kERbTURXDMKjXHrLUG1Sc0zSlSBvU4/GK4Xuu8lqSuGJE0B/WIh+A0fyW0bedwKSYgvtJKHZbao4jUrff5JMxqN+IjqQ1aaVBSnlc3FNi5lLGo0b5iXDOoIZhUhoKeGZSI/Nns5qrXkntSeTPOWf7/Z1LphgFHicgFbi+1tIbaJbpiUCLyJMmvY+zs8DwcqO1rInIQAJBUCT00X6XMoMNh+t8R1a0bUu+Nvd/O0eknNkHBnGZHTL5NJj6KyDK/u+6hLd/J4NhUvjq/2PlI7Ok0TNCyfLk2VZ8wrhnUKKEVgxKRpSSfRzDgGiKiBgW2jCkG1WiuC1AbJBEthKuruuWLxjvaCkPhpHLF9xFf1b/vGpRUJ2bHoH3pTFQn7A4Lgwp8RKmFauuggubb0d4fpN95Chp8QU1aig9kObHle/uBMwBcGtHkhgWZQfUf3QzuRzE8u38ON6zdOdaHdkR51Y02eArpNd4y4mjb15YAVeHHn8fmz4y0WVyh0YOxRW+HS4MaCjaHn7bgg2narqii33kbipVPxgR8gMOIMCcgM6jhQDeDe6dIeOmg4z1wobWKigbVUloOcTlaRhZldNC2r3WrZY4qg0pgUXAcKdRFedbNW6pDv8zi4x6ZQfUfrQf3GGROEJGzgkt9GWx+zsvybK7rBW3NyY+STK2PF8NoTT+pe+8galC9YrxP7+kbMoPqP0ZL+hwt9LpwasbQ0Y0w1E3A0A9Qv+zOcCFc5cNiMYD7E5Ogxxq6WVx5uUZmUP3HTaju7zJesT66n3mf0T90O2enFUY4ItTidCSiMv18m01GtjjDAxG5xoTNZ9QgM6j+421YTupVROqWCcoYfnwd8YV8xyS8ljdsc8p6xLBE1QbLSGUksFwQ0pGEFBuvZWQMK0Y6oiojY6SRnXUZGRkZGQOJrEFlZGRkpHEhytuXZ4wgODYWLmgGyetFZNfRLkdGRkZGRn+QTXwZGRkZGQOJgWNQJD9L8iGSf/O/5GKpGRkZGRnjF4PqgzpdytuWZ2RkZGQsZxg4DSojIyMjIwMYXAb1QZI3kfwByeQ25iSPIXk9yevht7rOyMjIyBgfGJUoPpKXA1g7cuskANcAmAM3g/vzANYRkaNHsHgZGRkZGQOAgQ4zJ7kxgItEZNtRLkpGRkZGxghj4Ex8JO1OmocCuGW0ypKRkZGRMXoYxCi+U0nuCGfimw23QV5GRkZGxnKGgTbxZWRkZGQsvxg4E19GRkZGRgaQGVRGRkZGxoAiM6iMjIyMjIFEZlAZGRkZGQOJzKAyMjIyMgYSmUFlZGRkZAwkMoPKyMjIyBhIZAaVkZGRkTGQyAwqIyMjI2MgkRlURkZGRsZAIjOojIyMjIyBRGZQGRkZGRkDiUFczRwAQHI2gLkAlgJYIiK7jm6JMjIyMjJGEgPLoDz2EZE5o12IjIyMjIyRRzbxZWRkZGQMJAaZQQmAS0neQPKYpsQkLxmBMmVkZGRkjBAG2cT3UhF5mOSaAC4jeYeI/N4m8IxLmdfqI17CjIyMcQeSq4rIk6NdjowxsqMuyc8CeE5EvlKT5vocSJGRkTFUkBQAe4nIH0a7LMs7BtLER3ImyVn6H8CrANwyuqXKyMhYjrBaPzIhuUE/8lleMagmvrUAXEAScGU8V0Syj2kIIDkJwDIRWTbaZcnIWI5wI8mNRGTuaBdkLGIgGZSI3Adgh9EuxzjDswC+BeD40S5IRsZyhJkYUDo7FjCQJr6MYcF0ADuOdiEyMpYzTAYwcbQLMVaRGVRLkJxCcrvRLscQsXS0C5AxvkDy8ySnjXY5hgFDjh4jOQEAkRlUz8gMqj3eC+Cm0S7EEJH9Txn9xqcAvHC0CzGgmOyPmc72iFxx7TF9tAvQB4xrBkXySySPHu1ydAuSZ5Acy8LPeOxX/Zh/owwqa1A9IjOo9hgPg3A8fEMdTgBw4nBlTnI1P+2h39gHwHYkVxiGvDsgOZHkWsOQ9eBPpuwe7EMemUElQHISySlN6TKDao/xQNyXBx/UcBKDOQDOHYZ8F/vjcIcivxfAo/3KjH4eCHocGyT3JPmrfpVnAKHRe5nOVnE+gNubEuWKa48xw6BIbkZyauTWmPmGIWC4pdV1hyHPxc1J+oJ1+pyf1nWvdORQAAf2qSx9gWG6/cC40qBITmij9bTEbgA2aUqUGVR7jCXifjec8zrEUCTdFXt89giSH+rl2R7Ruk+TPD/ByG2ajUhubC4t6rFcdRiOPGPoJ/EFACVWQ57nQ3KjoebRJ0wIjkNB3xiUX12nK1Mqyff6ffX6hX8HsLDmfX1nxJlBtcdYYlAAsErkWq/fcBWAk8KLJMUv5luHr/vfSKGbQfJ6AE3lvwnAbeZ8OJjJSGlQfWFQJF9E8gAUDGpyXfoW+W0JYPZQy9UnKLPtB7HtZxRfLwLivgD6yfiT02xIrg1gSR/fBWA5Y1CeoPYaEjsqjmCS00h+z/+/kORKLR+Nte1QfFAp1X7QVpHvlrA0tetMlCM4l3sGBeDnAC5G/zSoGUN8vp+YFBz7kVc/mB2BztwqkPwsyUsbnuk3fa/rP7P6/C4AyxmD8uh18ca+alAk30nyxS2Srgjgrf7/ywCs2vIV79PObDCUb0j1lSYC32+zUhO67dNN5Q/rbNhNfCTXJbnVMLynX22h+fRFg8JgRQH2k0F1THx0eF0f8lKT9OEA9mt4pt9jry6/boXfVm2+PDIokryD5JE1CZaR/Nfg8jJz/xCS/9fwkj1J3lszy/57AL5Q8/xUkkcBeAzAdM9sZqI7YhC+eygMKiUFdmsX38/b04eLcVXKSXL1kFkbe3lTOcKBl7TBDwGhBvVrtIhw6gGtxjvJJSR3IzmdZGx5rJBB9UrMh50xkVyJZDca2kR7JLkKyRnen3N+l6+3Jr51ANTSjAZoXdf6TAOMJIMSoO9BJsslgwKALVEvfRDAS4Jrlri/HUCTNPQKuCiV39Wkear0UocX+NOPAvhPc3tlOEIwJXhmdZKWeVoNK5xcXGFQ/vn1asqo6FWDCnEpgOfg6rARJJ8luXkX+ccY6T8BvC241lZSjmpQJCeTXCP1kCdsW9dlTHIX/zdkUD3NhyL55gYC0ZZ4TASwC4APAfgryb0T6XrWoEjuDGAkJlU/AOCfJF/ZMn3YLx6BM2m+Fc5nWYJfAm23RF42SGK6T98rAR90BvUnf6yMJ5KrkkwK43UYtwyK5F9Inha75Y9N397pUCQPRZlQdYggyQNJfiDyvOZftyr7U8H5BwDc5/+HE0LVmR8Sg21Q7jhPmP8hg4qp4b8F8GBNGRWb20i+UAMh+R2SB7XIRxENMY1EC84CcBfJ/Vvmm2rXjjbptdoF/rRbBrXQ94dFAB6vee7PAG4l+f3YTZI7AbjeCxSh2ZAm3bokr/P/9yO5RSK/6QDOQ70vIElgSB4QBLzYekkJWUo032K1FJI/I7lhTTkA4D9QBPJoH2okqCQ3IPmHLiLaZsH5uC5rmT70G00FsDmA+Yn0RwO4riGv7wD4UZBvt6hlUPT75wWopXEk1++CcQP1DEongMd81fshEmTVBuOWQQHYCcAxNZ2+49wnuUIkRFIJ2oZwEtQyn3YCgENMui8D+KbJa32ShwF4h7+k5jk1N9iOFG4rvW/N96Q6wFo+79h3NmpQANaueafFKwFYYhsO5PVRrtM9GzSz1O7Hz5B8uc/DftMrIj61Dlis8DAxuK7nT5vL1uTTRDC03bU/LEKL+RsANvbHjpZAckOSv/L18hd/eQqqGpT2lzf5fHbzdXEpgLMT79O6rtO+6gjMxQC+aM4no3ni8Bv88QiULQqHAXg5yR2ZjvK0EV/alzrCl2fMsT6yO4CXNpRrKIhp1hMBzEukr1sCTb9nVxT9vdeouqnBsQOvwT3r/69Acl+S7wbQJDB+DTWMm+SadIFl+s5K/yH5NF0UpqJxnhTJHVD011qMZwYFuMG6aXBNK/lVRlqfC+ATQTrteNo4KrGdEqQLicuvAPwMjrEp1Jx1E1zItuKZ4Nm6xr0ikWbtxHUgwqBIftCbn9b0jLSbPrAqAHjTlRLeSb4DzwrKcBXc/lMdkLSS+GsT/g0A2Izk6iiH1n4cwGdqyvacP4YMR81wJyeea6tB6Q6rk2G0W7rJi8+RfB/JIyLPWbwQbmKq1YImoqpBaZv8CEV/U0L/bKKcOuBLkjTJn5I8S0+De1uQ/Ky5tLL5PxmmPUkeR3IbkpuafD5t0lsBAHDa+l8BPJwQnmoZFIBz4LTQEE9ErnUFkkcyWMHCW0pejziDmoBAg6JbNupbqB8/MdPnPZ5xd2sar9OgbCTtiQAuB/ARU9aUYNI09h/zR+3vYf+ZCGAlANdHylmHbzYncRjvDAqoN3nYxj6WpJWSpgVHJXzHBXmoT0Jn6cccsspENgSwg5FIQiJmB0WqA3+c5D/MueYVk+RiQRLfgNMAH4NjpCqtr8zmWeJaB7cC+La5tgDAy1HtnKFZZO/gPDWv4ntwfqMwhH3bhvLZMiqUyW1mBqqt5yExKACX+PNvA/gfFuvpxRiU1s9F5toVqEZmWkKwpz+q5B0KNQrVsLcl+TeSp3kN5A0ookBDfBTAZ0iqqS1kUHbsfBnALQDuSeS1IDjX758IYLNIeivYXW3eCZLfhPPhxmDN61KnVddgX1RXsFgFbvkdzX8N019iGtQMAO9H0H9Ibk03HWQS0r65QxLX61DHoGxfU8HY9qHU+pEaCPJaL7iqALoZSWv2Tz2vZbFae5KGGKacErIqWB4Y1AygJEXYhrMEfBWUibze08pPmVZU+n24pgzTSNolctRhGBJT26FTDGojABt4iW8GigESY1Dhtff6o+1Q2geeAnAeyfUT742VFygP0LBzdga1H7AhmvYRCoMQ2kwEDPu0rYOpdKtClMw3vi4n+F+nnUh+3qRTZjkF5QG7d/C+//XHGIO60B+tELMZqsQ4Ni5VyCkNbrrVMH6Mgli8As7v+TEA7wnyCCVp1br+4I8hg0qZCzWfq821qb48scmpsdD8WFvqs4d3XkS+i+QfTZqwj/Uy/yZWHm1TLcOnUVgJ1kXVNKffF/pMD4UzrS1Gen7X+oAzzZHsWG5IvpvpeZohg1K/3cdRRNC9EkWbaj7zkA4I02/4DJzg+mp/vifKJjjtB/pOdUXEmGWbII6OcBKYB5MFHM/QjhczIxwWJib5b/7vdJLPo3kX2jaTLKeiTCzUXh8SbZUg/w7g3xCHTtRdG8DzcEESAHBKoMrfAvcN8+kipizsyg62DxwG4GKmV+yO9Rf7DVNJnsNiAiFRMIiPRZ5tYlDhnLVOkAfJY0nuHnmGet0zRevHeDeA+1HVoM4A8Hc4TeMh/+wqcMtFaX3vDKe9TEaZ8ITE7mC6KQyhOaTO/2N9d69B3D7/C38Mpc994Qi6ErCQycCUJSyDav0aOWqfnYRm4n8+gBv9/1NIbmOesX1oMskXBc/Gxs2kyL2zAbzE+y2AKgFcxRP6U0g+0FDeKLw5Wctt+6QV1l7p04ZaeMigLFP/aeqV/ngKXLCI4iwA55O8MvJMSoM6BYUwdFlQZr3WCdQiuQnJLwXlUO1bfY6hRq/fpHV0uT/Gxu8U/56ocOPrzwond8TSKbpmUKyZPzSgUGISY1Bfi9iC/90fNfrnW6jiO0CnspMRWAbTUNY+tEOoin00yUdQmHPqIqD0WdXYtPMdgbJ0eR8cc5iGtIkHqPaBDeH9OXRO/T3NvZgGZa9NgfO3qcT2DlOmWDTjNJLrkNzPvy80iYQMymolX0GaiV9L8jNwYdLfM9eV8IcM6sVwA3s1c10Zv37fv8IxstDEFzNp/DfKUYNEMzNWXNRwP2wDJcpaDtvWYX2GfVPva31sRvIn5l5TuPsdKCLxtgfwPhREzD67OYBrAnNcnQYVu/c3fwzr+2C4KLqPA1ifPnSf5HsYmbdEF+14gP+v7/snioACa0aOjeUpgeUiXNmljUan+W7hyzGbRdTj1gBeZrQUhTKmX0RM8XZchMLNTSj74d8Cty0NUIx9ZWp7kHwVqsukreBdGOHUmyiDIrkXPLPzZsMfmfu/RSRcP4W6qKitI79tUDUbDDouIHkD3NwnoP2cjeQcF7i5EQvgCFUbDSpkUCp16bXXon00XShB2QFlzVnzUXSguqinUFtSprkPnFZhgzqaNKg6H1aMSW4Ix2gvJflhuJUyLELT11LP0JRx1ZkTPovqXCt9zpb5jyhWKLcDPfSbTANwDaoMqs3k5wNQZn5DwVTve9nDn+v2GbG6D/v6JKAU2RhLt4m5lqpfJbDPoixtT0NZg/q7ltkf16Fbsw3onkEpwu8M6dH1ntifiTghfDsKgrwLSdUa9butKT/W398GZ7nQPrRycL/Nmnla/6o5b4SirhSXB+f63bPgfMeplUZCs+LNKEed2qkm4WT1T8AJSOE3rRC5BsT7x24oB8+EkZh7R55Jok6DugYuIOB48zsO/V18cKSwM4oQ2rYMqq5uFsI5izdH1XnaRoNS9DoD/7HEdTs45qKQ7tZHEeXWNICU+J4Rubdb4EsDnEQUe38bbI0iKmt/OE3G4tVw0VwKgfOXzPbnTfbucHsJZZJhH1Cp0w7eUIv9J5wwEjKoW+FMM3X4NYAPN6RpC/3mrVisLgI4AvaHIG1o4utoTHQRnDGtVttwEprrdx7KmtI0FELSCnAm0WUmzSYAHvEm53dF8uuFQW0Nt3q/RTSYhm75KKsd/AnA6f6/jhWbf2wsq8lfx64GFuj4bqMpqxWqdvyT/CGLydy2XK8NktrzR4J7d6K8RYzt4zEaNxfVOl4BcX9aTAA4C2WfV2N9kPxg6l4dEb4dwPEi8g77Q2FzHmvQDvTffchrGRxh2hqOaH3b3It16l0QN5dMpIvoO7TL989OXLfmhodREOj1UJgEn2/5jlSE3UM1z3Sz39CpcOW9Fe57NkJVizwVgI1Y/Bc4Itd2S4RUeU4NzlXI+BbQMUuEzHIOCgZlB+vqSE/UtGi7yG8TlGk8D0fk1ewyGdW2DQmgXfnhHYhjRZOmKapzHorAD8AxJ50bdQLcHK7nUGhVKoWHPlGFMqg6rTTGNEOBLbXe5u2oThPROorNGYqNZWVw+pz22XA6SohwugvQPAfvbQCO8/6cL9ak+6j5//vg3j0A1jW+M1u3se+bh2odvwJB/yX5HtQs1WbQhmF/I3WjboDvh+rcBojIa1q8cBDRz71KBG5QrA43iK8EsJjpvYV2gLPPx8pUG8WSQLjyw+fgOqLVYB5GoRnQlxciMpzbhlSCTmrwDziCtRBO6tsIhX9NcTvSM/gBYAnJa9i8akGIpk3yHkMR0aR4Hk6L2h5lxrchCj9QHfZoTtKIhSg0lB+j7G+Yjqo2n9SgkB4P2oe2RZqpan7Pi8jrUGjb+8P5gmxelkHt5I8p35YS/dRqCRMQZ5rhih6x4JkUNDw+piGEcyOBwlSr9aeMJzV1BACWiYiuEPOPyP06TIXrO+HYSOFeeyIi8+D6xav8pa8AAN1k8W1QxTxUzf6HoeqXaoxF8EFKbRhU0k2SZFAi8qyILPUvajXrd8BhB2QoZYRqMQB8FdXOZB3YOvCmwBGOZ9GdietmuAHZy3YV4YKlj8N1LEtQHkJZta8IGzW4v4cytcEdKOp0AdzgngRnCpqJqgZ1B6rzayy2BvAiNBOkqxvuh+NACeVz5tpCEbkNTjhQCV2l5bopBoo2c7gA4AKk7fQLYUKwUfb/rIo0g1JYDSrFoJQB7om071LrS9+n/VEJ290oxoplUBqAlLIYaHlTqzMsRZx5hQyqmzX+6vpXrI5UcAm1Uy1XjKZak+U/W5bL5tvNCvp2MrwGEa0M4JIguOJniPu9Q7OtXts+uNaGRsxEO8EsXFGng7ZRfNcaW+hYRaezicjLg3uh2g8423S4pI3Wl8DZamfBdaCFcER2RRQSlFW77YZ3irN8mermHaUQDpwlcAPNzo5/CmXHZjd7DrWeSNclFqIa8jwDBaHbGGUieyfqNSgNZLESX8zEcm1DuVLjwBI+1ZLsSgZaT2pa65b4hDhcRA4TkSsB7BO5HxIqaypbFVUTXyoYYhKGNsVEGaO2VegzIpwABpQZlCIMhgnLNx1pohybAhGr9wdR9k2lwplj/o+/RK6FmATgZhEhXN84iOSxiE/GtvVT159j2ATAsYl74TJFnwDw/8x5SPhtO6QWuN0G1SXXHoeLErZIMhWD96OYe1mHcE3SDtp20hPgIq3eEN4geXAwkW5QEQ4KJeYPIK5BLVEN0sAyqOfgJI0pcIPpWTgNJrYFweeCfK6A67QTUQ46+RHqcTbcuoApBqU405RPETKo3yKNFINSQt+kkaRgGZQu3TMBBWHdAIV/7XUi8gyKAX1XkJf1hVnzgw4c65dYABetl8IUOM0lhBK+O1EEa9jBpMxKy5haZaEOV5j/lpBpnXwJwJv9fxU45vijDft9M6oMyoa6H4Ri/t0M9GcOpGpOYX+cgKLuVJBrg6+RfAvcOEqFIsesFLFFe3+AsrBjzbAfhlvXMIV74frEeXCBUDFMR9FeC+BW2vgKivFvGZFt15iwFOt7iq2QXlPv28H5UhGxAlpqVRWg2v5KHyajqnnvjGKunMLSlhSzSi0vBjhaNgvOApJ0O7TqpCLyv3CRIl8neRLdVgPvIHkbgNNQzJ4fMxCR18KFEu8N4AZ/2a64G4sksvWV0qDUlm3NFKUGFJF94MwVe6HMvOo2/TpZRI4Rkdej2m5LYAaEiLwPjkFtF6SxuC84P9P8twzKMrbZ/titHV2xAEXZNTw6XEbmzwDOE5ELzTNA1SFrCY6dD/UEHGGxmunzImLnc8UQk5pn++M2IqLrwllT6RlwDmQ1BaqmrAxlDRRmLSDO+I/yx2+gHNKvdXK2iPzY/38Arp1Tq8+HJj6dHEsA7zTX70F6lYPWG88ZYhhKwBNQ9JG5KBOze4O0VuLfFcC5/n8qGOsjkWsxBvUY3Nh8EE4rWOTLTBH5Ouq/c5GILBaRtyJueZgLN9aXmHMVBpRB2fwt8bf9weYXoo0JLVz2KrQehMwwZO52GsbTSAevxKwSL4ALtFkfzaHjcyLX/ktEnvPvTUZWt5aiRORPcIETJ/oXfgBursmWIhJy8kHGD/SPiNwrIveJyL1wwQq3mnR1DMpqUGvCMSDVoHTgT4OTfoHyANatOZaiGrKfkiSuEhHLPJs0KKDsPwGqA02/T00fVuKzA8aaT1Rj0GeVybwfxeS/ENuh6PgLUdSh7nU1CWXJ/15PGBTz4eo7NI1YIh1qUPNFJGZWqQuOiK1xp4ElltjYcjwtIr/zA20tFNF8NwB4j4jMQWFmWgfxuSTablf69AqtE2vqukJEZiC9Knnq+lRU9y9L7ebcZuuVy1Gur9NQTDIHXBtfCDcfZj7KGpTtW59G4dMJo0O72RgyZgF5Hu67J8ONv7tRbru6EG9b57Yf3eSP8+C+Se89g8IHpdtXVPLwfTJm4rPXzo1cSyEUeCz92FdEQgYVzsWzK1ZMRkEjFbdHrQAAIABJREFU/hakU23Tho/vDeBxEXlIRG5GvR829PnDvGsxaqJF2+6wuZZfHuMqOFPJH+E60O+GOSpsKLB22/frHxF5ZyQtROQulBs4JmEpY1Af1LpwhOcuOIfy/6GQpKajMIVZqfuv/rgEVYdvynEdEh6d1PdVUx5rbgCqUlnIcPVbr43ctx3/ieC/ZTKX+OP/ws31iWGBiPwVLrz/TH3WSN+hBhVKwwvgOnHok0hFzj2JgrjpXJv5/p0XJ54B3HYTIb6C6mRfS5g7TF9EHjfnz4mIzo36BYAPi8ijgflFoe0V9jetk5gEnxq3bVaSbsLs4HxHuHr4jrn2gIh0mK0nvLbP0GsgX4Arv9Wg7HdONufhRFX73aE2EZoywz7zdjii+AI4wWEe3DxOS6B7YVDHwY33+XDChmVQFl9AWWDr5BEITgpr/dCNNVPbe1iEgU+2D8f6WhgJaM3glkGV9m4SkQPg+ly4BJMVgutWZ48Ftui7FqEPGtS9cNL+viKyP4DXwEmL17Jh19ABwc9bprOVnNKgXgVnP70LzoTyhJew3+TTKDOxJj7bkfQdS1EMEp29nmqP0KR2PIBVRUSZsGVgSihCCSz8njACzRIOy9zmBP+tmU6fWYKqyVCxAABE5CgR+Tmq39jEoOb7/EMzUopBzTXv1P2rbP67oUoMgYIo2fc85M3bFnYLiJRW2nmfiDznTUoWS837lJmGgl5Mg1IMlUEtQtm0ptgTVW3kERE5Hm7dPUXMVGn7my3fYpQ1KPudk42AG0rg+t3fRhGeDri6rSOGu/k20z78cxF5RkSWiEgvGpRt4+dE5FG4RQwORppBXeDTKZoWOb4zci2mQYWaSMnHJiI2ECRWR+cG51qufeCi7fRbF8KZ7jpz3LxwFQpRoZXGwn7/lEja/mlQALYXkbd4SRji8FG46Lcr2X6301GBiDwG529q2jo8xaB0H6IJInKZiMwTkdn+2ir+HZejCPE8EM7WrIzDdmC9ZhtbiV6sPV4Ot8hpUUiRRSJiCSlRNPhLfJqwg6Y0KGUIlslZc+FjJt2TKDMozXOJn2+xENVOHGpyMQZlJeKUBhVGaqVMCk+hKn1ahnE94gRDGYW+f2HCOnABClNHSuqvM88cCRcRpe2TYlCahyWQ+kxq3KokauciHR+kmQOn1am504a/X40q81FibftEzGdi74cMykruy1A49y3BtQRNnwOAh32wjOIplMfpW1EOTtFyaL3OjpQVKMx1Mdg6t31F8/4LXHRdikGFQkUTg7oV5QnPQNVX9xCKPn9UpJyWyP8WbrHoFK70vjitx+u8mU7zWyAiDyHQXCPjoU6Dss8+gnKEsS27Tn6Pom2QRFQ6FpHvwi0+eE7s/iDB+5uaoqxspJgltNoQsfqyhP08/66LrQQlIosBfDJIbztt3coIT3riX4fOorXenxZDKO1rh7o98m5r/3/c57sW3EC0Jj79hqU+zTQEgzUgLlpWi9AHldKgwutWq9Tggu3h6vl0c+9iVJcAiplvlag86ssdnWDoB6maRW8Nbi+BY9bJkH4ROUdEzoOvf0MkJgXplsGZcGPMLjVuleDfgYLxhJv+7S0ih6PoD3fDL3nkyxIyKO0Lthyx/ljHoNZBEZW3TEQ+4AnkJSZd6EhP1eECGGIoIud5C4b6wBaadEB6/6wPo7yQsEXKxKd5ql9N+5EKixqs05ZB/cwfF8P5xjXqbQKq7Wb7h2q5to46RF5E9g38mSFs+6xq6IvVoAAn6IR+q++a/3UMyo6N98IJEnZpLWviG7IGlYTXHPYaaj7DACWEqX2cKhCRu+G3hQikhTrJ1RLcX6FsTuyo7iJil9UHykRSO1Ms/7qJhLYMMVOQXf+tokGJm8OhzumzUdiebV6WMTzry6O+smXBMURsJXj7jSf4d2qU40WoOstVg7Jm0iPhzCw3wUUmHQ6n5d8sIk+JSMdvJiIHikhotlpq8lHoNzcGCYjIXAC7RASHxWjnOwCqA7oiRYrIsVKd6gCkx61G+y1C2YRoibQKMgJgFRFZhHL7pbQB2w9jJj69fy5c0IRCJ4tf4Y+p6LnFKOZXfdgw7jDaMDUeVGJfCHSEQiCxtbiv16Y93oA4gwqDJM4K7tvn5yC96oJqootF5BfiA6H8t4fTKiaj6DM6XlIaVBM6/SewxHQ0KH9vkYiEEch2XpNlUHbO2edRhM5vISLzPT21gq/dWmXoUXx1EJGYDXW08T0AbxSRY7p8LrZWXSsGJSIPiwsD1/M7PROIpdfOvSkKphbLPyUBhnnGJM4lif9A8U3aGe8WEZXg7ACzA+UROIZloxlDc6Ktj9gkyC/DB3eIyKlem1AG/eYI0X8Szhe0DIUpZ543M+8gInPFBSDcjPbQqKpzUAwaPbZZFQIiEgtLX4I+MqgaqNBQ2qvMtMMylBmUXTHABnY8bdIrSszHMMgmBqUa1rtE5Mvm+hMALjSELiXMLDX5/sZc14m5KjwtRNy/EgYJAS5CMDkXR0Sug9vzCyiHZLfRoFaDXyVBRB6GE7Z+GXn+Iv8eCw0w6TCoSPGugxtvW/jzSXBRwR/xZuoVkdCgWiBF90MNqgmWVh6Eop/9Et4k74V+hdbLh1CYMBfDLV4cjUAdtxsWinOMVvaDaYHQRPYI3KrHQLMG1YTLUJjUVIK43xCWMP8/ikib1QlSGlTKtHC+/8GbPTcO7ocMarJPe5eI7IWqia81ROSLUgR3KJRBVQaqiMwREV2y/8Re35t4H+CW3XkdCsn+T9XkrbEY7VcKGAqDOhjA+iKic4Veh/JEylIQhohYoh3rJ0kGZVDLoDwj20/KgQgQkXeKW68v9i4LOzHeppnh81FGswD1Ycsd4ioil4hILCAm9pyd9Nypo8CSYjUowJi/RORUFFpEzHwPk1aFzpipTtM8KyLrGgI/SURuEpEz/P255j2nod6KdXpw3sSg2lhtStMvvGCptOohOOtGuECB1uvPtV497VuCRP8ftwxqCChJ4r6TqHQV6+ytGZSIvMpIkiv5a5ZQaXv8FC7g4l9aZt2GQc025XijiFxtzsPvsgR8mVRDY9XEF2MU3a7MDhSh7E3LMen9oTKoN8Av8inOX3ihaQddvqYXdKNBhVJqawYlIk+Kc2Ir7pAiaAeoalAWsTq+C8Xk4p4YlC9XuIdRDHUaFABsF0jdMRPfIXAmXouuiKuBmjyXoSCwKQ3CalAVGIJtn09NHdkGxSrebZYhq0Qdmj77YykmksfK9TEUAVx3ojp1QtFWgzok8Z5lcNagx0RkoYh8JkiyODja69H+3+t+ROMW4uazpJbZj3X+XolZbNKmMqirRCS5BH2iDOejGqVoCfnZaLfixwvQvDp3UoMSkStJ/h7p9dZieBLALQGzjqEvDMoLCbHlWW5FSxNfAt34oJ5BebHXNgwqVj+TIn6qOgZVEWQ8YVH/VRsGlQrEaYPUCglqdg2jz0IG9TcRWUby7yhPNtY66GZh1VJ5RGRNvxlmqg21LpNtHAg3t6C6Xp6mu83sIdXUn69H/Xe1aY+D4UyeV9RYZdrWYXJnCOviiEDzDb9XAyUq7pXMoFrC2OstFiIectsGMW2s5NvpAvR27lB70Xes6Yl/415QKomTnFmTvsnE11X5vYaW2n/KQhlU6+V4uixH2xXHU7gJxeohTQh9i90s5ttBhDkBZRNfKFQ1vSfFoJQ4TxUXWNEL1kB67kzsO45FeQ3FmaYcR6O87NECAG9tIeSEuBBmCSARSQpnxtzX6vtFpKlPa35NDKpuR+yJ0mKxBHGrnfy0IY14V1CTFvordLFtu4HWW9agRghbod2W3xWIyAWoal9hdFwbvA9FuGr4jitJTg98EG3LNy/htwQKBtUTUR0C+mXiGxZ430LbSeFW4NkBhW+yH7CrWrQx8VncBReqXwou8FrLK4bAnCD1oc8VBiUiXw3O5wX/7bnAT/Posky6Kkw3ULrZq3DaebcfY7VMta7O2zCnLsvUaBESkYVo388tUuP3bCTMiplBDQGB3b8f6FqDEpEzG+53zZwCxCTbr8KZHUaaQS0JjmMZHQ1KROomjXaLjkTtiZ8lbt+WmjlavixPA/gPkr9DeX09iMjv4k/1BWOpTTW4IbafUi/oVusbq4iOXxH5ZCQtgBwkMWhQ6aVnKbXPeDEikr0PLDgRI09UBlqD6hIfRLHLad9gJWpxk2FVMp2LLiIUReQaEflKv8tXg2Ex2w4HROR+X7dt/Y1N6GYz0TELr62uEQm6SiJrUIOFiXDhrjc0JRwJSHU15BAjzSh0UuGYZ1Ai8iDarRzer/d1s9vzaKCfJs7hQGpPpiFhCBGjYxINZt4KMoMaLEwQt63JWMFIMwo1rYwZaTujGcsbkc5oj2ziGyyMtYHalyi+tvCTE4H0ZnsZGcOByzEgVo3lDVmDGhx8Fi7wYCzhseYkw4K6Zf7HM5YXZ/pAQUT2a06VMRzIDGpAICKxraAHHb9AsRioxdVwM+WHAxN6mOsyHvAOxJf4ycgYt+B4Geskr5dizbaMjIyMjDGO7IPKyMjIyBhIZAaVkZGRkTGQyAwqIyMjI2MgMXAMiuRnST5E8m/+d+BolykjIyMjY+QxqFF8p4/wMisZGRkZGQOGgdOgMjIyMjIygMFlUB8keRPJH5BcJZWI5DEkryd5PYBpI1i+jIyMjIxhxqjMgyJ5OeJL1Z8Et5XzHLhZ858HsI6IHD2CxcvIyMjIGAAM9ERdkhsDuKgPO51mZGRkZIwxDJyJj+Q65vRQALeMVlkyMjIyMkYPgxjFdyrJHeFMfLMBvGd0i5ORkZGRMRoYaBNfRkZGRsbyi4Ez8WVkZGRkZACZQWVkZGRkDCgyg8rIyMjIGEhkBpWRkZGRMZDIDCojIyMjYyCRGVRGRkZGxkAiM6iMjIyMjIFEZlAZGRkZGQOJzKAyMjIyMgYSmUFlZGRkZAwkMoPKyMjIyBhIZAaVkZGRkTGQGMTVzAEAJGcDmAtgKYAlIrLr6JYoIyMjI2MkMbAMymMfEZkz2oXIyMjIyBh5ZBNfRkZGRsZAYpAZlAC4lOQNJI+JJSB5DMnr/S/vvJuRkZExjjCwGxaSXFdEHia5JoDLAHxIRH5fk/767KfKyMjIGD8YWA1KRB72x8cBXABg99EtUUZGRkbGSGIgGRTJmSRn6X8ArwKQTXgZGRkZyxEGNYpvLQAXkARcGc8VkUtGt0gZGRkZGSOJgWRQInIfgB1GuxwZGRkZGaOHgTTxjVeQ3JbkYEalZGRkZAwYMoMaWWw+2gXIyMjIGCtYrhgUyc+T/PwQnj+D5Ir9LFNGRkZGRhzLFYMC8Cn/6xX/CiDPtVoOQfKtJG8b7XJkjC2QXJ/kKqNdjrGK5Y1B9QMcwrPZ/zR2sS+AF452IQYNJN9E8tWjXY4BxgMAfj7ahRiryAyqewyFQWWMXSwe7QIMB0huTrKnBZlJHg7gRwB+2N9SjS68tnx0H7PMGlSPyAyqe4xanZFcSScwZ4w4lvTyEMlfkDy/34XpI7YGsFqPz/7YHyf2qSyDgh8A+H4f8xsXwg3JKSRXHcl3ZgbVPUZTg7oTwP8bxfcPGd4mPxa10F6JzMEADupnQfqM+X3IY7wxqH73z56EmwHEqQCeGMkXLm8Mqh8+oGjnJfmCEXj/WgA27uVBkjuR7KdU2CsegFu6aqyhw6C8JHl5L8+aPPYluVZfSjY0LOhDHuONjowogyK5KclNmzIhuRbJKQ1pXkLyTpIvakrbAzbuc36NGG8dqzVIPkByai+P+udXDJ6/j+QK/SldLXqV5I8A0LVdneQKJFfu8Z0pjEWb/GIAIPkPuPLv28WzMQJ1OYCv9KFcQ8UiACA5FFowbjQokp8DMLnP2TaN2VsA3Noin0cBfK4hzcsAbAHgGgDvapHnQGN5Y1ACdAbj+gB6YSgqXT0Db6cmqQN0SPVJUkiu35BsUYt86POyA60XZgwAlwK4y6+CcVqPeYQYyya+DXp4NiVBzwwv+LYbkWhB7898uT+dPoSsKgzKCzYbDiHP0cKnhyFPFW62J7lS5P40AG21nbXtCcnHAk1pmfnf1ZgnuVs36UcC45pBkdya5DaRWzP8sRcV2BLXjfxRO0I/1jbcKHbRMK42GpQSm3XMtSk+n1kkVyV5N8lPtMhrKwBrADgKwMdapO+A5Mok3xu5NSFIJyRfX5PPa0l+oYv3ThmGYBJb7xP9e9pqDqk2iwlI+wEYqflWHwHwJf+/wiwtPHE9KnE7Vg/fAfB38/wLhsHk1AjP8NclucZIv9tABZQbAXSEPJLbkTzWny6rPBVHJ53vf2vCMTjFUvO/tSBIcnMA17VNP1SQXK3Nsm/jmkEBuBnxbTqUMFQkDJKTGkx/ts5Um9EO0sSg1DxYV+8HJK4/4I8qjX2V5BtJTiN5BUn7biXOVtrXb/oNgPsBbAZgr4byAoW5oxf/2WFwhCpE7Pt3iWXgB+GJAE7q4r1nA3jWS/GHpBL5+22lTEuEj/PHtgS3o0GRnGgY24xI2mGNkiJ5tGEUlijGymKxI4DXprIN3vFKAG8P0twH4OMty7i+F1p6Di7xfp3JAN4A4CEAjwf3Lya5Va/5d4klJA/2/62m+hEUZt6240u8sCAoxrkdT7ZNJwAdobTJWtRrJCf8O95M8vguHlmzTaLxzqDCRtdzbdhpqOI/ATwYXjSRZ3YwLvTHthqUEqa6dE0rXShT/Cgc0V4FzkzzMpNGl2OyDEqJ0ibmfhsHuZa1IuF5TSX6LSR3AHBKcC1Wh6X3kHwHyQ+a6xcBeInJI6m1kNzY/93MH/eC27ZlmknzDRahsg/DzeNpA2su/Wh4jeQ6JNdLmHCsie8qOP8TENdaujXLHGu/z1/bNtUucGZpXQ3FanZJDYrkTnCa3Ux/PoVkncCwR+J6hfl6X+7n6PZ9U6gV4ULTZ7rFPXArv1Q0J5LrwQmCm5lrt5F8eZCuVqvsAtsC+EXk+kLzvxsNalv/X+mYHRMvNv+17v4G4A8N+bbxC9e1xZfhovzaotX3jncGFVZCyKBixGAHAKvrCcndvcSpdTWR5Df8/1CDmuyfSUXkaEdan+TLEmkqCPKzRGVVFETSSkj6fdZeHfvW+T7/jYP3HU1SzYNa5mX+3uEm6e0AfpYo9jth6tFDGc9mJF9M8kd0Tmn7nu8C+IZ5Zj9Trv1RHxH1V88gNM1z/rip0Vo/CGBP/38W3DygNog5zrW914Jjdg8iXh+2zfYw71eCP4mkamUhs5lAMqpdehyHwC8BZzn4UM0zyrysP7MuEOYAAIej0LK2AlAyuZLci6RqSClpPUZvNofz+9iFlK1m2mg29+ai2GoWsxLvVEZpCe4LAewTpHvKt832TWVowCbhBZIz0AWDInmYSacCph5tHdnxuYcfX5vABU5oXjHGu4q/1ygQkJwduawCZliHKSzfDIrkukhH4+gA2iPSIGHFXQvgSJS1HyW0u3vC19Gg6Nbd+kvivZrHmQCurCn7al4DUdxj/lsCtgEC5uihDMpKjzFz1AKSmwG4n+TjJHfwtujvA3ibT6OdX5n7Geb5TeBNc97WbwlTp2+RVPPB1/3x0wD+BOBNKJzSE73UH7aZlQ43QwK+HVaGqw9lUPrs2ShMpAje0VZCj/WlKf69lkFsS3I6yXne1AVUmarW5VQvCNwCJ4EC3gTkCRjgogWvrynXVBTEYWVjvntx+pFOvVjGuZbPY3qokcGNlykotCx9/lqT5lMoNOZOPyB5QuS9Ftq/bP3avtomom4OgF+bd2rfW4o4jbvJH6f59G/QR4N0kwG8HsB/1b3cmxNDMydJxkyiQnILAM8jYFB+7KWggo8AUC29ZMpnOSgKAA5FMb6sb+o5ktsFaZVpt+EJMT+5tu0bYw+Q/CfJPfz/ab5sjX7cccugALw1ci3UoL6Dqh9mKdBx3Ku9eDHi5rl14Mxr1ge1GoAVSf6rGSgqmZzrT2NRT3ua0+/CqeUxbGcGFADo/CslUicBuMJfswxKmahdjX0hCpv4Gv6dN/vz+7RocHWijDtlNj0OwFxz3fat2FI6YT4TARzo/y8BAJIvCtJU+ivJNUiujUK6n4yC8Gpb7QFgXfPYdiRVMxsKg5oM4CyU22oinOY4HcBl/loqSGJDOMf0lgBA5w873d97nuS7AOzdUK4OgwLwFApfXV20YUyD0jlZV8CZIS2U4Wgd6/N3mjS2Pa2gYsdXjN5MDo5AWdvvJeR7qTnW0Tgdt/9Tk+Yr8N9TYxm5B96s6TXeteA0kl8m0mv92UCeGQDuqimHYioA1RbVLPdnugi8Oj/i0uBcBZLj6XZoUKbXa4i90rSXJ+6vjoJ57YdCmFlSx6TGM4MqwUvxWvmfNLc2Yzm80jakduC5KDpVaL6YhWJAvQTA3f7/GXCM6sV0jvqdzTMxs4UlCk0TOHcH8Dv/X6Va/TYbNWcdkUqgrZN2AaqMQr/F9o2JKAifkDzUmDmnkfwMquaRMFIvZATh+SQAT5v/gJvLkczTpLkDxWCfjEJjSZmHPgMXPh8rRwopBhVuv/JsJG1IHGyd22kFYV5nw/dVkimGMwVO++yYoP0x5u9RrUrb2Gp2Ogl0TVRX7Nc+r31N69X6MFVA2ghlTfdFxkSpTvuPsZhbp3ldaAQSa4I6iORWgUUBJE8h+QWSVgsJsRRGGKQLULHjNzR7x/rCfAAzvUZ7D4NIRFPvWpcvhZuvVBe2/y/+WAnDb9Io4KJplQnY8b0KumNQ+h2nwk2Zeak/rzOp1o0VLffWTAceKV17KrieDOBYLhgUnZPXSvEvMf+/D+A6rzFNQ7khVUJZiKIBQr/KGigYWWiCmgzX8K9DmWCUOkGEeDftObUxCiIYMiglfv/uywZvRorNrYkxKEUqQk3gggTUzLk6gM+iOtjCb2pyOE9C0R9nJ9J8rZO5C1s+As68thIKBjUFzQzKYlOSR8ZueO1sb5PXvwVJJqNqEiaqhGInkruR/K+GstSFxv8jUr4Jvly3oDDpKRFYJUg7Gc6sChTE047/teGY68aRd4calPZ3++06LmajPL5WR7FyiI6h01BEBGq/XQ2ARlzaejgHztcZWhQ+Dic0dfpphIkvQ/kbp6A89SI0ZaYY1Aoo6uC1JK8y71LztT6rfa7j8wkwAUU0Y4z+djMfzUbeTUQ9g5oR0JnJATPUwIuoBkXyjaiP9LN5lfIgqYKMChMhzUn2+ySD8tLGYSQPoYkI8gUda0j5hEJMR5lB3euPk1E0wMpwxELNNt9DYU4MifBxcCaCVZBw/JLcGdWBkmJQJ5n7ml+KQd2JwsR3IIrIsRCpPlDHoGKEP5xvFubbFCU0Ee4bHgWwUcSeHuJzcKYZJZJKQCajaMMmQUBxpvfFhTgPwO9IvsLnG5oqb0e1raYjzoxfgkJyTgkFs+CYRBQkX0jSRh1aSVW1D9WUVyW5M/9/e+ceL1lV3fnvopvmOUjQDG9CUDDgJGpLDAk6D/FBFHRmohEGGaMmGMdR8TEaI5NglEQdB41BHB1sNHwQI61jEDQjIEEUJTTiA8VHS/fwxo50N/2w+3Y3v/lj73XPPrv2OVX39u2u6tv7+/ncT906darq1D57r9dee22zK+Pz1LDaL3q9lyTHDqY7gzD3oHIhupZ2CDXH+1LaJ/xepN/phkVvSrR1ZyjenXk4eYhvEW0h69/t13J04TM301ZQnyXMwfi84+Hxce/ssZTNCXBm4ftThqX7p+RGb54sk7I3YdmHswh4avLcf0dX236GtuExTZxySO9ZLjvyLOf89ZkrKMLgX0xY//C1ZAC/puc9k8Rs0lMXMegK+3FXUG8lhPzSRa4efsgFk1tKR9L2YJ6e/H8b8EfZ+w4AMLM/NbPUjfeY/z7xmkS3grqHJgRwEMmiyYRFQD5Z6uQWliOGxKnN7AUMlln5HQZd+xRXUPcR7t2wki6uGHxgnBMfryH0WQjhkJS3UGaKJjSb4gPp+nhtGwvn5OHYfQnzUjlpv+pSUO+i34J+GvBSC2nS6fVB+A3baITIQkJGl89Xpv1oXwa9wc71YjRtvE/02vwavS98ikI6d0JJQe1hZmfRnqfxNiot/0h5Q89rqSG0IPvOvWgL0vx78rVb6WekEYL9CeH7Cwj3zD87fRylPFhJEZ9jZqOsT4S2gvpNhqeSH2pmF8b/FwG3Jq95O6XG89ssJE8NjPfMSLgyezn1alM5XEroglkqqMMknSfpfILWvyQJd+xwzOxUC0UPl9toFQ9mSknYLKIdthDBik4VFAS3P43fu+XSFcZaTJOlVSIf3N7JLwAeiv+/LPlOL42yPvnOhWZ2Bk2GzUMES9mtxtZCxch/BC7vuKY0VJbS5UGlnF849mmC8Lis4z2ewXc/8CzaBkCJ3EJ9dXw8iiat9znZOV1ZUo9AMf6fJhHsSXndWG617geU0pK3dbw/5XT6lb/fj3vN7NsMGosrCN6MkwrrVEG9mPbYT98DhPVJ8VG0Q9cvpxEokrQV+Ieea4Zmzjdt36MY3EfKFdSwBdB9hZlTT3ERIQM3fZ6O0WFrzv6R5rfeQMhaXEVo1wMIv8tDlaN6UCl5EhAEhfdRCEkzFtbXXVg4D9reYF6iqVR13MPz0N3P0uO/S5BNpfJqfSH7tF3Te7l34RjMcg5qL5/skrSCMHjeQhOr3GFEQfFhQgOdAJxpZqOuVxmF/0KSlppwHO2sqTUEa/4y2jful2lbwa4UUvd9KEk2Xm5BlCzIm2gGsHtQG2h7UFck5/8CeJjQiQ+iUXTOAxTWZyT0hfg6haiFdUh9n9sVwtqfcP0LJd1A2YDw71jKaAJgXfa8aw2VJ2fsE8NoVjj/JEKb5eQeVNck9zaa31TyoD5Pd9bXfycokdRifjIh2cM5IH6+h57X0M7kSwV3ntByD4OsNTN/T/oblzC4EDdPZuniaUlEoFT3zdt7WHj30J7Xzkr+P4SwZsvJFdQwT+1u2mPTX2+5AAAa/UlEQVRzQ/yD0N5p/3Ch7AbfB2nz2iHfleJj7wKCwfbGjvN+v+M4lKMVab+7tON9Z1uE7ow86A/DprIjbe99LCzDyaMrs/Kg3kRigUlaR5jsn1E9tlnydGC5pLskTRGs7xfN4eevp5kwTnli9nwNTTgjrV59KHOTYHJufMznMUpCbopmQPw6wapNPah8UG+Kf3tRVlADk+4Zs1JQBKuzr1xPl4I6iNDW7k3myiXl92jCeH2k9+hzdIenfU+kEwl18P4gZpSl8wFHSvpq4b3pvSqFh51H6a+j+H3KChBCvbxNDM7jpQL2MbQ9+/toh6X65ja2MBgOhSbsl/fHNMQHBQ8skpcZexKNEVVSUN5+26Og3p78n8+ZHAq8ALiKkOacz0Hl3EXbQ56iUVD/gqatRchmTRf0TyPJ6F42UmJPC2vo3lx4bVQjuJTd+IzCsZx3Ewz4YUWr9456bEPhtS9ZU1ElNwhOYlCWdyaFdQpZSd+U9CBMlwZB0jZJO2N758NpW3X30kzijUrfHNQGgoWTWkCrCu9ZTRPOWpIcXzTk80fFXfRXjHDuFIOWd66g0hDS5viepxGEfj7BP0xBdXWaw+hZMAsM29emS0G5Ze0Dax1BYL90yOd1cRvhd99KKHlzc8+5Ppg8dX8JwStIhfooK9/7FNQ2+hXU1p73byO0S5/ifwxtD+p+2gqqb25rD8LuuH+XHe/at6uloCSVhOF6mkoeKX5NpQn9bRbWAxZrulmz8LVPQaUszp6/h5DQtCL+vT4mi3SF+nIvZE+acNcBNPdrTfyMvvpyfQZXziLgr0ovSBq1NJffk08kx0ZVbhcxvE7ncYTxUTJ8Hk9jaKZyZm/K/bBTto/qBdxi/eVW5pqS8B8Ii5jZOWa2zMyWMZj+nX5GLpy3SHqUtpVxH4MFS9fQbc3NhYKaSbHKzYXvTEN8C2nvjrqJIKyWEur05THpUlKAM0VjredhsaKVmJB3wMtoZ1F2KSgPR/lnryPc03spW/fD8Dm3b0n6G0L5pNLusefSPaG9L42QHaWYpwusVfFxTfJanvJcem9RQUkS4X72RS/OIvw+/4z7iaETM/s+/QpqgaRNtCtDQLdC9Pbqa5N1NN5GSmrc5POi76c7PRvgkBh66stWg7C046rCcfcgNtAojPN7Pif//UYzHtIQ31qC8O1TnDNRUIcwu50WUly2rek9q5t8LRy07/cX6U6wAviJtYsP3Ey3guqcEhhVQb0N+LK1KxgAYGYvNLOvj/g5o3Iv7fj5EYQB10LSxySdKOlEytUKnDzU4CGJf0fotI8lhIxyT2Y1gwrqmYTY77SyiC789tC32NCZogm1nB8f19Oszs6zzLbSntx0BeWVCkpJE85qmnDYTDt4nkDxc9qWdDpQ/wfBu4Gm4y5IztsTmJL0yZ7v60qf99+7FSCGilfEY+kczDq6FdR+BMMlva6UP8+eu3LwcXUHzQLsP6O8WNrp86CguZe3d7zudefc03swee0E+kN8/tvyyfBTKCuhUSqub6DsQaWUtsLpC++tJXiKfXNH35V0M/1blhxJY0QUiWM6TwT4Ho2HmnpQBxMMoL4F9p3LBxLSbN7trf+XFrIuZa8OCzmm814r4+PD2TnfIBi6adWe1ChJDYk/IPT7Ut8/uusiRlJQki4nZKt8yMzeYWZ7Wqg6/QPCoruuTLDZcitwrDV7yJxB2SLq4z3J/6kQO87nEiTdKunrktKGT0OLa2gE7uXxPV+TdCX9HlSfoCnRNfeQspXmfrkyTjvDniQCIVrdqcDx3/gZwuDqEwRpKKoU2uqaFC9ZiSKkjJ9HSLRJK8V/FbiYMKfk+G/0Ae2/oatCdpdl6uGZ1AN0Dyot0bOO7hDPURQq20f+lnZSCgwqqBU0a9f6Ekf8vf7+kmft96GU0OC8Ovk/N0D6vn+P7DGlpGQ8dNbnQaUJBUUklYzKLk/vCoZ7KdC0YdfGg18lGA69Ciryl9nz8yh7UH7NfQut1zC8lFFpKYjzKrrHQAlXUD+gqT2Y0meg5vh9KiVe7Jd9VqrUHyGsJX0JIQKwH6E6Ssoz6VHsI0/0S/oGIW337fGCX0uw5J8o6eJRP2fE79pKqFTwfwmLIT8jaZQtkbv4GU11564JXScdNKkHlXs5rqCelxzzoq5rCJ1iwOOkLFCHelBR4bil+0+EAZtm0pQWkqYKyoXFtpjw0hdCSPtFSQh9qnAMykU1TdL1ki6QdHV2TTfHec3PJcf8N7ognoIwJ9rxnaWwHZQVlHuYaXv3ClGCkrmKphSMhyunGLyX/ttSbyv3KN8UP9MF6dnJdW4DkPQjujmQjuwqSWm8PxfAffOGfr9LRkufF9SloK5nNA+qRJeCWh9fK4X3pmj6waMwLUNS3ivJJP0bSe+jX0G9JH5GSyBLWk9ZQfn98mze79DUsvT3Pkp/5fzXEAy/V2bHPTHnu8kYOIbhm1puBvaQdBFlIzNPmupjXfaYchjdKecL42s3E+5f6d6toGcN3UgKyswONrP3EMIVX49/m4EbYsPPOZK+KOk4SY+XdMF2ftwWmlDNMMspXVuQelD5GpY94nV+OTnm5zwM3C3JKxCni05LCRF9W0iUvvNWSf+JtjV5MI0Q9X1Zpj2hqOD82qBfQXV1uO/Exwc7Xr+6cCz3NP06jsk8V8eFu6dcD1PeaVJASp8HlXqIpTUezv8m9JvbY9gIST5POcVg2MYHfTqu8o0k/w8hxOS/05c73MZoiRivixGA4s7LCbkh1lc+q09BdRkAnUh6NkFo981zdtEVvvsFzVYsaZ94M2EKwJNz8ujFV+Jj3o86pwQkLe25Po92pFl8v0cIvfoSnE8UrgNJ2yh7M0j6X5LWSUrTv99PMw42JueuSM7pitZsTsZ8KdozEw/Kv3s9g+PlrwmORCmxZR9COHg13VMFq4DHdVV5GdWD+ilhQJwi6XmEVM1/IiRPzOX6pB3FFmISRXLTukgV1CqGe1DORhrrehXNTd1Dks9V3BiVVp7OngrRPssmV2RueZxHO9vNhZ53Jvfy9pPk5Zv6FFS+xujo+LiSMIfVtTV06dpzD8Izv1YUzoWmT3o4JB0Q1zKIv/757HingooepC8YdmX1RZosPmchcGH8K31vLrxTBXUhYVuVaUEYLfAHadrkfcDaaNnfSH9o2NvNBVyXoeX9Mrd2+9aNubLMFdSn6DZWrqO99crhJCEsSa8ktEFavDjdsyn1mlNKHtTTaIy/J9EOu94oaZUkVxypkr+exqtvZVDGzMO01M+oePWFdA5qE6H/nQV8UFKeIZx+75NLxztYQSN3ujz9VA4dR/CwP09bXpXkfKqgHkPjYX+BQc83VVDpfO0nJJ0b27I0BfMrhP79iy65G+eGN9IxDzyqgvoNSWdKuj1+qCS9kbCW4EYLG8lNMlOECb3rRzjXU2s/DXySEBfOM/5gUEH9MmEB2qWEePHrYEAhugf0Y8KC4J8ROseoCuoa2mWSPHMxncN6RhR20Ayga+P3pkkUH6KbVuxdksfGN0h6E81g8fkVt55Sq9SvKY8vDzMQXFh6uGr6fEmltGcXPFvjnwtmV1Cp0E8VinuBruD+mMHF2wskPSKpNME9VRh01yTve7Okm+OY+VLyG1zQvlPS26JV7fQpqFzgDatKkSuovu03ujyorTSK7SmEfu18NDUyJN1PNj8WoyupsPt28lo675gyoEglfYv2vUu/J/fSpttQ0rMl5YZISt6GfQlBXpXkIsJ8/GKaihZbaML7/pl9UZFSlYeUdGsb75+5grqD4CVPy3BJP5G0luDZD1NQ07819nE3XFczuAjX2369pPQ+pBGQkgf067TvT1fW8mvoWIIxapLEXR3HP0rIre8qXzMpSNIdMfTQx/c9lEO4GZsJv+9xDCqoVttJ2ihpi6RXSvqhpJILnXamGyUdHIVfKphcQOcega9DS+tnLSO41+nNTQWCK8QBpaC4xi2Sbp74FEld23m7APPvuy0+egw+HXhexuXojs/qYkG8vi0EgVhS2NfSLAnYkjweRuMt+oBO71M6uPy4v7+khPqUad4f/pskz5DMx1UpdFcKb/YpqNwDEP3ht1HSmn1Nkve5PENwK3EDSEnfkbSEIKChHA4cyLSlff9GCRee03E8fa9HKp5fMB662rAkAPN72JXs9T1J18F0mO5LtD170Yw7v86+OaLfoH8hrCWPXQrqbLoL9G5muILyz0unCZ5HqB+6mJBj4Nl/qQeVko537+N/SaOsTyCZi+uaW5V0RYwuDLDd1RDijRu1uOG4GFbSBEKtu1fnB6PiWU2Yf0sH/TJmnq3X1d6pteXhH0+NL1UvcJ5JCLemwi4dOKPe375FrKmQdqGUDxr3nNJBsYWw2PAj2eetHHIt0wkGkpZkHobzAM3GitMKStKq5FpcAaeZVakH6d+Tbg+f/taT6VgwGvE2cEGThizzds+zBE8m1lvL6LPgSwK2sxwU7b5aUoZIck/EDZnPq71kYhvBS35j8h5PNipZzEvJ7m+UD6fHp+5dpFEACO2eG8F/nF136u14ssBXGKRrHq/k0QzzQp1WmDp6hu4tv4MwT+ljwRXUy2nmbFtIul/SfYS1RqW5MG/bPWgW6LeuVdJUFhFJmYmCmu4nkr4s6SFJtyskvnmWqiuP3OhOFdRy4DnRuD2NJtqTGy2vJyztGWkObJT9cobSpRkniKEKSiGVPsWy168nmWhWSI6YSfv9ESEjsUTJg7qYIPReNXj69DX4zrMrO04ZVUGdT7tETEraDv57XVj+mBCz/rELtmSuc4ukdGNIv+YH6U/RH0VorKEROGmID4JQW01jwaYhxpIHtShe17Z0njbxpLu4I553n4Wdl10g/CGDnldrvq/nsy+m2UjxSYTyR05JwG6ke48eFzyPI3icfWuXuvrJNkl5qjUEATMwDynpKspzEa54p7JHCGGgDYRq/9ckx38ev+PU+Nzv3UE066dKbdKloPo8qNMJ/bjUL6+gvGbIBfzHJT1qZi7EN0GY4zKz+2h2OhhA0m1mtpbBIgOOK6gNXXM4kQdpFxmYot3GqXx+N2HO2q+3LxTpbbaUUMLMiwLfSbhf0wZEvD73Mn9kZv79LaNLYdE8ZjZSct2cKKhdgJlsAubMRaWIaSRd0vNy2kkeAJ4QJ32XmNmAV1cgXT+RDsRhu3MCrJI0ZWbPJWze6HM/V9NUanYehqAYzezkGMZ8Ycfn9pX16eIe2mn7XfyzJEWF4gN3eby2nxOFcXw9DWGUFFRpDdQphWMpe6QCI5lXQtLHC+cPq5rt791CY8T4APeCoKN6UG6MuQDdRFkBpYZAq5+EpjXRXdlipgvzfbF0fs+Q5JGCFVki1x6075e3yyM0Sqgk5GYS4vM2uCv+5oHlMgrZsiW8fbdkz9NrHiXM2mdETiuoIZ+xKc4BTj+nncH7k7hm9QSats+vv4TLpUckpVVGFhO8w765NJ9L7FoEv4ThawN3GwVVTO0cwpwqqCGkg+p02gJt6D2StN7MfptQYDcNGYyioPwzriWp3Sbp9CiknCNoT6x2eQGvI6QCz0ZB/SCGPoaRh0X2pyysl9P2QlLh4W3zDZqiqJ4pVwodTTPEmi0xm7I13n4+59jlQTkeNtsbQhjKzBZL2pCk8L6HUM7oRrXX+JSE5JtoezTbw6jLKKAp32W0U6tvMrMnRE/X1zqV7sNsPKi+pQZ91wntEDG0+9j5DE/MKhnPS2m2RPEstz7yubSPMdgOfo/9uHt6fZ6Mt1nr8yVtMrMlDFboSXHP/sOlF3vmuVvsDgrquWqy2iaV6QEcs3BSRrpHKi9kHVaR+DqGF431zx9FcUBTz202CmpUQfbD5P8FkroszOMyIXYTjQDxeZetwN/HYzsqVP01Zu7Fu9Dcmj2muOCaSpJnpsPZilm3NL+1K4xbqsD9gdKJsyRVhn9BdztfSkhAOJcQ3mslNanJNOszEEb2oJKwrgvpmRilXR5Uuqzgh7T7aomBKgqSXmJmHyCsmTuG4R5Ua45RTdZtSl5TchSl7L9tIOwu6b1D3nsTYS3WSPKli91BQc2WnelB9Qnm7blHRk9pHEn5hn7F02b4nduyx1E5g9E83QMzJZ6vKZsmt7AlfY2mJl1JKF8Td4ydUyS9fvhZA7hw8Hb8KqHob4orqHTCuTTf2teX38nsC4qOhKSfxn2AULMmsHSeV1G4EsDMrqK8qV8fXR5BXwahZY+j4G2fFoyFMFczE4xCEovCMh7M7BD66/gdT/9O1c5phIQhr24zSv3PTgU1jCSZZrvYHRTUbBTNyyjvF7WjWMbgfI8zbG+cPn6LmYVXSgyz3orMNAwmKd/qoeu8VDk9nY4MtREo1kWbRfhuR9HyoCT9T0Ldy5SNhGoD6fGSp9a3rc75s7/E0ZE0YyUo6Qt0b+JY4jTKHsvJDFZqd95HY8TNxoNKixHPRtb8mFCZp4tbCMZbkeilDUXSQ8BDZvYhgrHz/2jXKy2959HoYc4mGjInzGcFtZ7+XR87KWT07Wj+glChoVTBeFjtwE5UXos1E57ALKynnYXaa8JmyoU0a3omEVdQfZ7oRmCF2mvaZupB7Yp0VSUozpn1ZWRKetssr+H++P7tNWiO73sxzhH1FQieETE13dujK+Sb8mfM0kidC+azgjqEoKQmfnDGTv4IYa4i5/n0b5Www0hi/jNh4tsbpgf+xCpfBtPnS9zF4DqTKQYXVM552HLM7Cgv9yKamp3D6E2kGZUhSQpjR9K7xvn981ZBxewlGJ4BM9EoLD6t7Gbk67I6zjmvcPh4BpXafFNQKxhtu4wZIel7NAvAh527ml3EGNuVmbcKKnIsodBtZeexktH2t6oMZy0z9PJULks2rwRpXErRt716ZZ4wrxWUpOXDz6rMJXGhbFeNsMoMkNS1yHGmzDcPqrKbMK8VVKVSAUKmX9+GhZXKRFIVVKUyz9Ec73hdqewsqutfqVQqlYmkKqhKpVKpTCRVQVUqlUplIqkKqlKpVCoTSVVQlUqlUplIJk5Bmdn5ZnafmX07/j1/3NdUqVQqlZ3PpKaZf0DS+8d9EZVKpVIZHxPnQVUqlUqlApOroP6rmX3XzJb4RmclzOwcM1tmZssobzNQqVQqlV0UG8f+bGZ2HWE7jJx3AN8kbJss4F3AoclOm5VKpVLZTRiLghoVMzsauFrSvxrzpVQqlUplJzNxIT4zOzR5+h+AO8Z1LZVKpVIZH5OYxfc+M3sKIcS3Enj1eC+nUqlUKuNgokN824uZ3cFkb+s9bh5HmO+rdFPbaDi1jfqp7TOcf5Z0an5wEj2ouWSTpBPHfRGTipktq+3TT22j4dQ26qe2z+yZuDmoSqVSqVSgKqhKpVKpTCjzXUF9bNwXMOHU9hlObaPh1Dbqp7bPLJnXSRKVSqVS2XWZ7x5UpVKpVHZRqoKqVCqVykQyLxWUmZ1qZj8ys+Vm9ifjvp5xYWZHmtkNZnanmX3fzN4Qjx9kZtea2U/i4y/F42ZmH4rt9l0zWzzeX7BzMLMFZna7mV0dn/+qmd0S2+fvzGxRPL5XfL48vn70OK97Z2FmB5rZUjP7YexLv137UBsze2McY3eY2RVmtnftR9vPvFNQZrYA+DDwu8AJwJlmdsJ4r2psbAXeLOl44CTgtbEt/gS4XtKxwPXxOYQ2Ozb+nQN8ZOdf8lh4A3Bn8vy9hD3JjgVWA6+Kx18FrJb0BOAD8bzdgb8G/kHSrwFPJrRV7UMRMzsceD1wYqwbugA4g9qPtpt5p6CApwPLJd0laQr4NPCiMV/TWJD0gKRvxf/XEQTL4YT2+GQ87ZPAv4//vwj4WwW+CRyY1Uacd5jZEcALgEvicwOeBSyNp+Tt4+22FDglnj9vMbMDgH8NfBxA0pSkNdQ+lLMQ2MfMFgL7Ag9Q+9F2Mx8V1OHAPcnze+Ox3ZoYRngqcAtwsKQHICgx4F/G03bHtvsg8Fbg0fj8scAaSVvj87QNptsnvr42nj+fOQZYBVwaw6CXmNl+1D40jaT7gPcDdxMU01rgNmo/2m7mo4IqWSK7dS69me0PfBY4V9IjfacWjs3btjOz04CfSbotPVw4VSO8Nl9ZCCwGPiLpqcAGmnBeid2ujeL824uAXwUOA/YjhDpzdud+NCvmo4K6FzgyeX4EcP+YrmXsmNmeBOV0uaTPxcMPedglPv4sHt/d2u5k4IVmtpIQCn4WwaM6MIZqoN0G0+0TX38M8PDOvOAxcC9wr6Rb4vOlBIVV+1DDs4EVklZJ2gJ8Dvgdaj/abuajgroVODZm0CwiTFZeNeZrGgsxrv1x4E5JFyYvXQW8PP7/cuDvk+P/OWZinQSs9TDOfETS2yUdIeloQj/5iqSzgBuAF8fT8vbxdntxPH9eW76SHgTuMbMnxkOnAD+g9qGUu4GTzGzfOOa8jWo/2k7mZSUJM3s+wRJeACyRdMGYL2ksmNkzgJuA79HMsfwpYR7qM8BRhMH1EkkPx8F1EXAqsBF4haRlO/3Cx4CZ/VvgLZJOM7NjCB7VQcDtwMskbTazvYHLCHN5DwNnSLprXNe8s7CwP9slwCLgLuAVBOO29qGImb0TeCkhc/Z24A8Jc021H20H81JBVSqVSmXXZz6G+CqVSqUyD6gKqlKpVCoTSVVQlUqlUplIqoKqVCqVykRSFVSlUqlUJpKqoCqVCcHMjjKz9bHgcaWy21MVVKUyRsxspZk9G0DS3ZL2l7Rt3NdVqUwCVUFVKpVKZSKpCqpSGRNmdhmhEsMXYmjvrWYmr99mZv9oZu82s5vj618ws8ea2eVm9oiZ3ZpudmdmvxY3D3zYwoadvz+eX1apzA1VQVUqY0LS2YQyQadL2p9QOijnDOBsQtmcxwPfAC4llM+5E/hzgLgFxrXApwhbX5wJXGxmT9rBP6NS2WFUBVWpTDaXSvqppLXAl4CfSrou7iN0JaGeG8BpwEpJl0raGjeq/CxNsdJKZZdj4fBTKpXKGHko+f8Xhef7x/9/BfgtM1uTvL6QUJS0UtklqQqqUhkvc1Wt+R7gRknPmaPPq1TGTg3xVSrj5SHCturby9XAcWZ2tpntGf9+08yOn4PPrlTGQlVQlcp4+SvgvBiam/V8kaR1wHMJSRX3Aw8C7wX2mouLrFTGQd0PqlKpVCoTSfWgKpVKpTKRVAVVqVQqlYmkKqhKpVKpTCRVQVUqlUplIqkKqlKpVCoTSVVQlUqlUplIqoKqVCqVykRSFVSlUqlUJpL/D+0A5K9/9kkMAAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -1162,7 +1091,7 @@ " data[t, 1] += 0.*data[t-1, 1] + 0.6*data[t-1,0]\n", " data[t, 2] += 0.*data[t-1, 2] + 0.6*data[t-1,1]\n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe)" + "tp.plot_timeseries(dataframe); plt.show()" ] }, { @@ -1211,20 +1140,9 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dd5xjVfXAv3dmd1mW3kFCCLJK8QkiICy9KhY6IggyRAxNUJQfDFEgDIghKAJKDxhCkY6I0hEQ6b08OkgIoZdlKbuwuzP398d5s5t5k8wkM+nvfD+f+Qx59ybvMHvuyX3nnmKstSiKoijBoKvZAiiKoiiNQ42+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogSIphp9Y8w3jTHrVfmedYwx9xpj7jbG3GGM+XK95FPag7Hokfe+W4wx7xljjq6HXEpnMVY9azWavdPfHViyyve8BWxnrd0M+CPQV3OplHZjLHoEsB9wRI1lUTqXsepZS9E0o2+M2RY4EDjGGHNqpe+z1r5trf3EezkbmFsP+ZT2YKx6BGCtLdRHKqXTGI+etRoTmnVja+1txphXrbWbjuX9xpiFgBOBaG0lU9qJ8eqRolRCJ+lZ04y+MWZZ4G3ftW7g3hLTb7DWnlA0byJwBZC01j5bV0GVlmY8eqQolVJKz9qVphl9YC3ALb5gre0HNhzpTcaYLuAS4Dpr7XX1E09pE8akR4pSJcP0rF0xzSqtbIxZBfgnULDWblfF+3YDLgQe8S49ba09tPYSKu3AWPXIe28a2AhYAHCttTvVQUSlAxiPnrUaTTP6iqIoSuNpdsimoiiK0kDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgJjQbAFK4bpuGPgesCjwNnCt4zifNlcqpd1wXTcEfB9YDHgH0aNPmiuV0m64rvsl4AfA4sB7iB7NaK5UY8dYa5stwzxc110cSAAHABaYCHwBzAV+A6Qdx5nbPAmVdsB13cWAY4CDGapHA8BvgXMdx5nTPAmVdsB13UWAo4FDGapHFjgWOLMd9ahmRt8YcyKwGbKj2sdaO7Oa97uuuyjwKBACJpeYMhO4Hvix4zit802ltBSu6y4MPAxEKK9HNwE/VD1SyuG67hTgQWAq5fXoDmBHx3EGGinbeKmJT98Y4wCrWms3BW4HfjqGj7kIWInSf2CAKcD2wIFjElIJChnKG3wQPdoO+GWjBFLakvMob/BB9GhL4IiGSVQjarLTN8YcBMy01maNMSsDKWvtHpW+33XdLYB/AQtVMH0msILjOB+PSVilY3Fdd2PgFirXo5Ucx/mwvlIp7YbruusDdyGGfTRmARHHcd6tq1A1pKKdvjFmVWPMZ8aYFYqu7WWMedMYsxKwBDB4sDEDWLJKOXqABSuc248c8iqKn59QfmfmZwA55FUUP3sDC1Q4tx/xQLQNFRl9a+0ryE78MABjzDTgDGAna+3rwHQkQgLvd8W7J9d1u4CdKpUFWAT5R1GUebiua4DdgO4K37Iw8iWhKPPw9OhHVKdH+9RPotpTjU8/BRzg+e+vBQ601j7kjd0DfMf77+8A91bxuV+j+tDRLaucr3Q+q1H5Ln+QzeshiNLWrIJsLKthI2/z2hZUbGyttY8ZYx5CTrRT1torisaeNsa8Zoz5L/Au1X3zLY08IlVE9wdvMeXRO6a8ftX7BQPPA27RzzOhvrTGYQeTpZDQ3oro/vBtFnz0jkmvX/VewcALDNcjPTMKJksB1YZhWuQcqS1sT8VG3xjThRjnAWTXPwRrbXyMMlT6GAXAlIdvo/uT6QArej9bF48XErHXGLqAnwSeDfWlK/5iUdqS6vTokdvpnvEBzNejrYrHC4lYnuF69IzqUcdTlR552DG+rylU41Y5BclIewnYC/hrjWSYAZiKZw+MuuZW9n6KD+lmFBKx+xA31D3Aw6G+9KzqxFRanBlU467sH1WPwt5PcdDAx0V6dC/wUKgvXVU+itLyfEz1BnwC0DYVAyoK2TTGHADEgQ2ALYDjgDVtDeI9XdedjBwEV+SPnfDWq0x5+LY5XV/MmjiO285BEsEGvwTuDfWl3x/H5ylNxnXdSYgeVRJmx4S3X2PKQ7fO6fpi5nj0aC7D9ei9cXye0mRc152A6NHCVbztGcdxnDqJVHNGNfrGmG2AK4AtPN99N/AicLi19rpaCOG67g1UHoY5k7lzjlr872fdCji+n68y9oSz55m/eO8B/hfqS2vGZguRj0cXAVYAvuL9XBFOZt4aHHdd9zpgxwo/bhb9/b9d/NozbqC0Ho31cf0FhurRK6pHrUU+Hl2Y+Xq0GnBlOJl5Y3Dcdd3Lgd2pzAPxOXCc4zjDXN6tyohG3xizOqK4+1hrbyy6/nNgb2vttFoI4bruHkCayr5dPwemOo7zhn+gkIhNRv4RBxfvWsCGVJ83AFLobd4ODngi1JfWuj91Jh+PTgH2RP7tVij6WZ7hSVf9wNrhZOYZANd1dwGyVK5HaziOk/MPFBKxBSitR0tV/3/EO4j+DOrSE6G+dNvVa2k38vHogsAewDeYrz+DuuTXowFg3XAy8wSA67o/AC6jMj2aBaztOM5LNRK97rREwTXvkeopZKGNtFOfBVzoOM7BlX52IRHrAlYHNin6WWUMYn4GPIDkK1wb6kvnx/AZygjk41GD1MX5zmhzi8iGk5l9AVzX7QYeQ8KAR9qpzwIudRwnVulNPD1aDdiY+Xq0ahVyDjIT0aMbED3KjeEzlFHIx6PXU13S1OXhZGZPmJc79BDyhTGSHn0OXOU4TlvF6beE0QdwXXcq4h9dhNKPVXOQR+dvOY4zrkPYQiK2IvMX78bIP261bqGHgWuQhds23/KtTD4enQDMppqDfYiGk5kLB1+4rrsKYvgXK/M5c4CXgfUdx/ls7NJCIRFbgaFfAutQvR49iujRNaG+9IvjkUcR8vFoF6JH1bjoDg4nM2cPvvDKuz+BBK+U0qO5wKvAuu1WrrtljD6A67prAxcihY4GH60GkHKmNwAHOY5T8wPXQiK2CPL4Prh4N6TCA0GPp/EWLhLW1zp/1DYjH4/eAny7wun/CCczO/kvuq7rIG6e1Zj/KG+RndnNwIH1qJXi6dEGzNejaVSnRy7eRgJ4WvVo7OTj0X8iNfAr4aZwMjPsTNF13TWRAn5fY6gezUIKSx7oOM5b/ve1Oi1l9GFeGvSOSKmFJYDXgVMdx3myUTIUErGJyO6/2CW0bIVvf5H5XwCP6cKtjnw8ugFwAbLQRuLvwG7hZKZkWVtPj36A1HVaAigApzuO81gNxR0RT4/WZqgeLVfh219mvh49onpUHfl4dD0krPzro0y9AdgxnMyUjOH19Gg7IIokkr4B/NlxnIdrKG5DaTmj34oUEjGDnPRvD+yK7OAqIYfs2q4F7g/1pduq7nYjycejywDHA/szuovkAWCrcDLTVrkWnh5NRb6MdgU2ojJXVh7RoWuA+1SPypOPR5dCQsoPYnT3zqPA5uFkZlxuvnZDjf4Y8M4EdkYW7mZU5sd9C9mdXgPcrZFAQj4enQT8HOmYttgo0wH+B0wLJzNtU8q2HN6ZwKAebU5lPui3ET26FrhL9UjIx6MTEUN/HPJkNxqvARuGk5m36ylXK6JGf5wUErFlEHfUrkhJiEqSfd4HrgTODPWln62jeC2LF6nzfSTT+6tlps1h6N9zOmLwX6izeA2nkIgtjejRLsC2VKZHHyJ6dFaoL/10HcVrafLx6HbAn4A1ykyZDUwqej0D2Hgw1DdoqNGvIYVEbHHmu4C+Q2VZxncAfwH+FZRdWz4e/RqySMsd2L6M9Cb9G/OfomYD24aTmbvrL2FzKSRiizHfBbQdlfWauAspd/6PAOnR6ogefbfMlFeR3tqXMP8pai6wXTiZ+Xf9JWxN1OjXiUIitjCSZbwLsqMdLdEjD5wFXNCpJSG8jNoTgEMo7cr4GPHrnxFOZr7Ix6MnAb3IDv9n4WTm2oYJ2yIUErGFEKO2K/JFMJoeFYCzgXSnloTwMmr7gF9Qun7Yp8DvgNPDyczn+Xj0BGQTMQPYP5zMXNkwYVsQNfoNoJCILYg8su8K7IDE/pbjC2SHe0aoL92wSJN6k49Ht0e+1EIlhgeA84Fj/L76fDy6JDA3nMwEvtSxl3G+LbKR2JGRfdezgcuBv4T60o80QLyGkI9Hv4t8qa1cYtgiETtH+331+Xh0CaBf9UiNfsMpJGKTkMO7Q5AQvpG4D3lkvybUl55db9nqQT4eXQE4HfhhmSl3Ar8KJzMNC8ntBLxw0B2BQ5FggpF4EHEhXh3qS39Rb9nqQT4eXQ44DSmtUIr/AoeFk5mO2SjVCzX6TaSQiH0DMf57MbL//23gXOC8UF/6zUbINl68rMifASdTOirnVeBw4LpwMqNKOA4KidhaiB7tzcj+/3cRPTo31JceVruqFfEO/KPAHyn9ZJNH9Oga1aPKUKPfAhQSsSWB/YCDgcgIU+cCVyO7//taNWEnH4+uAZxH6SeZfiRipy+czGgt+hpSSMSWAH6KhMCOVF9qLhLyeQZwTwvr0VeRL6ktSgwPIDv/Y4MWZz9e1Oi3EIVErBs59D0E8d2OxOPII/slrVK1MR+PLgAchURMTCox5REgNljNUKkPnh5th7h+Rite9ySiRxe3igvRy904AjgGWKDElMcRPXq0oYJ1CGr0W5RCIrY6smPbl5EjNgbDG69qZqZmPh7dBNndl4qV/gyR8S/l0t2V+lBIxL6K6FGUkRt+v4oY2cuarEfTED0q1ZRkFnAscFo4mQlEWGo9UKPf4hQSsUWRRvOHIAXEyvEYcFSoL31bQwTz8OqWp5BdZSluRCoYvtY4qRQ/XjG4vRE9WnOEqU8iXfJubqTbJx+PTgZOBH5F6dIUtwAHhZOZVxslU6eiRr9N8Oq2bI0Y1+0pX7Pl34jxr3uYXj4e/SaS+FJqd/8OEkd9lR6wtQ6eHm2J6NEOlC8h8h+gN9SXfrDeMuXj0bURPSq1u38POAy4TPWoNqjRb0MKidgqwJFAjPL1Wq4Cjq5HjfZ8PNrt3b+P0uUCzgeODCcz02t9b6V2FBKxlRHf+QGUTnICqfPzm1Bf+vla39+L8Po1ssMvdQZ0IfB/4WTmg1rfO8io0W9jConYV5DMw93LTOlHyhT31SrUMx+PrgJcROnInP8BPw0nM/+pxb2UxlBIxFZFMqX3LDNlAKkrf1yoL12oxT3z8WgY6XmwRYnh14D9glwqoZ6o0e8AConYusBJwDZlpsxCEqRSob70R2O5hxcvvQ8S6VHqQPCvSHJMW3URUuZTSMTWAZKUj/j5HPn3PynUl/5wLPfw9OjHwJmUzt+4CPhFOJmZMZbPV0ZHjX4HUUjEtkGM/7plpkxHFvUZob50xbXovRrl5yJlJPy8j4TPXVeluEqLUkjEtkQO59cvM+Ujb/zPob50xbkWXimEs4EflRj+EDggnMxcXaW4SpWo0e8wvAbeuyF+0qnlpiF1x7OjVWTMx6PfQR7tVygxfBPizglcTfJOxzvw3QX4PeVLX7+JnOv8tQI92hpx56xYYvhWpNdxW2Sbtztq9DsUrzbLfkhzkuXLTHsOODzUl77JP+AlyJwM/LLE+2Yhqe/naERFZ1NIxCYgMf7HAV8qM+1FRI/+5R/wmpskEX3x8zkSEHBmubaXSu1Ro9/heKV5D0MW16Jlpl0EHBbqS08HyMejKyHRPxuUmPsIsHcnNjJRylNIxKYgYZ5HUb5K7N+AX4T60h8A5OPRFYErgI1LzH0c0aNANhFqJmr0A0IhEVsKKY9wCKXD494GDhyYPXcWsniX8o0PIC6jE8LJTEuUfVAaj1cn6ijkC6BUkcB3gYMHZs+dDlwGLOsbt8i503HhZKYlyj4EDTX6AaOQiIURP+w+FCXmWGthwGL7Sz5l54Afh5OZ+xsipNLyFBKxEOLyiVJajyzDEwhfB/YKJzP/bZigyjDU6AeUQiK2HnJA61hrsXMHoLQu/AvYRxOtlFJ4YZ4ZYO1R9OhmxJ2jiVZNRo1+gCkkYgvY/oEzbf/AfiUndJmnTXfXtisdf/47DRZNaSMKidgkOzBwup07cGDJCV3mOdPdtfVKx5//VoNFU0qgRj+geEkyByI1yYf5+M2ELkxXF0gc/iHAla1ad11pHp4e7YfU5h9WBrlIjz5EajH9TfWouajRDyD5eHQh4Byk6uJQDNZM6DbGDKvn9nfg4FBfWmPyFQDy8egUJLN232GD5fXon8CB7dIBrhNRox8wvHDMfwJrlxg+zUzsvsgYk6Z0Vu90ZLd2qe7Wgo0Xjnk98M0Sw2eaid3nG2POBb5VYvwjpIRyVvWo8ZQrq6p0IPl4dH3gIYYb/E+BH4WTmV+tdPz5jwMbIuGd/pC6JYCLgesLiVipzEolAHgltR9iuMGfiUTnHLLS8ec/gcTnHwn4m7Evjhz+3lBIxFaqt7zKUHSnHxDy8ehuSBKWv3H2s8Cu4WRmWOncQiK2JlJIrVSS1gwk6Ut3awEiH4/uiORxTPENvYDo0TP+9xQSsdUQPdqoxEd+gpRXvkD1qDGo0e9wvIO2o5AaKn6uA34STmY+Lfd+r9/qr5ASzqX6lWYRH+3nNRBXaVE8PTocKc3hd9T/C8njKFth1dOjQxE99G88QL5IYtUUcFPGhhr9Dsarn3Me0FNi+GQgXmnNk1F2a48Au4T60q+PVValdfH06CwkSsfPqcARlfY+LiRiUxE92rTE8OPAzqG+tLbWrCNq9DsUrxzytcBmvqG5wIHhZOaCaj9zlN3au8Buob60Zlt2EF455GuQFovF9AOHhJOZc6r9TK8S7MFIOYaFfMPvA7uH+tJ3jkFcpQLU6Hcg+Xh0NeSR219aeTridx3XgiokYqsjriF/o/a5SFXOs9U/2/7k49GpwA0ML608A/hhOJm5bTyf73V+u47hjdr7EVfSn1WPao9G73QY+Xh0S+ABhhv8l4ENx2vwAbx+qRsgXyzFTEDittOFRKyU/19pE/Lx6GbAgww3+K8CG43X4AOE+tIvIZFi/gY83UjS4IWFRKyU/18ZB2r0O4h8PPpjpCGFv/Tt3YjBr1mT9FBfegawI9Jb1c9+wF2FRKxc/XWlhcnHo7sDtwNL+obuBTaoZTnkUF/6E6Qj27ElhvcB7tawztqi7p0OIR+PHoykwvsjKy5E2tDVrYxtIRHbGQkHXdg39Dawa6gvfV+97q3Ulnw8GkNaY/r16FLgZ+Fkpm5RWoVEbHvvPv4ezO8CPwz1pe+u172DhBr9NscLpfsNElLpJw6kGtHdqpCIfQ15TPe7leYAPw/1pdP1lkEZH/l49Eik962fY4HfNUiP9LyozqjRb2M8g/8Hhreim4vE31/eSHkKidgSSLz1diWGz0W6KmnjjBbD06Mk0Osb6kd6117cSHkKidhiwCXAD0oMX4BsIvxZvkqFqNFvU/LxaDcSg/9T39AsJEJnWN/bRuCFdf4OSQjzcy8S1qlF21oET4/OBA7wDX2BROj8s/FSzQvrPA44psTwg4jb8I2GCtUhqNFvQ/Lx6AKI73NX39DHwPfDycw9jZdqKIVE7IfIeYI/Xf9NJAHnoYYLpQzBS7q6CPiRb+hTYPtwMnNXw4XyoedFtUeNfpuRj0cXRpKutvUNvQd8J5zMPN54qUpTSMTWQvyzq/iGZgM/C/WlG+o2UObjlUW+Gviub+gDYLtwMvNI46UqzSjnRQeE+tKZxkvVvmjIZhvhZUfexnCDnwc2aSWDDxDqSz8FrI/IXMwk4KJCInZQ46VS8vHo4khor9/gvwFs2koGHyDUl34GKdHsd1lOBP5aSMR+0Xip2hc1+m1CPh5dDvgPksxSzAuIwa9ZDH4tCfWlPwC+B/yxxPBZhUTsVw0WKdDk49FlgDuRssfFvIzo0XONl2p0Qn3p6cD2yIGzn9MLidiRDRapbVH3ThvgLdS7GJ6u/hjyKP5ew4UaA4VE7MeIn3+ib+g3ob50qcWs1BCvHtOdwNd9Q08hrsG2OGAvJGK7I30d/G0+E8AJGtI5Mmr0Wxxvod4BrOUbuhs5bPu48VKNnUIi9j3kTMJfpuF44DhdsPXBcw3+G1jHN3Qfcvj/UeOlGjuFROzbiJ/fX6bhJGQToXpUBjX6LcwIC/UmJCxzVuOlGj+FRGwbpNWef8H+AejVBVtb8vHoYsi5yvq+oduAncPJzGeNl2r8FBKxzZGCcP5KnacDv1I9Ko0a/RZlhIV6K7BjPdPhG0EhEdsUuJHhoXh/AQ4L9aUrqvOvjEw+Hl0EuAWY5hu6A/hBu24cBikkYhshm6BFfUPnAgerHg1HjX4L4i3UmxnesKQjFuoghURsQ+T/czHfUBrpxqULdhzk49GFEIPob1jyX+C77brD91NIxNZDNkNL+IYuREKDK2rwEhTU6LcY3kK9keHNTzpqoQ5SSMS+iSzYpXxDFwM/DfWl5zZeqvYnH48uiJS+3so3dD9yaFu2tWE74uWE3A4s4xu6HNgn1Jee03ipWhM1+i1E0BbqIIVEzEEW7HK+oauAvXTBVkc+Hp0M/AP4tm/oYWDbcDIzo/FS1Z9CIrYGcga2gm/o78AeWvdJUKPfIgR1oQ7i9eD9N7Cib+gfwI+0wFZleKUVrgW+7xt6HNg6nMxMb7xUjcPrwXsH4K/BfwNS96mtz8JqgRr9FiAfj05EFqq/quBjwDadvlAHKSRiX0YW7Mq+oZuRxusdcZZRL/Lx6ATk6Wgn39BTwFbhZOaDxkvVeAqJWATZQHzZN3Q7sFOoL91RLtJqUaPfZLyythciXYKKCdRCHaSQiIWRBeuvs3InsAPwJSCLPMIfHepLX9JYCVsTT4/OA37mG3oW2KJdEvhqRSERWxHZQPjbPf4XeQpaBjk3CiH5IYGp36NlGJrPCQw3+M8iO/xAGXyAUF86D2wOPO8b2hLZ8f8JKUWxMnBBIRELNVbCluUYhhv8FxCXTqAMPoBXdnlz4Bnf0KZIKPQpSHRcGDjXezoIBGr0m0g+Hj0I+K3v8isEdKEOEupLv4ks2Kd8QxsztPbQJGD3RsnVquTj0f2APt/l1xA9aovSCvXA69uwBXKeUcwGwCZFrycCezRIrKajRr9J5OPRHZGetsW8j9TSCexCHSTUl34X2d0/6hvyh3bu2RiJWpN8PPo9JBGpmA8RPQp8k5FQX/p9YGuk8UoxS/teB0aP1Og3gXw8Og2JHy7++89EaqC83BypWpJZiC9/pLow6xUSsa80SJ6WIh+Pro8c3HYXXf4c2CGczPjdY0FmJqPr0VqFRMxf0LAjUaPfYPLx6GpILP7kosv9wO7hZEa7SQ3l58D/AYuPMs/f+anjycejU5EwxOLOZAPAnuFk5t7mSNWyHIC07xxNjwLh4lGj30Dy8ejyyGHkkr6hA8PJzA1NEKnV+VKF8/YsJGKmrpK0EPl4dFlEj/zZp4eGk5nrmiBSq6N6VIQa/Qbh1dO5EYj4hvrCycz5jZeoLTgPeKeCeWsyvEZ8R+KV6fgXsKpvKBlOZs5qgkjtwPnAWxXMmwqsW2dZmo4a/QbgZUlezfASyRcwPOpC8Qj1pZ8HHKTk8miJWYfXX6Lm4iVfXcnwyqsXMzwKTPEI9aVfRjYFJyH+/ZHoeD1So98Y/szw8go3AgeFkxnNjhuBUF/6/VBf+khkZ/sXpKl6KX7YOKmaxp+Q1pPF3Ab8TPVoZEJ96Q9Cfek4kqV7GlCurMfOjZOqOWhGbp3Jx6MHAOf4Lj8CbBlOZj5tgkhtjZexezSwH0M3LXNDfWl/G8aOIR+PRoG/+i4/AWzWqYX46omX1PdbIMbQ6Kf+UF96QnOkagwtafRd13WAHZH62G8AlziO03bJSvl4dBMkVKxYiV4FNgwnM+82R6rOwCus9Tfmuzr+EupL/6J4juu6ayA7tyWBN4FLHcep5IygpcjHoxsC/2FoT9jXgQ3CyUwlvmqlDF69p0uZn/R3bqgvfWDxHNd1VwN2QXJE3kb0qG3/7i1l9F3XXQH4I7JQJyLG8nMkFC0FnOw4TltUycvHoyshO/pliy5/BkwLJzNPN0eqzqOQiC2F7M7mxWC7rrsccg7wQ0SHJiCP8/1I+n3ScZy2KN6Wj0e/hOhRcbngWcDG4WTGn2mqjJFCIrYEQKgvPa+4oeu6ywAnIyHBg/boC8QenQqc6DjOaGcELUdNjL4xZrC135rAhtZat9rPcF13aeBJJAyt1GP6LGS38wPHcVq6E45XF/+/DI8E2C2czFzTBJECg+u6SyJuj+UYujMeZBbSDPw7baBHk4G7kLIBxfw4nMxc1niJgoPruosh5RtWpLwePQxs4zhOW/V7qNVB7kykct3VY3mz67oGiUpYmtIGH6SJ9qbAEWO5R6Pwqh2mGW7wf6cGv754evQ3yht8ED2ahpwLtCyeHp3FcIN/shr8hnAREt8/kh6tBxzXKIFqRU2MvrV2jrV2PD737yC+2XJ/4EEWAo71dnOtyq+BvXzX/gkkmiBL0NgKKaQ1mh5NAY5yXXfZUeY1k0OAqO/azcBvmiBLoHBdd1OkXs8Co0ydAvzKdd1Kk79agoqMvjFmVWPMZ8aYFYqu7WWMedMY4+9QMxZ6EINeCf0MbzbSEuTj0W8jPsBingf2Dicz2uS7/vwE2YFVwlykPn/LkY9Ht0R8xsW8jLh1Wtol1SHsxdAyKSNhGd60pqWpyOhba19BsgAPAzDGTEMqRO5krX19PAK4rjsBMeKVpj8vjCzuliIfj67K8CJqM4Adw8nMx82RKji4rtuFLL5Kn15bVY8iDC+i9gmiR4HooNZMPBfhbgz9+4/EFFpQj0aiGvdOCjjAGOMgrf0OtNbWokCYg3xbVsMmubZjUz4AACAASURBVN6elqmRkY9HF0Z6uS5RdNkCe4STmRebI1XgWIPKF+ogG7146bmtpEdTgOsYXj5673Ay82wTRAoiU6l8lz/I+q7rVqt7TaPiJARr7WPGmIeQutQpa+0VxePGmBuBbwCrGWPOtdZeWOFHL4mEQFVE95uvssD9t0y2MDPX2/M84Pp+8pFUttFxqGcCX/Ndi4eTmZsbLEeQWQJx/VVE91uvscD9N00wn30yM/fUfS9QWo8a7ZI7HVjbd+3YcDJzfYPlCDJLIK6/ahhA3NNt8URfsdE3xnQhi2owZn4I1lp/enjFH13N5AUeup2umZ+AfBt/w/sp5pNcb88zzF+8TwIPR1LZujRDzsej+zC83eHlDPftK/WlOj16+N90fTZPj9ZmuLH9tIQePVRHPdqD4e0OrwVOrMf9lLKM5cnPjvF9TaGadONTkHrULyEHHf6U8LHyEdX8wcyoHqlFkOy64rZ6c3O9PY8B93g/90ZS2XFnxHq18f2VDZ9Ba6E0g4+owl1pzagqtzASLlkcMtnv6dG9zNejcXc5886DzvNdfgHYVwMAGs4MqncTTgDapqRKRclZxpgDgDiyALZAYlPXtDXI7HJddxIwnaHNIMrS9c7rTL7vppldn86oaP4IvMj8xXsP8FI1biEvceZ+hj5pzALWDycz/mbMSp3xAgKmI8Z6VLrefYPJ9904q+uTjyqN9inHy8zXoXuAF6vUo0mIHq5XdPkLpFTHE+OUTakSLyDgQ2CxKt72hOM4/gq6LcuoRt8Ysw1wBbCFtfZpY0w3YjAPt9bWpGGD67rXUnl1u0+BXy988R+uQ/zoju+nmn+sYt5j6OJ9PJLKls20y8ejf0FiqYvZP5zMpMd4f2WcuK57OdIovZInx5nAEQtf/IcrGa5HX2fsevQ+w/WoXGVQ8vHoKUhuRzGHhJOZM8d4f2WcuK6bBfamsifHWcBvHMc5rb5S1Y4Rjb4xZnVEcfex1t5YdP3nwN7W2mm1EMJ13Z2RDLhKdmmfA5FShbO8iJ4Vmb9410KyL6eOQaxZwAN4j/HA/ZFU9mOAfDy6E/B33/wrkWgddes0Cdd1v4+cp1SqR1MdxxnWPNzToy8xXI/G0ot3FhL8MPhUeX8klZ0BkI9Hv4+EQhdzHbCL6lHzcF13W+Q8pRI9mgWs6ThOrq5C1ZCWKLjmPVI9iLhKRjpnmAmc7jhOVVmJud6e5YGNkWzNTZBmJtX67QaAp4C7jTH7GmMWLRp7FVgnnMzMqPIzlRrixVjfi2R3j6ZH5ziOU1XDjFxvz3LARszXo2+Ocp9SWESP/mOM2ccYU9y3NY/o0YdVfqZSQzw9ugOxGSOV654FXOA4zqENEaxGtITRB3BdN4QUylqc0gb5C+AxYAvHcco+LldCrrdn8JBu8ItgGhX6go0xmKJDQGttP7Dxyidd+OB4ZFJqg1ep9UkkFLicHj0FbOo4TrlGGhWR6+1ZCPgW878ENmJ8erTFyiddeM94ZFJqg1ei4ymkHlgpPZoNPAtMa5fKv4O0jNEHcF13KtJwZBrzD3bnej9/BeKO49Q8FjbX2zMBeYQfXLybAsv75/kXKsDAwABIzf9rgWuAeyKprKbKNxHXdVcBzkb+HRdEfPz9yEK9GDjScZyaP5V5evR1hurRCqXmdnUNdRd7evQm4ja8BvhvJJWtNl5cqSGu666MROdtwVA9moPU4D/CcZy2y5JuKaM/iFfwaHckMzEPnOs4zquNur/n012F+Yt3E2CNErszSvz93kX8stcAd450GKzUF9d1NwL2RPTodeA8x3FeadT9PT2KMFSP1qxQj95nvh7dMdJhsFJfXNfdAAlTXwYoAGnHcdo2074ljX6rkY9HF7fWPmeMmbf7L7NQ/UwHrkcW7m2RVLatHgOV2pKPRxe11j5jjAkNXqtQjz5CKrVeA9waSWXbogGM0pqo0a+AfDyaAfYdfG2F3wOrIY2qK8kZ+BS4AVm4N0VS2bZJ5lBqQz4ePRfYv/iatfb31tqvIHpUSaXZz4AbET26MZLKan9cpSrU6I9CmbC6VDiZOQog19szBekHsCuwPbAoo/M5UqDtTOQMQP8ROpx8PLotcKvv8qnhZObXALnengURPdoFKflcSZ7AF8iT5JnA3apHSiWo0R+BfDy6BFJ3pbhJwrPAN8PJzLDIj1xvzwJI84Vdkcbu/mqJpXgSKVP9t0gq23b9NpXRycejiyJ6VNx74kXgG+FkZpirJtfbMwlpCLMrUi566Qpu8zSiR5fWqz6Q0hmo0R8Bv1sHObmfFk5mHh7tvV4kx+bIzm0XSkQD+ZgOnA+cHUllG3ZordSfEm4dC2wSTmbuG+29nh5tinwB7EKZaKAiPkIi3c6KpLINO7RW2gc1+mUo49ZJhpOZqtvV5Xp7upAw1F29n/AI0y1yaHcGcLs+src3Zdw6p4STmf+r9rM8PdoQMf67IpFB5bCI7/8M5PBXC7cpgBr9kpRx6zwDrFvKrVMNXhjf1kjdnu0Zub7HC8iizeqBXftRxq3zApJ1O64IHE+PtgAORVyJI+nRS4jf/8LBEhBKcFGjX4J8PHoh0rd3kH6k6uEjtbxPrrcnAhyE1FEfqdn7J0AWOCOSyr5QSxmU+pGPR88DYkWXBhC3zv21vE+utyeM6FGMkc+RPkNqXJ0RSWW1E1dAUaPvo4xb5/fhZOa39bqnF7mxJ7Jr8zeF8XMbsvu/QTN/W5d8PPpt4Bbf5T+Gk5kj6nXPXG/PZGAPRI++Ocr0O4C/AP9UPQoWavSL8Nw6zzD0sMwF1huvW6cSvEf2acii3Y2Ri3nlkEf2czTmv7XIx6OLIdE0NXfrVIKnRxsgevRDRi4alkf06Gx1IQYDNfpFlHHrbBBOZh5ttCy53p4VgAO8n5Eif94BjgfSWvKhNSjj1tk4nMw80GhZvAqz+wMHMnLkz3vA74BzI6ls3Tc4SvNQo++Rj0c3B+7yXT4xnMwc3QRx5uHFbO+KHPxuNMLUV4BjgCs0UqN55OPRjZDyzsX8IZzMHNkMeQbJ9fZMRBoVHYrUACo7FdGjv6kedSZq9IF8PDoReBzpoDRIw9w6lZLr7fkmYvx/DCxQZtrjSGvLWzXcs7Hk49EJwCMMbbL+ApKE1TJ1l3K9Pd9A9GgvpDF8KZ5C9Ogm1aPOouJG0h3OLxlq8AEObCWDDxBJZR+LpLI/BULAiUgzED/rADcDt+d6e9ZvpHwKBzPU4IPoUcsYfIBIKvtEJJX9GdJl7ngkqsfPWkitqLtyvT0bNlI+pb4Efqefj0dDwPMMLXZ1YTiZiTZJpIrx/P7HIP7jcoe+VwNHa6hnfcnHoysgelRce+lv4WRmryaJVDFeR7CjkfOjcoe+1wG/iaSyzzVMMKUuqNGPR69EIhwG+QhYLZzMvNskkaom19szFTmE+1GZKf1Ian5fJJUd1hNWGT/5ePQSxF0yyMfA6uFk5q0miVQ1ud6eLwMnIO7DUgwAFwLHRVLZ1xsll1JbAm30y8RSHxxOZs5uhjzjJdfbsy6QBLYtM2UW8GcgFUll267jT6uSj0e3AO70XT4snMyc3gRxxo3n808C25WZ8gUS45+MpLLaz7fNCKzRz8ejCyCx1F8puvwIknnb1skqud6ebYCTgHXLTJnujf9FG3KMDy8I4AlgzaLLTyJBAG3d7jDX27MFkEL6AJdihjd+ulaIbR+CfJD7fww1+BbZ5be1wQeIpLK3Iwt1d6Tuip8lkMX6Uq63Z28vmUcZG4cx1OCD6FFbG3yASCp7F1LgbVckCsnPYsDvgZdzvT37qh61B4Hc6efj0VWQuvjF4WrnhpOZA5skUt3w4rN/CiQon5xzI7C/+vurIx+ProQc3hZ3TsuEk5mfNkmkuuGVeI4CxzG0EGExtyB6lG+UXEr1BNXoX49UuBzkfeTwtmP9k7nenoWQ0NReSnf3+hj4NfBXjcuujHw8ejWyCx5kOqJH7zVJpLrjdYo7FDgKWLzElE+AI4DzVI9ak8AZ/Xw8+gOkXn0x+4WTmb82Q55Gk+vtWQpJujmE0gletwIx3a2NTJkggIPCycw5zZCn0eR6e5ZANhC/pHSC17+Bn0VS2Vwj5VJGJ1BG38uYdJGG5oPcj5S7DVTKea6356tIGOfGJYZ1tzYC+Xi0Gzm8dYoud0QQQLV44cIXAJuVGP4M+WI4W0s6tA5BO8jdj6EGfwA5dAucQkZS2ReRdo6HIaGcxSwCnAPc5tX8V4ayD0MNPnRIEEC1RFLZl4EtkSdHf2bvQkgZ8DtyvT2rNlo2pTSB2enn49GFgZeB5You/zWczOzXJJFaBm9BXoB8CfjR3VoR+Xh0CtLUfMWiy5eEk5mfNEmkliHX27MK0ud5qxLDM4HfIGHCgdejZhKknf7hDDX4s5CIlsDjNdDeCvg5ulsbjV8y1ODPRkoYBJ5IKvsqsA1SzsFfm38KcBpwt+daVJpEIHb6+Xh0eWSXX1xfp67dsNoVb7eWRvr4+pmFHAIHcreWj0eXQUpYL1J0ua7dsNoVr4VjGvh2ieHPkS/K07RrV+MJyk4/wVCD/z5wcpNkaWm83dq2lN6tLUiwd2tHM9TgT0eSkxQfXvTXdsg5mr8Z+2Tgj8A9ud6eNRotW9Dp+J1+Ph5dHYnY6S66fGg4mTmjSSK1Dd5u7TzgOyWGB3drpwZh15+PR6cCzzG0munh4WTmT00SqW3I9fasCJwLfL/E8BfIpuyPuutvDEHY6Z/EUIP/MmLIlFHwdmvfZeTd2nW53p5SyV6dxu8ZavBzSG9ZZRS8TO/tkVakH/mGF0DW6D9zvT2lkr2UGtPRO/18PLopcLfv8g/DyczVzZCnnRllt/Y8sFOn1uzPx6MbAP7+tnuFk5m/NUOedsbrAXE2sGOJ4ZcQPXq2sVIFi47d6efjUQP8wXf5AeCaJojT9hTt1vZBfNnFrA48lOvt2X7YG9ucMnr0GHB5E8RpeyKp7FtIr94fAx/4hr8CPJjr7dm54YIFiI7d6efj0d2Aq3yXNw0nM/c0Q55OItfbsxLwd0qXbj4WOLFT/Pz5eHQH4B++y1uFkxl//XylSrynx2uADUoMH480/ekIPWolOtLoe2nyzzA0+/a6cDKjO4gakevtWRDJ2t2nxPDfgZ5IKuuP/mkr8vFoF9IgvLh/8o3hZKaUi0sZA7nengWAs5BKsH7+Cfwkksr6z5OUcdCp7p0fMdTg9yPx5UqN8Jqv7IuUcfBHXewMPJDr7fmK/31txi4MNfgWqS6p1IhIKvsF8DMkMdDfg2B7xN2zesMF62A6bqfv7fKfBorjfzuyxnmrkOvt2RJxpS3lG5oB7BlJZW9qvFTjw9vlPw6sVXT50nAys3eTROp4cr09myF6tKxv6BNgr0gq66+Oq4yBTtzp78pQg9+PJtDUlUgqeyewHlJ5spjFgBtyvT1HtWFXpR0YavAtcGKTZAkEkVT2bkSPHvUNLQJcn+vtOSbX29OJNquhdNQf0NudHeu7fGk4mXm5GfIECa9u+sbAZb4hgzTZviLX27Nwo+UaC17Ejl+PrggnM881Q54gEUllXwc2BS4qMXw8cE2ut2eREmNKhXSU0Ud8ycU+2AF0l98wvObYeyH9h/1RFz8E7sv19ny54YJVzw+AdYpeW+B3TZIlcIxyXrQTnXFe1DQ6xqdfxgf7t3Ays1eTRAo0ud6ebYErkCbsxUwHfhRJZW9rvFSj4+3yH2ZoOOpV4WRm9yaJFGg68byo2XTSTr+UD1Z3Z03CM+rrIYfqxSwB3Jzr7flF46WqiO8yPP9A9ahJVHBedHjjpWpvOmKn7+3OHmXoI/kV4WRmjyaJpHh4DdkziHvHz9GRVLZlDkc9PXoA+FbR5b+Hk5ldmiSS4uE1ZD8f2LPEcB+SyNX+xqwBdMpO3++DBd2dtQSRVPYzJG8ijjx9FfO7XG/PCS0U2fNthhp8kMNDpcmMcl6UAE5qIT1qadp+p1/GB3t1OJkptbNUmkiut+d7iH92im/oFOCIZu7UPD26F5hWdPn6cDJTqjCY0kS886JrAX802J+Bw3THPzKdsNNXH2ybEEllb0Rq8/vLMxwO/KXJMdhbM9Tgg+7yWxLvvGhbhpf7/gVwjsbyj0wn/HH8afHXhZOZJ5siiTIqkVT2HqSPqr+u+s+B83K9Pd3D39UQ/Hp0QziZ8ScJKS1CJJV9AOnr/KFvaH8gk+vtmTD8XQq0udHPx6PrIYkcxZzQDFmUyomksg8hC9ZfWnc/INvoBZuPR9dmeE9g1aMWJ5LKPgZsAbzrG9oHuDTX2zOx4UK1AW1t9IFf+V7/O5zMPNYUSZSqiKSyjwObA+/4hvYCLsv19kxqoDiH+V7fHU5mHmzg/ZUxEklln0b06E3f0O7AVV4VT6WItjX6+Xg0hPzDFnNqM2RRxkYklX0G2Ax4wze0G3B1rrdncr1lyMejyyMNPYpRPWojIqns84ge5X1DOwJ/98qAKx5ta/SBQxjas/QFQLPz2oxIKvsismBzvqHtgX948dn15GCg+KniFaSOu9JGRFLZVxA9esU39F3gX16+iEKbGv18PLowcIDv8qnhZEa77LQhkVT2f8iC9RfG+zaSdVmXQm35eHRBxOgXc1o4mfHXe1HagEgq+xri6nneN7QVkgW+aOOlaj3a0ugjxZgWL3r9IXBxc0RRaoFXXXEzwF/Jcgvg1lxvz2KDF3K9PaZGh70/YWhNl4+AC2vwuUqT8Ho5b8Hw8h+bALflenvm1YKqoR61FW2XnOU1SXkemFp0+cRwMnN0k0RSakiut2dZ4DaG1lECeASJ8V+J+Y02jo6ksmeM5T5egT6Xob0XTg4nM71j+Tyltcj19iwF3Ap80zf0BBLjvxzSn3cFIBFJZU9rrITNox13+j9gqMGfA5zZJFmUGhNJZd8FtkSMfDHrAXcCfwC+ghTcOi3X27PKGG/1HYY32xnTF4jSekRS2Q+QMNwHfEPfAO4CTkZaqi4KnJLr7flqQwVsIu1o9P1hmpeFk5m3miKJUhciqeyHSALXfb6htYD1i153A2MtqufXoyvDyczrY/wspQWJpLIfIedCd/uGvgZsVPS6i9KF3DqStjL6+Xh0XeSgphgNr+tAIqnsDGQ3fqdvaHHf66oXaz4e/TryiF/Mn6r9HKX1iaSynyARPLf7hobpUVAKtrWV0Wf47uzOcDLjr7OtdA4Giej5eIQ5X8/19nxthPFS+PXonnAy43cnKZ3DoB75a/UUsxqwdmPEaS5tY/Tz8egKSIneYnR31tn8EoghfteRqNjFk49Hl0GyfotRPepsfg4ciJwDjUQgXDxtY/SRuizF4VUvATc2SRalMYy2SAep5tE8ytBkrFeB66uSSmk3KtWjPYJQobMt/ge9MM39fZfP1GSsjucMxCiPxqoML689DC9M05/Ud5YmY3U8ZzM88a8UYWDDOsvSdNrC6APfQ+KzB5kFXNQkWZQG4WVYfh0pezx9lOmVxNdvC3y56PUXaDJWxxNJZQuIv/4Ihld29dPxeRrtYvQP9L2+PJzMjGYElA4gksp+FkllU8AqwHGUP9TdvoKP8+vRVeFk5v1xiKe0CZFUdmYklf0jokfHUP5Q97uNk6o5tLzRz8ejqzD8H+LsZsiiNI9IKjsjksr2ITv1k5BdejEj+vS9qqw7+C6fUzsJlXYgksp+Ekllf4cY/xOBz31TOj5ssyXrTriuuwkSqbPUgiuvvtLE154v/od4jOHZmkpA8DIt47nentOALJJ8A5D0z3VddxoS2bPM5FXW/NKkV58t3uQ8zfDkLyUgRFLZ6cDRud6e04G/At/3hlL+ua7rfgspv70sUADSjuO81ChZa01L1d5xXXdVZBe/MV7z7Mn332wn/e+ZYqMfCycz5zdDPqX18KItuiKp7NzBa67rrgKchRRwWxAwkx+8bWDSy08VG/2fh5OZsxorrdKqlNGjMKJHW+LpEVKuYw5wCXCk4zht52auidE3xkxDYp1nIx1s9rHWzqnmM1zXDSHFkBZH0usB6H7vDabcfiVmYID+xZf5pH/JZb80NfZ/n45baKUjcV13BeBJYEmK9Kjrg7dZ6NbLMQP99C+21Gf9y6wYmrrfr/x9ehUFANd1lwWeApamSI+KmA08C0xzHMfvImppamX0vwRMt9bOMsacCDxurb260ve7rtuFFEZahxIuJzPrM7o+mU7/UsvPpHvCaY7j/HbcQisdh+u6BrgH+Bal9OjzmXTN+JD+pZabyYSJZzmOc0TDhVRaHk+P7kA8DiP12Z0FnO84zi8aIliNqMlBrrX2TWvtLO/lXKDa+PkdkIqHJc8Y7IIL0b9sCLonTAF+7X0LK4qf7yFF2Urr0eQp9C8XggkTpwCHuK67YkOlU9qFbZCqrqM1Vl8QiLmuG6m7RDWkIqNvjFnVGPOZMWaFomt7GWPeNMasVHRtMNLmX1XKsQ9QaXekfoZHYSgKwN5ApW3xBpAeqoriZy+8M8UKsMBOdZSl5lRk9K21ryCG/DCY58M/A9jJWvu6d21RJJriJ9ba2ZUK4LruRKSaYqUshHxJKMo8XNedgPRaqDTkbgrSOUtR5uG5mneici/IgrSZParGvZMCDjDGOMC1wIHW2ocAjDETgMuA46y1L1Qpw1qIS6gaNqhyvtL5rIHsuqphfc9/qyiDfJXSB7cjsZbrutW+p2lUbPSttY8BDwEPAmdba68oGt4TMcTHGmPuMsb4q2GOxOJUv1gnejs7RRlkcao/SwKYXGtBlLZmMcSFXA39VO6ebjoVG05jTBfyPzeAL4HBWnsxY29MPtbwodZJMFBaAdUjpRaMRR/MGN/XFKpx75yC7KZeYng98vEwvUo5AL5wHEcrIyrFTKf6x3LL8HIOSrCZTvWVCrqAz+ogS12oNHrnAGBn5IAjBRxhjKmVL/Rpqq93cU+N7q10Ds9R/WP5/Y7jtM0OTWkIL1P9RuDRdtqEjmr0jTHbAL8HtrfWvgNcjTShqEm4m+M4c5HIoEoX3ydICrSizMNxnAHgH1Tu1/8MLc+t+PA2AVdT+QZiJhK12DaMaPSNMasDlyNhmE8DWGv7kZILtaw7fRGVPx5NoPo8ACUYXIQswkroRjtmKaW5hOHVN8vRhWw22oYRjb619nlr7dLW2ht918+01k6roRw3Aw8jhYxGYiZwvOM4ozVCUILJHUjlzNHyRGYCJzmO8279RVLaDcdx/ovo0mhunpnAnxzHeaP+UtWOlqin7z1S7Q68R3nDPwu4G/hDo+RS2gtPj/YE3qG84Z8F3I/UUleUcuwDvEV5PfoceBRp7NNWtITRB3Ac531gfeAaZGEO+tS+QL5RU8DO7XRgojQex3E+RAquXUlpPToF2ME7S1KUkjiO8xGSe3QZQ/Votvf6VOC7juNUVU24FWipevqDuK77daS+zhJIqeaLHcd5r7lSKe2G67prIlFnSyC7tkscx3mnuVIp7YbruqsDuyBllt8ELnUc563mSjV2WtLoK4qiKPWhZdw7iqIoSv1Ro68oihIg1OgriqIECDX6iqIoAUKNvqIoSoBQo68oihIgtBGJolTA5PUPtKarm66Jk+jq6sZ0ddM1YaL3exKmW353Db72XTdd3XRP6MIYI7+7DN3d3u8JpvT17i5MF3R1Gbq6u+jqMkyY0EV3l2GS93uBea+75Xe3/3rp3xO7uug2MLG7iy5jmNht6DJm6LUu48018+Z0D5lrMAa6u6ALQ3eXlMvt7jJ0eb+NgW5j6DLQbZD/TwNd3nvNQD/GDsBAP9gBzMBcsAPQP7fkdTMwFwbkuozPhYF+7Nw58nvOnHmv7UA/zJ2D7e8fOmfe3NkwMICdOxs7MMDA7Lnzfg/09zMwZy62f4B+7/fw13Pk9bz39TPQP4AdsPTP7sf2y+8B3+sh43P6Gei33nst/XMH6LeW2QOWfov32zJ7gJLXByieM3/sHJsrW7lYd/qKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQINfqKoigBQo2+oihKgFCjryiKEiDU6CuKogQIY61ttgyKEgiMMftba89TOeajsjReDt3pK0rj2L/ZAni0ihygspSirnKo0VcURQkQavQVRVEChBp9RWkcTfcXe7SKHKCylKKucuhBrqIoSoDQnb6iKEqAUKOvKHXCGLOkMeY2Y8xL3u8lysw72RjzjDHmOWPMn40xphlyeHMXNca8YYw5o8YybGeMecEY87Ix5qgS4wsYY67wxh80xkRqef9K5Siat5sxxhpj1quHHJXIYowJG2PuNMY8box5yhjzvVrcV42+otSPo4B/W2u/Avzbez0EY8xGwMbAWoADrA9s3mg5ijgB+E8tb26M6QbOBL4LrAnsaYxZ0zdtP2C6tXYqcCqQqqUMVciBMWYR4BfAg7WWoUpZjgautNauA+wBnFWLe6vRV5T6sSOQ9f47C+xUYo4FJgOTgAWAicA7TZADY8y6wHLArTW+/7eAl621/7PWzgYu92QqJ+PVwNa1fuKpUA6QL76Tgc9rfP9qZbHAot5/Lwa8WYsbq9FXlPqxnLX2LQDv97L+Cdba+4E7gbe8n1ustc81Wg5jTBdwCnBEje8NsCLwetHrgnet5Bxr7VxgBrBUo+UwxqwDrGSt/VeN7121LMBxwN7GmAJwI3BoLW48oRYfoihBxRhzO7B8iaHfVvj+qcAaQMi7dJsxZjNr7d2NlAM4GLjRWvt67TfYlPpAf9hgJXPqKof3xXcqsG+N71u1LB57Ahdaa08xxkwDLjbGONbagfHcWI2+oowDa+025caMMe8YY1aw1r5ljFkBeLfEtJ2BB6y1n3rvuQnYEKjK6NdAjmnApsaYg4GFgUnGmE+ttSP5/yulAKxU9DrEcFfF4JyCMWYC4s74sAb3rkaORZBzlbu8zkW5+wAAAnVJREFUL77lgeuNMTtYax9psCwg5xzbgTwRGmMmA0tT+t+vYtS9oyj143qgx/vvHuAfJebkgc2NMROMMRORQ9xau3dGlcNau5e1NmytjQD/B1xUI4MP8DDwFWPMKsaYScih5PUjyLgbcIetfRLRiHJYa2dYa5e21ka8v8MDQD0M/qiyeOSBrQGMMWsgZz/vjffGavQVpX6cBGxrjHkJ2NZ7jTFmPWPM+d6cq4FXgKeBJ4EnrbX/bIIcdcPz0R8C3IJ8oV1prX3GGHO8MWYHb9oFwFLGmJeBXzNyhFE95WgIFcpyOBAzxjwJXAbsW4svQs3IVRRFCRC601cURQkQavQVRVEChBp9RVGUAKFGX1GUmmOMyRljZhtjlvZdf8KraRPxXn/LGHOjMeYjY8yHxpiHjDFRb2wLLzFJqSFq9BVFqRevIglGABhjvg4sWPR6GnAHUutnKpKBexBSj0apE2r0FUWpFxcD+xS97gEuKnr9ByBrrU1Za9+3wqPW2t0bKmXAUKOvKEq9eABY1BizhldV8kfAJd7YFCQL+OpmCRdUtAyDoij1ZHC3/x/geeAN7/oSyKbzrSbJFVjU6CuKUk8uRuoIrcJQ1850YABYAfkyUBqEuncURakb1trXkAPd7wHXFg3NBO4Hdm2GXEFGjb6iKPVmP2Ara+1nvutHAvsaY44wxiwFYIxZ2xhzecMlDBBq9BVFqSvW2ldKVaq01t4HbOX9/M8Y8yFwHtIwRKkTWnBNURQlQOhOX1EUJUCo0VcURQkQavQVRVEChBp9RVGUAKFGX1EUJUCo0VcURQkQavQVRVEChBp9RVGUAKFGX1EUJUD8P/U7R+G8KZv0AAAAAElFTkSuQmCC\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADjCAYAAABpYsTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deZgjRfnHP5WZ3YXd5b4xhICigAPIJXIIiJyycigsoEBoIAirKAIaGpEwgoYgiCAqMkCIN4g/ERYQ5FgREOVSGEDlCr0BYZeFZe9jJvX7o3rYpCfJZGaSztHv53nyZNJVSb8L1d+urnoPpbVGEARBCAahZhsgCIIg+IeIviAIQoAQ0RcEQQgQIvqCIAgBQkRfEAQhQIjoC4IgBAgRfUEQhAAhoi8IghAgmi76Sql1mm2D0BnIWBIaTSeMsaaLPnBlLZ2UUkcopfqUUn9USh3YaKOEtqTWsbSlUuoGpdStjTZI6DhqGmOtTFNFXyl1MLC1UurckfpqrW/TWseBk4BjGm2b0F6Mciy9orU+xQezhA5iNGOslelu8vnfBn6ptb4GQCm1HZDy9DlZaz2n6PMFwI99sk9oH8YylgRhNJSMsXal2aK/PfCvoQ9a62eBaeU6KqUUcClwt9b6KX/ME9qImseSIIyRkjHWrjR7Tf9t4FSl1DY19D0T2B84Sil1emPNEtqQmseSUmo9pdS1wI5KKbvxpgkdwmj0qmVRklpZEAQhODR7pi8IgiD4iIi+IAhCgBDRFwRBCBAi+oIgCAFCRF8QBCFAiOgLgiAECBF9QRCEACGiLwiCECBE9AVBEAKEiL4gCEKAENEXBEEIECL6giAIAUJEXxAEIUCI6AuCIAQIEX1BEIQAIaIvCIIQIET0BUEQAoSIviAIQoAQ0RcEQQgQIvqCIAgBQkRfEAQhQIjoC4IgBAgRfUEQhADRPd4fUEpNAX4CrABmaa1/NZ7f6+/v3wyYDmwIzAFu6enpmT1eO4XgIWNJqCedMp6U1nrkTkqdAWyntZ7hfr4E2FxrfYJS6gRgvtb6DqXUzVrrY8ZiSH9/fxeQBk4HphQ1LQauBRI9PT2DY/ltIVjIWBLqSaeNp1pn+lngP0qp84G9gEOBPdy2MPCs+/d4/uFp4JxhBr752hS1cvk5avnSLfK/u+qHwMKi1yJgabi3b+Q7lxAkyo6lrnfenBJa9N45atmSLfO/u+oqSsfRQmCxjCWhDGXHE+YGMHT8XP/MGR81zfQBlFKXYf6RhwAHaK1fdo+fALyrtZ6plPqt1vrY0RrhPja9QOldFICps26le+7r1b4+iLlo5wF5YHbRq/jzPLmg2x/HtiZEUpmVldqrjaXVn/4Lk176Z7Wf15ixNJ/SseMdV2+Fe/sKY/03CK2BY1sTgIFIKlNRF6qNpyIWA1v39PTk62xiQxjNmv6NmH/84UOC7/J/wDVKqUOBO8Zox3Qq/UcdHPHhoQtYy31tWaXfsnwyXu1CzgPvyo2h5TnXsa3zgDeA14veZwOvde992L4DG28+hQkTh3+zMDDSbytgDfe1GbB7hX4D+WR86JyVJhpz5cbQ8hwA3OrY1tAYGhpPeSAHvBb67MmHFtZYewpKVfudKRgN+0Fjza0PoxH9C4G53u9orRcD1jjt2LBiS6FuS2WrAR9yX5VYkk/GZwOvAE8DTwBPArPlZtAy/By4BNjafZUw+aHbAShMnsqSTx9NYc11329TI08gaqUb2Nx9VWKFO8l4DfgnZhw9AbwoN4OW4V7gXeCD7msYU++4Ed09kSWf/CyDm0ar/dZG9TevMdQk+kqpczCiOR3oxczu68mcSg0DG29OYcpaqIEVdC18NxdasnAhZiY21X2fVEc7JgMfcV+HFB1/O5+MD90Ahi7evNwImsJbwFPALpU66FAXS3c7qETwAQbW2xgGB8xYWvDOq6ElCxewahytAaxeRzsnYp48twQ+VXR8YT4ZL55QPIncCJrFIEb4T6rWafkOe44k+GDGZVsw4pq+Umo/4Gpgd631QqXU04Clta66ODoaxrNulk/GJ2Au2I0wj+Rh99379xr1stdlLqtuAEMXr9wIGoRjW1sCp2Iu0E0q9dMwsHTvwwYGNttqtSo/V2ksdWPG4AaUjh3vWCq9m4yfhZgbWfF4ekluBI3Bsa0NgBMx42nY02IxhclrXLroyNPOpIPW9KuKvlIqAswCDtVav+AeOwnYV2t9Uj0N6e/vv5zyO+RDXNHT0zPmHfJ8Mr4WlW8IQ39X+x9bC3NYdQN4Engi3NvXFgOhFXFsayJwBBAH9q/hKwXg2AVfPGc3GjuWJrNqzFQaU2uP9fddFrDqRjD0khvBGHFsKwTshxlLRwITavjadyKpTLLR2uQ3NXvvNJpm+8Lmk3GFuVAjwHaY5YOdgZ0wyz5j5UVgJnAn8Ndwb9+KcZra8Ti2tTFmHJzO6NZKT4qkMtlmjyWAfDI+FXMT+ChmHA2Np/E8JbyJGUczgfvCvX2Lxmtnp+PY1hpADDgT+PAovvoD4NxIKqNbYTzVk5YR/SH6+/vDmL2DjTDrZLc087Epn4x3Ydb4iy/cHRnbjWAhcA/mwr0r3NtXcS8jiDi2tSvwVeAYqs/ElmA8xYoDAc+OpDJXFndqwbGkgChmDA29dgHWGcPPrcA8hc8E7gz39r1SHys7A8e2Pgh8BTgZWLNK10Hgdownz1T32E3AyV5XzlYbT2Ol5US/HXBvBFtTeuF+jNHdCDTwD1bN3P4ZxP0A11f68xixr+QiOUQ/8FPgV5FU5j3Hth7H/LdPRVKZ8xtraWPw3Ah2KXof7fLQC6x6onw03NtXMZahU3FsSwGfBr6GCSCt5meZB64DboikMm84tnU9cArmBvD5SCozon9vuyKiXyeKbgTFF+4u1LZ2CMY/eOgGcH+4t29xI+xsFdzNtNOAGcCmVbouB27BPEb/rXj25djWDMzN9kvVAmzaDfdGsAWlN4JPUPue03zME+VM4E/h3r63G2Fnq+DY1hTgBMwSzrZVumrgbsxYurtY2B3b2hP4HnBwJJVZ2kBzm46IfgPJJ+NrYh4bpwGfoVo8QinLgQdZ9eiea4iBTcCxrR7gbOALVHe3fRFzcWYjqcy8Cr81BVgWSWXaZj11rOST8UnA3pixNI3qgYjFFIDHMGNpJtDfKU+Ujm2FMbP6U6n+ZPQWcAPQF0llchV+SwFTI6nMwnrb2WqI6PtEPhkPYWZt0zCPnjuN4uv9mKCkbLvuAzi2tQvwLYw3TiUGgD9gxP7BTpq91xP3SeAjrLoB7IWJTK8FB/gNcH24t++lxljYWFz33QTGfbdM6PX7PIhZDvxjJJURBwoXEf0mkU/GP4CZ/R+KeRqoZT9gJUYUrwMebAf3Pce29gIuAA6q0m0p0Af8IJLKvOaLYR1EPhlfG/PfdxomqHC9Gr96P2Ys3dYOXmWObW0N2MAXqXyTK2CWA9ORVKZusUSdhIh+C5BPxlcD9sXcAKZhNvZG4hWMUN4U7u17s2HGjYGiDbULgH2qdH0XuAb4USSVmeuHbZ2Ou7e0G6vG0vY1fG0uJpNuX7i3778NNG9MOLa1A+Yp8Sgqb86uADLA5ZFUpi2fYPxCRL/FcB/dt2XVRbsn1SucDQB/xMzY7mvm7N8V+2kYsf94la5vAFdg1lg7fg21meST8QjmiXIa5kZcLVIZjBvodcD/hXv7ljfWuuo4trUbRuw/W6XbQkwRp6siqcz/fDGszRHRb3HyyfiGmOCS06ieLA5MZsA+IBPu7fPtAnCjHT+PuUB3qNL1RUyQyy8jqUxTBSWIuAFj0zFjabcRus9j1ez/3422rRjHtj6JSfBYLQp7DvBD4KeRVGa+L4Z1CCL6bYL7BLAP5oL9PNU3sAYxwUvXAfeGe/sa5t3i2Nb+GCGvtjH9JHAp8IcgeNq0A/lkfAdMSoITqB68BPAQZjLx+3BvX8PcGR3b2h5IYZ5MKpEDvg9kOt21slGI6Lch+WR8fUzCqNMwXhzVcIDrgRvDvX1Vq9GMBse2dsII+QFVuj2AuYjvF0+c1sTNI3Q0ZiztMUL3dzFeZH3h3r7n6mWDY1ubA9/B3IAqrdn3Y8bbzZ0cOOUHIvptjDv7/yTmgj2K6n7vBeDXwHfCvX0vjvWcrrvcJcBxFbpojIdROpLK/GOs5xH8J5+M92Bm/ycyckTwfcCF4d6+v431fI5trQecj0mXUOnJ9RHMxOEumTjUBxH9DiGfjK+LmSmdRvWoxEHgF8DFo8nX4tjWhpgN2tOpHGV8K3BhJJV5odbfFVqPfDK+OmYSEcdMKqrxJyAZ7u2r+Qbv2NZkTFDVeVReWnoEOD+SyjxU6+8KtSGi32G4s/89MOI/ncreGgOYxFKXhHv7KvrGO7Y1FRNB+w1WJaTyMgtIyMy+88gn49tgxD9G9QyhMzEz/6crdXBsqxtTZe8iKqfeeB7ji3+HzOwbg4h+B5NPxtfBBLJ8mcrFIlZi1vy/V5z73/XIORGzjlopvfEzmMjIe+QC7WzcWJLPAWdgIoAr8QfgonBv3zPFB90N/6uBbSp873WMx87PZc2+sYjoBwA3YGc6ZoZVKaf4CuBnQKqwYmATTNBUpayXr2GWen4dSWVaPipYqC/5ZPxTwMWYGJJK/A7oLawYWIDJTX9UhX7zMYnOrhFvHH8Q0Q8QbjnA44AkZQpBa63Rg4VBCjpEeS+KeZhN3J+Kn32wcZcR98eI/zCff601FLTWg4UC5VMmLAeuAi6NpDLvNtRYoQQR/QDiiv8JmMfpqHuBogcrTtqXYWZrl0VSmfd8MlNoA1zxPxjjcrkLgC4U0AMVx5LGBH1dGEllZvtipFCCiH6AySfjE/Vg4UJdKHwDXcFlTqkB1RX6mQqpC8O9fe/4bKLQJuSTcaULBUsP6h+g9VplOylQXaHbVSh0Vri371WfTRRcRPQDimNb6wLfBb5EhYAY1R1Chd5P+7MQuBy4LNzbt8wXI4W2wLGtScC5mDQcq5fro7pCEFIopcB4jt0AXNDpBV5aERH9gOEmRTsG+BGwfpkuKwmp5aorNNW9QL28CJwe7u17oIFmCm2CW3HqRso7CGhC6j3VFVq7wliaB5wD/LxTCru0AyL6AcKxrY0xGQmPrNDlNuDroYndczBBWOcBG1TomwXOlZlaMHEDrL6LCbIqp+iPA18OTex+CjPJuAjYqsLPPYCZSIw5UlyoHRH9AODO7r+A8ZMuF2DzEnBmJJX5U/HBfDI+BePj/03KF+aQmVoAcWxrb8zsfpgHGGZMnAfcWOzO6zoPfBHjPFCu1ONyjGfYZe1Q0KWdEdHvcBzb2gRTfvCwMs0rcC+0ai6YbmWmFGb2Xw6ZqQUAtyZxClOAvBx9wHmRVKbihn8+GZ+ImShcSPlo8ReA08K9fQ+P01yhAiL6HYo7uz8B4wtdLnnW44AVSWVqzpaYT8b3wKRr/miZZpmpdTCObX0Ks/m6RZnm14BTI6nMfbX+Xj4Z/xCmfm2lnPl9QCLc2yc+/HVGRL8DcWzrA5jo2kPLNC/HzLJ+MJZwd5mpBQs391IamFGhy08ws/tRV0Bzffy/CFxJeaeCt4CzgJtl+bB+iOh3GI5tHY9JoVDOV/ox4OR6ZMGUmVrn467dZylfs/lV4JRIKvPgeM+TT8bXAy4DTq7Q5U/ADPHtrw8i+h2CY1trAD/GLOl4WYbJlfPDelaukplaZ+Jmw7wA+Dbl6zP/CJP2eFE9z5tPxvfBPKGWKwy0FOMBdGW4t29lPc8bNET0OwDHtnYGfkv5GrqPYmb3/2nU+WWm1jk4trUZ8CvK59F/GTO7/0ujzp9PxidhUivblC+s8gwQH03+fqEUEf02xt2sPQuz5uotbLIcc+Fc7Vdd2hpmaucDV8msvzVxbOtwjCtmObfeqzGz+8V+2JJPxrfGjKW9yzRrzNNGQqLDR4+Ifpvi2NYGmCIo5YpIvwAcE0llnvXVKGqaqf0RsGStv3VwbGs1TIqNL5dpngPEvDEcfpBPxkPASRjb1inT5Sng6NFUgBNE9NsSx7b2A34JbFKmuQ84K5LKLPHXqlJGmKm9CkwP9/Y94a9VghfHtrbBLA1uX6b5PuCESCrzpr9WlZJPxjfEZHn9Ypnm9zCTiD/4a1X7IqLfRji2NQGzmWUzPPT9PSAeSWV+57ddlSiaqV3B8FiBFcDXgZ/Kco//uEuDJ2OWbSZ7mgcwG7nfb6UiOflk/EBMoGG5WIErgfMkRmRkRPTbBDdvzu8oX6ruMeC4SCqT89WoGskn41HgFmDXMs03YzbmRu3nLYwNx7ZWxzyFlfP0ymHG0mO+GlUj+WR8LUyQ2OfLND8GHBPu7XP8taq9KOeOJbQYjm3tCjzBcMHXmLD4vVtV8AHCvX05jDfIj8o0HwM8kU/Gyy0vCHXGsa0I8DDlBf9m4GOtKvgA4d6+94CjMYnevK6bnwCezifjh/huWBshM/0Wx7GtGGZWNsnT9CZmvbXm0PdWIJ+MH42Zqa3haVqGcevM+G9VMHCDrW5leObUpZh8Oje2U4H7fDK+G+YJMlKm+XtAMtzbJ0XWPYjotyju+v3lwFfLND8IHBtJZeb4a1V9yCfjW2GWqnYo03wT8OVwb19TN6I7CXf9fgbwQ6Db0/wf4HORVOZ53w2rA26MSJbyKUf+AhwX7u37n79WtTayvNOCuO6Y91Be8H8IHNiugg/gZuPcHeNp5OUk4O+u948wTtyqVtdjUnN4BX8msFu7Cj5AuLdvHiaDbALwxqPsg1nu2c93w1oYmem3GI5t7Qj8Adjc07Qc453zC/+tahz5ZPwEjEeG14NkMWaD9zf+W9UZOLa1KfB/wG5lmi8GLmol75zxkk/G98a4n3pdmQsYr7fvhnv7OubfO1ZE9FsIx7aOw6x3e+uM5oEjI6lMR/q155Pxj2KWe7Yp03wt8HWJvBwdjm3tjhH8jT1Ni4ETI6nM//lvVeNxffp/RflEgPcAJ4R7++b6a1VrIaLfArhrrpdg0hR4+StwdCSVectfq/wln4xPxQh8uQAcibwcBY5tnYCZPHhTc7wMHBFJZfr9t8o/8sl4FybOIMnweJbXMW6dj/huWIsgot9kHNuaiFlzLedC92Pg7EgqE4iAEzdr56kY106vt9J84Mhwb98sv+1qF9zJw3kYzxUv92D87wOT/iKfjB+AmfV7vZUGMJXebvDfquYjot9EHNtaE/g9wx9FVwAzIqlMIAdlPhn/GMa10FuDdSVwSri3r6P2NeqBmw75R5QvaZkGvuVX4r1WIp+MfwCzzl8uqPF7wLeDts4vot8k3OpWdzE858nbwGGRVOZv/lvVOowQedkL9Er6BoNbu/Y3wGc9TSswJTF/7b9VrYNblP0SjIePl99icvcEZs9IRL8JOLb1UeBuYDNP08vAIZFURgqM8/5yTwITdezlF8CpQc+14rr3zgQ+7ml6D7N+P8t3o1qUfDL+Ocxyj7fM5yPAEeHevrf9t8p/RPR9xrGtfYDbGJ6A7HFgWjv73zeKfDJ+DCYAx7vOPwv43FCa5nwyfjCQC/f2/dtfC5uDY1sfwkwevMVz8pjJQ0dv2I4FN4r3Doav878EfMaNIRnKEhsN9/b5nlK60Yjo+4hjW8cAP2d4nvmZmAhbXwpUtCP5ZHxPTC7+9TxN/8HUFFgfE6n843Bv3zd9Ns93HNvaDTNuvGUqn8UI/uv+W9Ue5JPxLYE7AW8A4DzgCOAV4G/Av8O9fQf5bF7DEdH3Cce2zsakGPZyHfDlSCojOUJGwC3GfhewladpLsY1b31M0Y9wJ9dRdWxrGibnjDee4wFMSoX3/Leqvcgn4+tg4hj29TStAGZjnAg0sEW4t+81f61rLJKGocE4tqUc2+qlvOB/GzhdBL82wr19L2HSNzzsadqAVTPeDSlfTawjcJ8Wb2O44P8KM8MXwa8Bd0nwIMzeUDETWeU1poCYn3b5gYh+A3H9plPAhZ6mAYxXxSXtlNWwFXBzrRyA8VapxCk+meMrbtDVr4EuT9OlmCjbQG9qjxbXCSCGSdFQCcstBtQxyPJOg3AF/weYwuXFLAY+H0ll7vHfqs4hn4yvBvyX4R5QYBJvhcO9fU0t81dPHNs6BZOgrjjCVANnRlKZHzfHqs7A9RK7l/KpGwD2D/f23e+jSQ2lo+5grYJjWyFMNK1X8BdgMmSK4I8Dd+Z1E+UFH8xM+DjfDGowjm3NwERtFwt+AVOwXAR//NhUFnwoHy3ftox7pq+U2hL4FrCW1vqo8RrU39+/GTAdszY7B7ilp6dn9nh/1y8c2+rCFD3xLjHMxwj+4/5b1Vnkk/FpGC+odap0e2r+0V87gjYeSwCObX0d88RYzCDwhUgqc0sTTOoo8sn4NpgUFZUmEACLgI3mH/219Wjz8QQ1ir5S6gxgO631DPfzJcDmWusTivrcOh7R7+/v78KEi58OTClqWoxJxJXo6elp6TByNxQ+AxzvaZoH7B9JZf7pv1WdiZtUaxfgYMyG3G54nlwXHHj8ksJa6xWnbG6bsQTg2NZ5DA9MWwlMj6QytzXBpI7EXd7ZhlVjaR88MSFLP/qJO5dvu9u+tKk2FVOr6E/G+ENvh8lhcTGwh9Z6aVGf8Yr+5cA5Vbpc0dPTc+5Yf7/RuJWufomZCRQzB/i0BMo0lnwyvi7Ga+dwHQodrgqFCcu23oVl2+1ZrnurjyWF2fy/yNO0HLMfdKfvRgWIfDI+Gfg0xmf/s8AGKzeOsviTh1f6SkuPJy81L+8opS7D3OUOAQ7QWr/saR+z6LtLOi9QehcFYOI/7iM0fx50dw92zcnfrlaumAMsdF+Liv6eh4lEnB1NZxeNxY6x4mbKvBkzSIp5AyP4gYgQbQX6+/s3Y3Dghe45s6d0zZ/L8m1WZSeY8MITdDsvorsnDHbNfX1m0VgqHkcLMUtxeYy/9vxoOuubt0OVNNtLgcMjqcyf/bJFgOce//vmoUXzX5jwZm71ZdvuBl3e4mOAmfFv3dPTk/fZvDFR9l9QgRsxwnx4seArpdYDvgvsqJSytdbl8qSMxHTKCD5A1ztz6Jr7OpjNuSNr+bFcIjYfc8EOXbizPZ/z0XS2LjVY3TX8XzBc8B1gv0gq8/LwbwkNZDpd3VMGNtmCgU22KGlQC96la04ezFiqOG3zsDiXiFUaR0NjqZ6+8d9iuOAvBg6NpDJ/qeN5hBrQq085anD1KasPbvCBat2mYDTMu/fSkoxG9C/ERD6WfEdrPY/y6VxHw4YVWwpjWipb231tV6lDLhF7h8oX8iuYJ4aqMzx3VnYtw5d0XgU+FUllOiqSr02oOJbU2MbSFOAj7qssuURsIeXH0WzgNeDlaDo74skd2zoTs3RazAJM0NWjYzFeGDeVtamUjRpqRR2pSfSVUudgMtNNx6S1rXeptcpJxgYbFqy6rvvaoUL7vFwi9iQw9HoCcIZuBK7gfx9T9KOYl4F9I6lMWzzqdSDNGEtrANu6r3IsziViT2PG0NB4+m/xjcCxrROBqz3fWwAcEEll/lF/k4UaqTUBYttUthtxTV8ptR9mMO6utV6olHoasLTWdfNEqbamH3pnDmr5ElixfNmkfz6cCC14ZwBzkU1134deG2HcrsIMLxNXL+bh3gCUUlsopby+4K8De0VSmVyDzi+MQLWxpBa8S2jxAli5Ytmkf/71m6H35q1k+DiaiknrsJn78qY7qBeLgKeBJ5VSAF9VShV7Hy3FuPh6U04IPlJtPBXRVmv6VUVfKRXBpK89VGv9gnvsJGBfrfVJ9TSkXt47uUQsROlFO3QjKP68KaNb2hpGKFQa16a1XqK1Pg+TCXLEpSGhcdRxLClMLEClcTT02ZvyeVQopXCFHwCtdQG4XGt9I/BiNJ0NVGWnVqPdPQu9tEwaBj/99HOJWBelTwbFF3IE+ChmxleWMoKP57/j26xaEnoAeDiazkpeFJ/weSwNZfesdEP4KMPTQb9PGcH3jqWFuE8EwEPAfX57pwWdToghKqZlRH+I/v7+MGbvYCPMOtktfj82uTeFDwM7u69dgB2BKTVcpOVYgMntMRO4O5rOSqEUH2iRsaQwE4ldWDWedgbW844lgEJhxEn9CkzdgDuBO6Pp7Cv1tlkoTyuMp3rQcqLfqrx23kkHAXcopd7fL6hR8L1o4B+YG8BM4F+yFBQsXjvvpA8DjyilSgqg1CD45XiBVWPp0Wg6K2m6haqI6NeAY1s7An+l9NGuoLX+gtb6WYY/EUwe/isVeR0za5sJPBBNZ6V6Vgfj2NZGwGNAtPi41rpXa30Tw58I1h3Fz88H/oQZS3+KprPz6mCy0GGI6I+AY1th4O+Yzd9iTomkMjd6+7tLQx/BXLyfAg5leD3OSizH7AHMxDy6i59/B+HY1uqYpZndPE1XAV/31lZwl4aiGPHfG5gGbEFtFDAl/2ZiJhX98kQpgIh+VRzbmoqZ4X/M03ROJJWpKfrO9SbaFSP+0zBPArXSz6qngEfFi6N9cdNt3wx4U5VkgZMjqcyI/2/dm8DWrBpLezG8oEpFE1h1A7hPHAuCi4h+Bdz0CrdhLq5iro6kMl8b6+/mErEPYBKDTcPk8K51KehlTBGNm6LpbNsEgggGx7ZSwHmew/cBn4mkMmOq55tLxNYBDsSMpc9Q+1LQXEw9gr5oOvviWM4ttC8i+hVwbOsq4Kuew3cAR0ZSmXq5+62GKcw8zX1tXsPXBjCxANdhZmwy+29xHNs6GbjBc/h5YI961bR1lxV3Y9VYqpiCxMODmLH0h2g6u7wetgitjYh+GdwcKN6Q+KeBvSOpTEN8pN1H921ZddHuwciVzV7FVFTKRNPZ/zXCLmF8OLb1aczmanEw4Bxgt0ZGbucSsQirloH2w6RRqcY8zFJTXzSdlaywHYyIvgfHtg4FbqdUcF/HXKSv+2VHLhFbD1PQ4QhMRsiJVboPYmy+DvhzLcm9hMbj2Na2wKPAWkWHl2FyM/3dLztyidhkjPAfBhwDrDnCVx7CjKXfR9PZZQ02T/AZEf0iHNv6GPAww6Pu9mpm1atcIrYBcCJwGiZorBqvYZYSboyms77dpIRSHNvaEOP1FfU0HR1JZW713yJDLhGbAhyNGUu7j9D9HUxZyr5oOvt8o20T/EFE3/D02r4AABXlSURBVMWxrU0xQVPFibMLmMIVM5tjVSnuEtAnMRfsUVTP+VLAeGtch/HZltm/Tzi2tRpmrfwTnqbzIqlMugkmlSWXiG0HxDGFv9ceofsjmLH0u2g6u3SEvkILI6LP+5WvZjF85vO1SCrjXdtvCdzlnxMwN4BtRug+GzP7v1Y8fxqPY1vXA6d4Dt8AxL2++K1ALhFbHTOJOA3jBlqN+ZiiQddE09n/Nto2of6I6AOObf0I+Irn8DWRVObMZtgzGtzZ/56YGdt0qm/YLQGuAb4fTWff9sG8wOHY1qkY19pi7scUQhmTa6af5BKxbTFj6USqu4AWMDWhL46msy/5YZtQHwIv+o5tHY+ZuRRzL6Y8XVvlMXH9to/HzNh6qnRdhPFOuiKazr7jh21BwLGtXTF7QsWb7i8CH4+kMvObY9XYcN2JP4cZS/tU6TqI8fq5JJrOvuqHbcL4CLToO7a1PSYPSnGhjNeAnSOpTNvmLXFn/5/AXLDHULkQyALgh8CV0XS2rUSp1XBsa31M+uNI0eElGK+v/uZYVR9yidjWmApxJ1E5TfQAZgnre9F01vHJNGEMBFb0HdtaG5Pv/oNFh5cDe0ZSmSebY1X9ySViawMWkKByHc/5wBXA1dF0doFftnUKbvT23cABnqYvRFKZ3zTBpIaQS8QmYdb+L8CkgyjHCszyVkq8x1qTQIq+mwflNuCznqZTI6mMN3KyI3B9tc/AiH+lBHDvYOr+XiOFOmrHsa1LgG95Do8rXUcr40b/Hgskga0qdFuOKTByaTSdfdMv24SRCaronw9813P4+kgqE2+GPX6SS8SmAl8Gvknljbq3MZWCfhJNZ5f4ZVs74tjWZzGBccU8AuwXSWU6OqlZLhHrBr4IXAhsWaHbUuAnQDqazs71yzahMoETfce2DsSExReXLHoSE4AVmOjDXCK2JnAmcC6VfbTfAlLAdeKbPRzHtj6EWSIsjrh9C9gpksq80Ryr/CeXiE0AYsC3Kd3TKGYx8CPgcsnz31wCJfqObW2OEfjizah3MBdpIHPXu2v+ZwFfp3J4/hvA94DrJSmXwbGtyRgngOLEZoOYGf5DzbGqueQSsYnAyZilrnCFboswzgM/iKaz7/plm7CKwIi+Y1vdwF8wicyG0MDBkVTm3uZY1TrkErF1gbOBr1G5KHwO+HI0nb3LL7taFce2fobxjirm7Egqc2Uz7GklXHfPU4HzgU0qdJsP2JinSMkU6yNBEv0LgV7P4QsiqYx3bT/Q5BKx9TFLPmdSOdf/LcBZQc3s6djWEcAfPIdvAY5txYjbZuFG+n4JI+4bVuj2KPClaDrb1m6t7UQgRN+xrd0xFbCKqwzdDUyrpWJREMklYhtiNnu/TPko3/cwRUECNVNzczQ9Q+kS4YuYJULxeCqDm+RtyHNs/TJdBoDLMAFesnfUYDpe9B3bWhP4J6W1RecA20dSGclDMwK5RGwTzBrtGZTP7x+YmZrr6nsPpuLZEAPA7pFU5onmWNU+uJ5jX8Us+0wp0+Ul4IxoOnufr4YFjCCIfhaTR6SYQyOpTODXpUdDLhHbGZNlcacyzYGYqTm2dTYmiK0YO5LKXNoMe9oVt8DLNQyPkxnil8DZ4uLZGDpa9B3bOhbwRkS2RSK1VsT1yz4TuJiAzdTcWgt/pzSvzixg/3qVzwwSbqqQz2HcOMtt9r6D2Vu6KZrOdq5INYGOFX3HtiKYtddiH+rngV0iqUzHzkb9IGgzNdc98wlKU1jPxywRzm6OVZ1BLhFbC+MOfAalsTNDzAJOj6az//HTrk6mI0XfzYXyIKbgyBArgF0jqcwzzbGqswjSTM2xrR8DMzyHp0dSmd81w55OJJeIfQKzfFiuoPsKTAR9WuJExs9IhbfblQSlgg+QEMGvH9F0VkfT2d9jZr8/wcQ8FLMucCPwQC4R+4jf9tULx7amMVzwbxLBry/RdPYxYGeMR5j3SXwixt36n7lEbG+/bes0Om6m79jWTpi11+6iw/diilgExrXQbzpxpubY1gbAc5QmqHsF+FgklVnYHKs6n1witiXwU+DACl1uAL4ptSDGRkfN9N2o2+spFfx5wEki+I2lxpna420267+CUsEfxKRLFsFvINF09hXgYEwytzllupwCPJdLxPb1065OoaNm+o5tnQNc7jl8RCSV+WMz7AkqI8zUFgGnRtPZm/21anQ4tnUA5gmxmGQklflOM+wJKm56kDQmrYOXAibJ26VBChAcLx0j+o5tbQH0U5o64LeRVOa4JpkUaNyN3uOAKykfgv8TjIdPyy33uN46z1KaLvhZTEW1lq9z24m4a/k/o3zxlj8BJ0jd59roiOUdx7YURkSKBX8+Jnuk0ATcjd5fYzZ6y1WPmgE8kkvEtijT1my8+eE1EBfBbx7RdPYh4GMY907vTPVg4OlcIrbHsC8Kw+iImb5jW8cBv/Yc7tgqWO2GO+v/EnAVpcFNYHL4xKLpbEsswTm2tQMm/XZxnqYfRVKZrzbJJMFDLhE7CBML4s3jM4Dx3Luy3d2EG0nbi75jW+sBL1C64TYLk9e8vf9xHUYuEdsJ+B3lqyxdAdjRdLZps2k3vuNvwK5Fh/PAtrJ521rkErEw8FtgzzLNtwFWNJ2d769V7UEnLO98n1LBXw58SQS/9Yims09hPHy8aYkBzgH+kkvENvPXqhK+QqngA8wQwW89oulsHvgU5vr3cgTwlJsvSvDQ1jN9x7b2A+73HP52JJW5pBn2CLXhLvd8DXPBdnua5wFfjKaz9/hpk5u243lKcwrdGklljvbTDmH05BKxw4Asw8t+rsDs610ryz2raFvRd2xrdUxunQ8VHX4e2LHTC1J3Cm5A1y2Ad3avMcFcF0XT2YYnM3MdAe4ADi06/B6wTSSVCWShmHbDdQi4BdilTPNvMOm/5YmN9l7e+Ralgg/Gw0IEv01wA7p2xBS0KUYBFwB/ziViG/tgylGUCj6YtB0i+G1CNJ19FdgLkwjQy3GYwMBy0eKBoy1n+o5t9QBPU7o08NNIKuPNkSK0AblELITxuriE4RORN4HjounsrEac27GtdTCOABsVHX4Y2EeiuNuTXCI2HROZv4anaSkwI5rO3uS7US1E24m+W73oEeATRYffwHhYvNccq4R6kEvE9sF4ZHhn9wXMzP/Seq/NlilwvhLYIZLKvFDP8wj+kkvEPozxFNu+THMGI/7L/LWqNWjH5Z0zKBV8gK+I4Lc/0XT2L5gAnAc8TSFMUM5NuUTM6+c/Zhzb2ptSwQf4ngh++xNNZ/+L0YlysToWZulwvTJtHU9bzfQd2wpjNmuLH9tui6QyRzbJJKEB5BKxLkxU7LcZXlhjFvC5aDr77njO4djWJOBfQHECuP9gZvktlxpCGDu5ROxETC6oyZ6mF4HPRNPZl/y3qnm020z/KkoFfyGmfJ/QQUTT2cFoOpvEhNfP8zTvCzxah/QNCUoFH+A0EfzOI5rO/hz4OOamXsxWwGO5RKxcgFfH0jai79jWvphKTcXYkVQm3wRzBB+IprP3ArtjZmTFbA38PZeI7VZ8MJeITXDr+FbFsa0PYFJAF9MXSWUeGo+9QusSTWefw4ylWZ6m9YD7c4nYMd7v5BKx1X0wzXfaQvTdzdsfeA7/A7i2CeYIPhJNZ1/EXKwPe5o2AGblErHPw/sBX30Md70sx3eB4gt6LmbmL3Qw7pLgQcAvPE2TgN/mEjHbHUfkErGvA9/w2URfaIs1fce2YsBNnsN7RFKZvzXBHKEJ5BKx1TBeF8d6mjTm4lwfM3u/I5rOHlbpdxzb2hlT5LyY0yOpzM/qaK7QwrjCfiFwUZnmG4CHMBG+OeCDnZarv+VF37GtKcB/gU2LDt8cSWW8F7/Q4bj+/BcD51fpNghsFk1nhwVWuZG3DwL7FB1+DlP+cKCetgqtj7vBez0woUq3A6Lp7H0+meQL7bC8cy6lgr+c4euxQgCIprOFaDr7LUy5vEoi3QXEKrQdTqngA5wjgh9M3A3eAzG1Nypxik/m+EZLz/TdDbf/UupqlY6kMiL6ASeXiO0P/B5Ys0zzi8BHigO5HNuaiJnVF6fu+FMklTmkoYYKLU8uEdsGuAuIlmleDmzaSUXYW32mfwmlgj8XE6QjCG8z3Id/iK0AbxWlGZQK/iAmnbMgvIMZD+WYxPB9pLamZUXfsa2dGP6Y/u1IKrOgGfYIrYPro383w3OrFHP80B+Oba2L2bgr5rpIKvN8A8wT2ohcIrYGcCfwwSrdjq/S1naM6NM8EkqpIzBuchsCP9Za3zue3+vv798MradPWXOdr3YteLd4Jvcc5UOqheCxBsa74iBM2oZyHPP8Xx/8fmGdDY5cfdMtjp3wxqvrFLUtoLznhhA81sYU9VmCeTrsKtNn91wi9sFFJ3xjBTAdo3VzgFt6enpm+2ZpnahpTV8pdQawndZ6hvv5EmBzrfUJRX3WAS7XWo9p46O/v78LSAOnd89+acrkh0pLpupQ12c2/+713hS8QsBxUy8fCBzivtYaalu69+HL9DrrrzZlZhalV3ndaaXO2/x7N6Z9N1ZoaXKJ2FrAfphI8GkUOZCs3GKbR5fvNW0HSovsLMbECiV6enoaXvehXtQq+pMxIczbYXJWXwzsobVeWtTnCuBXWuunxmJIf3//5bhrrGrxAiY98ygTXnkOBQxsEmXJfp+/oqen59yx/LYQDHKJ2ARg74FNt/h+aP7bOxbW34Rlux/EpOcfZ+K/n0INDlCYsiaLPnPiD3t22vnrzbZXaF1c9+CdgcMLq0/9Et3d6y85/FRQZbeR2kqbavbeUUpdhrnLHQIcoLV+2T2ugEuBP2utx+TP2t/fvxkmp3nxXZTQ/LeZ9K+HWb7DXhTWXn8xsHVPT4+kXRAq8v5Y0nqKem8eeu31AVBLFjHp2b8xsHGEgc0/ImNJqImh8aQWvjtFT14DusquiLfVeBrNRu6NGA+Is4YE3+VMYH/gKKXU6WO0YzoewQcorL0+S/c5goK5cKe4/QShGmYsKfW+4APoyVNZttsBDGz+EZCxJNTOdGCKXmOdSoIPbTaeRrOReyHGZbLkO1rrq4Grx2nHhjX222jkLkLAkbEk1JOOG081zfSVUucAq2HuZl9rgB1zauz3VgPOLXQWMpaEetJx42lE0VdK7YepNBPTWs8C1lRKVXKTGyu3YNbFqrHY7ScI1ZCxJNSTjhtPVUVfKRXBJCQ6Wmu90D18FXBWPY1wfV1HSpN8bbtslAjNQ8aSUE86cTxVXdPXWjvAlp5jNzE8zXE9GMpnfjoVfGEbcE6hM5GxJNSTjhpPLZdwrb+/P4zZO9gIs052SzvdRYXWQcaSUE86ZTy1nOgLgiAIjaNlE64JgiAI9UdEXxAEIUCI6AuCIASIcadWFoQgsNqup2sV6iI0YSKhUBcq1EWoe4L7PhHVZd5DQ589x1Woi67uEEop8x5SdHW5792q/PGuECoEoZAi1BUiFFJ0d4foCikmuu+T3v/cZd67vMfLv08IhehSMKErREgpJnQpQkqVHgspt696v09XSV+FUtAVghCKrpCpatMVUoTcd6WgSylCCroU5t+pIOR+VxUGTQbUwiDoAqowALoAgwNlj6vCABTMcdM+AIVB9MBK875y5fufdWEQBlaiBwdL+7zfdwUUCuiBFehCgcKKgfffC4ODFFYOoAcLDLrvwz+vNJ/f/94ghcECuqAZXDGIHjTvBc/nkvaVgxQGtftdzeBAgUGtWVHQDGrcd82KAmWPFyjus6rtWp2rVGBIZvqCIAhBQkRfEAQhQIjoC4IgBAgRfUEQhAAhoi8IghAgRPQFQRAChIi+IAhCgBDRFwRBCBAi+oIgCAFCRF8QBCFAiOgLgiAECBF9QRCEACFFVATBJ5RSp2mtrxM7ViG2+G+HzPQFwT9Oa7YBLq1iB4gt5WioHSL6giAIAUJEXxAEIUCI6AuCfzR9vdilVewAsaUcDbVDNnIFQRAChMz0BUEQAoSIviA0CKXUukqpPyulXnTf16nQ7zKl1HNKqReUUlcrpSrWN22kHW7fNZVSryulrqmzDQcrpf6jlHpJKXVemfZJSqmb3fa/K6Wi9Tx/rXYU9TtKKaWVUrs0wo5abFFKRZRSDyqlnlZKPaOU+kw9ziuiLwiN4zzgfq31VsD97ucSlFJ7AHsC2wM9wK7APn7bUcTFwF/qeXKlVBfwY+AQYFvgOKXUtp5upwDvaq0/BFwJpOtpwyjsQCm1BvBV4O/1tmGUtlwA3KK13hE4FvhJPc4toi8IjeNwIOv+nQWOKNNHA6sBE4FJwATgrSbYgVJqZ2Aj4N46n//jwEta61e01iuA37o2VbLxVuDT9X7iqdEOMDe+y4BldT7/aG3RwJru32sBb9TjxCL6gtA4NtJa/w/Afd/Q20Fr/TfgQeB/7userfULftuhlAoBVwDfqPO5AT4AzC76nHePle2jtR4A3gPW89sOpdSOwGZa65l1PveobQEuAo5XSuWBu4Az63Hi7nr8iCAEFaXUfcDGZZq+VeP3PwRsA4TdQ39WSu2ttX7ITzuAGcBdWuvZ9Z9gU+4HvW6DtfRpqB3uje9K4KQ6n3fUtrgcB9yktb5CKbU78AulVI/WujCeE4voC8I40FrvX6lNKfWWUmoTrfX/lFKbAHPKdDsSeExrvcj9zt3AJ4BRiX4d7Ngd+KRSagYwFZiolFqkta62/l8reWCzos9hhi9VDPXJK6W6McsZ79Th3KOxYw3Mvsos98a3MXC7UuowrfUTPtsCZp/jYDBPhEqp1YD1Kf//r2ZkeUcQGsftQMz9Owb8sUwfB9hHKdWtlJqA2cSt9/LOiHZorb+otY5oraPAucDP6yT4AI8DWymltlBKTcRsSt5excajgAd0/YOIqtqhtX5Pa72+1jrq/nd4DGiE4I9oi4sDfBpAKbUNZu9n7nhPLKIvCI3jUuAApdSLwAHuZ5RSuyilrnf73Aq8DDwL/Av4l9b6jibY0TDcNfqvAPdgbmi3aK2fU0p9Ryl1mNvtBmA9pdRLwNlU9zBqpB2+UKMt5wBxpdS/gN8AJ9XjRigRuYIgCAFCZvqCIAgBQkRfEAQhQIjoC4LQMNxUBr8o+tytlJqrlJpZdOwQpdQTbhqKfyulLnePX6SUOrcZdncyIvqCIDSSxUCPUmp19/MBwOtDjUqpHuAa4Hit9TYYl8lXfLcyQIjoC4LQaO4GDnX/Pg7jiTLEN4Hvaq3/DcarRWtdlxwzQnlE9AVBaDS/BY51g4u2pzSRWQ/wZFOsCigi+oIgNBSt9TNAFDPLv6u51ggi+oIg+MHtwOWULu0APAfs7L85wUVEXxAEP7gR+I7W+lnP8e8D5yulPgwm6ZlS6mzfrQsQknBNEISGo7XOA1eVOf6MUuos4DdKqcmYTJN3+m1fkJA0DIIgCAFClncEQRAChIi+IAhCgBDRFwRBCBAi+oIgCAFCRF8QBCFAiOgLgiAECBF9QRCEACGiLwiCECD+H7AAjpTiEYxcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -1238,12 +1156,11 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -1260,20 +1177,9 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3hkZfXHP28yu5PQOwSpQqR4BUWqtEFaEMHwo4gORVBDUYSAFEEUC0ofREAMoLSRqo6IEqQ4ICiCKOUqaChLDX1ZdtmZu5nk/f1xbnYnM3eSmWT6nM/z5JmdW+aeZM/9znvf9xRjrUVRFEVpDdpqbYCiKIpSPVT0FUVRWggVfUVRlBZCRV9RFKWFUNFXFEVpIVT0FUVRWggVfUVRlBZCRV9RFKWFqKnoG2O2MMZsWeI5nzDGPGSMecAYc58x5sOVsk9pDKbjR/55dxlj3jLGfLsSdinNxXT9rN6o9Uj/IGClEs8ZBnqstTsBFwDfK7tVSqMxHT8C+DJwcpltUZqX6fpZXVEz0TfG7A4cDZxpjIkVe5619nVr7Xz/7SIgUwn7lMZgun4EYK19pTJWKc3GTPys3gjV6sLW2ruNMS9Ya3eczvnGmKWBs4EjymuZ0kjM1I8UpRiayc9qJvrGmNWA13O2tQMPBRz+B2vtD7KOmwXcDPzYWvufihqq1DUz8SNFKZYgP2tUaib6wGaAm73BWjsKbDvZScaYNuAGIGGtTVTOPKVBmJYfKUqJ5PlZo2JqVVrZGLM+8HvgFWttTwnnHQBcA/zD3/SUtfa48luoNALT9SP/3CuBTwFhwLXW9lbARKUJmImf1Rs1E31FURSl+tQ6ZFNRFEWpIir6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJChGptQBCu664DfAZYDngd+I3jOAtqa5XSaLiuuxawN7A88AbiR/Nra5XSaLiuuybwWWAF4C3Ej+bV1qrpY6y1tbZhMa7rrgB8FzgKsMAswAMywOnAlY7jZGpnodIIuK67PHAmcCwT/WgMOAP4ueM4I7WzUKkGmeEhE+rqnrbAua67LPBt4Dgm+pEFvgNc1oh+VDbRN8acDeyEjKgOs9YuLOV813WXAx4D1gI6Ag5ZCNwOfNFxnPr5plLqCtd1lwEeBdajsB/dCRyoftS8ZIaHTkSE+TXgEuAXoa7uRcWe77ruUsDfgQ0p7Ef3AZ9zHGds5hZXj7LM6RtjHGADa+2OwD3AkdP4mOuAtQn+AwMsBewDHD0tI5VW4ZcUFnwQP+oBjq+WQUp1yQwPdQHnIdN6mwA/A57JDA8dnhkeKnZKe4DCgg/iR7sAJ8/Q3KpTlpG+MeYYYKG19lpjzLrAudbag4s933XdCHAHsHQRhy8EuhzHeX9axipNi+u62wN3Ubwfre04zruVtap+yAwPGWAZYFVgNWAlRLyK+emcZF8HMnVm/degn0L7crd/AMz3f97PeZ3y36Gubi8zPLQC8C5gAv4M/0WmkG8NdXUHjtBd190KSPq/21SkgPUcx3mziGPrgqK+9YwxGwBPAhtaa4f9bVHgfGAbYEVg2D98HuJMpXA44lTFMIos8t5U4jWU5udQCo/MchlDFnmvr5w5lSczPBRmiYiPv072U+zfpyHJDA8tQr4E3kL+HrnCvxGiHd/PDA99H/hVwLz/IUC4yEuOIjMQV0/b6CpTlOhba58zxtwBnACcaozZDrgU2NNa+7IxZi7yKIX/WvToyXXdNqCX4qealkX+U1T0m5D04IABZnf09HmlnOe6rgEOANqLPGUZ5EuibkU/MzzUDqwJbAB8OOtnHZaI+PIFP6A1mQ2sbK0FazFtBWXlI8ANwHmZ4aENQ13dKVjsR5+nND86jGYTfZ9zgfuMMdcDvwGOttY+4u97EPgWcC2wJ/BQCZ/70RLtAJlLU5qM9ODAHsDNwArpwYF/I370oP8zp6Onb7K5yI0ofRS787QMLSOZ4aFlgfVZIujZAr8eImJKCYzNn8vYiy6MZiC8FGbp5TFLr4BZenmY3YExEwb/ayIROmf479dHBpal8CnXddsaZUG3aLG11v7TGPMIsqJ9rrX25qx9TxljXjTG/AV4E/nmK5ZVkEekUuhspD+yUjRnI7HQIIOBjwJ9/vvh9ODAg8DDSJTXAzlfAisjob2lEHJdN+w4TklPFaWSGR7qRH4Xh4mivgEyBVFNPCTC7k3gHWQOfeEkP6kp9i/0P9P4P205P0HbCm1vR9ZjlkVydJbN+XfQttz97WOvPy+CD+AtxHoLse/6s8+h2SL+Sy2H6VwWs8wK+DMV46wMlBqGaX27GyIHpGjRN8a0IeI8hoz6J2Ct/dY0bSj2MSroPBX95mKyxfku4ED/B2BeenBgw46evrf999Pxo7FpnheIv1D6IWBzYDP/dXNkKqFS2e9jyPz1mwE/QdsXzCR2vZ7x//4djI39F4kEDDhoEXbeWzDvLSyAaRsFbgh1dY8fMR1/sNM8ryaUMq1yITIKGwKiwC/KZMM8glfZ87GW5dPvsPSi91l6ZP6ZXvKJn4Qj0XfKZIdSI9KDA23Ax4C/IiF2XUWcNp6ANR56OY8ShHW59Dss480LLTUy/3Qv+cTF4Uj07anPWkJmeKgDGb1ni/tmlB7EMBXvAM8Dz/mvzwNzkMCJN4F3C0WhtBqZJ/5sgA3Nyh/K2MwiyBQRlm/H2oGzWBIK/j6lC3gIaJiKAcVG7xwF7IdE6kSAs4wxv7Tlyex6iiLnLTtHFrDaB6+CfEmcCRzvJePnAxeHI9GG+aO3OunBgRDwcWROfSdgRyQCrFReyfr30xR5s3aMLGD1BYtPPQP4hpeMXwhcFI5E8x7RM8NDqwNbMHEEv1Gx15uCDCLiz2f9jAv8C6Gu7oZN96806cGBdsSPdkJ8aUdgJfvOq6V+VPYJ/5uGKU83UqWAKeP0jTG7IYtrEX/uvh35w5xkrU2UwwjXdf+AhGFOyrLpd1ljwctBu94EfggMhCPRis7PKqWTHhyYDXwSuTF3Bran9MWyXO4C9sqe13ddNwF8bqoTl/Hm0jX/paBdbwNnt62/2Z/N7I6tfTt3QObeZ8oLwBPAM0wctb8S6upuGMGoJenBgVks8aOdkP+b5Wb4sfcCu+f40U3AQRQ3A5EGznIcJ2/Ku16ZdKRvjNkYCY081Fr7FIC1dtQYcxFwKlAW0UfC5nZCwp8K8sHs5fDaO2x4NJ37n7Eakmp9kpeMnwnEw5GoPvLWiPTgQAfyVDg+AtuO4hJdiiEJfK2jp+8/AfuuA3ZlCj9aOGs50u2dtmM0ZTAGOpbGdC6D6Vx2FTqWiZnQrJnY9wHy9PoEktvyBPBUqKtbkwlLJD04EAa2Zslg4VOUz48eBI7t6Ol7KmDfDUgOx6R+5GORaMaGoS4KrrmuG0JukI2YfF421TaWuWGDd//9LHAahacE/gH0hyPRB8trqRJEenBgaUTYx0dg21B8css47wF/Qeb0NwzY/xJwIvCbQqGbruu2A/9E5toDp17aDCwValu03Gzz32XbR5ehfdb6k8RyT8UcJor7E8DzOsc+PdKDA0shfjQ+WNiW0v1oHuJH3Yie5PIK8E3glkn8qA14BJk6mmwKLw3c6jhOKdGKNacuRB/Add0NkVC8ZQl+rBpBUqi3dhwn5SXjKyB1L06g8Lf/rcCp4Uj0hQqY3NKkBweWAfYFDkZq2ZQ6PH4LeAC43399qqOnbyw9OPAcEs44jodEi53b0dM3ZRE/13XXR4R/ecDMaoPOUBtLzWqjM2QIh0oXeGutxVrXtLU9zBKRf1Ln22eOP2DYB/GjvSg9L+EdlvjR/YgfjaYHB54GNs46bhFSQeDHHT19H0z1oX5598eR4JUgPcogU3afbLRy3XUj+gCu624OXIOM9MYfrcaQG/8PwDGO40yIsvCS8TWQxbijCBYeD4gBPw5HovqIPQPSgwOdyI15MFJfvNjSGSDRJuM35gPA00EjrfTgwBHAFcjN/1vgpI6evqK/tDPDQ0svWDR6+OgYZ3XOaltldrspLjIsCzuagdQCbGoBNjUf0h+AHVsE/AQ4OxyJqtjPAH/6rwfxo30obcrmdZb40P2IH+U9WaUHBw4BrkKeFH4P9Hf09D1Xip2u626KFPD7KEvqOVkkd+Ee4GjHcYYLnF631JXow+I06M8hpRZWBF4GYo7jPDHZeV4y/mFkRHhAgUPeQDLvfhmOREtNBmtZ/MWz3ZEbtJfiF2BfZOII7LkpMmqzr7kqMNbR0zdlOK4fm70x8mXUg0wNlDol8BJ+9u/YvLdesK+/cARL8gFyeQsp2XtVOBLVBdgi8f1oV8SP9qP4BdiXmThYGCrBj1YBbDF+VAhfj3qAI5BE0leBSxzHeXS6n1lr6k70Z4qXjO+EjOy3KHDIE8h8/5+rZ1Vj4YfC7YzcoPtTXOz5C0h98QeA+zt6+l6slH1+6YJPs0To1y3hdIv4wHiJh4dCXd15IWFeMr494kdbFfgcFzgxHIneXcK1Wwrfj3ZE/OgAJNt1KuYAf2aJ0L9YrMgrxdF0og/gJeNtSCmIH1E40ed3wMnhSHSoaobVMX6C1LbIDXogsEYRp72ERHfdBDxeqZvTH807iMDvhYTqFbuGsAhJ+voLIvQPFzsX7/vRF4FzkEzbIO4AvhmORP9bpD1NjV8wbxvEjw6iuES7l5Gw8JuAf6rIV5amFP1xvGR8GeAUZME3qBjXCHAR8P1wJFpSp69mwL9BP4HcoJ9HqjdOxevALcgN+nAFhX4ZpHhfj/+zVgmnv4B0x7oTSIa6umeUuOcl40sjER+nEDz/nEHm+89qxSRB3482Z4kfrVfEaW+yxI/+FjQvr1SGphb9cbxkfB3gx8ioLYg5wLHhSPTOqhlVQ/yFtCjQjyxSTcW7wG3IDfpAR09fRdZEMsNDSyPx0Qf5r8VWzUwj8fuDiNAPVaK+jJeMr4U8PR5a4JCXgK+HI9Hfl/va9YgfR/8FxI82K+KUucCvET+6v6OnT9dEakBLiP44XjK+LTJPu22BQ24FTghHoq9Vz6rqkR4cWBk4Bvg6sPoUh89HomduAu7p6OmrSAPozPDQUkg29kGUFhE0xJLR/P3j9dCrgZeMb4X40fYFDvkNcHw4En2lwP6GJj04sCJSq+Y4pp6+WYAkcd4E3N3R01d0n1qlMrSU6AN4ybhBHkPPJ3ie9n3gdOCKZonySQ8ObICMxo5kclFNIXPUNwJ3dvT0pSthj19qeC9E6IsN2VuILPDdCQyGurpLCr8rN74fHQBcQPC02AIklPiyJvKjDyN5MUcyeUvKNBJifRPwh46evqp9IStT03KiP46XjC8LfB/4BsFZwI8AR4Uj0ceralgZSQ8OfAo4CQmRKxSvPooI6Y3A7zt6+iqSaOJXpexBhH5fiutj+yIyar4T+Euoq7siX0IzwV83+i7ypRqUvfkY4kePVdWwMpIeHNgG8aP9KZwxP4ZMr90I3N7R06c5MXVKy4r+OF4yvgUwgBRyymUUuJgGWqDzw+Q+hyw8bjfJoQuQ3/uSSoVX+kK/B0uEvpgY/5eRBb5bgEcbpfa7l4xvDvwciVzJZQz4KXBmUBXPesT3o30Qsd9hkkM/QJKgflJKEp1SO1pe9AG8ZLwdOBbp3BQkTC8jC3S3V9WwEvDT2Y9AHr8nqwr5KhJpcmVHT9975bYjMzzUhiThHIp8+RSThPMKsp5yC/D3RhH6XHw/OgoJGgj6vV9Fnix/G45E6/J39OvfHI48uXRPcuhrSJHDgY6evrmTHKfUGSr6WXjJ+IcQQdy/wCG/Bo4JR6JvVc+qyUkPDnQhC7PHMHlN+seR+edbKrEomxkeWhv50jmS4pKlXmOJ0D/cTEXKvGS8C3lCPKjAIb9DpnzeqJ5Vk5MeHFgd+Boy+JksieopxI9u0kXZxkRFPwAvGd8HuJTgBbo3gb5wJPq76lo1kfTgwMZI/sEhTF6k6k6k69l95Y6pzwwPzUYibr6CzNdPVefmdZYI/V+bSeiD8JLxvYDLCY5bfxs4OhyJ/rqqRuWQHhz4CDIVeBiTl6/4EyL292jyVGOjol+AIhborkPC8so+RTIZfl2a7yHTCIUW1RYhNcEv6ujp+3e5bcgMD20MfBmZBpiqsfcbSIz/LUjJg6aIZCkWLxlfCqnVcxLB/SviwHHhSLSqUyR++O5ZyBNiofLBI8CvED96skqmKRVGRX8K/AW6q4AtA3a/AhwRjkTvqbQdfvep45A2kcsXOGwuMrK8tKOn7/VyXt9PnDoQGdUXik8fJ40I/S+RGPqWEvogvGT8Y8CVBC/0vgYcGY5E76q0Hb4fHYsMaFYocNh7SKXTn3b09DVlzkoro6JfBF4yHgK+hYzYgkZrlyF1+6es010qfor755BH60ILtM8jyUK/LKZWeLH4NW+2RIT+C0wdffMv5AvyV6Gu7qo+ATUCvh+djDypBdUO+jlSx6fskWK+H30WmeortEA7B/GjX3T09DVEtJpSOir6JeCHd15HcOmCZ4HDwpHo38p1vfTgwMeRmzBS4JDnkESyX5ezNEJmeGglZK3gy0ydXj8PmaK4OtTV/c9y2dDM+E+P1xH8t30eOLycXd/SgwObITWmdi1wyAtIItmtWhqh+VHRLxEvGe9Akrq+Sf7C5RhwHhLXP+0G7enBgTWQRu9HBlwDRGh/gEzjlK0RfGZ4yEHWMKJMXZP+fmRU/+tqlkBoFrxkPIxMsZxK/tqMRUbkZ4Yj0WknpKUHB1ZD/OQrAdcAKbXxQyRXo+4S35TKoKI/TbxkfAfgWia29hvnKeCQcCRa0uKX35mqH5lKCmrKPIZMAXy3o6evLGGj/hTOnv5195ji8NeRzma/CHV1a0nqMuAl49shfhQ05fJvxI9Kygr3C6EdjzQNCpqSG0O+sL/T0dNXN2GjSnVQ0Z8BfoTPeUgERC5pJBHnqqkScfz51oOQzl+FYtz/BJxYrmgcv/7NIUgy16aTHDqG1FG5Crgz1NVdkcJrrYxfuvkcJN8ibzfyhXxFkX60P+KT6xc47F7EjzQap0VR0S8DXjK+B/ALggu4/QqJxw5Mv08PDmyNzNt/qsDHP4OE+91ZjvjozPDQ6kj0xrFI+7dCzEGiTa4NdXW/OtPrKlPjJeO7IhFPawfsvgX4aqE+z+nBgU8ifrRjgY//HzIleYfG2bc2KvplwkvGV0TS0g8J2P0/4MDs6Z704MBaSLp+0PEgNey/C/y8HBm0meGhj7Fkvn6yZK4HEfH4nYZaVh8vGV8eyeb9UsDuZ4GDwpHov8Y3pAcH1kTKhxxO8PrPe0i00OWaQauAin7Z8ZLxQ5AY59wqkmngeDuy6EpGR76KRFMEVZrMINnAP+jo6Xt3Jrb4dXDG5+t3n+TQUSRTNhbq6n5kJtdUyoOXjH8BKYiXu7azCDjBjiy6gtGRI5AviKB5+1HgZ8BZM2kMrjQfKvoVwEvGN0ZE1Mnebu0YLPJew46tWeDU3wMnd/T0zajfatZ8fT+wySSHzkOE5dJQV/dLM7mmUn68ZPwjyLTO5tnbrbWwKD2ZH/0R+GZHT9/TlbZRaTxU9CuEn37/EyRcDjuagZGC0ZVPIYtrM8rszQwPrYhEbXyNyefrn0dGiNeEurobotRvq+KHCMeQTlVT+dF/ED+qeGav0rio6FeY9H3Xf4XMyM8YywRl8nrAici8/bTnz32xP8H/mayU8V8QAbld5+sbi/R91x/O6MiVjGaCMnkXIYu0P9PkKmUqgoRIKRPpwYGdkEzH/L+zaYNZ4bBpa9seiX1fWOrnFyn2o8gUQSzU1f1oqddQao/fAe07BJVuED+abdradkAiyFT0lUnRkX4F8JNjvo/UWcmPqAjNgvZZGLN41z+B3nAk+nIxn1+k2M9DErkuDXV1F/W5Sn3hF0f7LnAaQRm1+X70BPC5cCRakU5oSnOgol9m0oMDH0PKGgfVVfkPodlxE5p1OvmRO28A+01Wu6dIsX8Hafp+uc7XNy7pwYFNET/6RMDu/xKafa0JzfoW+ZE7bwH/V87aPUpzoaJfJtKDA21ItMyPCI6Dvxg4vaOnL+Ul4xshXbhyC7ctQjoqXZO9sUSxvyzU1a0VEhsU34+OQ7Kzg+ofXQqc2tHTt9BLxrsRP/pYzjEjwLHhSPSqihqrNCQq+mUgPTiwLlI/ZeeA3a8AX+ro6bs3e6OXjC+HjOT2CTjnIuDU9o22XhYV+5YhPTiwNpKRG1QNcxg4Ijcyxy8Fch2wX8A5PwVODEeiOs+vLEZFfwb4tU4ORW6uIFGOA18v1IDcS8bbkCqIp0/Y0daOWWWt58wKq61qjFGxbwHSgwNfRBrgBDXIuRU4ulCynu9H30UWe3O5F8ninVGin9I8qOhPE7/d3M8JbqI+Fzimo6fv5mI+y8++/AVt7R1mxTUwK66OaS8YWKVi30SkBwdWQsT+8wG75yE5F78qpl6Ol4wfiDxxdubseg7YNxyJ/meG5ipNgIr+NEgPDjhI9ux6AbvvRh7Diy5SlhkemmVTC37I7I5vmvZQob63KvZNRnpwYBPEj4I6ot2HTAuWFHnlJeOfAH5HftG2+cAXw5HoHdOxVWkeVPRLJD048FngRvJroqSREM3LO3r6xor5LL+W/T5IKdyNgo6xmRHs3Netnff2aeEdDzpv+pYr9UR6cKAHuJn8aUEPCdG8pFg/ysVLxldHFnhzexlbpGnLBVOVaVaaFxX9IvHn709CBDo39v4x4JCOnr5niv28zPDQFkh3pEjQfl/ssXPfALv43r8QOCUciU5LDJTa4/vRN5DF+tynuscRP5pxzwS/M9dlSMvLXH6CLPCqH7UgKvpF4CfJXAEcEbD758BxxZY/zgwPrY2Uwj20wCEfWGvPG3vu8UWMjpxNvjDEgSPDkaiWyW0w0oMDs5CQy76A3b8Aji1n+0svGTdIY5YY0J6z+xakp3PZrqc0Bir6U5AeHFgVeVTObU4xhoRSXlrMIltmeGhZ5NH6JKAj4JAx4Grgu6Gu7mEALxnfC7k5c6eS7gb2L9SYRak//IX/28h/srNI3ZxYpZqbeMn47v61c6eS/owkBM6rxHWV+kRFfxImWbCdB3y+mGqGmeGhEPKI/X1gtQKH3QWcHOrqfip3h5eMbwHcGXDuY8De4UhUe5zWOZMs2M4HvtDR0/eHStvgJeObI37UlbPrCWCvcCQ6XGkblPpARb8A6cGBvZEF29w09+eAz041f+8v0vYAF1C4B60LfDPU1T3pl4eXjG8ADAIbBtiyZzgSfW6y85XakR4c2BN5WssdZb8A7FOunsfF4CXj6yF+lBs0MAfxo/9Vyxaldqjo5+AvtPUjYp27YJsEDpiqE1FmeGhz//zdChzyOnAm8MtiSxx7yfhqSIPyLXN2vQl8JhyJPlbM5yjVwfej45D59Nx1mb8A+3f09L1Vbbu8ZHwV4A5gm5xdbwOfDUeif6+2TUp1UdHPwl+w/RlwZMDuASS7tuCCbWZ4qAv4IbLgG9SvNIXE2p8/nVh7P+X+NqQFYjYfIEW2/lTqZyrlZ4oF218i2bU1W4j3kvGlkXDRvXN2LQQOCEeid1bfKqVaqOj7pAcHVkEWbHfK2TWGjPx/WmihLTM81A4ci0TlBPUrtUim5LdDXd1FJ20F4SXjs5AF39zonwzwpXAkGp/J5yszw1+wvRXYJWeXRfI4LqrUgm0peMl4CIk8yx3gjAJfDkei11bfKqUaqOgD6cGBjyILbevn7JpywTYzPLQlEs75yQKH3AecFOrqfrwctsLiWis/Bk4J2H10OBL9ebmupRRPenBgY2TqpGYLtqXgh3T+AGn0k8vXw5HoZVU2SakCLS/66cGBzwA3UeKCbWZ4aHlkZH8swVM5TyMjuz+GurorFYp3AjJnnMvXwpHo5ZW4phJMenBgD2TBNrdgWtUXbEvFS8aPRaajcv34hHAk+pMamKRUkJYW/fTgQB8yh5+70JakwIKtH5VzMJJRuUbAx84Hvo00Mal4SVsvGT8YKa2b20rvG+FI9KeVvr4C6cGBI4ErqaMF21LxkvH9kcS/3Br+J4Uj0YtqYJJSIVpW9NODA19DRje5FFywzQwPdSMVEQtF5dwMnBjq6n6tbIYWgZeM7w38hvzmLSeGI9GgJwGlTPgDh6DptJov2JaKl4zvCSTITx48JRyJnl8Dk5QK0JKinx4c+AZSfySbggu2meGhDiSb9lsEdzN6Djg21NVds+gZP3v3t+Tbd3I4Er2gBiY1PenBgWOQQUA2dbVgWypeMr4bsr6VK/ynhyPRH9fAJKXMtJzopwcH+pGpmWwWIY/heWVnM8NDuyM3dm5i1Ph55wDnhLq6U+W2tVS8ZHwPpKxu7g37rXAkek4NTGpa0oMDxwGX5GweQRb+f1sDk8qGl4x/GlmQzq3L/51wJPqDGpiklJGWEv304MDJSJXMbDzgc7kROpnhoTWQL4cvFPi4+5DR/X/LbugM8JLxXZGRWu4N++1wJHp2DUxqOtKDA0EL6AUHDo2Il4zvjCQDLp2z63vA97Q0c+PSMqKfHhz4FtK0fMJmJLLinvENfsz90f6xQa0K3wROBH5VqaicmeIl47sgI7WlcnadFY5Ev1cDk5qG9ODASUi2dTYesF9HT19TJTV5yfiOwB/JL/j3Q2TUX5f+r0xOS4h+enDg20g8cjYpJCTzvvENmeGhTyALubmlDkDmaq8Azgh1dc+tlK3lwkvGd0Ju2NyR2g/CkWhQL1VlCtKDA6ci03kTNgO9xRTfa0S8ZHx7pFBbbkjzOcg8f/MLSJNRqDVf05AeHPgu+YL/AbDXuOBnhodmZYaHzgIeIVjwHwe2C3V1H9sIgg8QjkQfQAq+5ZZ7ONNLxoOSupRJSA8OnE6+4KeQJ8WmFHyAcGKC3akAACAASURBVCT6ELAH8H7OrtOQwAalwWjakb5f8Op7SGGzbBYAn+no6fsLQGZ46GNIiYRPBHzMAiTm/rJqxNxXAi8Z/xRSWTF3pPaVcCR6dQ1MajjSgwPfQXwpm4XIk+Kfa2BS1fGS8a2BP5GffHZMOBK9ogYmKdOkKUXfF/yzyR+JzEdG+A/5de5PRm7m3MQmkMJmJ8y0Vk494CXj2yCNV7KFfww4MByJ/qY2VtU/vh+dBeROh30A7N3R03d/1Y2qIV4yviVwDxOF3wIHhyPRW2pjlVIqTSf6/o16LiLo2bwP7NnR0/dwZnhoY+Aa8svLArwBHBXq6v5dRQ2tMl4yHkFG/Nlx/IuQBhr3BZ7Uwvh+FFSXZgEycHiw+lbVHn9x909MDAseAfYJR6JNO83VTDSV6Ps36gVIdE0284A9Qpvv8g/geCQyJ6hl4c3A10Nd3W9X1NAa4SXjvUgl0ey1nAXAp8OR6KO1sar+8P3ox0hCXjbzgZ6Onr6/Vt+q+sFLxj+LZO5m991dCOwajkQfro1VSrE0jej7N+rFwDdyds0Fdg9tvst7SGp8bq9bgHeQmPumf0T1kvEjkCbc2bwD7BCORCftBtYK+H50HtK3Npv3gT06evq0yQjgJeNR4IaczXOBncKRqFsDk5QiaYroHf9G/Sn5gv8upm230Oa7bAM8SbDg/w74aCsIPkA4Ev0l+YK2MnC3l4yvUwOT6gbfjy4i/+/zHrCbCv4S/L4Nx+dsXhH4k5eM55YoV+qIhhf9rBH+13J2vWNW/tAXQ5vtfB5wGfmJSu8hjUj2C3V1t1Rz8XAkeiEyfZHNWsgNu2oNTKoXzgNOyNk2FxF8nf7KIRyJXgJ8P2dzF+JHq9fAJKUIGl70kXjh3BH+W+0bbnFJ+1ofuRXYNeCcQcAJdXXfUK9ZtVXgDCQRLZuNgDu9ZDyo+1dT42fa5o7w3wE+3dHTp/2HC3MWMqjKZkPgLi8ZX6H65ihT0dBz+unBgfz56Vnht9s/stV/TGhWbttDkIW4E4GrW1jsF+Ml4+1IA5kDcnbdhTTJbsjchFJJDw4cAlyfs/ltYNeOnr4na2BSQ+F3cruB/DpV9wE94Ui0YF9ppfo0rOinBwf2RubjF0cQmBVWX9i2ziYZY0xQzZz7gCNDXd0vVsvGRsBLxsNIgbbdc3b9NByJ5j5BNR1+x6s/AKGszfOBnTt6+v5VG6saDy8Zn41E9OyVs+vnSAJXYwpNE9KQ0zvpwYFtkebTIvht7bStvfFo+7qbLhUg+AuBrwO7q+DnE45EPeD/gNw56+O8ZPyYGphUNdKDA1sizWeyBX8EqaWjgl8C4Uh0EfLE+LecXUeRP/2q1JCGG+n7zacfAlYCoHMZ2tf9KCacu04LwIPAEaGu7merZ2Fj4iXjayC1h9bO2jyKJG/dXRurKkd6cGBD4K9A9sK1RRqY31wbqxofPxDgEWC9rM1jyHRhU1UhbVTqUvRd13WAzyEhYK8CNziO81Z6cGBN5EZdF8CsujZta3wY05b3wLIIOB24ONTVPVo9yxsbLxnfHPlCza7MOQ/YthFj+F3X3QTYDxkgvAbEHcd5Iz04sAbye34455TjO3r6chujKCXiJeMfRUb82QEB84FPNWIMv+u6GyFPwysDryN+NFxbq6ZPXYm+67pdSEbtfkg9nBBSunYslPEuXvf1x/Y14BCaTds6m9C27EpBH/M0cHCoq1sX4KaBl4zvi8zNmqzNzwHbhCPRvEbx9YjruqsD5wMHIj4UQmrej7aPLvrpesP/2NPAx3NOO7ejp++0KpvatPjtO+9g4hTyHMSP3qyJUSXiuu6qSBjv51miRx7y5BIDznYcZ2HtLJweZRF9Y8zySEGvTYFtrbUlf5u7rrsK8ATyuJ1XAG2leS+NrDT/lVlm2ZVpW3tjzKzcHuCALBqdGOrqbrj/iHrCS8aDOozdD+zhz93WLa7rroSUwl6d/EbxrPj+KyMrv/9Srn9dB3ypEXva1jNeMn48kkOTzUNIuQavBiYVjeu6ywP/Aj5EgB8hZbUfBXZzHKehopPKtZC7ENgbqUxZMq7rGuAWYBWCK14SGl00yyy/Ku0f3ixI8OcC+4e6uo9WwS8LF5BfqmFn4HIvGTcBx9cFvh/9igKCDxAa9XL9607gKyr4FeESpPFQNtsDV9azH/lcB6xJAT9C2pFuieQpNBRlEX1r7Yi19q0ZfMSewFYU/gMzb5k1MKsGVgm4H9gs1NWtJYLLhB9edwzyt83my+QXs6snPg3swGR+tPTqjLZJsM4Y5h7gwI6evoYaqTUKvh99A7g3Z9ehSFJlXeK67o5IUmd4ikOXAvpd112z8laVj6JE3xizgTHmA2NMV9a2qDHmNWPM2pOdWySHk9/WbwLe7GWY3z4hQmcUaXCya6ir+5Uy2KBk4U/j7I/M52dzvl9lsR45lPyG8BNYNHsZ5qzxSeasscUHz39o25s7evo+qJJtLYmfmHUg8L+cXT/ykvH9amBSMUQJrsIbhAV6K2hL2Sl6Tt8YczMwx1p7qjFmO6T/6p7W2keyjrkGuKCUOX3XdUPI9Exu8+U82gys1NFOuN28umy4fb9QV7fWQ6kwXjK+MfAwExtnvAdsEY5EXyj39VKJ2FJIQ/o3Onv7i55ycV23DXiX/M5Ok/GA4zg7l2iiMg28ZLwb+DsSkTfOfOCT4Uh0qNzXm4EfGeAtJFKnWB52HGe7Ek2sGaWI/hZIVusOyKLtCdbam3OOuYbSRf/jwAPkt/ObjLTjOJOO6JTy4SXjuyNz39n10/8JbB+ORNPluk4qEdsfmZOfjYTGPYTkWjwIPN7Z21+wLITruh9FvpymHDxkkQFmO46j8/lVwG/kczcTk+GeREKCU+W6TioR2xfpjdEBvMkSH3oI+Fdnb3/B6TzXdbuRBdxJZx5yGAXCjuM0RHh4aOpDBGvtP40xjyDf1ucGCP4fkTC4jYwxP7fWXlPkR6+EhECVQth13fZG+SM3OuFI9G6/mfqFWZu3QMLWypm1+22WzMevgUwv7e+/X5hKxB5GbkgXuKmztz/7C2dF5OYrBYPM25bti0spTDgSTXrJeD9SBn2czYBLkfWicnEGS6ZnVkNi7P/Pf78wlYj9HRm0uMDNnb392V84KyKDgVIYQ74kcpvH1yVFL+QaY9qQm2oMaUc4AWvtZ6y1a1prtytB8GFiPHgp1Pvqf7MRA36bs+1oLxn/Yhmv8dok+5ZCFmpPQprhzE0lYmtl7Vc/agwuQ0bh2RzpJeNfKuM1pvKjXZjoR+tl7Z+OP9hpnlcTSoneuRBYARhCFjrKxXuU/gcbcRynJSpA1gt+JMYR5C/sDnjJ+KYz+exUIrZUKhH7NLLY9xpyE01FBxMb37/H9KLRdJRfRXw/+irw35xdl3vJ+GYz+exUItaZSsQiiI++SnF+FEaeMMeZx8RpzGIIIW1HG4KipneMMUchWbLbABHgLGPML2150nmfKtaOLLSDUQ0IR6LzvGT8AGTufDycbWngNi8Z3zociRbl+KlEbFngU0js/85IuG5gfsYUZK8dPU3pg4fHdD6/+oQj0fm+Hz3CkmirTsSPtgxHokVNk6QSsWUQP9oJ8aOtmSRcdxL+nfXv/1H6NOGTjTTVPOVCrjFmN+RxLGKtfcoY0478YU6y1ibKYYTrur9BvlSKYQFwouM4V5bj2krpeMn4V4Dcv38cODSohG4qEVsRCQAYvzm3oPTRVDZjQLyzt/+w7I2u694EHERx4r8QONlxnMtnYIcyA7xk/DDg2pzNtwKfL+BHKyDJXeODhU8yMz+yyJz+hD4AruteCxxCcU+OKeB0x3FyM4/rlklH2MaYjZEmG4daa58CsNaOGmMuAk5FarSUg+uReu7FRF6EgNvLdF1lelyN9BvOFt0oEiFxRSoRW9XfP35zbkb55jxvBb7Z2dv/UsC+65HM8GL8qA3px6DUiHAkep2XjO8IfCVr84GIH12SSsRWYYkf7YQEipTLj34LnNjZ2z8nYN8NyMJvsZFg5dLBqlAXBdf8GOu/I/+pk30RLQR+4jjO6VUxTCmIl4wvjfyffdSOjUJmBJtZNMai9Bzyq1cWw/NI6O4OSLu9XFzgG529/X8u9AF+jPVDyHTRVH50heM4J03DTqWMeMl4J1I59+NL/GhkjEWpOUzPj+YgmeTbABsH7H8a8aN7Cn2A70f3IU8Vk007poCrHcc5bhp21oy6aKLiOM4YMr0zj8LzaR5SkO2sKpmlTMLYe28uO/b+O78dm//umH3/HezC92FRuo3ib9T/Ij16DwHW6ezt36Czt/8I8sN330NS+T8xmeAD+PPz+yPJfpP50b+R0ttKjRl7783lxt5/JzE2f+7oEj9KleJH/wOuQrKx1+3s7V+/s7f/S+T//7+PlBDZfDLBh8V+9Hkk2a+QHy1CfPjkIu2sG+pipD+O67obIgWatkNCq0BiZjNIAbBvOY7TELGwzUgqEVsZeew9GFnQL2XQ4CIjsPuBv3T29r9e4BoHINNHYWS65vTO3v6S6jq5rrs+8DNkaqATmRIYRW7U64FTHMeZV8pnKuXDX+MZ96NPU5of/RvxoQeABzp7+wPr2qcSsV4kJHMpJOHvtM7e/jdKsdN13XWByxFfz/ajEWQN62THceaW8pn1QF2J/jh+waODkFTol4CfO45T9pR/ZWpSidhySEObg4E9KDbSypjnsfZ2loh80bX4U4nY0kCms7d/RuV3Xdf9FNKse2XgZWDAcZzckFOlCvgRW/sifrQnxUZrGTMHa3+H+NGDpQwA/FIMo2Xwo22QNatVgVeAKx3Hya0l1DDUpegrtcW/WfZGbtC9mbraILS1p5gV7jShWRCahTFtbwMfC0eigSN6pflJJWKdwGcQP/osxRQxy/aj9lmYtra5iB+9WllrWwcVfQWAVCI2GxmBHYyM7IupPfIvJLrrlrYVVlsRWdjNHsHdAewbFH6nNCe+H+2O+FEvxUXAPIH40c1tK6y2NPAYE+Pt70J6NasflYFSk6KUJiKViIWQlPSDkTnWFYo47RngRiS+OTurco6XjJ8FnJ217bNITZWrymKwUpekErF2JKzyYGQhPbCPaQ7/Y4kfPZ29w0vGz0DaXY6zJ1LjSXMqyoCO9FsQP8mlD4mK+VARp7yAjMRuAp4qVKrWS8ZDyAJbdpnZBcDm4Uj0+RkZrdQd/nrPV4HjgWL6arzIEj96YhI/akdCJnfKvhzw8XAk2rBz6fWCin4LkUrE1kVu0K8y9WP3a0gm9k3Ao8XWJPeS8Q2RHrXZ00MPATuHI9GGSVVXCpNKxNZmiR8tN8Xhr7PEj/5egh+th5Rdzi65/ghSzlvrbs0AFf0WIJWIbYlUFTyQydPW30YyXm9CIiVKLXkNgJeMH0V+b9TTwpFoXnVWpXFIJWJbIH50EJNPDb+D9Mu+CYncmtaXvZeMH0F+r+bvhCPRH0zn8xRBRb9JSSVibUjkzUnIfGshFiJCfyNw72SNSorFb3p9BxK5Mc4IsGU4En1ypp+vVA/fj3oQP/r0JIemWeJH90zWqKRYfD/6LRJYME4Gabry2Ew/v1VR0W8y/DC5Q5Hsw40mOfQN4BLgis7e/nfLbYeXjHchFVSz2849BWwVjkRnFDetVJ5UItaBxKafCExWOvtNpAnKzzp7+98utx1eMr4a4jerZW1+GmmzWLZuW62Ein6T4Bc5Oxb4GpJEUoj/ABcAv5pp0spU+OVzb83ZrI/ndYyfdX0McBwThTaXZ5AeGzfkdDArO14yvi/5xfF+GI5Ez6zkdZsVFf0GJ5WIfQQZjR3O5Mkv9yJif1cpjaJnipeMX4/U11m8CdhMozDqi1QitiHQjzTKmaz/dBLxozunu+YzHbxk/GrgyKxNI0g0z3+qZUOzoKLfoKQSsW2B05DU9kLlZjPIYtqFnb39j1fLtmy8ZHxFZFSYPWq8D9hNk21qTyoR2wrxo/0o7EejwC2IH9VkLt1LxpdHpnW6sjY/iESFVe3LpxlQ0W8w/H6e5yIRFIV4H/g5cElnb/8r1bBrMvw+uvGczYeFI9Hra2GPAqlEbB3gHKQ2USHmI81yflKgf0FVKTBd+JVwJHp1LexpVFT0GwS/YNW3kKmcQrVwXgIuBq7u7O2vm2qkfhTGn4Ddsja/DWwcjkSLLsSmzBy/xeCpwDcpPB34KuJHV3b29tdNNdICUWFzET96szZWNR4q+nWOn+J+BPBDYPUChz2GLKrdVo5QuUrgJ225TPzCujociX6lwClKGfFDLw8DfsTEKZJsHkfm62+pYz9aDwlGyF53uD4ciR4WfIaSi4p+HZNKxHYBYsDmBQ75J3AKcF81F2eni19T5Yc5m3cOR6IP1MKeViGViO2E+NEWBQ55AvGjuxvEj04GzsvZvFs4Er23FvY0Gir6dYgfSXE+UqUwiGGk89N11YygmCleMj4bGU1ukrX5GSQKQ2P3y0wqEfswIo77FzjkDeAM4JrpZs3WAi8ZnwX8A+m9PM6zSAnmioaPNgMq+nWEXwjt20ghtKAmE2nky+C8zt7+BdW0rVz4jbBzR/ZnhiPR3CcAZZr4hdDOAE5gYonicTzgIuDHnb3986tpW7nwkvFtkd662RFHPwhHot+pkUkNg4p+HeCXOO4DvgesUuCwXwHfqocoipniJeNXAtlz+R4yShuqkUlNgb/+82VkCq1Qgt4twKmdvf1zqmVXpfCS8cuQhMRxRpCKrk8XOEVBRb/mpBKxPZFRV6FU978DJ3T29j9cPasqi5eMr4RM62QL093Anhq7Pz1SidhuiB99rMAh/wD6O3v7H6yeVZXFj91/Blgja/P9wC7qR4UppSGxUkZSidgmqUTsj8AgwYL/MlL7ZLtmEnyAcCT6LpL9mc3uTAzFU4oglYh9JJWI3Y58aQYJ/qtI1M42zST4AOFIdB4yFZrNzhReC1PQkX7V8R/BT0GmcoLm7T9AkmYu6uztX1hN26qJH3N9DxMrNz6DlGioy3DBesL3oxORqZygefsUsoh7fmdv/wfVtK2a+H50J9Jda5zngE3Dkeii2lhV36joVxE/muI6YPsCh1wDnNHZ2/9a1YyqIV4yvjnSZzd7Me7r4Uj0shqZ1BD4WdnXMrGzVDbXA6fXQzZ2NfCS8U2RhivZvSJODEeisRqZVNeo6FeBVCJmkGJRFxPcseovyHxry9UI95Lxq5DFx3HeATYMR6Lv1cikusX3o8OAnzKxo9Q4f0X86JGqGlYHeMn45Uh10HHmIn5U9rLhjY7O6VeYVCK2OlIW9iryBf9tpJn0zq0o+D5nIlNa46yMhBsqWaQSsVWQblTXkC/4c5FKpju0ouD7nIXUnBpnRUDDNwPQkX4FSSVi+yJiHxQ+9wfgK529/a9X16r6w0vGvw1k19hfBGyizdSFVCK2N3A1wWU47gKObJUpwcnwkvFTkGKE42SAj2oZ74noSL8CpBKxZVOJ2FXICD9X8BcCRwH7qOAv5iIge/55NrKY3dKkErFlUonYFUiRsVzBTyENc/ZSwV/MJcCLWe9D5JdraHl0pF9mUonY9shC2voBux8GDu3s7X+2ulbVP14yfgjyd8tmh3Ak+lAt7Kk1fr+E64ENA3Y/ivjRf6trVf3jJeOfR3pIZLNLOBJN1sCcukRFv0ykErHZSBjmKeQ/QWX8feeUo/F4M+Il421IItqWWZsfAbZrpSYZqURsFrLOcQb5fjSKhGieXa9VMGuNH8L5V2DbrM3/ArZsJT+aDBX9MpBKxD4K3AB8PGD3M8AhLbxQWzQF6vJEw5Hor2phT7VJJWIbI370yYDdQ8jo/u/Vtarx8Ovy/C1n85fCkei1tbCn3lDRnwF+jfLjgR8T3NjkEuC0zt7+VFUNa2C8ZPzXwP9lbXoZ6G7mKpy+H30NmX8OamzyM+DkZk6yKjdeMn4jEhk3zmtICGfL34uhWhvQqKQSsbWRBJldAna/Bnyps7f/7upa1RScCuzDkmzltZHibE2ZsJVKxNZEwjB3D9j9OhKZc2dVjWoOvoX0/R0fjK2JBFBcXDOL6gSN3pkGqURsO6SAVZDg3wx8TAV/eoQj0WeBy3M2n+4l44Va+zUsqURsa8SPggT/14gfqeBPg3AkOgdJYsvmNC8ZX6oG5tQVKvolkkrEDgGSwGo5u94DvtjZ239wZ2+/ZgHOjHOQ3gHjrAl8tUa2VIRUInYwUhEyt3Xh+0jW7YGdvf1vV92w5uI8Jib+rQ4cXSNb6gad0y8Sf971h8hjYy73Akd09va/XF2rmhcvGb+IiZU4h4EPN3pnJN+PzkIidHK5Hzi8s7f/xYB9yjTwkvFzkCnDcd5E/Khl10d0pF8EqURsGeRxO0jwfwTsoYJfds5FEpDG6UIazTQsqURsaaSJSZDgnw/sqoJfdi5g4mh/NSbW6Gk5dKQ/BalEbB3gdvKbk3vAlzt7++PVt6o18JLxC4CTsja9jozSGi4CI5WIrYVkaOc2Jx8B+jp7+6+pulEtgpeM/xg4LWvTW8D6rTra15H+JPgLto+QL/hvABEV/IpzHlK2Ypw1kAiMhsJfsH2EfMF/G/i0Cn7FuQDI7im9KhIi25Ko6BcglYhFgT+TX/PkCWDrZutmVY+EI9E3yQ/VbKgIjEkWbF1gq2brZlWPhCPRd5CcmWxO9pLxoDLnTY+Kfg6pRKwtlYidjWRG5iZcJZDytQ3fnLyBOJ+Jo/2GiMDw/eh7wI3kJ1zdAXyqGZqTNxAXAvOz3q8CfL1GttQUFf0s/AXb24DTA3b/CNi/s7d/QcA+pUKEI9G3gEtzNp/qJeNL18KeYkglYksh+RpB9dzPB3o7e/vnB+xTKoTfTOUnOZtP9pLxoGY0TY1m5Pr4Gba3k18/x0Pq3t9QfasUn/OROdhxoR+PwLigZhYVIJWIfQhZsM2tn6MLtrXnIqSR+nL++5WA45ABXcugI30Wl7F9lHzBfxPYRQW/toQj0bfJz6480UvGgxqC14xUIrYV4ke5gq8LtnVAOBKdS34ZhhOaMdt7Mlpe9FOJ2BeRDNugBdutOnv7c6v1KbUhN966i4kFtWpKKhH7PFIhNGjBdmtdsK0bYkxsq7gq0mqyZWhp0U8lYqcBcXTBtu7xIzB+kbP5JL9+ek1JJWInIY07ckeMfwC27+ztf6H6VilBhCPR94Arczaf6PdzaAla5hfNJZWInYmURM7lx+iCbb1yMZCdTbgZsGuNbAEWDxyC1hYuAD7X2dv/fsA+pbZcgjSkGWcToKdGtlSdlsvITSViBql9khtZoQu2DUBAvf07w5HoZ2phSyoRy23oDrJge1Rnb/8va2CSUiQB9fbvDUeiu9XKnmrSUiN9X/B/QL7gL0Dq56jg1z8X5rzfy0vGN622EalE7LvkC/5CoEcFvyHI9aNdvWQ8qPNd09Eyou8L/o+Q3qPZzAf27Oztz23Tp9Qh4Uj0r0iD+WxOrNb1U4mYSSVi30eeFrP5ANirs7f/vmrZokyfcCT6D/Jbc1bNj2pJS0zv+IJ/HvDNnF3vIyN87TvaQHjJ+AHArVmbFgHrIMLbDTwbjkTLnvzk+9EPyU/eW4CM8B8q9zWVyuEl4/siORXjZID1kN4YHwGeC0eiTbcm0/Qjff9GvZB8wX8P2E0FvyH5LZAdETMbOAX4F/BP4AkvGf9QOS/o+9E55Av+fGTgoILfeNyBNJwfJ4T40WOIHz3lJePr1MKwStLUou/fqD9hYjMOgLmI4D9afauUmRKOREfJT6k/CtjQ//f6wAHlup7vRxcggpDNPGB3zeVoTMKR6BgSt5/NV4CN/H+vAxxUVaOqQNOWYfA7FP0UODZn17uI4P+r+lYpM8WPyz8L+DwyrTOelZtbi2eVclzPF/wYcHzOrvcQwf9HOa6jVBffj74NfBFpzTmeY5FbwbUsflRPNKXo+4J/Ofm1199GBP+J6lullIlPE1zIrOz4gn8J+dUYx58U/1kNO5SKsAPw/VobUQuaTvR9wR8Avpyz6y2k/olbfauUMlJsdc0ZRSj4fnQp+a313kEE//GZfL5Sc6riR/VIU83ppxKxduBq8gV/vNOVCn7j8wegmMX3ad+svuBfQb7gjxdOU8FvfP4EtOTie9OIvi/4vwS+lLNrGBH8/1TdKKXs+Iu4eyOFzMqOL/hXAl/N2TVecfXJSlxXqS7+Iu5ngam+wHWkX4+kErEQcB1waM6u1xDBf6b6VimVwi++tjvw7CSHlXyz+gOHXwBH5ux6HX1SbDr84mt7ApPpg4p+veGPzH6BrMJn8wqwc2dv//+qb5VSacKR6OvAbsDLBQ4pqfqmv2g7AByes2v8SfHpko1U6h6/D/PuwJwChzS8RubSDL/QueSP8F9CBH+ykaDS4IQj0RcR4X8zYPeHS/y4H5I/wn8V8aP/TsM8pUEIR6KvIH70esDuUv2o7mlo0U8lYieSn2n7InKjPl8Dk5QqE45E/4eM1LycXUVHpqUSsa+Tn2n7CjLCHwo4RWkywpHoc0iZ7nTOrlk1MKeiNKzo+x2vcivlvQns2tnbP6f6Fim1IhyJPolk4I75m8YI7pWQRyoROxCJxc/mbcSP9EmxhQhHov8BPsdEP2q6/rkNWXAtlYjtjoTuZX8LL0BG+Jow06J4yfhawP7AbeFI9NWpjk8lYhHgLpZk9YKUR96ls7f/kYoYqdQ9XjK+JnAg8JtwJFpozahhaTjRTyVin0R62i6TtXkE+Exnb/89NTFKaThSidjmSGnd5bI2Z4B9O3v776yNVYpSeeoyI9d13R2Q2iorI3P0A47jvJBKxDYA/shEwQc4XAVfycV13e2Q7kirIov7VzqO81wqEVsPuJOJgg/wZRV8JRfXdbdGogNXQ9Z6rnQcp2HXeupqpO+67gbAz4DtWVL4KANkQiOp+DovPriLyV9NP7Gztz+3Up7Swriuuz5Se2knoBMJ38wAmfaR9I3rvviXHYzU82hKzgAAC1tJREFU3c/mtM7e/nOrbKpSx7iuuw7iR7uwxI9GkZmFG4BTHMeZWzsLp0dZRN8Ysx1wEVL18DXgMGvtSCmf4bruWkh23ApAe+7+ld4eGl3xvTm528/v7O3PLXertDCu63YBTwArEeBHK77z7OhKc1/I3f4ToL+zt79+RkBKTXFddzXgSaTKZp4fIVr3H2A7x3FyI37qmnJF77wIfNpauzPwPLICXjSu67YBvwGWJ/gPTPvYSO72G4DTSjdVaVZc1zXAbcCKFO9HNyNPiyr4CrDYj26mwMDBZzZSd/+8atlVLsoi+tba16y1Kf9thiUhT8WyL7AJk6wxvLf8OmTawwCMmfYbgSM7e/tLvY7S3HwG2IxJ/Gje8uswEpLS6aNt7bch60HqR0o2uwFbMnWMfifwVdd116u4RWWkqIVcY8wGyKPOhtbaYX9bFDgf2MZa+7K/bX1gL+DsEu04jPzF2QmMhJfhxfV2pG1s9IOx9tB9juOUNH2ktASHMEXJ3JHZS/PSujtgxkYX2vbQnx3HyU3qUpQo+c1UCmGBXuDiyplTXooa6Vtrn0P6SZ4Ai+fwLwV6swR/OeBa4FBr7aJiDXBddxZS9GhqjGGsPbQ08iWhKItxXTeEVE2cuuaOMdj20FLkl+9QWhx/qrmX4mdBOmkwPSpleudc4ChjjIPMvx9trX0EwBgTAm4EzrLWllqnZDNkSqgUtinxeKX52YTSKyJu5c/fKso4H6HwPH4hNnNdt9RzakbRom+t/SfwCNLA4mfW2puzdn8BEeLvGGOSxpjPl2DDCpR+s87yR3aKMs4KlL6WBEt6oyoKSDDJaInnjDLF9HQ9UbRwGmPakF9uDBn1L8Zaez1w/TRtmG7UhEZbKNmoHynlYDr+YKZ5Xk0oZXrnQmQ0NYQsdJSLuSXaAeA5jlPqt7HS3Myl9MdyS351TqW1mUvplQragA8qYEtFKEpsjTFHAfshCxznAicbY8o1F/oUJTa8AB4s07WV5uFpSn8s/5vjOA0zQlOqwrOUPhB4rJEGoVOKvjFmN6S86D7W2jeQ5JfZlJiAVQjHcTJIZFCxN998JDFLURbjOM4Y8DuKn9f/AGmxqSiL8QcBt1H8AGIhErXYMEwq+saYjYGbkDDMpwCstaNIyYVTy2jHdRT/eBRCviQUJZfrkJuwGNqB2ytoi9K43EB+M5VCtCGDjYZhUtG31j5jrV3FWvvHnO2XWWu3K6Mdg8CjSCGjyVgIfN9xnHfKeG2lebgP+CtSF2UyFgLnOI4T1GZRaXEcx/kL4ktTTfMsBC5yHGfK3g31RF10zvIfqQ4C3qKw8KeQ+ufnV8supbHw/egLwBsUFv4U8DdKzxpXWovDgGEK+1EaeAw4q1oGlYu6EH0Ax3HeBrYCfo3cmONzah7yjXousF8jLZgo1cdxnHeBrYFbCPajC4F9/bUkRQnEcZz3kNyjG5noR4v89zFgr0YsB1NX9fTHcV33Y0gRthWRUs3XO47zVm2tUhoN13U3RaLOVkRGbTc4jvNGba1SGg3XdTcG/g8ps/waEHccZ7i2Vk2fuhR9RVEUpTLUzfSOoiiKUnlU9BVFUVoIFX1FUZQWQkVfURSlhVDRVxRFaSFU9BVFUVoIbUSiKEXQsdXR1rS10zZrNm1t7Zi2dtpCs/zX2Zh2eW0bf5+z3bS10x5qwxgjr22G9nb/NWSCt7e3Ydqgrc3Q1t5GW5shFGqjvc0w238NL37fLq/tuduDX2e1tdFuYFZ7G23GMKvd0GbMxG1txj/WLD6mfcKxBmOgvQ3aMLS3Sbnc9jZDm/9qDLQbQ5uBdoP8ngba/HPN2CjGjsHYKNgxzFgG7BiMZgK3m7EMjMl22Z+BsVFsZkReR0YWv7djo5AZwY6OTjxm8bGLYGwMm1mEHRtjbFFm8evY6ChjIxns6Bij/mv++xF5v/i8UcZGx7BjltFFo9hReR3LeT9h/8goY6PWP9cymhlj1FoWjVlGLf6rZdEYgdvHyD5myb4r7JyClYt1pK8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSguhoq8oitJCqOgriqK0ECr6iqIoLYSKvqIoSgthrLW1tkFRWgJjTJ+1dkDtWILaUn07dKSvKNWjr9YG+NSLHaC2BFFRO1T0FUVRWggVfUVRlBZCRV9RqkfN54t96sUOUFuCqKgdupCrKIrSQuhIX1EUpYVQ0VeUCmGMWckYc7cxZsh/XbHAcecZY/5tjHnaGHOJMcbUwg7/2OWMMa8aYy4tsw09xpj/GmOeNcacFrA/bIy52d//d2PMeuW8frF2ZB13gDHGGmO2rIQdxdhijFnHGPNnY8y/jDFPGmM+U47rqugrSuU4DbjXWtsN3Ou/n4Ax5lPA9sBmgANsBexcbTuy+AFwfzkvboxpBy4D9gI2Bb5gjNk057AvA3OttRsCMeDcctpQgh0YY5YFvgH8vdw2lGjLt4FbrLWfAA4GLi/HtVX0FaVyfA641v/3tUBvwDEW6ABmA2FgFvBGDezAGPNJYHXgT2W+/tbAs9ba5621i4CbfJsK2XgbsGu5n3iKtAPki+88IF3m65dqiwWW8/+9PPBaOS6soq8olWN1a+0wgP+6Wu4B1tq/AX8Ghv2fu6y1T1fbDmNMG3AhcHKZrw3wIeDlrPev+NsCj7HWZoB5wMrVtsMY8wlgbWvtHWW+dsm2AGcBhxhjXgH+CBxXjguHyvEhitKqGGPuAdYI2HVGkedvCGwCrOVvutsYs5O19oFq2gEcC/zRWvty+QfYBH1gbthgMcdU1A7/iy8GfKnM1y3ZFp8vANdYay80xmwHXG+Mcay1YzO5sIq+oswAa+1uhfYZY94wxnRZa4eNMV3AmwGH7Qc8bK1d4J9zJ7AtUJLol8GO7YAdjTHHAssAs40xC6y1k83/F8srwNpZ79cif6pi/JhXjDEhZDrj3TJcuxQ7lkXWVZL+F98awO3GmH2ttf+osi0g6xw9IE+ExpgOYBWC//+KRqd3FKVy3A4c7v/7cOB3Ace8BOxsjAkZY2Yhi7jlnt6Z0g5rbdRau461dj3gm8B1ZRJ8gEeBbmPM+saY2cii5O2T2HgAcJ8tfxLRpHZYa+dZa1ex1q7n/x0eBioh+FPa4vMSsCuAMWYTZO3nrZleWEVfUSrHOcDuxpghYHf/PcaYLY0xV/nH3AY8BzwFPAE8Ya39fQ3sqBj+HP3XgbuQL7RbrLX/NsZ83xizr3/Y1cDKxphngROZPMKoknZUhSJtOQn4qjHmCeBG4Evl+CLUjFxFUZQWQkf6iqIoLYSKvqIoSguhoq8oitJCqOgrilJ2jDFzjDGLjDGr5Gx/3K9ps57/fmtjzB+NMe8ZY941xjxijDnC3xfxE5OUMqKiryhKpXgBSTACwBjzMaAz6/12wH1IrZ8NkQzcY5B6NEqFUNFXFKVSXA8clvX+cOC6rPfnA9daa8+11r5thcestQf9f3t3iBNBEIRR+JVFkBAUEoniDiuxCCwJZ2APg90ViM3eYQ1wBAwkCIIDtUgK0UMCG2zPiHpfMqbblPqn0p2pGbXKYgx9Sb08APsRcTJMlbwAlsPeHu0r4NVUxVXlGAZJPf10+xvgEXgd1g9oTefbRHWVZehL6mlBmyN0zN+jnQ/gCziivQw0Eo93JHWTmS+0C90zYP1r6xO4B86nqKsyQ19Sb1fALDO3O+tz4DIiriPiECAiTiPidvQKCzH0JXWVmU//TarMzDtgNjzPEfEO3NB+GKJOHLgmSYXY6UtSIYa+JBVi6EtSIYa+JBVi6EtSIYa+JBVi6EtSIYa+JBVi6EtSId9MPIXHJ9CxvgAAAABJRU5ErkJggg==\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADjCAYAAABpYsTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deXxcVdnHv2cy7Uza0patJUChCIGCQUBExQUGEQyCGBRZHEAWjYgvSkSWFxFRURHBEQXFsCjisIk6gEgQkIuowOvCFmUp+xbK0tJCO3OTSc77x3NDJzd3JpNk9nm+n08+k7nnzszT9NzfnPucZzHWWhRFUZTmIFRtAxRFUZTKoaKvKIrSRKjoK4qiNBEq+oqiKE2Eir6iKEoToaKvKIrSRKjoK4qiNBEq+oqiKE1E1UXfGLNutW1QGgOdS0q5aYQ5VnXRBxLFnGSM6TLGXGyMud4Ys3e5jVLqkmLn0tuMMZcaY64rt0FKw1HUHKtlqir6xphOYIkx5qsTnWutTVlrPwccCRxcbtuU+mKSc+lJa+0xFTBLaSAmM8dqmXCVP/9V4NfW2gsAjDHbA9/znXO0tfblnOenAxdWyD6lfpjKXFKUyTBmjtUr1Rb9dwAPjD6x1j4E7Bd0ojHGAGcDN1tr/10Z85Q6oui5pChTZMwcq1eq7dN/FfisMWbbIs49HvgwcKAx5tjymqXUIUXPJWPM+saYi4CdjDH/W37TlAZhMnpVsxgtrawoitI8VHulryiKolQQFX1FUZQmQkVfURSliVDRVxRFaSJU9BVFUZoIFX1FUZQmQkVfURSliVDRVxRFaSJU9BVFUZoIFX1FUZQmQkVfURSliVDRVxRFaSJU9BVFUZoIFX1FUZQmQkVfURSliVDRVxRFaSJU9BVFUZoIFX1FUZQmQkVfURSliQhX2wBFUQqTHVg6E1gf2ADYEJgLRL2f1jy/FzM2AxgBssBwzuNwwLF8j6O/rwFWFvMTbmsfKvGfSJkE2hhdUSpIdmCpAeYjAj4q4hP9Pq8qxpaPNMFfCKuA14EB4EXv5wXgxXBb++pyGZMdWDo/3Nb+ernev9ZQ0VeUEpIdWLoOsBjYwve4GGhDVux6hz15VuF9AZDzZeB7/lK4rX1wsm+cHVh6lfceXwu3tWdKZnGNoqKvKJMgO7B0FrA540V99HH9KpmmCK+w9gvhBeBJ7+cJ4ImgFX12YOm/gZ2Ah4B4uK39ocqZW3mmLfrGmNnAT4FBwLHWJqfzfv39/YuAg4AFwMvAtR0dHc9Ny0ilocj09V4GXA3cFu3sHsl33lTnUnZgaRhoB7b3frZiragvnK79U8ACy4FXvZ8ViIsk4/0U83vQ2CASzBEGWgo8TjQ2A5iNuKEm+plLdQNIVuB9AQBPDj9x3w5m3bY9zfwFERMKgfxN/hf4UbitfczcahRtKkr0jTFfALa31h7nPT8L2Nxae7gx5nDgdWvtjcaYa6y1B0/FkP7+/hbg+8CxyAQaZTVwEXBKR0fH8FTeW2ksMn29jwJbA48hC45fRju7V46OFzuXPP/6xqwV99GfbYFIGf8Ja5AV6aiIT/T7inBbe7aM9lQM728+h/xfCushbrCNgU28xzbki6XkDD/dj135CoRnYtZrI7T+xpiZUYDbgM+E29pfbDRtKta3eDnwqDHmNOADwL7A+7yxTZHbIpCd/KnyfeDEgOOzc45/dRrvrzQOy73HrYEfAd/J9PX+CvhRtLP7MQLmUgiYGTazoy3mxDkzW/bMDixdhQj8uiW2bRh4FngKeNp7HP39OeDVcFv7mhJ/Zt0Qbmu3wBvez/PFvCY7sDSEuM1GvwQ2zvP7AsBMziDvuyQ7iH35GYZffhYzbwNCGy76sJk978HswNKjgd1oIG0q2r1jjDkH+UfuA+xlrX3CO344sMJa+wdjzNXW2kMma4R32/QwY79FAYgOvUkkm+HNyPzVw6Hwko6OjqImilJ/ZPp6Ry/ujRA3yka+30cftyZ4JW5HTOjWlzd8+weZPbc1Gg4RCRsiLSFmtkxOCwpgEbHKFfXcxxcaZVVeb2QHls5A5sgm1tqNGUwvsUPudmSzWzGc3YyR7AKbHQwzNCginx0ENw0jedaqs+YS2nARKyPrDb28ZnhGAaVcDdSNNk1G9Jcgwvxxa+0NOcdnAxcgfsK/TsWn39/ffyJwbtDYRm88wzru61hgsCXSHxl2zwT+EInF3cl+jlIbZPp61wG2AZb4ftqBmZN7NwOtszGz5mFmz5XHSGspzHwFuYN9CPgvshn4FPDcVCJElPKQ6euNIvPGP5e2IWARORVGZkRZtsESVrfMKnTaiR0dHT8sxeeVm8mEjp2BXAhjXmOtXQ0cNU07FgQdNHaY2e4q+R2IDLsdwHXACtdJXgP8CrgnEotrCFKNkenrNchtt/9iXOIdnxotYcysuZjZ82DWPMysdTAtU4+AtCPDkB1aDvZfzIjcYkzoAeChcFv7sim/qVJyMn29GyBzZ1vGzqUtmKxLZxIMhqPPLVu3fZFbWPChOhv8U6Koq8UYcyKSxXcQ8E3gdyW24+Wgg7MHVxEiMDhjXWRT5VjgcddJXgFcEYnFnyqxXcoEZPp6ZzJ2pTV6UW6DbNhNj8gszOx5bwm9iU5t8WathaEMuGmsuwbrpsFdA0MuyObhXsAOwJXAa8OP/t/LupioLJm+3hZExIMWCpUOhX0UOPnZhTu1Y0ygF8JH3SwSJnTvGGM+BPwY2NVa+4Yx5j7gKGvt/aUyIp9Pv2V4iLnucua6K5g5XJQ35y7gEuAadf+UB+92+r3A7kAM2JVSRrrMmvtmaO4GaTN7Xgutc+aYlvAk3T0i8JlhS3poBHfYkslaskNZZruvM9ddTmu2qH3UfuAXwC8isfiKydqgTEymrzcM7IjMoxjwQSSks1SsBl7yfpb5Hl8ClpkNF3XbV547Ouc1K4CvA73Rzu6hQvuNvs9pDJ++MWYzwAH2tdY+7B07EohZa48spSH9/f3nErxDDtYye3DVrzd+4+kVwKFIanohXgF6gZ9FYvEXSmlns5Hp621FhH1U5N/D9EV+GHgceITWOS+ENtg0atZZb3PCM3c2xsyf7JtZa181xvwd+Dtw92PL3U+MWL6c7/zo0OpLF618/AXgcGRlWYg1wBXATyKx+H8ma5uyFk/k34nMo90RkV+nBG/9NPBIwM/L0c7ugqvaTF/v25EveItoxunRzu5Xc88pqE3CeR0dHY0XvVNuio2FdZ3kDKATOALYn8Ibf8PAb4GfAH/T2/WJyfT1zkJEPoZcmO9h0purb7GKtRfgw8AjtK7zdMuWO25qWsJ7Ah9B3EGTwdrh7NP2zRUjJjLrAhOdfRPwuBcKCExqLhng/chcOoiJa9z8GZlLN0Zi8bqJy64Wmb7eGcDOrF0wfICpu/wyiMvFL+yPRTu7pxwCm+nrbQN+Axwf7ey+L+icRovTrxnRH6W/v39T5AJciNyKXZvvtsl1kut65x7B2ryBfNyPuKmujsTi6dJZXN9k+npnI3+70Qvz3Uw+EeZFZLXkvyBfCu+wB0AHIvAfQVZ3k7lTWAXcg7eKB+7NPnDHG4UycUeZ5FxqBT6GrP73QTJN8/EMcCFwaSQWX17gvKbCE/l3sXbB8AEmH0GzAomYGrtYgGeL+T+fLF6YsJ3ojgAmN59qmZoT/aniOsl24AvA0RResb0GXIy4fp6thG21hBdVsz3wKWBPYBcmXwDsWcTt5wB3Ak/lXjTZgaUbIBujHwH2RjIqi+V1JBvyduBvwH/Dbe0VXUW5TnIhcAwynzYtcGoaSCKunwcrYVutkenr3QwRwr2Ru6YJw1x8vIrMoTuR+fSfcoi7spaGEf1RXCc5B1mtHU9h18EI8Hvkdv0vje76yfT1bgUcguyJbDfJlz/F2ovyzmhn99O5g15q/XbAgchq+Z0UH0Y3AtwL3AL8CfhHrSQ3uU4yDHQBX0LuUApxJzKXro/E4jVhf7nI9PUuRBYNhzLxHbafV1i7WHCAh1XkK0vDif4onr/2Q8gF+zEKi9BDyAWbjMTiDZMin+nr3QQ4GLk43zWJlz7BWJEfd0fkCf07EKE/EAmrK5bnEJG/Bbg93NZe89ExrpPcEfgfII6EL+fjOeBnwMWRWPzVAufVFZm+3vnAJ5CFw54UXzRtGWNF/pFiXClK+WhY0c/FdZJbAMcBn0UaWORjBbKDn4jE4nUTd5uLl8RyIHJx7kZxK+6ljBX5QD+lJ/TvZK3Qb1WkWWnvvUeF/tHcjdd6wnWS6yPz6Dhgs0KnIjH/Z0di8ccqYVup8fZ79kMWDftQ3Ib+AGNF/jEV+dqiKUR/FNdJzkZWascjm4v5SCO78j+IxOIDlbBtOmT6eucCH0cuzr2Y2Ec/jLhSrgFujXZ2v5jvRE/o381aoV9cpFkPslbk/9ZozSk818/+yFyKFTh1BCkDfVYkFn+4AqZNCy/Z7iPIXNqf4jZi70bm0h+Bx1Xka5umEv1RPNfP7ojr5+Pkv1XNICv/c2ot3t+Ln/8ocnHuS2GXA0gc8l8QAbrOH4uci1fVcFdE5D8JLCrCpGFk8/U64A/htvaa/7IsFa6T3B4R/8OQ3rNBWOBaRPz7K2VbMXiZsDFkLn2SwnfDozwIXAVc7d/jUWqbphT9XFwnuTkSpfE5JB0/iEEk0/f71Yz48SJv3o/YegDFJbb8E7k4r83ntgHIDixtQULsRoW+mIibIeBWROhvCLe1v1bEaxoW10muh0SPfZHCd0S/Bb4dicUfqIRd+cj09W6LxJ4fTHG1Yx5nrdD/t5y2KeWj6UV/FNdJzkJ8tacgtbmDGEJS878XicWfrpBpoyuxA5Ca3e8p4iUPs/biXFroxOzA0m2QgnlHUJzQu4jL5jrgxmZqKF0srpNsQaJbvk7hSKnrEfH/V0UM462Fw27IXNqviJe8gLhurgL+pa6b+kdF34frJKPIau1/yR+jnUUqfH4rEos/Uy5bvI20o4Ae4G0TnP404rq5Cnio0MXpNe8+CPl3FhNyl0H8tdcBN4Xb2lcV8Zqmx3WSISTi5etIpFM+bgLOiMTi/y6XLV4JhE8iYj9RJNdrSJbq1cBdGlLZWKjo58F1khHgSOA08kdpDCJZvt8tZVGuTF/vRkh44HEU7uy0DPETXwXcM4HQj67wjkJWoRMl0awB/oAI/c3htvY3i/4HKGPwxH9/pDz5TgVOvRL4WinvIjN9vXOQRLMepKF7Pt5E8lauQnoPD5XKBqW2UNGfANdJzkSSvb5G/uJcK4CzgAunU93T87Ge6H1eofC4PwLnA7dHO7sLZqtmB5YuAj6DfIFtOYEJqxGXw3XALc3c1q8ceAEE+yLiv0ue0waRnJHvTqfEQ6avd2Nkc/lYCm/M/hP4IZCKdnZreZImQEW/SLxCb58GTid/fPrTyJ3BNZFYvKhb4kn4WAeBXwM/jHZ2F6z2mB1YGkWiko5C0uMnitW/C7gMuE5X9OXHE/+PAN9AylQHsQL4DnDBZBYSXtXIryKhyYVqKN2IdKu7S/30zYWK/iTx4rMPB75N/g5Q/wROisTiTr73mYSPdQWS4XlBtLM7bxik577ZCRH6OBM3/H4BaXj/y3Bbe8HNXqU85Ij/OUg9pCCeRu4yr863kPAWDnsgc2mfQh+J7EUlop3dNZ8zoJQHFf0p4kX7fBnZ8M0XOnkTcEpuHXavP+zRTOxjfRq57f5FtLM77+o7O7B0LuK+OQbp/FSIQcR9cxlwa6ULmSnBeNE+hyMuwnwLiX8hC4k7Rg94VS0/hYh9ob2C5UhV0Aujnd11mWmulA4V/WniOskNkeiMLxCcCTsC/NwOZ7/JkPsZ5EuikI/1H8ht9++ind15C3dlB5Zuifhsj2bieP37EaG/stlj6WuZIhcSN1prT8Bd8z7E/VOoFMQTyMLh8mhn9+qSGqvULSr6JcIr7fxdJLnpLay1MDIMQ4MjYAsVqZrQx+q5cPZAhGGiInLLkbK/vwi3tQc2h1BqE28hcToSvTVmIWFH55IdKTSX7gF+AFw/0Ua/0nyo6JcY10nuilxw7/cuULB593RHfaw/jHZ2P5LvpOzA0lZkE/nL5Pf9gtxV/AlZ1d8QbmvXPsF1jOsktwK+Bxxo7YjMpZG8Gm6BFHButLP775WyUak/VPTLQKavd2OMuQJrP5T3pFDL34HDonsf81S+U7IDSzdGVnufp3Bf4JeRAnEXh9va666Tj5KfTF/vOhjzY6w9gnw1okItj4M5Krr30X+trHVKPaKiX0K8ImgnAqeSrzphSxjCMzHGADyPrN5/n9vEJTuw9N3e8YMoXDHzfuBHwDWNVsWy2fHa+H0GcRluFHhSqEXmUigE8Aayt3RhozdxUaaHin4J8ELmDkGaJwdXpDShV5gR2dC7QP3cTHhmT8uWO+6IiP2uBT5uBLmNPx+4q17r0iv5yfT17g4kyBeRY8xrzIisb0KBbXwfAL4QicXvLp+FSj2joj9NMn2970Uu0HxJNv8FTjTR2bcgRdPOJ7emTyiMmb8hZv5CzIyCPSpWIpU+Lwi3tT9dAtOVGiPT17slErP/iTynvITE7F9uorN3QfI3dsxz7k+RcGFNtlPGoKI/RTJ9vYuAs5EN1iBeQ9Lte3NDL70evmfQEu4x67WFzfwF5FmxjfIYUt/ncs2WbUwyfb3zEDH/MsHlN1zgPODsaGf3G28dlETB45BEwbkBr3sKOCoSi99ZcqOVukVFf5J4BaxORhJighpmZBGRPiva2T2uCJu3OXuStfZYY0zexid2MPMoM2aeaEzo5nBbu1Y5bEC8rOxjENHeMM9p1wCnRDu781ZzdZ1kGxLum28Bcj5wWiP1f1amjor+JMj09X4SEfR89favB04KqmHvFT47BanZHwl6sR0Zxq56DbviJRjMgNTEOToSiz9eCvuV2iHT1/se4GLyh+D+A+iJdnb/rdj3dJ3kh5BOb0GF9ZYiq/6i309pTFT0i8C7/f4JkiofxIPIBfpn/0B2YOliJMPyKPIUwLLWvmJXLHvNvvbCkoA47DXIl8VPiy3iptQuXumE0xF3TpBf7wUk+uvKqdSx9/pAn42U5vZjkQzdr0dica2o2aSo6E9Apq93D+CXBKe7v4xcwJf5Mx+zA0u3QipuHk7+sMsXkYifi4cf/b8M0r3qfGBewLl3IKv+pyf/r1BqgUxf7xLgCoIL7KWRTdwflKJkgusk90CS9BYHDD8CHBmJxe+d7uco9YeKfh4yfb1RJEa6J2B4CFkxfTfa2T2mi1R2YOkSZBX3afI3XH8OybT8hT++3nWSmyJROh8JeN2bnj2X5sb1K7WNF3P/RUTUg/ZxksCphXoYTwXXSa6DZId/PmB4BLkjODMSi2vDlCZCRT+ATF/vTsiK7O0Bw/3AYdHO7jFNrbMDSzsQsT+Y/DVxnkK+SH4VbmsfzPf5XsndY5AvlqDCW1cDn4/E4tq2sMbJ9PVugvRV3itg+CXgmGhn9x/LaYPrJPcGLiW4/efdwCGRWPzZctqg1A4q+jl4DchPBr7JeP+7RcLmvh7t7H5rdZ4dWLoj4uL5ZIG3fhwpm3tluK296FWV6yQ3R27Rg8o5PAEcVM6+qsr0yPT1HorEywdVVf0tcGy0s/vVStjiOsl5yCLi6IDhFcgm7/WVsEWpLir6Hl5izK8IbhT+LHBEtLP7rXjn7MDSrZFVeyGxfwQR+2vCbe1TSo33+qt+HgnJ8/e1HURCRy9Qd0/tkOnrXQ+pX39IwPAqZJP119XoWOU6yY8i7sO2gOHzkYQuLdTXwDS96HslFD6LZNUG1cu5HPhytLN7JUB2YOkCJOnq8+TfoO1HYq9/W6pGJa6T3BZpgt4RMPx74JhSNmdXpkamr3cvZOM/KKzXAY4sFHNfCbzSzb8COgOG/wUcHInFn6isVUqlaGrRz/T1LkRWPUG9aV8DuqOd3b8DyA4snY1sop4CzMnzlvcD3wKuL0dCleskW5ECa90Bw88gvtl7Sv25ysRk+npnIRujxwcMDyJhuz+aShhmOfDuIL+K3K36Q0dXAZ+LxOLXVtwwpew0rehn+noPQBJZgkoW/xHZYHspO7A0DByJiHnQLTHAv5Em1zdVogCa6yQPQWz3b/JmEXH5ocb0V45MX+8uyMb/NgHDDyAb//2Vtao4XCf5PuAqgkOSLwK+ojH9jUXTiX6mr3cu4rs8MmB4DbKavzi8wx4A+yJx9NvlebunkFj8aytdKsFrsHEN8M6A4T8Ah0Vi8ZWVtKnZ8MoonIa4+/yrZYvMnTOjnd017SN3neR6SITR/gHDDwAHRGLxvH0flPqiqUQ/09e7PVIqYYuA4buRzdrHswNLd0Him3fP81bLEZ/9z6rZncp1khHEziCXwiPAxyOx+GOVtao58FyDvwXeHzD8FDKX6qapiRcm/CVkPvkj114DDozE4k6l7VJKT9OIfqavd38kCcbvj88irplzwjvssTnSbPrgPG/jIj71s8Nt7a+Xy9bJ4jrJA5DQTn9o4OvIptyfKm9V45Lp690RuIHg3gmXAF/JrYZZT7hO8l3IHeTbfENZ4EuRWPxnlbdKKSUNL/pedM7JSAasP2nqYeCw8A57PIN0HTqO4Po4Fol2OCPc1l6TSSyuk1wMXAfs7BsaAU4CEhrWOX0yfb2fQPz3/vDZl4HPRTu7b6i8VaXFi+m/jOC6/j9HxD9vcqFS2zS06HulFHoJLpTWG1q4xamhjRZ3I5ufQfVuAG4BTgm3tT+QZ7xm8KJ7LiG4xO7lwLGRWFzbKk4Bb/FwGpJ34ec2IB7t7H65slaVDy+65+vAmQHDdwGfjMTir1TUKKUkNKzoZ/p6N0Li1/0drYaBL4d32GMZkqEY3N4Q7gNODre131Y+K0uP55s9CQkf9N/Z3Itsyg1U3LA6xut9fClwaMDwTxB3TkP2pXWd5CeQu1x/DsszyJ5RzS+GlLE0pOh7tXOuZ7ygv27WazuhZdGSTwN753n5s8iK7qp6bl7iOsl9gSsZ31HpRaArEov/o/JW1R+Zvt6NkZ7Eu/iGssD/RDu7f155qyqL6yTfgVxPi31Da4DPRGLx6ypulDJlGk708/pcQ6HHWrZ5z+1mZvQYglvSvY7cul/or3xZr3hZvDcAW/mHkForV1Xeqvoh09f7LkTs/Nm1y4FPRju7nUrbVC1cJ7kBsmcUFNF2JvAt3TOqDxpG9D2f69eQUMoxmHU3ui+0aMkGxpggV85oe8PvhNval5fZzIrjOsl1kaqcQXc2J0Zi8R9W2KS6INPXexBSTsHfEvNh4GPRzu6mK1PgOskZSPTacQHDlwBfiMTiDenmaiQaQvQ9n+tl+AtczYzSsnnH02bWOovzvPQO4IvhtvaHy2thdfEaaH8f+ErA8HnAyZrBK3i1789Awnj9/BH49GgdpmbFdZKfBy5gfO2pG5FSINqLt4ape9EP9LmaEGbBZiOhhYuHjTFBIZgDiABeU4myCbWC6ySPRPqy+i/WKxF3T1OH4Xn1cy4HDgwYPg9pUF6SAnr1juskd0MCJdbzDd0NfCwSi79WeauUYqhr0Q/yuZp11iO0ydYjJtIa1LVqGHHlnBlua2/KBiReQ43fMj5J7TbgE5FYvC6TiqZLpq93U2Qu+ctaDAGfj3Z2/6LyVtU23p5RH+Pr9jwCdEZi8apWE1WCqVvRz/T1Hoz4XKX93IwIoY3bCc3fMN9L/gocF25rf6giBtYwrpPcGXFVLPAN/Rv4aCQWX1Z5q6pHpq/3Pcjd4ka+oVeBA+qpnEKlcZ3kJsDNwPa+oRcR4W/6663WqDvR9zZsv450twJjMBsuIrRwMSbkr3kFSKbkScAVzeTKmQjXSW6JJJ5t6Rt6EvhIJBZ/vPJWVR5v8XA5EPENPQTsH+3sfrriRtUZrpOcj3xp+iN7ViKx/HeOf5VSLepK9L1Nth/hFRgzc9YltEk7JhrU+4QR4GfA6bVUJ6eWcJ3kAmTF7y/d8Aqy4v9n5a2qHJm+3s8jc8SfxHYDUg65KV1dU8F1klEkVNq/HzIIxDWWv3aoG9H3ytheChxBywxCm2xFaF3/3fhb3Iu4crR/7AS4TnIO4uP3h3SuRoT/L5W3qvxk+npPRiKa/JwNfK1Wmp3UE66TbEHKln/RN2SBz0Zi8csqb5Xipy5EP9PXG0EaPRxg5i+Q1X04KL+K14BTgcvqOZu20rhOcibyhXqYb2gNsG8jldT13IPfQeot5ZIFjo52dl9ReasaB68MyKlIRy4/3ZFY/OIKm6T4qHnRz/T1zgZ+T3jmXqFNtyE0L6jRFRYJRTwt3NauoWJTwCuw9T2kImkuaSQE7/bKW1VaPPfgTxifXJQBDox2dt9UeasaEy88+BLGN5f5QiQWv6jyFimjTFv0jTFvQzJh51lrg+KbJ0V/f/8i4CBgQTibWbXZS/cd0LLeRjuHNt4K0xLYh/xBoDvc1n7vdD9bAddJnoashHPJAPtHYvFbq2DSONKpxEatXT0vTXRe7lwyduTVxS/+470tdthfLvhNYL9oZ7duNpYYr8/DtYzPC/mfSCx+YRVMGkexcwnGzickQOTajo6O58ppXzkoSvSNMV8AtrfWHuc9PwvY3Fp7eM45101H9Pv7+1sQH+uxwOyW4UE2WfkE0bbNCc1ZN+glg0jf2nPCbe1DU/1cZTyukzwF8W2POYwUauurgkljSKcSzwD/QrJC72jt6hkzif1zydgRFr72GHMy46psLAc6o53dWnyuTLhOcn+kZo8/SfKESCx+fhVMGkM6lbgJ6TV9AfD71q6ecVrin085Q6uRPsKndHR01E3SXlACUxCXAx8zxsw3xuyH9I7tLrEt3wdOxPujzlvzCq1bvD2f4N8N7Bhua/+OCn7picTi3we+6j8MXO86yY9WwSQ/K4EDgNuB/6RTiS+mU4ncJvFj5lJr5vUgwR8AdlPBLy+RWPwGpBmLP9v7R66TDCoLUmmWAx9EuoU9k04lvpFOJdp854yZTznM9o4HBQTULEW7d4wx5yD/yH2Avay1T/jGp7zS926bHib3j2otm5lVzFp/Qc4hu8YYcyrw03Bbe918s9YrrpM8AUj4Dg8i/VJvrKQt6VRiNrAQSaDqBd7uO2UV0Lti/ubXLd9g6xdof70AAB1pSURBVNvxXaDz3hxgw9elt/dQS8Suia77gYUf3P/v5bdcAXCd5D5I2QZ/PsTJkVj8B5W0JZ1KRJC5tBA4nfEN4YeQ0iSJJ7baazl+bRrPamBJR0fH82Uwt+RMRvSXIP/4j1trb8g5vj7iA94LuMRa+73JGtHf338icO64AWvZao4lHG1l9eAwr6aHz9pyydu/Ptn3V6aO6ySPR0pX5DIEfCoSi19fis9IpxIbAEuAbZCSGhuxVuBHH/1lIwKxMPLmnIWhlfM3x42ObYY2740Xmbt6GS9uuB3DLZETOzo6tMJoBXGd5EeQJK6ob+i0SCw+ad0IIp1KzEXm0RJgU4Lnkr+XdF6GZrQ+9uoGS7ZeM2t9MP50jjHUzXwK3BnNwxlI0s6Y11hrX0N8XdPBXw5AMIbn0obo0CArBy0E18FXykgkFv+J6ySHgdyNtxnAda6T3D8Si99czPukU4kw0oRjScDP+qWy10BonTeXERoZ5uWFb2ekZe2UWbnOxqyasxHWhEAEQKkgkVj8FtdJfgxJfsstWf1d10m6xZb5TqcSBhH0oLnk730wLWYMpbded/kTDIWjDEUKrjvqZj4VJfrGmBORb+eDkPIHvyuxHXl7i7oj4A6+dTfSVDVhaoVILP5T10lmkabYo4SB37pOcq9ILP630YPpVGIOwRdjOxX40s62RJ5ftrBj08wsf/FHwRN80LlUFSKx+G2uk9wP+ANjhf8810muiMTibxW2S6cSUaQB0Ogc2pa1d4SF3C2l4ukV8zf/2/L12+MTrPKhjubThO4dY8yHkNv7Xa21bxhj7gOOstbeXyojAn3646krv1kj4jrJY5B8CJk3I8OQHVxjM2uux45syNpb6nIwBLzk/YzewufyDHDaU1vE/jrSMuO/6FyqaVwnuTtwE97/kx0ZhuyQte6aGxjOhpG5tAXFB5tMhmFkobkMKdfir6w62kXvgie22msBDaZNBUXfGLMZ4AD7Wmsf9o4dCcSstUeW0pD+/v5zkZ3wfJzX0dHhjyhRKoR3S72EmdFvYO3BZIfAlizpOQ08ipTkfQaJrFmGCPzo4+ujoZnpVOJzyGbu6Gu/B5zb2tWTBp1L9UA6lVjEjJlfxIROIjsUYqRkcRlZ4HFkLj3B2oXCspzfX2vt6hnx7Hg3UrYF1iZ5fq21q+fV0TdstPlU0L1jrX0WeJvv2C+Rksal5hTvMW8sbBk+U8mDJ/LbAjHvZ3dgAYPTah+8DLkY/T/Pjl6ERTIaf/kb4KTWrh5/3XadSzVGOpXYHJlDMe9nC4am1bNnJTJ3HmbsXHoyKNa+AKNz6e/A8a1dPUH1uhpqPtVcGYb+/v5Nkb2DhYhIXFsvt031TDqVCAHbsVbgdwfyNicowDCywhon7q1dPStKZOt2wEatXT1/LnSezqXqkU4lFjN2wbB4im/1DMELhWX+pLyp4EX7fBz49UTv1yjzqeZEX6kMnsh3sHb1tRsQWNioAMOEZ7SY8EwIhaGlBUItdxtj9orE4qtLbLJSo3h3hVuwVuBjjO+mNREjtMwIEZ4h5VZCLdDS8rwxofdFYvG6K3VQy6joNxGe0L8faSB/IPlCZfPzJvA3ZJ/nTiKz7g+1zvkNkqGdSx/SPKOpe+42OulUYntkLh3M+GY8EzGE+NLvRObT3aH5C76BNDzK5RHgg5FY/FWUkqCi3+B4q7B3svbiXDSJl7+BtJl0kIvz335/qeskZyEduD7ge+2VwGGRWFwnWAORTiW2RObSoYzPii7EIHAPa0X+ntaunjW5J3hlmS8Bjva99p9ATO8eS4OKfoOSTiWWIBfmoUiMfDGsAu5ircjf19rVk53oRV67PAfYwTf0zUgsfmaRn63UKOlUYmNkwXAosEuRL3MRkXe8n3tHo6sKvshJhpHKnAf4hn6PlP/QPhnTREW/gfAiJEZXYX4BDmIVa1dedwL3t3b1TCl2znWSGyF3Bf7b/E9HYvGrpvKeSvVIpxLrIy7AQxA//UTZSS4SAeMgc+ne1q6eKYV6ea0XbwI+5Bs6OxKL+5vfKJNERb/OSacSC5GIgkOA9xXxkjVIGvxVwC2tXT1uqWxxneTbgP9jbFkFF7k1v6dUn6OUB69SaRcyl/Zm4oz9YeBWZC6lWrt6VpXKFtdJroPsH23vGzoyEotfXqrPaUZU9OuQdCqxLnL7eyiyGpooa3EIuBm4GrihtaunbL5R10l+ACl5nFty4WXg3ZFY3B9Pr1QZr9TBR5G5tB/ji6EFcRci9Ne1dvW8Ui7bXCe5ObKIyA04GAL2jMTid5XrcxsdFf06Ip1K7IRkBn6KievYjAB3IBfn70oVI18MrpM8AunBkEs/8P5ILF6y1aAydbw4+i8jm6Zzi3jJv5C5dG1rV0/FQihdJ/lexGWUW5L5NeA9kVj8icAXKQVR0a9xvOibjyBNTfYs4iV3Iyv6a4ttA1cOXCf5XcY3H78JCeXUXghVIp1K7IzMpU8xvn+tn0cQob+6tavnsXLblg/XSR7i2ZHLI8CukVj89SqYVNeo6NcoXqOHQ5GVfccEpz/I2ovz6TKbVhReo/XfIF2TcklEYvFa6JjUNHj5GfsgYh+b4PRnkEXDVcCDpch6LQWukzwT+Ibv8K3ARyOx+IQRZspaVPRrDM9f/3ngS4C/bVsuTyKx8Fe1dvX8txK2TRbXSc5GIjl29g0dG4nFfx7wEqWEeAuHw5CFw7YFTn0FaRd4FXB3rQh9Ll4M/5XIJnMuPwO+qPkgxaOiXyN4PtYTgM9SuIzrX5AuYzdNskhZVXCd5MbIZtwmOYeHkc24O6tjVWOTTiXWQ4qDfYnCzT0eBs4DklMNr6wkrpNsRfap3uMbOi4Si/+sCibVJSr6VSadSryLtT7WfFE4I8B1wHmtXT3/VynbSoXrJN+JRHzMyjn8EvDOSCw+UB2rGo90KvE2ZOFwDGP/1n4cZOFwcz0sHHLx8kHuZWxtn0HgA5FYXJvcF4GKfhWYhI91DXAp8KPWrp4nK2Ba2XCd5AGM77j2F2TFrz7ZaeDVhP8q8EnyLxyGkT2W81q7ev5ZKdvKgesk34EkguXeET+LLCJeq45V9YOKfgVJpxIzgcOZ2Me6DOlWdlFrV8/yAufVFa6TPAv4mu/wOZFYvK7qkdcCXlTXfkiBsg8WOHU10hjk/FrZ5C8FrpM8CNmHyOVmYD8t1VAYFf0KkHOBnkfhOjgPI7fdyVJmytYKrpNsAf7E+PT6rkgsfn0VTKpLPJdggvFF7nIZAM4HeiuZo1FJXCd5PrJvkcsZkVj829Wwp15Q0S8z6VTiHcAPKRxjfwci9n315mOdLK6TXADcB2ycc3glsLMm2xQmnUpsAnwXOKLAaf3IXLqqtaunoUtbu05yJrI/sWvOYQvsHYnFb6uKUXWAin6ZSKcSC4BvI9E4QX7WUR/rua1dPf+qpG3VxnWS70cu1tzaLvcD74vE4hNWYmw20qnELMRnfwr5N2hvR8T+lloMuSwXrpPcFFlE5DYAehXYKRKL111Xq0qgol9ivNjoLyO+66D0dotszn6nkXysk8V1kj3IHVAul0Zi8c9Ww55axNvwPxQ4G9g0z2k3AV9v7eq5r2KG1Riuk9wL6emQWwn0bqTQX0Pf7UwFFf0S4fntPwGcg6+ZfA5/Br7S2tXzQMUMq1G8ZJtrkfK9uRwdicV/UQWTaop0KrEr4rf3x6SP8h9kLv2pclbVLq6TPAP4pu/w+ZFY/IRq2FPLqOiXgHQq8U7kAt0tzymPIxE7NzbTrfdEuE5yLtIVKXdzO4NU5HyoOlZVF68nwtmMzzwd5VXgDODiYhrcNAte2Y+bgE7f0IGRWPy3VTCpZlHRnwbpVKIN+A5wJMFNJlYiq48LG31Tbaq4TnJ7JNmmNefwQ4jw13yWaKlIpxJzgFORxUFQeeMhJIz3rNauHi0yFoDrJNcH/s3YxK0VwPaRWPyF6lhVe6joT4F0KtEKfAWpIhlUMmEYuAg4s7WrRxs6T0CeUsznRWLxr1bDnkri+e2PQKJy8tVaSgEntXb1PF4xw+oU10nugjRfmZFz+FagU+P3BRX9SeD57Q8Gvs/Y1UQufcCJtVoErVZxneSVyKZlLntGYvE/V8OeSpBOJXZD3ILvzHPKA0BPa1fPHZWzqv5xneQpiIsslxMisfj51bCn1lDRLxIvRvoXwF55TnkYEfubK2dV4+A6yfWQGPPc1e7zwDsisXhDJRd5bQl/iITzBrEMif765VR7FjczXhLgXxjbPtRFckH+Ux2raoeJ2uwpQDqVOAQRpCDBXw4cD+yggj91IrH4cqSLUy6bAj+tgjllI51KvB/JSQgSfBf4HtDe2tVzqQr+1PCa9HwGqV311mEg6TrJSPCrmgdd6RfAq23/U4IjKbLAT4BvN2qaezVwneRFSD+BXOKRWPzKathTKry6S2ciCVZBi61rgVOaOXej1LhO8guMXzQ0fa0nFf08pFOJvRB3ziYBww7w+Wq2kGtUXCc5B/Fl5+Y6rETcPM9Wx6rpkU4l3g78GtgxYPhR4HOtXT3a6LvEeLkgfcDeOYctsEcz93JQ0ffhpbyfjbhs/LhIxM75jV4jp5q4TvIDiE82NwzWQTZ26+bv7kXmnIBE5gS5FX4CnNra1bMmYEwpAV6ZhoeA+TmHn0UWESurY1V1UZ9+Dl71wn8TLPgPAO9q7epJqOCXl0gs/lekjkwuMSRMti5IpxKbAbchlVX9gv8isHdrV8+XVPDLi1d/5398hzcDLqiCOTWBrvSBdCoRBk4Dvs7YImAgXau+j8Tca4JVhXCdZBTJ1n17zuFBYMdILP5wdayaGC+s9zBEVIJqL10NfLGR+iTUOp6b5zdIk5lcPhGJxX9fBZOqStOLfjqV2Br4FcE1Tp4Ejmjt6vlbZa1SAFwnuRPSXzf3i/hvwG616OZJpxLrI0l5/npCAK8Dx7V29VxVWasUANdJboi4eXJ7Bg8A2zabm6dp3TvpVMKkU4kvIGVZgwT/EmBHFfzqEYnF72N8Ea33A91VMKcg6VRiHySsN0jwbwO2V8GvHpFY/BXgc77DbYxP4mp4mnKl79XMuRTpU+vnZSSa4obKWqUE4TrJMLK6f3fO4VXAdrVQTyWdSsxG9h+ODRjOACcjtZdq7s6kGXGd5GXAUb7DH/T2kZqCplvpp1OJTyIrsiDBvx5Zkang1whe0/QjEAEdZS41sBHnNSS/j2DB/xfwztaunp+o4NcUJwDP+I5d3ExJW00j+ulUIpROJb4HXAes5xt+EzgGOKC1q+flihunFCQSiz+KJDXl0uU6yU9Uwx6AdCpxJPBXxvc8HkE6pu3a2tVTsxvOzUokFl/F+JX+EiSQoyloCveOV+vkCuDjAcN3AZ9p7ep5qrJWKZPBq5d+K2Obqr+EbMRVrNRwOpVoQfzAQRVAHwcOb+3quadS9ihTw3WSCWTVP8oQ0mKx4WvzNPxKP51KLEZ8wn7BH0JWj3uo4Nc+XrTOMUBuD92NkHDaipBOJeYCNxAs+D9DNv5V8OuD04Dc634GcIlXrK2haeiVfjqV+ADwO2BD39AyoEsv0PrDdZL/i2S45hIrd1p9OpV4G3AjsJ1vKAMc2drVc005P18pPa6T/CjSbSuX4yOxeNX3i8pJw67006nEUUhPWr/g3wfsooJft5wHPOI71uslc5WFdCoRQ/IF/IL/IvBBFfz6JBKL/xHwJ2d9z3WSi6phT6VoONFPpxIt6VTiPOAyxnbPAdnE/WBrV89zlbdMKQWRWHwQ+KLv8NaM3+gtCelU4nPIXsL6vqF/IIuHf5bjc5WKcQJjSzDPARq62UpDuXfSqcQ84ErgowHD3wS+peFzjYHrJJPAp3MOZZDY/ZLsz3ilOc4DvhQwfDVwdGtXTzpgTKkzXCd5MuP3hjojsfgt1bCn3DTMSj+dSmwJ3M14wU8DB7d29Zypgt9QfBVJ0holinSjmjbpVGI+4usNEvzTgU+r4DcUPwL87U1/7DrJmdUwptw0hOjn+Fy39Q2N+lyvrbhRSlmJxOIDiADn0uU6yc7RJ66TXHey7+vVYrqHsTXYQVwAn2zt6vlOa1dP49weK6Muw+N8h7cGekafuE5ydqMkcNW9eyedSnQDFzK+OuY/kAidFytvlVIJvBIN/2Bsc5KlwM5I962eSCwe1AQnkHQq8WGkGuN839BzwP6tXT33T89ipZZxneQVSIXUUVYjC8kPAOcgUWJPVMO2UlK3ou/5XH9IcO37q4Bj9Ba88XGd5HsRt14uK4F53u8zvFIOBUmnEl9ENvD8cdp3I5nay6Zrq1LbuE5yIyQybF7O4dy5tHMkFv93xQ0rMXXp3vF61/6RYMH/GhBXwW8OIrH4PcDFvsO5F21QTfu3SKcSM9KpxE+RWj5+wf8V8CEV/OYgEou/hOhHLvPy/F63+F0iNU86ldgECaHz++/XAIe1dvU0XVOEZsZ1kvOQvqf5mAsENizxKmT+FviIb8gCpwI/UP998+Bt3M4qcErBBUS9UFein04ltkIEf7FvSH2uTYjrJPdDSmQvKHBa4OrMi9D5A1KfP5c3keicG0tipFIXuE5yB+AaYJsCpzXESr9u3DvpVKIDKY622Df0dyRJRgW/+XCQC7UQ41Zn6VRiAXAH4wX/aaQ6pgp+89GPuAkzBc5piJV+XYi+V7f8L0iBrVx+D+ypPtfmJBKLvxmJxb8E7IZUuAxizO16OpVYhMylHX3n3Q+8p7Wrp7/khio1TyQWH47E4ucBOyAls4Mo5PqpG2pe9NOpxB7A7YA/5vpXwEGtXT2FvpmVJiASi9+FXKw/ZLx/f/boL+lUoh25oP238H9Dqq1qL4UmJxKLPwbsDnyZsRVdIWcu1TPTDtk0xnQB+yJ+1QuttX+azvv19/cvAg4CFqy7/MkN1l3+RNyAPyniJ8AJmmGr+HGd5G7A5XhuwBXRDa58dc4mz89+c1nLwpcePMKML8D3J+ATrV09qytsqlLjuE5ya6QPx7sBsib886fWf/tSROteBq7t6OiouzpeRYm+MeYLwPbW2uO852cBm1trD885Z13gXGvtMVMxpL+/vwWpf3EsMHv2Gy+xcFk/ZnxgxlnAGRpVoeRj1V3XzR8Ohe+aNbS6Y9mcTXEJ0/biv2kZGReu/1skvNetgplKHeA6ybCVMM5vrIyun31lzqa5RRxXAxcBp3R0dAxXx8LJU2z0zuXAo8aY05DstH2B9/nOOR3JjJ0q3wdOHH0yHI5iTQhjx/wtT2rt6jl3Gp+hNAHPrrvkdKBjtruSkB1huGUmI6GwX/R/CXyutatnwsQtpXmJxOLZ/v7+dSJDa8ysoTf9VXtns1azghrr1CRFu3eMMecg/8h9gL2stU94xw3SPu5Wa+1tUzHCc+k8jM9nFk0vp+3F+zB2hFc3XOKumrdoq46Ojuen8hlKc5BvLoWH1rDJC/8knHVZOW/R0PL1ttxyux12qrtbc6Wy5JtPPlYDS+pFmyazkXsZUpTohFHB9zge+DBwoDHm2CnacRABf9RM63q81LYTLy/cnlXzFkW88xSlEIFzKTtjFi9uvDOvrd/OqxtsM2OkZcanqmCbUn8Ezicfs6kjbZpMctYZwCv+11hrfwz8eJp25E2uSc9aL/fpwml+jtL45J1LQzNn8/rMt65fnUtKMRRK/MulbuZTUSt9Y8yJSL3yg5BQplJTbKicxuMrE6FzSSklDTefJhR9Y8yHgKOAz1hrHWCuMcaf2DJdrkX8YoVY7Z2nKIXQuaSUkoabTwVF3xizGXAJ8Clr7Rve4fORvpIlw4t1vWiC0y6ql40SpXroXFJKSSPOp4I+fWvts8DbfMd+iYS7lZrRxtbHMnbj5K1Y2DJ8ptKY6FxSSklDzaeaa6LS39+/KbJ3sBDxk11bT9+iSu2gc0kpJY0yn2pO9BVFUZTyUfMF1xRFUZTSoaKvKIrSRKjoK4qiNBF11S5RUapFdJdjrQm1EJoxk1CoBRNqIRSe4T3OxLTIY2j0ue+4CbXQEg5hjJHHkKGlxXsMm+DjLSFMCEIhQ6glRChkCIdDtIQMM73HyFvPW+SxxX88+HFGKESLgRktIULGMKPFEDJm7LGQ8c41b53TMuZcgzHQEoIQhpYQGKAlZAh5j8ZAizGEDLQY5N9pIOS91owMY+wIjAyDHcGMZMGOwHA28LgZycKIHJfxLIwMY7ND8jg09NZzOzIM2SHs8PDYc946dxBGRrDZQezICCOD2bceR4aHGRnKYodHGPYexz8fkudvvW6YkeER7IhleHAYOyyPI77nY8aHhhkZtt5rLcPZEYatZXDEMmzxHi2DIwQeHyH3nLVjF9mnTb65rCt9RVGUJkJFX1EUpYlQ0VcURWkiVPQVRVGaCBV9RVGUJkJFX1EUpYlQ0VcURWkiVPQVRVGaCBV9RVGUJkJFX1EUpYlQ0VcURWkiVPQVRVGaCG2ioigVwhjTba3tVTvWorZU3g5d6StK5eiutgEetWIHqC1BlNUOFX1FUZQmQkVfURSliVDRV5TKUXV/sUet2AFqSxBltUM3chVFUZoIXekriqI0ESr6ilImjDHrGWNuNcYs9R7XzXPeOcaY/xhjHjbG/NgYk7e/aTnt8M6da4x5wRhzQYlt6DTGPGqMedwYc2rAeMQYc403fq8xZnEpP79YO3LOO9AYY40x7yqHHcXYYozZzBhzhzHmPmPMg8aYj5bic1X0FaV8nArcbq1tB273no/BGPM+4P3AO4AOYBdg90rbkcO3gTtL+eHGmBbgQmAfYDvgUGPMdr7TjgFWWGu3AhLA90tpwyTswBizDvAl4N5S2zBJW04HrrXW7gQcAvy0FJ+toq8o5ePjwOXe75cDXQHnWCAKzAQiwAxgWRXswBizM7AQ+FOJP//dwOPW2iettYPA1Z5N+Wy8Dtiz1Hc8RdoB8sV3DpAp8edP1hYLzPV+nwe8WIoPVtFXlPKx0Fo7AOA9LvCfYK29G7gDGPB+brHWPlxpO4wxIeA84KQSfzbAJsBzOc+f944FnmOtzQIrgfUrbYcxZidgkbX2DyX+7EnbApwJHGaMeR74I3B8KT44XIo3UZRmxRhzG7BRwNDXinz9VsC2wKbeoVuNMbtZa/9SSTuA44A/WmufK/0Cm6A39IcNFnNOWe3wvvgSwJEl/txJ2+JxKPBLa+15xphdgSuMMR3W2pHpfLCKvqJMA2vth/ONGWOWGWParLUDxpg24OWA0w4A7rHWvum95mbgvcCkRL8EduwKfNAYcxwwB5hpjHnTWlvI/18szwOLcp5vynhXxeg5zxtjwog7Y3kJPnsydqyD7Ks43hffRsANxpj9rbX/rLAtIPscnSB3hMaYKLABwf9/RaPuHUUpHzcAn/F+/wxwfcA5zwK7G2PCxpgZyCZuqd07E9phrY1bazez1i4Gvgr8qkSCD/APoN0Ys4UxZiayKXlDARsPBP5sS59EVNAOa+1Ka+0G1trF3t/hHqAcgj+hLR7PAnsCGGO2RfZ+XpnuB6voK0r5OBvYyxizFNjLe44x5l3GmEu8c64DngAeAh4AHrDW3lgFO8qG56P/H+AW5AvtWmvtf4wx3zLG7O+ddimwvjHmceArFI4wKqcdFaFIW04EPmeMeQC4CjiyFF+EmpGrKIrSROhKX1EUpYlQ0VcURWkiVPQVRSkbXimDK3Keh40xrxhj/pBzbB9jzD+9MhSPGGPO9Y6faYz5ajXsbmRU9BVFKSergQ5jTKv3fC/ghdFBY0wHcAFwmLV2WyRk8smKW9lEqOgrilJubgb29X4/FIlEGeVk4DvW2kdAolqstSWpMaMEo6KvKEq5uRo4xEsuegdjC5l1AP+qilVNioq+oihlxVr7ILAYWeX/sbrWKCr6iqJUghuAcxnr2gH4D7Bz5c1pXlT0FUWpBJcB37LWPuQ7/gPgNGPM1iBFz4wxX6m4dU2EFlxTFKXsWGufB84POP6gMeYE4CpjzCyk0uRNlbavmdAyDIqiKE2EuncURVGaCBV9RVGUJkJFX1EUpYlQ0VcURWkiVPQVRVGaCBV9RVGUJkJFX1EUpYlQ0VcURWki/h9Jm7wGigb9KwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -1291,12 +1197,11 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -1322,21 +1227,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydZ7gkRdWA37MLu0teclrYJSwgAgICEhXJQZIEQRQQEJEMHxJVMAuIBAOIKKIoQVBAQHIQVMICktMShCUrQTIse74fVbVTU7e6p+fOzJ259573efrprlxdXV2nqrq6jqgqhmEYhtFrjOh2BgzDMAwjhwkowzAMoycxAWUYhmH0JCagDMMwjJ7EBJRhGIbRk5iAMgzDMHqSnhFQIjJSRO4Wkcu8eTERuU1EHhOR80VkVLfzaBiGYQwcPSOggAOBhyLzccBJqjoReBXYoyu5MgzDMLpCTwgoERkHbA6c6c0CrAdc6L2cDWzdndwZhmEY3aAnBBRwMnAYMM2b5wZeU9Wp3jwFWDgXUET2EpFJ/ri/81k1DMMwBoKuCygR+QzwkqreGVtnvGb3ZFLVM1R1FVVdBXi3E3k0DMMwBp4Zup0BYC1gSxHZDBgDzI4bUY0VkRn8KGoc8FwX82gYhmEMMF0fQanqkao6TlUnADsC16vqzsANwHbe267AJV3KomEYhtEFui6gSjgcOEREJuO+Sf2qy/kxDMMwBhAZSuo2RGSS/xZlGIZhDHJ6eQRlGIZhDGNMQBmGYRg9iQkowzAMoycxAWUYhmH0JCagDMMwjJ7EBJRhGIMCEbldRGbpdj6MgcMElDHgmOoUo5+sCizU7UwYA4cJqDYgIguLSM+VpYjcKyIrdjsfGd4TkY91OxPGoGTo/LjZZURkBRF5otv5KKPnGtVByhTg861GIo6525CfwPLAOm2Mr53M3+0MGIOSlgSUiJwqIou3KzO9hoisLyJbVPS+FrBYJ/PTKsNGQPnGf/cOJjFnG+LYAfhPG+IZDOR2rDcaICKziMgGHYr7HyKyaCfibiOtjqD2B7ZpR0aqICJjmxAY7eDPwKUV/fb8OzhsBBQwG34/PxGZVURmb3P8H7YhjgXaEEfKgE+JiMgGInJygVvYQb+tdU9ERntFl8G8vYgMxemgfYFrUksRmSAih4rILxL7MSJStV6tgfvOU4iILCIiMyd20oH3aahwANUFRjsYk1qIyBoicmDGb8+3/z2fwTYyDaZr670OeDTnSUSW6mf87WgMO96gishVYRrRNyyzdiCZ/YG6F0JExvrLZZqNzE9bbJgTOCJyiIhMw+kCOzhyWqnZdJrM080iskSB2/wick7FeJZvMukZM3HMAjwJ7AfslTj/CHheROaIBXgJazZwfxo4MbHbDXi9QtztoFAQisgC7foWLCIjRERFpE+DP1CIyL4iMluTwfrUD+A4nAqjlGxZ+Q7mHolds/koRUTmrLJYajgJqMBIYCLF30AeCY2pbxh3K4ss6jlOS+yX7kflVh92RhGZqcmwpXFGbAR81F9/GXjDp9nOHvDojN2rIjKR2rRC9v5EZEcReSuxvha4uiCtlaI4TxSRg0JUVTPrG++ZErulRORWEfl6Yj/SC8q1KW7M1wZ2rpDuQsC9vjHcRERm9yOhsk5DTodbqMvi4x0TCfPQMXgN2KVRnoCDROTTIvLjKJ9/EZEdIj/pd9KstmsfdmZxSknbxd0ism4mHQWexwnL2H6UiBzaKFIRmUlE5o2sQkN/UUmYjZJR+3gRmSoi8YbVrUyj/RTYpCR9rdjBLPoO3af99/fze+DMyG5z4H9lCYjIl0Vk2Qp5CbxCXmiWZ3AIE+4118MAstNPpwFnNYg3xJdO8T0MPOvj3VVElquQx9ConAW8ICLzhJ6LiHwqJ7TEqbzfviTOOTJ203xcX47sXheRXO+8T4MoIheKyBfKbqSAuBd2dIGfNYDpU0gi0mjENS0xn+TPCzaRrxeACxO7R4BPAJ9PyiV+Z5YWkVOaSCcl5H0n4K+4UciTwM9KwswAICIf9w3UnMDjiZ94Ci4WlAv4kehDvhMkIrJIEvZFXMN4sIgs6e0+A3wuk+9A2ch/N+AvJe59EJFHRSTXyQlc7kdLOT9HJuY1gRNEJH4/vyQiCyaC7lfAS5H5fn/+REk+rgK2EJHzvPnXuA7wRv4+RgFN/1IhIhtHgq+RgGulIzvCpzcustsWmM/b3+Dt6t6lgo73GcA3vaBfOvG/k+S/m361UgaHCbGACiOVMeKWiI8UkXOBD7yfMM03sSxCEXkMOMQbc73Iufz5N8D3krCf9Q3MuGj0El70ZXFTGS9TU9R4I/C2Dzs2qsC/AC7w9tvGPTrP90TkEyJyWmSnOCWQq/hwoXc80vvdLfL7QdIjBFeJ987cbxx/kX3IX+mIzQvnOYA9y/yVpLVrg/hFROYVNzc/BtgscosblY8AP4nM8TtzNO4bQ0ruO8DRIvJcZFZgU2/cIfG+qfczT+R/NhFZj1qHKIze4o5PWOBQVCYfAhvgplnfB9bHTdnF/A/fQFF/r3GcKiLrisi3vDkVWCHP7wGrR+YFReSBgrzFTCSpH5l6/Tz+nRKReDZkyaRDcbw/x/fyUZyG7hv8O/hLYHwSfxDOfVbVihvxBvtLqAnvUEZT/fnvwFE+zGw+reyPxt4tCJsrgQmJ2/bhXkXkD7k4MvHNl+t0evd/UnuHn4naoPh75br+PC0KtybwjojM5c0XSm20PhtwDPCwr+9hheAfgGtEZD//Xk8fnTdiOAqoUdQq0m24JeJTcdp8Aw11SonIvrhKfJS3OtZXwgkFQeKHvCjwNW98Bjhb3DRIeEmmRuE+LbVpq8CruFHQzIn9hcB43/jGL/SXqBcoSv2zP9+fZwBOAc5KhFJuNLJWxq4OEfmDiHwutS7xvyi1Z/MycD2t9RDJlBEisgLuRXqJ2jTD7ZGX95IgcUelyjuT+/60DrCgiCwnIuE5/9qf10v8hqmml0XkGHGj1UNw307TUX7h6EVEvpdYfUh9+edG10sDQTBuJ7XReZzOaOB0XI9Zge/79NIpnlHAFyPzc8CyIrKqiMxHc8TlHu4hfCd5IfF7l4is768LZ0wipneCROQA3xHog4j8UET2Ah4gWW0rIq9TazfC+xu/Q2GKrGxkGM8wXO7PQVCGuNbCjbgDZaPXF3Ed2ByrU1+vL/bnugU1vrMWpxHagiAkt43cNqN2D98F7pP678Y/8XkPmtIRkbtK8g+qOmQOYFKB/Yy4obr6An7ZXxcdB/hwwfwx3FTJQlGcuXDXUhslBLtV/fkiH+4UnICJw/2tQX4uCtdJ2p+Mrufw5/G4j+Vx+F/485z+vCawTyad+aLrbaK0PuOvz8UJjODn8qg8fgB83V9fEfm5GrfyTIEVcSOO4PYj4DtJmd5fVhaR32X8+TcZf6tG1wtm6kMu7mtK3O+J6tFCJXnaCdezD25XRW73NnjG6fGnxHyMP5+U2K+VCTtXQZzn4UYUwbxdkv+y/Pyxgh8FvpCLryDs3pHf9XEzBBtTq4tjI/cVonBvR9c/KsnLGhXyEI6/F7kl9/N0hTJ4BfcdMls+/nwcbqS8Bk6QqC+DUQXhzvZ5+Kw3j/Xnebz9xwvu4bnk/vvU3+T4MDHviZuNUFzbcoS/vrWgPM+pUD7PJObLgTHZtrvbQmWABNShUWGMr1CAByYP+9roOm64i45p0fUXafyC39Igvj8nlSzYnx5d/9qf16ImkMLxy8R8I66Xl6bz0+h6lyitzaPr25Iwa0bXb3t/l0V211ETyJ/PpPmeDzOxwnMJ9z/Sm0cU+Ls2DVNBQCnFDfv9PtypBe7jvXta7or7nrRUlXtrcBxXYH9Pxm61knjizlkzAuoC3DfLSs8oE9/okud5PvCNxC2U2bLez+GR2zv9KcMG9/iPEreVqe90tnKcnpjjDtvPG4QNK5AV1xkK9kvgppur3P9WTeZ3P9ziGsV9U69anmXHsxm78cNSQNG3EavUECZHnwavH3G8jpurzrn9s0HYS6PrGQv8nBddn5a43Vwxj2nvJ8T5Hu6bQC7MwYk57cXd3iDN9/tRnruHSl3FfxL/ZSV+tyxx2yF5DumxPG7qp9l60c1j71A+FZ7B+dR3vMqOWWheKB+fmJf35xOBr1Pr6Cnu+1nT99vgHl9oEH6ZDj2Drzbh95boGcSCbQsaC7f+tltn437haFd8RcewFVDpdNeyrRZmmx+MAm814ffRAvt2NI5lw/NONb5T+1GeZ3foeb3SoXvs6aMJAVU1zpP7kY9LEnPa8WnLfbYQ/rlW0+/g0VA4+aPK9GQzx4VtjCsroHL/VAw1NkrMnfgxtVX6fMgvoWhlYTP/IBRRtqS1HfHnGNmPMFX+55mOVN9Roh3bVQ06RGQkBSvxItKVhmX056fOLRNz5ZVeVRGRNI1maOa3hYFm08ZeAEh/KWiVbRt7aY3hsIov3Qer5c1Y/Qs9FKnakLcVEenll3848HUaC6hm+Gwb42onlzT2MiiZ0O0MtIFs57iSgPJr77uy+7S4P+wfEZHJInJEG6K8og1x9Ocn1cFAw90POsRzjb0YHeTYNsc3trEXw2hMwyk+ETkWt/JHRGQ+Vf1mx3NVS3skbhXUhrj/le4QkUtV9cGBykMBuf9HDMMwjP6Rnb2pMoL6UFV/pqo/pbbTwkCxGjBZVZ9Q1fdxq8q2GuA85Fit2xkwDMMYQmSn+KoskviriHzbRzCQ28aD2z7omcg8hWRvLP9nd9jBeR4Ghm5NhRmGYQwbGgooVZ0kInOo6nUDkaGEnFStGwqq6hm4jQoRkUkDkSnDMAyj81Rdxbe7iBwn0c7WfiPCwzuUr8AU6pdGjsM+qA8W1i9xe3/AcmEY/eftbmdguFNJQKnqzrgfNa8WkR1E5HycvpCs0r82cgcwUUQW85sW7kh7pxkvbuzF6CevJuZno+umVRAYRhfYt9sZGO5UXWa+AG70MjNO38oDqrqlqv65k5lT1am4nSCuAh4CLlDVKtv1A9kt+lN2bSF7A03DLfZ7DKVYyWBVnm3sxTA6wvvAb5sM81QH8jFcyCpErDrFdzpuN+Y1cdu+zyQi50hn1IXXoapXqOpSqrqEqqbqAxpRtrX9uapaqiWyx3ijxG3KgOWiOoobAQdu7EccoYNxX0X/7+H2Kwv8p8hjD/ImTjFgU7tkGB3jbVVt9uflxTuSk87SjbUFOdIZF6D6FN/WqnqZqk5T1Q9V9Uic1tcr25nDdqOq70bGVKNtf3ZNWLHAvpW/8C9rIWxgXGMvpfyqDXlIict3Weq191YlCKhtqK3ULOND3GgbnFqAw/qRZrfYQlUvV9XfUdMKXIXXOpCXA3FqQwYrrc6MbEQFnXAR/4HaZn8VOLaB+404tSPZRruAKp9bcsLokIzdgFNUdv3e6siv6uuFf5Kq8mSL4d/HqQHPsR5u/7GGKowzFFXqxahXX100XRmrRM+pp260h9qnVbWR1trAUxX9BUKeH1PVdyL7h5sJr6qPq+ovcSofijoDbwGTcPq2NlTV41T1rCbzm+OOxl6aIjfafQqn7iGQ1okzS+ILyvHaca+BS3DCfrDSysh5DVW9RlUfz7gVCYwDgFSpaBmN2qKjVPVq+r67vywJs0yJW+CdjF38Pl3vz09ViKuIj1X0V+n7Xkt78anqf1sJP0AEDZFpAx83AlNxmkQDe9CXh5IRWS0i1ZtU9U3cj8QxlyfmV3GLTXL5qGu4VPUpVf1hLr2Icar6CE4dCEBuh41nMnZxOjcmVkfm/HmaaQQV/xuD/5YYsxhuSquIJ3BKHOv2PFTVz+HVr6uq4NSxB+bGCaY3VPVaWies4Ho5sa+yAvF46rXqxlpdp5G8d6q6mP8RPRDUsD/kz+kP8sfiFDWG+KC+fn8Np8Mo5m/+XGUVbK4z9JeMXahvC2TcqnB+Yk7re5W98zZIzHdT7R7jrdv+Cq5OqeqtOc/eba7EOoxa/q2qp5SklY7+Q/nuB/w7sn/Ln5/zaV6L08QcuCi6rhvhRiOQQ3Gjv/SXmxtwu4+nfIhT94OqhpW3I3HPYlmg2TY+1OObKN9MtqzTVaPbKjLaeVCssFBxOmri7d1/593eBO6K/L0WXcfH3wvsNUpnzsQtKLj7P3/+l/f338hPUDPwTEGcv/d2ZwCPR34mRX4up1ZH90zjoa8OqR/hRgaalFHwv2PuPoHt/Xk3fw56pnJ6gpbD7UgdpzGbd/sTboPLoq33r/T+1wY2SZ7lzpl8v1RSJ0Kcf86k83PyGnmVmgqUCxL7p0ryHd/7ukmZBrdUW7Nm8jzCP4N1onwqXh9Veu/+HJ77u95t8SRPN/lzTgNvfFyN05qcaj0N+oeCyoZdqK93jcokHLdG14vgVtIeXRDPCQ3iOjIK82ZSNkE9RqyaJbyHaVon5Z5D+l5k8neQP09M3DduEG6HKA9HebtLqLUf4zN5eMuXV4gj1twc4poZEH89PnXP5OMU3IratZMyeTby/3gSRoFvx/eYHHPjRnrLJenV6dPybl8kyV96DIfdzME1iO9SP68clqtPwE3RgVMVvlgSdkN/zk2lpKvU0u8BoYcVernfAFDVuan1qtIe+sY4XTiB7/uzqOoSkX283dIV1BYShHzeglfjoaqhB74rsJuqHkrfkUA8sstNkWyrqn+MzJ+jNq0xe8a/4r5R3jbdQjUs9DhaVZ/KhKmPQPUWVU2/c/6Bvio6tCSa0APMTSn8AaeoLsf2Bfa5qa8np2fE9bTvVzcyTUfLk1X11Mh8N7XR73TUfes9j9rKprBaNp3ePB74Lq6RO8enPca7hXd7NtyI9AZvvg1YMorjvSTtjdRNx8bPGmq9/vDeBK22VZmMm4IO9e5VVX1G3fft75FXORO/G32mhVX1B5Hx6cQ5jITibzPpSPQon6f7G+S9aGovPI90huAmXEO9SWQX14ULcSrsUdXvA3cC56lqo29OcXv9Vuqoqm9PlzKq/6bv6DIQVgR/U93IPa1Xn4+jzYR/Q1Wvisw7hDCq+l9V/bKqxmX6tKo+TO1b+d+9398V5C9KvQdGPu06KBhBZXojhRI78feZ6Pr4TC/kyjSuyO1i3Es9EzWliasnfhekpjJ9ij+vWJCXM6PraSX53s372bXB/S1DNDrBTRtd56/Xj+5jX5wQlyj93f11UOOdU4e9bEm5zuWv78WpSR9BvebjK5t45kr5CGrN8IxwH4RDGr/1drEq9aCJOB5F/zG5r8eo9RQV11v8HG6kdUaS9sLAMlFcDyb5/n6De5sryrviR9MVy2Wp2G/0jEZ486dwDeux8f0lcXwbuMu7LeTPP/Hn7XHTfiF/kzN1QPFq5XHCGdwUsgLPl72fSZoLe7cf5PKKmy76SmK3h/c3fxRmD/Lv7PZF5erD3R6Zf+bL7W7c9xYFFq3wPMb6elL6/MiPoP6H6wRNiMr7zqLnFoWbIVNWivtWvm5k95GSOB6L0gmj70OjuA7217Pk4sB1+BdO0r82Mn8cmKWwPKpU9sFyUF1AXVXR3/L+egz+xfbmv1IsoNYBRiZ2X/H+V82ks3IcFzBjQV5+5a/nAUaV5HuPRi9BhXuPBdTnM3nZw1+PAP4Z2V8fhZOCuGdtUObtFlCfiF7qnICaPo3kzXMDo6O4U62hD0d+FfhFE/n8W2L+XhP3+TSuQ9OnA1Pgf5lM3Vw6429rn5cTChqY9XCjHXDTm9t6/+vSd8rxqaSs4nJ6wl8HVfAPNagDIewckdsI3GhdgZUzYUeWxPkCrsFeJ1Mu2xa9M6Fex2kAYyLzFkV1PROXAPNVqCdzJHYLAPPi2qHLvN0/07Iqie83kfn/GuUhCR9r8J6DvgIqtAWjyvKR5OfaqukPB426rRBWkaWLI47Bzb+PJtG0qao3Z+IJQ+jcdNLduF7EA7gXLLdj/Kv4VV6q2miFUjumbcvieAOXZ9T9J7JG5Db9g2poXVLULSYp4mJcg9kMUymepoP66YtcfQ/3ujqA1i/8OR74tc9XmI5Ip/iqlvfC9F1FVfn3BFVd1F9WXf79UiaOolWoUDCNparX4zUNq+oEABGZU1VfE5GDE+8H4EY9p2WiGunjeLTB//PzAy9G6b8eXU8Tkbf99V2ZvBatPFwA91/T1Ao/76dMJJq692l8GJlzi0ey+Heiz3NJ/PTJn6rG9fsz/rw17lvntdQW0+RYDfcdKcR1YtX8eg4BNsN9O53qiy8sjlkSv+JP3VRhlbL9E03sBjRcBVS28cyQLXBVvR243RurPHD14fqsqPOVts/LlvhJVw+V0Q5tv4VCRFVz35vA/XN0I/AK1f5ZysW9TRPq2QOLUK4GJhYCdwCv43qC4SUb4dO+LQmHqoa9Jh8Rkd/h5tn3T7yl3z6yqGq6smxjou9z7UZVX6FagxF4qom4Q4Otif2lACJyOa7hXCpyjgX5JkRCKInjJd8I/r3AfSrN3Reqmk0rojA+VZ3cTFoDhaq+KCKj/fWyJf5a+k1CVS8j+lczFqCaX4rfKL6m1MQPVwE10DTb6LZCyyMoVf2niIzFbfWSGxHmwpwAbhNh+img+kPSu8wxXUCp6g3AWL+vYxBqzbwD/8b1XGOFlX9tIvx01P3n0guEunkuzatEv4LM7gmq+oyIPEVNQH1AtPRb6z+wF1F195Bm+Qfux++YRgKsV3mZIb690nAVUFUlf7PTAb3A7yn/x6gSfmql6R+xVfXy0LPrJ9vTd/VbK/SZRtP6f46+QzUhs5jWVh6GaZqlcR+RBzNh6k3JrAwrQyNVNxm2x304Bze92ayy04506vwI7OLE7uYW62xXULfaMl11PKQYjgJqHsr3tesErWyF1BResDS7yWW789BvdRqqmvuZsBVKGzpVfQk3EiiPJLMsXlU7vZv/QNCRhlndPpf/89fprxQ9Ryt11ugcw05AaXO7X7RrBDWQU3xGPYNxFDyQ3MPgneIyhjjDTkA1wU64/3TawST6/pBrDAylq6aGO6r6IP3fqsgwOooJqALU/cnfrrjuB+ZrV3xGdVT1eWwUZRiDkuGy1ZFhGIOHqdR+4zCGMTaCMgyjp1DVGRv7MoYDNoIyDMMwehITUIZhGEZPYgLKMAzD6ElMQBmGYRg9iQkowzAMoyfpGQElIoeKiIrIPN4sInKqiEwWkXtFZOVu59EwDMMYOHpCQInIIjjV6rHqgk1xulgm4nbHzumYMQzDMIYoPSGggJNw+oTiPeu2wmk9VVW9FacmYcFsaMMwDGPI0XUBJSJbAs+q6j2J08JArOBvirdLw+8lIpNEZBJOJbJhGIYxBBiQnSRE5FryG1IeDRwFbJQLlrHrsyt4A500hmEYxiBlQASUqm6QsxeR5XEKt+7xap7HAXeJyGq4EdMikfdxRFo5DcMwjKFNV6f4VPU+VZ1PVSeo6gScUFrZq/G+FNjFr+ZbHXjd70xtGIZhDAN6ebPYK4DNgMnA28CXupsdwzAMYyARVVP2ahiGYfQeXV/FZxiGYRg5TEAZhmEYPYkJKMMwDKMnMQFlGIZh9CQmoAzDMIyexASUYRiG0ZOYgDIMwzB6EhNQhmEYRk9iAsowDMPoSUxAGYZhGD2JCSjDMAyjJzEBZRiGYfQkPSOgRGSkiNwtIpd582IicpuIPCYi54vIqG7n0TAMwxg4ekZAAQcCD0Xm44CTVHUi8CqwR1dyZRiGYXSFnhBQIjIO2Bw405sFWA+40Hs5G9i6O7kzDMMwukFPCCjgZOAwYJo3zw28pqpTvXkKsHAuoIjsJSKT/HF/57NqGIZhDARdF1Ai8hngJVW9M7bOeM1qVlTVM1R1FVVdBXi3E3k0DMMwBp5eUPm+FrCliGwGjAFmx42oxorIDH4UNQ54rot5NAzDMAaYro+gVPVIVR2nqhOAHYHrVXVn4AZgO+9tV+CSLmXRMAzD6AJdF1AlHA4cIiKTcd+kftXl/BiGYRgDiKhmP+0MSkRkkv8WZRiGYQxyenkEZRiGYQxjTEAZhmEYPYkJKMMwDKMnMQFlGIZh9CQmoAzDMIyexASUYRiG0ZOYgDIMwzB6EhNQhmEYRk9iAmqQIiJzisj8Je4iIksMZJ4MwzDaybARUCIyTkS26nY+2sgNwDMl7tsAkzuRsIjMISKzdiLu4YiIzCAi87YQXrwOtVbzca6ILNBqPAOF18K9bLfz0UuIyAqD6Rk2YtgIKODbwMXdzkR/EJFRIvJoYr0QMGNJsNk6mKXHgGs7GH8dIjJGREYNVHpd4GDgJREZ2WxAL5guA55sQz52xGkXGCx8Dnig25lIEZFNRWSRDsY/t4ioiMyUcb4HOK9TaQ80w0lAdQwR6XQ5zg5M7HAaAIjIbBWEwbwDlR/Pg8B7BS8kACKykIgMuPoYEdlSRMa2GE3o8T5VMc0lRGQ+bzwA2AwYLyKLtZgPKNC7lsnDOBH5eH8T8eFb1VDQq6P4K4DjWo1ERL5S0GnZIjmnzCgim4vI0hXT+XJ/OkcN4txGRC4scf+liKzXKJ7hJKCWaiWwiHxSRC7N2K8IfNhK3BWYlrFreUqngP8BVzUbyE+3dKo+hYa3bOriWVxjPdBcAuyfWvpZty/lAojIIn6X/kAQ9uMK/Kf2k3GjJoB4iqtPPvrBD0Qkq7064XxgUgvpfAqnB24OERndQjw9g4gsKSJTvFETtxlEZOYmozwdWLwsyQL7RXH14/SK6Zzhw+QTEdlHRA4pcJspuj4zagO+AGyb+D0mmpLdE8i+HzHDSUA1NXUhIrMmDcx2wBYiMlfidUKrGatAvwWUiKwhIruLyG+aSG9d/0LNXhZ1Yr6fzNSCiKzq41IRGS0iY0VkJRF5oon8BBr17seLyHgRadgZEZHFROR3/chDCL9wJDhy79FI4NcFC1mWB+IFLI0armdEJN2lfzYRWQPYK7Jb1edtVhHJlpUXnHOUpLUUsHWD/EBFZaci8rqIfCfjFMrsNVwDWSWufZNvTmOqhBtAHgOKhPsFwFv9iLNw1qCEUC/bpariZODEAre3/Ts3F7AHtc8Ode2DiFwAHEt9fW3IkBdQIrK9iCzfhP/9RWRt4LPAryOnUFYfbWf+KuRnVtyUQfjeUJUgSBcHvgjs6qfvqsbxbeD1Evc5RWT1qCFcBtg+4+92aur9shsAACAASURBVIonRwGnAHdRGxU1w8YAIrKu+BWKIrKgiITe3wG4abJHiiIQkSNFZFdgE1wvr8jfwiKyYWTeI6TjG8m7qS1SyU2PhHLeIeM2zcczk38eHyvIQywElvRCfhZvngWnMy0mNA5jffjl4k6GiHwM+AlOKJRRON0jIlv7fElkpyKSu09w09Ori8gGJWmEZ7mciMzmr2fy8a7ppzRnAn5K/TenUxrcR5r3Mf7c7ylZEZmnwH6W1Coxb1Mx/jWSzkXufZ01dfPltE7irxkBVeZ3upwQkZ1F5P7EfQfgzsjPovTtwGxfc5ZPVM+V6pA5gEkZO8VNRai73YZxqD9+6M9z4xqyn3vztpHf5avG28Q9jImuZ4jyo7iXelZcQ12abhRmJ+D6yLw/MBpYDliqJFxh/JH77sFP6h+YD7jQ23/Bn2cG/pjk5ctRmBWAw5O0Ppnmx1/f4u9NC44TgCWBuRvdH25649oCf3NG5pNwQlaB98rKyZexAgd48yzAT/z1ht5tLLB+kqc5gRmiNDf1570y9/hiYv6XL8OPRXZn+riWa+K5KnAksIG33wKYPfKzDq7jET+PY0rifDZNM9Sd8Cwjv6GMPurNX/XnH0X+FwL2jswzRvGOB15P0lolin+FTF4WAP4O/AH4dGS/N/A5f/1xnEAoet6nJuV3fkHZfg+4MbIfC3wHOAb4K/5dicKsmElrP+82GVjM272fqR+5fC4MzJrJ2wR/PSuwUuL+YZKncH1oJs0xufQju3ui6+satoeNPAymg2IB9XLRAyvwr8AL/ny4P58WuS3r/e6feRDfAg4uiPeYBmmvl8T1SvLwx2YqxNJJHAJ8InL/G25JehzmnyUVuE8FB/4BnO2vR0Xuu6UVF1jCmz8T2YXGZRZqQisc73j/syVpzoxrbHL5UeDmTFlkj7L78+nulJT7tIK4nsBNnyj+pS1IQ4DbovozFljdm4WaYJ0TNw+fpvO9KK9BMOX8FR23R9cX+bh+V5TfkrL5N3CHvz4s8rN2sI/svtkozsT+ywXP9Vf+OgjUIKB+GflfBrg8yWvotH274JnPmPgPylqPB7aM7H+Jm3JcMZO3bIcU+D3wlyT+a6P3IM7rw/48F252Y+0k3BcS80qZMt0/9uPtphbUhU8A53g/YxP7w4B7vXmC93NiQfml7/mBBWn+JzGfDMwRmVNBOqG0Taza+A+Gg2IB9d+CinUx8LekYUkL/Lv+fFtk96fcy4f7YB3stvfnGTL+VgO+j1t9FT/4b4WHBqybycvvMnYKfDRKf52M+12JOe79zwx8woffIRP2b/78vD/HlXIXf47LbX0f16aZuGalr7AM939fYn4NJxDSOObz55sKyqLP0aAR/hT1vdYHqsabHOLLYyqu8Undt/LnWHDPVxDXOcBG/joI9D2byMvDjfz4e12kQdnExxG42QQFPh3Zh8by6z6OlfC/QGTinDNK+ys5N+DX3j0IgyCgzoz8nk9fAZUev8Yt3w8N5ujE/Qrg//z1a5H9GQVlpXGevd1SuTYmEy4+HvLn0PnMva/xEYTnm9RGggdUSCccN/rzj3C/IgT7o6ivJ4vjhNMfvPknuM7RrAXxph3NsuOZMncTUFEFjOyviArpUFwP662Sgrwguv5jplJslJin+PMSif0embi/7c9nNXjQlxTYfxjl54sVKkzciwlCcWPg3JIwz2bsQu/+qshuW5+XTTL+Z8d9H0rtd07Mn8z4KXrxqhyvlTTCZwG7QsMXvdExE27VVJH7CRm7zxX4/UcL+ah6bOHP8+I6Pgc08P+nBu5HAZtH5uu9XeznaX/evCwu/xxWSOx/lZjfrnCPz0XXs/S3rKJ68YPIPnTc5i4J+07GLu08NBJQ6cj54xk/jYR17ngoMW9V4C/Xaa1SH5oq3+EuoN5IKltuquziBgX50+j6PGD+Bv5faODen+OisodM/gVo5iibNpvSRDzz01dgK26onxsVnZmYf9yBsvsW7rtVzu0If64iGIuOuSjvVf6iA/fUjuOCNsVzBJnRRz+PMfQVbq0es7cQdoQ//yDjtn8L8fbSUdSxLepE/bldaZe16QP+Y2OXmP7jqYhsjCvclEbbIO0bXX+IWzRRRuE+eS2QW24O1P0sXOnnvALWLnErW3Ke8kKBvZBfIZauJj24ibSq8s0Stx/4800txP/fBu5NLa8dQD7VpngUN73ZDt5pUzwxn2khbKizuR+DT20h3l5i7wL7/ixzbwoRUVXNri4OHwqHBCIySVVXicxCSaM+CPkzFZer9ig/o17QG8Zg4ELcrxJ34P81M9rOCM0Io6YElIjMqKoftDVbjdPcBPe/w0jcktkflvhNBdRI2terMwzDMDrDjKrap61u+KOuiCzlj6Vxa/UHDC9gfoZbEbYssJM0t3txW/eXMgzDMDpCduPrKjtJHIf7h2N1+vf3fyusBkxW1SdU9X3c4oRmVGbY6MkwDKP3ya6HqLJI4puqeh+AiNzQ1iw1ZmHqdR5Nwf1gNh0R2YvaB+i6bUhUdVpzuwMZhmEYXaB/IyhVvU9E1vfXT7c7Vw3ISZe6j2aqeoaqruK/Pf1nYLJlGIZhtJF+T/EB7C4ix8WbV4rIfCKSblbZbqYAseKvcbif7wzDMIyhw9s5y0oCSlV3xm0Bc7WI7CAi5+N+rky1vLabO4CJXjXCKJzGzz46mQxjmPP9bmfAMFpBVd/I2VcSUOJ03I/D7dt2JPCAqm6pqrkfXtuGX3a4H24rnYeAC1S1kyqeT8ftdNAJypTtGe3hqIr+mlnd+afoulM/DZb9IJ1jS3++2v/g2GmFmcOBZ9sY11DvRN/dpng+38hD1Sm+03G73q4JrALMJCLneF1FHUVVr1DVpVR1CVX9XhujPj+T1ldVdYmcZ88tBfYNhZqqvlg1YxXZqc3x5fjtAKRRtVzmrODnl4n5XzlPqhr/vH1rgzhHRded6rzc7s9Vfyq/QlVFVTduMhzAbyr6+3oTcQ4kb3Yo3rsS809biCtb73A//KZ8gfJdTnqR9wuuG3GCP1/kz+82ClB1im9rVb1MVaep6oeqeiRuk80rm8hcr5E2jNtlfdWT04h5PU63zY2tZqgBX03M/2gmcLSVyOa4ndKrsHszaVTkr9SPGBpWUgBVLVOy9zPvJ14ksx7Vtrc5qYH75XE2KsRXlSCUiH5+byQsg/90xFSWr3Rk8L8qaZCv6+3WYNvop//02XyMeiWiUK+08LGWc+RR1f1xGmCbZWH61umwDdZBuJ3e4628JqtqTuNwI54jP+r7U8YOqn2OaaTIMhDXv3ghW6rIcDq+/Qkd/A9xvy091SihfmvUVdXraO6fpJ5GVS9q7IuDouvwkDZQ1el7uEWCYFJJPLFwuQm3OWoRoYFMVy9WWVF5Qcbu3ji/wLZFgX1DuEtk1Y5Vkvuo6t8jc/hXLQityzJhCjXf4jb+zU1x3a2qZdM2Icw/E/uXEnPcUCtOR1IV4jLOCZ6f4dRWBBXhj1N7wdP5+Juj61wvvGhknyOuR3skbnED1SdOVX2vIM52Tbt/LTGHujCHHzHeSzKyUdWDqI2uW/km3qdxVtVvNRuJqj5H39XHoQ69o6rPJ27TMv5y3IfXrO0RVR2X8fdb8nthHloSdyCVB6ETnwrQeNQUr75L38PfJ+bw7lygqrdVyE9rKt9VtdEGmb3A4yVuRRu+HkBenXTcM/oOMH0b8QxlPwlPT1dV11XV/6N4WuA4nPK20d78ZEm8KWmFn11VpyR2TyXm5WODqv4uMn6kQXoP+XPRy3Crqqbphe9G/wDWoH7q8lh/Luz1q+rruA07D/FWy/hz2jt/KDGHRj+8VGG6bD7qn7NS20FFffy/SOKKV7OG7w9x+rEQ/Kw/T1PVG32DhqouidMDhaqGjXl3DX79+ZNkpnZ9Z/Er3riyP4fvBOcm3qc3nqr6a+rrU/zt5AXcdH4VzqzoL+XhxHxiYr7Xn6dvHquqj5GMbKLRdZVvi6sCR/vrpSL7fak+3QxwTXR9FE5f3CXenHZ6nvb5fCXjHguok6PrX/nz6/68Hm7WqgoL01dYhE5ELFxuxWlxCB2oVLCG/15Pi+yOpr4OnkZtyi60edN8h+IL1OolqnoPbkuj4L9xZ69Tqi+6cZBXt/E4rmGZrrHVH6cQ6egpiC/dGn68P8/hH+bOkd+lgE2jcLFqhwXj+NJrb94ik57iNWriepeKawwf8HbPFYS505+/V3R/vjwWSO/Tm3+e5G2id8/pvjkiug5aSw9L/IzE7QLylSjOVYEF8RpFI/vRSV4U2CLkOXk2fVRGU1OwNsabg2K4oP4jaKvdDKeCI6hNCeleR70en529/x8Be/rrVAWBUFO1cRhOF9ZBkfsh0XVQYPn5TN6XSsoi1Nnr/HnRkro/f3RvR1KrTyGvQdfXKTgdP0FDctBF9iJeL5Y/FvLu0xVDFrwTitOumrNPjxuj67uiZ/JD4LuZ+EfgVc0n9xrq9eikPlyFE7LnFOXB+901vR9/PQ9O7cT7JW3AosDCidtsmTzGYb4QyjvjZ6XoevsoTNA4fHNSJ4I27JuSdII6ka29/YlEKn8yaa8AzJLYvZnk+3x/nimNB9iAmmbxoBV4F+C0JM5NcuknZXBFoXuRw2A8yAuoh9PK6I+FcYJmO+CJksKLj/FlhZ2Eu4ma2uhYEPw9fTEK0vujf9nChr5HZfxPyuTxSVxPbF4iNdcN8ntK7M/n+8XIPejPWiBKZ5+kXD8SXR+Jm2v/cYW018zc17go7h2IGqKkrK7K2AdBM8qbQxls4M/fSPzPntzHWbgRVLjPnCAZidMcG5dZ0I8zwpuXjOKYAS/kvdsLwNIF5TEyc59BP9Y8Tb4PihNQ8+AWeyhwauLnO1G+BLc4Qql1qqbrCPPmY5L6tjv1yg4fjK5T/VrL4oSR4lbnrpd59hqnV3BfJ2TCnQJsGZm/n6Qd34MAM/vrPzZIq+6dTNyCMtIZy8KVxH01MGtiFzojQVv1LXEc1IR8yP+C1DoTCmwT+Q2dlOsr1pdUYWvQFVbXacyEW6vEbeMK5Xt5kXtLU3yDhKfChda+D92sqs+q6uuqeqGqLl4Q9rTErBXT/DJwmKqGabv4m8IJGf99UNXt1S3lD2nmplN/hJsCfNWbF1XVxVT1IFV9WSvuPK+qBxJNB6rqv1Q11mf1Ju7bTJgC+QA3zRV+oh6jqvEU2kh1U1dHUf+jdY7bcY1ozH/wU1SqeoEWf/vIraoL9zzNhw/mUI510xiq+j9cRyWmdH8sdQuF7qY2LQh+2zD1KwRVdTL+uajqVHVTU3N68wKq+khR3InVaNyU6SitXwRSlTdU9T/q9rLMcTpeBYo6vhuy4s+hLO7zfr5FrdxfUzdNGHO9P09V1b9F9oer6oP4qSdVLVsl12gZ86jUQlUPVNV4ijL+xvGzxK+qavgxNJ2OSxmJn+pS1e0Tt7BpQG4V5Xn+XFj/VXUjVU1XJYZyPxfXeUvr4os+7Nv+/Lx/17JJ+PP6RXlIuJP6KcCQdqiTuW/acTrNugUKF3wNBwG1PX2VB76S85iiqvvg51W9cKskoFT1TPUfAdXNxaYf2ot4E6cCenzGrc93GFU9T1WPwC8dVtVnUj9N0GfZfZTOVFWdPxKWX/aN9BTvngqQd7z9u9r3m1cu7gsSu3dVdeWiMLHXTHzTcKOZopVufYSPF1LgpoguwjXaYcl62Tz5tdRWsvZpNHEN/z5ROlVXScV5e1/d6tn+qLlZHLdqMiYV0M+qau5bbCivu4E3VXWFyG0l3HegQxO/UFvEERq6dXHT0+Fb5g9xPW5wO8WkjAc21AIFdp4/k19MU8u86iWR8fZCjw1W/vn6VNROhvvuI6BUdSf/7pfW/6I4VfUDVf0nfevrHtQW1uTItRNVO9Yb4GYUvk1NtTzU7q/o23LZbw7poqMchf/xDXmNuur+UI5HMOOpvpwS6l++53EvWCuEHtNKJEvbVXW2fsZ5De6bSiu83tgLAJOpX1WWshxtXO5bwt8o+CFSVT+bsQ4vUWHDp6qb+MvLAERkb63/Zyr1Pw2nCgYyW3CparpAYUBR1ScTq58AZ1cMHt6ZA6ktQAnx/g/3/W66VeR2o4gsjxdQ6laMxqtc38D3mFX1UfoKzIarU1X1Rpr7reMu3IKLPvu9qepfvFqfMu7HdRyL8lNVAFQhjSstnzcp/hdsPPWba/8DOKNywrVR9jHgNN16+7DpdtG78Aj1I9Y4zn+JyCwlyU7CTWtmGdIaddsU5/u4OeaWt0UXkSWBx/tToUVkLLC3lihsLAg3BviwUQ9cRGYGFimaehrMeKWX1+BGw99W1WM6kMYY3EfnwbCyta2IyArAPcBZqtqJf+f6hYi8iPutocovJGXxjMS1Ae8m9jMBb7ejbYji/B5wsKrO7M0fASaoajoS7jgich7wOVUVL6zm7ec0c78Z8iOoNvB33MqwlvHfJfob9jX6MXpLX6oSf2/jekJDDlW9EsD3Ajuif8WXc6WyHmqo6r2+bK9o5Hcg0frvqK3E8yH5aah3cYt42snXgW9EaT9E318kBop0eju7X14nMQHVmA27nQGjrZiCsA7QzlHEYMHPhPyxA3H2yrTW13GLsLr2fE1ANUDdhrXG0OAY+v7dbhhGBv9ZoNKCsk5h36AMwzCMnmQ4LDM3DMMwBiEmoAzDMIyexASUYRiG0ZOYgDIMwzB6EhNQhmEYRk9iAsowDMPoSUxAGYZhGD2JCSjDMAyjJzEBZRiGYfQkPSOgRORQEVERmcebRUROFZHJInKviFTRD2QYhmEMEXpCQInIIrhNWWNdMJvi1GRPBPair3ZbwzAMYwjTEwIKOAk4jPpdfLcCfuvVM98KjBWRBbuSO8MwDGPA6bqAEpEtgWdV9Z7EaWHqtUNOIaPqWET2EpFJIjIJGNO5nBqGYRgDyYCo2xCRa4EFMk5HA0cBG+WCZez6bL2uqmfQhFpjwzAMY3AwIAJKVTfI2YvI8sBiwD1eI+c44C4RWQ03Ylok8j4OeK7DWTUMwzB6hK5O8anqfao6n6pOUNUJOKG0sqq+AFwK7OJX860OvK6qz3czv4ZhGMbA0csada8ANgMmA28DX+pudgzDMIyBZEhp1DUMwzCGDl1fxWcYhmEYOUxAGYZhGD2JCSjDMAyjJzEBZRiGYfQkJqAMwzCMnsQElGEYhtGTmIAyDMMwehITUIZhGEZPYgLKMAzD6ElMQBmGYRg9iQkowzAMoycxAWUYhmH0JD0joERkpIjcLSKXefNiInKbiDwmIueLyKhu59EwDMMYOHpGQAEHAg9F5uOAk1R1IvAqsEdXcmUYhmF0hZ4QUCIyDtgcONObBVgPuNB7ORvYuju5MwzDMLpBTwgo4GTgMGCaN88NvKaqU715CrBwLqCI7CUik/xxf+ezahiGYQwEXRdQIvIZ4CVVvTO2znjNalZU1TNUdRVVXQV4txN5NAzDMAaeXlD5vhawpYhsBowBZseNqMaKyAx+FDUOeK6LeTQMwzAGmK6PoFT1SFUdp6oTgB2B61V1Z+AGYDvvbVfgki5l0TAMw+gCXRdQJRwOHCIik3HfpH7V5fwYhmEYA4ioZj/tDEpEZJL/FmUYhmEMcnp5BGUYhmEMY0xAGYZhGD2JCSjDMAyjJzEBZRiGYfQkJqAMwzCMnsQE1CBARBbtdh6GMiIyh4gs1YZ4xojIHO3Ik2EYJqAGC/8WkQW6nYluIiJjOhj96cAjbYjnd8BrbYjHGMSIyHgRWShj35OdFxFZXEQW73Y+cpiAGjzM2O0MdJl3RGSWDsU9e7gQkZlFZPl+xrNkm/LTEBGZT0R2H6j0jKZ4Erg9thCRT9C7nZeHgAe6nYkcJqCMwcRAKK38BnDvAKTTKnsDvxKR/UTk693OTLcRkQmJ+SQRubI7uUGAdLT0sW5kpCKjgNHdzkQOE1DGYCK3y327mbnZACJyqIhsXMHffCJyW/+y1Tc6f/4u8J02xVk9cZEdReRnA51uCU8mQmo7oOEz6SBpXf1F0xGIHC8ih2TsR1Spb03S0S2FRERFZI/I/DsR2bBROBNQg4eR3c5Aq/i5+fm6nY8G9OdFPYFqQmI5YLUqEYrIxSIya5kXf55a4qeT7A/sk3MQkRm69M00HgWM60L6Me3oTH0NOFFEVkk6NqsB7R4dVsqviMwuIjP5631FZIUSv8uLyM2R1ZnR9Rdwm4CXYgKqABGZqcca051zliLyMRGZNBAZEJHNRGTOCv5GikhOoD4FXJX4FRE5q2oWCtIa5a+3EJH+TFUM1IaU32rC71ZU+6b1QdUIRWQDETmhgr8qH/OnlbgdAjxfNV/dQEQqdRRaoLBt9XW+mQ7nHdR3bAqFiYicLiIz++slRWR03I55AXNLZA6CvKpAfYaaZomfAkeX+N0QWLvEvaH8MQFVzGnAiyKyiIiMTR1F5G4R6fgO6yISKs7mBV4+DXy80/nwXA58XUQubODvSuDvBW6pgBNgN//SbiIic5fEOxJAROYSkSBUTgde8teX4nSLHSYin2qQxzQPiMgMNCmsRGTFAvvR0bMLlL2sOcrez/700A8CDhWRdRv4e63FFWctj55EZHw/glV6dl443CYidzebgK+nO0b1r9BridvhFIx8/SKdHRu8Y9O835w+v68Ay/jrx4ALgRcj9yWBtfx087LA0yXppHn7CG5BUTw112dBkf/+tzIFZRA9250apTlsBZSITBCnJLGI0LN4GveQU1bECYdOE57RGn7qZJ3E/aRwISKnFjWYbeQQYNucg++x7QesCXyiIHza8IT7E+CvwCkisldB2E38+QeR3UrUf5CeGzgOt9ihKqEefADMBSAi64rIRalHEZlTRA6KrBbz51UTr+/ipmj64EfnVaYEyxrB8PLX9cT9arFwPVcyCxDK+gb/TWChJOzMUcPbZ9WoiHxJRMI9SWS/VdJglwpPcf+L7S0iW2aEeOCppOd/hohMFZE1S6LuU14ickDGXyizPu+KiHzTl83+BWksBZxbkofpUUVxxtfbENULEVlHRObxgm9u3Lezc8m8YyIyj78Mo9cVIrvU77z+Mn3fwr1vjVu5l5uV+Ifkp+5ynYZcR+Yg4EsFcY/AzaRUQ1WHzAFMasLvJe72FeDHwEWR2+9xlT0c//L2o4Fv+msFHo/87+OvNwK299czAmMyaX/Jh58RmL1BPmeO8rFNlOelgc8GtyhPJ0Zhx/rwiwA7RfY/BeYoSXO5xDwap+1Yk/T2Aw6L/P3Mu78R+fkKsH+UPwXmi8KM8nYzpPEneVDga0k8aX5iu9eoqZN5LxdnEnc4LvTn0wrysWdsn4S9O8nLOQXp7OrPc3n7OXAv8wLApyK/Hwfm8eZZgM2juP6UKy9vXtRfPwC8Fbn9Ncnvqkn+Forc5sZNK82Fa5RnAF6O7u8W728JnK62OA8ne7dDgBUyZfiJKJ0tSp7JLsCM3vxW8qxvAb6S+N/KX2/foC7tmcS1C/CAv74mU6YzAa/66+Uz7jMW1IflgTdxQqFPnfXPPFzf6c+7FfhV4EKfxse9+V/+vFaS/ueiMPf48ze8+xrevHcafxLHgf6+Z4jsc+3NCyXv09cSv+rjjNNdALiy8N0schiMB80JqIt9AT2PGwKHgry0oHKcAnzVX6/oz5Ojwr/DX/83fSj+egO8MMrEvS6+Mc3k8xuRv+0yDzw9fg/c4/28g5u/Ps27TYz8bViQ3iJxZfV2NwP3Jeks6eOPK3ZIZ2qUzw8yeV4gCrNgVFGzjQq1F/wPRfdeYL92+hwK7jlXjj/353mpCY398I1vQdi7/Xlpfz6vIJ0b/fnMyP4fJfeyJ67BUNyI8UScAI79HIFbtKDABB/HK6HcgJVxU69xmG/lnr0/5vLnX/vzV8kLqPiYHdfonhzZvROFGYUTdGtE7qEzNzPwtL/eJ4l3rsT8pD//OSnbq/112sHcBng7ro9JWQf/x+M0eU9/L5M6ujGwQuQ+HjdlrfjOQ5Lud/x5hsQ+HHNn7PYo8KvAX3waK3lzeL6Hl9TlIKDCva5dEv9cmTh+mYs7MY8BNsr4ywmoU5P4Nw9+su9mu4RDLxw0J6AejQrppUxBpkfaQCvwaBTmVn/9ujdP7zVFfr5ZksbEKG9LU+sFnxX52daf5yjJZ+hVHRXZnZbxt1FBubzg3UdEdlML0oobn3kz7qOj61mj63gEtZ23uzrzAsyJa/C+XvBiFL0w8fHj2E/mfi8rCBca8wtz8Rc0CEFAXZJLsyCdtDEuupcDSp55eoz3cfw3sjsOt0ClT1re71qJ21L+/LuC5/pKQdpfxK3Wyt3TI/45P524z4qbUi+6n8UL7P/r4w0jkTtwncffJv5OKCpXb/eHyO7mxM8K1ASUArsX5GVfigXRqAL7s5t8ztf5svqYN7/qz0eU1LF7ousjcJ3hwrqTiePmgriXzoQ/m/q26bCytPxxaEg3+352W6i08yAjoHzluyuxmz8ppLhnWFSQ92TsHo7C/N1fv+HN90f+dvbnrwPrlaTxMWBSUlmejdzPqvDAc8fPM3Yb+fjnwC1oWCq5/yBcwhTjh5k43vbnn1bIw67R9by4VWqLlvgPAv5fif1Hcv5Lnt3tsZ+oDsxKXqgWHY8n5v9S35tW4Al/jkfhcwArNqhb6SEZu/2aCP97nKD4T2R3DkknwB+z+LwdVRDXMxm7w5vISzhCY/VGxm0RygVU0fGGz3sqGFKhemJ4/pk4Nk3M/8z4WSe6Lhrh7Iuf6swcYwvsrymwb3R8OjGfA6xSQUAptU5u0TEiMd+UdALC8XxB+E9F11Oq3tNwFlB9CiBTQFUEVNpQhmPG5EE2ehivl7gd1KAitvNIe4rpixRexE3alN606Hp1f96+xP/LTcb/7QL76SPfpA6cT17otuO4N7o+1J9HNxE+V0f2bUO+HszZNxBQueNbbS6volFJlWMT+k6V3ZiYw7RSTvCn5lagygAAFEZJREFUR9F7Ho7vFNiXPZ9jCuwnt7McC9qf9H4a1aNvJOb3cN8ZV66Yj361WcNeQAGfpLaooaiginpAZUd4WW+gvvfxZj/iSr9/PdTOCpwc71f0t2MH8zDQx5q4b10jgId7ID/NHO0QUEXHCOBvPXCP/T1ubOB+uj9f18E8/KAHymGWDsa9ekV//RoVmoCCb/rzwj1QkaoeZaMtO/p/fJ/81NVwPZbrgTx08uhPx3MwHs91MO77Oxh3oYDK/eg1VNnen6d0NRfNMXtjL0Y/OLLbGegx3u92BjrMQGwy3Ass2MG4P9rBuAtp+KOuiJzsfwBdreCnt47idxd4REQmi8gRLUS1XNsyZRhDi+O7nYEO84VuZ8DoH1V2knhBVQ/Azd93ev+qOvyWJD/DrbRZFtjJb89hGEb7WKPbGTCMHFUE1B0Aqnoy7kPqQLIa7mfYJ1T1feA83PJkwzDaRy9timwMQ4q2vGoooFT1OhFZ31+f0e6MNWBh3MfswBRvNx0R2UtEJonb0XuexG0g9AcZhmEYrZHd3b3qZrG7i8hx8e65fjfcw9uStWJyAkbrDKpnqOoqqroK7sfEmOG0CMQwDGOwklWTU0lAqerOuI0nrxaRHUTkfNx2Jo+2L39ZpuD+Mg+Mwy2lrIo29jIoeLzbGTAMo2O81e0M9ABZFS2VBJQ47ZjjcNveHInb+XdLVf1z+/KX5Q5googsJk4p3Y64n1kroard0jbabg7N2L064Lkw2sH/tTGu4fQ99qluZ6CDzNLtDPQAWQWYVaf4Tsdt37ImsAowk4icI+UqqVvGC5j9cJtcPgRcoKoPtDGJe0rcHmxjOq2Se3gPD3gu+sev2xTPXW2Kp4yOj7hV9cclzguXuOW4sYWsDAbuV1VRVcH9bBu4okLY9xq4X97/bJXyeZ/fQU0X7uGFnGXVKb6tVfUyVZ2mqh+q6pG4jUuvbGcOC9K+QlWXUtUlVPV7bYz6ftw+beA2aE0pUml9YxvzcFVjL0D+hcw1pu2cKmjX0uNmpmTLOLZN8RQR9kGE4h9X/9imtP6Us1TVpspKVf9HRuleB/n+AKWzbsYuVhpaprQwUKaSHty0+c1VM5TwdonbhyVuuXYG4H8F9gPx3+k6QKogdP0OpPOPMkdVfSdn32+Nuqp6HYN7imENnI4bcEr1Ur4YXT/pz5eQ/6lxIZoTDl/y50q9lGSq8gJ/zr0I7RxdxqRafKsQKlx8jzdE1+v68/U4XVmNSMu36Mfra3C6k5phtKqeQi2v303cJ/vz1U3EObnELe3dx43vI02kgaqGWYCXmwnXT+JnGdK7E7chaX94MmepqjdlrOMyWyTjntJIQL2FU+DYH8pG2jP781OZ/BRpmb4/m4jqT0rSuabAvqlnoaq3qOovE7vrS4JsUuIWeCNj98vEPCa6vrMoopZUvqvqf1sJP0BkV/Kp6pvUGtE+L7eqhge9Z2T9FrWX9AbgMe/3eZyGypjFEvMuUdy/iey/Qr4xuzM5B0IvPiegNsCpkVga17PeJeMn5uwSt1a/cYXp31eChaqu5y+PjBqh92jQu/LUNTh+qvdwYP/EfiNVPbWZjPp/7KA22gsqvY/y53/78wgaTx0FnipxS4XQUTh1FFDfGWjm28RrFf293sD9xIxdmA57M7L7qT/vhJv2L2Mn3C7XKble8y0FcTzlz7/0726O+aPrbzXIU6OFR0XPeWPcTv9FLOHP4d1bBbdCbQZVjevwWtF1rh1+sUH+3vXnYxP7G+gflTrYqnoVNSFVNFrMCZy6NlZV4/Itflbd3uC105vFJhvGTteP4+3D9vuz4bRjauI+Ebc+/0lvfw6RBkjgh9F1qkcl6Ld5BrcLxmJJ3IrXABqZt4jCB/XKQeX3j7x5G3++NklPS+79XH++w5+DCoqcIkOlpvAu7HieauF8tyDcg9Tf4yLU1JEEuwnU1Hgr8JPkGeWON0k2+Y3uL9a2umDmmadqzgs3qsT9sDqvv14PJyAWoaa3am/q9XOF48cZu/j5zBynhasrc6fpZ/Ke1qmifG9KTQ14o+MK3IjtF7j6nLpPAI5O7ELdm9GHVRJFc+T1KKkvQ/F+Nkzc/p6Y7wWO9n63oa9K+lHASH/9aBJ2ZFJ2OQ238bEnbsFXkftvEvMteAWlDeL9lndfp+DZbgpsiRNcitNXdqu/DipmzqqQzh/9eevE/sSSMP/GqVyfrtE4ydvlwL8zaYed9I9K3Io0AnzKn2NtDPMRqfNJ4s9qE1dVui5U2nlQLKDCCxe0xc6SFPRsJArTkvBPevtzgM9EBbx17Dd5SEEL57PeTeirnfWaJGysPE2AmTMN11b+3Ef5XMG9X0RNwNyK2zY/CI2gyPCBqMLHlTA0xqm21XdyFTMug0y+cy/rvMAof32w99dHW3CufCO7IKA2yaT5Hq5BDuEeTZ8zMLZi3VKc9ts+Stgyz17jdL372sC2UXx1gruovHLljO8gZML9Bqch+Kve36RM2N/l0vLH1hn7WajXSLumtx8NrBT5H0HtPVHcitsvFd0bcBOu41ZYdxs8jzo9ZZn4iwRUULK5J16bc4G/9XHvRBCiI/BCMPH/iyRc0Jo9Gti7JP+rRuE/iuv4PubtFsuksyj1up0+iZuJSP39iL73orj3RFL/SZ4k5wc4xJ8/l7g9UpDWfFGec89nC389FXiu7Dm3NMU3iLjXn6cCqGo8nP20qr5BbQopN8URpvWupn4ePp2iiIf+Ib4RPs3w0n68JJ/h4+sb6sh9jFV/Hu/PS1Ky2EJVt6U2vH5LVW9V1Q8Sb1eratjt/Y7Ifg2c6u97cWq0Q5q5b2dhuL8QFXdVVtWXtTa99oa3K5uC+j2wGfXTtq/iKnzRgh2Nrv+pqnW72atq1akxKPhW4Em/m5znz/f5dG5R1YuidD/ATe3lFv6ki2LSpemz4HrCdajqbqr6GVU9Td3qt1Vw30zP19qqrKLvnj9R1YsTuz8n7wq4Ts46qvqeqt4dpR0UUgIsp6rnqepZBWkBbKCqD+Kmd4sWCZQRT5d9PnF7kOJvNB/xZ1HVC3EdhcDdwOf89Q3+nXgA+FD9ArFMfPtS++4Evgx8+Zxekv/wTn5DVR9Q1cupPZv0GT2pqk9Tq0uiqn9T1R+UxB+zgKq+EiRxEb7Nif2E+w12qbwYQf5bcPhmnrYzIe9/8cYlaDQ93GzPpZcPikdQm/lCvpaC3hpuKu9rBW7XAK/76wXwIx9cRVoh8bsi9b2IFwvi3ARYMjKrf9jPAicXhDk/ivdk4DZvvzi+x1gQbhkfZrckvWNxwm3dyG5igzLeEzfVpTgV9qHX9GpJmIa9ZNxo6huR/6uqhCuJ725c7/eyKI9nh3qCn+bsR7xFI6glcR2Uk4Flo/u4ux9pHAw8E8UxIU2vn2WiwO9zzwbYL2N/ir8+vkq6+BFUAz+7+rjDtN9oYEw/7mUG3FSZEs00+Lo+JjLHz+qDyG6vzP1+h9q0v0TpzJRJX+g7E6PAt1t4Po/TdwS1M7Cevz6nqHzxMzv40a4/Hi7xPw6Yq0F+gvLBsMI1HkGtj2/7cB2ol6N3Y3Z/nge4raU629+AvXhQLKBG+gL7Rj8bpZmA2Sv6nUi9gHq5YjjF9Tyr+t2qifyPAU5P7BbGT6/1ozyWCuUYvQyvNchv5XL3/hcgmUJtMo+j/BELqGMj98WBc/tTx6LnOx8wZ4P7uLM/+U/iWNK/7KXlXDGuPyR24btHKqDmpjb9elyV54BbyFDF3+qtlEkS15aUfcMoFlBfyfj7jr9eop9lq8C+LdzLBT6ORQvczysrX9wIfyNq0+QrABe3kJ9R/l0/0MdX2l7ghN7q1L65zoH/vtbfPAyLverUDc1FREbgehjNhn+H/IqjnN/Hkj1qq06jfh+/KrAifYbPJXl6l2SVoao+20RaVWi0ZH7jJuJaWlVfEJHn+5sZ9VOH0bOYg2ilkqo+gVtd1iwb4nroL1X032i5cxVeU9X/iMhxtLa68m3cR/mYfXANY93qOa1fodvWXUtU9dY2xtVoZ5nHcJ3GmItxsylFcbaytVgrz3sn4CR103k5ZiywB0BV4+m2UPG37m9m/Dv0qIgsHZnL/E8Bpvhdf8BN9U3CrSruF8NCQAXUzZO/29Bj+/gtUKkhU9Wjm4y76nLnTvACNYG9P064/rDE/+I0sVWNqj7qz7f5bbZaQX1c/fnO0Tcy1WYb65YElEZ/9KtqKwo7UdXcsvV3vVvZ/zM/ptpPyk9Sv9S7F1B/PgHfqVPVbTL+JlH83aoZ+v28fUf6nyVeSgVUp1DVv4hIM/9CTo3OB+CmCPvFsBJQA42q7trB6Lu2nYpv7Gf21z+l9k9Mkf8nW0ir0f8gDaNoMXwr3EnnttRpF1fifm8oxPecq4wqtqBLjWgJ5wGrqOphZZ5UddU2pdfJ+nYs/f+5uCVUtej/tJzfaX7m4kM/KOi30A4fAocEIjJJ3cqlbudDcStnWm1cy+JfRlWb2nVgOCIi++C+r5gmZqNj+HcSYBFNVooOR0Rk9nbMWpiA6kw+FPfTaHYDRMMwhhb+nb9WVTfsdl6GEjbF1xm2p/FWJYZhDB32pFw7gtEPbARlGIZh9CTDZScJwzAMY5BhAsowDMPoSUxAGYZhGD2JCSjDMAyjJzEBZRiGYfQkJqAMwzCMnsQElGEYhtGTmIAyDMMwepKeEVAicqiIqIjM480iIqeKyGQRuVdEVu52Hg3DMIyBoycElIgsgtOzE+tB2RSnx2UisBdwWheyZhiGYXSJnhBQwEnAYdRvVb8V8Ft13AqMFZEFu5I7wzAMY8DpuoASkS2BZ1U13WhxYeCZyDzF26Xh9xKRSSIyCafa3DAMwxgCDMhu5iJyLZDTjHo0cBSwUS5Yxq7PzraqegZwRksZNAzDMHqOARFQqrpBzl5ElgcWA+7xGhjHAXeJyGq4EdMikfdxwHMdzqphGIbRI3R1ik9V71PV+VR1gqpOwAmllb2iv0uBXfxqvtWB11X1+W7m1zAMwxg4ellh4RXAZsBk4G3gS93NjmEYhjGQDCmFhTlE5H7g3W7no8eZB/hPtzPRw1j5lGPlU46VT2P+o6qbpJa9PIJqF++alt1yTBNxOVY+5Vj5lGPl03+6vszcMAzDMHKYgDIMwzB6kuEgoOwfqcZYGZVj5VOOlU85Vj79ZMgvkjAMwzAGJ8NhBGUYhmEMQkxAGYZhGD3JkBZQIrKJiDzidUod0e38DBQisoiI3CAiD4nIAyJyoLefS0SuEZHH/HlOb1+oe0tEdvX+HxORXbt1T51AREaKyN0icpk3LyYit/l7PV9ERnn70d482btPiOI40ts/IiIbd+dO2o+IjBWRC0XkYV+P1rD6U4+IHOzfr/tF5FwRGWN1qM2o6pA8gJHA48DiwCjgHmDZbudrgO59QdyWUQCzAY8CywLHA0d4+yOA4/z1ZsBfcRv0rg7c5u3nAp7w5zn99Zzdvr82ltMhwB+Ay7z5AmBHf3068FV/vQ9wur/eETjfXy/r69Vo3J6SjwMju31fbSqbs4E9/fUoYKzVn7ryWRh4Epgpqju7WR1q7zGUR1CrAZNV9QlVfR84D6djasijqs+r6l3++g3gIdwLtRWu4cGft/bXRbq3NgauUdVXVPVV4Bqgz9/egxERGQdsDpzpzQKsB1zovaTlE8rtQmB9738r4DxVfU9Vn8Rty7XawNxB5xCR2YFPAr8CUNX3VfU1rP6kzADMJCIzADMDz2N1qK0MZQFVSZ/UUMdPJawE3AbMr37DXX+ez3srKquhXIYn45RkTvPmuYHXVHWqN8f3Or0cvPvr3v9QLZ/FgZeBs/wU6JkiMgtWf6ajqs8CP8JpAX8eVyfuxOpQWxnKAqqSPqmhjIjMClwEHKSq/yvzmrHTEvtBjYh8BnhJVe+MrTNetYHbkCwf3MhgZeA0VV0JeAs3pVfEcCsf/Pe3rXDTcgsBswCbZrwO1zrUFoaygBrW+qREZEaccPq9qv7JW7/op17w55e8fVFZDdUyXAvYUkSewk39rocbUY310zVQf6/Ty8G7zwG8wtAtnynAFFW9zZsvxAksqz81NgCeVNWXVfUD4E/AmlgdaitDWUDdAUz0q2pG4T5MXtrlPA0Ifm77V8BDqvrjyOlSIKyk2hW4JLLP6d66CthIROb0PcaNvN2gRlWPVNVx6nSQ7Qhcr6o7AzcA23lvafmEctvO+1dvv6NfobUYMBG4fYBuo2Oo08f2jIgs7a3WBx7E6k/M08DqIjKzf99CGVkdaifdXqXRyQO3uuhR3MqYo7udnwG877Vx0wT3Av/yx2a4Oe/rgMf8eS7vX4Cf+XK6D1glimt33IfbycCXun1vHSirdamt4lsc1zhM/v/27pg1iigKw/D7iaI/QMQy2Fkp9oLEQgR/gIW2Njb2qYRIujRp02kniJ2NsbDQRgQhhYq2ougPEIIeiztFLCTNmjmu7wMLOzt34M7lwrcze/cM8BA4Pn1+Ytr+MO0/s+/4tWnc3gFX5z6fBY7LeeDVNIceM1bhOX9+H6O7wFtgF7jPWInnHFrgy1JHkqSWlvkWnyTpH2ZASZJaMqAkSS0ZUJKklgwoSVJLBpTUSJKVJKtJTidZm7s/0pwMKKmXFWC1qj5X1b25OyPNyYCSerkF3Eyyk+QBQJKXSbaSvElyPcmj6blL56b915I8T/IiyTJVC9d/zj/qSo0kucSo87YNrFfVjSTvgYuMZ5y9ZlxlXWCUaboDPJuOOQI8qarLh99zafGOHtxE0sy+VtUXgCQfq+p7kk+M8kMngbPA06ntqSQpv3lqCRhQUi97jCul/eoP7wN8Y9S/u1JVP5IcM5y0LAwoqZddYINRdHTvoMZV9TPJJrCTpBgVtW//3S5Kh8PfoCRJLbmKT5LUkgElSWrJgJIktWRASZJaMqAkSS0ZUJKklgwoSVJLvwDFfDo0M0AmDgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd7wdRfXAvyc9BAIhQAgJEEoooUiTKkV6M1QRRDoigj+aShHpiKAiSJUuKEgAUXqTJtJD7xCKEDrSqxDO74+ZfXfevNm9e++799378s7389nP7vSzs7N7Zmdn54iqYhiGYRjtRr9WC2AYhmEYKUxBGYZhGG2JKSjDMAyjLTEFZRiGYbQlpqAMwzCMtsQUlGEYhtGWtLWCEpH+IvKQiFzt3fOJyL0i8pyITBKRQa2W0TAMw2gOba2ggL2BpwL3ccAJqjoeeA/YpSVSGYZhGE2nbRWUiIwFNgLO9m4B1gQu81HOBzZtjXSGYRhGs2lbBQWcCOwPfO3dI4H3VfUr754KjEklFJHdRGSy3x5vvqiGYRhGo2lLBSUiGwNvqeoDoXcianKdJlU9U1WXU9XlgM+bIaNhGIbRXAa0WoAcVgEmisiGwBBgOO6NahYRGeDfosYCr7VQRsMwDKOJtOUblKoepKpjVXUcsDVwi6puC9wKbOmj7QBc0SIRDcMwjCbTlgqqgAOA/URkCu6b1DktlscwDMNoEjK9m9sQkcn+W5RhGIbRi+htb1CGYRhGH8EUlGEYhtGWmIIyDMMw2hJTUIZhGEZbYgrKMAzDaEtMQRmG0WsQkZtF5JRWy2H0DKag+ggi0k9EBrdajhgRWV5ErB0aZVkTmNhqIaYXRGRYq2Uowh4MTUBEdmlDZfAL2nNdwntxq9YbhtHzfCwi67RaiDxMQTWHs4EVupuJiCwtIos1QB6ACQ3KpxmY4ck2og07VzHdWl1ARB4UkWMaJUy7ISIqIjPWkGTOpgnTTfq0ghKRD0RkniZl/3X1KFV5ELi7Afm0lBKWj1Mr1Tey/HlEZHQzy+hpRGQuEXkuJ2yoiMxcZ74CfO730ytLA+v1VGEi8iMROb+nyvN0UlBVhtEb8axqCn1aQeFWSV9URBYWke0bnHejLnqjHhRd8hGR/iLS1BXtRWRL4IucsOwmqukcRWSIiCyf8F9QROYVkU2jG/Il4K5ayqhBlgEiMkNBeLPuscWBBRPlnQJMAt6M/L9Zso1n8hZeExE5L37TEpFviciiJcroLj22PpuIjGtANj8CGv18SRK0t/j5M01E5spJZgqqjekPHImz0NsFEbmglg+JIjLcH7abgkpxJdBhc8t/OxvY4DIW8Hl3vKn6HuUwYNbMK5VQRGYWkUUiPwWexX27inkOuB/4O7BkmAyo640iKHfZhN+COGXwSUHSaWXG+P0DP+8BkiLvOu0JLAoM9vmu5v1/B5wvIruKyEwF+WYydDEGKiJzB84dg7gZd+DqvtnMm/IUkfEi8n0R2aCBZb0oIjV9IxWR2RpRsIhM8O09L3x2EVk88s7afer5kzeU1ymu7+Rp5PcjEelfTeayiMhWIrJ0tXimoFwdFPXItgMWAhCRP/iV1IvIHmTTQk8R+ZeIzFGHfCIi24rIqJKRh+QFJfy+RecH+dnAUiKymYgsVLK84SIye4moI4LjPwLrBjKtlJPmNOCpoKws/tzp6IB7KwZ4SER+n1N+LiJyQngjisj6InIaMDkR/Tlg80y2gmGxBUoUvSOwm+8QnS4ip4rIXgXxBwTlfsMfZ6Zo+nv3SOD2KN1ZOFtrwyKFk5Epr+F+CDy8N14WkfBcUg/BvM7GdSLyk4LziePPICJDC8JT9+yzwIXAtan4IrJrlTIXEZFfBu7su+3VRXKIyOBsGFtEfge8Hb3h19vJXLhK+F+AxyK/bEQkdW1+npNPXJe/BRCRUKH9kYJ2LCKXi8jl+aJ2YRLw16qxVHW63oDJBWEKbOorSqOwUcCBPs4y3u+hOF6UZmlgfZ9muURZLwbHS0XhI4BRiTSf+v1ZwOXAUGB+XAPsF8Wf2ceVhGyTfNj8wCze76PsfIJyVvT7qxN5rAQsFPndVKVODvD5fSNR7+P88Qc5aa8M8wb+4ONrqkzv/0UcJy9+Iv1QH3emwO/BIL9jEuWF2845Mu0euAXYIHAvhvteEOdVKDNOMSrOuKfiFH6W7mW/nyOuA799D/iTP/62l+FIH2+C958vlsG7xwfH8wAzAP0Dv+ciOfsB433Yv4J2OqzKtXgGuC+nPrNtJeDAVFiUZvZUe8B1fp71dTcaOClxvtWug2Z16d0feL81g+uU3VsDw2sf5TMAWNgffxt4BNjMpxNg7SDuYJ/XvxLnurJPswQwm/db1vtdFsQbhOucpuorrON5A79F/PFPgAHB9V02iD8auCvK72/A3YF7VLV67YhbLUJv36iuoLbEKyjc29KpwA+BF4NKPz28cFXyy7Y7U2HB8cQo/GHcNPB/AyODeJ9F+e4D/Ngf74B7CP0GZ3n4BO/fDzgKuCbIP1NQ2UP+m8DHkUzhdo1vbAosEcR5KpL7vSp1kimodagoRgU2ofIQ/DAn7RU+/BLcQ+TuUMYq9d/lgVQg4w50fsDPmJdnlfKOj8IHev8fB36jw3xSMifkPxjXm56BilL/nt9nHaIdE+mzB/OIyH9L3FtG5v5DUNb4RD5DcQ9JBRYM5J7b73/nr6cCL0R1sFOQz+2BTP+qct8q8FmVa9zRgQH2isIOA4b7sG+m2kNiO8nvBwXXrtN1x9mhmxGnCE6J0s8BvO+PV0uU9XiYV3ReuwXy/d7HzxTUhEiGF3FvdSkF9e2ozONw954Clwbx9oni/TWnjhcP/BYNjrPOxrVR/I2C40dxnYgwfHvcUHDmnrOoHbSryfeepD+uogAuCPzD7wqdvl/4oZx+qjot8FM6s7KI7IvrKR6dKFd9umHAbcA3vP8qwHgRece74yG7E4Lj2YCNca/u8wJbZeIA21D5/rMD0awe3EOraIh3IJVhsZtxN18o94w45TmLdy+pqo/645mAEar6MpWhhhuBySLy7SCfrP31899fpqnqmz6Pa4Ds2993cW9+Xb4DVSMYpskLj68bVIbIah1z78hLRNYGnvDO+RLl7g0sUy1DEVkFONpvAGv5fVZ3a/h9amg3k+fFyP9rOg87hcep72mfAntXROoYyvyV3y8P/NQfzyciK6hq9o0wHELOFCnAqr7uR6vqGx2CiKyMG6nIO6eQxX2a/jglG3I4cLgf/iz7KSM7r4eBd3PivIHrRK6RCHsz4ReyGIAfJh0OPKaqX4nIGCD81pq1+wP9Pj63cbi6eb6T8O47bzxxZn/gNX/8tY83P5Xvvxlbi8iFwD8j/xOBtf1xWI+r+v2KUfzwflqCrpOTDgU+DNyvi8hsqvpfUhRpr+lhI/EGhRtnf8FX5ra4HnrcmwrfXP5C8DqMG6P9CPeWEb7t5G0/yo6DuBsTvOpG24pV8su2n3v5Y/8vgSlRedmWvUG9HPjNlMgjfFt5J8jnieD4riiN4D7SXxqUvV8Q/iZwlT/eErglCPsYeDmnF5fcfLz5gXtLphlQpUeebfPgOiVLp8r06S5OpPttlO/aQdhK3v8C73695DWOtw39/tDI/1eJuLPn5PFSVPcdQ1vA2Jw0p/n9IrjOVBh2W+T+mkoP+8TA/xZcm43zPgj3wM2GWC8Lwn4KbJJzvbLh3O3K1l+VdhK/EaWuu1J5S6p3eyE4vhv4T+CWgnQH58i/eMn2f3GJeDsU1NkPcR2Yorr8vIQcDyb8RsX3pqrScgXSIgW1VtEFSWwXRe5bg+MPyj5Q/Xa733+Pynh/vK1SMq/9ge/nhE3x+2Uj/ytL5n1v5P61339WcL6DI/eadB5KeAc3y05xvb+vovhZ3mVl3A7YhfybJbX1x3U4BuLeQPPinZvjP6yorBoU7Bsl5e2JLVRQ8+TEOdPvF0+E3Z5K4/MLvxv+q4oczxSEzUDXh3fWfn5Y9lyrXJtTq6Sfs0n1/05wfHI9MpRVUFQ6AXnbxwm/bCj+rMh/WAPrYF5TUOmHx851VOa/I3dRr6eWfLJttZLp/1kQlimoq0rmFW+PF4TdneP/QDcb6Rc1Knul8rF/Usn4y5eMF4+th9t6BWFlH2JfdrOuGrl9AR0PuXFV4i5VQ753Aq80UM7zc/x3LZtHlfZ1dZX0P+mBa1FvfZ1UIs4zuBGHRsla9jlVZhtnCsq5Z40q5kcNqNz+Dcgj3L7ThIZf6/ZEC8r8Xx0KKn67rbY90gZ125abr/v5qsT7ZavlTGy1DJcWvUHc1wbn8t82kKEVW1JB5U6S8P/T7IL7V2YE7qPhncC5qvpZXrpeQPyhveinxbI0+n+y0xucXz007Ke8GqjnJ+Ftaoy/ZPUofRM/UeWkKtGO6glZaqSWteT+UxD2ze4K0gBqWUNvekJTnkWz+C7ADSEdgJvbPzNuaOMC3Kyq3sqNkTuehVIPjV7Xq8tf/C2g2k+CTaHoz3mj6bzaagF6gDI/lbcSWzg5oKjnP6eqnqmqL6vqB35/Fm7mWcvwf/Y/IyJTROTA6imqskUD8li3AXkYhmH0VZKrbRS9Qf1LRC4CrqPzG9S/Gy9bOfz/DqfifjybCtwvIleq6pOtkskzvHoUwzAMoxZyFZSq/lKcLaJVcf9GvAccq6qP95RwCZYHpqjqCwAicjHuD/ZWK6gdWly+YRjGdEfhShKq+gTwhIiMUdV2GJ8eg5uGmTGVhGFAEdkNt3QIuH9dDMMwjPYl+e257OyzeyVhbqAFpMYpu5yY/3a2nKouh/sJzmgtn7ZaAMMw2prkN6iyCuoA4MZgOf9KriITReTO7khWA1PpbGphLJV1phpBtbW0jPo4pdUCGEaCF0vE+U3TpTByKaWgVPVC3NpxJ4nIwSIyUER2EpEngeNxNlh6gvtxC6nO5+2vbI1bFqdRbNvAvJrN4a0WoAam4VZ6MIx2ossivgmOaLoUBsD/Up6lfzBV1btxs+cOwg2b7Yl7SC6sqqc1QMAyMnyFW27kBpwtl0v8d7JG8Imq3kz+KsbtxutNzDv83tiIDsA0GteJeb56FMCtlxiyc4PK7wkewJmpMFqMqtY6PF3K0KfRheTzrJSCEpFRInIszo7HnX77ArhVVXvUnr2qXquqC6nqAqr6q+opcrkBt9hkRrY6xrRE3DwO6Eb57Uz4s2AjfpydRmWViH3pahKgFvalnNKMh51jy6Nlea/OdHXjv5/+iTrMizSYa1pcfnc4rEScolUlLqO1s3M3oDLRq9k0s7NbimydrZiyb1DP4+wNraWq6+GMUt2HmzxRaG+njbkSt+5VTC0K6oIc/w1x/4yVGeMuyzkl44WrUDwThT1SLbGqCmlz0d0hVFA3q2r4FvR5Dfm8papXqeomJeJ+hFsxfhtVFVVNmWwvw5d1pquHj/Am5D3xTZs3kzasw380ShhV3bjGJLF5+VZSZkj56Rz/E4DtVTXv/k6xH24x27Lm3R8uClTV6/3CCHkypjikIOzMgrA/1lBGNd6I3HmT1O4olVvJBVfnz/H/EfA2sF6rF4WtYbHYzEbOnnReZPItH/6qd+8WhP2VrosbPoybpt9l4cOgrE0D/8cScfdL+D2Ul2fkt2/kPh2/4GLgF1uzPCOVd7CN9unfDPxS5hVq3Q4GfuCPB9e4IOwbvo0p8Hp0LTM7OjMD/+eP38YNswxKtIUszyNqKP+tHP88MyfxFtoqihdi7bTyeULe2BzLXyL3TTj7PJ8EfuEq9PfT1ZxMZvJiajXZa7xO/6H8StlvRu4Taignb4ttNM1RIs0ywXFm5XVIQbsZhWtrYR7Z82Ksj7tQTln3RO7sPo/v4y5tgYo5jkernM8efn9K4lrsn5PmIyrWGI4K/A/Emf74dZUy4+3O4PgS3CS2VLzRoTv3+d0ABbA2/uHejhv55jb2xL2VZJWUKainswoLKy9RwXfk3cBBOZsH/pPoemMuQVd7TbEdplCGBQK/2OTD4tH5HZqQ71BgrqiML3ATYBRnJRhgd++eueAhldniKTLLETb2naK6WdSHPUlXRRpuZ/j4PwO+H13HiwmUlo9/VEFbyPLcIFHOATnlv53jP2OJ8y5qR596dycDcJG8gntILOHjZA+gG6O6DG34/DUqbwk6y5Q9QKqZSvgk59p/Hbnn8vurcCuqVK0Tf82z43OB5QL3dSXzyLZ3cZZqQ+X9Ky97yohjaHNqrjBN6hrE1y9RJztm7cGHLezdWwRxZk2kmxxco8z0ynfxhihzZFiLzoZG460/MF+OnHn38s6Bf0fHLchjo0SaT+j8bAu3s3H35e4+/Uvef8Mwng+7KC6vy3k3SAks3GxF0w3ZUgrqDt+oQ4NbZ/mwuYDx/nhDYNHowma2Z27z/s8FYW9FFze0VHsR7uEQ9vQGBXEzpRH3tPYFfhbE6yiDisI6I9GYvxXJPRcw0PudjHvw3oYzBJe9CYoPnxCdR9wIX/HpFPcmuSWwl3enzJf8HG8lOCHn5jllZNsZ8fUL0g8DZojyO7IgfpZndt0zi6xaIMPxOf6xcUbFDa9lx9tksuGVhD++Kqrbj0MZqsie3eQ3RHmcgrOLdQkwR5Qus36bvb39KZBljbx6D9J/EYV94PcbRPV2FWnLzEpnExLrEPTug3IyA5JFRvC2Tvgt5tOHBiYzBZV1/j6iYkrjcSpKajROIeyLtyRc1G5y7ofts/bgw8YE9bIBbqgwlW5uYGnv38/7zYrriHWRw4d/m3x7UTcl0mSdwFD2V4M0L0X5H4F/ww78N0yUFRtpnUTFUvQGkQwvBPXRcT3y6rbLORTdFNPDRkJBFTW+KvH2Co5PC26sjgse5xWE/QTX6x6RVybOGFwnY4CJOAsEF3xuH2/JKE6/ovPD9cz7R+4LA/ecOTfkpzjzK7MF/o9G8b6XaND7FdTpAv74K5wNqn7AyCBtroLKya9IQT0W1J3iJsYoXXuXHYbxvP9PE+eUPVRWS/i9DIwJyh1Apaf6u6huP6qh/Y3y+2vKpPHplg7OYzBeUQXh2dBopnimReH9qRi/VCpDhutHdXklzmx76uF5CJXho+HV7rso7cPBsRDcP3RWUNvgZvYq8OPo/tiSSsfvfipvPXMGZY6pIs+zgfvSoPyls2sfhA/PyWdRog5KIs7PU+G+jNWpDM3OQOd6uD4nvw+i65kZOV0BWCTKf+tE+nC04emsrQRpnqcy8qJ0VVALAMtG5TwduNcFRubWR9mbv7duVFdQXxY1mLiB+ONZ6fz2k40NvxTn5W+O/vi3kyCvZJl0tpL7TiJ8/qjBTSgh97ndrMNMnrcT/o8H7odJG7wblZPvXCXKrFVBFQ3xPZLVHRWFq4ky/+Dd2cOvy7fCIP5oCq5nQoYjojI/LpvWx38Z10ko9d0X32sN3AKsnIj3IJUHeBd5gPPwD0Ef75tRPVwV1ePZQX39kMobZzYUdmfBPdDxbdi75wCGBuGZov6cQDH4sJljP+9/jU8zJpBxVBBe7Q3qicA9BBgR1OfeNVy/YQSdl0T4ejn1vzquA7QrcHjUXhW4Nie/3aPrvyqwfyLeDATPqMB//aCM7Dvy+0H590f1tHSV8++koKrWV9mIvXWjsQpqjZywjXGv5mcCd5bI69WCm2EO3PDjaIK3nCB8ZBl5I7lLP+QL8lCib404ZdrljcXH/YKK9dUuH55LlPlwrbL7+AcVhD8UPPSUSDl4v4/wb4iB/3jcEG3HeHwQf2zoV0LGocBSgfvTsmnrvHZzlWzf2QSa+2o4l/BhHyqoy+n8jXQ3Klanh1WTC9cB/EuRHLjp/8k385z4s9D1+0xZBTUBmLtZ16gb13adoI5Xz4kzAzCxG2WMws/i9u7JwJX+eBwwexB3YIn8/gb8omz5hYvF9hHKTgvNjauqVwNX15DPK7gbNJXXW7jvTElU9b95chRQy9T50qjq2jlBO+P+DH+MOi2wqupSdRgvXBL3TTCPcPr8Dbgbb48oznWq2mlqrKo+h5u1h4jcjPtYnVHTtVBnjTqcYrwKTTRSp6qvUU7GrI08iRu2KpN3ctq7qm4OICJL4NpAP7r+uvAWcFxO+ndFZEqVskeUkTGI/z7u+28n75JpW20tIYmq3iQi/8ON5iSn+Kv70bjun+1V9U3cMF3G8kHYS1Hcqr9kqGpN9vdMQbWGWh+83aW7/zXNjhu3L7XwrqqeByAi83h3Lf861Y2qVvsZt6MeVHV9ABHZP4rzFcWED+U1cN8E7iO4cWtBVR+qJ10TyNrkD3EzXGvhUeD6LhmqPi4iAB+rqvrjLOwr3OzOPGrthNXKtriJQhlfNLm8ZvEL3Ft5j6A9vDCDKSjXYyz7w3KjbpqeVFBb4CZe1I1/o/hdHeleFpEh3Sh6W7quCNEdutxcqvpJ4FwXN1GjiN3xK4hkvVYRWRf3XaI30x86esE1/Zysqt8oCB6Pm8kFsFBU30WUXoatHlT1osj9djfbaktQ1eNbLUMzMQXl/sHpaXpMQanq5T1VVk75dfdM44dIAyisd1W9qWoGbojus8jvA9xsqd5MUx7OqjolOC4afo1p9htUF7rTVo3m0OcVVA09uoYW24IyjRY89HoRk3C/QbQLdq0MU1A1sC6NW2vsZNwPg0bPchGdvzsYHlW9DreKQ7tgCsroWDlgukVEJquzrGsYRi/BW084QN3ixUYfpakfIg3DMOrkZmpbyduYDrE3KMMwDKMtsTcowzAMoy0xBWUYhmG0JaagDMMwjLbEFJRhGIbRlpiCMgzDMNqStlVQIvIzEVERmc27RUROEpEpIvKoiCzTahkNwzCM5tGWCkpE5sbZOnk58N4At/DkeJx9mdNbIJphGIbRQ7SlggJOAPan85p1mwAXqOMeYBYRGd0S6QzDMIym03YKSkQmAq+q6iNR0Bicob+Mqd4vlcduIjJZRCbT+80gGIZh9ElaslisiPwTmDMRdDDOANe6qWQJv+QyGKp6Js78umEYhtFLaYmCyjMV7k1Ezwc84q1vjgUeFJHlcW9McwfRxwKvNVlUwzAMo0W01RCfqj6mqnOo6jhVHYdTSsuo6hvAlcD2fjbfisAHqvp6K+U1DMMwmkdvsgd1LbAhMAX4FNipteIYhmEYzWS6X83cMAzD6J201RCfYRiGYWSYgjIMwzDaElNQhmEYRltiCsowDMNoS0xBGYZhGG2JKSjDMAyjLTEFZRiGYbQlpqAMwzCMtsQUlGEYhtGWmIIyDMMw2hJTUIZhGEZbYgrKMAzDaEvaWkGJSH8ReUhErvbu+UTkXhF5TkQmicigVstoGIZhNIe2VlDA3sBTgfs44ARVHQ+8B+zSEqkMwzCMptO2CkpExgIbAWd7twBrApf5KOcDm7ZGOsMwDKPZtK2CAk4E9ge+9u6RwPuq+pV3TwXGpBKKyG4iMtlvjzdfVMMwDKPRtKWCEpGNgbdU9YHQOxE1aW1RVc9U1eVUdTng82bIaBiGYTSXdjX5vgowUUQ2BIYAw3FvVLOIyAD/FjUWeK2FMhqGYRhNpC3foFT1IFUdq6rjgK2BW1R1W+BWYEsfbQfgihaJaBiGYTSZtlRQBRwA7CciU3DfpM5psTyGYRhGkxDV5Gec6QYRmey/RRmGYRi9iN72BmUYhmH0EUxBGYZhGG2JKSjDMAyjLTEFZRiGYbQlpqAMwzCMtsQUlGEYhtGWmIIyDMMw2hJTUIZhGEZb0qcVlIiMbrUMjUJEVETmKQh/VUS26EmZjN6JiKzYahmM+hGRIa2WoVH0WQXlb8JeudisiMwjIksmgpLmRzxzAas1QZbtReT+RufbFxGRGUWk7qVdRGQbETmimzL0A+729td6Bb5ztkCr5QgRkdHNrEMRWSHV4RSReYHPmlVuT9NnFRQwc6sF6AbXAo8k/FuxbtXGQI8tJSUi14tI263BKCKDRGT2bmYzs8/rrpJl9heR/v74m8BFwKEiMrQbMmTPhFIPVxGZRUTqtoogIss1oN7AdcDaideArbqTgYgM8IZbU9xDxXhryAifVkRk/pLlzCoiM9YpZl6eM4vI9wvCVxSROavl05cVVP/uJPY9pIkJ/6VF5Obu5F2CvAdCQxWUiGwuIk81Ms8GsB6wc1EE36Me1kPyZBwLvJUjz5x5wy4isnsQNs3vVypZ5o3AHf54/cD/qJLpU2TPhJVLxn8POLQb5d0PnNqN9BltsaioVyoHeOes3cxuT+CVGtNkimYF4PmSaV4Hrs4LFJEZvOmjQnxnI3uu7ghcGIUvJiIjvPNu4MxqefZlBXVNLZF9j2SRwOsI4Ao/JBKyMc40fTOp92bcC0BEDg8aUhFbAItUifN17CEiPxKRsxP+M/p6PEtEhopIP++3aynpSyAig/zhDL5nWPU8RWRJERnXjTKHAUXfM18HLs8JO52KQiq8riLypYhsHnitCawkIjPhbKhlfM/HH1TH22bWnu8QkVlKppm3KNBf67cLosxfdmjTt5mRqaAy6XuAL3GdlS6IyDkicmQNedXzVpMpx1rSDqL4Gu5KzvNSRO4PlNf9wOY58b4NPA6cEXhX1T99TkGJyBy1PIxE5BsiMjOwNhC+TWR19404SbcErC7PvMBCOcFlFddhFH+vypjRlzms4AEywMfpJyKPeb+9gF0ScT8CfoRr8AsAB3q/s0rK3UE2wUVEFgqGuYYBh/sobwH/BX6ak76/iKwuIqNww6U3FJQ1e/aWIyIDRWQpfzzA9wg/JqGoIzYoCMsmJXS8ZSU6PuDqenkRuSYK/yXuzTIj66WOAXYWkeFhfP9Gt4+IPJ0oI1ToybacGD762g/1vZeKjxu6nM13RlJvth3DWD7vmQP3ISJymvcfhHvLfEdEZvXhgzMZcsruMRKdIYnCdgZ2L5HPfiJyGJU36rLlL03l+tX6HCp6doTnMVREfh2c63I4E0j7efegLqkdt/j9kOzalZNKdbregMmRW8OtRPos7pF+PxBYAmeLSoEVg7jfKJtvnecyb0p23ANKgeVz0v0lTBOczzPeLcBCiXRX+rib5J0T8ImPM8jvJSGfANt4/2P8ftGgDhU3JLFMkGZuYLGorPHx+fvjXXETQDSxXQYsBswa5fXdKN7z3n9tYMkg3to+/L/GdsYAACAASURBVI/evXtQ9hO4IbYwn0F5bShwrwEMDsJeTLTNsUH8a/w5KnCc308N4v4hSvslzl7awoHfgT6vuVJtKChrXBC+ATARGOLDJvj96lH9nwtMKGgjo3y8KcDDibp5Nchv26iuMll+Fl8v3MP4ae9eOcr3TGB44J4Z1w4fw/XyFVg0CO+H68xsAiwV+C8GLJHlEch0XuI8w/aswE+CsIHe723gt8BmUVtfGTjZ77N76oCCOs3KmC3hp7g387y0gxJ5vRC454jC9w2uzyM+/khchykr70K/3xbXNqflXEfFvWkp8M+UfJ3Krhaht280TkG9ljW64KZU4OWg4R4V54t7Y1gyke+bwOgqZZ8KnJEnO5HCAjbEP0yCNDPE5+uP7wn8v+33u0Rpr06kXR+4LSFTpqD6B37L+zjhQ/F4v1+Irjf0Jz5+SsmNj+KG53Jaom5S2+lBftsX5Pe0P16RysMi3mb3+88j/+OiOlwkcS4K7Bwcv4x7QIb5/Bu4Kohzg9//tuS5KnBzcPwnn1cnhZpoc+sk8jkM2NQfC/CdqL7OxT3Ik/cTFQXVpczg/BXXSen0UA7SxW1FgWGRexzwc3wnAlgjyud7Ufzv+LDVgDkD//uBtUK5gzy6XE8fti3wYJT/Pj5sY2A77/eO398NzIS7by4N0pxH1OaqPJcUr1Ajv6mB3HsBI/zxxEi2V737+SjvWQL3bVEdKG5CztKB+xq/fyKSY2eC+zmxDS18Btb6wO9tGzUoKOCHwA1F8XHDUgrcGfidlogruF5bFvfHiYucudcFlgF+BfwGN/z1dBBvdlwvK5blg9RF93kOIlJOgVyx38Z+/z9gnE8fPzAVd9Nmx0fjZhNm7iF+PzjwO8HnNWcirwWo9Lqy7Usfv6Nuvfu1RMMPyzy/4AZIXm/cN8RUvSnwJLBU2Tyj7XOfz9u4XmYcvrrf7xr4XerrM+9aKq5Do1QUfJnt1cj9cU7+A4N6Wa9KngOpKKtZA/8fBvkNwT18s7fEOaI8DgH2D87txSAsT0GdS1dZYgUVb4cCSwK3e/cZUfiHuDcWBS4J/O+P8wpk2TnymzEIi+v3vMRz4b3I/Sfc8FfReRzs40zKeS6tlvOsUiojFm8lrsOMwfHzOOW7oHd/H1gcN/yaxTkqSn97TpnxVnh/moIqoaBwva5s2GRN3I1Y9DC4Nzg+M5F33FvLtpUid3aDfBH4dblBcravcvyXBq6g8lALt4USfhtH7j2pDEmE2+8KZMmU4ZOB32RfL6MS8cfhZqHF/hvl1E/R9qeS9aXAj/MUVCDnY8BNNeTZpU3VmOZC4G/1ltfNbUO/H4Br73FbiLcFi8IT575GUEa4fU3XB164xW8FKQX1zRLn925wfFkDrunJgf+v/D7vDeFPuFl4RXk/BtxaJc5/IvcGkXuT7pyb36bk+E/tZr4KvFCtbk1BFSgoOg9LZdtFVSr998Hx6aR7y83epuX4f4KbfJAKixWkUhkSCbf5GtTAB1MZDgu3eUgrgfit6h8NrrM3cUOCDxXEebI7ZdShoJpxnrVuuzUinzrPPbU9SudvHCkFVet2STfSZvf3KYmwMp2oZm4XNyCP53L8P2y2/EXP75pn8YnI9rWmaWfE/eD410TQNlWS7hscT8P1gHuavOs3A/nTTFP/t5ye8Nu2Rlny/uT/nPT/QUL6X7T4nDapUY5qzIEbbl2qIM6i3SlARB6qI1mjz7NWxrW4/JglcG/yGdqAPFfoRtqsraZmId7ZjXwbwfcakEfez92Dc/wbhoh8nhvmezypRBNS3rjhrFUSYW2JiExW1eUCd+qEP6a+fw6M+jkcNxV97hbLYTSWLWhcZ+0U3KSkdiCT5XnyO2NG/fTThDIqUlAf4sY14/n066hq3vIbTUdE1sdNq+0PnK2qyZ/igvhlFJRhGIbROgaoapf/vorW0HoK+Lmq/jf0FJGaVmBoJP7nsFNxU2GnAveLyJWq+mSrZDIMwzC6zUASPyYXfYNaB3g/9lTVjRooVK0sD0xR1RdU9X+4j4OtHrs3DMMwusfAlGeuglLVD7NXLhEpsyxOTzCGzosnTiWxZI+I7CYik0VkMjBbTwlnGIZh1EVtCiriXhFZtoHC1Etqfaku35RU9UxVXc5/e3qn+WIZhmEY3aBbCuoA4EYR2TIOEJGJItJT0yyn0nnW11h6qdFBwzAMo4NPUp6lFJSqXoj7w/wkETnYr+i8k4g8ifv7/MLiHBrG/cB4EZnPr2y8NW5B01poxf9KPcHUVgtgtJz9qkcxjPZDVT9O+Zf+UVdV78ZNnDgIN2y2J+5floVV9bQGyFhGhq9w/yLcgJtleImqPlFjNvfWEPc48u34dJdxDc4vuwbHNDjf6Zk9q0fJZdOGSVHhohrj74JbKudaVRXc0ldG/dTzg3UeSeOV0wlfNiifQsOjUFJBicgoETkWtxLynX77ArhVVXvUDouqXquqC6nqAqr6qzqyKC2vqh6oqlvglsdJkafsUitTxIR/T79YVqYCzvX7qmaU25h3S8YbUSVcgRMiv7US8Z4Ljn9fsuyMKTXGL8OJNcb/m6ouGcysreUfv31Kxvtnwm/jGsppBt2x4FtEPBpT9QFaQJ6ySymuETiTOb2FV+tI8wbuBQfcSu7gllEqpOwb1PM40w5rqep6uAU978NNnkitONHOlL2Jtw6O8/4XSw2rnYZb8v8L737W7+P/x0I5Xi4pU8ZNCb+sV1Pm/BYMjhfDrQOXR2Y2ersS+dbKmTibRRnZOTxSZ35/8nvBLVCZMQG3IGfM13Q2QlkL9fzwnTej9A0AVb3fu0spalX9IPIq6nzFeZY1hpeahJT6F/J/JfMrw0c5/g/jVkGPTdrfnYrcXVT1PNxCt7UyhHyDgaOJ/vlR1fdxZlSqES8JtA7wTCJevb8C3VYyXvym/i+//1NeAlUdTaWjrzh9UvX/1bIKaklV3UZVH/KFqaruixsCu11E1itO3lbk3cTxzR42+ryb79exh6ruqaqvBu7sAfxggUzh/2Y/IMdsckDcez8M+KxKmpAvgUm45fufpPMre/z2d6DfP0Q5K7y1cJyqPhu4M4usP/P7GxNpct8QVXUnXMdgGs5cSeb/VGoZFVxbWLpAvnhJm3BCTs2zQ+Of3gMWx60RCM52Tzb0WKREbkv4pd52vkj4xawauf8dHJddaii0pNrd76GpB+x9qrq0qmYP8nD05DE/xJlqL3lc6/fh28ArcSRVva5kftm1mqyqX5CjoFT1a/+pop5hsiUi96Ok3yYfSPg9n/CLidfdWycZq+vzMKu3uL3uFLmz++cwVS3XKW/AauFrA281e1XybsgXr2a+D+lVdZ8Gtgrc8wRpVqGrBVals8Gu3QhW5sXdpJkBPsU1pCzuXnQ2QbFndhykz1v9dzhdTWHsHaTZKZHmkcg9d1QnP/L+l+MUVBbvsqCsxX3cSd79y0Q54fZvv78+x/+V6FwfADbzx4JTREsE6Q7x+1FU7EBdB1zlj4/zeS0IjPfHx+XU6Y5+v3DgH9pj2jhLF5SjuBmkGxVcp4eAPQL3E7ghHY3y63RNctqt4hTXhbj17cJydsOtXZZKl7XTEUG9Zm0uzOP/cuTS4BpnYaFl3lT8eEuZUSm7jcEpzLjN/CynjhTYyrsz+2TVTE8sSKVtDQ38hWC18ir34hu4zmTmXtuXm5lziU1iKPBmkOcW+JXCvTuzo3as318VpT3Pxzs48BuNt0AcX5+E3Df7vPcHPsW99SjOFt13/PH+UZpxfv+NwO+bdLYRdToVEyyZva1zqdjJmjeUKbp+2X2cDFdVGqUEFm6VAiohW56C2obOF+NOOhvkm7fghsi2zKhdtqbh4kHc0cCYIN0vwovhwxXXE9wKujSuuIHmNb4b8abRvXuzRLrYSuo8BfU1KYi3cZDvUlHZhwfxzgoab+aX3XCdFJRPvwOwYVRXw/zNEp7jLFE6JTBx7f2W8/6rJ87lmJw6y67bQO+/Oc6cwtvef6WozOsC9yDgqJw28VDg96mXv8MMSxT/N/E1TbS1kTnl7FRw/QYCa/rj1ahYIs7sbO3o93vh7J5t4uNmFpbvJFBmifKfzbkXwi3VmQu37ehaJ/8CDgrk7tLmc+poQuKe+RbO3lfS5IyPO2d8TfzxAJzNtOsK7vvBeLPpJa5htm0BrB2FbxKU2x/3tps9FzLTIJnF5t8n8p0ZZ7ZGcfbfzouuWWhRObb0PIDAaq73WzuSOVNEHR3iIO5IYNZIppWBn0Z5zklO/YTXPjc8L2B62chXUAtQuVnVV7gA8/s4/as0OMX3LErIoDjzHNsEDXKM958b94CMG8CeUVlrAQvEsiTK2SRIcyTwRkL+eQtkHUPFMmjWCzoHGBblExpVnCk4r6+AdYN4N/njjreSgrJXiuNkN40/7tIR8tdL8VZFo7CjojrNjEgu7vf9ovhHAn+nq4K6Nk92nGLNLAA/GqQJ38BPjuR4E2d6e+usrkq0oeN8Pq8CS9R4DyiwUeTeK4pzQ3DO/XGzdTVKo8Az3j0x8DsqawN+GxEc70Klt97xoAzbrz++PShr9SD+G1XOK7wn5sebcffu0GKshmVG+ayb8k+cuwJ7RGELFLSN3DJ9+GBgi5x0l+HewDPDqMdH4UcG7qyjdV5cViCDlGgn60bnmlnC7ld0HkE54xL+c5RId0VueC0NvTdudFVQcS/9o6IKjNKGN85xlFdQy/vGODNuBXbwJtz9cYcV2SBNNlT0GXBPzoWNG+MPqLw2H5OXJtWQoniZAceZcsI3D2/+Ko3vlhqv1/yReyDw3SppFFg14f+LqE639nEnVJG7tILycbI6fzBIM1cQvmrZNtaMzcuzROTeO4ozIqx7/BBVou18J+G3TeQeHhyvQP6w2T7BcaigFvV+h5B4gEd5zF0QHhoifSavveLfwqvU4TU5aYsU1G8oePhWOa+/4YYfs7b12yj8O4l058ay+LhXlSw3NlI6W3Qf5NaRD58/4T97iXSH5IUXrWY+XaKqN9L5A+b1uO8aZdLeLiKfAUNV9QARWbhqIpfuPn/4BbCrP45liLkA9zZytuZP5Q9nqqGqfwEQEUh/hH0fN+xUODlGVaf5PPI+9F4elFM0g+o9YHJRWYm843P6Eri0TNKE34m4YY6MspOCHsLNxAT39ngpBR+1VfVzEVmczpNdwskJdwHrlyy74aibQBAzLYrzHpVJKtD12p+PG4q5KsxXRDai6+QMxX3XuApXJ/vg3sjmD+KMpFJfvyUw+qeqT4nIQHWTCYr4CQUryfh2PA2nqJIrFXheoPokgrxZeXn+qOr+VfIsLE9VP4OO+6yjfedcT3BD0SmDpGVnhb7oipNZqQw1hlRbkCElV96MzE5FFwk1XW9Eb1ANyO9TOvcEF68zn1mifGaloDeYSK/AnTlh+5L4zoRbaSD3zSiR/9AqcdYBFioI70eJoYUGXJO9gSEl4mXfGBeloFfXAHkUGNzs8+6GfKtWqy/cW9DRdZy3AjN49xxtcK5feZmW9duldeazDe6/s9h/oUa3JS/v3yP3z+vMazFg5jrTjszOzcvw54K4E+u514HvE31XDrdcg4XTC7HBwgbk9wnuBsztOfUEIjIK+Fy7/gtjFCAiM+N6h0+1+hpOb4jITsC57VSvIvIdnDG8vzcp/7G4GakNO2cROQ24UlWv9+4xuBmAPbpSiH+T+q+6N2UFzlLV3XpShj43xNcADsR9GG8pqpq3uoVRgKp+ICK9ebWNduZioK3+idRgSLJJ+U8VkZENznOPyF3Pyg2NIBwW3R+4uqcFsDcoo88hIvMCL7VTT98wjK6UXizWMKYXVPU/uP+DDMNoY0xBGX0SVW3GYq+GYTQQU1CGYRhGW2IKyjAMw2hLTEEZhmEYbYkpKMMwDKMtMQVlGIZhtCWmoAzDMIy2xBSUYRiG0ZaYgjIMwzDakrZVUCLyMxFREZnNu0VEThKRKSLyqIgs02oZDcMwjObRlgpKRObGmXJ4OfDeALc8zXhgN+D0FohmGIZh9BBtqaCAE3Cr54Yr2W4CXKCOe4BZRGR0S6QzDMMwmk7bKSgRmQi8qqqPREFjgFcC91Tvl8pjNxGZLCKTcSaTDcMwjF5GS+xBicg/gZRNnoOBXwDrppIl/JK2QlT1TODMugU0DMMwWk5LFJSqrp3yF5ElgPmAR0QEYCzwoIgsj3tjmjuIPhZ4rcmiGoZhGC2irYb4VPUxVZ1DVcep6jicUlpGVd8ArgS297P5VgQ+UNXXWymvYRiG0Tx6k8n3a4ENgSnAp8BOrRXHMAzDaCbTvcl3wzAMo3fSVkN8hmEYhpFhCsowDMNoS0xBGYZhGG2JKSjDMAyjLTEFZRiGYbQlpqAMwzCMtsQUlGEYhtGWmIIyDMMw2hJTUIZhGEZbYgrKMAzDaEtMQRmGYRhtiSkowzAMoy1pawUlIv1F5CERudq75xORe0XkORGZJCKDWi2jYRiG0RzaWkEBewNPBe7jgBNUdTzwHrBLS6QyDMMwmk7bKigRGQtsBJzt3QKsCVzmo5wPbNoa6QzDMIxm07YKCjgR2B/42rtHAu+r6lfePRUYk0ooIruJyGS/Pd58UQ3DMIxG05YKSkQ2Bt5S1QdC70TUpLVFVT1TVZdT1eWAz5sho2EYhtFc2tXk+yrARBHZEBgCDMe9Uc0iIgP8W9RY4LUWymgYhmE0kbZ8g1LVg1R1rKqOA7YGblHVbYFbgS19tB2AK1okomEYhtFk2lJBFXAAsJ+ITMF9kzqnxfIYhmEYTUJUk59xphtEZLL/FmUYhmH0InrbG5RhGIbRRzAFZRiGYbQlpqAMwzCMtsQUlGEYhtGWmIIyDMMw2hJTUL0MERkgIjO3Wo7pFRFZQES6/QO7iMzYCHkMoy9jCqr3cQjwfquFaCUi0sx2OwX4SXcyEJGBwEeNEcfojYjI/CIyU+TXT0QGt0qmPLxcK7ZajhSmoHof87VagFYiIuOAaU0uZmZf1qIiMrSO9D12X4nIDCKyfU+VZ5TmeeD0yO8Q2nNt0NWBu1stRApTUEZvY9YeLOtJ4OA60gl0mIhpNhOB80XkByJyTA+U17aIyCgRmSFwrywirVyJYEQgiwBrt1CWIga2WoA8TEEZvY2efuCU/pYkInOLyIVUVt7PVVAicqeIzNNd4YIyDgQOakB+tRXuLFuv19Pl5vAGcEbg/karBPGE139V4Fs1ZyDyqojMlfBfREQW7I5wYXYNyie/AJGPww6UiJwjIptUS2cKqvfRv9UCNAIRGScic9eRtJ3X5lob+D6VG77o/loZWL5ahiJylogsVaLsr6pHaQpbAdukAkRkTJ1DpN1hdHC8UQ+XHRM++IfXmcdcwMYicqqI/Dzwfwp4pG7JOvPdshFFZJCIzOmPJ4rIdgVx5xCRN71zGJ07UDsDP6xWnimokojIMP/9Iy98YJM/3mdsURQoIreKyJZFcRqBiKwmIquUiDdQRIYlgp4HHoji9heR66tkmaugRGQmfwP1F5E9qslWklp6l4v4fdYOkmlFZK0oXhG74pReHlkZpRWUiOwkIseViDe6WpwqTAVO6mYe3aFQQYnIt0WkmR2+8Pp2arciMkREBpXM5wxgD+DIyL/L0JyIrCMiB/njwSKytIjMJSJDgjh/8aaMsqHHXUrKAXAs8Lo/vgK4oCDugsAcBeFV278pqPL8HnhRRBbOehARHwIn9IAcg8D1ZHLC1wA26wE5bgduFZF/i8iognh/AD5O+Pej6/DZUGA9ABH5v5x81Ydn33kmBt8Z3gfOw00kOdWH3ysipb5bBR2MgfEMrJLs7/dZPv28gh4RxdsmileNoniZgpq3ZF7gerL7i8jE3ExFvkV5e2vZNRmQ6KTNXoNcsQyj4zbQ4DeyW0godnHkluNnvR1U4vtW2EGJ4z4OXJ2T/5oi8t1E/rE79e3oUCAbStsDeBB4FTg+iLMtcI1XWsfmi59k32oRROTXIrIj+R20Cf5wg2p5mYLyiMhYEYl7KCEj/f5p4KpE+BDqHPP2N3bZnlx20WcWkRVFZJGOAN8rAlREFheRZs/MGYgzLrlMFyHdB+tLgIUK0g8tmEhwEnC8iBwW+Wc3aaZAQptg/ai8xeBvwOVDGaoonn38/mBch8MnkedFZPU4sogcKyKL++PwgRYO8R0NvJtTXj8RuSinwxNSZlizkxL2irufP543evvP5LtCRDS+Bv4N7468gkTkDhEJP/hn8r2I6yCUQkS2EJG9RGTznChPEbxli8hI4FMR2UdEhntFErefLnUlIieV7aR4fuLLOSsnfBkqSqCIpIISkTOABYB1vPtgERkqIrP5c7wZuCSRXxelKSJLRs+OrLMwBgjbVepN5ltUOlVhnkeLSOnrmOBA3D2Ud28/UTonVZ2uN2ByyXg/xV3cAcCvgPeCsFt8WLa9gHs4zwpc4eMocKs/fhvY3h8fCWzlj8cAIxJlZ/nOC8xbRc4s7uyZLN7/NOAf3u9C30A0SCfAMv74AmCkP94dOLCgvNWAYYG7PzB/VB8bAZsADwbxNvNht2RyAP8H/Dk6jwlBmpmCuB35R/IsntVVHM9vD+KGFhT3RqvAMVH9XZpzro8n8jvZ7w/NuRa/88fHBmlm9fsZgL8kzuHsqIz7vP/suI7QTMCxQRnHA2t699CsTO/eN1VX3r2IP34f+DwIez4qv18k335hft49GFgnyPuE4Pgc3DCkAk9EMvwTeAj3tjwgpy13qp9E+JY4Zb964PcL3LTtL+P4/nhUdI6bAYMT7VOBWYB1g7SnJepzaBC+YiJ8dELuB4G9gP8C60fyhLKGfvG1iTdJpAnluD0vbUK+S3PC3/Z+I4Gxgf8sKbkLrtuqqbiRXOOAd3KfP3kB08tGeQW1X1BpNweV+WzOBb84uMATs3TBBfhjcPxQ4iKdir9hE3n/sEDOLM6cfv8iTqkq8Fkir7uAHwNLe/cwv+90w+SU1c+HHxb47ZYo4zLgj1Ej3yyK0w94LNFIFwvSLOH95s+TLWv0wHY5dfcgMD7hP0fRTeXDvk6kOyWrA+Ao3Efr8dm5AKf4tCcHaeby+xkDPwnKiRVUVifvJPzCeFfieu8KrIV7+N8TxbmUygN2YZ/HV979X9wb5QtRmi2iejgkIcMKfp91jE4MwsLz+RLf6UjUZabMF4jDg7KvAY7AfUQP0/5fIr84bSjzglG8HwdhX0Rho4L8nwHODMJ292lGevcRuGH0LPxbuIkZCqyUOO//krjfgm1Q5P5f3nn6LfnMCOqgFgUVb8v68Ldz0k2J6jiLsyRuaLF/5J/dq8MCv2ujMtcPy+hyT/aksmjFRqSgcA/KIYl4xwSVdkviIsTbYwm/m4I0pwbHk6kolDDfOQvKGBrIdhIwPIo7MTiePSePbHs/OD6pqPFGdbKLD/8tbhZSP+CXOWV0KChcr+ihKHxCcDwyOF40KG8P7/ePKK3g3uRmjmVOyPEQ7oZJybhY3vnS9a0w2272+8P9fm9gz4Qclwd+8/j98MBv3aCsixPlbJS6Jol4KyT88rbxPo8vA7+9cZ2aMN6lgWy/jcKyN5GVI/8TgWX98VmJsudM+P2DSltdIwq7s8r9FreJLm038DsMN4QWxjugoE7nwg11Ze5zo/AtqLwVK+6tKCXLesBsOWHr5vgvX8P1VJxC7Bf7B3VwX0HaacCOVfKfjXwFFXbgfpFI+xRuJmvmXq3E+ZwelhFvffEb1CHAZ+G3CBEZS+3/kHyd8JslOJ4WHWczXxCRu/zhEP+dJsUzInKtiFyJ691dHoWH315yvxd4wrX7UjPqEJF5/X6aiFzux/azcftZgQ98OXlLtahPr7i3znhqdDjuHFo4/lpELhCRpfETG3DDhSHL4HqGnZZ4Sn0Xwg2rxZMSMpJTfX0+p+WkWTOL5vc/x71Vhelfi2TO1vIbGfhNEpH1fT1PoCtdPphLek3AVLvL41kROR5/bTzL0vVbxpYiktXNalHYpX6fknmy36d+F3g94bcw8JY/XjMKW7nKd9iq/8wEHJ7wK8r7LiCc1RhPPriM8j/Zvp3jn3fdFi4ZL+MOnBLqhIhcLW79x28WpO2He9Mvoj9OSaUIvyn9KhG+CJ2v035VygL3iSGfVr/htOANahLuhv0+MCinR3Wv38+YCMu2R3P8x/l9OATyfkE+ZbepuB5Kd/P5e0HYXcHxJLoOH1XtCdWxHeX3+9WZPrWdnOPf8eYTtYkyeR5RQ/nZm8UeibDbcQ/2es9tuQbWU7hlbzBFPfBw+0M3y/uowfIPjdzfjdyHZNe9RF6pb5Hh9rcc/7y3pKLtZw2sgwkl4sTDm/E2OuG3NU45lZHhtBrK6thyn98FD/b+wObApgQfN4HvtlrpNEhB/bxEg/2kG43lZNLfQqbXrV4F1ZPbA8HxOsD6NSioeraizkC9W963jEZsA5qYd7O366qEH9YDMpzSA2UUbUs0II/zcvzjIdO8ra7OeN7zu2iI7wLc0MpSwL+lsqzGjwvS9CbmApDin01nKAirxk9wQ119hW6bqOgBwiGKG4HrRKTMMEQjymsU1zUhz4x6/v1qF9avEt4TK7Ds2QNlFFH0m0xZdszxn1IyfUNNARUpqLlU9Zeqejjux8KzRWSNRhZeD34c/xkRmSIiB9aRxVZ+n/3z8u8GidbX6Q0KKvWQOj7h1yhq+W7SDoxptQBNZGyrBegBNm21AI2mSEENFm+7RFVfBL6DGy9dvCcES+E/op6K+wN5ArBN8Fey0Vp6g4JastUCtDmPtVqAJrJTqwUwaqdIQe1HMBtKVT/C9QibOSRSjeWBKar6gqr+Dzddt7f1UqdXftBqAQzDmL7IVVCqeo+qvgEdy2agqtNU9S89JVyCMcArgXsq0/ewhGEYxnRPYg1HoPxafPeKyLINlKdeUh+dtUskkd1EZLKITCZ/Tr9hGIbRHiQ/EZRVUAcAN0rCjINflPLOPDERsAAAEp9JREFU7khWA1Pp/FPgWBIrLqvqmaq6nKouh1s+xjAMw2hfkj/Xl1JQqnohsDFwkl95d6A4mzJP4mZBXdg4OQu5HxgvIvOJMzexNW59sr7GXdWjGH2IN1otgGF0k+QKN7X+9LoYzrbPB7i/4bciWgm5B3683RD3f9HzwMF1/Khb9MNYo/9ur3V7smS8xZtUvm1u+2YPlLFhA69vvGrC9LatgZtBXMs6hK3czqb1P+12d/tPD5c3Nvn8LqkURuHMCbwL3IBbkfZOYPZWrxTRYAV1dEHY21XSNmIrtVRKifMou31aMl68UGi92yUNyufYBuWTt32jB671OAKzDX57Mri++9SQ11K0vnPVtK3g/m3EEmI3NUHm1Rt4jzZ7y1uyan3Syx41/RqHW9lvUM/jbBWtparr4VZevg83eWJ6+Q/pVCoLY/48EZ76zjaN9GKHpyT8ypCyPBvzm8h9c0Hc31bJ6/ES5aGq4ZBi3qKqZchbWeEiv3+ZclZcD++GDNVYTFUfCdwP5sQ7ooY8UwunKu58Q84Pjp+rIf/XVLUnV4E4owfKuBVnB6qIRqwOcWgD8oiZluP/Ne7tqhaq/b81tcb8YibRdRHlQap6PfB5N/MOOS9yb5iMFVFWQS2pqtuo6kPg1J2q7otbAfh2EVmvvJwtZ/4c/72CB9PDifAt/P5i3OsvOGN0qYfuPnS1uhuv7t2BqmZ5lFka58+R+/3I/WZwfLTfN+wPc1WtZzmXrH2E7e1bfv93KjfhU4F/oRiRTFm9xTfUwrg1xMryB1V9MvLLvq/GHZF4dfkiDkv4fUDX631OcByuUB+veF1E3B6aQeoBPJL8pXbqedB9vyjQX/OUgroo4ZfHyyRMvgd8kOP/Du5tN4+sfYa/5PwEZ8OryMr1jZH7Xaqvbv5Kwu93VdKEiLp/XDvKVtUv/eH/4sjBvVZEaoWfTvWlquGSXXvkZVR2ksQLOf5n4JZBih+abYu6VTE+886PA/+4IXRaXl9Vp+Eu4m+oPFiyV1RwK5+HcU+O0mfK727getwwVUxo4gLcquox1XpMu/n9Tqr6oaqKql5Bwlw0lfP4TyIspu7ZkKp6I+4NNex534N7mJys7qdrcKsfl+kRasJvLPDrwL2Fqj4btN28N6G8fKfiRg0ykxLXEJgfB57OySM1aWcZv+84f1V9H2d64rTA7x38eniq+mHgX7imo6pmJizuAW4rihtwXJXwS0k//KBrXX6gqu+qakoRg7Mh9mv/cFuhjHDq/sFMtYWxVMyUp65p+MN4ZqAxj2qmxx/J8R9TJd9Mcb4E7qGuqqeq6m1Bnl/j7HJBpQMSKoS/4Yaar60iY0phFCm1Z+msOJ/y+63p3LmFivLeO/T017FoibiUEn4T2CEnfhdTM2FhjfjOs3CrvzWV/Qbl/TLjhJnRwaejMe51iJaXj9JnHxDPBX6YheNNMqTGywP37/3xxETYt/zxh96dWZ98DLdixipB3lf5sMvCcnBvIIo3OR/J/dco7h64N4GLvDtlXuPbPu0ukaxKgfVOgkkAkQxZuET+Rwbn/5yPc3Ai36VTdev9MmOKNyTKzIzMhTLHxhtnLdGe7vZx+ydkexqnJGP/k4O62yqvThJlxe2jcPwe12bDdpsyqplth+AegLPT2bBitvWns7XXzBzKF76s+737BOCgQIYfJ/JaK+/c/JYZe3wSN5tr/SDegIJrEVujXcP7v+bdD1epu+uoTIjZNBH+e7+/3u+XobPhybx8V/XhW6Sua/hs8vGH4ZTpgUEeA6NyPsEplrCc/3oZV6WzocljEjIdDZwZ5Pl2LJu/5nsE7swwYocB0CAs99tdIPM2gX+/wP+F4Pirwvut2g3Z2zdyTL77ynnQ78cF/u8D88QNMEr7MpUHz67BRTkwuoipi3ZiEL4LcFIQljXsC7z7ar/fLCH/YTkNJLOA+oOcG3pG6NLYMsWVNbr5/P6dIM4SwBuBrB/hvhMUNdJ9gFcS9a6xbFGcA3y8GVL5BvkcgzdT7f2+ncmYKDNTUDf4/SA6K5lnSranTKml7OPcQdeJD4pXnEEe/aM8j0vVCd7uUNyWgm1h4BeJdDPiVuufAaeE5sU9kD6kYq7j0NR1AQ5J+K8bHH/pj38EXFBwb12BM50+rCCOAgsF7qXquL/D+hjn/d4IzzFRb5nivh5nnHD3KF5mpn1h3BvbdTnXJ4u/MrBZ4F6lpOzZpKFBRfeH91srOH4d14nuj+/o0Vm5/SpxzrNHeb6cOqecc1wmlovKfdTFpEyQbr1Eus2Awf74qLgddim/1gbR2zaKFVTWC0zORvRhw4G1I/9XfNiMeFPd3n9x4Iog3mzAM9FFO7mgrPn88e7evbXfr5+I/4NEIzw8yGvZVDmpm4CKgjo3kvWFnPSZocfjyJk9VrbsnDjZ2+WwvHxxDw4pyicqc2+/z+wGDaCzknm2ZF7DgeXCcwm2OwL/zKjdIvjOREGe/Qk6SYH/ptH12JsSdZxTxlzAmCCvw1LXBVgg4b9ecPxlyfr+SYk44fU8mjp+WcEN1yvwt8BvV+CXiXOLH6DXJ2S6gUrHZbz3nwB8L1H22sAOiXJWLin7KHyntOj+8H5hp/msRF6rBOUvQ+Kco/iLAR+XvJbLx/kAP8V36qiM5qQU1Nm1ttVO5debsLdsFCuov9VTebj/Mrb0xwLMUhD34uiinVoi/92DNEunblxfbmhFdG6CnliV/D8E/hy4lwV+AQwBZvN+8+FMrhTlI1SGAdaiMlSTW6fVwqO42dveCuT0YkvmsxPu257iviUplSGHZXHfOibVkW+mNP7s90sGYf3wwzREQ7815N+fyrCn4t5Id6qlDgvkPjx1XYAFI/9jgeFBnMIhmSBeNQV1KIm3vzrP52Zgm4LwThZyAxlTCup6f3wZMLSOelVgpW5eG438JAr/Y07arEM7MDxf4JpuypMNpd6bE6cfruO2Em5GaZZuPbyF3XrL7w0mEprFWNyrfM0z3NR97MyOleKZU38Cvhe4y0xM6Zj+rX7mZEIGBT4Tkcyd90E7lXZ45H6AygSAz73fiyXyUUAzGXCNsgzVpr9nfAb8Q1Xv9ctpVTNKl0RVzwMI5MyGQ1DVB0RkfqrPlkpxPXCKukkxcZlfB3mWnS0b5zGNzh+jv1DV80RkU+qsi4AvI/cLuBmunWbcqWo8I6usEcbCtqCqjTCul+W1VpUop+Em6fwZ2C7wz/3NQlWrTXFvFnvhhsFCWeK6jK9dxiXAfar6pYgMA2ZS1XjiQ02on7Xn752k7TTf1j/EfZ+dKwrOm3Jfij6roFT1VX94cZOLihvIf6slUNV/U/5BcCGwba1CNYH3gUeBzavEOxSntKviH9DZzXoWbtZbdxFV7TSDTSuzCGtCVTcoGbUuBRWxGJV/o74HDO5GXt+k6wy264A9VbVoFmXWQy9D2Xg9SdiJG0L6Qf9SA8qpp7MDgKqeTDQDOEFSQXlF8YI//hT3I36j+Afuk0itHIpTnHXRZxVUi5ibxjxkQ95rcH71MLuqviMiD+HejnLblaoeVU8Bvid4Zp3yhTTDDHs1PqwepRgN/s9S1c/pxk+Uqjo54X05ML5Kukkli9ibbjyUmkB2jxyOm3WIqn6RiDeCxjzUm6mcPyW9aEBTUdXNqsdKpnuPzv/01YQpqObT0Vir9E7r5d0m5FkT6v7fyXpwjey1NYNWLKx6Au57Z9uiqrcAtzQor5MakU8DmQTcpe4H1Nz/+dT9m9YImtbGVDW9qGr7MZEGtCdTUL2fY+i8RI6Rz2jyVwdoGn4IcUpPl2s4fMepzM/ojeBEVY2XsOpzqGq8kk5dmIJqPi/i/rtoCn6oIrnSh9EZ9RaiDaNJPE3x2phGjZiCajKq+gHuT2zDMKZjVHXRVsswvdGI2UWGYRiG0XBMQRmGYRhtiSkowzAMoy0xBWUYhmG0JaagDMMwjLbEFJRhGIbRlpiCMgzDMNoSU1CGYRhGW9K2CkpEfiYiKiKzebeIyEkiMkVEHhWRZVoto2EYhtE82lJBicjcOJPG4ZpWG+BWWx4P7Aac3gLRDMMwjB6iLRUUbvXn/em8bP0mwAXquAeYRURGt0Q6wzAMo+m0nYISkYnAq6r6SBQ0hs4Gx6Z6v1Qeu4nIZBGZjDNMZhiGYfQyWrJYrIj8E5gzEXQw8Atg3VSyhF/SMJiqnkljjNsZhmEYLaIlCkpV1075i8gSwHzAIyICMBZ4UESWx70xzR1EHwu81mRRDcMwjBbRVkN8qvqYqs6hquNUdRxOKS3j7fhcCWzvZ/OtCHygqq+3Ul7DMAyjefQme1DXAhviLJN+CuzUWnEMwzCMZiKqyc840zUi8jjweavlaFNmA95ptRBtitVNMVY/+VjdFPOOqq4fe/amN6hG8rmqLtdqIdoREZlsdZPG6qYYq598rG7qo62+QRmGYRhGhikowzAMoy3pqwrK/pHKx+omH6ubYqx+8rG6qYM+OUnCMAzDaH/66huUYRiG0eaYgjIMwzDakj6loERkfRF5xtuUOrDV8vQEIjK3iNwqIk+JyBMisrf3n1VEbhKR5/x+hPfPtbslIjv4+M+JyA6tOqdGIyL9ReQhEbnau+cTkXv9eU4SkUHef7B3T/Hh44I8DvL+z4jIeq05k8YjIrOIyGUi8rRvQytZ23GIyL7+nnpcRP4qIkOs7TQYVe0TG9AfeB6YHxgEPAJMaLVcPXDeo3HLRQHMBDwLTAB+Axzo/Q8EjvPHGwLX4RbnXRG41/vPCrzg9yP88YhWn1+D6mg/4CLgau++BNjaH/8R+LE/3gP4oz/eGpjkjyf49jQYt5bk80D/Vp9Xg+rmfGBXfzwImMXajoKzpPAiMDRoMzta22ns1pfeoJYHpqjqC6r6P+BinI2p6RpVfV1VH/THHwFP4W6uTXAPH/x+U3+cZ3drPeAmVX1XVd8DbgK6/Pnd2xCRscBGwNneLcCawGU+Slw3WZ1dBqzl428CXKyqX6jqi7jluJbvmTNoHiIyHFgNOAdAVf+nqu9jbSdjADBURAYAMwCvY22nofQlBVXantT0ih9WWBq4FxilfrFdv5/DR8urp+m1/k7EGcf82rtHAu+r6lfeHZ5nRx348A98/Om1buYH3gbO80OgZ4vIMKztoKqvAr/DWf1+HdcWHsDaTkPpSwqqtD2p6RERmRH4G7CPqn5YFDXhpwX+vRYR2Rh4S1UfCL0TUbVK2HRXN54BwDLA6aq6NPAJbkgvjz5TP/672ya4Ybm5gGHABomofbXtNIS+pKD6rD0pERmIU04Xqurl3vtNP/yC37/l/fPqaXqsv1WAiSLyEm7Id03cG9UsftgGOp9nRx348JmBd5k+6wbceU1V1Xu9+zKcwrK2A2sDL6rq26r6JXA5sDLWdhpKX1JQ9wPj/SybQbgPlVe2WKam48e5zwGeUtXfB0FXAtlsqh2AKwL/lN2tG4B1RWSE7z2u6/16Lap6kKqOVWd7bGvgFlXdFrgV2NJHi+smq7MtfXz1/lv7mVrzAeOB+3roNJqGOjtsr4jIwt5rLeBJrO2AG9pbUURm8PdYVjfWdhpJq2dp9OSGm2X0LG6mzMGtlqeHzvlbuCGDR4GH/bYhbvz7ZuA5v5/VxxfgVF9HjwHLBXntjPuIOwXYqdXn1uB6WoPKLL75cQ+JKcClwGDvP8S7p/jw+YP0B/s6ewbYoNXn08B6WQqY7NvPP3Cz8KztuHM6AngaeBz4M24mnrWdBm621JFhGIbRlvSlIT7DMAyjF2EKyjAMw2hLTEEZhmEYbYkpKMMwDKMtMQVlGIZhtCWmoAyjDRGReUTkYxHp32pZDKNVmIIyjDZBRF4SkbUBVPVlVZ1RVae1Wi7DaBWmoAzDMIy2xBSUYbQBIvJnYB7gKj+0t7+IaLaum4jcJiJHi8hdPvwqERkpIheKyIcicn9kBG8Rb0zwXW8Ib6vWnJlh1I8pKMNoA1R1O9z6bt9R1Rlxhu9itga2w5ljWAC4GzgPZwjwKeCw/2/vjlEiCIIoDP8Fa2ZsaiaIsXgCMw+ggTcxFy9gugcQMzNNPMiCYLKbKQYmQhnUgBsIgo5aA/8HAz3M0NDRY3qgH8BQiXFLlTBuASfAZUTs/fIypFEZUNJ0zDNzkZnPVHPtIjPvsvqFrqiuL4Aj4CEz55n5llVYec3HIabSJMy+fkVSE6u18esn95vDeBs4iIintecz6kBTaTIMKKmPsU5ufgTuM/NwpPmkf+EWn9THiqpr+KkbYCciTiNiY7j2I2J3hLmlP2NASX2cA2fD1ty3/xdl5gtVCnhMtbMugQuqr0iaDPugJEkt+QUlSWrJgJIktWRASZJaMqAkSS0ZUJKklgwoSVJLBpQkqSUDSpLU0jtmhNiE9p84ewAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -1368,7 +1259,7 @@ " data[t, 0] += 0.4*data[t-1, 1] \n", " data[t, 2] += 0.3*data[t-2, 1] \n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe)\n", + "tp.plot_timeseries(dataframe); plt.show()\n", "# plt.psd(data[:,0],return_line=True)[2]\n", "# plt.psd(data[:,1],return_line=True)[2]\n", "# plt.psd(data[:,2],return_line=True)[2]\n", @@ -1449,21 +1340,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd9glRZW438MwOSeGgQGGHEVUQAyrIqKgIqKiGFFc0xp2XfO6+nNNK+6KYdU1YlhX14gigiKoqBgBkaCShiEOTGbyDDNzfn+cOl9V9+2+t++X7p2Zep/ne/p+Hau7q06qU9WiqmQymUwm02/s1usCZDKZTCZTRVZQmUwmk+lLsoLKZDKZTF+SFVQmk8lk+pKsoDKZTCbTl2QFlclkMpm+ZPdeF6ATIrIYWAtsA7aq6rG9LVEmk8lkRoO+V1CBE1V1ea8LkclkMpnRI4f4MplMJtOX7AgKSoFLReRqEXll1Q4i8koRuSr83TDK5ctkMpnMCCD9PtWRiOylqveKyB7AT4HXq+ov2+x/Ve6nymQymR2fvvegVPXesFwKXAAc39sSZTKZTGY06GsFJSKTRWSq/waeDOQQXiaTyewC9HsW3zzgAhEBK+vXVfXHvS1SJpPJZEaDvlZQqroIeGivy5HJZDKZ0aevQ3yZTCaT2XXJCiqTyWQyfUlWUJkhISIHici4XpdjV0JEVEQO6HU5MpmRJiuoYUREvisiB/a6HKPMLcDbel2IkURExovIwb0uR4ldrZ5ldkGyghpengWc3OtC9IBZvS7ACPMW4OZeF6LE1l4XIJMZabKCygwHO3s9mtHrAjgiMtZ/9rQggIgsEJGH9XvUQETmiMjEXpejnxGRcySM5+kndnbBkhkdxvS6ACOBiEwTkT+RKAMRmdjjhnxCWE7qYRmcG4FrgFt7XZAUEXmMiByWrLoL+G6vytMrwkQHHY0rEZkOfBEYtTC2iIwVkSd22i8rqMxwsLPWo8OAY0rrNgBn9aAsiMjugM9D2Q8KalqnHURkoYjsNxqFSfgR8Nfk/wnAqaNchn7gncCqBvvtH5aPGMGylHktcHmnnXZWwTIsiMhZIvLaPijHSSLy+l6Xow2Dqkf9GFIoMT0sBUBE/D6HNeQnIrNEZEHy/xEi8kER+QcROSLZdWHy+5vDWYZBsqbBPrcD5490QUqUyzXo/kMRmSki84dYnl4xvfMuQKxXoxnKngedZUBWUO35BvAxABF5n4h8Jrime4d1U/0BJw96JITufwCfGIHzDheDDfFtF5GHDGtJOiAizxCR+xruXm6wHgIZ0jsWkcNE5EnJqouAu0TkdBHZH/gq8A7gU8DHk/0KfT19oODX120QkX8RkUeHf+8a6YKIyAwR+e/wb3nYwx2+T5fnnAn8ELh36CUcPURkTxF5KTC54SFTwnLCEK87vYshJzPDsu3+WUF1xr/k+6rw9xHg7rBuDXBm+L17aVlJGMPSbbih3/t42tYjCdRsfo6IPEREXjMC5fLrzxORy0OCwZEE660Bs8PSG9ETSusHy9ewT8c47j19H3gR8Ldk25jw+I6h1SKeyQgjIq8SkS+H3+V6uL3NoR/A2gq0UWTDyFOAV4ff40vbPLFkbpMTBSNUsImpHzM8xRtV/hH4EnA2DISG2+H1e0gKClhNc0N6Tli+NTFkWsgKqjMPhuWGsHx8afveYekvt0m2ULlfoxN9PWcinevRduB1Ndv2BK4DPj2CmVZHAU8EHg4sgUI2XDu8j8UVwSMwa3qoCqpMWpYDMI/jj+H/MVi5/0SrANmbkeefCYIO2FoKOXay0B8elkMVfE04JPk9YJWLyDlEw6Jpv90WbGjBXsNSsmFCRE4OCQ3t9nki8PbS6k7tyuvfcLyn/TvvAkQF9V7gXXU7ZQXVGVdQG2u2bwvLiaVlO7p97v2uoJp4eMfVrJ8L/CX8HqlY/55hOY/47PdocJy/Sw8NHQH8maHH6svepAvU24BDMUHx+7DucZh3AFGA3Af8imESoCLyRBG5qWbz1NL/M8MxJ9L5Ofh9NTI8wpex23ll7ZgfznEaRUV0YlhupnnIC2BUQ88NeS/wyA77nBSWn0/WNVVQgzIQS6HTpu9vTvK7NpFjp1dQITzSNKRTRVlBrS1tdwU1obRsW6wuyzCsIT4RmSQiLxnGUzYp34CXEJICXHjNxzyVexg5BeWCfB6xETbpQPZ9XUgfgYXfhppBV6egLgcehSnURcn2p5XKc3/YPmgPSkRelwiWEwgeiIgcVNp1Sljv79jbw6OB/6w5d1lxtW0TIez9EMzLHWy/mnu17u16u/R2uwL4hoj8ruH5+jGsPp3O8mUM8G6KWYyd6us4TLF07UGJyGMpKphuFJR3n6yu22mnV1DA84ArhnB8WUFtARARf5n+Qvz/ssVZxW4i8rkGsWFnuD2o04Cv+D8iso+IfL7N/r7fnjWbmtSjNIy1AguhgAmUacBNRE9nuJmLvac9iO+piRdUfqczsYywph7B20TkVaV1uwEPK+3qz+ZPYXkW1minY9NIuYCZClwMPB1T6HuJyGwRGYzC/C/iFFUPhLLtDdwiImkfjtdvV+i+7XDqPx76yeT3JtoIPhE5Ovyci7XVuv2miMiK8PuoVJGGZ/zc8O9YihmO3m73Avalswfi9KNsnEFnJbIXFiLelKw7TUTazfYyFjO8BxPiK7cj9R8isp/Yh2YLhP692cCdYdUuraC+gYVNuiJppP6MNoelr3eLzRuwC600Rl/HdOAVNO/kHm4FVRZozwP+vt0BIvJsQv9NBV15UIGFYTkDs9LvYOSmTJqMeRxD9aC2Y2nTAwpKRN4sIpfWHP8hWjuNqwSke1B3J/tvUtU1mPJwD3AWcLWq3o29iz3DNVaJyGA+5OnPwKMCrrBSBeoGmtdVF2J7YUqyig3J7xW0V+h/DstOIddZwKyg4K8HfpNs+0zyexqwDpODu5fKAgx4bJ1kX6FOVyX5iMh7ReTFHc4znDRRUHtgHnaqoD6BvYc6xmEJX4Pug0r6j1MPajHVSRPTsffi9a+u+2SXUFDAwAwA2kVqrqdeukLyB+/CxGOo/xXc3AlYgz2qwbm9I/HVItLi3YnIZhF5crKqowIQkReKyLdK66aISFV5ylbNgop9ypzUZttuIvJNEXl/m33K6aRjsIo5D8vyWkHs37hfRMrJKENhEqZY5tHGgxKRF4vIh5JVqYLajvX9rAvnQ0QOBd5I+/kXx5WEWFW42evkPVijhmgQPUAU3n9PbMwbQ/lmYc/W+6kGg1/fx9rNqdjmKe7+TOZjCSNHUcw6hKIhs5Jmgm8f7Nm2KJSAn8OF2lwR8Y+ZurJaEbZvxgT0eOqF3zgAEXm82HCR/UQkTX4pt7kqWfkuWhMSRoQQEp9IZ+99GlZnNnXYL2UoHpS/Dw/Pl0N8+1YcMxcL7/0kuX4lu4yCwmYFgPbhhn2Sfwf6lELlcMt3PNbofNT1WEzAT8CE4PQk/FeHK6hnAo9LlaaITMUaT2rhN/GgXk5IeReR44OA/yhmbSIiu4nIi8K+ZQXVxJMbE87zpYptioVYXt7m+FOkOOh5DDF2vS789nLsQcy88j6zoSQmTMbezR6096D+BXib2CdEZlNUUCsxBbIxWf8zgnfTwSL/avKOB7KcRKSsVO4hpmS7gHkg2T41Wb8FqydNQsoFkrL6spyWnXrYU7H+DDdQvG7PxxTR5orjJ2LjuAjbmwi+BeF842syLL3Opl62GzFLsLq/GRPQm5Pr1k2q6+/wF1im4p8pemVlBVXXBteVV4hNMTQr/L5bRPYQkTEN5EI7vL52Osc0zBtyxVwZhg0G+94iMhd734P1oLxd/ldYlhVUlUKdAyxX1ddi9aR2LNSupKDck6jM5An9K3cmq8ZjlW888BKiRzUJEyRfTPadgL2IDVhjqey8Tjqa3VLzc6ZTxrg3k77oJgoq3edSrOGlmUh7Av+T/G4RqtL+G0Pe6fxSF7bJ/fh5Og3Se3PyezeisN1OUUFB9FIWYkJ7cYdzt6PsQW2gug/K7+MW4OsUMzNXYh7DhmT9yuTYwvlK/TgAjxARxTyRr2GC8zslj3450YPwZ1OeFcEFjyuGjtMNVTAwJEJEtgFvKm33Zz8e86B+Cbw1OUaIlnqVgppMVLSTqbH6S/e+ALvXtcA0sbFI3y+dE4oKamaybT32zFIPagJmQJ4LfLZ0+Scm1x+HtfU0VT1tGw9S3warxnj9DJujEEwWHAb8P2CjiLyg5jydaKugxGYfUey9rCX2BR2d7JM+7zuwkPKfsPe/lsFl8Xm992en4Vruje9d7oelmCDhhlYlu5KCOjIs61JNJ0BhfMx4rMGMpxiWmU7ryPKJ4fhN2EsfUFDBc/mRiOxLa/+V75d6bh7OSRv9QOMQo5xpVdiHqNzSrLjx4fhxwBlh3YRQqf3Y2yrO66R1xa12P86fWUtFE5H3JP+m5RlDSDjBKvUqrOPdcSvewzjTy+FZEXmmiFxDZyZhxscc7F3dR7UHld5jOWNqFdGD8rLdEZaLaR0Eui9FpfqGsDwIE/gnYuO/JoVzPlRVt9PqQZWzRofsQREF0Uuwez6kvF1EXo0pgDXYnG7pseOAB0N56xSUexZjgTk1ofXUU9onXGszMYJwenJclYLyOREnYYp9M1FBbQPOCedaC/xD6drfIYYtdyPUfYmJQKkHtZEuPCjgeIrPZCKxvv1vzXk64Yqgzsvxfkr3oMYCqKom+0xJfnt9dRm0mvCMg1HYFA8HuyHlssf7nhYCn5FiIk9WUBVUKqgk7uzrvycin8TGn6zBBMCJySEzKFrOYJXGFdRSijH8acBTMWG2MKzzl+XXTIWlKyiPkT+fmOp7fCjLLUn5XyYiL6RaQaXCy39PSa7v5Wwy8DRtcC4kxtYsvWxvxSzHgXOIiA/eTBWUAH/Awp2uxLyMaQP7QalMz6U1I86zElMvdhLWP+Ge7hKqPaiyEJ2YlPF+7B1uxAT4FVj696vD+aoUlCuwm4nhqH1CWdZgdWMG8ICqXhe2uwflnlLZQncF5Yph4B1L60wPdXSylPcG/hsLR65X1bSD3Z9h2ZNLcY/mJ1i2qFI9hCAVTPMwReIKyuuzn9vbSlp2799wBbWJGOJbgI0bGgdsCcq0zEVhuRuxDXpb8Ge5DvN26xTUg+k/SRQiNfYmEuvCYPH6Wvfu0mzLtVT367QzZjZgRuB+wO1d9NXvjykbv276nNIoU2oEzQGWhd9ZQQXcWip7UMtDvNiti6djM+1+hmgdpQkCuxPTIj2+652XG8O2VPilyuecinJtpdjAyx7Ufyfb3ktrttMXsZBRrYJKQjK+bjxWId1abDIFTBMFVa5o51ac5+qwnERMBJiqqouA39L6nlKrLzUU0nIgInOTkOUtwJXJfpMxD2h8+H0PnT0owj5Lw+93YenT7kE9LqzfiDXQOaVjZxMb4S1EYXoERQU1nWI/kysoF2heB79d+n8LrSG+BRLTttvRSUG9MSwnExXiHMwqfjGmTFJFWX7vkzHFdoqqvh8biF2VSTseey+vIiooF1gTknOly3FYG/sKZigcgSnU9RQ9KJL9t1CNl+mtmKe+gljPXUFdSqKgQkTkGW36HH24xm4Sh5FMo8tMXGlNz+7UBzXQTlR1K2ZQ1e5DSbFiz2wm8TkX+qVF5Hci8loROUWKCVwHYG16PlbPPQS8mRg1gKKMGR0PSmyOs6EMgm1yjVNE5CYRuVVEhpIx453TAy8+sTgLlmhCmglzNVExeee+h/pSD6qsoFIBMpdWS2oZFmrbW0SmEGPG45PtpyfHlyuuzwuYWkyuoHbHGtcF2MwDYJV0PCYU/d21VVAicgbw/GSVC+N0/kGFwneTUkX69YrT7kv0jvwZLSIqKL//NG2/XF/TcM9SrH/sZeHY/UTEveZJ2HvxkNg9tO+DAhPiBxAV3XJV3UAxxEf4fx3wpBB+nRka6EysnjyVoiUJ5nGtwZ7BkymOA5kCoKrupbsH5Q3aQyktHhRmzPyZznRSUH5/0whtIHhRt2LTFz2D4rjAcSWLO+2DgpgSX2Z8OH4jMfloCxbtuN3PJTYXoNdVVzhvD9e4EROOG7Bnczz2bO4q7d+EJUQFsD+wWVWfTdGDegjmyfszHC8i/5h47GuxgbJpSvhMWr3MTqwTkacm/3cK8bnyeQ+Aqv6MokKCouz4E9H4AnvP8wEfrjDwiZTQlh+J9VVdgs0Z6exBHLy+CnsuTwLGh/bijK6CCn0LzwHOFJH3DvY8Ha4xBpvR+VRMUD1finOBdUPBIhPL29+abCu/TChW7BOIlcQtXq90aR9UOw9qb1rDg8vCee4Gvhyu8wvg4yJyJqZ43GoeUFBBEEMc31DlQV2GveNHJds8S3AtcaJbrzxeaRCRQ5JnnY4zgfhtHX+mY2m1yFIL7oKwTEfxH40Jkx9hnhPYs/AQyzNDv13a/zFeip8+KHsL8zHh6Xj6t8flt2BK7R5gRkVILG3AR2PZa24AbIYB6zS9102YoHwtJrxWYgOhZwErVfUSioIAVb2Z2Lf0UYoe1BVY35DjjdzrjR+3BatnaRtuGpZp0hm+FasrqTfiXtw4ouLajj2PVMhMoVVB+VRElyVh9XHh/K7sVob/09Tkh2JzAb4iOWZ82C/tn1tPsT0fj7WDbhRU6kEdQLz3VEH5ubyuTMK+ePDaoKQPxIR/qqAWYtGP/8UGpDclreszQvnq+tCnAp9X1X/zFapaDg+nMm49yWB94n15f/g1idHhmbt+P+nMEZ4hCyY/pmBt0A3xl2JGU2qwepo5WN0ZkTTzbar6KVX9JK3Cabg4HrhVVRep6hbg/4jexGDxF5x6NpMovrxnhaVX0B8HwURpvT+/NC7fSUGVR03fQ2wU+4Z9vI/pfdjLcyE1gfj5hS+EEMKmZJuH81xBXYc14tQTnBG2b8TCNX7sh7DObA9d/RSzTiFWrk9hU9z8g9iklf4sx9JeCPi4mHdhHom7/pdg7/Pvwv+bKApPDyV4P9YYgtcaDIzxFKd02Y3iuJcxIXzrMe/NmOL4C6a0yynIuxOVKWE/b0ipoN5IVFybiM/bDYHJ4TrekNNMvPUAqpq2mQEFpaobVPV/kv+3p8dR9KDKYcXHQnXKewjPpP04nYT2bRTT2lHV+zBhNZ9inSr3Q6VJEmBJKe5BnQS8IWSzuaJJpyPaQlEueZLMIZgh4+G/TRQV1HJiIsSe2LPfSncKqjzrhd9TqqBcaPuzd7kxG+sPnY6lq89IjveowAN08KRCxMjPmfa/zsE82Oml/Q8IhuwUWhNqHPeKUuU2gRhuh2ovZmFYugLxd74qXFsw2en9ba5AZxDarKp+Bfua8aiH+C4RG0n9PuIDGG72pvgtmUKGnCM2yeRVInIVrY32KGx8i5OmpjoTKYZKLglLF0peKT9IUVCdhSmMsgeVhp7SCrWA1okRl1H07qYRQ4d7Yi/PFVRqaeyGueH+CfCFYTmbKDA3YEI2tUjdMvw7ivg1PftmJYCIPCHZ59uq+lvMpT+Q+AznENPQq1ipqqKql6nqY4kV/TxV3aaq6bxpqaGwHyaQf11xTt8vrcO7YQ3G6+N4gocZrrEZez4DA0tDn4KKiGf4/Sg534cpduY6G4hDErYlZfC6tTZcx72eVEGl9ccVde1ULwnluSC30FrX/ZlUTSL7SWIf3kTMS09H+aehwQ9hCtETDlJWhfOnhkCVgkqt9/uAPRPF+W7Mm0hDfBAVVOoJphmuK8Mx7nn5s/iEGm61byIKPr8GVGfcpWym2JlfpaBcmO4ZruOhx9mYYL4Ne0ZjiUawvxcftlJJ8OgvSe4rVVB7YMk25dD0vwPfIs6g0YKqngp8j2LbGh/Kujj8v5RWfD5Ilz/+HL1eT8CcE59RZAXWr/ciipnOSxltBaWqVwFXqOq7VPWPHQ8YHFUhC21Zofo5VT1WVY8lCVOFbTcSG989xAeVvqyJFF1Qb5QPYhN4fiec652qOsHLpar3YlbIBCxFenG4RqpEUwU1hSiM0tCRV9oFmEBMZwtIPajxFC1XH1PhDfMmTAGlVneahn0P8Gwstr6Woovv5fL+Bxfi/0YU0v5cbsWE2NmYVbi/36e0jv+B1rCm30M5BLGRYgPcD7vnKgHu72+ciPhM6W7R+bP9t9IxroTShuyp7UdhYUm/1+Wqej3W3/B1ilGCjURDYwyxHfl7V+BYYr2rU1D+pdc0xFdHOe18M8X2m85jV/iwYUI6LddGinXDIxP3qeo7MMFR8KACq2jmQbUoKFr7eY+mNcS3haIXnSqoVdh73xY8S3+u70j2mQu8L6RXPxj2d8HaacaUTZhRAkXvehutCmofrB14GM7HXG0J115Nax/vNixMPUFEymPPoFX5nB8ydyEqqCPEBtn6vh6mPpk4A34V67H+vIUicgLRoPY6cS7x8yhlBJsyzmWD1/1J4byujFLZmyqoZRTl63Rim14S7qmyb22oWXzniMi5SbYKYqOm39buoC64m2IFXcDgvm7pAul2YmVJG8skzCr8Z2CfZOyAqOqTVPULpfOlinMD1iCPx8JXd5B0MBIVlHsJq7GK7BNqpmGFaVhj3pJsSxWUj0Fx9sO++OkWzHWYgvLGtYGiEFqEWXpbAFT1pZj1RXIOrxOCueaHES0pv4eVmDV+HLGivYcw1UxFimpZQfkxnRTUQkzwpaGLlWGsyiJMsM/CUtS97J5SDlGoHE+RVEH5AO79sIZ3ETBJVecCqOpyVX1haTyJh3L9Gi4kfHzaBKyj3yd/Tct/fXovYdlJQd1P7KdLx0GV93EK08tI8jn5pHwbQ/jlcoDE+3ChuoX2HlSLggptfwrVCupkiok2YAPHxxEV1L3hXKnxmH5faBXFfjEv84A3F96XP5vNmGJ8IGx7ADMeTsM8D4iZpveF/VfSOpwh9aBcEX8Zqzv+7saEe3FDZg3xC8wucxR79sdRPRP8TKzNpt6Mj/WahxmgszHF6ErCoypHEOtIFeswY+zLYT8PryoM9K221EOxcZPHYvLKZbE/78ml8qZGXDpP4zKKHtRUQptQ1WuxD1tW9osOSUGp6guxfopLReS5IvJN4AtEy3Co/BE4WET2Dw/qLODCQZzHBdIioiZPG8GPMev3tjARp9Ok03klYSJL7EXdBewv9uluiArKG/SloTJcEv7K1uc2ohJaSBzI6aTjOQ7CKog3nvvD/blwKFvJazAFkAodr1QuRL1OTAn3sgexsnlj2Byumfaz/AYT2gdT6ggu9bdAVCCdFNRB2PNw5fCU8L8L3JUUPVRXUGlDe26Fh58KVz/XfsAaVd2uqrWTVyblXI1lM11NfGauCKcA2/2+k/7LT2LTWzkPlJaVqOqeqvpnYFqiKMuKI32mZU/Fw+RuAafjmNJ3cDnRc94S7qMbD+p+LLtu91L5vA8yHTLhzEvKcldyXeew5PdqigrqDcDBJeMhZQvmTQ7MEKOqu6nqRcTn5WU7NNzTnliYd3ei4K0K8fl6f3duPLpyPAD4XPjtMmc79pxaUs6DV7MXFpJPZZDXnf2Iw1rSEK6fyzNV6/gOltSW9mdvAq7ClDNEGfBJbNzeGmxKt81EIxCKY9PWJ88/zdRM6/RSwjMQmxjAZ90BQFU/oaqV34Qaapr5nlgDn4S52Teq6jNU9YL2RzYjNOzXYQP+/gp8K4TsusUV1K+Ap4WHVM7aq5qduU5BfZdoAa3ArINJwDpV9cbjXocL0NuAX6nqTwBU9TpVfSrRg/JwxUxaZ0RfHcq3hmLlPpCigvLxOG7Rj8UMCG80G8P5U+Hhz2Yg8UNEHoENQvWG4o14Q2nf2cRGsQFLMDiDaDm+kmpcOJRj5hux5+WVdT6mkO7GPqHwW4pT55QViSuodP2i0j7/GxqUN3y3CveldVqhOjYAq1X1DFVdSmxH3vdYzn5zxpSUn1+vSR8UISzrpJPJQgxNDswIUIHX+VRBpTyVOMekh/iqPCifXDQtiwutJwC7pUojPKPXJ/t/gFgH0j681eG6deXfhCVCbA3nXauqt9bsC2Z8TaMo8B33Xl04+zgqsGf5ZGIWaJ2COonY1qZTnyzkcmS38OezuqTy5bfAp7HnmwrrbUlC0k20vg+//rI2ihosuuPTSYHVgc1Yf9HCsM7f6U2q+ktMnhyIhbvTkKc/g9RTPpPEACmV5V7s0zATa7bXMtQQ32ewsNKjMTdwooh8LclCGTKqerGqHqKqB6rqBwZ5GhcAVxOty9OIc9OBeVDl8GFlx7+q3qmq/j2jFZh1s16rR6u7gvqIqj6uYvtmrLKkGVbvIQmHhA7gJZhrn7IAE5bu2SzHlKUL3cnBivfxYxtoDdtcgPWV+L2OJVpo3niXAHsEdxxiI5xFFJAbsAY0MMBPVT9P9QwCHquu8qBmAUtVVUKZxqnqJlU9izgPnqcplyv5MURL2Cl/IsQFs7+rR4f7OZNmfUF+jlSIvA0LUzhVoTFonZS3kQdVgwuTb4QElPux8OFfsL6GP0jrlDVe9ysVlKpuSRSoh/iqPCho7VdzBfWYmvL+LCzfjwkyf4evxurNU4PQKntQEL38MaVlJyYBqGrVzN6uIO/D+mQ9iQZM2P9U4+wexxGHSIxPjl2TlGUaxRDfYyuuuZHil32vEZEPJtuPxBTnecm6bZgCWRzky8B328SmPPO2v4w2BMN5GbH7YRZ231sTo9qXaX/nU4nv/EhMcfu7/iPRWPiOWpbnY4iD2P3aa7F30WSMXoGhhvieqaoXhbDIttC5+iVGLqtvUKiqC7w0tns2lkrtFWQmrZks7eamc1ZgD78u1X46cLqqfrVm+ybM69mANYSnqOrtFAfDOT+sWJfOE7YcE9Dbk22o6kfD/+4BDVhuqvoTVT2GWNH3Ioah/P6XqGraANLsRrdEN9CaYu+pyWVSr6t8L3OIiqsguIMQEeJcgmV8fFaq+MrvtCyYj8Mseh8r1YS0DwpVvYfYl+eCvWxJn0frgN1NpWVjEgt0TLLuaKxOT8buy8NjHnKt8qC+RjG13mnnQUHx3ZTD1FXfFvPndS2xv2ypqv4gyI80c7Yw6JRoZLhgb6qg2k1ePDCuTC3xCeJ7qBT2IvIY7D59+1pqPChVvbJ0+KewqMsWYmLOMQfKxcsAACAASURBVMRvcDmrVPViYoanRwU82pDWleuJz6SJkbMKCz16PS8YiEmd8uVDMUN5Zdj+F2J/o8sQKZ3jN6r6K6o5uGZ9LcM+1ZGqXs7QxyqNFGnFu01tvMmnwv9LNaY7g4UFvtvphIl1VvexPZ/1uQ7vyF2tqlclIcwqC/x9WKfxu4hWVtmDOhGLVS+kOMD2QqIgOpJWFhM79Z+BDcr8A2bx/ryizI6HTzbQOiN5JcGYkQqPcyNmWXvDqQt9+UDWuoliL8Dq4BdLoYnXYwNjITbCTcD54XdTBXUhxZh8euxKKjwoVX2Tql5WWlcWCIOhLKzXExMdvEzLsX4VfzcDCkpVv62qz6KVfYmzMqRUeVDlvsOqbDJ/l7eFd7KG6o8UbsHqwHfUBp2+PDnWFVfTaYPajTm6DlPcaVjf76nOG/k1lunmEYBUQbkHVTZMvI7/IMiKaVg7rsMVpw93OIrg7YT/0/cxnih3msjyzdgzvw4KfaNlyvUxTXJyY2R8zb51fLzzLq2MyFx8Wpxcsm9Qy+5xZeGN1V/4NaV991FLpW9CuwpXnmutjHfMFjoJq2K0QbAvVpvfzPvAyn1QYH11d6QVUFVPx1xyKKaX+/bVqvpwLFQ7B+tH2K42jOD20u5pI/QO+PIg5cGErdyjaqeg3BP9ETZ7A4RMNEzYPFdV16nqhapasORV9ZPJvfjz3UgUSFVjQVpQ1fPVUtBTXLitoL4PqoolFAcbd8MXaH2X64lj49yDmIIN/n65iByOdZZ3SgTxc5S9XK9jqXBbRNHoqRLwfr101oEqrsSm1fEEk/NpHU/Uzbx2lUJYVdeo6mEhNOq4sdWuT3A61QpqDK2RlI9gwzEgtr1OrArlW4SFP0/DlHQ696GzjTgWrslUSp5Jd2fbvVoH/FYpqG6/HfXN5Hdjg2y4PyW+I7AMq2SukPzFD2Us1/uwcQIFwsC76bS3zN2DKnfmd8KFqWCx3d2IsfGqTmGIQqLqM8wAqOrVwXtv90n0tJG4gvIQ30wsNHhq+aAGlEMPVULsG5gHdZGqrg1lvRo4SVWbfBnYGVBQqro5nKfcX9UNqYKqCvFVF0K1alBtI1T1FRWr1xNDKZNDQhCYN+2zaEBzb7EcBtoenlXq/dxInK0dWgejo6oqIrsnUYq663t4KH1+5brYjdzqZt9lUGkc3kocQjCf2PY2ERWUf8J8oNyq+uYgA76pqo0SYSg+u29gmctTKc4e7+yOtbfXEN9rO5o8i4OJssgz/1J54pMUd6ugUoO1zjhpYVeazdxZioV5Tgn/+wsvj9VpjKo+qKpVVvAUBulBBd5Ssc6v6enXgn124lCKHb9VpFlKnZjUZltViM+nnplCGGfT4BplygqqasybXy/10s/D4vmDIfUQmnxbqg4v8+5YiPSoNvuOJKlCSQX74uT3Sjp/lygN3Za5gPi5bjDPdWDsn8ZxSAVKIfQ6BeV1M/VE/D58lvWmUxfVfT6+jsspzlvppLN3LwA2hBC1EmXoeix6UOiLDlGP6+iMt6kBOaCqa7A08FlUe1C+32fUsu464Qqq1oNR1Vs99K6qZ2J9UGky2QZMNnSroFIF3dgY31U9qDXeWFR1a7AIq76MOVi+hqVvTqFz57uPKaqysNpNHwRmyWxNLb5wL5VzcgUr9ifUK7CUdgoqFRD3YjMXbxeR9VinrTCIjn9aFdTfKvbxeQrXAYTkF6j+vEA70hBfep5BEZ4tDG89Ggx1CuqXWHhtf8yi7/R+jsDeR8v9VPRZraA6W7MdH6NivKSqbgzPMR24ebpt0lVhW1ML/AHa1+PytbdTnNDYSYdDPJwYUoaiBzWDakOzCWOxspbfy3qKnm85ZNmue6GMl7VxiE1V/6+0yoeyuIJq2m7coPwixZk/2rKrelBVQmQwArUSVX0xNsp9FrBJWweqVl23qmLXdWL6dR6sCEc8mTjJa9Uxp3Qoj9Nu3rLUiluVWMwbsYqbfkeoG8rjrM6jOFDT02WheYiqE53mZ+uW1zH4PqXhwOv2VmLfzY/UPn3g3kkT67f84cR2rKRLBaWqF9SEKJ3Zyb4XqWo6R2JTBfUxBv8F2xR/pt4NkNY9N/JdQXXy7m7HPNDFvsJn4lHVjRXt2RWUt6fyGLFuDKKuFVQF6zGl1OQjpwMk7XaDFjOC27IrelAfZoQVVGALlrLdKVmgxbVP6ORBtaCqP+32mAr2o314ZEBBpQ0qeFH+vaRBpU4HC9lTdR+k+vMEExt4AB0vF5ZNvMlmJwxemIh0G1oaTlzhriYqKM9UewGWYdckO3VbeBdN6uAKTPj5QOvhYGHN+idRnEC6FlX9cOe9GuFK+losfT9t0z/H+ogmYGMpOxl/h2OZfT6mcTsWaalLqimPXSzPEjIYBXUezfqsWghtdDlxBpZulN0LsRlnGrPLKSitH3k+3ApqM83Gg/l1q0J8P6T1m0cjjqp2yvLZgiVCfLZi23os5NfW++tA28YzDMoJTJBPZnBzO3ailwrKBdYqYnj5nwBU9TZaZ0AfDrz/dmJD77wT5fn4BlAbxjKqBKH8XGzc0SsoelBPD0tX5Gl/TdW5NsPAHHdg9XB/6rPw/H16nXej49GYsO9aQakNuL+2w77tWEacDOAN7XZMUdWqD5e2ZZdTUDWcTetYn6HSNM241oNS1buwVNN+Yw2wSFX/o2LberqI+1fwFIb/XVRxPOZJnN9px0HQy36oNEV/OjbuaDAJK07HPoaQBbmCLsM+bTiYPut+UNVvw0Af77Zk/fZkPTT/Np6PXVxH++Scctj7i5gH5++5m7r2AG0+DtgFazFD5yeq2m4G9SHTV5WgV6jqV5MY6XDRzUfSYPCdq73gSuLXeMusYwjeqKpeOkxWeKfr3Kmqx6nqUDL36ng5rd/bGi1SD+o0ms+6UEfTiZ9/1HmXZqjqXRpnV99RcEOnqcJwD6rT/gUPSm0Oz3dTPdlvJ45nELM5VLAJS22f22nHoZI9qJGjWw+qbuxS3xGsxrq+tfUMf7h0h0LtO2EjETpscu0twZqfkfwN9lzdZDZ+k96l1o82VeH4jwHn0Dx5x2WvG3RV4XJo9aCcxWHZON1bbUqu4cBnxLh4mM5XS1ZQI0e3HtSOZjHWscsrqD6h7uNzI4La/HEjLrD6gH2pNiY9OaXpDCo+8fF6TMnUKaj1yf4DqOqDIvJ04sDm0cS9txHvD8whvpHD49SdUo7bJUnsiGQF1XveRfHzFplhIoQfqzLXXEE19aB8f1dAdd6Nb28ZDqGqPwqDeUcbb98jngyUFdTI4c/2Ye12UtWVwISaSr8jkhVUj1HV96vqZ2gzHi4z7FTOwN8GVzgCA7NGVOFKYLjH6w0Fb99DSb5pRFZQI4endHbsixqBBI1esp5RqLiZRrT7mF9meOk2aeHz2Cd1Oo0bq/WgesjG0nLEyH1QI8dQs6d2VLIH1T+8iOEbOJtpQxgrdQ0NZ7lQ1Y8DHxeRZ5PMY1hBeYb/fmDUPKisoEaOrKAyPUVV19FflvdOjao+YhDHdJrVY0Np2Q/kEN9OwIG9LkCPGNI4qEwmE9H4Uc+hzMwy3OQQ307AWxjapIw7KtmDymSGn8ovFPQIH0Iz4u08K6gRQlVbPmC4i3AzxU8lZDKZoTFH++sr5ddC9Ve/hxvZebKbDRG5SlWP7XU5MplMZmdEbKqS41T1DyN9rb7tgxKR94jIPSJybfh7aq/LlMlkMrs6aoy4coL+D/F9VFX/s9eFyGQymczo07ceVCaTyWR2bfpdQb1ORK4TkfNFZGbdTiLyShG5SkSuoovZfTOZTCbTv/Q0SUJELgP2rNj0TuB32KhsBd4HzFfVc0axeJlMJpPpITtEFp+ILAQuUtVd5XszmUwms8vTtyE+EZmf/HsGcEOvypLJZDKZ0aefs/g+LCLHYCG+xcCrelucTCaTyYwmO0SIL5PJZDK7Hn0b4stkMpnMrk1WUJlMJpPpS7KCymQymUxfkhVUJpPJZPqSrKAymUwm05dkBZXJZDKZviQrqEwmk8n0JVlBZTKZTKYvyQoqk8lkMn1JVlCZTCaT6UuygspkMplMX5IVVCaTyWT6kr5QUOGLuUtF5IZk3SwR+amI3BKWtV/UzWQymczOR18oKODLwCmldW8HLlfVg4HLw/+ZTCaT2UXom89tlL+aKyI3AU9Q1SXh44W/UNVDe1jETCaTyYwi/eJBVTFPVZcAhOUedTuKyCtF5Krwl7+8m8lkMjsB/aygGqOqn1PVY1X1WGBTr8uTyWQymaHTzwrq/hDaIyyX9rg8mUwmkxlF+llBXQicHX6fDfygh2XJZDKZzCjTFwpKRL4B/BY4VETuFpGXAx8CThaRW4CTw/+ZTCaT2UXomyy+4UJErgp9UZlMJpPZgekLDyqTyWQymTJZQWUymUymL8kKKpPJZDJ9SVZQmUwmk+lLsoLKZDKZTF+SFVQmkxk0IjJORP6p1+XI7JxkBZXJdIGIvFtEru11OfqIw4GP9roQmWpE5GUisqDX5RgsWUFlMt3xTOChI3FiMSaPxLlHkIkAIjK21wXJVHI+sMN6uFlBZTLdMWEEz/0YbIqvHYn5YZk/KNpniMj08HNHM3oGyAoqk+mO8SN47tnAAf6PiIwVkQUi8vERvOZQ+V5YzuhpKTJV+CeK9utpKYZAVlC7GCKiIjKp1+XYgZk4guc+HNhbRLxdrgG+A7zAdxCRMcn2niIiU5J/swfVf0wHtgH79Logg6UvKnpmdBCRMeHnSHoBOzsTwPqLhvOk4d38OzAWmJtc65HAHBGZFtbdAHxxOK89BA4CrgcuBvbscVnaIiLfE5Ev9boco4WI7Af8HLiRrKB2TUTkuSLy/l6Xow4RmSsiT0xWef/JuF6Up9eIyOEiMug+pKBEpgKbgWkddu+W1ANZICJnlLZ76O8w4BnDfO3BMgdYBlwNHN/jsnTiDOClo31REZkpIlNH+7rAk4EpwGJgXI/KUIuIHCEij++0X1ZQg0BEzgmC/83AO4d4rotF5LCG+2piSTfhXODy5H8PT+1yHpSIHAL8BfiHIZxmL2Al1uj3HoZipcxNfu8LPLq0/Vsisn/4PWuYr90WETlKRN5UsWk2sALz6g5tc3w/hP+2dLPzMJb5RuCXw3SubnBD7AHgLqDfUs2/BfwifGqplqygukREZmMhlo8D68K6oYR7jqBBeCSx/Od0ce5yx3XPFJSInFp+TiJygIj8pMGxz6kRkN1wflhu7OYgEfmwiDwmKIezgF8B92DKalCIyB9F5FgR+YmIuDebKqjvAQ/HBAvABuBg4CRgSTjHi0dR8P8z8J8V611BLaOmXorIIzGl3mu2N91RRA4FVrrXISInJBlx3TIfeMggjx0KnwjLLcDddFBQInKKiCwZ8VJFVoXlme12ygqqAyIyt7TK3dJNmHIBc6V9HMsju7zEbKCQtBBG55cbxJzSsgl7hPN539OAghKR54vIm7ss66AIiuli7F5TjgeeLCK7h2y1ugSED1EtILvhL4M87i3AZ4BFwIcxBbWUmCHl7/31IrJ7emBY/9BUMYffxwJPx8Iw7g35e90Wlk/E+hAI112LGRa3hHVfxcJWI0owjF4Wfr+otDlVUOV24uw7cqXrim5Cuw8Ly7khIeW3wAsHed0HgTEd9xomQp37XbJqNXAfNUZwUjcfU7dPsu9cEXntsBTUPDuAMe2StnYJBRWEcdcx2DD4cKmIHJmsHo91DB+DWSd3EIXV4cDvaEho/FNoHafwBRKrM2RLuRXWSEEFYfkwrIH4MakH9WngP5qWdYi4cJgVyvY2EbmR6OE9FvMW6sqzeRjKsAF7X9NDGboJlR6V/L4W85zTd/ZIzGItD+A9Jux/TLLOQ4P/Lyz92UzGGu3RgCuCP4blJcB5wEuwJApnFSNPalS8tLTtMOB2YDn1CmommNFVdwER2S+EYPsFjzDMJd7XYJ/1Bv8hIn8NYfqyoTac7IvVR7C691XMuGkZCyUiRxM9S/cW28mXlwCfrNogIleIyNerokkiMk9E/lRavTz5/eq6C+4SCgr4OnDOII7zEEpqqY7Hwiy7A3di1rRX4j2hfWMs4RW1bEGcRPHdfAnzQAD2FZFXNDz3euBWqhVUIfwnNubmtE4nFZFpIQTSDX5/LoSeg3mf+2GeqF+3Ltuoq/6DGqZgobnpInIK0YJryl+BK4DfYM81TbH2PsS/Lx3jyugaiTMt7FHax88zAfi2qv4F89IAvhuWD2BhmuOxd/gW7Lm1KFkROXqYBWDa33VPadtjsf6VFcCsmlC3j8GpDEeGSMH1wE3dFEpEZotIbZhVRJ4uIk8Pv8diglg9miAiaWZkmTSc7nV3sMML1ie/vZ4sHOS5muBRHVT1Yap6HWZQTanYdz4M9LfNC+sGjHEReaGInJzsX+kJisgzgccBz6fayDySopEGFin4e8wzfUzdzewqCgq66NQWkckh3OSN832JhTcec5kJyzS8sTAsm3Ziu+IoK6hyw0sFzkeBz1WUebyIHJCsmoNZKcupVlBggsXZQrNZDD4N/C257kEi8rTkt1Yc49bbD8PS7+d44DLic6sTGI2zDkVkhog8q6YM92Ie1Oywbzf1/wZVfYKqPogJndQinYN5OU8qHZOGTE4My7Ly8PNMwJQOqnonME5VlwCnY2G9LwKKWboXhf+r7vPPmLc1XHhdXgks9GcWPPT5wOLwTB4kEeIicrqIHISlokP9OKnfEaz3pojIMVi9vidZd0VJYf0Q+GEo5zQs1JW+t/swwzU972FiCUvePvZI9q9UUCKyvIP3t7Zi3aD6L0XkX0Tkyg67uYJK+/3KBpXzYFguwQzWe0kUFPA1irKmrr1ckPyu6iteAIV+dDCZtwGLQNWGFnclBVXZSVi2+kKf0zrgTxSFyXki8nCs8q4J69ZSVFBuhTS1YOsUFBQ7dd0Ku4L6cTjPBW4TkYVJGVZQDL9MLC1vr7j/WksxWJ/lWPzHMIEJIRW6omwDwjyEKz0b7XjgUiwBAOrDRB6W271me8pJwHelOIgUrIHeEa7h5ZlPG0r3kQqasoKaDVyFebeplZk2PE/DLocBUw9qk68MQh9VvVBVt6uqYqHOGViixyzgGalQTt7doDwoETmpQrnPAn4CvA6zkj0ScQCwystJ6zP5PtaGDsGs5TqjzY9ZX7O9igEPPhhF80PZUkXhz/JxWP1Zg7XrPYKSHUNr2OuvmIfsCuqgZJ+6fpLZwE0i8ria7beHcr49WTfYfrkX0JrdWeahmAeeRkPqPCiX/+OxZ/Qb4AixweBuaD6Y7N91X1pos18J/6btezKmoNbRxkDZ6RWUiHwz/GwJH4WKur3UP/W0sDwUc0G3J+uvxrL3vE9kEcUOc7cS23pQInKyWMaMT2HTaWYHb7x/S9btLSJpdpALJRcgVR6UX8ePOxa7/1SgbWjjWSysWJfG5l0gl63lSVgqMhQF/SIsdHUwFuZpUVChLHtgHl6TOcU8S+91IvJRETk2/D8Zi8kfkpSz0ziMScn5UmVVpaDuwZ714SKyZ7Leccu2HAKZLCJPwBIhNtEeV1AbiMr1BLCMSOJ7bty/Jpa95VbydzDlfmyyyyzMwvb7PTJ0at9AMVxZttJXhP+PAX5PfZu4KixTQeizcP93zTGp8XYLsd/35yLyqPB7DWaQTMSexwNY3bsFeFvYpyqbdQ1mLNyEvTNvMy1tVIoT5D66tG03EfkNsd78e7L58Jr76kTb6aSCcX0G8DJV/U2yqdxn6qTGqCuoIym+163J7xYDsSasm5IaZOl53YOqU57ALqCgMM8C4LEicmppmzfytPHsQfSQ5gHfpNXi2Y7F3z9E0YPyClSwYINr/kcR+VZYdSkmJN2drqo8EsIWU4iNd12y/VPAdcn/M4BfE0NJC7AwxgNEC8Xvszw3V7njsy4cU5USujoUdjJx1uQBzyFU4Mm+X8BDUH/FBNsELDQ1KzTssYnFOQsTLN7P0cn69EY3P5TnxeH/ycA1mFV8JiY0H97hXLOScqfhifXAiSKyWkS+ALwCU04rsMSGO8N+U7AU7TMxy90t0C8R57CbAnicv1MyyGbMit2AeSheRoDbgLMrytqJF4XyQ0zA+GOyfRJ2v9/GPKl/wgyLyygq2wGlnbxzD0ctol5BbccyLGcEge68jvrO87Lc2pdoxD0xWO2zgD9gymk29h5dGZ6D1b2qMi3HFNc1WPts50GlCQXlNPbHA4+ita29GkuEGQy1gjxwDHC1qt5WWl+nBFIFNQOTJwsoRhYOTzxz779LldIU7Nn7WK/7KHJS8juVK37c2pqyAV0qKOnBlPrBwrtJRG4tucmD4WIReVXyv3/Xx/skvo0pnT+H9VMwDyFVDABjVfXKEN4oK6gNtFb8D2DeypkiUtUXVvWCBAtPLCAqmPuT7R5O8wY0A7NqvXIdizWytHJ6g9oH81ycsmVUyOQRYw5FK9Bxj+iZxPRcT28/Emu47s77DAg3h+W9xGd7IVZhp2Newb+LyKPD/dwXloswq9jLNUZEbpZimqo3pjeE5QYR+SUWVlyCCaajgG9Q45GJZX0Kpmh9bEhZQR0VyvrysO5WrK5MIAr6Kdg7uwWrI/sAS1X1HCwj6ldhn6Z9lh522aCqHwc+AswMShLsva2iu3FuK2AgfDvQ15cIoQnARlV9gDjF0jzMsk77Q1KvcioW1vs3THCtpN7omUTsw3hUsn5A4IvIa0QkTUCpCgm5cnsQU1grsWcxDauXf1bVF2D14qBwL1Xvfwt2zzeE83i/aZWCSj2CAVkqIh8kGhAHJvs8C/gxMcTdLQ922P4Qikars57qCWPTe9oLy6SdSmvo2400v5e0LczCnrVnK5Zl2bnAL7DnMQ0GpmE6CGuLQwvxicgh4e9QYmrsqBAazaeAUzF3+/kickT7o2pxbyXNGHHh6Bb/czDFcHv4fz72cnw/HziZKupyiO826vsAriBm8vj+r6F96vgY7MWehgkkMAvdU5/9WjOwF76XWGbU0zFPLVVQvu8BRCsfrFGuUFXBGno51HYOpojBKvv64OkcRhRqaXJE+XqzQzkWhf/dwttCfLZXEYWchyCvxLycslXmPBYLD6adzhOwd+LMw5T1XMybdOW4GguvnVjqx9kN6zw/APN+XEGl1mbZYAFTQuVU5CmYAvc68g9YmBhVXR9+TyYKhE7JIOPDsf6sV2F1yBMRFmKhxloPSmxWiDeH3/9OVOTPpFivjxDr1J5IDD2mXvBEioOe0zDSNOABVf2pqj4+lLNFCSfh22XJun8ORtf28P+zscSctLM+DWF6GS4Ny3Ox+uWRkGnAU4gW/q1heSOJMC31b47H3tvtyboqBTWD6PWm9/eOcN27sGd6K3CNql6AGWXzOvWnishbReQzpdW12azB8P0IFiov8xvg0dKaQj4RU2j/F/6/F1MW80r7jRPLePRJi1PPeR72/tygmSwxkcafmfcBuiKaDyxS1VXY+xtX9zyaeFDnYhbtCQxe8w+W44FbVXWRqm7BHuTpgzlRSN/9CJZmfGZwWz3T5Uel3X1Q577A6uApbSb2GaUNOfWg5mKCqs4ivp0kJquqq7HGVJcc4OfcE7hfVbdj7ywNyc0Tmw/wbMwr2o4pwaWqegdFC2UOZsEdQVRQG7CK6p7QJuBXQTB4XNsVxh2YRzcRC1v9ldhwXcheQ2z4LnBfjVmif8FCbr/Fpjq5kmgp3xnKMomiZfsoopL4MUUh6YbFnFDWE4DPEwXeo7HMOlcua4jCdn0oy8+Az4bjJ2D1HSzEdBamHF8FvDu5bpr9uBZ4sqpuICqozaGR7o89/+WYwDoay4xy1gFvJc6z18nzKSseV1APYIrpIEzItAvxvYwoYJ4Tlt/D+p9SbgDeSDF5I1XAaf8cFD2o6RTT+Fdi4dlTgzc+IYSuvww8gkRBYW309cR64QO0JShUiArqpUTF9evkHCdgz3RNKMsTsCxLiArqJmBK4im6h3ccVn83U0yrLwy4TspxGfCvVBuZLkeeH85LEnU5SWqGo4jID7B6+KrSpi3AVhH5x4rD3Mhq8aBU9T5MzpTLOAmbCu2fsJCkh9vnYGMxX5Ls+xSioZgO1t0PkwvnYf2oG4FJYgllHi36V6KxAEn9CMZWuU93gCYK6t2q+lVV/QpmGYwmexO9FjAB3BIiE5FXishVInIVrS/hekLlwBTcPphwPBurlJvDOXYjNorPYjH3cUSBuA5r/FC0dJdhI86nYgLil8Bssdkgys93MdELOiU9vuLenZ9jnaprYOCFLg7bbsfi7D4f4GpMeC4k9qOVQ3yeNHJNWH4KSxxw4fPBsDxYRGZh1r83iOVBqa4ienCuoBZgCvxPWMM/E/hp2PZI4PdqfE1V16vq81T1h5hCf6uqbsMUVJplB9andh+mnD4Wzu3P3yv8gqBcPLbv1tjviMJ6e3gWbvGmXpD3HT4Nm18RYv/Uvar6OVVN+2XSQYa7qarfpwu5RZhnfCSwLgil72ONPD12PaZk3QDo5EFVKahZWJu4GfMmOymo22BgrJ7X98/X7Ds3nMsVkXvAWzGlvyHZN02SmEasf2AK6ghsLN/+WNu6mTg2puwhH0ycUSP1lt4ewmdTgTcFmfQB4Gmq+jti3+YfVPX2UIY5WLPxsi4Oy7uw+/dn7nV9d6zfZBMxDH4o9o5+LyL/k5TH7/MGqhWUP6/Nwbh0vD6f3XoIUD8Z8Hisv/AMaEnbngJcoaq/rznWjZmUiVi4+H5V/WWQLeuIXQDXYwbYtzEF5veTzk7zhXCOS1X1bZjimY9FB24GUNWLsUjQJ4KSLxswf6GmznZUUKp6vYicFH7f2Wn/YaYqQ6RlnE0QIMeq6rEUBQBYJfJ19xAV3OmYYFqAVdaHYw1unyCEvUPVH+RaooKq8qCehcVaf4Mpn28Bf5HirNQeMviaqv6kdDxic77VTZWUNni37FaX9lkd/vZJlWyCSQAAIABJREFUyr0OmCoi/4p5Vp4J6P1sN2KC9BIAVb0c6zt4M0VPAaInsgyziiAqqL2J/XVTgGcnx42hGC4ZQFU3q6pb9IdjlnAaLz8E+J2qnhqeWarQXXh9G0t68Ep+HXBoaHC/COvWhP+/gHmgaVrz4cHAeGmyztOGb6GVtI6lXs+5WBh8FbGeuSL8clim3kI5VNhkvFfaD3E3lgT0CExIjsPqRjtPzNvUXKKCuoFoTPyRKJinkIT4VHUlpjzupDXE9wAVFnJgJTZ1E6Gsj8CEmNfp1AgFizLsidXBWUCqFDx8tjaUaVkQgABvByYnIdA14TwDilRVH1RVUdWtBKUqIidiQvJGrC7tgxkybwIWqOrN4V6Po5i+PTWUYznVY+u8nZZDcxtq1qeCv4qJmAc4T0QOBDaKyCOSsqypPbJaQe1FsT6C3c/+2BCCa1V1WriPv6PYht2om4b15zpLKPYlOj7MZzql+qGqJ6jq/RXHNE6SOEdEzk3jhCKyh4i8rd1Bw8DdFNPDFxCVRFP+iyhQlhLDb48nDuD7NRaLv15VvXH6y3Yl8C2sAkOioEJfwnbspfwyWNrjsX6PQ4lZZC8mvuDUDV+Ofe9HQjl+hwmE8tQgaeXzPpYrwtLDHA+Ev30pelBHA+/Dwh4rQvl/joWtXAmlGVQbqe5HcwWQdmp6Vt3DsfflCirtQL5bVTulUEN8ro9I1h1EnFEB7N49Rp5a10cTxksBU4NQ8f0hhhSuVtXXU1RQszHP8uml8rwL+N+Kcnqd+DpxWhlU9bdYKHMSUXG7QvFU6DRMlqbwfr7mWmVSr2VxWC4hesadPCg3MvYgtv8lxEGrJ2AhWLDnknpQEMNmZQW1kti2qjwo53BiONjft78Lv7f9sQ55bwP3Af+SnKN8fmBA+aTPp0VBlVgXtv8MexbfIdaXjaq6QlVdyfi9psapl2MF0YOaGq73XKIQLisiVxSTpHUKtvIML6mRPgmTIfOIz/qqsM9sqgcFOwP9gEGWL8ba7DWl/fbGIglpPb0Ha1+3E9vm3KBMt2PeoDOGOO4J4rRdbujNp9WAqaWRglLVF2LC+VKxbyB9E7NEb25/5JD5IxZq2j+EJM6i2WwHA6jqR1R1Xfi9jegZTQTuDJbURZgCSefRKygoVX2bqi7HrLoPly6zDAuruUW8mGhBewX/OlGgDHg+qroZq9Azkn03Eqc2ctJGdjvwUlV9I9ZgvEKsplVBraSYJr9cVbeGxvw+Qqc9RYVYN+O3W+ZpmPWRWNjoQOw5uoJKG9atdMdh2Bxi56nqbYlFDJYV58pvGsVJYKcn650PYx7hNymSWqq/xZ7jCoqN/A+l0AwAYd15wDtUtdzAvR9tAfB+QkhNVddiXnsahXBhd76qvrI0dqWO1NJ0Y+1K4ntcg3U6z5LWiY4hKq8jsff45tAutif35orTFVRqXKwI9zeHVgV1dPAgnkVRwLmCWkIcZwjWx3yUqt6LhZNOx6x6r+t+ryuISRAQO9070UlBbSZ6jmBeuCuocvTA7zWtD66g0rGG0zDv49tJGcvX91DoLGCNFMchuvLyYx4UkUlBGYzFnuGUcF9XErMOzyf2ZVaxAlMq07B+z/2w6MTfSvt5pnQanXGZuzHU99+E+52ORSa2Jfu6bPB1LlPfjHVHPI04Lq0jjRSU2MDDBVjFfAdwo6o+I2SljBhBebwOG3/xV+Bbqnpj+6M6kgoB90C+gyncTyfbyh6Ul+kjqno1RZZiVl85zg0WkvxIaPj3YhZ1+eV42Mor//1YqOixyXU1+b0txN/9GblidA/q6OQafy1dq3Bttel0xgQh4dQ1aFdQzybOjHArsTEvDWU5FOuY9ut3O5P4WOASVa2aNmUzMXY/jaIFOB1TMJ/yFap6p6q+J8THU9LQ3SXY+7uWYvp9rUWqqm+qCXlvxIyfecBlpfd2YUnh7R7Wv5zmDPTXJIJhXPBQD8D6WR/E3slFrYcPeFBPw/oFvU80NQL8vEeHcw4oonDNW7B+wnKI7yzMc3gexefoCup3WL/Tz5JtbgAeraqXhfro3qcruaUU6+1DGB4FNYtiSvV1FJViSpUHNRWr76uAaUGJpMrT7yPNKoWooNzQmiw2m/8YYijsNWE5Bov2TMQUxHbseX4QkyeriSHQqlRy569YP2DqsU2ktUvkM5jjMfANqxCNOJCYJOaz08ykNXPV+4E9crAinEMxBfUUhtuDCoW+DsuKOhaYKCJfk9bpZIYdVb1YVQ9R1QNV9QPDcMpV5d+qukVVX6GqqaXvD7Dcz1OFe1AeqlicbJtJSP0MjftOWl+OTzjrwuPGoIQ6zbvlbAvn34rFyfcnWNfl0FobjyClrQelqt/TmDSwjtDQQiVcgaUsO/9J9fxcnagTKnMxQQhm4f8i2TYDeIWqfr18UJnQz/iU8O8dxKwvf+ZbScZcdcEGTADNo+jtVFEWDp34HK3eO8T3cnuoA96X5d+OepeI+DPxOvYE4uweUBT4rqAWY3WpHJ51BZOGSd1b80HHaZ1agQncr4WyLSNmnVUJKi+jt9WbKSqMvWiuoMbTbBql96gls3gYvvxu/JnsLiIvFZFfYZ7LhtCu12BtPfUObgD+VooAgE32ewNxZpYzsX64d2Oh9wtU9avhnOuxd5CGVMdiSUqrwrW8vzdN5Cnjs+qnCurectlU9QFVPVRt3Fu6flHozoD4/a8WBRUMjFPDPS2l+J6+j2XVvoFhDvE9U1UvUpsTbJuqvgMbDf/jTsf2IZ7lspT25fcH2+RBLsManr/AVLC9iOJL/BgxQcG5H1MsHqIqh8SqJgVN+Rsx1vvksBxKQsuG0hLsHqsE7nqsj8jTpxeXtq8JYcwmfIE4JqNOST6XGNraG2vobqEeR6u12g73Lu/CQpJrMY99L1UdW/Iqm+Kd0QfTWUF9jdYxJ7Wo6qtUtTwkAuqTIo4LwylOxVKdIYS2Mc8i7fS+kDiXnYf41mOCqKyg3gzMDMrQ+RzmKXsIz2dkR43PEBXiCmImW5XyeD7mhfl1b1UbM7MHcRxjkw9PugdcZ+yk30l7X/jtbbfsGYxJ1p+DRTcmJ2X0MN+AB6Wqv1bVlmmNVPVLmDLyYTveZn1OyivDftMxr2UW0VuDOGDWk6KcdnLiesyDSlPXBysj3IN6DK0hQlT1x6p6EbB3yfhN33UjBdVk8s1KVPVyEbm28579hVpKcJMv4K4BNjUUri4U/QWUs5IGUj9Vtep7KndjDfJCzBoqN4625Q0W3P+G33eIyMcohlG6xRv/GmKY4ihap3PZCvwqGCzO4tI+jb+mqqqvEJut5ETqG89aLPNqDNag71HVeSJyIZZh1c1XQe/GsvU8ZHtweN+D/rKoqm5L+rXbet/Beu1GodZRVlArsb6JvTBlsgxshgxMGN+B9Uum4UIlhj1TBSWUsg1DfSuHvpeKyEewGRreqapX0IrX6xXheuWpx/xcP/DfIjJHVT1MtAxYJjYxa3k6nyr8enUJOs8AJpWiDIuA/yj1q0BUUPdjGW1gHnyqoGbTPHy1kuhBuTfp10jl6gpsaMqVxIjP6lDHbiWZrquizCTb1orIvcTpyKBZdKiKZVgo8hG09u2m19xaWtW1ghrSXHxecXZS7qdZVhUUZ1lAbXyPK/+PaU0KZcKdWOh0YNxEaXtlinYdqvpGVa0SfG1n707wsns/wgtVdalakkjKZIrZVVAc0/IE4ldhG6GWvLGnqtZ9H8iTMM7FhIFfzy25xl5PsOx/pZb5tZzh/fLplypCOyPB27AkkJSFxLE06biyr2P9d+4l1M3Q4QaWK6Ym4TSISqMuNOoCsWzA1VIlY8I76/hsk5BUZVeE2tifH5fWPaiqb63Y3evGZ8NyO0Xvcjnm4TVNAFhFDLd5prJHUFKvxIX8sRQN16dgyVHdfNcsnWXiYxSz7brhAaysC2k1SNsxugpqZ0ZVN6hq+QN0dRQUVDjerZkmjfEuTCm4IhpIS1Ubs1FOOR8MD6qNKG/CvVhYxDPQKvt0Qt9dOYat2Oj6d6vqFcMtpINVtgWLZZ+cWGk/xbyRdqm27TiEOHh6qDxIcWaDEUNVP6xxTJ2vW0sUcrNpnd3cy1bnvZ2LhQC9Pjd9pp6wUnlejZ/m6GSwDSf3UBynM1jcaPPw/O2Y8ncFtQjz/JtmGKaRBVdMDwP+S2NqO0Tj4iEkCkptYOwWoqCv/ehfgg8fcCP2++12bsNaTLn6LBJNST3xlr7wKgYd4ssU8IpTDmd9jzhrdTtciS0Oy+H4gmyZxu9aLZXUP9r4mk77Vxx/cue9hsRaLEQ14C2F0G3j/pwyoY9jWFDVxh9YHClCSOcMbPBxWUH9CeuvK2d4+rFbgftFpCsFFa75HDor5xs6bB82VLXyO3CD4JtYX9HvsX7Kv8dCzK6g7scmU/4xxcSdOsqy4kdYBtx7S+s/ifW7PhTLgitTl63bgqr+h4jcT3E+0MGwlhjOLA/0bYfXp2fTOs6zkuxBDQ+XA6eVQ3mq+mxVXdzgeO9vWRz+flu75+D4LnF25cao6sbhFNzDyDqqU1wzRXz6odlYX9vAMAZVvaqBd5vOW9gIVf2uqtYmMISIwKK67f2Kqr5dVR+uNvPJpzAhnabafxpru6fQzGPbiIXyvxz+f6+q7lsOowdv+EJMeVX1jXp3QKOQmdq0deWwfLf4bBPLtCIruA3+rH7TNLKSFdQwoKrrQtbKYFmChUXuUNX9dehjvQqo6nNUtVMm4I6EhwqygmrPOmxeufXYGKSFYX3TxAyB4hi8zABeB30aqDXYvICNpoQLz3QV1va/QfWUWo7X86o5EyeF83WjKIbKWqwudZXgk5Sxcb9ZVlB9QAip7K3FaVoy9azFMiybTJ+0K+Oez8UaZ9Fe2s7DKfHTzrvssriQHaiDqvoFmn312VmJfZbkBR0iFemA5TIjPha1Ag/5dp2BGjzopvUvK6h+oSIlM1OPj97PtKcwLk9VN6lqN+OuLqY7gbsr4X0o5YHw3RiZK2mWUOHTUFUNefku8YOPo4UrqBGfPDwrqMyOyFoGP4ZjVyKdG3JQZK++Fs+cbDoIvYrlNDO0ahOc1GbaGe3wvSd4DMcYvrbkLL7Mjkj2oJrhHlRV9ldmCKjqn0XklXQ/XVXKP9IsC+5bDH74xLCjqltF5FnEibdHjKygMjsia8kKqgnrsc/WL+5xOXZKVLXuQ49Nj28UIgsDjstfPO4pOsIThTtZQWV2RLIH1YCQKfbRXpcjkxksuQ8qsyOyli7m+MtkMjsm2YPK7Ih8kfafNc9kMjsBWUFldjgaTL6byWR2AnKIL5PJZDJ9SVZQmUwmk+lLsoLKZDKZTF+SFVQmk8lk+pKsoDKZTCbTl2QFlclkMpm+pOcKSkTOFJEbRWS7iBxb2vYOEblVRG4Skaf0qoyZTCaTGX36YRzUDcCzgM+mK0XkCOAs4EhgL+AyETlEVbeNfhEzmUwmM9r03INS1b+q6k0Vm04H/i98Yvl24Fbg+NEtXSaTyWR6Rc8VVBv2Bu5K/r87rGtBRF4pIleJyFXAhNEoXCaTyWRGllEJ8YnIZcCeFZveqao/qDusYp1W7aiqnwM+N8jiZTKZTKYPGRUFpapPGsRhdwP7JP8vAO4dnhJlMplMpt/p5xDfhcBZIjJeRPYHDiZ/GTSTyWR2GXquoETkDBG5G3gU8CMR+QmAqt6Ifer4L8CPgdfmDL5MJpPZdRD76GYmk8lkMv1Fzz2oTCaTyWSqyAoqk8lkMn1JVlCZTCaT6UuygspkMplMX5IVVCaTyWT6kqygMplMJtOXZAWVyWQymb4kK6hMJpPJ9CVZQWUymUymL8kKKpPJZDJ9SVZQmUwmk+lLsoLKZDKZTF/SFwpKRM4XkaUickOybpaI/FREbgnLmb0sYyaTyWRGl75QUMCXgVNK694OXK6qBwOXh/8zmUwms4vQN5/bEJGFwEWqelT4/ybgCaq6RETmA79Q1UN7WMRMJpPJjCL94kFVMU9VlwCE5R51O4rIK0XkqvB3Q91+mUwmk9lx6GcF1RhV/ZyqHquqxwKbel2eTCaTyQydflZQ94fQHmG5tMflyWQymcwo0s8K6kLg7PD7bOAHPSxLJpPJZEaZvlBQIvIN4LfAoSJyt4i8HPgQcLKI3AKcHP7PZDKZzC5C32TxDRciclXoi8pkMiOMiLwROA/4iKq+udflyexc9IUHlclkdlj+OSyf1dNSZHZKsoLKZLpERPbtdRn6iK1huaWnpcjslGQFlcl0gYhMB+4Qkdx2jN3DcufqK8j0Bbt33iWTySScEZbTgNW9LEifsBqTI7N6XZDMzke2AjOZhojIWOBL4d+belmWPmJ34FRglohIrwuT2bnICmqIiMgzRWSfXpcjMyrslfyunXprqIjIHBHZUUJmk4BVwDZgYo/LkqlARMbtqDIqK6ihcwHw7l4XIjMqTARuHoXr7J/+IyL79LHCmgysB9YCU3tclkw17wLu7HUhBkNWUMNDzmDaNZgIbPR/miZKiMi+IvLYLq+Tnn/f8H8/htAmARvICqqvEJHdROSg8O/+bXeOx7xFRCaMYLG6Jiuo4WFzrwuQGRUmYApqX8womd7wuK8AvyqvFJFpInJaxf7+cc5JYTmltOwLggKdgE3QnBVUf3E6cIuIPBF4YcNjPgwcM3JF6p6soIaHvvSgxLhRRE7sdVnaISKH9LoMDZkIbFLVu7B+l/ENj6sLz70Bm3NyABE5BRMuEBXS3LA8oHlRRwV/HtvJCqrfODwsn9nlcWOGuyBDISuo4WHUFJSITO5i94OBI4DHjVBxBoWIvFpE/hR+PxS4SUSmi0i/T1GVhvg2M3QFVfUuLwFeVtruCRnX9irMJyIPEZG9S6u9/wmygqpFRM4QkUmd9xxW9gzLZzfZOQknjxuZ4tRe97R2dTorqEEgIg8XketFxAX/9i6PHysiczvv2XLcGGCdiDwvpDx34oiw3LPtXqPP3xFDCd5wXw38sTfFacxgFVQdhZCdiMwobf9YaLxPTtYN9ZqD5Trgh6V13v8EO6CCGkVl/z3geaN0Lcfb1V7AB4BlDfcftXcoIuOxCMIJdftkBTU4HgscBbw8/N9tx+J7GNz3rR4alv8HvLjB/lMwgTqgoERkQZgNoZekjcWF9CYAEZnZuvvwICKHiMjTBnHcM4IwG2kP6qml/5+OPZ+DgePCuqnBIn99w2sPJ2XhNZmooNZUbEdEtovIwpEtVisiMk9ELm2z/US6NCyHWqRRu5AZzqnHtp3OMsr3nzZCZZohIgtKq91IzwpqqIjID/0DignHAN8BntTl6eYNshgHpkX6/+2debhcVZX2f8sgkJB5QhKmAGEIARrkY1JEAwoOraiASNvaiNLaOPEpItr92c7Stgo4Cyoi9qcItNjOAnFAEAnKHIFAEhIgIQOZEwhh9R9rr3v22XVOVd3KnXLvfp/nPnWr6gy79tl7vWvaa7dx/E7Aw8n9FgE/7PD+PYUN0KVBeQUCdx/tUXWCiEzogfteA/y0OycES/U6zKfflKACcVRVZ9HkuBEiMpFGobEbsCD8vzK8vguLPT0KLMQI61rgkn4otzRcRJ4fvZ8ArAj/N1hQIvIhbJw29RaIyB69kEY/E9umJ77PJZGQnNnqAj3Rv9F46JOqPaHNv8PGkuNLtF6j5spSLUGJyP4i8ssOm/Y24KPJZz4uamtbZoJqAyH18lWYJgtFAPJgYD7w/G4K0E5jVrtTaH3tbG2/E2atpINzT+hKoriruxNRRF7cneMrMCp6dYvJJ1TDYA3u0OVtujVb3rebrh238I6kyFgDe4apBXUtiTYYxkXqYr2UyIqM2jONYp3V/pjw/3R4X7XWqKWQbRcickwbKcZTgTnR+0kUnoAqF99nwutxItJMQO4a2tCTVoaGa3rK/jBMSHqfjYm/TxFivVtEZGsTU3x891UpKLeEZmIbvU4DlmPd22z+OEGlbuYYRwInVn0hIjuKyGQR+VTNOJpO4/jw2GqlUgqZoNp1KR0RXl0LOhN4LPzvfTg5XK/ZA3Z0SlC7AX8J/7cTzNwJE3LpgPFJOQY4iOpgfSXCRJ8tIt1KeRaRGSLy1fDWB+oYCmI6NbymbgAwTR3g1K10T7p2OFpEdhGR/2zjHP+do4GPUGNBicjx4d90Tv2CIBQjYvcx58/Qr7MXsBhAVZdRuM+gIKgxmJLydeBPPaAsuNb9R+DcNo/3TK9JFERbRVDXh9fPYRmLdfBn2nElChF5l4h8uOKarhxMD9d3L4gTT1wdJIZnv/1rp20K8LH7EhF5TzQHegsx0TykqgvUNv3bSNntl8K/axavXgFWmaLiu4uBpcCHgX0qvt+bxmUSUzAPT+09hzxBAStFpMHlJiKfFpHfh7fnhddRQct7LjZwF2ATE2BnEZkMPCkirSpLdEpQkwA3sdshCCeoVNN3QeC/2y2Ll9URbOTeHBmf0w28EXhn+H909PoiYDNFemvVJHLt8/vAW7t5X6BLEdkOq6G3K6ZgvL+NU/137owJG3dTdBFUcOO4ME4Vntgt7BPX3WL+HPw374W5Y94S3v/YT1TVLcA6bFKvw9asDAc+Ht9MrKxNd7MhXUhPCtc4Q0QebnL85Oj4ZgT1DFYCCZrviO3X68jKCP3/JSwZwC0xX7rgrmNPyvHf6u7yOgX1BOBvwJki8iYRuaOTtmHzZQWW6HIx8E7pXiZud3FW9H+s4MwhcXkm8DbVETYUClWVEhlbQVWx2X1olFkzgN/TxAU8pAkq8g9XdfhBwLFBW3gZVtJoFCbkVFW/o6rTsEnxG0wLcIHzsRa3fjrcf1ybFpdjHPAn4DLgkjaOH4nFMlILamJ4/Wh0HMCvqBfaj4nI0ZTJpTsYBl3a+lRMcLkFtSQ6rso9EAuuTherjsdcHYuInncbbiW/3wuBO1W1yoKKJ9iMJJ7iQuIKCgt8dXj18bKT2Kr/CcBcVb0ifP69pC1rQ9tXq+p8bAHmM8kxJwK3BWWpXbiw9nPcNVQHJ91xFLGyEkGFfp2AadX+WV0cxvuvUzdYuhD1dRSE6ER1IBbH209EDsMUo4eoH8czgQ9i691mAIc0aX8zjKCxsPAVVQe2AxGZ2sJd+qno//XR/3Novo5uDPZb0zh7DL9v1diKuaQk00KseXca5+6hwI0U8qjpRYciXGuoKqS4JrzuibldlmETsFTuRlWfAR7EOrldF4X3+0Jgjoj8R3qAiOydfoZN4JUELUesEsFRIqIhnvTVRODuFI6PNZoVdqq8D7NqoKz5Hib1KfC7k/jwK9p9iYhUxUa8DVvCNW4CZmOa19nhu1XUE9R/AefTQZHW0JcHY890CRbfcbRan+J9cyyFexWMoE4L/vZ4Ur823NOv+yxwOEZK3geuicaWyIuBH6tqXJUkFjBgJDCVYmzOo9FqcU22O+tuRmPPZVL4PVXktDb635/96Ojz1IJ6D5Z56N+voJ6A/LxOCaqLZILL02Mtm4H9omOuA2YBzwd+C9xLvSdgP+DWcJ73ZaUgFZEXikhdVu1wzOKNMW0rEjAWUyahZogtqI3UyCcROR84HSOxA5q0zc+v6of4nNQqnYbNgy6CCqR1JLZ0YWRdfGxIEJTYwtAGEqDosDMqHooPyr0xTWtt+P8FNCYorMK0Bj/n8RZNciE8KlzzvJhYglU1LzzEGOMwLceF2FTg6Oha76SsET4vtCW+zghskH8xvF9EeZK+Avh8TbvHAz8P/9dpnu+mOpYRuw42hfs6rsfG4qcIfSMirxCRL4fvx1FYPy3Xj4nIeBG5WEQ+KrYg+AosgWEt9qwOwIpnrqV5UBjKWl9KUG8E/pmyD93TwV3pmYD19yZgx0CWbw/fTQ3t2BMjsXTctCKoKrea37c7Sx9GYGN8BibIplcc48k5GygUu1GUCSoeE04Mbk0uo15T9nnTbYISkddR9ibMjtpxHsW4G46t5QI4A9Pc0zb7NUdQJBg9RdEfdcrRycCra74bQaTQBhzK1hWYfmWbCSXxeKolKMzafAPm0lxF8exS+PlVHqdmBPUdLJlmZHLMelVdhSnRlc9+SBAU5pc9T0ReH/7eLiKvp5jcpxLWGInIvGDK+6TZB9NU12Dur5/TGEN6EhN0w7GHvIs0WYOBCY90HVQ8UQ4Mr6k/2C2otwD3YcLKhaMHYyeG37E9cBwWpHeh74JlQXTNu2kUcpvjN9FkiAdeMxdfVUbjVEx79d/xVgLZqeozIZC7iWISfAE4Jzp+JeYqeYWItHIv7oNphP+OxR5coVgT/g4D7sHiUK2SLkZSaMC3R5+7kvAOqifXbqHfYqViB4oMULAxMxfT6P+Zxg0QnaD8XmuxWFhcvSF1m3gWZFsEFZJOLsBcx2tqjhkW7vNj4BbqCSoeRz5H3KJbTj1B+fU6saCuif5fgtU8nIgJ3QcpFBpfVHwpZq3Or2iz98d6YEMYk6spXGN1BHUIFUtHxNZ/7RLu+/Lk604W6ntb96V5rAisBNWW6H0zgnKsBu7EwhuIyCgROS363s//WsW5Po8upfE5H4X1QzxWY+KeSc1C4qFCUO4Dvjr8fTO8xh02Prg39saE/jHh8wMw7XJudGw6OFZhgmg4hdbSEJAMmUa3huPmJV/HQt3de12lZYKwGws8qaprgb+GdsxKzveBPxabGCvD6dthE+wJisGwKyZ8R0s5NfStIhILC3dJxdZGg+UREUdVPa+pWAzgKQBV3Yy5WGJsohCscVmd8cBKVf0LpgAcVHF9kuNdmNwXff4UNgkPx9K5V9GaoEZh7qDPA3Gg3ElvfyxWdDVFcoOfNwoTFE9TEFRqncylCOCnFrMTkVtl68Lv2hC931oL6tWYgBXKikuMCcAqVX0tZsW2Q1D+/zkYia+kWnEBE1ZP0ISgRGR26jqWxgrxV2Kuyp0xl+Iyivngrvn/Cu/vIFlcHOaY959bfrtgz3gh1SQkWP9Vkdd84CvBpRgIAAAeH0lEQVQY2Xly053htZNYamy57BXuP64qNqaqKRlVElRov4+nVdic9Ao0b6W8ZnI4oXZkHAcLz2UPzAq7h3KM1113B2KuPImutTG0dVmo59iAlgQlIheFuMIRItIsVbRXICInicj9wbL5UIeXqavaMApb1PYDjJRcWL0Ic2k8i1lXN2Oug7rFhLGLbwPmWoh99ojINCzT6AhsTdVDyTXiyesC4IdRn7uwc+vmUUyIH5Cc79rLGCyYrhTC0QlqeThmKRYLeg2NAdRYw/PBOBZzSd1CdWpoZTaWWEr680KbY794mim2EXODjcYE5hIR2S9c78lwzH2UrZASwoSI2z42as9ojKAEEziP0DwZAEyQ3K+qHwhE49iQHPcQhdtyPUYQEyiSCJx8p2Ba5qXh87mYgNuEWY0x4jVXUFhQMUGNDPHHyZGAfYT2CcrH/PY0uqIccbbeOsqZnHUENRF4bUgm+gbWJ3VxsZ0wN2g6bnYPLjwwq+fl0XfPoVwh/v8AV4XfcxrmNo4Jyufmw5gQ/htGUL4e6vnYfL87HO/958/0YapJaHL43c3Ss71fvwd8Ekvi6KRiw1Rs7i0Cfi+WrfltQr9EZFDVljoL6haK5/IE9hziJJgYw7G43AOU583fA99V1auwsRfH9CcDj6vqfVhCzw7RtdI51IB2LKglqvoezKI4otXBPYngWvgK9gBmAG8UkRnNz6qEP7i01ttobMItxR6KWwX7Y8S1AZioqreo6nLgz1STVGxBbcDiHSuTYz4Y/T8R07hJPnPEdbT+XxA85yTXfAzLXtqRQmuMrzOGIltsEzYwdsYG4WroSvC4HXMLpds+vECKbDQf2FMwoXsT5fJJPnHHYhNhQvTd5zAt7Oequh5zu30ufP0tCkvV27ljaOdSTFs7kXK22AIqkloijW4B5SypieHvIWwyep+sw4SRuzPqMrRG0RjkhsLt5uWJhlEoQg+G3zGeIqXclYRJoR2+dOEeTPDcGvqnC0G5gKJqyNpwzQ3h+2cw8hqO9deV2Dh+CKv60E6VeBeUrsBUwRUbMKJpJ0kiHn+ENv9jTexkJ0ywvcu/F5HdsSUV1yTHOWIvxt6qOocifrKdqt6BufwmBu/AcGCjqm5R1Zmh71ZQjNV4HEIhM/w5PQRMFluKEZP/zpg3ZIuI1JGUP683q+rVGDGeLCKn1hxfB1835HNhWri/P48xmKW7tOLcOoI6MrzugC3jiPtkXwAR+YSI/IzC6llMuf8nUmTiLqI8P6dG38UWf1VsrgHtENRtAKp6EZaz3pc4Apinqg8H7fUHFFsRdAc+oL5AWXj9A6ZN3Yate4gJagmNi2FfAvys4vr+UPwBVsUGJlFUBfidqv4ES13eAzP7YwtqBIX2PAobhJ+mbJX9GTObh2FCwwdFFUE9hfXBbqGt8QB2wTIKUwa+Ez6PKyL4wH4lJiTmEbSsoLUtFZGjsOc1P/ktH8CE+NcBVPUSVf1g+H+zqt4SHesE5Rr7g1gCwUSKSbkMI213eyEi04ENQbil7tfNGJkeqar/FvXJekwoThGRG6jf0yuOQcVwV+UvwvsdMetuJqZl7ogtN3DScSVhErBMVVdjQvDB8H0szGO8j8La9uefZmf5pD8DE9JrsbhSmt5cgtheQZ4Rtj2JpyFKHIotqFHAxwOBjMWsYsLvHBFZPClBbcSUjbQiOth4/xY2tlwBPYdGSzkmqDjJxmN3a4jSulV1U/j/KIxMU439CQpSTtP1Hf4b3IL6FeW0do+P3olliiIiU0Qktu7S+/pzvKrmnnUYjf1WdzVPD/d3hdbd6FXYCBxTkQzmbrang5stdsV6lu+/YnPYLeY0njiBwivzCOVqMDMowiOx9V3Khq5DS4JS1RskrJJX1W+2Or6HMZXyQFxMxQAXkbNFZI6IzCEJ0InIwViJkzer6g8oV2Q+NbyfjU2e48Ln+2NCvJT6GNbAVAmShdhDGUVBUBNE5KxoQEzBEhYgVKFQ1T+q6iOYqyIW6nGMansKLafreQXB7i6yDZjf92maE9Seoa3xtuVrsJjXVIxc3gb8iKIc0nY0al73Y0kAl1KkbL8GI7gZwLgKTblOAMdICWp+aNsBmEsGCkEZx47cFVEVOF6OrT/yyeCJAOuxfpuExfHWA4jI/xWRJ6PzR5K4awPSRJnharg3+h2vpHCF+DOYFNpEpMVDzWRV1Ysjt64TSCzwNlFeR+bJJruF39OsvM2s6P/tMcF7ZfSZr8OKLShPejgdmOPrwqIYwr+F15SgfDyUMsBE5ADMpe7P9Z7wujk6xompziL0Z+pEFe+xdTc2vw+lsY/bISi/5nwKJbAhPorJKXeNnYYpn440G9PbsbDmnnUYiWW+/RPmkRmHyQ0nqN2p39p9Y2hfWph1FWVCWYHF40dXtPtMbOxWEZSP4+WYohKXXPJnGivuL6G+z7vQbpLEW0XkwtgNEnze57d5fqeocgc0uNhU9ZuqeriqHk7B5A4PSsaZXGBusbtU9abonAvD60FYSrHQWPH4/SQJEEFTW4YJ67UU2vhlwMFBWO9OUR4pFoBQNqvBBtyD0fuDw2valt+G1w3Y5JlHMXAmRffZgJHM3pgL7H8oEjHWYpr9P2HB3GcxAnILZUw4N1YU5mLa29soSsJ4fPBZrG/TgH+7BLUfli22Q2jrLCxBwgWFj4lnoStQ7rGLKgEWx4DidmzAJuDM8Orj4iWUE0DqXHwLov8vpbyodhOF0HBB+xRFZfL5fmBdcLgGsbXiSIXuonD/eI1VCSJym4h8gnIc5OGwBivO4DwjuoYTyDswDf54GrP+HsDitdBIUJ44M11s7y+fx+8Kr3ESEpTjH07yVfua7RGIntD+sZSXScRxzmYWVKx8P0NR9cSf/UKKOREnSzhBxZbHBMpKwwrKWIBlsE6scXnWId5/ax32/MZTTv9eVHEeFM/aaxS6gjeCsgK2Evt9ddaYE1QsryYSfmNwSy+iID2PPXubnaDOpzGzsQFtEZSquivs1yJymoj8EBO+DzQ/c6uxmLI/00vUdIKUoE4kxNSS4PdHgS9jpjwkKdequlRVr6cRj2Fa2mNR7ABsos4K1/HBk6YTd2kkYpvCvZfCglpCsS4hTfZ4N2ZdbcT66X7gLBF5KZaI8ZtwnA/mY4FbgqbvEzcenD7451EI6XHYxJhPQQTLKNyfaeD7OVS7OCtTmBOsptBOLwz3HEn5d9+U3PcPRFtRVFxzPZSIIHbxuWv0rujcruKiInIi9QT1I0J/qOrZqvq76LtNFMSwffTZ0cDCmhjBNRWfpfCxH4/XeE3eHtikjwmyKq50ODb+vY2foSCKc4kSZoIHoMuCUtXFmDtuFo2W5YWY9izYuI+fuSu351IkJnwW+BdgX1VdQ4jLhqSauHTOizBLaCdJ1gYGD0T8fnWSXj0/+j9t7xNYXCklibtU9evhf+/rpRRzIlZgPIEnXog8jiLOCglBqepaVX0lZY9HA0TkEBGJSxelBLULNt/idWQpGTo8i3BUiO2vEluQH+/pBSZzV2HyvSr12wkqHldTKMvlRym8GbH7LyaottAWQYXg367Yj7kAuFdVX62q/92dm3WA2zCNa5rYup7TSbbI7gacaBaE1/XJqn3HF1T13arqD63dunlLsfU1KYGOwSb8jcFV8yXgu8kxC4Ejw0RZHD5zAllEYRl8PT5JVTeo6p8xa+tgCovqc9jzcrfYunCNLaq6MLlGTMD+m13xuBuztCYBy1X1SVWVQMDfDsdMoTzA/54iuyyO17VDUDER3U1hAXYJEFV9FCOHEdJYqqqWoCLEBOXtfji0dxhmGYAJzl9iRP8gCQLJp5awYxOFlu0LxO8Jn1Ut4n6Oqv6o5lrxPTdhca7YKngm+v4RtSKz8biuW2+zGROObwP+3cdBEPCxUJ+EWX3xuF6IEU4q8H094CRgTaL4+bMaT+H+Oh94v6p6//4LJmBvxdyjjq9gC1tXYK7z7pQcitudCtzVmEISk8RCohqI2LN/GcXYfJwyQe2FyZR4sem4cC8XxnWksYAoG05sI9OYLL8BXBZZmylBuZXiBJVarV0Irtgfhzb5fJmBWbabo+OexSpKHEOx3inutxUY6Xua+zCMKGNr6zEKRXMiBUGtwdz/bk239Kq06+L7OqZlHoNpX8NF5ErpZkXr7iKY7u/CrJm5wFXBx98JXJN17TWNq3wfOFBVU225HcEKZunsQCGAzsfM6dGYYFoCoKrvUdXU8vwZFvOJtRIvQDoPs6AuCGmcVbgEE4Q+oA7B1ta4AF2HxXHqzH+HZxvdgsXffoElZ3yRRuvNFYU3U7gzPq+qP6XI1ok34Gtne5B4Iq+MLNF0nHllZndbHBZeR1FYpw+E41K3jj/fTRSTfVl4H5dAiqsTpO6nVnCCuldVLwZQVU90aCCMxOJuClU9MBkHPofj9V7+m5eSrPOSYtv2zZhAvTMhEsffYc/jIKx6SrwPUFzJIoZnsy6lMUXZSeVq4JTo88uS8ydQJEqcQEHA11Gkjbsi0s6Y6rJWU3dq6PcnKNam3aGqe6rqJ+JjVPU3FGPlXsoEdWD4LHbx+XpFP6dOyV0IvE5EDheR68JxHxDb3G9nrO+/S9EHI6kmKJdlvoyiDp4Q5QrvIRQLkmM4qd+GybBYiV2OySTvs12AFckYSi0on9cPhnuPx55dqyUebbv4TlbVn6rqs2ppmhdg2V6dbl7VNlT156q6r6rurart1qCqwvBwPcUmyM3xl6r6JrVc/RgvxQRwO3ANYkG43n9gGtBozA+7pPq0romzgHIa/wRVfSmFe67KLeTnz1bV84MWHE9+F9atCMpjDV3WRlAObsGE/64k2qeq3kCxN4y7hC6P7heTynntCOHYNeNxhYDUjbiBMkEdjmWYzsCEw3ZRu9PUbRdSz1AI8pWY0E3Tft8AjO4OgQRswmJZByafX0tZO+8J+ByO06SdhB+hXKduZwoLfXP4rlIBU9U7sVjlcZj1HMe6XAimBLUCIxDFFLQYbvUtx+bDTcCo4Nrze25OzplPsNTCM1iOxb8uwp5rSwFHk3kT8ASFC/2ddQeF+78dCwGMFREXwFOwfk5dfK4cXkCxtirFWqyfbqAolfRSTJbciM25iykWtKcWlCsBsQXVTKH2efmy8H4Pqtci+bP2dYLHEqrmRzEmV3R83V2M+cBnQx9NprCg7sU8PXcB65p4ILrQcSWJIKA6SfnuL3TVUVPVa2rceyWo6vWqemOb118QXmNTdw0mqM6hdbxuAUVdPShcaE4MLTNeKu7vgmQjNgHqCMqFVjpY43VXDYudVfXXWEDas3TikjxOUG9U1Xb2XXJUbWtQR1CxdfAXLCZHUKLWq+pKqifgviEG55N9JdbPpR0/VfUqtaod3YVr9iWFSlVfr6qf7OB6zTAsXDvWnL3NCyn3URzPPQErCdVMoN2NEVQqSOoI6iFMWVlC467NH6eI5+2MudirYnszsYWsUIw/F3A+F07EYnm1Sl8EP7eqfhzYuD4JuFlV/9TsQqp6Gdan04BHpajZt56yBdVFUKr62eCarYKPzcXRZydgY3sGRSKPZzGmBAWWkLSniJxBExdfgFtQB2DW0clUu8WvBj6sqptUdWGYKxdSWF4bgB2Cq253GuWKrzc9E1NWfIxdjxHw86ivKlLCVpU6UtU63+pAw7LIz91buAPKVgBGDKdgGkWz2nxgLpquFFBVXRReP4IFpNuK94VJ9qrwv1sLrl3XEdR8TANMyy/FBFW3vuI8TCs6Ljp/HeZ7flottb9tqOqhqhr74R+hHOiGaoKq+20NBBWNBZ/syynceO8Nr50sCHe41n5Z06N6BlVz2ImjZEFRvXNpK4I6lsZF535OKZ4WXFrLMLfPk8l3WwIhebmmNDbox7m7zO9zJsUeYE42O1OfTp1ebwuwj1rssgqbsLTwv9V8n2IVhUttOkWSQZ0F1QxuqcTuMYneH0AgqLDu7BgKkvYxNhebe9/Hnm8zgnIXrFfu2ItiH7MuqOrdqvqZ5LMNPm+CFeVFg6tS22/H4uGnAI+6B0JV48LVLddAwdCpxVc5GXoSqnpHIljBzHOAy9pwE92GlXOpuvbsGm2zDjdRXpDsrr5Kq1FVF6vqxAqTOxZMi6mAFvh99BvXYS6AdlLLW+Egyut1oJgccczOhVdKVDdTA7VEmEMw8nf37qVYgL5dgVWF6zEXTauYX0+gSgP2yZ8Ww423BTk7ObYK7nVIx64TVFU8ON7AsArrKcdSqiBgCpaqXq6qv02uDY2lwmqhRfyvCjuGY85qckyMWOHZn6Iiwkps/VBcILgVXIGMSzxtoLzA2i2o68O9Hg3tdcvv3Ul77qIe87CixC+mmM9VGcntYF1o194kCmSQA5djccxUbrmMbIt7hgJBTad6/USvIxL4VTtMpriN4uFtFaGqZWLFhUs9WaG7u4LGa8pabSESo2tjvW7erwGquqbCzbYGswxmAj/FNDYXlnGiA6r6owrFIf7+LrUA732Y22ljiHt2N+4UX3Ozqh6fWNO9hY/RuMlknCUVW1BxXHATNE/QCB6SG2mM423GMimrBL9ry3XXdYGVFnqNcRtWEivFMgorvdMdblN0Z1uS9HcdBDwb+mMtZlmNDoe1k8DhzykukTSbsnK5PlzTkxK6SFpVf0U5dHByHNOrwFwKhcUtypb18GrgxOlJIin8N6Ryw/u7Li5XQic7RG5TUNXUbdXXOIU2SkSp6uMhw/Qumm/N3G0EouzOgkA/72kROQcTZnUukiqsw/z0PWFBVcHTmScDV6rqD0M8YIUWywO6izvpG4unR6HFep0YrnjGxVCPpmxNtSNAUdXjK8rjoKqnVR1Pa4HvBPXRugOCq7BqV+r7sPViN9NzCVqXU+MdaIE12DYpvs5ORWQlZlG0Yz1BQVDbYzG7z4brrsIUvOmqujnOPNfGhd2uRJ5PsXazDrGl0xMENRL7vZXLMETkCBqrZbwsnHtnek4VBj1B9TdUtZ0FmDE2B/N9QEBVv9rBaeswYv5zDzfH4QS1D1YnzN11tYseW0FVHwjVoQcDbgb+SNmCupmyUPg1RVmipqgQis3QaumJL/e4sulR1e2YjVkYPQZVvZwi+7Q78GSJWMCvxBaNt6voxNvSrFcrcOt4X8XxDcVogxJ5LvClVha7qq6PyK6nLKhx1KzzUtW0ODdqKfttYyi4+LY1dGer7oGO3lKAVmH+912o0N46hSbVxLdVqOo8VX0hpo0fKcWWLTtEx6zWns8obAd3AN/YGhfqAMANWGmrSZQF/Aoss/kPVSdVICaoZrHA/wHeodUVSFDVizpwJ9dl7raLdVgm3nNoM+GhE2SCGnhotevltgDXorvtVmwT7kL5qpbXS2WUsRpz63myzmQa9+DqacyiyX5dqrpCVd/Ry23oVajqCZgF2rX1ScBKLKM1zTqtQ5z0UUsUalV7vtHddtbg9PDqi3E7Jag1WNbgqt5UNjJBDTwMBoHb2wTlLtDuxMWGItIY4HisFl6vWelqW+NsTQbktoL1ySsYQU2lsWB1HT5OsTt0p0TRXVyLWYB+v+64b2P4Aud2420dIRPUwMJ0GlOqt0V4fKFXxpfaAlxo3K8ro4w4o8vJfI2Wq0JkdAYnptTFB20SVMge9Sy8dkltqxAyTE+IrJ5O59BSzFJOC1/3KDJBDSCE2ME2l0mWQlV97VG7hXY7wcuxqtoZ9VgHvAXTkj0l/Pb+a86gQhVBpZUvWkKLGna9aonU4CKiCjvdxBOYMt1WNl6nyFl8Gb2Fg+nFSaeqvV4HcltH0JKvAK4QkQfCZ52UbspohBNUbI26BdVOCaYUfeXi64KqnrsVpy8Ir60q5GwVMkFl9ApUta2FeBl9hv9mK9LwM8pQ1S0hZTuO4Xj8uFWB2ip0uktDf+G34bXdWqUdIRNURsYQgKr29u7XQxVxDGc76N72KeH43kom6jWEdYe93u5MUBkZGRmdI66FeDmdx3QyKpAJKiMjI6NzdNU6DPX3eqt6ypBEzuLLyMjI6BxV1eQzegjZgsrIyMjoDMfRR+uXhioyQWVkZGR0AFVtuUtBxtYhu/gyMjIyMgYkMkFlZGRkZAxIZILKyMjIyBiQ6HeCEpFTReReEXk23TBORC4QkXkicr+InNhfbczIyMjI6HsMhCSJe4DXAaX9TkRkBrZ3yYHAFOB6Edm3g425MjIyMjK2QfS7BaWqc1X1/oqvXgP8QFWfUtX5wDzgiL5tXUZGRkZGf6HfCaoJpgLx1hOLw2cNEJGzRWSOiMwBduyLxmVkZGRk9C76xMUnItcDz6v46iOqel3daRWfVRZhVNVvAt/ssHkZGRkZGQMQfUJQqnpCB6ctBnaL3u8KPNYzLcrIyMjIGOgYyC6+nwCni8gOIjIN2w49F2LMyMjIGCLod4ISkdeKyGLgaOBnIvIrAFW9F7gKuA/4JXBOzuDLyMjIGDqQbu6ttU1CRO4BNvV3OwYwJpKLXjZD7p/myP3TGrmPmmO5qp6UfjgQ1kH1BTap6uGtDxuaEJE5uX/qkfunOXL/tEbuo87Q7y6+jIyMjIyMKmSCysjIyMgYkBgqBJXXSDVH7p/myP3THLl/WiP3UQcYEkkSGRkZGRnbHoaKBZWRkZGRsY0hE1RGRkZGxoDEoCYoETkp7CU1T0Q+1N/t6Q+IyG4iMltE5oZ9t94bPh8vIr8RkQfD67jwuYjIJaHP7hKRw/r3F/QNRGSYiPxVRH4a3k8TkVtD//xQRLYPn+8Q3s8L3+/Zn+3uK4jIWBG5WkT+FsbS0XkMFRCRc8P8ukdE/r+I7JjH0NZj0BKUiAwDvgK8HJgBvDHsMTXU8AzwflU9ADgKOCf0w4eAG1R1OnBDeA/WX9PD39nA1/q+yf2C9wJzo/cXAl8M/fMkcFb4/CzgSVXdB/hiOG4o4GLgl6q6P3AI1ld5DAEiMhV4D3C4qs4EhmF72eUxtJUYtASF7R01T1UfVtWngR9ge0wNKajq46r6l/D/WkywTMX64rvhsO8CJ4f/XwNcoYY/AWNFZJc+bnafQkR2BV4JXBbeCzALuDockvaP99vVwPHh+EELERkNvAj4FoCqPq2qq8hjKMZ2wHAR2Q4YATxOHkNbjcFMUG3vJzVUEFwJhwK3Ajur6uNgJAZMDocNxX67CPgg8Gx4PwFYparPhPdxH3T1T/h+dTh+MGMvYBnwneAGvUxEdiKPIQBU9VHgP4FHMGJaDdxOHkNbjcFMUG3vJzUUICIjgWuA96nqmmaHVnw2aPtNRF4FPKGqt8cfVxyqbXw3WLEdcBjwNVU9FFhP4c6rwpDqoxB7ew0wDZgC7IS5OVMM5THUEQYzQeX9pAJE5LkYOX1fVa8NHy91t0t4fSJ8PtT67QXAq0VkAeYGnoVZVGODuwbKfdDVP+H7McDKvmxwP2AxsFhVbw3vr8YIK48hwwnAfFVdpqqbgWuBY8hjaKsxmAnqNmB6yKTZHgta/qSf29TnCL7tbwFzVfUL0Vc/Ad4S/n8LcF30+ZtDJtZRwGp34wxGqOoFqrqrqu6JjZEbVfUfgNnAKeGwtH+8304Jxw9q7VdVlwCLRGS/8NHx2DY4eQwZHgGOEpERYb55/+QxtJUY1JUkROQVmDY8DPi2qn6qn5vU5xCRFwJ/AO6miLF8GItDXQXsjk2wU1V1ZZhgXwZOAjYAZ6rqnD5veD9ARF4MfEBVXyUie2EW1Xjgr8CbVPUpEdkR+B4Wy1sJnK6qD/dXm/sKIvJ3WBLJ9sDDwJmYgpvHECAiHwPegGXN/hV4GxZrymNoKzCoCSojIyMjY9vFYHbxZWRkZGRsw8gElZGRkZExIJEJKiMjIyNjQCITVEZGRkbGgEQmqIyMjIyMAYlMUBkZAwgisqeIzBKR54nIR/q7PRkZ/YlMUBkZAwt7ArNUdclQXLeXkREjE1RGxsDC2cA/isgNInIlgIjcIiJfEpE7ReR0Ebk27LN0SPj+VSLyexG5WURO6tfWZ2T0IPJC3YyMAYRQzeIErGrDJ1X1TSLyAHAsVhHlL5iVdRhWmul9wI3hnOcAv1DV4/u+5RkZPY/tWh+SkZHRz1imqksBROQhVd0kIo8B44CJwAHA9eHYySIiubZbxmBAJqiMjIGFzZilFENr/hdgOVZn8URV3SIiz83klDFYkAkqI2Ng4R7gM9gmgZtbHayqz4rIF4AbRESxKtrn9G4TMzL6BjkGlZGRkZExIJGz+DIyMjIyBiQyQWVkZGRkDEhkgsrIyMjIGJDIBJWRkZGRMSCRCSojIyMjY0AiE1RGRkZGxoBEJqiMjIyMjAGJ/wWrHIq36bZ28AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd7wkVZX4v4fJeZjEMKQBHKISBCQoK6iIuqxZFldZRV3cVX6mVUExuxh21TUrZjCirggYySpBYEw4MOQ4pJlhch5mzu+Pc8+rW9VV3dXvvX7db+Z+P5/+VHd1hVtV9550z70lqkoikUgkEr3GDt0uQCKRSCQSZSQFlUgkEomeJCmoRCKRSPQkSUElEolEoidJCiqRSCQSPUlSUIlEIpHoSUZ2uwDtIiL3AauBLcATqnp4d0uUSCQSiU4w7BRU4HhVXdrtQiQSiUSic6QQXyKRSCR6kuGooBS4VET+JCKnl20gIqeLyPzwWTDE5UskEonEICDDbaojEZmjqg+LyCzgMuD/qervm2w/P/VTJRKJxPBj2HlQqvpwWC4GLgSe1t0SJRKJRKITDCsFJSITRGSSfweeC6QQXiKRSGyDDLcsvp2AC0UErOw/UNXfdLdIiUQikegEw0pBqeo9wMHdLkcikUgkOs+wCvElEolEYvshKahEYpgiIsMqApJItEtSUIlBQ0QOFZF53S7HdsRmEXlptwuRSHSKpKA6iIhoGK+1vfBn4OpuF6KTiMiLRWRKt8sRsVe3C5BIdIqkoDrP9qSgYNuvUxcC/97tQkRs6XYBEolOsa0Lk8TQk+rU0PJEtwsgIv8pIp8VkT26XZYqRGSuiBzZ7XL0KiLycRF5WbfLUSQJkw4RdWBvbx3ZI7pdgE4gIjeJyNej3xNE5Iguludt4WsveFCfAt4KvLLbBXFE5Okicl606ovAH7tVnm4hIq8SkYk1Nj0L+Finy+OIyE4i8oVW2yUF1SYiUveejS0stxe2SQUFHA4cHb4r8FHgxm4URGyk+v+Gn/t2owwVlCpLMb4mIkPZFo4E/lVERoXfd3lZhrAMXSXIqu8B/1xzlwkdLE6RVwJntHoeSUG1gYh8D7gmfJ/o0y5V4I1xXAfKoSLy3ME+7iDRrzolIocPtfAQkZ3DlFl1WRmWCgx6tmKwKs+Jfh8TnvVaEflytOn06Ptb2jCaBp3CM6vy5o4G/g2bCWao2BqW3v4eD8u2w5Ai8lQROXlQSjW0uOdUt44P5Tv2dgzLUc02SgqqPV4FHBK+Xw3cLCL7iciLAUTkhSIyOvzvDaOp1Sgih/azLE/u536dpr8e1E1Ax1OmRWR0ZFU/DHy/jd3XheUoBkFBiciuIrI5WvUS4L0i8t8i8k7ggLB+PPAf0Xa7Fw41Y6BlaYWI7CgiY0r+isNHOQUVjDgl8/LK9h9UgkJ/MuCZlsVIxlPaPN5xwJ+ACwalgEOEiNxJVrebGsmDZRiKyCFt9PPNDMvxzTZKCqp9NoXlXsBcrBJcGNZdBDwvfG/pQYWK8ed+hj663jleQVMFJSIHNUm9P0ZEzg1CrVN8FlgV/W6nH8kF8BRgbxhw434S+T5KN27eBbwFWF7cQUR+Q14pAOwygDLUZRnweREZUfDe45T7ogflVrK/caCjIT4R8bY2AZjs5wzP6LDwe3LDjuXHOkxEdgF+Nbil7DwiMg2rWyeFVU2VAFkdHKgBcQ31+/ncqHpYRD5YtVFSUO3jFu/6sNyt8L+HFuqE+IreVjv0qoJqVaf+hsXFy5gJnA4gIq0aVX+ZRV5QzmljX39eTwKWYIpuMMdEFcMdY8mMH78nJ5IP8cEgKSgRmSQis5tsMhv4B+C30br4dTdFBeX35riwrFXPReT4yMttB/fURgAnhO9jgUOx+wb1w13zgR/SQ32qwYv9YY1NHy/8bnXfByKHYtrRJ+5BjaPJK5OSgmqfooJaV/jfG2mdEN9A+ql6IXurjDoNOtd3F3khM4H7wvedB7FMMePCOceQPcO6eEM+ACvnKgrX0iYjQln8nvnx/4xZmNPJe1E/D8tp0bpvMgAFVfAAvws80mTz1TQK+H8Gbg3fi8/evZX9wrKyLQTh6xNBX0mmYNrBjcVZZKG8+JxrgJ1E5Ok1jzea3pKRuwLParZB9DxfE61uZey5MdAvD1dE3hX6Qdu5V3FYekXVRr1084cMEXnvAEIzRQW1uvB/Ox6UbzO+HxbjoHlQIW5/fPR7wEK3BS6IEZE3AQeGnzthVvftmLXeCVzxzQI21tkhUiAeApkHPIDVgZbGRchiK1MiEwpLvy8PhON+DtiAKaZPkAkaV1C/BB5iYB7UVhGZG75PCeWdJyKficrvcmIzjULsUExJQmOI6BeF380E4HnAX6M+3M1lG4nILmV9YaGM+4efU8Py/nBObyurgI8QEp1qkBO6PZABOJXWSmQSsBYzNpxWCmo0do/aVlBiw2n+G1M47SqoB8L3pKAcETkTOIcsPt4uRQW1IRzXH673n7jgauYJ+D4vJ+vbqstgh/gOjL6vEpHDm20sIl+q6DSvQ6yMvwS8J3yfglndd9K5jK8pWDbeTtRUUGTP0hX3CGARBQUVQlNlQuyfwvZFLgrLoqJ6DLg5fN+gqi8B/kBWl6YD31PVkwgKSkROEpHXikjtJADJxuo9Oyw9S/GZwNuja/E+rymEOhuUrmBZcbeF/4v1IW5jq6lQ5iJyEnaPAH5cOGeRRcBHxOZ9XButPwX4ZPg+OWz3QCiT17dY2RxSI/ux6BU0bC8i06O+r04zhdYG0RzgEVWN+3FPE5EfikhVMs0o7Pn0x4PyMO4sCvdHRN4uIv9a3CHUmxlYkhKU9LU6252CInORZ4rIS+oK2ciy80brCsIrv1uxzw4V1h92s/dX+TbHhnPsK4XJVkVkh9CA+36Hr1tpgog8pUYDjFkX9vMGUOnRichewJto9HK2hv9ni0iz8TmjC7/dQ9kZU/hLCMJNLNV6MPsBJgD30kJBiciekYAuKigwxbCOYJ2G/qErKU9j9mvpM1YKiswVkzf2ZcA7w/cNYbmSrI7NIjOQlmGW9T8C3yZTbHXw63IL2xWUD0j28nqobnZUxjGYolyDXffjNO9kf5xqAfj+6LsbalPLNgzsjmXTjhcRz2j09rA8lHEjdu/GktW3uO/uL8ALmpwDGqMBZYPulwJfLlnfCaYCo1q0h2mUp4ufAjy/Yp/RmIIa3Q8v0Z/TTjTqk88AZYNxp2BtxyMBld0V26OCcstiJvAzMuuxFS5EvBFujX4rWfz73cBpWMP4O7BPk2P6sXzf28i75mAdzJeU7NNKaN8MPBcypSYiD0bhHOL/yASeTz7aTNi48ikmGPi9/SmZVV3GPoXO+B0w4TguLJeTWd/XAi9qcqx2GY/1H83y8lYYKfcAzwnfYwXlSu0hggcVlJNb80eVHGvXsHxYRPy6Yg/RvQVv7Mui48UKyst5WrR+Y1hfKzutwLjCshiudsU1OZx/b7LnMg5TYI+o6gbg0zTWmceA/wnfl1KtoOJ+3K3AYporqLFkQu2esByBKZ1fhPKWKaii0eV9gL8XkXeKyJskGodGPQUFLebbFJGDmv3fBn5PmrXNyeSzVGOqEkRGYYbBJtr3otxg2Y/MeI8p8/hmYPXhxcBVNBqsfWzPCsoFRDHJoQ8RubnQ/6BY2uoRwNOj9Q+RhWsgC/3chYVfqqwSrwyxZTe3sM1hhd8tPZyIkeHcW4IQ3TV8EJH7ReTDZJXeK4n/bha39gZynYj8Q8n/rSq5ANdFv0eQNar1mICOEwEmhzKPE5HviEi/ptQJ92I8mQfl5azKxJsllvIeK6hl4bsrqPHkw1Fl/UFzo+8niI0VidPb/1IoR5WCinGDYhP27PrTb9jnQYnIqTTWqVhB3Y4JYp+vbSx2Dx8Lv11RxowBbgnfH6c6PBWH6iZjobmpUDn+ytsiZEpkPJZcsoFqD+rn5PFw/bHYGLTTgPdG/9dVUGuLK4LCe5lYyvffQkT0RSLyfOn/e7y8flSFSo/BkkNiBXU5ZjBC1KbFBoX/SEQWYtGQPcnuVzu4vHhJoSzeJkZJY0buTGCpqi7E0viTgirBQ2mllSWE9J5C1vBHk1mxsdc1DhNWsQW7BnvQizFLr08AhorqQswrQ2zZFIXl9LCfNxbfp1kILg5D+vW5Fee/d8dSht3tHycih5AJ019WHZ+8ICrrKyrtT5N8osCe0fcRZJ6JkvegIGtY78Syk/6r5Nh7i0gzbxXsGW7FntdO2LNbSrW17unwsUCIFdS68F/cqGfSyNzo+1HYWJF3YunabjCMiMpxFZnhVKWgKj2oNsI0fl1HAOcTUvzj/4NycA/qM2QD1ceFj5ezTEFNwKIIYGHbKgu+qKAei8q2DPhaYfuxRPdcRKaGY6/F7kvsQU3AnvuvyGe2AfxSRJ4Rvu8ALAzH82cYK6g1VCuoNSXr/gebn9Db6QRMQf4K+F3FcVrh9aNKiVyLJSzECmoV1n/pZXCeiWVg7hfKOYLM4GoHb6fFOndP9H2t5JPAZmD1ATIDq5TtUUG55eUzMVQ1GldMJ4jN9jAGe9hjySuRqZgiihkRttuAdQTGobBXAItE5JOUW/DFyueNxRu/eyw+UPSzIvIW3zj0YcXhSD+ep/oWLW0P143DLPmqMUoxsSAqCzU2KKjQQVs1hmOHwj6PkJ9HzRuNX9deInI0eRYAf21W6HCctWTp4eOARykYBdI4cDpWlq6gHsYa9Awy6/F9tFZQ7nlPBB5X1YdCeSaGchyoqvfS6EEVrXT3oDbS6EFVNvgCrgSq+mKOIxP4q8my9XzfcYVy9NWLYODtQBbqbRbu9me/ETMclhSuoThrxwjy13sY9mzXkfeglmH9cnsAm1S1LPR1aljuQOYJHxitc9ZRraBywxUij+9WsvY3DfNCwTIf+0MrBeXE17mZzPiLjeiyxIRVwCQRuVTqT4Ts3RMesvfEh2I7iJOuPMQH9uwrje3+zps2VkTeHDJDfiMiPwi/hyqbZSC4gnLBnFNQInJVsPS9sv4YCx3cgTXSkdjMv85YGh923Hi9E9vxjud3A08tKV8x+aFPQYVG70L+HcHqfivw/0LZR4Ry7h1dm1dmXxeHo5QsXNLOs4sbSJmCL/OgriQkgzgi4op9ZLTPWMzSXENW+f0c8b15V0mZGpIeRGSDiDwzOs66sN0ETNCV9XcUvdgZZAriEeBsVd2EPd8vY7NTgCnJsv6IuL/NG/5uZAMqV2HCwzMMIfNMlgKoqve53B+WcYiv2AdVdzBqq2fuHsc4YL2q3orNeH035tmPo9GTi8uwVlXXYc/9OqoThpYB12PXPAu75mZG0GYyBfVI+B4/2ymhXH4vJ1KdJfuGsHwq5t36/YzPu5l8NMKTl0YXtnM8jT329HYkU9bFgbR1KU7fVEWs0DeTybxW9WJlOMcJQG7uQbGhB8eF646Vz56Y8bEzpoC9Xv4V89Kc2EifSV5BDboHdT524WdibuJZ4UTn9/N4Q4k/LA8xFR/acZhFVpbmWpX15Q3hb2HpFXMDluMfC8D4YexNZpE7UsjS8XKOwSy7J6Lz+EN34ekV+JiwjBWUh2amich3wndXUCuoP8p/JPkQ57SSzcrGsJSlP8ejyf3eTgkpsreQKVX3oOLU2TLPbVko4xIRGRli8mOwiUr9OC7EPANtOa0V1MFk93y9qvprCYr9lyuK+wYhNhYLS36OLBQyk+yeb8QMpqlkY0L8mbrV7SwMS7eSXTHEHsU7I+XfjFbP3McVjSEoIlU9G7v3v8Ouq9SDwuremrDPNVi/0q6UMwqbMmw9pmiXYBllZ4T/R4jITBHx+r4Va59nYobPW7G+o7Xhc3TYxi3zSVQrKH8eIwlJH9F1TAjX9QwiBRWiFFvIZMd4sfFZfqyxWJJSPG5pGtXh2sZCiUwTkcsKq72etnpu14fli7H7UqagquZVdBlebNefwkLPbyUfMdodU0Y7Ym1pXKjzB2N9vU5suHU8xDdbVb+mqg+o6sqw/DpDMFuxiDxPRG4XkbtE5KzWezTgD8sTE/oemtgYKbDKXdbpHFfyOeQbJ2RWrHtQrRTUHMwajdmIeUsa+lT2wMJQLwnHnE8W3/WMu62hI9LP45lksYI6Caswc8ksYw3lWUGL2HMUtngVeesqTif3BpoTBiLy8ejnm8Py/mjdcdjrETaQ3Z8HyUJjc8WyDeMO7LIBlMvCdjOwe3VtVGbIrOwNZArKrcaY4hi548n65GIjpTgTxVrgWBH5htiYpE+FYy1X1fer6tsK2381LPcGLsME6joAVXUlf09hH1eKnnHnIb7YgzqS8lBjkTr9Dd5xHl/35WE5lRYeVPT7USzpZAcRmSIi8bi7MWF/rzeLsWvyFOUdsNDRneH3KLIIxWqyqZTWkc1q8fxo/2YeVLHv5GHsetdi8mwMNpFx7EF5/YjHry0iC5VODOeOFdSe2GTIv6F1KBrMoHtOYd3UcB1VCup24BBVPQdAVS9S1QfJIg+xghqLZTHH7E8Whn1W6NtDRPYEXhjWH1DYZxLZ7C+Ph3O8Aruvi8kSU+L62HEP6vchrHeq2Azep0r0KopOETyLL2GV7wDglSJSvGGtKE5EGj+0T0TbxB7UuWHpjfQKVX2ErKL4MeMYsVuXK8gLvLgR70p4T01E3NCfiSmwzVgoad/w3f935XAocHZ0fm/8E8mHAy4kb0S4B7UEeEe0/pdgrxkIy2eSCaI4jfrXwCki4v1bO4Rjelq7nzs2JLxiXljy38Fk8fl1ZPftZDIh9GhYniRZSrBf7+1k9ybXiEN/1k5Yo3EPam249rNEJH6Ne3Fw9TFkQjkWaGUKCuD12Nie/8Qs0aKXDICq/qmwamU8wFJVJaRwx7iCcg9qE1aH4+udBOXJEoVElTpe8w5EHlTgdMxa3plqD2oikYIKIdGV2H3/LLAgaruuoLy+rKcxxDcSU6gLMIHm+8Sp8fcDN0TnfAQLzzfzoIo8HI7d5x2HZxIrKJcDbsS6ot9LbLqmSVjYK1ZQ78cU66OUey9AXxLVaMpTtqdh11j00ncOhtlEyuuat7lYpvn9q2IumTyMQ9TFsY8TyGTY4+EcuwGfUtWNmFJ+C40eVOcUlKq+D5uNYQImHCYAn1DV9zbdceA8DbhLVe8JFf5HtD9G5ptYpXU8hTm+F0L+Yb4pLDdF/5fxXrLxPHGIL1ZQ/jB84GVRQW2Izr0XFnLw308nHyOPX0S2B5ny8QSQaeQV1EKyUB9kwuc7hTL8qbD0wahHkCnF76vqC7BxJ4dLfjocF3xl6dvLsHj/O0J5vaKepKp3hNRTMCEVe54HYA3q3dE6t+rcGxbyU0zFncWTMIW6ibwHNR/zYL4iNrj51Zhn+1XyeIgvvqZiiK+YjQZZ6MMpG5ToXmXL0A9ZHYyz54qTx3o/V3E9WIKO91GMo3G27luj7zdg9TXnQQWBvZhsYLWXozTEF/Fo2McF+y0hSjAmXJcLevcKnTic695VmYK6VlUfI7Po/VjtKKjl2H2Jx7xBXkH50oXu9Gh5IOYNe99m33RmYbmK5n1IrwjnfQM0GBmzMCOsGJJ+GEuRn0TjWDaAi7EXBBY9qA3k5/YrRnPeGAy7eAaK4qteYgW1GntWHw9l8rqyhLwH1fksPlW9RVW/Cpyvql9V1QX9PVYb7IKFfpxFlIw7EZHTRWS+iMyn8K4cVb2IbCzHKsrfSzKOqHGrajFx4d6wXois0HA/zgnrZmPC+DHyXoufZ3k4x2PkceEJJpQfJWvQs8h7ULE1M4dM2IzBrJk9yQuN+eT7gg4L53qc/PuG+gRvaCAey/8jWb+XV6o7MY/21WSCxSf6LFVQqvoXNdybgfIstbgh7hO2jeus3zu/P6PI+uzGhd8+DueKsJwbjjORRgPhW9hA6TnkJ039XLAGbyc/ZVGVBwWZgtqffJiuTFD6e3sq5ySLcA8rznyLG/ibo+97R99jYRcP0H2I/Jx5Hv79NOY5PoHdq6K1vZzGMHezEB/YPZ1NPooxJpR/I1nbKAqt+PtyMgW1gUwgvy7K0nsBmce9CXsWfr9ajRfbCJyBCfBYwcYKysuzM6YMXQZNJhv06qH94pycK7EQ/lgpn5/R642HpV8KfTO8jCYaI1bgqZhsaFBQQUncQTB0Q5KDK/iHwmYvw4zXogG1C3nvpzhTygSyPqn4+T8UfV9cOMY0MqNtHRb6LTX6ByPN/AYRKQ4m7RRlF9Hw7qDQP3a4qh5O+bQf/hDvIbtxscc0Hmt83wb+pXD+6URCIIRg4nJtwCrjsVjI837yacYutL3yr8BSx2OL2JXmgVij9obhMWivCHtEx5mDeTyeCvxnTEDF1tqt5AXkKqyRbcLGmrw6KpMzFrs3v422h6yRPoTdo/PIewB/pVxBFTOY/FkUhdk68g1xXxoV1GYReRJmFGzEvJXY6xtLdr3uOb6BTNgWJ4x1gT4ds/COxRr+OwFUdT+yKYggE85rC0uw+7MZ8/qvj9aXhVVcsBbDeWW4Qt1UWDq3RN/3KvznQjJ+vcJ6skw2VHV++DozGGYu4ItlcwVV5UHlQnyBR7GEg/gZ/hTzhDdi9XxjybFi69sVlHt1d4T1fYarqi5UVR9rtBETiN635+3lWuBD0Xei7d1AjD3wWEF52X6ItW032nzM1WayoQyudL0d+ljKT1M+P2Mxld0H2Xp4egfgCyLyc8nPc3c0cGmU7VlkLaEPMBxnNvbsXO78PNybote7G9b2zsHkR7FNx4ZIHBp/OPpe9KAmkd3ba7FnWpq/MBgK6kzgUhF5efGP0D91bck+/WUR+fcv7Ur+RtTFH8K9ZDcutqy+g1kO81U1Hruzg6ouC9Z0FSuwhz9OVR/FLKzY6vAH7Pf+DlX9AxYWuAqrNO717U3ekj8Wq8BeiSeQKeA5mPXjAmYBVmH6FFQIi8ZztbmXsjEII09ciO/pZOzePBS29cbpQi6+F15Rz8K8x5kiUhwcWYyRe/mLDaOVB3UV1vjfiA1CXka+U3kajcrg2ap6PXlhG2/jdWAysEpVrwneXt/EvIVJOL1xn4+Fw4rnezQcK75mb5h9L/0rHLMZk7ABoCeQhRyL53RrVmlM9ih6nJ4+/hiNysQNtk00hrugwoMSGzCt4b/iM52E9cXEs4/sE+0PVh+KHlRcD5ZjddA9gMux+nYl5WzCFHUceZmNTU7rUR+PPDwHqxuzMeUVezhlHpTjEZYp4b9NQVHsAPwg/OdRCFdQZZGfSVi9/UJhvW//MJkR9SIskcHbwwyavyrlwVB+n9dzP6LElChK5Mb2nVha/O5hn5/TmCABeQUVh/9KPSgRORdTRqvDeTer6glBVjYwYAWlqt/HLuDzInK2iIwSkdNE5FbMSmjnldqtuAmYJzaR52hsAsSL+3EctzoXALuKyCWUv6X0ocK6qvt1NZlwX4o1CBdEi4GniEixD2MDsERVbwJQ1Rdj6dvuQbmSKD642Zjb7xmHHsudhFUC/30vJqCKmVpx/5t7KS4cPEsqruiTsf4Yt8y8MrpQjQWXC6TNmGX0L2T9W+cVtnFcQbUK8c0N5/obJhDOxBqHP5Oi4puOXV/fM1NVF2Je5kPJeyAjsetsNp9ZsYxbgTNU9agSRXM/WfjKWR7KUkwhbomqrlHVLap6uZ8rVp4B91DLZm7wOp5TUOF7HAU4iCzk28yDKkszd4XzdBr76M4hG9wM2RRPcbnLFFTMMiyMOw+b6X2Tqn6yJAzvbAzniz2sx1R1eXROXz5CZgQtwZIEfLzdE2RKJi7bs8jq2BSyEF8VngCS85REZAJW5+aSV6Zg938fzFv8SrT+DrJnuRuNEwb0EcajXYJ5sGD91BtCmL1hujJV3QdT/tMp3D+ySaF96rC1WL/Tl6JtYiN3KTA1yOzTsftVNvtGA4Myk0SwSk/AXpuwFAuBfQjYV1UHbabf0BjPwMJNC4Efq+otzfcqPY4LksswS+8krMLHrysuU1BVx/ulqs4NP73vx8Nd/iB8qiFXUG+mkBETyrUBU1A+/mUtFn77dfi9UVXvw8KPfj5nLpmCWopV+P3JE09htJ5s1D1kFTxWih4T9xDZOkywvy78jhujK5nNWHgzdttPwxIhikK8mQc1DbiRzGrcrKrzVXVEONd4MsFaVFDHh/3LwsIubO+n0TMYgTXIugpqZUE43hR9H0ljtlTlqwUoCVe3wWVYvfPnvwKYICJvkWxeNMd/xwoqK4Tq34PgguYeFGT13BWUe9ivIOsH8uPeBFwQfu6JPVvn71i219tpDPFBZiD5c96rpExleP0sa8t+LK8Pq6PvS1T1g6r6qfD7KEwIE8rm9TXuQ3YPyocIuDKJ28hWIgUlIleKzcjuhuQLQ7niPv1J2Fuc71LVC6P1O5Mfr9Rq7NvdZG+v3Z9w/0IEx4nbywrM6PVEnxdgCtmv51wsqrRFVd+rqudiz/DCOMoUvMlRWB+vr2v6NgZnwApKbNLBT2DzPV0bPhuBq+oWoh1U9Vequo+q7q0h37+fzMWEqFfICzAP4tPht7vUMUXLpozHsYrqAq7oGUwBnqKqf6y4Px5iWI6NU/iLqr6RLE4+AkBVXRB5H5qfxwX+yvD9yPjgqnox2cS2buG6m6/AeFWNY+Nnh+V9YblRVf8awkJQ7UHl5tMLSRFl8/sVB6Y6bmmvVVVPMoi9wbVYI/MGWhT8bwzLsjruAmRlofw/CsujqJdRt754XlWNX189lkYF9WOy+emKDERBiareF57hWKwvcgI2OPiYwrZlHtRvsEhAkSoPyoW736cN5BUUZFmWMeMAgpHl7elUVd2qql9Q1aso96A8ky++33UUlG9T9jzduNuACdoHaTTWnB2AZ4QEg9Fk7SxOSsh5UKrq2b9+7kuwvllPDAEzpF5Hdt92whKJ4mSmSeFTTKI5g/ywj2LCVZHHME/M5U6rN0qvxNr/yOCp/hr4PRbKFbIB8H2EZ/jSiuO9qmJ9JYPhQd2N9bE8W1VPxN5LcyOWPNHuGKUhQ1XvD415SbT6dLJxOTvS+MCLKbll+D5PDecpdlpOKTluzEaCglLVl0WxWa/QcWjgKGyao01kyQF+PSvD9xOx+caOj/b7Ndbh6eGYuI8lnkIHsnnmXi791N4AACAASURBVI31f7gCj8vreKPeTOMA5VLC/Zla0q+3nmyskhMfz5Wr93EV0/WdN2PXG1ueq4GHoyQA516ysR91PKgHyXewF3GB3XcOVf2Kqla9fmEgCqqvXoR7uZasf9UF21+wvpp4Vuz1YZ+XqWpcR5y9sHnUqjyoeEaLeOZwVPVOGolT3/3eFUOBfqzHsXZ0BtlzidtrnaQSL3dZ+rXX16WRZ+9G1pKS7X2fA6P/iwpqNI0hPr++t2HPYi/y7XEU+WQmv7eeXTmLLC28SJyY8EDJ/zHrw/Ye5i+7J7EH1WAAhPa6lep5Cav4UetNGhkMBXWQqr5SVf8CfZby27G3W/5ORE4chHN0kj5LSVU3RDH9ewrKZaSqtrzJapkwpUIrWB3xfGtlxB5UTMO8X6p6g6pep6pjyBRU/NoKHzT7Y1W9OtrvXFU9kKwvIJ7VwbeJJ5olWFDvVtWvFDaNK7Er001kHlQrKw1VLbsf3qjLUrfBhJc/nz+QhY5i9lbV36vqC2KrTlXXq6p3UsfCxL1OP36rct+vqg1vDI2IO/NbcRvZYOB2uZq8Aga7bz73ndediZgif0GYNuip1Hg+gaIS8eiCPzuvd8VBzkViwe/jborHfgwzRqYDD6nql4CfhP/iKEad++reckOfh1oHvajqFdHq+0rKWWQGWf2IjzuefIgPTCH52L77KR9KUPQ83Tt9CXZfLyUfio+ZFh2/joKCTPGVKaj4WVTN3VcWgm3FR9rcHhicJIniVCy+/lxscFjxBXy9RlXcNk4mKPOEmvFyslmrY8YBT6hl01WxEWvkxYrsAqjqRYXulfmx1xAEU5PzebilaqaDjeTHyJRRnIUcMg9qCpbdVpyypQ7FEGnufgTvx73dD0Tbezx9YlXdLDmOs5LQEV6hNOvi1nhtBaWq+6tqvxqxqh6vqp8vrF5D1m+4Y8ism4d1rD8T65M5mJJ3GVVQVCKe3r0qlEGxfpNWQ05eT+ZFedvLeQbByPM0cRf2fg/jsHsdBbUlHLOYTFLFfWFZ2iYCO5NN4uvH3YIpqFyShKruCLwWOC7IkDIvaCIlCioc+8Vh3fSKfc/GDMkHtXy29hhXUN4uyhTUUWRvPmgwXAP9UVB1xvg10N8XZ9VCVS8XkWNbb9lVlmBJF6cW1pc9vFqEsFxZ2mQr7wkqPChVvTGMZatSUFeH7VRE9lHVOyX/DpYqWpWn1f9lHtRiVX1CRDZhXlSdUEyRooJ6mMaQoXd8LyNrfC8H9lTVuoI3ZgUDeO4RW7HntEv41BGkg018/XFHejwucANmnbd7PMg8mbh+3E82k3bpMw8hZA8rbgx1umxmhThJo28bVV0vIldhIbI6Ydh2DY17gX8pMUj3IBPYczBPNBbSa8le4ZKbLDn01z4WvmvJmFRXUD7v4bJo36tEZBHlwyac29RmdWmFtxFX8mWDeuMJXn+E1eXiPVxH+++NihVUnecGDMH7oFT19tZbdZXFWKdk0aXvj1CtIh4nUUfgj6A626vUqFDVGwhZgVHsv9WL6z5GlgRRReUbhwNFBbWzZunca6i2/FpRVFBl/Rl9ry9Q1fuxju7F4V70h5XYuJU6ir0ZxeSXutPsDCZVodE4TP1utfTjZvjEwDkFpZa5JZpNagsmWD0zte4z30B+1msn7s8Es/pdmf44lKGO8mlLQYVkjR+W/BWH8g7HkoXi57oFaytTaP95+6TONwCzSp7JWvKzoRd5bc3z+HEfLfwuJXTXXKCqvyn89Tjl02g1O5Yrx9+Tf5t0U7bHFxYWWUJ5mGMwFdR4rKHV9aCg2iWu9Ho1y6xzXoaNMK/a/uwQ329Gq76YnILS/IC7tVi8fjAU1GlkqfqOKygPiQwkyQAsMUXbCAdV8Xss3fy48LvbHpQrqPND2NaFbZ0XG7qn1EqRgdUV74OqZSSo6rgKIzanoFR1uVoSFhSmL2vB9a03qYXfT+83K3oBrqB8tpdWxPOWuge1scRQJhy3mQdVN1rgSmKgUYKl1Jstv4wVqnpH682Mjob4hgk/onHEPQyugvK3Rk6lvoKq8qCqQnwNqOrdNE4A2S7/ReO0/DFxYywqyLVUZx+1whvdSjABRWPYc72IzIiss4FSFXNvl+eFpU811A0FFU+l5Vl7Ht57Djbm74/FnUoom8apimWY0XsO/ewUj7gfKo2O86jZp6E2RrNVJKEOXs+vw8blxe34dqxP7hCy+TKbMQvzsj9GNjl0s75KDx9W/V+3/vt2a7BujarM11YsoX+vVnoD+ZlsWrLdKyhVfYDy7JdBU1Ah7rwZG2tySYvNvRKWKai303w6k0En9OXc1GQTL++5NHpbLtTaViBRrH5hi+36+3bSMlqNI6mFe2Ai4s+wmx7UcrKZMd4PfeHgukK7HQXlA4BHtkgEqkNZSBcAtfFKXxzg8dsi1MfXYAL2VPIe1EGYwtmMzejQ9NpVdUmYOQKszk3ExmVW7ef3PpZJP8FCgy/Q+uNN+xSUqj6v6ZbNWUr28snT6+6kqt9svVWeFOIr51Rs9oZO0OqeV3pQqvpZVS1Lp+4m67BxJP9e0lDciu+vsn8hNudepzkZuLmNhl4Xt/K72Qe1AlNQt9Tobyojngy2Fa40+hv+ibmNwkwU3UZVz1dVf9ng5mj9pkJYuJUHBVmdeBRTNJ8le8tCkXgiaYCPYm+4bdfw8XDpQOvjaizMulztRbUdIymoElT1e4NsmUMWmmsVovPK3a+0zKFGVVeTDfgtUmb5tXPsS9pM7+8XqvoTVT249ZZtH3czNuXPYIaL6xIrqFfQ/7Yep5E3RVW9zrbTR1R1LNVsRvLhwtVhWcfbdIW2mMZ5QIvk2pGqfkBVb6TN0KWqLqVxVpH+sB4bo1XWNTKoJAU1dOxQWFYxFQbFyhkyQv9QGd6wuhHi6glU9aeDkLzRn/N6/ZmNhfKPbLJ5s+OsUXvvWV0uIHtFxLZMmQH7X2HZMnMwqhMryYZPVGW3VbWj/sxDOhhJIxuw/tX+ZsvWZrvvg+oCrRRUfzofe5W12ASvHfeCEpUUJwvuKKp6ylCer0vspNlkujEe0m4ntd1fCLpYs3dxFSmbVQUsGeXqNs41WHhfVnH2kkEneVBDTyur41aGSXivBmvoR4JEYtA4FXslTWIQqVBOkCmQ2gNRyaYTajbLfWmiitqUXf2dHmsgeMi64207KaihZZOqvq/ZBqr6ebXpUbYF1tKd/pcEfX2pFzB46fOJ5vTHg/L+p2b7PAE9FfZfX1h2jKSghpbtLdSVFFRvcAPtT/mTaB/vI6r1Mj7gfwF/X16zuf96TU57m+5PVmhbpD6ooSUpqEQ3OJWBT9+UaM0S4H/qJsWo6jsAROS15F9QWGQwBhoPJkMW4ksKamjZ3hTUGpKC6johNNQr4aFtljAW6t392O+8Fpv0moJKIb5tlIFOOzTcSB5UIjFwek1OJw9qG+S5tDkP1TbAWlIWXyIxUG6gt8YSeh9b6oPaVlDVy7pdhi7wN6Ds1QWJRKImqnox5e/M6hY+QLjjCkq6MMh9SBGR+ap6eLfLkUgkEtsKIjJuEN8iUEmvxTYrEZEPichDIvLX8KnzBslEIpFIDDJDoZxg+IX4/ldVP9XtQiQSiUSi8wwbDyqRSCQS2xfDTUGdISI3i8i3RKRyOiAROV1E5ovIfHqrczGRSCQSNempJAkRuRx7PUCRs7HXUy8FFHth186q+rohLF4ikUgkhpCeUlB1EZG5wC9U9cldLkoikUgkOsSwCfGJyM7Rz5fQfO6qRCKRSAxzhlMW33+LyCFYiO8+4I3dLU4ikUgkOsmwDPElEolEYttn2IT4EolEIrF9kRRUIpFIJHqSpKASiUQi0ZMkBZVIJBKJniQpqEQikUj0JElBJRKJRKInSQoqkUgkEj1JUlCJRCKR6EmSgkokEolET5IUVCKRSCR6kqSgEolEItGTJAWVSCQSiZ6kJxVUeGPuYhFZEK2bJiKXicidYVn5Rt1EIpFIDH96UkEB3wGeV1h3FnCFqs4Drgi/E4lEIrGN0rOv2yi+NVdEbgeOU9VHwssLr1bVfbtYxEQikUh0kF71oMrYSVUfAQjLWVUbisjpIjI/fNKbdxOJRGIYMpwUVG1U9WuqeriqHg5s6HZ5EolEItE+w0lBPRZCe4Tl4i6XJ5FIJBIdZDgpqIuB14TvrwEu6mJZEolEItFhelJBicgPgeuBfUVkkYi8HvgEcIKI3AmcEH4nEolEYhulZ7P4BgsRmR/6ohKJRCIxjOhJDyqRSCQSiaSgEolEItGTJAWVSCQSiZ4kKahEIpFI9CRJQSUSiQEjIqNEZHy3y5HYtkgKKpHoJyLyHhEZ0+1y9AjfBh7udiESeURkhIjs1O1y9JekoBKJfiAiAnwMeFK3y9IjHAZM6XYhEg28CXi024XoL0lBJRL9Y3pYjhvsA4vIaBH5+mAft8OM7HYBEqXsBRaC7XZB+kNSUIlE/5gTlp14ceaOwBviPh0xXtaBcw2Y8PLQ5En2Jv7Whz27Wop+khTUdoyIvF1ETul2OYYprqCmdeDYE8NyFwAReTPwP8BPerTP6+huFyBRiYddd+tqKfpJUlDbN58B/rvbhRimdFJB3RWWLlS+APwnIARLWET+Q0Te04Fz94enAD8H1oS+uZ5ERI4SkQ92uxxDhYg8HQvxPQDs2uXi9IukoAYRETlIRJ7a7XJUISK7lgiQLV0pTJcRkYH2mbiCqnxx5iCwq4hMwRSTs1dYvh9L0ugFdgKuBVYDc7tblKb8P+BD3S7EEHINsD9wCz3mQYnIJH99UjOSghoERORwEZkDXAH8aQDHGS0iX6y57bNE5H/aPMWDwD8U1m1t8xjDHhF5GrB5gIfZBVgQlp1iV+DphXX/HOrakg6etxQRmSciZZb4dGApVvcPGdpStcWabpxURBaLyL9149yBBfSYgiIMSxCRNzXbKCmoASIiY4GbgC8y8Lf37gycXnPbtwLvrHtgEZkcvhY79YdcQQUBW1w3WUReXWPfw0VkvwEW4YZwrNpelIhMFJGT/TvwDOASBqCgROQ5InKCiBwnIjNLynQOcHL0ezPwr8BHgcfC9vuJyIT+lqFN7gCuLlk/HXgcS2cu9ShF5AIROadzRauFhLK0zLwM9VFDAggiMn0AmXAzsVcEDRkisk/0s5aCEpGfBI99KPB+1i812ygpqIHz4rAcD8yI/wiZV+1kec0ARnUoJfTJYVm0gLeGwXyv78A5q3ioRMm8EPhuuGejmvRl3ARcNUjlmNx6kz6OAi4QkROwUNaTsH6XXJhCRPYWkdnFnUVkZMk1XYYpuaswZQRZ+roTv5zzkrBcCjwSvi+kDUOlv4jIoeHr3pGx47iCWoIJ4zJOBv65Q8Wriw9YnVRj26PC0tvLUuANAzj3UBkRiMjBwOeiVQvJQtJV+4wFXk4LD1hEnjHgAhrLo2NW9ltulwpKRPYVkbY7t4PwVBHZPVo9HrgdOAZYBGyI0oNfCixr4xSu4HIWnoisF5FXRb/Htlt24JlhWVRQW4B5wDf6ccyBMB1ARF4oIt8CPDvtAGAT8OYm+w507NEiQGlvYKkbDR8IyzXASjJL0LkL+GnJ/mspf8lmMSvPhed/kQnJv4flFZiQPAKI68DKZgUfJF4YfT/SvwThsid2T5dQMNIKNA2xicjc/hevFlPDsvjMyvD7O0NE/JmsG8C5JwCIyEIRuXYAx6nDn4DnYX1PGzFlUKqUReSWoHTmhVX7Vh00POs/RPcj/u/VIvJ+ERlR8t9IESn2ly6Pvr+u6pzbpYICbgN+3I/93HL8x2jdGCy0MQkTTrEVWfmwK/DGXbS2xpLvfF5PEBihX6BOmGlvYD6NAmQrobyxJRNCRy1DYNLmNCpRBXYh8XbgNGCP8NsV8WFNDjPQVOtJmECdKiKXiMjna+zjyswtyC9gArfMMj6wJOw2Gnh3kyQaD7WOBW5R1fcDfwnr5ofluFDu47H6cG5VYUVklgxuSvra6HssN+YBG1X1AZp7UGCeZymhrPfWCb8V9quMUIjINBF5frTK2++k8P8IERldsbvfu5lkdbVq2zp4fdgPOKaZ1zAIeBv7AFZnquopmEH4PDLD9UD/Q0SmisiJ0bZ+jJyBLCJPAr4LfAS4oOQcs4H3FOTJFuAtwL8Bz6q6kO1VQYE9mFqIyA6hQrnX9eXIixpDFm55FFhMFodvJ4QEWeOOB2h6g62aruQO4NKSMo8Xkfj5TscUc5mC8jDV6LDvZ7GwQNOOXRE5Ii6XiIwRkWeG7+5tFsOVfm2/icoFppD+AOxTWF/Gpmblisqzu4jsVVgnmMBZhCmdk4DX1jhc/CwPUtWPYEK7zxoPQnYzZqg8NVofC92PRuWI8VdbjyP0ZarqJqzv4GLgHcAPsGf9OPYcfxqOd0RJeR8jH+YZKC701pI3lvbG6hXAKiJLPdSBF0YhwY1lBw7K3Ptva4fCRGQdsMwFn4icLCLHRpu8FfhVZCxMITMmwTrq/x5tj4jsKCJ7kAnhmVGZSifDFZFLRWRq2X8RkwrPvJmnWYmI/EFEmhlvMbepvTJ9Dc29xrMx73IlkYICziRrp0THKN6HO6PvZYPJXR7G1zwe80hvo0nm5/asoFqmOEKfcNmCpWzGQvMjwXNxD4qwXEJBQbVhFfoDjCuAN6Yya/iGsCyrfIvJh+1mYEqnaOFuwcaxQNYoXxuWrUJgryn8filZJ7p7VsXz5WZHIOu8fTrwa7JQQ4MlHnlfdUMtPwDuLqwbhymRxWTPs07IJ74Xq8JyLTAhEjzeF3M7WTo4ZPcCsusthphjD6ov2UZVF6nxv6r6SBA4j2PJLuuBJ4B/iRVxZKn2K3NLRI4tCbdNA76OhY++GnnOuwEPhe85hY0lkFwEePJLlRCPQ0Z1noXj7eqIoIQuIK+Uvc18JiynhLL6Of6FzCByLgHui/bdiyYKKjz7E4DlLUKU+wL/Ef3evWrDFjyDzItvQERchvwRa+9g7WVcwWAtshtwHUFBhbD7cwvb+HMq3odWGbGe2Rwn0EwI5WqqPNtWUCLyr+3u00uIyCta/K+S78A/PiyPAc6I1r8Gs8I/QRZbX4QJPheuHn5o5g0gIqeKyNewcRqQtyK9EZZZb265qojsU3ChJwCnRf1hzRSUW50rwrWvD78/LiLPblL0N4fyez1aF34LmVVUDAFOIJv1eiuZ0HoMuAdTUHeVlBPsPir1Q3wLQ3kOFpHPhnJOwkJNd4ZzLQ9FbhW+mQysCN9XA6jq5nANvu8MrDP9HmCvSIjH1/KkcH8WFI6vIjId+F6N69uI3bd1ZPfXPdfpZPWtTjIAYb+XiogbHL8HrpR8ssc0TNDsHX4/NVzHudH51pKvu64gv4SFK6v6feO6nfOgROSaGqHm68ja4KEi8tbwfQ+sviwLZZ2MKahfi8hnMK+wOA7w4LAciw1wPTAqX5mhGXvWOU9WRKaIDQW5L6yKM9b2b3FNDUT3oTJUismon6nq0cGYQVW3Ym262etQ9sXq5ASx/vnTiKIAgSoPamH8IzIki10A8ffxWH1ZTX8UlIgcUPI5EHhj1T7DhD4FJSK5zrnoxsZ9OruQhV/2Bv6PxnmtNmJx3K+R96Bc+OYapoh8XER+KjaFDcD5WDjNK3tcAbxRHCIiHypYQX0KCrPa3xaOL1gY7E/AUeH3zlg4cHK0DZiQi693IfmBoaVzeBVCZ17BvLFPwWZRBos/x0wg30H65bD8OyZkxgF/JdxDERkrIqeGbXbGFMvEEE5s5eG5oj0SC/fMIlNQt2MZmIopzKIlXWRH7P5BXkCsBRaIjefw8NsSTLC5Zz0R+B1wUDjfBDJv2bNAR2MZVLvTOnV9I/aM1mH3iuh4S4F/D9/bSab5KvCd6PeeWMakMwF7Pq8My1+RGWwfDsuigtoduDx8/zvNFZTXiQUSBnCGyMPTy/YrCZFC5oV+NiznYB7cxPDZTNZmTsMUUPFYE7F6PAZrPwfSPMQXewVa+O8ULMOymDjwTTJF2A7elpopmqOBb5WsbxXm2w8zwO4l6w8GQERcBrjBU1TU47E+KD9PXAfiabDi5xh7UJWGVDMP6o/YzX1X9HlnsfBDjYg8T0RuF5G7ROSsfhxiffT9m8GScjwkNi6c6+PAp7F7AVlDKlowoqq/DRZ10YPaTKMHdRYWq/2YlHdkxxXJK8OrgA8W/nMB6Mdwz28s1ljuwIT63lh8+f5of68UQuPYlTjzsCFWHhRDHDorKtZDAVcqO4V9JouIkllOLphvD8uHyazgC7CQxGjsPp0vIgeEa7kfy6jbAPwtKtOuIvKzQlH93nkywT8AF2LP73eY4vod5vk2NF4R2U2y9GpX8O45OWuwlPNPh2vdgtWRfcIxvM9rtar+nayP8jbgcKx/6ZthGw871/GgAFaq6texWSV2FJH3hfWzsXvcjoJaWrIuzvgcB6xX1T9goVOw+raFrB+nKAR3wp7vjVgG4sQKb2g85jX/Lvx2j94F2nSxDvvzC/sUuca/hPu+azj/ZEz5L1DVM7GQ3FTMMHRlFLMRu3d3YG34sibnjNtOn8EkIh/GlD7kjbQTgd+SDwHXxe9ts/6ug4CbS9avo3mq+TGYgsr1IwbuCV6VG07F+zCN6jpwYVh+g8w4non1Od9asn2OZgpqIfAuVT0t/hAJhaEmeDhfAp6PJTm8MgiudvD4vlvMb4/+K05f85/Yw3IXdkfsIbog9ZBPnAhQ9KDupjrEN4osFPZgKNP3C9sXrZXJmDCfEZ3fBdvUaLkibDcHsxZ/RT4W7YpnOo2C7BGsEZ9JIdQmluK+Ilq1EJgsIvPIKm7sARQb1R6Y8PQKfW9YbiLLFLshlHU8WUO+BRM4cbJIXO7XAS8pXEfx3h2PjQdbraresbuV0EikcbbwHwB/FpF/wFK+76URrwtelo3Y/ZkXrZ8UbbcYeEEox10hDHMJdp9ckLUKN/YpqLBcjtVNDzHtgoWyKhWUiBwhYWC0iPyIEHIKUZJ4O58eK+4bc29nC6CRwi56UFOAFap6pKqeH8pbJlxnYs/bjcdXi8324Qrq1nBtp0ZRjrIEpF9G37didef2UI4TsdAlZHMd3kt5htsTmNJaT2ZAQbmCirMIY2POhyM8irXzLcAXVPVSrK237IMSkT+KyJHRKj9/qTwRke9idWhRyd/XE0WPwvYut14alrdgCqpstpATyWTlOUEOEIzISWR1okrhrCJ7ZrOBRar6MPbcx1SFcZspqBPICyIAVPUfS7YdKp6GNep7QobTj4AXtXkMb0z3Y6GQe0TkuSFW6p3v3wxLn07GwwK7Yg1uYziOhzZigbIYmBka9UwsJNXn2hbCCfeRVQ4JQvMR8lZZUcjuCaxS1cdV9efkwwczQqXzPp5HMAW1H3BlFIv2ENOtmGCKy69kYbAlwDtE5Duh7OPJx9kPxSreTMza9Ot0BbWQzBpzwfR24Feqeg+WjPF7LGx6HVlo8SFM2I0nLzyOJMuY/Ab2DB0fZzImLP+TLGUdzMv4p/A99oDHhuu/DPipN1qxAbkenvgdWbjoK+SJvc0PYuOUlpMph3GYBxv3U/4jcIGquoJZE8rm/Z1105ldYSzDBOUarC9vHnYPm3liHyMLy/gA2l/Q2Df2IGZdjyVTIC4XhHxEokxBxWO0lgEHichB0Dc7w5Rw3sPInv8/YUZKHBLyTFXP4HRh91Gy+3ZRtP17MQ/1gbDt8WQK7MGoPH0CNWqbk7H7uQHrT3QOkkC0bjImh75EUFAVYfiZhBB8KNPufh+KBM/9p1h9f070l8uCU6V8yqlXg1kMJf9dTXnC0mpVvRBrK3/A2sYemAyJFeF+2PO8GbuvPoTGk2SuwDL+VmMZi/sHTwms+2IVmYfZVy9CWYv1po9KBaWqq1R1C4DUG2czFOxCVrnAGntD2UTkdBGZLyJl434mAG8KCu77mPfxWywMNJUg9MTSRv1B/1/YdhRZ41xDpghi7e8hnHnYjV+IhSjGR5aocy/ZhJ8+3qA4lqSooH5PFsrzDlDnmWQNeCTWHzINa0SxMJyI3ZcHyKds/wWzznfGhOwvQhkPEesw/wmZFQqm4B4nS9n3cu+GVdYfYJ7JYWSe99MwZYSqnqeqK1X15ar6M0w4vitSpHPIW63PxizShaEssSJ3RfikYGWfFn4/EZY/JKsrRQU1L/rtXsylNPYdLFDV4txhj0fffxyswriPbQI2PsSP+yOsvzKeS8+V1wvCspWCGgs5QbQMEya7YRa/K6hmIb7bS9Z9uWQdWNn70t/JxmdNJq+g1gNjIy9nClnGo5fzCrK6sJRsbsiJNPbh7E0jO4jIjVi9nq+qH1DVq7GkpTsw4QnwXVX9E5nlPpHwXFyuYdGN2OKfHF3jy7C24N7IAZgx92csNEi0zyrsnpQlp3hdWBu1VZcRf5OSQa9YPS9L1x6P3b/LgeNCP2xcV35LfoxmzHIa+/LGEYxyVf1BKN8qzLtboqpufL0fi/TsQei3I7tnHwamq+q9qvp8MkV0a7hOVPUbWN14fzByi4bLAirqat0svhukfu59JynrGG2wFlT1a6p6uKoeTmNsfTLZjVtD5lG9CHuAL8Gst8MwIb5nsPY9pTvO5HIFVQzxzcSs0kuw+PtJmMA4j3wmj4eM3qCqt4bvfX1YIvIOTFmUhZZasTWUdSr5CrEG89reht2bi7GKDRb6GIvdkztVdQk2Rc2TMM/FBSjQN05nCZlgcwW1K3nrNLYCdyALseRQ1fWq+qnwcy+skz6O3+8JXK+qB2BKbqeC1QtW2d9DpjheBsxW1bjPzBXUWZiBECvpk8TGwZSVr2wcTyyg7wvLu7GMzLvJwiV+b34elnFdjgfB1qHYmBdh9/hYLHQ6gtYKahn0hWicS8kSDeLxQR4G9vFZv8UyOGcTXX8k4PxZxIZR3znDeV3AxUqoOCPGP2HtxdPYvQ0egSnhPuWnqueHdPw/FLgJWgAAIABJREFUAZNU1RWLl8fH3fj2EvoEPby7P9Ze7sHq886YgvoQsKuqLgz7H0JeCbiCWkpmDJcNSejrt1TVJ6L/ywYab6n4fxx2vx/G+veuBO6WbEzmJPIGQYx72TG7EmRhobz7EuScqgo2UPxp4Rjejrw+P5fMEyeUrcywcGNyZwoKSlWPUdXHygpdV0GdCVwqIi8v/iE2EK/TU3c4i8iP7diVTEnU5ftkmU+QVX4wK2EF5ur+B3Cvqt4X/vMH7wrqO1jMFsr7oJ6Mddr+GkvXnIo9TLfsDyZTPLcV9veH/+mwfav7GwtJt4wVqwRTaFRQX8RCuEtV9RVYn96LsT43yAb4gTXKZoMn4zCwhywOxzxRV1BxqGAN7c3EHYdBdlXVP0KfceEZcZAXCk8i85yWl1R+TxP/pKpeST4U9mWymRtiqjqYXdGcrKouwDeq6hexa/U5EFeF/1xQxeWNpwA6B2g1L2Ixxu+hziVk4elWCioeiEoo2xbMa0ZV4/s+nUw4OisxBVUck7aMzFIvC/E5Pq+dRwNuIu95XobVybvJlGasGPanQhiHuuGUKqiINWQWP5hn7kJ7ffDwXUb4/nHEpExBTQ7lfi7hnlWE3cCiK8VMVz/+ZvIRIr+GR7F7PxWTgR8NfThzqE5B73suIvKkkLD0QswjjJmNhUPjZ/EQ9pzWYR7TQ9G1LiKfNbgCy2Z2zgxL7/NtUFDNqKWgVPX7mBfweRE5W2wyz9NE5FZMiH6/znEGgZuAeSKyZ7D8TsE8gNqo6s8K1vRvo++TMU/hIszyvj76L6egVPWDqrocEyZu9aOqa7EGNQtz69dF+26MtruZTEHFQn4JMCvyDPYhLxjKOBRLh91BVb3BbyVTUN6IIO9RLg1lUVW9SFUfxDIWr462KTv3I9H3udGxjsBCHbtggs7HOMQK4K4mjbWMfTGFenokKJzirB0uZEaQCfFYmB+LeY7FmTc8jLoEe0YLKUwjpKqPUM7/Aqeo6k9K/luHPb9rsIk4nSdjM0M4LlD/DJyjqmVpwjG5QeaRQL6bzPNZhU08vHuFR+jX/BxMED7PD1ey7UwKA4ixUPv+NNaPNdhUPvtjgi5WSi70HsbuG9iwlfmq+jTMEv9FOJ9HGu4myClVjcOpB1DtLcTECqrMU11NXgbcTZgpnsboi19rfI+qPKjFqnoZrXkN+fYEmafzbeAUEXGv2xXUY5giuRszgDdj0YC5VCuopWRtxZXFkTSGej0RIg6t34Z5daOCzPse+UzlWJkV688NAKp6LiZXTyabtaIltQfqqur1mNX9Huxi34y5v/uqalXselAJrvEZWIVaiMX8b2m+V0uujL7fG6zga7FO1k9G/xU9KC/Tt0IIMGYxVlm8QdwXlpuxDndPsXYFFT8sD/F5mGQ6VoHHYvO/NaCqt6vqrQXBr6Gsh2ANx88RZ2HGDd6PdbSqxm/ZdasxDm/FXuuZwHHRtXiq8F2YsJqHzbkFJtSKFlsdLlZLpy4ym8zbmBwdewdMSMwnej+Xql6jqp9T1V8XjuPKYwTmFe+JxfpboqrXq2rZ/GNg925P4FZVjcNRt4TwqeP15AWq2soYAQvllL3aZUxoIzMwYb8V867KJq91BfUy4LwQtoNyBfVKGj2oW8nS/WOegvXR/A7rS3sg+s9DqS4U3xuWewCo6nWq+k+qGs/WfjflA2RfSD0FtQ4zkKZQ7kEV1/2ULFO0SkGNDrkSPvB7Ddn0U5Dve5vbonz7Qd+8gXsGb8rDwt8JyxcFD8mfwUIsIeJoLCQ5hzCFFtX35GFgvNhAbucp5Pv0CfXy42Sz67vXP5ls4G4c5ZlG3ggpzqwf/3ctZiQOrgclIjuJyCew0Ne14bMRuErznfQdR1V/par7qOreqjoY75eJH5B3oqqqflxVY+vCb2hDZmMJS8grKA/BbMIe6H3hd5mC8ocfJ0osCP0f7iF8vEYZVpJVjpFkDTG+prJ01CLeKGPvpU9BBeX4OxrDgEvC59Bo3Y9VtT+v9aia2mgsmZCbQTYodBJmpb1QVYsx9gbUUn+3Ys9mKVkfGljIr+k7a5qwFlPQpfH1CBfydWcl/1fKX10xBszTCO3SkxXuAhCRH4uIe48u9I8nC1VDefLELPJJEgQlspDGrD8nniHE+RgWifFn4oZC2awhriTuJd+5/zCZ4mj5GvNgtK3DQrFlczj6PboB+EowELxdFhWU9w2NwhIHHsTq4DpMdkwOiiTue/saeUPXeQsWrXCldjn2nB7BvJhTyYxJ7z9yDyoenH0f+bGpVWHPreF48QDhnSkoqLDte1X194V16yIPdimWMTwSa/ex8bUe6z/2GWhiQ+wKzGA+k0H2oO7GbsKzVfVELBZ8I5Y80e44pF7DK+MXKX8dglPqQVXgDdAVlAv5/TGrxRXhCmz8Tl/MPIQIt2DzhBXL6Nu8l+bMw57VCjIX2y3juGIUPb8yvOyx13R9yXYelrgS+FY4XzG5o53XFXyI7HlUeRXPAa4KWWM7YQkIN2OZYTNor6/rKuw5+LNbhYUHz1DVMyr3as5yrA+t6eS24V6N9j6sVqjqd1W1LLRdlVZ+itis3weTvThvHCbcJpIZTADvI/Pe3fjcFLYrPocnq2pxZpmDCeFFLIW5z4BV1aWq+kuykNDjWAr7sTSyCHh9CJFfRdaNsAdZf2Bd+bU5nL/MO/T/jtIsQ9PbRTHC4H1DyzHPcw4h9Bn671ZgyjROo75QVRsmFFDVL2AZsa6gDiX/8tBrglIQsmzcScAateQkj0rcQzam6svhvyr+SjbLiHu29zXZvgo3op8D/LXopKhl9F2plogSj1uMQ6y1FFTdN4oeFIexwoN+u4jcBvxORF4dhQiGFWpjUepMfb8K63ivI2RdMPq2V2Ad98dgIac+z0VVv12y/wOYhfxDLLzSEIprhqrGWXInk3/tR1wx4nFEVcfaHLrDYgX1SRq9ip8AU1T1EvIv1osps86rzvvhYKHtSbUi9T6uw7D4+ErgYBHZio0re6JivzJehAmb/bHwycpgLAwEF6DFsVMNaH52iv5SVFB/xMJsT8VC40uAfUTkk2QKai6RlxPumfdjPBH2fyL8lxN+ZdETVb1ZRK7D+rSqpo9yI+9xtX7PBsKxvxW+Pyta/wRYSIwsEaYV6yjPlgPrC8zVZVVdHQZtF41Rl5cPkkUGppB5lt4PVTeEtYx8f+LG6Bxx25yH9QN9kaz/yI3aW8n6WVu96PSvZEk0t2GK7YHqzStxBXUoNUPhgTh5ZfAUVEkfi68/V0Tuxsa7lL7qeRtiKfCeCiusSM6DUtXzQ0fnSuDMGmHRB7FxUd/DFJSHm66hOqRSitp7euJK6BVjdpsC2L2hZ2mWThyf563FHVRVozGNzyULwdUiCKNTmmzi83hdTF6JVc1Y0Oxca4G1IuLeYR1PuRU+XqktA6OfHE3jMzlaRA7Hkoumkimwd4fleWFZ9SqXS8J+R1f8X4WHg6vCq6ND+fr9AkC1zvq6FCeEjY+zmJJyqo3LK+Ly8guY8tyEKSRXUIsxTz5OSmrGMvJj3vrG3VXImbi/53tYtCLuGy6b4igm7n9+H3BRTXlWZCV2jXOoGDJSQSxvakUL6npQlajq5ZJ/B8s2SRCWn2q5oeEeVPxA/PtttMYVSvyeHVR1AdmrMfqLK6h23vR7EeYhnamq7b5u/bXY7Bt1MpraxT2oKeTHXvw7/XzVhKpuEZFRbXpfVXyP+lb+gNCQfl/CzZiVO53G6YF+jmWRlSooVX05gIjUSdyI+RMWnqsyxNp+m/UA+Rj9fP9SAVcgngX8KOZJrI/WvxsT2nfSmmIb9NT/qmmQppF1D2wG7pfsVT4/VRva0IwFmGe2B3CHqt7UYvsq3DCcQ5YUVYdYHq6p3CpiwAoKrKN8MI6zDeEhkr4HEgTfa6k3busBzMJYFvbtj5VThY/VqR1SUlXPOmz7LaCqel7rrfrNGkzwjCA/CLMqq64Wg6ScCP1EbQ2DGGxUdZPYq1xeQaOCugmYqK0zB9t9Lc+5NA/9fIvyyWk7glqK82BwFtbJfw2Wov1tLHweTzn1Wsybf1vJ/kWKCup92NuJi2HPaZhiOaRknw2FZSVqiVZzxd6iUMfDq2I1mYKqPQ416i44Ti0rvCXb8wsLO8m3gZ1LOg/Pq6lsHsT6B+aTpY8OFo9QeIvoMGYNZnUuH2Qlvq2xBkvJn4n1ebjRsKRmmLctOaGqW1X1jib//0FV39XOMXsBVf2Jqp4dru9GTFCPIFMOZ2GZjXthkzO3wpXN98Pxz9FsJpX4vMsxhTCbgmcW1fvaXq6qfmmA7WUt1ofZn4kSoKb3BElBdQRV3VTIXmmXGzGXfa2qfqDl1m2gNp1Q6SSVw43gBW6kvXDl9sha7C2sV4V66ckHTbMLIyr7cLZzXNDGUYkPY223zj2LFdQLmm0YWKuW3t+sLB1Hs7kyd6VxkHEr/ov8sIamDEqILzG4qM379f5ul2OYsJr8SPZEIy68/hgtX1WxbRmvxzJQE3m8rzkeH3YB9j6zOriCWqaqNzTd0mgWeh4yBRXwMXdl81NWoqptybXkQSWGO2tICqoVuQHjwcP/QZPtc6jq91X1za233O64LixrZaSVsA7LBKw7QLvKK3sR8JmK/zrFSOqXu98kBZUY7iQPqjVuXVf2CyX6hc+R126WI9DXf3Qd1Wn+MfdTMU2Yql6sNih/KLmNIahPKcSXGO4kD6o1nlXa37TiRAmq+qCI7NRumKtwjONbbwXYZNC91Bd4BI3vSxt0koJKDHeSB9UCVV0pIjvXSCdPtInWmOtxkM4z0FlNBhXNv9KkY6QQX2K4kzyoGgwwqzSR6ApJQSWGOwuoNztHIpEYZsi2Pr5RROarvfo9kUgkEsOI5EElEolEoidJCiqRSCQSPUlSUIlEIpHoSZKCSiQSiURPkhRUIpFIJHqSpKASiUQi0ZP0nIISkVeIyC0isjW8rjr+7z0icpeI3C4iJ3arjIlEIpHoPL041dEC4KXYWzn7EJEDgFOwOanmAJeLyD4137uSSCQSiWFGz3lQqrqw4hXyLwJ+pKobVfVe4C7gaUNbukQikUgMFT2noJqwC/YqdGdRWNeAiJwuIvNFZD72SvBEIpFIDDO6EuITkcuB2SV/na2qF1XtVrKudJ4mVf0a8LV+Fi+RSCQSPUBXFJSqPqcfuy0Cdot+7wo8PDglSiQSiUSvMZxCfBcDp4jIGBHZE5gH3NjlMiUSiUSiQ/ScghKRl4jIIuBo4Jci8lsAVb0F+DFwK/Ab4M0pgy+RSCS2Xbb5120kEolEYnjScx5UIpFIJBKQFFQikUgkepSkoBKJRCLRkyQFlUgkEomeJCmoRCKRSPQkSUElEolEoidJCiqRSCQSPUlSUIlEIpHoSZKCSiQSiURPkhRUIpFIJHqSpKASiUQi0ZMkBZVIJBKJnqQnFZSIfEtEFovIgmjdNBG5TETuDMsdu1nGRCKRSHSWnlRQwHeA5xXWnQVcoarzgCvC70QikUhso/Ts6zZEZC7wC1V9cvh9O3Ccqj4iIjsDV6vqvl0sYiKRSCQ6SK96UGXspKqPAITlrKoNReR0EZkfPguqtkskEolE7zKcFFRtVPVrqnq4qh4ObOh2eRKJRCLRPsNJQT0WQnuE5eIulyeRSCQSHWQ4KaiLgdeE768BLupiWRKJRCLRYXpSQYnID4HrgX1FZJGIvB74BHCCiNwJnBB+JxKJRGIbpWez+AYLEZkf+qISiUSHEJEPAa8FjvZkpkRioPSkB5VIJIYdHwT2AI7rcjkS2xBJQSUS/URERorIiG6Xo8eY3u0CJLYdkoJKJPrPzcD53S5EtxGRkdHPaV0rSGKbY2TrTRKJRJEglPcHpNtl6QHca3qC5EElBpHkQSUS/eMDYbmfiOze1ZJ0nynAncDrSQoqMYgkBTXIiMhzRWRit8uR6Dh7Rt+f2qmTiMgdIjK1U8cfJMYD64AVmLJK9BgiMktEhp23nxTU4PNb4N+6XYhExxkH/CR8H9OJEwSBMg/wGVRERFRERnXifANgArAWWA1M6nJZEuU8Bjyz24Vol6SgOsPmbhcg0XHGYUIZggJpRVAwL23jHO6Je1/x5LCc0cYxhoIJmAeVFFQPISJzRGR0tGpsi+2fISKHdrhYbZEUVGfY1O0CJDrOOOAHwA+BmTX3mQP8X9kfInJKSQjGFZErqpmFZa/gIb6koHqLh4APi8hN4XcrufQH4LLOFqk9koIaRCIBs7GrBalARN4oIpd0uxxVBA9j/26XoybuQf2ZFpZpxAiAYohORMZgim58tO5A4G3hZ1FB7dO/IncMD/GtIimoniCqY3sDPpNOnXraU+P6koIaXMaF5ZA8ZBHZQUR2bGOXVwMndao8/SEozXvCz6OAW0Vkpog8rZvlqsE4YD1mjNTtg5pQWDqueMZF6z4HvKWw/eyw/InP7D/UiMg/BoUaE3tQkxv3SoR6PpRJCv4cnh6tG1e2YYEhVVAicrKIVOqhpKAGARE5UUQWYgoA6lvUvv9O/czUejewTESOrrn97HC+XsoyPIIsI849iDOBG7pTnNoMREEV7/+s+P8wO8Wzo/+/LiLTgROjdd1SBL8AXlRY5x7UWmDscJpdQ0TGt95qwOcYDXyVoR3E7Nc1JyxzHnoThmxsbPDyLqBJ8kZSUIPD8cB+wMnhdx1LJeZ+4NJ+nPe4sLyu5vYTsRc4uqIaJSJH9eO8g8niUBYhU+yPh3UdEx4icoaItBUqE5GDROSI8LM/Csqvp+hBzSr8Pzf6bynWF3UYsBfmAS8DJgXr8xu1L2DwKF7vBGCd2szTaykoYBF5mYgsa3VQERndzJruDyLyQFDuZf9NB9YOgWfj5x+S5JZQr48EVkar11BPQXXEuBCRqSJyUGG134/KybyTguonInKviOwWfj4RlvOAnwGntnm4MZjwaZe2PDVMkNxLJhBPxl5r0k383o0DPFzpoazdihuHsOa8gZwwCMEvAG9qc9fvAjeG75UKKmRDHV+yf86DCn1uh5FdtwuQvQAPe94Vlqdgr5lZCfwd6+u5AHh9F8ZJzStke83AFCmUJ0r8lOwam/E48OmBFy/Hbli7BEBEPigizws/9w7LSs9GRAajT21GYdlpLsOGQDwQfp+IhWAHHOILwxzalTsArwA+WljncmiPqp2SguoHodLOBXYJqw4My92BLcDB/bAE/397Zx5tV1El/N+GQELyQiYSpkQCJAhhFCOiog0aFHACW1rQD/0cV3fj0LYjOOHUYLdNqy26pEVsbQQVbRk+cWBUUUbBAAmBkIAJkIHMIxCyvz927Vd1zj3nDu/lJTd59VvrrXvfme45dapqj1W1a+tDGpjY7oFBSxyBdSReUbV0zP+KyDs7uYGgHfeng/QOYBSxo/CZGaoq7knAQ/34PYiCr1NX58PQW5ajMWu0yoK6Abgx3RDcXqeWfvcFwF00WlYHAPeE7+/EOhx/L+swbXgkNrYFiu7APhOE/zsqYkxlPgPcnfw/nrjCdUFApWnOInJGi+v2AGUtu88kz5EOHn4DVu4QBVRlOwqu8NVbIB7qFtTWyr5cGT5XA1NV9TeYMtUvCypx3TbMnCI2cfJ0Efm+iEyrOH0Kje3NyyMLqHYRkcOrTP7gDvOO/eXhc1g49lRiZ+Gd9TgR2bmDrLSOBFT43bYFFGZtPYt1bt5wN4druUZ0KtFN2S5XAu/r5IRQxnPCvx5LGUXsMLwj34dGJFzjA/2Ipblrb//QKf+niHykjfOeC5+nY7769ZQEVIgHVr3LFxPL6aelfd5QvQM5ELg3fF8EpOsr+YDYHqwzOR+4UkTe08b9t2Iy8H3gtdDb6fTGJKQ4pmZd8n0CsDR8LydKpO/o8jbuoc9jCEXkBSKyKdnkgskHOu8CHEasV1PC575U4wlFXw/Wbl+USIgC6hMicrOIfKOP12kX74vWqapb4OtpHbdc02K/9xP7V+w7HbgTW+28HKOEagE1CVP69mo83MgCqpGZwOsrtl8IrAjfPxc+d8de2tPA2cC3iR3LnuE6s0TkX9v43U4r/wisw/wstOWK8ED208SK5ufsmRy3PlzvlSLyrqoLicghdX79NjmOKCRSC+q40nFVLgl3FX2j4vh2ORC4FRPwpwLvB9p5R664HAd8QlU30WhB9cYDQ0zFz0nL6/7w6RbTweEzdfE9DByvqiuB7yXnpjM2jCK6xM4t3KjIqGANdRJf8XfiHcYNwPXJ/lQDT595PFFAlVPNe4huXETkyy3uYVOL/c34AkUL4JTw6RbzNKyduYDycq/zAJyAxYaPxdp3X4eP9GBjko7FEgI+kCi7WxQR2Q9zBUNoy4FbCIpHE54O16hz4fk9V1k8ad2oUjKqBNRhwM00cX1mAVVNlUY1HBgaAvdHYv7/kVhnv0FVf6aq/6iqH8cKfS/MBQQxXbiOzZhRdEIHiQFjgeWq6n7de7GLjK2pYCMw62kjUUC5hvl8EfHK65rxRcAlNb89C7gi+b/TIPOQcK9Tsc54AyYk9yT6zaE6xpbGC/rq0x+NKSITiY1uff3hvbhA+Ruii2sj1UkSijV4t5q8UX+d2IC9I/f4Y4+I7A68ArhbVW8J21N3mguo8YCq6jIsyFzWfmdg1lCVFVrH5PDpFt0riFYGFJM70rFco4nKWzkGdQTFYP3xVT+cCNLNbd9t4/mvC9+HBsvv0rD7+cnnQ8ARIX78Vqzd1FkWh2KK6SaCEOujYNkNeLC0rZW7s5Jgyb2hySFpRtxzyfc5FBXRKnbHXLV1dcafvardpbIk/V1/N1UCajrmvs4CqkwLzbLKOvBO5QAs0WAV1hB3Iwoi56lwDS/flTRndfi8EfiNiKSdPyKyt4iUrYWxWDaX453cMuDfReTdInJ2sr+HaEF5h+oN8wIsfRhMWEAcVPr3Nfc8SURcA60sSxH5pYh8uGKXd4APYZ3A7cBVmGJwClYe91IvoL4AfI0YZG2JiIwTkWGhTA4Bngj37eW2tPbkiDewI7ABumDl+VIR+UDpWLcE/B73wizvXxDL312arhDtjTXkJxLXDBSFpwuoicSOfyWNiQluNXQS0O7BZhuYICJHhm2PJftT5UmTNjSSKCDLAuoaYnuaT9FdmeJl0le3bXre7RQVGbcMRwC3YYrZDOB3mJVY532Yglm7zxHd6ZWdvIi8t6IOOMOBR0rbTpbiOlrtchBwVZNzU+slVZw2UJMkISInichKrD3cjSngVfj5VbG09Nrl8twb609631GID74I+CWwa53VViugQvzkTSJyaskPfXrdOdsLIvK3VGhqSRDwPBEpS3VvnFOwyrYG0wY/SOzUnRWYxuUvbU6Lyjgv+f4y4C2l/d/FpiFJKQuo1P3Qg5nPhyfbpmCdQ2pBjcY6DQ8aX0J0NXpZfLvmnsdiDRyK2nTKycDHKranFuowiin2s1R1FNaRDwMQkYtE5Kbkd5djml5d7KAXETlTRP4FUxo+A3wTeDsmBFdhbp9fU+yI6+htYKrqFoOX+zdKSo+XSW9MElMeUherxyL2xerUZOBdlBQaVd2cfH8Wq3v7UC8UIAayO5nIdjiWITiD6KpO63ZqQZVdxc3uxZlLvbbs7avjsUIi4kqNcyTWiT6HaenusvTZP24CvoK1u9VUWFAicnTYvpJYT6BeKZoBHFWzbzgxyxHMuj4dax+d4glZ59bsTxOfHk++bwCG1yjm+2FCexcsq7duXKX3ZydVXGdMzXe/j6EU68VIbGjCOuAv1MyC38yC+gG2jMBRwB9ExE39f2hyzvbCWDB/uIjcJCK3isjviB3QzoTKI5ZWuTexo5mGNbRVmCD5BCWTFqvUY7AXej/BZVO+ieCO68Ea+uPl/QlVGssYolvlYGBBImCfDM+YdgYnYB1xakFNAB5IjrmeWIl6ffk1bo0xxOduFnytOnciZimtBFDV87EUbsJYGjBB6uf+I9E15ALq98B7pHW25BSi7z0V4muwdzgdy6RrJxPRy2Zmsi29ZlXs0oXoWExAbcRcxanGPxRzm+6PxTrqBi7OT+59T6I7tkoodGRBiaXFfx6bK/DAZFc6f9s4rNxPC7/dEzRhIZZDMwF1E/WZbC78mqV8S837Tifg9fsYj8UDHwTGhw7VZ7z417B/btX9hmPvxurfeqye7IfV9zoBdSQV1pWIvBdTPDYQ092r4pLt4v3w52v2+7M8gSljQK9is5lqZTJtvzMx5dZuVGSmxCxdb48HE92mjgvOK6gvozTRxIdpoKrHqOriqhOaNe59VPXTqnoecCbwXRE5vsnxW4Vgjs4Rkbki8sk+XsZdI+diHd9Lscy8nmTfkERLOIDY+RyFabs+ASMU/fQQLajhRAFQlXp5L3Ad1onMq9jv7AQNgiK1oBZiHeGrw/8bsMqfCqgxmNWRWlATiAH7D4f79il0UovvPyvuaQjm1/Z7qaNsXRLudSHFTLCFFecNS57ZNVCPvf0B61xaLRY4jpi6nI6rcgtqCuYSamecTg+WoXRa6T6dq8Jn2q7cMhiHvS+3PMpjuWYRY0B31fz+ReFzLdYZuutvI1Zf087Hy6VdF59nb66jeP+ppjwBeFJVfxHuYQTBekoUi94sPolp3jOwZJQfUV/OI7BOtVld+hpRSBN+4+VY5phzNVbG04AlQUNX7N15p+ju2fmULCgRGYv1d0CvwjQVK895VAuhEZjrrcr9dzG2kOP6xG37EczV2JfZQHq9BiLy8uDpSqcv82ueoqr3F09tdPMFgXFismkWIXkkKLyHU7RAf4/1GQcm1zgQU4APxZ63PH5xQ9i2lmgEuLLQlGYCaqhXMFWdj3XQHyWRrlubUGAXYdbNNOBMqc65b0Vdox2DpWh+BXsprtUdiXWgyzDT/Fqie6uKFUQLajHmBryu9CwXYC9tOiYAn2hyPX+R60XEUzx7BVRohM8QXXXDsQ4x1VZHYx1f7mf7AAAdG0lEQVRy2YLySrwmPNNhYivEpu6zvUUkHdvlMbeFWLJIQ5po0jmVJ0adiFlQj1KsoOXZMFyQTsY03WfEUvZTwTybmInVgIi8gqjNPV06dg3RLXQHFndplaAyErhZVVNlwu+l14WTdNYQ65pbUF7+e2IBYl/scAkxkSKdPy3Fy98tqPXJ763FLJrXisgoYgpvuwLK73kDRaGUdmgTiOOdfMaI1L3n9+Za/FhMSNygqldh5V2XZDACayu7SWkcloisEpEJWFspKySfIipTQ7Hkg9VYcsqPw/alWFsYTpzx4nTgf7E24QkQh2Lv6LLSb7hiMI9q6+AgzBvQzOXsdf0sbNqjG+mbgJqICTiw9joF+K9k/+7Aear6l4pzq+JQb8cE1ANYLHox8RldWR0ahJC7SG+hqJQfAfxRVWdhSU697yi0qZ0wD1EqoHotqGY0E1D/TKLtqOoaTHv851YXHUCOAeaq6jxVfQYzJ6ty7lvhjXZ1afuRWEV7Euss3LQ9GDN9FUxgq+p6zGVRlRa7HLNe/CXMojH46yncfi8XpztLjTTtZPYVG/NyAcUY1Ajg01gFcgGVWlCjsMaYWlB7EV2Pa1R1A9YBHUkxaWADZu3NCP+7G+VtWCfYm/UjIm8Wm8DWf2+0W6Ii8jiwAPhhqE+vI6SKq+q1pef0+5yAjQW6ERtLlAqoJyi9fylONHsLURt+DOtIZmKp2X+hmGTwMHCIiBxVEX/02SeGU7T6IHY852EdnnND+PNn8hiUP9d4YKmq3oNlm91CrF91yyL4c68J10jvZR1WB64Nz7MHpgRMEZH311zPn20IFa7dQJ2AGooJ0nEU29FqYjzB64CzHqsPF1bchpftTljav7v07sA63YMpadxBEHsCxAWq+kyI163C6rB7OR4K56dupStDfV9KbCd1AsOVy0cwRebqoMQ5e2DtoydYYH5/qXLmv/s/oe9YDXxRaoZyNGEvLE7ojKf4jsYRXf9l1tM4WNf7uF+p6jlY3do19D8+48ZbMCXRy+9JioJ6HFFBW4gptOmg3oVBKfDxe4T76LuAUtXbVHURgIjsG7Y9p6r/0+qiA8i+WAfnuGurUyZhhXMWxbE038a06euwji8VUIsoWQOq+kqq58Gbj2n+/hKq/PKbiZN//pOq3ohpgm51pf7p4cTA+SlEDSqtiBeHcxeEz3HYYGF/x6PCNdIYyHCim84rrmvnTyTbXAhXLScyF6uQEgTRT7Hg/6fCb24gdlguyK4HUNWHVPVWv5CqptdNO/IlWJkegDVQ7yTXAn9fcn1+nuqJZh/DGtVqVf1o8Hl7h/cM1sDOxGZweC9YoDxRFIYDG1W1EG9MrKWdsDri22eEMhgmIt/HGqq7+IaSjB1S1Xep6t00Cr+UScS0aRcIaYe9geI4l/Xhep+m2kWbchFxouNdge8k+9LAejre6UDMEjgZU9TS3z0rWDxlAeWCtyqzcyqWgfYR4Kti4/p2wzK9wN7dOihk4N5MHDSati/3fPiQhTsxi+l4Gt1KS4iuubrMXn8Gd/G9nmKCw1is/swiuPKDEpkqGuXf9b6kHMtpRQ/2Di7A6v80ikJnEsWhGimTgXKmoZ97JfTW5+XYM3l9cvfvQVif4/NDOr1TXYU2vJzoVTmCKFDLFlS/XHwpt4vNGbatqapA2nCQyPtE5C4RuYtS1pCInIw12v9S1aspWiEjMSHlo5tdczoKM1GrAox3VmybhzVg1zjWANNDMsZOQWMdG34HwnxrQQHYSFGrA6tEPr3POcT3lgooHzy8lDiIcwNRyKYW1G6YhfhYqJBLiIKqB3MZrA8a5ilELdUrc1oO85Nr+5isNxDHfq2iMUOnbLlWsQETUMeEa8zHLLgVSQadd0SpgPKJZst124Owqda2CXob5TqisuKpuncThBVWLmub3O+uFOsSRCHrMZI1xHFT6ewLTm2DVdWFSTbfExXHb8QERno/vdZy2W0Wtk0Liko68HIXVU2HFhxGrBupBeXsh7lae88Pn3tQElAl1yciMiEJwF+CxTH82V5CUUmbRHwvHpB34fQYxQHFXwU+npTXHOD/YlZVWWtfQrQG6jIMXTmchw1R8Ptx3KpfTHSrlydALdd5t9Y6mQ0GwoD7YO24p2eXxFp7HvUCCuIaY85w4FxVvS3Zthwr+30xpcvjTZ4NWxZQ7h1wFhDdfM8n1o9UQP2EYjJOJe0KqE9g43PeXN4hIm8QkVsrzhkIFlKsGBOpiN2o6sWqOl1Vp1NM74T4grzBesW5HPiCqs5KGpJXnvGYu6ZKQH2CRvfdcswa2h97cd6xvRSrYEdjnZN3aOUU52WExhk62pFEYbaM6IbpDRir6lOYsF6A+Y7XYJVrr9AJ7IE1RncBHubXVNU9VdUnjfXgvWvzjxJjW96ZDCcKxN2whjuSmJ6aukpSs95ZRWs2YJrqx7AGNz9cf3bpGDAtf7yI3EZUYsqdjcdJ0k49HTOyDgsIP0lRG68a61Pm+vB3PiZQndSd6h20J0n8DXHiWafdzsqFROpeTjve+cC3wu97h1kVO3kAUypSxc/nELwCy+SFWCdSAbUL9i5eQrFcLscUrtE0WlC9iGXG3g/8XkTcDXsgRasjTZgYE665kjh8wp9/WkjcAEBVL1TVf0vOTccgVQ0J6QnJAlcl258mPrc/36PEVPJUeLqAWpbc82hsDJhT7oe+iCVPVE0b1IxUUVpDVC5cSduH5vFsAETkWBE5nOpkhYWYEnAIjQOMn8KeM41vj6f4fAuI/bT3OxDnkAQrp9o5+Jy2BJSqXobFC74hIp8Sm5funSIyC/Pnl4OKA8Wd2EzK+4cKdQaWtdMJLnz8hbo2fpOqfq7i+NcC08Oo/gYBFayedaVtigmHo7HKko5rGYVlgV1GrGip2xLsZY8PAcbnsJf8MNbx7EoMCs8q/e5O2LQ4U4mC7AFMMN4R4j6uxZxA0TVTxp8pzZoaIzagTrAGdirmZnE3Z1V9WostDZF2vu1YUKlG9vXkPtKy/Dj2PodjbtgXEzuOsuvX3Yepiy7t4N0//wCwe+JG2iAi/4AlzlTet6qeqKp/UdV1qppa1AUBlfymYtPelBW7NxH9/rUklkGqCGxM9h+gqh+lOIC8bhaBYURhPjXExFDVM1X1HaVjU7fkJiwbbhqJgAou0IeJAqVOGTk73P9hWHbf60PyydXEGffTMXjTMUXpRhpT1VvFMlIFsCAoQll6EkXhmknWnde5Rcn+dFiCd9BueYA9/+VEhar8u2uwJJlaASU2F+KdIvKL4DKFOGUZWNsqCygX4lWcTLQ0/4Qp3VWutp9js5AMw4RyyjKsHNLZJiZR7MMeT/aXZ7rvaCB22zNJBA37RMzF9BRWwc4Dnq+q3+rkR/tKaBTvx8bzzAZ+oqoPND+r8TLhc1i4pr+cOvP+NyE+4LQ7V9girPI9HiqjszvmPnwwNOZpqlpuxB7cT2epfphiXOhjZcEYuCNc/x6iC+k1NGZfHUhJwJXwDLGNmGl/AZbGPgkL7quqXhV8zl8J5xxOsUOaQKyUqTBsx4JKXUmriOPEehtTKNeZFH3w3pDL1ohbzOlg0/RdpgJ5JOYmAnN3nospFeXB0q1wAfUXwoDloLzcHL4XOoZQnr9u89onYBZb+ltVvw8W76xL734W62AP0OLsFQVEZHK4Ruo+SjuelJVYR/0h4nIhKT/HXG69nVpIkvE2fj2mfL4k+b2TMWV4JqUViMuuwwrSMTbl4QxQjEOBtb3exSFVdZWqCrE9PUhRQLmlkVpQY7C65Ek8ZQsKQlq9iOwmNm9jj4iclShHLwzXfiM2f5+P5UoFlLvShgfl0dtsFT77jTOEagtqPlZv/53G/m5R2D+xiVvxCaKCmCZQLAH2SdzvF9GCtgSU2IqvF2AN9Nbw9zRmdfRp7qy+oqq/VNWDVPVAVW018WTlJcJnOd2yPFBsKjA8NBjndhq13jpc2/KO9RDMpeECahGAqs5uPJXfYiZ26ka4DnOrrcO0posrzvNOexqWAOLjdT5ItBTdgiprPY6vkdTralHVT2GD/l6DxcLKcYhHMNfYOGK86RxVXZr8XpqW2o4FlaZtb07eQ9kiccvHG95rw7ZJWOzhbCzd2GcQT997lYB6FHtHr0z2TcQ6za+1cd8pG4lLSKTunrLbpGNU9WZVvTfZ5O3wvGSbP9NjJHFAscXjfKFDn2eubkHBnbC6cyLwpxCXdFzRKAuoFZg1eyhxzFHKveE3F2BWRnnmlJXEAP1tgIcWfoQJiYNCLLnZ4PZetJgVWXVOmuI/U1WvUNWy+5WkDl5LUUAdjCnMZQtqObEeN8QXg4K6NOz7LVaOPwD2E5vxfAZWPldiZbob8EySqFMQUDRxqQbWYN4MHyz7NNUCyl2Ej2ID6NcCXwrb7g9K6ZPhPn1VhXLy2uSwbw+iN8STSKZhseSm2aXQvgX1CPYCX6Wqr8Eqzx1Y8kRfxiFtS9LxHs7Oqvq9wkGqc0uNEcxVNoP2cIHgY5UexF7qPliFrhw5HXgMq3i9Wp2qrlDVG4hundqp8VV1tqpuVNXUF+0uLvcDVwooVXW3SnlqpvR+CwImaLCTsFkIHG9EnsHolbRHi9l6dc9Qd0w5TdYFlHfAQ7G6eRGwWFW/papnqKpbcKkF9QvMzeHXAWuUR1KctuaB4MYrDBJtAx93IhSF+meJg6q3FDsBqGo6w4DXkccougOPw+IfYJmRI6lJAAnvdiYWM1tW2u31oFwXF2JCeaaq/qq075tYfMsHG1+qqj8pHfNHonX/HDFWuADr0P8Om8NtDTHLry0q2jRY3faxTK1WmN4Nc6PvKSIe2nAB3xs7Jsz0opbQs3sbVt6hyffTsWy7GdjzzsHqbereg+I7G0FrAeXK4jFYfdyECZCygHIhfoeq/k5VRwJuDHifsSw843hgbckbMBNTKj6NxcO977gbG5pwH+0NjG9bQB0RfNLun1ZV/TDm2rlFRF7T/PSuwitK7xpG7VqBJU2+FavDOWnFVKwTn0xxLEP5dzZgFd6DwWls7DMV122Gz4Dhrq+14brDS67HMgUBUXruhnE6Qat7L5auvJi4Uq83ik3Y7CTNUqnLHExjh9FKQPlvQnXcpfd8Vf29Wjo4RHfYvcSsRX/OjhZxTPCO9SKNmYeubPy2j9eso2qhOX+/f6VYPmnywRvDPZWn60q5D0vRLo+vWVX6dB7E3ltVAtMHVPVh7B31po6XjvmFqnqHvZk4hsjjRc4Eql1nVVxH/Vx5SzAX9sYaAZbe20ZMkO0PvFVs2Rm3QpZhLjtf0NKn8mrWztwVliow7ro9HitzH+M2iqIykCZL3I7FZFtaUNj7n41ZPsdRek+quhxrq39Otm1UVUn6HQ8VPI9GRdfDLvthAswnCL6HDgcnt5skUTkNj6p+B/PX/rCTH93G+GDIduIg/eHLNGrJPrr7NK0fjOncTZyTLY27fCn4w9vCffvEhtyOgHgFzQdkV14jdLyXqepealMRQXHtoo7KXFXnqGo6pumzNK7b5CuFph2wd9ZVHUPdzAq3Y5r9Q5hg+jXmLvuNFhMf2iZpzC0HJG4Bqtqyv6cFFMvHBfdqinMx1nEf1pGW3YBuZZe9AfPCvroBo2Cd6x60ro/PYe5VF6qpQCq7lmpR1VO0enYFiM91ds3+MulzHW6X12eJLr6RWJJFJ4svph6LVNlYTRRQD1NULq7GQgU+q827aZ7BtxKr/4cTQxCPqGqDsqyqdbPOOz7V1X6U0tqDsvPWcD/PejmE9tBqUcQC/V5uQ1WvJ64wuz3wY8zfO6Co6vIKLfmC8FkVqC1zJzHQ3+l6S2VGEWcVL7tpGgiWRTNh0okVtBZrVDvTz45aVb8Y6lv5+iMpxrj8/srr5ryQmiy54Mo4M1iKc7AZS84PLu3+sCdhUckBpkoYuIBcTlFAefxkDe3FVD1+Vray3LIpW/MuRJoJKKdVXboneGz8WoWxYy0sv3bZOVzr5+0crMUkhKOJCqS7+MbS3rOnlK19n+F/CFZGvixMrwWiNoXU3qXzaifzDmU1F4sn+Tvr6yrBLjSrUtEhjiEtezwGJouvGao6p/VR3YHaVCNb2v/f7m+7ptaO1pdq7dfUHtXe765OtJhnKE6g2gk+1uRHHZzTu3ZRB27JTliJdbhHYLHRiQT3aVkLVNU/q+pDDVdoZBbtrQ/VElVd0spttIV4N40zsrsmvorqZdh3pjr7r0Aox1fTOJzkh1Qvk9AwP2EFvuZQs7XShmBDDFKWYZ3rFcC/NZzRN5oNwG7FC4kCymdgSFcaaJfdiW667xMTQ1xA+erAVRaSv9uZqtoqccQVVM/A66uActf9NCqygdVWgr6QEJJIuA2zCttatqkvC2Zl+kEH7jkfXPgmtQSLLXkPy6nP2mrG3wI7dRCHA6vIb6PNjKs+sAITuIcCt6rqKhE5nzjItC98k/YyDbuGRPlJ8c6od348EVHi4pQ7YR1GqxWfqYqZhZhQQzmp6oaQKd1KyC9QG2Be95sN1pGqbhKRY1S1bsb3vvBNioN022UuNo5rXbi39aF8J9OGp6KCb6lqb70VkZdhcZs0MesFDWfZEI4RqtrObD8eW9619NkpbkH5tGgNqOpHKradJiLSrrI6aFfU3Q6oTU/dVnSYJOK4z7kvcya2wwosq+spd0uq6rOq+mhfL6iqf1DVma2P7HquwbKoVmGTnLob1F3Hu6vq5Z3ENDukmWXyOMXJddtmCwsn1CaZLa942w4PYIkaaRtdhiUmNaSpt0F5XNwfg/Xt2aNHqWp5iAeq+rk2hRPExB8XTJ0saJniSRIdW4udeFKygOpe3PXRKpmi2xlo99YKLKPqkgH+ne2OELtZhAmolxOny/J4RyfLwXfKfTQf2Lwf1ZPGbi/sg42LG09RsCzHUqnrEjKaUdlW1NZ1mtYkyaMTfGmO/lpQ7uIbQ3M3bb/IAqpL0Zj6PpCdyNagbv2fLYW7thpWLM70Uk542RubyeHFA/WDqnpEM6tEbYqwrTrIf0sS4nJrsDhemuixDBum0G4M8zTAB03XKnNaPaC/Y1T1GuzevL30NczzFCac+xJva5ssoLqbX9M3TaybWNT6kH7hCy4OVIxrRyCNE3lc5z6tmC0h0xHuwixbUNDm+Cy1SW49/tWXuHBf2AtLxugkDb7MYkzRGUmHw0c6ISdJdDGq2nLi0G5HVW8Skc0MkDKkqgtF5BEaJ7XMRJYTZ7W4H8uga7YkQ6Y91pU+ISZHdJIF6grEQCtzQPTOiMglNGZ+tstibJDvwi2U6l9JFlCZrcH76HswtiWqOqX1UYOXMG5nuIiMJ6wr1ix7LtM2LphSC8rjMZ2Ur5+/RYY2tIuq1o6ZaoMnsMzQK7fQ7VSSBVRmwFHVnMDQBajqUhFZRPNZ7DPtUyWgfIb1lvNNJmwM5wyYJTIA+BImfZplpV2ygMpkBhcvonFGiEwfUNVnwnivNNmjY5eZqt4fFnDcblBVFZG9aFzZYIuSBVQmM4hQ1f7MmpCpJp2+53zCel+dEIYDbFeoarMVGbYIWUBlMplM/0jnx5tFdqFuMXKaeSaTyfSPjpaQyLRPtqAymUym75zDACcKDGZkYCaY7h5E5C5Vnb6t7yOTyWQynZFdfJlMJpPpSrKAymQymUxXkgVUJpPJZLqSrhNQInK6iDwgIptFZHpp3zkiMldE5ohIf5fizmQymUwX041ZfPcDbwK+k24UkWnAGdjKqfsA14vIQdvZ9CCZTCaTaZOus6BUdbaqzqnY9UbgClV9WlXnY8stH7N17y6TyWQyW4uuE1BN2BdYkPy/kJplxEXkfSJyl4jcxfa/4F8mk8kMSraJi09ErscWzSrzKVW9qmI7gFRsqxzEpaoXAxf38fYymUwm0wVsEwGlqjP6cNpCYFLy/0RsTZJMJpPJ7IBsTy6+q4EzRGSoiOwPTAXyktWZTCazg9J1AkpEThORhcBLgP8nIr8GUNUHgJ9gMwX/Cjg7Z/BlMpnMjssOPxdfFSJyP2EVy0wDe9DZctWDjVw+9eSyaU4un3qeUtWTyhu7cRzU1mBjnkC2mjy5bnNy+dSTy6Y5uXw6p+tcfJlMJpPJQBZQmUwmk+lSBquAymOk6sll05xcPvXksmlOLp8OGZRJEplMJpPpfgarBZXJZDKZLicLqEwmk8l0JYNKQInISWEtqbki8sltfT/bAhGZJCI3icjssO7Wh8L2sSLyWxF5OHyOCdtFRL4RymymiBy9bZ9g4BGRnUXkHhG5Nvy/v4jcHsrmxyKya9g+NPw/N+yfvC3ve6ARkdEicqWIPBjqz0tyvYmIyIdDm7pfRC4XkWG57vSPQSOgRGRn4CLgZGAacGZYY2qwsQn4iKoeAhwLnB3K4ZPADao6Fbgh/A9WXlPD3/uAb2/9W97qfAiYnfz/FeA/QtmsAN4dtr8bWKGqU4D/CMftyHwd+JWqHgwciZVRrjeAiOwLfBCYrqqHATtj69flutMPBo2AwtaOmquq81T1GeAKbI2pQYWqPqmqfw7f12CdzL5YWfx3OOy/gVPD9zcCP1DjNmC0iOy9lW97qyEiE4HXAt8N/wvwSuDKcEi5bLzMrgReFY7f4RCR3YFXAJcAqOozqrqSXG9ShgC7icgQYDjwJLnu9IvBJKDaXk9qsBDcCi8Abgf2VNUnwYQYMCEcNtjK7WvAx4HN4f9xwEpV3RT+T5+/t2zC/lXh+B2RA4ClwKXB/fldERlBrjcAqOrjwFeBv2KCaRVwN7nu9IvBJKDaXk9qMCAiPcDPgH9S1dXNDq3YtkOWm4i8DliiqnenmysO1Tb27WgMAY4Gvq2qLwDWEd15VQymsiHE3t4I7A/sA4zA3JxlBmPd6TODSUDl9aQCIrILJpwuU9Wfh82L3QUTPpeE7YOp3F4GvEFEHsVcwK/ELKrRwW0DxefvLZuwfxSwfGve8FZkIbBQVW8P/1+JCaxcb4wZwHxVXaqqzwI/B15Krjv9YjAJqDuBqSGrZlcsgHn1Nr6nrU7wc18CzFbVC5NdVwPvCN/fAVyVbH97yMo6FljlLp0dDVU9R1UnqupkrH7cqKpvA24C3hwOK5eNl9mbw/E7pBasqouABSLy/LDpVdjSN4O+3gT+ChwrIsNDG/PyGfR1pz8MqpkkROQUTCPeGfieqn55G9/SVkdEjgN+D9xHjLOci8WhfgI8D2tsp6vq8tDYvgmcBKwH3qmqd231G9/KiMjxwEdV9XUicgBmUY0F7gH+j6o+LSLDgB9icbzlwBmqOm9b3fNAIyJHYckjuwLzgHdiSm6uN4CIfB54C5Ypew/wHizWNOjrTl8ZVAIqk8lkMtsPg8nFl8lkMpntiCygMplMJtOVZAGVyWQyma4kC6hMJpPJdCVZQGUymUymK8kCKpPpQkTkeSKyNkxynMkMSrKAymS6BBF5VERmAKjqX1W1R1Wf29b3lclsK7KAymQymUxXkgVUJtMFiMgPsdkYrgmuvY+LiPo8biJys4h8SUT+GPZfIyLjROQyEVktInemi96JyMFhAcHlYot0/t22ebJMpu9kAZXJdAGqehY2VdDrVbUHmz6ozBnAWdj0OQcCfwIuxabRmQ18DiAsg/Fb4EfY8hdnAt8SkUMH+DEymS1KFlCZzPbDpar6iKquAq4DHlHV68N6Qj/F5nUDeB3wqKpeqqqbwgKVPyNOWprJbBcMaX1IJpPpEhYn3zdU/N8Tvu8HvFhEVib7h2CTk2Yy2w1ZQGUy3cOWmrl5AXCLqp64ha6XyWwTsosvk+keFmNLq/eXa4GDROQsEdkl/L1IRA7ZAtfOZLYaWUBlMt3D+cCng2uuz/EiVV0DvBpLqngCWAR8BRi6JW4yk9la5PWgMplMJtOVZAsqk8lkMl1JFlCZTCaT6UqygMpkMplMV5IFVCaTyWS6kiygMplMJtOVZAGVyWQyma4kC6hMJpPJdCVZQGUymUymK/n/9sc8ag4RTHsAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -1482,7 +1359,7 @@ " data[t, 1] += 0.6*data[t-1, 1] + 0.6*data[t-1,0]\n", " data[t, 2] += 0.5*data[t-1, 2] + 0.6*data[t-1,1]\n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe)" + "tp.plot_timeseries(dataframe); plt.show()" ] }, { @@ -1533,20 +1410,9 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2deZhbVfnHP2dm2rK3wyICEQZpWS8oIPtWEARZBSqCIBH9RRgVXBBTEQ1RkY6KKzBiRBkWBSn7DqUqsu/QyyJTJECgBUqnpXSd5fz+eG+aTCbLTSbr5P08z30yyTk3952Z73nvuee85z3GWouiKIrSHLTU2gBFURSleqjTVxRFaSLU6SuKojQR6vQVRVGaCHX6iqIoTYQ6fUVRlCZCnb6iKEoToU5fURSliaip0zfG7GKM+VSR5+xsjHnIGPOAMWa2MebjlbJPaQxK0ZF33j3GmPeMMedVwi5lbFGqzuqNWvf0TwDWL/KcecBh1tr9gV8B0bJbpTQapegI4KvAOWW2RRm7lKqzuqJmTt8YcwhwBvAjY8xv/J5nrZ1vrV3ivV0FDFTCPqUxKFVHANbaRGWsUsYao9FZvdFWqwtba+8zxrxmrd2vlPONMWsDFwCnldcypZEYrY4UxQ9jSWc1c/rGmI8A8zM+awUeylL9DmvtT9PqjQOuAy601r5YUUOVumY0OlIUv2TTWaNSM6cP7AS46R9YaweBPfOdZIxpAa4GbrbW3lw585QGoSQdKUqRjNBZo2JqlVrZGLMlcBuQsNYeVsR504ArgCe9j+ZYa88sv4VKI1CqjrxzY8DewATAtdZ+rgImKmOA0eis3qiZ01cURVGqT61DNhVFUZQqok5fURSliVCnryiK0kSo01cURWki1OkriqI0Eer0FUVRmgh1+oqiKE2EOn1FUZQmQp2+oihKE6FOX1EUpYlQp68oitJEqNNXFEVpItTpK4qiNBHq9BVFUZoIdfqKoihNhDp9RVGUJkKdvqIoShOhTl9RFKWJUKevKIrSRKjTVxRFaSLU6SuKojQR6vQVRVGaCHX6iqIoTYQ6fUVRlCairdYGNDu9ndMMsCGwGbCp95o81kP+R21Aawk/DwALvOP9tJ8XZPl84ZTumQOV/n2VyuDpaAOG6yepp4mMXkfZ9JPtM9VRnWOstbW2YczS2zltTUY2wMxGuSkwvlY2ZtDH8Ab9FuB6xwtTume+V0PbmhZPR5n6yfa+XnS0iOE3grdJ6chVHdUWdfploLdzWgswGdgZ2MV7/SSwUS3tqgDvAC+Q1oCRm8EHNbVqjODpaCtSGkrq6CO1tKsCvMdwDSV1tLimVjUJ6vSLpLdz2jhge0Y6+HVqaVeNeYORjfjlKd0zl9fUqjrG09F2jNTRurW0q8a8yUgdvaQ6Ki/q9PPQ2zltLWBHUo1yF+99uR+jlyBDKcnjbe/1faAfGVMdAAbTfs58n61sAjLOu6GPo73Mv9MQMAeY5R0PTOmeuazM12gIvOGZbDqaUOZLLSGlnfQjn478aCqfjjI/X7/Mv9MQ8nQ5C7gP0dHSMl+jqVCnn0Zv57R1gQOBw4D9kZ7YaCKcBoF5ZHfoq99P6Z65ZBTXKAu9ndPakAabbLwbIUNWjndsx+ic1CrgYaThzgKemtI9czCPPT8Avgj8Bzh3SvfMRaO4dlXp7Zy2DqKjQ4EDkL9d6yi+MqmjbA599Wd1pKN2cutoe0ano35ER8mbwFP5Jo57O6edA5zqnfODKd0zF47i2mOCpnb6XsTDToiTPwzYBxhX4tf1AU8Dz6S99uZzbI2E15i3ItV4k8cUSnNoi4DZpG4Cr07pnmm9a+2LOPskc4DPTume+VbJv0AF8XS0I+LkDwP2o3QdLWKkjl4ZQzpqJbuOtqY0HS1GdJS8CcxN09EewKNpdV8CDpvSPfONkn+BMUDTOf3ezmkbAIcgjfNQ4KMlfM3bDG+UTwNvJMXWTPR2TpsAbMPIRrxlkV8VJ9VwW4C/Z5S/CRw6pXvmS6Oxt1z0dk5bHziYlI42LeFr5jFSR683sY62ZqSOPl7kV71BqiMxAFyfUf4W4vjdURncwNSl03ddd3PgcCROfT5wo+M4H5byXV4PdTdSvfndAFPEV/yPjJ7XlO6Z75RiSzPhOcUDkRvswUjvzi8WWMrIyfE+4Mgp3TMf9vMlrusGgCOQOPV3EB2VNATi9VB3I9Wb353ihv5eY6SO5pdiSzPR2zmtHdHRwYiWJhf5FUsYOTm+GDhmSvfMf/v5Atd1NwWOBCYhkUc3Oo7TsJFGdeX0XdedBESA05GGPw5YidyxzwVijuMUXPjR2zltU1JO/mCKm6TsBe4G7gEeaqSx5Hqmt3PalqQa7qcpfcJvBXDilO6Zt+Sq4LruROBHwNcZrqMh4IfAZY7j9PuweRNSTv6QIm1+FdHR3YiO+oo4V8lBb+e0DkRHyWODEr9qFXDylO6ZM3NVcF13XeA84EyG68gCPwYu8aOjeqNsTt8YcwEy+fkOcKq1tqhIDdd11wOeAgLAGlmqLANuBb7oOM4Io3s7p20MTANOBPYt4tJLgfsRJ3/PlO6ZrxZjt1I8Xjz6zqRuAvtS3OSeRSblujILXNddB3gC6CC3ju4CPp9DRxuR0tF++H8qXAr8E6/DMKV75lyf5ykl4unoE6SeJvcj+/88Fxb48ZTumT/LLHBddy3gMeTJIpeOZgPHOI4zVKTpNaUsTt8Y4wDnWWtPNMacAbRZay8u5jtc170Z6VHla/xLgXMcx+mG1Y9+xyEN9CD8P24/x/De/KpibFXKixfSuC/wGeDLSNSHH/46pXvmV9I/cF33euRRPF/jXwqc5zjOb73rTwKORXT0afxPKD6PaCjZm1/p8zylAvR2TlsDCcZI6sjvorZrpnTPPCX9A9d1rwaOp7COfuo4zojORz1TLqffCSyz1vYYY7YAuqy1J/o933XdqcDtwNoFKw8OLhvf8+tvmeVLj0Eevf1ESSwE7kUa571TumfO82ubUj16O6edCfy+iFMGgXHJiU/XdfdBnHBhHQ0NLht/1e++ZT784Ciks+Fn7UUfMkmY1FFdRhM1O72d084Auos4xQKtaTraDfgXsJaPc5cDHY7jvFusnbXCV8I1Y8xWSK9msrV2nvfZycAvgT2QMfOkI11M8eO1QWDNgrXsEONu6Zlgli+N+fjOJ5Abyd0UiAlX6oaJRdZfmRHp8iX8PN5by7hbrppgPvzAj46eIqWjJ1RHDcF6RdbP1NEp+B9uHASOAi4v8po1w5fTt9a+aoy5Hfg2EDbG7AVcDBxqrX3TGNNHqsFORHrWvnBdtwX4HD6GZsyCd2iZ90a+R+/ngGuB66Z0z3zNrw1K3XAJcDQSJZNOPzKB24/oZDzwARBKVnBd1yBj8QWHZszC92h5O56v3hxSOtI5nsbjMsSn7JXxeTYdLQHOSFbwdPQF/A/xrYMs/hpbTt+jC5htjLkKuBE4w1r7uFf2IPADoAcZcnmoiO/dwa8dduL62LY2zMCwAJ5XkJju6+olhlspDS/CZXcv3NMikRIrffaut8HnJJ5dbxJ23HhM/7CpnF5Sjv6F4ixX6gkvcdve3pyfQRy9Xx1tSfH5j/Z2XbelUSZ0ixrTN8bci0yUdFlrf5JRdiEyGfcuEr3jKz+G67oHAjfh89G+be4c1nz+QVr6VywBXsSYR40xqzP1BaKxmi9FV6qPN55/B3519NqLrPnsv2lZtXIJ2Jcx5pEMHWnm0CbEG8+/j+KGGvuBDUpdA1JtfPf0jTEtyPjVENLrH4a19gcl2lDU0us15z5D6+AqaGlZF5lP2CO9PBEJvc7wLH3PAS8GojEdix3bFKej3qdpHVgFLWZdMLuRMaSUiIQyM4c+h9wMVEdjm1JSQdgSz6sJxQzvXISsSOsFTgb+UiYbFlPMCtmhgm1uC+84Iv0aiUjoYWQY6kHgiUA0pulaxxaLKWaF7GBBHW3uHYenffZBmo4eAh4PRGNNmTl0DPMBxTvwNqCkjAG1wNfwjjHmdGTMfg9gKnA+sL0tQ7yn67prIKFwvsZj2+a9xlpP3NffsnJ5qQmtQB7HniJ1E3goEI0tGMX3KTXGdd3xiI78hNnRNv911nr83v6WlctGo6MBRupId4VqYFzXbUN0VMz+GC84juNUyKSyU9DpG2MOBq4Dplpr5xhjWpHJ07OttTeXwwjXde9geI8qH8sY6J8+6aZL7yV7pr5SUyG/TKrxPgj8LxCN1U+OCqUg3gK/Y3xWX87g4A8n3XjxHZQv4yPAfxmuo1dVR42F67rXAifgbwRiBXB+Iy3Qyuv0jTHbIsI91Vp7Z9rn3wBOsdZmhkSVhOu6JwIx/N1dVwCTHccZsTAmEQmtwfCMjzsBe1Janpf5pPXggGcD0Zhu+FzHuK57HBJB5ldH2zmOE88sSERCmZlDkzoqJc/LO4h+klp6NhCNNVy+lmbCdd0jkYhAPzpaDnzCcZzeylpVPuoi4Zr3SPU80tDy9dSXA1c4jvN1v9+diIRagG2RyKLkUWzaX5Al148iC3VuDERjTZ2Tux5xXbcVyWC5A/l76suBaxzHCeWpMwxPR9sg0WtJHRWTOTTJMkRHdyA6ipfwHUoF8dYOPY5sX5lPRyuA6x3HObUqhpWJunD6AK7rTkbGR9cl+2NVP/LovLvjOKOahE1EQpuRarz7IP/cYoeFngBuQBpuw9zlxzqu626JOP6J5NbRXGA3x3FGte1eIhLahOE3gZ0pXkdPITq6IRCNvTIae5Ty4aV3fxYJXsmmowEkXfaujRKqmaRunD6A67qfAK5AMtslH62GkEU6dwCdjuOUfcI1EQmtizy+JxvvnvicEPSYg9dwkbC++vmjNiGu6zrIMM82pPLwWKRndjdwRiVypXg62oOUjvaiOB25eB0JYI7qqLa4rrs98FfkyTFdR8uRTVrOcByn4fJ41ZXTh9XLoI9B8l+0Izsm/cZxnOeqZUMiEhqH9P7Th4T8Zux7hdQN4GltuLXB09GRSF6ndiAB/M5xnKerZYOno08wXEcb+zx9LikdPak6qg2ejg4DTkOyv74F/N5xnCdqatgoqDunX48kIiGD7AV7FJJu1e8Edhzptd0IPBKIxhpimbZSGTwdTUZuRscDe+MvQuQNREM3AA+rjpTRoE6/BLw5gWORhrs//sZx5yHpJm4AHtBIIMWbE0jq6AD8hYnOR3R0I/Av1ZFSLOr0R0kiEtoIGY46HtmAw89inwXAP4BLAtHYixU0T2kQEpHQhoiOjkN2gvK7T8Q/gEsD0dicCpqnjCHU6ZeRRCQ0idQQ0KH4W2U8G/gDcLv22hSARCQ0kdQQ0GH42WtCNv24GLhFdaTkQ51+hUhEQusgq4yPQ/IAFVro8QZwKXC5poRQkiQiobWBzyI3gCMprKMEsmtUTFNCKNlQp18FEpHQmsgj+/HIJiGT8lRfCfwNuDgQjVUt0kSpf7wV54cgHYljkKikXKxC9gf4QyAae7IK5ikNgjr9KpOIhMYjk3ffREL48vEw8sh+QyAa083bldV44aDHAGciwQT5eAwZQpwZiMZ08/YmR51+DUlEQp9EnP/J5B//n49sAfenQDT2djVsUxqHRCS0E6KjU8g//v8uoqPLAtGYburepKjTrwMSkdD6wFeBrwMdeaoOADOR3v/DumBHSScRCbUDXwG+Qf78UgNIyOfFwIOqo+ZCnX4dkYiEWpFJ328iY7f5eAZ5ZL9aszYq6Xg6OgwZ+jm0QPXnEB1dpUOIzYE6/TolEQlti/TYvkz+iI25wHnA9bpSU8kkEQltjejoNPJv+P0a8CPg76qjsY06/TonEQmtB5yK9P63yVP1aWB6IBq7ryqGKQ2FlwzuFERH2+ep+hyyS97dOuwzNlGn3yB4eVs+jTyyH0XunC33I85fw/SUEXg6OhDR0dHkTiHybyAciMYeq5ZtSnVQp9+AJCKhLYHvAyFy52u5HjhPc7QruUhEQlsA5wCnI5t7Z+Mm4NxANPZy1QxTKoo6/QYmEQlNAX6G7OeZjUHgciCqoZ5KLhKR0FbAT4GTclQZQvLKnx+IxhJVM0ypCOr0xwCJSGhXYAZwcI4qy4HfAV2BaGxR1QxTGopEJLQzcCG5I35WIJE+MwLR2MKqGaaUFXX6Y4hEJHQw4vx3zVGlD2nUFweisVFtOamMXRKR0IFAF7BbjiqLvPLfB6KxZVUzTCkL6vTHGN4G3tOAC5ANO7JWA84HejQjo5INb8L3OODnwNY5qr0NRIG/qI4aB3X6YxQvN8tXgQjw0RzVXgLODkRjd1XNMKWhSERCbUiM//nApjmqvYLo6PZq2aWUjjr9MY6XmvfbSLTPejmqXQl8OxCN9VXNMKWhSERCayFhntPJnSX2b8BZgWjs/aoZphSNOv0mIREJbQCciyzOGZ+lynzgjEA0dktVDVMaCi9P1HTkBpAtSeC7wNcD0dgNVTVM8Y06/SYjEQltjozDnkr2hTl/R3prupGLkpNEJBRAhnxOI7uOrge+GYjG3q2mXUph1Ok3KYlI6FNI7LWTpVh7a4ovvDDPvwKfyFK8AHmy/IemdKgf1Ok3MYlIaALwQyTXSrYVmdpbUwribQw0HUn8l21D95uQTsT8qhqmZEWdvpLczOUKtLemjIJEJLQjoqNdshQvBM4C/qY6qi25ki0pTUQgGnsWWYgTATJz82+I7LV6QyISyhX6qSgEorE5wJ7I02Nmbv71gauBWxKRUK7QT6UKaE9fGYbXW/sr2Vf19iG9tWu0t6bkIxEJ7QD8Bdg9S/Ei4DvI4kDVUZXRnr4yjLTe2rmM7K21A1cBtyYioc2qbZvSOASisReAfZD1IZmbsU9COhZ3JCKhj1XbtmZHe/pKThKR0PZIb22PLMWLkUVf2ltT8pKIhLZBdLR3luIlwHeBy1VH1UF7+kpOAtHYi0hv7RxG9tYmIr21vyYioWyLdBQFgEA09l9gf2RIJzPR37pADLjaW/WrVBjt6Su+KNBbexI4LhCNvVldq5RGIxEJTUZ0tF+W4meAYwPR2OvVtaq50J6+4osCvbVPAU8mIqFsDVlRVhOIxuYCU5E0DkszindGdHRgte1qJrSnrxRNIhLaFriZkRu1DwDfArp1fFYphLfz282M3Kh9EDgbydevOioz2tNXisbbL3UPIDOVbhtwCRDzVvsqSk4C0VgvEil2c0ZRK/Bb4IpEJLRm1Q0b46jTV0oiEI0tBo5B9lbN5KvAv3QRjlKIQDS2BDge+HGW4lOBBzSss7zo8I4yahKR0LFITv51MormA8cHorGHq2+V0mgkIqGjgGuQiJ503gU+H4jGHqi+VWMPdfpKWfBWYN7MyC0a+4FvBKKxWPWtUhoNnS+qPOr0lbKRiITakd2TDstSfBmSpz9zla+iDCMRCU1E8vQcmaX4cqQTkbluRPGJjukrZcPbbvFIYEaW4tOB2Zq0TSmEj/mif2sakNLRnr5SERKR0OeRNLuZqyzfRhbgPF51o5SGQ+eLyo/29JWKEIjGrgf2Al7LKNoU+E8iEvpS9a1SGo1ANHYTEtY5N6Poo0iE2GnVt6qxUaevVIxANPY8kqf/voyi8cCViUios/pWKY2Gl7Fzd+CujKJxwF8SkdBZ1beqcVGnr1SUQDT2PnA48KssxZcmIqHvVNkkpQHx5ouOAi7MUvy7RCT0/Sqb1LDomL5SNRKR0BeRcf7MfVTPDURj2RqzoowgEQmdgOzrMD6jKAL8VEM686NOX6kqiUjocOBGIDNNw0+A87XBKn5IREKfQeL5M9M0zEA6EaqjHKjTV6pOIhI6GLiVkQ32l0BYG6zih0QkdABwB7B2RtHvgO+ojrKjTl+pCV4a5jsZGYr3B+DbgWhsqPpWKY1GIhLaG5ngXS+j6DLg66qjkajTV2pGIhLaE7gb2YUrnRhwhjZYxQ+JSOhTwL3IHs7pXAH8XyAaG6y6UXWMOn2lpiQioV2QBrtBRtFVwFcC0dhA9a1SGo1EJLQTMAvYKKPoWuDUQDTWX32r6hN1+krNSURCDtJgN84ouh44WRus4odEJLQdcD+wSUbRTcCJmvdJUKev1AXeHrz3A5k5VW4BvqAJthQ/eHvwzgYyc/DfAUwLRGMrqm9VfaFOX6kbEpHQx5EGu0VG0d3IxuuZe/MqyggSkVAH0oH4eEbRLOBzgWgsc2/epkKdvlJXJCKhzZEGm5mX/5/A0Ujunh7kEf68QDR2dXUtVBoBLwvnbGDrjKL/AEcgY/9XAQFkfchfq2th7VCnr9Qd3jaL9wPbZhQ9BCxCGi3AKmCrQDSWqKJ5SoPgpfGeBeyQUfQYMA/4nPe+H9g6EI3Fq2dd7dDcO0rdEYjG3gYOAJ7PKNoHybiYZDxwQrXsUhqLQDQ2H5gKPJNRtAewb9r7ccCJVTKr5mhPv8YkIqF1kcnLzZChi83SjvWANu9oLeHnAWCBd7yf9vOCHJ8vrKeY5kQktD4SzrlrnmpPBqKx3apkUt2SiITWYbh20vU0kdHrKJt+cmmqr55Cbb0d3e5CnH0ung9EY5+okkk1RZ1+hUhEQm1Izu9cDj35PnMT6FpigT5SDfotwPWOF4C51WzMiUhoTSQnz/8Bk/JU3ToQjfVWx6rq4uloY3I79ORRTzqClI4WIBvnvEBKS71V1tEE4HzgDPLraIdANPZiVYyqIW21NmAskIiE1gZ2AnYGdvFeHUZmAax3DLC+dySZlvbzqkQk9BKpxps83qjQ6tlvAN/zUe8LwM8qcP2qkoiE1mKkjnak8XQEsjq2HZjivT8+rWxVIhJ6mZE6er1COjodmO6j3onAjytw/bpCe/pF4j0q7szwhrkNzT0/8iHDe3LJ453RJL1KREK/Bvzk238RcBopwVYiEprESB1tS3PraCnZdTR/lDqaAYR9VJ2LPDU2jI5KQXv6eUhEQpswvFHuAnSU+TKrkMfft9KO5Pv3kciCAe8YTPs58322sglIeoMNfR75Hn3zsQ4yXpo5ZppIREKzkAiKWYFo7J0iv/dPwBcZuVI3k+2RHnHmxG9d4EWRZOpoyzJfJl1HmXrKpyM/msqno2yfZ+bA8cvayA5Zu2d8/rano/uA+wPR2Lwiv/fPwKmMXKmbyWRk/ujJIr+/odCefhpeqOChwGHA/siY/GhYwPDGl7VB1kvPIhEJjUOGdjZE4pgnI8NUyaOQ8y3EHKThzgIeyLVIJhEJGSTN8heR8Lq3gK8wMhVzOlcGorHgKO0rC15n4VDvOIDCzqYQ7wMJRmonXU8L6khHbeTX0WjblYto6D5ERx/msMMgO22dijjy1xEdrZXnu68NRGMnjdK+uqapnb43wbMP4uQPQ3qLpTIXeBoJD3saeCYQjb03aiPriEQktBES8+xkHJlZMv3QDzxM6ibwZDJyKBEJHYTE6Sf5H/AlZMz1dLKPcS8PRGP5GnPFSERC4xEdJTsMo4kCeZWROnp31EbWEYlIaEOy66iUJ81+4BFSN4Enk5PEiUhoX2QxVpLXgZOReapORm7kA7AyEI2tUYIdDUPTOf1EJLQVKSd/EPnv+tkYRMaQVzdK4NlANPZBOe1sFLze1KaMbMAOUEzjWYSsur0PWA5krpBcgCzKmg+cB3yV4ePfA4FoLHMbxorhpYxIOvmDGLkvQCEGgZcYqaPF5bSzUfB0tAnZdZTvCS+TxYiOZnk/X5VRvhA4EngT+CEQQsJSkwwGorExPexdl07fdV0HOAYZG3wLuNpxnJJ6zV788lRSjn6rIk5fiYwTp/e8XM0BUxjvKWov4BDgYOBTFDdJuZyRjX0ZkjTrLi+x1t+AZIz+HwLR2FnplV3X3Q44FhlqeBu4xnGcYucVgNURWlNJOfopeU8YzkpkaCtdR3NUR4XxnqL2QjR0CPL/Hq2OliNJ/G7zbt7XkFr0d1kgGjsjvbLrutsAxyHzF/MRHRU7r1A31JXTd113E+BXSEMdh0w0rwCGgC7gF47j5M2S5/UYdgA+izTO/Ri5EXcuhoDHkQRf9wBPaVrf8uBFPR1I6iaQmVvHL4PIxhhXeN+7AdI7W5Ss4LruxsicwOdJLTJa6Z17EXCh4zgFHW4iEtqelI72x3/opAWeQHR0NzLkoDoqA17U04GkbgLF3HzTGQJOD0Rjf/a+tx0gEI31JSu4rrsR8AskJDjpj1Z65/4GuMBxnGUlXr9mlMXpG2MmIo/l2wN7WmvdYr/Ddd0NgeeQiZ9sTno58G/gSMdxRqwaTURCWyNjvicC2xVx6XmkGuesQDS2sEjTlRLwMiEmG+6nGbmJSiF+C3w3c/LSdd31gWeRSeesY//IXMKhOXQ0BWnkJzIyZ0s+5iMdhbuB+wLR2PtFnKuUSCIS2gLRUfLYsMivuAQ4M4uOJiJPZZuRW0dPAAc7jtNQN/RyOf1xyCTML4FfFev0Xdc1yMTdPuTvTS0FfuY4zgxY/Q9PNtCdfV6uH5ncSfbm59RL1EOzkoiEWoBPIj3qs/AfJXRzIBo7NvnG09FdSE8wn46WIU+NUe/6myM5fE4kf8qHdPqBB0k5+udVR7XF09FOiI6+hf8ooTsD0dgR6R+4rnsLMpSXbbI3yTLgt47j/LAEc2tGWYd3jDFXUJrTPwzZJanwZNhA//L17vzrT1pWLj8aGevzw6ukevP/yhXipdSWRCT0PaTj4JchoC3pbF3X/TSy6craBc8cHFix3p1XRFtWLD0S6Wz44TXkpnIP8M9ANLakCFuVKpGIhM4CflfEKRZoTdPRfsj/ubCOpMc/2XGct4s2tEb4mqU2xmyFTGhOttbO8z47GWmge1hr3xylHUH8/IGHhlh39nUTWlYuv7BAzQFk9v524J5ANDZ3lPYp1aHYqImlGb3rL+En0sNa1pl9/fiWFUsL6WgQeQK9HekwzNXefENQrI6WZfxfT8Z/5JlFUjRfWuQ1a4avP4619lVjzO3At4GwMWYv4GLg0NE6fNd125AQKlOobuvi92hd/H6umXuLhGpdC9yoY6oNycXIYqZDkDC6FRlHP/K4vRaS0OvLyRNd121BGl/ByI6WD96nbdG7+XT0b0RHNwSisQUl/i5K7fgjEkZ7KKlgkOSxElm9nNTRImTBFrB6iHAaw8M487EW0tkYW07fowuYbfiXi9cAACAASURBVIy5CrgROMNa+3gZbHCQhlaQwXXXZ2jcBFr6V2KtxRgDMil3LTCzhOXZSh3hDbt9NhEJtQJDRfaqt8NnQx1aZxJD49egZdWKdB09iujoei+fv9KgBKKxZcCRJepoMsWtLwHYzXXd1myBAfVIUWP6xph7kfHPLmvtTzLK7kQm414HLrPWXuHnO13XPQi5ifha1dn2qsuEJ+7H9K/qB15BZtiHZXzs6OrRR/Amw3XdfZFhGH86eu0lJjx2H6Z/5QDQi7cGg+E6qkTGR6WOcV13d2QPh2JWmfcDGzqO0xALNH339I0xLcgYZzJmfhjW2sNLtKHgsE464+c8gulfBRLWuQMjw+qWxMPB9Ex9zwFPdHT1NPVmyE1ACTpaCdIGtmNkmO+HWXT0uOpozFOUjjxsiefVhGKGdy5CwjJ7kYmOv5TJhkUU8wczBYds10VW16VvqzcQDwefRkLsHgQe6ujqGVP5TBQWUcRKTWsKSi5b5tBBT0cPkdLR/CLtVOqbxfgfz0/ShqQXbwh8De8YY04HfoA0gKnILjTb2zLEe7quOx6ZlPOVA6flnTdZ4+G7lrV8uHi0ybVeIdV4HwR6dViocfECAvrwmQOn5d23WOPhO5e3LFlUTF6XbMwlpaEHgVdUR42LFxCwkOKGd551HMfvOqGaU9DpG2MOBq4Dplpr5xhjWhGHeba19uZyGOG67o1I6gU/fAh8d52rfnkz5cv4CPAewxvvMx1dPQ210q7ZcV33WmSRlZ8nx2XAOetc9ct/MFJHO1K6jhYwUkerSvwupQa4rtsDnIK/J8flwLmO4/y2slaVj7xO3xizLSLcU621d6Z9/g3gFGut38VReXFd91jgSvz10lYAHdkSZ8XDQYMsm0423p2QBVyl5HlZjkR0PIg8ETzS0dXTEBM1zYrrukcgETh+dTTZcZy3Mgs8HaVnDk3qqJQ8L8uRPQGST5WPdHT1NGUmzUbBdd1DkOASPzpaDmzvOE68okaVkbpIuOY9Uj2GRP/km2dYBvzOcZxzi/n+eDj4USTqaF/v2Jnix+2GkAVqtwM3AM/pY3x94cVYP4RkYiykoz86jnN2Md8fDwc3BvYmpaNdClwnGxbR0R2Ijp5RHdUXno5mIz4jX7LG5cDljuOcWRXDykRdOH0A13UDSKKsSWR3yCuRsLqpjuOM6nE5Hg4mJ+mSN4K9KD4f+v+QRnsjEtWh4X11gJep9TkknXIuHT0P7Oc4zsrRXCseDia390veBPameB29hmjoBuAx1VF94LruRxCdbEh2Ha1C9tXYq1Dm33qjbpw+gOu6k5HVdHuRmthN7tf5F+AHlYiFjYeDbcgjfLLx7kdxW7q9RarhPtjR1dMQizTGKq7rbgl0I//HNZEx/kGkoV4FfN9xnLIPsXg62pHhOipmq8S3gZsQHf2no6tnoNw2Kv5xXXcLZKXtVIbrqB/JwX+O4zh9Ob+gTqkrp5/ES3h0ApJu9w3gMsdxXqvW9b0x3S1JNd598Z+u+V3gZqTh/lMng2uH67p7AychOnoT+JPjOK9W6/qejjoYrqPtfZ6+gJSOZutkcO1wXXcPJEx9I2Sv4pjjOK/U1qrSqUunX4/Ew8GNkO36jgc+g78NNfqAW5GGe19HV09DPQYq5SceDm4IHI7oqFDq3iSLgNsQHd3b0dWjO24pJaNOvwTi4eB6yA3gOKQB+1kz8CGpybu7Orp6GmYxh1IZ4uHguqRuAIfjL5XvUuBOREd3dnT1aHpnpSjU6Y+SeDi4FtJjOx44CljPx2krkLzvlyBzAPpPaHLi4eCaiI6OA47G3zqBlciT5CXAA6ojxQ/q9MtIPBycgGz9dzyysbufLQCfQ1IK/62jq6fh9ttUyk88HByPpAY+HkkX7WcLwDmIjq7R/EBKPtTpVwgvkuMApOd2HIWjgfqAPwPdHV09VZu0VuobT0f7ITeA4ygcDbQIiXS7tKOrp2qT1krjoE6/CsTDwRYkDPV479g8T3WLTNpdDMzSR3YliaejPRHnfzwSGZQLi4z9X4xM/mr8vwKo0686Xhjfp4FvInMA+fJ7/BdptD06Yaek4+loKnAmMpSYT0e9yLj/FZoCQlGnX0Pi4WAH0An8H7KCNBdLgB7g4o6unv9WwTSlgYiHg5sjOgqRfx5pKZLj6uKOrp4Xq2GbUn+o068DvMiNk5Be2ycLVL8P6f3foSt/lXTi4eAawImIjnYpUH028AfgNtVRc6FOv47wHtn3QhrtNPIn84ojj+x/1Jh/JR1PR3sgOvo8+ZOGvYHoqFuHEJsDdfp1Sjwc3AQ43TvyRf68A/wEiGnKByUTL8Ps14AzyB/58x7wM+Cyjq6eUSWiU+obdfp1jhezfTwy8bt3nqqvAj8CrtNIDSWTeDg4Dtmo6EwkB1DOqoiO/qY6Gpuo028g4uHgLojz/yK5c7Y8g2xtea+GeyrZiIeDn0R0dDKwRo5qzyM6ukt1NLZQp9+AeEm7vg18h9x5f2YD0zu6ep6ommFKQxEPB9cHvgWcTe68Pw8A4Y6unkerZphSUdTpNzDeuP+PkFC9XJO+M4HzNNRTyYW3I9h5yPxRrknfm4FzO7p6XqqaYUpFUKc/BoiHg5ORSbgv5KgyiCzNj3Z09YzYE1ZRAOLh4MeBnyLDh9kYAq4Azu/o6nmzWnYp5UWd/hgiHg7uClwIHJKjynLg90BXR1dPw+34o1QHb8z/QuCwHFVWIjH+F3Z09SysmmFKWVCnPwaJh4MHAzOAXXNU6fPK/6Abcii5iIeDU4EuZB/gbCz2yn+nGWIbB3X6YxQvOdfxwAXAlBzV3gKmI+l4VQjKCLyFXscCPwe2yVFtHnAukiNKdVTnqNMf43jx2V8BIuRenHMn8DUd71dy4aV4Pg04H9g0R7V7EB29US27lOJRp98kxMPBtZHwvDDZd/f6APgu8BftrSm58HaKOxN5QpyUpcoS4BzgT6qj+kSdfpMRDwc3QBbdfJPsC7zuBULaW1PyEQ8H25EOxLfIvsDrfuD/Orp64tW0SymMOv0mJR4Obo2Ece6TpVh7a4ovvHDhy4H9sxQvRW4M3ZrSoX5Qp9/ExMPBVqTHfyGwZpYq2ltTCuIFDXQikTzZVvb+G/iqbt9YH6jTV4iHg1shvbUDshRrb03xRTwc3BLZ5/mgLMXLkAifP6iOaos6fQVY3Vs7A/gF2ltTSsQL8QwBvwLWzVLlIeArHV09r1TVMGU16vSVYXi9tRiyj28my5FJYO2tKXnxtnCMAZ/JUrwCyfXzW921q/qo01dGoL01pRx4OjoN+DUwMUuVRxEdaRK3KqJOX8mJ11v7E3BoluJkb+032utX8hEPBzcDLgOOyFK8Elk4+Cvt9VcHdfpKXnz01m4DTuno6vmgqoYpDYWnoy8BvyP7oq67gC92dPUsqqphTYg6fcUXBXprLwOf05z9SiG8PSC6gWOyFPciOnqxulY1Fy21NkBpDLy8PEcBpyJZOtPZFng8Hg4eVXXDlIaio6tnHpLA7YvA+xnFU4DH4uHgsVU3rInQnr5SNPFw8GPATWRP3fxj4AId51cK4T093gDskaX4J8imP6qjMqNOXymJeDi4JvBHpOefyU1AsKOrZ0l1rVIajXg4OAG4FMkEm8ltwJc6unoWV9eqsY06faVkvMm5s4CLgNaM4heR8dneqhumNBSejjqRSd7MvZ7/i+jo5aobNkZRp6+Mmng4eCBwPbBBRtFi4KSOrp67qm+V0mjEw8H9ER19JKNoCXByR1fPbdW3auyhTl8pC/FwsAMZ1vlkRpFFcq50acZOpRA6X1R51OkrZcPbYOPPwElZiq9HVl9+WF2rlEajwHzRzcCpOl9UOur0lbLijc9+F0nclhkSPAcZn/1f1Q1TGgqdL6oc6vSVihAPBw8BrgPaM4r6gC90dPXcV32rlEZD54vKjy7OUiqC59Q/hfTu02kH7o6Hg2dV3yql0ejo6vknoqNnM4omAnfEw8Gzq29VY6M9faWieBuy/xX4fJbi8zq6ei6osklKA1JgviiKLORSZ+YDdfpKxfHGZ8PAzwGTUfwz4MfaYJVCFJgv+gUwXXVUGHX6StWIh4OHI+Oza2UUXQScow1W8YM3X3QjsE5G0e+Bb6uO8qNOX6kq8XBwX+BORm7OcglwlsZgK36Ih4N7AnczMt33n4BO1VFu1OkrVSceDu4O3MPIvOqXA6frZhqKH+Lh4C7AfcD6GUVXIvs5D1TfqvpHnb5SE+Lh4M5Ig80MxbsG+LI2WMUP8XBwR2AWI1M3/APZ3Ke/+lbVN+r0lZoRDwd3AO4HNs4omonkWllVfauURiMeDm6L6GjTjKJbkDUhK6tvVf2iTl+pKfFwcGtgNrBZRtFtwAkdXT0rqm+V0mjEw8GtEB1tnlF0F3B8R1fP8upbVZ+o01dqTjwc/DjSU+vIKLoXOLajq2dZ1Y1SGo54OLgFoqOtMopmA0d3dPUsrb5V9Yc6faUu8LIrzgYmZxT9CzhKE7UpfvB245qFbOGZzoPAER1dPR9U36r6QtMwKHVBR1fPm8D+wEsZRVOBe+Ph4OrQvHg4aOLhYOZmG4qS3Mt5KiPTf+wL3BcPB1fngmpWHWlPX6kr4uHgR5Conp0yip4EDgU+RmqjjfM6unourq6FSiMQDwc3QIYHd8koehY4BAkeuAHYBIh0dPX8troW1g51+krdEQ8H10fi+D+VUfQ88A7SaAEGgSkdXT2vVdE8pUGIh4OTkIncPTOKXgBeBw733g8B23V09bxSRfNqhjr9MUZf93SDDNu1AoPtnTMacqGTN5xzJ7B3RtEihi/qOrejq+fCqhnWJGToaKi9c0ZDrpuIh4PrArcjQ4fpZOro/I6unmjVDKsh6vRrSF/39PFIbPFm3pH+82bAeshG0W1I4/P787DLAAuA973XzCPz8756uVHEw8F1gFuBA/NUm9PR1ZM5FNRUpOkoUz/J9xMZvY4WUVg76Z8vrCMdrYXE7B+cp9p/kd7+mHeITTeJUS36uqdPArYgt0PfFNioCqa0e8cUn/VtX/f0hUjDfQt5FHa944X2zhmLKmJldgwwF9kvdb0cdXaMh4M7dHT1vFA9s6qHp6PNGa6dTD1VQ0eTvCMzuioXtq97erLD8TYjddRXESuzk9TRbozM1ZNkG+ATjMzbP+ZQpz9KvMfgTZAJo53TXreopV2jwCCpETYAtiajl93XPT1BqvEmj5faO2dUIpb+W0DIR70TgR9V4PpVpa97ejYdddTSplFgkJw46yM6mppe2Nc9/S2y66gSsfTfAM7wUe8kmsDp6/BOEXgO/uOMbJiZeT9qzRAyydnGyPz1lcACrzKyEf93NGPB8XDwl8D3fFR9FZnQbQgxezrakpE6ykxHUWssMEB1dfQ/suuo5Bw68XDwAuBcH1XfALYc6xk61ennoK97ehuywCPZIJNHrmGGUrDAfOTx9620I/n+faAfaXgDiCMfyPE++fNge+eMIe93aEWGdjbMcWyQ5bPMzJejYQmyuGoWEob5cnvnDN+Ci0//cgfWzkYcZCF26+jqebIkKyuIp6NtGO7cdyb3MEMpWCSqKV076Uc+HeXSVD4dZdNNpq4y90YeDR+S0tEs4MVidPT6D778MTtksy38y8Y+HV09D5dkZYOgTt/D6305SCz4YcA+wBqj+MoBpAea2QDTG+X8eouK6OuePg55JN8IaSRO2rENoxsSfItUw53V3jljfg4bWpGt8U601j6ydP7CxwdXrvoa+R3JzI6unmxbMlYVT0fbIxo6FFkUtOYovnIQ0VGC7A79bURHdZVN0rvZ5dLRtoxOR/NIdSTub++c8XYOG1qAy4BTrLWPL31n4cODK1aFGJnZNZ1bO7p6jhmFbXVPUzv9vu7p7ciM/mHekZmlzy/LkRjyp4FnvNcX2jtnjKlkYV6UyNYMb8AOMuRVyuO/izTcWcAD7Z0zPvSu8xkkTj/J/MGV/Sd8OG/BQch2edmetlZ2dPWM5iZdMt5k68GkOgyBEr9qBSN15I5RHU1hpI62ojQdvUDqJvBAe+eMJd51DkRSeyR5b3BV/7QP316wPzJsmO1pq7+jq2d8CTY0DE3l9L0e5K6knPweFJ+KYjHSIJON8hlGOXbd6PR1T18b2I7hDXgXiosq6QceQRru+8ClGeVLgGMXx+c9izTY7wAT0spXdXT1TKAKeD3IXUk5+T2RMMdi+ICROnq5yXW0Ftl1VMyc2QCio1nI0OllGeVLgeMXx+c9DpztHemdhYGOrp5xJf0CDUJdOn3XdfcFvoA8hr0O/MlxnJJWXXoREZ9BGudnGLnLTj7eRRpkes/rtWLGE5uVtOGyQ5Be8AGM3Bs3H/1AZuPrB4LtnTP+Hg8HNwZ6kP8pwE86unrOT6/suu5eSGTPRsgkXcxxnFeL/FUA6OuevjHDdbRhEae/R3YdjekJw3Lg6WgHREOHIDpau4ivyKajAeAr7Z0zroqHgxsBfwGO8Mp+3tHVc156Zdd1dwe+iNx8EoiOeov9XeqFunL6rutuBXQj4+lJB5GcYLoc+IHjOEvyfYfXm98X+CzSQD9RhAnLgH8ie2/eA8xVB18e+rqnT0B6xMmbwG6UnvDv7PbOGb8GiIeDLUBL+k5brutuiTwp7I+MpxtSOroCmO44zuIC9rYiq4GTOtq5CPuWIzq6B9FSr+qoPHhDQ3uSugnsTuk6mg78or1zhs2ho80RHR1ISkeDyI3kauD7juNUc71BWSiL0zfG7AX8GliFTCydaq0tamLJdd0AEiM7ieyPyiuBp4CpjuMM+26vN7An0qs7AfhoMZdGGubdwIPtnTN0l50q4M2nTCV1E/C7eCzJ34FTMnvLrutuAjyHPNHl0tHzwH6O4wz7X3s62p2UjoqZ43mBlJP/z1gbh69XvPmUqaRuAlsX+RUzgS9k0dFHEJ1sSHYdrQJeBPZyHKeh/tflcvqbAn3W2uXGmAuAZ6y1M/2e77puC/Ao0pvKN6u/DPit4zg/9BroJ5EG+gX8L4ZahIwb3w3c2945I+HXTqVy9HVP3wJ5xP4x/uPV/9neOeOg5BvXdQ2SN313CuvoUsdxzvF0tBOioxPxvxhqMaKje4B72jtnvOnzPKWC9HVP35yUjvx2/h5q75yxb/KNp6PZyIhDvvH95cCfHcc5q0Rza0LZh3eMMVHgOWvtjX7PcV33c8BVwDoFv39g1YqNn7jl4taBlUfj765ugSdI9eafaObJsnqmr3v6D4CfF3GKBVqTQyeu6x4BXItfHT156yWt/SuOYOSGG7mu9SSp3vxjqqP6pK97+veAXxZxSqaODgFuxIeOkIir7RzHiRdrZ63wFStrjNkKedSZbK2d5312MvKH3cNa+6b32ZbIGOgFRdpxKn7+wENDfOSZOye0DqwstEpzCZKo63YkHnxBkfYotaHYjdAXZYyVn4KfST47xEbP3jWhtX/F2QVqfojs1Xs7cF9754z3irRPqQ3FDtF+kKGjk/EfdGCBzwENk4/fl9O31r5qjLkd+DYQ9sbwLwYOTXP46yHRFF+y1vpuvK7rjkNC3woybmkfbSs+zBXHuwJpoNcCd7V3ztCNkBuPi5EhvqQeViL/1+SxCmmME5GImGDyRNd124Aj8RHn3bZsMeOWL8mnozsQHd1ZoZxCSmW5DNmL4XBED+kaWukdSR0tAE5LnugNNX8O/5PDayKd1oZx+r6Hd4wxuyDjXPsiY5nfttZe55W1IalLL7KybN43ruvu6n1v4fQGQ4N89PGbaO1fPW/SjzxqXwvcllyUoTQfruvuCDwErFuw8tAQGz9xM22rVvvzAWTY5lrg1vbOGU2/j2qz4rrutshwsJ+hnSSDwATHceoilXQhfC+FttY+bYx5HHgM6Eo6fI+TkIVOPzbG/BjozijPxyTkEakwLa28u8sRrPlu3E6MP3OasUO3VjlFq1K/TEISzRWmpYX3dj6cNd97bWi915//Wstg/03tnTMWVtY8pUGYiDjxYhhEbhJ5w4DrBd9O3xjTgvxyQ0BXepm19ipkIrYUippJHhq/JksD27E0sN3VjXJnVapCkTpag6WbbWeXbrbdNY0WcqdUlFIiW0yJ59WEYhY1XIT0pnqRiY5y0VekHQAr1eErGfRRfCoES/GTfsrYpo/ik8G1IOkdGgJfztYYczpwLDLB0QWcY4wpV37tORSfZOnBMl1bGTu8RPGP5Y84jtMwPTSlKsyl+I7AU43UCS3o9I0xByOx00dZa99BVrCNB8qSftRxnAEkJM5v41uCLIFWlNU4jjOEBBP4zWezFLiychYpjYjXCZiJ/w7EMiRqsWHI6/SNMdsiEQ1fstbOAbDWDiIpF8JltONK/D8etSE3CUXJ5EqkEfqhFVnLoSiZXI2Ed/qhBelsNAx5nb619mVr7YbW2jszPr/EWrtXGe24GwmTKpSvZxnwE8dx3i/jtZWxw2zgYQov8loGzHAc593Km6Q0Go7j/AfRUqFhnmXArx3HeavyVpWPUrPTlRXvkeoEZMFNLse/HHiA4pZXK02Ep6OTkK0Dczn+5Ui+9WJXjSvNxanIDl25dLQCSQB5frUMKhd14fQBHMdZgKTbvQFpmMkxtZXIHbULOLaRJkyU6uM4zkIk4do/yK6ji4CjvbkkRcmK4ziLkLVHf2e4jlZ5738DfDYz428jUFf59JN4qyuPRvZEfRu4ynEczXuiFIXrutsjUWftSK/tasdx3qmtVUqj4a3SPQ5Js/w2cI3jOPNqa1Xp1KXTVxRFUSpD3QzvKIqiKJVHnb6iKEoToU5fURSliVCnryiK0kSo01cURWki1OkriqI0EcWmEFWUpmSN3c6wpqWVlnHjaWlpxbS00tI2znsdj2mV15bk+4zPTUsrrW0tGGPktcXQ2uq9tpnsn7e2YFqgpcXQ0tpCS4uhra2F1hbDeO91wur3rfLamvl59tdxLS20GhjX2kKLMYxrNbQYM/yzFuPVNavrtA6razAGWlugBUNri6TLbW0xtHivxkCrMbQYaDXI72mgxTvXDA1i7BAMDYIdwgwNgB2CwYGsn5uhARiSz6V8AIYGsQP98trfv/q9HRqEgX7s4ODwOqvrroKhIezAKuzQEEOrBla/Dg0OMtQ/gB0cYtB7Hfm+X96vPm+QocEh7JBlcNUgdlBehzLeDyvvH2Ro0HrnWgYHhhi0llVDlkGL92pZNUTWz4dIr5Mq+6ON58xcrD19RVGUJkKdvqIoShOhTl9RFKWJUKevKIrSRKjTVxRFaSLU6SuKojQR6vQVRVGaCHX6iqIoTYQ6fUVRlCZCnb6iKEoToU5fURSliVCnryiK0kSo01cURWki1OkriqI0Eer0FUVRmgh1+oqiKE2EsdbW2gZFaQqMMV+z1v5J7UihtlTfDu3pK0r1+FqtDfCoFztAbclGRe1Qp68oitJEqNNXFEVpItTpK0r1qPl4sUe92AFqSzYqaodO5CqKojQR2tNXFEVpItTpK0qFMMasb4y5zxjT672256j3C2PMC8aYl4wxvzfGmFrY4dVdzxjzljHm4jLbcJgx5r/GmLnGmOlZyicYY67zyh8zxnSU8/p+7UirN80YY40xn6qEHX5sMcZsboz5pzHmGWPM88aYw8txXXX6ilI5pgP3W2unAPd774dhjNkb2AfYCXCA3YADqm1HGj8F/l3OixtjWoFLgM8C2wMnGWO2z6j2VaDPWjsZ+A3QVU4birADY8y6wFnAY+W2oUhbzgP+Ya3dGTgRuLQc11anryiV4xigx/u5B/hcljoWWAMYD0wAxgHv1MAOjDG7AhsD95b5+rsDc621/7PWrgKu9WzKZeNM4NPlfuLxaQfIje8XwIoyX79YWyywnvfzRODtclxYnb6iVI6NrbXzALzXj2RWsNY+AvwTmOcd91hrX6q2HcaYFuAi4JwyXxtgM+DNtPcJ77Osday1A8BiYINq22GM2Rn4mLX29jJfu2hbgPOBU4wxCeBO4MxyXLitHF+iKM2KMWYW8NEsRT/0ef5kYDsg4H10nzFmf2vtA9W0A/g6cKe19s3yd7DJ9oWZYYN+6lTUDu/G9xvgy2W+btG2eJwEXGGtvcgYsxdwlTHGsdYOjebC6vQVZRRYaw/OVWaMeccYs4m1dp4xZhPg3SzVjgUetdZ+6J1zF7AnUJTTL4MdewH7GWO+DqwDjDfGfGitzTf+75cE8LG09wFGDlUk6ySMMW3IcMbCMly7GDvWReZV/uXd+D4K3GqMOdpa+2SVbQGZ5zgM5InQGLMGsCHZ/3++0eEdRakctwJB7+cgcEuWOm8ABxhj2owx45BJ3HIP7xS0w1p7srV2c2ttB/A94MoyOXyAJ4ApxpgtjTHjkUnJW/PYOA2Ybcu/iCivHdbaxdbaDa21Hd7f4VGgEg6/oC0ebwCfBjDGbIfM/bw32gur01eUyjEDOMQY0wsc4r3HGPMpY8yfvTozgVeBOcBzwHPW2ttqYEfF8Mbovwncg9zQ/mGtfcEY8xNjzNFetcuBDYwxc4Hvkj/CqJJ2VAWftpwNhIwxzwF/B75cjhuhrshVFEVpIrSnryiK0kSo01cURWki1OkriqI0Eer0FUUpO8aYuDFmlTFmw4zPn/Vy2nR473c3xtxpjFlkjFlojHncGHOaVzbVW5iklBF1+oqiVIrXkAVGABhjdgTWTHu/FzAbyfUzGVmB24nko1EqhDp9RVEqxVXAqWnvg8CVae9/CfRYa7ustQus8JS19oSqWtlkqNNXFKVSPAqsZ4zZzssq+QXgaq9sLWQV8MxaGdesaBoGRVEqSbK3/2/gZeAt7/N2pNM5r0Z2NS3q9BVFqSRXIXmEtmT40E4fMARsgtwMlCqhwzuKolQMa+3ryITu4cCNaUXLgEeA42thVzOjTl9RlErzVeAga+3SjM+/D3zZGHOOMWYDAGPMJ4wx11bdwiZCnb6iKBXFWvtqtkyV1tqH7IB15wAAAFtJREFUgYO843/GmIXAn5ANQ5QKoQnXFEVRmgjt6SuKojQR6vQVRVGaCHX6iqIoTYQ6fUVRlCZCnb6iKEoToU5fURSliVCnryiK0kSo01cURWki1OkriqI0Ef8P8yWz625iQMMAAAAASUVORK5CYII=\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADjCAYAAABpYsTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deZxjVZX4v7eq9266KRroBtIQloZuKJBVkcVGBAXZmQJktAmOhqF0/OkImtZxiBHUjgMyOmgxxoWoMyL2yNbgAmKDgMi+BBsolnR3mq2Xqt67a8n9/XFeOqlUkkpSyUtSOd/P531e5b2b905VnXvuveeee66x1qIoiqI0By21FkBRFEVxDzX6iqIoTYQafUVRlCZCjb6iKEoToUZfURSliVCjryiK0kSo0VcURWki1OgriqI0ETU3+saYtlrLoIwNVJeUajMWdKzmRh+4sZhCxpjzjTERY8ydxpgPV1sopSEpVpcOMMb8xBizpNoCKWOOonSsnqmp0TfGnAHMM8ZcPVJZa+0d1lo/cDlwSbVlUxqLEnXpdWvtp1wQSxlDlKJj9cy4Gr9/LfBLa+1NAMaYw4FvZ5X5J2vtuxmfvwb8wCX5lMahHF1SlFIYomONSq2N/hHAc6kP1toXgLNzFTTGGGAx8Dtr7dPuiKc0EEXrkqKUyRAda1Rq7dNfC3zaGDO/iLKfA04DOowxV1ZXLKUBKVqXjDEzjTE3A0cZY75SfdGUMUIp9qpuMZpaWVEUpXmodU9fURRFcRE1+oqiKE2EGn1FUZQmQo2+oihKE6FGX1EUpYlQo68oitJEqNFXFEVpItToK4qiNBFq9BVFUZoINfqKoihNRK0Trill0t3Z0QJMcI6JznkcsAnYMLdryWANxVMaiO7ODgOMJ61HE53PW4HeuV1L+msonlJhNPeOy3R3drQCs4F9sw4PMJWhRrzQuVCDbYGNQA/Q65wzj+xrQz5rJW8MHGO9B2kdmpPx8y4Up0epjkMhNlO+Lm2vyC+rVAw1+hWmu7NjBkON+Zysz/tQ3yOsJPAG8JJzLE/9PLdrybpaCtZsdHd2TGG4/mTr1cSaCVgcCdK6lKlTb83tWqLGpwao0S+T7s6OmcBxznEMcCBSCafXUq4qs5bhFfglIK7upPLp7uyYBhxNWp8ORnRpZi3lqjKbyK1Lr87tWtJXS8HGOmr0iyBHpTwOOKCmQgn9wA6gzzkPAjOQob2b7ABeIV1xY8Bf5nYtectlOeqe7s6OCchmHJm6dCi1D6oYYKguDQDTEH0yLsoxCLxOeoT5d+AR4DUdGVQGNfpZuFQp1wMrs45VwAakwmVWvuxz6ue+fJWgu7NjHFJZ27KOXYu8VileAZYBDwIPzu1asrqCz657nPmbQxiqS0cysg+9FDYDK0jrUEqf1lFYf4ac53YtSeb5HVqQ0etIOpPr+m5Urt6sRvRomXPu1kagPJre6Hd3dhwInETlKmUfQw35MOM+t2vJltHIXE26OzumIu6Fec4x3zkfzOj9x6+SUXHndi1ZNcrn1RXdnR2zgZMRPXov4vabNopHDiLGLlcHIfXzhno1ft2dHRMRt+e8HMdoR6Nv4XQmEH16uV7/DvVG0xl9pxd8IrJ/6jlIT6wcBhE3xuPAE8jemSuANfl6TY2M02vdj9wVeI8yH/s6QxuBFaOX1D2c6JkjEV06GzH05fIKokdPAE8DcWSyc2CUYtYdzt9tb3LrkqfMx77D0EZguTYCuWkKo9/d2dEGnIEY+TORYWipZFbKJ4Bn53Yt2VoxIRsYZ1I7VWkPRRrVY4HWEh+1gvTw/U9zu5asLOK9692s3N2dHZOBUxFdOhuJxiqVBEN16cm5XUt6KyZkA9Pd2bEL6ZHmfOB44ARgcomPWgM8hOjTA4zQCDgjXNsMdXpMGn2nJ3Ew6Yp5EqUZIK2Uo8SZ/D4BOAVYgPSCSw1VfRq4A7gdeDG70nZ3dvwH4or7QjUNf3dnx96ke/OnUZoBWk9ajx4HnpjbteTtigs5hnHm2Y5D9GgBUp+nlPiY1xA9uh14LHs03t3Z8QlgIXDeWF9bMGaMfndnx3jEn5py2xxU5FcHgL8gEQJaKauE05N6P1JpTwHeh6z6LJZXSVfavyEL0OJIaOMNwJcqZfidycujSevS0SV8/UlkpJIy9G+om6GyOHX9GNIdipMobe7kHeBORJcemNu1pK+7s+Nu5P99L3Dh3K4lOyoqdB3R0EbfcduchVTMMyg+Rn4d8s+9G/jj3K4lG6ojoZIPx01yPOmKezzFTxS/jTTUF2VcWwx8tVwD68hzOqJLZwF7FfnVrcB9iC7dq2Gq7uPM0x1NeiRwMsXbgo2ILfgH0p2QO4GLxurK9IYz+s5Q7wzgMqSCFhtp8yJSMZciwztdTFRHdHd2TEJ6/wsQ43sipceHf2Nu15JgCe80SC/xMuBiijcUq0jr0p/Hujug0XCCDo5EdOk04EOUHpG3BLh0LE6kj9roG2OmAj9EQhWXWWv/ZzTPi8Vic5AKuCfwLnDbxB98PYEM5y4DLgV2L+JRfcgkzt3APXO7lrwxGrkUd+nu7JgFnAtcQGmV9qq5XUu+C7l1qb29fVV3Z8dBiP92IbB/Ec+0iEtpKaJPL6jLpnFwJofPRHTpLIoPF70F+FTK/59PnyoucJUpyugbYzqBw621n3E+XwfsZ61daIxZCPRaa+82xvzaWntJOYLEYrFWIAxciSQeg80baH3pub7WFx7fZLZuLmZJ+hrgHqRi3je3a8mmcmRR6ovuzo7pwEeB85FKW9B/a03Lp/s+c818MnVpxzZaXontGPfcX9eZDev3LuK1m4E/knbbvDuKX0GpE5y1A6ciDcB5iAEvxH/2ne+72u6z/1DbJGwBbgYC7e3tDeM5KNboTwFeBg5HhsPXAidYa7cZY74C/M5a+6wx5n+ttf9YjiCxWOx64KrMa63PPcaEx+/HGIO1FizO2WKTckYm+G5DKufjYzFGXknjVNrbkFFATizYgY9cZJIHHbbzmln9BhOX/pKW1hZRG2vTuuScsbwL/Aa4C1k3MGYn85SdbqDrgEWFyg0efMSjA6dfeEKBIje0t7dfXVHhqkjR7h1jzHeQVu5M4HRr7WvO9YVAj7V2qTHmVmvtx0oVwhk2LWdoKwrbt7LLb7toHZ8/0s9aO2iM2YxMziYQf2vqyPy8zhOK6JC8wXEqagJJT50XO2Ua/ecuxM6c5VywTL31+xRQJay11tGlXobqTrZeveMJRbRzMQbo7uy4D/H758WOn8DAaReSPGBeviJbgHnt7e2JSstXDUqJm/4pYpjPSxl8h98CNxljzkJ62+VwMdkGH2DSFJg0GQbzT6IbY1qRPDMzKJwEbXsi6C9UkRNAjzYMdc/JyArgN5AVva855xXA6r7zLjvTzp7zFcZlRYMag23bHTatzftgY4xB/L27IKmL35+n6EAi6F9Nfj1aBazRhqG+6e7s2BOJHlvNUF2KO9fe3OH74oVMm/7NER41FbFh362asBWkFKN/DeIzH/Ida+0W4JOjlCO/X23SFNhSkYjKSUjsfqH4/a2JoH8V8o9/Bom5fgpYpY1B3fAkMDlfOF0sFjs77zen71rQ6JfAOCQlxX4FyvQ5nYwVwLOIHj0JdGtjUDdsBKbP7VqyLV+BWCw2o8hnzaqMSNWnKKNvjLkKMZoXAyGkd19J8k6S9c+Zy+CmXsxAH62beuItWzdtQnpi00jvDlQppiC5eA5B3Fgp1iaC/lQDkKq8CW0I3Gdu15LNIxTJq0sDs+aAMaJLG9e/0bJ100bSerQLpS/1L8QEZOR5APDBjOubEkF/ZofiKbQhqAlFhtoWO4H/zmhkcZMRffrGmFOB7wPvt9ZuMsY8A3zSWvtspYTI69MfSk6/WSLoH49U2FnIkNzjnLN/rnSO+TWkG4BU5dWGoMaMUpfGOd/bg6G6k61Lu1VY7E1IyolMfXpVG4LaMxp9qlcKGn1jzL5IrPtZ1trlzrXLgVOstZdXUpBc0TtZjGqGPBH0zyB/g5D6udA/thjeJd0APAU86QlFGkIRxhIu6NIU0jqTT6fKSeqXyUbSDUHq0IagBlRbn9ymblbk5ozTF1yJhU0E/QapqPsioanHIgvCjqb05E6ZdCOLeu4B/uIJRXQruCpTa10CSAT905BG4DBEj1L6NJpRwtuIHi0F7veEIiO5upQKUA/6VEnqxuiniMViHmTuYBbiJ7utlsOmRNCf2v0os+IeRXkNwSbgD0jFvdcTiuiCnypSh7pkAC+iQ6njWMrbrSy14nwpcI8nFHm9MlIq+ag3fSqXujP6jYDTEMxjaMU9ktIaAotk9Uz13J7V+YDmI6shODbjXKp7aDnpEeWjnlBkTCYLU0aPGv0KkdEQZFbcYyk+ffCbpBuAP3lCkbrdUlGpLk5DsD9DG4LjKX7OqRcZUS4Ffu8JRSoSp6qMDdToV5FE0D8dyRh5NpI7ZqQ8Hyl2AH8mPXSPV0VApWFIBP0TgQ+Q3syl0ELETJLAY4guLQViOqJsbtTou0Qi6G9Bem1nI0nDStmYIwb8HIjqPIDijAQOId0AlLIz3ErgV8CPPaHIq9WRUKln1OjXiETQvw/S+z8LGQ0UMx/Qj+z28yPgzxq+pwAkgv5dgY8gDcCZQDEZaQH+hOjSHRpV1jyo0a8DEkH/JCQHyFlIxfUW8bXXgQhwiycU0e0dFWDn3NL7SOvSEUV8bQ0QBSKeUOSVKoqn1AFq9OsMZ+h+KOlKeyLQUuArA8j2bj9CYre196/sJBH074uMKM9GNqOZNMJXliG69FtPKKKppccgavTrnETQvyfgA65g5M3e40jv/2eeUET3alWG4CwYuxjRpfeNUHwd6d7/S9WWTXEPNfoNgjMCWIBU2H+g8PaBg0ia6x8Bf/SEIg2zWlBxh0TQ/x7Aj2wZOdLewA8hnYn/84QieTNSKo2BGv0GJBH0747sF3wFEsVRiJXAj4GfekKR1dWWTWksnDxCFyG6VGh3KIAeJIos4glFXqy2bEp1UKPfwDi9/5ORCttB4TTTSeB/gW94QpFuF8RTGoxE0N+O9P4vY+QVwfcD13hCkb9WXTCloqjRHyMkgv7dkKH6FchEcD4GgV8A12q+FiUXiaB/MtKJ8COdikL8Hgh6QpHHqy6YUhHU6I8xnN7/CYjxv5j80RoDwC3AdZ5QZIU70imNRiLon48Yfx+FM4QuRXr+z7gimFI2avTHMImgvw34OPBZJC9QLvoRn/+3NPe/kg9nLcmFQCeyAjgftwNf94Qiz7simFIyavSbAGfBzsXA14GD8xTrA/4b+LaGeyqFSAT9HwSuRdaQ5OM3QEgnfOsPNfpNhLMd4KVAEDgwT7HtQBcQ9oQiDbPvp+IujhvxNMT454v5t8CtiPF/2S3ZlMKo0W9CHOO/ELiG/CkftgE3Ad/R1LxKPhzjfwbwDSShYC6SwC+R4AFN8lZj1Og3MYmgfwJwOfA1ZF/XXGwGvg/c4AlF1rskmtJgOMb/HMT4vydPsUFkle91nlDkDbdkU4aiRl9J5Wr/FPBvwN55im0Crkd6/tvdkk1pLJwU4ucDIaA9T7EB4CfA13QU6T5q9JWdOBEaVwBfRfYBzUU3cKUnFHnANcGUhsMx/h1I8MD8PMXWAVcBP9eNXdxDjb4yDGdp/pXAImCPPMWiwNXaU1MK4USOXYIY/7l5ij2AdCR0pbgLqNFX8pII+qciMf5fJvfGHNpTU4rCCR74OBI8kGurxx3AdYj7UDd0qSJq9JURcXZm+jbS+8+F9tSUonCCB65CjH+u1eLLgSs8ocjDrgrWRKjRV4omEfSfgKRrPizHbe2pKUWTCPoPQtaDnJanSAQIeEKRHvekag7U6CsloT01pVI4YZ4fB24Eds9R5B3gC8Cv1X1YOdToK2WhPTWlUiSC/pnAd4B/ylPk98BnNLa/MqjRV8pGe2pKJUkE/QuQ/E+5NgbahkQA3egJRfrdlGusoUZfGTXaU1MqhbNQ8CvOkWtL0OcBv+bvLx81+krFKKKn9lXge9rrV0YiEfTPQ3TpAzluW+C/EPehrg4vETX6SkUpoqd2J/BJ9fUrI+Gs6r0cSf/RlqPI08BFugNcaajRV6rCCD21N4CLPaHIk+5KpTQiiaB/T+C7yPxRNhuQTsTt7krVuKjRV6pGRk/tBoZvtN0H/CvQpe4epRgSQf+HgZuB/XPcvhFYpGtERkaNvlJ1EkG/F7gNOC7H7V8jE3ObXBVKaUgSQf8MJEPnP+S4/RhwiScUWemuVI1FS60FUMY+nlAkDpyMTL5lcwnwZCLoP8JVoZSGxBOKbAAuAj6P7O+cyfHAM4mg/0zXBWsgtKevuEoi6L8I6antknVrOxLW+TP3pVIakUTQ/z5kBLlvjtvfAoKeUGTAXanqHzX6iuskgv65yMbZuXZYugX4rCcU2eqqUEpD4qwRiQJn5bj9IHCpJxR5y12p6ht17yiu42TjfD+SqiGby4G/OdE/ilIQTyiyDjgXCCDbMWayAHH3nOq6YHWM9vSVmpII+hciERlTsm5tQSZ4f+W+VEojkgj6PwDcCuyVdSuJpHD4picUSbotV72hRl+pOYmg/zDE3ZNrW72bgX/VlZdKMTgx/f9D7kSAfwAWekKRNe5KVV+o0a8DnHj2PYCpyCrWiWWexyEbmPdkHL2ZP9drsqpE0D8NMfC5FuDoyssicZLg7YZMlJerRxOB8cBW8utSjycU2eHW71UKzhaNXwOCgMm6vRoJ63zEdcHqBDX6LuAYtDlIlEGuYw5SydxgM1mVN+vzWuAV4CVgtZsLpxyD9WkktHNi1u1e4AJPKLLMLXnqEWfzeg+5dSj1c7arrFpso7AurQdeRXQp7glFsn3uVSUR9J+O9Pqz93keQHZ6+4mb8tQLavQrQCLonwUcSH6jnitvSCOwGamw2cer1ezlJYL+I4ElyN80k37gU55Q5BfVenetcbamnEtuY74vMKt20o2KHUA3oj/LSevSK55QZHO1XpoI+vdB/Pwn5bj9LeDfm83Pr0a/RJxKeSzwXmSF6XHAPjUVyn2SwOukK+7OSuwJRdZX4gUjrLwMAaFGT9+QCPqnAEeR1qPjEIPfbKxieMdiOfB2Jf7Hzqbs1yERPtnciuTuaZo5IzX6BXC5Um5wjh3O0ZfnXOjeIDADyXPTluOYwXAfZ6VZA8SAh5A46cc8oci2ch7kuHsCyKbs2fwC+HSj5FpJBP3jgXaG6lI70FqF120F1lG6/mT+PABMI7cupa5VQ/ZMNgJ/Bx4BlgEPe0KR3nIflgj6L0TcPdnbfD4CnO8JRdaW++xGQo2+Q45K+V5kA/BKKPYA0ptZ6RyZP68EVnlCkY0VeE9BnAnj6eSuwKnDg+TDn8/wVbPl0Af8DWkAlgF/LXXhVSLovwRZgJPt518GXJhK05wI+s9AfMcvjVLmUeH8nQ9mqIE/ktx7CpdKEniLofqTrVfrqz0KchrkaRTWpdmILs1juF+9HCzwDKJLDwJ/KXVk6azivTuHPK8CH3XWkKSyxHo9ocjvRy11ndG0Rt8x8icAZyP+vtFUyh1Ij2QFuQ37O25PYo0Wp1LvhVTY7GPOKB7dDzxOuhF41BOKbClCnhORXPwzs269DHwU2a7xz8APPKHIl0chX8k4f6sjgXOQBUHHIo1rOSRxJj7JbdjfrNcIrEI4K2dTDcA8pFMxDziA8heJWmQnrWWIPj3kLNYaSZYDgHuc92eyDjgfcV3+FXFXfqRM2eqWpjL6iaB/N+AMpHKewfB0v8WQBF4EnnCOx4FYo7gZKoETjXQwQxuC+c61XBunFGIAeJJ0xX0kX8ZNZzP2exnuYluDuK12B94FPNU2jI7r71Sk03A25c/rvIboUEqfnimmERwrOJvuHETuzsW0Mh75AkMbgZwx+Ymgvw34LXBK1q0+pMN2INKo7O8JRVaUIUfdMqaNvtMDOwQx8mcDJ1K6u6apK2UpOPHRByB/5wXOkSv3eSEGgaeA+4E7gCczXRVOj/EOckdjpDjfE4rcWeJ7R8SJBEkZ+Q8Bk0t8xJuk9egJ5HeryMT3WMOpu/sgmTMXIMa5vYxHvQg8ANwFPJjZGUgE/ROAHwMLC3w/6AlFvlHGe+uWMWf0nX/kyUjFPIfhYX+FeIuhBl4r5ShJBP37kq60Cyjt/wGymOYO4Hak59bvxKr/FLg0z3fu9oQi55YncRrHN38MaV06qoSv9zLUwD/hCUVWj1amZiYR9O+O7MSW6lAcQWmBCT3AUkSX/uAJRbY6jcs1SJqGXMSBA8dSWOeYMPqOMpyJVMyPULw/dS3i27sXcStopawyiaDfQ7rSLkBcQsXSg0zC3Y6s0s037B5EXDxvlyHfVGQJ/zlI5sbZRX51C3AfYlQeBF5r9JDSesdx155MulNxJMU3AtuQtAy3I/+zlciK+Fyc5glF/jQqYeuIhjX6iaB/NvCPwIVIxsZiJ4NiiOFYCvyt0SZYxxqJoH8v0g3AKQyfXMuHpXAF/6InFLmxSBmmI+sBLkL89NlRQvlYSVqXljVTrHc94qyhOYn0qPJoirMLyRHKRT2hyOWjla9eGLXRN8YcAPwbMMNa2zFagWKx2BzgYmBPZFLutvb29lUAiaB/MnAecBnSoy/mH9qHRHUsBZY6uzgpdYqzuvk04AJk9FZuSoGney/6/Pnk16VWxC/vc95VjH/eIlvyLUWMfUx78/WLs8BvAWIzzkUm+sthMzCr96LPzySPPjUSRRl9Y0wncLi19jPO5+uA/ay1CzPKLBmN0Y/FYq1AGLiSzGGWtVvGr3zp7imP/3GrgQ6Kc928i2Pkgft1/9XGxGnkT0eM8jkMD9csyMYPf2JrcsbMzEZjy7i3V/xm6l/uXGuwH2d4Ct5cbELcAEuB33lCkXdLkUGpD5xVuSciunQBuXfbysu2w46/Z8eh7zuFoS6gLUiSwEB7e3vDeAyKNfpTkHjow5Hh07XACdbabRllRmv0rweuyrw2PtHNpOcfpnVLUeuWniM91H5iLE28KDsr7UlIhb2EAjloLFgDZvu8Y9l++IkAtK5/m8lPPcC43qKy6r5BWpcebKZw3GYgY11FSpcKzSsNAq39s71sOfm8fGVuaG9vv7qyUlaPccUUstZuNcb8CvgmMuQ+PdPgjxbHpXPlsPeOmwC96xnc2TCZnV5cYwzAW9bah23SPoi1rwAJYJU3HFWDP8Zw9jpdBixztlvMu/m1ATMwcza2Na3eyUlTMWvfZmAwiaiOGTIjYIzptdY+6uhSDEeXGL75ttLgOC65Z5BdtSaQOydPitbBqTPs4C67GgYHoDWnybwyFov9Z3t7e6Ia8laaon36xph5SBKk86y1d2Vcn4k0BqcDP7bW5sqTUpBYLHYVcP2wGzbJtFu/BwMl723ci1TYVMVdlfU54Q1HdQ/WBsSJ03+b4R2WDcDqwWkzxg3O3Pvg5OSp9O03n+T03XYWmHrHjzCbNpT6yi3k16OULpX8UKX2OD3+1xi+lmQrEir85sCue+4yMGvO0f17eRncw1PocVe1t7d/t0qiVpSievoO1yArH4d8x1q7jhy99BLZM+dV00JywiRaBkrOvLqrcxyer0A84FtP/or8OjJi0Em6+mM+EqP/GvJ/eg143ROKbACIxWJhIGcahuS0XWkt3ehPRRb4HZKvQDzg20RuPVqFhJW+5g1HG8bn20R4kPDan5KhS8Da1AS9o09HF/Gshkl5XZTRN8ZcheSluRhJa/vbCsuRf3Js/ERk8rzi7OYc78lzf1084HsKWR36FJIqYKU2BLXFE4o8DDxcoEheXUpOnFyttJC7AIc6Ry62xAO+ZxAdSunTK9oQ1BZPKLIK+OQIxYqduH9nlOK4xojuHWPMqcD3gfdbazcZY54BPmmtfbZSQjg+/eXkWBzRsv5dzI6t0Ldj+8RnHw60bFw/gFSyac45dcxCEoF5qN4uVOtINwCpyqsNQR1RSJfMxh5atmyE/r7tE5/9y5dbNqzrZ7geTUMyMM5xjlJTLRTLZsSvnKlPr+h8VH1RSJ8y2ALMGxM+fWPMvsjk2VnW2uXOtcuBU6y1l1dSkFzRO1kUNUMeD/hS+83OyTg8WZ/3pjTXViHWMnQ08BTqGqopFdQlg6QIzqdHqc/FLuYaic3ISuNMferWhqC2VEqf6oW6WZGbN06/CrGw8YCvlaEjg8yKvC+SR7+cDH8pUg3Bk0iyp4e94aiG/bmEy7qUyu6Zr0E4jBLXF2SxifSI4CHgfm84WrXtBZXhuKlPblA3Rj9FLBbzIHMHsxA/2W1uD5ucRuFgJNnWMUh+9KMoPMQrxEbgjzgLfLzhqC7wcYE60SWDdCSOJa1Px1B+Q5BaYX4PcI83HH29EnIqI1MP+lQJ6s7o1ytZDUGqApfTEFgkk2dqxfBz6gpqLpyGYD+GdiqOQQILSmU5aV161BuOlhzfrDQXavRHgdMQHMLwEUEp+WJWI722pcAD3nBUc/U3IRkNQfaIoJSGoBf4PaJLv/eGoyPuIqU0H2r0K0xGQ3As8EEkPW+x+4PuQOYAliJD9zG1Y49SGk5D4EWM/weQvP7FbkqTRLb8W4p0KmI6olRAjX7VcaKJjkOM/9mUthFHjPQo4FGN4mhunEZgHmldOonid4JbSboBuF8DC5oXNfouEw/49kE28j4bSSFcrCvoNSAC3OINRxtmIYhSPeIBXxvwYUSXPkrxrqA1wC1AxBuOdldHOqVeUaNfQ+IB3yRkw4fUvqv7FfG1AeBO4EdIj017/0rKrfg+0rqUNwVJFn9GdOl2bzi6o0riKXWEGv06wRm6H0q60p7AyJvEvIFs7Pwzbzj6VnUlVBqJeMC3L2k30KlIGpVCrAOiSO//pSqLp9QQNfp1Sjzgm4nsDnY+svPPhALFB4G7kB7bfZrTRckkHvBNQQz/uUj++JE2InoI0aX/84ajugXkGEONfgMQD/j2QLaIvIKRNxJfAfwE+Kk3HNWN3pUhxAO+qchewFcge0sXYj3wc6T3//dqy6a4gxr9BsJxAZ2MVNgOCud8SSLRGj9CYra1968MIR7wHQ74gYVIKvJCPILo0m+84WjFNlBS3EeNfoPiuH8WIg3A/BGKr0J6/zdr5Hn5ctQAABXhSURBVI+STTzgm4x0Iq5AwkAL0Qv8ArjJG46+Um3ZlMqjRr/BcXr/JyI9tospPGG3FbgJ+A9vOLrWBfGUBiMe8B2K6NJlFA4BTQK/BK71hqOvuiGbUhnU6I8hnLjtTyA9tvYCRTcjeyTc4A1H17shm9JYOOHEFyK6tKBA0UEk6uc6bzj6hhuyKaNDjf4YxOn9H49U2EvIvxHIRuA/gRu94WivS+IpDUY84JsHfBq4nPzZQQcQF+K3vOHoSpdEU8pAjf4YJx7w7YpsCRcg/z6evcANwPe94ehGt2RTGot4wDcR8f1/DUkHkYs+ZOX4tzV6rD5Ro98kOLHanYjxz5cAbj3wH8gknW7UoeTEWf37MSAIzM1TbAeywchibzj6tluyKSOjRr/JiAd804DPAl8m/0TdWmSnoB96w9GtbsmmNBbxgG8c8HHgGuCAPMW2AT8Ewt5wdI1bsin5UaPfpMQDvunA54CryR+j/Q7wbeBHGput5CMe8I0HfMC/I7uE5WIL8F/A9Zrnv7ao0W9yHJ//F4B/Jf/y/DeBbwE/1qRcSj7iAd8E4J+Af0P2CM7FZiR44LvecLTHLdmUNGr0FQDiAd9uwBeBz5N/U/g48FlvOHqvW3IpjYcT7vlp4KvAXnmK9QJfQUaRminWRdToK0OIB3y7Iy6fz5E/1/9twBc0s6dSCGel7z8jxn3PPMUeBf7ZG47GXBOsyVGjr+QkHvDtiUz2fpbcq3w3AIvQnpoyAk6St1Tk2O45igwA30EWeOncUZVRo68UJB7w7YX4aDvJnd9fe2pKUTiRY/8PcftMzVHkVaDTG47e76pgTYYafaUo4gHfMUiWxaNz3NaemlI0zgYvNwHn5CnyS+CLGuJZHdToK0XjxGV/DrgW7akpo8BJFXIhEsaZa7J3PTK3dIs3HFUjVUHU6Csloz01pVLEA74ZSDhwJ2ByFFkGXOkNR192U66xjBp9pSy0p6ZUknjAdzziPsy1oXsf8E1kVa+uExklavSVUaE9NaVSOCt7v4jk9MmVGfYlJGjgIVcFG2Oo0VcqgvbUlEoRD/gOALqAD+cp8hPgy7oXRHmo0VcqRhE9tReAi7TXr4yE4z68FLiR3Au73gYu9Yajy9yUayygRl+pOCP01DYDn/aGo792VyqlEXHSg4SRtA7ZJJEkb4t1gWDxqNFXqkIRPbUfIhE+6u5RRiQe8H0A+G9yb97ye2Ch7vtcHGr0lari9NRuQhqAbJ5C3D26t6oyIs7OXdcguXyygwYSwCXecPRR1wVrMNToK1XH6fX/M/A9YELW7Q2AzxuO3um6YEpDEg/4PoKsBcnO4zOA5Pe5UcOE86NGX3GNeMB3NPAbcu+ydAPwFW842u+uVEojEg/4PMCtwIk5bt8BfNIbjva6K1VjkCuBlqJUBW84+jRwDHB7jttXAQ/GA7457kqlNCLecDQBfBDZ0zmb84GnnXxRShba01dcx3H3fB6psOOybq8DPu4NR//gumBKQxIP+M4Fogzf9rMP2RXuZnX3pFGjr9QMZ0HXbUB2794ii7m+7g1HB10XTGk44gHf/oguHZvj9q+Qlbyb3JWqPlGjr9SUeMA3E/gFcGaO238G/tEbjr7trlRKI+JE91wP/EuO2y8jkWIvuCtV/aFGX6k58YCvBYm6uI7h80y68lIpiXjAdzHwY2CXrFvbgM94w9FbXBeqjlCjXyN6uhZNQdwa+zqHB8lRPwGYWOZ5HLAJ6Mk4erM+57rW29a5eHuVf+URiQd8C5CIjNlZt5LA15CVl6qwWfR0LZoA7ENal/ZFDF65ejQRGA9spQxdAra2dS6u6f8pHvAdjESKHZHj9s8Q419zna8FavSrQE/XohbEcGVWwjlZn3PtFVpLtiOVdi3wCpLR8CVgOfByW+fizW4IEQ/4ZgH/C5ya4/bPAb83HO1zQ5Z6oKdrkQFmMlR3so/Z5M5wWiv6EV1aj2ys81Lm0da5eJ0bQjgbs/8X8Kkctx8GzveGo67IUk+o0R8FPV2LZgHHIWGIBzK01z6+hqJVgwRZldc53qx0ry4e8LUiKy//neHGbBlwoTcc7ankO2tNT9eiGYgeHQcczNDOQq7kdY3MGnLr0oq2zsUVn7iPB3yXIbmgpmTd6gY+6g1HX630O+sZNfpFklUpU8e+NRWqPthMekSQqrwxoHu0jUE84Psw0uufmXXrJaSyNmT6hp6uRZOAI0nr0XuBQ2oqVH2wg+GjzL8DsdE2BvGA7zDg/xj+d14HnOcNRx8ZzfMbCTX6OXCpUg4Cq4GVzrEKSUmwA4kvLnTOd28QmA60ZR27FvG5tcK/3zvAg0jP/EFgeTmNQDzgmwvcA8zNurUGOMcbjv4to+x4wHrD0YFyha40PV2LxgGHktaj45A9B7LXJ4yWtxAdSunTOorTpXznAWSOqZDe5LtW6VHuRuAvpPXpmbbOxSX/j+MBXxvwW+CUrFs7kFQgv84qP9kbjm4rR+B6pumNflalTFXMSlTKHtIVMPtYBbxVjuJWA8dvPA2psB6kgZsHzHfOBzD6RmENUmlTFffvbZ2Li0qH64R13gGclHVrO/AJbzj6f86Cr58Bt9cqj4/zdzyQoQb+KIa7FUplC7CCofqTqU+r2zoX10W2UudvMBnRpdmkdSl1HIxMFI+GTYhPPqVPT7V1Li4qfUc84JuARPYszHH7qzjBAvGA71+BXbzh6DdGKWvd0ZRGv6dr0W7AGcjG3mcwfCVfsfQDzwJPAM+Rrpir3Jr4dIOerkUTEWM2L8eRHRZXLOsY2gjECjUC8YBvEmLUP5Z1ywJfQibGFwF3e8PRc8uUqWScKKxTEV06C4miKQeLuDKeAJ4G4qSNem+to2EqRU/XolZgP9Idisyj3OCGLcAjpEeVT7Z1Ls472e90EK4Bvp7j9k+Ah5AVvnHgwLGWq78pjL7T+zgEqZhnI0maSu25ZlbK1PF8vfSwaoHzd92LoaOCQ4H3Ia6BUliPVLZUQ/B8th/Xiee/FumR5WMQmOMNR98q8f1F09O1aB9Ej84GTgMmlfGYN0jr0ePA02Opo1AOPV2LdmfoyGA+okulNgZbgUdJNwJP5KqnzgTvjynsjjrdG47eX+L765oxa/Sd2OWTSRv6A0t8hFbKMunpWjQeOBpYgPhPT6L0EcFa4C7ErXNf5jqCeMD3T8B/T5wxdVxyMEn/5mFu1694w9HFZYo/DCcE9xjSunRUiY94B9GhlD492da5WDf8KALnbz8f0aOUPu1R4mO2IBut3A7c09a5eGf2zXjAdwpw+7jJE3cdN3ki29dvzP7urd5wNNdeEA3LmDL6Tk/ho0jF/AgyqVkM64C/kq6YWikriDNvchTpSnsyxf9vQCrt70hX2g3xgO+0aXvv/oeW8eNatq3dQP+WIYa/GzhkNAu5eroWTQVOR3TpLIYvGCsk62MMHREmxop7ptY4o8t5pBuBBRT/vwGZoH4A0aU72zoXvxUP+OZP3mPXxydMnTxtx4bNbO8ZkqJnB7D3WNqEvaGNvqMAh5Hugb2f4hepPA8sBe5Ghn+a2MslHL/ukaQr7Qcofl6lH3hgsK+/u3XC+H8BsNaybW0v/VuGLLA8qdQwvJ6uRfshBv4cJG1vsROOKxA9Wgosa2aXn9s4NuBg0h2KBcDeRX7dAo8lBwbvNy3ma6alxQBs793Mjt4hhv+z3nD0h5WTurY0pNHv6VrkBT4BXMbwUL589CEt/FJgaVvn4hXVkU4pFacROJx0pf0gMKOUZ1hr2baml/6tOw3/zd5wtLOId89EJocvQyJuinodMjJMdRpe1J58fZARQXUKoksfQuadSmJ77yZ29O705v7VG46eUCkZa82ojb4x5nykd7Qn8ANr7R9H87xYLDYHuNh53rvAbe3t7at6uhZNBzqQyrmgyMe9g8R43w3crz75xsCZE1gAXIBsiFFUz81ay9Z3exjYtgOgZ+vZlx+bbNvjAobr0gTEDehDdLeYuPJNwB8QXfpdW+fiNSX+WkoNcOYEjkX06AJyb6yek23rN9K3cUvq40GbF36pjxy2qbISV5+ijL4xphM43Fr7GefzdcB+1tqFGWXagOuttbnyXIxILBZrBcLAlaQiP2ySiT1vbd9lVeyNCRvXeE1xy9GfwenNI775MRVu1Ww4lfY4pMJegAzl82KTli3vrGdwRx/bPnDe9sH9DpbIGmsZv2nttukrX3h5Ys+b+xrYrYjXv07abfNQoTBApTHo6Vo0j7QuHTdS+a1re+nfvI3+/ec/uuOks9/D0Ki0LcDNQKC9vb1h3MPFGv0pSD7qw5FIjGuBE6y12zLK3AD8j7X26XIEicVi1yNb5u1k2soYM1Y8O9JX+4H7cCpnW+fiRDnvVxqDnq5F84EfMnxV5U6sJbmpZ2tL/66z2L7gPAAmrk+w+4vLinnFI0jU0N1IcjB124xReroWeYBvAJ/MV8Zaa7ds2L6pf5DpW8/7NJicU4Y3tLe3X10tOStN0e4dY8x3kFbuTOB0a+1rznUDLAbus9aWFc/quHSWkxXb3bp9M7OeuCPfzOxjSNbF29zK2qfUHsdn+xIj9PgHx01k3f7H0T/bKxeSg8x+/Le09uecY30FWYzzPzrX01z0dC36DeI2zos1Lazf/1i2zz4AWnMu1N8CzGtvb2+IDmcpqQZ+ihjm81IG3+FzyAKVGcaYg6y1N5chx8XkWMwzOGkaO3bdi0m9ss4m2Tq+p2Ww/wfAL9o6F79SxnuUxuc9pA3+OuA1xA2zAli9cU77Mdt328eXnDCFwQkZ3sCWVrbueQC7rF4OgG1p3WqSgz9DOg5PaI+++ejpWjQNmdMBmbNJ6VIcyYv1Zu+B7z1pe9tenx2cMDmfwQexXRcD362uxJWhFKN/DZI/Zch3rLXfB74/Sjn2zHdjy94HMzhxClv3PIC+GXtE2g8/4t9H+S6lsVmPLPx6va1z8Ybsm6tjsXC+L26dfRDjtm9m654HsKNtrx8e9p4jv1RNQZW6ZwISKfYasC5Xw786Fit2Id6sSgpWTYoy+saYq5Cl5hcDISRTXSV5N9+N7TPnsH3mzn2z36nwe5UGo61zcSofTT7y6tLAlBmsP3Rn4FfV0jQojUFb5+L1wN9GKJZXn7JoGNuUvR/pMIwxpyITHT5r7TJgujHmyArLcRviFyvEFqecohRCdUmpJGNOnwoafWPMvkhCooustaklat8DvlBJIZxY15HmAm5ulIkSpXaoLimVZCzqU0H3jrV2JZJLPfPaLcAtVZAl4JzTcfrCzljYKrxTGZuoLimVZEzpU92lYYjFYh5k7mAW4ie7rZFaUaV+UF1SKslY0ae6M/qKoihK9RhxIldRFEUZO6jRVxRFaSLU6CuKojQRpazIVZSmZdJxV1rT0krL+Am0tLRiWlppGTfeOU/AtMq5JfU567ppaaV1XAvGGDm3GFpbnfM4k/t6awumBVpaDC2tLbS0GMaNa6G1xTDBOU/c+blVzq3Z13Ofx7e00GpgfGsLLcYwvtXQYszQay3GKWt2lmkdUtZgDLS2QAuG1hbZwai1xdDinI2BVmNoMdBqkN/TQIvzXZMcxNgkJAfBJjHJAbBJGBzIed0kByAp1+X+ACQHsQP9cu7v3/nZJgdhoB87ODi0zM6yfZBMYgf6sMkkyb6Bnefk4CDJ/gHsYJJB5zz8c7983vm9QZKDSWzSMtg3iB2UczLr85D7/YMkB63zXcvgQJJBa+lLWgYtztnSlyTn9SSZZdL3brbxvJtJaU9fURSliVCjryiK0kSo0VcURWki1OgriqI0EWr0FUVRmgg1+oqiKE2EGn1FUZQmQo2+oihKE6FGX1EUpYlQo68oitJEqNFXFEVpItToK4qiNBG6iYqiuIQx5gpr7Y9UjjQqi/tyaE9fUdzjiloL4FAvcoDKkouqyqFGX1EUpYlQo68oitJEqNFXFPeoub/YoV7kAJUlF1WVQydyFUVRmgjt6SuKojQRavQVpUoYY3YzxtxnjOl2zm15yn3HGPOiMWa5Meb7xpi8+5tWUw6n7HRjzGpjzE0VluEMY8zLxphXjTGLctyfaIz5tXP/b8YYbyXfX6wcGeU6jDHWGHNsNeQoRhZjzL7GmD8bY54xxjxvjPloJd6rRl9Rqsci4E/W2rnAn5zPQzDGnACcCBwBtAPHAQvcliODa4EHK/lyY0wr8APgTOBQ4FJjzKFZxT4F9FhrDwJuBMKVlKEEOTDG7AL8P+BvlZahRFm+BtxmrT0K+Bjww0q8W42+olSP84Co83MUOD9HGQtMAiYAE4HxwDs1kANjzDHALOCPFX7/e4FXrbWvW2v7gFsdmfLJuAT4UKVHPEXKAdLwfQfYXuH3lyqLBaY7P88A3qzEi9XoK0r1mGWtfQvAOe+ZXcBa+1fgz8BbzvEHa+1yt+UwxrQANwBfqvC7AfYBVmV8TjjXcpax1g4AG4CZbsthjDkKmGOtXVrhd5csC/B14BPGmARwL/C5Srx4XCUeoijNijHmfmB2jlv/VuT3DwLmAx7n0n3GmA9Yax9yUw7gM8C91tpVle9gk+uB2WGDxZSpqhxOw3cjcHmF31uyLA6XArdYa28wxrwf+IUxpt1amxzNi9XoK8oosNaelu+eMeYdY8xe1tq3jDF7Ae/mKHYB8Ji1drPznd8BxwMlGf0KyPF+4GRjzGeAacAEY8xma20h/3+xJIA5GZ89DHdVpMokjDHjEHfG+gq8uxQ5dkHmVZY5Dd9s4C5jzLnW2iddlgVknuMMkBGhMWYSsDu5/39Fo+4dRakedwE+52cfcGeOMiuBBcaYccaY8cgkbqXdOyPKYa39uLV2X2utF7ga+HmFDD7AE8BcY8z+xpgJyKTkXQVk7AAesJVfRFRQDmvtBmvt7tZar/N3eAyohsEfURaHlcCHAIwx85G5nzWjfbEafUWpHouB040x3cDpzmeMMccaY37slFkCvAa8ADwHPGetvbsGclQNx0f/L8AfkAbtNmvti8aYbxhjznWK/QSYaYx5FfgihSOMqimHKxQpy1WA3xjzHPAr4PJKNIS6IldRFKWJ0J6+oihKE6FGX1EUpYlQo68oStVwUhn8IuPzOGPMGmPM0oxrZxpjnnTSULxkjLneuf51Y8zVtZB7LKNGX1GUarIFaDfGTHY+nw6sTt00xrQDNwGfsNbOR0ImX3ddyiZCjb6iKNXmd8BZzs+XIpEoKb4MfNNa+xJIVIu1tiI5ZpTcqNFXFKXa3Ap8zFlcdARDE5m1A0/VRKomRY2+oihVxVr7POBFevn31lYaRY2+oihucBdwPUNdOwAvAse4L07zokZfURQ3+CnwDWvtC1nX/wP4qjHmYJCkZ8aYL7ouXROhCdcURak61toE8L0c1583xnwB+JUxZgqSafIet+VrJjQNg6IoShOh7h1FUZQmQo2+oihKE6FGX1EUpYlQo68oitJEqNFXFEVpItToK4qiNBFq9BVFUZoINfqKoihNxP8HBioLU3sre5YAAAAASUVORK5CYII=\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -1560,12 +1426,11 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, { @@ -1598,20 +1463,9 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeXgb1fWw37EdO3ECUUgggNga1oBZgoAWHHYc+NEqhKU2tIU2H1SCUigttCVqqVAXBVoobYGC1JattCVhaYjKFrGD2UVYBhx2AojsibI5jmN7vj/OyJFGI1uytYzseZ9HD2hmNLqRzz1z7rlnUTRNw8bGxsZmeFBV7gHY2NjY2JQOW+nb2NjYDCNspW9jY2MzjLCVvo2Njc0wwlb6NjY2NsMIW+nb2NjYDCNspW9jY2MzjLCVvo2Njc0woqxKX1GUQxVFOSzPz0xRFKVVUZRnFUV5UlGUScUan431GYgM6Z97TFGUFYqi/LIY47IZWgxUzqxIuS39ZmC7PD+zBDhF07RjgOuAQMFHZVNJDESGAM4HflrgsdgMXQYqZ5ajbEpfUZQm4ELgKkVRbsj1c5qmLdU0bb3+thPoKsb4bKzPQGUIQNO0L4ozKpuhxmDkzIrUlOuLNU2LKoryiaZpRw/k84qijAZ+B8ws7MhsKoXBypCNTS4MNTkrm9JXFGUHYKnhWDXQanL5Q5qm/SbluhHAHGC2pmnvFnWgNpZlMDJkY5MrZnJWyZRN6QMHAWrqAU3TuoGv9fUhRVGqgLuBeZqmzSve8GwqgAHJkI1NnmTIWSWjlKu0sqIoXwEiwBeapp2Sx+fOAu4AXtMPva1p2iWFH6GN1RmoDOmf/RtwFFAHqJqmzSjCEG2GAIORMytSNqVvY2NjY1N6yh2yaWNjY2NTQmylb2NjYzOMsJW+jY2NzTDCVvo2NjY2wwhb6dvY2NgMI2ylb2NjYzOMsJW+jY2NzTDCVvo2NjY2wwhb6dvY2NgMI2ylb2NjYzOMsJW+jY2NzTDCVvo2NjY2wwhb6dvY2NgMI2ylb2NjYzOMsJW+jY2NzTDCVvo2NjY2wwhb6dvY2NgMI2ylb2NjYzOMsJW+jY2NzTDCVvo2NjY2wwhb6dvY2NgMI2ylb2NjYzOMsJW+jY2NzTDCVvo2NjY2w4iacg9guNM+Z7YCbAs4U147669RyN+oBqjO8/9rgI3ASmCV/l+z1ypgVX3LrC1F/8faFI32ObNrgB0RuUmVpQnkLzep7wFWkykzZrK0vr5lllbcf6nNYFE0zf4bFYv2ObNHADuxVZE7TV47A6PLNcYU1pI5iT8GVP31UX3LrO7yDW94ohsFYzGXn9RjEyn/yn0LmQ+EpcC7iAy9U98ya3X5hmcDttIvCO1zZlcBk4ApwKH6fw9CLC+ljEMrJB1AG1sfAsnX57Z1Vxja58weAxzMVhk6FNgbqC/nuArMEjJl6N36llkbyjqqYYSt9PNEX0bvR/rEPARx0QxH1gPvkDmRl9sPg+y0z5m9HVvlJylL+zB0jIR8+YRMGXqvvmXW5rKOaghiK/0+aJ8zeyRwIJkW/MgCf9VmIG54fYm4XLr0V3ee/98DjEF8uqmv8SbHtqPwymYF8BwQBR5H3EPDTth098xOpBsJU4Ddi/B1K0mXnzjiXtnMwGSoG3EZbUemzJjJUqFXJN2I8n8CkaPn6ltmbSzwdww7bKWfQvuc2dsAxwOnAFOB/ZFNrcGwHHOFnvp+TTkVYvuc2dWAg/QJvBMwGWjQXzsM8ms+RZR/FHiyvmXWyj7GMwm4BVk9/a6+Zdb/BvndJUNX8vsiMtQEHMbgf7sOsstO8tiX5baK2+fMrkceBMmHwfbAHmyVocnAiEF8RSfwAlvlKNbXPlP7nNmXATOBl4FZ9S2zVg3iu4cMw1rp6xP0YOBkZJI2MnChXAu8DixM+e+H9S2zOgsw1LLTPmf2DsABbJ3Ayf8fO4Dbacjvk5y8rfUtszalfFcUOCnl2h/Xt8z688BHX1za58weC5yAyNApwG4DvJUGfEC6HL0FrBgKqyQ9sGEvtspQ8rUXA9uETgBPslWOeleT7XNmu4DXUq5dBJxS3zJr8YD/AUOEYaf02+fMnoBYYCfrrx0HcJulZCr4T4fCxMwH/aHpJHMS74+Em+ZKB/A8WyfvLcARhmv+AFxZ3zKrZ5DDHjT6xv0UthoLR5H/irAL2QtJU/D1LbPWF3CoFUH7nNmjkH2yVBk6gPxdYIvZ6k7sAOYZzi9BFP9bgxpwhWNJpa+q6u7AqcA2yB/q/oaGhvaB3EvfeD0CmZwnA4eTn//6E9KV+8L6lllLBjKW4YLuLjoEebiehLjK6vK4xTrkb2/8O90NnJ/L6klV1Srg/xBlsgV4qaGh4ZU8xpCGvtJpYqscbZ/HxzcBb5IuR2q53TFWR9/sPp6tcrRnnrdYR2aAxTrgtPqWWU/ncgNVVXcC3Ij7cznwQENDw7o8x2EpLKX0VVUdBwSAC/RDNcgm1BbgZ8DtDQ0N/caKt8+Z7WTrUvsk5A+WK+8DjwKPAS/Wt8xak8dnbUzQLbmpbJ28UwZxuwXAWX1ZxKqqHoesFnYBapFN7R5kY/nShoaG93MYcw1wJFuteVceY+wAnkHk6Amgrb5lVlcen7cxoX3O7K8g8tMEnIhsMA+ETuDc+pZZc7NdoKrqGMAHXIa43UYguqgHuAq4paGhoSITGgum9BVF+R1wDLAMOE/TtLwsc1VVxwIxxF1gFh2zEZgDXNDQ0JAx6PY5s3cEvgmcjSy3c2UDMjEfBR6rb5n1ST7jtsmf9jmzt0d84MkJnO8y/gPguPqWWV8aT6iqeg7wd8wjSboRq7uxoaEhY4mvu22mIjL0TWQzMlfa2GosPJu6R2FTePS/Vepq8mjyW01qQKC+ZVbAeEJV1VHAS0iOhJmbsh1xI53R0NBQdndjvhRE6SuK0gD8UtO0sxVFuRCo0TTtpnzuoarqg4hV1dcfrh24qKGh4S6A9jmzxwNnIJP0OHLfDHoDmaCPItb8kNhsrUT0fYE9kcl7Drn7xzuAvetbZn2RPKCq6mTEcOhrP0FDDJO9GhoaNurffzgiQ82I0ZEL6xDf8WOIsTDsNwjLib6abASmAd8l94ipe+pbZp2TekBV1dsQeehLjjYCv2poaPjjAIZbVgql9C8C2jVNu1NRlN2BazVNOzvXz6uqejwQIZdyBD09G3Z/b8GPqnu2nIE8JHKpH7QKcQs8Ciyob5m1NNex2ZQGfR9gCfn5yu+qb5n13eQbVVWfR1wy/T38N43cuPL2nT99MYFM7kk5fl8MUfKPAi/Z9YqsR/uc2RcAf8vjIxpQkwwQUFV1ChJUkEvOQTuwW0NDQ0WFguZUcE1RlD2R0LG9NE1boh/7NhJR8VVgHDJhQUIX8/W1fZdcoj20Hnb+pHVUdc+Wf+Rwz5eBh5AJ+rpdN8by9CBylA+fJf9HVdXxiMXe72qvfv2yURM/f+0HOdw/wVYZWlDfMmt5nuOzKT35hhBvMUSEnYPsA+VCD/AN4M48v7Os5KT0NU37SFGU/yGbGj9XFOVI4CbgZE3TPlcUZQ1bf+yxSFW+nNCjLGaQw2Sta1/DyI5EX0v/hcA9wBx7uV1Z1LfM0trnzL4UMSSMK74O/ZXcUFOAVuDqlGvcyAZdvxN2m9WLUbSsrtiNwIOIHC2wI2wqjr8BZyIrvlS6kI3YTkTXjED+1hcbrjuH3KsPjwHOpcKUfs7uHUVRDkUSIaYimxiXaZo2Rz93IDBL07RvKYriAeo0Tbsxl/uqqnoQMoHH9HdtVddmdn8/ipI+5kXAfxBF/15O/xgby9I+Z3YdYjhsRhR9Zy75D/qe0PRcvmPcsjbGrfww9dBmxKK/B3iovmXWgMKDbayDHu6pIDK0OZfoKVVVd0GCBPIps7IFqDMLLrEqOdfT1zTtdUVRXkHcJtcmFb5+7m1FURYrivIcEst6Xh5jGI9EVfRLT00dnylOOh+O0LNu/TpA7dnS9SKyzB/D3U/WuyJRe8JWMLplPRA3Ss6lDlZvtxdrn3yezg8+7qS7a1lPV/eLWo+2EPHRTuDuJz93RaIVM4ltMhlgCefxyEogH6VfhQSfdAzg+8pCzkpfUZQqRDn3ANcaz2uaNmuAY8grk7H9wfmwNgGSdHEU6eGZWszd9CHwNlKo6W0kUucjexIPeXKWo5533qLzrXdBXEG76q/mlEvWxdxNyUqPSVmKuSLRYZctO8yoRlyI+aBRYc2o8hns9UiS0wfAt4HbCjSGteSYIav19DB2p20Yte/2bF6zgbWfLKenK22RoCCxtXsjoZxJlsXcTc8ju/LPA2+4IlE7WWZokcj1wpotm9huigTsrP98JZtWZiRYmhkU3TF30xtslaHnXZGoHQU2tFhH/gq8ClkhVgw5+fQVRfECs5BIneOQDbT9tQLEe6qqOhJYQw5LqpGrv2DComd733d3drHmgyWs+3QZWk9eQ9kIvMjWCfySKxK1S7ZWMKqqXg78hhyiwLZ/6zHqNmyNsmtfsY7Vi75gcyJvEfiQlIcA8L69oqxc9KCS1eQXAfRmQ0PDIUUaUlHoV+krinISkgl7nO67r0ZKFVyuaZqxoNGAUFX1YaROSp+MXvoB4z5+NeN4d+eWjtXvfbl+3eLlE9AGVBe+G6mJkpy8ra5IdNkA7mNTJlRVnYS4YfpV+jvGHqRmc6aCb1+xdtVK9bO6LRs6+g0qyMIK0h8CC12RqB3LX0Goqnon8B1yS/TcBFzV0NBwfXFHVVj6VPqKouyHCO95mqY9nHL8YuA7mqYZw6IGhJ46H8YYwbNhPTVP/pedJu/BqIkTQeuGqmq2rFvLli8+he50D42mae+3L0v8Y+mrH65EKvUdjKxOBtKD9n3SJ/CHthVnbVRV/RCTolxV69aw8+r3qR/vgJ5uUKrpWL6CzqWLqalKtxE0Tevp2dJ97/KFHz/UvnztzogcHYYUbsuXdiSdP3VFae8LWBhVVU8G7iNHXdTd1R2rruLrtY3NFWMkWqLgmqqqNciG2T4kn7Ab1lN7b4jdz/wGVeN2onrX/VFGj0XbuJbuz9+hZ81SNrW9laH4dZ4FfuzwBF+PuZtqEOU/FanPMRVpIp0vy5CCXfOBiCsSzdmHbFMaVFU9BbiflGzKqnVr2FNbStV2O1G96wHpMrR6Cevffj1D8eu0A9cA1zs8wfaYu2l7xMeflCMX+ft/u5HAgif0cb5qGxLWQnfxtCIPevn79qOLtMTyzfR07V4pit8SSh9AVdV9gFfRS+pW3Xcbux55MCN324ua/Y5CUbZOTE3T6FrUSvfSTz/v+ODdHTCv16MBtwO/dHiCvaWQY+6mZK2X1IfAPnkOdwtSd+V+4EFXJJq1C5RNaVFV9QbAg674d/n0ZUbvuS81+zWaytCmD97Z0LN08SJkkpvxOfBz4B6HJ9g7WWLupnqkZHdSjo4ih1wTk3s/gFiWL7gi0Yor3jUU0eP130BvI5qLLtLWLH2m9qizjivTkPPCMkofQFXVQ5Dstkk1N/9mzKTzWqg58HiqxmRm5/dsWEPX209p7W+/tjvgR9qimfnhNgCzgRscnqBp5cOYu2kHZPImX4eSewhgN1JG9z7gv3ZER3nRLbVfAFcC1fusf6+u5sAT+pChJ2l/O1aFRHv9Dml1aMZLyOrxJbOT+oryQLYaEkeTX4OepcB/EUPiGTu6rLyoqrofcAfQUHPzb0bnootqjzxjIN2/So6llD6AqqoKMKP6+l88sOcF32bEUWchKQLpaD09bHnxPmobmxWARNg3GbgOab5ixmKkJv+9qRabGTF30xhkLyD5EDiS3PYFNGRpeB/wgCsS/TyHz9gUAVVVtwd+us/ad3+ahwzVAN8Hfk32ssr/AmY5PME+/7b6inIS6cZErvsCq5CuT/cBT7oiUbsKbBnQddHJ1df/4pF8dJHVsZzST7LowuaeSd89W8n36ZoI+04B/og0YTajFbjM4Qm+luV8BjF30wik8cdpwFnk7g56BZm497si0Y9z/T6bwtH54v1af5Z+7ZFnpk3WRNjnAH4JXIp5z+RNSI2g3zs8wZzjPPV9gZOQ2jCnkltLybXIPtL9wAJXJGrX6S8xA9VFVsW6Sv/7ZzztPOu0Y0futmdWf2w2P1oi7BuB+HV/TfaKn3cBPocnGM9nXLoFdwAycc9ElvS58AZbHwCL8vlOm4Gzbn5ozai9D3D04dNPbDvda1rdMxH27Y0o99Oy3P5LxI30L4cnmJc/Xt8TOAUxIr6B7GX1xwakRtD9wMN2bklpGIwusiKWVfptM6dPrHE4Fu/2zel1VeN2lMiL+rFo7bnvmCfCvnHAr4AfYh5p0Y48GP7o8AQHFE8dczftw9YHQK4t9d5FHjp/d0WiFVWLu9JYdvOvDnAccqDaG72TIkM9q5eQeOPthokX//qdvu6RCPtOBG4g+wP+FeBChye4cCBjjLmbRiIrgLOQB0wu7T07gIeBW4HH7Sig4lEIXWQlLKv0Qf+xt932gR2OPeqoUTtNlBjrqmp6tnRqVdXVk2obmz/N5T6JsG9fxN//jSyXqIDH4Qm+OJjxxtxNX0E2BM1Ku5rRAfwbuMkViQ5IYdj0z7Kbf3XAqF2dz4/cfoIjKUMdK1fTs6XzP44zLv5WLvdIhH3VwPnAbzFv9NID/AnwOzzBDQMdq+5KPB55AMzI8l1GFiGlzu+y8wCKQ3ZdtEWrqq5qqG1sfrfcY8wVSyv9JG3nzzh195bTHqoZnbaX2lzb2HxvPvdJhH1NiMV2gMlpDQghm3SDjsGPuZt2AU5HHgBH03+GXytwI7IBbGdxFoEvr/tp24QjD+/dTO3p3LKiqnbExNrG5pwnQSLsG8vWhtlmtfs/Ay52eIL/G+x49YigqcgD4Axgp34+sg6JOLnZFYn22/zdJn/aZk7/6q5nfOOl2u22LsY0TbuwbmpLqIzDyovKUPozp48d/zXXGkfD5F5nWk9XV2Tksd/KqX56KnqExgVIeJ6Zv38p8CNyiPLJlZi7aSJitZ2JNATvKxz0S2TJHrZLQRSW9y9uuWa35hk/r6pJ+/mPqG1szqzt0Q+JsG9PZPU4I8sl9wM/ynfPKBsxd1MV8DVEhs4CduvnI48iRsSjdvx/4WibOX3EuCkHbtzOdXDvBn/Pli0vjTzu2wWpTlAKKkLpA3zq+/6inb/e1BtDrfX0dCpVVRNqG5sHtJxNhH3bI5M2W+3/RxCL7ZOB3D8bMXfTBOD/AT8Adu/j0i3AXOBGVyT6ciHHMFxpmzn9pIknHRMds0eavry+trH5ioHeMxH2uRHXipkSXo+sCm5xeIIFa9epBxM0IntVZ9J3ZvBHwM3A7XYWeWH46Irvtu56+td7K7BqmqYpirJzbWNzReToVIzSb5s5/YbdWmZcNmKbtKTHltrG5rmDuW8i7DsBsaz3Njm9CakoesNAN3qzEXM3VSN7DJcAJ/Zz+auI1TbXFYna7fsGSNvM6aPHTNpj7cQTpvaa+lpPz+dKVdXu+bh4jCTCvjGInFyG+SruVWTP6I2Bfkc2Yu4mJ+DVX301ktkI/BPZP+pz49qmb9pmTr9qlxmn/rpuQpqj4KLaxuZbyzWmfKgkpX/6+CMOfcBx0P6ph/9R29h8wWDvnQj7RiKlo2dhHpf9NjJpTbMxB0vM3bQ/YrWdR99JYMuRwnS3uiLRgrgNhhuLPGe8sse3v3m4wcWzT21j8weDvXci7JuC7AsdbnK6m60bvQUPtYy5m+oQt88lSGJhXzyJGBERVyRasBXIcKFt5vRjHQcf8PT4w6ekHv5vbWPzGdk+YyUqSelPGLXzjit2PvWk3mN6U/ZBWWmp6Fm9twLHmJzWkGX8lQ5PsChNE2LuprHA95AHwF59XNqN1Gz5kysSfaEYYxmqtM2c/vud/u/En9Y70/ZEL65tbP5rIe6vR/n8ANkzMou9Xwyc7/AEnyjE95kRczcdjij/FvpuFP8Z8FcgZLt+cqdt5vRRteO3W7vr6af2Goiapq1TFGV8bWOz5ctnVIzSB1h0wenv7HHuN/evqklzYe5X29hcsIboibCvClG81wFmSTvvA+c5PMGi+dn1TbuTkYnbX5+Bh4BZrkj07WKNZyjRNnP61x0H7f+/8Uccmnr4wdrG5mwbsgMiEfbtAvyZ9A5uqfwFiRQrWtclvaaUB7gI2LmPS9cAQcT1UzG9XstJ2/+b/uwe3zrr6OpRab2fjqptbB5U2HcpqIi04SRad/fzHUszemZPK+R3ODzBHocneBtSJ+WfJpfsA7yQCPt+mwj7+rKiBowrEu1xRaKPuCLRU/Xv+zMSjmfG14E3Y+6mO2Pupr42hm2EF9q/WJJ2QNO0Ezpb55q59QaMwxP8wuEJnglMR6ppGrkUWJgI+44o5Pem4opEl7si0d8CeyA9gJ/Lcuk4JPP4g5i7aaa+32TTFxqt7V9m7NsWVBcVi4pS+oDaHl9iPNZUjC9yeILLHZ7gefr9jXVzkpUcX06EfQ3F+P4krkj0A1ckehngRNwGbSaXKch+wPsxd9Mf9QghGxMm3z5/TefqNfHuTVsNWkVRtkHKJBcchycYAfZH8kOMy+qkAfGbYhkQAK5IdIsrEr3XFYkeg9SQ+geSGGhkF6T39Vsxd9NpepSQjTnqphLpokJTaUq/zeSHPr7QVloqDk/wcaQJi1nyxSFALBH2/VT35RYNVyS6wRWJ3oIkljUhyVxGaoEfAx/F3E2/jLmbBtIxbDjQZmI8FM1Kc3iCGxye4E+AYwFjCHA1UtztpWIbEACuSPQNVyR6AaLgr8J8Bbk/UuXz+Zi7aWqxx1ShmMnQ1zpb5+bTX7csVJrSf7dzdYKu9rRCg2OQpJWioU/aC5HKiMa/dC3we+BpPWGnqLgiUc0ViT6OZPlOB8zC77ZFmoR/GHM3XaSn9tts5d1yWGkOT/A5xIAIm5yeghgQVxTbgABwRaKrdNfPJKQqrVn55qOA52Lupvkxd1PRH0gVxqLuje1a55q0/e9q4LjyDCd3Kk3pLwHWmUzYkvjSHJ7gI0jP1P+YnJ4KvJkI+zyJsK/oy2Jd+UcQJTITc7/xjkh0xrsxd1OzvVzvxcxK+2pn69xcCp0NCocnuN7hCXqRvRgzA+IPwFOJsG9SsccCvcr/csTVdCeZLigAN+LyuT3mbuovE3hYMPn2+e3A4vZ45fn1K0rpT759vga8Wyq/vhkOT3C1wxP8FnA2sNpwejTiBnooEfb1VyelILgi0W5XJHoHMmmvQCIxjOwFzAFeibmb+ksEGw68292+ic7VaVZaFVLorCQ4PMGHkaqdc0xOHw28lQj7LiiFAQHgikQXuyLR7yFGhFndIAWJans/5m66LuZuGl+KcVmcsqwYB0tFKX2dtk2ZT9fDO1vnZqubXxQcnuAcxOp/2OT0/yGRGSVTsK5ItMMViV6PLNdnI9nERg4DHo+5mx6LuZummJwfLrQBlNKvb4bDE1zl8ATPBs4h82E9Gvgb8O9E2JdLrf2C4IpE33ZFom4kV8Us/LAOuBz4OOZu8g3zfaO2TUuWoXWn5bft3dk69yvlGlAuVKTS7960ic2r0+ZIFVLIrKToDde/gcRCG8vpTgSiibDPXwofbRJXJJpwRaI+xLoPI4lcRqYBr8fcTf/Rq4EOKybfPn8FsKpcbkIjDk/wHsSAeMTk9NmIr//gUo7JFYk+h9T3mYF5xNi2SALaBzF30/nD1HXYpnV10bF8pfG4pa39SlT6iwCssqxyeIKawxP8G7IsNsZBK0hNlgWJsC+fJtmDxhWJfumKRL1ItM/9WS47G3hnmE7aRZuWZlhpkzpb5xZ9M94Mhyf4JeLn9yJ1clLZGwkPLsl+URJ93+hB4CCkl4BZ6Y+dgL8jK0hLW7hFYBGYrhhtpV9glgEYE2yAaZ2tc8umuBye4MeITzhA5mbYCcAbenG3kuKKRN9zRaJnIRFOT5tcsi0yaR8dZpt0y7SubjqWrTAeL9uE1Q2IMNKB7S3D6Tpkv+hfpXT3ALgi0S5XJHob8vD5GWBWsuEE4O2Yu+kHekb5cGAZwKZMXXRiZ+tcyya4VeIfZwVAx9LlRittD6AsVloShyfY7fAEr0YUhzF1OOnu+VUp3T1J9PLMJyD7DW+aXDINUGPupu8PE6t/BVjTSnN4gu8hD2mz0M5zgNcSYd9BpR0VuCLRTa5I9A/IvtG1ZCZ4jUbKOD8RczeVJPqozKwA2LxqNd0dacVvx5F769SSU7FKX+vuZlORSzIMFL2Y1iFkWtZVyErg0UTYN7HU49KX648ChyJ1fYx1X7ZBFM2CmLtpjxIPr9SI0je30vqqT18SHJ7gJj208ztkunv2Qdw9JYvuScUVia5xRaJXApOBx00uOQ6x+i8Z4lb/OmALmsamCirJUIl/kI3oFoZV/Ppm6Ju8JyGN143unpMQd89xpR4X9Nb2uQkJGXza5JKTkEl70RCetCsAOletprsjzWAdi0Q5WQKHJ/gvZDyq4dRIJLrnLr2ef8lxRaKfIsrNgzSMSaUeKSr3dMzd1FfF2IpFDyG37IoxGxU3ofUfeiWY/tAFL5w1GHR3jx+pmGl0Hu8IPJEI+3zlsNYAXJHox0gDl4vJtCbHIIldQ3WDrjfkwuoJNg5PcBFSI//vJqe/g7h79jM5V3T01ePfkOijx0wuORpJ7LpsiBZyWwmmBuhRna1zS7r3kisVp/R1dCttDamFs5BNyaJVLRwoDk8wirh7njGcqkLC3v6dCPvqSz4weq3+vyKT9kmTS45HrP6Lh5jV3/sQtkroZl84PMF2hyf4feBcMt1y+yLunv7KcBcNVyT6GbJfdD6Z9XxGIQXnnom5m/Yp9diKzAqArg0b6Uyk/bNrsGhJhkqdxL0T1qS8qVnXorKjh+SdBPyWTHfP2cCzeg32sqAv1U9CQgaNOQejkQYyT8bcTWXdLC8gfSn9Q60afeHwBO/G3N2zLfC/RNh3eRlXjpoe5XMA5kmLjUgZ8MuHkNW/VY6+zJAjS+qiSlX6q5L/s3nlKuO5kkc15IrDE+xyeIJXAaeQWcLBBbyaCPuKWjyuL/RJG0as/qjJJcciS/UfDQGrv1dwuja2093R0ZNybhR9dy4rKw5PsL3r8NgAACAASURBVA1x99xpOFWFNP+5XW8BWhZckegXSNLi94C1htMjkTE+H3M3lcUlVWC26qIVlaGLKnXi9rYk61ydUWrGkj90Kg5PcAHihnrXcGpHpFrnuaUf1VZckehiZB/i+5hv0P0JWaqbNZOvFNLa2nWuWWtsc2dpOdI7bs0EfgL0GE5/FynaVtKEwFR0A+JOxOo3q+XzNeCNmLvpZxVu9ffKzebVGekLlpShSlX6vXSuylD6DVYIuesPhyf4EXAkEDGcqkMiMn5fjnj+JPqk/TsyaR81uWQqUsqhoG0Gy0Xn6jVbDIdKWvZgIOjJXDcgJb+NFvXXkJXjoZmfLB2uSDSOlAA/l8z6QnVIvP/DMXdTSWtnFYMtiQRaev/Zr3S2zt22bAPKQsUr/e6OzfR0daUKfB2SOWh5HJ7gOuB04BqT0z8F5ifCvrI2ZXBFop8jSmUmmYplDPDfmLvp6kp392xenagoSz8Vhyf4GOLued9wahfg+UTY11L6UW1FNyDuRgyIB00umQa8GnM3HVjakRUWrbuHns2bjclDlvs3VfRETdK9qcNYS97yVloSPaxzFhJ6t9lw+lTgxUTYV1b/sj5p70Am7UMml/gR5W85qyZXOldlWPoVo/QhLYt3geHUKOAevSVjWee7KxJdghg53yJzT2sS8GLM3XRmyQdWQLo2tn9pOGQ5ORoSSr9rY/tnhkOW+6H7Q0/COZrMxhqTgVcSYV/Jar1nQ1+qu4EfYvCJI0v4lyo1JK9zzZou0iuS7l6KpiqFxOEJrkGKtt1gcvqXwH3lCg1OohsQ/0GCBYwtP0cD98XcTb+t1JXjlnXrjUrfcgZoRf6wRrYk1hot/YpT+gAOT/BVJBzvVcOpcUjphubSjyodfdLejCR1GRPOJiONWk4t/cgGh9bdA3rVxBQstzTvDz1C7CdIvLxx9XI68Hgi7Ct7AxTd6j8B8/pCvwDmx9xNlu83a6Rz1Rrb0i8FHctWVKx7x4gez38s8G/DqVpkmX5J6UeViSsSfRZ5QL1uODUW+F/M3XRlBRZuM1a2tNyEzRWHJ3gbklhn9DEfCTyXCPt2Lf2o0nFFop16+e8LyXxAfR14udLCOtu/XGpU+gd2ts61lJ611GDyIG3cGxd//iXp7oZdSt1Jq5A4PMFNiI9/luGUAvwlEfb9rlwJOKnoWZhTgbsNpxSke9ccC3dWMpN9Y/XRijUeAByeYCuSIGR8mE1G9ooOKP2oMnFFoiHE6l9mOLUvsnJ0l35UOZMmR5uXr0yQHqU0BrBUGZNKVfppCr2nc8sqMrv7VKyVBr3heNcA55HpP/cB/0iEfWUPTXVFopuQMZrFi38T2ZyzYpldo1GQYAhZ+kkcnuBnSOvDpw2nnEhkz9SSD8oEVyT6POauzW0QV89VFvXzV5wcWfFHzIXtDe9XkmmlWeqHHigOT/CfyOapsSDaTGBeuTfmoNfPfwOS0GWMyjgQCcc7qfQj65NcZMhyS/OB4PAE1yJ1ce4znkJ6PFgi10LP5D2GzExjkGq198bcTVYrYmaUoxVYXBdVqkBPMLxfgcWfroPB4Qk+iix/jc04v45U6iz7xhyAKxJ9HHEnvG04tR3wWMzd9BML+fnNZGgJKWn1SPbxkKg15PAEO5AaT381nBoJ3J8I+zylH1Umrki0AzFofkRmf+czkJWjlUpkGOVoJZm6yFJuwkpV+mZPV0v/0IPF4Qm+ghSs+tRw6mvIMt0SrQ71cs1HAvcaTlUB1wN3xdxNo0o+sEwyZKi2sVljaBsP3Ui47VWGU1VASO/qVvaHsr5y/AtSk95Y0OYAZOV4culHZkouushSMlRxSr9t5vRRSDxvki4kU9S4pGqwaqXEgeLwBN8HjiLz37ofsjFniRBDVyS6EWhBNqKNFUW/gxTb2rnkA0vHbLKCxZfmg0XfK/otUlfJuAcTAP5azvIfqbgi0acQP/8bhlMOpHTDT0o/qq20zZyuYC5H75D+2+7Z2Tq3LI1uzKg4pY+JL1ZvrLKM9LjxkVRIOYZ80DtyHUvmxtzOwDOJsM8SvTl1a+0axAVlLN9wKFKwrZxhg2Y+fRjiK8YkDk/w70jcvrHP7YXAP60QJAC9Jb8bgf8YTlUB18fcTYEyugxHI3omyWZgQ21jczvwgeFaSxhkMDSU/goAfWk+pK20JH1szI1Dkm8sU8fbFYk+gvj5jdFVewHPlrEr17C09FNxeILzkR4KxkJo5wB3W0jxtwPfRupRGVcnvwKuKZPiz5Ah3QAFC8tRJSr9HQzvU617S/vSCknKxtzNxlNIRMZXSz8qc1yR6AfI3oOxbs8eiOIvR+mGbHL0LumKxZKVEguFHst/NPCF4VQL8J9E2GeJ9qP6yvE6pB6Vsdz3z4A/lUHxV6QuqkSlb3TZpAqrWRLKkEXfmLsEKU+bylhgQTkbshhxRaLJiqLGDd5dEFfP/iUekqkc1TY2dwDvGc5VVFZovjg8wXeQUMnFhlNnIVngllD8AK5I9DFkg9foMrwUuKXEsfwVqYsqUekblUNqIxKj0JatiUSpcHiCGrJhOttwaltE8R9V+lGZ44pEtyAVFv9lOLUjovhL4j9vmzl9LLIHkqSLdB/scJSjT5Cerp8aTp0BzE2EfbWlHlM2XJHoy0gIszEnxAv8o4RNWSpSF1Wi0jc+MVN/aGMa98Qij8US6Ir/F0j/3VS2AR6zStYlgCsS7UI6O91mODUBeCrmbjqsBMMwytAHk2+fn1r7ZbjK0adIkMDHhlMzgHsTYV9dyQeVBVck+jrykDIW/fse8M+Yu6kU+xFGOUrdt7KsDFWi0jc+XSvihy42uuL/FRJ2l8oYpELn0aUflTmuSLQbCRm8xXBqHPBEzN10ZJGH0JcMwfCWo88QZfqR4dR0pDSzlRT/28hDyliO/Byk7lOxVyd9WforSd8b2q6zda4lVksVpfTbZk6fQHoG3Gbgk5T3a0iv1jems3WuVQt+FRw9BvtqpKlJKqOBRxJh37GlH5U5rki0B7iYzNrv2wLRmLupmGPta7UIw1jpAzg8wc8RZWoMO/wG8EA5m64bcUWibch+hLHS7hnAAzF3U1HG2jZzei2Z2dq9pblrG5u7ycygN278loWKUvpkTtb3Jt8+vzdVWw/bHNYTFsDhCf4aaZqRSlLxl70ZSxJXJKoBl5O5HzEaeKSI9Xr6WpZDpgxZxh9bKhyeYByx+I0tGE8F/msxxf8hovg/MZz6OvBgzN1UjPpUewOpewdfTL59vjGqyJK6qNKUfn/LcrDoD11qHJ7g78gszTwKiFgsnDO5H2FcnYxC6vIXoyFLf3K01PB+uMrQl4jiNzaXOQWJ6rFEHD/0JnEdQ+bqZBrwUMzdVOiM2L5cO0ksKUeVrvTNfmhb6evopZl/Zjg8Gng4EfZZJoRMj8H+NXCl4VQdMC/mbipYFci2mdNHI/kBSTQyQzRtGdLRM8CPJ3OunQaErVCrJ4lepfNYMsd6HFLwr5CduCrWAK00pW8MP1RNrrHkD10uHJ7gH5BMxlS2QxK4di/DkLLiikSvBS4zHB6B9E1tAYi5m34Zczcti7mbojF307gBfM1XkSYvST6afPv8dsM1tgyl4PAEl2Ku+GeSmSNSVvQ2jMeRmRF7FLJXtF3M3bR7zN30fMzdFI+5my4a4FdVrC6qGKXfNnP6NkjNllSeN7l02PtjjTg8wevIDOd0InH8xlTysuKKRP+M1H9JpRr4d8zddCXwG2RD7CQGpnCOMbx/zuSaVaSX9R3b2TrXMj7scuDwBJcjrhJj/PlPE2GfcTVZVlyR6Aokjv81w6nDgSeB3yP1fHYGboq5m/bN5/5tM6fX6J9PxUyOLKmLKkbpI0/W1PEumnz7fGP/T7CoH80C/Aq41XBsH2Rz11KNKfT2eTNJr9BZBfzOcGnLAKIzjEr/WeMFtY3NPWTGf1si8qKc6Ju708j8ba5NhH3nl2FIWXFFoqsRw+BFw6mDgRNT3lchCYP5MIX0Sr/LydzwBtvSHzTGEL6MyapjyR+63Ohx/D8E5hpOuZAOXJayZF2R6B1IGeZUi9sor9sihedyom3m9Dqk1n8qthzlgV7e+xQy69+EE2Hf6WUYUlZckehapJvbM4ZTxqZD5+RZtydDF6UUWkvFkjJUSUrfaKEZ/5BJLPlDWwG9Vs95QNRw6gTg31aKxtBZjNRSN5tQSc7O436HkV4K9wsyw/ySWHJpbgUcnuDrSLLW5pTDVUhEj2VCgnU2A61klmxIZW/Ees+VitZFFaH09cYpRxgOm/nQwKI/tFVweIKbkcSVVwynTgdutUo0ht5d635kJdLXmNx5hONluHayWGhguwn7xOEJPo08cFOzTmuB+Vbp6aDz/wAfmQ3MjeRkPLTNnF6FVCVNJdtq0ZIyVBFKH4m4SK3098nk2+cbM/CS2BZaPzg8wQ1Iko0xzOx8IFj6EZlSRW6TZBTSOD4X+vXnp2AbD/3g8ATnARcYDifLfuS1OVpEdsrxupYcK3Q2IOXLkyQwj9wBychNNSrGd7bOLXvF0kpR+rn688G8FEMxMvIqGocnuArZlPvMcOrKRNj3gzIMKQ295WKu0Tnf7u+CLBEXttIfJA5P8HYyQ4InIIrfCpFht5EZcWTGbmTu95hh1EXPTb59vrGxCwC1jc1dWLAUQ6UofWNWZtbJqkdeGKN67AlrgsMT/AJR/EbB/Esi7Gsqw5DScEWiVyIRGC/3c+mpMXdTf8v3qUjV0SQryMw0TcVW+jmihwQbH9B7IHV6ylqgzRWJLkYidgJkbj4buSKHW+asi3QsJ0eWVvptM6dPbLvgjBeUupFHgIJSNxKqqyEz/taI5X5oq+LwBN9DojE2phyuRkrplr15iCsSfQKxwNxkJtwkUcjMPO6lbeb0iVRX36XUjSRFjrrp2+qyZSg/ZpFZLnsqFtgnckWia12R6NXAJCRGf1OWS7+eLYqnbeb0iYsuOOM5pW7kKQZd1J9BYjk5sqzSb5s5fWLVyFGLxxzsOnIP3zXs9/cH2MN3DWMOOoyqkaNeaZs5va8fz3I/tJVxeIIxpBxtqv9xLFKnxxjeVnL0Mg3/Q5LzmjGPiTa19Hvl6KDDdjXI0Y5VI0ct7kOObBnKAz0k+EIk+SmV75Hp/ikLrkh0pSsS/TlSHfNGpHlOKtV6Lag0kjI0+mDXVBNdFK00XWRJpa+q6oGM3/7F+v0Pqtvlhz5G7jYJpbqakbtNYpdLfNRPPqhOqamZ08ctNhjeW6YGuFVxeIIRMq3lvZAa6paoA+6KRHtckei9SN2TS4EO/dQ6JPmsF1VVa1VV/S4TJr5Sv/9Bdbtckrcc2TKUJw5PcAvwTTKLnl2TCPtOK8OQTHFFoktckeiliPJPjQK8w3itqqr7sN32LwwlXWQppa+q6s6qqt4DvKxs3PCV7U87B0VJX20pisL2p50N1TXGSAybwXM9cLvh2HHATeVeoqfiikS7XZHojUA94jt2uCLR3vA4VVXPQNr+3aRsWLebLUelw+EJrkZccYmUwwrwr0TYd0h5RmWOKxL9zBWJHoNE42znikR7s4pVVZ2gqurfgTeV9g2ThpIMFUTpK4oyVlGUVxRF2aAoSsNA7qGq6vaIr/4MYJTW0UGd07weWJ1zd7TOzZZRQkOFlCW6MQfi+8CPSj+ivtHdPotTl+Sqqv4A+CcSqjfGlqPSo+8TfZP0bOrRSAy/5UKodZ//muR7VVW3BV4CzgVGDjUZKpSl3440LLhvIB9WVVVBygOMR4/HV0aOZHPcPNJqc3wxSm1dX1maNgPE4Ql2Ig9eY6bq9Ymwrxi17QuGqqqHAtchKwDAlqNy4fAEH0fKfqSyKxYs+WHC7cAuSLLZkJOhgih9TdO2aJpmLMKUD6cgKfK9vuOeiU5WzPsPmpb+e2qaxooH74Hurv5CpWwGiMMTXIm0xluXcjiZZj+glVyJ+BvpZRZsOSojDk/wVmTDNJWvArdZyV2YiqqqX0P0Ua/vfajJUE5KX1GUPRVF2agoyk4px76tKMqXiqLsWoBxnEd61Tp6TvkmG99/hy9uDNKx+CO0ri46Fn/EFzcG2dj29hatq6ulAN9rkwWHJ/gu0EJ6mv02SETPBPNPlQ9VVXcEDsBQsqEvOWpve2uzLUdF5yfAY4Zj5yDd0qzIORg2W/vURYve7qo0GVKMT6+sFyrKHOBTTdN+rijKkcDDwMmapr2Scs0dwHWapmVLS85AVdUaJIs2s37KhvVUPXovVcviaJs7UOpG0jPRSc9Jpz3UMPXYb2S7Z2fr3LmITzFJS21js7G6pE0OJMK+S4E/Gw4/Bpzq8ARNMxHLgaqqHuCPGIwHwFSOtO137u4+YMqJDS3nmRbL6mydOwn4KOXQJ7WNzZOKMvghTiLsG4uUOE7t1qYBJzs8QWPxv7Khu5mXYBZWmU0XTTv9pYajjs6aydvZOjcEeFIOXVjb2Bwq+ODzIJ+qitcCTyqK8k/gAeDCVIU/CA4kWxXFMdvQc9b/w0SzTI0HvIrTH6ooX1qFciMSIulNOXYykoxjrG9fTqZjpvAhmxx1oWlTyF4h0aZAODzBtYmwz40kMiXzPpIRPVP0Ov1WYDekXHcm2XXRYaqqKg0NDRWji3JW+pqmva4oyivIH+5aTdPSYlMVRXkYOATYV1GUkKZpd+R463Fg9luaM+LLT6hf+NRYYEM84G0D3kYKHiX/u2T7k07s6xY2eeDwBLVE2HcJUmgqtXbNrxNh3wsOT/CpMg3NSO4up+4uRr8arRux5OPfxx/ouQKRnVQ5arNlqLA4PMGPEmFfC1LWO+mC2x7ZJzpBj/EvN+OQul2j8viMguwjZcvytRw5b+QqilKFhGD1YFIIS9O0UzVN21nTtCPzUPjQd9ncDOoXPklVx0aQCA0XkvF3HeJyiAMrV7/08nHrF73Hpi++YMvatfRs2VKdz3fYpKNPyLNJr9FTBfwnEfblWsWw2OQsR7VffEBt/EOUnp4RSNvIU5Cs0TuB14GNK554Mrr2rbfY+PHHbF62nO5Nm2wZGiQOT/AJwG84PBXrrBgHsrmsYbF8p/7Ix71zPZLE8AFS1dBYZ2OgJMj1x9Y0UPr9fbfr3rCB7g1piXB38MyzHqSn7vPAi05/aJ3pp21McXiCXyTCvm8hD9fk32siYqmd6PAEjSntpaavJhnp9C9DVWjapM7lK+hc3huUthutL3zCVhl6Hmhz+kOW2deoEH6HrBhPTjn200TY97zDE5xfpjElWUt+OhFE4bcXYSxFI6eNXEVRvIgP96tIhubVwP5arrvAfaCqai2i+HNaUtUs+4zRrz3eXtWxcTDlknuQ4l29E9jpD305iPsNGxJh39VkWmuzHZ6grwzD6UVV1UuAa0iJ0c9KTzf1C5/eUvvpu4qS/yRPZTXSlSkpRzGnP7S574/Y6NFfbyCrrN7DwKEOTzBbJ7Oio2/krqT/hiupvNbQ0HB4tpNW3MjtV+krinISMAc4TtO0txVFqUYKXl2uadq8QgxCVdX/AjNyvHw9Ws+F4x64+UnEz3xgyn8PIJdJb87HpFtxi+yN4kwSYV818ChS8jiVbzg8wYfKMCQAVFXdFZHLXBN/Vm376F07V29cuw/pMtQAfGWAw+hAOpKlrigTfX9keJII+45CNtFTH7qvAVP17m5lQVXVMNJMKBeXTTvw84aGhpuyXVBxSl9RlP0Q4T1P07SHU45fDHxH07Rcmg70i14r5U4MYZs969eh3fdv+PJzejZ1UDVqJOy0S4821rHfIf7fGYs6EQ94q4A9xuy33109Wzobu9dvEJ/+5gHJ0CrSHwKvO/2hzoHcaKiRCPt2ABYCO6ccXgNMcXiCuTSsKAqqqr6DRBqlYSZHmmPcl9qSLw+dMm+BsQoi8YB3m9odtj+pdvz4B7o3bGTLunV0rVsn7sX80IC3SF9RfjGAf9qQJBH2/QRxG6fyV4cneHE5xgOgqupxQITcdFE3e+59+MEXX7Yw2/0qTumXClVVqxAL6WD0J3/P+nVoN1/PNgccyI4t5zJq9z3YtPhTlt5zF+vfemNzT8em3c0mLKTH6WuaRufKVT9c9+aba5HellMxUQw5sAmpxzEfeMDpDxk7Tg0rEmHf0cBTSO39JK8AR+ulHEqOqqpHI3sOva7CgcqRMU5f6+7+dOVTT5+LyM/RiF967ACG+SnwBNL/94nhbEjoWbkPkLnKP8fhCd5ThiElXTwLkA5ZI2DQushW+tnQl+dvIJvFVd2338o2EybwlSv9adXtNE3jk9lXs+71V5855L6HjzO7V3/JWfGAdzwyaafqr8NI78GbC68gE/d+pz/0UX8XD0USYd/PyIzk+rPDE7ysHOMBUFX1V0iJ6NEAA5Wj/pKz9FXlAWw1JI5G6rXkw1rEqrwPWOD0hyom7K9QJMI+BxBDGpwk2Yj49836JhQdvfjjm0iTnepB6iLLKf3BbGIVlIaGhs/1uhch4Kt8+Xn9jhf/2LSc6Y5nn8v6txYOuJyp0x9ahVjs8wHiAe8o4Ai2PgSOIluSxlaO0F/XxgPeN9j6ADA2Gx/KXIf8XqmNyX+UCPseKmOm5W+QdpnXALV8+fmoYsiRHrWTjO//K0A84N2NrQ+Bqcj+QF+MBb6jvzbGA96HkAfAI05/yFiHfUji8AQTibDvm8ALbC1/MBr4ZyLsayxHVFhDQ8MKXRfdDJxYLBkqF5ZR+gANDQ0fACeoqnpsz6aOp0ftvofpdaN224OezYUrZ6pbWM/oL+IBbzWyqZecvEeT7r82coj++o2eMHYf8hB4ayhvBjs8wZ5E2PddJLZ9j5RTtyfCvgMdnuAa808WDz0z8lZVVe8GvD2bOq4roRx9BvxLfxEPeLdDDIikHB1OSlFBA6ORrmDNQEc84H0UkaGI0x9aW6gxWhGHJ/h6Iuz7EXBryuEjgCuB35ZjTA0NDZ8BblVVj+jZ1PFyqWSoFFhK6SdpaGh45s2RddqmxZ8q9ZP2zDi/6bNPqarrs5ypMYInL7+p0x/qRlxNbwA3xQNeBVl+ngaciUzkbEwGrtJfH8UD3uQD4LWh+ABweIJrEmHfd5Aa/EnhdwJ/QeqRl4WGhoYNwPVvjqz7wwDlyBhCnHfGqNMfWg38T38RD3hHAscgMnQ6kpFqxkjEzz0D2BIPeKOIDD2or1KHImEkSS7Vv+9PhH0POzzB18s0JhoaGl4ppy4qBpbNJNO6up5des9dpuVMl97zT7SuPsuZGgsmLR/MWJz+kOb0hz5y+kN/dPpDjYjv9hLgafouIbEn8HPE//9pPOD9YzzgbdT9wUMGhyfYijScTuU7ibDvrHKMJ5VByJFRhkw36vLB6Q91OP2hBU5/yIs0eTkeuAnoK0dkBHAq8A9gWTzgjcYD3gvjAW/Ze60WEr2BjxdILdFeg7h5ylp/30q6qBBYVvloXV0t6996Y/Mns6+m/eMP0bq6aP/4Qz6ZfTXr33qjv9LKBZ+wqTj9objTH7rJ6Q8dj0xeL7Lj35f/cTfgx0jo3hfxgPf38YB3j0KOq8z4kfDEVG4td5mGfuSor9LKxZahbqc/9LTTH7oEaS5yFFIltK+Q12okP+IWYEk84H0qHvCeHQ948w1CsCQOT3A50qUtlf0pc5mGfmSov9LKRZWjgWCZ6B0zFs6YNlGpqZmj1NQc07N5s1JVV0fPli3Q3X33lHkLTF0Hna1zFSRJJtV3uk1tY3PRN8Z0H+50ZPk+jez+2yQaEr1xIxK+Z90/Rg4kwr6DkASbVCX0MJK4VbZ/my5Hc3U5IkWOvjZl3oKXzT7T2Tr3x4gSTnJzbWOzsRNUwdFdiYcCZyFytHcOH1uC+MPDTn9oaX8XW51E2HcbMDPlkAac4PAEny7LgOhTF/1vyrwF7myf62ydu5R0xb9bbWPz58UfcXYsrfSTLJwxrQmxpJO8P2Xegn3Nru1snTuO9DosG2sbmzNr9ReZeMC7LdJ96kzg/+i/zEQbstS/q5IjNxJh38+RyJlUPA5P8G/lGE8qC2dMexxILZ95/pR5C0xrSHW2zr0Gcc0l+VVtY/Nvijk+I/oDoIGtD4AD+vnIFqTt6I1Of8j0YVYJJMK+bZFVY2pj2s+AAx2eYFlrZi2cMc2FGDZJVgI7TJm3IEORdrbOrUZ8+KkelZG1jc1lLdVhWfeOgRdJb7K8z8IZ07I1WLbEcsrpD61z+kP/dvpDZyIbdt8E7gGyKfTJSIhYPB7w/ike8OZi4VmR65B6NKnckAj7rNCAxOh77SvUzihHJbeg9b2kt53+kN/pDzUA+yEdp7JlgI5AiiG+FA94X4kHvOfFA966LNdaFl2xf5f0Phu7AX8qz4jSeBNYn/J+AvJ3MWMC6Tp2TbkVPlSI0p8yb8EG0p+ukH3CWkLpp+L0hzY6/aH7nP7QOcj4LkCEx4xtgR8B78cD3kfiAe+plbTx6/AEu5EJuzHl8GjgLr1uTzkxNkzJR+lbQY7ec/pDQac/dChi9f+V9N85lcOR0iafxwPe38YD3nwTx8qKwxN8BrjBcHhmIuw7rRzjSTJl3oIuZF8ulYrRRVAhSl8nVyvNkj90Eqc/1O70h/4BTEHi/+eSvopJ5RTgIeC9eMB7WTzgHUjaf8lxeIIfIb1RU2kErijDcFJ5hfSQua8snDEtW49nq8vRu05/6GIkPPYy4MMsl26PrA4+jQe8c+MB79G626gS+AXwruHY3/TaT+WkonXRUFT6RrePJX5oI/rS/XmnP9SC+C5/S/Zwrr0QqyceD3hviQe8A6kdVGr+hmziphJIhH17lWMwAFPmLdiEKP5Ujs5yeaXI0VqnP/RnYF8ktPORLJdWIy7GZ4GF8YD3gnjAO5jy5EXH4Ql2ILkeqVFx25O+wV4OjLro2IUzppk9SG2lP0haSffxHbhwxjSzutdl98Xmix4CehXitzyXTMWUZDRwIfBOPOB9Ih7wuq1qtenROheQvqleB9yiF9oqRQdoyQAAIABJREFUF/0aD52tc6uQuiupWGLCZsPpD/U4/aFHnP7QqUjEz5+AbJueByMP5c/10GFnluvKjp6YFTAc/nYi7Gsqx3h0XkMiBJM4Sc9IT2JJXVQxSn/KvAVryIwDn2pyqSWfrrng9Ic2O/2hu53+0FeRhjV3kz0T9ASkdtAL8YDXkrU/HJ7gEsT1kMpJwDllGE6SXFaM40jPVl9f29hcMcXQnP7Qh05/6MeIMvoBmS6SJNshbSI/jAe818QD3nGlGmOeXEPmHthfy5W0NWXegk4kuCQVMzmypC6qGKWv84Lh/YEm11jyh84Xpz/0itMfOhdJ3PkV2bM2vwY8Ew94/xcPeM1+j3JzN/Ck4dgNibCvXArGOFn3XThjmjHCZajI0AanP3QLEvZ5IjAP8wzykUh46kfxgPcKvVyEZdCLrnlJX+nvBZSzW1suusiSLsJKU/qq4f1kk2uGxIRN4vSHljn9od8gy8cWMiMHknwdeDMe8N4ZD3h3z3JNydHdPBeRvoG6AzC7HOOZMm/BOiTmO0kVsI/hMksuyweKvn/0pNMfOh0pDfJ7zHsKjwP+AHwQD3hn6oUHLYHDE3wZyURO5cpE2JctXLLYVKwuqjSlbyxbbLahacmn62Bx+kNbnP7QXKc/dDSSsfmgyWUKcB4S7vnHeMA7oaSDzIJeFz1oOOzVW+aVA6McGSfskJQhAKc/9KnTH/o5Uj/qB5g/0HYBbgPeige8p1lo38hH+nhHIKU+yjG+XHSRrfQLgNE3ud/CGdN6/w16CYYhZaWZ4fSHFjr9oRnInoYxEQqk/MOPkeX6L+MB7+iSDtCca5AetqmEEmFfOerGGOXIOGEtOVkLidMf2qS7fvZCQiPNNn33R1xCz8cDXrP9s5Li8ATXkrlHdCySF1Jq3ifdVbb7whnTjPPMkrqo0pT+cqQXa5JRpKdqjyW93k17KWrulAunP9SKhBxOB94xuWRbpKnIh/GA96JyFubSm11faDjcgDycSk1/lv6QV/pJ9MTBIFI6/I+Yl/49CnguHvDOjwe8/TWGKTZzkZaYqVyXCPtKuqrVw38/STmkIGGzQG8EmLF0dtkrbEKFKX29voXRSkudsMNmsibR/bURJAxvJmBWzGlHJHvz3XjA21yuDF+HJ/gUcJfh8NWJsO8rJR7KsLf0jTj9oVVOf+hyZH/jTtI3TZO4EZfPHXqXsJKj7xH9gPSQyfHIXkSp6UsXjSe9f3TCCiUYoMKUvk5fvrRhN1mT6KV670Am7RWYb9TtBcwBXo4HvCeanC8FxrGNAm4qsV/WKEP7LJwxLTVEczjL0WKnP/Q9xIj4n8klCuJOeT8e8F6n95suKQ5P8GPg14bD30uEfceWeCgVqYsqUen3ZaUZrQ/L/NClQm/UcT0SpTEbMIsvPwx4PB7wLogHvCWNfnB4giuQxuWpnIp0kioJU+YtWE26bNQiv1cSoxxZwhdbSvRCb24k/twY5gqSaHc58HE84P1ZPOAtdRe+68nUBbeWeI+oInVRJSp942Zg6o9rjJVdVOSxWBanP5Rw+kM+xLoPY17fpwl4owyT9nakvWIqf0iEfaWsCGkqR52tc2vJrJr4XklGZEGc/tBzSN2kGWRatiD7Rtciq8eDSjUuhyfYicTup7KfybFiUpG6qBKVvvGJmbqBc7DhXLZKlsMGpz/0pd6e7wCkz6qROmTStpaqpo/DE+xBNnVTH0STgKI3KUkhmxxNJj0b9/PaxuaSN3i3Evq+0YPAQcD5QNzkskOB1+IB71WlChhweILPI6GlqVydCPscpfh+MmUodePWqIuM1QTKRiUq/RWG96k/tNHSsMwPXW70srxnIRm8T5tccgRSiGtWKax+hyf4LhAyHP5lIuwrlY84mxwZZWjYGw5JnP5Ql9Mfug2p7fMz0iPpQOLmfw28Eg94DynRsH5Bennp8fqxUpAhQymF1ywrR5Wo9Fca3m+/cMY0pbN17vZIv9oknWQuv4Y9ekelE4BvkbnZW4skUb1YotC8q0mPD3cgJSdKQYYc6f+1rIVmFfQY/z8gIYpzTC45BHg1HvBeHQ94+2sZOigcnuBSMju1XVqiiLANpIe4jgTqO1vnjiTTRfh2CcaTExWn9KfMW7CR9M3JEYhf0fhkfae2sTlbsbJhjb5c/w+y8fSAySWHAa/HA95fFHOprm/qGpte/yAR9hnLIhSDXC19W+lnwekPrXD6Q2cj7RyNMeg1gB9R/lOKPJQ/ku5yqiXzQVBw9BByMzmaTHq45uLaxua1xR5PrlSc0tcx/tATsCdr3jj9oWXIhG0h0/IdgdT4L/YG3V+AxSnva5DaMMXGTIbAwstyq+L0h+5H9oz+bXL6IETx/6ZYrRsdnmA7mcXXmktU5sNM6VtahoaK0t8ee1k+IHSrfy4yae81uWQKEIsHvP5iLNX1RhlXGg6fVoKY6wwZ6mydO5H0+OoOsneksknB6Q+tdPpD30ZCb40bnNXAL5GN3sOKNIS7gdcNx64vQf5HxemioaT0Lf10tTpOf2i50x9qRrorGX/fGsT/XqwNujnAS4Zjf0yEfcWUz1xk6J3axuYubHLG6Q/NQ9yGd5ucbkCatgcLbfXrEWGXGw5/DWgu5PeYkIsc2Uq/AKRtQCrV1eMRSzUVS/3QlYLTH7oPmbT3mJw+GFmqBwpp9eup9cYJeyjw7UJ9hwnGTWwHdshvQXD6Q6v1XhDTgSWG09XALGTP6IhCfq/DE3yazOqz1xS52UrFyVGlKv20RKORE8fvRHqhtSW1jc3GJ7BNjuhL9XOAM8hcqtcgETavxQPeQwv1nQ5P8AUy3UuzE2Ffsfq4GpPVFCxuoVUaek2oA4A7TE7vj0SJXVtgq/9npPfU3QO4tID3N5ImRzXbjB5Leu7QJuCjIn5/3lSq0k+jbtzYXQ2H7MlaAJz+0H+RSfsvk9MHIpN2ZgG/8krSQ+CcZJbSLSa20i8wTn9ojdMfmok0+TEmdVUhSvqZQvXp1Xs3/NVw+Belyv+oGzd2J8Mhtbax2SwbvmwMCaVfM6beWOfCnqwFQq+++B3gNDJr0NQCt8UD3hsLEdqpF9L6i+HwFYmwb+xg750jxoxkW44KhNMfehjx6RszaEH6Qb8WD3gLFW3zayCR8n5b4CcFunefjNhmtPHhZSnXDgwRpV89aqTR0rfcD13pOP2h+YjVbyyNDFI+IRoPeI31wwfC70ifsOOASwpw376pUmqQMNUk8drG5lVF/95hhF4P6nzgFOALw+kdgafjAe/3B/s9Dk9wFZntOC8thbVfPWrkzoZDljMchobSrx1hu3dKgL5B913gHDKrdx5LAfz8Dk8wgSTbpHJ5sa19parKWHrClqEi4fSHHkPcgw8bTo0AwvGA968FCBS4mfTImjFkBgsUnOqRtbbSLwVKdfW4lLdbsFBFu6GI0x+6B+mmtNhwajekcNtgo27+Qrq176C4m3EoVVVG95S9WiwiTn8ogUT3GHsnA1wEPBEPeI016XPG4QluJDPJ75Jid9hSRtQYx2wr/RLwrl1+ofg4/aE3kHINTxlOjQTu1htsDKhwm94L9XrD4Z8U09q3Lf3Sozf++QUSS99uOD0VSQo8fBBfcQvp5SHGUGTfvoKSqlMtWaG1UpV+ddq79Jw7e7KWCKc/tBI4GfizyenLgUcG0VnpL6RXcXQAPxrgvcxIl6FMS9+WoxLh9IfuBY4kvecsSPTWc/GA97yB3LdE1n7F6aJKVfrbpb6prktz/9nL8hLi9Ie2OP2hy4DvAcYeoCchyVzGhhL94vAE15Fp7f+4gLXS02SoZlRd6lzoZBg3TikHTn/oLeBw4AnDqTrgznjA+6cBrhxvJdPaL6Rvv+J0UaUq/bQoker6UalvY6Udig2A0x+6E2mtZ4zF/goSz3/WAG57I5nWfqF8++kyNCotafMNu/xC6XH6Q6uQyB7jwx5klfdYPODNy0rXrf1rDYcLae1XnC4aEkq/ZuuE3Yh5P0+bEuD0h15B/PythlOjgXvjAe/v4gFvdeYnzcli7f+kQNZ+ugzVpyn9BQW4v80A0Bu1XAGcixS8S+UEJEIs3/pPRmt/NHDFwEeZRjZd1AM8WaDvKChDQulXb52wz9Q2NhtdDDYlxOkPLUUm560mp33Ag/GANx+lfSPp9U3GUhjffl+WfrQA97cZBE5/6G5kM/dzw6ndgRfiAe/Zud5LL71stPZ/mAj7CpFXkk0XvVLb2JzIvLz8VJzSXzhj2migdw2lVFVRVdu7B2dbaBbA6Q91Ov2hi5Am1cZIqq8jNfr3zOVeRfTtZ5usG8is+GlTBpz+UAxZOT5rODUK+I++csy1dPKtpNeRGrS1r7dGzGbpW1YXVZzSJ72YEdX1I1GU3r+7baFZCKc/FAaOJ7No2z7As/GAd98cb2Vm7XsHObw0OUqZrE/XNjZ3Zl5uUw6c/tByJCDgZpPTPuDGeMDbrx7LYu1fNMgw4DGkFHpUaqpRRvTuNVtWF1Wi0s/2ZI0DbSUfjU2fOP2hVsAFvGI4tTNSaKvfXrwOT3A9mdb+pYmwbzBZmwaffu/i0bIW2nBFjxD7IXAB6QX5AC4GQrkofiBEum9/G+D8QQwtQxfpBuh64OVB3LeoVKLST8t4S/HFRmsbm7XSD8emP5z+UBwp02Cs1jkRqbeSSw/VW0hP4NmZwTXIMMhRb3Vfy1powx2nP/QPRI6MrT0vAO7oL6RTt/ZvMhz+USLsG1ASIUYZ2uoifMrKCaKVqPTTmmaP2HZM8n9tC83COP2hDuA84G+GU+OBJ/trqOHwBNeQWaHxJ4Noh2cmR59jx+dbGqc/9BJwHJkuw3OBf+VQ7fVW0qOCdgPOHOBw0mVom8rQRZWo9NPK39aN793Pe7z0Q7HJB6c/1IP44m80nHIAj8cD3sZ+bvFnIHU1NwVRAHmxcMa07Uix0pTqKmod2wIssFeL1sfpD72DeU5IMxIanLUpi8MTXEFmpdjLB2g8pOuiCb26yFb6BWZy6pu6CeMAFtqdsioDpz+kISGX1xlObYMk3xyf7bMOT/BDYJ7h8EBqqaTJUO24sShVVWC7dioGpz/0PqL4jUX/TgP+Gw94R2V+qpcbDO8PB/ozOMxI10XbOdDH8+EA7lUyKkrp6yFS6U9X+aEt/WS1SUdX/D8Dfms4NRp4OB7wntzHx41ll7+RCPtyjQJKYrZa1MgsAWBjYZz+0MeIj9/YjvD/gPnxgHe02eccnuAi4CHD4YEYDwZLfxxUwGqxopQ+sAPSVAOQEKkRY8eAbaFVHE5/SHP6Q1cBVxlOjUQm7DeyfLQVeNVw7McAibBvrxwfAOkWmij912sbm40bhDYWx+kPLUYUv3Ev5iTEgNgmy0eN0WAzdPkZlQj7Du0vD2ThjGkjkRIjvdSNGwsVoIsqTelnLKcURdlEZtq/TYXg9Id+S2aSTC2yRM/YYHN4ghqZ1v53E2HflcD7wKJE2Hd1P19rpvTt1WKFkhIdphpOHQMsyJIB/jTwRsp7BZHDV5GaOe8kwr69+vjafUjRnyO2HUNV7YiKWC1WmtI3W5Y/W9vYbKzRYVNBOP2h65GWi6nU8P/bu/fguOrrgOPfc3e1lmT8wsYPFoNtnBDIAuUZjClueQhCCyjENa8SSDPgvJrJJKW8MhVOJhBCKJ1OSBF9TLCTYoOH8shAIYlj6BRMQhDGa0gHYmywsM3DL2ytLO3e0z9+V/LualfatXdXWt3zmfFc33t/q3ss3z3729/9PWBF55LFVxV4yUrgnaz9Rtyi6n0P4741RDe8vPtoEtRBDc0UF29r34YbCNiRd+oM3IIsOVN8F6k8XIdbEhRcl+DBFgMqlItejs1ftL1w8ZGj3pL+p7N3rIY2esTb2u8DbiC3d04EtyDLF/sO7Hzg1k+q6mrch0K27JGV48gaKZmto7VlHK6bniNCbNKELuCFg4nfDL9gfYdzGTgQ8GRct+CpADsfuFV2tN9yi6reRu7Yj/xeP4PNxFm3uajekv5Z2TtjDjsU6uQXbYYWb2v/V1xty886LMB/dC5ZvBhg3849v+raun1+6oOdh/sZv8BP6VfsYdqZ2TuxSePxopHVNlHf6BBva98BnM/AJt8TcAMBZ/TsSV2W+mDXHV3bth/Ts6ereZAfN9gD2ZzePvWUi+om6Xe0tkzCLabcr/nwqVuB9cMTkamGeFv7UuAqIJN36v7OJYt/kE7tmwngpzP07N472I8q9oY9O3tn7BHTwZp2RpV4W/tu3Lz8+Ut5Hgs8n96b+qZmMqDQ+3EKv7fo0gkF76GO1pYYeZWH5vi0Lupkor66Sfq4T9b+ARRjpkwi2tw04rtHmfLF29pXAAsZOEPnTdk7mX09qF/0v7/wCWFB9m7zzBlQJzU0U7p4W/se3Iyu/513aq76mlN5TKeKfskrdnOdSlZTUPSQZmITx6+ql4n66inp59bQ3JvVamijVLyt/TGglYFLMO6nLvEXP5uro7WlCfhM9rHm+LSt2ER9o1K8rT2Fu4eezDuVM7NmursH1YL5vVj74YBcJCJ1k4vqJul7DdELs/ebj5iWAX4xTOGY2lBgA4O0rZZZSzsd3f8AuGHCIcQmjHvEvi2Oah6wGdhVrIBm/GJNPAXvC68hmjN4sNk1Ef7XgYdYWwc6u1xNdbS2HALkTMHbNH3qqpG6Mo05eMFoyp+TNRivkMy+XtT3+6ZRyDbgDSvRyHma3v+ooPmIGQAPH3SwZiRbDHxlqELpVA+R2IC52gbcVB2tLVGJePOyjzVNn9IRm78of4WvEas+avoi88hqz49NmkBs4rj8SZPM6OLjJmIbUrq7YBPPgKQfaRxzafZ+84zDdmBdNUe78aUUSnfv8ws08cwpUPREzfj97fmRpkYap0756YGHV3t1kfTHHDohZz3MoGnniWEKx9RA0B5705AFgfTe7i15h5S89tiO1pZYJtWdM6Cmcerkx2LzFw3a79PUvXbg9SFL+er5Pen8QZ4DWkJik8Zflr3ffMR0xJOVBxVhjY3opN/R2jLt1YUXre7d2/03IHiNjRCJEGluWhebv2j3cMdnqive1n43bmBN/uRYOfx0ZnomnVmbdej5YMQl4O4jaWh4WRpikb77SBoa6N2995EqhW5GiGCk7snANxg4B3+O7p0fr2N/V2EFvt93ri8XpVM9t2bnoui4sRti8xe9V634q0GKPLUedh2tLdO8xqZN4048acz0y6+h6ahZpDZtZOvypexZ/5pO/PTRxx9564+sj35IdC5ZfCbwPeCcIkX+aeyMyc8B3sQb7ni072BHa8s0r6lp07gTBt5HH697dZ+fSh110mPPDpoMzOgQPCf6Gu4b5KEFiqSbpx0aF0+uAB6feMMdm2D05aIRm/RfXXjR6vGnnL5g9s1t2Qufo6q8feft9G5715+96MLDY/MX2Rs2RDqXLD4HuBPIX2nrJ/G29q/ll197+cX/O+5PTjmz2H308dpXXjhxxZMHMpe6qVOdSxZPAL6JS/7Z8+5n4m3tA5p0RlsuGpHNO8lk8myJNiyYfvk1Ob9kABFh+hXX0P3+Rx7irRimEM0wibe1r8JNonUlsCM4vBW4LbtcMpk8JJlMfhvxzhzsPsLzckZWmtEv3ta+K97WvgSYietqqcGf/AnYSCaTp4+2XDSiumwmk8m5uAcvZ/jd3TQdNatguaYjZ+F3d4N4ZxcsYEa1YBGW5cDyziWLG+Jt7f0jd5PJpADXA3cBY0q6j0woxdvaPwIu61yy2AO8eFt7f2f9ZDI5E7gPOG+05aKKJH1xXSr/EegB3gO+oKplrQYf/JJfwo2Wi3hNjaQ2baR5ztEDyqbe2YjX2AR++kAXxTajRHbCD3wH97V9LIDXONR91Fj9IM2IFqzd3N+LK5lMTsHlosOA6GjLRZVq3tkEnKOqC3AjKC8donyOZDLp4b5mjcdNpwuHz2Tr8qUDhkerKluXL6N5zhzwoiPzgYQZFslk8izcvPr9y+Q1Tp8y6H3UOG2K3UOmX/BN8SFgMn2V4lGWiyqS9FX1PVVNBbtpis9ZUcylwDFkffOQhVex5/V1vH3n7XRteAtNp+na8BZv33k7e95YT/ySFlD/+UrEb0aN+4GcqXInX3xB8fvo9XXELzjrxWGK1YxMZwPzyFqPYbTlopJ674jI0cBrwFxV3RIcuxq4G/iMqr4bHJsNrADOUtWSZ5xLJpOPAp8bcGLXdhoeeZDubR/id3fjNTbRPGcO8UtaiPpd+/DTR9XLE3NTXUHz4JvkLYTh+WmO3Lae9575H1KdW/G7U3iNTTTFpxO/YP6+huYxdg+Zfslk8n7cM6HcCvEoykUld9kUkRXARlW9KWjDfwq4QFV/G5wfj5sA7XpVzV+kuKhkMhnD9cIouJiB56c5PNVJs78P/DR4UbqlYXtjJnVcvfySTfUlk8mv4x7eDriPCt1DXd6YzM6GiZ+ddfL8upkd0VRX0LTzAa5pZ4BC91FKYrubMl2frKdcVM6D3LuAVSKyDHgU+HJWwo/i2sFuLyfhB47HNQkV5HtRNo89Kv9wQyKRqJtfsqmJv6BIxaHIPZTB3XuW9E2f2eT2289R5D4aC7yfKFB+pCq5TV9VX8GtPfkS8C+qmt0v9UrcPOX/ICKrReTyMmKYyODLkhUy2BJnJpwKjbAcTIwSJ3QzoTGBQSqgRSh1lo9KrumLiIerHfm4Wn8/VV0GLDvAGA7kqXfdPCk3NWP3kTlYB3I/COV3XBlW5fTeuQdXM3oTuLqCMewoMw6AQRdHNaH0YZnl97F/RK8xADuBAZPql6CuRviVlGxFZDGud00rrpZ/o+SPST5w60qNI0v+gsfGPEl5lYE0sKpKsZj6tAn4uMzXrEkkEnX1jXHIZCsi5wF3ABer6jZgJa49tKwBWMUkEok0rtdPqb+43bgVlYzJ9jjldUzYg6twGANAkLxXsH965aHsBepuMadBk76IfAo3x8k1qroOQFUzuCkXSlrgokRLKb2WFgWeqeC1zSiQSCS2AusprfLQDTxUbzU0UxP/SenNNR51uJjToElfVf+gqlNU9am84/ep6rxirzsATwO/x83dM5i9wC2JRKLcr2AmHK6ntDdsF7CkyrGYOpRIJNYAz+Ke+QymC/hRUNmoKyNiauWgxvVXwEdAsYnaunB9qn9cq7hMfUkkEq8AN+LulUIUV3H4y0QisbNmgZl6cx2wmeKV0BTwO+C7tQqokkZE0gdIJBIfAKfhJl5Lsb9drRv3Rr0DuCKRSNRV9yhTW4lE4j7gWtwc+3uCw33JvgP480QiYfPtmKISicRu3Pw7P8Pln76++z243HQvcFHwPLLujMiVs5LJ5AnAJbguop3AskQiUW6XPBNiwfQeVwGfwr1Z1wBPWzu+KUcymTwG+DwwBTdt/M8TicSW4Y3q4IzIpG+MMaY6RkzzjjHGmOqzpG+MMSFiSd8YY0LEkr4xxoSIJX1jjAkRS/rGGBMi5UxQZUxoNZ72ZRUvgtcQw/MiiBfBizYE2xgScVuvbz/vuHgRIlEPEXFbT4hEgm1UCh+PeIgHnid4EQ/PE6JRj4gnxILtmP79iNtG8o8X3jZ4HhGBhoiHJ0JDRPBEco95EpSV/jKRnLKCCEQ88BAinptcPuIJXrAVgYgInkBEcP9OAS94rfgZRH3wM6A+4qdBfcikCx4XPw2+O+7Op8HPoOlet+3t7d9XPwPpXjSTyS3TX7YHfB9N96C+j9+T7t/6mQx+bxrN+GSC7cD9Xrff/7oMfsZHfSXTk0Ezbuvn7eec783gZzR4rZJJ+2RU6fGVjBJslR6fgsd9ssvsP3e/biw6C7LV9I0xJkQs6RtjTIhY0jfGmBCxpG+MMSFiSd8YY0LEkr4xxoSIJX1jjAkRS/rGGBMilvSNMSZELOkbY0yIWNI3xpgQsaRvjDEhYknfGGNCxJK+McaEiCV9Y4wJEUv6xhgTIqKqwx2DMaEgIjeo6gMWx34WS+3jsJq+MbVzw3AHEBgpcYDFUkhV47Ckb4wxIWJJ3xhjQsSSvjG1M+ztxYGREgdYLIVUNQ57kGuMMSFiNX1jjAkRS/rGVImIHCoivxSRN4PtpCLlfigi60XkDRH5ZxGR4YgjKDteRDpF5McVjuFCEfk/EXlLRG4ucH6MiKwIzr8kIrMqef1S48gqt1BEVEROrUYcpcQiIkeKyG9EpENEXhORiypxXUv6xlTPzcCvVfUTwK+D/RwiciYwHzgBSACnAQtqHUeW7wHPVfLiIhIB7gM+CxwHXCkix+UV+xKwQ1XnAvcCd1UyhjLiQETGAd8AXqp0DGXG8h3gYVU9CbgC+Eklrm1J35jquRR4MPj7g0BrgTIKNAIxYAzQAGwbhjgQkVOAacCzFb7+6cBbqrpBVXuA5UFMxWJcCZxb6W88JcYB7oPvh0B3ha9fbiwKjA/+PgF4rxIXtqRvTPVMU9UtAMF2an4BVX0R+A2wJfjzjKq+Ues4RMQD7gFurPC1AeLAu1n7m4NjBcuoahrYBUyudRwichIwU1V/UeFrlx0LcDvw1yKyGXgK+NtKXDhaiR9iTFiJyK+A6QVO3Vbi6+cCxwJHBId+KSJnq+rztYwD+CrwlKq+W/kKNoV+YH63wVLKVDWO4IPvXuC6Cl+37FgCVwI/VdV7RGQesExEEqrqH8yFLekbcxBU9bxi50Rkm4jMUNUtIjIDeL9Asc8Ba1R1T/Cap4EzgLKSfgXimAf8qYh8FTgEiInIHlUdrP2/VJuBmVn7RzCwqaKvzGYRieKaM7ZX4NrlxDEO91xldfDBNx14QkQuUdWXaxwLuOccF4L7RigijcAUCv//lcyad4ypnieAa4O/Xws8XqDMO8ACEYmKSAPuIW6lm3eGjENVr1bVI1V1FvB3wNIKJXyA3wGfEJHZIhLDPZR8YpAYFwKrtPKDiAaNQ1V3qeoUVZ0V/B7WANVI+EPGEngHOBdARI7FPfv54GBGN25JAAAB0klEQVQvbEnfmOr5AXC+iLwJnB/sIyKnisi/BWVWAn8E1gFrgbWq+uQwxFE1QRv914FncB9oD6vqehH5rohcEhT7d2CyiLwFfIvBexhVM46aKDGWbwPXi8ha4CHgukp8ENqIXGOMCRGr6RtjTIhY0jfGmBCxpG+MMSFiSd8YU3EislFEekRkSt7xV4M5bWYF+6eLyFMislNEtovIb0Xki8G5PwsGJpkKsqRvjKmWt3EDjAAQkeOBpqz9ecAq3Fw/c3EjcL+Cm4/GVIklfWNMtSwDvpC1fy2wNGv/buBBVb1LVT9U5/equqimUYaMJX1jTLWsAcaLyLHBrJKXAz8LzjXjRgGvHK7gwsqmYTDGVFNfbf854A9AZ3B8Eq7SuWWY4gotS/rGmGpahptHaDa5TTs7AB+YgfswMDVizTvGmKpR1U24B7oXAY9mneoCXgQ+PxxxhZklfWNMtX0JOEdV9+Yd/3vgOhG5UUQmA4jIiSKyvOYRhoglfWNMVanqHwvNVKmqLwDnBH82iMh24AHcgiGmSmzCNWOMCRGr6RtjTIhY0jfGmBCxpG+MMSFiSd8YY0LEkr4xxoSIJX1jjAkRS/rGGBMilvSNMSZELOkbY0yI/D/2zWR4Tq+2NwAAAABJRU5ErkJggg==\n", "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADjCAYAAABpYsTWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3wb5fnAvyfZ8spQdoiyWCkpYQQBBcxIKQ4jOITlQBklBWRGGS10ROWHcFuUQlmlQJGgzEJJSiEgZsSGMAomFAQOKwQSQSBxouB4yZLu98d7sk8nyZZtjZNz38/HH0d3p9MT+bnnfd/nfYYkyzIGBgYGBtsHpkILYGBgYGCQPwyjb2BgYLAdYRh9AwMDg+0Iw+gbGBgYbEcYRt/AwMBgO8Iw+gYGBgbbEYbRNzAwMNiOMIy+gYGBwXZEwY2+JEmjCi2DwdDA0CWDXDMUdKzgRh+4MZOLJElaIEnSHZIkPSZJ0txcC2VQlGSqSztJkvQPSZIezrVABkOOjHRMzxTU6EuSdBSwmyRJl/d1rSzLy2VZPhc4C1iYa9kMiot+6tIaWZbPzoNYBkOI/uiYnikp8OdvAv4py/ItAJIk7QEs0Vzzc1mWv1O9vgK4NU/yGRQPA9ElA4P+kKBjxUqhjf6ewP/iL2RZ/gA4NtWFkiRJwJ+Bp2VZfjc/4hkUERnrkoHBAEnQsWKl0D79TcA5kiTNzODai4AjgJMkSTovt2IZFCEZ65IkSWMkSbodmC1J0uLci2YwROiPvdItklFa2cDAwGD7odAzfQMDAwODPGIYfQMDA4PtCMPoGxgYGGxHGEbfwMDAYDvCMPoGBgYG2xGG0TcwMDDYjjCMvoGBgcF2hGH0DQwMDLYjDKNvYGBgsB1hGH0DAwOD7YhCF1wzGCBtS5eYAIvyU6b8LgFagK2VCxdHCyieQRHRtnSJBJTSo0dlyus2IFS5cHFXAcUzyDJG7Z0807Z0iRmYCEzV/EwGqkg04r397m3AloHvgS1ASPmt/tEeS3htPOTFgWKsx9GjQ1NU/x5OZnoUnzj0xjYGrksdWfnPGmQNw+hnmbalS0aSaMynaF7b0PcKKwZ8AaxWfpri/65cuLi5kIJtb7QtXVJJsv5o9aqsYAJmxnp6dEmtU99ULlxsGJ8CYBj9AdK2dMkYYD/lxw7sjHgIRxRSrhyzieQHeDWw1nAnDZy2pUuGAfvQo08zELo0ppBy5ZgWUuvSZ5ULF4cLKdhQxzD6GZDiodwP2KmgQgm6gE4grPyOAiMRS/t80gl8Qs+DGwBerVy4+Js8y6F72pYusSCacah16YcUPqgiQqIuRYBhCH2S8ihHFFhDzwrzI2Al8LmxMsgOhtHXkKeHcjPwleZnHbAV8cCpHz7t7/i/w+kegralS0oQD+sozY81w2PZ4hPgJeBl4OXKhYuDWby37lH2b35Aoi7tTd8+9P6wDfiSHh2K61MzvetPwu/KhYtjaf4PJsTqtS+dSXV8NNl7boIIPXpJ+f2pMQgMjO3e6LctXbIzcDDZeyjDJBryJONeuXBx62BkziVtS5dUIdwLuyk/M5XfMxi8//gzVA9u5cLF6wZ5P13RtnTJROAQhB7tj3D7DRvELaMIY5dqghD/91a9Gr+2pUvKEG7P3VL8DHY1+g3KZAKhTx/r9XvQG9ud0VdmwdWI/qm1iJnYQIgi3Bj/Bd5G9M78EtiYbtZUzCiz1mmkfoDHDfC2a0gcBL4cvKT5Q4me2RuhS8ciDP1A+QShR28D7wJrEZudkUGKqTuU720SqXVp8gBv+y2Jg0CTMQikZrsw+m1Ll4wCjkIY+aMRy9D+on4o3wbeq1y4uC1rQhYxyqZ2/KH9IWJQ3Rcw9/NWX9KzfH++cuHirzL43M35fLjbli6pAA5H6NKxiGis/rKeRF16p3Lh4lDWhCxi2pYuGU7PSnMmcABwEFDRz1ttBF5B6NML9DEIKCtceXt4poek0VdmEjPoeTAPpn8GyHgoB4my+X0QMAc4DDEL7m+o6rvAcuBR4EPtQ9u2dMlfEK64S3Np+NuWLplEz2z+CPpngDbTo0f/Bd6uXLh4Q9aFHMIo+2z7IfToMMTzXNnP23yO0KNHgTe1q/G2pUtOB84AjhvquQVDxui3LV1SivCnxt02u2T41gjwKiJCwHgoc4QykzoQ8dDOAX6EyPrMlM/oeWjfQiSgrUWENl4P/Dpbhl/ZvNyHHl3apx9vfwexUokb+i8MN0N2UZ51Oz0TioPp397Jt8BjCF16oXLh4nDb0iU+xN/7KeCEyoWLO7MqtI4oaqOvuG3mIR7Mo8g8Rr4Z8cf1ASsqFy7emhsJDdKhuEkOoOfBPYDMN4o3IAbqk1XH/gw4B2pgFXlqELo0D9gh07cCfoQuPWWEqeYfZZ9uH3pWAoeQuS34HmELTqRnEvIYcPJQzUwvOqOvLPWOAs5EPKCZRtp8iHgwn0As74xkIh3RtnRJOWL2fxjC+FbT//jwP1QuXOzqx2dKiFnimUAdmRuKdfTo0otD3R1QbChBB3sjdOkI4Cf0PyLvYeDUobiRPmijL0lSFXAbIlTxJVmWHxjM/QKBwBTEAzge+A5YttOHvvWI5dyZwKnA2AxuFUZs4viAJysXLv5iMHIZ5Je2pUsmAPOB4+nfQ3tZ5cLFN0BqXZo1a9a6tqVLdkH4b88AdszgnjLCpfQEQp8+MFw2xYOyOXw0QpfmkXm46D3A2XH/fzp9yrrAOSYjoy9J0vnAHrIsX6C8/hMwTZblMyRJOgMIybLskyRpqSzLCwciSCAQMAPXAOchCo9h7mpneGhdeMTmtS0lkc5MUtI3Ak8iHkx/5cLFLQORxUBftC1dMgI4BliAeGh79d/KSOd8sfuxM1HpkinaxbCtwc6RzZ83l4bbJmXwsduAFfS4bb4bzP/BQB8ouQOHIwaA4xAGvDdu+nr6gZd3VI1NsE0KrcDtwG9nzZpVNJ6DTI1+JfAxsAdiOfxH4CBZltslSVoMPC3L8nuSJD0oy/JPByJIIBC4DrhMfWxE8xrK332FWFcEU0kJplIzphKz+F1agqnEjGQ2fSZJ0jLEw/nfoRgjb9CD8tAuQ6wCUiKD/N1ku9Q6sse2l7duYtQ7zxJuaRO6U2rGVFKCudSMVGKO//5OkqR/A48j8gaG7GaeQbcb6E/A73q7rmWk7fWNk/c5qJdLrp81a9blWRUuh2Ts3pEk6VrEKHc0UCPL8ufK8TOALbIsPyFJ0kOyLJ/SXyGUZVMTiaMopkgYyz03IkdjbPt6M7FwSvdaFDEra0aEWq5T/ahfN9t9fmNJXuQoD+p6RHnqtERKyvhm2gF0lStuelmm8qFboL2dlvXNRNpT1vSSEboUIlF3tHr1rd3nNyYXQ4C2pUv8CL9/WmKmEr6zzaZtRFqVawV2mzVr1vpsy5cL+hM3fRfCMB8XN/gKjwC3SJI0DzHbHgh1aAw+QEwyYa4opaTUxLAddiTaFWNbcDOt34Yg1m2/zYg6MyPpvQhaR2NtTW8P8npgizEw6J5DEBnAXyAyej9Xfn8JBL+edsDRnZWjF8umFGkZkoRlmIVxe04Fk5ltwWZav95CLNK9MpcQ/t7hiNLFB6aRIdJYWxMkvR6tAzYaA4O+aVu6ZDwieixIoi6tVY59/eWMI06IllZcnfTm4JdI69eCxYI8c+8qyivqgBvyJPqg6I/RvxLhM094jyzLrcCiQcqR7Ffr6qLkkbuRho/FsvNMWv/3X0xyFxPsOxPrirLt6820rN9E55aMy9iUI2L3e4vfb2usrVmH+MOvQsRcNwLrjMFAN7wDVKQLp+sIBI5NOijLmP2PIkegdHY1HZ+vJrLpa8bNmsbYWdNo3bCFbeubadv4PWS28i1BlKSY1ss1YWWS8SXwHkKP3gE+NQYD3fA9MKJy4eL2dBdEA4GR2mNS40pKVr3OyAMPo2vzJlr/eQuR2p/uwqxZORU2W2Tq078MEUJ3M9Agy/Jh2RQiEAhcBlwXf21qa6HinReQtmxl8ikLiX23FmSZ9g0bCQfXUFrWk9MT3tbBtvXNtKzflG7Jng020TMAxB/e9cZAoD+0uiSFO6lc/TZdb77GTpctJvbNJxCN0NXeybb3V1E2rCc1INLZxbZgMy3rmgl/n7Ns/BYSJxSNGAOBbknQp2iUiq8/oeuRh9jJ+QfYtAbCHcRkiQ3/W71q+oVX9CeJr2D0afQlSTocYewPlGW5RZKkVcAiWZbfy5YQWp/+lDWvEwltQSofzvDdd6dkxgFgMhP59B3Caz+k66vPU94n2tn1QeuGLf/d9NG6r+VIbBKieNMU5SfbNeY30jMAxB9eYyAoMFpdGv/JSiotEltXf864w+dQOvMQKK8k+vUndH36Lp2fBFLeJxaJftG+6fs3Nn341eeRtvA4EnVpdJbFbkGUnFDr02fGQFB41Po08vNGxo8uY/3jzzDlpAWUzDwYafgY5C3f0PXRaxFJwmaprtN9lFevRl+SpKmIWPd5siw3KcfOAubIsnxWNgVRR+9YP32bsVYLkfYwlQcciWm0iMKQ21sINz4tt3/0Xl9JOxsBL/B3q8MdBGisrRlJ4oOb6t9J+wr95Dt6BoBG4B27z18UmztDCbUuVaz/hMnDumhd/w0jq+dinvLD7us6V/6b9qb/QaxX29oG3A/8zepwfwjQWFtTSY/OpNOpgRT1U/M9PQNB/McYCApAXJ9MLVvYORKkdV2QYbvPxrLX4d3XhN99poX27+dZquteLZykmaGbjFx1nL7p+81VO0e/BsmENHwMpT88WMz017wblpvXv9D2/ju3IRK15tN70k4U+A/wN2Cl1eFO+59trK2REA/qVERo6r6IhLB96H9xJzWfIpJ6ngRetfv8Riu4HJOQ8xGNVu244V1KqiqRLBWU7vFjKK8i+vWnsdhXgW/aPmg8hZ6M3CT/rYYXELrkszrcvcZlN9bWDEMMArsj9CiuT4NZJWxA6NETwHN2n3/bIO5lkCFqfbJ9+lpV1fjRyJKZ0lmHIQ0fjbxlA5GP32glFt2p6Gf6hSAQCEwG6mwfv/ynqonjKpBMIMvIyEjmkmeIRk61VNeFAEJe5yjEw3omoqJjb7yHcFM9ZHW4027caGmsrYl3P1I/uLMZ2EDQAjyLeHCfsvv8uleQYiauS+MDL15unTJhB5BAkpDlGJK59H2iXSdYqus+Bwh5nRWIsh5nIMKSe6vK+iVwK/APq8O9OVN5lInFdIQOxX/2ZWDdyuIZ508AT9p9/jUDuIdBPwgEApNHffDyQ+OmjqsGwGSGWBRMJUFikVMs1XWvFVjEjNCd0Y/z7a1X3jtq71lnxl9HOzvD5rKyKkt1Xcpg/ZDXuStwPvBzep+xNQN3IFw/vdZrT4cyEOxG4oO7N/0bCGREVc/4zO09Yz8gN6z/869+Nv6QA+5RH4tFo9PKDz015d8/5HVOAM5G6FNvTT3agQcQrp/3ByKbZiDYV/W7v+6hJnpWlK/bff4hWSys0Ky9on7KhMMP+cpc1uNg6NwcOm14rePBAorVL3Rr9D/75Rl722qPXKX+cqMdnQsqfnLGY729L+R1DkPM1i5CNGFIRwxRWvVvwCu9uX4yQTUQqB/cfcm8fPDX9AwAz9t9ft22VCw2mhbNL7Mdd1Rb+bix3f1aw1u2/nXYsede2tv7Ql5nCaL0w8WI/IDeeBmhS49ZHe5BFelSBoIdSRwIDiDzPacQYkX5BPCM3effNBh5DBJpvu/ajcN3nt5d/ysc2vrmsHnnpsvp0B26NfpNi+ZL4w87qGX4rjt1K3rX9y0vVB199k8yeX/I65QQNTYuRizbe9v8/QDxwD5gdbizFqvXWFszAlEx8lhE7Zi+6nzE6QRepGfpvjZbMm2vbLjlig9Gz96zO5A60t6+ofKIn2VaPpmQ17k38AvgNETORzrWAX8H7rA63Fkzto21NWXAofQ0c+ktEVFNDHgToUtPAAFjRTk41rsvvXf8YQd1eyHkaDQqmc0jLdV1RTFR063RB1j3x4sfm3D4wd01VmJdkQ5TackwS3Vdv4obhbzOHYELgHPofdm8BRH1c6PV4f52IDKno7G2xoSYtR2LKBrWn5jeAHAfcK+xDzAwPvvlGb+ZcsK8aySTSX14uqW6rl99eUNe5xiEHl2A2PRPRyfwIPBnq8P9SX/l7Q1lJfADegaA/nSG+wr4F3Cn3ef/LJtybS+sPmfBIVNOmv9K6fCeun9yLLag7JBTevVC6AVdG/3V5xx/4rRTT3jYXJ7QW6PaUl33+kDuF/I6qxAztYuA3tLn2hHV8/5idbhz0hSjsbbGhpj9z0OsBjLZD+hCuKS8wItG+F7mNC2av/OkeTWfVewwoftYtDP8y4rDT79pIPdTXD/zEbo0p5dLY8BDwJ+sDnfTQD6rLxpra6zAkYgB4Gggk4q0AM8jdGm5EVWWOU2L5peMPWj/1pE/nNHte+5q2fZI1VE/P7GQcmWKro1+06L5I8bPqQ4N32XHbtdMpLXtlsq5Z100mPsqrp/DEK6f4wBTmks7EA/FtfF4/1zQWFtTjjAc8xAP7vQM3rYGsSF9j93nN9o7ZsCGv12xcfQ+e3b7YiPbWt+uPHLR/oO9b8jr3ANh/E8nff9cGVEd9E9Whzt1RlgWUPaWfkSPLu2Zwds2AvcCd9h9/qyuSoYq666+5JUJc6q793mi4fD3ZovFaqmu069BVdC10QcI/uXyj8YdtH/3hmy0o+PLip+cOT1b9w95ndMQURrnkj6GOgzcCVwz0IifTFGW7j+k56GtJv2gBKLH72OIwek5Y/afnrVX1D8w6eifdJf+lqOxiGQ2jbBU12UcwtsbIa9zNCJ67EJ6H7j/A/zR6nD/Lxuf2xuNtTVTESvKYxHNaHrbjwARBuoFHrH7/EZp6TR8cv7J50095fi/m0oSSpHtaamu+6BQMmWK7o3+pxf/9MapdcddKkkJ+7CTLdV1WZ15h7zOSoSv9rdAuiYbXcDdwBKrw702m5+fjsbamvHAzwAHfTd7X4uY/d9t9/mNXq0amn5+3KlTFy54sHRYQhDMMZbquqez+Tkhr9OM6N/7f4gBPB2PIYx/YzY/Px1KwlgdQpd+1MflzfTM/lfnWrZio2nR/B9OnDvnw6qpPRG9siwvLjt44Z8LKFZG6N7oNy2av9BWe+RD5RPGqQ+fa6muuzMXnxfyOssRs7XFpI/RjiA2Vv9gdbj7tRE4UJQVwGGIB/ZE+s5E9iFmbCvsPn/RdPXJJU2L5u82tnr/ppEzZ3Qfk2X5lrKDFw7KXZiOkNdpAk5AGP/e3CxPAldaHe53cyFHKhpra/ZCrG7PoO/ewK8gJhP/sfv8WVkVFTtNi+abR8yc0T6uev/ukOxYJPpW+WGnHlBIuTKhGIz+D6x7z1o9Zt+9u4/Jsry87OCFx+fyc0NeZxlwFuAkfZRGGJHl67Y63FtyKY+axtqasYgsZAciiqM3vkK4pu6y+/w525coBpoWzTdXTp3ctsPcOd0DphyLfSWZTNNz6YtVjP98RHny2b1c+iDw+3ytIqG7jtDJCF3qK6t9C2Kyc4fd5/8w17Lpnc8uOW3V1Lrjug2TLMsxSZLGWqrr8mYLBkIxGH2zZczolinHH9O9QSbLcqskSWMs1XU59zmGvE4LYjb0e9I30d6CaLt2q9XhzpsfVJn9H4J4YE8Cynq5PIYwKn+w+/yf5kE8XbLaccJ/p5928n6mkoQIx5mW6rqcuzCUAIJ5COO/X5rLwoicEXd/Sjxkg8bamlmI2f+Z9J0R/Bxwpd3nfyPngumUpkXzPVNOONZhGZ3wVZ1iqa5bWiiZMkH3Rh+gadH816edesKBJVUJUY01luq65/IlQ8jrLAV+ClxBet/6WsTKYKnV4c7rhmpjbc1oxODkoHc/chRRNfKP22O9lqZF82/f4cjD6yunJGzbXG6prrs+XzIoxv9IwIXItE3FFuBq4JZ8TiQAGmtrKhCTiHPpOxP5GcBl9/n/m3PBdEbTovnnj95v9m2j9tpdffh+S3Xdmeneowd6iwrRE++1rf9ae+yYfApgdbi7rA73vYjSDj9HtFPTMh0xm34r5HXOyZ90YPf5N9t9/r8i8g8ORizDO1Jcaka4rT5urK25o7G2prfuT0OR91rXJf3p8q1LstXhfgbhTjkakRGuZRSiecfqkNf5U8VFlBfsPn+73ee/3+7zH4qYQNwIpFt1HAW81Vhb42usrenNdTUUea8tWZeODq9cpmu7WiwzfUfV9CmeiUckNOz6xFJd15c/O2co0T6XIDZ80zVoeRL4bbwOe75prK0ZhUhGuxBRFygVXQifv3t7qP3ftGj+j0qGD3tz2sIF6sMRYIyluu77QsikRPucgXAR2tJc1gj82upwv5g3wdQfLnJJTkCENx/cy6WPAlfZff4BFaArJpoWza9Cklqmn36ypK4RBhxgqa57q1By9UWxGP0fS6WlL+x4+klI5gRf7K6W6rqCppKHvM5xiOiM80ndczgGeBAbdAXZ4FESduqAq4AZaS4LI+RcMpTDPZsWzR8NNE85qRaLNaEY64mW6rpHCiQWkPFEwgdcYnW4v8ibYBoaa2t+DPwRkUOSjn8DDUN9w7dp0fx1Ew4/ePKwnaarD//BUl3nKpBIfaLrZYiKb+SuLto3JJWdyeuyPBVWh3uj1eG+GLEMfjjFJSbEgPBxyOs8U/Hn5hW7zx+1+/z/QjT0OBNI1W/SgsgqXdNYW3NDY23NhBTXDAW2AOG2dUnuwnkFkCUBq8PdZnW4lwA7I6LCUlXrrAU+DHmdTiXCLO/Yff4XEb7+uUC6Ge3JwAeNtTUPNtbWFGxFnge+0aMu9UaxzPStwJaRs2Yy9gC7+tSzluq6owokVkpCXueBwF9IPwt6BbigUC4fgMbamhKEO+FK0meOtgO3ANcOtdK8TYvmf1kxaeLUScccoT68AZikpzT6kNe5C7AEsamaio+BC60O9/P5kyoRJYLsKOAPiIKCqYgB/0QEDwypIm9Ni+Y/bi4vq51++snaUztYqut0WR6lWGb6W4HOFJsmc8Irlw2mlWHWsTrcbyBmQceTekZ9KPBeyOu8Vqn9n3fsPn/E7vPfjYjxr0eUA9ZSAfwa+KKxtuZqJTpoqLChfcN3xMIJfUYmIhrh6Aarw/2Z1eE+GTgQSBUa+QPguZDX+a+Q15kuizyn2H1+2e7zPw3sj6hjlaq0hAmxwlzdWFvzj8bamnShz8XIhmhHJx3fJc2LdDUZVVMURn/m3Y/LwIaurd/T1ZLQFrQMnT2o0B2dsRwRSeNClNlVU4IwqE0hr/OEQrh8AOw+f9ju83uBXRGbvUnrVGAYIgx1bWNtzZXKhl6xs4FYjPavkyZiusymtDrcbyI2T89GlEfQcgoiyucSpfpn3lGM/+OIkuEnIsqBazEjIt8+aaytuV1JMix2NgCkiC7UpS5BkRh9hQ1AqhG1P3Xp84rV4e6wOtx/QPjSn0lxyWRE8a0nQ17nznkVToXd5++0+/y3IXzJlwCpegkMBxqA9xtraw7Pp3w5QOjSxqLSpZjV4b4LMbu/I8Ulw4GbgHcUF2NBsPv8MbvP/wiwF7AQ0cZRSwlihbm6sbbmZ4qLqFjZANBZRHap6Ix+uDkpXFi3X24cq8P9OWLT+UQgVVjk0YjNud8o4XsFwe7zd9h9/psRXZkuQ5Tc1bIr8Hxjbc09RTxTEw/qpqLUpWarw+1AuHzeS3HJXsDrIa/z1kK5D6Hb+C8D9kCEDafKAh8D3AM811hbs2sexcsmQpeS7dKe4ZXLMm2VmleKyehvhpQPalEkhCgun0cQyV1/ITkyowy4Bngt5HUWNNrB7vO32X3+GxBlJ35LapfCzyjemdpmSDmBmBVeuay3Qna6QXH57IdYmaXKL7gAeD/kdR6W4lzeUCLHHkREt52F6AOh5XBEpM8VjbU1RfH9q9gMEG3vINKWUIuujPS5MQWlmIy+DClH1FnhlcsKEro2EKwO9zarw/0bxGD1aopLDkBs9P4yn1mYqbD7/K12n/9aRNmJ21NcUqwzNRkg2tFJpDWhramF3ktY6Aqrwx2xOtw3I4zLgyku2RF4KeR13qTkABQMJXggntHuJDlbvAwR+/9eY21Nb8lfeqM72qtYVo7FZPQBiHWGtZu5JfTe+lCXKN2TDkPMmLVJW+XADYgHtq8a+jnH7vOH7D7/+Ygw1FShpkU7U+vclJQvp8sHtTesDvc3Vof7NESTlFQRY5cgJhK9JVPlBSV4YAnC7ZOqdtZM4NXG2hqvklFeNKSYkOpSl4rO6EPKL7coXDxaFJfPfYiN3idSXHII8L+Q1/mLQs/6Aew+/+sIRR4yM7WhoksAVof7BYRP/5YUp3cFXg15ndeFvM50LR3zhhKvPxeRL5IqD+RcoKmxtuaUYnEfpnAX6lKXCm5IBkK4ufhnZ2qU5uvzET7PrZrTlYhSu8+FvM7p+ZUsmaE2UyuWJXmmWB3uVqvDfRFi9bVWc1pCbNC/G/I6++qclXOUMM9/ItxTd6W4ZALwL+CpYojtT7XfqMfia7oTKBOG2oMK3bP+exGuqmdTXPJj4IOQ13lOoeL61QyVmVqKmf7e4ZXLChZBlS2Uwmx7IuopadkNEeFztVIyvKDYff5mu89/NjAHkWWs5Sjgw8bamt801tYUXN50RLa1Egt3qQM0htF3i9O8U5xGP3V4VEGSUrKN1eFejwjhPBdo0ZwehojRfjDkdfbV4i7nDIWZWrS1jVhXl9pVVYlwhRQ9Voe7xepwn4eo3a8NFTYh3HQvh7zOdJ3h8ord538Z4Z5qQBQAVFOBiG57p7G2Zv98y5Yp4dDWbZpDunPxFJPR7zbq0bZ2YpGIOkytgr7bBhYNyqz/ToQL5YUUl5yCWKLrYoXTj5napTqZ9SdMELpatmkr+enie80WVod7BWIFmWpgPhCxyXtcfqVKjZIoeBXC+L+S4pI9gTcba2v+qpPs8ARdCm8JaY2+7nSpmIz+ePWLWGdYW7hJd1/uYFGartcgYq7bNKd3Bt4IeZ0X6cHdAxnN1G4EHtWBrz9BlyItrdrm9kNRl7ZaHe6zERUgtaWzRwHLldBOXYQ/233+1QiX5tkkR7dJwMXAysbamp3yLZuGBA3U9pEAACAASURBVF0Kbwlp6zHoTpeKyehPVL+IhcPawk66W0ZlAyX9/u+ICobaeiYWRAne/4S8zkIbUiCjmdpxQGNjbU26ioz5IEGXulpatKUChqQuAVgd7qcQf5tUZUEuAVYWsiSIGiWr9y6E+/CBFJfsA7zbWFtzfH4lSyBBlzo3bdZmHs8Or1ymi0lZnKI1+nI0qq3jrbsRNZtYHe4mRCVDb4rTxwOrQl6nboo8aWZqIc3pHRGztAsK5O5JfFA3Njdqzu+jtwc1m1gd7o2IGf9vET2T1dgRrsO6vAuWBrvP/53d5z8dsTehbR4zEnhE6QFRiByRBF3q+G7Tx4A6428MMCWvEvVBURj9pkXzzWiWUVJJ6cuay3QZHpVNrA53u9XhrgdOJXmTdxoiDvtyPcT0Q8JMbTbwtua0BbgV+FdjbU26LlG5IuFBbV277j0Sv08r6fsMDAmUFeS1iFLfX2lOjwCWhrzOv+shpj+O3edfgdCl/6Q4/Uvg5cbamnxvSifoErHYNySXl9bVhFQXxiEDxpIo6xaLdcTHJNYcGYH2DzBEsTrcD6EsbTWnShB1fR4LeZ0jk95YIOw+/1pEotnfUpxeiIjI2DOPImlXjakeVF3WTck2Vof7dYQhfTzF6fMQ+0a6ibyy+/xbEV25LkH0d1ZzALCqsbbm6DyKpLU5G0guhKcrXSoWo5/0xSodjrTNP3bIkzwFx+pwfwYcRGpDeizwZsjrTNcPN+8ovv6LEb16tauUGcBbjbU1i3Ith7JqHKc5/B3Js93tSZc2AwuAS0k2pHsBb4e8zjn5lisdSqjwzYiJhPbvNhoRIny10iEu16Qy+rrWpWIx+tquQPHuF9ooBF19ubnG6nB3Kv15TyDZb74b8FbI65ybf8nSY/f5/43wG2tn1uXAXY21NXc31tbksjjYBBL1fvPMux/vxNAl2epw/xUxkdBWwhwD+ENe5/n5lyw9dp//LcSK98kUp52IQoC5/jumsk1aXdKVB6JYjL62oNpa5beuv9x8YXW4H0Us0bUbklbg6ZDX+Su9hHUC2H3+TxHx4amagZyFmPXnakls6FIvWB3udxCG9BHNqRLgtpDXeXvI69RNUT27z9+MKGGSalP6MIS7JydNf5oWzZ+IcD3H6SS10dfVBKJYjL62JWLcZ6brLzefWB3utYjlrrbErgm4Hrg75HXqIZkFALvP3273+R2I3qnaHIRZCD//qTn4aEOX+sDqcMf95lelOF2PqAOldZEVDCVg4FpEvSHt33EC4G+srfm/xtqabNu7vTSvAzPvfjySQgZd6VKxGv1Vym9df7n5xupwtwOnI2Y9sub0zxClmnX1Hdl9/vsRoajaWPkq4MHG2pq/Zznz0tClDFCiexoQ3d5aNacPQfj5tUavoNh9/lcQf19tIUAT8AeErz+bg1VR6pLujX7TovkVJO9+v6/81na21tWXWwgU3+y1QC3JHZV+hOihul/+JUuP3ef/EGH4UyXgnEd2My/TzfQNXUqB0u3tIJIrdk5DFG07Ke9C9YLd5/8OUfbjKpInPkci3D3Z6iuQTpc2k5iRXhVeuSzfYclp0b3RRyz11XKumXn34/Hyw7oeUQuJ1eF+EhHCpi1XMQkRz58L18mAsfv82xAVOx0I36iafRBZvHMG8xlNi+ZXklyjKT6BSNKloZyg1R+sDvf7iNaM2tyYSuDfIa/TpbM9o6jd529AGHltn2cb8FJjbc3ZWfgobeb2ewBKZKF2EqGbPaJiMPrpRlMwjH6vqLJ4V2hOlSEqdf4q/1KlRwnFuwMxWGk7QFmBFY21NWcM4iP2IFHnP5959+Px1dBWEhvDlCOyPQ0Aq8O9CVEH6rYUp68CvCGvU1eVbu0+vx9hmF/TnCoB7lTCOgdkA5sWza9ChBqreV/1b92uHIvB6KccTRWSIi6M2VkiVod7CyLl/oYUp69XOinpSg/sPv97iLBObeZlKXBfY23NVQMs35BWl5TZmTGJ6AWrw91ldbgvRLjcIprT5wCPFLoXrxa7zx9ElAO5JsVpJ/DAAPeM9kQUfovz2cy7H1fnn+hWl3T1sKdhjuZ1fLMES3VdC4mbTBZExUADFUoD7cuARSQ/rJcB9+spDA8SMi8XpzjtAu4dQK2VOZrXqzSvjbDNDLA63B5EP15tY4taRGTPmPxLlR6lKfvvEJvS2jafpyDi+ccmv7NX5mhe96VLhtHPhKZF86ch2u/FiZBcuVG3yyi9YXW470HM+rU1v38KPBnyOnWz2QTd7p4/Ix5MrZ//DOBZdZnmxtqao9LF9yuZuNpEtec1rw1dyhCrw/0KcDDJ2acHAq+FvM5p+Zeqd+w+/yMIY63181cDbzTW1nQ3z2msrdmtsbbmqF5upz2n1SXD6A+QIzWvV6p8sHF0++XqEaWhxhxE6QE1RyBCOifkXag+sPv8SxEzy2bNqTmIh3UnpZvSf4Cfp7nNfiSuAjeTXATO0KV+oOwZHQR8oDkVb8e4R/6l6h0li/cAYLXm1C4IXTq4sbZmEqJl6S9T3aNp0fyRiP+3Gm2pat2uGvVu9LWFk1LVADce1H5idbgbEUqr3SzdB/Gw6q6vp93nX4l4WLX1yn8AvIlIxa8Efpamj6p2ZrZi5t2PazM4DV3qJ1aHO4io1KmN7IlHiR2Wf6l6x+7zr0Ho/0uaU2MQM/ZXgKlATWNtTaoVy+Ekdsxqmnn349pGPLrVJd0a/aZF8y2I2Z0aw+hnCavD/TlC8bWlG3ZCGP5CNjlJidKM/UCSozHG0ZMOPx44JsXbtUbf0KUsYXW4Q4jv92HNqZHACr3F8gPYff4tCE/C/ZpTFkRXOhAbtT9L8fai1iXdGn3Ew632MW8guUgXwLea1+NTXGOQAqvD/R3CRaIN6RyHcPUcmneh+kCptVKDaLiejoQY7KZF88cgQlfVaP/PYOjSgLE63B2IvZdbNacswLKQ15nO7VYw7D5/GGHUr+rlskXqsM6mRfMlMjP6utUlPRt9rWvn2Zl3P67NsIPkXqx6/j/pDqvDvQ0RdfFPzakqRLG2OXkXqg/sPn8HwnevLa0d55jG2hq1D3UuieF17828+3HtTAwMXRoUVoc7ClyECIVUIwH/CHmd5+Zfqt6x+/wyokSDtnRDnOmIkM84MxGunzjtpG4Lqltd0o0gapTRVNv38ulCyLI9YHW44zOeazWnKoGnQl6n1s1WUJSZ1z2kb0NnRnQXi2PoUp5QyoAsQYQHa/dMvCGv87wCiNUXixGBDOlQJwRqdenFmXc/rg0D1TWDNvqSJO0kSdI/JEnS+vMGRCAQmBI7pu4GErPduki9HDfIEkqBrd8Cv9ecqgCeCHmdNQUQKx3HkBx+qeX0QCAwJfD6a07ZZNI+qL4cyWWgoIQHn0xyXsjfQ17nhfmXKDWNtTUzEclmvXFiY21NZeC9VVPkisqLNOeKTpcyMvqSJJ0vSdJtqtd/kiTpfgBZltfIsjzoOhaBQMAcCASuIxppMr37+qWYzWAyIVksyGMnfhW9zK0N1TTIAVaH2w38TnO4HPCFvM7e4pbzht3nfwKx73AAwh/7BhDTXLZP7JuvV5tefeZqk8lUgiQhlZUjW8pbonXn/DfPIm+XKH0eTiS5G9ctIa/zkgKIlITd529CFI/bHZGouILknJBh5iOOWsa7r39mikYmgKJLkkT07Mv3CAQC5nzLPRgynenfC9RKkmSVJOlYRIKPI8uyXANcZlr5XFXlqDHsetO9zLjlQYbtvT+myqqdSZ1GbZADrA73NcDlmsNliN67qSJj8o5SVOstu8/fYPf5D0IMAmcAD2M2CyPz8rOVls0b2enqW9nN+zBjjzkRU3n5cKbsZOhSnrA63I8jOrtpfdw36aX2k5IE+JHd57/B7vMfiWi5OB+4i3gi15pP5pW8u9Iy9dd/Yrc7H2HSOZdispRBWfkFFJltkmQ51d5oigsl6VrE5t7RQI0sy59rzj8sy/KAQrMCgcAURD31qpKH72LyyWcwbHdRJqUz+BVrr3Fi2X33aOmmrx+XIuHvED1WW4Bt5TbbgaWjrCeZSksxlZdjKi29pfzHp2uXYAYDIOR1XgrcqDkcBk6yOty6XNYGAoEpcldXU+zzT6vMja+ww6E/YczRwrsjyzKrzzmecvu+0dIt3z6h0qVtQItlzJjJZTtMvEQqKcFcVoaprOyV5ldenWNzeTJ7SAzSEvI6jwYeRUwe1PzG6nD/pQAiZcQHb7w+Td60sYk3X6oYNWUSU877dfe5z35/IR1zjoUdprQCu82aNWt9/Fx45bLxJEbwbLJU1+mi8Ux/quLdhTDMx6kNviRJY4CrgdmSJC2WZXnJAOSoQwwoxMZPonmFj4odZyCVlLDpqYcxmyUsG9aaSd5EoSMYpCMYVB/6Ba+8ejoismO98nud5vV6m8uj7dZkoMHqcN8U8jqjwM2qwxbgPyGv82Srw/1YgUTrjTqptLTKvNsPkWKdbHntOUbsfzAlo0bT/MxyzOXlWDauMwPHad8Ybm4m3JyQ9Hso0BJsqE+nR3Fd2qq9l0EiVof76ZDXeRywHOEujHNtyOssUTZ/dYc0fMRJ0vARFVRW0PbYfbR/8Snl03Zm2//eJhLaAtYxIGxXHamLGuqO/sz0H0TscJ8ny7K2f+agCAQC1wC/ASASwfyiDz5aRSwcJUYpcleEkgoLVeOHUVKeKtlyQGwm/YO8BlhnzPAEIa/zApLjryPAfKvDratImARdkmWkt1/B9NZLxDrDxCQLcmcX5rJSKsdWYhmWtYZcLaTWo3XAl8DnNpdHG8myXRLyOo8AHkcECKi5zOpw685oqvVJ+vh9zC89RWxbC1GpjFhMQqqohOrDMO2977WzZs36bfx9ep7pZ2T0JUm6DFGU6GagQZblrKZWBwKBy4Dr1Mdi332D/I+/M/WCS6ncZQahN17j22X3M2qX8ZjMeYk0bUZkq8Z/3gG+2l4HgpDX6QA8msPtQI3V4V5ZAJFSkkqX5M4OYjdfy8QFJ2E96FDaPv+Er/52HdbpYygpz0tx0VZEFcZ36NGnT7bXgSDkdR4OPEGy4f+51eG+uwAipSWVPkXvvAXrLjOYeNKpdDVv5IsbryG2x+y79rrk8u6AlqI2+pIkHY4w9gfKstwiSdIqYJEsy+/1+sZ+oPbpA0TfWkns5ecYOXN3dlp8Vfd1H12wqMNi7ry5YuzwzcAwYHjJyBEHmsvK94+Fw0Q7O4i1d8TIXf5BfCBQP7zbzUAQ8jrPBu4gMdEpBBymdFcqOFpdiq3+kOjzz1IaCTPrjp78sy+uuzrc0dS4bMTUcf9DZH4PN1dW7lYyfPjRsa4wsY5Oou3tMWQ5V7q0DTEQqPXpE5vLo41CGpIoNXmeRPk7KcSAE60O9/LCSJWMWp9i678i+pIfPv6IvR9+Csksgna+e/w/fPPIsgf3umfpafH3Fa3RlyRpKqIo0TxZlpuUY2cBc2RZPiubggQCgesQIVNElt6H/MF7mEeMZLfrb8Uybjytn37Mp7+/rF0Oh3ecvXxF95cZXrnscqB7I0iW5Rs3Pf/CNYjEnfjPZM3rSfRvP6M3NpG4GmhkCLuGQl7nL4C/aQ5vAA5W6vkUHLUuRV9+jpj/KaRSC7te/ReqZswkvPE7Pr78F22RraFjZi9f0V0oLLxyWQ2qfBBZll/Y9PwLJ5Nej+KvtZuTA2Ub8C6J+vTpUB0IFFfPU4jmOHE6gaOsDvdLhZApFXF9in38EdH770SylDHl/IsZ8+Maou1tfNbgjLSt/uiy2ctXdO99Fa3RzydKrOs1wHmxpkBV9IG7RJy+yYSpopJYZ8c2uavr9NmPPpuweag1+sCNluq6XkPBgg31ZmACqR/kqYiY3WGD+O/EB4J3gBeA12wujzZkrWgJeZ0ukuuVrEEY/lTlDfKKWpfkzc1VkRuuBkBSIrxi7e1hTKYr9172REKondboAy9Yqut6zUYONtRLiGJv6QaE3RHVGwdKCz0rgleA52wuj7YfQtGiFGNbSuLqvAX4sVINtuDE9UmORs+LXHNVFW2tSJYyTKWlxLrCMclc8mCsvW3R7OUruhPRDKPfDwKBwGS5s+PUyJ9df6CrS73TdvTs5SuSChsNxOj3hTIozEC07LMD+yJa7VX19r5e+B5hTJ4Anra5PNpa9kWF0gT7r4g6K2oCwKFKi8aCEwgEJgN1XTdc/Ss2N9tUpxbPXr7iz9rrB2L0+0IZFKYidMiu+hnoQBAGXkS4Rp60uTxrBiOfHlBq8ng1hzcBh1gdbm3d+4IRCAQmR+7421L5yy/UtfQfmr18xanaaw2jPwBWLZh7F6J+R5y/zF6+4jfa63Jh9FOhGQjiD/BABgIZ+C9iAHgC+F8xuoKUvrr3AadpTr0OzLU63K3J7yoMqxbMvQS4SXVoxezlK7QNenJi9FOhDATTSJxU2BFJQf2liR5det3m8mjLHhQFIa/zt4B2IF4HVFsd7nSF9fLOqgVz5yAG3TjfApNmL1+R4IIzjP4AWLVg7snAMtWhD2YvX7Gn9rrwymW/ITEjLidGPxXKQPADklcE/WkOHUTM2p4AXrC5PLoxln0R8jpLEQk38zSnngGOUwq5FZxVC+bOAD5WHeoERs9eviIhVyO8ctmRJJbJzYnRT4VqINCuCPozEIQQ8j8BPGNzebSdxnRNyOu8Fvi15vBqxIx/UwFESmLVgrkWxCpEXfZ99uzlKxICW8Irl00ksaZ+s6W6rr99eHOCno3+KMSXq/b1TZm9fMV69XXhlcu0inKlpbruj3kQMSWqgWBfREnWeYgSAZnQidgDeAKxdNd249EdIa+zEtFa7mDNqQeB060Od8EVbNWCuRKiS9iOqsPzZi9f8ZT6uvDKZaeRWGL6P5bquoI1AFEGgukI438ocCyJ/4feiCFqEj2BmFQE9L6iVNyGd5Lc8vIdYI5eVo+rFsx9FFigOuScvXxFQnJZeOWyWSS2kfzMUl23KzpAt0YfYNWCua8h8gPinDN7+Yp/qK8Jr1x2P3C66tC5luq6O/MhXyYEG+pNiP6s8xAP7ex+vD1Azyrgdb1GcYS8TisiymsvzakGq8N9Vd4FSsGqBXNvA85XHfrb7OUrLlZfk8JVeIuluk43JT2UQWA3enTpYEQZ6Uz4ip4B4Dm9BhaEvM4SxApfm33/KKL8R8GfgVUL5tYDt6sOvTJ7+YqE3KUUrsJXLdV1umhKpMt6+iq0G7epqjxq25AVPHpEjc3lidlcnrdsLs+VNpdnH0RUhwORldhXKYhZwG+BV4FPgg31vw021OuucbmqXZ42ZNMV8jqTNrkKhDZzuBh1Sba5PE02l+c6m8szB7GCPAWxOtncx9unAhcgjP76YEP9tcGGel3MPNVYHe4I8FPEilfN8YhyL3pAa5cOWrVg7kjNMd3qkt5n+vsCb6sObQXGakKjAoiwuDj7WqrrdBHq1RfBhvpyRLvCY5WfVE2YtUSAxxDRDs/pafYf8jp3QmxSqyNTOhFL8zcLI5Vg1YK5wxCGUR0Tvsvs5Su6B6rwymUPIAxOnLMt1XV35UnEQaG4FX9Ejy7tkeFbX0To0qM2l0dbUrhghLzO4cBKkv8fZ1kd7nsLIFICqxbM/QjRRSvOCbOXr3g0/iLFXuPNluo6XZST1vtM/13ipU0FI0nudarbEbUvbC5Ph83lecbm8vwC4audhahl/xrJ9eHjlCBqlD8LfBZsqHcGG+p10XTZ6nCvQfg61a6DeEnmTAa0nDF7+YptiBWTGm0jlmLWpajN5Xnd5vI4bS7PnogJxAWI5KfeOjv9GNFvOBhsqL8+2FC/Wx7E7ROrw92CaOOpDW++I+R1HlIAkbRoZ/vaaDDd6pKujb4SBqXtXblv/B/hlcvKSIxukElWkqJAWbp/aHN5rrG5PIcgGimfBvyb5FrkcXZELHnXBRvqHwk21B+lzPgKhtXhfg3Q9kIdj+i+NaIAIqnxa17vq3mt2we1v9hcnq9sLs/fbS7PPMTKqxZRQiNdM6IxwK+ApmBD/cvBhvrTlJVowbA63F8iqqGqVyClwKMhr3PnwkjVTdHqkq6NvoLWVaPeCJ2oOfedpbquKOOUtdhcnmaby/OgzeWpQ+wDXA58kubyeNnpp4HPgw31/xdsqLeluTbnWB3u+wBtqdxZwIMhr7OQg1JvugQ6flAHg83labO5PE/YXB4HogTJIkRkTzoORewTBIMN9TcGG+p/mA85U6G4Bc/SHB6DmERY8y9RN+9qXu+xasFctetQt7pUDEZfW9htb9W/dfvFZhOby7PR5vJcj4jcOAx4gOSWbnGmAX8Avgo21D8WbKifV6DZ/xWAtgT3PBKjY/LN/zSvd1firgmvXFaBcB/GiZLoWhwS2FyeVpvLc4/N5TkI2BNRRymU5vLRwKXAh8GG+teCDfVnBhvqtZUxc47V4X4IaNAc3g1YpkT75B2l/pfa3lgUmeLo1jYVg9FP+6CSPNPXzRebCxQX0Cs2l+d0wAb8EpGRmQoTouXbE8AXwYZ6Vz4jf5TQujNJnl3/MuR11udLDjWzl6/4DvhadUj9oGp16VtLdZ1uNslzgc3l+cDm8lyMmP2fidhLSkc1om3q18GG+puDDfUz8iGjigbgIc2xGuBmJb6/EPQ2IdWtbdK90Z+9fMUmRGOKOKX07JrrdjTNNYr75yZE5NIhiJII6TbspiAKpK0JNtRfE2yoz0tmoJJMMx+RdazmVqW0biFI96Buz7rUbnN57lf2knZHlKxIFwJqRdRcago21N8bbKjfJR8yKkl+Pwfe0pw6HzgvHzKkIKUuhVcuqyIxY7eLvkNq84bujb5Cpg/qhjzIoiuU2f9rNpfnZ4gZ28WIpK5UVCK6AH0RbKi/OthQP5BaL/3C6nB/jTD86pwEM/BQyOssRNTRKs1rQ5dU2Fyej2wuzy8RK8nTgJfTXGpCrA5WBxvq/xFsqM80U3jAWB3udkR02FeaUzeFvM79cv35KchUl3S1aixWox/fgNtuZ2epsLk8W2wuz98QvtqDgHsQ3a20DAOcCOPfEGyoz+mGmNXhfpfErGkQy9+HCuCTNXQpA5Rw4geVJLCZwPWIJkJazIgZ+CfBhvrbgw31U3Mpl9Xh3oCIRFKXZLAAD4e8zsGUsB4ISbqklPzQtS4Vi9HXdmWK+2F1/eUWCmX2/4bN5VmEmP3/isSKf3FGAFcijP8VwYb6nIVUWh3uR0nOqDw0xbFcY+hSP7G5PKttLs/liNn/6YgiaFpKgHrg02BD/S25jB5TurRp6/NMBe5Xqr/mi89JXMGOQmRJ61qXisXoa5dz8Q1J3W6W6AWbyxOyuTw3Ajshwj5TRaRYgT8ijP/vgg31g2kg0xsuktPrfxPyOo/L0eelQlumd9yqBXPNGLrUJzaXp9Pm8jyACL89Hfg0xWUW4EJE6PBNwYZ67feaFawO9zJEG1c1RwO/z8XnpULJI1qvOTwBnetSsRh9rX81/qVO0hzX1ZerJ5RY7esRxv93pN5YGo2Ir/8i2FB/ebChvj8lovvE6nBHgVNJjKABuDdfyTazl69oR5TziGNGxH0bupQhSvbvA8APETH0qRq5lAGXIIIHrgs21OeilvyvSc43aFDaMOaLVLZJ17pUrEZ//LYn7xxP4jKqi+QoEQMNNpdnm83luQaRzXsFqWO0xyLi6dcEG+ovyWZsttXh/g6oQ9QQijMS4ZPNVwy49iGcSHKNly/yJEvRYnN5IjaX516Ei+xcklfkABWIfsVfBBvqlwQb6rPmd1f6NdQhSrDHkYB/hbzOydn6nD4oOl0qCqM/e/mKTkDdgs8UDrVoQ/4+tFTX6bJcrB6xuTzf21yeqxHGv4HU6fkTEOF7nwUb6i8MNtRnpQG41eFeiYgiUrM3yQ3Xc0XCJKJs3OgfIPzVccLAR3mSpeixuTxdNpfnTmBXRAil1uUBosPc74C1wYb6PwYb6kdl47OtDvd6RJE8deXIsYjELUvqd2WVVDP9fTTHtFE+BaUojL5Cwpcb7QwfpDmvTYs2yADF538VPXV8UjXdngTcggjPOyZLH30T8LDm2Nkhr3NRqouzTIIuWawjtOF+H1iq67ryIMeQwubyhG0uz+0I438Rqd0awxArzDXBhvrzlH4Tg8LqcPsReShqDgSuHey9MyBBl8zlZTuT6NPvIH0CZUEoWqMvd0W0dVMMoz8IbC7PZpvLcwXC+F9D6lr/04Engw31Swdb2VNJtjmb5M3A20JeZ6ZlgQdKgi6ZSszazzN0aRAo4Z63ADsjssZTFUG0An8HXg021M/Kwsf+ieTKl5eEvM4Ts3Dv3kjUpXLLDzTn39dbPbCiNfqxSERbAlZXS6hixebybLK5PL9DGP/rSZ3lW4fIyBzUTM3qcH+PKBOtziUoBx4IeZ25rPCYuCSXZe0msqFLWUDJ9L0JETzwaxJ973EOAlYpyYID3tNRyn6cTvK+wh0hrzOXxQcTdEmSJG2egu50qZiMfkKSkWSS1HVkZJJr9BgMApvL850Sm70TcCvJ9f1HkoWZmtXh/oDkNPo9EDO3XJGoS6Ul4zXnjZl+FlGKvF2HmEj8nsTEKhAx/k7g/WBD/YAjb6wOdzNwEiKoI84o4O4cxu8n6pLZrO2gpTtdKiaj3xurLdV1umiaPNSwuTzfKE1e9ie1Ag96pqaUYv6X5vBlIa/z8IHcr7+YSkq01TW1CVwGWUCJHHMjQj19KS7ZBfAHG+rvH2iIp9Xhfhv4P83hGsQeQ84xlZZoc1wMo58jdLeEGmrYXJ5GRDu+X5GbmdovSN74uzfkdWYlyqMfrLZU16UqXWGQJWwuz1eI5ignkXqz93RE0MAipRl8f7kOeF1z7JqQ17l7qouziWQ2qyPcoqSvg1UwhorR191oOhRR4rJvJAczNavDvZnk1PrJwG0DEnbgGLqUB5RSIf9B1PW5jcSQSxCJgncBLwQb6rWbo72iJAH+jMRghDLEbyaVmgAAFJJJREFUXlFWwo4z5ENLdV1vrSoLgmH0DfpNrmZqVof7GcCjOXxKyOv8aarrc4ShS3nE5vJstbk8FyLchB+kuGQOYgV5ZX/yRKwO92eIsiNq9kI0GMoXutSloWL0tdXuDHJMDmdql5Oc1n9byOvMafVGFYarsADYXJ43ATsigUvrXrMgEgjfCzbUH9qP294OrNAc+3UeeznoUpeGgtH/wlJdt6XvywxyQbZnalaHextiaa4eREYi/Pv50FdjAlEglMzeaxAF3bTGGkS5h5eDDfV3ZtILQpULoi41IgH3hbxObZRNLjBm+oMkYVdcMne3fdXlF7u9keFM7e1MZv1Wh/s1xGacmjmITeRskE6XPrNU121Nvtwgn9hcnjXAUYgmLqkSu85G9O2d09e9lDINv9AcnorIMM8GGl3qNqm6DSMvJqOfUK60pKo7OlCXS6jtkQxmansA7wQb6hdmcLsrgQ81x64OeZ0zU13cTwxd0jmK+/BBhPvwzhSXTASeDzbUOzNIEHwQ+I/m2Okhr/P4LIiq0aXuwrSfWqrrWrJw/6xTxEa/+8s1Zvo6o4+Z2jDgoWBD/a29uXusDncHcAaJ1TgtiAzLweptOqNv6JLOUMqDnAscRnLzFhOiXtSTvfV9Vtw855PcSOjWLLh5ik6Xitjo6//L3Z7RzNS0iVcAFwAre+utanW4VyHcQmqqAccgxUs3gXhnkPc1yBE2l+cVRCVWN8lBA0chEgS1RRi7sTrcGxHln9XsAPx5kKKls0u61aWiMPqrFsytRLT2E5gkzBXlAKss1XWp2gAa6ASby7MZMeM/H1GyWI0d8bD21jnrz8B/NceuGWQ9lcQHdVgliH2I1wZxT4Mco3Tu+j2iQ5a2js9kxCbvr9KFCVsdbh9wt+bweSGv8+BBiJVuAvHsIO6ZU4rC6NPTHhGAksoKJEkCeKow4hj0B2XWfzui3K02HHMksFzprlSqfa/V4Y4AZ5JY+G0Eg9uISzU7e16PiTQGydhcnmcRDe1Xak6VIIoEPhJsqLemefulwJeaY3cMImkrldFfR/J+lG4oFqOfbjR9Mv+iGAwUm8vzLmJ2/2iK05chZmpTtCesDvfHwG81hxeEvM4T+ivDqgVzq4Dh8deSyYS5vAwMXSoqbC7PeuDHiA5vWhYA7wYb6u3aE0plV23Pht0QZUQGQqoJxJOW6jqtC0o3FIvRn65+oXyxzSQv+w10js3lCSHKKf+SxE1aECuBVcGG+iNTvPUWkpuq3xryOtPN6NIxTf3CXGWsGosVJVrsN4jscG3bzx2B14MN9edr3T1Wh/tFRBMfNYv7W5tn1YK5JQi3UjeKbdK1LhWL0d9L/aJsjBXgGUt1XbQw4hgMBsXdcxNwCGIprGYM8LTSUq87gF6pl342iTkAExENX/pDKl0KWKrrUvV3NSgCbC7P44gWhdrNUwsiW/yBYEP9cM05J4m9a0uBO0Nep5nMmYHo/wAIt3NJRXknyZMTXVEsRn9v9Yvy8WNA56OpQd8oCV2zgac1pyRESz1/sKG+e/lsdbjXAn/UXOvoZ1p9Qsc1Q5eGBjaX5wvgYFLv9ZyKSAzs7pBmdbjbSU7aOgARcJApqXTpJb2XeS8Ooy9JCY2Gy8ePiaHj3XGDzLG5PM3AsYiZl7ZRy48R7p45qmPXkxyv7e1Hp62ECUSFeFANf/4QQInuuQhYCGgTo34AvBVsqD8rfsDqcD9F8v7SkpDXmbSvlAbNZHQ0FIEu6d7or1owdyKy3F2mVyoxUzZqxJuW6rrmQsplkD1sLk/M5vIsAQ5H28qwJ/NycbChXrI63GHgQs01M0je6E1i1YK5EiZpX/WxsnGjW4A3Bi69gd6wuTzLgH1JboZTAdwdbKi/K9hQH58kXEpiCeZhwF8z+iCTlLBRXCyrRt0bfbSj6bjRSGaz7r9Yg/5jc3leRvy9tT5REyIp555gQ73F6nC/gEitV/O7kNeZNtFLYQdicndTFjGBGPmMpbquq7c3GRQfNpfnE4S75h8pTi9CuA7HWB3ur0hOADw+5HWmCiboZtWCuZIkJRr9srGjvrBU130+GLnzge6NvmQ2J46m44zl+FDG5vJ8C8xF1D3Xhr2dCTwbbKgfhSjB/L3qXDlwQx+3TzGBMBm6NERRGrOfQ3JDFRD+/zeCDfW7ICJ5PtKcvznkdVp6uf0kORrrThiVSksoGz3ysWzInWt0b/TNleVHqV+XjbFuRafV6wyyg83lidpcHhcivV7rxpsDvN76TXM5YrNXzYKQ19mtL9pWi+bK8h+rXyvLce0mssEQw+by3Ifo8fyx5tSuwJut3zTvhygLomYGIqwYgJDXWaVJ4NpPfXH52NFIZvMT2ZM6d+ja6K9aMLck2t6R8OVaRo14Uc+JDwbZw+byrEDE7n+qObUb8Fbrhs2NqOrfy7KMLMs3h7zO4SGv83I0/UklybRA/bps9MgvLNV1qUr3GgwxbC7PhwhdeklzagzwfOs3zROBf6pPyLL8fyGvc0rI6zwVETzQHZNfOrwqoZtbxcSxXcCrORA96+ja6AM/kiPR7tHVXFlO1XTb/YUUyCC/2FyeTxEPq7Yuzjhk+fmOzd8vBWHww1tbiXZ27YqI/f8LMCnkdZYArFowd1SktW0X9Q0qp+zwSO7/BwZ6webybAGOBLQ2pAx4qO3bzV/JsrwVoGtbO13b2qsQjYEeRBj8kSD8+dFw1xHqG1RMHPe2pbpOW1tKl+ja6JeOGHaa+vWwabaYyWz2F0oeg8KghHXWAA9pTpVHO7vcnVtb3+xqaSPS3kmkrQOUh1NhBIBUWpLoJhw7iooJY7X3Mxji2FyeMMLHf5X2nByTnR3N33/Y1dZJWNEnWZbVuhT/966xznBPQIDZTNV02z8pEnRt9GVZTqi+WLHD+Ca9NiYwyC02l6cDUa3TrTklRdo6DuhqFbXSop1dxKIJ4f4jACwjhv1cfbBq2qQ2jLLc2yVKRngDwvgnRG7FuiIHhbduA0COxoiFE04LXRo1ImEyWjllIqXDKotiExd0bPTfO+no8ZGW1knqY1VTJmrLohpsRyjx/L9HlGPQ1u3pJtLeqX45ctWCuVKktT2hfG75+DF+S3WdNhnMYDtC2eCdS3Ldnm662hJ1CUAymU5VH6zcYfwXluq6r3MhYy7QrdGvmrJDwm56+YSxcvn4MXcVSh4D/WBzee5C1FT/PtX5SFsHsty91z+icvLE6mhHZ3fGrqm0hGFTJ12fe0kN9I7N5XkJOAhYm+p8tCOMHOueG4z44LTjKsKhloS9ofLxo+/NpYzZRrdGP9YVSVhClU8Ys9pSXbelUPIY6I5NiBo9ScjRGLGu7oVApbm87DL1+QrbhNbSEcOMhikGcTYDaYs3Rtq792crq6ZOOk+ORrv1rnTEMKqm2W7OsXxZRZdGf63rYmv7t5sSRlPLiGFFNZoa5A6lxeLTqOria1G5eKo6N4dq1Ocs1hEvGGG/BgBK9c0ngZ3TXaPWpUhre736XPn4MWsqDj+9qCajgzb6kiQtkCTpDkmSHpMkae5g7xcIBKZER419tnz8aCpsEyipqqCkqjJWaZugrX9tsP0yHLgXVYy+lkh7GFmW2WoadYm5zFJVaZtAqXUESBIW6whtpU6D7Rcroujaq6SZ7ce6IsQiUcKYJ8cikR9UTp5A2bjRAFhGjSy6yaik8n2mv0iSzgf2kGX5AuX1n4BpsiyfobpmFHCdLMtnD0SQQCBgBq4xr1tzYeTBe8qrfrgnptJSvl/1DlUzpre0n3j2qFmzZhn18w0SUEovz0X4+I9GFa5ZMnwYzU3fUDphEpZxE/j+nTepmDQ+2nHGhWWGLhloCTbUj0QU/TsKUfm1O5DEXFkub/26TZJjEhW7zGDb+6soHVlF50/rb5IsZZcXkz6VZHjdvcDHkiQ5ETUr5iE2P9RcAdw6CFmuAS4zveJnwsIzGX+sSJ4MvfEa3zxw53Dl/OWDuL/BEMTm8mwA7gPuU3rsHto1YdpfzN83z94WClO15z5Mu0ioTcfXQVZf6jCbI5G/AL8qoNgGOsTm8mxFzPofDTbUmxCtPY+LlVfVd3VEx2Ky8IPrbkYym4m2tvLR+T+jdMvGSyMTJkcpItuUkdGXZblNkqR/AVcjZlM1siy3A0ii19yfgadlWR5Q3HMgEJgCnAdAJELpqNE9Ao4ahRyJApwXCARumjVr1vqBfIbB0Mfm8nQFAoFPgBnIMmVP/IvSUWO6z5eOtEI0BtGIIxAI3GDokkE6bC5PDHg7EAhsAC4te/N5SuRvkcyisZapvBxTRQVyuBOKzDZlOtMHuAtoAo6TZVldPvQi4AhgpCRJu8iyfPsA5KgDqgCkfQ9g/e1/JfztBqTSUr575CEsBx1EZyxWJZlMdfRdSdFg+0bokiQR2e8QNt1zB7Ico2zcBDY946PKPpuOUksVsmzokkEm1AFV4T33R37jr3z5t+uomjGTrW+txFxZTnjCFEyyXIUkFY0+9cfoXwls1L5HluWbgcGGLI2P/yO8ux1L1XC2/u9tkGVK59US3m3veGzehEF+jsHQp1uXohOnUHLO+bS+9QqtX3yCae+96NjnYCSTCQxdMsiM8QBy5XCk+kvofM1P+K2XYcxYIrUnYSrtrr5cNPqUkdGXJOkyRL3yOkTDgWwXqkqodNg1fQZMn5Hqum//v737D7GsrOM4/v6cMzO7SbthLq1L67KKCiuDJGpkUUK2oQn2AyOXhBUiEakIs5DqDzGCMkUMCwmLNf9QF/9ptRUz0/onJSN23UXDTWJ3bDGhEFyImXvOtz/OM+PMeGfmDnvOndl5Pi9Ynnue89x5Prt7+J4755x7Tsvz2tozZ1uqN21h8uovzSzPurDf25INYmZ7itM2MPnpLyw07pTZnpa8ZFPSJ2meNLM7Ip4DNkr60OLvWra9wFIPEz6RxpktxtuStWnNbU+LFn1J24AHgC9GxPSNzu6lea5ka8bHx48BS50LuP9UOVFiK8fbkrVpLW5Pix7eiYijwDnz+vYAezrIMv1g65tIJ3WTEzT/6Es++Nos8bZkbVpT29NAX84apkOHDm2lOXewmeY42d5TaS9qq4e3JWvTWtmeVl3RNzOz7qzKG66ZmVk3XPTNzDLiom9mlpHlfCPXLFvrL70pVJQUo2MURYmKkmJkNLVjqGzaYnp5Xr+KknKkQFLTFqIsUzui/v1lgQooClGUBUUhRkYKykKMpXbdzHLZtOX8/v7taFFQCkbLgkJitBSFNLevUBqrmTHlnLFCgrKAAlEWzZffykIUqZWglCgEpWj+noIivVd1haKGuoKoUd2DqKHq9e1X3YO66W/W96CuiN5U005NzSxHXUFviqiquWNmxk5CXRO95ulY9WRvpq2rinqqR1Q1VWrfvTzVLM+8r6KuaqIOqsmKqJq2nrc8Z/1URV1Fem9Q9WqqCCbroApSG0zW9O2vmT3mnXX3xz/7PmAI/EnfzCwrLvpmZhlx0Tczy4iLvplZRlz0zcwy4qJvZpYRF30zs4y46JuZZcRF38wsIy76ZmYZcdE3M8uIi76ZWUb8EBWzIZF0Y0T8wjne4SzDz+FP+mbDc+NKB0hWSw5wln46zeGib2aWERd9M7OMuOibDc+KHy9OVksOcJZ+Os3hE7lmZhnxJ30zs4y46Jt1RNL7JT0t6dXUnr7AuDslHZb0sqSfSlrw+aZd5khjN0p6XdJ9LWe4UtLfJR2RdFuf9eskPZrWvyBpe5vzD5pj1rhrJYWkS7rIMUgWSdskPSvpb5IOSvpMG/O66Jt15zbgmYg4D3gmLc8h6aPAx4ALgXHgUuDyYeeY5QfAH9ucXFIJ/Ay4CrgA2CXpgnnDvgL8NyLOBe4BftxmhmXkQNIG4BvAC21nWGaW7wN7I+Ii4Drg523M7aJv1p3PAg+m1w8Cn+szJoD1wBiwDhgF3liBHEi6GNgM/K7l+T8MHImI1yJiEngkZVoo42PAFW3/xjNgDmh2fHcC/2t5/uVmCWBjev0+4F9tTOyib9adzRFxHCC1H5g/ICL+DDwLHE9/noqIl4edQ1IB3A18u+W5AT4IHJu1PJH6+o6JiB7wFnDGsHNIugg4KyKeaHnuZWcBbgeulzQB7Ae+3sbEI238ELNcSfo9cGafVd8b8P3nAjuAranraUmfiIg/DTMHcDOwPyKOtf8Bm34/cP5lg4OM6TRH2vHdA9zQ8rzLzpLsAvZExN2SLgMekjQeEfXJTOyib3YSIuJTC62T9IakLRFxXNIW4N99hn0eeD4i3k7veRL4CLCsot9CjsuAj0u6GXgvMCbp7YhY7Pj/oCaAs2Ytb+Xdhyqmx0xIGqE5nPGfFuZeTo4NNOdVnks7vjOBfZKuiYgXh5wFmvMcV0LzG6Gk9cAm+v//DcyHd8y6sw/YnV7vBn7TZ8xR4HJJI5JGaU7itn14Z8kcEfHliNgWEduBW4Fft1TwAf4CnCfpbEljNCcl9y2S8VrgD9H+l4gWzRERb0XEpojYnv4dnge6KPhLZkmOAlcASNpBc+7nzZOd2EXfrDs/AnZKehXYmZaRdImkB9KYx4B/AC8BB4ADEfH4CuToTDpG/zXgKZod2t6IOCzpDknXpGG/BM6QdAS4hcWvMOoyx1AMmOVbwFclHQAeBm5oY0fob+SamWXEn/TNzDLiom9mlhEXfTPrTLqVwUOzlkckvSnpiVl9V0l6Md2G4hVJd6X+2yXduhK51zIXfTPr0glgXNJ70vJO4PXplZLGgfuA6yNiB80lk68NPWVGXPTNrGtPAlen17torkSZ9h3ghxHxCjRXtUREK/eYsf5c9M2sa48A16UvF13I3BuZjQN/XZFUmXLRN7NORcRBYDvNp/z9K5vGXPTNbBj2AXcx99AOwGHg4uHHyZeLvpkNw6+AOyLipXn9PwG+K+l8aG56JumWoafLiG+4Zmadi4gJ4N4+/QclfRN4WNJpNHea/O2w8+XEt2EwM8uID++YmWXERd/MLCMu+mZmGXHRNzPLiIu+mVlGXPTNzDLiom9mlhEXfTOzjPwfvjmw/MD07L4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -1625,21 +1479,13 @@ " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", " link_colorbar_label='MCI',\n", - " )" + " ); plt.show()" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": null, diff --git a/tutorials/tigramite_tutorial_basics.ipynb b/tutorials/tigramite_tutorial_basics.ipynb index 9aaaf9ab..27d0ccc4 100644 --- a/tutorials/tigramite_tutorial_basics.ipynb +++ b/tutorials/tigramite_tutorial_basics.ipynb @@ -6,7 +6,7 @@ "source": [ "# Causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI method and create high-quality plots of the results.\n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "This tutorial explains the main features in walk-through examples. It covers:\n", "\n", "1. Basic usage\n", @@ -19,6 +19,8 @@ "Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019) \n", "https://advances.sciencemag.org/content/5/11/eaau4996\n", "\n", + "For further versions of PCMCI (e.g., PCMCI+, LPCMCI, etc.), see the corresponding tutorials.\n", + "\n", "See the following paper for theoretical background:\n", "Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "\n", @@ -104,14 +106,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd7gWxdXAf4cioKiAhSJVwY4Ve+9Yosae2DXRJBpj1ESN3cSony3W2FvsJraoxBZ7R8WCiKKgYjf2Lnq+P84Zdu7efdu97733Beb3PO/z7s5O29nZOWfOnN0VVSWRSCQSiUajU0dXIJFIJBKJIpKASiQSiURDkgRUIpFIJBqSJKASiUQi0ZAkAZVIJBKJhiQJqEQikUg0JA0hoERkkIjcKyITRGS8iPzOw/uIyF0i8or/9+7ouiYSiUSifWgIAQVMAw5U1cWAlYF9RGRx4BDgHlUdAdzj+2URkf+0aU0TiUQi0S40hIBS1XdU9Wnf/hyYACwAbAFc5tEuA7asIrt526SSgIgsJyI7t1X+iUQikciQRnuThIgMBR4AlgTeUNVe0bGPVbWZmU9E9gL28t15VXVoG9XtNmATVZW2yD+RSCQSGQ0xgwqISE/gX8D+qvpZtelU9XxVHaWqo4AP26yCMBlARLq1YRmJRCKRoIEElIh0xYTTlap6gwe/JyL9/Xh/4P2Oqp8TZk6bdGgtEolEYhagIQSUiAhwETBBVU+NDt0C7OrbuwI3t3fdcswD3Ats18H1SCQSibojIj1E5IqOrkegIQQUsBqwM7CuiIzz3ybACcAGIvIKsIHvdyTzAHcBi3VwPeqKiPQUkYdF5A6fySY6GDF2FZHOHV2XxCzFMGBHEVmyoysC0KWjKwCgqg+Rmc/yrNeedalAX+BR4FAREW00D5OWsyrQDbsGGwK3dWx1Zh5E5ERgY2AlVf26hqTzA5cCnwE3tkHVEoki5vf//6MBljIaZQY1o9Afc4H/DujX2sxEpLObNzuaJYDHgPuB5Tu4LjMbewAjgfVLRRCR80Vkp1zwyf6/RltVbFZCRJZqkHutYRCRgSKyQC64H3A7sIqI9O2AajUhCagqEZHZgLmBD4BngGXqkO25wLN1yKe1bAY8BDwNrJhu5PogIn/Cnsu7FBhQJuovgT9F6boDQWCNbIN6LTIjX2MR2UJE5qgh/ijsPmtX5UtElhaRRh5jHwVeyIX1BV4F7gRGt3uNcjRy4zUa+wM/quqPwHjqsw61ADCyIwcLL3tV4N/AU8CmwK87qj4zCyIyD3AccCQwFZt9F8Wb0zcHRf3gQv9fhfrM1CXa7g68BGze2nw7Al+Tu4kq3ioTcZr/L1f/GhUjIksD44AL2qvMFtAV6CUiXQBEZEWsn74HTMTWozqUJKCqZ3tgI99+F9M0WktYAO9IM848wNeq+iX2nNdLwCIdWJ+ZhZWBu1X1z8DblBBQWFs/h601Dfaw7v4/hVb2MxFZBvjR/wEW9f9GWtuthUH+X4uwmQ3zCB5ejwqIyJYiskourL+IrBMFHQ0cBvxURBrVqWqK/68pIksAj2PrTu/6saEdUquIJKCqwKfpi2MzDLDnseohoAZgA9NplSK2IQMxDR93+tgT2DRoVYnaEJF+IvIo9iaU5z34HUoLqOUx0+qLWB8DmAtzrPgQ6F3uWohI9wqefmv6/zn+vwkmMJeucCp1QURmr8UcVwXDsf66eKWIEYOBh8mEW4sRkaMxp5VHRKRHdOgq4L/RbHVRTCieAezd2nLbiM6YcrQIsK6HjcRmUK+TBNQMw0DgI1X9wvffI/N2aREu9IZhHaIj1wSWw6bzAKjqI8APZJr2DImIbOpvJonD9hSRtjZb7ITNnnbBhA6YgNpURNYTkfwguTHmnDIFGOKD3vLA86o6DVOGBpYpbxxwTZnjozFT4wgRGQ4cAfyROpgOq+QOzAGnXgwAngD6h3tGRBYQkRWK7iEX3vMBT1IHAYUJxknAp/gALiIbAGv78b5ejyHYIP8AsEIdym0RIrKziDRbe4vqeB9mht4LuN4PT/HfkCj+wiKyVBtXtxlJQEWIyAARWavg0Ajg5Wh/KiW0CxE5W0S2qaK4oZjQewN7m3urPiUiIgf5G+BrZX2au5U/B7R7ZxT7vMo8IvILEZlNRDQvZKrM5/fArTR3k70Qc58tle7XIlL4smERmVPsnY+VWA74HhvIYgHVCbi7oPyVsDf1v4kNoCsAk1T1LT8+lvID3AigsL+JSB9MAJ4F9AR2AC7BhEabvVQ5x2LAknV0FhiALeJ/TXbPvIgJrZUK4vcBPsGERTlBXxEf1BfBZkSPAQv6oc2BNzCngxFYH/jAX3z9FLBMBz5feDk2u8uzJGa9uQdTVq4DfgYspqovYP1xgIh0ccE0EXOcaFeSgGrK+cB9BSaVhYFXov0JwGKxNu526a7Ab8jMKUG7W7WgrCUwZwsw78AbCuLUwknAePc2nI5rlk+USTcAu7liJlMfbbNq/Ob/H2bWugCbhYDdSLXk0wkIbyMZGIUHd9qFSqRbBrtuGxQcOxLz3DxPRH5SIv1srtwsjy3ig/UTMJs+2MA6Vy5pb+y83wBWpGm/ABsIV6Y0n3j5RWbAIcBzqvouNkBviw3kHwFztZMZ93usP/2vTrPXoZjAf5vMMzI8jzhERDqJyOxR/Pkwz9u3sFlXax58Xh6znDyOXa/QvwYBB2JjxHBMYF0JoKqfetyWKI+tIppRfltweCFMsL/q+39T1R9U9SUAVf0OE1KLYuuVFwBz5tq22noMFvsSRM1tP8sLKBHZXESecS0hmLXy6wULE82g/OJdhXXK4IJ+I/BT7OaZz7X/OYATgYcLNMhYwwYomrm1hF1y+wcBK4jI6iXi98PqHPMJrZzRtYD+mFYcCIvgta6VxO7cS0Tb22Pa5BJ5Ie6EdmvyImARmRs4hkyw3VJiVnc4Zi5Z2OP/SlU/Busv/gb8jYm8P92cJ9h534wJlHPI1q7ABsNmMwMRuUJETsFmRhMw4ZYnmJnw/6WAB9wT9WPMQabFiEg3EenqdVm74Pj8mMPHykAvIlf6FpY3B7Ajpsm/jWn44b56CTN1PgB8GSWbF/hQVb/F+vVAEXlXWvbC54HAk+5Q9I6XPxgzo04kc4ZZkqaPj7yEzazam3B9pwsVERkj9paI/tg5TAR+77O9PPcD62AC+GWsDxUqeDFuiYpfYvA6NpPcqtYTmOUElM9oYlv1AdgzTc9ijV9kq16K5s8LXEL2jErQ8tfCBoswKPw5ipNfs4o15WDXbhF+k36PuYifKPbqoj7eSYLn4YMlNNj+ZBp+4GNsQGlpfWb39Y5aWBRr+y5enxUxzXdpz3NklYvty2Aa63b4wO7pTgH+g81WitYPF8AGmLzzyyhMSACchz0v9mnBesdo7H2RJ6jqeFU9r6CMydigFgbH3piZV12YBUEUvzmi1OC2I9Z338Jm30VP/Q8hmx1fC1yoqq/5/gfY7KJFeJ/7HDjT63JwQbRFgRdV9X3MTPkLEdmsRH7dRKRSfVbCZoTjyWZQS2Cz7ic9zmq5NPOTfeHgTWwW2ZfIc1bsId6KAy92r7zt2+9g9/3rmFIziaxNl6TpeDGJGgSUiKxZySQqIgvmhEARQ73shURkcT/H0djbYvoD76jqNFX9W4n092ICKjhSTaKMgPLZq+Bjnth7/WJlsJSjUEmqElAi0lca4Kni1uKa71SaPuczEhvYj8G86abQdHHwCszDZVwuu+fJnmFa28M2xTSN4cCPwO8x4TaJ5vbvWEC9iWl2LXWUmBf4TFVvxwa03TB7Mth6UuBWEQl2c0SkN9YHPsnl9zGtm0H9maYm0WpYDHhJVX/Abvo1sGezgoB/zvOtxIbA2ZiZbV4RWYRsMLqL0o8ILIBpeXnngRUxD7Db/f9PWJv1CRF8prAI8E9VPbRUxdzpYQqZu3NvrK3D8Y9VVVR1SpTsXcwcN104iz079Z3vvoW1TZEJaTCuLKnqxar6y+jYh7RQQIm5WL+IOdP83IN7RsfD/TMQ69uQ9cN/i0jRWtA+wPsiUs55Y2nM4xF8BoNd2wewPj99th0N8MtGZU/1eND0OcZ/YvdNJQaRWRsmE80I/DVWH2BtPpima9YPAYWm4RifjU7GZi5FM+KY4Z6m0DHEZ3bDsHHqYezeucujLIWNVRPyaXPci1mF1vZ8JtLUKhHKu11E/opd61sxRRAvfwjwGjYWLlyhvGZUFFBibpXbANuKyLG1FtBghGc/VoHpN3p3YIyqHq2qB2CdeTk/3gf7qu9cbsefjqq+h81aFsC09oewi3G3D0SxWWYCTddDBNMuJ3heX2DeWjVfQCdM18G0/TOxhXGwhdsp2ED3AjaAB0YALxe8U7BQQInIMUWDi8+Y4r400MPnd834/VJrNxGLkg0S4zyPG4AFo7WSarTcgcCrqvo9dkOugg1cp6nqh1g7FA2CAzx+3qS4MvCEqm6qqv9Q1Qe9fkOjOBsCd6nqV1XUbyLZdR6EeYSWxM1xbxApTdh1C56XX2H9qMjrMjbx5Zk+gxKREWGgE3Nb/7CEGTRwKCaQfwnMGddPRBYFpnj6BcgeYfiOzOT0poj0EpFDJHPVXh27B/5QptzFyAbV1zDvxN2Bh7ydXsQUzY+AfiKyLfALshnwVGyAvZumpuBOQBdp6jZexA5kg++d2LrkKdEHTN/HhNZz3v8CY4DlxNYpy5kWdyPrV/lXEOUJClKRpWNj7Lofi/WTMV6vYZiDzK6Yi/l15QpwR503gON81voEuWc2fda7MdYnBpDN5L/H7tcFsWs1kRY8X1nNDOoHVT1bVc/yQmcoXCv5yKfD+2GmudX9hhwAvJ0boB8j016WA8aVsM+Cz6KwznIp8A9M60dVx2LT4x2wGyM2G84NTMt9lPG/mLbSEmIBdQkmLMHciQ/DhOUy2A0VD/JN1tYiPiK3PuE375FkGnMIF8zmv38UPBDzPrsU+As2EFZ6GHlVsufMgonrLq9HqPPyVcwy5yf7blhYtF6KTIseB/xGRKbPdKK+cAO2XtfJw0djC9735cqYQlMBtSDVaeBg7R1u1PUxL6pKTKbpU/3xdXsFn4EXpKsooFzheBk41WdpF2Ft/m6Ztg6L3Y/4/+nYbLUnWbvsjLX7dAccVf0IX7fFhNvxZJ/TWRgzWRa+4UJEjvE0wXQWHH9G4Wt2bq46GrNYLIMNwMGpIZwzmLkzNjf1wdp4VInzDWuR8+OmRDfLLqeqB0XRgpWlydsjXDhPxbxl36I0K2ICBCqvvYbrXfQKrbDksCh2beLv6N3n/2dX87JrVR2iqqf77h3A4iISe5UejY1dsaI1FnM4Wwi7/9+kab+vmmoE1BgROVZE/kymPcwQiHmNfEc2G1gXuBozvy2BC6hcsrfITEA7YaadUgR37Hmwb1nt4p0RAFW9T1WvpfkAUlTupbRAQIm9ZHQM8I2X+byqrgFsCVzsN+37PuN7iaYzu1ICKrg8xwQnixFe7r4+IIUbJH5n3EKYU8L8mJPGtsCeYq/ZKTqHFbCb6VE/hzvc1PUdNiBthQmvuf1Xqi26Yp5W4YachCkZG5MtWp+CaXl/jZLOA3zlGuMnZLOV3YHHve1iptBcQL1GdUwgMy8NoTpTaL688NjDwpgS8inQWbLXJgXiNag8UzGhF95+sD/2YOlmWNv0pumDpzF9sMF2CtDLv+H2HOY4dBgmPM7APCKbfFvI436E9Yl7yJTBQdgAOJ+bTPOEVxuN9f9nMUEDzZWDyZi1ZDywnar+z8OPw17v8wqwli9dzIE5EdxOGQGFDa4v+0ytEO8nG2OKap6xmEIyjzR/QWtgFHAUpsxVehVVGE+WEiOe/S2OPzrilp97sevxJXaND8AU2Zpwhfp84AkROc/7xprAwaraz2eSH2LK8qvY2DgKa/MpQDep1ZNTVSv+gPWqidcIP2Bsbn87rGMciLmjLoLdSLtii7tX5+LPg91A53v8QWXK2hmzX78MLFoh3pW+vT6mpf43F2cQNpur9XzvAx4Etq4ibldM+IzEbkoFdiqI18mPbY2ZN8E0oaexG3mIHz8DG/C/xoRCV8zk85XnIUBvT/8SsESJeinwWoljf/Q6/xszEyxW5vx+5XnN7fsr+v5jQOco3sLAl9H+0sALvj0G2My3xwPLFZTzO+CsaP8BYO0qr9fKmCbf06/dOlWkORg4Odr/B7BbLk6TPgj0wJSWTiXyXAUTXidga68reFupp33etxcvSPsuMCAXdmaUfndMMVikRNnPebzNsRnJ3NjgKd7+W+biD/H+tUwuvC+wQUH+x2LKzn9LlC/YGqVib5ufhClSp5W5BrsAV9V6f0bph3v/fRRb09kBODZ3vb7Clhy6+fbsZfL7p/e7CzBP4R+jY09iziIl75VWnMfI6DoP9us2Z3R8TmxsGR7Fmzuq8w61lFetF98eInJitBYQ1heKPHcaClW9TlXvxoQC2GD3HNbQA2g+5Q7rL78EblDVNynN/ZgGMQ/mHVaK2MT3N+ymyH++/h3MTDLd9i8im4hI0cOH4bhgA8HmqvqvMuUDoGYX/xe2YBs0sFsK4v2IzTz/iWnnYFr73djMMyxU/xbTxq7BhNRAfDahqj+qEZwAXsbMAyuLyDfROYRnfIqeFcPLHIiZEMq90w5Mczxa7dkTyGYnV6o5XwRew7S50P+HYVo32IxtSRGZC5u1xC7fgcl+Ljf5on4tM6hx2Ax+HWyG+UH56IBpn1uKyI6+P4LmM6+3aLpusSj2wG8pjf8xTADvDbyhqsELDrUF/1GYiXVonMhnHHPT3PPzmWj7elV9WlUnUkx4aPURP5fNgfvVRrEXae7xtgrwoKo2cVRS1fdU9S6a8zymCHxUVLiX8zvf3RYbE94gZzUQ8+5T7wtLUL0Zt6jMSaq6CDaDHoG9Uix+9GNpzEnoGzWX+GeAU6S0Z+NAzKK1KDYGiYg8KSL3YdduvKpWcoJoyXk8j3na3ooJWtVoCURVP1fVr1R1EvboxVPR/fgBNTpfVSWgVHVHrDPfKSLbici12FP5ReahhkRVPwFWVFvIfg0blIJrcRwv3NB7qurWFfJ8A9N8+hB5YxUQm/jCINJk4FBzrHiXpoPMbZiQmI5P5/uJPTDX25JqubLzPIKZ+foCj2jTdbC4PtMXc8XezLwQZmsejJ3v6mTv7zoIEyB9Pd6rNGcipiQ8igmH5fzGf9SPl3IWCKa5V7BBeHB8UETW8kFkCuadOf2BZ2+X/YCLc+c2DfiCbIF5ETKngxcwG35wICladx2HCZgtME14XsqvLcRlf4Nd02FUL6AmY+16hYhchF2/F3Nx8gJqNTLX66J6KDaL6EW2fnkYrgD4INls0PZ6TykQfFd5vVbV7JVgpbgRM+f9D1vX3hbrW2AKUd6MuyyZUlQNQakoFFAAqvo65uk6Gmu714BRIrKNL2dA5lT1KTaTv7uGOpRiEjZbXZOmL68dRWa+BLPwbIA5eRQxEGuzRTCT8amex1owfbxrE1zZm4T1sbyiEsc7TlVjs+lHRN6v1VCtm3k/rEFmx7w1xqvq5qo6Q33pM9ISw6Jz0VoQQBdVvbggvIivPO9pZeK8BSwg9gmGHtjC5d8L4k0fECR7+8T0a+RraqdjA8qXWAcutQheiscxjfWXZM+HlGJe7NmfnTBN+iEy7fYZXItXs/G/h5me/kWxgHoZm/4HnsJs459g5rHCBVu/GdbHvBKfBS4Rc48PBGeHIdh1ez6X/ky1Byvz/I/MEWRlskFtPCagih5gDryJCdb/YGt9b+RmaJWYjM18u1GdgArCcwo2+6ZAKZkuoESkF2bSvoLyhFfXPOh5/lWbeqtOIZrNuAfaqRQoY675P6Gqj+aPFcT9k6qO9mt+CTajn+KHiwTUcGp7bCE8U/hN2Vjmfh3iP41d7+uBw0Vkd8x8Hdf7EVrPK5jX50TsvX1hXXYUkULhM5CfA3u7D8C24Zhbsub3Os+HtddBWJ9dgfb5TMZrVBBQBbSNgMI+rPccZoYZBfQQe3q85vekNQjB1XdBCgRUjYPNTmSDZCFuMvkQM+/drar7q7kr53kT+y5QL+zm2RH4PjLzbUHTj4jtSbEwKEdYNN+ZCg/OueCZ6HHvV9Uv/Mbp5NP4qZq52L5HphEWPXQcBoMBmIfVqtggfb2q3l+hHve4kAmLz7FDxnCyt0UvWy6fHG/gr8bBHmYOps4JmDlndUrM6tx0uSq2BrcW1Zv3ApOxQfmFMia4uLxPsVdorYYNWgsWRHuTbHa5F+Z6XdZDUFUnAz01e+9fntuArSNHiXUwpageA3XgVv8P/biUgKr6QXZXFvfHnocrFy+Y77/x67Aatn4FNusWsplxq97jFzEOU6a+xZTLIExWoOkMClV9AlPqjgD+ISIXir1Oqy/wPzUnoq89rrrJc6w2fY6urXgeu09qMSM28w6uSNHCVDU/bPr7UEvTt9WPnJNEmXhPYgt4w9upXld7eSUdTrDFzkOxQe8RD9sXM4n0x2YRf8A0paM8v+NaUBfBBoH5q4i7iZdzYoV4y2ODqAIbVVmPF6lxIRczE+7t2z2xmWQP4Gc15nM+ZhJcAHg3d+wgP48TKuSxoMc7pcayl/N059Wxf43GnsUCUwaaOQ+0sJ+8gJmZ5sK87g6pV52jMoYD4vs/BW727d5+bb/AF9rr/cOsCX1yYc/69ZkH80Y9rM5lKiZYbsNmug96WNeCuG+QORsEs+wamHcpmGDXtmibCufQxetTdX/AFOxbaimnxS+LVNV7RCT/doUZieew2WCRia8t+De2XvFQmThvYlrJQLK1l0swD6ktfX+Uqr4rIuEtFOVeBFuIWm/5tGJEI5iX8mse+TyfAp4SkauqzVtVW/ICzSlk6yIjMff+rzEFoBaexRbfnydzkAicigm/si/wVdXX3PRyb41lhxlX2TatkZeBhd38ORI327UGVVUROQwbFMOzPZu2Nt98GTSdHX0CzC0iJ5M9M4VmC+11RVWbOQnhz3uqWRCuLTjeWrbCniX7HLu/+2MWiqL1zvCi1zCzHIwN9OH6bo1ZJNoVVZ3ma8iVzKgxhSY+EemutjbbjFa9zViz5wtmRN4G0Oqe/q8HVwP/UVt8LsUbmDACm9ajql+KyFHYGtDLZA8D3ow9G1LuOa16MMX/q3mgFG3DxVnnXbK3e8cP4NbKTdhbB+4iJ6DUzD1HV5OJqv6zcqxmaT4RkY1o6vnWWl7HTD+7APeWuuFbQBOFqo75luI9zIKwFtlrc84qm6L+XEr0gtV6o7527+tP/TEv2J+XiL4N2bOGg7G160XxVw6peTZ2yERBS7/AoBTNBJSIDMBepr2K5t7WA9m0eqZBRMZqU8+RUvFmA3q0lWbWEsTeqP4sNijsorZG0OGIyBxa7GjQ7oi9bPQ3qrqJiJyNedqdXildQT5C5kl5vKq26k3bjYCIhDdnrKGq5WbqteY7ByYwxmgbDxjuAPA99tbwFT1sNo0egJ+ZcGeo17X0OmA+/jSPX81rvxoKEekPPKOq/aKw7bFnowpfUjDLftbbO3xDdXpVfc5vxoZ6pVSjCCfnDWBFsXe+LU3ODb9a3HwVdhtCEagDnwPUUzh5fl/S9jP1UNY0sddQXRCFNdR9Wk+0ds/AZansfduofIx5Ll4I3KqqN2EOIyUdvWZZAdWoNJpwakCex0wiE6L9ltIfe9jwvxXizSi0l7m6TVHVEzq6Do2K5h6jmJFQ1W9cKdwTM1HehC1dlPQETAIqMUPhJqZ9RWRdzGutxdqk27yvqVvlOp4JNP8eUiLRSPwVWysN62pDKPOO11l2DSqRmNnwRfe51D4QmEg0JCKyBPbttMVE5AVgR1V9tihumkElEjMJ7mHX1l52iURreR0Y6g/JD6HM23BmuU++JxKJRKLjUHtX4+fYOwR/LPdoShJQiUQikWhvXsReXDClXKQkoBKJRCLR3pyNfY6j3OeMOl5AichJIvKSiDwnIjf6i1LDsUNFZJKITPQn7xOJRCIx43MD9hLq/ctF6nABhb1qZklVXQp7lc+hACKyODYFXAJ7EeY5/rmJRCKRSMzAqOoPqnqF2tcRStLhAkpV79TsW0qPkb3WfgvgGlX91l/5Mwn7hHcikUgkZgE6XEDl2AMY49sL0NQ+OZWmXwydjojsJSJjRWQs0L0oTiKRSCRmLNrlOSgRuRv7hlGew1T1Zo9zGDANuDIkK4hf6qur52Pf90kkEonETEK7CChVXb/ccRHZFdgM+5hfEEJTyb77A2b6a69vNyUSiUSig+lwE5+IjAYOBjbPfZvpFmAHEekmIsOAEbTg43yJRCKRmDFphFcdnQV0A+7yN90+pqq/UtXxInId9kDXNGAfVf2hA+uZSCQSiXZkpntZbCKRSCRmDjrcxJdIJBKJRBFJQCUSiUSiIUkCKpFIJBINSRJQiUQikWhIkoBKJBKJREOSBFQikUgkGpIkoBKJRCLRkCQBlUgkEomGJAmoRCKRSDQkSUAlEolEoiFJAiqRSCQSDUkSUIlEIpFoSJKASiQSiURDkgRUIpFIJBqSJKASiUQi0ZDMdAJKRP7T0XVIJBKJRDEi0lNE9qwm7kwnoIB5O7oCiUQikSjJ9sCFItK1UsSZUUAlErMcItJLRLbp6HokEqUQkdVF5BJgYQ/avVKaJKASsyQi0ldE3uroetSRA4HrRWSOjq5IaxCROUSkW0fXI9EmrAPsBvQF/gvsKiJlZVASUA2EiNwoIsd0dD1agojc1B6Do4jcIiIX1SGrEcAAEZE65NWmiMg+ItKrQrRR/r9UW9ennohIz1zQ08AtHVGXRLsxCrgZWBXYuFzEJKAaBB8otwTWzIV3EpG1C+LPLyKrtEO9ulXScvz4FsDwtq4P8BNgDxHRVubT2/8PqDWhiAxt55nKWcCuZeojwIrAg8CQehYsIj1EZKqIDKtnvp53F+BzERkYBQ8DNqx3WS1FRJb2etYrv8dE5FwRmU9EVER6VIgv8baI7FUg1GcU+vr/EsAE4B/AAuUSzJICqtKA20ZlXicic5WJsqj/d86FLwHcKyK/EpHLo/DzgUfaYgYgIleJyNm++w1waIUkYbCfv951ifFzfTfar7jIWoagpZ9cVEyAZkwAACAASURBVE6Fdp0MnC4iA0VkUK0Fu9LxkxqTrVDm2FDga2Ac0K/W+lRgcWwQOacNBsaR/h8LqGlxBBE5o9IgXm9EZDYRGS4iI7A23aKO2a8EbIApWgD3i8iWJeoxHPhRRLp70BDgPGDrOtanPekL3O3bHwNvAH1FZONSZt1ZTkB5Q/wgIj+KSDNziIgsICJ7VJnXv0Vk2Sri9QC2JTc7yrEscBewoogc4en2B57z4+cAO/vgNjeZ5lGz16KIrCAiv406fp61gd9E+2t4OhGRxUSkdy5+EEwDRaTZACkinV1bPCkKW1pETq+irquIyPK+uyLwBbCI729QKX2JPMNM7xPf7xYd2x34ETi+QjYLYdfmoRZU4SfALSIyWxV1DffoRmVmMYOB14APgNOqybdEWRuISN9oX4HfAg8Ao4FTW5JvQTlXiciCZEpZLKC6eZyVo/I3qzH/3tWsY/nscI5of00RWRr4FngFeNkPLV1L+VXwPWZteBZTPE4sES/MJC/xtghCbT6v7x9FZHxLr3drEJHjo/uyWvoCf/XtT4H3MRPfJcDshSlUdab6AWMrHN8UUP8dVXD8bGuWqspS4Mwq4m3gcU/1/R4Fcf4MHINpkAoIcF1U1/DbPNp+B1i6xvbpHaX/WYk4E/z47v7/oIfvFdJG+0djAk2Bq/2/Sy6/Ebl0uwD3eti1wDkl6jG7x3kfU6amt3ecX5lzXQ/4Y0H4NsBNvv02MMC3B0Vt83KJPOfw44/6/yct6KN3eNohVcTthQnlUK/RBXF+5u14rMfZrop8uwH/BFbJ9ecrfbtLVOa2wCPApbWea0G5nYAvgfWBgz3/P/ixrlH/j3/NrmGFMl4FxpU5vg2wPKYQTvKw5QrKDb9r6nDePbCZrgLvAVcC+0ZljChIc3yuHp9gytOJ8T0A/CRKM6y1dS1zDpcBx2FjkwKn15B2dU+zGDCnh63rYbuWTNdWJ1PHRhkNTAQmAYdUEX9stN0JOAW4yBviVkxbOc33L8ylDQ2vVdZNgc+ATmXihIFVMXPBUr4tuXJvw6buH/vxPph2fi1wpId97eWF/O4ANq6inlsDswHdsWcQfvT0O5WI/4IfP8XLe9XD74zbBxOQigmpr4G3fH9jzCy4oMeLheqoaPteyrQ3pkF+h5nU+njcQX5sDT82CJtdXlCQ/sOivIHDgRN8+zlgqeh6KqbEfEaxIrGgt9+bHvf7GvvzqZ5uKrBqFfGHAq9HdZveBlGcA7xPz4GZgE4AZiuT59xRXv/1sKAMXBGdZ4gzFPPAergO93PIdxtMGXwIuNWP9cVmgXkBcUJBPj2B3iXK+CF/3bHZd+i3Cnwe+quHXY6tifwLuCYq+wnsnuxWcB3XreG8/+H5TcIUjueBtciU1y2juB9hQvw631YyYXan12823/8W+B02hqzoYX1be51KnMOnnv8iUft0xszKC+bidgF2i/af9Ph9cvGWKFtmW5xIHRukM6YNLegX5Flg8Qppxub2r8919iuBnYFNgDEeR7yM+aJ4vXHNukQ5S3i8ycBiZeL18htmCUwDOt3TzRXF2Tp0LExTVf//HhjucbrTXKO6hOyGHhLltVaU93A/vkpU36OxgaFQM8XMGwr8D1ucV+BvXtZimGC4KqrHrdiaWNif6P/fY1rxwZiwC8f/APwCW4NoIqAwzf73fr4/97y/9HIn5ur5TpTndwXn8XGcdxR+Rbh5MHfXdX07Fr7PAstF/WMO/18VeCoq9xtgjgp9cqCni2clNwDbVnEPLIcpNkqmAIzOxTk5XEtgK2x9TSkhAMkGxTBgXoeZ0hT4N2ZuvhEzcYVBqCc2sC4ALAOsmcvzQMx8M6rC+Uz1PH/p13ZvbBAWbL3rJUzBUbLZ1AW5POb38FcK8g8C8PNc+C4eLsAU3345ut6PhfbClNjQPsf5/4G5/BS4LBc2HLi6xHmHa3hvtD3Uj50CHOzbsUL7rV8HxZYHFNgnuk4fA3/09BOjdFvTVAHehQqCoMz1+jmuqGFjxmTM5PuulzUQGBvaMUp3oR/v5fv3h/avpfxGX4NaEZuCv6aq32GaQ60LlpdE2w9hQuh9bHAb4OFLYY0+DHNzBbtpXiuT73H+/zTlXXt7AVNVdTw2EOzn4fNFcQYD16vqe9iM8SNs4LsIu5lQ1W8wrS/mI7I1qGEiMhoz28TnvHLufyjWoW6gtAdNWGPqAzzs27/DzBQvYQP0z6L4AzG30af8NxibgfyACbXNgRf9f3HgZFW9EDMl5lkK0053BeYhmz0shJlGYmIX1a45JxI8HcFGLyJd3Za/Y1T2K5jCEvjW/7/GZq8Av8IG5wO8PeI1k9ep7Dl3kqfbHLvB98RmYAPLJXKGY0raSth6xenAkrk4/bH+DNbOYa2ilAPHPNH2QpgJ75fYjHNhrE/Phc2a/qWqP6jqF8DtmIB5BlvcP0JEDvT2/RM2az4eQETmFpFRvr2Jr3kOJOtzvbF+8gTW1kOxvvyhqo7B+udywHa5+oIJSMg5hHg9VsMEdNeco0u41+fz8wQzPYc1yEXI1pyC882p/tsbUzBCOWHc3EVEfhmVsRqwg4g0ua98zTisY72EtSHR/0Syh1fjceFO7NqHdN9iYyCYEvEe1o+GRunBruXHXvYcmGnuz76/nIhsThW4k8iVwMpijzms5nmvgY2XT2B9LKyJ/VpENvQyd8D65IKe3WyYUqjVlB1odAG1AHYBAlMpGFTd9XKsiIyludPAf/3/cGyAnQ8bNN8m67SLeL6LYAPOOZiW3U0KXExFpA8mKH/u9RsoIqeLyGJ+fC4RWVhEzsM0/0886WNRNuGizoOtPY0DUNXPgHlVdV1V/ZWqxl5NF2HOCwtiprKQ73uYIDzH9z8Ve9+Vkt0Ya3hbKDbAvBWdf3xus2GDE8CPqjoJUxQALvIOdn8u2VLAk6o6ChvEumOD/smYOWlVYIKq/ltVJ4ROGp+biIQyhmIzpl9gA9OHWEdfFlMsYl7I7e8sIsGhYw5s1hMLguBc8SE2kIOZT7cSkbBIGwbDh4HhIrIkmUBYCmu7i6Myx2LrKeUInof/Av6kqhdj7V/WxdZZDHhJVZ9Q1beB8cA+PtA85YNwf6w/g82IAkNL5NkHEwoxI7HBcGHsnDZQ1bdUNX47xa6Yxh44FrvGG2AzLICJIjIv1jef9Ha9DTgDuxZ3AWd6HYZg99t4zMJwfzgPVd1aVZ/Drv2qOQ/C+bFBvaeIbAHTn6f6FjjCz2M24IjIgaC//x+D9cl/+v67mMALFoMQZ2lVPVBV/4cpXQtF5cfPpK0bbYfrGcoKwunIKM4L2P0R9/+XsUcnTiXrK/tiM5/rsFnZ+6ra3etzgccJnnBrY2PjusBRwEbA3CKyDzZGKbCYiBwC3IQpk2UR85DdyncHYSZZyMawe7zswWSel+dgyw57A49jVqDgqbkQJnBrotEFVJGrbzMJrKrnq+ooHyA/zB37BhtAbsYWRpfBBNQHmDffItgggB//UFX3UdWdMe16JM0JHfkdrGMMxWZGB7qH2+PYDbQX5oH0scd/w/8fJHsmYE9gTmy2EepcqGWo6nuq+ndVnayqT0X5PoPdNHMBf/FzfMKP7e713BQzC4xU1bcoPUD2wwTeRpgZFFV90o+FGcXxmANCJ8y2LGTtHm6wCap6eJRv0WwJMs1vXRE5H7shL8AGoQ2wtn4L2Ck6p9Ae0zA7/rZks5gH/H9fbGAcRKaFLonNCOZT1c89j/ewdhwJ/E9Vv/TwA7EBeD9M0IH1k9+panC7/xb4D6ZhziUic5Y4x6DkvKuqQQNu1v4udFREBkfBi2Lac+BxrL+dg80w+mKKxjtRm2zk9V7Q8+0sIl+JyFDPYx6sncfk6vl7/79CVX/Mn4Sqfk3x4PZHbPZ0iOe9W3TssGj7GlXdEHM13hsTph9j98oaHiffTx7G1msmisi+HjYAG+y+J3tAOQygIzBLg2CC5gYP741ZFpbFBNQrHv4KNj68EilOn7pwDLwGLC3ZIwXxjG4FMM9BrL/kj/8Km3mH2dJ434+fYRzr/6P9/wBVPVtVP3bF5Oe5NgnPD32MCf0+2NLGvWQz6dsxoT8cW5NcFLtvZ/f6Vno8YntPB9aP5gVO8pl0V1U9D5tp7+zH42cgTwHuw5T8I0RkY0whf5daaYldsr1+2EW8I9o/FDi0QppCLz7sRg42YPGwK2m6pvMA8H9RmjEe/p8obPYo/gC/kMGpYBzWIZ/EBvdp2A0WPMbC4uLJmCYNmcPGDi1on52w2cYZmP3/Q2y94LLceQV78NJR2gWB1wvyXBl4oiC8T4k6XEfTNaShXlYX398duK3MOQi2QH0+ppUpNuhc6tuLYYJGgcEV2iOc7wvYbGslTDgpJqCPA44uSPcwNmBOyIXP79cw9qLrG5X1Piao7yVbWP+F/3eP8rna+9Z9UdhawAMl6r9S1P8VWCEX77UobljTzC/ibwTc7dth/WIb3/8bNgiGMt8E3vD9rhXaeLaoP+1GtvY4CnNqucfzC84892DrU0rmgdkZMwHN6/tbka1dNnM4woRAON/NMUeQfTHz37+wwVrJ1iTPJVvD+R5TEG7BZhNf+rHFPe0V2GzyuArnfTVwlW+vRLYG8z0mkLb3Mv4JXBKlCw5aP/j/fCXyv9yPj6fCOg3ZOttVZOuav4vuX8VM8op5m+4QtZ9i92zwnOzu10MxK9NaHn4cpkgfgS0zXADsl6vHwJCn7w/D1m4V+LmHjcesFffXOr6pasMLqC7YzTiMzEmivNdHaQHV3RtueBR2WHTRnsMGokOj4/+KjgdX5IWA16I4w/z4I5iXy3HAEX7sV37s71H8ztgayLW+f024mC1on029AxyLra/FA6BiWtuamGnm/rjjY3b2b4CBuTwPJ+fdWKEOcwML5a9bjeexPmZ+fBBYx8Mujjr+zWG7Qj5n5W7EXjR1TFBgq4J012IC8Y6CY4qt9U0iWuTFBM4Z2EAX5x+8rvaO8rgbU1gGRWHDc/1oUpTHlh72N9/vkavT5x5+nv9fW1DvEdh6VzcygfINplRdhz9igJlv525B3wvtEITLvNgMVYGH/Ng9mBDfycP/ViKvMEDeVaa82IFpLCa8V8aUwW2x2cTK2CxkEDYw34tZA/p531oTMyFqlG9ow3kqnO9CmAVkI++rY/zaP4nN0vb3/vBlLv87MKeglSl4RCCK94DX49gq2j6MZX/3/WXIFMLO2L2+WNReK2Fm1Vf9mmzr7TPdXTyKewFmGXkaUzj6RMdWK6jLnEDPgroFJSs4U61Q6bwKz7Ulidrzh93YL3vjHlZF/JLPQZF7ZojM/flUbGBW4NfR8X6Y9vY4/rwIZop4OIoj3nFPwwaOl8g8xNbxPEflyl0VeNy378cH5Ra0zXyYVvh7L+fAXN1Lur97nHFEgwJmEnizpZ2pFdc4CHnFFRDg/8KNjgnBqlxnydxZNQp7FxuoDqNghoCZMqZS7KqumGL0WZxndDx22f4rmWLwYq6dl82l64EJDIkGCiUa4DAPriKBegrmor2fp2nm7owpIN+SCbkws9seG+BXrNO1CwI6Po+1/Nitvr8xZo7sVSYfpYQHXBSnC9kMKDysHtrt4lzcbphS+xw2gL+ArSE+n+sbpxVd14KyY+86JXte7KYo7ChMGKmX3RObgS9ZRf7LE80yq4g/XUCViXMFBbM2TIh9RHPlSjGB+kfMqtDJ4w8GVq+hT3SOtsNMrialdXr6Gjtj2el/I/yo8KBuwYXa2/8He0P+piDe9cD2vr0TuQf3MDPHLth0X0OHxATId+Sm7JiG95Z34E8pYT6r4TzCQugyNaZbB596RzfgN3EHa6dr1hnXbMPNhGliC7QgryAkNJd/yRsEMxUpsFfBsWX8Op5OCTMQttahmONMEAafYqamXpjAGlSQ7j1skO0fDRBh1r0wNisv+awN2YOOhVaF3MDTj2y28AluXqvT9Vsk2o5n6aFdV6kijw2ruQ9w01p0XR/2Mk4sEf8ebCb1FWaSOh34Kjo+G1XOIHPteY6HdcNmpdOFC+b4Ecya44jMvRXy353c80Rl4u5CCXNhFCcsYTQzGWJrfX/CBHg4pxcxBftZfAZUh77RFVv3bln6KgpY2H+LAH+pV6duqx81CKiCtKcU3eyYNn+Yb/8VODJ3PJg7xgOfVlFOF0y73Q94rA7nHGZqNT2gR2YGGIMtMj9FhVlXG1+7gXXK5zxyGnWF+HNiM4uantGI0gcT1Zx+nwiZLf63mNAveuj3Li83POt0rOf1bTRoLFem3GB+KRQ22DrNmbjCgSljCrzXjtf0Fco8T9iC/Jo924Y9G1Q4IyR6+4m3bWdg9haW/Yzf482UGWwWnjdrXU4F02Ebt/2GwOEljj2IzaQPxUzcK2CC9j1MmJd9tq/dzqGKk7wRk9a74tPaRv61RkCVyXN773CrYetS25eINx8VFvKjuL8JnbgO9Qtvp6hJuNDUvvw8sG9HX78Z9UdzJ4UnvF1vBr4okeZkj/Mn4PYo/K3oupTVqDEzddWC1YXWmI5ur1a08wnUsEbqaU7JC7UWlt0VUy7nKNfmmMecUvD6okb5YcsWSmS6I3uN19sdXb/wq+Y18keq6vMAInJvFfFnRv6DOWv8DDMTvFkUSVU/qCHPK7B1hJcqRayCyZiprplrcAU+jraXJOfGnageVf02F3QFppVujq2bFBFc89fEhFLgSMyxAbJn3UqVW+u3k87FPNJmSFT1kBYkuxVzbmht2d/75rQK8V4SkbnVnmlsVIJJ7+Eo7Cv//7T9q1NMME2VjySynqre0w71aTUiMlbteah657sd5v2yMqZ1vF6HPBVYWVUfb21erazHOtg62/wtEHKJEvgbB0Zi5r3HCo7Hys6vVfXc6Ng6mLdYV236sHYi0Wr87RnTVPWHXLgCz6tqQ3z4stoHdfcQkRPjtyqIfTDv4DaqVyPyLjZ76kv2MFxr6d7RwglAVe9V1XmTcKovqvqjqj5bJJz8+FTMYeYyzPU7PnYv5r6bhFOi7qjqt3nhFFEqvN2pSkCp6o7Y4uCdIrKdiFyLmSBeLp9ypuIdbPb0utp7AVtNgVkoMYuhqlNVdTdV/ajgWCnTYCLRluS/99ZhVPUpY7GP0A3E3qJwKHCjqh5bPtVMRzDFPF02ViKRSMy4rIZ/NLIRqNbEdy7mL78q9kqTHiJyhdT/E9ANi9o7/aD5G7UTiURipkBVH3HzckNQ1QxKVbfMBR0qIuth3m2r171Wjct9ZC9MTSQSiUQbUpUXX8nEIvOovf69YWgrL75EIpFItC+t+txGowmnRCKRSMw8NPr3oBKJRCIxi5IEVCKRSCQakiSgEolEItGQJAGVSCQSiYYkCahEIpFINCRJQCUSiUSiIUkCKpFIJBINSRJQiUQikWhIkoBKJBKJREPS4QJKRE4SkZdE5DkRuVFEekXHDhWRSSIyUURa/UXMRCKRSMw4dLiAAu4ClvQvOL6Mfc4DEVkc2AFYAhgNnCMinTuslolEIpFoVzpcQKnqndFXQx/DvjsFsAVwjX/5cTIwCVixI+qYSCQSifanwwVUjj2AMb69ANlHAgGmelgikUgkZgGq+h5UaxGRu4F+BYcOU9WbPc5hwDTgypCsIH7ht0FEZC9gL9/t3rraJhKJRKIRaBcBparrlzsuIrsCmwHrafaBqqnAoCjaQODtEvmfD5xfh6omEolEokHocBOfiIwGDgY2V9WvokO3ADuISDcRGQaMAJ7oiDomEolEov1plxlUBc4CugF3iQjAY6r6K1UdLyLXAS9ipr99VPWHDqxnIpFIJNqRVn3yPZFIJBKJtqLDTXyJRCKRSBSRBFQikUgkGpIkoBKJRCLRkCQBlUgkEomGJAmoRCKRSDQkSUAlEolEoiFJAiqRSCQSDUkSUIlEIpFoSJKASiQSiURDkgRUIpFIJBqSJKASiUQi0ZAkAZVIJBKJhqQhBJSIDBKRe0VkgoiMF5HfeXgfEblLRF7x/94dXddEIpFItA8N8TZzEekP9FfVp0VkTuApYEtgN+AjVT1BRA4BeqvqwR1Y1UQikUi0Ew0xg1LVd1T1ad/+HJgALABsAVzm0S7DhFYikUgkZgEaYgYVIyJDgQeAJYE3VLVXdOxjVW1m5hORvYC9fLe7qi7ZDlVNJBKJRBvSEDOogIj0BP4F7K+qn1WbTlXPV9VRqjoK+KbNKphIJBKJdqNhBJSIdMWE05WqeoMHv+frU2Gd6v2Oql8ikUgk2peGEFAiIsBFwARVPTU6dAuwq2/vCtzc3nVLJBKJRMfQEGtQIrI68CDwPPCjB/8JeBy4DhgMvAFsq6ofVchrrJv6EolEIjED0xACqp4kAZVIJBIzBw1h4kskEolEIk8SUIlEIpFoSJKASiQSiURDkgRUIpFIJBqSJKASiUQi0a6IyBIismaleElAJRIzCSLylIj8tKPrkUhUwaXA/ZUiJQGVSMw8LAfs2dGVSCSq4HsAERlQLlISUIlCRGQjEdmso+tRhIjc5C8ITjRntIik+3oGQETmFJGficjAjq5LeyEiXUWkM9APeATYtlz81JEbDBH5h4js09H1AG4H/t3RlcgjIvNhn2H5RUfXpT2pJHT8pp8GfAnM0wblLz0rDaTtxD7AVZi5a1ZhAtZPhwF/AU4QkblKRU4CqoHwQWYnYPNc+FxFg4OI7C4iu7VRdQr7hjj1KMCzGlRjsvWAu4HF/eOWrSm/h4jUfTCvsmwRkW5Vxu0P/CAiB5WJ1hf4GHgd+5Za3RCRXwLjgBdEZLZ65u3596h3nvVARBbyxfx526iI7/2/5PmLyFARWc2/Oi4isqyIrNhG9WkPFgobqjoGeALYt1S/mmUFVB0H2eH1yMcZ4f9dovwF+D/gzVy5cwEXA5fUsfxCROSnUXsdjg2CRfF2FZE5ash6B+wdi7WwOjAGe3fjZyIyusb0wPT2+wr4UEQeqDFtHxFREbm0JWU7v6P6T8MEgXOSiMxeIs6iwEvASOCZevRvEekuIgcCBwNnY5rvsq3NN1fGFsBXIhJ/9+1yEamrkK2yLkv5TDG03STgBeADERlWx3KOFJElMDPXxZhyUYrLgYew+2QH4GrsHaUzKu8DX0T7Y4HjgOJxQ1Vnqh8wtoo4cwHqv+1aUdYwz2OuKuPPDfQqc3xHbAr8YhR2Z1TXJf1Czh6Fvd9G7ajYi3u7+vYIQIAPrds0iz+fx9u4iry7e9zb/F+qrFPvUAawtm8/1MLz2z5qw29zxwToBowukXabKG0/oHMLyj+5qB1LxN0YuAP4xMscWRDnd8C5wGkeZ8EKeQrQv0Kc5aPz7ARcE/pCHfvZmZ7nJN/vhAnuHaM4RwBzFKRdD+hdIt/ZgdnLnX+JPv+9/88dnbsCF9fpfMXzG4MJm99gZtnCewCYnKvHx6F+9boGNdZ/FDDMt/uVidcdOBboGoWFMWII0MPDtip3H7T7CbagQUYDEzFt5pAq4lcjoP4YXfCrCo6vBuxSRT67Uf2gvCKmORTWD9ja8zrJ/28B1sl1TgX+CWzo2xOA7/IDpHf8YSXKqVYYKKYxD/TtzX37Ww/vHOcHrOXxfuv7PYDVcnl2xWaHG+XOqW+ZenTyjj4vJsAVGIoJagUmVjiPrYDLo/2emLfbZVH5k6LjsxMpBSXy/I1fn7eiPKoWUn5OJ3i6koNoFH8X4IqorNNyx3thmum2vn+n95OBFfqjYjOvHlH4wOja/iRuB+AY39+r2nOt4tyCkvKl7y+Q6+ur+/baJfroMSXyfQW4p0L/XrQgLPz283vrK+BtD+tZxfl0A2Yrczyc32fAp9H+seF+AoYDh2CK9JfYuKHAk/4/Hliu1P0NnIHNdF+t13UqaKMl/X/XMn1WgW2isD94WLeqy6uiQn/zE14R2K/eJ1yh7M7Aq8CCwGzAs8DiFdKUEgBLhfTe4TYBNgPu9+MjsYFzMPC1N2TJjuZpbgM+qtQuNNXGvvTzGpGLc7wfXzZ3oyhwPnCYd+pvgR+Aoz3du0SaMCYANBzPlbF5uDGxQVrLdPJQ9qr+fzymyT/kv+087gTvH9tigut9b8vfxvl7vb7ABtqrovzvBH6WK79fuM7A3h5vS8yF+oZcnh8BQ32/GzkBDLycq8dfPb83gJv8mr/jx3oAHwB3Ac95vE4F7XM0cKpfy3AeZWcsufTnRekGVRH/IGxmdCI2cL1OU810NeAdMsFytuf9Upk8N47qcBLwU0zohrZeHhPEClzjaX7u+3sU5BcE/wuUUI5K1ONlYC/gKd9fE+vjigmIUMc9c+kO9/DDSowbCjxdoX//n/8v5+E/+v5kr8NE4FDgeg+veF7YvfFALqwTdl93xWZ9DxJZP7APtSrW70Obh9+T/rsHuM/DbsCVkSj/oEgu7f/n+H9vbPzZI/RlzAJQzblcBhyXCwszzND+GrXp1v7fFTM3K3BElPZKYPdq+4ZqdQLqEP/fH7iilsxb+wNWAe6I9g8FDq2QZmxuv6t32DO8wQ7CBvq5MbPVqx7veT/+C+Afvv0MpuE0a1Qyc9fJ5DTagrijPb+dgNcwc40SaXDYlH9n324ioHJ5hfCVfP8ZIm0K+KUfvxTTwJbFhMfu2OCWF35FppO5vI0UeAq7YSf7/nue1x2YSSmE7eM3xaF+7Go/FvrPtr4fhP9V2GC2m5fVKyr/Jo8zP3Ctt/ONmOnnxFxdTwVOB47M3xB+/P24DbEPYyo2GAkmlBQbOMIMbVE/9jlwZEH7nAvsSzbLvBPYrEIf+CewMzAA05xD+y9dxX1wJrB/tD8OWAMXUtiA86/oeNBU3wj5Y8K8UxRnD49zK5lACL8Dou19ojS94muaq+NRUZoNC45vhwnCbpgQ2g4Y5Nd2kF+nbp7+Hj+/7t7vLgZOyuX3mMf9UxT2U0y5WMWPPYgN0Ev58T2x+2FOPx5MpqdhY8Q04Oko/YueriemuKxYxbWaR6V49gAAIABJREFUFvc3DwtK1vfYrPtC3/88d43vpanyophw7IEp6Pd72LH+Px9Zfw4z8sv9/wX/X4vMnL0kJswUOLWKcwl1uNz3e3hfeShXx3mjPvQ5sK5vPwtcGuX3FD5uVfurRkisF23XbWpfVeXsxrsw2t8ZOKsg3l7YYttYYEoULthUX/0GeAYzU0zzY7Njg97jHucHbGD9PaaRfBVdhB65Mrf2i7G5d6z1gU2j43OQzTJ2iy5y0JYeAn7jYV2xmUD/XMd4Evg6V+5JNL0pb8+V+wJwitfp9FxHuji3r8BiBe05HDOp3hV17GDmGEE2qIffV5hQPxq7kRQbeHbEhNejHnZilGZ2vwZDo7AuHvZwFPYe2TqF4qaQqK6L5+oyFp/5YgPeNx6+hYc9iQ1M/y64EQ8n0hij8O7YTb4BNuB9R2Z6egP4O9FAXuZmfwabud+JDXoPkDNdYWbdH3NhY4gEIE0HMfG2Py86/is/dh2wg4ddCLwWxTkcm02GdaY/Y0LhCDIF4XqgT64uBwBn+3b3qK1jk+kWBecf1k6OiOKdiylSXbHBe30PfyKXdktMkC5FtnYRyjs1ineBh52FCbCpoazoGrwPLBzV4deY0jQ/8HHuej2buwaXAcv4fhdM2dyXaNaOD9TRfmcvM+6j+2PLDEfk4oXjB2FWIwUuiuIsiAmcQX7sN5gF5dRc/oopYEEZDIrpXlG+Gs6lRH/tTjajVGAJTLl6x6+DYmPfDQXlH+b/+2L322xYP/0EmLcmGVCloFivlkzr9cO07ryAOrNCmrHRdmdMm3zTG+zv/v9FFOfNqGGfB6YAW/mxqdGxxXPlXIctTM9B04vTGVgk2h+DfR34NE8XNJ0TgMM9bCvgvijvlbABrDswZ4XzvSgqZw5MWAzHBvYw0NxNZr/ewDtWEMqbFOS5JiZAu3inFmzg3CCK80F0juFG2NCPrQwMyNXvGG+bXsCdufLW8jjrYxruFGzgCPnPGW3vl0sbmyPD704PH4mZIMdgmnF3b585aDqoLIQpCNcAv4/Cg4Af6f//w2bBN0WD2G+xWeO5mEAuNAuTCduDo75wI97Xonjnh37k+50w5WChKM5yNO1fGvqSH58XGyROBQ7K9eWwwH0ONoCEwW5LD98g9JkS5xEUgqcK2j2UsSe2EN6PbI3yIz/2OKawXYUpD6tHxw/y67VwrsxhURl7eNhtZEJqA8w0r2SzjFNoOsD2xkyyT2DCOIR3jbYnR2Vugs+8fD+MHWdiis/mUbr1Pc5AP6dvo3QjMVPhi1H8wnXH6PjI6BzXLRH3amymeSVuTo9+QcF7PAp7FhOoQWlUTKHshymdSwELRPn/JGpLxWaBK5PNKsN1XQhT7B8HNvW49/k1DtfkfaxPfkKVa+DT61GloLgS0367RGHzAwfXUlitP+pg4vOwYGJrYjfNDQh/wWYjii/uk9lzpw++Hj4UG+jCzR4PpmvT9AZQbKYVhFEvTIv5A3By1PmPamEbHRmVszy2diJkWvZUbBC6xPf7eLo5sRu8yFyzG5FjQYly++HrJ2SmkiLPqE38WKX1vJMxTe8A4BwPuwxfc/Jz6FIi7SiyNaMw61sZW+i+xtv8c0wQjiuRxwOYINg5F34Z2frg5/7/Rz820Ns6mAaVEqa+XH8IwuAi4Je5eGF9YmXf/wvNZxTNhHKJMg/E1pCDZ9z0uJjyshWZR+VgD+/mdVirzLXaLV++/7r4dfwjNmgpNtucm8wE9C02e+5JtA6LrUVdDhxfosxlMCXrKEzReQkbH772/vcbv4ZhFra3X89zvczVPP3x2MD+DJmwC/Uv7BsepyuZqW5S7ry38Th7ka2vhjXUTTElojM+eyxTRpgB9ikVJ4obrBG/wwT47ZiZWjG37R9pqtjFSs1Z2Cz7fDKHoM9oqrjvi41L/bwPhvXWIgvWfMA8vh3Mf6uQmRMVW3p4qubxreqI5pXxX8x2fC22oPrTWgusqXLZNHoYmZPEEhXSFAmovpiGFgTVwdGxzYDHfTssoA+Pjm+PaV17RmE7A9dF+wthawwnYwPi+zQ1eSi5tQxsresianDPLnG+G0ZlHA5c4uG9MeEUTDDn5m8Ov6ZXRfudMYHyFwqcLMrU4ctSNx42mA6pIo+wdvYBLXD9JxPAwf79CbZWs6YffwubmZXy+gozvY1z4Vthg+zNUTuvlYvTLar/MdiA/Co2qL5MU4EynsxMdRjRmhp2Q3/u/ehazFz5IdHsKYqrmGL07zJtvxJmgvycpn0xeIquEt0DVWu22GD9FKZk3ev9f7QfO8CP/Ui27vgE2aL98yXyfBi7v0s6HGGC8WrseaAJ2PgQK4N/I7NebORxl8EE1ZGYAAx1itfswprQExXOu3+uHT8km1WFsSVWVjphQu0CT98TWL5CGRXXJD1ecFhZIRc+GyZ83vL9F4FPc338EOw+v4PM8SIsZxxH9hjLUZ6ur+9XtKSROdp08/1hmGPUvcC1Nd/XVTZGP8xM9RimeTRbOG6rnzfky9gN38xjpyB+RTfzXHzB7aJkbt1z5uL8mWjAxrSwIwryCusSp/v+Kdjs8wrcDBDF3Rqz347CBtKapr65vObCtLqXKTG4Y+tG8+bC1sAGhiGY9raD1/8tymjQBXkrZTTDKvPohZkilTJu52XSzx5dx+Di+iE+64ry7lEi/YF+fKlceNA898NMIxeWqcOO2KC4n6cJC/nLYI4R9xE9M4e9sun2aH87TCEbQdOBsGhm2t37rlDG/RkTDorNIvrl8q25nau4DuEeOMP3b8O0/G7Y2PHXEumCU83aVeStuMMW2exWsdlTMLnHDkgPYSbe4LCjwK25vCcBf6/i/LaOyjuDzGEh/OaJts/3a350pXxb0M4DsPXmor6xKfCwb89JZunojilbO2Gm9HGYAhPX/yuyNcztozyrfTxlPeDnubDgkFOzEl5tY9yEaVmdMC37eGzQrfhcQHv/qFFAFaRv5i6MTd2vBn7i+5dT4P+PaXSP4eaZCuWsg61/7QjcUofzDvbmiuaBKM1gr0PQBKebQClhTiuRzx3An+twDlvQSkHn+YQZyylR2MrxDVeQZoOi88Zs54qZe7sSuXcX5DHK435NU9Pr60TPWkXx+2HOA13IHh7/PU0XzFvVHpgFIF6XDflWfKawheV1psS6SYV0BwBTK8SJBexRHhYW6OPlh6dp+mxXMJ2FGeNBFD+j1+yRgoI6DPW8BmPCMDwWslIUpzOZYqDVjAd1vgZdKf0c5IN+LwzClJZPMPPeFdj4foTHebTOfaKkQ0bZtK0odD1a+BR/G1+cVgmoEnnGz4ysRs5zroV5dsHMRh/gXlGtzO/RWgczr8M30bnVZVBsxTkIFZxCashLcS/JKuN3zg9aUZ2OrXLwEsy+r2RvvQhvX3inRJoJ2AL1WvGg0FbXgswDc+F65luv619F+wZT6888bD4KHH1y6XpipvCK17CF9W72NgsXEl9gZssWW0faoK7BUzb0g/uInIbIXNKv7Oi6qmr2zrdaUdV7RGRcS9PPYIzD3FwVc3ldEPPoajGqOk1ETse8gZ5sdQ2zF0/WWof/YDOXDkftDvm8TtmNxBbSqy37B8zcWVSnI6vMQ7EXX/5WVVVELsBc+0dj2n8RL2HrFIOxNafAzdhM/YuiRC1FVb/GBqiGw9uv7HER2RJb33rbwz7AFMZy6b7AnAHaBFX9uCDse6CniHStdF7tiapO882v/ZWDE1X1yyjKFP9/tT3rVYoWCygAVW3VID2joKrvAD8RkSMwbRrMLNZa7sPMarfVIa9mN0mVXICtQW2GDaSzY67QMzSq+kIHlq3+vxfYS3QxgVnEOMzdF8y8F/LYsg2rOMPiQupUmgrzhsUFVSNzdW5/kv+/394VKUIaSLjXBREZq6qj2ijv4MEI9rLGz9qinJYgIvNjzzE809F1SVSPiHTFZucbYh6XjT6gJWYSRKSTqv5YEP574HpVndoB1WpalySgasp7IVzDUNWGNJMkZjz8Wzhdc6aWRGKWp1UmvlmQ17DnD57t6IokZh5U9TvM/TeRSEQkAVUDvraQt9kmEolEog2YZb+om0gkEonGJgmoRCKRSDQkSUAlEolEoiFJAiqRSCQSDUkSUIlEIpFoSDpcQInISSLykog8JyI3ikiv6NihIjJJRCaKyEYdWc9EIpFItC8dLqCwD8wtqapLYZ+LOBRARBbHPv+wBPYKnnNEpHOH1TKRSCQS7UqHCyhVvTN6geFj2FdKwV5geo2qfquqk7E3OKzYEXVMJBKJRPvT4QIqxx7Y55EBFsC+VRSY6mHNEJG9RGSsiIzFPsqVSCQSiRmcdnmThIjcTfHnBg5T1Zs9zmHANOwLtFD8SYDCFweq6vnY1ysTiUQiMZPQLgJKVdcvd9w/R7AZ9s37IISmYl99DAzEvwGTSCQSiZmfDjfxicho7PtDm6vqV9GhW4AdRKSbiAwDRmCfUU4kEonELEAjvCz2LKAbcJd/4fExVf2Vqo4XkeuAFzHT3z7+1dNEIpFIzALMdN+DSiQSicTMQYeb+BKJRCKRKCIJqEQikUg0JElAJRKJRKIhSQIqkUgkEv/f3pnHbTrW/f/9aSyDWSxjiJG9bD0iFUW2iPIjrTwqiYeeylJJpF8obX6h9JQWRMvTJqJFiYgSRdaoaAzGPgYxM5jh+/vje3znPK7zPq/rXue+Lvd9vF+v63Ve536cx3kc3+1Yzp6kKKhCoVAo9CRFQRUKhUKhJykKqlAoFAo9SVFQhUKhUOhJioIqFAqFQk9SFFShUCgUepKioAqFQqHQkxQFVSgUCoWepBdmM++IpFnAE8CzwCIz26q7KSoUCoXCaNDzCiqxo5nN6XYiCoVCoTB6lBBfoVAoFHqS54OCMuBiSddJOrjpAEkHS7o2/W4Z5fQVCoVCYQnQ8x8slLSGmd0naTrwW+BQM7uiw/HXlnaqQqFQeP7T8x6Umd2Xlg8B5wOv7G6KCoVCoTAa9LSCkrSCpMnxH9gVKCG8QqEwJOR8S5K6nZZC//S0ggJWA/4g6Ubgz8AvzezXXU5ToVB4/rIMcBCwbLcTUuifnu5mbmYzgc27nY5CoTBmWC4tJwJPdTMhhf7pdQ+q0AUkvbDbaSgUlhAT03K5jkcVeoKioApN3Cdp9W4nojBwSpvKgMk9qK4haXNJJcwISJrUrvyOOwUl6b8l9XRos5ukzihQYvQjhqSNRkEYPSdplyV8j7HAcrVlt7gBOLbLaegVZgKNBvG4U1DA14ANu52IHmZ6Wq7Q8agOSJov6aNt9m0macIQrrm0pBWHmqYu83Vgu1G4zytG4R7Pd7qmoDLjL9hstNPQC0i6SNIq6f9ywFTgwaZjx6OCghHwDiT9SdIaI5GYkSB1nz1hBEI9w1ZQeOV/dZt9NwPvHMI1Pw08OuQUdZeVGEKZkzRZ0sslPTGI+4x7JL2qQz2YWFuOCpJeADxZM85WGc00jBSSJkhaZhiX2A3YKP2fAcw2s+eaDhxXCiorHCNhPW0NvHwErjNSLAN8Elh6mNeZlpbL13ekSjaY9LRjtYFcIE1d9aW0uvIg7j1oJG0o6cUDOO5ISRcP8vIrMsj3ksrqv4FtgUn9HBuhvY7HZcebpPXT/z0knTWYtPUykpYGrsYFXxPd8qCiPhwy0Hok6VZJbxzsjSS9dLDnDJKzgNkd7v8ySdu02RfPvigtZwD3trvWuFBQkt4saXkqK3byCF16OFbEsJD0TknrZJvimfoolkESluUKKax2RrbvWUmvG+B1OuXNQPP/5fiYFYCHBnhOv0haoyHccj7wjwGcfjAw2LaeqQy+rMR7nDKAY0Nh9lufkwAHH/QO8F7ggIbj1pD0xQHce8hI2jgL9bxN0tdG4LJr1ZZ1uq2gvkrV3tLf+9oY+IikMwd6k+Q53iRp6uCTOGBeBqzaYf9lwFVt9kW6Qs5MAh5vd6FxoaCAnwL7UmVKy8uTtLOkHSUdJGmDTheStKykF6XVfsM2yR0eyHEH1a0OSftmAqXOd4GPZOthPY+YgsIr0oEpLeF9Tm86qYHFAjnlQR5yGaiCmksVavx3utb8NC/joJF0TPKS7gU+VNs9s8N5l0o6JK12qphN574AVzJLp/W2IVhJ60qK8Ge8x8EImoGErULhzZD0VeCZNsftggvHgyR9bxBpGAy3At9I/18E/McIXHO9tFy7zf7GXnySNpC0WrY+6HCppKmSJtbWw5jJ63GUocnZsQdJOqXhsjviRsRAiXq3ZrruLpI+1U+6z5S0XW3b0h3K6qJ0jAbaLpyO3ZsqEhL1enlgfrvzxouCAi+QUXjqVumbcItyH+A1/VznROCu9P/7A7jvl4AHOh0g6VXAt4Cral7R/9IgQLJj8hcbCupeSdMYOqFMlycJx6Qk454DCiPR6jEsAj6YrTe6/w3MTPffnMriXw63LBtJ7Q83N2w/FPgs7gEBTK8p/8c6pGMnYK/0f7De92RAwFaSDDcs2vHLbP+APChJuVBftrZPkuqKOBTedsD7aa+g4v19AthvIGFNSf8aguUePWpXBNZN1/m4pJUk7Sbp54O8XiioxYaEvC3vW5Im0X4c1O3Ad9Lx2wFzJa05yOd5DA9/BR+k8m7z+hAeVH7tjwMfkvSfkj4s6cC0fUF/N03ebrzneL4IcR4G/N9+LvFeMiWY8ukZ4H1tjo/w3LtpbhduUmz3AucBb03rRUHVWI7q5S0W4CleuzoueFcAVpe0ttp3gFh3kPfdFq98nciFyF8k/UzSx5sOlLQjcGdazePsueIYlJVfI/JoXyphvjwQ+ZFbmTdLaqcs6mVrk8wi2yq3zpKHdVcSqMtmHmcc8xtg5+xand7BTsBmklZOCiH4QPYsAIcCz0h6e1p/OqWl3RCEpyX9ARhsD8R49/+VlvtJ+l2bYzcGorE4KnAYCe3u+yLgV8CR9PWgJgGnqLVBu1HhSdpf0lHp/1pUkzKHJ7JL8gje3yYd4MphsN5tCKeVgDUk/QD4DG4s7gLsUUvnRElnSHpbtu13ks7O0gCtCmhrPFS8KZ3HQUVnlIiQ3En7UFU71sz+P5n9r3tQjwJTk6eyGVW53A44GTemFl9DfUPSOe8CwvuKurNbWg6001SeH5G37YyjhWnZ7l033TMG/0cTwQqpvJ1FUVAA/D+ql7Betv0mfDqlybhQeCHwT9oXzD4FJVWYQ5oOpp9Yd7Liw3r/A64898IrKcDDtVPyrsS5Usot+z7fUJH0CUk/65SWRBTw1+NCHPwZQinkym8zst56SdFEmZqQtu2T1hfilXQRHq47IFNSy+NCYRXgGuDC7JmMymMN1pWH3Zq6bsf9V480pfWw9Ooe0CZpGUJ8RUm3qO+3x9ai8q6fbrhvO0JBLcq27Vg/KMu3f6ZlCKxoJL+6zfWn4Pl5K7ChpJ2yffGsm0mK0EpY7RHCWictzwa+kAyOu6na/nL2xttQ+pApwZdIOi67X+yXpOWTIszLZ3gIkZ4oLxuQGs9roaa98LDz4dm27YH9Jb0pPc8dtNa7qLMbZNt3jXRkeR/lLOrA0qTykSsIScskZd0Ufs+V0uPp+FcDb862rwLcj8ujI/CerWH4RTkJZblcds5ikgH2rbSaT9k0ETdyDpC0Can8SNozeVomadOGdC+Tjts0pQnaG7qRxi3a7O+kFENBfRtvy4LxrKBqhTsEevRgigK2dto3CRdsy9Bm4Fh2jVvxwZET8ApzbKqYZ6VrryHpdDp4M5JejrvS0/BwwI8aDltV0g2SLpfP7J4L5YnZ8+XKqqnN60BgL0kHNFnBkl4iD6U1WZbLAedk//NKnXsci3CPESoB+4Ns33K4QFoAnEllgcU918aNhdg+Ce8ckVd68DDBTsB/ZunfVt4RJtJ1alpGj6aoxPVpnEJYRp59FLe0Z6TrhuezJlU4bKkOHk2dUAjP9nNcCPSo/JF/IRjbfePsnbgwewoXppdm+8ICvo4UvsrSE1GEervP9tn/+tiUxRa1vNdjLjRDGf4cOJ7KYw2OAebhihBJF6Xte0t6LX2jDJOpLPW8bEf+/DHbdkdano8/3320tsXG/3WoBP7Lsv1hfMX7rbdPTcC7iEcZ2Qf4H9wDD0MojI68rIY3/Buq8ng1rmyewL/MsCet7FFbj2efKulQSe+TtCsu6MOIyMOAE/HQ+Fxah3pcQNXrODfQg3i2ffEycTfte9suyo5F/tWJRsMl7W/XQSiiMvPandvzCkoeh/6HpDskHT2ES+SZ8xZgDrBpsjRXyI6JEF8IsJZQj6pGw7A+Hsc1f1xjFbwSHiDv6XYQHsNdNp1/abrGxZIWSdqPaqDeDrjHVveWgs1xwXERrRVrIq4k16c1nr3YepT39ptAJYhPBb6qqpvxBEmrpvvfkNJbn0Qz70AwUdLL8PYScAX6eXkDKFQWed1TWUiloOKdxPOHQLg2LaOST8LzJPL4SNyCDq/nfZIOl7QIuBLvNBJlOtqsrk/Lf6Xl+rhwi+7rQVTQo2ppCoGxEh5D3wb3WBYLVEmnSmrXdhnH9aegVscFWuRNUzf/X6dwUHQVfyOwO56vT2XHWRKcTSGaUIShoKLc3Ia/ozxsXA93TknXF+7p/Tbd67X07czxKUlflhRCtD6IOEJQKwE/xMvLp7P906jyIDe4oizkhues2v45tHpQcZ0TcU/YYltSsqHg4p3XDbxoN4l3uRLJyMUVxy5AhG1zBRXXyRXsfbismI/3Gt2WVkL+1L2KVwCnAafjCm/rlP6Xk8qWvJNH1N/18HbtnAjHNw3ZiLSGUr2HZFzLw+4PS4r3Uy/LJwHvz4zl8Ew/ljzp1fB8OSntD2UextDIe1CSPp0K4FGSTh7qdfq5xwQ8pLA7LpT2TW7rYFiOKgRyFF6YV8ctzbzghIJ6bVqfIB8jcnIqgM/ghTpCEQ/gVlBcQ1Qv+bfACel/CPedcG9iFzz8tReVslsFL6xz+nmWGXjF3Rz3uKISTqeKm8czI+lJvNH9fVQhgkhjVMrDcS9lcrZ/bnatPDR1YNr/FioBMx34GPCTtH4OHrKcIemO7Nyj8LxbQGWZR4/JeEd3p/UJ8obapfF8jjxfgVZhBK5owptZnfYDhCfignAdXEhclrbnHtS+2fEhwBdk+x8ws6vT8+W9vI7AG7kXk0Iwu1MJ7noHhnpHltXx5w8F1dTm8Hrg5pQ3UIXDptA37PhKWo2E8A6mpfvUlc9cvPzl9SsiDFuncyIaMBG3eiPE83ta8y44jEpIdhoH9hxet35O1aFoOlX5/omk8ADj2fP8jGd5Fs+3h/FwpyUZsjzVe3w7/v7i2rnH2NQ+9TNg//R/pRQ5WJmqbW4CVUgs0hCyq0kRzMffQUQSgtuz5/oVfb2X/WrrUXeupVLAD9B5lvYwWLZs2LezpD9SPfsC4PWStsDrzDTg6KQQd62dGxGZ5SRNwWXhlcDn8ff/WdwAug3AzC6vnb9EQnyPAfeY2Um0CrSR5JXAHWY208yewQXMXv2cUyd6ieSCJlgn+z+Fvlbr6cCHqSyP5akEwf24VbAqLuTaNa7nPfjekv1/G5lVaWbz6V9BhZC5GW+vikI8hdZutVHRQsh9OaX9PrLKlyyeMC5CgEyk9X3mz/VI2p/HyaPQ5yGveOb1aeXduCJ6C+6tRRh1Ii4Af5/WtwH+hHs988gUlJndRNWIe27t+itTVZ56yGF5KgV4FX3DCstS5b8BO8jbKPLKHor1UWAf+WwiIbTfIGmKnG1wb+9XVFb3FOAvuNd4OX0Hea+Kt7mEpx7dk/+aHXN+uncYG2HgTKWvULqAVg9qb0nnUikoSF33cc/8JCoF9W7c4Pk3sMjMrsHbZ6IDwIn0taLbdoVOIZ4oR3vTN++fw8vsfKoowmZU5WMHvCMAuIKaD0xS6tSBl/OdqMLluaJ9FV7+70/rS+F5GHU979QwUdLauAAPb+GbuIEM3o79LD4gPsJTE2kNT0bdOwEX0PUZEhZQeVC5F5gbGNfiCjqfQSRvWwR4SfY/l1vr0N5bj7p/mKQXSPqBqiEEwo27SH+UpwvSNS/B8y6iHMEnqNp3V8IdgclUvVHXwMPQd5jZ2TTrnLZtVsNRUFeaWQzku3UY1+nEmrirGcymtUABIOlg+awD15L10EuEgoqCsoDKsrwyO25DPMRxC97t/PdUCuHLafkQlYILBbUx3tun3TQ8nbqY19sVmkJ8n0zLb+DP/oiZheCMwYir45ZgnL+dpDyWPQEvXHUF3NSBYzXaGxwLgP+D5w/4RySbwkj5wLvHqNrWjgYONbO/45ZVCKAV07Xvy87bDFdQC6gUVHxNOY57B5WwhdZ3/yAuaJH0dVoV1I1UAiEU67LZtoep2iXyOpIrqINwzyIfQDwN9xquovLMpmb/zzOzv+GVfPG7l/RlfEjBw7gHtTlVr79ccP0drw8hHKMt4fM0W831sNubcW86ZgEIy/VwM7sQVxxrA/ea2T24wIrZNcJzBjfa6u+9qV0j+CFVW+DtVIoxCA9qAVWX51upOogA3q6LK6NH8HaSL0g6Ltt2G65YH6aqGzHvZpT1qfj7C081byOegXvob01p2QOPhgRNnXK2x/PpPbjhFHUsQvF1o/MJvEeq0Vq28joXSuDPDfcL4r3kyhbgx7hSzmVLGGu57FwF98Drnll4qHn741q0yuGceVTK8/vZPeK5V8bl6gEASXZBZbxG2LKRISsoM/uzpJ3T//OHep1+aNKsfXqomdk3zWwrM9uKvgViMp6JoaCeMLN6o/t83CtYxsxeamYX4Mqn03eRbscF0eG45ftIm+Pup29D6NlpOSmdHwNu82uEED4Jt8ZPxAtiPN9TVPmzKf6cx6f1o/FwCXgoMxqbmxqi6+xLXwEShBCMyncnrRX8tLRciAvZZ3CrLX8nV6Tl/XgbkuHGwCtwjyO3Gh/GBcVSwL5mFlbZMwBp/q4bsuPz9pNHqNoFDsHDY1EKtTIdAAAToUlEQVTJbs+O+6Skt+JCP5RBrmBXohrLEpX2EZoHgk6jatuKkN+nqd5rKITrSB5UCvUdll13GarwDbQqqLm4wo8eplOBH6SvTDcpqPqkyErnRD6GQp+fLSeSDB0zu8fMYkjDYKb1yjtqzMS9pjWy9Xq9CgU138yuNbNv0zxd0TZ4nXmEquwej1v48+jrGULVCSRX1rkxmY8RyocyPGVmvzSzPMTdNCYq/6BqhMW2pfIY6/IoQv7b0dq2O52qzMSMJjfhZeXDDfcF7yQ0G8+7k8lko5ldV0sXuEL6RPq/Gn29O3DD7ETguLS+Fm5Mtpvt4UkzuwGP6OTh0qjHL8bzsiUEnT5GS9qX53ELw+0k8V5JX1A2dkTSdEkfG+Z1g9m0Tlkyg1YreyBsRupxl9aj+3A+vcth9B2oOY/2XcQ/i3eF/jNecWfT/gU+YGb1wYb5C/m+mZ0CUHuJd8U2Mzs5S19YVblA2hUXZKdT9dYKdsEVYMwu/s9sX66g8sIaAuR4PM9jtH+9neMuvADGXFqhAJRCccvgAu8o4AvAaZkF9XtqmNkVZpZb5o9SCc/83rdTtSHlobyNsv9z6aton8CVTb0M/QSvmHGP/LwpVJ5peMN/S8tDs+MuxttkmhRFCMR49sUKilYBNwcPteYK6hIzEx6yOo2+5XRWWuaK/a/pXq9qSMufzexXuECMrs/za8umaaUmpOdoO+MGlYK4DBey0aMs2MLMmgaeGlUHmiAvp0/heT+NSkHlvWwn4fU13lN4FE9QeRLX4J4cNEcIIloSymCgQwlegSv8/6XqNHUFleFWlwuRxsm457siXm73pFKAccxDyfA+leaw3b9wA2oF3FhsF9r7Rvb/Tvz9bEOz/J+OG31Nnl8TcVx9AHruBHTKy469YYeloMxsP7yyXizp7ZJ+BJxBa+EaDn/BGzvXTXHsfajGyAyUzXBL5LmU5plpeXbaf4mZnUnflxsCO8YOLQ5jmtmxqaI9iQuU2bQf8R1C7chsW+4Z1hsIw+KsC9GI20e7SwjC7+JW4jNJ+OczA0wy5yspHLs7rVbia6me8xdp+QHgU+k5TzCze6mEYl34PoAX6Hvxb9s0zhlmZvPN7GgzOzzbNhf3bDoxlyrksPjeZva4me2U/l9Mc/hhFlUlmYMr9ivM7PXJ87oa99hyorLkQmUSlUALDyq8tr9RDZreFf+sxqyGtEQ4KZ5lJt6JRLRW0Dm4cI2QyWvM7DPpOW9L7bD1mTxmpf25ALkcb8Pbmr4h5rvT8Q9TKZQogwtwZdEUDbgGL2v1mSmCSaR2HjP7jJltlAyu3FuJclRXnMvSd0aB3MudiL+/tXAhPoe+3sw8KiF6Pm5cHUTV6ekgKqNmIX2Jd3RjWg70c/CbAOeb2UIqGSCqEFw9nT/Fy92ZZvZsKsv/MLPbs2Oj/OXGSJPymYmH6jbCy8F/4G1f0STxF2BrM8s7Kz2FGzDHtHme6cCCusdD36Ee0SY4BzyKRZWHm9Cq0DpNwdVRBw1LQaWurDPwwnUM8Dcz23OkQn7J9fsg3q3yNuDHKYY/GFbDK07jdO5U3kzdqorwx3/hPdaaFFC8hNn0DT2ehVuiISDyApbne70iHIc3SJ6FCxpgcez2x7grnZ93HV4hQjHF88wzs5bGaDP7tZnNpgr9nJml5efANDP7WmqPyHtdhUdRT2s0PN9vZp81sxBGcd8+Uw7V+GU/+x/Du3ZD+yl5oAqnhFBbzcyuTnm2Fql3n5ktfgepbJ2TXeP2LL13ZtsnU5WN8CzCeHiC6r1GJ4H83CCs/S+mez+LW5U70NrTK+6zC/AeM2saLB6eZwid3EN5Dy7IH0xpXAGvO1B17b0/Oz7eZ+TtfGBuU8jFzLZOBkZj+2Qqa00hsFzphMC9Dvcyok1xTWBCEvJBvMu433dxJTOt9gz5fVZJabnPzE4gm3E7GaZxrYtwjz4fghJCPQRxLqBPwYV98HZcYQd/z9IQRBlpGQOUlNIbc2MtY0I6JmRVLrP6yC8zm5O27wj8MRkxx5vZEWn/K1MHl0gzuBy7nKqNNcrPqumZVqFZ1hlVWT+MqtfuYk8rvb+P4J5drqA6Tde05Dwo3GK8CW8k3ArvZvi9rBvssDGzX5nZi81s/bAmB8l03GW+jNYG9SAq4x60drGdmu4/x8x+Q7OCi8I8m9a8nGJmB+KjpUOhxkvaOz82C3nF+vfM7Mn03DvW9r3DvLcfVELl+tp6NOp+pSG9cZ07aA0zAjxsZo9kx+T7T8OFZq6gLqQSlvXOHSFcTqUDyTtrqqiLZ6NIyhI6f+soCvn56bqLQ1RmNjsJhSYLNBcoX0sVbD1auw1viAu2uZkADU/qSapyEfk+q+E+j6e05AJ4Ad5GtiWV1Z6HFtv16Px6Wn4uLRcbAWZ2Dm7A/INKiH+IamxQ/brPpvOiDM6n/1njc4/oETwPwuDp75MoT6T7PWtm25vZS0njeRq4B3hDXNPMzsWNzZ1pUFDp/X6MqjMGVEoitkX5vjp59PE+PmpmR6RQahhXixWUmX2ELJRsZj+h9XMT8T8XxC/G5UkMx2jXySDnY7TOzpCXh3bhu2iP7TSXJFTK+SmqZ/th/E/KLupxPEcu05ai6jX8GJW8aekcZmanJE8/97hmdUhXRwU1rE+fm9mbapuOSR0nfk3fAWjdYlVc+B5H1fCXswjc6qI1rFbvUNA0jiP3oB7AQz+HRLjFzPKBxWcDN5vZVdmg1iFjZiaf0y0E1MK0/TxJK2SKrB31d9/2Y4DmnUouUTWLO3ghjcqcF8Y9qby8jpPkpmufJp99Y0q2zdKgw6h036T9VD9QFfJPUA0GHAi5hzk73ftOAElPU/XYnEtrr6aoyPOoBEekdRbudX8LtyZn4oqo7mGHt/FRXJHPoMq3/Hp1Qsjejbcntcz2kIQpkjZK64+m9TgvV1AzqQahggum/hRUnmebAs8m4QbNCuqLuLd3bBsjoZ1HZsBFaexnlOUL8fIV5/yVbExPyos8P+4G3mxm4anVQ7XgzQZ5p44oy/WyW68fuQILOdBS58zstvRX8pkm2injOP7R7D4vofKSoTKEFuJlKTyzgcrweJ58oPw8WpsbYvjCrJQekzQPN3AmmNkj6X08lPbtQ/vyEvm4Ln3Dg8G7qDpNNTIsBdWEmV0q6Yb+jxw1VqX9DA3Q15MITqC1F1Gnebdmk74S26YSRgeICNkM96u3cc2dVU25szDb3p9yCubg3u83cE+4Px7Bhdp6uEdhqcDmvYfyDiG/YQCfIU8K8MnattwL6q+taql03ELa96ZsIs+n+gfYnqRSUPeRed9m9lR67n9TKahQVneZ2Y8knWVtvhKayC3HmWY2DSBd9x1m9semk8zs2Riwb2ZNnSCCk3FDMQgBtThUmtL30+yYfBxSO+7Cw5jr1pUj/h7qYeVb8FDeiR2uBw3fpMqIsnEIrqCizt5D86DTuPdzJK86MT9tfzI7pj69WJSJelPCFXi391BMTQ3/uQfVko9mdhlVG1i/mFm9Hf9YPIrwObxd/Ztp+9fxUHF/hLIzqrTPp9VLenG6d66cT8aHukRHqC1JbbANeZen/xn6kXNm1u9nXEZcQaUbD0ZILGmOpH3Pv1vxeHQfzKz+KY1QULlnFW0QD7ZTTG34OlUj47DIBdYQ+Kd542x9EGC7e80D1pdPnJlX0D5d/9Pxz9F3YN+SYKjlOBem9bDRd6g6BFxOa5sDKRyE/LMIL0rK+jEq67OTcqpTV479eTEn1NNTJ4Vob8zWw5joFNbvV0Gl6/yJ5hnlT2OQvWzN7JmUrk4yIxTKg7jA/B1eb/fHZ2fZvc15de6guWdjzlzgOKvaUyOdj9HaqWZWWuaKNTd4BvvVg46YWR6yv55k+JnZURqAADCzpyUtxN9vRCvmUfXEBe/M8FjtvOPSTEERFbqe0cTMxtQPuHYJXXcmKfKQbROw/RCv94n69YaRNgOuGcI5543Qvb/Y5Xd+OXDjEM5bL6X/QOAFbZ5twO8IH/M0eRD5Fr/XZdsvAFZcQvn0UnysX7v9awMbDeA6/417iiOVri3wEFLTvqeAn3Y49ysjVY8Gmeal8M44+TYNtsx044dPLmBJBk0GpqftGwBrdzt9+W+JeFBjlD4z8pq/1T7jeQbISFsig/1OEfSdrXqoNHpQo8iuDC1sGh7Ud629x/PBNtv7YGb9fRguZye899dWZGXIzAY7ldeAMbOOvSrNrP5Zk3bHnU6H0f+DxTpb5avReRxNV8qeuYdab/8LL7XP51R6jMjPeebtZ+Ed3dH+lO5QFNTA6TTZ5aAxs18yQm1RiaG8y347MQyAzwJL6pPgA8I83j0Uoldi07gY8K7+v2izb1iYt0lANeNHoQEzazcAPvgJDdOfdZmRrNdLglBQ7Tov9AxFQQ2cEVVQS4CheFAde9AMBDM7drjX6BZm9rikHZIn3LT/wKbthd7BzK6kdU7NXqDdrAu9Qiiotj13e4WioAbO+2j/CeReoOkjhW2x1Mg/3jGzoYZoC4Um1jQfstLLhILqb+xU1ykKaoCY2Y+7nYZ+6G+QZKFQWMI8D5QTPI88qJ7/om5hwKzS/yGFQqGwuM213VcLeoaioMYGPV/QCoVCb5C1uQ50QH/XKCG+scHu9Hb7WKFQ6C22Z/CfLhp1etaDknS8pHsl3ZB+b+h2mnoVM7vK/KN1hUKh0C/m317r9vjFful1D+pUqz4rXygUCoVxRM96UIVCoVAY3/S6gvqgpJsknSWp7feAJB0s6VpJ19L5642FQqFQeJ6gboYhJV1C9bXRnGPx7//Mwefa+jTwQjN7b8OxhUKhUBiDdFVBDRRJ6wC/MLPNupyUQqFQKIwSPRvik/TCbHVv/KNnhUKhUBgn9HIvvpMkvQwP8c3Cv6ZZKBQKhXHC8yLEN1wk3UL1aYVCX6bh7X2FZkr+dKbkT/+UPOrMHDPbrb6xlz2okeQpM9uq24noVSRdW/KnPSV/OlPyp39KHg2Nnm2DKhQKhcL4piioQqFQKPQk40VBfbPbCehxSv50puRPZ0r+9E/JoyEwLjpJFAqFQuH5x3jxoAqFQqHwPKMoqEKhUCj0JGNaQUnaTdI/JN0h6ehup6cbSFpL0mWSbpP0N0mHp+0rS/qtpNvTcqW0XZJOS3l2k6Qtu/sEo4OkCZKul/SLtL6upGtS/vxI0jJp+7Jp/Y60f51upnu0kLSipHMl/T2VpW1KGaqQ9KFUv26R9ANJE0sZGj5jVkFJmgB8Ff/a7CbAvpI26W6qusIi4CNmtjGwNfCBlA9HA5ea2YbApWkdPL82TL+DgdNHP8ld4XDgtmz9C/j3yDYEHgUOTNsPBB41sw2AU9Nx44EvA782s42AzfG8KmUIkLQmcBiwVZovdAKwD6UMDZsxq6CAVwJ3mNlMM3sG+CGwV5fTNOqY2f1m9tf0/wlcsKyJ58U56bBzgDel/3sB3zHnamDF2ryIYw5JM4A3AmekdQE7AeemQ+r5E/l2LrBzOn7MImkK8FrgTAAze8bMHqOUoZylgOUkLQUsD9xPKUPDZiwrqDWBe7L12WnbuCWFErYArgFWM7P7wZUYMD0dNh7z7UvAUcBzaX0V4DEzW5TW8zxYnD9p/+Pp+LHMesDDwLdTGPQMSStQyhAAZnYv8EXgblwxPQ5cRylDw2YsK6gmi2Tc9qmXNAn4KXCEmf2706EN28ZsvknaA3jIzK7LNzccagPYN1ZZCtgSON3MtgDmUYXzmhhXeZTa3vYC1gXWAFbAw5x1xnMZGhJjWUHNBtbK1mcA93UpLV1F0tK4cvq+mZ2XNj8YYZe0fChtH2/59hpgT0mz8DDwTrhHtWIK10BrHizOn7R/KjB3NBPcBWYDs83smrR+Lq6wShlyXgfcaWYPm9lC4Dzg1ZQyNGzGsoL6C7Bh6kmzDN5oeWGX0zTqpNj2mcBtZnZKtutCYP/0f3/ggmz7u1NPrK2BxyOMMxYxs2PMbIaZrYOXkd+Z2X7AZcBb02H1/Il8e2s6fkxbv2b2AHCPpJekTTsDt1LKUHA3sLWk5VN9i/wpZWiYjOmZJCS9AbeGJwBnmdlnupykUUfStsCVwM1UbSwfx9uhfgy8CK9gbzOzuamC/Q+wGzAfOMDMrh31hHcBSTsAR5rZHpLWwz2qlYHrgXea2dOSJgLfxdvy5gL7mNnMbqV5tJB/m+0MYBlgJnAAbuCWMgRIOgF4B95r9nrgILytqZShYTCmFVShUCgUnr+M5RBfoVAoFJ7HFAVVKBQKhZ6kKKhCoVAo9CRFQRUKhUKhJykKqlAoFAo9SVFQhUIPIWkdSTtJWl3Ssd1OT6HQTYqCKhR6i3WAnczsgfE4bq9QyCkKqlDoLQ4G3iXpUknfA5D0J0lfkXSjpH0knZe+s7R52r+HpCskXSVpt66mvlAYQcpA3UKhh0izWbwOn7XhRDN7p6R/AtvhM6L8FfeytsSnZjoC+F065wXARWa28+invFAYeZbq/5BCodBlHjazBwEk/cvMnpJ0H7ASMA3YGLgkHTtdksrcboWxQFFQhUJvsRD3lHKszX8Bc/B5Fl9vZs9KWroop8JYoSioQqG3uAX4HP6RwIX9HWxmz0k6BbhUkuGzaH9gySaxUBgdShtUoVAoFHqS0ouvUCgUCj1JUVCFQqFQ6EmKgioUCoVCT1IUVKFQKBR6kqKgCoVCodCTFAVVKBQKhZ6kKKhCoVAo9CT/H6cIuDob5hrZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd7wdRfXAvyeF0AIkQEIaSWiB0HuV3kEQ6U16UUSaiIj4Q0FUUCx0BAUpIoogIr03KaHXQAih994xcH5/nDO58/btve++9+7LvQ/O9/PZz707O21nZ+eUmd0VVSUIgiAIWo0+za5AEARBEJQRAioIgiBoSUJABUEQBC1JCKggCIKgJQkBFQRBELQkIaCCIAiClqQlBZSIjBKRG0XkcRF5VEQO8PDBInKtiDzlv4OaXdcgCIKgZ2hJAQVMBQ5R1UWAlYD9RGQ88EPgelVdELje92siIlf1aE2DIAiCHqElBZSqvqyq9/n/94HHgRHA5sA5Hu0c4Bt1ZDdXj1QSEJE1RWTvnso/CILgq4y0+pskRGQMcAuwGPCcqs6RHXtbVdu5+VxoJMExl6qO6aG63QysrqrSE/kHQRB8lWlJCyohIrMCFwMHqup79aZT1TNUdTlVXQ54o8cqCJMBRGRAD5YRBEHwlaRlBZSI9MeE0/mq+k8PflVEhvnxYcBrzaqfk8zPTZpaiyAIgi8hLSmgRESAs4DHVfWE7NBlwC7+fxfgX9O7bgXmBK4EtmxyPRqKGDM0ux5BEEx/RORqEVm12fWAFhVQwKrAzsDaIvKAbxsDvwTWE5GngPV8v5nMCdwELNTkejSac4FPRWT9Zlfky4S7rLuS7qciMrbR9QmCKqwPHN3sSkAvWCTRXURkgs9F9UTek4BvAZer6uCeKGN6IyJ9gPeAI4GVVHXbJlfpS4GIrAbcCqyrqtd3Ip0AXwBnqOo+PVW/IEiISBIKo1T1hWbWpVUtqJbHB45hwMO+P7QBeY7xubdmMgZ4B7gaWLa5VflSkdzAVYWMiJwsIo8Ugk/z34V7pFZfIURkExEZ0ex6tAoiMkBEvlcImxH4DJti2bEpFcsIAdV1hgIz+3Na99GYwfwZ4NQG5NMdtsXm1SYC84vI0k2uT69HRHYHDsTcJnPXiLoosKiIzOTpZsMel3gAWKTBdeorInu6xdzrEJFvishunYi/FHA58IOeq1W7MmcWke+JyMzTq8xOsjjw+4JSPBR4FZvvX6sptcrolZ2zRTgauNn/PwXM16B8l2lQPl1lMeBmVf3c9+9rZmW+JByFCf2LMKu7GsOAT4AlfX87/90VGCQi/bpaARHpIyLLZ0ELAH8Evt7VPJvMz4A/dSL+Fv47Zw/UpRrfBX5OxQpuNQb6744AIvJ17GUIrwBPA6ObVK9phIDqOusC+/r/VzHNo8tkWszSIjKuO3l1k5FA8jsvD7zfW7XsZiMiM7pQmRvYGmvX4VXizgyMAi7FLCmA2YApwCPA23TvrShbAneLyFa+n8pYuRt5NpMvADrhshsBnI+5sLuFiMwhIneJyNmF8G1EJLfQvgNsBmwkIot1t9weIFnzW/iUxWXA7zEB9Sww2sObRgw8XcBdMMOASR7UbQEFzIN1jCeB3buZV3cYhQsoVZ2Aufo2bWJ9eiV+Y38MnAC8pKofAu8C/aus5lsae6VX7s6bH/idW7OvUKOPichiIjJ/jSotBTwIHOoPlh8A/JcGuw5r1G+7Bs+vjgEeo37PxWjgdqx/d5c/AysAuyT3nT+W8TfgV77fH1NGbgPOozWflRyC1W9B2rbjq6r6AfChx2kaIaC6xvzAM6o61ferCijXturRQhbGBqiDqLh4pisisgAwM6a1J/6FLftvKiLSpUUC/gb8O/Jr4NdEe3hBygL++x1sIEVtyeyMwBQR+XUh/hbYHMlzwCiv72bYS5HB3lpSqw2up6IwtcEHzz2AM4F5MTfOYOCn1J4Tawg+8f5XYI0G5Tcr0Bdr1+EeNq+IXCci1VbsDgXuBYaJSN9uVuEL4MeY8paW///Gf/8nIgMxQfiyqv4PuAtYsZtldgkRWVZEPknzmgUWx1zPiwD3A3/A6nqLH5+CW5wispWInDq9LaoQUDUQkbVE5O8lhxbCLJ3EU5QMHn4x3wb2r6O4xYBHgeeBxbrzoKyIrOgDcLvJWREZWcNltxRwRyZ4wVYpTnf3hIjs5hPMb4rIIsDjPtB1Jo/RwJuYGyuf+0lzMatVSbe2iHxQ5dhYHwgP7KD4pbEbvC92XXPmBA4phI3F2vo5bHAbDvRT1bSq707szf7VeMfrVzaAjMHu9VMxwbQRNv80hekgoKhYafs0QDiAXcuXgRcx1x3A9sA6VJ/vmcvjv4V5K7qEiMyBLR74N6Y0JMtjKHAwpmQuCGyFPSMJcDdmcTWDpYEBlFuaa2BKEZhQOlBVV1LVcz1sCjCfiAzGno3ct0o+PUYIqAJijPTdA4GtRKTYoYsC6nFgIRFZx/PoJyJTqTzAe0TS7ETkCBE5rKToRakIqBGYhtZV0jzHv/NAH7yexx6CLiPd+DmvMH0GsWn46rU/Yf7wwVQ07/GdzCp3X+VW6Ub+W811eQUwS0m91sMGpXWA37rgLMbp49bR8ZjLB+COLMp+2OT5B37jJwZjg+ckYAlMgD2RHf8vJfNFIjLMLd8kvMvmuEYDD7ur8Bns2b17sVeFNezair+GrIQlsTbdEJjancUezqpYP36Jyvmml0gvLiLjReRbWb0EE1BveLpRItLV+ZVlgMmq+hAm8FL547BBPgmtVajcf88As4pIj31ZoQbJwkuWZt+s343A5poA7tP2D8VOwCy/BbCx6WIqyl1N8jk3EdlJRK73ftopqgoon+DdT0T+KiJXicgFvl9mKn6ZOAB4XkQuxQaK92g/sToeM+8BcIvjZ1SedVkE05w3wp4nGgLc49rjMZS/AWMxbDL8Xd/vjvtpCHYjri4iywCIyJyY+xDgbBHZoCTdPLQXUG8D0/vDkAtjLodkeSZB31nXZ7ohnsCuZWJz4DBKBJ67/Qb4/+L9sUP2fwLw4xI34erYqqh5Pc5oVb0sHVTVU1T1ZK9TvhhmEPC2qr4K7IZdq4cK5S1ZUqebMA19HmwAKVuVN5rKQPQGdt/fhVlds0g3XnYsIjOIyIEisiDwUpVBeAlsxWsSsPV8JqcWuwIn0lZALYspNTNg1uY52Vg1G/CJqn6K3RfzYtZBV+ZWh1NRTl8ChovIj7BznIi5+4dg7rOHYZpr9ynMsmoYLmQ7sgaTgBrjv+cAb2Zu0vcwi/5nJWlvANbGLPrnsfPu8By83R/O+sK5ns8eHaUtUsuC+gvwP+xG3hb7OOBnHv6lQUS+KyK562Q9/90cu6g3YB06xV8as0AeLGR1I5VBMOW3AeYnP9j3k+vs48KciGCD5aPemfeie4suhmMTuUdgViDYwPQb4CTf/6e7K4rpGiqg3CV2XieTLYy9h/Ek4HVMa7sXc0EiIteIfYalI9bCBvtjcReLW6/zYde1TONPQvotzKrJWRFrV7D5oR0875xVsPmWhYBLVPW5KnWbSHsB9RaAqv4dU3amKTLZIotinef0tG9i8wllq/JyAbU3sLCqTvW+9gZdXB0oIrNgrrXfYgIDbCAqMj/wlLsrrwD+LlVWqorI/0mN+Ua3vpYHrsNdfK4krIS113FUlk+nZdJjPC7YQJsWLEy770VkdxE5uerJVsi9DC8BP8GWkuMLC17DhEK+iArseudKUlVEZB8RmVBH1ClYO9RiLGbZ/cKV1DSfPAZbvKOq+lbBrZ+4Hxv7VsUWTk2iRECJyHCfVljUPUXH+6H5XaH6FLtv2nklOkRVSzfgls6Et+oGTKhxbCbsjeQ3ZmHP+UWdBxvUjgeO8GN9sE7xZ2BAIa85sQFEgAuAzz3vXfz4x77/oscblKUdDbyY7a8P3NSNcz4D8xcv5mX+yX8V0zQV67RXFtLdBqxZCOuPCVYphM8MzFBHXQ708vr5/jLA3B2k+QVwpP+/09P/BLgG05AV+HYdZT+LCaNBwAeYG+yfwKGYMH6lJM1KwD2YArJcFj675zEL8HUPOwn4YyH9g8BaddTtSOAX/l+A94HZOkjzX2C1Qv9N/eo5TDi16++YUrlrlTwfApYqCe8HLNFBfT71sv+V9a8f+bFvpDIx5WJ5/z8uizvOz72PHxuS9U2pUuZCmIst5fU85nJ9MIuT8t/I9/cBzvb/3/djHwLnZGmu8PABHZzzRcB3Ss5lSw/7Ljaw31dI9w3ghjr6xd5ZnqVtUDjPl6scOwBTol7HBKNm24fYoppj66jPbZ5mOezefaQkzn0e59VCOTtgj628jCkFV3dUXnGrZUHd4m69nUVkM/89zyvcqxGRZUTkIOxZplcwSS8u7efBNItXVPVubP4gTabPj91Mu6m5C6ahqm9ig8xozCROE41pEnIWzJy+G/eDZ8nnwx6MS9wNLNsN10vS8h7z/fTE/e8wTe4tbB6iuPhhITLXJYDaKqSPqWiliYcwS6ENIrK+iORadNK4DhCRxbHB6v86qP/iWd3v999LsHZK2nXNVVFulQ7Blsy+jSkG83ne/8E03UEiMo+0XZAyAtMW76atNbIjcK+qfqiqaW7hP2QPM3o+C1PfPZJbUAtj7rb3O0jzDBWXDZgLc7L/f5fqD4znFlSR14G5RWROETkvm5/4CfCgiNTS+lO7JY35AirX+w9UrM1pz9ap6kQqS5cPxTwPV/j+sr4/ihJ3rt+fB2JzvmD3zEjMirgrizoHpqTN51bRaZiiA2b1gFl8+XxdWvpf9UF5d9Fv6ueZzmUtYIyqXuzRXsQs/eKXFiYAi4jIhiKyZrUyaOsGq8eL8nmV8N95HV7Epg5yXsYs3eOLiUo4EFhF7ZGTh4F50rQBgM/DprfN5EvST8bGywWw61T0GNRHB9JzUUwTP9x/F+usBGz2RkGjxNyVuZT/KWYVLYF1iNcL8ccBT2pFE/tHjbKuwLSWx7AbbHTh+OyY3/dKYJMsfEfgr4W4V1JF6+3gfDfE3DZJY10YW+r8diFeX+ytBTP5/iBMgLbT2jDTfqFsX7ztXvT9mVI6D386i3s1tjDgfcwCuRcbTPpUqf+M2GA7l+/Pg2liA7y+W2IC/qkO2mE24INs/z/ezp9QsebO9vqensXbH7OM9gH+5GH9Pd6RhTIWSX3D9xfMz72D+i2BuTHBPh1zfh1pfg78JNvfChPcp3obiZ/fzIV0U4D5quT5V2AnzK2c7om1s//vAkNL0vXL4syKLWhZGdOmF8LmxhRT1J4uXm/gFD/2KTaVMDM2xpzh2/4lZa7uef4xC3vXww4qxD0M+DUmgBVY3MOHYa87WsLrlfrtZOz+PbRG+4/Fvupd6xrN6uUNLYT3wfq/Ai9USTsDZt2s7nXboYOySi0oTJn80I+fl8VN263YC667Mp4e4O20hPe3Y7z/re39OJWxBzbfpdh41M/rNEdnyqu5ik9VH1XV04C/qOppWlny2ptZD3NZXeX7kzHX0dcw7fnFQvzXgKEiMh7TxM6skfdDmPY0J/CaqrbRWlX1XbWVVC/gFpRbSSOpaHaJG6k87V8XIjIEE2xzUtFYn1CbmG8zj+T1uAEbnMCew3lbvRcWmEJb7WdRKi5MMLfZvpnFN0e2UmsB4FpgY2zgXx1r52qfKLkOmKqqb3g9X1HVC9Qs1puxgfR2Ks8KVeMI2vq8n8IemLxHK/72w/0397+nPpAvr08W3TGFMqYA82YLF+anYtF0xERgjFtdQzBLviOKFtRCmID8treRYv1o2tsV/DoMo/J2kCIPYHMMi2B97llM+34TG1Rmq1K3ZBUNUNUPVPUAz2txP7eVsbna+YDdVPWLQvrU927E3KJLYvMdz2Nei7Jn77b333wePM2bFudinsYUhkGYKzotWHhZVY/DFqm8hz2+MB5rs6up/emcRWi7srId3haittglD/+Cyqq+ucRW+q4kIrknZTHMfXkLZt2sW60cX4igwMwiMreIHOILVcCU0onA6djjBGDK9zA/h7VUtasP31+ILf56ELvGy2BTBTeo6jle5z39eHqX34/9nrsBm5evm3qXmd8lIl+WN1vvjXXajX3/bUzrW4ZyAfUOdpOmZ1lupjp3YIIuLRmuxvNAeh7pY2xytyigniNbnAEgIh0tCV4dcynOo6rFxQ5lnEzlA5C/xQbxMmYDLhOR210oLIm5D4aIyIaY1XYKpr2DDXIr+uT1SGCKqt6qqj9Um+x/EBgntiR72qozF3CrYlpaGZdjHfwZ4CPaL2LI2QJ7bVAiTVj/KAV4G+1DxVUF1uYvYNd7vF+jlYA7i8JbVT/G+scSIjIf7V21VXGB+y6m6Q+hvq9DPwMs4IoItH/cAa97/vqfUZiy9FmVPC/CBv5VsDdYr4sJmTldidkJpg2IOfNh1uK0fL09kmLyGGYVruoDbpHU127EXHbjMBffk5g7rmw58/qYF+fWrMwPVXV4EkAZj2B96UM1N3UbvN77eLlHYcLqKQpvmhB743dS4hamAwHVAbtiQug1rJ+dinl0Estj859gnoaVa7j5R2AK0n3Y/M6vgb1EZElgG+AxVd1XVW8GUNXXXNl7QssXRNSFC94dMCt3VUzovZgdv15Vz1JzCT7hYenZtEm07ZsdUq+AOgy4Rirv8ZqGz0/d3plCm4mqfuFaTjJ178O0jQUxbeylQvw0KN2DTWJ/XCP727Ab/DMtzFEVSHNQ82BmMrTv+Gk5LDBNE35Naj9LMD/wRFF7q8FNwDJ+EzxH+4dHE+mlpatgFugC2KDSH7PYXsDmLMBWe07G2nI0Np9XHBwnYu629zHBlwa///pvu7ktJ3+rQhtLAaa9NeIIEVkFW5m2X3b4Af+9h7a8SdsXiCar5F1MyRiDKS/VVlU9js2T3UbnLCiw+2oR7FmkegXUasCrIrKGp51YiJM/vAo2uV31hb+q+gym2a+ItekUP7SiHz/fyy0OLPNRfq6HYALm2CrWeCLNI92GCaUlgDWx98G9SuGlrr4Cba4sXUdM8jyqCWbU5pi3x9xTz2P3wBgRGSgiyXuxPnCuiPwBc7F22Yukqp+q6qNet00wb0t+Py9PpZ/dh7X7J75asshIr/NETGC8j83pPYAtBCmuMm4YqvpXr+fClD+aktgCU5oTb1JbqWxHXQLKO+mmwB98AOgv9qT/Y9jS5fM7U2iroKqrq32QazLmOimzoMDOfX21T2vUyi9ZTUV3RpHk4kvPykD7G69oQaWJyWmfv/CFHaeKyDkisjc2mE7poOy8vh9iHXxZfEFBlXiTMeH0N+yGXtHrm5bPH0RlufVVns+K2NxX2et3JmIvT01vunhS7CWbS2OrsapN/D6OXZ/LsWtW/OrnRMwNdzswUVWnKRuqepu7Xj4ppJm2nNwtvnFUBv2HMWsif6CxyL3+O5S2ixbqYRI20I+ivQVdxvPZ/5uwVaYPFOJME1Bu7e5Ex0uRb/Tfp1y77u+Dd15uriz1xQRKu3NV1RNUdWW1pfJVcaVlTUwpuRrrQy+5AvgeMFDaPvO1MKZ8dXRvpfyTldDREvrrMEGWBvu5vfxHRGQ4lWcb98fmR8+pp/wOeApbpPQa7QXUPV7/z1V1Y0wB3EbsrTZ5eyQX60RMaTzT6/o3TIhe0IB61mIyptTPRRXlyq3bW7Ogt+js2+Q7M2GFzT18gLkmJmCmZOlkd6ts1FhmnsXpi7mM/gbs1c3yrgX+20GccX6BT8CE++wlcfph2t8MmIvpQ2ww/GcW5ze0nfy8mmzxRZ31vTxL36+DuKthA+LHVBZXrIIvzcWsxz6YNZXyPK0kn6/5sZ0wl9uVvn9dJ+r9XU8zi+/392v4Hw/ftM58pi10wNyHd2THfoVpzfcDy1ZJPzv+TAl2Ay7diXMYht3crwPD60wzEfgepgS0W1iBrbo60f9/AxusZu4gz4HAdjWOH0e2JBlzwSr+CEUjNs9vSrb/fn5fYAN6hwtJCnn+CbiozrKv8P/js777NpWFIgrs0aBzPdjzuyidM6asfUj7x1e2woSnYm9U2djDD/f+ubEfO6RR16LOcxjt5dZcNFJIsx3wt06VU2fGQ7F5krewQfAKTEut+TxLK2zUIaA83k3e4J0a4EvykWInK4nT19vyc2B8jXjP+uB3NOZjntkHpvFeznOY8DoIExpvA2M7Wd95fSD7RR1x5/I2eqyDeBti1o4Cx1Rpo7WAvr6fVoRt1cm6PwQs4/8Xo2KZ/bsTeaTVgf0x99TvsmMr+nVSYEQH+dzr8dopGx30FfXyaz7z0ok8v54NthfThZWgJXkugVlmc3jfvRNz5dbs550sYwv8uSXffx6YN9v/GfDTRpVXKPtCMmGLKVn3+LU5AFvc81oDyxvseR+NrWCcG7P87ymJuyRtlVDF3LanYFbdGA/bsSfapoPzUODZTsRfD7i2U2XUmfEH2LzA0r4v2KT6ZGoMsK2wUb+AOs4bvN1Diz1Ur/RwW9WBCZsjSwsfvulhR2KC6A5sdVVaJvuG59ejFq2XcUedcdfLB5kO4s7d2UHaB+Ct/f+O1KEtV8lnEubKOwk4oHBsT8zK6d9BHjsAv+1ie37Q2XQ18hvn59MfW8DRbol4F/P9d2GQbJhwqlLeIz4Q305F+O/ck2UWyr80nScmlBt6vpgbcWfsMYFbvKxTSuIN8mO/yNp+N8yTsVrWh742vdomq9viwKqdiL8shQeYO9rqXSSxhKpur6r3gy0cUNWDMBPzZil/r1tvI62+qjbX0Gi2wS6u1ojzErZqcBMqcw1nY5rsQKxDp/S/Bc7QOn303aTelWrXavVX/RTjvt5BW5TxMpVX/yxJ1yeGL8esyLEU5lVU9UxVHaIlK8EK8S7we6Kz7E/ldVSN4BlsfmJdYJLWv2CmI/KVeI9o7UVAjeAtTBlbhcpD29WWyvcED8G0hQ2fN/p8VXU2tbeG/wVzeV+KLW4o8g62cORq378Us/Rnxh9OVptbvbUkbY+iqg+ramcWyLV7fZjYO1//JCLlDyU3QIquSwPN3x6Q8vVaUIPopnuvB+p+DRWtqU8WPjsNcgl1oU4rkL2mqcntcwTwS/9/NXXOO5XksyPm/3+JXvgwesn5TPI+s3cD8xyIzSGcDQycDueQ5iU39f1V6WCOtMHl9wfmnw7lDMTcdfPUGX8jb5fvTa+2aOC5zg68VwjbFHtrS9+yNMk91C1EZJzaaz9aDhGZoKrVPmLW0vgqon5apxXyVUNEdsNWFW6AWVPLq+rztVOV5rMilVfhDFR76WevRUTuxObP+mgjbvAmICL7Auuo6tbNrksr4Q92/xT4laq+0+z6dAZfVfoZttjjQ1V9UET2x15evF9pml7af+umNwuooDb+3rhnsAeJoYsDsj9jdjgwRFXr+bhkSyMi1wNrq+p0/fppEHSEiKT780lVHSciv8Hel3lcWfzufjgsCJqGqr7lLzOdgr1Pr0valtozM8VnqnozbzS7AkFQhSuwFbxprn805uIrJb6oG/Rq1N53OIuq7tvsurQQ+1Hnl0+DYDqzKfbSgfxDilOqRQ4LKuj1qOpHza5DK6H2ot2wooKWQ1VVRKZgL3vui1lQU6rFDwsqCIIgmG6ovW7sLexVSbNS4z2UIaCCIAiC6c1E4JvYmyiqzh2HgAqCIAimN2dg77ms+fB1ywkoETleRJ4QkYdE5BIRmSM7driITBKRiV+St1cEQRB8Ffk79p7DsrdnTKPlnoMSkfWBG1R1qoj8CkBVD/OvXv4Ve5PBcOw1+Qtp9U8zpPziOaggCIJeSMtZUKp6jVa+5XIn9l4xgM2BC9XejfUM9jqXFZpRxyAIgqDnaTkBVWB37J1cYB9hy19jU/y09TREZG8RmSAiE7CPjAVBEAS9jKY8ByUi12GfCi5yhKr+y+McAUyl8rXeste2lPonVfUMbBIuCIIg6KU0RUCp6rq1jovILtgTx+tkSxDTZ9ITI6nvM9lBEARBL6TlXHwisiFwGLBZ4Q0BlwHbicgAERmLPeRV9R1OQRAEQe+mFV91dBL2Fctr7e3s3Kmq+6rqoyJyEfbxsqnAfh2t4AuCIAh6Ly23zDwIgiAIoAVdfEEQBEEAIaCCIAiCFiUEVBAEQdCShIAKgiAIWpIQUEEQBEFLEgIqCIIgaElCQAVBEAQtSQioIAiCoCUJARUEQRC0JCGggiAIgpYkBFQQBEHQkoSACoIgCFqSEFBBEARBSxICKgiCIGhJQkAFQRAELcmXXkCJyFXNrkMQBEFgiMjMIrJ/PXG/9AIKmKvZFQiCIAimsSnwBxGZpaOIXwUBFQRfGURkbhH5TrPrEQRFRGQFEbkHGO9BHVpRIaBaGBHp1+w6tDLuKuh2HxaR34nIWY2oUwvwHeBkEZmz2RXpKmKMa3Y9goYzHlgOmA+4EthPRAbUShACqkVx4fQ/EVm02XXpLCJyh4gsNx2K+hA4rKNOXgf7ALs3oD49iogcIyIrdRBtRf9dugfKl0bn6fkOFJF5sqBFgSdEZMaeKK/ZiMjg1JYN6Lu9idn8dzVMQI0EtqiVIARU6/I1/22jSYrIMiKyWjGyiOxRuMkbgmuzs/j/gSIytI5kKwMbN7ouVTgW+KSbefQB6KxQFZGZRGSDbpbdGY4AjqlRHwFWAK4FRjWyYBFZHfhCRGZvZL7Ov4Ap2f5w/122B8rqNCLy9Qaf95vATiKyLx30XRHpIyKzZvvLisihDazL9CSNT2OBZ4GTgJrjSQgoQESGikj/6VjeCBF5sAONdHX/XSRLNxNwAnCriDwuIrt6+FzAmcBBPVDdLYEPvK7nAK/UmW6Gage8vt1CRAZ3Nw/PZy0qdW1nRYnIyBrJtwGuEpG+IrJHF8v/bp1CP/G1Gv1mFPA/4D4qg0G3EZFBVCyzcxvhenbFJ7X7GkBuSSThOo+I9BOR/xORw7tbZifrN7+IrCQiawKXAds1KN80zgwH1vQwFZHxVZL8A3gyu+Y7AseJSN9G1Gc6MxT4i/9/D3gVGCoi3692P3/lBZTPYbwCfCYiB5ccH1/vUnXvaPVo4QsCSwAL1YizJHAucIyIJK35I+xmBlgY2ENExgLretjYeupZqPMYd8ltVSVKcrMM90J103wAACAASURBVHqndCIi24vI+oX80qAzi4isVxxMff91EfkiC9tURJ4Tkf61Bj93caVz3R04HxfgIrJ8x2dbSrL0rgWm3SSuRHwIPF9De05CYBvgzM5q2SIyP3AisFadSZ7DhOnOVdppJKaZvgMc64KlnnpI/l9EfiEiw31/TuAt4BvA5cDXqVj33WEv4FP/XxyHRvjvH4HXgaMwS7luRGSQiKxYR7w5RGTxbH8Pt4onAf8FbvRDi3Wm/Bqke3SUbzf7/pZV4q8GDMOsV83qMVhEFvAx5x8NqltNXBFL3pRfi8jJncxiKHCx/3/Vt718+7A0hap+qTdgQklYP2zAnRObtPsfoMANJXH/z5qprrIU+Ekd8a70uN8BZgYWL4nzOLCqx1Ngpuz/a/77GDDZ/z8N3NaF9rki5Vvl+Hf9+FZZ+QMwoTgtHTZIKzDGf9M5LlDIb1SWj2BC+AXffxe4vUo9xmX5pjy2ydr9Pf8/COhbkv4+YPcq1+Lrfj7Xe9iMwKVZPbeqUqfT/HiKu1on2/5nnu7bdcZ/G3jD0/wVmLFwfCvgn9icmgL71JHn0h53Jd+fO/VN318la4fBwD3Ang24Ly/0PPv47+fAAD/2h6zMaVsn8/+pp+tbCF/Qf/fDvBGnZX14tbJyvW5XNOCclwD29jyvA17MrpUCksXt59uLJfV5H1tw8I1i2wBLAQt3t65V6n9A1lYKfN6JtFt6mhWzsEU9bM1q6XqdBSUiG4rIRBGZJCI/7EL6M7Cb+EXsZl8Z+BNwBuVuqaPqzDet6f9OLdediCwAbOi76wDnAQ8V4iyJWUj3ZMHDMT/9LsCBwO2Y9ZA0spuB4SKymIgMrFH+1q4lDnZrb80OTi1ZFasCT2CCcKyfww2e5yBgGY+3EfBMlu+2IvJhckdiN9Yk/38wsBOmMZ+JTaKuUqUeX8Osg8HAvJjVmzTHRYCBIjIK0/bbWMJubSyN3RBFFsGUgTeoPDO3uW8HAIdRuV5FhgIfU5krWbBKvHaIyGHAkcBEzPLpKH4fYCAVTXM7KtZ0YhjwkqqeDnwfWFxszrLUHeTX/z7f3crjJas+WV/TLAdVfQu4CJhmcZTkWe9CimQlzYNp0ndjfQzsOkztKAMRmUFEvlnlcFrFmFvFM2Husjmw63sQJgQSW2OW2g+B47Lw24GNvH/l5b8lIt8qqVe1NngQOB24DRNWcwFnAQv48aGefmVMaX6MynzcvcAj/v8BzNU3D/B8OjexecL7sf7cE8zoZSVvSx8RWURERknh0QYRmVVEbsrGos39d9oUgao+CvRX1ZuqFdirBJTfQCdjg+B4YPsavttq3IxpzImhmLA6HrvBkym7m4jMhmlPU8UmSmtNiO/pv1OxZZTVGO11GIO5dtYtiXMh8LGqfpaF3Qe8oKp/UdULVLW4UOIubKB7mIrgmMPdAjkXAb8BLsAE4HOY1jWlSn3TjX4g5vJ4HrsBlvN8HsSEwmEebzxmUSTX4PaYlfhnERntx6/0Y78G1sOExM887PNUsHf8290/PRdwB2Y9DQHuUtUvAFT1CU/ynP8WB9Bh/jtt7kts8nlu7PpPwQTUSB9ckuvpRS8zdwGt4oPBKlSUiJGYVTum2Hg5IjLAz0eA5Bq9i8pgXYs5Mb/9o5iicB2FBTTYYPaS/38IE8j3Ut7HwNzIiVWwvruz748Vkb8Av8jyBLgV2EBE9hSRc/y+6OfnNwfwsohM9f+liMhOmLUCdj88i7VzcsnNhVmDV/v+A56uuOLtU+DiEjfyjMAOWV6J+bMyJ6fz9DSDsPa8Q1V/Rdu51mv8tzgFMAhYT9ouYtiVkoUPhTrehlmqb6nqVFV9Gjv/dD3H+O+C2H0K8AWVBQWfAD/C7tsz/Vx2oeIuRERGJsVERJYXkeeLdaoHEfmliGzvu4Mxj0vyHDyLKX7p0Yb8HE/DFKg0h54Ujlfz/FW1piLSqwQUtkJpkqpO9sH7QiqSuV4u9d+PsTmdIdjg8jJmgQjWkc/CBqAnMC3rMqDWXNSO2KDwCDCuhhY1B9Yxn8W0xjJr51XsaWswd9qF2JzLfiVxJ2a/qcw0+L4NICKzi8hwqSxOeITKoHgf8CSVcy8yV8oHm+C80/+v4fmcWIi/DCbIfgCcig2SVwI3YYLgBEwzHAL0UdXrXMC84On7ZvVYBhs4d8UG6Ee8Pkkg5Gya/d9ZRP6Y7ScLJZ+jOzDl4TfJK1i7b0/FengQa5sVROQQD7udigW7sMcBE1RJE67GPH4++2B9eWVsHq1DC8rLmgh8E9O+L8Gtm0wYDMf6MZggW9P/V1uUkj8rtbL/boldp60wYbUzNhCm5e13YwPiH4FvYX3zfy50tsAG0b7ACFeQThSRZb2eKiKb0Hagnw9TLO6jYoXPhSkHuwNrq+rS2LWp9mzXtHlfsXm9NTBhngRBIl2f9TBrfSqwtofNiwmIJ30/teOamDW1IW0VlSSUdgL2zcoYDcyQCy1nk+z/wyXnMBFYSWxOOVdw0/zzx8BmmLJxq4ctifXh54BtszRfYIrkGb5/MKZ8ze5Wp4rIzCV1aIPfh4cBO4gt7vgBNg85JzbW/ANTGJMV+oHYXPJw7H68ibZKwQaq2rkVtz3hq+ypDbtpzsz2dwZOKom3NzDBtyklx78AjsY66KXANz38bWzg3BTTEA7GBtc1sZvnQ2BQSX7f9vhrYxrNfrT162/hdVXs6emzPPwcD5uKmbpgmpECi9bRHqOxG21O338Nc8E9jU3+J5/11v77qv/ejwnn3+HzFJgVNHdJGTcAf6fiexbP4zXfH+H752Guu2l+ZkxoK6bdJX+zAmtUOZ8H/PiW2KB9pNf1CeBsYA/sxvsbhbk+bPAp+uq382P7YgPrR8BsHvZb7KbfPMtjd0xjPQQ4ITvf6/zc+nq+52LCcufsHLfz/tOvxvVa1uN+AfzCw8YDj5fEXQwYWOjTf872V/e8vuW/s2MLPTYoXKc387YChmf/f1XSZuptoKmOVc7lZ4U0f/fyH0rXGFNU0nzL0VnciZgwfRMTdMdj99fDmOBVYPZCeTd6HgN9f1a/nsU5mM887Mksr6/7sb2y8nNL4DFsbPkkXT9vvxkK/Wtytj8mO5+LsjTXeNjoLO42tG2rxb0P/DOL87tCnOOAOfzYCsCoLG4f7L78AOt3f/E0e1Hpo2mbwc/r/nRNycamGtdX/LooppzP5//nw+7D3bCx7AxsDL02KzMpskcAp3t+U4D5Oz3mdzZBMzdsoC0KqBM7SFO2SGIAlclZBZbz8MuAn2BCRjHt9oIs3S2YVZB3lhmyfMZhk7N/8/3fYppT3mHOBX7taf/uYS+mDk1lAcRcXWifiZ7nm5jmcwIVoZG21FHvKqR9GFiqJM8n/IZaPAs7Hdgp20+D/hGed7qxVvb9FXw/1WFIlfrP68cPy+q9n5/XZ5jQvdfD2y1IwNyKs2OuCMVuzMGYUEsD+qUe91pgo0L61TBXy7HAEYWb9SEqE++TgYv92DoeNgLTusdhis1smKWTC5kNsjZYOLUdNtDkE+RpQcovs7DzgB9k+7MUrutKwFPAYoX22AM4x/fn8bgL+f6ZXtdVC3nNj83TjqnR13YvpPnA23smT7tHduy2Qtxxnkd6bGFhTOB8jLkTtaS88Vn6/t7OkzDl8bVCu6Xtz1SE9FjMAvgDpmg+iClO6u1wNiWKQlZ+f9oKu2WzcqZ42FrY/fsmsGyW9maP9wQVoTEXmTLj/aCNYOngXk9j1AbAzwvtqpjL+iVsOuRlfLFXtv2jkN9cfu2k0FcUu/9Wp7AIy69birMotnjjYd8/xfN4A/hxum6dHtM6m6CZGzbgXZ3tHw4c3kGadgIqO6aYiyJdlB9mDf6Jd6iTs/gX5zeJh6VB9UBMe9kZ06Q/wkzxkzBLYE5Mo5wE/Dg7nyMxbW5zD3saGzz7dKF97sQssKnYgLYbNrg+m9U7WYdHFdJeSWZNeFg/73RzdOL6fJ7tC6alzuz7Q+hYc9sdG7huxuYgZvV2VK9PWnEpNfJI1kNxAHmainb6P2BkId0YzF1yNrBH4ViybB8jsy6oCOE+mJvq+4Wy/5blsROm1d9MW+38fdxiwCyLRz3tzz1sed/fslCnpLVOwgYRLfYbbAC/LWtbBbb1/dx7oJiVtn6d13ogZhkchQ1sH+GCBdOqkzWU/k+lYsnPmPWvfJBOFs+qVcpMAkUxt+/l3u6fYPOc0wZfbFA+yfdvxLwbx2JK1J0evpiHp2v7/Q7OeVdM2PbHBv67PN27mGvzMMzq+Ah4M0uXlMKbUhvVGI8U+Fod7X+Ux10BE8zPUBnH3sQFvW+301ZR/pHXuS/W5/OVmknYb4Qp5EM8/EHgwpJ6nIgJ/Bl8P5XzR9+/0K/P7zo7nql2QUAB3+pKQY3YvENPxrShGbzRarrCqC2gPsC1e9+ftmyTys3/8+z4oZjwmURFW1kJuDuLM8bTXYKZtf8CtvBjx/ixoub+K+804p171i62z2WYO/F/2PMjyTJcGXM9LI3d0PsDg0s6/P201eS3AW6Zztf4a5gloLjVhltN/v8PwE/ryCe3Vm7xsNxSeJGCkPM+9ZnfmOsWjm3r6Y713109fBYqguQqP/ZyVo4Cs/jxA4E/lNT1cWC8/38sS3e+h/3Ar1+/Qro7qFicSomyhrlKX8WsOaWi4Y7DXKrLeryqAr/O6zYlu0aHehnL4M/weH9cKMWpkkcS7vPWiJPcdA/hSpaXfYZfu6F+HWf1/n4mtiR/B8z78R0qy9iTu/B7+XWqUfYcmDLxT49/oYcnV+NEzD2s+Xn6uc+PCbZ2j0Bk8dJ1H11He+/pcReqcs3HULGazvWyt8SU+jmwPr4zbZXutPXDFNYDPb/0qEmHgtPjHwYskfVdJRtnO9WvahQyvmRblCrPqUyvDXPzPIlpw0fUEb+qgCqJm7SF1ai4bg7Njotv1+Oapl/0fxXyeQYTAumCJ0GRBpLiwLif3zzDgbe70TaDqfig3ymW00HasZ5ukO+v5/t1PaPTwOs7LGu3IR62N3BGF/JK+Vzp+30wt+fX8GduStJM8TQLFsLTc1hLlR33OKdQEQJpLuQ6TND3xVwxR5aky+eOknBLCtJATCs/tCTdApjQ/brH3aAkTh9Mw01a/JLYgo7dsYUE7eZUu3jd9gfO9v9zAvv6/2lzInXkkRTEmv0WW/2puJs5u86lZWDzOwdh2vz2uCDMji9FZunW2acUn//GhOZUD9uNijt5ASpu7w49IlSe75u5jrjr04FQzfJrp9B5vY7F5maLAupwD8+t/Kpzqx3UcwFvm057hFRrC6j3sOeD/lzYXmhEh55eG50QUB5/Jv9NbqKjSuL8CdjL//8Qn1PKju9A20nUNPE6CFinJL/NMHfFXmRzXt04ZwVe7EK6ycDG/j+5I2tqlT10zXb2/ldV26wzn7SAoZ3VUiPNFdjimtIbChvwt65yLA3GkzGhcgiV+YFrMC1/35J0JwIH+f80B7klZvn8CdPQ96pR5zQQLVnl+Kd+/FSvY5oTemM6Xc8LqENApTasI84BXv81fH885m57tUr8tGhJMcVzXuCULp5LPpAfU3JsF///Lu7So+Ca7SD/uuaefXyq6WmhMm+2RcmxfTDL8gNMYVFvpwmYS7Cmu3N6bbVO7i58dVgh/D/NrnQnO1SnBFQh7ciyToBpYLd6BzgX2K1K+lOA/esoZyy2iu6FRnQM72ydViSyG+8/mCY/Y3fr0uwNm3Oraw7N43dJ08vSb0emhGAadWrXf1LyVgrMXfMh5hL7DJuwTpZ6SlsqFD19UqaqLT4ZQdvVewtjcxTXTadrMDPZooEG5PdNP98xWVj/aoO7l58WJM3XzbK3xpZ6/7SYF7bCLSmjx5F5T5q1YcK7nUWateHN2AKNNGVxHfYs4ibNrPe0etY4sdnopgbbClt3BFSNPFfwi/sDTBtdowF5poFsswbk9R5wcxfS5dphXS6P2Dps0yUL7Vq2+nA5PzaJzPKl4jJUCnNiDajXGsCOzW6fLtZ9Nkqsgg7SpGXSNVfHNbCO82BL8bs1t9eD9UtTGPsWwtOcVLsVvc3Yqj6oq6rvqernYC/OrBbvq4iq3o1Nti6Eaacv1E5RF+n1P3c3IK+xtH1wtV7mp/JSzusbUI+vPKr6INZXDvCgu0qiPeq/Y7H5y8R3sVWeYHOKjazXzap6fiPznF742HRJJ5M9A6ylbd/O0mOo6iuq+hP1Ub8FuRfz1pxWCH/Xf9+czvUppd7X5t8lIpur6r09WpvexYuYEBhG21fBdJV7MG2m3s9ZVEVVu9S5VHUycISI3ISt8gkagKqeCiAiJ5YNWKr6sYgshj38e0kW/oWI/NJ3nyimC+rH2/2mZtejVVDVd7BXlRVpKQFV76uODgOukZJPMojIZiJye2Or1St4GXPNvKuqH3c3M1X9RO0ln01HVa9V1U87jhl0hlratNqLM+fBVhnm4VNV9RhV/aCn6xcE2BwoqvpRsysCdQoodwVsCvxBRI4Q+27PbiLyGCaFe6WroJu8gC1Lv6ejiEFQD6r6agu7hIKvBv9udgVy6v4ypqr+V0TWw3zoP8AepjwKe2XGF7XSfklJrriJNWMFQRD0ElT1NrFPu7QEdQkosU9SH4Q9MHk7tgxxduDGr6hwQlXVX7r9WLPrEgRB0ChayYqvV1I+jb05ex1V3QB739Ld2OKJzn6P6cvEPNiDlEEQBEGDqdfFt4Sv8AKmSdiDROQJ4GYR2UlVr66e/MuJqr7acawgCIKgK9QloHLhVAg/XUSexl5lMqSRFQuCIAi+2nR7MkxVr8NevhkEQRAEDaMhqzVUNVayBUEQBA2lZZYTBkEQBEFOCKggCIKgJQkBFQRBELQkIaCCIAiCliQEVBAEQdCShIAKgiAIWpKWE1AicryIPCEiD4nIJSIyR3bscBGZJCITRWSDZtYzCIIg6FlaTkAB1wKLqeoSwJPA4QD+zr/tgEWBDYFTRKRv02oZBEEQ9CgtJ6BU9RpVneq7dwIj/f/mwIWq+qmqPoN9In2FZtQxCIIg6HlaTkAV2B240v+PAJ7Pjr3gYUEQBMGXkLo/WNhIROQ67FMVRY5Q1X95nCOAqVS+1isl8Uu/WyIie2PfrgKYsXu1DYIgCJpBUwSUqq5b67iI7IJ9Yn6d7ONZLwCjsmgjgZeq5H8GcEYDqhoEQRA0iZZz8YnIhsBhwGaq+lF26DJgOxEZICJjgQWxjyYGQRAEX0KaYkF1wEnAAOBa/6T6naq6r6o+KiIXYZ9Ynwrsp6qfN7GeQRAEQQ8iLfT5+SAIgiCYRsu5+IIgCIIAQkAFQRAELUoIqCAIgqAlCQEVBEEQtCQhoIIgCIKWJARUEARB0JKEgAqCIAhakhBQQRAEQUsSAioIgiBoSUJABUEQBC1JCKggCIKgJQkBFQRBELQkLSmgRGSUiNwoIo+LyKMicoCHDxaRa0XkKf8d1Oy6BkEQBD1DS77NXESGAcNU9T4RGQjcC3wD2BV4S1V/KSI/BAap6mFNrGoQBEHQQ7SkBaWqL6vqff7/feBxYASwOXCORzsHE1pBEATBl5CWtKByRGQMcAuwGPCcqs6RHXtbVdu5+URkb2Bv351RVRebDlUNgiAIGkhLWlAJEZkVuBg4UFXfqzedqp6hqsup6nLAJz1WwSAIgqDHaFkBJSL9MeF0vqr+04Nf9fmpNE/1WrPqFwRBEPQsLSmgRESAs4DHVfWE7NBlwC7+fxfgX9O7bkEQBMH0oSXnoERkNeBW4GHgCw/+EXAXcBEwL/AcsLWqvtVBXhPc1RcEQRD0IlpSQDWSEFBBEAS9k5Z08QVBEARBCKggCIKgJQkBFQRBELQkIaCCIAiCliQEVBB8yRCRQSLSt9n1CIJqiMg3ReSXHcULARUEXz7eAo5udiWCoAb7A4eJSE0ZFAIq6NX4p1mk2fVoQTZsdgWCoAb9/Hf5WpFCQLU4PgA39TqJyEoi0nIPzPn3wJ6j8mLgoMLSIjJjsysR1EZEtheRz0RkRLPrMj0QkUVEZCwwHPgb8N1aCmYIqBbGL+RzwKp1xh/QQ1VZpofy7S7r+O/GTa3FdERE1qt1Q/vc01TgJWBYg8ueW0SuF5H5G5nvV5wLgP7Aus2uyHTiAWAyMB/wY+wTSmOrRQ4B1dqs5L+j8kAR+aGILFAIGwF8IiIr9kA9SifcRaSfiKzXiAJ88Duwk8nWA34BrNEdDVRE+orId0VkSxGZrZNpR4jIcl11M4qxTZ1xZwCuAT4UkTmqRJsXeAWbh9qqK3WqUnYf4AVgbex1Yw3FBe/QbH8WEZmr0eV0FhHZU0ROF5E9Gpxvf/97HfAG9jmhsngiIueKyDYicpCIzCAiN4hIqyqNHZFce6jqJOBK4K6q11pVSzdsUPom9lHAfln41tXStOIGTKgz3qrACsDgbpQ1O3B8A+t+PKDA97OwjTzs4ixsTuB2D9+rB9rwB573AOB6YHMP38rDpSTN08A36sx/UeAw646dqtc9wMrYS4QVWLeL53eMp1dg+06mfdDTrdLFsod7+lk7Efc94ADsW2fFOJsAV2fnM3MDrv/OnteTwEzA58DQBvavPll9+3jYAcCFWRwp62eN3oBDgD8DG3iZmm0bNaiMQZ7fUt5/foN9taHWNU/bnv57bE+3RQPOs29J2J0+nvzV93/u59OvLI9aFtRfMNfOUsBtmcb+7RppeiWujd6GvYy2O29IXw/4fr2an4gcIiKLVDm2NLAtJhDWEJGZ/Bpc4VFWFZETRGQWzFReBXPtDC/kM4OIDO7a6UxjiP/OiWnQ3/L93QvHU5mzYCZ8h1qefzblEcwSSlZCrfgz+O+uwHLARGxABhNWtdLOXcVC2iL7P1sWv5+I7CQid4rIzlWyHYq5LVYRkb+JyPAq8aqR+kppPygwN/YC5WeB3wHfL4mzNnA/dt++BoyvlaGIjBGRQzsod7T/Pq2qHwMfAK80cHHKvNn/5JZcCFhbREa69XYp8O9iQr+H/laWqYiMFpHdy4758fVK+sPRwK7AVcCaWfinwBUi0o/us7D/Hoi17Z1AOs9Utz6+vwRmuSb+iCkIy1bL3D0CfUVknN+LDUNEDhWRJ308+oHfv2XxhgBTRWSlLGwZYEXgElXd3oNPBnZX1amlBdaQfjdm/8cCN2EX7IYmS+UNsUFpEvDDOuJXtaCAgZhVcArwBHZjP1KII1ineLqOsk7DtIENOog3FPuQogLnVYmTNKbv+u9NwOO01aYU2A/Twn4PHAmcVsjnKKpYJsCWuOaOWTGlWjymrCgmcBT7wrFgmvyDwBYebzlsVc4CHu96b98RwLOFPFfABEo6P8UG3kVqtFsqfxjw23RemOV6ft5na7TpKdn+6cChWfmvAIf7sX5+/B0/1k7DxTT//wF/9bor8MtO9OWB2MCrwDZ1xF8PcwlN8TR3FY6P8vAlff8i39+3Rp4/9DhnA/P79RrtfXkmj/N7j3OZ77/q+7NXybMPsFAn2mE94HXPcyUPuyq7Lh/579sl5WiN/n1RtWNZfzgD2AaYw8Oez8o9HxPGjwLPeNg8dZzPJsCiNY7vhs0tK6ZcLez/z/XjW2Fuv2ewOaqT/Phe/vsfYFJJvuOxe+0/wI0e91fVrlEd5zELsEIh7AnPd8usndrlRcW7cmwW9kNP32HZ09LUqNwdwIDCzXQ58Fq9mTd6w9yOT2Pa+QzY4Di+gzSlAgobHBX77tTtmOY5NJ0fpp1OxCyTyR53F2xgnqFKni8CN1BjQPB4u3h+53nn3wY4OjueXAv/BNbKOoJi7ocxmKA+Kgvvh7ljLyuUdSEFFxI2wPfNzv8N/39ClfpehQ0Su3q8N7Nz2Amz6gZldVkF0/TvBP6AuYoVGOX5jfD9VzEhltL9HjiqUPYBwM/9/z883jbA37EvLec305veNn0xwZf339k87WlZWCr3UmxQ/gFwoh87x48N8j53MgUXE2b9vAmciCkcTwHndHDtZwPG+f+fZ3XYp47+/y1s0Bzh1/B5YIns+GrA7dl+yv9jqrj6gIOyOtyIDchpfz3sHrscOBYYXuhT40ry+yMmRLVKeQvgrp/Unti9drJf022BJT3/N4CfYJ/cUQqDMrB4qmsW1gd3t2ILRbSQpi8VN6Ji1ommfkdF0fi3/74FjAQ28/0lys6rUIYC9xfC1scUmT29vyRl9vfY/b4j8D4VYZVvu3qa2X3/V94mC3nanb1+U0rSXujl30xF+dqr2vUp1Plgz2Nodq1u9Ha9ICtjYUw4KvA9bGxWbMy4KMvvr8DOHZXbpg41KrcSBW3BL+5OnSmgkRsmVK7O9g9PjV4jzYTC/uKYe+Q3VAboxzALog9myi+JuW0UuzFPBU7w/SPKLi6woF+QHwHHAbNS0BSyi/wLzCqZGXPLKaapz+3HR2HuGSnpsL/I8ps/1cn3VwTuyY4vgg2cX/j5vU5FWKxX0pn/VKUN78MUFsWEUS5UBmKWR57PdpirdAiVATLd7CtjE/15/NWwubUNfP9bWdnPUBHMT2Ju2Pc9bMdCPX+DKRUp3zUL/VmB//r+LFm8Iz3sSN9fG1NKVvPwbVNf8f3Z/HdzLy/NYZ2c8q/RH5M1ItgA/G3MG3B4IZ4AO5AJReCnwE+z/TOxfrmv728D/D07fqCXdSs+P4etFlsri3M8pqF/3+Ne7L/3YcpFaqPBWZoZsPtj9ZLzm3ZdS46lAfYbmOXyDmYJ34qtxDwRU0hSHgM83cLY/fUJbZWO1YtlYa4vxdy2H/q2OPCuH78Y+xBqXtdJmLCfGXjXr/8cfuztLO8bsfumTxb2DQrC39M9me33y9sF+MyvlQI/zuL9CBMkKV4SkssU8t48i3MwFQW6eB8qds8n5WyC55HmKAd20FePzvLZ1sMeoqIYP4gp9/tT8QgpFaX6PuDeLL97gBU7NebXKRhGdCbTntows/HMbH9n4KSSeHsDBLIq/wAAIABJREFUE3ybUjiWuw7+A1zrF3aYH59M2457N/BdP5ab/yMK+Z4NnIu5Qd/DXD/X+bFZMe3hQ0zDP4PKoJLyuxdYzsO+R0XzGejHV8C0yWUL5a5IRfAlwbYUdrN9Hxt8rqQimN7EBNZ9vr1ARUiWav+YZbicx9mYys2VXEBpkYJi/vHngbP92O+AU/3/P7J4K1ERCEmjnpGKO2cezFJ4nbY3XO5a2KpQz9UKcRWYy4/t4eermDb7NUzY7U3FvbOiHz8JE4JJECXt8FEq7suB2ID1bUwwKTY4vthBH/6Vxx2GCWzBLLfjC/FW9XjDs7A2GiiwdaE9lcyCxqxsxZShXT3sQ9oO6Odj99HGHjcJshOwe+FyYM6S8zgTu3/WxhSDXai4YNNWtDjTOaXFP29nvwOw/j1twUpJmVOw+crTsvO/zeMv7WE3+f4Tfr0ey+rTHxtglUofVmANzHI6Duu/ycK6E7ggK/8Sj3+Y7y+Q5TGnh83l+w8X+uXDhbYZgimYs2XxFsvPHbsHpt1nhbZYHLvXL6dybxe3W/w3WYlvYmPEhGptnOUvmEfgPY97ioe/4HmsjPX3taiMH2l8PAtTBJLLeT/P7x1K+lLN+6VOwfAChYGxGZt3yKKAOrGDNEULqh8V18BPsouZtLVzsrDLsMF8Kz/2m+zYylmeM/nFWQqzwh7M4s2MWWF5x7k5y/NgzOS+DljPw64GNu1C+/TPyrgA+JPnfQgmMNU7Z7KeTsrq/z5wc0meAzCrsh9tNccZsv9rYYPB1tlNsUJJXmkF0kJZ2KhCnBkxN+lOXvfzqGizL3hHPwfz489eUtdnCm2dbvbfYisFD8csg0PK+g42mDyAabm59fITbHBLLrF9vG/MhAm2/WmrKV9e5Rqlwfks4NqsXc4qxDvC463l+2Mw7X5MIV5xUFqypD2P9fzy1XLH+fGbMCGTFJDBHr6J75euasSs849Kyr/Er81nmGvsM0zLXoCKW1iBf3g+JwHr+P9vY8rbp5QPytt52g98fz8qrjL166+Y0qGYtX9ldnwBTED/GLs/PvfwGbI472bl9aFtn18NE3hvY+7WfE54xWxMmgC8kKXbB3N97pHiV2nTGYvHqTKX5X3tM2zQH0Hba5DctL/HlKBpfdJ/3/dr/hGmPCumWH+Br6bD7rn3MEH0LGb9pL4/S6EuW3qbCjYt8TrwvUL/XNnr2qmVmPUOfDti0nerkmObkfm9e3KjAS4+D0sD+TTNIzuWtNLhwK/9/9ey4y972DZZ2LaYNp40r909zl2eX26VpW3NQp2S/30pPz6yi22U8j8PsxhWoTKndZd3vGG+v0OWbi5sAMwH5eRibDchW6P85CJq5z7ABvPTKVl+Woj3M8yddymwR3btR9VZB/X0k/z/Epg7bTzmRrwV07B3KEk7t6d5uRDeF/O9P+1b6UBDpsT4/vLel9bFBtBcAdrT42wCXFXSjs9gN/yymPX06yrn+ni1+nicPTHBkc83KRXLcGFgMHBplqYPZhFVHVAwl1Se38fALn7saWxgTsfOxZSXZIWsVJLf1pjAfKdGmYNTP/W4u1OxHhX4JGuXCzABdjKm9OyJeQOSgvZqlu9zefoa5a9K23NO29aYVfQgJjgV+L2nORr4P/9/EHBMjfw3xr0PdfTzL7J+Nqtfs5UwBfw9TAlLbvN1qCjkyd35DrCph6X79uuY8Fudiit0Jj/2FrBxB3U6zuOu7vu/xVz6Z1DnIz9t8qs7og0QL2GaWH9MS3oMMwO/09mCu7J5w03GVhWmRRJVV8t4mmqLJMZ5J1+a7HkSbG4iufSSsFqokPa3wCHZ/tG0nRvojw10h3n687El2krFxVjUdM8A9vUO/CZdfOYDc+v8HLPC3gH6e/gQKi4rwbSrGQtp38AmRJeiIsT/QTZw1VH+hemm6cZ1zgeB+bqQfhe/UefL8rnbjyXh/CTlz2kkYf5KybFrMHfGIR6n9DkvzKL8HxWNPs3ZHYBp9Yo/B+LxxwLPF/KYgllmab5NgcVKytrIz2k2CnNyhT6d53MCbQfX2crS1dHOfTE31Cy+5cpNEpo/orKi6/TsmrRbtEFF0DzaQbm5VTArlblYBd73OIopaaO9jmdiwvE6KgOuZnmmRT4f13HeR2Tl/Zu2balUXHOKLWQ4D1e0GrlhCthDVY497u3eD1MOZvG+/ffUvpi79PSS+k/z+GT5rVJPP6HyzFz+7GyaVzy10+fYyQZZFDMf38XM2G3oxJLBBl2UjbHB5Wl8cUAH8TsttbO0AzCXzIBC+MHY3Eoyh/9KyeIRKgsckjaxAGbBDKe9f/5X3jGOx33c3ah3u4d560x3L6ZBKebCSB227pU32OIIbcB1ThO03Xo4k4qrarcsbApwUI00CrxZEn4mZoUOxNyPtawLxayfp6jMtdyPKVVr44qDx+2DDbppHvRiTMClRTvpOnTnIfK06mo52roiT+7utapS3p6YW6uvbyM9XKjyQDUVwVFzMM/aU30/LQLYHFgga//DszQ/wpSLtCL03xQemcHGt6XqOLe0COBwzDpPy79Pxr0tVFb9pW35HmjjOShxhfqx/cnmL7Pwg3EvFDaHOoXKysX1MTfkPZibrtPTDDXqeQodLMooTVtnAUOBX/pNdDWmBd6Orzpr5Y1uCKgaeeaT0yOxhRbrV4k7utZAlsVbx9v3VkpcT52sX5qs7pSgwwbUdF754oQ1OpHHMGDeBrTxXI24QahMZA/NwmpeD2yJervnkjBN8P/qLDetgPsBNj+n+AIFCvNIHv9izJWelv8v7OH5INdlYY1ZGvNl+2lQXa67bdzIDZvn6cgF/F/aCqhk9eYr/NqsosXm8M7BrVBv55rl1Ci/D7Bqtj+Qkrk6TEgotkCix9+CUWfdh1B51iw9J/d13HWHCftPfSt9nGa61rfOk/oAsxLSShnB3FyT6eA5pGZv9IyASs9pPI9NEN5PthS0G/meRYn7rwv5DPZ8Sl0+NdKllU1pQE3bgs2+jt1oi/5kC2umY7mC+f9n9+v6DJU5mVlK4v8E898vRTbn59fiUaq4crpZx3Yuw96wUbEAP2p2Xeqo67zdvZ97sG5/Lgp2D1fgw2bXT1WnLU+uiYjMp6qTS8L3wZaF7qSqV7dP2XxEZIKqLtcD+Q7Anmc6yINGq+pz3cxzZcxCHaSqn3cjH8EmUL+hqnW/usnP6RNsYD0Rmzv5Nmaaf9DV+nzVkcrXbdMbNdq9IshfGJte2fO6qg7x8JmAz1X1s+lS2V6CiFyErZQ7uNl16a2IyOXAJsX+KPZpnc9Utae+jlA3dQmomhmIrIs9KzCkw8hNoKcElOf9HczvDKYVf9QT5XQFEbkAm2d5tZPphqnqy9n+AmpvHQ4agIj0LVM+XBBdjT2ftZqq3j7dKxd8pfD36PUvKtYikt4asmtTKpbXpbsCCkBExqnqxAbUp+H0sIBaGXvDAmVacRB0BrEPDK6qqtc3uy5B0Ao05HtQrSqcpgMPYE+bb93sigS9H1X9JIRTEFRoxKvjv7KofXqg5icegiAIgq4RX9QNgiAIWpIQUEEQBEFLEgIqCIIgaElCQAVBEAQtSQioIAiCoCVpOQElIseLyBMi8pCIXCIic2THDheRSSIyUUQ2aGY9gyAIgp6l5QQU9uLVxVR1Ceyt5YcDiMh47INli2KflDgle4VMEARB8CWj5QSUql6jqlN9907sbeFgr9K/UFU/VdVnsG+hrNCMOgZBEAQ9T8sJqAK7Y59sBnvR5vPZsRc8rB0isreITBCRCdhnlIMgCIJeRlPeJCEi12FfnSxyRHr7togcgX1g7PyUrCR+6YsEVfUM7Au1QRAEQS+lKQJKVdetdVxEdgE2BdbRyttsXwBGZdFGYp+gD4IgCL6EtJyLT0Q2BA4DNit8vuIyYDsRGSAiY4EFgbubUccgCIKg52nFl8WeBAwArrXv7nGnqu6rqo/6R8oew1x/+3Xno35BEARBa9OQ70EFQRAEQaNpORdfEARBEEAIqCAIgqBFCQEVBEEQtCQhoIIgCIKWJARUEARB0JKEgAqCIAhakhBQQRAEQUsSAioIgiBoSUJABUEQBC1JCKggCIKgJQkBFQRBELQkIaCCIAiClqQV32ZeExGZArwPfA5MVdXlmlujIAiCoCfodQLKWUtV32h2JYIgCIKeI1x8QRAEQUvSGwWUAteIyL0isndZBBHZW0Qm+PbIdK5fEARB0AB63QcLRWS4qr4kIkOAa4H9VfWWGvEnxDxVEARB76PXWVCq+pL/vgZcAqzQ3BoFQRAEPUGvElAiMouIDEz/gfWBcOEFQdApROQsERna7HoEteltq/iGApeICFjdL1DVq5pbpSAIeiFrASOBV5tdkaA6vUpAqepkYMlm1yMIgl7PTMCMza5EUJte5eILpj8iMl5E5mp2PYKgwczkW9DChIAKOuJR4PRmVyKoDxEZJSJxX3fMjDRZQInIt+NagYisLCKl1mw0jsglIrJos+vR4kiXE4rMLSKzN7IyvRURGSciq/9/e2cebkdV5e33RxIyAUkQZJ4FJMgokzOCfqCigC0ttiCNqOgnjt2igmMr3aK0s2IjSqOCqECLgAOgaAsiEAgCAZkDBMKYkEASMpDVf6y9UvvUrXPuuUNyb3L3+zznqfFU7dq195r2UCv5Ng8A71vJ91itSUphLEMY4pM0CvgusO1QpWEY8RtgYtOBEa+ggMOANw51IoY5Cwbw3/uA3zUdkPTONJ6tT0jaVtIOA0jTUPEG4Oj+/lnS5C5P3b6/9xghhGJapR6UpNGSYljMemk54trUJZmk3dL6JGAMMKfp3KKgnLEDvUDK9M0GIzGDgaTPSfrSIF3umQH8dyLwgjbHfgC8t5uLJKUUguVK4I4BpGlQkLRJH/8yGa+Mfb3PqyRtDMzt8i/rd3ndF2bra61J4SZJ75W0Y5vD42vLVcU/ANem9VBQHcuQpK7e5apE0hhJLxngZbZLyy2A+63NjBFrTIEcIANWUInhNK7iU8DHB3IBpf78wNKGY1v3YRzJ2h2OrdvlNe4Bvp7Wn+3yP/0ihX07CoaUNw9L2rIPl55E57xoxx+Bt/d2kqR/T6u93iN5Y7dnnugvgT/3I22DiqQ9snI3EE6nffkfKgVlAJK+S6Wg2nrFqQw+qUS3N0kGzSEDSmlnjgD+0uH+b5J0QZtj8RyL03IT4JF21xqRCkrS2ZLyCt8foZFfL7rrTxjIdQZw/20lLantHox3G9b++HSf5ZJenfbdh8/k0Q2DoaAA9k3LR1N6BtS7UNIESSdm7y84DDi8zX/CSw7Ld72m89rQLw8qsU66f6ehIZ9My2VdXG9KWu6alq8EXlo/SdJnJV0jaYqkwTLk8utPkfTTbNcVVNb1QFneZn8oplXdBrUoLd+HGytky5iIIK+3UTfuB77ch/ucB1ycXbejckv6ry9DjnqTLUcDb25zLPJ+VFpOoEOEZkQqKOAdwP/PtlsqnqS3S/qCpK9L+odOF5K0K/DBtNnrnH+SdpG0TS/nKIUMD8327SXp7jbtEC8BxkjKhZ/S/wYixKMCh+IV8KLs+Ci6Y4WCkrRrrd2pLx0oom3lybR8PDU2N5Iq/DoN+7eRZMABwKnAVg1/79F4LWkvYFYtLVPq53VgMv6eJkjao0O6t0/pywlh1ShUa/nQjSIJxfq2dK+6gRMcCOyHGwXnSepohKWy2yPPO7A3cGT671p4frbkvaTn9eF6SIpnG1fbH55Iowcl6R2Sjk3rYyS9q1P5anPvQ/NQv6RjJH0vbS7OTo005uX/GeD76X/jqN75FvStnfzx2vZySZ2U/ieoRUkkPT+V9yaWpnMk6Z+6SZCkDSRNB3ZKuyZmy7Zt3CNVQUFr4axX6BcCWwNbAr01xn8Z+M+0/rUu7nszcGkv50QB+6WknZPi2S79WsIW8l5hb0mbW3S4Vn+ICp73sFmYrc/L0rF+Bws7t+D+BpyVbfcwANoo4TnAREln4B5O0KRcgv8FpktaT63tEfemZYQo3yPp4HTvSGuTIH5eOmcC7nFA3xXU2niFvDHzRuu8o2FfRwUF7EGlZOqCeZ0GhReCMYTQknTuujUrfn5ajsHz/ao29w+Oxz8o2i0T0n2FC20Be0j6pKTr0jlPSHpR/Y+SxmfrE1V1QAgDcL3s+Nq4R/U62of4zga+k9ZfiSuLoyW9rg/P80vg09n2u/A8gVaDrklBAbwzla9FwEHZ/t5CzveHcgWavpXXrh0YYGrtWqNxg+T6Nuc/l5YbAOc0KPEmj+1xYHc8P8Dr8hTca1/YcD7QTwUlaSNJJyVrYQtJp0s6TavX3FZ5rHuFhSbpPDwj18EF8yaSjpf0oTbXabLQN08Voh29xZNzi/FW4CbcbYeeYYs/UQnsrjtpdLCOckLhvD4TcM9mgiF/xifxbrN1msIsEU54FvcoVihAea+eufJG+5dKisoTFt67a9faQe07p+yCV8xvAX9vOB5W5Yl4V9c8bZOShZiHvSI/PgD8W1rvi4KaRKvi+0Ob83aGFRZqeMVxnwPb/Gcy3oZ0ED0NrknpemPq+6jyNZTbfNxT2kjSicCratfaQ9KnJV3eJh07tdnfgqTdkrwID3881TN+Cfgw7l0FLYaipGdpFWzHAdemOr0tXrbyvI7n3YWsF5+k19aSdl9aRpk8C/h1N8+UkYesnsrW8/oyGVcCUyQdpdZPB0X6coOzRzmT9woM5bAllUKbmY6/StKb0r4wrnZVzx6wi2vboQxvrt8zEXU68rduUHaSb1F+d8KN+/cz2AoKOAd4CM/Ay4Dfp+UP+3m9oSJ6MW2d7XsrcAhusU7E2xq+QdVAXycK8iwqb+VB4BRJm0V4IgncKKCNL0TSC1T1jrkm/aDVwtlO0lbpevW4cVcxdXl46XpJ+6hzCDCulwu2tYG3pfV6pVlR8CUdIGlDUsNw2ndPWl2SBMlYPK+eybyvUH7PB64mhTzw97GYKsQWbA7MUtYjLSPKdzvDqcmqjHRMwcvB1ZkhExZ6LrT76kG1WMxq7jkXIa5RVELgiLQ8r+fpgFvk8/E8eq2km7Jj4X2dJumAtB7pGFVbgguPz+Dhz7DG/5odPxJ4TZt0RHulNXhtSHqjpNNxo+sbuOcHnjd5Xj6Xzo/82bx2qboSjm7Ky4FNgbto9ZCinm6f7d8Gl1u55xzedY9ogKT3x3mSXizpCElHZv8NcgU1L51/K/Af2f4NcAXwQlxu5oPh35qWefvm6HSdvI7fBPwo286P3YO3A12Uts9JXuh12b5gRacjeceMmJ+wnWwIOTYzzmuQRe2I0PhHqRTdoCuo0WZ2tpl9G5hnZueb2WWsgkZHSQdLukPeHvOJAV4uemBt11DI1km/jWnoxZYRFf0RWr2pPXBhemHa/hyVpbJuEt7RG+7l6f4/w3vHLMaFYN1VX4oX3pl4Bd6XSgEsALZVdwNBX5yWx+PtOC2hQVVtNE0hux3w7uHE8XgWYJQ8RLQebrSclKUPKsG7FC8rS6jCBRGCizIUnVgeSFbiONxLi3fxY+CnVArsQ8nq3zEJx7WpyvdBKZ11a/kFwO21ffHMh1GFIuO9npyWm+CV6gkyoZqMhk7tJT0UFK6I62yclmNoCDUq62EoaW95SPQCPI9C2Owmaf9UrkLQfRC3WCMtUHnreW/E5VQC/aG0nJ0dX6HM5B8O3VRSdCqphxf3ljQqq1+/ohpa8AqqtuCHaLXEoxNKGBe5l63sPz3ShL+vx2hVUJGPm2bruWcZ7cgR0qw/xzbAt6ne9zeBn+NlcF1J4yRFyDsXuKE4d8YV/3nAw3i+34JHPeodZyIS0RIZkPQ+YJGkiyX9Nl1zl+yUSPNYXPl9kFa2SMfqhkPuQW2Yr4eBIGn3LJpRlwsbAEtV9WgNJb59WtZl6/1pGV7joLdB5Rl6fLa+UiefTYLqO3gceSrewDu1878auQcfcR8zoU/Crfo8/eFBbU7Vg2pcEoKTJB2drJmId88CxmYud1SOVyZh/9G0fSduRUyX9Ho8pPBnvC0l/nufmS2lZ/tRffs4POYNrrS+h4f8eiCP0c+U9AsqoRQhlL8ptdFIOptKgY2jtT1hOd6gCh4yG5eU02Np3yhcAEU47dWkMibp5dl1DsSFxCKqyhKzeUS+nRZJxwXsM3hBDqvrB8CN2TXfixsJce8t6Blq+EBaPoUr0B2Ar5KEehJU46h6wUU+1S3JTfB3+EVarf730xz/D09gPXoqqJ1q541K912IW6pNbWFPSro1lb/rcE8k0pl3wb8Sz9fcEp+dnbuQnr0oz8CFVAiqrdMyv26uDPbEPa0L5eHQupF6HZ6fTd3k620XE/H22Vywxv3HK7UTUgnI/P3m7aSb4nVlvKTXpDyNfHwdnl/LqJ5xS6oISS7kc/45LUOJ5u95LPALqnzOQ3n1HpVb4vke77hJBi/D60a9M9XH0vIQqnDeLqraVw+Sh+7HUSmBnKhb9bD7YoDkYeVKfQmVcfZbYIa8s8WGrX9f0S4ZeRP/uVPSyXh9eYKq/akeBh50D+rw0Ipm9jdY0Qg5oHE3XbAPcLeZ3WtmS3Br5NBe/tPEOLyxPmc0XrCDdfGM3jrbdx4uBI/CXetc2DyMC9AIRdTjslGBbkjLzWjtLHEulbB4MC3rCqlu+eyIv/i1gOmxU1njccZbcSX4FrxhcgGV9TUFOFjSLngDfe7N5CO8cyv6lHQ8r8iWrhXW725UZSwfY7Mebj0vxa1QqPJtHB66mJG2d8G9yXvxShsCZBRZV9oG3pCtX5KWIVQm4gbKRFq/JzYxPc8sKusO4ABJednYEH83c/E2hN3l7WDbAqjWqJ4MlB2plG3Oi2vbG6brhoJqnAIGVzxhnMVsBBPoOUbsoto9D0iW7QZ4HtS5LaVhY+An+HsGF5pj0zKMjijjETa8mvZT9+yi1sb0v9BTOU7Bn/u2bF+0E76Uqp0wBODYzKgM5fY03nX+CVzYXo6HpDeg6v25OZ7H4b2+IrvfuGwZMuKLwL+k9f0lHU/VPR883/MQZIQ5D6Bnd+vleDkOA6GJ0cD59MzLdr1/8wjIl1LaZzacF8+7s6SD5G1Yh1E5HLcAL8vOnwjMS7J+PG7U3Q18JTvnDiolPFnSa4DXAl9I+z6Ne7ob4PXwKDNbRCtte4b2S0GZ2WMx8jdVTMxsiZn9tfM/B8xmVMIbXJD0aCCX9B5J0yRNozmOOoHW8MBxafmzbN8kWoXDDKp4eXhDB1OFnGbjlWOntF6PmQf3tNn/kuw/EWaoW+P1hv5tgSfSu8gF03a0Ph+0WnJvooq135mWC6kaRcNzmExVqaHVm3oSD79ERZ2FC8JO0yLdS2VtnYY3Pp+EDyqOsNZ4vALflban4uOt7kxpDI9lgpndgXeAgNaKBa0KKjyM8PjWolK8uRc2ARfCi6naER4AzsQt5GBO8nDn4u97Ol65o0fh1wEkXSUpLN1onxsN3GBmAo4hG5og7579bqpQ5tr0NKTAe1f9kcoICu9zFj0bvLelVUHthE89lSuoMIRehIexlqZn+bSZnY7PfnBR2j+aSnDGzBa58q4r3GB7vPMRwDQ8fFoXTBvg7z6Mk2uoQpLjYEWobZ1077F4aOloXNndgIc698frTryPqbhyy8Ovc6jKUp7+cZJOxctVdGL5GZUs+BQeqdg6+88e6dm+hZeTeK5LUxpyRTQmbcez5tyXrc/GjbAmT6hO7rVOAV7f8L/LqAwr8LFY++B1Kzdot264fuRTXaaAK6iQn1OB/07rYWSEUXOMmT1qZuek/Xl9qreJrWAwuplfK6ldoRxsmnqH9GiINbMzzGwvM9uL5pDLBDJvwMyic8d+2Tnz8UK/L16o7qHyFqKC/jeV9RGdJF6HW+XtrILZte17s/Wo8LekZd2DuhLv0v4g3uC6MdXz5Qrq7bgFBoCkK/EutOBtN1AppuiIkVei6HBwMZWyhNZOBaG4wgt8BBeEUZHz3ktnpOV4qkq4HXCimS3HK9PUZH2dmq6T5wt45ViE5+tXccsYKsV7Xe383IN9CDgBt6Sn4xV/ErhhlZ0XPeDqCoqUpvtxJR2NyHNpHQ8V7TALJB2DK80YYHkMVVkNwTSNVoF+Et47cD4eXmnXuWNZuneEzUbjxsWbaZ5lo97OtQHuUU9L2/HObjOz56hCUI8DmNl+ZnZBu+lo2nBjbfvw7H730Fqu8nQtNLNH8PdwAlWdjGe4F1dQT1LVxx/hlvoCKo84rztNxmIeGcibKQ7Ae3UCPGtmMrPcy27yYqJt8xJcqU1O3mJ4d7kMWht/t3tTvatYfjI7L4zB3CAHV8DBdNzgm0JlKO+Z3fOk7NzFeNmK556dpS8PU0f47ZvZvn3xMH6TvnjOzH6Ey5XTqRyGmbVnaekJaWb/mFa/HVG4JgZDQX0cuEzSW+oH5FNeXD0I9whm0erObo6H1rpGPkh0EVUFiTacu7LTnoxtM7vOzJbhAqtTN/rf4VbBO/BC9Vyb82bTOtg1/yLwclwwfDFt1xXUOLzybEU1Bil6teWCaYeU/ijw+6flbXhnDUi9l6jmBssFdR6i2j9bP4mqgtQnd3wCF+IR3rudJJDN7HhcgW2Ch41I+x/Lzj0YVzovxz2Cz1CNNQJ/J6FEf2Zm4Sncl661jNaeZvtk67OoPLuoQE3l5od4aGJXKgUVVuNa+Pt4hmpqlgfSM9cr2H24RwyVh3k4lYEVgvUOYGP5eBCo3lcoqPpg3lfgRtFXcAPgndmxGWa2kGYFtWdte11coH0e+HdSqDRTQAuBBWbWzhs+tc3+nIgU/Jyq7ST4DA2GJVW7TBgOeZ0MBTUDV1Bz6Nm5YAFVe2hvCiqf17A+XVUYIHVvtB0RKr8VT/8/495Uk4LKO76sj48DfANeZsIoe4qqfn0MrzehOPJrPYqHwzfAja43ZcdENk6RystehBtL61KFNreletYtgAvMLB9W82ttO0flAAASWElEQVTcOG3SFyE37qvtzw3xKbSZDLbNNbs72A3JZTsE+Kakk+UjsI+VdBtu7Z/T+Qp94npg+9TLbG28u+uv+niNPfCX+hyAmR2elvnYgBfQs+deVNaYpDSP369tZrPxQj8ZV1Dtpll5xMxmUL2wlqlNzGxOsmKhKozRuLipmS1PgiQKf7SvhGC6Bi/wS6i8JvA2rpelrxJvg3tQ86kK1hhaC3QQHsCrzewrVJ0k6sJrLl7on5fu/T+0CqEI4U1L56yIr5vZDbQO3sXMFphZ3m41hypPcyH8HarQTT3M93S61tO0ehHLcWsy2kC+nx2LOcyi4sU7sHS9JVQCLKzbMXhYBTx0+WZcQYWwrLN3StdzuMDdudY+Mx/3kqItcCawk5ldZWbHmtn/0OqhxjnQ+g7PwL3x/ejJL1JY/mQ8XJizkM4DvG+javPMy8GPceFH+v+rcSV6bnbOcjO7k+b2w5Z2mfTegkm4ATIKf2/xLnJyBRX5808pHeDTKMV6O4EJVTfvbud83Ac4wswepvKOcyMvD5OPoTISx5nZhWb2BzPb1sxiYOxTZENWkkcZyitXUE/h9W6HtH4V1fswqs4aY6nKxTLcYJtKZQjvR5VvG9Iz9Bg06Ysw5E6hGnT/NWqDtVOkpNtrdnewW8zsGtzN/SSege/HX8KOZtY0eLO/91mGu/2/w63unydh3xe2whv62mXYAjN7ip69b8Lq+RiuKFcIiNQeAdXLmkWzhQiVZREFLQ9b1ntB3g9cYWbRrTuvkIvSvaNCR8PxzaTYPK3jMW5Jz4WZzTSzP5rZJKp2p3+ltdPHe4FNzOzj+BicUBZRceoKKiywZ/H2oa/QXL4WJSVct7h+2nBuzlwqJbdCcCSFPSfW0+4YA/Qg7iVAZckfDkw0s+fM7Jn0vw/SGpJYRNXDLCraWnh+LiF5UJnHsT6VAIjQ1q60bz/Ih0fMwfM9D0kuxi3mj+EG3ovMrN7+WM/b8CQtS8sjeHnbisrTjnzOQ0f1srqQ9sr1wHSNELp5PbmbyiB9LJWxBbR6K2uldD5L1V4RtAtRBrfg7UX74PlWHwz/DFW9epCqVynpnq+lUkzhGecDn+NdN3lQ9fzI0zmWqt0s6uPWVHUmb+MZY2aX4EZwu68NzKPK3ydS2vOB1MFaKV1vBq4xs7lmtg6woZldhY+t2jL9NxTmeLynb30GllPwPIkIUxN5mYuhDgsifWYWQ2p+S/eziXScSmrACip1u/4S/jKuTr/FwJUdtGa/MbNfm9kOZradmZ3S+z96EA2F7XrQhLL5Lq2W9ZR0/4vNbB+aFVy8lFm140fhBWMuVXgojufTibS8rNSoGPHtjag6Z4A3xOc96CI2HoVrSc0CbRSWyeo7g1o4ycz+K1lumI9zC68uKkhdQYUhsjA7FypBEOG6xrCJmV1O89QqUbGWUXV86C30EuGlsWb2uXT9mWZ2mpn9MgnHOvn72hJX3D+hUvI7pXNyDyqYSGWw3IJb6tCzvTHIB30/jXvBH8n25UbLrDahtmhfiDKxwlAzs8m4oniEKpR5CC6Mz0zbucCtl+W2CipZ+0upjKU8Ly/K3v2T2X8aBZ6ZHYu3wW1ElVf19rJvUHVe+nl6rrwtJWcB7mlca2Z/T8ZLPe8iXTfh5SM6QlyBK79XUL3z/Nl2Ivs0jJmNx2VdEAZXLleW4gryl9m+Men/92TGZc7X8fblpem8elnP83IclVJZMeuDmYVSW2RmD6b1KLMT0juKenxkWk7Dx/mNyu6xI609KmP2lJlmFkZHS/6at9ldlhntvdFRQQ3GuKV7cHf9QDObnrokfhXvPHGImd3W+e+rnA1xYf0TWjM/WAZgZpfS2g283m28aSqjXEFFfPycFAZF0haZcPw8MNXMfiAphEbbl2VVe01sh7AM7qPqSEB27EDc22w7pT09QyVtrdhkocdAvHz/9Wk7F3bnUo3LejJLdztehbd5rRhnYWa/lfROPAwVwqW30Msy/Lm7/X4StHoRT6bnPFqtU1xtQeZBZUygUlDz0/rDuOKJdoHT0j3+XhM6IShOxr2vPWlte9mYBsxsYcrvyIt6JOHzuPUdHV5uNjPLOjTloaK/UHWaAS9D7TyoIATQIlyJnGJmeVjwydr59+NWe34fzOxGAEmz8baWzWvHP5zGC0anjo1p/WLw5VSdFBYkwVkPaUYHkjxdj2ZeyWXAhcmjvirrPr/CWzGzOZLqYc/F2fF4D7kC2cTMpiaZ+L+4Edc05Vb+vB8BnxMR71FZJy8746k846YhA01EWDuuEwbkHCrFPDel5U5J/0kamG9mM1KZi7I+nd7nFf1ch7TNoDLmGhkMBbWrebsGsEKAfUTS34E/STrKzBq/qDpEPB+YljT8tQ3H232q4CZau7Q3fTYhD/G9BG9vynsLLsjWm6asGYhH+1E8TBeW9ZJ0n3bzveXkHQ7m0Cog+42Z5YMz76W1B1LT+Yuoxrrk+1e0T0laKwutteO5Lp+75TbZ/fLr1y3wugcVU+pEWO3ptD7TzL4v/5TEVDOr9zIkOz8QLqQfw3ulPUE1e0U7xuFtGS2WtpndBSDpW3i4LZ5pZlrmHs4MqvYu6BziC76Jj0F81sw+3HC8RUGZ2dbySVDbzdMWgv2jDcdy7/0cvK0rOizdSKagmi5sZrtl688mIft0tu+g2l/iOvVZRmbgYyFj6EqTJ597RRHONDw6sHfD+Y2k6McHGg7dhncouhQPqd6d9rfz1nOWUaU9DMV4z3Op5NeZ2X/q5eCElAbMrN75ps7uJMOo6aCZ9ZgAuM6AFVSunGr7/0s+99q5NE/nMlTcTHsrZh7tv9R6Aq0j3MODyq21p/HCPc/MptM9V9Ozgb9PpELwnKS6B9UNce6+tJkJoQ3jcUGRjy9pVxifpZp1vd90oZygu+8h1Wnn2eUVfyJuvefKZl9cEIVgega3MGcCJKu8nXKC1jEsSyOsmoToH8ysaexJ8Bg+pqptyNPM7qYabAudOwcEvSooM/tDSmO7UHmPkHKbkFYwP53TFIqekI4tB5D0R9xzOgzvYbYbLrQ7jcHL+SE9lU+ezqXp2e6o7b+Dah5KqBTUDdm+3IPqyycyumFChEvlkyovNrNlaQaIbr4w/Ru8lyz0bGOdT1UW8zJ3KS6b5gGY2XfoEuvQfbxbVurURGZ2haRX9H7mqsPMOn0GfRvazLsXCiDbFbHk3AubCZzapRDNr/1ySc8xOJ1WQgh0GwOGqrA+0Ze0J6VzP63CqE/PvpLoVlDlhIJq+WSKmV2apms5BbjLzK6sHc/DiBH6vJvOIdWc/Ds9uWJ9nGqsVyNm1uevB6Qw32dpbT+pcym9hKIymrztSWbWNM6pE5+gmreyTsvMKGb2agBJp6fnmYEbVl29dzM7rotzuvmC7QnAt2reet4LcVAiEdn1FmXreTSm245iR1C1W4fsfxQ4wcyWyz9vcmYuA9J626/nrmxWqoKCFVbHakFN2PRGjxBfKjRfaDi3G+6i/bQ2faE/HtRG0LV30htDraD2ogp79IUYs9UUYgrLsisP0My+1/tZK/guHj5ej6wx3cxWWtTBzP6tl+M/6XQ8YyMavobaD+WEmd1M+887XEhrt+34T5S1SEN/DJN+k7zbuocbCmp7hhnJ0w6vb3Tat5z0DazUHFH/nM2QstIV1BpMfz/d3Y79GBwPqj8KqrEhvh+cQ/upnFYJ5mOq+kOnzht/BWZ3CqX1FzO7iA5TvQxnrNZxZyXe51laB7TXibK+ShVUG6L+dRNKHUoGW36tFIqC6j+dPkjYZyyNURoE+qOgnmAQPB8zO2qg1xhC3k2br/Oa2a9pna+tMIxInlQ3IblVQRgxfal/Q0HThNLDjqKg+s83GJyQ3GATVmRfKsi7qL7LMyIxH2x+Ta8nFgodSG1iB6bOMcOZoqDWZMzspN7PGhIi7NK1gkohlG6ndSkUCh3oxxCHoaDpY6TDjkGZ6qgwrIhu0X3pxVcoFEYew94oLQpqzSMGSA6XmHyhUBieDIdOJR0pIb41jDSe4Vy6H4dTKBRGHrvTflLYYcNq40FJ+pykhyTdlH6v7/1fIxMze7u1maCzUCgUzOxv5p89Gdasbh7U18zstKFORKFQKBRWPquNB1UoFAqFkcXqpqBOkHSzpB9mn8nugaT3SJomaRqtk3EWCoVCYTVBgzP92uAg6Qqap905GZ9uJmY8+AL+rZV3rsLkFQqFQmEVMqwUVLdI2hq4pJvviRQKhUJh9WS1CfFJ2iTbPBy4dajSUigUCoWVz+rUi+/LknbHQ3wzgeOHNjmFQqFQWJmsliG+gSLpVlaDaT6GiA3o21d1Rxolf9pT8qYzJX/a84SZHVzfuTp5UIPJs2a211AnYjgiaVrJm/aU/GlPyZvOlPzpO6tNG1ShUCgURhZFQRUKhUJhWDJSFdQZQ52AYUzJm86U/GlPyZvOlPzpIyOyk0ShUCgUhj8j1YMqFAqFwjCnKKhCoVAoDEtGlIKSdLCkOyTdLekTQ52eoUDSFpKulHS7pBmSPpT2ry/pckl3peWUtF+Svpny7GZJew7tE6x8JI2SNF3SJWl7G0nXprz5maS10/6xafvudHzroUz3ykbSZEnnS/p7Kj8vKeWmQtJHUp26VdJPJY0rZWdgjBgFJWkU8B3gdcBU4G2Spg5tqoaEZcC/mNlOwH7A+1M+fAL4vZltD/w+bYPn1/bp9x7g9FWf5FXOh4Dbs+1T8W+RbQ/MBY5L+48D5prZC4CvpfPWZL4B/NbMXgjshudRKTeApM2ADwJ7pTlCRwFHUsrOgBgxCgrYB7jbzO41syXAecChQ5ymVY6ZzTazG9P607iQ2QzPi7PTaWcDh6X1Q4EfmfNXYHJtXsQ1CkmbA28AzkzbAg4Azk+n1PMm8ux84MB0/hqHpPWAVwI/ADCzJWb2FKXc5IwGxksaDUwAZlPKzoAYSQpqM+DBbHtW2jdiSWGFPYBrgY3MbDa4EgOen04bafn2deBEYHnafh7wlJktS9v586/Im3R8Xjp/TWRb4HHgrBT+PFPSREq5AcDMHgJOAx7AFdM84AZK2RkQI0lBNVknI7aPvaR1gAuAD5vZ/E6nNuxbI/NN0iHAY2Z2Q7674VTr4tiaxmhgT+B0M9sDWEAVzmtiJOUNqe3tUGAbYFNgIh7mrDMSy06/GUkKahawRba9OfDwEKVlSJE0BldO55jZhWn3oxGCScvH0v6RlG8vA94kaSYeAj4A96gmp7ANtD7/irxJxycBc1Zlglchs4BZZnZt2j4fV1il3DivAe4zs8fNbClwIfBSStkZECNJQV0PbJ961ayNN2D+aojTtMpJce4fALeb2VezQ78CjknrxwAXZfvfkXpl7QfMi5DOmoaZfdLMNjezrfHy8QczeztwJfCWdFo9byLP3pLOXyOtYDN7BHhQ0o5p14HAbZRyEzwA7CdpQqpjkT8jvuwMhBE1k4Sk1+MW8Sjgh2Z2yhAnaZUj6eXAn4FbqNpZTsLboX4ObIlXtiPMbE6qbN8GDgYWAsea2bRVnvBVjKT9gX81s0MkbYt7VOsD04GjzGyxpHHAj/F2vDnAkWZ271CleWUj/x7bmcDawL3AsbiRW8oNIOnzwFvxnrLTgXfhbU0jvuz0lxGloAqFQqGw+jCSQnyFQqFQWI0oCqpQKBQKw5KioAqFQqEwLCkKqlAoFArDkqKgCoVCoTAsKQqqUBiGSNpS0jNpkuNCYURSFFShMEyQNFPSawDM7AEzW8fMnhvqdBUKQ0VRUIVCoVAYlhQFVSgMAyT9GJ+N4eIU2jtRksU8bpL+KOmLkv6Sjl8s6XmSzpE0X9L1+UfvJL0wfUBwjvwjnf84NE9WKPSfoqAKhWGAmR2NTxX0RjNbB58+qM6RwNH49DnbAdcAZ+HT6NwOfBYgfQbjcuBc/PMXbwO+K2nnlfwYhcKgUhRUobD6cJaZ3WNm84DfAPeY2RXpe0K/wOd1AzgEmGlmZ5nZsvSByguoJi0tFFYLRvd+SqFQGCY8mq0vatheJ61vBewr6ans+Gh8ctJCYbWhKKhCYfgwWDM3Pwj8ycxeO0jXKxSGhBLiKxSGD4/in1YfKJcAO0g6WtKY9Ntb0k6DcO1CYZVRFFShMHz4D+BTKTTX7/YiM3sa+H94p4qHgUeAU4Gxg5HIQmFVUb4HVSgUCoVhSfGgCoVCoTAsKQqqUCgUCsOSoqAKhUKhMCwpCqpQKBQKw5KioAqFQqEwLCkKqlAoFArDkqKgCoVCoTAsKQqqUCgUCsOS/wN12xiWC/qiXQAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -135,7 +137,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -155,7 +157,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -176,7 +178,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEdCAYAAADEuPqOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO29ffAdVZnv+/kO8qIJlwQ4xghYEIfyGA0ih5eJb8VFQQyECFcc9F6HnAIpHJlx5jg1E8ZzPYzlFEiV1pkZEUWkYDgOwmUYCcKpoIxoTYlIUCCJKQQiBZHIiwaGBBgEnvvHWju/3v3r3bu7d/fu3vv3fKq69l7dq9d+9nevvVavt2fJzHAcx3GcOvi9tg1wHMdxpgevVBzHcZza8ErFcRzHqQ2vVBzHcZza8ErFcRzHqQ2vVBzHcZza8ErFcRzHqQ2vVBzHcZza8Eqlg0iaJ+kqSV+X9H+3bc80IWmJpG9Iur5tW6YRSR+M+fZGSSe0bc80IenNkr4q6XpJn2jbnkF4pdISkj4h6SuJ8OclXR2DpwHXm9nHgVNaMXCCydPWzLaY2VntWTf5DNH32zHfrgb+sCUTJ5Yh2m42s3OBDwNHtmXjMLxSaY+rgJWSFkg6GTgJOCdeOxB4NL5/uQ3jJpw8bZ3RKaLvfwcuGbtlk0+utpJOAf4NuK0l+4byqrYNmGYkHQY8a2a/TF8zs+ckXQP8LfAB4Hgzez5e3kqoWO7BK/5MRtDWKUBVfSUJuAj432b203HaPCmMknfNbC2wVtLNwD+Ny+YyeKXSLK8G/pekVVkZCLgC2AysMrOHEudvAL4s6STgpjHYOYlU0lbSfoQ/7NslnW9mF47H3Imjat79E+B9wD6Sft/MvjoGWyeNqnn3WELX+J7ALeMwtApeqdSEpP8HWJNxaTFwLXB0xrXPAk+S+h3MbCfwX+u2cVKpWdvfAOfWbeMkU7O+fw/8fd02Tio1a3s7cHu9FjaAmfnR0AG8gdCF9c6Ma58mtEiOBX7Qtq2Tdri2ru+kHtOurbdUmuVNwB+b2Y+SJyUdR2iJLDezZyX9H5ION7N7WrFyMnFtm8X1bY6p1laxdnTGhKQ3EJqwJ5nZ5nhuNXCsma1uz7LJx7VtFte3OaZJW69UHMdxnNrw6aqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49RGa5WKpCskPSFp44DrkvT3kh6UdJ+kI8Zto+M4jlOONlsqVwIn5lz/AHBoPM4BLh2DTY7jOM4ItFapmNkPgd/mRFkF/KMFfgwskLR4PNY5juM4VejymMoBwKOJ8NZ4bhaSzpG0Ph6Z3WmJuPMlLZc0v0Zbp5Yy2jrlcX2bw7Vthy5XKso4Z1kRzewyMzvSzI4EXhiYYKhIfg7cCvzcK5bhFNXWqYbr2xyubTu8qm0DctgKHJQIHwg8NmKay4CFQK8yOVrS88AGM9sxYtqO4zhzni63VNYCfxRngf0B8IyZbRsxzQ3AdmAH8DRwFd5qcRzHqY3WWiqSrgGOBfaXtBX4H8DuAGb2VeAWYAXwIPAc8F9H/Uwz2yFpKaHF8mrgRmZaLcskbYjXvOXiOI5TgdYqFTP7yJDrBnyygc/dAdwRWybb4+ntwBbCeMtCYLukpV6xOI7jlKPLYyqlkLQSWAnsUyR+qtXSa6Ekx1uWAXc0YOrEUVZbpxyub3O4tuNHoUEwPUhaH2d7lL2vNzNsIaHlchSwBO8K20VVbZ1iuL7N4dqOj6lpqYxKquWyBbgL7wpzHMcpRauzvySdKOn+6N9rTcb11ZKelHRPPM5u0h4z22FmdxBaKL2usIWEQXxfNOk4jjOENmd/7QZcAhxPWJNyl6S1ZvbzVNRrzey8MZvXm3oMPojvOI5TmDZbKkcDD5rZFjN7EfgWwd9X68QKYylwQnz1lovjOE4B2qxUivr2+r+i6/vrJR2Ucb3Pxw+wfx3G9brCYgWTXDSZbLlM/cLJJrR1ZnB9m8O1bYc2K5Uivr1uAg42s8OA7xFWwM++qd/Hz1P1mlmo5XL0tLZamtZ2ruP6Nodr2w5tzv4a6tvLzH6TCH4d+MIY7Mqkt2gSIK6874259Ny9LMDHWxzHmeO02VK5CzhU0iGS9gDOIPj72kVq/5RTgM1jtG8gqZbLmYQKxcdbHMeZ87TppuUlSecB64DdgCvMbJOkzwHrzWwt8KeSTgFeImzotbote9O4uxfHcZzZ+Ir6ej5zPv3uXm4ltFx2EFozU+Go0lclN4vr2xyu7fiYmhX1bfr4yRlvyWq5TJz7F/ef1Cyub3O4tuNn5JaKpHnAV4AXgdvN7Jt1GDaCPa0/kQxpuewE5hEqnKXxloloxXRB22nG9W0O13Z8FBqol/QJSV9JhD8v6eoYPA243sw+ThhMn/PkrHHpVSi7piKTWu/ig/yOMzdI/ten6X9fdPbXVcBKSQsknQycBJwTrx3IzCLGl8t8eAHfX3tKujZev1PSwWXS7wKpmWJvo38RJaTWu9BfySyalozmzC3ShWReAVr02rjsHcW+Mukw81/fHI+BD5cTVemYWaEDuJjgq2sL8MbE+Y8BJ8f33yqR3m7AQ4TxhT2Ae4GlqTh/DHw1vj+D4AdsWLrri9rQxkGoQJbH1/nAI8Cz8fW4+N7i668T1+Zn3LscmJ9Od8DnFIo7ydqO8r3Hod+k592iWmfk60WJ8KPxKHtt6H+gjLY59o5iX5m4yf/6znj0/vfH5aTbC4+cV5vK12UG6q8g1KarzOyhxPkbgC9LOomwAr4ou3x/AUjq+f5KOpRcBVwQ318fP0cWv3FV4roY6F/Br9S5dLhInKSXgEFxXgTuToQPI4ypbIznei2YZFcZwDuAywktmqfjud6Cy+WEiQILM8LpuO8AfpSImw6XmgLdspYiaPQWgn4A91FMo+T3ztOojNa9ew+O9jwX7fvPVBwz64C+yfA8+vNqptbA2fRveHdqItzrHXlNyWuQ/x8onG8TrYTe3kln1WRfmbivon8BNcAr8dxuOelCeACfx2h5tbFyoUyl8lngyfQ9ZraTavvHZ/n+OmZQHAvrWp4B9iPlckHSOcx0x02aj5+dwJ3xvTFTyfyS8KPC7K6ydIZdSX+mW5kT9+RU3HS4b8fLjmg7D3grsCmGe5WICH+wIoVDWqOTc+LmXcvTGmA9MxMxhv4xO6LvIHq6b4jhXiUyTGvonwH5HeCvYzhdgN6Ucy1537D/wKydWnO0Te/ymkw/z4Y828t+l7sI3eHJB6Ksh8t0uumHzap5daRyIZeCzdxPE1okxwI/qKnpfDpweSL8MeAfUnE2AQcmwg8B+01TF0LJ7oUmmuGzuhi6pO2Q753uLjyu4veuq8uj113Zs+fjqfDyrufdRJ7L664ZpnXl7sQC1wZ+ZlFtU+mU6lrOu1Y2btH//pDfpanuucLlwizbC3y54wi1594x/DPg8Boy73JgXSJ8PnB+Ks464h+R0EJ6ijgNust/zDH84ad6TCVl+3KK9z0XLhzKaFQinZH+mG3nXfoL23QFWUrrNv4DZbQdl71NazBCXm1sTCV3nYqkNwC3AyeZ2eZ4bjVwrJmtHnhjASS9CvgF8F7gV4Tm4EfNbFMizieBZWZ2rqQzgNPM7MND0vX56A3RlLapdT3Q3999FDNbO6f77ju3zif5XSxsUd0XHnJv17xBTOyaqjReLoyP3DEVM3uEMDsree5K4MpRP9iK+f76BnC1pAcJvr/OGPVznW6QKMy2MFNpbCf4d0v25S4hFGjJSiddsBXr6x0DlvCukBVumwIVeLIvP8v7Q2e+i9NNWnXTYma3ALekzn028f4FwtiLM0WkZt+kBx6hv2DbkFEwe8FWgYxZT6vJqcCj7o+P31JnknHfX85Q6tA2o5slWZjtjK/bgZ8wu2CbaprOuwntX83gWU+DKvCJxsuF8eNeip3CVNU24wk5OU4yqJtlztFE3k1p3/kxqabwcmF8tNJSkbQvcC1hkdjDwIfNbHtGvJeZ6ft9xMzct9iEMKRl4t0s4yOt/SrgeXycxGmItrq/1gC3mdlF0efXGuCvMuI9b2aHj9c0Z1QGtEymupulS6Qq9PRWDD+Z5haJ0z5tVSqrCAspITirvJ3sSsWZTIq0TJwGyKjQl+LaO2OkrT3qF5nZNoD4+toB8faStF7SjyV9cHzmOVXoeVIlTBNOemPeYP3bATg1kvJgm6zQFxLWebn2zthorKUi6XvA6zIufaZEMm8ws8ckLQH+VdIG63dm2fusLvtPmmiKajugy2vOD74PY9S8W6SrsQYzJxIvF9qhldlfku4nrMrfJmkxYcfINw2550rgO2Z2/ZB4PsujIfK0jS2U5GrsE8zMx0xKUCXvZunOzOQIr9AjXi6Mj7a6v9YCZ8b3ZwI3piNIWihpz/h+f+Cd9LvFd7pFcofLOf2EPA68q9HpKm0N1F8EXCfpLIJzutMBJB0JnGtmZwNvBr4m6RVC5XeRmXml0iEy/Fz5gPAY8K5Gp8u0UqmY2W8IjiTT59cTNvjBzH5EKKCcDpIu2BJ7hXiXV/PMml3nXY1OV2ir+8uZfGbNMmrXnOkmNcPLuxqdzuK+v5yhDNA2vajOC7aKDMq7OZ6cfe1JQbxcGD/u+8spTFrbMnuFOMNJ6pvjydln1lXAy4Xx0Ur3l6TTJW2S9EocnB8U70RJ90t6MLpzcTqEzzJqlGT34jxCxeLdXU7naWtMZSNwGvDDQREk7QZcAnyA0NT/SJxd5DhzgfS4ydsIa1CWeiXudJm2Zn/1tibOi3Y08KCZbYlxv0XwGebTip2pZ8AUbffk7HSeLs/+OgB4NBHeGs85zpzAuxedSaQV319mNmsFfVYSGecyZxWkfPzsVcxCpwiubbO4vs3h2rZDq7O/JN0O/EVc9Ji+thy4wMzeH8PnA5jZhWM10nEcxylMl7u/7gIOlXSIpD2AMwg+wxzHcZyO0taU4lMlbQWWAzdLWhfPv17SLQBm9hJwHrAO2AxcZ2ab2rDXcRzHKcbULX50HMdx2mNq3LTkIWkj8EINSe0PPDWF6QDsZWZvLXtTB7WtM6260qmkLXRS366l49o2lw5U0Le1SkXSFcDJwBNZRissYvk7YAXwHLDazH5a8eNeqMNFQ12uHrqWTi+tird2Sts606oznRFu75S+XUxnhNtd2wJplb2nzYH6K4ETc65/ADg0HucAl47BJsdxHGcEWqtUzOyHwG9zoqwC/tECPwYWxK2HHcdxnI7S5SnFhVfUSzpH0vp4bMyIcllNNk1rOgPTmkBt60yr8XSq6pvaX2UkG0oyMelMYN7tWjqV0mp78ePBwHcGjKncDFxoZv8Ww7cBf2lmdw9J011cN4Rr2yxF9c3YTtidTA7B8+746HJLZStwUCJ8IPBYS7Y4Bajw9OxUI73r5tGuu9MVulyprAX+SIE/AJ4xs21lEqhzPxZJD0vaIOmeMjMiJF0h6Ylk81vSvpK+K+mB+LqwYjoXSPpVtOkeSSsKpHOQpO9L2hz3tPnUCDYl9f0s4en5VuDnZQq4trXNSauUvg1qu0aDtxN+GriKAbpX1TZHk4nPu14uZKZTW97FzFo5gGuAbcDvCK2Ss4BzgXPjdRH2U3mI8Cc6smC66+PrbvHeJcAewL2EboKq9j4M7F/hvvcARwAbE+cuBtbE92uAL1RM5wKC77Qy9iwGjojv9wZ+QdivZqhNPW0H6PsAYSMpA54Flk+KtnXpO4q2Q/LuhvhfeRZ4hNBCmU/wSHFcPJ+pe1VtpzXvZmjr5UINebcvrapidvVIZJ7lwLrE+fOB88edeeK9B6d+9PuBxYkf8/6K6ZTOPBlp3ggcX8Qm+iuVtL7/g/DUvKvgmyRtm9C3jLZD8u6lwH+QUXEQKpdHBuk+irbTmHe9XGgm7yaPLnd/lULSSkmXAfvEU3Xvx2LArZLuVnCpPQqLLHblxdfXjpDWeZLui83gQl09PRQmSrwduDPPpgxtYba+W4BribsTxvuK9vN3VVuoqG9RbWPczLzb6/Ii7JT6IhnbCVsYoF9KYlfIVFdZndoy7LuUpI286+XCEMrk3SymplIxs5vM7BzgmXiq8H4sBXmnmR1BWJT5SUnvGSGturgUeCNwOKF75ItFb4wFzj8Df2Zm/54XN0NbyNb3RTO7I74vM77SRW2hor5ltIWBefdVzGj4ORIVtqVmelliMy/NzAy7Nb4eP03awsh518uFHMrm3SxarVSGDZhJWi3pycSA09klkq919piZPRZfnwD+hbDdcVUeV1zIGV+fqGjT42b2spm9Any9qE2SdidknG+a2Q0VbcrTNz07admQ79E5baM9pfWtUdv/zIyG84HfWbFdINPa/6f4XerQFiY/73q5MICa8m57lYqk3QgD8R8gNN8/orAnd5przezweFxe4iNq249F0jxJe/feE54YsxZTFWUtcGZ8fyah/7KKXUkPA6cWsUmSgG8Am83sSyPYlKdvcnbSdmCDBkw37qq20Z5S+tas7SLCOMkOwtP1NwqanZ4Z9suo/f9JcIs0irYw+XnXy4Xse+rKu63O/ho6YAasBr5cMt3kYPIKwiyGhwjbGFe1dQlhlsi9wKYyaZE9y20/4DbCjKnbgH0rpnM1oRC5L/74iwuk8y5Cc/8+4J54rChiU1LbYfoyMzup96SdOZjcBW3r0ncUbQfk3QeiLX9TMr/2tH9rtP9F4GVCJVNmAsVU5t28fOvlQrW8mzxaW1Ev6UPAiWZ2dgx/DDjGzM5LxFkNXAg8ScgEf25mj2Ykl0zXV842RFVt42DzrYTCbgfhiW4Doatmg/lqcKCZvJuh/SrgeeaY7l4ujI82x1SKDJjdBBxsZocB3yMs8pqdUMLHD2EvAacmatI23R22hYoLJaeNMeTdwgslpw0vF9qhzZbKcuACM3t/DJ8PYGYXDoi/G/BbM9sn63oinj+RNMQo2sYCbBkzLZQ5//Scpqm8m9D+1YQ+8TnXYvRyYXy0ufPjrgEz4FeEAbOPJiNIWmwzrllOIexV70wgscC6A0BS7+kZZp6eFwDbJblzxJrpaR8rl57uyRbjQlx7pyZaq1TM7CVJ5wHrCK4TrjCzTZI+RxhUWwv8qaRTgJcIe6+sbstepz4srKdYyuynZ4BlsdKZ+qfncZPSvadxb/oxuPZODbTq+r4JvJnbHA0NJKfduB9FaMXOObfu4867c0l7LxfGx9SsqHcmE0u5GSFM0+xbODlojYszGgW0d5f6TmnaHFOpFUkrgZX0+6dyaqBpbXPGW7L6/Y8iFH5T0z3TZt4tM9YVz09U19ggbZMTRyblu0wKI3d/SVoCfAbYx8w+VItVo9njzdyGGJe2Q2aK7QTmEbtn4i1TUTh0Ie/mzBRbBVxJomss3jIR2ie1zej2m5puvi5QqPtL0ickfSUR/rykqwHMbIuZnVXlwzXc99eekq6N1+9U8J7pTDmWcJBI/zqLXoWyq3uG1HqXZFeZd5uVp6c98BP61xZBqmuMfu0XJbXuuPalfNM55Sja/XUVcL+kvyYs5z8JeMcoH6wZ31/HE9wL3CVprZn9PBHtLGC7mf2+pDOALwB/OMrnOpNFasbSFsJAMswu6CAUdFfGc0/HcyN336S7SvLC6c+Y1G6WjJli0N8tCf3a30tsQcYuyl0D/h3sOkt3sW6Y1N+pk5TwVXMxoRLYArwx4/r1RdOK8Yv4/lpH3JCIUAE+Reyyy0l3fRk7puUg4WsrHc67lhXusrYZ3yvpUyy5C+JO+neiPC4Vd35GWlmaLErdlxd+NB6D4nZe34ra/5r+3Sc/ngqntV9UJf8Ny9dltB2SjwbaV+a/NErcEX+X2u0rY0+ZgforCIsPV5nZQ72TkvYD/hZ4u6TzbcCK+AyyNss5ZlAcC+taniE4OHuqhN1Eb6TQ7wZGqXPpcJE4SVczw+LUne58ZhwGQnAE13syXE4YfM16Yn8H8KNE3HR4pP7lMWj9IrA+ce5twFsInlhF/0AzwCvx3G70P1kvJ3hlHaZRsssNgtfXhQPCve7k1wyIu4w4KF6UjuXd/wDuTpw7jPCdfknQC4LW/xv4fxPhVzG4VZPMq73wIQQHjTsJWr6Vmd/3Xga0RMvkWwstsd53OTrHvmReSH9mlu1V/nfpuIfF8LL4vXdEe3ph6M/zgzSpy75S+papVD5LcOzYd4+Z/Yawt3xZivj+KrShjsKOa71d16bZx888Qmb6JYnMQugmTP4pVjK4oDs5FTcd7iv4JkDbnYQd6mB2JQMzf0RjcPfNMI12Ju67CfjrAeF0RfadVNxdOzb2mAB980hqfxih8O9VBoMq+3QlncyrECqt3kSMvoINOJvBv9msCruEthtz7EvmhfRnpm2v+r9Lxz2KmQee7YQHoMzKgHxN6rIPyjwQFWxefRq4ATgW+EFNTWnv/irfrB3U3ZDVvVC0S6ZwF82ka5ujZxGNaulSmCt5N0f7vPxXphst/ZuN1LVY0L4y/6VR4ia7cdM65HXrNmXfUH37tCyQGY4j1OR7x/DPgMNryGSvIozPHALsQWjCvSUV55PAV+P7M4Drpv2PmZO50xnt14lruYVZ3rWs8LRqm6P1SJVBjfZMlb5FdE+FhxZseb9ZXdrW9V+qGpfsMZ6Blek47Cvz++auU5H0BuB24CQz2xzPrQaONbPVA28siKQVwP9kxvfX3yZ9f0nai7DhzNsJvr/OMLMtQ9Jsfa5/GTJmDvXmzyeb4VnrBMa+CHDStJ00XN/hM+1GSHeitC0zw7AtGwfhvr9aJGMR1mr6F5x1aqHfJGk7ibi+zeHajo+pcdMyKWSsFk8OhkH/YHJWa6TU7CHHcZxxMjWVSpd9fyUqkt7ivWQXVrIS+QmhRZJsjTw+doNTdFnbacD1bQ7Xdvx491fDpLq40uMkE7XzXte0nTZc3+ZwbcdHK67vJe0r6buSHoivCwfEe1nSPfFYO247q5Lye5Ts4ppHqFh6/pQ2WL+fK8dxnImmrf1U1gC3mdmhwG0xnMXzZnZ4PE4Zn3nVSbRMbo2vW+h3zPc24v4VXpE4jjNttDWmsoqwkBKCs8rbgb9qyZaRGTL4voQOjpM4juM0QVuVyiIz2wZgZtskvXZAvL0krSfsUX+RmX17bBYWJGNacHrwvVeR+Kwtx3GmnsYqFUnfA16XcekzJZJ5g5k9FjcC+1dJGyzhzDLxWWP3n5TazGhYy2RimXDfVJ3H9W0O17YdWpn9Jel+wqr8bZIWA7eb2ZuG3HMl8B0zu35IvMZneaRaJ2kHb1M7VuIzaJrF9W0O13Z8tDVQvxY4M74/k7CKvA9JCyXtGd/vD7yTUJCXoq4d6HJmdC2I38EH3x3HmfO0NaZyEXCdpLMITtFOB5B0JHCumZ0NvBn4mqRXCJXfRda/K+RQ0uMdVfcKKTBu8hOvTBzHcVqqVCzswfLejPPrCfsDYGY/YvS9o9MzsUpvkjQgnakaN3Ecx6mLaXfTMmsv6hLpJacJz0pnLs3oclcXzeL6NodrO36m3k1LGVfaOT66WvcQ3AV8sLNZXN/mcG3Hx9S0VAaRbFFkjLHs8gIco2f56AJYZmZ3MEdaJo7jOFVpy/fX6ZI2SXolDs4PineipPslPShpkCuXMiTHRhYSdpvsuVM5mhwfXTV8tuM4ztTT1pTijcBpwA8HRZC0G3AJ8AFC99NHJC0dFL8gvbGR5AZYvQoG3EeX4zjOSLQ1+6u3NXFetKOBB3vbB0v6FsFnWOm1KonP3RErpuS4CXR4LxPHcZxJostjKgcAjybCW4FjsiKm3DHslZdoaowla1qwj5skKKOtUx7Xtzlc23ZobPZXnu8vM7sxxrkd+Iu4PiV9/+nA++NCSCR9DDjazP6kEYMdx3GckWmspWJm7xsxia3AQYnwgcBjI6bpOI7jNEhbA/VFuAs4VNIhkvYAziD4DHMcx3E6SltTik+VtBVYDtwsaV08/3pJtwCY2UvAecA6YDNwnZltasNex3EcpxhTt6I+C0kbgRdqSGp/4KkpTAdgLzN7a9mbOqhtnWnVlU4lbaGT+nYtHde2uXSggr6tzf6SdAVwMvBEltEK843/DlgBPAesNrOfVvy4F+pw0VCXq4eupdNLq+KtndK2zrTqTGeE2zulbxfTGeF217ZAWmXvaXNM5UrgxJzrHwAOjcc5wKVjsMlxHMcZgdYqFTP7IfDbnCirgH+0wI+BBXGXSMdxHKejdHn2V9bixwMqpnXZ6OZMdTqjpDVN36WL6XTBhmlNpws2dDmdSmm1OlAv6WDCvvNZYyo3Axea2b/F8G3AX5rZ3Rlx+1bOVh24c2bj2jaL69scrm07dLmlUnjxo5ldZmZHxsGpOmZzOBHXtlmK6itpvqTlcfsGpwCed9uhy5XKWuCPFPgD4Bkz29a2UY4zbhL7AN0K/NwrFqfLtFapSLqG4LzxTZK2SjpL0rmSzo1RbiF4En4Q+DrwxxU+o7b9WCQ9LGmDpHvKTLOTdIWkJ+Kc+N65fSV9V9ID8XVhXho56Vwg6VfRpnskrSiQzkGSvi9pc9zT5lMj2FSLvm1rm5NWKX2b0ha4mP59gJYV+U4xnUraxnunMu96uZCZTm15FzObqgNYH193Ax4i7Oy4B2FDrqUjpPswsH+F+94DHAFsTJy7GFgT368BvlAxnQsIDjnL2LMYOCK+3xv4BcHl/1CbetrWrW/b2tal7yjaDsm7G4BtwLPAI8D8prWd1rxbZ77tQt7tgrbpo8vdX6Oyaz8WM3sR6O3HMlYse+r0KuCq+P4q4IMV06lizzaLi0jN7FmCC5wDKtjUur51aZuTVll7mtL2n4Cvktg0TmMYY5nSvNt6voWp1Rbo9phKKSStlHQZsE88VeeUZAADbpV0t8KsklFYZHF8KL6+doS0zpN0X2wGF+rq6aEw++7twJ15NmVoC0HLbYmCbRR9u6otVNS3qLYxbpG8+5/M7I5ehULxMZY6tWXYdylJG3nXy4UhlMm7WUxNpWJmN5nZOcAz8VTWtpKjzJ9+p5kdQevSLIkAAByJSURBVFjp/0lJ7xkhrbq4FHgjcDihe+SLRW+MBdE/A39mZv+eFzdDW4BXAx8iFmzAnlTXt4vaQkV9y2gLlfLuMoqPsUyVtjBy3vVyIYeyeTeLViuVYQNmklZLejIx4HR2ieRr3Y/FzB6Lr08A/0JoRlflcUXvAPH1iYo2PW5mL5vZK4TJDIVskrQ7IeN808xuqGjTXvHoFWz/hYr6dlHbaE9pfWvSdlje3UDYAntHfN0yqCusZm1h8vOulwsDqCnvtjr7azfgEkINvxT4iML2vmmuNbPD43F5iY+obT8WSfMk7d17T+jb3ph/Vy5rgTPj+zOBGyvalXRbc2oRmyQJ+Aaw2cy+NIJN1xGe8J4jFGzvAr5btp+/q9pGe0rpW6O2uXnXwtbXSwlaHRXjz+oKa0DbKt8lkxbzrpcL2ffUlXfbm/1F2EtlXSJ8PnB+Ks5q4Msl003OUFpBmMXwEGEb46q2LiHMErkX2FQmLeAaQhP0d4SnpLOA/YDbgAfi674V07ma8NR6X/zxFxdI512EyuA+4J54rChiU1LbGD6NMBtpC/A38X2pGUpd0LYufUfRtmrejf+jZ+PnPgssr0Pbac67RbWdhLzbBW3TR2tuWiR9CDjR+vegP8bMzkvEWQ1cCDxJyAR/bmaPZiSXTLc2t89OP3naSlpOeFqeT+iWWQU8D2yw8GTtDKFK3k0M2i8ktBh7rf1luPa78HJhfLS2nwrFBsxuAq4xs/9QWBR5FXDcrIT6ffzsX6uVc5wS2vb6+QGeJvxWC4DtkpZ64ZbNqHnXwmywpcRKJJ7eVcnMZe29XGiHNlsqy4ELzOz9MXw+gJldOCD+bsBvzWyfrOuJeP5E0hDDtI1PzcsIM8NuZKbVcgKhwPOn5xzqyLsZLUbXHi8XxkmbLZVdA2bArwgDZh9NRpC02Gb8fZ1CWJDjdJRYYN0RK5deq2U7YczFn57HQ7LF6No7Y6e1SsXMXpJ0HrCO4DrhCjPbJOlzhEG1tcCfSjoFeImwanR1W/Y6xcnokkmuqwBYJmnOPz03QQHtj5bkY11OY7S6n0oTeDO3OapqmzGY3JsGmwwvYY4XdE3k3ZT2T8fTC5hjg/peLoyPNru/nDlCgafne4F5ePdM7aS0T451QVgUdyXeNebUyNRUKpJWAivp90/l1EAd2vbGW2J6yX7/nYQKZc52jTWdd3PGumDKuyW9XBg/I3d/SfogcBLB0dglZnZrHYaNYI83cxuiTm0TM8W2MLsrLBnu66JJvp+GQi/JOPJuQvdZ048Z0i2ZvHfStPdyYXwUctMi6ROSvpIIf17S1QBm9m0z+zhhEP0Py3y4hvv+2lPStfH6nQreM50pwMx2WPC6+zgzLkeWEgqxpLPEo5nxyLs5HrtckqgD2+wmbeiCPXkkdN9h/e5esrS/lxmtF5HyjNz17+q0REGXAq8huIteAJwM/Ax4dSrOF4mbvBRMc+hmOYTdHr8a359B8AM2LN31RW3wo9wxDm0JBVrS3ctxzLgh2RmPnkuS41Jx58djefp9Iu3M8IjXejY8Go9Me7qgbwntf02/+5ePp8Jp7RdV1TrDhpHTGaZtGRtG1HPkdCbtKCPQxQQHkFuANybOC/gC8L6Sghfx/bWO6MuIMP7zFLHLrmjmief2iMfuiSN9rkqcPUrEqTvdhcC7CRX97vH13fF8OryA4NtnQUxjYUZ4aOYfo7ZJ2xcyuNA+gf6C7vicuAfQXwgemBM371o6neMZXOmdQAl/aFn6tpCPe3klqUFak/T3TlZCZbXu/cbvyrgvLzyrAi+qLbMfXBbkfO+kfb14g/5nyfCwdIb9Tnmfk/X/7YVHKRdm5YkqlUqZgforCF0Pq8zsocT5PwHeB+wj6ffN7KsF08vaLOeYQXEsrGt5huDg7KlkpCl2xzAPeAvBy+hzifAvCYPevb7v5Tnh9DTSdwA/SsTtC6dnALWk7U7CBkE9DgPeSnDaBzOaiMEDz72u3dfE15WJaxBa3IPi5l1Lp5P87J7Wr2TYA2E84o7kF+1g3u1pL+Bt9Oe/ZBgGT7Yoo/VRwOXx+rB0VuakU0bb9OzDowgeerNsSNqX/i/l/e/y0tlO0BL69VwW3/ccO5b9P5exLx03bc9zwDxJ/4WyY2glWhb/RPClf1otTSQ4Hbg8Ef4Y8A+pOJuAAxPhh4D9Rnna6/rBTJN5EbO7F4p2TSTD6afnvLh9Xm4nQVtmd4cMepLN0zMv7rB0Bna5MfuJeKSWSteOgnl1mJ7J7s10i6dMOqO0VPJsyOt+HfZfGpROuvtwmCZF/89l7BvWlTwrnxfOFwUzz6eBG4BjgR/UlCHH1v3V5YPBhdCwiqPqn29YATAw80yCthl6NjqmUsaeAnE7r2/R71lUT2YX8LWMzQzTtqgNqWtl/0uD0ik7VljXA1CZyr3ww+YsrQv8GMcRmkN7x/DPgMNryISvIozPHMLMQP1bUnE+Sf9A/XWT/scckpnLPrWNXGBmhSdV20k/5qq+RfNfk9rm2VDXfynnvz90gkdRG8rYN6QsaqalAryBUPC/OXFuNXBlTT/0rM1ygM8Bp8T3ewH/H/Ag8BNgyaiZp+U/TfqHymsSD604WvgendN2mg7Xd25pm1cZtG1PVrjo4b6/mrFhPtkLzJKDd72NrK5kQjZY6oK204zr2xyu7fhwNy312zGf/lXKq+mfabIzvm4ntL52+cRKVCJ9s1japivaTiuub3O4tuPHWyr1fGayZbKM2dvqXskUeOT1p71mcX2bw7UdH1PTUmmLAW7dk2snslojj7dgquM4TuO0UqlI2he4FjgYeBj4sJltz4j3MjPjEo+Y2SnjsnEYqa1zk91bS5iALi3HcZwmaKulsga4zcwuio4k1wB/lRHveTM7fLymDSdj46Pe6tTtzFQkXok4jjPnaKtSWUVYSAlwFXA72ZVKZ8gYN0m2TlYBvkWr4zhznrYqlUVmtg3AzLZJeu2AeHtJWk/Yo/4iM/t2VqSm/ScVGTeZ1sqkg76ppgrXtzlc23ZobPaXpO8Br8u49BngKjNbkIi73cwWZqTxejN7TNIS4F+B91q/M8usz61llseQGV0nJM7PmdaJz6BpFte3OVzb8dFYS8XM3jfomqTHJS2OrZTFBEeVWWk8Fl+3SLodeDth9X2jFGiZ+LiJ4zhOBr83PEojrAXOjO/PBG5MR5C0UNKe8f3+wDsJBX1j9HayI+w2mNwBrzej6wTCRmJzomXiOI5TlrbGVC4CrpN0FsHH1ekAko4EzjWzs4E3A1+T9Aqh8rvIzBqrVHxGl+M4zui0UqmY2W+A92acXw+cHd//iDBm0Rg+o8txHKdepmZFfVEfP4mKZAtwF3NwRldZ3H9Ss7i+zeHajp+p9/1VwmPwnJzRVQafQdMsrm9zuLbjY2paKlmU9Bjs4yaO4zgj0srsL0mnS9ok6ZU4OD8o3omS7pf0YHTnUpbkOElvHcx2QstkO/A2fEaX4zhObbTVUtkInAZ8bVAESbsBlwDHA1uBuyStLTkDbAPuMdhxHGdstDX7azOApLxoRwMPmtmWGPdbhBlZhSsVM9shyT0GO47jjIkuj6kcADyaCG8FjsmKmPLxs1fymo+TjEaets7ouL7N4dq2Qyu+v8zsxhjnduAv4vqU9P2nA++PCyGR9DHgaDP7k0YMdhzHcUamFd9fBdkKHJQIHwg8NmKajuM4ToO05furCHcBh0o6RNIewBkEn2GO4zhOR2lrSvGpkrYCy4GbJa2L518v6RYAM3sJOA9YB2wGrjOzTW3Y6ziO4xRj6lbUZyFpI/BCDUntDzw1hekA7GVmby17Uwe1rTOtutKppC10Ut+upePaNpcOVNC3tdlfkq4ATgaeyDJaYb7x3wErgOeA1Wb204of90JNG3fVtQFYp9LppVXx1k5pW2dadaYzwu2d0reL6Yxwu2tbIK2y97Q5pnIlcGLO9Q8Ah8bjHODSMdjkOI7jjEBrlYqZ/RD4bU6UVcA/WuDHwIK4S6TjOI7TUbo8+ytr8eMBFdO6bHRzpjqdUdKapu/SxXS6YMO0ptMFG7qcTqW0Wh2ol3Qw8J0BYyo3Axea2b/F8G3AX5rZ3Rlx+1bOVh24c2bj2jaL69scrm07dLlS+Rpwu5ldE8P3A8ea2bYhafq+CQ3h2jaL69scru346HL311rgjxT4A+CZYRWK4ziO0y6tVSqSriE4enyTpK2SzpJ0rqRzY5RbCFv+Pgh8HfjjCp8x6n4sybQelrRB0j1lptlJukLSE3FOfO/cvpK+K+mB+LowL42cdC6Q9Kto0z2SVhRI5yBJ35e0Oe5p86kRbKpF37a1zUmrlL7TpG28dyrzrpcLmenUlncxs6k6gPXxdTfgIWAJsAdwL2EzrqrpPgzsX+G+9wBHABsT5y4G1sT3a4AvVEznAoJDzjL2LAaOiO/3Bn5B2GNmqE09bevWt21t69J3FG2byrtVtZ3WvFuntl3Iu13QNn10ufurFJJWSroM2Cee2rUfi5m9CPT2Yxkrlj11ehVwVXx/FfDBiulUsWebxUWkZvYswQXOAXk2ZWgLHdC3Lm1z0iprT2ltwfNuCXvqyLuubXY6lfJuFlNTqZjZTWZ2DvBMPFXnlGQAA26VdLfCrJJRWGRxfCi+vnaEtM6TdF9sBhfq6umhMFHi7cCdeTZlaAv16ttVbaGivkW1jeeazLt1aguTn3e9XBhCmbybxdRUKhlkbSs5ylS3d5rZEYSV/p+U9J4R0qqLS4E3AocD24AvFr1R0nzgn4E/M7N/r/DZderbRW2hor6ubSHayrteLuRQQ95tt1IZNmAmabWkJxMDTmeXSL7W/VjM7LH4+gTwL4RmdFUeV/QOEF+fqGjT42b2spm9QpjMUMgmSbsTMs43zeyGijbVpm8XtY32lNa3C9pKmi9puaT5NWsLk593vVwYQE15t9XZX7sBlxBq+KXARxT2k09zrZkdHo/LS3xEbfuxSJonae/ee+AEYGP+XbmsBc6M788EbqxoV9JtzalFbJIk4BvAZjP70gg25eqbLNiG2NNJbaM9pfQdl7YZn7tL66j3z4Fbgc2SXhfj1KEtTH7e9XIh+5668m57s78Ie6msS4TPB85PxVkNfLlkuskZSisIsxgeImxjXNXWJYRZIvcCm8qkBVxDaIL+jvCUdBawH3Ab8EB83bdiOlcDG4D74o+/uEA67yI09+8D7onHiiI2JbXN0heYH3/XRcAjwLPxdX7i2vyuaVuXvqNoWzXvRl2TWh8X3xuwM37mBsL0/L8pme+nMu8W1dbLheJ5N3m0tqJe0oeAE61/D/pjzOy8RJzVwIXAk4RM8Odm9mhGWkl3DPub2cHNWj93KKpt4gl5IaEwm0co8HYQZpBcGa9tJ0zh3NGo4RPCqHlX0nJCq2SQ1kcRns6T4SXAhmn/DbxcaIc2x1SKDJjdBBxsZocB32Nmalv/TWaXmdmRFtww1LU5jUMpbZcRCq75hAplJ6GQ2x6v964tBJYV7R6bdmrIuxsIGve0/gmhO/mE+LqEfu3vJVRCP5927cto6/mxPlrbpIsCA2Zm9ptE8OvAF8Zgl1ONXuEGqSfixLne6xZmWjXbJc2Zp+e6MbMdcSxyGf363QEgKfm7JFuQECr3DRn3zilSreztkrwlPQJtViq7BsyAXxEGzD6ajCBpsc34+zqFsCDH6SADCrfHe9eT1+hv1UB4ep6H/6ErEfW6Y9C1hPZbCP87yK7c56r26fy4jAF6OsNprVIxs5cknQesI7hOuMLMNkn6HGFQbS3wp5JOAV4irBpd3Za9znCGFW5UfHqOT5Jz+ml6FFLa51Xufdr3zjH9uqdb2Rty4jpDaNX1fRPIXVw3Rp3aJiqK3tNz3sDynBhoHnfeTXf70K/10zHagnitN91/IiuZYdr6g0t9tNn9VSuSVgIr6fdP5dRAE9qWeHo+hSnvKquibx2FYLrLkn7te5N4XhNfjyYxqyyxpqzTBXFRbVP50SuYEfCWilOYtLZN/PmGPD2npyqfwExhOPFdZUXzboZGtVSuqXTTLZXVhIVveVOXO9uCbFvbucTILRVJbwY+BewP3GZml45sldN5mpoxkzXgX2Kgua+rLD2rbJIrnBSNDCxntFxIvd+eeh3YgkzeO2Ha+6D9qBRc/fkJ4CuJ8OeBq1Nxfg/4RtEVpfGeE4H7CRtxrcm4vidwbbx+J2HNyrA015exwY9Sv1dyVfJyZlZuPwssH5MNu1bmZ9jw8VT418ysNC+8yr+MDVnhOvQd8r3Tq+hH+tyK2idt6Onc0/24lH1p7Rc1oV9VbTO+Yy35ZK4eRX+Q1xDcRS8ATgZ+Brw6cf0U4EfAR0v8yEM3yyHs9vjV+P4Mgh+wUpnHM0SNmaW/UmmlYMv4bQcVXumCLl3hZBV8mQXdkAK9tgIzJ+/WViE2oH+WfUlXMWUr+1z9Bv0uZbUt+L0G/d6V7Bslbg2/UZX8WO2hq4RxFxMcQG4B3jggzs0l0ivi+2sd8QmY0FX3FHEcqEjmycgQC+LxLkITdw9g93jskQpnnRsULhJn3OkuAN4dv2fvOy+I1xdmhIdmHrILvd5nlPl+dWqQ/C67x/C7CXtkJH/7dPgEBhd0BybiPhqP3rXjU/edWzCdoRUvg/NuuoJ89xj1LZpu8n+1MPW9kzqkv0sZ/fJ+l1J5d0CcrO/77hz78vJY2r4y3yWdbq/cSv+fe2VY8j/Qy/+9e/L+Awek0lmQSqfSQ2OZMZUrCIsPV5nZQ72Tko4FTiN0Vd1SIr2szXKOGRTHwrqWZwgOzvpcLqR9/CQupftHjyJ44uwNwr2NMOg4DcwjfN+NzDiGyxpwfQehVbkwK5weG8nRFgt95Xc29YUKspPQNZoOG3AYM5rsSIVh8FqZkxk8Cyp533aCK6G/LpAOZPTPl8i7OxOfOaqn4Sbo6d5zv/Q24C0EW59LhH/JjAZl9cv7XcpoW4aNDM4nK1P2JcNp+8p8l3S6yXIr7/+cvnZWjn0Ad8fvk1UunM2QvDuQEi2LfyL40j+tTFMoJ73TgcsT4Y8B/5CKswk4MBF+CNhvhJZKulk+lnGAJg7ym+hpT7U7GdwVkQ4P1IQpG69KaJjVBTPwiTipfYl0RmmpzOp2meRjBP1yf5ei2jaUT4bZN0rcov/n9LW8sa2y3cOF811RUT8N3AAcC/ygpozVePdXOgNn/FE7/Qct8edLV5bJDFEmc+dqktZ2mo4crcv23Y/Shz3nxwOH6TfC71JL3h3FvqpxU+VW3v+51gegqvmviIjHEZqAe8fwz4DDa/hxXkUYnzmEmYH6t6TifJL+gfrrRs08VTNlC3+qvB992GybrMHlQpl7HH9MP1xf17a0/WUqoMYfgPKO3MWPkt4A3A6cZGab47nVwLFmtnrgjQWRtAL4n8z4/vrbpO8vSXsRNpx5O8H31xlmtmVImhO1yCk5fz+eGrQnyX8DvpQI966PzYWGLyxtFte3OVzb8TFnV9RnbG50gpk1vsgppxLJWrWcrDha94Hlf8xmcX2bw7UdH3PZ99cGUp5Jm1r1m+M8cTX9Myx6tvRe0yvCB7qWbxL3q9Ysrm9zuLbjZ862VGLcvFZD4e6wdGVUoktr1ja7MX4n3Vn4016zuL7N4dqOj6lpqVTB+j2TLqe/1XC0pOcZ4LtoUOsj7X+K2a2R5HqD3tavmbv2OY7jTBqtVCqS9iX49DoYeBj4sJltz4j3MjNP+4+Y2SkNmpXsDnsauIq4iGiAo8Isz7kw21U75HRpxfNeiTiOMxX83vAojbCG4NH4UOC2GM7ieTM7PB5NVii9VstSgvuOMwkVynxCBZGsKNLheYSKZQeh0lgbX3vhnyTSXWpmj5vZHV3r2nIcx6mDtiqVVYSWAPH1gy3Z0YeZ7YgzwH5Cf8WQrijS4beRqDTor0R29NL1isRxnGmnlYF6SU+b2YJEeLuZLcyI9xJwD2GP+ovM7NsD0uvz8WNmB9dg48DB96zwqJ/XVZrQ1pnB9W0O17YdGqtUJH0PeF3Gpc8AVxWsVF5vZo9JWgL8K/BeSzizHPC5PsujIVzbZnF9m8O1HR+NDdSb2fsGXZP0uKTFZrZN0mKCo8qsNB6Lr1sk3U5YWZ9bqTiO4zjt0daYylrCYDjx9cZ0BEkLJe0Z3+8PvJOw3sNxHMfpKG1VKhcBx0t6gLDp0UUAko6UdHmM82ZgvaR7ge8TxlS8UnEcx+kwraxTMbPfAO/NOL+esDkMZvYjwkC44ziOMyFMzYp69/HTHK5ts7i+zeHajp857fvLKYdr2yyub3O4tuOjlTEVSadL2iTpFUkDf2hJJ0q6X9KDkgatunccx3E6QlsD9RuB04AfDoogaTfgEuADhBXqH4mu3x3HcZyO0tZAfW8XybxoRwMP9nZ6lPQtgnsXnwHmOI7TUdpqqRThAODRRHhrPOc4juN0lMZaKnluWsxs1mLHrCQyzmXOKkj5+NmrmIVOEVzbZnF9m8O1bYdWZ39F1yt/EdenpK8tBy4ws/fH8PkAZnbhWI10HMdxCtPl7q+7gEMlHSJpD+AMgnsXx3Ecp6O0NaX4VElbgeXAzZLWxfOvl3QLgJm9BJwHrAM2A9eZ2aY27HUcx3GKMXWLHx3HcZz2mBo3LXlI2gi8UENS+wNPTWE6AHuZ2VvL3tRBbetMq650KmkLndS3a+m4ts2lAxX0nROVCvBCHS4a6nL10LV0emlVvLVT2taZVp3pjHB7p/TtYjoj3O7aFkir7D1dHqh3HMdxJgyvVBzHcZzamCuVymWeTmNpTdN36WI6XbBhWtPpgg1dTqdSWj77y3Ecx6mNudJScRzHccbAVFcqde7HIulhSRsk3VNmRoSkKyQ9Eacv9s7tK+m7kh6IrwsrpnOBpF9Fm+6RtKJAOgdJ+r6kzXFPm0+NYFMt+ratbU5apfSdJm3jvVOZd71cyEyntryLmU3lAewGPAQsAfYA7gWWjpDew8D+Fe57D3AEsDFx7mJgTXy/BvhCxXQuIPhOK2PPYuCI+H5v4BeE/WpK2VSnvm1rW5e+06TttOZdLxeazbtmNtUtlV37sZjZi0BvP5axYmY/BH6bOr0KuCq+vwr4YMV0qtizzcx+Gt8/S3CBc0AFm1rXty5tc9Iqa8/UaAtTm3dd2+x06sq7U12p1L0fiwG3SrpbwaX2KCwys20QfkzgtSOkdZ6k+2IzuFBXTw9JBwNvB+6sYFOd+nZVW6io75RqC5Ofd71cGMKIeXeqK5XC+7EU5J1mdgRhe+NPSnrPCGnVxaXAG4HDgW3AF4veKGk+8M/An5nZv1f47Dr17aK2UFFf17YQbeVdLxdyqCHvTnWlshU4KBE+EHisamJm9lh8fQL4F0IzuiqPS1oMEF+fqGjT42b2spm9Any9qE2SdidknG+a2Q0VbapN3y5qG+0pre+UawuTn3e9XBhATXl3qiuV2vZjkTRP0t6998AJwMb8u3JZC5wZ358JFNkJM8uuxYngqUVskiTgG8BmM/vSCDbVom9XtY32lNJ3DmgLk593vVzIvqeuvDu9s78szFZYQZjF8BBhG+Oq6SwhzBK5F9hUJi3gGkIT9HeEp6SzgP2A24AH4uu+FdO5GtgA3Bd//MUF0nkXobl/H3BPPFZUtGlkfbugbV36TpO205x369C2K3m3a9qama+odxzHcepjmru/HMdxnDHjlYrjOI5TG16pOI7jOLXhlYrjOI5TG16pOI7jOLXhlYrjOI5TG16pOI7jOLXhlYrjOI5TG/8/f5uI524CpRQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEdCAYAAADEuPqOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO29ffAdVZnv+/kO8qIJlwQ4xghYEIfyGA0ih5eJb8VFQQyECFcc9F6HnAIpHJlx5jg1E8ZzPYzlFEiV1pkZEUWkYDgOwmUYCcKpoIxoTYlIUCCJKQQiBZHIiwaGBBgEnvvHWju/3v3r3bu7d/fu3vv3fKq69l7dq9d+9nevvVavt2fJzHAcx3GcOvi9tg1wHMdxpgevVBzHcZza8ErFcRzHqQ2vVBzHcZza8ErFcRzHqQ2vVBzHcZza8ErFcRzHqQ2vVBzHcZza8Eqlg0iaJ+kqSV+X9H+3bc80IWmJpG9Iur5tW6YRSR+M+fZGSSe0bc80IenNkr4q6XpJn2jbnkF4pdISkj4h6SuJ8OclXR2DpwHXm9nHgVNaMXCCydPWzLaY2VntWTf5DNH32zHfrgb+sCUTJ5Yh2m42s3OBDwNHtmXjMLxSaY+rgJWSFkg6GTgJOCdeOxB4NL5/uQ3jJpw8bZ3RKaLvfwcuGbtlk0+utpJOAf4NuK0l+4byqrYNmGYkHQY8a2a/TF8zs+ckXQP8LfAB4Hgzez5e3kqoWO7BK/5MRtDWKUBVfSUJuAj432b203HaPCmMknfNbC2wVtLNwD+Ny+YyeKXSLK8G/pekVVkZCLgC2AysMrOHEudvAL4s6STgpjHYOYlU0lbSfoQ/7NslnW9mF47H3Imjat79E+B9wD6Sft/MvjoGWyeNqnn3WELX+J7ALeMwtApeqdSEpP8HWJNxaTFwLXB0xrXPAk+S+h3MbCfwX+u2cVKpWdvfAOfWbeMkU7O+fw/8fd02Tio1a3s7cHu9FjaAmfnR0AG8gdCF9c6Ma58mtEiOBX7Qtq2Tdri2ru+kHtOurbdUmuVNwB+b2Y+SJyUdR2iJLDezZyX9H5ION7N7WrFyMnFtm8X1bY6p1laxdnTGhKQ3EJqwJ5nZ5nhuNXCsma1uz7LJx7VtFte3OaZJW69UHMdxnNrw6aqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49SGVyqO4zhObXil4jiO49RGa5WKpCskPSFp44DrkvT3kh6UdJ+kI8Zto+M4jlOONlsqVwIn5lz/AHBoPM4BLh2DTY7jOM4ItFapmNkPgd/mRFkF/KMFfgwskLR4PNY5juM4VejymMoBwKOJ8NZ4bhaSzpG0Ph6Z3WmJuPMlLZc0v0Zbp5Yy2jrlcX2bw7Vthy5XKso4Z1kRzewyMzvSzI4EXhiYYKhIfg7cCvzcK5bhFNXWqYbr2xyubTu8qm0DctgKHJQIHwg8NmKay4CFQK8yOVrS88AGM9sxYtqO4zhzni63VNYCfxRngf0B8IyZbRsxzQ3AdmAH8DRwFd5qcRzHqY3WWiqSrgGOBfaXtBX4H8DuAGb2VeAWYAXwIPAc8F9H/Uwz2yFpKaHF8mrgRmZaLcskbYjXvOXiOI5TgdYqFTP7yJDrBnyygc/dAdwRWybb4+ntwBbCeMtCYLukpV6xOI7jlKPLYyqlkLQSWAnsUyR+qtXSa6Ekx1uWAXc0YOrEUVZbpxyub3O4tuNHoUEwPUhaH2d7lL2vNzNsIaHlchSwBO8K20VVbZ1iuL7N4dqOj6lpqYxKquWyBbgL7wpzHMcpRauzvySdKOn+6N9rTcb11ZKelHRPPM5u0h4z22FmdxBaKL2usIWEQXxfNOk4jjOENmd/7QZcAhxPWJNyl6S1ZvbzVNRrzey8MZvXm3oMPojvOI5TmDZbKkcDD5rZFjN7EfgWwd9X68QKYylwQnz1lovjOE4B2qxUivr2+r+i6/vrJR2Ucb3Pxw+wfx3G9brCYgWTXDSZbLlM/cLJJrR1ZnB9m8O1bYc2K5Uivr1uAg42s8OA7xFWwM++qd/Hz1P1mlmo5XL0tLZamtZ2ruP6Nodr2w5tzv4a6tvLzH6TCH4d+MIY7Mqkt2gSIK6874259Ny9LMDHWxzHmeO02VK5CzhU0iGS9gDOIPj72kVq/5RTgM1jtG8gqZbLmYQKxcdbHMeZ87TppuUlSecB64DdgCvMbJOkzwHrzWwt8KeSTgFeImzotbote9O4uxfHcZzZ+Ir6ej5zPv3uXm4ltFx2EFozU+Go0lclN4vr2xyu7fiYmhX1bfr4yRlvyWq5TJz7F/ef1Cyub3O4tuNn5JaKpHnAV4AXgdvN7Jt1GDaCPa0/kQxpuewE5hEqnKXxloloxXRB22nG9W0O13Z8FBqol/QJSV9JhD8v6eoYPA243sw+ThhMn/PkrHHpVSi7piKTWu/ig/yOMzdI/ten6X9fdPbXVcBKSQsknQycBJwTrx3IzCLGl8t8eAHfX3tKujZev1PSwWXS7wKpmWJvo38RJaTWu9BfySyalozmzC3ShWReAVr02rjsHcW+Mukw81/fHI+BD5cTVemYWaEDuJjgq2sL8MbE+Y8BJ8f33yqR3m7AQ4TxhT2Ae4GlqTh/DHw1vj+D4AdsWLrri9rQxkGoQJbH1/nAI8Cz8fW4+N7i668T1+Zn3LscmJ9Od8DnFIo7ydqO8r3Hod+k592iWmfk60WJ8KPxKHtt6H+gjLY59o5iX5m4yf/6znj0/vfH5aTbC4+cV5vK12UG6q8g1KarzOyhxPkbgC9LOomwAr4ou3x/AUjq+f5KOpRcBVwQ318fP0cWv3FV4roY6F/Br9S5dLhInKSXgEFxXgTuToQPI4ypbIznei2YZFcZwDuAywktmqfjud6Cy+WEiQILM8LpuO8AfpSImw6XmgLdspYiaPQWgn4A91FMo+T3ztOojNa9ew+O9jwX7fvPVBwz64C+yfA8+vNqptbA2fRveHdqItzrHXlNyWuQ/x8onG8TrYTe3kln1WRfmbivon8BNcAr8dxuOelCeACfx2h5tbFyoUyl8lngyfQ9ZraTavvHZ/n+OmZQHAvrWp4B9iPlckHSOcx0x02aj5+dwJ3xvTFTyfyS8KPC7K6ydIZdSX+mW5kT9+RU3HS4b8fLjmg7D3grsCmGe5WICH+wIoVDWqOTc+LmXcvTGmA9MxMxhv4xO6LvIHq6b4jhXiUyTGvonwH5HeCvYzhdgN6Ucy1537D/wKydWnO0Te/ymkw/z4Y828t+l7sI3eHJB6Ksh8t0uumHzap5daRyIZeCzdxPE1okxwI/qKnpfDpweSL8MeAfUnE2AQcmwg8B+01TF0LJ7oUmmuGzuhi6pO2Q753uLjyu4veuq8uj113Zs+fjqfDyrufdRJ7L664ZpnXl7sQC1wZ+ZlFtU+mU6lrOu1Y2btH//pDfpanuucLlwizbC3y54wi1594x/DPg8Boy73JgXSJ8PnB+Ks464h+R0EJ6ijgNust/zDH84ad6TCVl+3KK9z0XLhzKaFQinZH+mG3nXfoL23QFWUrrNv4DZbQdl71NazBCXm1sTCV3nYqkNwC3AyeZ2eZ4bjVwrJmtHnhjASS9CvgF8F7gV4Tm4EfNbFMizieBZWZ2rqQzgNPM7MND0vX56A3RlLapdT3Q3999FDNbO6f77ju3zif5XSxsUd0XHnJv17xBTOyaqjReLoyP3DEVM3uEMDsree5K4MpRP9iK+f76BnC1pAcJvr/OGPVznW6QKMy2MFNpbCf4d0v25S4hFGjJSiddsBXr6x0DlvCukBVumwIVeLIvP8v7Q2e+i9NNWnXTYma3ALekzn028f4FwtiLM0WkZt+kBx6hv2DbkFEwe8FWgYxZT6vJqcCj7o+P31JnknHfX85Q6tA2o5slWZjtjK/bgZ8wu2CbaprOuwntX83gWU+DKvCJxsuF8eNeip3CVNU24wk5OU4yqJtlztFE3k1p3/kxqabwcmF8tNJSkbQvcC1hkdjDwIfNbHtGvJeZ6ft9xMzct9iEMKRl4t0s4yOt/SrgeXycxGmItrq/1gC3mdlF0efXGuCvMuI9b2aHj9c0Z1QGtEymupulS6Qq9PRWDD+Z5haJ0z5tVSqrCAspITirvJ3sSsWZTIq0TJwGyKjQl+LaO2OkrT3qF5nZNoD4+toB8faStF7SjyV9cHzmOVXoeVIlTBNOemPeYP3bATg1kvJgm6zQFxLWebn2zthorKUi6XvA6zIufaZEMm8ws8ckLQH+VdIG63dm2fusLvtPmmiKajugy2vOD74PY9S8W6SrsQYzJxIvF9qhldlfku4nrMrfJmkxYcfINw2550rgO2Z2/ZB4PsujIfK0jS2U5GrsE8zMx0xKUCXvZunOzOQIr9AjXi6Mj7a6v9YCZ8b3ZwI3piNIWihpz/h+f+Cd9LvFd7pFcofLOf2EPA68q9HpKm0N1F8EXCfpLIJzutMBJB0JnGtmZwNvBr4m6RVC5XeRmXml0iEy/Fz5gPAY8K5Gp8u0UqmY2W8IjiTT59cTNvjBzH5EKKCcDpIu2BJ7hXiXV/PMml3nXY1OV2ir+8uZfGbNMmrXnOkmNcPLuxqdzuK+v5yhDNA2vajOC7aKDMq7OZ6cfe1JQbxcGD/u+8spTFrbMnuFOMNJ6pvjydln1lXAy4Xx0Ur3l6TTJW2S9EocnB8U70RJ90t6MLpzcTqEzzJqlGT34jxCxeLdXU7naWtMZSNwGvDDQREk7QZcAnyA0NT/SJxd5DhzgfS4ydsIa1CWeiXudJm2Zn/1tibOi3Y08KCZbYlxv0XwGebTip2pZ8AUbffk7HSeLs/+OgB4NBHeGs85zpzAuxedSaQV319mNmsFfVYSGecyZxWkfPzsVcxCpwiubbO4vs3h2rZDq7O/JN0O/EVc9Ji+thy4wMzeH8PnA5jZhWM10nEcxylMl7u/7gIOlXSIpD2AMwg+wxzHcZyO0taU4lMlbQWWAzdLWhfPv17SLQBm9hJwHrAO2AxcZ2ab2rDXcRzHKcbULX50HMdx2mNq3LTkIWkj8EINSe0PPDWF6QDsZWZvLXtTB7WtM6260qmkLXRS366l49o2lw5U0Le1SkXSFcDJwBNZRissYvk7YAXwHLDazH5a8eNeqMNFQ12uHrqWTi+tird2Sts606oznRFu75S+XUxnhNtd2wJplb2nzYH6K4ETc65/ADg0HucAl47BJsdxHGcEWqtUzOyHwG9zoqwC/tECPwYWxK2HHcdxnI7S5SnFhVfUSzpH0vp4bMyIcllNNk1rOgPTmkBt60yr8XSq6pvaX2UkG0oyMelMYN7tWjqV0mp78ePBwHcGjKncDFxoZv8Ww7cBf2lmdw9J011cN4Rr2yxF9c3YTtidTA7B8+746HJLZStwUCJ8IPBYS7Y4Bajw9OxUI73r5tGuu9MVulyprAX+SIE/AJ4xs21lEqhzPxZJD0vaIOmeMjMiJF0h6Ylk81vSvpK+K+mB+LqwYjoXSPpVtOkeSSsKpHOQpO9L2hz3tPnUCDYl9f0s4en5VuDnZQq4trXNSauUvg1qu0aDtxN+GriKAbpX1TZHk4nPu14uZKZTW97FzFo5gGuAbcDvCK2Ss4BzgXPjdRH2U3mI8Cc6smC66+PrbvHeJcAewL2EboKq9j4M7F/hvvcARwAbE+cuBtbE92uAL1RM5wKC77Qy9iwGjojv9wZ+QdivZqhNPW0H6PsAYSMpA54Flk+KtnXpO4q2Q/LuhvhfeRZ4hNBCmU/wSHFcPJ+pe1VtpzXvZmjr5UINebcvrapidvVIZJ7lwLrE+fOB88edeeK9B6d+9PuBxYkf8/6K6ZTOPBlp3ggcX8Qm+iuVtL7/g/DUvKvgmyRtm9C3jLZD8u6lwH+QUXEQKpdHBuk+irbTmHe9XGgm7yaPLnd/lULSSkmXAfvEU3Xvx2LArZLuVnCpPQqLLHblxdfXjpDWeZLui83gQl09PRQmSrwduDPPpgxtYba+W4BribsTxvuK9vN3VVuoqG9RbWPczLzb6/Ii7JT6IhnbCVsYoF9KYlfIVFdZndoy7LuUpI286+XCEMrk3SymplIxs5vM7BzgmXiq8H4sBXmnmR1BWJT5SUnvGSGturgUeCNwOKF75ItFb4wFzj8Df2Zm/54XN0NbyNb3RTO7I74vM77SRW2hor5ltIWBefdVzGj4ORIVtqVmelliMy/NzAy7Nb4eP03awsh518uFHMrm3SxarVSGDZhJWi3pycSA09klkq919piZPRZfnwD+hbDdcVUeV1zIGV+fqGjT42b2spm9Any9qE2SdidknG+a2Q0VbcrTNz07admQ79E5baM9pfWtUdv/zIyG84HfWbFdINPa/6f4XerQFiY/73q5MICa8m57lYqk3QgD8R8gNN8/orAnd5przezweFxe4iNq249F0jxJe/feE54YsxZTFWUtcGZ8fyah/7KKXUkPA6cWsUmSgG8Am83sSyPYlKdvcnbSdmCDBkw37qq20Z5S+tas7SLCOMkOwtP1NwqanZ4Z9suo/f9JcIs0irYw+XnXy4Xse+rKu63O/ho6YAasBr5cMt3kYPIKwiyGhwjbGFe1dQlhlsi9wKYyaZE9y20/4DbCjKnbgH0rpnM1oRC5L/74iwuk8y5Cc/8+4J54rChiU1LbYfoyMzup96SdOZjcBW3r0ncUbQfk3QeiLX9TMr/2tH9rtP9F4GVCJVNmAsVU5t28fOvlQrW8mzxaW1Ev6UPAiWZ2dgx/DDjGzM5LxFkNXAg8ScgEf25mj2Ykl0zXV842RFVt42DzrYTCbgfhiW4Doatmg/lqcKCZvJuh/SrgeeaY7l4ujI82x1SKDJjdBBxsZocB3yMs8pqdUMLHD2EvAacmatI23R22hYoLJaeNMeTdwgslpw0vF9qhzZbKcuACM3t/DJ8PYGYXDoi/G/BbM9sn63oinj+RNMQo2sYCbBkzLZQ5//Scpqm8m9D+1YQ+8TnXYvRyYXy0ufPjrgEz4FeEAbOPJiNIWmwzrllOIexV70wgscC6A0BS7+kZZp6eFwDbJblzxJrpaR8rl57uyRbjQlx7pyZaq1TM7CVJ5wHrCK4TrjCzTZI+RxhUWwv8qaRTgJcIe6+sbstepz4srKdYyuynZ4BlsdKZ+qfncZPSvadxb/oxuPZODbTq+r4JvJnbHA0NJKfduB9FaMXOObfu4867c0l7LxfGx9SsqHcmE0u5GSFM0+xbODlojYszGgW0d5f6TmnaHFOpFUkrgZX0+6dyaqBpbXPGW7L6/Y8iFH5T0z3TZt4tM9YVz09U19ggbZMTRyblu0wKI3d/SVoCfAbYx8w+VItVo9njzdyGGJe2Q2aK7QTmEbtn4i1TUTh0Ie/mzBRbBVxJomss3jIR2ie1zej2m5puvi5QqPtL0ickfSUR/rykqwHMbIuZnVXlwzXc99eekq6N1+9U8J7pTDmWcJBI/zqLXoWyq3uG1HqXZFeZd5uVp6c98BP61xZBqmuMfu0XJbXuuPalfNM55Sja/XUVcL+kvyYs5z8JeMcoH6wZ31/HE9wL3CVprZn9PBHtLGC7mf2+pDOALwB/OMrnOpNFasbSFsJAMswu6CAUdFfGc0/HcyN336S7SvLC6c+Y1G6WjJli0N8tCf3a30tsQcYuyl0D/h3sOkt3sW6Y1N+pk5TwVXMxoRLYArwx4/r1RdOK8Yv4/lpH3JCIUAE+Reyyy0l3fRk7puUg4WsrHc67lhXusrYZ3yvpUyy5C+JO+neiPC4Vd35GWlmaLErdlxd+NB6D4nZe34ra/5r+3Sc/ngqntV9UJf8Ny9dltB2SjwbaV+a/NErcEX+X2u0rY0+ZgforCIsPV5nZQ72TkvYD/hZ4u6TzbcCK+AyyNss5ZlAcC+taniE4OHuqhN1Eb6TQ7wZGqXPpcJE4SVczw+LUne58ZhwGQnAE13syXE4YfM16Yn8H8KNE3HR4pP7lMWj9IrA+ce5twFsInlhF/0AzwCvx3G70P1kvJ3hlHaZRsssNgtfXhQPCve7k1wyIu4w4KF6UjuXd/wDuTpw7jPCdfknQC4LW/xv4fxPhVzG4VZPMq73wIQQHjTsJWr6Vmd/3Xga0RMvkWwstsd53OTrHvmReSH9mlu1V/nfpuIfF8LL4vXdEe3ph6M/zgzSpy75S+papVD5LcOzYd4+Z/Yawt3xZivj+KrShjsKOa71d16bZx888Qmb6JYnMQugmTP4pVjK4oDs5FTcd7iv4JkDbnYQd6mB2JQMzf0RjcPfNMI12Ju67CfjrAeF0RfadVNxdOzb2mAB980hqfxih8O9VBoMq+3QlncyrECqt3kSMvoINOJvBv9msCruEthtz7EvmhfRnpm2v+r9Lxz2KmQee7YQHoMzKgHxN6rIPyjwQFWxefRq4ATgW+EFNTWnv/irfrB3U3ZDVvVC0S6ZwF82ka5ujZxGNaulSmCt5N0f7vPxXphst/ZuN1LVY0L4y/6VR4ia7cdM65HXrNmXfUH37tCyQGY4j1OR7x/DPgMNryGSvIozPHALsQWjCvSUV55PAV+P7M4Drpv2PmZO50xnt14lruYVZ3rWs8LRqm6P1SJVBjfZMlb5FdE+FhxZseb9ZXdrW9V+qGpfsMZ6Blek47Cvz++auU5H0BuB24CQz2xzPrQaONbPVA28siKQVwP9kxvfX3yZ9f0nai7DhzNsJvr/OMLMtQ9Jsfa5/GTJmDvXmzyeb4VnrBMa+CHDStJ00XN/hM+1GSHeitC0zw7AtGwfhvr9aJGMR1mr6F5x1aqHfJGk7ibi+zeHajo+pcdMyKWSsFk8OhkH/YHJWa6TU7CHHcZxxMjWVSpd9fyUqkt7ivWQXVrIS+QmhRZJsjTw+doNTdFnbacD1bQ7Xdvx491fDpLq40uMkE7XzXte0nTZc3+ZwbcdHK67vJe0r6buSHoivCwfEe1nSPfFYO247q5Lye5Ts4ppHqFh6/pQ2WL+fK8dxnImmrf1U1gC3mdmhwG0xnMXzZnZ4PE4Zn3nVSbRMbo2vW+h3zPc24v4VXpE4jjNttDWmsoqwkBKCs8rbgb9qyZaRGTL4voQOjpM4juM0QVuVyiIz2wZgZtskvXZAvL0krSfsUX+RmX17bBYWJGNacHrwvVeR+Kwtx3GmnsYqFUnfA16XcekzJZJ5g5k9FjcC+1dJGyzhzDLxWWP3n5TazGhYy2RimXDfVJ3H9W0O17YdWpn9Jel+wqr8bZIWA7eb2ZuG3HMl8B0zu35IvMZneaRaJ2kHb1M7VuIzaJrF9W0O13Z8tDVQvxY4M74/k7CKvA9JCyXtGd/vD7yTUJCXoq4d6HJmdC2I38EH3x3HmfO0NaZyEXCdpLMITtFOB5B0JHCumZ0NvBn4mqRXCJXfRda/K+RQ0uMdVfcKKTBu8hOvTBzHcVqqVCzswfLejPPrCfsDYGY/YvS9o9MzsUpvkjQgnakaN3Ecx6mLaXfTMmsv6hLpJacJz0pnLs3oclcXzeL6NodrO36m3k1LGVfaOT66WvcQ3AV8sLNZXN/mcG3Hx9S0VAaRbFFkjLHs8gIco2f56AJYZmZ3MEdaJo7jOFVpy/fX6ZI2SXolDs4PineipPslPShpkCuXMiTHRhYSdpvsuVM5mhwfXTV8tuM4ztTT1pTijcBpwA8HRZC0G3AJ8AFC99NHJC0dFL8gvbGR5AZYvQoG3EeX4zjOSLQ1+6u3NXFetKOBB3vbB0v6FsFnWOm1KonP3RErpuS4CXR4LxPHcZxJostjKgcAjybCW4FjsiKm3DHslZdoaowla1qwj5skKKOtUx7Xtzlc23ZobPZXnu8vM7sxxrkd+Iu4PiV9/+nA++NCSCR9DDjazP6kEYMdx3GckWmspWJm7xsxia3AQYnwgcBjI6bpOI7jNEhbA/VFuAs4VNIhkvYAziD4DHMcx3E6SltTik+VtBVYDtwsaV08/3pJtwCY2UvAecA6YDNwnZltasNex3EcpxhTt6I+C0kbgRdqSGp/4KkpTAdgLzN7a9mbOqhtnWnVlU4lbaGT+nYtHde2uXSggr6tzf6SdAVwMvBEltEK843/DlgBPAesNrOfVvy4F+pw0VCXq4eupdNLq+KtndK2zrTqTGeE2zulbxfTGeF217ZAWmXvaXNM5UrgxJzrHwAOjcc5wKVjsMlxHMcZgdYqFTP7IfDbnCirgH+0wI+BBXGXSMdxHKejdHn2V9bixwMqpnXZ6OZMdTqjpDVN36WL6XTBhmlNpws2dDmdSmm1OlAv6WDCvvNZYyo3Axea2b/F8G3AX5rZ3Rlx+1bOVh24c2bj2jaL69scrm07dLmlUnjxo5ldZmZHxsGpOmZzOBHXtlmK6itpvqTlcfsGpwCed9uhy5XKWuCPFPgD4Bkz29a2UY4zbhL7AN0K/NwrFqfLtFapSLqG4LzxTZK2SjpL0rmSzo1RbiF4En4Q+DrwxxU+o7b9WCQ9LGmDpHvKTLOTdIWkJ+Kc+N65fSV9V9ID8XVhXho56Vwg6VfRpnskrSiQzkGSvi9pc9zT5lMj2FSLvm1rm5NWKX2b0ha4mP59gJYV+U4xnUraxnunMu96uZCZTm15FzObqgNYH193Ax4i7Oy4B2FDrqUjpPswsH+F+94DHAFsTJy7GFgT368BvlAxnQsIDjnL2LMYOCK+3xv4BcHl/1CbetrWrW/b2tal7yjaDsm7G4BtwLPAI8D8prWd1rxbZ77tQt7tgrbpo8vdX6Oyaz8WM3sR6O3HMlYse+r0KuCq+P4q4IMV06lizzaLi0jN7FmCC5wDKtjUur51aZuTVll7mtL2n4Cvktg0TmMYY5nSvNt6voWp1Rbo9phKKSStlHQZsE88VeeUZAADbpV0t8KsklFYZHF8KL6+doS0zpN0X2wGF+rq6aEw++7twJ15NmVoC0HLbYmCbRR9u6otVNS3qLYxbpG8+5/M7I5ehULxMZY6tWXYdylJG3nXy4UhlMm7WUxNpWJmN5nZOcAz8VTWtpKjzJ9+p5kdQevSLIkAAByJSURBVFjp/0lJ7xkhrbq4FHgjcDihe+SLRW+MBdE/A39mZv+eFzdDW4BXAx8iFmzAnlTXt4vaQkV9y2gLlfLuMoqPsUyVtjBy3vVyIYeyeTeLViuVYQNmklZLejIx4HR2ieRr3Y/FzB6Lr08A/0JoRlflcUXvAPH1iYo2PW5mL5vZK4TJDIVskrQ7IeN808xuqGjTXvHoFWz/hYr6dlHbaE9pfWvSdlje3UDYAntHfN0yqCusZm1h8vOulwsDqCnvtjr7azfgEkINvxT4iML2vmmuNbPD43F5iY+obT8WSfMk7d17T+jb3ph/Vy5rgTPj+zOBGyvalXRbc2oRmyQJ+Aaw2cy+NIJN1xGe8J4jFGzvAr5btp+/q9pGe0rpW6O2uXnXwtbXSwlaHRXjz+oKa0DbKt8lkxbzrpcL2ffUlXfbm/1F2EtlXSJ8PnB+Ks5q4Msl003OUFpBmMXwEGEb46q2LiHMErkX2FQmLeAaQhP0d4SnpLOA/YDbgAfi674V07ma8NR6X/zxFxdI512EyuA+4J54rChiU1LbGD6NMBtpC/A38X2pGUpd0LYufUfRtmrejf+jZ+PnPgssr0Pbac67RbWdhLzbBW3TR2tuWiR9CDjR+vegP8bMzkvEWQ1cCDxJyAR/bmaPZiSXTLc2t89OP3naSlpOeFqeT+iWWQU8D2yw8GTtDKFK3k0M2i8ktBh7rf1luPa78HJhfLS2nwrFBsxuAq4xs/9QWBR5FXDcrIT6ffzsX6uVc5wS2vb6+QGeJvxWC4DtkpZ64ZbNqHnXwmywpcRKJJ7eVcnMZe29XGiHNlsqy4ELzOz9MXw+gJldOCD+bsBvzWyfrOuJeP5E0hDDtI1PzcsIM8NuZKbVcgKhwPOn5xzqyLsZLUbXHi8XxkmbLZVdA2bArwgDZh9NRpC02Gb8fZ1CWJDjdJRYYN0RK5deq2U7YczFn57HQ7LF6No7Y6e1SsXMXpJ0HrCO4DrhCjPbJOlzhEG1tcCfSjoFeImwanR1W/Y6xcnokkmuqwBYJmnOPz03QQHtj5bkY11OY7S6n0oTeDO3OapqmzGY3JsGmwwvYY4XdE3k3ZT2T8fTC5hjg/peLoyPNru/nDlCgafne4F5ePdM7aS0T451QVgUdyXeNebUyNRUKpJWAivp90/l1EAd2vbGW2J6yX7/nYQKZc52jTWdd3PGumDKuyW9XBg/I3d/SfogcBLB0dglZnZrHYaNYI83cxuiTm0TM8W2MLsrLBnu66JJvp+GQi/JOPJuQvdZ048Z0i2ZvHfStPdyYXwUctMi6ROSvpIIf17S1QBm9m0z+zhhEP0Py3y4hvv+2lPStfH6nQreM50pwMx2WPC6+zgzLkeWEgqxpLPEo5nxyLs5HrtckqgD2+wmbeiCPXkkdN9h/e5esrS/lxmtF5HyjNz17+q0REGXAq8huIteAJwM/Ax4dSrOF4mbvBRMc+hmOYTdHr8a359B8AM2LN31RW3wo9wxDm0JBVrS3ctxzLgh2RmPnkuS41Jx58djefp9Iu3M8IjXejY8Go9Me7qgbwntf02/+5ePp8Jp7RdV1TrDhpHTGaZtGRtG1HPkdCbtKCPQxQQHkFuANybOC/gC8L6Sghfx/bWO6MuIMP7zFLHLrmjmief2iMfuiSN9rkqcPUrEqTvdhcC7CRX97vH13fF8OryA4NtnQUxjYUZ4aOYfo7ZJ2xcyuNA+gf6C7vicuAfQXwgemBM371o6neMZXOmdQAl/aFn6tpCPe3klqUFak/T3TlZCZbXu/cbvyrgvLzyrAi+qLbMfXBbkfO+kfb14g/5nyfCwdIb9Tnmfk/X/7YVHKRdm5YkqlUqZgforCF0Pq8zsocT5PwHeB+wj6ffN7KsF08vaLOeYQXEsrGt5huDg7KlkpCl2xzAPeAvBy+hzifAvCYPevb7v5Tnh9DTSdwA/SsTtC6dnALWk7U7CBkE9DgPeSnDaBzOaiMEDz72u3dfE15WJaxBa3IPi5l1Lp5P87J7Wr2TYA2E84o7kF+1g3u1pL+Bt9Oe/ZBgGT7Yoo/VRwOXx+rB0VuakU0bb9OzDowgeerNsSNqX/i/l/e/y0tlO0BL69VwW3/ccO5b9P5exLx03bc9zwDxJ/4WyY2glWhb/RPClf1otTSQ4Hbg8Ef4Y8A+pOJuAAxPhh4D9Rnna6/rBTJN5EbO7F4p2TSTD6afnvLh9Xm4nQVtmd4cMepLN0zMv7rB0Bna5MfuJeKSWSteOgnl1mJ7J7s10i6dMOqO0VPJsyOt+HfZfGpROuvtwmCZF/89l7BvWlTwrnxfOFwUzz6eBG4BjgR/UlCHH1v3V5YPBhdCwiqPqn29YATAw80yCthl6NjqmUsaeAnE7r2/R71lUT2YX8LWMzQzTtqgNqWtl/0uD0ik7VljXA1CZyr3ww+YsrQv8GMcRmkN7x/DPgMNryISvIozPHMLMQP1bUnE+Sf9A/XWT/scckpnLPrWNXGBmhSdV20k/5qq+RfNfk9rm2VDXfynnvz90gkdRG8rYN6QsaqalAryBUPC/OXFuNXBlTT/0rM1ygM8Bp8T3ewH/H/Ag8BNgyaiZp+U/TfqHymsSD604WvgendN2mg7Xd25pm1cZtG1PVrjo4b6/mrFhPtkLzJKDd72NrK5kQjZY6oK204zr2xyu7fhwNy312zGf/lXKq+mfabIzvm4ntL52+cRKVCJ9s1japivaTiuub3O4tuPHWyr1fGayZbKM2dvqXskUeOT1p71mcX2bw7UdH1PTUmmLAW7dk2snslojj7dgquM4TuO0UqlI2he4FjgYeBj4sJltz4j3MjPjEo+Y2SnjsnEYqa1zk91bS5iALi3HcZwmaKulsga4zcwuio4k1wB/lRHveTM7fLymDSdj46Pe6tTtzFQkXok4jjPnaKtSWUVYSAlwFXA72ZVKZ8gYN0m2TlYBvkWr4zhznrYqlUVmtg3AzLZJeu2AeHtJWk/Yo/4iM/t2VqSm/ScVGTeZ1sqkg76ppgrXtzlc23ZobPaXpO8Br8u49BngKjNbkIi73cwWZqTxejN7TNIS4F+B91q/M8usz61llseQGV0nJM7PmdaJz6BpFte3OVzb8dFYS8XM3jfomqTHJS2OrZTFBEeVWWk8Fl+3SLodeDth9X2jFGiZ+LiJ4zhOBr83PEojrAXOjO/PBG5MR5C0UNKe8f3+wDsJBX1j9HayI+w2mNwBrzej6wTCRmJzomXiOI5TlrbGVC4CrpN0FsHH1ekAko4EzjWzs4E3A1+T9Aqh8rvIzBqrVHxGl+M4zui0UqmY2W+A92acXw+cHd//iDBm0Rg+o8txHKdepmZFfVEfP4mKZAtwF3NwRldZ3H9Ss7i+zeHajp+p9/1VwmPwnJzRVQafQdMsrm9zuLbjY2paKlmU9Bjs4yaO4zgj0srsL0mnS9ok6ZU4OD8o3omS7pf0YHTnUpbkOElvHcx2QstkO/A2fEaX4zhObbTVUtkInAZ8bVAESbsBlwDHA1uBuyStLTkDbAPuMdhxHGdstDX7azOApLxoRwMPmtmWGPdbhBlZhSsVM9shyT0GO47jjIkuj6kcADyaCG8FjsmKmPLxs1fymo+TjEaets7ouL7N4dq2Qyu+v8zsxhjnduAv4vqU9P2nA++PCyGR9DHgaDP7k0YMdhzHcUamFd9fBdkKHJQIHwg8NmKajuM4ToO05furCHcBh0o6RNIewBkEn2GO4zhOR2lrSvGpkrYCy4GbJa2L518v6RYAM3sJOA9YB2wGrjOzTW3Y6ziO4xRj6lbUZyFpI/BCDUntDzw1hekA7GVmby17Uwe1rTOtutKppC10Ut+upePaNpcOVNC3tdlfkq4ATgaeyDJaYb7x3wErgOeA1Wb204of90JNG3fVtQFYp9LppVXx1k5pW2dadaYzwu2d0reL6Yxwu2tbIK2y97Q5pnIlcGLO9Q8Ah8bjHODSMdjkOI7jjEBrlYqZ/RD4bU6UVcA/WuDHwIK4S6TjOI7TUbo8+ytr8eMBFdO6bHRzpjqdUdKapu/SxXS6YMO0ptMFG7qcTqW0Wh2ol3Qw8J0BYyo3Axea2b/F8G3AX5rZ3Rlx+1bOVh24c2bj2jaL69scrm07dLlS+Rpwu5ldE8P3A8ea2bYhafq+CQ3h2jaL69scru346HL311rgjxT4A+CZYRWK4ziO0y6tVSqSriE4enyTpK2SzpJ0rqRzY5RbCFv+Pgh8HfjjCp8x6n4sybQelrRB0j1lptlJukLSE3FOfO/cvpK+K+mB+LowL42cdC6Q9Kto0z2SVhRI5yBJ35e0Oe5p86kRbKpF37a1zUmrlL7TpG28dyrzrpcLmenUlncxs6k6gPXxdTfgIWAJsAdwL2EzrqrpPgzsX+G+9wBHABsT5y4G1sT3a4AvVEznAoJDzjL2LAaOiO/3Bn5B2GNmqE09bevWt21t69J3FG2byrtVtZ3WvFuntl3Iu13QNn10ufurFJJWSroM2Cee2rUfi5m9CPT2Yxkrlj11ehVwVXx/FfDBiulUsWebxUWkZvYswQXOAXk2ZWgLHdC3Lm1z0iprT2ltwfNuCXvqyLuubXY6lfJuFlNTqZjZTWZ2DvBMPFXnlGQAA26VdLfCrJJRWGRxfCi+vnaEtM6TdF9sBhfq6umhMFHi7cCdeTZlaAv16ttVbaGivkW1jeeazLt1aguTn3e9XBhCmbybxdRUKhlkbSs5ylS3d5rZEYSV/p+U9J4R0qqLS4E3AocD24AvFr1R0nzgn4E/M7N/r/DZderbRW2hor6ubSHayrteLuRQQ95tt1IZNmAmabWkJxMDTmeXSL7W/VjM7LH4+gTwL4RmdFUeV/QOEF+fqGjT42b2spm9QpjMUMgmSbsTMs43zeyGijbVpm8XtY32lNa3C9pKmi9puaT5NWsLk593vVwYQE15t9XZX7sBlxBq+KXARxT2k09zrZkdHo/LS3xEbfuxSJonae/ee+AEYGP+XbmsBc6M788EbqxoV9JtzalFbJIk4BvAZjP70gg25eqbLNiG2NNJbaM9pfQdl7YZn7tL66j3z4Fbgc2SXhfj1KEtTH7e9XIh+5668m57s78Ie6msS4TPB85PxVkNfLlkuskZSisIsxgeImxjXNXWJYRZIvcCm8qkBVxDaIL+jvCUdBawH3Ab8EB83bdiOlcDG4D74o+/uEA67yI09+8D7onHiiI2JbXN0heYH3/XRcAjwLPxdX7i2vyuaVuXvqNoWzXvRl2TWh8X3xuwM37mBsL0/L8pme+nMu8W1dbLheJ5N3m0tqJe0oeAE61/D/pjzOy8RJzVwIXAk4RM8Odm9mhGWkl3DPub2cHNWj93KKpt4gl5IaEwm0co8HYQZpBcGa9tJ0zh3NGo4RPCqHlX0nJCq2SQ1kcRns6T4SXAhmn/DbxcaIc2x1SKDJjdBBxsZocB32Nmalv/TWaXmdmRFtww1LU5jUMpbZcRCq75hAplJ6GQ2x6v964tBJYV7R6bdmrIuxsIGve0/gmhO/mE+LqEfu3vJVRCP5927cto6/mxPlrbpIsCA2Zm9ptE8OvAF8Zgl1ONXuEGqSfixLne6xZmWjXbJc2Zp+e6MbMdcSxyGf363QEgKfm7JFuQECr3DRn3zilSreztkrwlPQJtViq7BsyAXxEGzD6ajCBpsc34+zqFsCDH6SADCrfHe9eT1+hv1UB4ep6H/6ErEfW6Y9C1hPZbCP87yK7c56r26fy4jAF6OsNprVIxs5cknQesI7hOuMLMNkn6HGFQbS3wp5JOAV4irBpd3Za9znCGFW5UfHqOT5Jz+ml6FFLa51Xufdr3zjH9uqdb2Rty4jpDaNX1fRPIXVw3Rp3aJiqK3tNz3sDynBhoHnfeTXf70K/10zHagnitN91/IiuZYdr6g0t9tNn9VSuSVgIr6fdP5dRAE9qWeHo+hSnvKquibx2FYLrLkn7te5N4XhNfjyYxqyyxpqzTBXFRbVP50SuYEfCWilOYtLZN/PmGPD2npyqfwExhOPFdZUXzboZGtVSuqXTTLZXVhIVveVOXO9uCbFvbucTILRVJbwY+BewP3GZml45sldN5mpoxkzXgX2Kgua+rLD2rbJIrnBSNDCxntFxIvd+eeh3YgkzeO2Ha+6D9qBRc/fkJ4CuJ8OeBq1Nxfg/4RtEVpfGeE4H7CRtxrcm4vidwbbx+J2HNyrA015exwY9Sv1dyVfJyZlZuPwssH5MNu1bmZ9jw8VT418ysNC+8yr+MDVnhOvQd8r3Tq+hH+tyK2idt6Onc0/24lH1p7Rc1oV9VbTO+Yy35ZK4eRX+Q1xDcRS8ATgZ+Brw6cf0U4EfAR0v8yEM3yyHs9vjV+P4Mgh+wUpnHM0SNmaW/UmmlYMv4bQcVXumCLl3hZBV8mQXdkAK9tgIzJ+/WViE2oH+WfUlXMWUr+1z9Bv0uZbUt+L0G/d6V7Bslbg2/UZX8WO2hq4RxFxMcQG4B3jggzs0l0ivi+2sd8QmY0FX3FHEcqEjmycgQC+LxLkITdw9g93jskQpnnRsULhJn3OkuAN4dv2fvOy+I1xdmhIdmHrILvd5nlPl+dWqQ/C67x/C7CXtkJH/7dPgEBhd0BybiPhqP3rXjU/edWzCdoRUvg/NuuoJ89xj1LZpu8n+1MPW9kzqkv0sZ/fJ+l1J5d0CcrO/77hz78vJY2r4y3yWdbq/cSv+fe2VY8j/Qy/+9e/L+Awek0lmQSqfSQ2OZMZUrCIsPV5nZQ72Tko4FTiN0Vd1SIr2szXKOGRTHwrqWZwgOzvpcLqR9/CQupftHjyJ44uwNwr2NMOg4DcwjfN+NzDiGyxpwfQehVbkwK5weG8nRFgt95Xc29YUKspPQNZoOG3AYM5rsSIVh8FqZkxk8Cyp533aCK6G/LpAOZPTPl8i7OxOfOaqn4Sbo6d5zv/Q24C0EW59LhH/JjAZl9cv7XcpoW4aNDM4nK1P2JcNp+8p8l3S6yXIr7/+cvnZWjn0Ad8fvk1UunM2QvDuQEi2LfyL40j+tTFMoJ73TgcsT4Y8B/5CKswk4MBF+CNhvhJZKulk+lnGAJg7ym+hpT7U7GdwVkQ4P1IQpG69KaJjVBTPwiTipfYl0RmmpzOp2meRjBP1yf5ei2jaUT4bZN0rcov/n9LW8sa2y3cOF811RUT8N3AAcC/ygpozVePdXOgNn/FE7/Qct8edLV5bJDFEmc+dqktZ2mo4crcv23Y/Shz3nxwOH6TfC71JL3h3FvqpxU+VW3v+51gegqvmviIjHEZqAe8fwz4DDa/hxXkUYnzmEmYH6t6TifJL+gfrrRs08VTNlC3+qvB992GybrMHlQpl7HH9MP1xf17a0/WUqoMYfgPKO3MWPkt4A3A6cZGab47nVwLFmtnrgjQWRtAL4n8z4/vrbpO8vSXsRNpx5O8H31xlmtmVImhO1yCk5fz+eGrQnyX8DvpQI966PzYWGLyxtFte3OVzb8TFnV9RnbG50gpk1vsgppxLJWrWcrDha94Hlf8xmcX2bw7UdH3PZ99cGUp5Jm1r1m+M8cTX9Myx6tvRe0yvCB7qWbxL3q9Ysrm9zuLbjZ862VGLcvFZD4e6wdGVUoktr1ja7MX4n3Vn4016zuL7N4dqOj6lpqVTB+j2TLqe/1XC0pOcZ4LtoUOsj7X+K2a2R5HqD3tavmbv2OY7jTBqtVCqS9iX49DoYeBj4sJltz4j3MjNP+4+Y2SkNmpXsDnsauIq4iGiAo8Isz7kw21U75HRpxfNeiTiOMxX83vAojbCG4NH4UOC2GM7ieTM7PB5NVii9VstSgvuOMwkVynxCBZGsKNLheYSKZQeh0lgbX3vhnyTSXWpmj5vZHV3r2nIcx6mDtiqVVYSWAPH1gy3Z0YeZ7YgzwH5Cf8WQrijS4beRqDTor0R29NL1isRxnGmnlYF6SU+b2YJEeLuZLcyI9xJwD2GP+ovM7NsD0uvz8WNmB9dg48DB96zwqJ/XVZrQ1pnB9W0O17YdGqtUJH0PeF3Gpc8AVxWsVF5vZo9JWgL8K/BeSzizHPC5PsujIVzbZnF9m8O1HR+NDdSb2fsGXZP0uKTFZrZN0mKCo8qsNB6Lr1sk3U5YWZ9bqTiO4zjt0daYylrCYDjx9cZ0BEkLJe0Z3+8PvJOw3sNxHMfpKG1VKhcBx0t6gLDp0UUAko6UdHmM82ZgvaR7ge8TxlS8UnEcx+kwraxTMbPfAO/NOL+esDkMZvYjwkC44ziOMyFMzYp69/HTHK5ts7i+zeHajp857fvLKYdr2yyub3O4tuOjlTEVSadL2iTpFUkDf2hJJ0q6X9KDkgatunccx3E6QlsD9RuB04AfDoogaTfgEuADhBXqH4mu3x3HcZyO0tZAfW8XybxoRwMP9nZ6lPQtgnsXnwHmOI7TUdpqqRThAODRRHhrPOc4juN0lMZaKnluWsxs1mLHrCQyzmXOKkj5+NmrmIVOEVzbZnF9m8O1bYdWZ39F1yt/EdenpK8tBy4ws/fH8PkAZnbhWI10HMdxCtPl7q+7gEMlHSJpD+AMgnsXx3Ecp6O0NaX4VElbgeXAzZLWxfOvl3QLgJm9BJwHrAM2A9eZ2aY27HUcx3GKMXWLHx3HcZz2mBo3LXlI2gi8UENS+wNPTWE6AHuZ2VvL3tRBbetMq650KmkLndS3a+m4ts2lAxX0nROVCvBCHS4a6nL10LV0emlVvLVT2taZVp3pjHB7p/TtYjoj3O7aFkir7D1dHqh3HMdxJgyvVBzHcZzamCuVymWeTmNpTdN36WI6XbBhWtPpgg1dTqdSWj77y3Ecx6mNudJScRzHccbAVFcqde7HIulhSRsk3VNmRoSkKyQ9Eacv9s7tK+m7kh6IrwsrpnOBpF9Fm+6RtKJAOgdJ+r6kzXFPm0+NYFMt+ratbU5apfSdJm3jvVOZd71cyEyntryLmU3lAewGPAQsAfYA7gWWjpDew8D+Fe57D3AEsDFx7mJgTXy/BvhCxXQuIPhOK2PPYuCI+H5v4BeE/WpK2VSnvm1rW5e+06TttOZdLxeazbtmNtUtlV37sZjZi0BvP5axYmY/BH6bOr0KuCq+vwr4YMV0qtizzcx+Gt8/S3CBc0AFm1rXty5tc9Iqa8/UaAtTm3dd2+x06sq7U12p1L0fiwG3SrpbwaX2KCwys20QfkzgtSOkdZ6k+2IzuFBXTw9JBwNvB+6sYFOd+nZVW6io75RqC5Ofd71cGMKIeXeqK5XC+7EU5J1mdgRhe+NPSnrPCGnVxaXAG4HDgW3AF4veKGk+8M/An5nZv1f47Dr17aK2UFFf17YQbeVdLxdyqCHvTnWlshU4KBE+EHisamJm9lh8fQL4F0IzuiqPS1oMEF+fqGjT42b2spm9Any9qE2SdidknG+a2Q0VbapN3y5qG+0pre+UawuTn3e9XBhATXl3qiuV2vZjkTRP0t6998AJwMb8u3JZC5wZ358JFNkJM8uuxYngqUVskiTgG8BmM/vSCDbVom9XtY32lNJ3DmgLk593vVzIvqeuvDu9s78szFZYQZjF8BBhG+Oq6SwhzBK5F9hUJi3gGkIT9HeEp6SzgP2A24AH4uu+FdO5GtgA3Bd//MUF0nkXobl/H3BPPFZUtGlkfbugbV36TpO205x369C2K3m3a9qama+odxzHcepjmru/HMdxnDHjlYrjOI5TG16pOI7jOLXhlYrjOI5TG16pOI7jOLXhlYrjOI5TG16pOI7jOLXhlYrjOI5TG/8/f5uI524CpRQAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -190,7 +192,7 @@ "source": [ "correlations = pcmci.get_lagged_dependencies(tau_max=20, val_only=True)['val_matrix']\n", "lag_func_matrix = tp.plot_lagfuncs(val_matrix=correlations, setup_args={'var_names':var_names, \n", - " 'x_base':5, 'y_base':.5})" + " 'x_base':5, 'y_base':.5}); plt.show()" ] }, { @@ -202,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -307,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -373,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -426,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -443,14 +445,14 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZhT1fnA8e9JZoZN1iDKIii444qxogGXxNoa97pjW1u1atu4tDbt1G62/WlH01ppY2tbtVq1LmhBi1GxiYpEQacoisUFEBBXvOwDsyXn98e5A8OQZDIzSSbL+3meeTJz77k37wSSd849575Haa0RQggh8snR2wEIIYQof5JshBBC5J0kGyGEEHknyUYIIUTeSbIRQgiRd1W9HYAQ5aRxzmPjWt95Y7LeuO4AnUgMUE5ngxo0dEnVfofM73vS2St7Oz4heouSqc9C9FzD3aEpiZXvXZu01pxKc2OfnRrU9G10DBs+27nnvtMHXBKc1wshCtGrJNkI0QOtK9+r2vrgn29KfLDsGlqaazo9oLqm2Tl27+n9Lrjy+qpx+7QWIEQhioIkGyG6KfHRyuotd97yQGL18nO7eqxzjwkz+n39mmmScESlkAkCQnTTln9Mv7E7iQYg8cGyc7c++Oebch2TEMVKko0Q3dBwd2hK4oNl1/TkHIkPll3TcHdoSq5iEqKYSbIRohsSK97NbowGWLFxC1e98CYX/+e1HXe0NNckVrzbo4QlRKmQZCNEFzXOeWxccu3np7Xfdtf/VnHdvLe2/fx/r77LFc+9AcDQIS7+74QvpDxXcu3npzbOeWxcHsMVoihIshGii1rfeWNyx+nNF+47mqdXrWFDUwtPr/yMOR+s4bapEwGYPfhwpu0Z4NV+4/nZ7udw97DjiO1yIO/X7EpLc3Pf1nffPKpXfhEhCkhu6hSii/TGdQd03Na/ysnZE0by6/r3+M8Ha5jpP5J+VU4AVlcPA6DJUcXC/nuxsP9e245z6gSDNrX8cV1d7AzgDeBl4JV4rbexEL+LEIUiyUaILtKJxICdtgHTph7G0bfP5IGTJrHXoP7b9i1tqWHZzN/T8NFSVj//T8YcP23bvoRysg7nCGCa/QXQ7KmLLQDm2l8vx2u9m/L4KwmRd5JshOgi5XQ2dNymd9+NUGQBw3fpR0u/ftu2J1CsGTyOCWd9rytPUQNMtb9+AiQ8dbGFbE8+8+K13rU9+R2EKDRJNkJ0kRo0dEn7n5NDBhN+cwVNLQnuvOQ0bn4yzomnTaV/w3o+qxpEi6PHbzMncKT9dR2Apy62mO3JZ2681vtxT59EiHySZCNEF1Xtd8j81nfeaKS5sa/u148XtiR4cMFinvr+RfR3OFhrbaL+w7VMmTSBrR9tYUyzxUfVQ0mqnM7HOcj++g6Apy62lHbJB1gRr/VKeRBRNKRcjRDdsPHn35qR+PyTc1YN35Uz/vQvHrzyK4wfMpBPXlnKv95+n0VbG7jrUj+O5StQQJOqYlW1ixU1w1lRM4L3a3ZlRZ/hbHDuNPyTK6uB54B/AU/LhAPR2yTZCNENm++s8zat+/A/9OurAFq2NPHJK+/RuqUZgD6D+zFmCKhEIv1Jqmua/3vQKef8fMPejcBhwDGYcRpXjsPdBPwbmIEkHtFLJNkI0UVWOKiAe4GvATRv2sonrywl0dSyrU1VlWLP3asznsc5/oDQwNpbf9h+m6cu5gAOAI5t9zUqh+FvBp5AEo8oMEk2QnSRFQ5eB/wWoGl9A5+8upRky849mAmjq1FKpTxHtlWfPXUxBYxne+KZCkzo2W+wjSQeUTCSbIToAiscvAD4J6Aa123mk1eXoluTKdvuObKaKmeHZJOD9Ww8dbHRmKTTloAmduc8HWzGXGp7BHgmXuvdmoNzCrGNJBshsmSFg1/GfCBXdZZoAMaMqKJvjT0DLY8rdXrqYsOBKWxPPofTs1JUknhEzkmyESILVjjoAZ4F+jWu28wnryxFJ9InGoBdx+46c9geIxapwcOWVO178IK+J529shCxeupigwE/cB5wMrDzMtXZa0s892MutWX+pYVIQ5KNEJ2wwsFDgBeAIY1r7R5NJ4nGdp07Er01v9Fl5qmLDQROBc7FJKCeJJ6lwB+Bv0v5HNFVkmyEyMAKBycAcWC3LiYagDvckei38xdd1+Qw8WwC7gb+GK/1LstReKLMSbIRIg0rHBwFzAP26kaiAYi5I1FffqLrmQ6J52SgbzdOo4EngelAVCoWiEwk2QiRghUODsNcOjsIoHlzIw0fr6Phk3W0bMp6hvAH7kh0bL5izBU78ZzC9jGe7iSet4A/APfHa71bchieKBOSbITowAoHBwD/ASan2t+yuZGPX3nvrURjSzZTjvu7I9GSmc2Vg8SzDvgbcHu81rsqx+GJEibJRoh2rHCwD+ZGx5MyNLv2/cjCrwFHZHHKg92R6OKcBFdgduI5D7gaOKSLhyeAmZhLbHG5xCYk2Qhhs8JBJ/AgZhwjnV+9H1n4V0yhy1RuZPtaNAo42x2J/iungRaYXcXgOOAa4AzM79UVCzGX2B6K13qbchyeKBGSbIRgW72zO4DLMzQLA1e/H1l4ud22o/eBCe5IVNf7fbsDZwKr3JFoJOcB9xJPXWwv4LvAZcDgLh7+GfB74A8yrlN5JNkIAVjh4E3AjzM0+SfwNVcglKz3+57ETB3uaLo7Er02LwEWGU9dbBfg65hLbPt18fAPgV8A98Zrvd0q2SNKjyQbUfGscPAHQChDkwhwpisQaqn3+wYAFqnvUTnRHYlG8xFjsbKrVH8Rc4nt5C4e/j+gFpgtYzrlT5KNqGhWOHgJcFeGJvOAL7kCoS0A9X7fmZiB7442ALu6I9GWFPsqgqcuth9wFfANoCurwr0I/DBe652fj7hEcZBkIyqWFQ5eiKn5la5o5SLgeFcgtL5tQ73fdzfwzRRtH3JHohfmPsrSY9dmuwSTePbqwqGPAdfHa73v5iUw0ask2YiKZIWDV2Om5aazFJjiCoQ+bdtQ7/c5gY+BXVO0n+aORB/MbZSlzVMXc2KqFHwfU406G4mNKxc//L+7a53J5q0Paa1n5S9CUUiSbERFsWed/Qr4aYZmHwEeVyC0ov3Ger/vaOClFO0TmEto63IVZzmxp06fBNwMHJrNMeuXvda4edWSx8ecMO1bUvSzPPRkzQshSop9H80dZE40a4GTOiYaW6oZaABzJdGkF6/16nit9xlgEmYGW6eVBZRSffuNGHs+sNRTF/uOpy6WeY1tUfQk2YiKYIWDfTHLH2e6j2Yz4HcFQm+l2T81zfZ/9yS2ShGv9Sbjtd77MFOlf4ApbbOT5k1rsd6cy7q3X6Zx3acjgNuBtzx1sXPsXpIoQXIZTZQ9KxwcDDyOuQs+nTXAl12B0MJUO+v9vj7AelLXCjvEHYm+2eNAK4ynLjYUM/X5GrJf7mABcK3MXCs9kmxEWbPCwd2Bp4DDMjRbgbl09l66BhnGa9YDLnckKitYdpOnLrYHZhztYrIrhaOBW4GfyZLVpUMuo4my1W7hs0yJ5g3gmEyJxpbuElpcEk3PxGu9H8Rrvd/ETB7IprSPAq4DXvfUxTx5DU7kjCQbUZascPAwTKIZn6HZXOA4VyD0cRannJJm+4tdjU2kFq/1vhmv9Z4CnAC8msUh+wIveupit3rqYv3zG53oKUk2ouxY4eBxmIXPdsvQ7HHMGM36DG0AqPf7HKRPNvO6HqHIJF7rfR44Cjgf6GzZaQV8D+nlFD0ZsxFlxQoHz8IsE5BpwPlu4ApXIJRVEch6v+8gINUEgCZgsDsSlbL5eeKpi9UA3wJ+Cbg6aa6B24CfSlXp4iM9G1E2rHDwMuBRMiea3wCXZZtobOl6Na9IosmveK23OV7rvR04EPNvm0lbL2eRpy6W7t9M9BLp2YiSZ1cF+DFm4bJMvucKhG7r6vnr/b4HgGkpdt3kjkR/0tXzie7z1MXOBf4EDO+kqcYs2Ha99HKKg/RsREmzwsEazE1/mRJNK/DV7iQam4zXFIl4rXcGMBFzg24mCnP/zhueuli6mYSigKRnI0qWFQ6OBR7BDCanswU42xUIPd2d56j3+8YCK1Ps0sBQdyS6oTvnFT1n93JuJ3Vh1PY08EdML6ch74GJlKRnI0qSFQ6eDLxG5kSzFvB2N9HY0vVq3pBE07va9XIe6aSpwqwoushTF8u2+rTIMUk2oqRY4aDTCgd/jbn5b1iGpqsxSwQs6OFTprsEI/fXFIF4rXdNvNZ7PnAupuRQJhOAFzx1sd9JYc/Ck2QjSoYVDu4GzCFz1WaAJZiqAEty8LTpko2M1xSReK33UcyMtYeyaP59YI6nLtbZ5TeRQzJmI0qCFQ5OBR4GRnbS9N/Axa5AqMcl/+v9vmGAlWb3GHck+mFPn0Pknqcu9hXgz8CITpquAs6K13pTFl8VuSU9G1HUrHBQWeFgEHiOzIkmAfwIODMXicaW7o709yXRFK94rfdfmLGczno5Y4G4py721fxHJap6OwAh0rHCwSHAPcAZnTT9BDjfFQjNzXEIUg+tRMVrvZ8DF3rqYjPI3MvpC9znqYtNAn4Yr/V25WZf0QXSsxFFyQoHJwEL6TzRPAccnodEAzJeU/LsXs6BQGczEr8HPOOpi3V2s6joJkk2oqjYl80ux6wds1cnzW/CrEPzSa7jqPf7+gHuNLulZ1NC4rVeCzgVqOukqReo99TFDs9/VJVHJgiIomGFgwOAO4DOrqGvA77mCoSezFcs9X7fJOC/KXZ9DoxwR6LyxilB9o2g9wCZliTYClwWr/X+syBBVQjp2YiiYIWD+wOv0HmieRVz2Sxvica2b5rtr0miKV32jaCTgeUZmvUDHvDUxX7rqYvJuHaOSLIRvcoKB6utcPBHmGoAB3bSPAxMdQVCqcrH5No+aba/W4DnFnkUr/W+CRyJuWcrk+uApz11sc6WNhBZkGQjeo0VDn4BqMdcS++boelm4AJXIHSVKxAqVEn/dD2bzpaPFiUgXutdC/iBmztp6sOM4xya/6jKmyQbUXBWODjQCgenA/OBQzpp/hZwpCsQejj/ke0gXbKRnk2ZiNd6E/Faby1wAaZgazp7Ai976mIXFCSwMiUTBERBWeHg6ZhKvWOyaH4f8G1XIFTQSr31fp/CFPEckmL33u5ItLOlikWJ8dTFDgFm0fkMyBBQG6/1JvMfVXmRno0oCCscHGWFg48Cj9N5omkCLseUnemNkvAuUieaVlIvNyBKXLzW+wZmHOfZTpoGgbs8dTFn/qMqL9KzEXllhYMOTOK4GRiUxSEvAFe4AqF38hpYBvV+39GY+3w6escdie5f6HhE4dizz27CJJVMHgG+Gq/1tuQ/qvIgPRuRN1Y4OBFzA+Sf6TzRrAMuBU7ozURjk8kBFSpe622N13p/CFyIud8mnfOAxzx1sUwTW0Q7kmxEzlnhYF97zZnXgGM67n956Wr+8OwCvntfhHUNWwH+CezvCoTudgVCxdDVlmnPFS5e630IOBpYkaHZacBsT11sQEGCKnGSbEROWeHg8cAbmDVnUi5QdfTeY7j6i0cxcsjA9dElK77pCoQucgVCnxUyzk5Iz0YQr/UuwozjpKok0caHqak2uDBRlS5JNiInrHBwmBUO3oUpjJmuZ9AmcUvkpSfvnbfouivumX1P/qPrMunZCGBb9WgfmYuveoCYFPHMTCYIiB6x65l9F/ghZhZXZ/577u2PPvzc2yt8mEq8M7XWRTPDy572vJnUtbP2cEeiqwsckigC9qWyWcCJGZq9BZwYr/XmvDBsOZBkI7rFCgf7AlcAPwZ2y+KQBuAnQNgVCCXyGVtP1Pt9o4FUCWUrsIs7EpX7KyqUPRngEcxYTTpLAV+81ruqMFGVDkk2okuscLAGuAQzJjM6y8OeBL7jCoSK/g1Y7/cdj7kU2NEb7khUSpZUOE9drBpzs/H5GZqtwiScpYWJqjTImI3IihUOVlnh4CXAO5ipzNkkmk8xU0RPK4VEY5PJASIt+76ai4C/Z2g2FnjRUxebWJioSoMkG5GRFQ46rXDwIuB/wF2YOlHZ+AtmOvOMIpnOnC2ZHCAyitd6E8BlmCrk6ewOvGAvNy2QZCPSsMJBhxUOnoOZxnw/nc8wazMX8LgCoStdgdD6vAWYP9KzEZ2ya6NdTebVP13Ac5662E73mlUiSTZiB/ayzKcDC4EZdL7GTJv5wBeB412BUKpSL6VCejYiK/Far47Xen+MGb9MZxAwx1MX8xYorKIlEwQEYJIMcBLwa8yNbNl6DfgZECmxy2U7sac9NwI1KXbv5o5Ei+nGU1FEPHWxa4HfZ2jSBJwer/V2tmBb2ZJkU+HsJHMi8HNgShcOXWwfM6vUk0yber9vILAxxa4moJ8sBy0y8dTFvoUZq1RpmmzBzFKbX7ioiockmwplhYMu4BuYiszpxilSeQe4AXjEFQiV1T0n9X7fGOCDFLs+c0ei2dxLJCqcpy52EXAvkG4JgnXA1Hit963CRVUcJNlUELsXcwxwJXAu0KcLh78P/BJ4wBUIteYhvF5X7/cdiLkLvKP33JFoVxKyqGCeuthZwMOkqQ0IfAR44rXeFQULqgjIBIEKYIWDg61w8LuYmWXzgK+SfaL5ANP72c8VCN1bronGlq6YYqpLa0KkFK/1zgROB5rTNBkFPOupi6XsLdtr6pQdSTZlzAoH3VY4eCfmL6kwcFAXDv8YuArYxxUI/c0VCFXCIlHp1tzZUNAoRMmL13qfxqyJk+5S896YatE7rAjrqYtdAPwmz+H1irLMoJXMLox5IeZS2RHdOMXnmP/sf3YFQpkWjypH6Xo2kmxEl8Vrvf/y1MUuB+5M0+RQ4AlPXezL8VrvFk9d7PvA7zA3UHe2UmjJkTGbMmGFgwdjCmN+jeyWX+5oEXAHcL8rENqcy9hKRb3f9y3gryl23euORL9R4HBEmfDUxYLALRmaPIm5afjadttGllv1aOnZlDArHOwPnI3pxXTnLuVG4CHMdM0F5TKFuQfkMprIuXitN+Spi7mAH6VpckqKbV7MCrZlQ5JNibHCwV0xJc5Px9yE2a8bp3kb04v5hysQWpfD8EqdTBAQ+fJjTPmay7Js70OSjSg0KxzcFzjD/jqG9DeNZdICPIZJMnOlF5OS9GxEXsRrvdpTF7sSGIq5GtGZsitvI8mmCFnhoAM4iu0JZv8enG455jLZPa5ASMqtZCYTBETexGu9CfumzxHA1E6a7+mpi42P13qXFyC0gpBkkyNWOHiwKxB6swfH98OUjTkDc5lsRA/CSQBPYHox/ym3O/3zSC6jiXzzYGahZcOH+WOxLEiyAfQ7z4/Tny2bTOOmA9DJAShHA30HLlEjJsxX+x2/MtOx9l353wNutMJBlysQ2pLt81rh4HDgVEyCOYnU6953xWrgb8BdrkDowx6eqxLJZTSRN5662DTgHtJXFujouJYXZ81JLH9rMpvWHaCTiQHK4Wxg4NAlzvET51dPPTPjZ1Oxqehkk1zw4BTWfnAtW9afSqJ5pzvq9WfLGvXyBbMZNna646gL53Xcb88G+xswzd40CXOHfkpWOFiF+avmBMwAv4ee31i7GXgKs1TtU2V+h3++Sc9G5IWnLnYF5kpD1obReGbLsw+dQ0vTts+mtoHW5PI3G1tf/c9sx5i9p/c579q0nznFpCKTjV63ukovnHkT6z+6hkRLqnLyRqK5L5vWnMOW9acnN1vT1aQzr1dDx7QCWOHgOGAWcFi7IybTLtlY4WAfTLn+YzHXaD3AwBz8Ch9hLpM9DjznCoSacnBOIT0bkT/3Apswtyl0Nl4DwFr6Dljb6mRYqp3NTX31mg/PSaxbc3rj2k+n15x22fWO0ROK+g/NirupU2/4tFoveOAB1n90bpcPHjJ6hjry3GlrH5h+LPAIZipje08C09meXCbTtWKXmSzGJJfHgf/KOEzu1ft9nwCp6lWNdUeiqapBC9FlnrrYREy9wYtJ35sG4BcNTzKltfNhGzVqrxl9vvLdacWccCou2SSjf7wFa2W3SkFoDVtaBj7XvH7zsaQvIZ4rSeBF7ATjCoTKZqCwWNX7fVuBvil2DXZHonIpTeSUpy7WHzgf+DZpFiw8t2khlzfGszqfY+x+ob7frvth7iLMrYpKNskFD05h9RvRjJfO0h2bhC0boaW5O7e4ZK0BeBqTYCKuQMjK55OJ7er9vhrMImkdaaDKHYlKT1Lkze///PCVH1ubb3/JuadDq+2fMQe2fsT0hseyO0lVTbPz4KN9xTqGU1ljNmtXZR6jaWfWq+8RWfg+n23cwhXewzh63J7oZF4SzSdsH3+JuQKhxnw8iehUuvGaTZJoRL5dufVFn2740PGhYzD/qjmMZ2oOoElV855zN5pxUNOueHRDcyvXzllEjdPB1LHDuWDiHmZHa3NNcvXSa8gwSak3VUyy0e88P44tG05rv+3Pc15n8arPuf2yEwH42UPzWPn5Rv4R8HPmkftwhnsfPl7TSO0DLzD5or1yFcpW4CXMJbKngVdl/KUopLp8BubfS4i8aXlx1ji9/vPTAEYnN3BV4wvw8v08ZTkZcNbPWOocwYznYqzasIW7TnPz+LsfcdZ+o/DvM5Kvz3p1e7IB9IbPT215cda4YpwWXTnJ5rNlkztOb774uIkc8L27ubFhCvPe/pDIa8uZ9+sLAXPZrGED3PSv+Vxy7OE9eer1mL805mISzEJXIJRuUSXRe9L1KLt8yVWIrkgsf2ty++nNAJceNJI//jVKfM1feW71Rp5e+imxrx0LwIebGpm4q+mIOxwdrrY0N/VNLn/rKCTZ9KLGTQd03NS/TzUXHLM/P31oHk+/voJnfnIO/Wqq0UnYtF7zi8de5MQDx3PoHl1efn4mEMMkmMXScykJ6ZJNdwqdCpG9Tet2/myqruLcA0dz09zFzFn2Kf++wEO/ajMnafTAvny0qZFDd4NUY+46xfmKQeUkG50ckGrzN084iInfv4eZwTOYsLtZNE854N75rzFv6Uq2tDaxct06vn70oXSh/uXNrkBoQW4CFwWSLtn0rff7lDsSrZyZNKKgdDKR8rPp64eMY9Lfojxy9lGMH7q9yRn7juL7z77B08s+4eS9d8/6fL2tcpKNcjSk2vzrx+az66B+tCbMZ4nW0NoCV508iav9k7a1SyahtVnT0gwtTaB1xsQzGZBkU0LckWhrvd/XSur3RB/SJyMhekQ5nA2p/pL5TfwdhvevoTW5494BNVX85ZRJKY7Yfr4ch5gTPS2VUjr6DlzScdOt/66nsbmVh649jT8+tRAApWDLJti0DpobTfIBcDigpi8MGASDh0O/0bvVYhZDmsPOg8iT8/q7iHxJ27spaBSisgwcutNn0/QF79HUmuC+M47kT/XLunQ6leJ8xaBiko0aMWE+zpptHyaxxau45/nF3PPdkzl+4h5s3NrE6ytMBf6qaki0Kho2KjZa0LgFdLtRF1VV09jvQPdDrkDoFlcg9CXMGhXHA78G4sARBfzVRO5IshEF5xw/cT41fbb933t+xRrue3MVfz1lEseO25WNTa0s+nR9dier6dPoGD+xKK+qVE6y2e/4lfQfPBtg1ecbufwvc3j4e6cxsJ+ZbHTVyZOYHjG9m6p2NVmTScXWzYoNFmzdDMkE0H/I7PbVoF2BUJMrEHrBFQj93BUITQEm2dWgRWlJN81ZJgmIvKmeeuZKNXj4bIAPNmzhu0+9xv1nfoGBfcwH0Xfc47n91ex6N2rw8NnFOO0ZpIJASolW2Lg2fa5Q1dXP6ZaWGzFFMGWmWQlTSu0LXA/MevVk7y3APimaHeiORIvy0oQoD02P3DYl8ebLUVqbuz/VvsgrCFRMzwbAcdSF8xgyanqn7ZygVPokrFtaTgD+A7xthYM/sNelESVIa/0uZo0RSN+zkctoIq/6nHftPMeovTr9bMrEMWqvol5uoKKSDYCadNb1DBk1I2MbBc7sljfaBwgBH1rh4P1WODhVLp+VNLnXRvSamtO/db0auWfGz6Z01Ki9ZtSc/q3rcx1TLlVeshk6plUded40XONCOKvT3slfle1aekYNcBHwDfJfDVrkkFJqd+Ac4LQVm1POQAXp2YgCcIye0Nrn7MA0x9j9QlTVZFdlpKqm2TFu/1CxLy8AFTZm01FywYNTWPfBNTSsP5VE8w4fKC3NsHl9lzopvwR+6QqEKvcFLXH1ft/TwJdS7DrFHYlGCh2PqFxNj9w2Jfnhsmv0+jWn0ty08x87NX0a1eDhslJnqbCXep6n33l+nP5s+VE0bjwAnRyAcjQ4Hf2WsX7pXXReGysBXOkKhO7Mf8Qiz+QymigKdgKZ1/LirHHJ5W8dpTetO0AnEwOUw9mgBg5d4hg/cUGxzjpLp6KTTRu13/Er209lBvv64pLgZcBxnRyeAFbkJzJRYHKfjSgq1VPPXFmMRTW7o+LGbLoolkWbGmCWFQ5+Id/BiLyT2WhC5Ikkm8yiWbYbAESscLAoq62KrMllNCHyRJJNZq9ilmrOhgt41goHx+UxHpFfchlNiDyRZJOBvcjZ3HabZgNnAS1pDhkNzLHCwRH5jk3khZSrESJPJNl0rm3c5m/AWa5AaBbmnpp0U5z3BZ6ywsF0a9qL4pWuZ7NLQaMQogxJsuncf4CfA1e4AqFWAFcgNAO4IsMxk4AnrHBQ/iIuLZ+l2T6moFEIUYYq+qbOnrLCwVrgNxmaRIBzXIFQusszoojU+30nY/7NOoq7I9EphY5HiHIiPZueuRn4bYb9fmC2FQ7KZZjSsCLN9j0LGIMQZUmSTQ/YpWl+CNydoZkXeMYKB4cUJirRA6vSbB9V7/d1v/S7EEKSTU/ZCecKYGaGZscAMVmKoLi5I9EG4PMUuxQybiNEj0iyyQF74sA04JkMzQ4HXrDCwZGFiUp0U7rSIHsWMgghyo0kmxxxBUKNwBnArAzNDgRelBs/i9qKNNvl30yIHpBkk0OuQKgJOA/4Z4ZmEzAJJ9Xyw6L3pevZSLIRogck2eSYKxBqAb4OZFpyYA9grhUOHlSYqEQXyGU0IfJAkk0euAKhBHA5kGlN8d2B561w8IjCRCWytCLNdunZCNEDkmzyxJ6l9j3gxkzNMLPUPAiPCJUAABbaSURBVIWJSmRBejZC5IFUECgAKxz8MXBThiZbgNNdgVC2SxqIPKn3+4YA61LsagX6uiPRRIFDEqIsSM+mAFyB0G+AazI06Q88aYWDpxYoJJGGOxJdD2xIsasKGFXgcIQoG5JsCsQVCP0BuJT01aL7ADOtcPDcwkUl0pBLaULkmCSbAnIFQndjbv5MdymmCnjICgcvLVxUIgWZ/ixEjkmyKTBXIPQQcDbQnKaJA7jTCgdvs8LB6sJFJtqRZCNEjkmy6QWuQOhx4DTSrwwJZoxnjhUO7lqYqEQ7K9Js37OAMQhRViTZ9BJXIDQH+BKwKUOz44F6KxycVJCgRBvp2QiRY5JsepErEHoR8JF6qm2bsUDcCge/WpioBOmTzV4FjUKIMiL32RQBKxycCDyOqZuWyW1AsG15apEf9X6fi9RLDWhgqDsSTTU1WgiRgfRsioArEHoLOBJ4upOm1yLjOHnnjkQtUvduFOAucDhClAVJNkXCFQitA04FftNJ0xMw4ziH5z+qivZKmu1fKGgUQpQJSTZFxBUIJVyB0PXAuUBDhqZt4zjTChNZRVqQZvtRBY1CiDIhyaYIuQKhR4HJwPIMzfoBD1jh4K1WOFhVmMgqSrqezVH1fp8qaCRClAFJNkXKFQgtxozjZFpqGkxl6WescHB4/qOqKAuBZIrtuwOjCxyLECVPkk0RcwVCa4FTgLpOmnox4ziH5T+qyuCORBuAxWl2y7iNEF0kyabI2eM4PwbOxyxFkM444CUrHLzYCgflMk9uyLiNEDkiyaZEuAKhR4CjgfczNOsH3APMssLBkYWIq8zJjDQhckRu6iwxVjg4DHgQOKmTpuuBq4H77VVDRRfV+32HAItS7NoMDJGF1ITInvRsSow9juMHbumk6RDgH8ATVjgoi351z/9IfelyF2D/AsciREmTnk0Js8LBC4C7MZfPMlmPqSJ9n/Ryuqbe73sBODbFrkvdkejdhY5HiFIlPZsSZq+NczTmL/BMhgD3Av+2wkGZtts1Mm4jRA5IsilxrkBoEXAEpsxNqvtC2jsFeMsKB78hM9ayJslGiByQy2hlxAoHjwT+DkzMonkEuNwVCH2Y36hKW73fN5bURTkTwCB3JJppOroQwiY9mzLiCoRexfRybsJ8GGbix/Ryvim9nIw+AD5Nsd0JSDFUIbIkyabMuAKhJlcg9BNMbbV0d8C3GYyZYPCkFQ6OyXtwJcgdiWrkUpoQPSbJpky5AqF6zNor/0fnvZyTMb2cS6SXk5IkGyF6SJJNGbN7OT/DlFfprJczCLgLeMEKByfnPbjSkq5sjbxOQmRJJghUCCsc7AP8FPgxZryhM48B17sCoXfzGlgJqPf7hgJr0+ze1x2JvlfIeIQoRZJsKowVDk7C1E87OIvmCeCvwC9dgVCqQfKKUe/3LQIOSbHrOnckemuh4xGi1MhltArjCoQWYsZyfgW0dtLcCXwbWGaFgzdY4eDAfMdXxGan2X56QaMQokRJz6aCWeHg4ZheTqq/2FP5DPgl8DdXINSSr7iKUb3fNxl4OcWuBLCrOxJdV+CQhCgp0rOpYK5A6DXMaqA/ALL5sBwB3I6ZuXZOhc1cewWTbDtyYmbzCSEykGRT4VyBULMrEPodMAFTSbqpbd/bH3/On2L1/ODhZ7E273Cj/D7ADOBlKxxMVaSy7Lgj0STpL6WdVshYhChFkmwEAK5AaJ0rEPoRJpHcA+j9Rw5n14H9+WxjA9XOlBPYjsJMlf63FQ5mUyKn1P07zfaT6/2+6oJGIkSJkTEbkZIVDh4M1AH+OYuXMWbYIA4ctWumQ5KYJPULVyC0ugAhFly93zcAsIA+KXb73JForMAhCVEyJNmItJRSXz5yr1Fnjhk66Cv/d/YJu+42aEA2hzUC9wN/cAVCb+Y3wsKr9/uexNSV6+g2dyT6vULHI0SpkGQjOmVPBDgXU+BzQhcOjQHTgSddgVBZLKFc7/ddCfw5xa7lwN52LTUhRAeSbETWrHCwBrgc+DmQ8ZpaB8uBMHC3KxDakI/YCqXe7xuDqQSdykR3JNrZQnZCVCRJNqLLrHBwEGa69HVA/y4cuhkzrvPHUi6DU+/3/ReYlGJXrTsSvbnQ8QhRCiTZiG6zwsGRwC+Ay8iu3lp7T2Eusc1xBUIl9Z+w3u+7AfN7dxR3R6JTChyOECVBko3oMSsc3B9T5PM8oKtTgN8G/gD8wxUINeQ6tnyo9/uOAOpT7NLAbu5IdE2BQxKi6EmyETlj93SutL9GdPHw9ZglDsKuQGhFjkPLqXq/TwGrgVEpdn/DHYneW+CQhCh6kmxEzlnhYF/gfOAaur50chJ4HPgLECvWGmz1ft8dwBUpdj3mjkTPKXQ8QhQ7STYib+wp01OAq4Gv0PWKFRYwE1Ma57liSjz1ft8ppC5fsxkY7o5Em1LsE6JiSbIRBWGFg2OB7wLfAoZ24xRr2Z54er3HU+/39cMkw34pdn/ZHYk+U+CQhChqkmxEQVnh4ADgq5jezoHdPE1RJJ56v+9xUq9nc7s7Eg0UOh4hipkkG9Er7EtsPsy4zilAd5crWAvMAh6hwImn3u+7FLgzxa5PgTHuSLSzxemEqBiSbESvs8LBvYGrgG8CPVkNtC3xzACi+U489X7f7sBHpE6Up7gj0Ug+n1+IUiLJRhQNuzLBufbXiXT9RtH21mESz6PAi65AaFPPI9xZvd8XBbwdt/cfNeyt/S/70lMoRwN9dlmiho6dr8ZNXpmPGIQoBZJsRFGywkEXcCYm8fiAqh6cLgEsBObaX/NcgdDaHgcJ1Pt9F2NK8OxAOR0cfMUUqvra97g6qxvpM2g2g0ZOdxx0+rxcPLcQpUSSjSh6duI5A1OhoKeJp81itiefua5A6OPunGTJNVcO2bJ82Wc6kdypcsLYE/dn+CGjd9zoqGpm4O7T1X5fvF4NGiljOqJiSLIRJcUKB4exvcdzIrlJPABLaZd8gBWd1WzTm9dU68WPP7BixnPnrl3yyU77B4wezH7nu1MfPHC3GeoA/zRJOKJSSLIRJSuPiQdMOZr2yeftjskn+eq9t7Dhw+DGlWtZ+thrKU8y8ZKj6TMkTWHswaNDjiMv/mEOYxaiaEmyEWXBTjxtl9pynXgA1gDzgP8Cb/bfb5+aGse6B5RO1OikZvGdcVo271w0YPfJezHqmPGpz+ioambE/j4ZwxGVQJKNKDvtEs9JwHHAyLw8kQOcfZxU9ali0wcWny/+kOZNW9GtyW1Nagb3xXHi3vxx5st8vnEL3sMn8O3Tjtp+jv6uRx3HXHFuXuIToohIshFlzb55dDxwbLuvNF2N7rv7xddZ8tEaQud/kfXLP+WmJ+by8dZGbvV7GH/6wVT1qyGZTHL572dx53Vf2X6gs7pRjZ+6v0yLFuVOko2oOFY4OAaYyvbk092yOdtsaW5h8q/v5sUfX0x03pvc9sqbzP3tpQzdfQgAT7y0hFsenst3zpjMNO+hOx48fO/zHYed90hPYxCimEmyERXPCgd3xVSnbks+h9H1CtXcMOsFtjS3EHtnBXNClzBhlGunNqf+5F5m33jxjhsH7n6D46hLftmd2IUoFbkeRBWi5LgCoTWYwp4zAaxwcDBwDCbxTAW+QBYrkF40+SCOvvHvPPazaTskmucXLWfmvP/R1NKK/wv77XygTg7Ixe8hRDGTZCNEB65AaAPwlP2FFQ72B47E9HgOUTVVX9YtraPocFEg9PTLDN+lH0m1447jDx3P8YdmGCZSjpJYDluInpBkI0QnXIHQFuAF+4vk64+cr9e891CyJUmiMUGiKcFtj79EcyLB3684k9DMl/nK1IOyf4I+uyzJT+RCFI8uX5cWotKpoWPnq6qaRmeNk5pBNby8+iMeXLCY+395ISd/aSIbtzTx+tKPsjuZs7pRDR27IL8RC9H7JNkI0UVq3OSV9Bk0G2DVZ+u5/NaZPPzTCxnYvw9KKa466xim/+ul7E7WZ9BsmfYsKoHMRhOiG5KLn5jCZ29HSbbWdPskUkFAVBDp2QjRDY6DTp/HwN2m9+gkA3eT5QZExZBkI0Q3qf1Oup5dRszo1sEDd5uh9jvp+hyHJETRkmQjRDepQSNb1YGnTGPw6BCOquasDnJUNTN4TEiWFxCVRsZshMiB5OInprDp42to3HgqiZa+OzWQlTpFhZNkI0QO6ZXzx+l1q46iafMB6OQAlKOBPrssUUPHLpBZZ6KSSbIRQgiRdzJmI4QQIu96Vq6m8XON1qATgAadxPyctH9OgNbobT8ngWTadjueI8EO5052eNQJdMd2GR/bztv+y96WbP8zkLTjSto/t2+3bXu7x0Ri+2Oyw8/2cbrjtkTCHJ+wX4/2j0mNtmPSCfMSk0jaIep2+7H3a2hrZx+zw7F2e51IorVGt5rXLtlqYknaP2/fbmJJtibROoluTX2cTmqSiYT9aNokEkn7ZxNXMpEk2W5/0t6f6PBzx+MT5n/Ktkfd7vuuPGqg1X5MAjdorXr0f76A+hzxLa0cThxVNSinE2dVDebnavNYbX7evr1mh+2OqhocDoXD6cDhUCiHwul0mMcqB8rB9p/bb1cKZ9WO7WuqHDjtx6ptPzu2b3eaxz72z84Ox7S1cShFtVPhVIpqh8LhsB+VotrpwKmg2unAoaDa4cDpMI9txykFTqVw2I9KscP32/dhfo+2/Q6Fwn7UGpVsNe+3ZAKlk2D/rBKZtpvPiLZjdWsLJBPolmZIJtGtHR5bms3+tnbb2pvHZGsLOpEk2dKKTiRJNLegk0mSza3mMdHu++ZWkskkyXZtktuO1SRaEiQTmmSzeUy0JMz25kRW+5Na05zUJLY90uFx+/YWnaqd+f4OvSLt+0t6NkIIIfJOko0QQoi8k2QjhBAi7yTZCCGEyDtJNkIIIfJOko0QQoi8k2QjhBAi7yTZCCGEyDtJNkIIIfJOko0QQoi8k2QjhBAi7yTZCCGEyDtJNkIIIfJOko0QQoi8k2QjhBAi7yTZCCGEyLseLQutlLpca/3XHMZT8uQ12Zm8Jr2nmF77YomlWOKAyoqlpz2by3MSRXmR12Rn8pr0nmJ67YsllmKJAyooFrmMJoQQIu8k2QghhMi7niaborjWWGTkNdmZvCa9p5he+2KJpVjigAqKpUcTBIQQQohsyGU0IYQQeSfJRgghRN5llWyUUl9WSr2jlFqqlKpNsb+PUuphe/8CpdSeuQ602HT2mrRrd45SSiul3IWMrzdk8f9krFLqOaXUa0qpN5RS/t6Is5wppYYppZ5VSr1nPw5N0+4WpdRbSqklSqk/KKVUb8Vitx2klPpQKRXO4fMXzedWsXxe9Op7VGud8QtwAsuA8UANsAg4sEOb7wB32N9fADzc2XlL+Sub18RuNxCYC8wH3L0dd2+/JpgByG/b3x8IrOjtuMvtC7gFqLW/rwVuTtHmGCBu/5s5gZeB43sjlnZtpwP/BMI5eu6i+dwqls+L3n6PZtOz+QKwVGu9XGvdDDwEnNGhzRnAvfb3jwK+fPylVESyeU0Afo15wzUWMrheks1rooFB9veDgY8KGF+laP9evBc4M0UbDfTFfOD0AaqBT3spFpRSRwC7AXNy+NzF9LlVLJ8XvfoezSbZjAY+aPfzantbyjZa61ZgA+DKRYBFqtPXRCl1OLCH1np2IQPrRdn8P7kB+KpSajUQAa4qTGgVZTet9ccA9uOIjg201i8DzwEf21/PaK2X9EYsSikH8DsgmOPnLqbPrWL5vOjV92hVFm1SZfqO86WzaVNOMv6+9hvo98A3ChVQEcjm/8CFwD1a698ppY4G7lNKHaS1TuY/vPKhlPoPsHuKXT/J8vi9gQOAMfamZ5VSx2qt5xY6FsylrIjW+oMcdyqK6XOrWD4vevU9mk2yWQ3s0e7nMezctWprs1opVYXpfq3taXBFrLPXZCBwEPC8/QbaHXhCKXW61rq+YFEWVjb/Ty4Fvgzmr2ulVF9gOPBZQSIsE1rrE9PtU0p9qpQaqbX+WCk1ktSv7VnAfK31ZvuYp4DJmPGCQsdyNDBVKfUdYBegRim1WWuddhA9S8X0uVUsnxe9+h7N5jLaq8A+Sqm9lFI1mIG0Jzq0eQK42P7+HCCm7RGmMpXxNdFab9BaD9da76m13hMz4FfOiQay+3+yCvABKKUOwIwbrClolOWv/XvxYuDxFG1WAccppaqUUtXAcUA+LqN1GovW+iKt9Vj7ffID4B85SDRQXJ9bxfJ50bvv0SxnMfiBdzEzGX5ib/sV5gXBDmgGsBR4BRif65kUxfbV2WvSoe3zlPlstCz/nxyImQW1CHgdOKm3Yy63L8yYQxR4z34cZm93A3fa3zuBv2ASzP+AW3srlg7tv0GOZqPZ5yuaz61i+bzozfeolKsRQgiRd1JBQAghRN5JshFCCJF3kmwKTCl1plLqwG4cp5VS97X7uUoptUYpNbvdtpOVUvV2CZK3lVK/tbffoJT6QW5+AyHKk1LqePt9dmm7bYfb237QbtsP7PfXYqXUIqXU1+3tz+erzEw5kGRTeGdiBuG6qgE4SCnVz/75i8CHbTuVUgcBYeCrWusDMFMpl/cwViGKkj1VOR/eBM5v9/MFmMHytue9EvPe+4LW+iDgWFLfvyI6kGSTA0qpWUqp/ypT2PBye9vmdvvPUUrdo5Q6BjgdCCmlXldKTVBKHaaUmm8XvZupMhQrBJ4CTrG/vxB4sN2+HwI3aq3fBnNHtNb6T7n8PYUoJKXU1+33xSKl1H32e+hWpdRzwM3KFPqcZbeZr5Q6xD7uOPv99bpdUHKgUmqkUmquvW2xUmpqmqddBfRVSu1ml675MuZ91+Z64Dta642wbdryvSnOIzqQZJMbl2itj8BM6bxaKZWy5IXW+iXMvPag1vowrfUy4B/Aj7TWh2D+qvpFhud5CLjAvtHqEGBBu30HAf/t+a8iRO9TSk3EVCHwaq0PBa6xd+0LnKi1vg74JfCa/d65HvNeAnO/zne11ocBU4GtwDRMWZ7DgEMx03rTeRQ4F1OwdCHQZMc0EBhov29FF0myyY2rlVKLMDdj7QHsk81BSqnBwBCt9Qv2pnsx3fKUtNZvAHtiejWRngQsRJHzAo9qrT8H0Fq33dk/Q2udsL+fAtxn748BLvs9FQduVUpdjXl/tWJuaPymUuoG4GCt9aYMz/0IJtl0vHqgKO8yXHklyaaHlFLHAycCR9t/gb2GuVms/X/Kvl085x7tLgNc2WH3E8Bv2fFNAPAWcERXnkeIIpbug72hQ5uOtNa6DrgM6AfMV0rtr03dt2Mx45z32Zfozmr3PnO3O8EnQAtmbCbabvtGoEEpNb6nv1wlkmTTc4OBdVrrLUqp/TE1pgA+VUodoEyRvbPatd+EqYWE1noDsK7d9eOvAS9orT+wL7MdprW+o8Pz3Q38Smv9ZoftIeB6pdS+YIr7KaW+n7PfUojCigLntV2SVkoNS9FmLnCRvf944HOt9Ual1ASt9Zta65uBemB/pdQ44DOt9d+Au4BJWuuZ7d5nHUvD/BxzeTvRYftvgNuVUoPs5x3UNk4rMsvXjI5K8jRwpVLqDeAdzKU0MItFzcaU9F6MKTIIZtzlb3YX/xxMbaY7lFL9MbPHvpnpybTWqzELTXXc/oZS6lrgQftcGniyh7+bEL1Ca/2WUupG4AWlVAJzxaCjG4C/2++9LWyvc3atUuoEIIEpx/MUZlZZUCnVAmwGvt7J87+UZtefMe/lV+1ztWCWSBCdkHI1Qggh8k4uowkhhMg7STZCCCHyTpKNEEKIvJNkI4QQIu8k2QghhMg7STZCCCHyTpKNEEKIvPt/sLUpOu+WzOwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZhT1fnA8e/JLMAoiAbFpSpKURQQ1HFNFc0gyqgo1qLUilul1kbbn5IasLZaF0ZDbdW44b4rLqPUDqhMQEqsyKiACCiKiitCBBEGGGZyfn+cOxDCzUwyk3Xyfp4nTybnnnvzEubmnXvuWZTWGiGEECKdHNkOQAghRMcnyUYIIUTaSbIRQgiRdpJshBBCpJ0kGyGEEGknyUYIIUTaSbIRQgiRdpJshBBCpJ0kGyGEEGknyUYIIUTaSbIRQgiRdpJshBBCpJ0kGyGEEGknyUYIIUTaFWc7ACE6kjVjhu0GnADsBzQBC4DZ3SdNrc9mXEJkm5L1bIRovzVjhh0I3A5UAJuAMiACbAA6AfcBN3afNPWHrAUpRBZJshGindaMGTYKeBCTVIriVNsIrAMquk+auiBTsQmRK+SejRDtsGbMsMsxiaaM+IkGoDPgBEJrxgwrz0RsQuQSubIRoo3WjBl2BPAm0CXJXVcCfbpPmvpj6qMSIjfJlY0QbbBmzLDOwAuYK5ZkdQXuTW1EQuQ2STZCtM0IYBdAtWHfzsBZa8YM2zO1IQmRuyTZCNE2FwA7tmP/JkzCEqIgSLIRIklrxgwrw4ylScjna+u54s0PuGD6+9HFZcBFKQ5NiJwlyUaI5J2CGUuzxUOLlnP17A+3vL5p7sf8bobp4dyrWxl3DR5gd5wBa8YM2zWNcQqRMyTZCJG8k4Bu0QWjDtiLactX8uOmzUz74nte/3Il/zquX2vH2Qi40hWkELlEpqsRInk9YgvKiov4Ze89uLFuKdO/XEl15RF0KY4/7CYCzNjx4NLpXftfvKAquDewEPgg5HOvSl/YQmSPjLMRIklrxgx7DRgaW/7xmnUc9fxsnhp6GJX77ral/IeNDdw4dykzv17F+X1/xlWDenNnj6G81m2g3eFXYCUe63kh8GHI516Xln+MEBkiVzZCJG+DXeFt731Kj86lNEUi25Tv0rmUf0Y1qdWrUt7oansPB6Cn9aiILnRVBT8GQsBs6/njkM8tfymKvCHJRojkrY4tCCz4jE1NER6pGMiEdz/h9P12j7tzqW5EkXSeOMB6NPdgW+WqCobYmoDeC/ncm+LtLES2SbIRInlzgF8BOwDM+jrMUx9/zevDj6ZraTE/vb2ED8JrGeDsZrtzMRFG/zCbR5yD2xNDD+AM6wGwyVUVnMvWK5+3Qj63zDAtcobcsxEiSWvGDNsd+Bzo9OW6DZz+6js8d/LhHLizGeP59MdfMfubH7jnhENaPM7S0p7f/ulnowNAf2AA0JfU/gG4iG2b3pZJ05vIFkk2QrTBmjHD5gG2d/gT1AD4u0+a+pfmAldVsBTog0k8/dmahPZvx/tEWwHMAKqBqSGf+6cUHVeIVkmyEaINfrj2/Hvp0uVSGhuL1MqVqM2NyR5iPXBsImvbuKqCOwPHYMbkuICjaNsEoNE2AdMxiWdKyOde2c7jCdEiSTZCJCkc8F4F/GNLwcZNOJZ+gkr8XIoAHwIDu0+amvQJaF0BHYpJPL+wnndrcafW45mNSTzVIZ/7i3YcSwhbkmyESEI44L0UmBRb7lj6KWqDbY9oO/XA4d0nTV2SiphcVUEF9GZr4nEBB7XjkO9jEs9LwCK5zyNSQZKNEAkKB7znAk8Tu6yA1jg++hjVsDmRw9QDV3afNPWh1Ee4lasq6ASOZevVzxFAaRsOtRTrigd4J+RzR1qpL4QtSTZCJCAc8J6G+cLdrreYWvPjYsfyL/fB6grdgg3A/3WfNPX+NITYIldVsDNwPHAWprt0/IFA8X0LvIxZNG6mJB6RDEk2QrQiHPCeCEwFOtlsfpp160cXLfvsIuA2TDLaka1XP02Yq5mvgTHdJ039bwZCbpGrKugAjsaspzMC0wSXrE+A+4BHQz53OIXhiQ5Kko0QLQgHvEdhem3ZLZT2b+CXTo9/M2xZ52Y4UIkZM9MI/A+TqGrb0hkg3az7Pf3ZmngGJXmITcCzmGWu35H7OyIeSTZCxBEOeA8BZgI722wOAqc6Pf6NGQ0qzVxVwf3YmnhcJLfs9fuYpPN0yOden4bwRB6TZCOEjXDAWw68Buxis3kOMMTp8XfomZhdVcGemCu1EcAQoCTBXdcCjwH3hnzuxWkKT+QZSTZCxAgHvMcB/wG62mxeAJzo9Ph/qKusGA2cB8wHrimvqe2wJ5OrKtgNOBUzEehJSez6JnAP8HLI525IR2wiP0iyESJKOOAdiulx1cVm81LgOKfHv6KusuIB4LdR294vr6k9LBMxZpurKtgHuAyTeOyaGO2sAB4EJoV87uXpik3kLkk2QljCAe8IzM1uu/EoyzBXNMvrKitGYAY8xtq1vKa2YFbadFUFuwAjgd9jptBJRAR4FZgQ8rnfTldsIvdIshECCAe8vwEeBezWcl4EnOT0+L+pq6w4EtM0ZDc3Wf/ymtoP0xdl7nJVBQ/DJJ1fA2UJ7vYqcF3I556XtsBEzpBkIwpeOOC9DHNfwa7n1bvAKU6Pf1VdZUUvTOeAePOQHVFeU1uXnijzg6sq2B04H5N4Ep0y5/lI4+a/vX3dKU3AYcBOwHSt9adpClNkgSQbUdDCAa8XMxjTzmzgNKfH/2NdZUV3zJowB7dwOHd5Te2MVMeYj6zxO4MxSecsWlmn5+PnbtFlPyxVRxxxBKWlpTzzzDN1WusjMhGryAxZqVMUpHDAq4AbgOviVHkdOMvp8a+vq6woxUzR0lKiAfuBnwXJGtw5E5jpqgruDlwC/A7Y267+uuWL1V13/4OGhgZ+8Ytf8Mxzk9szi7XIQXJlIwqOlWj+CfwxTpVqYJTT499UV1mhgIcwPa9ac155Te3TKQqzw3FVBYsxTWx/A/aN3vZN6EVWvvc63dUGZs2axcHlLg7/81N3YjoSfJeNeEVqObIdgBCZFA54i4AHiJ9ongRGOj3+Tdbr8SSWaMB+XI6whHzuxpDP/QhwIPAHzMSeAOzp+iV9R98UVVsBXAksc1UFb7VmsRZ5TJKNKBjhgLcEeArTpGPnPuACp8ffCFBXWXEqcFOcunakGS0BIZ97U8jnvgczAejVQEvdxbsAfwY+c1UFb3BVBXfKRIwi9STZiIIQDng7Y8bGnBOnih+43OnxR0+bPz7Jt5ErmySEfO4NIZ/7dmB/4Fq0/rGF6l2Bv2KSzlVWk5zII5JsRIcXDnidmJmXT4tT5TrgGqfHH3sD024sTUsk2bRByOf+6a1xFeF3bx215apl0+pvmXPDGfy0fLup1XbGLMk9xxrbI/KEJBvRoVkzN88FTohT5f+cHv9NNokG4K6Y163NZCzNaG034v777+eNN96gpKSEhQsXcvH5o/jx0/fi1T8MeMdVFfS7qoKtLVoncoD0RhMdVjjgPRsz+7DdiHYNXOr0+OMuz2z1RBuMmXjyO+DOVt7ysfKa2gvbFm1hU0qNxlyxdMYk9R1wOMIHnX/j/3bue/QvaXnG6c+By0I+92vpj1S0lSQb0eGEA14HcCPx77k0Ar9xevzPJXrMusqKC4FHWql2dXlN7e2JHlMkxlUV3BfT1HkxLa+v8xTwfyGfe2VGAhNJkWY00aGEA96dgCnETzSrgcpkEo3lBJuyGZhlnwFqMFPeiBQL+dxfhHzu3wLHAgtbqHoesMRVFbzAmsFA5BC5shEdRjjgPRB4BTOOw86HwBlOjz/pObfqKis+A3rFFA8DZgHdy2tqv0n2mCJ5rqpgCeDF9Ezr1ELVWuB3IZ9b5lfLEZJsRIcQDnhPBZ4GusWpUo0ZQ/NTsse2JuD8LKa4Cdi5vKY26eOJ9rPW1LkfOLGFahuB64HbQz735kzEJeKTZjSR18IBrwoHvOOBfxM/0fwVOLsticYy2KasThJN9oR87qVABWaA7uo41ToDVcBcV1VQJvXMMrmyEXkrHPDuiLlpf3acKj9hOgJMac/71FVWPAJcGFN8a3lNra89xxWp4aoK9gT+BZzbQrUIpjfh+JDPvSEjgYltyJWNyEvhgHc/4C3iJ5qlwNHtTTSWE2zKZqbguCIFQj73ipDPPQo4FYi35LQD+BPwlqsquH/GghNbSLIReScc8FYAdcCAOFWmAUc6Pf5F7X0v635Nr5jiJszaNiKHhHzuGqAf5ionEqfaIOA9V1VweMYCE4A0o4k8Ys3YfDVwC/bLNwPcClzr9Pib4mxPSl1lxQWY5aKjzSmvqT06FccX6WHdo3kAGNhCtVuBv4R87sbMRFXY5MpG5IVwwPtz4E3MF4RdotkAnOv0+H2pSjSWE2zKZqbw+CINQj73XOAIwAc0xKl2DTDdWtxNpJlc2YicZs0GcBlmVma7aWcAvgDOdHr881L9/vHG15TX1E5L9XuJ9HBVBQ/HrLTaK06V74CRIZ/7vxkLqgBJshE5Kxzw7gM8jOniGs9MzGJnKZ+ipK6yYneiFviyyPiaPOSqCu4CPI7pRGCnCXMV9A9rSWuRYtKMJnKONXbmYuADWk40twND05FoLH1tyhZKosk/IZ/7B2A4cC32nQeKMFfPL8kCbekhyUbklHDAuwdmgOZDxB+k+TlwotPjv9rp8adzZPhBNmXbLbAi8kPI546EfO5bgKFAvD9QzgTedVUFW+pYINpAko3ICdbVzLmY+cviNXWAmaLkEKfHPzMDYdklmyUZeF+RRiGfuxY4lPjd13sDb7uqghdlLqqOT5KNyLpwwLsrMBl4BrMSo52vgVOcHv9l7Zh2Jll2zWhyZdMBhHzurzHzqsVbEqIz8LCrKvigqyrYJXORdVySbERWhQPeMzHTxsebCQDMjd3+To8/04tjyZVNBxbyuTeHfO6rMb978f6AuQR401UV7JG5yDom6Y0m0kYpVQJ0B8Ja621uyoYD3p2BO4DzWzjE98AYp8f/SvqitFdXWdEVWBtTrIGy8prajZmOR6SXqyp4APAi0D9OlSXA0JDP/WXmoupY5MpGpJxSqo9SqqaoqKjB6XR+DzQppf6hlCoNB7xF4YD3Qsy9mZYSzQtAv2wkGovdmjifSaLpmEI+98fA0cATcar0BUKuqqBd06pIgCQbkQ6X/+EPfxi2ePFiqqur+eSTTzjllFOuOnjPHo9j5jR7BNgjzr6rgVGYsTOrMhWwDblfU2BCPvd64ALgd9jPOrA38F9XVbA8o4F1EJJsRDqsmzp1Kn379uX4449fMGrUKAKBAGvqN52DmQgxnlcxVzPPOj3+bLfvyv2aAhTyuXXI554EnMT2zagAPYAZrqpgS4u2CRuSbEQ6VC1btmz4Peef0utfo4Z+vnr1aoqKimiKxJuIl5+Ai4HhTo8/dsR+tsiVTQEL+dyzMIvmfW+zeUdgmqsqOCKzUeU3STYi5VbdNbZp1V1jD+67e4+F3hdmDL/33nu54YYbOPMwu9sgvIzpafZIDlzNRJMBnQUu5HPPA1yYQcSxSoEXXFXBizMaVB6T3mgiZcIBr8Ksljhhyber9j3xtid58qmnWLRoEc9NCjDt6vPYsVNpc/V3gaucHv+srAUcR11lRQmwHiiJ2eQsr6n9IQshiSxyVQX3BF4jfk+1P4d8bn9U/dMwsxR8BDwsK4MakmxESoQDXhdmgNyRn36/GvdtTzDp4UdYvnw548aN4wLXQIYPOoDBfff9EhgHPOP0+OO2q2VTXWXFgWx/f+b78prantmIR2SfNZHnq8AxcarchpnI80LM5LHNngr53L9Jb3T5QZKNaJdwwNsbs8bML5vLrpk8nX2GjODSSy/lwQcfpPl37Ka/39Dw7b+u6u70+HP6L726yoozMM170WaV19QOzkY8Ije4qoI7YLrknxKnykOYlUJjF9Y7JORzf5DO2PJBcbYDEPkpHPD2Aq7CrDWzTXPTDp1KmTJlCvPmbbu8zOamyOpcTzQW6RwgthPyude7qoJnAI9hmotjXQKssCm/ABibztjygVzZiKSEA96jMUnml8TpYLKhYTP//Xg53/647r3qd5c8Nnvpl19Zm97TWn+eoVDbrK6y4g7gyphib3lN7cRsxCNyi6sq6ADuAi5PcJcVwM8KfflpubIRrQoHvEWYqdevAo5trX6X0pIFQ/v3vtrp8U+/Ku3RpcUuNmXZHGAqckjI5464qoIeIAxcl8AuPYGTgf+kNbAcJ8lGxBUOeLsCFwF/AvZLYJdvMYtTPe70+JvSGVua2SUb6YUmou0JnJdE/QuRZCPEtsIB78+AKzDTdiSyamE9pjfORKfHvz6dsWWIXbJZnfEoRC77G7B/EvWHu6qCu1grhhYkSTZii3DAexhwNTCSxH43vsW0Xd/v9Pg70kkkVzaiNXsmWb8U06ngnjTEkhck2RS4cMDrwKyMeTVmeo5ELAD+ATzr9PjtJizMd3YLuEmyEdGeouUVZe1cSAEnG+mNVqDCAe/PgXMw3TL7JLhbDWbgZjDHppZJmbrKCgVsBopiNnWR5QVENFdVcBRmjNneSezWL+RzL0pTSDlNrmwKSDjg3QfTRHYOkOg06ZswK2X+0+nxF8JYk65sn2jqJdGIWCGf+xlXVfBFYDRmVoxE7uHcBpyW1sBylCSbDi4c8O6OWfb2XMykgolaCdwN3Ov0+O1mvu2opHOASFjI524AHnRVBR/FnGPXYj8ouFnBzkIhySaOyOSxRZipxBscIyfmw6j3LcIB7y7AWZhf/hNJbnbvRZimsqecHn8h/jUvnQNE0qwBm0+6qoLPYM69vwCH2FRtcT7A+nEjFOZ7B2Bd2YTqDtNcLckmSmTyWAdmZLwHOBLzJV0UmTz2G+AVYIJj5MRvshhiXOGAtxtwBibBDCX5/9vpmJv+r3XU+zEJks4Bos1CPncT8LzVvHYacB/brkp7o91+9eNGlGMm8qwgKtnUjxtRC1SVTaiuS1/UmSEdBCyRyWP3B/4N7MPW/+xoDUAT8HfgVsfIiSn54MIBb0/ACSxO9ks+HPD2wPxyjsT0jOmU5Nu/DzwLTHZ6/J8nuW+HVFdZ8StgckxxdXlN7VnZiEfkN1dVUAG/xsy88UjI594madSPG1GGmWutEugCqJhDaGADMBUYXTahuj7tQaeJJBsgMnnsEcAbmCQTe3M41nqgGrjAMXJim6fIDwe8+2Gaq860iv4HDHN6/D+2sE9PTJtv86NfG956CfAM8JzT4/+oDft3aHWVFb/D/DUa7eHymtpLshGP6Ljqx43oAbyJmZ2jSyvVNwCfAYPLJlTn5dRJBd+MFpk8di9MoklkpDzADpg22W+Aa5J9v3DAW2bt92egc9SmYzAj9m+LqrsX2yYX26UuE7AMcwXzHPBBgTeTtUbu2Yi0qx83ohiYhhl2ELtIn50uVt1p9eNGHFU2oTrvpoMq6GQTmTxWYf7KL0ty1zLgisjksa84Rk58K5EdrFUsR2CuZvaNU+3gcMA7mq3JpXeScUX7GpNcngXqJMEkTJKNyIRrML3WEkk0zUqsfXzAzekIKp0KOtlgrlAOJbn/8GZdgCdIICGEA96+wJ3ASa1UvcB6tNVK4HlMggnl6kqYOa67TZl0fRYpUz9uxB6YLtKtNZ3Z2QG4tn7ciEfKJlTnZGeleAo92VyCfWeARO0emTz2IMfIibaDHa0eYtdhZk1O12e9CNPuWw3McHr8Bb1mRgrE3qAF0zFEiFQZgbnx31Yac683r6a+KdhkE5k8tgwzBiUhL89dSs17n/H92nouHzqIoQN7gelM8CtMD7VthAPeazGJJtkeYq1ZgEkubwL/LbABl5lgl6wL9jwRaXERCTbdr29o5E+vz6e0yMFx+/Tg3H57Y+17EZJs8sZQTHfmLTfp7319HguXr+Lu3w4B4LpnZ/PFqrU87qnkzCP6cOYRfVi9biPeJ99sTjadgPOJSTbhgPdi4KYUxBgB5rFtcpH7B2mglHIBo/Yu6zK8S1ER5+23D5V77d68uS3NrEJsx+qBNiC67IH3PuPDlWv518kDAbhh1iKW/1jPQ6eX88rH3zDiwD2p7LMHo1+e25xsAAbUjxvRI596phVysjkXMw/WFhcM7sdB//cwN6//BbOXfE3N+8uYfeOobXa6+aW3uXzooOiin0Umj93HMXLi8uhDtTGmJuBdtiaX2S11hRYpVX3rrbfuevTRR/PFF1/gv9ITnWwK+TwRqVWJmeh1S4vHeQP2ZtCkWq4ffBD/++oHpn2yguD5xwPw9U8b6bdrNwAcjm1aeDdbx3o8U4G3VyGfRPsT0z5f1qmEc4/ty1+enc20eZ/z2rVn06XU/FGrtWbc0//llEH7cdj+PaN32wTsBUQnm+ifk/ETcIXT43+njfuLttswZ84c5s6dy1VXbbeYdSGfJyK1fkZMx4CykmJ+dfBe3DBrMa9/uoJ/n+uiS4kZ7rdX185889NGBvY030FRuljHyhvJzJnV0XS1K7zoxP7c+/p8br/gBHrvvrVjUmDa+9R+8AUvzvmY+96YH7tbt5jXHuC7NsTUnTzs0thBnPbSSy9dv2zZMrtt0owmUmVnbAaOjz5kXya99xm3DRnA/jvvsKX8jAP25OWPvuGPr81j2M93j96lCPuekzmrkP9is+t1xI0vvs2u3brQ2LRtZ5Erhh3GFcMOS+hYTo//x3DAuyemq/NxmMGYLhJb3S/RwaUihbTWHyilSoHrbTYX8nkiUsv2e2dC6CN6lJXSGNn2e2eH0mLuPzWx751cV8gn0U+xBbf/u46NDY08+6fTueH5tzjrqETXFGNtbIE1iPJ169E8qHNfTNJpfgxg+1+YSQn/C0SmyJWNSJXVmI4/W1qV7pizlE2NTTxxxhHcPHsJZxyY0IrTEWBNmmJMi0JONsuJWkAsuHA5j85cSOimX9O1SylXP76JeZ9/z6Beu7V2nFISaDKzks/n1uMpgHDAuxNwNGaSvm5ArdPjf7UN/xbRTkqpnsDJza9XN2zmrZVhjuqxC0VKFfJ5IlLrW6Aea3zfzM9X8sQHy5lx/vF07VTCNbULmb9iDQN7ttpCVk/bmuqzppBPosmYZq6uy1etZcz9r/Pva0bQtUspYJrN7qh5j0cuP6W146xyjJxo29DfGqun2WvWQ2TXE8OGDTvpsMMOY9ddd+X4M0dw55w5/D4SYXDPXeXKRqTKVKzxMV/+WM8fpr7Pi786hq6dzK/Y5eX7c/fcT5l02uGtHacEs0x73ijYWZ8jk8d2xUzv0p5Bl5uBiY6RE8enJiqRLUqpNy+++OLje/bc2tOwpqaGc1QjJ+3R887ymto/ZjE80YHUjxuxgJixNm3wQdmEarvF2XJWwV7ZOEZO/CkyeexbJDGLgI0Gtl/7ROSn3z388MNnDt6tx7H9unc7HaCypITBe+0BBXyeiLR4FDPouy1zo4FZbuDRVAWTKYV+Ej2MWZFzh9YqxvEjsF0/aJF/tNZLgCprPZvTYzZLM5pIpRdo/wwjL6YikEwq5HE2YJYXWErbJlqsBy5K1YqdImfI3GgircomVC8H7sZ8hySrHri7bEL1F6mNKv0KOtk4Rk5sAs7GXJYmox54yjFy4uupj0pk2WabMrmyEan2F0yP2GRmaW8EvrT2zTsFnWwAHCMnfgqcgVnuOZGrlHpgFvCHdMYlssYu2XS2KROizcomVG/C9Ib9FjPlVWs2WXWHWPvmnYJPNgCOkRODmLEu32KSjp0mYCNwP3CaY+TEbb6UwgHv4HDAe3U44N0/rcGKdFtpU7a7TZkQ7VI2oforYCAwh/jfO1jb3gEGWvvkJUk2FsfIiQuA/YA/A4sxPc3WYZrY1mIWJzvUMXLiVVbz2xbhgPc5YCYwEfg0HPBOCQe8vTIXvUghu9UPExrSLUSyyiZUrwZOwKwaHMJcway3HpussrOAwVbdvFWw42xaY43D6Yn5D/8qXkeAcMC7CxC22dSEmf57gtPjX5q2QEVK1VVWdGf7ZaA3AmXlNbVysoi0qh83opStszl/VTahuiGb8aSSJJt2Cge8PWl52ogI8Cxwi9Pj/zAzUYm2qqusUJi/KmPHQOxSXlOb139ZCpFN0ozWTk6PfwVmvE08DuDXwMJwwPtiOOA9NDORibawrl6kKU2IFJNkkxq3JVjvLOC9cMD773DAm/CU0iLjJNkIkWKSbFLjIZIbGHoa8HY44N0nTfGI9pFkI0SKSbJJAaspbWqSu+0C/DIN4Yj2k2QjRIpJskmdR9uwzw+pDkKkhCQbIVJMkk3qvMr2XWZbEkJmjM5VX9uUSbIRoh0k2aSI0+PfBDydYPV1wDinx5/snGwiM+TKRogUk2STWo8mWG9H4LVwwFuZxlhE20myESLFJNmk1rvAIptyu3E4XYBXwgHveekNSbTBtzZle9RVVsj5IkQbycmTQk6PX2N/dfM08JFNeTHwZDjgvSKdcYnklNfUrsPMhxetBHBmIRwhOgRJNqn3IBA9M2sEeAA4DqiLs8+d4YD3hnDAq9IdnEiYNKUJkUKSbFLM6fGvBk4E7gEeA453evzvOz3+lYAbCMbZ9a/AXeGAV/5PcoNdstkv41EI0UHIRJwZFg54O2Oa1UbEqfIMcKHT4+8ws73mo7rKivuA38UUX19eU3tDNuIRIt/JX9EZ5vT4NwIjMVPc2BmF6TiwQ+aiEjbm2ZQNzHgUQnQQkmyywOnxNwKXEn8Cz1OAN6y1ckR2zLcpk2QjRBtJM1qWhQNeL/GTzkfAL2UdnMyrq6zYEdMjLbbTxk7lNbWxPdWEEK2QK5ssc3r8fuASTK+1WAcC78hYnMyzuj9/arPpkEzHIkRHIMkmBzg9/oeBswG7TgFlmLE494QD3k6ZjazgyX0bIVJEkk2OcHr81cAw4Kc4VX4P/Dcc8O6buagKnty3ESJFJNnkEKfHHwSOAhbHqXIE8L7MqZYxkmyESBHpIJCDwgHvjsAkTDfoeG4Crnd6/MmsECqSUFdZsQ/wRUzxBqBreU2tfO5CJEGubHKQ0+NfB5wHeIDNcar9BZgWDnh3zVhghedLYE1MWRegTxZiESKvSTw9G6cAABVFSURBVLLJUU6PXzs9/rsxc6p9GafaEEyz2jGZi6xwlNfUaqSTgBApIckmxzk9/jnAocC0OFX2AmaFA94/ykSeaSH3bYRIAUk2ecDp8YeBU4G/AXY32YqBfwHPhgPerpmMrQBIshEiBSTZ5Amnxx9xevx/x3SPDsepNhKoCwe8rsxF1uHZJZtBGY9CiDwnvdHyUDjg3Rt4HtNNOp77AJ/T47dbJVQkqK6yojNm7FNxzKZdy2tqV2UhJCHyklzZ5CGnx/8lcDxwVwvVLgMWhwPeszITVcdUXlO7EVhis+mITMciRD6TZJOnnB5/g9PjvxIzFmd9nGp7AC+GA97qcMC7V+ai63DetSmryHgUQuQxSTZ5zunxP4v5K3tuC9XOxFzlXC4rgbZJrU2ZJBshkiBfPB2A0+NfDBwD/JH4VzldgbuB2eGAt1+mYusg7JLNoLrKChlQK0SCpINABxMOePcB7sF0lY5nM1AF3GKtHCpaUVdZ8SFwcEzxueU1tc9lIx4h8o1c2XQwTo9/OXA6cA6wIk61EuA6YF444D0+U7HlOburmyEZj0KIPCVXNh1YOODdGbMK6G9bqfog8Genx7+6uUApVYqZA2wHYJnWuqC7+dZVVgwHXokp/qy8pnb/bMQjRL6RZFMAwgHvCcD9wAEtVFuBmaHgkR5XTDzd4XC80KdPH3bccUeWLl3K2rVrHwcu1VrbLfDW4dVVVuyEGUxbFLOpd3lN7bIshCREXpFmtALg9PhnYqZYuQlojFOtJ2Yg6JJ+e+76x5tuuolbbrmFK6+8knnz5jF8+PDRwLjMRJx7ymtqfwTesdkkTWlCJECubApMOODtj1krJ+5M0f+Zv5RxLwQ3NzQ2fb5qXX3nk08+ee+xY8dy0kknzdRan5i5aHNLXWXF3zH3uqI9X15TOzIb8QiRT+TKpsA4Pf6FwC8wa+XYLkF96sA+eIcdU9JYXNqnd+/ee59++umEQiHYfiGxQmPXScBdV1kh55EQrZCTpABZk3rejenK+7xdnSXfruKcc87hvvvuY8iQIUyZMoUDeu6yc4EvY/A2UB9T5kRmgRaiVZJsCpjT4//K6fGPBMqBmuhtvzlmAN+9M4OrL/4No0eP5oknnqC+YfNwYGY44D0uKwFnWXlN7SZgls0muW8jRCsk2QicHv+7To//VMAFzLj2xSDnP/Ayu3XbgYP2cBIOh9lhhx1oMvf3jscs1jYtHPAW4mSU023KJNkI0QrpICC207mkeMXjTz2921dffYXWmtNOOw2/30/D4rn8c9TQ2OqvAH91evwLshBqxtVVVgxk+6WiNwC7WDNECyFsSLIR21FK3dGjR48ry8vLAZg/fz4DnF24f/SpdO3SKd5uU4F7gRqnx9+UoVAzzuoMsALoEbPJXV5TOyMLIQmRFyTZCFtKqb2BQ4odDu674NReZx524OVsPzeYnS8wXasfcnr88abLyWt1lRXPYqYDilZVXlNbsOOQhGiNJBuRkHDAWwScC9wA9E5gl83AS5irnVlOj7/D/KLVVVb8FnggpnhJeU3tQdmIR4h8IMlGJCUc8JYAFwB/BfZOcLdFmKTzREdYprqusmJP4GubTf3Ka2oXZToeIfKBJBvRJuGAtxMwBvg/YL8Ed1sPPA3c6/T4309XbJlQV1kRAo6NKf5reU3tjdmIR4hcJ8lGtIu18ufJwOWYNXQSHfT5NuZqZ3I+rqlTV1lxFfCPmOL55TW1g7IRjxC5TpKNSJlwwLsv5mrnt8BuCe72A/AI8CQwP1/u7dRVVvQCPrPZ9PPymtpPMxyOEDlPko1IuXDAWwqcBfweMwg0UZ8BLwPVwFu53oW6rrKiDjg8pvia8pra27IRjxC5TJKNSKtwwNsPuAzTqaBrErt+D0zB9GgLOj3+TWkIr13qKivGAzfHFL9TXlN7VDbiESKXSbIRGREOeHcEfo252kn2vsZPwH8wVzxTnR6/7WzVmVZXWXEgsCS2vO/5R95dtmvXXkAD5t7U644h42NnHRCioEiyERllzRp9FKZDwUgg7pQEcWzCzE9WDUxxevwrUxthcuoqKxYC/aLLDjjn8KYd9+revKLnJsyCdfOAyx1DxhfEtD5CxJJkI7ImHPD2AEZh7u8cT/ITw0aA2ZjEU+30+DO+3k7dqRUeNHc1v3aUFtH/EhfFXUpiq2rMHGrnO4aMfymTMQqRCyTZiJxgJZ7TgRHAUJK/4gFYBoQwCSgELHZ6/JGUBWmj6bWb7vv6v59c/MPi70qKupSw9wkH0K2Xs6Vd6oHRjiHjX0xnXELkGkk2IudY93dOwSSe04BubTzUauAtTOIJAXOdHv+GlAQJRKbfchbwBFCW5K7rgX6OIeMLfeVTUUAk2YicZnWjPhGTeM4EerbjcJuBd4m6+mnrPZ/I9FucwKfATm3YvRGocwwZf0xb3luIfCTJRuQNazLQozGJZwSwfwoOu5StzW4h4KNEBpZGpt/ye8AP7NDG960HDncMGb9dbzYhOiJJNiIvWb3aBmCSznBMd+pUrDz7A7AA+ABY2PxwevxroytFpt8yBzgykQMu/uJ77qx+i1Vr63Ef2pvfn34UmF5qNzuGjJe51ERBkGQjOoRwwNsNc9XjAn6B6V7d1qsOO8uxEpCj2PFZt/263aGK1JZODPf+ew4LP/uOu688A4DrHnmDL1as4XHfr7YcIBKJMOafL/Pg1Wc1F33iGDK+TwpjFCJnSbIRHVI44C0GBmISj8t67Jmq4yuHYsd9dqS4czEA9RsbOOjifzF/0hXMXvgFf3t0OrPv+B1dOpku0FPeWsxtz83i8jOO5tfugc2H2YjpKLAsVXEJkask2YiCYDW79WJr4nEB/Ul8lurtFJcV03WfrTPwXPPANNZvaGDa3I957daL6L3n9l2gT7v2MV69+YLml2uB3zqGjH++rTEIkS+Ksx2AEJlg3fT/zHo8CRAOeLsDx7C16e1IoEuix9SRbf9Qu+jkw+l3yb+ovuE32ySamfOXUT17EZs2N1J55IHRuxSR3HxxQuQtSTaiYDk9/jXAVOvR3PTWB3PFMyDquTc2V0Cddtp23OmNTwbZtfsONDZtO470hIH7c8JA245zDpJIbkLkM0k2QlicHn8jsNh6bGnaCge8ZcBBmMQzoKRryRml3Up7l3Yt3bLv7c/PZmNDI8/+5VxueKyWs47rRwKaMF2ghejwJNkI0Qqnx1+PGQz6LkBk+i1dMVc7AATf/5RHX3+X0B2X0bWsE1fX1zDvk28Y9PNW+yNEMPdthOjwUjEuQYhCMwOz7AHLv1/DmNuree4vo+haZprVrhhxLHe89FYix+kE/C9tUQqRQ6Q3mhBJiky/pRtmcbe2TBYabaFjyPgBKQhJiJwnVzZCJMkxZPxa2n9FsgF4tP3RCJEfJNkI0TaPAevasb8CZJkBUTAk2QjRNi/Q9p5kDUCtY8j4z1MXjhC5TZKNEG3gGDJ+HXAObUs4G4CLUhuRELlNko0QbeQYMn4mcCvJJZx64EzHkPFtWkdHiHwlvdGEaKfI9FuuBCZgZgOIN9faZswVzamOIeNnZyo2IXKFXNkI0U6OIePvBNzAe5grl+grnZ8wszs/j5nhWRKNKEhyZSNEikSm36KAvphlrPtgln9+D5jhGDL+u2zGJkS2SbIRQgiRdtKMJoQQIu0k2QghhEg7STZCCCHSTpKNEEKItJNkI4QQIu0k2QghhEi79q3UuXGVRmvQTYAGHcG8jlivm0Br9JbXESASt962x2him2NHYp51Ezq2XovPzceNflhlkejXQMSKK2K9jq63pTzqualp63Mk5rW1n44ta2oy+zdZn0f0c0SjrZh0k/mIaYpYIeqo7VjbNTTXs/bZZl+rvm6KoLVGN5rPLtJoYolYr7eWm1gijRG0jqAb7ffTEU2kqcl6NnWamiLWaxNXpClCJGp7xNreFPM6dv8m85uy5VlH/ZzMs8YMdtFW2fVaxxvhn3M6HX6pVo4iHMWlqKIiiopLMa9LzHOJeb21vHSbckdxKQ6HwlHkwOFQKIeiqMhhnosdKAdbX0eXK0VR8bb1S4sdFFnPxVteO7aWF5nnTtbroph9mus4lKKkSFGkFCUOhcNhPStFSZGDIgUlRQ4cCkocDooc5rl5P6WgSCkc1rNSbPPz1m2Yf0fzdodCYT1rjYo0mvMt0oTSEbBeq6aWys13RPO+unEzRJrQmxsgEkE3xjxvbjDbm+ttqW+eI42b0U0RIpsb0U0Rmho2oyMRIg2N5rkp6ueGRiKRCJGoOpEt+2qaNjcRadJEGsxz0+YmU97QlND2iNY0RDRNW56Jed5avlnb1TM/36c/j3t+yZWNEEKItJNkI4QQIu0k2QghhEg7STZCCCHSTpKNEEKItJNkI4QQIu0k2QghhEg7STZCCCHSTpKNEEKItJNkI4QQIu0k2QghhEg7STZCCCHSTpKNEEKItJNkI4QQIu0k2QghhEg7STZCCCHSTmmt276zUmO01pNSGE/ek89ke/KZZE8uffa5EkuuxAGFFUt7r2zGpCSKjkU+k+3JZ5I9ufTZ50osuRIHFFAs0owmhBAi7STZCCGESLv2JpucaGvMMfKZbE8+k+zJpc8+V2LJlTiggGJpVwcBIYQQIhHSjCaEECLtEko2SqlTlFIfKaU+UUr5bLZ3Uko9Z22fo5TqlepAc01rn0lUvbOVUlopVZ7J+LIhgd+TfZRSM5RS7yulFiilKrMRZ0emlNpFKfWGUmqp9bxznHq3KaU+VEotVkrdqZRS2YrFqttNKfW1UiqQwvfPme+tXPm+yOo5qrVu8QEUAZ8C+wOlwHzg4Jg6lwP3WT+fCzzX2nHz+ZHIZ2LV6wrMAt4GyrMdd7Y/E0yb8O+tnw8GPs923B3tAdwG+KyffcCtNnWOBULW/1kR8D/ghGzEElX3DuBpIJCi986Z761c+b7I9jmayJXNkcAnWutlWusG4FngjJg6ZwCPWT+/AFSk4y+lHJLIZwJwI+aE25jJ4LIkkc9EA92sn3cCvslgfIUi+lx8DDjTpo4GOmO+cDoBJcCKLMWCUupwoCfwegrfO5e+t3Ll+yKr52giyWYv4Muo119ZZbZ1tNaNwI+AMxUB5qhWPxOl1KHA3lrrVzMZWBYl8ntyPfAbpdRXQA1wRWZCKyg9tdbfAljPu8VW0Fr/D5gBfGs9XtNaL85GLEopB/APwJvi986l761c+b7I6jlanEAdu0wf24UtkTodSYv/XusE+idwYaYCygGJ/A6MAh7VWv9DKXUM8IRSqr/WOpL+8DoOpdR0YHebTdcmuP/PgYOAn1lFbyiljtdaz8p0LJimrBqt9ZcpvqjIpe+tXPm+yOo5mkiy+QrYO+r1z9j+0qq5zldKqWLM5dcP7Q0uh7X2mXQF+gMzrRNod2CKUmq41rouY1FmViK/J5cAp4D561op1RnoAXyfkQg7CK31kHjblFIrlFJ7aK2/VUrtgf1nOwJ4W2u9ztpnKnA05n5BpmM5BjhOKXU5sCNQqpRap7WOexM9Qbn0vZUr3xdZPUcTaUabC/RRSu2nlCrF3EibElNnCnCB9fPZQFBbd5g6qBY/E631j1rrHlrrXlrrXpgbfh050UBivyfLgQoApdRBmPsGKzMaZccXfS5eALxiU2c5MFgpVayUKgEGA+loRms1Fq31eVrrfazzZCzweAoSDeTW91aufF9k9xxNsBdDJfAxpifDtVbZ3zEfCFZAzwOfAO8A+6e6J0WuPVr7TGLqzqSD90ZL8PfkYEwvqPnAPGBotmPuaA/MPYdaYKn1vItVXg48aP1cBNyPSTCLgNuzFUtM/QtJUW8063g5872VK98X2TxHZQYBIYQQaSczCAghhEg7STZCCCHSTpJNhimlzlRKHdyG/bRS6omo18VKqZVKqVejyoYppeqsKUiWKKUmWuXXK6XGpuZfIETHpJQ6wTrPLokqO9QqGxtVNtY6vxYqpeYrpUZb5TPTNc1MRyDJJvPOxNyES9Z6oL9Sqov1+iTg6+aNSqn+QAD4jdb6IExXymXtjFWInGR1VU6HD4Bzol6fi7lZ3vy+l2HOvSO11v2B47EfvyJiSLJJAaXUy0qpd5WZ2HCMVbYuavvZSqlHlVLHAsMBv1JqnlKqt1JqkFLqbWvSu2rVwmSFwFTgVOvnUcAzUdv+DNystV4CZkS01vqeVP47hcgkpdRo67yYr5R6wjqHbldKzQBuVWaiz5etOm8rpQ6x9htsnV/zrAkluyql9lBKzbLKFiqljovztsuBzkqpntbUNadgzrtm44HLtdZrYUu35cdsjiNiSLJJjYu11odjunReqZSynfJCa/0Wpl+7V2s9SGv9KfA4cI3W+hDMX1V/a+F9ngXOtQZaHQLMidrWH3i3/f8UIbJPKdUPMwuBW2s9EPijtekAYIjW+mrgBuB969wZjzmXwIzX+YPWehBwHLAB+DVmWp5BwEBMt954XgB+hZmw9D1gkxVTV6Crdd6KJEmySY0rlVLzMYOx9gb6JLKTUmonoLvW+k2r6DHMZbktrfUCoBfmqqamPQELkePcwAta61UAWuvmkf3Pa62brJ9/ATxhbQ8CTuucCgG3K6WuxJxfjZgBjRcppa4HBmitf2rhvSdjkk1s64GiY0/DlVaSbNpJKXUCMAQ4xvoL7H3MYLHoX8rOSR5z76hmgMtiNk8BJrLtSQDwIXB4Mu8jRA6L98W+PqZOLK21rgJ+C3QB3lZK9dVm3rfjMfc5n7Ca6EZEnWflUQf4DtiMuTdTG1W+FlivlNq/vf+4QiTJpv12AlZrreuVUn0xc0wBrFBKHaTMJHsjour/hJkLCa31j8DqqPbj84E3tdZfWs1sg7TW98W838PA37XWH8SU+4HxSqkDwEzup5S6KmX/SiEyqxYY2dwkrZTaxabOLOA8a/sJwCqt9VqlVG+t9Qda61uBOqCvUmpf4Hut9QPAQ8BhWuvqqPMsdmqYv2Kat5tiyicAdyululnv2635Pq1oWbp6dBSSacBlSqkFwEeYpjQwi0W9ipnSeyFmkkEw910esC7xz8bMzXSfUqoM03vsopbeTGv9FWahqdjyBUqpPwHPWMfSwH/a+W8TIiu01h8qpW4G3lRKNWFaDGJdDzxinXv1bJ3n7E9KqROBJsx0PFMxvcq8SqnNwDpgdCvv/1acTfdizuW51rE2Y5ZIEK2Q6WqEEEKknTSjCSGESDtJNkIIIdJOko0QQoi0k2QjhBAi7STZCCGESDtJNkIIIdJOko0QQoi0k2QjhBAi7f4f/sUn22yFumEAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -478,7 +480,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEgCAYAAABYaaN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXgT5fbHP5OuUMoWdgQEK4K2rnWtejFVr8brerVa913U6BW1WterXvVXjbtxudcVvYqi1524tioY18piiyCUHRQpAUopXZP5/fG+aSeTpGuS6TLf5+HBzEzC15kz55z3vGdRVFXFhAkTJkz0DViMJmDChAkTJuIHU+mbMGHCRB+CqfRNmDBhog/BVPomTJgw0YdgKn0TJkyY6EMwlb4JEyZM9CGYSt+ECRMm+hBMpW/ChAkTfQiGK31FUYYYzUGL7sYHTE7thcmpbXQ3PtA9OUVCT+IaCYYrfeDR9lykKMp4RVE+UBTlRUVRCrsBnyMURXlWUZTnFUX5NoZ8OsLJoijKfYqiPKkoygXdhNM0RVHmyXs1rTtwAlAUJU1RlJ8VRflbLAnR/vs0Vd6jtxVFubIb8DlFUZTnFEV5X1GUY2PIpyOcJimK8oKiKG/HmE9raLeMdVcYqvQVRTkOmKIoyo3tuHwyMEdV1YuBPY3mo6rqPFVVpwMfATNjwaejnICTgbFAI7C+m3BSgR1AajfiBHAzMDtWfKDD8rREylMekN0N+LynquplwIXAmbHg0wlOK1VVvSRWXNpCJ2SsWyLR4H9/M/BfVVVdAIqiZAH/p7vmYlVVNwELgNsURTkTeLUb8AngbODSGPHpKKc9gO9UVf239IaKuwGneaqqfq0oykjgEeAcozkpinI08CvCEMUSHZInRVFOAgoBV3fgI3E78FSM+HSWk1EI4tpTYbTS3xtYFPigqmoZEGm5fRHwT1VV50qF9pLBfFAUZTxQparq9hhw6Qyn9UCD/G9fd+Ckqqpf/udWIKU7cAKOAtIQK8ZaRVHcGp5GcUJV1Q+ADxRFmQO8biQfRVEUoAj4WFXV+THg0mFO3QBBXHsqjFb6m4FLFUXZrKrqkjau/QS4S1GUs4HV3YAPwCXExvh0ltM7wJOKohwBzO0OnBRFOQ34KzCY2HmwHeKkquptktuFwOYYKfwOcZL7HachDKPbaD7ANcDRwCBFUTJUVX3WaE6KoliB+4D9FEW5RVVV/Yog1uiofuiWUMzWyiZMmDDRd9AdsndMmDBhwkScYCp9EyZMmOhDMJW+CRMmTPQhmErfhAkTJvoQTKVvwoQJE30IptI3YcKEiT4EU+mbMGHCRB+CqfRNmDBhog/BVPomTJgw0YdgKn0TJkyY6EMwlb4JEyZM9CGYSt+ECRMm+hBMpW/ChAkTfQim0jdhwoSJPgRT6ZswYcJEH4Kp9E2YMGGiD8FU+iZMmDDRh2AqfRMmTJjoQzCVvgkTJkz0IZhK34QJEyb6EEylb8KECRN9CKbSN2HChIk+BFPpmzBhwkQfgqn0TZgwYaIPwVT6JkyYMNGHYCp9EyZMmOhDMJW+CRMmTPQhmErfhAkTJvoQTKVvwoQJE30IfV7pVzjyUo3moEWFI89S4chLNpqHFhWOvNQKR55iNA8tuttzA5NTe1DhyEuocOQlGc1Di+4o37FEn1f6wE8Vjry/Gk1CgwnADxWOvD2NJqLBicC7FY684UYT0eCuCkees8KRl2I0EQ3eqnDkXd5dFIjkMb/CkXe00Vw0yAC+rXDk7WE0EQ3+jnh2VqOJxAN9WunLh5wJfFLhyHusm3ggk4F9gZ8rHHnTjSYjMRk4GSircOTlGk1GYgpwI/BjhSNvstFkJPYD/g28X+HIG2I0GWAkMBX4vMKR91CFIy/RaEIIWcoGFlQ48i4xmozEZITiL6tw5E0zmEvMoaiqajSHLqHCkTcY4R2PBcbIv8cCowAFaAAa5d+BPxuBtUAa4NL83JfAGRmu2d4u8FEQL9suGi6BP8MBn4ZHgFctsAFYBxwE/EPzk88C12a4Zjd2gZMFGKfhob1PgyWPAJfA3zskn7XAxYBd/pwPuA54KsM1u9PCI0NY4wm9R2MQz0XLJfD3NslnLfAosJv8uW1AXoZr9ued5SM5pdEiS9r7NAZIIlSWGoFKyWcj8IHm55YBJ2a4Zi/rIqchhL9Po+Qlelmqp0W+BwOPaX7uc+DMDNfsrV3gE5DvcPI0HGgi9LkF5HstcBjg0Pzkk8D1Ga7ZTV3gpJdv7Z9BtC3fVwDHyJ9rAhwZrtn/7iyf7o4uK31FUdKApxE38itVVV/ryu+Vl5ePA/KAEcAmYHZmZuY6aBa4DCAHOFz+PaUr/14YrES8rL+2k1MCsLeO0y5R5vQVcLrWGLXBKRU4UMPnMCDanud/gGsyXLMb2slpMHCohtPBQDTjzT5gBuAKGKPW+EhOYwh+bvsCCVHktA2hZD8LHGiHfO+u4XM4wguNJpYj5Pu3dnJKRMi3ltOYKHP6AmG0m41RG5z6IZyjAJ9DEQYumngKmKF1ttqSp56Cdil9RVGuBLJUVb1Kfr4XmKCq6nmKopwHbFNV9UNFUd5UVfXMzhApLy9PAB4ApiM8PYH6uprEX77/OuHnuTsVOBJxw2ONaiC/bvqdn4TltGP7zsSFnu8Syn/yKULg0uPAaSVwUt30O5eG46Rs2bQzcYFngWV5mUURy+d4hKq+Bk6vm37n1hBOqoqycW1t4sLvfrWsWZasiDBaPGLd//FNmvqPxmPPuBf9c/M11SQs/vmzxG8/rVLgL8DEOPDxAzMaTjz/Kf/YXcPId21N4qLv5ybMn1erwBEIbznWqALOrJt+5xeEle+qnYkLPN8nLC71K3AIMCAOnJYj5Ht5CCdVRdmyqTZxoWeBZXm5RYEDiI98FwN5ddPvrArhJFCDWInfnJmZ6YsDn6igvUq/P/AbkIWwrP8CDlNVtVZRlFuAj1VVXagoyuuqqp7dGSLl5eUPATdoj1l+W0TS1x+h+A25n2rTPod80XToscdoDyZ++ymJv/xgBB+A6gbbKXP8k/c+S3sw+f2ZWP5YYxSnFfV/v7REHT7msuYj9XWkvPkMys5qQwj5hwxf03DaJRNIakmCUv5cT/Kc11Aa6g3h5Bu/+/zG48/aH6XF7iUsmU/iPDeK328EJX/TfjmfNR2ce5z2YOI3H5NY/pMRfACqGo4+bY4/I7NFh6gqye+9hOXP9UZxWlZ/+uVfqsNGXdHKNQ9nZmbeGDdGXUS7NnZUVd2pKMos4D7geOAYVVVr5en1iHDGQjq5MSyXTSGblurw0e1R+D6gQvLYoPn7d0R8LglI1vydJvmOB04hcohBSVz0/TFq+hB8mQc2H/RbR0W4PAh1iJjuBt2fjfJ8gEuA1yBETDID+Fsrv5ueNHfOWY1p6fjHtjipfuuI9ij9bcAKgu/RBmAzIqShvUfJwFDEPdoPsZqJhN2SP31rUsNJ56MOlBGklFTUAQPbo/Q3AqsIvU/bCH1uKYhV3niERxwx+8OytXJCsvt1Go7Ph2SR3KMOHQntC2WuQsR69fepNgynfsBoyek4WlmFJqxdvr86z03TEXYCit8/fHR7FL4P4QVruYST7wCvNIQsjQdOlcfDwZK4wHOcmj4Y354HNB9Uh45siw+Ie7Gc0Hv0pzyvvUdJiNDLOEToyq7/MQ0GJX390dkNaemooyeII4qCf+iI9ij9rbTIt/ZPJPm2Iu7R/ohQYyRMTvp09u4NJ50P6REjSNPLy8sfy8zMNMwydQQd2c1/EVgCnKyq6grN8XcAl6IoJwAfdpJHHsHLJgDUoSPwW0dh8W7UHt4BfAd8A3iAHzJcs3d09B+Umz/hvucHFvlHjavzTZx6qDpgIPj9YBH2zD9xCuq8OShNQftOmySXAKcF2lh3BzjtRXilXw/86Bs7UfVPnHKkagm2rb7ds8J5Zys1fDzAkgzX7A67lBWOvAsIr/S3Ax7f+Ixk/6SpuTQF7zP7Jmdh2bSh+bMKqgJlGk7fZLhmr+0oH8nJRXil/4ffOnKTb+KUfdSBQ6Ghvlnpk5SEf+JUEpYt0l7fAJRqOH2b4Zq9uZOcvie80l/uHzGmyjdxSrY6yAqNDS2GyDoK/5DhWLZWaq+vBr6l5bn9kOGaXdMJPonAzjCn/MBC/+jxdb6JUw5T09KD5Nu321QSv/lY72z9iea5AQs7k1hQ4cjbj/BKvx74wTd2Iv5JU4/URwF9k7NIXDJf/50VOk6/dVK+LyO80t8GfOsbn5Hin7RnrtLYSCsuQxpChz3S0X/fCHRE6d+JyFQI+o6qqjXARV3kEdFD8k3OgsUN+Hebin/Y6FeSP3/7kq7s9GswFuGp+RBGZB4wF/guwzW7qry8/AHCKbvkFPy77oGyfSu+SXuiDh/zfPKHr1zelUwWDQKbdjsR8fJ58k9phmt2neR0pP5L6oix+IcMQx0wCP+kqfhH7PL0Xn+xXR0FPlpOmxHZTQFOZRmu2T7JKSSN07fbXiT+9BX+cRn4Jk3FP3Ls45kHHzYjypxW6TitbDjjiiJgn3Bf8k3OwrKuAt+kqajWkW8mzZ1zYYZrdl1XycgN2IARWkTLs/smwzV7o7xH2SFfVBQh30sXSfkeMzP5s9mXZLhmRyOeOR7h2foQijFwj77LcM3eLjkdFvKtlH74d52MUrMd36Q98Y8Y81zK+zOviLJ81xAq3/UR5XvUePyDhqIOHCru08hdntrriKMc+uu6yKkSKNFwKs9wzfZHku8waNcSqTugXUpfUZQbEGGQPOBuhHcfTWyKdMKXdTC+vQ8JLIkXZZwcFYUP0B+ROvZWhmt287+fU1SiUFQy3r57/5F+P6ypaiQ/M52RA1puVaPt1GbPCOFBRyvvtRo4G/hA693lFJVYKCqZkjux3zhVhU07fVxxwCCSE6RHpCg0nDFdy2mF/oe7gKXAX4ESrbHNKSpJpqhk38PHp+6mqmBR4Ny9B7Z8q18a9RfcqOUUzSyHz4BbgZ+19z6nqCQ9f/XOAY1+WLOtkQmDkjhmt/7NX/KPnUj9eTMCnH6cmndBlxW+RD/gIeCNDNfsoHufU1Qy/NQpaUN9UpaOGN+PrJEt9WS+fQ7Dt29OQL5/iZLCB/G+XgW8neGa3byUkPI94fiM/iP9KqytauTcvQcyrH9L0lLj0X/XPrelUZTvbcBZwIcZrtnNq5CcopIEikr2tEn53izlO0kr32depeW0Mkp8ABYj0jW/0sl3CkUlWYePS91NBRItCmdntZqv8WdrJ7sT2tzIVRTFBjwBHKqqarWiKAuAi1RVXRgtEjKmv4QwIR4NaoAp0Y6b5RSVKIgCllz551A0K4/M4clcc3DEWF6sOCUiMhSOBmyI9MtmiTth9/6ctEfEhIpYceqH2MTPBY5CpDc2x4uvyh7EPqMiFsfGitNQySUXkY0zFRkbsChwn83K0H5hMzBjwkdyGk+LLB2OyPsHwNrPwr+OspJgCZvEFEv53pNg+W7OENpnZDJXHWiIfB8o+QTku1mgT9ojjRN2j6gKYsWpP2KvKBeYhpDv5gyhaw4aROaI+Mp3rNCqp68oynjgeeAEVVUDu3KPI4pzLowWiczMzHXl5eXPosve0eHZaN7UnKKSacAliIc8OtJ1x+/eP9KpWHA6FzgDIXQDw12TqNBom9i/tXS1qHHKKSpJQFS9/hWREx12U3BwqmVz1sjkYXHiNAwoQDy3/YmQBnrILqmRFH5U+UhOewLXSE67R7ru2N36R1L4seCUiwi75tJSyBUCe2TlGgtOFyAqX6cRIc05yULDUbv2a633VDRlKRG4CTgWYQzD/rtD+1n+3Gt4cmvhm6jep1ij1WwbVVXXqqo6SVXVJZpjL6uqemEMuNwMPIywmlrUyOM3R/nfq0B4hxEVPvB1xtDkeHJaiRDAsAofwKfy5IBkS1w4eQptPkRWxFFEzgKhut5/rUVR4nWfvIhskAOInPfvP2yX1BfjxAdgNaKAKaLCBzYePDb1sThyWo54bq2lm32+6+CkeMr3aoR8R4yTNPl5pH9S3OS7CVGz8Bdake+qOr9DiZ98xxzdrg1DeXn5Loi9g5GIONnsWFnRnKKSqYhMiUjr22M9hbbP48zpROB9wiu0emCip9D2R5w53QX8M8Lp5cBUT6HNFy9O0kP7H3BShEve9BTazorzPRqK2DCNVCFe4Cm0PRRnTpmSUyQnYpqn0PZ1nDmdhnh24VALTPAU2irjzOk+xB5ROPwKZHkKbf54coolukMDpiDImxiv1Kf9iex1lCHKw+PGScZfDyeyBzvLU2j7I86c+iNK3iPhcbkiiOezG0Xr7QkeiTMfENk7kbzqGkTbinhzyiZyNe18RLZaPGXJgoibR8KrnkJbZZw5pSH2FCLhMU+hzR9PTrFGt1P68UJOUclViGZrkRTsfzyFtrgtg2T8/Gng8lYui2sTqJyikkGI2otIL2ot8N/4MYKcopLdEY3DJkS4ZCEQ15LSnKKSoxGrs0gbQLM8hbbtcaRETlHJPwhutqbHv+Ms34kIw9daene85XswMIdwqasCO4BZ8WMUH/RJpZ9TVHI9IhanhUqLAagjjspMKvyXgXN1p/y07LuUAXHr/yAV/heE5pdrOb3hKbRVxZHTHoj8bv2mmpZTvI21HXiX0JhwEKd48ZGcbgaKdIe18l1DHJWZlO//Avq+XNp79LOn0BZSgRVDTkMRvXX2bYXTa55CW4cLP7s7+lw//ZyikumEKvwmIB+4RX5+01No2xYnPgrwDKEKfzOiUvBt+Tlunplc8s4hVOH/gkj/KwtwigcfyWki4iXVK/x3EGG6LYiiti51ee0gp6MQ8Wm9wr8L0QLBDyxAVP3Gi9M1hCr8RuB0WvZlXvcU2uLSGEmGdJ4nVOFvQoRV3pef4ylL6cDHhCr8BQj5DnTY7ZXtlfuU0pcpkU/rDtcBJ3sKbW8iOuk9Tpw8M6nwHwYu053aABzhKbSVIozBHOKkzHKKSlKB9xApmlp8j9j4+w3RZ+YD4Mc4cRqDWHWM1Z16GTjTU2hbBJwAvBCvMEpOUckhiNCXvnfTDE+h7W5Poe0DRKgubiuPnKKSixA1NVrsBP7mKbS9g2iU+Azxle8nCE3vXgscLj37fMANvBEnTv0Qsqvfp/oGOEoj3+96Cm0L4sEp3ugzSj+nqORUhJLQxvDrgBM8hTY3gHw5r0e0ZYgH7kL0gNcioPCXSk71wEnxWHnkFJUkAW8iisK0+BY4xlNo2yo5/Q6cGg9lllNUMhyh8CfpTj0HXCLT7vAU2r5H1I/EHDlFJfsiPEV9kvuVnkJbcxzdU2h7gfgp2DMQHrUWtcDxnkLbZ5KPiqhC/zkenID7AX07kLUI+V4uOdUCJ8Zj5ZFTVJKMWJlN052aC/w1EKr0FNrWIVZGvRLdLmUzFsgpKvkrwivTFjU1Aad4Cm1zDOJ0I+DUHa4Ejgwo/DjzSQBeRXheWiwAbPEKd+k4DUb0Q9lPd+p14PxA1lCcOU1BKAl93/sCT6HtoXjzAcgpKjkBsTrT7tE1IJTpZ+G/FXNOtyK68mqxEaHwKwzgk4jYx9Ar85+Ao+O90W4ker3Sl8vwEkR/lAD8wFmeQttbBnG6hFCvbBsifLIozFdizUdBTAq6UnfqV+AvnkJbpzpPdpFTKsLD14eZ3gfO8BTaOj0+sgucdkGEufRhprs9hba74s0HIKeo5HDEfdL2CPABp3sKbe8ZxGk6IoykhRch3+UG8FGQK0PdqTLJaUu8ORmJXh3eySkqGYvIrOinO3WxgQr/cEJfiB3AcUYofInphCr8FYiQjhEKP7C5rVf4nyNi+EYo/H4IWdIr/EcQTQjjDtnn5x2CFb4KXGCgwp9G8NxpEG24/2qEwpe4llCFvwwh331K4UMvVvrSU3yH0IIZh6fQNtMASuQUlYxDxBS1YaY6xDLckHFcOUUlRxK6+bceseT93QBKIPrYXKg79g1iHyHuo6+kEfo3odlM/wFujGeKqIZTf4QR0oeZpnsKbXHLYNIip6hkV0S2mbbpUS1i3yxe+wh6TrmEZuutQch3j+mMGU30SqUvX9JnCd2hL/IU2p4ygJLWU9TPDjjPU2j7Kv6Mmj3FtwmOBe9AbP6tNoiTjdCqx+UIw9jhYSJRwnXAebpjc4CrDFL4gXDF/rpT93gKbXGtCQhApvm+h5hIpcVZnkLbNwZQIqeoZBIwm2AjtB2xqu5xA82jhV6p9BHLuQt0x9zA7QZwCbyk/0E0CdPiXk+h7e0wX4k5pKf4HqGe4nlGLcNlLr7+Ja1GpNTGfSNZcjoa0Stfi9+Ac4zYSJa4ATF3QYv3MS7MpCAm6+mH19wpU1fjjpyikgEI+R6qOawCZxuRKNGd0OuUvvQU9cu5ZYiHbdRLOoPQ4qsPidzELKaQL+nzhGbF3G1gLDicp6gilOuS8N+KOaeAp6h9T7YjjFDcKpF1nP6KqCfR4leEsTZkwjqiy2Se7tg7hGbvxAVSvl8GsnSnbjcqW687oVcp/ZyiEiuiiEm/nDPyJc0m9CVdApxr4Et6EaGpme8B9xjAJYCHEO2JtbjDU2jr7NzlLkGm+L0ODNEcVoF8WcBjBKcRiLRa7Xu7DSHfcamwDcPpEEKVezliM9ko+b4C0bdfi7eA/zOAS7dDr1L6iGpb7catocs5Gcd/heCYeRWiPsCQvGC52fa47vBiRN67IS9pTlHJcYgMIi3eRhT3GIWbCR2YfWugkC/e0Gwma8NxgdTjuOe9S05pCPnW6pEtCCNkSM+anKKSDEJX+ouAi4zYf+mO6DVKP6eo5CxCl5j3Gbycuxcxwk+LCzyFtmVGkJF9UF4muN3uTuA0Az3FocALusPLMfAlzSkq2Q9RLa3FB4Su2OKJ84BTdMfu9hTaPjWCjEQRoYNjzvUU2qI5w7bdkAWGMwnudroDId9GJQF0O/QKpS/z8fU9deZjYLgip6jkL4S2WHjJU2h7P9z1ccI/EFOCtCgwyghJuIAxms9+xKrDKE8xhdDV2WbgMgON0HjgSd3hHzFwJSQ3uB26w//2FNo+NoKPxI2EtkmeYZQR6q7o8UpfLntfIDj2Wo9QHHEv4pGcBhLa52cNceoNEw5yjqs+pvk5oYVicUNOUUkeoXsLRbKPjlG4B8jUHbvcU2jbZAQZuTp7ieDpV3UI+W4yiNNgyUmLlQilawhyikr2JtTJm0PoKrLPo8crfeBSxOBuLW7zFNoWG0FGwgnsqjt2kYFx/ASE96qt3KxCVCYb5b2OINTgLMKgtEOAnKKSQxFD17V41VNoe9cIPhJXAjbdsZuN2kyWeBTYRfM5UAVs1OosESHf2hbXWzBwddad0aOVfk5RyRBCe4fPo/WJQTFFTlHJAYROv3rMU2j70gg+EpcQWiNwtafQZuR8z3sJzqFuQHivDUaQkR61fpLaekTNhyHIKSoZRmhmTAmhbQ7iBmkYL9QddhpVgCVxBaE1AtM9crSoiWD0aKWPyHPXKo6dwIVG5ePLUJM+M+Y3Ig9djjnkBKx7dYffQaQjGgLZmvhS3eF/egptvxjBR+ICQitcLzaqKEziHmCQ5nM1YsVoVJaVhVCHajFwpwF0gOZEAH1Y5w2jemv1BPRYpS9b3Op7dd9v8KZNHqFNwq6VPcONwu0Ep/nVAtcZGNZREIpD61H/RmiaXdwgJynpN0VnewptnxvBByCnqCQL4cFq8S9PoW2tEXwkziG0tck1RvRD0kDv+O1AzMQwEQE9Vukj+rNoMyzWYOCkepmT/6Du8Byj+pkD5Igh4v/QHX7A4L4jpxGaQXSDUZvuErcSXN9Rj8jTNwTSMD5K8Pu5gtDGeHGDbGugD6W+a2TYMqeoZCrhHT8zrNMKeqTSzykqOR44Xnf4JoM96huA8ZrPTfKYkXAS3NFzPaGDW+IG2flU/+9/iuiLZAhkvx+9Z/iQUQ3nJE4EcnXHbjTYo76J4NTaBgzM1pF4mODq+9UIY2miFfQ4pS8zUfShgHmIMmtDkFNUMpqWoeoBPGlkhoUc2n2y7vDNnkLbTiP4SFwLTNR89gHXG5xh8QDBWR9/EOrRxg1yZKVevktoGSAed8iW4PqspkeNDKXKHkR6x6/AU2irM4JPT0KPU/qIcWfaKlcVA2PUEtcTXAXoRQyhNhL6zbXvEOPiDIHs6qlXHM94Cm2/GsEHmmsXztAdvsWo1EOJs4AMzWc/xsv3jQQPgP8TYwvDFELley5iVoWJNtCjlL582HqP+lVPoW2+EXygOW1U3zfmbo8cIm4EZBOsabrDRnvUlwDDNJ+rCW11EG/o4/YLEA3NDIHMjinUHX7RU2grM4IPNA+mv0x3+J8Gz5Q9gtDKW6Plu8egRyl94DiC83FVjG3KBaIUXdvLZhOh82/jDb1hLDayylWGLPTx36c9hTavEXwAcopKJhDak/5+AztDgojl76n57MfAUJPEtQSPG/0dUW1uJPTy/bFRk7l6Inqa0tc/7HcMjpunEZod86iRG8o5RSWZwEm6w0a3lD2b4E3uegwsoJO4keDsr2WIyWaGIMIq9k1PoW2FEXyguZ2Ivr/Ow0ZuKMtmeMfpDhst3z0KPUbp5xSV5CCWdVoY/bAvJXjox3YM7GUjoQ8P/ITYCDQEMmShD6O86Cm0bTSCDzS3gNAXhz1g4JAdEOE4fStno738K4DBms9bEBPgjITeMHo8hbZ5hjDpoegxSp9QZfa5kUu6nKKSZEJTMp8yalgLNKcfnqU7/H8GxzpPInjj3YeBaaMS1xK8Mbke+K9BXALQy/ccIyuUZXqtPpX1SSM3uWXdyem6w0Y7fj0OPULpS2X2N91hox/2icA4zec6jA9ZXEFw3vJSDEz1k9CHB97wFNpWGcKEZmOtr3R92KiePwA5RSWTgWN1h4328k8luGCthtD2zvHGlQRXcpdhYI1HT0WPUPqENngqBb6KP40gXKz7/LJR7XehudPg+brDDxm5MSmndOmLjPRVy/HG3wjOItoGPGcQlwAu1H3+zuAGZhAq3y8YvPGeROicaaeZsdNxdHulL2PCF+gOP2fkw84pKhlD6GaS0YrjWGC05vMO4A2DuASgf24/GtxUDcR8YC1eN3Kqkiw2DJFvI7gEIIe26I210ezN/n0AACAASURBVPJ9AsE9pKoQIzVNdBDdXukDRwETNJ9rgTcN4hLAeQTfu18QOd5GQu+ZvWmwMrMQ6sHqB2/EFTlFJaMIreI0lBPCWGvbG9RgYHW5xAUEh1FKPYW2cqPISOjle5bBbVd6LHqC0td7Zu8YvFmqEMrpJYNXHsMITdM0Wpn9heBBMnUYv/I4j+A9j3LA6PxuvSzNNniztLsaa7vusNHy3WPRrZW+HMv2d93hF43gosGhwB6az43AawZxCeBsghurLQO+NYhLAHrP7B0je9NLY63n9KLBxnooof2RjFZmRwKTNJ/rMbB9h8S5BBvrxYhUZBOdQLdW+oi+KNrUutUYv4Grj79+6Cm0VRrCpAV6TkavPAYQaqyNVmYHAlM0n5swPk3zLIKbvVUARm/g6mXpXSNbikh0K/nu6ejuSl/vBc00OBvFQjcLo8gOiNqJT34M7B8jcQzBpfvrMLBATEIvSx91A2Md4uUbbKwTEKnIWhgt37sRPKjeh/HGukej2yp92ZVRn0Fg9G79/gTnLu8ADBuSInGC7vO3nkLbBkOYtEBfU/E/g3vaQCgnQ2VJTuuapjtstHwfTHCF+TaMN9Z6+Z7rKbT9aQiTXoJuq/QBG8GhnTWIWJ6R0CuOT40s6pHQc/rIEBYScjWkf1GN5jQe2FtzyA98YhCdAI4mOLSz3FNoW2YUGQm9LH3sKbQ1GcKkBd1KvnsDurPSD1Ec3SCO192UWbjVkNEvxf7ASM3nasSQGyOhz/z41shCI4nuqMy6m3ynEzpaszvcpx6Nbqn0ZaaF/qWYE4t/qyzffkZZvr3N+yCnY2XrDn8cAz7pZfl2vZKKhHCroagPJSnLt+9Zlm/Paufl+uf2WSxWQ2X59mll+faRbV8ZllOsZOnksnx7alvXRVgNxYpTXlm+XWnrunithsry7YPL8u1/befl+tVQRSxWQ2X59qyyfPuebV/ZO9AtlT5C+HbRfN4JRH0Ac1m+PRGRbvlJWb59bBuX6xXxjzGKLe4OzCnLtz9dlm/v38a1Id5ijFZDhwOlZfn269thIOPlwZ4DlJXl2/Ubj0GI82roLsR92qeN6w4gDquhsnx7CiLdck5Zvn1UG5eH2xvaEm1OiAyqT8ry7U+U5dv7tXFtvGTpL8DPZfn2a9rjAPZ0JLZ9iSHQK9gv2jv7Uno1AxEbrgpigHOj/DvwZ2fWLLeKqPRNQmSbLCzLt/89a5Z7bjs5tVsAJScroozcr+ER4FWXNcsd+P+bLP++EjiiLN9+UtYsd0iDMrka6gqnBITiGSx5BLgE/t6ZNcvdqOGUjJjdelRZvv2crFnukMlJOUUlIxEKLQCVDqyGyvLtyYhWEmk6LoG/a7JmuQPtjycj7ucHZfl2J3CL5pwW0+jC3pA0vGMQcqKXpUZgR9Ystyqf8WTE2Mwfy/Ltl2fNcs+M8LP659buvSH57wyiJaFAL0v1QK2U70kIx+54YFFZvv3UrFnuSPUbXZXvYYjn0UTocwsn39cAR5bl20/OmuVeo//NKMn3KMS9ao98pwJPIOT7/KxZbiNHZsYUiqoaHSYPRnl5+bg7vvR+vqnGpy2AutJTaHtWe11Zvn0oYmTawYjKz7GaP2lt/DM7gLWIFYQ2ZNMEXJk1yx00+Wr+orJx139auaTRH/S7B3oKbaU6TrsgvOJsRAfOAJ8xBC9Tw8ErOfUnuPjLC5ymN0Z3vvndocWrarUvcD0wWGsc5cs4BchBTBzT3qNRBBe86KECGyWncQS3ClgMnJQ1yx00GPvMp+dOX7+9qXmeQKKFX76+yRbk9Zbl25OAfSWnqTpO2t4q4eBDtEFeizAu2pXQHOBsrTEqLy8f9/gP22b+WtlwlOa6Zz2Ftit1nNKAgxDytJuOk7affDjUIVJS/0AUNmkRYozKy8vH3V7iLanc6dPOwb3EU2gLKjosy7dbiSzfba0AqxH3qI5gI9wAXJE1y/2y9mJP6aIJt5Z4lzb5g4zjPvo+SWX59vGI53YAnZfvNFoUP4hJcyHG6ObXvj3ym3V1X2sO7QSGaI2j9MoD8h2IDmjluzWvXSvfEwjOyvsFId9Bxqi8vHwckAeMkLxnZ2Zmrmv9f7v7octKX1GUScBtwCBVVfW9rtuN8vLyBOABv6pOn/Hp5rS6phZeMw4Z/NIer9x/L7U7D0c84MMJHisXbTwO3Kjc9qAKPPB7ddOVd3+9pflFS0lQeORY6yMJj/zzVRrqD5N8cgieDhVNNAFXZc1yPxe4T9+uq3XMXFSdErggY2iS/8YDBzzOI3e9S1PjoZLTYQSn4EUTXuDvWbPcXwc4vV5Wfe3Xa2qbK4NzJ/ZrPGNX5RmevP8TfE0BTgfTttLqLH4FTlRue3AN8AAw/QHPlrSVW1sSUE6anPaR/ZPHLqO6KiBHOcB+xG7VOwc4W7ntwRrggSa/On3Gp5VpDZo1yU2HDXl+0kv3PkBdrZbT1LC/Fh08DNys3PYgwANrqxqvum/e1uZQS/8khYeOtj5seeTO12ho0Mr3uPA/12U0G6OALM1bU+v4b1mLfO9hTfLNOCDtCR69+z2aGg+TfA4DhsaIUyXCGHkCnBCzsLWOXw3wLHBzZmamkQN4OoR2KX1FUa4EslRVvUp+vheYoKrqeZpr3u6i0n8IuGFtVSP3zRMFgNb6bRxevZTjG1fApj86+9Odxedce9tSJX3QNXPX1PJaWTUA43du5Lj6ZexftRyq4l6o+ASF/9ekJCRc/+ov2/lmrXDq99q+kpPVlYzf+BvUxbUHVRNwlXLbg3sAN9w7dwvrtjeR6G9i/6pl/F1ZxaANy6Eprll/Xk7M+0LZO/vMBp/KdZ9U4lMhrWknB25byunKKhLXx72d/69cePW3ytgJl67a2kiRR8jNsPptHFm9hGMbVkBl3AeJfcx1dyxX0tKv/XLVTt5YLKIZu+78g+Prl7HPtuWwPe5dMx7mliIUi+WGlxdu57v1daCqZFWv5CT/Ssb9uSze8t0IXK7c9mAmoQOTtHg4MzNTPwO626K9Sr8/8BuQhbD6/wIOU1W1VnNNp5W+XDYtAdIafCortzaycmsjSb/O5+jyDzvzk7WIAc5NiFhsEmL5mYSw1CmRv6rBqLF+zr7MUpOQyoqtjaza2sj4H9zst7607e+GYjtiOYmOTxKQTns9zT33beLkMxO31kPFFsHpsC9fZJftnarH2iz/JOg4JSP2RdrM+gDAZm9QDp2WvGF7E6u2NbJm807+/tmjpPg6nLTjB/5EFAXpn1sK4j61jcREOP0C/BMns6aqiZVbG6lau57TPJ2aV9+IkKVaQp9bP9q7ahkwUOXcK5SGQcNYuU08t5Tyn7D92qkZIHr51nJqv3yPGecn/1JLjSWlWZYm/vAh+2zoVMPYKsSzIwyn9st31v5N/C0vcUudygqpB44sfo7ROzplFCsRK9KuyffRJzYoBx/RWviqBpiSmZm5vjMk4412h3cURXkQIVDHA8eoqrpCd74rSv8G4CH9cbWhnn7/fYyU9FTqvNXUb92B6m8u7PQDixC9ShYhYr0b5J9tciMrBJpN1fHAF8CQiMQsCTAlE07OR7GI8KD6+zrSS97EkpBArXc7DdtrRHRQoB74EfAgQg0BPhta2xjSbKruD7Ru5ZKSICcXJcfWfEj9+TuGrPqJptoG6rzbaawJ2vOuQjRf+xZYruH0e9Ysd8QB1zL2PhY4k7amOKX2gxPzUCbv1XLswzcZ6vdSt6Waui3b8dU1ar/xO+K5fY/op7RBHtuYNcsdcVkgN1V3AW5HdMyMjEFD4KxLUIaNaD6U+OoTpKdZqPNup25LNf6moBX5MsmpFBGjD9ynzVmz3BGricvy7YMQYY8XEf19wkNRYMx4OOtilFQRSVHraun/2hMkp6dS591O/bYdqP5mYfIDCwkv31VtyPcwhHx/SWuG0pIAe+4jnl1AvtetZuDc/4GiULelmoaqoO7cdcAPCPleQrB8R2zjrdlUPRj4X0Q+AEnJcMTRKIdOaz6k/vgNfP5BpG9sk3y+RfQuCnD6ow35TkbI9zkIJzYy+vWHk85CyZjS2lU3ZGZmPtLq73QTdETpT0E86JNVVf1Ac9wK3IfIgHleVdUOjzEsLy9/ALgp3Lkhn79CapLgqPpVmmrrlzXVNXzgq2t4bML/vdTpdgNSgegFtRzxks3jgquPZMy4KwIvQwCq38/IkpdJSBR7oH6f39+0s36Br75hduOOuqcnPvRKp3f9y/LthxOcuteEUELzgHlcNuM4ho+6SlGCHRTL1k2MXNSSJONr8jc27az9xlff+HKdt/q/u7ve6HQLhLJ8+3XAo5pDNcB3zZyuLjxFGTz0Wv33Uhb/wNDKpc2fGxvVOn9NzcdN9Y1PV1X8XhxJabWT02uIzqIBbG7mc9q5+7LbHucryaHO7oB575LuE/u8qqriq2tY31TX8FlTbcNjE+5/sayzfCSn3wjeoFzdzCn/0oMZP+kSJTHU2R36+UxS5C6I6lfVptr633x1DR80CfnudExTGiNtfEZFyLfgdKFjGqN3CSPfPkaVvIIlURwX8l0331ff+EbDjtpnJj306s4ucLIBxZpDjWjl+/Lrj2PYyKv18q3uqIYn7gPVD/3TYOjwxaxf/STiXV3SmlFuB6ebEPH6AHYgDMg84BuuLjw1nHyHwYOZmZk3d5ZHPNGRzas7EculoO+oqupFbHB0BWHHDCq+RlKSFZCGSbEoJKWlTk5KS70RuNrrKngb4WHNtTqcHX3wGbRM3/kA8GTNcjdXaZaXl48O96XkHd5mhQ9gSbBYktP7HUB6vwP6DRtU4HUVvAq8aHU4OzN0YjLCo3sDMfvzh6xZ7uaXrLy8fHK4L6XuDE6nTki0JCUMTDsKOKr/8MF3eF0FLwEzrQ5nZ4zkZMQs0jeAz4EFWm+8vLx8/3BfSrUEefYkJSmpDB5wagqcmjZyyA9eV8GLwJtWh7MzsxEyEN1WZyO82d8CRkSuGsMiNQmR/wMoikJiv5RdEvulXMwQLvS6Cj5GyNJHVoezQ3EpuSoaA7wj/3ydNcvdvNQvLy8fGO57SlMDyUkKgaWiYlGUpLTUKUlpqVMAh9dV8JbkNM/qcHbUSO6OUPpv0SLfzZtQ5eXlYetSkrdvblb4EJDv/tmkk91v2KCbNPLdmSLAyYhsmTcQqbw/ZM1yN4eIy8vL9wj3JWVAOuoxJ8LwkTB+Iool4cXMzMx/d+Lfj8RpoeT0BbBIJ98HRPqiDj2mH1B7Y/o3IHbLnwDuVlVVXxrdJWhj+trjKZvXMbS8Xf2eViK6Ac60OpztSqEqy7enAw2RloDl5eXj1MbGJb7SH9LU6u0kHStShgesWkj6mkXt+Sd+Qrywb1gdznbtiMk01G2RPJfy8vJxas2OJU2euWkW63ASDhDRhCG/fEHqljb1uR/4VHL60OpwRlz66jgNy5rl3hzpfHl5+Th/5aalvrlf9k846FAs48aDqjLi29kkNLZZWlGLMLodMtytcQrIkn/NqrSmr0tIOus8lORkLHU7GPl965EFic2ILqXtNtxS6ffPmuUOa8DKy8vHqX7/Ev/isjT/0l9JOiMfgNTKNQxZ/FV7/okKWuS7XYa7LN8+EKhvVb4bGpb4Sn9IY+dOEo8WRbLpK39mwNp2/W//gHhu7TbcMg11a6vyvaN6SdM3c9Mso0aTsG9YfyKq8fN2yfemP5f6vi7pn5BzJJYxYW1l74rpK4piQyj7Q1VVrVYUZQFwkaqqC6NJJJC9E3RQ9ZNUVUnq5rX037iiytJUP6iNn1ERXS9fBN5vr2LTo9SeOxCYTkrqndTXpSWedBqJh0s75/ORsvV3UjevJXXT6lqLv6mtqsI6RBzzReCrTqxIApx2AW4gIcGBz5eYfPV1WCZMBEBprCfVu57UzWtJ8a5vUlR/Wys4L6I97YtWh7PTM2tL7bn7AoVAHhaLknLPAyjJYr/LUreD1M3rSN28luRtG1Wl7U2zDhvuMHwU4Fhl+Ijn1cpNuyijx5AyQ664VZXEmm1Clv5YVplQv7OtmgDohOEOwykZOJv09Ieprh6acOAhzUq/Rb7X0H/jiu2WpoawKwINOmW4w3AaBFxFSsrt1Nf3Tzz1DBIPPVyc9DUJ+a5cS2rl6jqL39dWW4lOGe4wnMYDN5KQcCU+X2LytTdi2SVshmjcMmVK7bn7A7cAp5OQQMq/HiRciC6enKKBVpW+oijjEcvoE1RVXSKPXQhMU1X1wmgSaSsXNnnrxputiz7NQgznOJ+2c+K3IBTbY1aHs105eqX23CHADES1YHNRTvJV/6i17DpJq9xrgGcHLv/h1rQNS3MQw17yabuQZzXwPPC01eFsV75nqT13IqIO4nwC07EUxZ/yrwdrleTkkPtkne++K3l75TGIAR2n0HbRzM+IXONX26tESu25BwH/RFsxOWhwZeptd/cnzLMb8d3bzoT6mhMQm2Y2WkfAcLuAOe0Ja0hlfzJwB5rZAgnZBzUl5Z2jfUub86pHfzVzAnAq4r5qe86EQ8BwP2p1ONs1XrHUnpsCXArcjCa/PfGU0+sTDztCu+Ggle99aJFvbRuScPAiViSPWR3OkIrWCJyGIhwrByJ7BYDka66vtYybECLfg5Z8c1v/P1ccTot8t2WUViLk+5n2GslSe+5uiI35cwmEji0WX8q9zjolMdGQnPhSe+6hCPlu7hGkDBm6MeWWf6bTV/L044ny8vJdEFVvIxFxstn6ZZPXVWBBKI+LgdNoPUXNB7wOFEWKQ0rP5x/A9YiybS2akq9wTLXstvtJbXBKRSjZixGNolrzbHcATwOPWB3OsLHAUnvuOMTLcDGhey8LUh98/CTavk9DERueFyMKkFrDBkQG1XNWhzNsJob0fO4mtCcKwHOpDz5+Tzs4TURMQrqItg33L8D9wNtWhzPkpZLK3g7cQ/AgGQAU67CbU26+o6kNPgri3lyMMEptGe5PgfutDmfYdh3Ss78Q8exCXFXLXlnHJV9w6V5tcEpA9Au6GGGYWjPcgQlgD1gdzqXhLii15w5GODMzCM3mqU+ecdNUy+ixp7bBqb/kchGhvYz02A48hTBIYffrSu25ExBG+kJCK8N/SH3w8dNpQ5aijVJ77oEI+T4+zOmnUh98vCjenGKBbqf0Owqvq2AIwgu5mOCS83B4F/HClgKU2nMHILz6AiKnbi7IdheHDS62wmkCLYpt11YurQNeAJwBb63UnjsGuBW4jMgv+3+y3cVXdJDTfpLPubSWpipi2o8BTwW8tVJ77t6Il+GUVr53eba7+LkO8OmI4V6OWAW+anU4GwJhHISyP6iV7+2f7S5ud9J5Bw33NwiD9InV4VRL7bmJiDTSO4n8zOuAgdnu4sYI58Nxaq/hVhGrkfutDucCaA5TXovw7iMZsx+y3cWHtJeP5NRew10HPAc8ZHU410pOuyBWrpcQPNdZC1e2u/iajnDqCmSY8m5Cp+JpcWG2uzhSL6UehR6v9LXwugr2RgjiebTefuAz4P7Vny1cqDb5n0WEQiLhuWx38eWd5GNBNPy6GLFsjxQfbUJ0+yxa5Z7fgFiZHNzKT3dIweo4pSKE+yLE8jWSYqtGemur3PMnS36tleF3SMHqOA1BPIOLCW1frcV6wNlU3/j8uuKyMyS/SH2WGoABHVGwOk7tNdwLgfsrF63+YMeGLXcgDHake9phBavjFDDc59B6+4GPgftXuecvBv4DtFY/81S2u9jRST4Bw30RQr4jGe4m4BXggVXu+Sqi82drDlpcFWypPXcaYrXUWqfdzGx3sdFDnKKCXqX0A/C6CpIRSqSQ1nuYeFRVvX/1xwvGIDyScLg22138ZBQ4DQauQISQRkS4TAX+11Tf6FxXXHY+cHWE6w7Ndhd/HwVO4yWfywmeaatFHfBc9Xrvc5t/WfMo4Zf2fiAt213crk6obXDaD/HcziCy8qwEHv3j+2Wf1m3Z8Raim6Qei7LdxftGgY8FYRxvAY5o5dLfgKLVny1crzb53yd8pe7z2e7iy6LAKQXh/RcSXBugxzzVr963+pMFuyEMZDhMz3YXdzn9URru6YgQUqRNchV4q6m24cF1X5ZfjpC7cDgg2108v6ucOoJSe64VsVIKl5nYiJDvTjkQ3Q29UukHIF/YUxHeV8QQjffXdWu2r66cEOF0bra7OGpzQr2ugn6Ipe1NRPCcVVXl929/29BQtTOS5zEo210c0tq4C5yGA9eh2+DTwt/ka1j3ZflOf6MvXJhgWba7OGyOdRc4TUYotfOIUE/SUF27bcM3S/qjhg2DvZ7tLj4nypyOQMjScZGu2bFhy4bKRasjPbcZ2e7ix6LIJwERGrsN0UU1LDaXr11TvXZzJPk+Ittd/E0UOfVHbGAXEGEzWlVVfvcs/b1he+2YcKcRK7ROF4F1BnJf7xfCh6vKs93F7R0i1O3RqwcGWB1Ov9Xh/B8iZHA8YQZV1G2rYfuaiAofRBVjNDnVWh1OF6LA6GJE+X8Qqtd5aUXhr42mwpecKq0O520Igb8NEdcPgnfJ+uQICh+ifI8kp2VWh/NiRKtjF2LF0QzVr1L5y5rBERR+rDjNszqcxyNCE/9D24ADaKpvxPvrutZCBNGWJZ/V4XwLEes/AVFJGoS6LTtoReFDlOdOWx3OnVaH8wnEc7sUUWMQhOo1lURQ+AAr4q3wJR4n8v5E1GXJSPRqpR+A1eFUrQ7nJ1aH80hEz/NPAPxNPioXrg56dS3JierACcNfRoQQNme7i8NmH0SBU4PV4XwJ0SI6D9FfhcaaOrYsCU4ISB7Uv67fsPTnEHHqmMUVrQ5nldXhvB/RX/w6REYPNX9uY8e64JGyaaOHbEzsl/ym/BhLTmutDuc1iLj6A4i9BrZV/EFDVbBuGLjriPmKRQn0YI8lp/lWh/N0YC9ErNqnqiqbf1mDv1GTZKQoDNpt1AdAIKsmJpykfLsRzRCnISqnhXwvWh10bUJKkj99wvCXECmfv2e7i2PSKlbK9wuI8Go+oqqbhh11bFkaXF+WMjitNtU64HlEGCXucfNSe+7fEfs3WjwFBMJevSKWH0CvDu+0Bq+rYP9N81e+W7NxW5B1H5m9G/1HDKKptmHJn/NXfrf3rA8viRMfxd/k+9sf3y97o2F7bXM8WEmwMPaIqST1T6HWW/3Nll/Xf7b3mx+13iAqepxS6qt2Xr3xx+VOf6Ov2UFISkthzOFTsSRY1KrVmz6rXrv5hX1mz3krTpyG7NiwxVn5y+pLtMa6/6jBjNhvIkBN5aI1cxuqd87Y5805v8WJ065bftvw36oVf+Zojw/ZYwyDdxuFv8n3x8afKub3s6afmPHEa3F54byuggP//HnFezv/rAryqEcdmEG/4QNp3Fm/eNOCVd/uPevDTiUpdIKPxdfYdPIf3y17vXFHXXNCg5Io5btfCrWbt8/bsmTDx3u/+VGH+3d1FqX23NEIg6RN/FgMZGe7i+tK7bmnAVXZ7uLisD/QA9FnlX6pPfd4RH+bZqSPH8awzJAV3ltAQXsLYLrI6XZ0Hf+GZY0nfdww7aEmRErlv6wOZ1TDPGH4KMB7aFPZFBhz6B6kDA5KmtmGSFV8xupwxrR5fqk9Nw2RMdM8eSohJZGxR+xJQnJQ6H8FYpP6w070rekop90lp5ZBO0PSGH3IZHTNwzzAtVaHM+ablKX23JMRz64ZA3cdjnXPkG2kN4CbOlsF3UFO9yBy85sxbJ8JpI8NSrRrQDT4u8/qcFbHmI+CGHKjzctvBA7KdhdHteNAd0KfCO/oIStvg8bTWZISvEOnjA1XlHQGsMTrKrhKFvLEitN+iCrAZiQP6r96wC5WfVl7InAjsNTrKjg2VnwkLkSXuzxw/PBlOoUPIgf8CeBHr6sglhOfAB5Eo/ABrHuOW6VT+CBiyu8D//O6CobpT0YLpfbcBESIpyVbR6Fu+N4TNum7RSL6V5V6XQUPygycWHEahi4bzZKcWDlkj7HhYuVnIWTp8hjL94GI/aJmpAxOWzlgzFC9QU5GVDH/6nUVtFW93VVcRmgh1h29WeFDH1X6iFbQ2pmYfn+j72+WxITJiHxdPfohYnwfel0FI6NNptSeawGeIThLpbKhaufBiqLsD4Sr/hwNfOp1FTwmc++jzcmKmPGqxQ/b11TuhajIXR7ma/sB872ugqtjoUCk4rhSd/iZtNFDJgNXIVpv6HEqUOZ1Ffw1zLlo4FIgOPde5eqktNQMxBwCfcdOBZHZ8r3XVRCrkZ9FBKdNNvkbmuyWBMseiBx5Pfoj4tfvykyuqEIaxmcJ1jd/1G+rOUhRlGzCbEAjMn+Kva6Ch2JhIEvtuSMIbqkMouAuZK5Hb0OfC++U2nOzEYNOtErp3mx3cfOy0+sqOAzhuYYrIKkELrY6nB9FkdNliCIaLU7Jdhe/L/koiM3ehwifBrcYOLsrzdPCcPoPwhMKoBbYJ9tdvFxySkG0rrgDGBDmJ9yI+xSVlrNScfxA8DOpAPbNdhfXSE5DEVW6VxLeoXkCKLQ6nFGZuVdqzx2OyM/XVjh/gHh2quS0O/AI4VtX1CFSd13RCkHJvjF6JXpntru4OWwoU0+fJHya50bgIqvD+Uk0+EhOVyMysLSwZ7uLP5Z8FMRmrxPRolqPXxDyHbUN1VJ77kuIlWwANUBWtrs47rM0440+pfSl4viO4AlHFYiHHZQSKHOgL0EMkQ6n1J4FbrA6nF1KL5NL8d8IrrB8J9td/Hf9tV5XQRqip8tNhCq1BkQB0WOd7XSo4XQIQnFoDeOt2e7ikA02r6tgNEKZhqv6rAQusTqcnZp5qeN0JaJfkRbHZLuLvwjDaW9E469wk6wWA+dYHc529cdug9OLiGrUAGqAKdnu4pB+LF5XwfEIwx7OaH+CMJBdGgQtW0H8BGiL0pYgDGPQikPK9xUIRRuukMyFiPV3yUCW2nNHIuRb29PqjWx3cb7+Wq+rYABwzYO4ogAAIABJREFUF2IvRr9SrKfFQHZVvvXDigBuzHYXP9yV3+0p6GtKfzoijKLFX7PdxZ9F+o7XVTAJEfI5NMzp3xAKpF2dFyNweh5hXALYiVAcETfWpKf2KiK1Uo9i4IJODkwJGMafCO7z8huwt15xaPgoiCIqF+HH8/0bYSAjjtRrg9MIyUFbJzA72118ZqTveF0FSYjN5VsJbyBvQzS862wr4BxEOECLm7LdxfqQmJbTEIT8heO9GbjU6nC+3xk+ktO1iHxzLWzZ7uIvW+G0O0K+w/UwWoLwsDsd4y61575C8GjLaoR8/94Kp2mIfZJwxYufIlYinTKQ0jDOR8z7DmAxsF9vqbhtC31G6UdYir+d7S4+o63vel0FiQgv+p+EdgRsQiiXB8N1gmyDU7il+M3Z7uIH28FpEGKJHm5W7FbgcqvD+XZH+EhODvm7WhzdnpQ12Yjrv8BhYU4vQxjIDk+VL7XnvkxwHvUOhOJo07B5XQU5ktOuYU6XIAxkhzolSsXxM8EtmX9FeNStKg5pIM9B7BGFq35+Drje6nB2aOymTD1cqvvNdlUlSwN5B8IQ6g1kozz+cEcNZKk990jga93hdlUlSwP5NOH7YnkRBvK9MOfa4jQDEW7T4shsd3FI4WZvRV9S+u1eikeC11VwMEKBZIQ5/RHCK2pXmplUHKUEx1XDLsXb4HQmItQUrlrWCdzSXmNUas8dhVAcbS7FW+GTiGifcBehBrIBuMzqcL7S3t8rteceQehG9g3Z7uJ2D6H2ugoGIgzZ+WFOVwKnWB3OcJuJkTjp5wYDTMt2F+sVXGucdkWs1g4Pc/oX4MRAZ8p2cvovwpgEsB0h3+32iOVe1n+BiWFOvwec297VWqk9NwlYgChgC+AXRF+ddqf1el0F5yCUfzgDeT9wR3uNUak9dyxCvrXh2ley3cX6wqxejT6RvSOX4hfpDt/VEYUPYHU4f0CEPV4Ic/pvgEc2MWsPriJ0I+2qjih8yelNhMf5VZjTBYiUxXB7EuHgJFjhV6OfZtY2nyarw3kvwtvXl+AnAzO9roL7ZV+kViEVhz6OX0boSqQtTtutDucFiLCKfrjHcKDE6yo4O/SbYTmNQWwWa/FqRxS+5LQaUT17G2K1qMXeiPTX1jqtajkdRbDCB5F62KEQiDR8+wLhOlyeAszzugraGu4SwD8IVvgg5LtDdRxWh/M1xHsSzhO/FZgt+/20B/r9uW2IfYI+hV7v6UdYinc5hud1FZyKWIrrWzj/CZwsDUQkTqMRoSZt/Pu1bHfxuV3gY0Eo6PsI7VO+EOE5RjRypfbcvxBqOLrUIEwam0cIzgIK4B3g/NY8x1J77vWIF1WLLjUIk0prJuEneP0LuKs1z7HUnjuL4JBDFbBHtru401lKXlfBgQgPW98xsw64UBr2SHySEc9XWx+xEDiwowpWx+kMxF6MfvbCH8BJrYXpZM/8pQS3vX4p2118cRf4JCAU9D2ENuArRbxzEfcJSu25RyPbU2hwdba7WO9U9Hr0BU/fQeg4vKu6umljdTjfRXhF+urKkcDXXldBaz36HyJY4W9HFFx1hY/f6nA6EeGCjbrT+yI8x3DZLJE86l8ITbPrKKcdVofzcoQXqh/FeBriPoVtvCWX4nfrDs/sakdIafiOQRhHPe4AZslOqOE45RIaY769KwpfcvoJkYr6ru5UKvCG11VwZyt1D9cR2j68wx51GE5vIeRGnwY8GpjrdRW01qP/EYIV/lZEwVVX+PisDuf/IXpn6fthZSPkO+yQGTm6Ut9a+mdaeuv0KfRqpR9hKf5Ktrs47Ki7jkIqkCMJfVlTEMrjn/qXtdSea0P0Qtfi9mx3sV5Rd5bTj4hMDH1KYmsv63WIxm9adFlxaDi9DhxF6Mt6AOJlDdf2+hFitBSXBvJ2RIxfH07LA77yugq0xXuRFMcCQrPBOstpByLtVV8wBML4vaYvwpPDxP+pu/b5bHfxd1HitBbhROhTbvsBb3ldBbeGke9jEVXsWtyS7S6ujBKn7xADhvSdL8cC33hdBeGmu91I8CpKRch3j5lrG030aqWPCA1oPeoqohzDk+GJ04FwTaLuQvOyyqW4XnEsJEqKQ8NpHeJl/UB3KhXxst4WeFnlUlyvOF7Kdhd7oszpO4QxCveyzpPhMiSnoxHKV4tbo93x1OpwvooI8+hbSR+EMEbaPZfrAe3MABW4MpqKQxqjQsT+k34lmo/Ye9BWhD9KcI79FkSWWdQgExNOJTTMBmK1NDNQMSsNo351+BOiZiKanFYjWlq4daf6A+94XQU3aeR7V3TtHxDjRn+MJqeehF4b04+QRx3TGJ7XVXABIs6vj6l/D9hXuedfQGjWR1SmYEXgk4AoyQ8XOpoJXLrKPf9lgjcBtyJi1FHxzMJwGohoBWAPc/r6Ve75TyBCCtqVRylwSKw8M5lq+hGhq50a4O+r3PMXIRq4aRVsh+cUd5BTYAWpH4u4FjhmlXv+WETKqRaXZbuLo6pgdZwuJbRdCIj37G+r3PMvR/RGCkBF7C10uo6lDT4JiFDpdWFOPw9MX+WeP4vglcdmhHyHa9nRJ9CbPX299xrzGJ7V4ZyJGKjt1Z06xN/k+wKRyqjF87FS+JKPz+pwFiD6w+hDNRfUba15B+FBahG1pXgETtsRTdzCbRA/MmjSyJkEK9+oe9RhOK1CZBt9qjuVBryfnN7PRbDC9yIyR2IGq8M5FxHG0LeHHg98pSRYinTHv0fXRDAGnJ5HDKTX9+A/3N/o+4LQVfQzsVL4ko/P6nDOQLTd0MvHpbXe6v8RGmq6qS8rfOilSl8WPR2jO3x9PGJ4mpd1qfZ49Xrv/ohN3gB2ErrsjBWnFwjzslavrTyRYBlYTJSX4hH4BF7W6WheVlVV2bmpSp96+Gq2u7jDBV2d4FSFSLsNSgf11TemNNbU6Vti3J3tLtYb9lhwqkBUgge1mqj1Vo9WfX59Be2MbHdxl9oTtJPTl4gGc0EN96rXbc4GtN1Mq9G1UY4hp2cRIyyrgjit3Xyy7tKFhE9H7VPolUqfUC//q2ht3rYHVodzBeJlnQfg9/mpWhGS4PF0rKZyReAUeFnXgpjQtWNDiMPzr3hublkdzn8jWtvWAuzcuI3GHUEtkPzAvXHk02R1OK9FEy6oWvUnqj8oBPoHurbFMea0FREKezlwbFtFSPr9Z7FcMYbhtAwhS9+BkO9tK0Pk+8l4etRWh/MLyWk9QEN1LTV/hAwFuycehrG7o9cp/VJ77sGAvo2uPvUv5rA6nNsQL+vcHes246tv2ZdTLIo/fdywuCkODadliIKgtdsqgpOFElKTtg/dcxd9FlI8OH0O2FVVrd26PFiZJQ/qvzDQ1TPOnB4HHL76RravCd7jTbWmv69vzhcHPo2I/kwv1m3ZQZ03uEND2qjBMQ3rROC0BeFdf1u9thJ/Q0v0ULFY/OkThhsh30sRWWLr9fKd2C95qzVzXJcb//UG9DqlT6iXPzfbXfyVEUSsDueO6vXeU7dWbAxKC0yfMNwyLGv867K/SLw5rfIuWX/+jt+DnbChU8YOHLTriJdkG4V4c/qqcuHqIp2Xz/B9dt3f6yooiDcfyempTYtWf6b6WhzDhJRERmbvdpHXVXCcAXz8wGWbF68LKkBKtaYzYv9Jj3pdBfrCrnhw2r597eZTt1VsDMo0GrjrcMuwvca9KftDxZtThXfxukv0Xv7QKWOHDBw//Hm5+dun0auUfqk99yBCJ+Ho8/Tjis2/rDnT39CUHPisWBQGTRoJIkf9cyMU//ZVm87XzpdNSkshbfQQEPUDM+Ot+EvtuZaaP7YGxc3TRg8heUAqwINGKP5Se661bnN1UOO4QZNGYkmwpADvGaH4V7nnH9pYXRtUzDZk99EgajC+MkLxe8vX5vsbfc3ZakqChUETR4BIe/3MCMW/fU1lUBPCpAGp9B81GETTvhf6uuLvVUof0e1SCw+haW1xg8xbDsqbTh8/nMSU5nckoPjj9mKU2nMnoms8NjhjtHaWa0Dxx1M2TkZXNT1496DaqAe9roIuVSx3AtejKQ6zJCeSPr55qFRA8cd6XKUeQavYVOsAUoc2Uwwo/t3jRabUnpuKrtJ24IRhJLTId0Dxh2uWFitOk9EVPw7ZPUi+A4q/t+m+dqPX/I+X2nMPAE7QHb47MMHIIFxIcE/w+oG7DtdvuB2AaBoVL+/6VrR51oqyKm30EP3Q97MJX2wWdcjh1EHGOiE16cvkAf30w2mcXleBvmArVpyGAtdoj/UbOuBdS0LQ65KCaGanb/ERK04hGWnp44bN0V02GpgjJ4jFA5fKfzOAnQMnjPhJd81BiOr0eMl3cHtoi1LRf9Rgfc+pCzBgn6+7oNcofUK9/O/QpbrFE7L6Vp/L/Z+k/ilHE9oq+FjgiVgOppacJhA8Ig5U9S7FokwD9Ir/Jq+roNMNsjqAEwme9ISvrvEahAHXK/6Z7e082UVcR3Ald2XNxm3nIfo4aTEAMTd5FLGHXr6/HjBm6EmEdnzdHWGMkokh5CpWX3fyTGK/5FxCZ0TYicPs2VJ7bgb6bqN+9Q5FUY5CZvVocLvXVdDpBoc9Gb1C6Zfac/dDFPxocY/BXv75iEKaABqAB2TbBjuimEaLK9F5lzHALQRXU1YAr2va/Or7//xbTjGKCaSXr994fzvbXbzY6nB+hcib124SpgLve10F4SaGRYvTEERbYC0eynYX11gdzqeAGbpz4xGhnrBN2qLE6SBEpowW98jN3csRffm1mAY8E2Mn4hJEC40A6oCHZNuG4xBV1Fr8w+sq0A+1jzZuJXiGw1LgLVnvcBRidoIWL3hdBeHmGfRq9AqlT6gX9COh1ZVxg+xaqS+8ei4w6Ukq/lMI9a4f9boK9CGqaHEaD+g99/sCTdWk4j8JmTMvkYjoZRKrDcITAH2zteaNd1lboG/LPBLhXYcbyxgN/IPggR1eNB1IrQ7nY4T2TzoYeDmGcWK9YfwG+FLy8SPukb7f/MWIeQpRR7i9KuDZQNNAqfhPItS7fjJW+yCl9txJhA7Jaa47kYr/ZIK7vSYD78qRqH0GPV7pl9pz90QoUC2MjuWfSfB4vkZ03ROtDuefCE9WO2nLgmilq53fGS1cT3BPoFXAazpOPxH64gwBPopRnFivON7JdheX6TjNJHR/IQsRJ45qFkapPTeNUC//4Wx3sX504XWEOhV5iAZ7UUWpPXcfQvsUBcm31eGsR7SqXqG7rkjbyC6KOIfgAe/1BPfcQc6wPRHRvyiABETDP32Po2jgRoK9/GVA0BwC2fRPP0xpGEK+w02e65Xo8UofsZmkxc/Ax0YQ0eBy3ecXwg06tzqc5Qhloa0SHIAQwqjFiUvtuf0InjHL/7d35vFxVXX/f5/Zs7ed7ntLCxTSAiWAbKIGVKKCWgQBEbQ+ysMTH0U64k/q8mjxUSaKy+iDaFVcQJYgogRQwlpAJGwlLIVC6b5O2zTNJJnt/P44d5I7d+5MZs+0uZ/XK6/p3Htn5tNzv/d7zvmuqFV+Sk8Bra+ucZdSdDtxV0tzI6m9dL+b5vKVQLvh2Icovp34ApLbTu7FpKeAt9UfRU3srxpOfaMEdmLjTudpIKVfsbfVvwe1iNB3BhPAH9OUri4ERvm+2axLl9ZQ/WLQBwhTj5LvScbr84U2WRvHfZVZdrm31X8bqU7cRahgCmOhxMMSh7TS17aZxpXpjaO5yu9qaT4KONNwOG33KW+r/wFSV5fFthN/jGRlFkR1akqH/yW1Rsl7KK6deLnh/SNNHZ0vml2omTA+jZrQ9fhyMOC7skh8IHUB8eumjk7Tnse6Wj0lsxNrk7VRmaWVby0j9QKSi+tVo8xhM8w+kwenxShzlh6Z5PtvpFZ5nYcyq7iLwQlVVE1v7tsJ/DnD9f+DqvSqxzmUIZiiEnBIK32UjU7frnA/qg3faMKozJ5o6ug0VkpMgrfVH8DcTvybIgmhUZn9vqmj09jJSs9HAl/A3E6cU89cM6SZrDMWevO2+kOY24kDwYCvuQicjia1SblZL2Q9pw0o06KZnXhuoZyAZST3LN5Dao8EI6dOVP9lPaajFH8xFhFG+X64qaPz7RE+cyOp9YpOB35VIvn+XabOeJp8fxatdpAOV1L6YIpRx6Gu9I0C+Memjs5+0yvLAC1M02hGybZqpZmd+JOkPsC5clqAilzQI6MygxHtxIWuZM8nuU78PrKYrLUeqGZ24tuCAd80809lDaMsPd7U0flGFpyeItVBPhG4vQjmMCOnjJO1jtOvUJ3H9DgB+EkhZLTJ+jLD4RHlW1Oy/0VqouRlpCrsXDktQk0gemQj3wOoHbAxmOKHZQoLHjUcskpf64hjLJ9c8rLAI+DDwGTd+wPAXdl8MIOd+EcF2mSNCunppo7OV7LkZGYnTihZY0P4XGB80P+YbREzzU58Ccl24knArfk6dgucrBPtII124pMpIMGtq6V5IcqkpseIykyHr5K6K/iPYMBn7J+QCz5K6mSdVZE+rWjcBaT2B/hpgQluxonxsWyL9KUJpnCgJuyyl0cpFw5ZpY/ywuu3hl1NHZ3GvrDlhlEA/9TU0WlMMEoLzU58PslC6EI5meqDAZ8IBnyXBwO+i7L5vq6WZgfGZKwcJ0bNTmy0K89EK9UQDPicwYBvVTDga8yS0zwKnKy9rf57SVWy70EL3Q0GfOODAd/vc5gEPoyaOBLoIdVxPBL+h9Resl8JBnwf0TgtCAZ8aW3fJjBO1k81dXQaFwRp4W31x1D3zagAb06E4AYDvvfkWNfIOFn/IZeKo1qZ6I+SvFPzoOS7VpPvzwYDvo9n833aZJ2TmdCEU7fJd8xBM60GAz5XMOD7fjDgO8rk44ckDkml39XSbCf1oRjVVX5XS/MsUhNocuakxRMbIzaOQHVFuhVVVz3blf+5JKfJHwTuyIPTfYDfcPhDqDDUJ1DRPkdn+XXGkLlnmzo61+bKCVVn32gu+IZWo+dFlOlgVsqnzGFUZjlN1jBkwrgCrV+BDrcEA75rNE5ZRfZoeR5XGA7nI0u9qOgwvUmoFqVkv4cav/dlyWkeqiucHrnsPBKcXkfZzvU4Svuu27XXE7L8uo9Q+GSNt9V/D6mmr4+idmpPouoLZSvfFY9DUumjyhbo44T7yeytLweuIHk8X2zq6Hw+ny/ytvpvB24yHF6GsvEDZJssZVRmfzaJOc8W15Hq+FrBcCTHiJy0ydqo9HNWHDC0kr0UFamRgEBNTolM6Gw4mU3W+XLai7pH+uiZ8ajQ0hrAm6VZrAXQh+weBO7Mk9OLpPaQPQ6VIyHIXpaMi6x8J2u8rf4/ktra8UKGWxvmK99/KsCn91VSs4ivBZpy5FTxOFSVvtGMckdTR2eP6ZVlQFdLs41UToXuPK4G0pmrRtxqdrU0Tye1AF3enDSb7CdJ7Y+aNSdSJ+sQqaFzuXDagVL86UJ0s+FkNBO+kO9krXF6mtSkMz2yqYJplKXbCpisQfWGvj3NubkjhU6mmawLle8votpzmiEb+Z5NarOkQuQ7jPKppdMjltIfLXS1NE9G2b31yPtm96xeWYyszmaUHTCBAZQpJh8+omf1ShvKLBNOc9mCLOzVl5OcodiNKk+RD6fE98wktQhaAtk8FMaV2R1NHZ0HCuQ0jWTzRdacNGVWtMm6Z/VKu1ZNMlN2Z0aF1tXSPIMiTtbaODWQLAt62FDmw0z4AMl1dkLkubPuWb3S1rN6pSDzfVuYRUkL42T9fFNH5wt5cspGvi2b/iji0yQXDVuHsrvli0d6Vq88qTBKKcrsrqaOznQr4pEwS0r5IoKXgHS8nCRPMklIt/PIN2lNSnn+/pu//m+U/T5dks9ICnYKqUXx8lZmUspv7/vl155HFRvz5MMJNVnri+LlPVlrnO4Sdls3mRvej8TpcpKfy5cBY7nirNCzeqWQUj6PEK+iImfy5WSU79vznayBeTIuX0TtYtP5pqpRuQWmKLZPT0r5iX1Kvh8h2Qemh7XSHw1oVRnNsibzUmY9q1eOQ2XPPtWzeuV12go7V04TUfG+SZzy4aPhSCHEYrvb5RI2WzTDdbMznDuL5NVbmMwZuBkhhDhS2G0n2T2ufkTaXJoJwYCvNt1JUifr10ktwZsLp0U2h+MEu9tpmjGrIdMYQaos3dnU0bnf9MrssNTuch5lczoymWLScir2ZA1MFEIssbudk4XDninKJhOnKSiHaRKnPPkAHClsYond43IImy2lTEI2nFAOZf35fgowEwohjrSNLN9TggFfusXFIYWy90MtEMeSvM2K2lyOP/SsXjkVtQLV/01Fbf/CqIJnYd3fDlSURaKaogMVDXJCz+qVlzcsX6UPKRsJHyG5kNn62ecc91TP6pWzdVyma6+TUHV2EjwSvPqBrcBm4N0AQgi33e0kHo29HI9EG0neykKybdwI46ruLwuXnRrqWb3yCFLHaZzGI8El8XpQ47MJ1egFIUSN3e0cjEeib8lY3Kxo1gxS47DTcVq9cNmpdT2rVxr5TEc5PfVcEq/7NT6bULKAsNnq7B7X3lg40ktcGnc/s4IBn9Aia5KglTj4sJFTz+qVXpMxmo66x0ZZiqDKMGwCdgghZgPYHPZaYbdtig2Ea0mOa4fM9+14QF/xMeyodt/Ws3rlNBNOCUevUZYGGZbviQBCCLvd6bBLm+31WDgyD9UAJltO52OYrGefc9yzBvlO/E1CObGN9y0h35vQsp4N8m1WYDAX+b5r4bJTB3tWr1xgwqmBkeV7qcapxu52DsQj0Q0yFl9k8rvTgZGyjyseFaf0u7u7Z6E8+ZOBXcAdjY2NiWJlSdUGPd66A7Pe0/gO6bf3uWIZcETP6pXnNyxfNRR6lwuncQum1bjrq/tJb0PNCTaHfbGw2x6KDYQd6JJ1Yu7qY7u7u68xctJ2Q0mcpp6y8AzS2ypzghDCbXc5j5Hx+K2xwchSdKFs4YbJS7u7uxMJanpOkzGYquaeu/QaUsNA8+U0we5yVstY7FfxSOxjaMoOqNn1rmVf397dXU/qfTsLGCpLYHc5BuZ9uOkeMtvjc+E02+5xbY9Hor+RsfilaIpWCjHX7L5pH0u6b1WT6ntnvvvYTRRJvoXddrTd41obG4y8gZRDijNudx6ZLafxR05vcNdXD1AkK4Em3w/GBsLV6GpWRd01jdpzN6J8Tzv1qPdRPPn22F3ORTIW/2MsHDkFneN9cNzUE7q7uz9m5FSM3y0nhJSF1SYTQnwU5XiaDPxcSvmPfL6nu7vbjor7vhK10lOIx/tqdr99//h3unZvfvjlTw/uOzh0btLx8xh3REmaFu0CPrb5lE8+Y8ZJxCJ9tTveeLhu40u9G/7+7MUyGh9ahc96byOeCcUv9S6lfDEejtwcj8vrBMzom35k5MCRpw7tMGyRgVD9tteedLzSZd/yaPdQ7LWwCeZ/5CRsjtznICklMi4RNqHvMao/f09sIPychK8JqNl/1GmD/dMWDq0iHf0HQnXbX3su8tSTE/as3Xhs4rh7XA2zm/NLwpRSgpQg0nJqiw6Ea4ArBYjdJ51HtGZ84mRf1b4t93jffHLrzmffvLx3054pic/Vz5vMlKUj+TPTcIrHAYGwmZoGBmQ8/v+ig5FzBLRIm50dZ17KkBkhHu+r2f3WA+PfeW735odeunywJzQ0EU1eOp+GeVPMvjM7TmnGCNgej0S/FYvGWgUsCddPjgeXnjukxEUs0le3Y90jte+8dHDD37sukjGdfDcvwTOuxuw7R0Q8Fs8kS8/Fw5HfavI9rW/GosiBhScPy3e4P1S//bWnbC8/69j2+KvvGeJqtyn5tuc+B0kpIS4hPae7YgPhlyVcK6B6/9FnDPZPPUK/S+pDhVZf29jYmMlUVVHIaqUvhPhPYLGU8irt/SpgjpTyMinlPcA9QohEPHJeSh+lXJOKeVUFNzH+na4aezR8QSwcZXB/sqm0ZmrJSmBPBh6p2/bqA73Tj0lyPtZveZm6ba/X2GTsI6G9vcjocFVku9uBe3wms3b+EEIcb3e7vr3viFMfcvTsucQ+0Dv0QHjfeIKqfduqBfKcfcFkE3fVpPq8FH4C8bCqWyXsNoTdnvTQCiE+6qhyz9m18Iy7qra/dbl9MOQGENEwk197GFdofzVw5va9RbxvUhIbjIAAYberh10kcVoRnzR93d5Zx4uG9c9iGwxBzXicB/cy8c01NY5w6FIpJQOGcaqZmn/WvYxL4pEICIHNblNjZRtSQh5hs90YnnXUmr6G6dSvfxYRHUQ6PVTveYdx7zxfY4+Fl8UGIwz2JC9Wq6fkP07xaBwZi6n7ZbcrTsOKbZrN6fhZz/wTH4jHWVK9Y/0Q2YbNL1G3fV2NkPEP9wV7kTGdfHucuBuqC+AUhbjUZEmNke6+nWh3u6bvO+LUhx37d11qD/cr+ZaSiW88gWf/tmoBZ+813LfqyQ15KfwEYpnl+wJHlXvuzoVn3lm97c3LbeF+o1mshmGdZawkWrHI1rxzC7BOCPF1lE3uQ6TWQl9JaqXIrKBt41JK5EY9tdijKmoxtGt/UjS2q64KZ83QrncfqvriVt3fNpR90YkqZZB4rUHZC2ehtpPpami7Gja/fF7UXUu/d9hnFHNWYZNqUg/tSPb5VU8Zr3+wdhr4bGW4HWGCS4JXg8ZnHvCuNHwAJo9/57lLdi96D1GXbjPkcCO0wenbkRw0pFNmMW1MjJz2oExR+jFyAROEELMRogUpq2QsPqQADA/ICeO3rD1u16L3ITW3g3QM1xmTcUlop2GchjkNou6bkdd+Uu+bG5iMEHOADyNBRmPEorGUCcB9MHhUw47XCR73fkRc3auopw5bREUIRg4OEOkbjhYUNkH15KFilgdJlaWtKLu0kVMVME0IcSxwGlISj8YgGtNNAGqcava8c0bUXcPupvOGVvlRdy32mJLvPsMYuRqqcVYP6Zi9Jpy2kyzfCV41wEzXTBySAAAgAElEQVQheJeEo2RcIuNRZcm2CWzDE4B73Ja15wcXnEbwuOFmVjFnFUKq+xwykSWdfO8wGaNEopx+jIbkWwjRLJGTk2TJZkM4hiaAaeM3Pnfp7qPfS9SlTS5CEHe4hhxafYZnziDfRj5bUWXEzeTbK4SYhRAfQkpPBvluGr9l7dLdi947JN8muLK7u/vHjY2NxgqwFYmslL6UMiSEuA24HpXaf46Ush9AKCn4PnC/lDLfpJYL0Zt0NESqxxPx1OMcOJBys131VS+iuvU8qbe/ZwstVvgA5kp/W7iqITgwbvpiWzwKMg5CrSb6vbOQG59HyDh925MfCmet515UZMNTDctXBfPgdDTwWprT68LV4/v6x09fag/3E6kZ9g+GJs6ldvfbxCJR+vckr4RcDdU3omrC/DtbB7UWIz0PWILKSExykOoekEjcUx0cqJk01TFwkHDdxKFrQhPn4tr0IgN7e4lHhne+wmEPe8bVfA3V8u/FhuWr0pbANXByoZz4i1HRG8N2bv0EYLOFI/UTXWFPPfbIADGP2nlJh5OB8TOo3rsp5b656qq22Rz2b2mc1jUsX5WVzTMY8NWgHMqnYFwE6SYAaXf0R8ZNqYrb7Agk0q5ELlzrJequwTHYlzJZu+qqnkPtnJ9sWL4qa7ux1uFsMSrJKDm2PC6JaxOAdDgPhCfMqBeRQaRj+BEIeWczbuMLCGTKM+es9dwN/BYl33uz5CNQDtAl2qu+ICEyHkeG44qdy7NvYPxUrz0cIlIzvPPqmziXmj3vEBuMpOzQXOOq/cB9wLMNy1dlZdfX5Hu+xukUDE5jg3zvGaidNM0+0EekLm0ydQ1Khxkrm1YkcnHk/galkM6XUurL7X4R9RA2CCEWSCmN5QOywWTTo0LQN3EOtdtfp29X8s0+uHXvVxqWr3okj99KYBqqDgmo1mpP6P427Fxy7vdRD08S4g43/eOmIXZuI9yblPEd2/vq5ivmt/0u3/h8GI4FlsDzOj5rGpav2tXd3f0DTGKbB+smEXVV07t7r7J3D2PdtK/97CuZflBTXCeiHoDEXyMmk7AJnLaB0FT3ro30TU5uMxryzqZh81p69ibn38ho7M5xn//ejSNw8qImGz2nRaTflQ0jHnc59+9CxuL0TU0Ore6bOAfP/q30BpMz9Qd7Qjc0LF+VMQwxGPDNRo3TYh2nBaRGVaVAxKJVruBWYnYXcqpODwuhFNr2N1Lle0vwSw03r0qbf6IprqNRET/6ccqqWYqIRupduzYyWDN+aEEDEHd6GBg3FXbuIHIwKcozEuze9Jl5N/w2bXy+1nnKyGcJqRFMZrCJ8IDXvfMd+scnB+4M1k8m5vRwYGdKhYWXp/p+8tVMX6rJt16WFmt/2dipnLaB0DTXzndS5NsE+TlfRgG5KP1vosLTkj4jpfwp8NMCeexKd+Lg1KPoidYQ739cf7iXwhKyQNVE+Q5wW8PyVa8bT27u7k7Lae/8U4jsecZ4+KkCErISkKg6KXc0LF+V0n6OdOMkBDsWf5DwmylVnDuMB4IBXz3KRPduVARLEwVEcYUbJj+9d3HzqXqTDkDMVc3WpR9lYE3K4seM01Qdn7PQwjHzgUREe+cvdfTNPAZsybbegXHT2HrsuQzebSwhlMxJW50eoePzbjIkw42EuM1xsOfo02sHJs9NOdc7bRH7I1XIwST53gckCZiWgb1Ex+lMkhsI5YSY07Nj3+LmqZH6iSnngkecSmRXSgrFE8aELC1u/WSGx+g0slOmpohW1b8ePO79R8c9hvWGsLF9SQuD61KSgM1kqYFk+T6RAuR7sGHKk/sWN5+u3w2lwc6RLqgUZOvIvQa1nb4QVUK22N2p7tC+N2V1Ke0OYutSLB7/aOroTFeiICs0LF/1CvCtvDg5XMRfT6lymyKAeXAylubNmlPcZjpOHdp2/0yGH8wTKE643Qbgc8ETzn0TtQNM5dR7ELkjae6KAw8GA75ZOj5nUbxsxyf7px5xXd/sxvvM+CBsxN5+C2JJgRbr57UsXa8169ZzKrQpSwJ/7D3ixBsGJs992oyTtDuIvZ5y3x6c17JUaM08EnzOILmLVr6IAtfvPe79v4/Wjl9ryslcvu/TVs2n6jidQmrMfz7YD3xpd9NHHsHuMJclm4P4upS1WYe2K3y3jtNxFEe+1wPL957wwQ2kkW8d+sijeu1oYUSlL4R4H6rOxalSyl4hRL0Q4ngppWk/03zQ2Ni4ubu7+ybStOKLryu+gi2Ek4yEib+V0qfhvlHltG0r9OoWYjYRmXPOcTeiTDX5YC+wVvu7EuX8SuAmYIW31d/nBdJxMk5Czhr3nplnHdsFzM2T0xZUWYIdJBcAC6OKnP141gVfiPdkkiWDgq2ZNh7UDip1yTsyJEo5rEUpP32y127gc95W/72ZxsiM04RFMxtRq/18YiMjKCW1FjWZnqw79wrwKW+r/8VMnOTgIPG31ycdm3760ZehIuzyWTX3oe7bWpRPUF/y+gHgs95W//aMnDZvgtCwS0rYRHjO+4//OYXJ90sar/8iOa/mZ8DXvK3+0Ej3TsNNh4oTF0a4gVqG4a+BD0kpE0bHn6BMEFcUmcu12mtSTLzsPRCSmzcZt4z3F/m3c+IUX//mAJGIPmFmC6qgWfk5SYnj4F7iT/4zFtYJbvWkeqfNbsv2gViPKsa2Vve3LZHJqvWgPRalyJZrza7Tc4rHce3fgXx2jYzqbN61M7zmvptUSNQD+Zyek1a6OGGnTSj9V4BLvK1+fZnflPsmYhFcuzcPhl96zo5O7mtnehdkySmMGqMXdJxe8bb6+zROZzKs9B8APqNVAU3LyRYewPV29+DA9q1Jq+Xa6eOzvW8HgH+havUnOK3TKkYSDPiuZljp/xSlyPSG8RRO9v4D2P71aHQwFhsaI0e1C1d91fFZctqBKsH9ko7TBq25PcGA71bgYlTk1grg54aM6RT5dvYGiT31z3hYt4KvntLgEjaR7Ti9Sap8b9fJ97moJKydqPtm1C+megBdnH6WPCoCBSdnFRvd3d0zUWakKcDOQf/1cbl7l97x93xTR+eJo8lp4Nv/r5FQSL/S/GVTR2dKyGmpEAz4RP/EOWeLePSrzt49J9ojg+O3PbWOwf3DK6GJi2dTNyvt4vVV4HHgMeBxrfdspt+7CyXsRkWmv8Y+2DDl4wL5ZcfBvccTDldvemhtUpz39DOOxl1vavKNoRT8Y9rfk95Wf8YaOMGA7x3gr6QqsiG8seahBa59269z7932LufB4PxwT59r25phE4Gw25hz9hKEeZx3P6o20GOosXpG66uajs8kVFq/mSIbwtsP3NnoCO3/hmv/zpMdoZ7ZvZv22ILdw8Fn7nE1TD8tbUHHvejuG/CS1lcgHadzUdE2ZopsCJv+8pt32cL91zkP7G5yDPZN3fPyJno37xk6Xz9nEt5j0/aj2aTj8xiwPt3/XeP0TVTm+yXeVr9paeVgwCcGJs5+P/GYz9W750RbZHDc1jWvET4wfJsnLplD3cy0Lo1XdJwe97b6zfxj+t+7F7U4We5t9af15Rn1ACoj95BZ4SdQcWUYtEEc8v517d5lrANecjOKESmcQiFjs/CSm5sAggHfsaia3xdW7dk4pBlU4lpyNGbVpERZISRqZaN/CHbn+NPXAW8YH2YtguR0jdMF7p6dQxEMob0HkxN73E5cdUPJpolVc4LTU95Wf6714j+odWFKguZc/ABwoVdV9RzKluvflRx4UuWt0yv8XlTIZkJ5PZdYMWcDb6t/dzDgOz4Np/GoGjYXNahIt6Hnrn93cvl23X0DpVj0CvXVxIo5SzwDLDFTZJpf5RPARTU6E5CUkpCR0+QkTut1fB7ztvqNjcVHwu+BG4wTqOY8b0STb8+eTUPlD6KDkSSFD1CdLN8v6jg9ofV2zgU+TOTbCKMeOFRRcUrfBKca3pfLtGMKrY6MPn4rQmrbvqIhGPAdjVpdXASYFTlLUfiOGne/w+P6BeohWKP1Js0b3lb/UBE1TdGfovH5BGlK4Bo5ucfVbBNC3Kxxeibd6jwHTkPKVYvhP0fjdD7DhfSSMGDI6HY1VK9FJR4+hlo1Z6pqmiuneo3LhahJKCX8Q0rJ4D7DODVU349qNv4Y8OZIimgEPkmx9MGAbzqqWNlFpCZXAhAbiBAb0KVO2IT0jKv9NUrGn/C2+rfmy0fj9I6B0zEMy7dpS0LjGDlrPX12t/MXKEW/ZqRdYRac0hUJPCxR0Uq/q6V5EslOnwgqfn00YYyTX1tgV6MUBAO+ucAlqAdhxCI1gz2hGDp7frRv8PfeVn9R08KDAd9SjdOFZNF7dnB/XxSdfIV27v+mt9WfVxvCNHxsqFXzJ1GlrUesWRA2jNP+N7d/esFP/piuO1k+nKpQvVUvQrVgzBjZEhuMEAsnzTMDO7veOq+po7OgycfAyYsaowtRUVwZ8woGD4Rk0jVx+a9JV//o88Xio3Gaj+p4diFZOGKN8h05OPAbb6s/Y3y+hfSoaKVPqoLtburoTNdtp1ww+hOKMglp29szUG0Sz2fksLMoqs7R7fvf2nEhyd2WisXJgVJiV5NmZWhAL8rOfnv/7gM3kZwoVCxOtahGI18iu9aD24E7+3bufyg2GL1Xd3wQ5dsoBqepwFXAf5JdFNDrwO171m7cRXLpkrXFUvjBgG8RKuDi02RXpfNJ4I49L2+aA+gT+oop32dpnM5j5KS2CPAgcHvP2zsvQ7XaLCqnsYpDTek/NyosklFUTppp4kLUwzCSgzoGPISKCb4nsX3f0NH83SJzakA1GPkiIycl9aHKPNwOPOBt9Q9ojTf0Cj9M+n6o2XKaDbQC/8HIq/pdwF0apye9rf7YhpbmFsM1a5s6OrMqAZGB0/GoCfFiRs4WflPjcwfQ7W31yw0tzcY8kULvm0Apx6tJ7R9rhmc0Tnd5W/2bATZ0NBsjswrl5EbtfK5GZetmQhT4J8PyvV/jZCzBXQl64JDFoab0K2GGL8pKPxjwTQS+gIoRzpQIFEe1cbsDuNvopNI6d+m7CEXIM3w0GPAdgVpBfwadA9QE/cDfNU4d3la/sebJCYb3L+ebTBcM+N6FUhjLyNyjIAi0o5TYYyZRLcW6b3ZUaObVqJVrJmzQ+NyO8hkY7fNFkW/NrHQZauFg1vxDj+c0Pnca7etF5jQJFeJ4FcMNX8wQQ/kL7gD+4m31J9Ws6mppnm74/ADp61NZyAKVrvRLYkrJF10tzV6SV75RVHJH1tAcV19i5G33y6gY4HZvqz9TindBJrAct90PofI27hsh2qag+6aZlZahFOspGS6NohTY74FHvK3+TCv3gnZowYCvDjUZ/jeZG4kfQIVJ/hEVAZTJEWscp1w5TUctGr5A5pIMm4FfAn/2tvqNkWdD6GppnkqyYz5nE1gw4GtEydKnyOzTeFHj1D5CNJnxvr1UTJ/HWETFKv2ulubxqEqPCcRQoYejCaMAvtLU0Zmp9yiQ87b778CNKCWWTeRGXgo2h233IEqB/djb6s92B5GXgtVCGxNmpUzO4r2oCfHnI+UY6JDvOM1FmZU+R+YyCG+jEhd/6231Z+rbCwz1ns3LBBYM+E5E3beLyPwM/wslS38ZYUJMwCxIYcTPaU71D6KU/TkZLpXAvcCPUbuxksm3hfSoWKVPqgC+2tTRWVCYXxGQ09ZXexguRsW5Z9p2h1Crw596W/1vFMgpo4LVTAH/jXpAM227d6KcjDflEdef04MaDPgmo8ZoOZlLD7yGUhh/NDEppUWaKLCME5jmCP0f1I4jk1P9MZRi/XumRCkTGO/biCYwLTP6W+jaCpoghvJn/Njb6v9XDnwg9/tmR0XhfB1jGedkHERV6f2Zt9W/PsN1ZqhEv94hjUNJ6VfCzc56Ox4M+N6H6gGbUgpZh82oOh+/LiCWPqsHVXtAP4VqAJ+p6fSLKCV2u7fVn3OkVC4msGDAV42KFLmWzD6EBzVO/8gzbj1rE5gWifNt1Mo+nQ8hAtyGUqwv5MHHjFNaBauZTG5A1a1Jh/3AzajdT879JdJwyiTf56Dk+7gM37cRJd+rC4ilt1b6RcahpPQr4WaPyEnLmr0BQ/NmA3LddpsiWxNYFg9oYtt9Iypjt5DaHEYnbooJTJuALge+S5rkLpTD7vfAT7yt/kJDK0dUZlo9n2uAr5J+t7EH+D/gF+nKURSZ03RU+e/PkH638SbKrHRLHlnNI3Eyk+8lKPnOZKZ8ErUju6eQhLdSRIFZqGylX1EzfFdL8ziSHXhxVFEpAIIB3zTUA/pZzB/QGCq65MY8tt3pkNEElsUDWsi2Ox0y3rdgwPcB1ASU0qBGw3YgANycRzp9zpy0CegzqHuXLorqFdSEeGuhmcRZcqpFlQZYQfr69A9rnDpyLM1gipGiwIIB3wzUJH0F5s7+KHAnavfz70L5aMjZBGZhZFSk0u9qaa4nOfEmUV9jNGFcwb7W1NEZyvIBvRP4ehEVawKmK7MsHtAwSrFeb0zVLwGn5zROx6MmoHSOvr0ozv+Xj1kpR07Pa871czVO6Zq2vAV8DRVhUrTKhOlMYFrU0nKULyFdJ6Y1gK+IC4cETE1gWjmJr6LMcFWpHwPgzyj53lBiTpWw2z/kUZFKn1QF+3pTR2dW/V1LCOPK7IVgwPd51Aox3QP6JKrufLEfUFNONoe9OxjwrWJ0HlBTTlUT6zYHA77foUJU001APwH+t9AaQWYwM4HNePcxNlT46fvSfCyIuq835VJ0LQekRIHNa1l6DqpefTqH/5so5fvXYk5AOpjJ91Uo/8akNJ95HCXfz5aAjxmnSvDrHfKoVKVv7KQ02qt8MHAat3DaOSjHqBneRDkn7ynRA2rKafKJ868jfbbq46gVYrG23inoaml2klyMjslL599O+nyEW4Hr0iQJFQtJY2T3OA+6aj0pvQA1DKJs0f/rbfX3pLmm6JyqJzdMRflUzLAbtfK/uRD/T66cxh81/UMoU6UZXkfJ99/KKd9Uhh445FGpSt8YXVKqVWkuSOLkqqsyW93vQa2MSv2AmnJyVrvNFP461Aqx1A8oKJv40Gre7nJgc9jNFP6jqAmoq8R8wHjf6qvMYu0lKhdhZQGRL/lzaqg2k6UBVBnfH3hb/WmbkZeMk7l870KFjP660Iqk+XCiMvTAIY9DRemPaqOCYMAnbE774nhkOAzb4UkqtVLuB5S3vnxZPYZtt92dxGkXagL6dZkmINzjqhsH9w+Hz9s9LuMlr6EmoPvKMAEB4KzznBjpHQ4ecrhTOHWiJqB8Qy9zhqPKdVK0f9hqZJAliSr3/A1vq78scq/Jd6Nevu3JnPqBNsCfTeJZMdDV0lxLcjJcGLWoslAgDhWlX1AN70IQDPhmokoPJHHSHgqJCiv8RqJgVZk4NdVMHXfrvjeGk1HtbifCJkA9oD9ENaooywOqcfp4/ZzJv929/52hYzplthP4JvCbMq0QE1E5X6maWP9VvdK3Vw1x6kZNQA+UawLSSjm0OapczXqlr1Ow/0RNQEUr95wFp9nAahmXSYl6DjVhx1FJg9/MIfO5WJhheL+tqaOz4CglC5Wr9I03vOwrfS2643Lgx/FYvEG/CkKA3eV8FPhymR9QF/AN4P/FwtGkxCFNwd6CspGXbZLU6rX/DLg4Fk7eUNg9zjhwPWoCKmrPgRE4HQX8DnhXUkMQwO5y9qIc3b/NMYO2UE7vQ4XHzommctoA/Ke31f9gGfkIlM3+xngkVqfvciZsApvT3glc7W3151RbqoioqN3+4YRKVfqjesO1mPub0RpdxwaSAziEzbZP2ERzMeKjc+B0PEqpLwGIGjhFByNPelv9V5SLj8bpPNQ4TVGckpXZQPDgz7yt/m+WkY8NVczue2jOYyOn3o27l8+74bd3lpFTLfB9VGE0pJQp8rR//fZTj/nt3ZmK6hWb00zgV6h6OSmyJGy23UKIc8q1A0oDS+mXCBWn9LtamusYJVuetvq5BLVyHZ84blQcMhZ/vVwKPxjwOYH/h1rhD90v4wo2NhApWzibVhjtx6gwTB2HZOUR6RsoJ6cFqJV0Ul2a2GAyp3Bvf15lp/PkdCZqxzEU0RSPxJDxJF3aF9rZk7YZd5H5CFQJ5p+ie8aM8h2Pxl4dZYUPFbDbP1xRcUqfUbLlBQO+KagU+48Zz0X7wxGSm2SUxXyi1Vy5BZP6PZHQYIjkZLBycToX5eNIKZ8Q6RvsI7mEQck5aav7q1Ax7knJcVJKov3hOMkZ0iVXHlpNoetRu46k3ITYQFgajm1t6ugsuYLVagrdDHzEeC7WHw4Deg/3qPnQdKgYv97hhkNB6ZfjIb0Q+AXmNcmf3r9+x1Oouixl4aRlZvpQ0Tcp4SbArQe3BGtR9e/LxakeFaG03OR0DPhe+ED/p0lW+qXmNBe1un+vyeme8IH+65AEdMd6mzo6S+rcDgZ8p6JW98YYc4C3ezbsugmVBZxAqcdIoHrkBoAJJpes2f/Wji5U1dWycMoSlnmnRBipD+tooGw3OxjwuYMB32pUIw6jwh9EKd4zo6FBY6x5KTlNQdVV+R6pCn83sMzb6r9UxqUxjrqUnJagEmPMFP4rwCkbOp7/NqkTdslWZ8GA73xUcTkzhf8A0LjtydeNSVilHCMRDPi+hiqTYKbwfw4sObh1r7HaZCk5VaEmoFtJVfgDaN2/ov1hY/mQSlCwltIvESpxpV+Wm61VMLwb885MzwJXJKo7buhoLsvuQ2uOcQ/mpY/vBP5LV9u+XJw+gVIcRsUQR61Yv+1t9Q9u6GieSrI87StF6QzNnPMN1C7IiF6UIvuNt9UvN3Q0G5vDlGqMaoDVqKYmRmwEPutt9T8MsKGjuVzyPRP4C9BkcvpfKPleV05OOcKy6ZcIh4LSL/pqUeu7ejepVRUjKGVygyGevBycLkXZyo27iiBwlbfVf0fiQFdLs4NU7kWNo9bi3L+DapBhxDrgcm+r/xndsXKMUR0qL+KjJqc7geXeVv/GDJyKrjg0E9M9mJetvhlVm0ZvUirHOJ2Oquhq3A2GURPmDw3hqhVlP+9qaXYDk3WH4kChpawtaDgUlH5RH9RgwLccZb83mk7Wo0wnZi0ZS8ZJs9//ABU7bsTDwCUmPXKnkNzgY082bRtz4NQA/An4kMnpm4CvmJQYLvV9WwD8FTjGcCqG8rf81CTipKTKLBjwvRe1AzOaBvcBl3pb/febfKzU4/QFVPSZ03BqHUq+zerRV9pK3xgksMPqi1s8VKLSN97wojyoWujjj1D9To14AKVcU6o8drU020ldMRVlVR0M+Cagql6alRv+MSo700zYSzJGGqejUcrVaJeOoMxLv0rz0VJy+gBqnIy1hfYAn/C2+h8tJyfNOfpFlDwZu2t1Ax/N0IC8VJxcqFDML5ic/jvwKbMictqqWm/vj6EyqEcTJZMlC5Wp9I0lgQuudhgM+CahVmRnmZz+ASqLNV12ppvkELv+YjRyCAZ8i1FmgfmGU4PA572t/t9n+HjRx0jj9GHUCr/ecGonapX4ZDk5acp1BSq5yRh08CJKuW5M+WBpOXlQob1XmJy+G2X2ypR9XApOU1B9cc8wOX09qoxCurBnI5+DTR2dZctUToOSyLcFhUpU+m7D+4IUbDDgOwGlXGcbTvWjHGx/zpFPwQ0+ggHfx1G2aWNbvq3Ax7KoT17sMRIo2/13Sa15/6zGaaTVVrE5VaN8HBebnP4zyn4/UnP0ot47zfn/F+Bkk9PfAL6XRdJescepSeNkNNH0oZy1d5WTT5FQiZwOG1Si0jfa2vN+UIMB3ydRcdzGlcMm1Coxm8qKRj55C6AWefJtlIIw4inUajobh1Uxx6gWVVTrApPTtwBXelv92fgLislpNmqiNjbTkahOVv4sM0aLee9ORa3kpxpO9aJMJ+nq4Y/EqZBx+hSqnILR+b8BOD/LujlF41NEVCKnwwaHgtLP+UHVIk++h6qiaMSjwIW60MeS89E41aNqtqdkRKIe3C/m0CawWJzmo5SrsV9tJudoqTm9G2WqMHZr2g9c7G31P5DD1xWLUzrn/5so5fpaOTmN4PzvBC7ytvqD5eJTAlQip8MGh53SDwZ8buA2TMopoKIarsmxvnzBJgLN5vpPUpVrFKXsb8rxKwve/gYDvqXAP0iNPAmiJsWHc/zKYiizi1ATo1EuX0XtzN7M8SsLunea2et6VO0jI+5HOf+NyVYjoVD59qD8Ux82Of0j4Nocy1dXoimlEjkdNjislL5mB25Hqx5o+I4rva3+35aTj8ZpJmr1ZYyG2QVc4G31PzEKnE5FKS1jF6m1KOWaT4eiQjl9BmXDNzps/wpclmdvgEJkSaAiqP7b5PT3UV228nF4FsKpBrUzO9twahD4D2+r/w/l5FNCVCKnwwaVqPTzWp1piTv3Au8xnNoOfLyA5uSFPKTzUQp/ruHU8yjlmm/jlbxtnlps+d9IdSLfCXzG2+rPN4s271V1MOD7L0iqkZPA/wDfKaCiaV73TjMP3gR8znCqHzVGt+dDpqul2UbyMydRu71sONUD95EaobMF5WjPt/VkJdrPK5HTYYOKUvpaTLw+7lmi7MsZEQz4xqFWru8ynHodOKfAtnN5bTW1ePeHSE0n70DFlo8UeVIKTueinJFGx98NwNcKLKebr4L1kVyADNQ9/7S31X9rAXwgj3HS7OW3oEps67EX+GAWkVWZkDJG2VTY1PI5HiS1pMIrKPneXgCnSjSlVCKnwwYVpfRJzSIc8aEIBnwTUbZpY6THWtQDUWit8pxXHVqBsodIdUa2o+zAhQpxzgpWCxP9M6lj/E1gVRHqp+fESTOffEv7M37uIm+r/54C+ZhxynjvMviDdgFnF6GLVD73LZ0/6HngA95Wf6G9JirRlFKJnA4bVJrSz1VxTEMpV2Nq/rOoVdneUeB0EmpVNt5w6o8o00Ax0slz5XQpavVqzB69xtvq/1ER+I5aD0UAABbkSURBVOTESVP4N6ASr/QYQJm9itU2MBdOVahdkNEftBVoThQnKxcfjdNMlHwfZTj1NNCShxO5YE5lQiVyOmxQaUo/a7uwFsvdCSwwnHoC+LC31X+gSJxyURxnoMw3dYZTv0I5kovVDCbrFWww4PsP4JekJl1d5W31/1+R+ECW907LVfgZqvGJHn2o+/ZoETllde8y+IM2oBR+Po5tM+Qi3/NQ8j3PcOoR4Lwi9hyuRPt5JXI6bFBp9fSzfUgXoJS7UeH/Ezi3iAofsldmZ6PMTEaF/xPgC0Vur5iVzTMY8H0JVelRr/DjqEzNYip8yOLeaQ7S1aQq/B6U+eTRInMa8d5p/qB/kKrw1wHvLqLCh+zl+yiUfBsVfgfwoSI3ma9E+3klcjpscMgp/WDAdwzwOKllFf6GWgEVu4Z7Npw+jCpqZcz8vR64ugT9RrPh9HVUyKEeUeCT3lb/LUXmMyInreDdn0itWbMHeG8B0VWFcJqIqmRqDAB4GTirwACAnPlonJag5NsYAHA3KkrHWN205JxGAZXI6bBBpZl3jE7GJPu3VkfnH8BEw3W3o2K5c0m6KhanT6A6ExnH8jpvq/97JeCTkZNmL19Fah38QVRewN9HgZMHuIPUbOTtqBX+q6PAaRpqZ3is4Zpi+oOy5qNxKoc/KCdOo4RK5HTYoNJW+sbt99A2LxjwHYdalRkV/u9QtcvzUvih9jazdnvZcroQFRFjVPhfzlfhh9rbqkPtbWbdvLLihCo/YVT4IZS9PC+FH2pvOyLU3jYnH05ayd+7SVX4m1Dmk7wUfqi9rSnU3mY0pWXLaTKqHIdR4a9BTUJ5KfxQe9u7Q+1tRmf5iHw0TieinLZGhf8rVOXOvBRfIfJdCoTa2+pC7W1m3bz0KDenhaH2NrNudYclKk3pG7euVTBkw3+Q1Hrqv0BVW8yrFKz2gN4fam/7U6i9zfjdI3H6AGoFph9DiSqL/JN8+GhYCDwZam/7dqi9zbjiGYmTD1WQTI9eVGjfQwVweg+wNtTe9qlQe5vRIZyWk2bDvwU413BuPUrhry+A0+eAF0PtbadluMaMUwNKlowZ0g+hVviF+IN+BDwaam8z2uLT8oGhnI4HSC1pXZA/SJOff4ba224JtbcZs68zciohjgaeDrW3rQy1t6WzNJSb09nAy6H2tk+W+HcqApVm3jF7SGegtuHGRiZ+VJ2RFHu5ppgaUA7MCMomGKletsJ47SzUKuIS4PRQe9t51ctWGDtnGTlV6you6pVyDLUi+5PZf0ybYMZp14U1XlETTkeiQiu/BTSH2tuWVS9bYcw1MBun5aQmOe1DKXzThCJNKdSjts8JTrE0nOqBPwDvC7W3/Wf1shXG1ZjZg/ozwPggvYpaTZsmFIXa26pQ/Xj1981sUl+I6kXwRKi97Vrghya8kzi5GqrHo0yBxt65f0PVGzKtJqrtKJwGTnHDNQI1TnWoyeiS6mUr7svEB3XfZmNusrwe+EYG+U4sUhL3zUy+56Fk6dPAGZp8GztnFUXB5iDfC1F657so+f5E9bIVxlyDlGcuT04u1P3IRr7HAbeF2tveB7RWL1tx2PoRhJTF9jHmD63365CZxua0x2efveQ1IYRxG36je6L3WpvTcQKqsflclONruu7VmHUKwzd/O8q8EAHerzvfB3yqetmKocSgrpbmU1FljwFwNVS/POP0o2eSug2/rGralL9ofJpQ9c1n6P6MjcMTiKCEfKvGaQJwku78JuAj+smoq6X5i6guSQDUz5t8v3fRzA+QvOvoBd5bNW3KRuA0VA/XBJfEOE0mNZRTapwOApu13z+W5GYvTwEf009GXS3Nt6CUCwBTT15wb9XE+vMM370ewRlVU6d4gNOBRTouiT/juIKKOIqgKm1u0v7OJrl20C3AF/STUVdL86vab4CA2c1LHrO7HMZGOg/YXM6Pur0TFmjjdITJONWacIppnHZrfLYBn9Cdl6gqr0OTUVdLczVKxgCwuRwDc85espHUOPwfVE2b8k1UwmFCvvXjNB1zk0cUZRrZgWrIHie5Tk8vcEn1shVDZr6uluazUKauBNY0dXSeafLdhNrbajU+J6IWTHo+00jNA4Fh+d6CGqdJ2ucT2ICS76HJqKul+RqgTXfNj5s6Oq9Ow2kS6r4tIVmOEvJthF6+E7K0hORSKY8Dy0wmo8MCBSt9IcQi4EuolUqnlLKgUMCuluYI4BB2G1NPXohnfE3ih7C5nNg9nrX2Ks9eIcQplG7bdx3wv9XLVsiulubjgRcAHFUupp1+dNzhcijlarNhczlxVFc/ane7alEPaSabbr5Imoy6Wpo/h7L14vHWMfXkBVIIIQCE3Y7N5Yw6amv+YXM45qO206XAJuC86mUrXtI43YTWqq9+7iS8x8waulA4HNjdrv2O2po1wmY7ntSGH8XCU8DHq5et2AnQ9ZH3ryUWWwww6bg51M4YLihqczqxedwbHTXVr2myZDbZFANDk5FWeycGIOw2pr1rIe4Gg3xXeV6wezwHNE5mC5dCIYFrgTZNvk8Ghhvc19dv8az87mmNjY2bQ+1t01GT8xna6/GURr6TJqOuluargJ8nToq58592X/Wli+ave2ALaqeQ4HM6qRNmsbABJd/diQPd3d2zgAtRk8ku4I7GxsZ862eNGrJS+kKI/wQWSymv0t6vAuZIKS/TXWMDfiWlXJ4Pke7ubjvwg4FvfPUaBgeZfMI8amZMwO72YK9yY3O50PRauXBbqNr7uW3h8T8L//Jnn8UmmHnmIlz1Ndg9buweDzZXOpN7yXDdtlkn/aB3zb/vjT30QIujysWMMxdhr1J87B43NkdZLXYh4FNvH/XBe8O/vfmZ+GuvnFg1qZ6pJy3A5nINjZOwl9V1tDku7Oe/c+Q5lw7+/Mar5cZ3bOMWTGX8UdOxu93YPB7sbjfCVlZZejrqcC/bdMR7rxn4+jXXEI0y+cT51EwbP3zfyi/ff+irmfSFbX3V/xdZfdPliYOu+XOY8Inzw3X7N+9zRgeMJtVSQgLXbpt10o96H3vq77FHHhrKjK4+81TGnXJ8pO7A1pA9FknnmygFDgIXv33UB+9H9S+4kuRChX2ownzXNjY2jnaLyayRrdKvRiWrLEbNst8FTpNS9mvnz0M5EANSyryKZHV3d7cB10TuvgMAZ5WD6RNieMaNFKCRFr2o7a4TFfdrjP0dEWFX7cYt3sVzwh1/Q3g8VFUJpk2y4azJe4ORSJtPcMp51uirmfTc9tiEE2PPPAVuN/U1kilTPdiceU1AEmX3t+v45DprxPdNmP+PPVsPfjD+5jrwuJlYG2bCtIZ8lVgUlaylH6OcVpdxYRvcPutkd9/T/0bu24fN42JaQ5jaSXnri37tTy9LOf3nonbXvq1zThs/8Nd7wGbDVe1g+vgY7lGU70FX7Yat44+dF37gPoTHA243U2dU0eDOO0IyId+J+5a7fNdOeXZ7uP6k2LP/ArcHPB7mznHjFnlximucCpLvvd4F9++fuOBDGa75YWNjo7GkSMUia/OOEOIG1Cx3LnCOlPItk2vuk1JmGhxTaNum1zCU+3X27Wfm5qczKY9tqDC7l1A2w62J1+plK5KyFjXnl137jZkom+RtpEYEJaGvdgo7px8PGoeaXW8xZV/GXh5vAE+iKiBu1f1tq162IslRqHFyoGzTs1C2xd9l+nKAvd4F7J84nIw88Z1/Uz+YNsowjmoi/hSq09PQGAE7qpetSHqaQu1tNtTDMQGVAHc+5k1EhiAR7JxxAqFazYQq40x/4xE8w+4ZIwZQJoV/Ae+QPE67TZykNpQNe7LG6UvAskycYnYn22adQsStzPEiMsjs9Y+QYdOxH3XfulC+jMQYbQX2G51/muOyCmXLng38EOU3SYtBdx3bZp2MtCtd6DwYZOaWf2eS762kyvdWspPv2ajcCDN/xBAO1k1l17TjhuTb0xdk+paMhURfR43TayTL0jajc99Evk9EM0tmQnDikfR4h11IDcG38e55I93lMZT59SlUVJheljLJt1fjtAzwZeIjEeyYsZT+WmP9xCH0AUc3NjYWO5mvJMhF6R+NutHnSynv1R1/D/Bx1EO5Vkr5c/NvSI/u7m6j42YIUzZ3URNS/pSY3bnLHovcjRK6NcBGE098Vgi1t3lQ5gn9E7cblf7+xO4px87vq5vyxbjNOfRAACAls996FEdsUNV9drg3OaKDd2icnjKJtMmFU5LTWMPbqP/rEzunHbcoVDvpK9KWvFixRweY/dajCEAKQdRR9YYzErpV+9wzRgWRI6ckpzFqd/AyapzWbJ+x9IT+6olfxZasTat6dzFt2/MAxGwOYg7Py67wwVs0Ti8UEh0Ram/7PXCZ7lAElVT1xN6JCycerJu2POr0gEjmNG73G0zY+zYAcZu9xxaP3cuwLL1mnGxy5DTsNFboRd3LJ/ZMOnpmX/3UK2N2d7IsAVM3PUt1v+psGLM7d2ryvUbjtakA+a7VOOixi4R8T22c31c7+b/jdsMGQUpmv/0ojmhCvj0bHdGBOzROTxXi3Ay1txmdxgBvaZzW7Jx23DGm8h3pZ87bjwEQFzZiDs8bzkjoTxqnfxco30bdI1EVehPyvdRMvk1wTWNjY7GKF5YUuWx1volSikmfkVI+SuqNzBVmXnYAeibMY7B6PH21U4i4a3/X2Nh4bYG/lcARqFXC/ahiW08AbyQest7u7h+YfkoI9k1aiIjH6KubQszh+XMROR2JelD/gqqzsqZ62YqtiZN9aTjFHB72eRcQcVUTqpmMtDvuaWxs/J8ictqOWjX+E/Xg70uc7O/uNpa0VsdrJ9Izbjah2kn0V3tB2O5vbGz8YRE5vYYKv3wEeLZ62Yp+gLfT3TfgYMNMbDJOX91UBj31v2xcvKQo901b9c9HKaG7gceAtYlV5oEMnHq88xgYmEBf3RQirtpbiihLC1CTYQfD8r0+K/n2LgApCdVNIeZw315k+T6AGqP7UfK9LXEyrXw7q9jnPYKwq5ZQ7SSkzXFPY2Pjd4rIaSvD8v109bIVQ9VL+7u7l2b5PeX0fxSErJS+EOIaVCTBhahuRncXmUfa1fFAjZeBmqGoi51F/M0dwNTqZSvSNZBOy6m3ISn4pJicHgamJBRYLpz05p4ic/ox8OU0sfLpOQkbwSlJFa+LyekydAosKz5A1FXN3slDwUzF5OMAjqpetmJjmvNpOfXXTKS/ZihEv5ictqDkO53dL718j5ulf1tMTg8CfzCaObPhtG/iwlJx8gNX5SzfqSgmp5JiRPOOEOJ9qO39qVLKXiHEC8BnpJQvFotEOpu+AWW1m1mcDk1OlcbH4mRxqjRkNFQJIWajmlV/QkqZsA/+BPhyMUlosa43jXDZTeUcVItTdqg0TpXGByxO2cLiVB5kNO9IKTeRnImJlPJ3ZBFhkgcSdsO0sbAl+M2RYHHKDpXGqdL4gMUpW1icSoyKKsMA0N3dPRPlO5iCspPdMdqzqMXp0ORUaXwsThanSkDFKX0LFixYsFA6VFppZQsWLFiwUEJYSt+CBQsWxhAspW/BggULYwiW0rdgwYKFMQRL6VuwYMHCGEKltUu0YKEi4TnpSilsdmxOFzabHWGzY3M4tVeXal7jUOdsDlfKcWGzY3fYEEKoV5vAbtdeHcL8uN2GsIHNJrDZbdhsAofDht0mcGmv7qH3dvVqNx43f3XabNgFOO02bELgtAtsQiQfswntWjF0jT3pWoEQYLeBDYHdpqoX2m0Cm/YqBNiFwCbALlD/TwE27bMiHkPIOMRjIOOIeBRkHGJR0+MiHoW4Oq7ORyEeQ0Yj6jUSGXov4zGIRpCxWPI1Q9eGIR5HRsPIeJx4ODr0Go/FiEeiyFicmPaa+j6i3g99LkY8FkfGJbFwDBlTr3HD+6TzkRjxmNQ+K4lF48SkJByXxCTaqyQcx/R4HP01w+duku+kLd1qrfQtWLBgYQzBUvoWLFiwMIZgKX0LFixYGEOwlL4FCxYsjCFYSt+CBQsWxhAspW/BggULYwiW0rdgwYKFMQRL6VuwYMHCGIKl9C1YsGBhDMFS+hYsWLAwhmApfQsWLFgYQ7CUvgULFiyMIVhK34IFCxbGECylb8GCBQtjCJbSt2DBgoUxBEvpW7BgwcIYgpBSjjYHCxbGBIQQn5dS3mzxGIbFpfw8rJW+BQvlw+dHm4CGSuEBFhczlJSHpfQtWLBgYQzBUvoWLFiwMIZgKX0LFsqHUbcXa6gUHmBxMUNJeViOXAsWLFgYQ7BW+hYsWLAwhmApfQsWSgQhxAQhxD+FEG9qr+PTXHeDEOIVIcRrQoifCiHEaPDQrq0XQmwVQgSKzOGDQoh1Qoj1QoivmZx3CyFu184/I4SYW8zfz5aH7roLhBBSCNFUCh7ZcBFCzBZCPCKEeEEIsVYI0VKM37WUvgULpcPXgE4p5UKgU3ufBCHEacDpwBKgETgJOKvcPHT4LvBYMX9cCGEHfg6cCxwDXCyEOMZw2XJgn5RyAXAj8INicsiBB0KIOuC/gWeKzSFHLiuBO6SUJwCfBH5RjN+2lL4FC6XD+cAt2r9vAT5qco0EPIALcANOYOco8EAIcSIwBfhHkX//ZGC9lPJtKWUY+LPGKR3Hu4DmYu94suQBauK7ARgo8u/nykUC9dq/G4BtxfhhS+lbsFA6TJFSbgfQXicbL5BSPg08AmzX/h6UUr5Wbh5CCBvwQ8BX5N8GmAFs1r3foh0zvUZKGQV6AG+5eQghTgBmSSn/XuTfzpkL8G3gU0KILUAH8MVi/LCjGF9iwcJYhRDiIWCqyanrsvz8AmARMFM79E8hxLullI+XkwdwFdAhpdxc/AU2Zl9oDBvM5pqS8tAmvhuBK4r8uzlz0XAx8Dsp5Q+FEKcCfxBCNEop44X8sKX0LVgoAFLKs9OdE0LsFEJMk1JuF0JMA3aZXPYx4F9SyoPaZ+4H3gXkpPSLwONU4EwhxFVALeASQhyUUmay/2eLLcAs3fuZpJoqEtdsEUI4UOaMvUX47Vx41KH8Ko9qE99U4F4hxHlSyq4ycwHl5/ggqB2hEMIDTMT8/mUNy7xjwULpcC9wufbvy4G/mlyzCThLCOEQQjhRTtxim3dG5CGlvFRKOVtKORdYAfy+SAof4FlgoRBinhDChXJK3puB4wXAw7L4SUQZeUgpe6SUE6WUc7Vx+BdQCoU/IhcNm4BmACHEIpTvZ3ehP2wpfQsWSofvA+cIId4EztHeI4RoEkL8WrvmLuAt4GXgJeAlKeXfRoFHyaDZ6FuBB1ET2h1SyleEEN8RQpynXbYa8Aoh1gNfIXOEUSl5lAVZcrkG+A8hxEvAbcAVxZgIrYxcCxYsWBhDsFb6FixYsDCGYCl9CxYsWBhDsJS+BQsWSgatlMEfdO8dQojdQoi/646dK4To0spQvC6EaNOOf1sIsWI0eB/OsJS+BQsWSok+oFEIUaW9PwfYmjgphGgEAsCnpJSLUCGTb5ed5RiCpfQtWLBQatwPfEj798WoSJQEvgpcL6V8HVRUi5SyKDVmLJjDUvoWLFgoNf4MfFJLLlpCciGzRuC5UWE1RmEpfQsWLJQUUsq1wFzUKr9jdNlYsJS+BQsWyoF7gTaSTTsArwAnlp/O2IWl9C1YsFAO/Ab4jpTyZcNxP/B1IcSRoIqeCSG+UnZ2YwhWwTULFiyUHFLKLcBPTI6vFUJ8GbhNCFGNqjR5X7n5jSVYZRgsWLBgYQzBMu9YsGDBwhiCpfQtWLBgYQzBUvoWLFiwMIZgKX0LFixYGEOwlL4FCxYsjCFYSt+CBQsWxhAspW/BggULYwiW0rdgwYKFMYT/DwzEllVLPoz2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEjCAYAAADe/dHWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3gc1dXGfyNL7l3GdGPAmDaiiipaVvBBFGoIJiL0EtpSElBYEnoVKJSQpYeE7mB68VISKaYsVaFpTDEm2OCKvbhLLpLm++PclWZm26y0uyNZ8z6PHntnZlev3r1z5t5zT9FM08SHDx8+fPQNFHlNwIcPHz58FA6+0ffhw4ePPgTf6Pvw4cNHH4Jv9H348OGjD8E3+j58+PDRh+AbfR8+fPjoQ/CNvg8fPnz0IfhG34cPHz76EDw1+pqm7aZpWnkX3hfWNO19TdM+0jSt2ks+mqbtoGnaNPXznqZpsVzx6Son9b7dNU17Q9O0/2iadmsP4NNi0emMXPHpDif13omapq3TNG0/L/lomjZc07R3lT4fappWmSs+3eC0q6ZpUU3T3tI0rUHTtK285KPe97qmaYs0TbsiV1yy+N1dHmc9CcUe//5JQEM2b9A0TQd2NE1zb03ThgGfApO94mOa5hfAQYrbJCCQIy5d5qRpWn+gFvilaZorvOajMNc0zYNyzCWOrnICuBJ4M4dcoGt8VgIHmKbZqozrU8AeHnOaDxxmmuYKTdOqgGuBkzzkA3AGcDCwWY54ZIPujLMeA89m+pqmHQKcA1ypadodWbx1HrBW07QSYBjwk8d8rDgReDwXfLrJaR/EiDypZmj7e8wHYCNN097UNO05TdPG54JPdzlpmrYnsACY4zUf0zTbTdNsVS+HA5/3AE4LLJOGtUBruuvzzUdxytl3lQ1yZB96BkzT9OwH+KQL79GAMPAd8CNwlJd8LO8tBWYAWg/QqBr4H2I8NgW+yhWvrmoEjFH/HgrUe62Ret9L6nt7GNivB/DZFHhHjevDe4JG6r1DgA+AHXoIn1OBK3KpT74596Qfz9w7mqaNRWZZ1mP9gGiSy6eapnm9+v8hyM0xARgBvK1p2mumaa7xiE8cxwNPm2p05ALd4PQT8K5pmsuB5ZqmLQY2QIyJF3wwTXOx+vd1TdPu7g6PXHDSNO0XQKNpmjFN03JFp7sazQX2UyuhacArXnNSK+qngJtNcWV6yscrJOPcW+GlT38nwLAeME2zDdg7w/s0YIlpmm2apq0A+gP9POQTx2+AM3PAIxecPgCu1zStGBgEjAVyscHcJT6apg0FWtR3thOwOAdcusUJ2AU4SNO0fYEyYDtN0443TXO2F3w0TRtgmbgsB3K5F9NVTkWIu/IF0zRf8JqPx0jg3Gvh1RID2BIR8bUs31eELMffAT4CLvSSj3rvVsissUdopN57ktLoA+AYj7+zPYFPgLeQTdOde4JGls94mBy5d7qh0e5Kn/+o763Sa42AXyF7Q9PUz1+9/s6AB4HpwEzkYZQTjQoxznrKj6b+IB8+fPjw0QfgJ2f58OHDRx+Cb/R9+PDhow/BN/o+fPjw0YfgG30fPnz46EPwjb4PHz589CH4Rt+HDx8++hB8o+/Dhw8ffQi+0ffhw4ePPgTf6Pvw4cNHH4Jv9H348OGjD8E3+j58+PDRh+AbfR8+fPjoQ/CNvg8fPnz0IfhG34cPHz76EHyj78OHDx99CL7R9+HDh48+BN/o+/Dhw0cfgm/0ffjw4aMPwTf6Pnz48NGH4Bt9Hz58+OhD8I2+Dx8+fPQh+Ebfhw8fPvoQfKPvw4cPH30IvtH34cOHjz4E3+j78OHDRx+Cb/R9+PDhow/BN/o+fPjw0YfgG30fPnz46EPwjb4PHz589CH4Rt+HDx8++hCKvSaQb8wMTioHdgCmTghPifUAPiOAXwCzgXcnhKeYHlNiZnDS7sCOQGRCeMriHsBnOHA48D0Q7SEa7QaUIRot6gF84hr9ALzTQzTaFdiJnqPRMESjucDbPUGjngDNNNdfHWYGJx0NPK9eLgVOnxCe8nyat+SbTwkQBfZQh14AzpgQnvKTh5yOBF5UL5cpPs96yKcYeBvYWx16GTjNywf2zOCkXwCvqJfLgTMnhKc87SGfYuBNYF916BVEI88e2DODkw4DXlUvlwO/nRCe8pSHfPoB04D91KEIcGpPeBh5jR5p9A3DGAdUAcOBBcBzuq6vzPZzZgYn/QM41XH4HuCSCeEpq7PgU4TMzicC64D3dV3/sAt8Nkdmr1b8AJwwITzlnWw+yzCMzRWn4cBCRKMVXeD0N+AMx+H7gN9PCE9pyYJPEfKdbYto9KGu6+93gc8myMzMijnAbyaEp7yVzWcZhrEZotEIuqfR/cBvHYfvB37XBY1+jmjUCnyk6/p7XeCzIXJfWDEPGUdvZvNZhmFsisyGRwA/Ihot7wKne4BzHYf/Blw0ITylOQs+GqLRdkAbMo66otEGyN9jxXxkHP0nm88yDGMTRKORwCJEo2XZcuop6FFG3zCMkcDVwNmACZQAa5Ab5I/Ag7qut7r9vJnBSScBjyY59Tlw/ITwlK9ccKpEHhQbAwOAdvXzNnChruszsuAzAPgv4kqxoh35u2+eEJ7SloHPSOAq4BzsGrUBfwLuz1KjE4AnkpxqQjT6MtNnGIYRQDTaFOhPp0ZRRKOMOlv49AcaEVeKFe3AtcCNLjQaAVwJnIddo3Y6NVqXBafjgX8mOTUd0Wh6ps8wDOMg4F5gM+wavQdcoOt6Rp0tfEqAj4CdHafageuB611oNBzR6HwSNboCuC9LjX4FJFv9fIFoZGT6DMMwDkA0Goddow+AoK7rX2TBpwT4ENjFccoEbgCumxCekvY+MQxjGKLFBdg1MpF78O5sNOopyJnR1zTtRuAAZEZ1smmarp/u0DEI/4vcFAOTXNIMvAScoOu6K9Izg5M04HdALfKFOT/vfOCRVL4+wzBOQYzZ4CSn24DVQIWu65+54aM4bQk8RaeLx4oG4MQJ4SnzU/AZhhjEcaTWaCpwvFuNFKeLgDoSNWoBgsA/0mh0ErIySKfR/rquf5IFny2AKcCeSU5PQ2Zr81LwGYoYxPGk1uhV4LgsNboA+DNijKxoAS4EHkqjUTUy602n0YG6rv83Cz7jkHG0d5LTbyEazUnBZwhiELcitUb/An6p63p7FpzOA+4gUaPVwEXAg2k0Oh74O8k1akd0PkjX9cYs+GyOPKz3TXL6bUSjH1LwGYw8bCaQWqMG4KhsNOoJyInR1zRNB64wTfPXmqadAxSbphnO5jMMw3gBOAyZTafCKqBG1/V7nSdmBidthMygN0nysyWwEaAl+cy3gCMnhKfYlmuGYZQhX/qgNHxMZAk5wel+UjONHRHj4+SzKbB1is9eCVw4ITzlH84ThmE8hyx9kw3COFYBl+u6/lfnCeUWiGu0qYPTeGQ1k0yjd4AjJoSnLHXw2RExsJk0WoRoZHOtWDTaIgWnCSk+exXiNnjIecIwjKeRpXgmja7Qdf1O54mZwUljAZ3E7yuTRlFkHNn2ZwzD2B6ZzKTTCDo1srlWlEY7kDiO4pxSadQMXDwhPOVB5wnDMCYDR5NZo6t1Xb/NeSKFRnFO40mt0XvIOLLtzxiGsS3wMckNvhWLEY1s96ra40h1r8U1SvbZzYgb837nCcMwHgeOJbNG1+u6fksG3j0KuTL65wLNpmk+omnaFsAtpmn+2u371dL3FWCIi8ubi2Z9Pa7/a09tjcxy9lH/js+aeCeWAhtYl3uGYXwE7E7ywWtFC3DXwPuu+4uFyz5AOekHTCb8cUJ4ys0WPgcgm1HuNPrh2/H9pz4x3sFpfDf4LAPGODR6H1mxZAr9bQHuHnjfdbcrLlaNMhnDdLhqQnjK9RY+FcDruNRIWzhnywHP/30cdo227Aaf5YhGHUt+wzCi6rMzabQauHfgfdfdin1c70H3NLp2QnjKNRY+ewP/xq1GP87besBzf9vMwWmrbvBZCYx2aPQWUIE7jR4YeN91N5F4r2V6YKTDjRPCU66w8NkDWVG6+cwWYLyu6879gx4LVyGbmqZtjfjBJ5imOV8d+w3iEtgLGIVskoAYh9FZ8jgFlwO73/T/FhVHX/3B7fUuMRJxTTUAGIaxMeJTzmTwoXnloP7/evZi4LIc8gHZOLzZ8vpk3Gr05cdFxW9HZtG9G8GJEUAlYlQxDGMs4i/NnOvRvHJQyb+fuxC4NId8AM5EfNhxnITLB22/rz4pKn4r8h251Wg4cCgq0scwjDGIQcqsUcuqgSX/fu58xB2ZS5wBXGN5nYVGnxYVvzV1Ju4eEG4xFFmJPQ9gGMZoxIa40Kh5YEn9c+ci7rRc4jTEdx/HiaT3OFjRBhwBJKw6eypcJWeZpvktMpAvBtA0bR8gDBxtmuYPwBLEKKD+dR2CqCIajnbFZXULxe++NlBrb8+lwQfxGVp9zkcim8cZUdz0AUXzZ7sdINmgY59AafRL3Gi0ZjXF77w2UGtvz6UxA9HI6nN2r5HxIf3mzXL6eXOBz+P/UVEfvwL6ZXzX2jVKo7Zca2Qi7q44jgDWunljsfER/eZ+lw+NmuL/URpNwo1G69ZS/M6rA7X2tlwafBCNPrC8PhyXGvWb/hH95vzPue+UC3RsMiuNjseNRoKhyISs1yCb5KxbgAZN0x4DngPOMU0zHrb4DnA58Agy04lm8bk7uubRrx+0p9wzWYcYym+RZfZpaT63HXkwtSC+1D9OCE9ZYjn/S9zObrS0i4H5itMcZOWwV5prmxE302pEv9Mt57YncZM1Ofr1A9OVRsvU73Cr0RWOOPBjcK1R2mfVAuBTRCOd5BuTcVg1ehe7Rtvi1p2Wfhy10qnRUmQcpdLeqdFVE8JTFlrOH4MYhYww04+juEZzEf/+PmmutWr0PvaQ5VT+/0QUpR1HVo2WIN9DKo1MIIZotBi42rEJfzQuNcowjhbSOY62Q9xFqdCieK9GHkCnWc5tCQxzxacT+xqGUdRbNnRdG33TND/WNO1DRKRbTNN8ynKuSdO02ZqmvY1sbGbz5BuDLJEyo6Q/rQceQXHjm7By2Q+acHkPGdwfW2PvZwYnPYUM+CJgFvCd5ecHq08xCca6Jd9atjfaovkUzf++WWtd12Th8576PabiMxAJkdseeRh85+C1JE3GYCluNSouYd1BR1Ly4X/iGn2ouLwHfGKNK58ZnPRP5Ibth12fWYp7uhnYhq74AK1le6H9OI+i+bPjGsX1eR/43qLRAESjHenUyPqTSSN3oar9ill30JEUf/QftBVL4xrFOX3s0GgynQ9H53eWM43ayvak6Me5Mo7WrTWwjyOnRlcgGi3A/p19B/yUG436se6goyj+sB5txbK5jnvtvw6NnkRcbcUkv9fSabSRKz5Am74HRT/OoWje7LhG1nE026JRf0QjHdHIySmTRtmGYZrIBCjrHBAv4HojV9O0IiQccD9gjGmaa3JBwDCMg4Fn6HQPuYEJDMhXjKxhGJ+TGCeeCbfouh7KE5+fIT7QbDRqBwbrup6T7ykJp09IjIHOhNt0Xc+1Xz/O5wAkpDcbjVqBEbquZxVenAWnRiQYIBv8Rdf1i/PEpwK5h7PRaB1Q2pWkNpecPiB5aG463KPr+vl54rM38BrZabQW2FDX9aUZr+wByKbg2m3Ihuc3wG9yyGEZbjZM7WjNc1JEtl9eaxfekw26opGZL4OvkO3f24YsqfOFZWRfQLAIWernC9lqFHcX5QvLyV6jfkhoYr6Q7ZgwETdRvrAc9/78OIqRqKReAVcDQNO0sxH/5NGIb79G09I7IbNAE4nJHJngOtGni3gdybxzixZkXyNfmE72Gn2aDyIWvIb4RN1iFfnV6Euyv1k/yyZBqwvIVqOV5Fejr8heIyPPvurXye7Bu4L8auQ6w96CL7PJgvcaGY2+pmkHAzcBR5imuRBxxfQHjsoFAV3XV6NCJV2imeSlFXKJ53DrQ+9E1vVB3ELN2P+dxVsKodHzyKzLLYrIboM/K+i6vhbJInWLFnqeRv2QTNG8QK2OX8U9pxbgsXzxUXie7Fax8WJzeYEy3lNxr9Fq8q9RTpHW6Guath2SxnySaZpNAKZptgG3k9u49MdwvzwqQqpT5g2qDorbZXYb8KKu69k+JLLFo/QsjWaQWNAqFVqBlwswG8pGI438a/QtnfkrmdAGTC1ALZfHyM5dk9eqtLquz0KKDrpBG/CaesDnE4/jXiMTmST2GqSN3jFN8yskusZ5/G7g7hzyeAYpYLQt6R9ELcDDuq47qzB2GRW1DYOBXwOzo6FAveXUecgDL1Ms92qkiFfOUFHbsCsSlvdUNBSIp6w/h2i0A5k1ekzXdWc1z+7wGYTELs+JhgLWFcf5SI2cTBqtQQrm5QwVtQ07I2F5Vo1eBP6HRLakc2O0AE8og5MrPoOQGPj50VDgDcup84FncafR5bniozjFNXo6GgrESwq/jOzL7UR6jVYDT6kHV674DETG0YJoKPC65dT5yAPYjUY5TYKsqG3YCdgf0Sg+iYkAXyOBCpk0ekbX9W9yySnf6DFVNg3DmIAk/wwj+XJvHfJF7Knrerc23ypqG+JliY8BDqbTiP4jGgp0xH4bhnEPki2cajA2A6fouv5MN/n0R6KiDkceQBurU2uA8dFQYIHiszWi0XBSazQD0ahbESkVtQ3xssTHAIfQqdFj0VCgIyTXMIy7kKzPdBqdrut6t2qrV9Q2lNCpUTWdGq0FtoyGAvMUny2ROi4jSK3RTGAPXde7tUFZUduwKaLR0Uh+SlyjJ6KhwInx6wzDuAM4i9R5Dc3AmbquT+4mnxLEyMc12kSdWgdMiIYC3ys+4xGNRpJco1YkBr+8KyXNHZziGh2FaBQ3ok9FQ4GOUi2GYdQhpZnTaXS2ruuPd5NPCVKALX6vbaZOrQO2iYYCsxWfcci+WDqNvgN2z1dkU77QYzpn6bo+U4XdPYwkkcQTNtoR4zcVOLcrBr+itqEfEhZ2ODIAnSVp45iEPeHnAsSFUYMM1njm7SpktnheVw1+RW3DBkjxtMORm2F4kssGICWUrwFxF1g0mkjnDRLX6FXgnK4YfKXRHorP4aTW6FjseRgXI9EUl5Go0Wrg/K4a/IrahjF0anQYyTXqj6zKrgDQdf07wzD2RxIFt6VTI1PxeQ3RKGuDX1HbUIRdo1Qhq790vL4ESVC6nOQaBXVdT1a62Q2nMYg2cY2ShRqWIBqFQFwqSqOHkbwRp0ZvIAY2a4OvNCqnU6NdU1zq3BO8DInk+SNil+IaNStOF+i6/mS2fBSnUuwajUxyWQlSUbYGQNf17w3D2A/4B7JytGrUguyxndPbDD70oJl+HCoN+iik/sUoxN93Rzbli62oqG04DzGaG7i4fGY0FNgmCacNkboxOyMzywYkVjibyIw4n3FIA45DcbeBdbDD7RTX6AjE+I5CshDvzKZ8sYPT2UgNGzca/S8aCmztPKhq8dTQqdF/kHrjXdFoc6Rc889xp9HPo6HAaw4+GnKTn0KnRn/Rdf3jbPkoTmchddjdJO7NioYCCYXbDMPYABlHuyIaTUM06spEZjM6NXIThXdENBR4xXpAaVSFJDGORjS6K5sSzw5OZwA34i4p7ftoKLCF86CqV3QpsBsy+56GaNSVicymSH3+X+BOo6OjocCL1gNKo8OQrN0xSFb0Xbquf5Tk/b0CPc7o5xLKX5fNw2KfaCiQdbenbFBR2/AMMlt2g3ejoUC6dPJc8NkRS+0RN2+JhgLv5osPQEVtwxTgOJeXfxANBdKVbsgFn+2RZiBusV80FMhbpBJARW3DZMQ94QaN0VAgWf+GXPKZiLhf3eJn0VBgWp7oAFBR2/A47nOKPomGArvlk09PQbaJGr0NpVlce3e+Db6CW05rcH9TdwfZaHRfvg2+gltOa5GNwXwjm6qxD+Tb4Cu41Wgd4rbMN7LR6KF8G3yFbDRyO8no9Vjfjf47dLZwW0HquiM/IZExhcC1dIaDpgsLvTkaCrgNZesO3kU6MIFolCpkcAn28rP5xHWIDxzLv8lwS3zjLc94H4hvsq4ktUZLyXEkVxpcT2dmajqN6qKhwHcF4PMRnW0302m0nBxHcqXBDUghPEiv0e3RUCBnUUo9Heu10Y+GAuuQmeBEZNMs1cb1VdFQIJ/p71ZO0xC/cC2pZ0c/IL0KCsGnFYn0mIAY/VTVEq+xhEbmm9ObiF/4RlLP1uYi2eGF4NOGuAm2Rso9pNLo2mgokM8SAVZObyPFyq4jtUbzsfdkyCefNqRW/5bIBCGVRtdZQiPzzSmKRHldQ2qNFiLjrM9gvTb6CqOR2ORU1fymIxurhcRvUZEUKXBZNBTISxGwFBiFaLRJivNfIhtihcQZpJ81h6KhQD5rwjgxAinotmmK81+T29wVNziV9CvUy6OhQCFrwsQ12jzF+W+AhDaeecZJ2JvIOPHHaCjQ6yJwuoP12uirhJmXkNC9VPidmu0WBBW1DUcjDWhS4V0kKawgUAkzLyKhe6nwO7VqKggqahuOIP1D5gOgS+F7XYHS6AUkdC8Vfl9gjX5B+snKRxSwPEBFbcMAJHs3XXXaS6KhQL6zaTtQUdvwc6QhfSp8jISt9imst0ZfxZ0/iSRipMLL0VAgm3ot3UJFbUMF4hu26u4sZnVxNBQoSEiV0ugJJOkpFaY6sifziorahr2RPYZ0Gl0UDQUK0rBCxZ0/ChyY5rLXoqFApBB8ACpqG/ZEMqGt2aLJxlEhNXoEOCjNZf9CtZEsBCpqG/ZA9vOsGjnvq4Jp1JOwXhr9itoGDVlGHu049SaSnANS3fOcAnLaHnGhWLs7tSE+2SXIgPxdNBQoSPyv0ugvJCYSvYWkoYO4vs4uBB/FaVvEMFi7O7Ujm5Y/IRpdEg0FPkjy9nzw0YA7SIzsiNJpwL5Esm0Lgorahm2QREVrBnRco/ieyx8KFGUVx59JjKJ6D1llg1T3PLOAk5mtEY2s2b0m9gCBy9W+SJ/Demn0kczHcx3HDOQhUIX4sHeOp+7nGxW1DRsj2bKjHKfOiYYC1yKp4AOjocCdheCj8Aek5okV05EElV8gXMuioUDO6hylQ0Vtw0bIA9m54XZeNBS4BvETD4qGArcXgo/CJSQ24f4SODIaChyBZHbuGA0F5hSCTEVtw4aIRs56WEGl0ThkHBUkCEBx+j2Jzdy/RpLBjkLG0Q7xEhAF4LMBopEz0fBCh0a1heDTE7HeJWdV1DYciGTxWTEHSbwqyM3p4KMhS9tKx6lrlMEvOCpqG/YjsYTvXESjQoSJOvloyI36f45T10dDgUKF0tpQUduwLxLya80InodoVBAD5uCjIbPXnztO3RQNBQoVJmpDRW3DXsiM3qrRAkSjWR7w0ZDVxeGOU7dEQ4G8dLXrjVivZvpqw+0Bx+GlwGFeGHyFU0g0+A8iS82CQ224Peg4vAzRqOAGX+FEEg3+34GrPeBi1chqzJYj5R4KbvAVqkk0+I9QuNwJG1SRwL9h12gFotEsLzghSWhOg/8YOa5e2tuxXhl95AaY6Dh2bDQUmO4FmYrahrFIm0kr/oO4LLxaYv0R2M5x7FfRUCCbUgw5g1qO3+E4/Bbi+vJKo8uQEtZWTIqGAp97QUYVDHO6/t4BzvJQoxqk8bgVx0dDgXx3bEuKitqG0cBdjsPvUcC9hN6C9cboV9Q2lJFYa/v+aCiQTVeuXOMO7AlYLciN6klrNVVnxznredBRI7/QuB27H38NcqMWLPzRCrXh7nSX/L2QEUxJcBt2H7XXGk0ErnQcfiQaCrzqBR+FOuzF8NYCZxQyRLS3YL0w+ir08EHsGbfzyXHDhWygYoRPcBy+xqt0bxVW9wD2TMkFyIauJ6iobTgUce1YcW00FPCkKYVFI2s/4nhpbU9QUdtwMOIitOKGaCiQTXGzXPKJazTAcngRsuntCSpqG36GvSQ6yF7Hl17w6elYL4w+Uit8L8exYDQUWOYFmYrahqEkJhd9isxqvcI5JOYsXBgNBZZ6QaaitmEIUhrYis+R8D+vcBaJOQsXFapEhxOqq5szAcsAbvWAThynk5izcHGhSnQ4oRIwnft4XyJlTnwkQa83+qr2+k2Owy9EQwEv+1ZeB1hrhbcjy3Gv3DqbkXgTvIy0qfQK1wLjLa9NxPXllctiExKNaYTOYnRe4GpgK8vruEaeuCxUWK0zHPQ1OovReYErkbpRVpwVDQXWeEGmN6BXG30VonUPnV22QCIIgt4w6sgEvMhx+M5oKNClxhQ54KMhZR+GWQ6vBM73aoOrorZhdxJju++KhgIfesFH4a/YO3OtAs71UKNdSXSZFKr8dyrchb3rVDPearQTia63ewtU2rrXolcbfSRT0hmiFSpUQpETqv/mg9h1nY1HoYcKvySxNd3lXoVnVtQ2FJOo0Q8kbgwWDKoekjMz+U9ehWdaNLKWEJhL4co2J0DVQ3JmJl/pVXim2sf7G/Z9vHn44ZkZ0WuNfkVtw0gSQ7TeJdFPXEhcTGJv2XMKXOmwAxW1DSNIrGr4PoWvmGnFRST2TT3Xq0qHFbUNw0isjvkh6Yvi5RtBYHfHsfOiocByL8ioPap7HIf/S+L9V0ich/QrtsKzfbzehF5r9JEbw9qLcx3iy/OkgJK6MZzNIZ509m4tMM5D6onH0Ypo1OYFGbV569ToqWgoMNULPgrnYi8p7bVGg0ic0T8TDQVeSnZ9gXA2Uiokjja83aMaROLK8PloKPC8F3x6G3ql0VeZt06//S3RUCCbPqa5xmnY/Z1LSPRbFwwqY/ICx+E6r5KwFE7BnrewjMT9j4JBaeSsrXO7V0lYCidjr62znESOBYNyWTq/ozu8SsJSOBF73sJKPNzH623olUYfiX+3zvJXkpj5WjAo/6LTwN9dqA5BKVCNfZa/igJ140oGpdHvHYfviYYCC73gozAJe1OUFjwMh1Qx8E6N7ouGAvO94KPwK+xNUVooUMeyZEih0f2FKp64PqDXGX0VjeKManjQq3hzhWOQNnFxrKXwXZQ6kEKjh6KhwBIv+CgcibQbjGMdHvrNlUaXOg7/3at4c4XDsZcRaaXwnaY6kEKjRwrVEjIFqrCXEWnD272FXodeZ/SBw1P/MV4AACAASURBVLDXRWlD6sJ7ghQ3xmPRUGCBF3wUDsHewaidxNothYbzIfSEx7OzAPZNd5Oep9FkDwsFgiRh7WZ5bZJYJ6nQcGr0lIdF8HoleqPRd37pT0dDgdmeMBHsS2I2sJeZt5Co0bPRUOA7T5jQ0Q2rwnG4p2n0fDQUmOkJEzryOw5wHPbMZang1OilaCgwwxMmdOR3HOQ47LVGvQ69yuhX1DbsQmKZYq+/dOeN8aqXG8oqYcVZprinafRGNBRo8oQJHYXnnGWKe5pG9dFQ4DNPmNBReM6ZA9PTNJoWDQU+9oRJL0avMvokfulvRUOBRk+Y0NG6ztmS0cvaMZC4yRUtVHvBZKiobdiKxMSnnqbR+wVuL2hDRW3DeBITn7zWyBmY8CFSztkTVNQ2jEM23q3wWqNeiV5j9FX9mF87Dnv9pV+MvYnEp0i9fE+g6sc4K3v2BI2s4+xzwLNSzqp+jLOyp9caXYRdo+mAZ6WcVVvGkx2Hb/O4Lv1F2DOUv0JakPrIEr3G6COxytaU66+R9nGeQDW2OM1x+M8e3xgXYC+dPBMprOYJVGOLMxyHvTYeQeylk/8HvOARl3hm+ZmOw15rdB720smzAM8KGKrMcmfz+du8SsTs7egVRr+itmE4khVoxe0ef+nnAoMsr+cAUzziEs8IPsdx+HavMksVzgYGW17PA/7pEZd4RvC5jsN3eKzRb7EXDFwAPOkRl3g55/Mch+/0KvtW4UzsBQN/BB73iEuvR68w+ohbx1oBcRHS+9ITqAQR50PoLq/KAiscjz0jOIb0UPUEKpTV+RD6q8edjI7DnhG8BPiHR1ziGjkfQmGPywIfiz0jeBnSr9gTpNDo7mgosNoLPusDepPRt+K+aCjQ4gkTwb7Ya5E0k9hsvNBwanR/NBRo9oSJYG9gnOV1C4kNQQoNp0YPREOBVZ4wEeyJvafAGrwtGAiJGj3oVTE8hd2xJ/WtxduCgb0ePd7oV9Q2bExibK5ns3wF543xkpcZwWrjLeA43NM0esXLjGDVgP1gx+GeqJFnGcFqn8oZ7tvTNIpEQ4FFnjBZT9DjjT5S+8MaIfOxVz1UoaPWuTO8zjM/tcKx2L/Lz6KhwFdekVF1dnqaRr/EHv1hREOB6V6RUS5CZwiil126QMqJWIMlvgS8zKfoiRr1ehRnvsRzOJ/0WX3pTdVVByFlG14smxzJRXOVA4GxltfLkZZxbvlsgBig2cAbZZMjudiM7q5GBwI6olEu0v73x17sbSVZhNc1VVeNQTT6AdEoFxut3dVof2An4KWyyZFcNKDZD3tJ51VkEY3WVF1Vijzs5wCv50ujbKKImqqr9kNKW+RKo32wF3trJotoNKXRL5EAgtdypFGvR4+e6auEDGczb9cRMk3VVb9G4ubvBr5uqq46KQe0jne8ft7txltTddUAJEb9PsQIvt5UXbVRd8io/AVnM2/XBq2puuo4YBpS/OzrpuqqU5uqq7T078oIp0YvuN2Daaqu6g/8C/H/R4A3mqqrNk7/rvRQLkJnM+9sNPol8Bai0VdN1VWn50Gjl9zuwTRVV5UAbyAaTQX+3VRdtUn6d6WHchH+zHE4G42OAt6mcxydmQeNXnG7B9NUXVWM3GMPAK8A9U3VVZumf1ffQI+c6RuGMRE48pCtBh3wr//ZbMX7WbZnO9Ty/yHAo03VVQcD55dNjrjuZmUYRgniZpo4qFg7rqXVNvnJZsY4FpktxnEw8FlTddVJZZMjb2TxORiGsQ1w1KFbD97/9W+brTfXR9FQ4H9ZfJRVo8FINEtlU3XVeWWTI6438AzDKEY02nZwiTapeV2XNRoD7GJ5HUA0OrlsciSrhjSGYUwAjjpswuD9XpvZ3B0XoVOjhxCNzi2bHHHdzUppdCyw3ZAS7fhVdo2ycX+Nxl4I7SBEo1PKJkciWXwOhmFsDRxdtc3gisg3zd1xEVo1GoQENhzcVF11dtnkiOtuVoZh9EM02n5of6165douazQKe2etAxGNTi2bHHkli8/BMIytENfXSCRc9J+6rvfafYUeNdM3DGOsYRh/RzJbb9xseMkR1vPFRTyR5UcmuwFOBj5uqq5ytuxLxekoJIHnAeDqYQOKOsIi+2ksIrvs0oXAJ45jY5EZf62awWXis4FhGA8hma03bja8+Ejr+ZKirGO8k2l0IqLRbknOJeN0JKLRg8DVwwcUdYRFFmnEkFmpWyxCWvFZsQHwalN1VZ1aCWTiM8YwjAcRf/RNmw8vtpXKKMnNODoB0ajczQcYhnE48C3S1/Xq4QOKSuPnijSWkF0Gbgwpi2DFGGBqU3XVbS41KjUM4346NTrGej5H4+h4RCNnW8NUnKqQhMKHgKtHDCjqCB0t0lhGdhm4S5DWoFaUAi83VVfdoVbdmfiMNgzjXsAAbgKuQHoJzDIM4yrDMAal/YAeCs00u5/4p2naCGRJvgOwt2maWXdnMgxjNGLsN0RlTLabJo9+tgLjxzXoYwe0nrTTsEi/Iu0YXddd+8GbqqvOQuptD3ScWouURA6XTY4kFcEwjPOQxiMdCUZfL17LZEMmwL/Wh63ebkz/A3Vdd96A6fhsgiTfON0NAB8A1WWTI0krYhqGMQp5aGyEyphsN00e/3wFny9cw45jB7SevNOw1/oVaUdlqdHpyLLcOYjXATXAXWk0OgcpxNWh0YzYWp5sWoEJ/HrHYau336D/Qbquu67/o9w5T5DobgAxdtVlkyNJVzOGYYwEPkaao3SMoyc+X8GnC9ew4wb9W0/eefi/i4u0w3Vdd+3jbaquOhVxEw52nFoHXAbcmUajM5Ax2PHeb2JredJYQbsJk3YcunrHDQYEdF1/Lws+GyEJSs4ChACNwK/LJke+TcFnBPJg3QzLOHqyaQWfLljD9mP6t52yy/D/FBdph2Wp0clIL90hjlOtQAi4I9UelmEYpyFjsEOjmT+t5YmmFbS1w6Qdh67Rxw6o1HU9mgWfDZHoo0OSnP4volHSyqqGYQxX12yOPTs5jhakJ/eh2WjUE5Aro1+CLH3qgD9na/QNw9CQmc6B2FPknVgFXKXruq0sr/Idbo1sRm6S5GccMCLFZ34CVJVNjtjq3xuGsTvix3Xe5E4sBiboum5bwjZVVw1FGoCPT8Fpc+zRJHGsBv5UNjli+xuVRhHEEKabpawCrtN13dYByqLRjur3b5qEz0iS41NEI1sHJ8MwdgWiJD4snIghGtnCWpuqq4Ygboot0nBKptEa4IqyyZGEmjmGYbyM3OSZNLpR1/WbHXw0YCsSx1GcVzqNPkM0svUIMAxjZ+A9Mmu0BNHoJwenISQfR1ZOyTRaC1xVNjmS0OXKMIwXkL4UmTSq1XX9BgcfDWkYVEbimN6U9Bo1AT93BlQYhlGGTHgyabQU0cgW1ppGI+s4SubKXgtcUzY5crPzhGEYzwK/ILNGf9Z1/ZoMvHsUcmL0Oz5M0x6ma0b//4Bnsaejp0KL+VF0Im+8OBHZ3d9b/YxJ/7a0WAmMLpsc6cioNQzjM2RgZ9qMWmOa5j3cdNm9ik+c0050z312Q9nkSEfzZ8MwKoEXSZxFJUOL+fEH2/Hqs1s7OHVHo1WIRh0ZtYZhfIz4391odD83XRZWPOKcykhusNyitmxy5HILn4OQTTt3Gn3WuAOvTNnSwmlv7L1Xs0UzolHHxr5hGB8hCUZuNHqImy67w8JlH2QcdUejP5dNjtRY+OyPuEncaLTa/PLzHXju8S2w32tj078tLVoQjToyag3DeB9JVHOj0cPcdFkd9nG9M93T6M6yyZGOqqKGYeyLuCRdjSNga13XvWxpmRVcbeRqmrY14kOeYJrmfHXsN8jMfi/TNLsbnnUy7gTG/OCtIuqnfkv6FUG2GIqEGTYAGIaxGdK2LmP0gbl86QCeeTRI7pugnwRcaXl9MplXHcLpw3eK+Pcr35BbjYYgm6qvARiGsTHiznOh0bIBPPvoeeS+wfdvgMstr08i82xROH0ULeLfL39NbjUajCQ3vQxgGMaGuJs4YK5YPoBnH/0tiXVvuotfIy66ONxr9N93Nd546UvSz3azxSCk5eFzIHtUyCw9s0YrVwzgmUfPILEESncxCfv9eyKJ7uBUaEdagXqdbe4armaipml+i8ygLgbQNG0fxP92dHcNvtqtPxI3X3rzKmh4dQCmmcsbFaTlorUu/1HIl5kZH70D8+dk3IDtAjo2oZRGR+NGo5ZmaJg6ALM9HxpZ/fJHIb7azGiMwrwf8hEp1sHHMIwiJCY745g2V7dA/dQBtOdco3bEzxvHkbjW6F2Y+30+NOoY18pF6EzkSwpzzWr499QBtLfn0uCDaGSty38E4mbJjP++C3Nn50OjjsABpdFxuF85DAFOyQOnvCEbAW8BGjRNewx5Sp9jmqbrDcw0KMt8iUJJ2nt0JTLAv0USppzlYa1oQaJEWpCImj86Qu+OweWsmuK0nGYgK6Q5yGwm2eZtHIuQ4larkRWHtdHHDrh1FbnXaBlwPqk1Wo2Ep7Wof/9YNjliLaNwDC5XZ5SkfSZ+g/jD5yDL9GSbt3EsRvy6q4E3kRrrcWyH2/Gcns8qOjVagmiUatYX12g1Mo6uKJscsfqbjya3Gs1F7hdnyQ0r4hqtQfakLrCcm4jbWXtxzjWK33NXlk2O/Gg5fxTu3LqZxvZMOseRTvIN7jhiivcaJLfAqtHWuFwJWbCnYRhF2QRPeAnXRt80zY81TfsQmV3dYpqmLfZa07QI4t/dVtO0+03TfNjlR4/G5axaKynBPLoa3v43LFrwheLyPrJR9oU1466puuppxCVShNQD/87ysyhVpIWCe9/3XvvD4oUw+9ultDQ3Ki7vAx9YDYAKx7wU2B6Yr3jEec22+jiTYDQy084IrbgY8+gT4K1/xTX60MJpehKNTkFmNVZ9ZgE/5kyjPfeHRQth1sy4Ru/TqdFiC58S5GG3I1Ji2Mrp+7LJkXQJXu416leMecwJ8OYbsGjBl3SOo/cBI4VGxdi/s+/IrJH7/YE9KmDRAvhu5jJaVsU1eo9EjYoRjXTsGs1CxlEmjVytPLR+/USjaa/D4oVfYZrWe2162eRIx+c0VVc9BZyK9HKYhf17y6SR+/2B8n3hx/nw3TfLaF5lHUfvJ9Hod8gDcoGDU840sqAdeXC5ztnwEq6NvqZpRchN1Y7M+m0wTbOqixyyytobPHIQw7ffCG1i6YaaDLL5wIzSYJ3thi+bHHkPGaB55dSvSGPk1mPpP8YcqplmKbKZ93VpsM4WYaA2iROiBHLNB2DwyMFxjTZSGi0guUbxmyavnIo0GLXVBvQvbR+qmeYYOjVabL1OaZQwtnLNB2DwCNs46o9o9HUSjT7A7tbKC6eiIhi15Qb0H91m1WhGEo1agVuTfkgO+QAMGjGIETtsjNZq02hGabDOZhTLJkc+Aj7KNyet/wA4+gSAx3RdvyDVdUqjunzzscCkh+U8pYPr6B1N0+5AdsoHAGHTNHNSY9swjHKgHnu9/ORob2PD6FMUtSWUrV8OvIRk7L3uHJRd4PQmcICba4d8bzD8f85cIkBCQZ8GHi8N1nV332NXpFRCdzRaQadGr+VAowbSu2I6kEajT+nU6Ptu8tkJ8RUPy3Qt7e1s+O5TFLUmuJJXIJuw/wRezYFGb5A8RjwBQ36YzvBvk7Z7/oxOjWZ3k4+O7Dm41GgKRa0JFUZW0qlRJAcavYqEj7pFO3B9vsIkDcPYHlkdu3M5dXIaoOu6l41mXMPV00nTtLMRH+7RyEysRtO07tbViONz7C3+0hHBLEpKeTiy4/4KMCsWrrkuFq4Z3w1OUxFfZEaYRSn3e3ZFsvhmxcI1U2PhmmNi4ZqubvgauF2VaVoqTsOQaJeXgdmxcM0NsXDNll3kA6KRq3o6Zr+U1HcBbkQ0isTCNb/shkZf4Ha2lV6jE5CH4/excM2NsXDNVl3kA7nRaGfgBuC7WLjm1Vi45thYuKarG9Bfur4y9b02FKhGwoe/j4VrboqFa7ZOdqFLTEVWNW6xEtnPyRdm4DaIoxNNvcXgg4uZvqZpByO1Uw4yTbNJ07R+iDCXmKaZk96iKlnkKDfXDojNWT1y+puri9pbUyWAxGEiJRIeBF4qDda57kak6tp8hosNHa11HSNmvLd24I/flWiZl4YLgYeBh0qDdVmVh1bJIr90c23/n+auHjV92uqitowaQadGL2ap0VbIwyizRm3rGD7j/XWDFv6vn5bZMP9Ip0Yz3PJRnKaQWIo7Kfr/NG/1qOn/catRPVI+4fksNRqPGNrM4X9trYyY8f66QQu/davRI4hGX7vlozg9iYRxZtZoybw1o4xpLUVt69xo1ECnRq67WhmGsTmyUe02SmgVMDKfRtYwjEeRSaSbiW0LcKWu67fli0+ukdboa5q2HbJkPtk0zYjl+PnAiaZp7pMLEoZhHIvc6G6WVKuLVq/aesP3n5mIhFYdi5RuSIfFwKPA30qDda5mO4Zh/A/JPMyEdcDjG0975I+IUT4OidLJNGCmITfJs25uEsMwjkH+BncarWmeuOF7T2+l+PwK9xo9VBqs+8LF78AwjG+ACS4uXQdM3njaI3/ArlEm4/YmnRplnDGrGkBP4F6j7TZ87+kt6NQoU8XTGJLW/7fSYJ2rWvyGYXwFbOvi0lbgqY2nPXIJsqqehDuN3kYe2s+WBusyzpgNw/gF4ppxpZHWunb7jd6ZvDmdGmWqePoTnRq5StI0DOMLJMAhE1qBZ3Rdr3bzuV2FYRiHIS41VxoBO+q6nk2RQ0+R04zcrkLFoTeSOUOzGbhH1/WOZJNYuKYfklh1IjKDyRQi9zayETa1NFiX8o83DOMQ4AUyh26uBLbVdb0j/T4WrtkIuUHOwF4xMhmWIIbt9tJg3YJUF6k49A+R5X46V08z8ICu6x3JJkqj/ZDEHDcavYNo9EoGjSoRV4gbjbbTdb0j/T4WrtkQ0eh07BUjk2EpnRqlzHxUGr2PuNbSadQC/E3X9Y5kMaVRBZ0aZbrho3RqlNIdoLKEp+JOo+11Xe/oZ6A0OhbRaPcM719Gp0bzUl2k4tDfBcrJrNHDuq53JIvFwjVFiEYnIm6wTBq9h2j0UgaNDkCyhDNptArYQdf1bu3/ZILS6C1kDzOTRo/pup7rZLG8okcYfQDDMLZANj9HkHx2swap3bGfrutJl9ixcM1wpLLfWdjLqibDZ4jP/VlnxIaF061IDHKqwdgCTNJ1PWWp1li4ZnfgTMSfnm4DbQ1SXfDWVBt2ain8KVLbJJlGaxGXy75pNBqGaHQmsFcaPiD7LTcDT6fR6GYk0zaVRs1Ata7rL6X6JbFwzW50apRus3oN0qT71tJg3awUfDZDNBpFao2+APbRdT3pCisWrhlKp0Z7p+EDnRUYp6TR6AYkhDCdRr/RdT2luzQWrtmVTo1S1ZEC+fviGqUq3LcJMv5Hk1qjr4C9dV1PusJSGk1SnDKt+Kcj4+ipVBu/hmFcg4Q0p5qQNAMn67r+bIbflROojPO4RqlqG80A9tJ13cte1Fmjxxh9AMMwtkNKGO9G55ffhrgHngAudRbtSoVYuGZnZKZ9EqkLQIF8cbVIdIQt5EXNHC8GrkWe+HHf7Epk9nm2ruuu6pfHwjVDkCXymchsKRVakeqJtcn8tarXwIPIzM+q0Vpk2X6JruuuetHGwjU70anRqDSXfkOnRraQFzUrugi4DtmQt2q0DDgn3UPRwWcwMvs/i8TGMFa0IePh5tJgXULNd7Un8wDy4HdqNAX4vbOwWRpOOvKdnYQYgFSYiQQ5PJpCowuQDdliOvdBViKRZ+fouu6qI5TS6FjFKV2EWRtSzfXmZC5N1WvgAeTBH38YtSMP1qcRjVz1642Fa3ZExtHJSPniVPiWTo1skxKl0XnIA7SETo1WIRqdq+v6i2745Aqq18D9yEPNqdGzwO90XV+c4u09Fj3K6Meh3AbVyE32AxDWdb1LfXFj4ZpBiB/5TBIbrANgmiY/fTl32YofFmO2tc8A/q88Ut/xcFHlei9Ail+tRbpxPdzVzaRYuGZ75CY5hRRJTmtXrjYXNn67tLVlbSumeX15pP6v1vOGYfwMmfXFNbpH1/WsNvUsfAYifuSzSBGGaZomP301d/mK7xebZlv7N8Ch5ZH6DsOpyvUGEXfWWmTP4mFd1xNiR11y2g7R6FTcaXRTeaT+Tut55Vo5EdFoDqJRl3oHK42ORjRKmhFrmiZLvp63bPnsRZht7TMRjToMpyrXG0TcT2sRF8Lfu6HRtnRqlDQRbO0qpVHz2jZMs7Y8Um/bcFSulZMQYz0HuFfXdfdRPnY+AxCNziSxCT3QodHy5bMXmWZb+7fAYeWR+o6GJEqj85GJ3zpkX6fLGrlBY1XlVsgDchxwR3mk3hbjr4rUnYxo/AOikat9r56IHmn084VYuGYX4I9YIjxWL13F4s9ms25V50q/38D+344L6Ds4Z2x54DMI8df+ARlwtLe1s+zbBSydaXfvj9puk0O2vv2xbBq2dJXTTohGk1AarVm6ikWfz2bdSqtGJbPGBcq2LYBGA+nUaAtQGv1vIUu/sbv3R227SdXWdzyWTaONrnIqo1OjIkip0exxgbKJBdLoVKSu/3hIrdHIbTY+fMJfHnfdi7cbnHSkGN6viWu0rJlFn89i3QqLRgNKfhhXWbZNNlFRuUJjVeVAJLv5OuwunO3LI/Vdmhz0BvQpox9HLFyz7bpVq69dOnPBpJVzf0qIsuk3qD/jfqZ/DVxcGqzLqkVfF/n0N03zNyvn/nTDkhnzN2lbnWgjNtxj6/bBG4y4F7iqNFjnyjXRTU4TlUbHJ9VoYAnjAmUzgN+VBuuyatHXRT4lpmmesGreTzcumTF/09aWRI3G7r51+5ANR9yHaOTKNdFNTtusW7Xm6qXfLqheOSeW4BtXGn2DGJa0gQM54lNimmb1qnlLblwyY95mSTXabcv2IRuNegC40pntmydOE9Y1r7l66cwFJyTVaEAJ4yrLZiIapQ0cyBUaqyo1JET8NqR/ghPHlUfqn8k3D6/Q54x+Y1XlAMQHfSUpog+GjRvDGH1c/OVU4PfZxoxnyWkn4C+kcD+hwfhDd0Ur0kBC4q4C7u9uNmQaPv2RzdmrSLH5PHTzUjYo2yL+MoJo1CX3kktOZYhGKbOAxx+2C5okFC1BuN+XZ40uUL8n6ebz0E1Hs8HO4+MvX0MekHmbQTZWVe6IaJSy2NgW/7czRcX9QPakrgbude5l5ZBPCeLOupoUm89DNhnN2F3Gx1++gWiUN9dJY1XlDsCdpM6UbgeGlEfqXeca9Db0KaPfWFV5GPBXMsSWb3rA9vQfass5WofcTDeUButcN3l2wWckkpF6DmnisQdtMJyN9kigbAAXlQbrGnLFR3E6FGntNzHddZvuvz39h9k0alXvuy7HGo1ANDqXdBqNGcZGe27jPDwdWa3l1C3WWFV5CDKO0sbfb7LfdgwYbgvYaUVKkl9bGqxzFZDgks9wZJP4PNKEPA8sHcbGeyVo9CWiUTZ9jN1wOhjRaLt0121SsR0DRtg0aqNTI1cBCS75DAOuRx5C6cLCG8oj9ekqdPZ69Bmj31hVeTgSU542aaqopN/KcQfvNCRFmYkfEV/uP9LFHbvk0w/JGciY4Fa64+aLhm+xQaqKjc8Dl5YG67qdHNJYVVmFlGlImxBUVNJv1biDdxqcQqNFdGrUrd6hSqM3SR/tBEDpDpv9OHz82FQVG18ELikN1iXtGZslp0ORlU16jYr7NY87ZKeBqlChE4uBPyGJcN3VqAgJLMhYK2r09pv9OGLLlBq9hGiUtGdslpwOQeLu09ak14qLmrc4ZOdUGsWQRuQP5kAjDckYPsjF5eeVR+rv7c7v6+noNZXhcoBjcJFW3b6u7VFN08qxN3qIYyySABONhWsSpkxZYmNcGHyAlfN+2gPZFFuV5PQxwBexcM2lKnmmOzgaF2OifV3b45qm7Y48tJzYAAkpfTcWrkm7WnCBsbgw+AAr5sT2QjYyVyY5fRSi0R9UElZ34E6j1rYnlUbJ6sSMQUIB31MRON3BGFwWB1wxZ/G+yIb4iiSnjwSmx8I1oRxodBQumpCYre3/1DQtXkzQiVLgXuADFe3WHYzGncEHeaCv1+hLRn+a5f/pljdTS4N1HyM3UjUSxubE3sCnsXDN2bFwTVcLzy1EEmDiSLVyaCx74qXZpcG6WsTl8miSawYgpWTrY+GaLZKcd4tpLq+bWhqs+wQpE3A8EsbmxJ6IRud2Q6PFSCJVHKk0+mSnf74yqzRYdyui0cNJrumPagTUzWJ801xeN7U0WPcpsgdxHJAs4W4P4JNYuOb8bmj0E5K0GEcqjT7f+amp35YG6+oQjf6R5Jr+SBLVtG4W45tm+X+6ey1SGqz7HAmBPRape+/E7sDHsXDNBd2Y1CxFEg3jSKXR9PJIfbcqmfYG9CWj/zjS3f4vpP7SV6MGbGmwziwN1v0T8dteR2LVzcHAfcArquxCViiP1K9DDMIfkHrtqb6LjplHabBuXmmw7hTkoZOsa9lBwOexcM1JXTQik5H+pX8hdSOJtahewkqjKYjf9hoSK0oOAu4BpsbCNZlqtiRAaRRAery+jzuN5pcG605DHjrJegUcgGh0Shc1moKUAr6T1BqtQ4q0xTV6BqktcxXJNQoDr8bCNZtkS6Y8Ut+KxMTXIOUV3Gi0oDRYdzqiUbKeE/shGp3WRY2eBQ4F7iB1Y5tWpNhfXKPnkA5xV5BYdXMgsl/0Wixcs2m2ZMoj9W3Ixu2lSPmMjBqtz+gzRr88Um8C/0Jmp6mWnv8pj9TbBlxpsK65NFh3NWLYkmVNVgFGLFxzTBc4LUCyFNOVQ0gYiKXBug8Q19CpSKSKFcOR1cBTsXBNuuzIZHziGu1P6poj08oj9TY3k9LoWkSjZFmTPweaYuGaY7PhozgtRLJd05VDSKbRR4hr6GRkNmzFfKou1QAAIABJREFUMGQ18HQsXOO+AxgdGtUjhjGVRm+VR+ptLpTSYF1LabDuemQS8XyS9xyKaHRcNnwUpx+Br4F901yWTqOTEB+6FUORcg7PxsI17juAYdNoX1Jr9HZ5pN624a80uhHRKFm5hUMQjY7Pho/i9COyaZ3OXegb/fUQl5K+AFrKL13VwzkKyYB0+o1Lgedi4Zq/q/o/rtBYVTkKuDvNJYuxN2y38mkvDdY9ghSp+1eSS45DbpBD3fJR+D3pC6Cl0+h7ZI/hNBL9xqXAM7FwzSOxcE262jE2qAine9Jc8hMpOlspjR5DNHo9ySXHIhr93C0fhYuQgmWpkE6jH9TvPYVEjUYDU2Lhmsdi4Ro35YyBjgindJuPy0jRRU7Nsh9HNEqW2HYMotEv3PJRuIAsJzMWTnOQ8XsSiS0IRwH/jIVrnoiFa9KVDrFBRTjdl+aSFcgqYL1HnzH6jVWV2yHxwlZYN9nmIfVcUkLdIH9HKl0mGyCnAZ+p4lhu8Gfs5XxbkaJzHefV0jQdp7mIu+FCEl1QGyNL4jti4ZqMTVgaqyonInWGrHjL8v8FSNncdHzM0mDdw4hGyTbDT0Y0ylQ1Mo467OV8W4GPLa9vc6HRPGS1ESTRvbIREImFa/7iUqMJSOifFW/T6bteSPJ9FysfszRY9yhS1uOtJJeciLhXMhUNjOMWwOr2aMM+WbhNuYHScZqPuD/PI1GjDRE35l/dNLlRZQ1udBx+h06NFiH9ANLxsT6MpiW55AREo0xFA+O4Gdjc8rodu0a3K3fieo8+EbKpwtrewr60iyF+1q2Rme2L5ZH6uUnenhQqwuEPiL/faSyagZNLg3UpKwKqsDZnbPR1iB/0GMTAvpHJoDk4bY/sXSSbqb8BHJ8qPlxpNA1x7cTxE6LRlsiG2kvlkfpkG9up+PRDVlfXk9gdrQU4pTRY93Sq9zdWVVai/L4W3Ig8LI9GQmhfz1Kj7ZAHV7KZ+r+BSaniw5VG9dgjQZYgvuhx6jNfLo/Uu26PqTT6HfJ3OTtirQZOLQ3WPZXq/Y1VlQchIZtW1KqfYxAD+1qWGk1ExlGyh04DcFyqrHAVHvkv7Aliy5BxtJn6zFfKI/WuyyOrDdyLEcPt1GgNcHppsO7JVO9vrKrcn8SHax2S23AMYgtey/RgXF/QV4x+EEkUseI35ZH6lAPFLdSs/nHkxnfiKiShyyZyY1XlUCTiYrzl8BfAbuWR+m7VIFGt9K5EYuWdK7mvgSOSde1qrKo8l0Q3yknlkfrHu8NHcdoF0WjHJKevQRK6nBoNQSIurGnyXwG7djdbUs1Wr0Bi5Z37O98gGiVkFzdWVf4WCbW04tTySH3aWatLTjshGpUlOX09cI0zN6SxqnIwUv7Xmrk3A9ilPFLvqk1jGj4lyBi6kkSNZiIaJWQXN1ZVnoGENVtxRnmkvts9tVXNo8eRFZITNyLlN5waDUI0soZYzwR2du7f9RWs9+6dxqrKLZBZjxVTkUiVbkOFLpaT3Dd/HfCkKqxmxQ3YDb6J3BjdLjpVGqxbWxqsuxLZaHTOOLdF4p5tGYeNVZXjkGYXVrxKBndXFpw+RTS6K8npaxAfrbPW/PXYDb4JnJmL9PjSYN06tTm/H+CccW4DvB8L19jS9BurKjdDZodWvEEGV04WnD5HZsF3Jjl9JeLrd9aav5bE7PIzu2vwFZ91anN+XxJDKScgGtn2ixqrKjdB6tlYUU/y8NCucGpCIo6StSb8E7Jn5NToauwGH+CsvmrwoQ/M9BurKqciETZxrAB2zGYJ7haxcM2ZyIaa093zEXB0abBuXmNVZTyU0BoKd2d5pP535Biq89LzJCaBtQEXlgbr7gForKp8CTjCcn4lolHOOxTFwjWnIxtqTndPI6LR3MaqynIkJNWq0V/LI/UXkmPEwjVjgedIjOpoQ1wKd5cG68zGqsrnEZdSHKsAvTxSPysPnE5FVhROV8bHwFGlwbo5jVWVuyHjyjpxu6c8Un9+HvhsgETT7O841Y5s/N+lNHoG2aSOoxkoK4/U57yVYCxccxKyonBq9ClwZGmw7ofGqspdkHFlXancXx6pPyfXfHoT1mujn8InfG55pD7dLn63EAvXHIjcIM5wyblmu3nkrNc+uQN7BuUsxHgky7bNBZ+BSLOMk5KcvnvW658+b7a1OzU6vzxSny5ipruc9kcMrTNccr7SqA673/x75CGULNs2F3wGIEb2lCSn75v1xqdPma3tTr/5hc4eBznmVIE8sJ3hkguAo76LfHwj9pr1PyDjyBntkis+/ZGH9WlJTj8w+43PHm9vbXP6zX/n7HGQY077IC1NnaUlFgJHfxf5+BokFDaOucg4ylltqN6I9da9ozaUbnIcfgcxgHlDabDuTWQJ6qwUuGnL4uXvkpgyf3a+DL7isxoxZpfjyI40TfP84kH9nSVk3yV9aFsuOL2NaORsLr5xS2x5lMSU+XPyZfAVnzWIMfsDiRqdUzyo/3OOt3xA+jDSXHCKIho1OU5t1LJ4+dskNik5L18GX/FZi4QrX0qiRr8tHtTfmZ/xEYn7aLnm9B6i0WeOUxu2xFa8hd3gg0xm+rTBh/XY6CNL8T0dxy4tj9R3q1CaG6jiZ/tgiUU2TZMlM+YNcFz6WnmkPqfVDVPwMVUZh2Ow1O9p/nEZ61audsaDF0qj7xB/cUcrRemqNN+5XP9XeaQ+741RlEZ1SC5GxwOmZdFy1q1Y7YwHvzSbaJhucJqFuJ06+gubpslPX89zatSA7FPlm49ZGqy7DTgcS45By6LlrF3R4pVGs5G9mY7+wqo7l9N9+CYWHfsy1kujr6ozOuOEXyiP1CdN4skHSoN1y5EiVrcDrJq/hLXLE/bX/lgoPorTi4ih/V7dGPYLNF4pj9QnTeLJE5/lyMO5DqB5wVLWLk/YXyu0Ri+jNi9TaPRqeaQ+Wf5BvvisQB7WtwA0L1zK2mWJGqks2EJxiiCTmu/UZMZ+gcYb5ZH6ZPkH+eKzEtlLuAlkMrNmacLi+fJCatSTsV4afcR/ba3M146E6BUUpcG6ttJg3SXtrW2XLJlhb1s3ZKOR7VtW7ZaqzG0+OX0O7LXi+8XzrK39ADbee+IotQdQSD5tpcG6P7S3tV/sNB6DRaOsSgDkiFMTsPeKH2Jz166wP6g33mviyCTRWPnm014arAu1t7Vf6BxHgzcc4ZVG04G9V86J/eCczGy01zYjk0Rj5ZtPe2mw7k9mW/t5zgf14LEjTC806qlY74y+6ozlzCp9tDxS7/QfFwyz3/hsZWuzJRpTg1HbblIEvBgL1xxWaD7fRT7+KTb9B1siytBNRzNw1NAKxamgRg1g9uufrlq3yh6xOmriJkXAC7FwTVXyd+UP30U+XhIzvrdpNGSTUQwcPXQf4KVCGzWA2a9/utL5oFYaPRcL1xyR/F35w3eRj5csdmq08SgGjR62J5LB6wyfzDtmvf7pqgSNtt1EQ8I5jyo0n56I9c7oI12oxller0ViwT2BSqCxlX8YttkYSoYMBCmJ/KIHRu23WDXSNEZu01Hp4P8osFFTCTQ2jYZuVkr/oQNBQvKej4VrDi8UH4UzUI3YAXlQb9NRBPNg4OUCazQQxzgeuunoePeyEqQw2pGF4qNwOiadJZg1GDWxYxz9jAIb/mQTPodGz3SlMOL6hvXK6KuWaE43zr0e18gOAp0lczXWjdzGVok5btRS9ezMKVQ28JXWY0M3HRUrGWzbYz4YmWE7NwzzhfOQFP04WkdtY6vE3B+ZzWZbPK5LUNnAV1mPDd1kdKxkiE2jAGL4C6WRczLTOnKiTaO4USvIBCLZZGbIxqNiajITx0GI4XcGMOQLv8We9Ng2cpuNrX78YiTJrdATiB6F9croIzVMrLHfK0kM2ywYVIXIkO2gyZ3FA/uf57i0P3LD7gAQC9dosXDN9io1P9e4CHtc86qikuIDSAwNPAS4J15PPRauGRYL1xwYC9ckbSbfVagKkZc7Dt9VPKi/M4GmBCmFrCs+Wixcs10sXLNzLvkoXIC9EF6LVlx0IImhgQHgPotGQ/Ok0TAk49SKu0sGDTjLcawEKaldpvhosXDNtqoMRq4RxF4Ib7VWVHQg9oKBIIb/gSQaDcslGTWZSZjwlQwecCb2ENNiJAN8Z8UnrpHbIom9HuuN0W+sqhyDxBBbcbuqo+0VapBSsHEsB24pDdbdizT6tmI4MnMcgzwovkCqUd6QKzKNVZWlSCy6FXdOvHvyF0iBrM8d584Afq8yew2kINusrjT7SINLsCeyrQBuLg3W3Q+c7bh2GKLRWETbL5HuXDfniowqd32Z4/Bftr33qemIRp86zp0G1ChOTYhG33el2Uca/B77ZGYVcFNpsO5vgNOoDUVm1xuq932FdOdyltnoMpJOZuCv2z0wZTqySnQa/pOBkMrs/ZxOjTYnd7gY+2SmGal79XfgdOwaDUHG0UbIJOgrpDtXsvIO6x3WG6OPuAiss4cYyWt0FARq5hF0HL61PFIfAygN1t1H4kNqKyRT1WrsLsvhrOgc5OESx0+ocMnSYN0i5IZ1pszXIUYw7looRW6UbkO5US5wHP5zeaR+seL0AGK4rBiPZKpaVwI12dSfz4CzAetnLUXVJSoN1sUQjZzNw2sRIzhevR6FrDq7DeVGcep9W3wyUxqsewgxeFaMQ+LWrRpdEgvXjM4FJ+As7JOZZaj6Vqr65sFI4TorbkI0iu8BjCTxu+0S1J6QU4M7VAMeVKlv5724OdLwx6rRxbEsm+r0RqwXRr+xqrIE+5cHUJvPDEUXOBG7gV2EtCG04nYSKxLuj93oFOOygXo6NFZVFpO4urjVmqGoDP8R2BtXaEne56oRtwucgP1vjSGlpa24k8TKlvtiNzr9yJ9GdeWR+o5Sy8rwH4EYujg0ZNJhRa40+jX2v3UJiZOZv5LYRGVv7KuDItJ31nIFlQPj/FtvK4/Ud5RaVob/cBK7ujnrAuVKo+OxrxaXIuW3O6DqTIUd79sT++ogJxr1dKwXRh9JXrH6F1eS53IL6aBKQDhnFvc7SwmocsJ/JbEaprOz1H45oHUU9kYbzSQaU5Dyy3/Hvhx2xu7v3t3IlRQaPZCkzaCJ3KzO4m/OmX0uNDoc+2ZpC8lLUsxAHtZWjZyblbt1N3JFaeRcCT3onMwoje4msfl6PjSqwr5ZuprkJSlmIhpZs7udGu3S3VVsinH0UHmkPlnfiHtIrBjqzCTOhUY9GuuL0XfOIB71eJZ/IPba8W0kMbBqw28q9o4+yZCLgejU6LEUN8a5yFI5XUPsEpI32MgG+2Gvi95OEgOrHi5TsRvjVJ/XXTg1esI6g7XgbGQvIp1G/UjfLtAN9sHe3tMkSVtElVcxFWuIaXLkQ6PJcZelA2ci+y7pbEwR6Xsfu8GeSIOfOFJpNBDRaHyGz/ONfk9HY1XlTiQuE/NaDMsFnDfGCyk6To3GHqqYCnu7aVOXCo1VlTsicdNWpOrN6zbSo7s3h1Ojl1KUch5FZoMPsGd3QgMbqyq3J7GIWU/T6JUUpZxHkNngA+zRnYxr1U7TGTbrtUbOWX6kPFL/bZLrhoElpyA1yr1ITiwker3RJ/HG+I+X2beq2YYzAcTpS4xjLoktE5NhENCdkDKnRm+VR+qdIZpxPIb0oc2ELt+sqtnGsY7DqTSaT/KG3U4MJH1D90xw+qmj5ZF6Z6ROHI+Tf402QpqDW5FKox9xV3CtP+kbumeCU6P3yyP1/01x7eOAm56z3dFoLDDJcTjVQyiGu4JruVjF9mj0aqOvQsdOdBxOdWMUCmdjb9owHXsD9g6UBuvakAfE7TjK1SZBl24OFQd/suNwSo1UaeiDEN9+Wj6qv2tX8FvsjWa+QipFJuPTDvwK2ZjLVP2zqxoNI7GWfjqN3kZceAntAh3Y102z9RQ4C3ujmRkk9oaI82lHHhC3kj+NhgKnOg6n0yheRvzLDB+9TzdWsWdib6LyLfB6Cj7tyIZvLeJuTYf12sXTq40+MgitG4pz8LB8qkoD/63j8N3pqvuVBuuaS4N1lyBRA+luEOeMxi1ORuKS45iHpQxtCk5RZHme7gYZShdWH41Vlf1JjL93o1EN4uNOt4rrqkYnYQ/3XYiEzqaEMmq7Is26U2k0hP9v78zj46jr///87OZqeqTttpwFWwHlGBAxHPWWehFOqQqIKBoV5LfejYqEQwgIbPHgG0XQeAAKghW5AopBDjlawj3cLS30BrZteuTe/fz+eM8mM7Mzu7PJ7jYl83w8+kh3Znbzzmtn3vOZ9+f9eb+d8eZAWNlobo1+k6vkdSye6InFEz9CYuRmjo8fqUan4kwweBNw92Jw2/QootHF+Gs0gewS6HnxybT6dR6NemPxxNnIXIt7TYqdkWq0Q7DDOv3OhnkRsh83f7udO9rPx5kCthkJl+TFdoG04H2BFBy6sDIb3KGdq+vbO/I+dge8QL5aqE3Ik419tetWAvaZjcUTSxAneiHe4ZWCV57m0Kg/gD29sXjiJ3g38sjQWKhNZGdabQMCNV+PxROPIRpdgLdGBa/y9tHomiA9nWPxRF8snmhGQiZ+4bKRaHQszvmwbuBPQd4Yiycet+w5D+8Q1IGZFcRvR0b66DkW+ATOhscDuHLeu9qaFZKGtz+wqK6xxb2opti4J5X+7E7T7Gpr3h04BUmv+2ddY8vQSWd1cDo32dq0CGncvu8o7ZmHNEPPMAj8zmWPAo4GDEQjx6KaWDzxeLK16VBkgdYFOAcKIxk0uDXKyrTqamveDdFoJXCLh0bnJ1ub/oFoZC+hTbK1SVkpjEH5KHJ+ZEjhke7b1dbcgDjMf9Q1trxs3xeLJ56wafRTiq/R9e5Mq6625l2RdQ6rEI2GblJWl6uf2jSyZ5KNRKMPAQfaXqfxyEbrams+CniPZY8jPBiLJ55MtjYdhmT0XIRTl5E4WLdGf7Gvp7Ds2QXRaA3yvbk1uijZ2nQLopFhe+vbuu7+DjvSJ3vkcVNmBZ6NLyPhnksBs6ut+SzLyRUdq1G1e4GQI4uoq625BonLJoCbgPu62pqzsi5i8cRTiIO5HjkB02Q3hQmCW6O/17d3rHVt+yJwOxKmMLvamuNujWLxRH8snrgI6eL0prV5LdlL8XPS2TDvPWTHSx0Tb11tzdXAPUgM/2/AA11tzbPdnxWLJ55GNLoW0ScNXFqgM4Nsjf5R396x2mXTF5CJ0p8Bz3a1NX/bQ6OBWDzRgoRXMqU/1pFd9iInnQ3zDGS+wI5boyokAWAhcCPwYFdb8zvdn2X1BTgY+COijwYuL4JG/6xv73CsLelqaz4J6RSX0ei7PhpdgjwZZa7V9ciNIDBWptWRrs1ujSqR+P4ViFP/n49GJqJRG8MaXTECjXYYxmRjdNM034uEAWLIopxrDcMYcladDfOmIyeL/Ullbn17x6P2z+lqa/4j2ZNPtwCNdY0t7tWCueypQWLj+yOlmh8CbjMMY0i8zoZ5CZxlFe6pb+/4pMuePcheZLTJssczhpxsbYrA0ESU3ab3IOGkGDIivtYwjKHuEdYk9xs4JwM/WN/e8ZDLpt+T/Xh9K/DVusYWrxx1kq1NFbF4whE6sDQ6DRlV9iO9dm91aXQpzro299a3d8xz2bMbktXk2IxotMjHngigrIlxu00HIRrNwFujKchNzD4Z+BF316eutuaryZ6ruR34Sl1ji1eOup9G1QxrNAA8Ctzi0uhinN3C7q9v7/ioy56dkRuKnc3A1+oaW272scdPowORifIZyFPDdYZhDKUXWxO4b+FcWHVkfXuHo1F8V1vzb8iOsd+BaPSWj01+Gn0RGXkPMqzR0Pnf2TDvQpyVYh+sb+9wpG13tTXPZPjmm2EL8PW6xpa/+dijgIiHRgai0Uzk3LzOMAz3gsodhjHl9E3T3ANZdn8UkoKnEAeSsra3GIbR3dkw70s4Y5zPA4Z7MrCrrfk4xIG5eR04pa6x5eE89ihkAusXyIRTZkJ0G7AcOMMwjIetmOdSpHZOhpPr2zscJ1dXW3MF8CDeC1J+A/ygrrGl12Of3aZZiBYNyIUYYVijK4ELLY1ORZ4UMrwE7Oeh0dHY+tTaWAl8oa6xJWdrQEujUyybahnWaCsSwjrDMIyHLI1eBva2vf3U+vaOv7rsqUCynbyWw/8W+H5dY0tW30mXTbtZ9hzDsEYDiBNpBX5qGMa2zoZ5JyOjwAxLgXd5aPRpvNNGVyEaPZjLHsumk5EyHBNxarQS0ehBgM6GeS/gDOt9qb69wzEv1NXWHEWKlnllmVwDfK+usSWrp6LLnl2R8/o4sjX6NaLR1s6GeZ9HnrgyLAf28tDoE3inH69BNPLMYHPZ9HnkHJ6E81rLaPQAQGfDPBNnyOr0+vYOx5yHpdG9eJd6+D3wnQAa7YJk1p1AtkZXAecbhrHV/xPGJkUJ7yil5iqlHlFK3a+UukEpVXAKlmmaOwOPISfhBIbjfFXW6+8Ct5mmGSU7x3uRV/ZHXWPLbUhMb4tr155I2ODsrrbmXBosQGKXM3BmwExERiL3mKb5YSSOaXf4fdiaotvsGbT+Pi8HchawuKut2TeOb5rmTGAJwxplbM9o9G3gTtM0Kwiu0Z1IfRf3CuY9gPu72pqbrQvIj+8j8wQzcWo0Cbkw/22a5kcRvewOvx+Pm42l0fF4552fiWi0n8c+AEzTnIGcRyfg1KjSev0toL1Aje5GMjrcGs1CQnTn5tLINM3vIuGDncjWaD/gbtM0j+xsmLc/Toc/iDxRuO1JWX+fV6baN4AlXW3NB3jsy9gTQ86jE/HWKG7ZVGkdY8dPo3uQ0XCXa9duwL1dbc0X5NHoW0j5j53Jvtb2Be4yTfPjnQ3z3o3T4efS6DN4Z6p9DXisq63Z8NiXsWc6otFn8dboLOTcLlc/haJRlJG+Umo3YKPWukcpdTHwpNY6ZzqXHWu0eD8yAs51w+jWWzb/vO+ic5uwPW5GKqP1ex13WAqZbNrN55/fl/Mi0FDX2LLcZdNcoAP5gnOxqff8H/+enh57aOf2febPbUQyBGb72BNzf5DFIHBJXWOLo0GFpdG9yAg414nWrbdu/WXfhed8z257pCJ6+F7HH9aPON/dkOyQoBq9DBxV19jiqMBpmuYRlk35NOrqveDsq+nutse32/eZP/fLODVy25RLo8vqGlsc9dMtje5BJh5za9TdfWXfBWd/G1vKb6Qi+v69jj+sm+zzyG6X3+e+gmjkWA1qmuahyLmdT6PNvT895zds22qfJ/nXPvPnfhHv8yhjUy6NFtY1tjh6FVga3Y1MYOfWqKente/8H5+F3JwAUNHIB/c+4fAtiEbu7yvz2u9zlyEaOZIFTNN8H/IEnE+jLb0XNv8fW7fYw1/37DN/7imIRnPwvtb8KmcOAlfUNbY45qYsje5EEiFyagT82jCMguZttjdFyd7RWts7EQ+Sf4GImwYkXTHfE0JtetnSH2L7IqI1lb1zGt73AM58/ULYF3i+q615al1jiz0FrY38JyHABCqrvkrPcMRh5sFzDiM7nhiUCuC8rrbmSXWNLT+wbf8Uspoy38iiNv3q0gX246LVlX1zjn7fvThHUIXwLuC5rrbmaa7w0+8IqlFV1dfoHn6anvme2fUMTwoXSgVwTldb8+S6xhZ72eGPIymmQTT6Pg6NKvrmHF1/DyPXaB9Eo+musMHvyC5Y50WNqqr6ut42vGHGQbPfy+g0+nFXW/OUusYW+0Tsx8g/cADR6DvYB1dVFf3vPKb+bmw3gQLZC0kWiNU1ttjDItcQXKNv2IepMw56x3uQOYeRUAH8yLr27VV6P0z+gQOIz/mWaZpX2udBxjqBwjtKqb2UUtuUUrvatp2qlFqjlNrDtm0OEo/3ihHnwr2AyN/gxx503Kgm7zGjRik12l6lNdjio6ZpziZYnQ7UquXVbO4arlOuYPKs2M6jtAeyQw+j0ahaKTXaXqU1yOgQGJp/2cf3aBtqzetVbNrkqOU+aY8ZO/kdXwDuchenEVSjJQ84NJo0qygaVSOjQwBM09wdGVTkzRhT61ZW6Y0bHKP2yXvEiqGRuxn4aQQcIEWWPOAYhE2eFatSSo22K1gV0ocZGIqbH0AQjdavqdQbko5R++RZRTmP3L2Fv0jwQWQaCbXtMARy+lrrZYgj/y5IDB+ZEDtBa73S2jYFmVw9TWudd2FLBiu2ejRBvvTuLfQvX+GwedLufk+3BZHJpMhwPAFzdaNLHIkeTJhRR7R6xLXR7AxlR1gaHUsQjXq2MbBsuUuj7N4ZWmtS/QMM9vQx2NtPqn+AdCpFjnDfIJK1lOF48i9nByC6xDmHN2HmFCo8NNLpNIO9/Qz29JHq6yc9MIhOp3PZdF/mP9Zcz/EEyfnu62Fg2asBNRosVCP7pO5xBKvRQ3Sx8zyqmTGZiprsgeYINBr6YNM0I4iDyn/de2qUfa05NeoLolEK2/dGARpVLLnP8bomNpmKCUXRaOg7szSaT/D5zlqyy5yMaQoJ71wG3KuUug5Zon6m1noJgFKqAsmCuEBrna9mi5sDCRgOGlyxAj04fGi0ppKa6UMDjzeAxUjccDMyCet3t37LOr4XyS74SV1ji+3BmuMJFragd7kzc8vmPFLIKs2nkSyPeuQpyIs+y44u6/93I4t8MhxAwJvQ4IrlpAeHfXG0upKa2FCFgSGNdCo9VafSpwOgNTql0SlL24hCRSLdkUhkPRG1USm1FjinrrHFPiF+HAFHQ72vOrNUJ+3mrVGqf/AstI4B6LRGp1Ng/S0qGkmrSCSpopH1SqltSKbIBbaP3Y+AF2pqxQrSAzaNqiqYEBvqd/MmwxpN1qmUrDrOr9E64Ny6xhb7IqrjCPjk0bvcrdGQg00hK6KfAlan+gfPQOuZEEij/+Bs8P5uAl7zqddfI90/7IsjVRVMmDF0Hr2FDJKW6VR6ok6lvgaABp1K59PoPFcq8LEE1Sj3efQMw+fmsjAjAAAgAElEQVTRN9B6J/DVaIOl0VZkcGXvP7w3+cM6bg4xTTNqGEagQdD2JrDT11o/oZRaglwQl2mt7WlcpyCx1POUUucBV7n252I6AZ1+2nQWhqyum/isUupnyAm4oq6xZcgxdrU1/9OyK4I0Tlhu/VuRL1UL/8kxB3rjBgbXO0OuNdMnXYw4pE7777EyF76JOKe1GVusn+vqGltyaTCNoBo95yy7Uj219jml1CWIRsszGiVbmz5A9hoG60M0Op2qTZGag2SoVCOpc3YCtZXTmzYxuM45vVEzffIlyMKZx+0322Rr0xHISuvsz0mlIzqVnskAM5G1DQ+61i5MI+CTR9p0VpWomjrxeRVRlwCP4NToCPxKTWRrVIOkYNoJptHmLgbXOtcV1kyfdCly8+90aVQPfNrzc7I1enjkGrmvtdoXVSTSgpxHr9o0OhTJhvH4kCyNJpB9Hs0MYo/espmBNc6lCTXTJ12OZMm5NXovEj3I/hzRaAYDzEA0etRDo0JLuaSReQ535tKYJLDTV0pFkBMmjYz6h9BaX0fAGjMjRadSpJ53nojd6zd9v66xxbPyYF1jy5NkN2guKqnnskrSPLLzgl82ex1rpZCVtAKoTqezbOpe3/WDusYWR+VBaxHKa8AiJC6ea4RciTxp3Eew2v8OPDRavHPTL89xb7Rq4f8JWQCXr6n4VGBBsrXpsVg8cVMh9ohGzvOo542uprrGFkeKraXRSuBmJG0xV9pqpWX3fUi2SEGknnsWnKGHzl1++Kuz3cfZNDLI/11MBb5naXRDnmMd6HSalOvG2PPm5h/WNbZkpUYiT6h/Q1Ib82m0HzKy3jXHcZ6knjPdGj25y4+udDewz2h0LbJaO19zoqnAd5KtTY/H4onR+K+xs9gpAIWEd65ARHoFWbD0hyLZsJEAj+Xp5cuwZ39Y78u74GOEeK5EdZN6Nsuh5azMOAo2EUAjvfxV2OYYSHUB/022Nu2MhJfs/3bJ/oScuJ9+PFeiunGPqoF/WKV0D0DS7DL2HEj+7C039Ug5Cwiq0WvLYatj2cZmoCPZ2rST9Xl2mwrVyD0xEFCjrFptdo0ythzKyDQ6lOEFaJvI7ZgB0K+/BlscSxK2AvfYNLL/K9SBuzUKlHmTQ6P9cX5vBzGy8yjj9DdReFZjlOynvDFLoD9OKXUGMiI8HMnguEAp9UddnOW8zxLgREy/mFV1+NYg1SJHyB3I3+ob19e9vegVr7o3l8rpmwRwaKmXnne8njBjStcuh+29lPwjniC4qzzegdTi8deov09u1jZ2/9B+pyBVMkfc5cqiB2fz6+f9DrSTesl5HtXMmNy162H7vEJxNHJXC70DSf3znfvQ/f2klznrAO72wX0/j8TiR9zlyqIXqbGf4SUChAnd51FNbPKmXQ/f5yWCdTDLx19cr+9EfIpvXF8PDJBe5kjtZ7cP7PtZJBZfDI3skYtXCNb8xc7TO0o8HwI4EqXUx4FLgGO11uuRGtpVZKeCjQjDMAaQFao5byDp17IcbJBuSiPlFvJkgaRfX+F+3Hypvr0jy8hiYBjGIHJxeGoU6etmwpqXiTzvjGZNmjV9T0bvzJ4Djo3FE2e6tv8TP43Saao2raPm0X9DetjHVNRWUzV5wsGMzuH3Isvod4rFE0OTBdZFdzu+GvUwYc3LRJ97wrF98u7T92D0Gj0PHBeLJ9z1eW7F7xpLp6nctJ6axfe4NKqiekrtwYzOmfVirW6NxRNDgXBLo1vxcfyRvh4mrH2FqOnUaNLu02cxeof/AnB8LJ5wz5Hcit/gU4tGExbfA6lhn1oxoYrqutr3MDqN+pBCdDvH4omhdUZWjZ9bCL7WqJuAZa/HCjlH+kqpfZEqfqdprZ8F0FqnlFI/Rwpn5WzGUQDXIYuPPHOA9cAAelVWfaOHvI4tBoZhvGqa5kpy5KHr15a7N5XMHovrkEVsk9Caiq0bqEmuojq5kqotSXQqzaa3nDXkaqblTKnuQeKxe/nsfwb5jv/lVXHQMIzXTNNcgVU2QA32U71hNTVvraJ6w2oig31sXOos6FkzLW+SxmtIqQKvp4d+pCbMJbF4wi8kcD2SMWNptJGa5MphjdKaTW86I3fVuTXqRQps+Wn0LFJp9C4fjVaaprkMq2yAaLSG6uRKapKi0aalrsnJ3PaAaDQT76eHAaSG08WxeMJvUdf1yFO7aLRtIzVvraQ6uYqqLW+JRm85NcrzvfUi2Wl7++w3EY3afTRaY5rmS1h1/j01WubUqDr/efQ6Eo70OnAAqZtzsX3Q4OIvSCeyIGsSIhTPD5aFnE5fa/0iHhkIWutf49+LciTchpwc9V426VWvO+70wGvu8rcl4GvI04Tno3l6RXmd/k4P3/yfzXvVv161ad2+NRtWRaJ9zgSkvs3d6PTwNRWtqbTnMA8g6WyPAZ3Wv+eB/yPboa1AKhj+1V3Z003tmpfOV6nB66uTqyqrutajXNG+vo3ORA1bei3IDafTZlOm16r7QtTIDe+8WDzxWi57dnr45v9u3qt+eVXXugNqkqsj0T7n7+93a1TtqVFGn8cQjX5Jdmnh1xjWKOdjfe3ql85X6cEbqpOrK6u61mVp1LvRGQp2ObS1OL+zTiSZwj1XoBFHdV4snsg6Me3s9PDND2zeq35ZVdf6A2uSq7I12tIznHKJpGpW1A49mA0ggwH79/Y8Emb7tutXvY6EqK4PohHp1E01G1ZVVm1aj9LO0y7rPHLeGNfZbHkMOY/6kTk/NxmN8j2R34tkKX6YPGVhgGsMw3BXzh3TjIkmKoZhaNM0T0Quumm47Eq/tsL9llKPqjEM4wHTNC9FRikOx6/TaQnvlNgmKxPhROCkKHxi2gsP+MaG3RdGZW31ciSe+xhgWs1H3J+fKT1dg0yoXQRc7XWs7T3vtt5zfJ2rgYkdrXWWTdGaqquw0hDtj9Suz7+Z4YbgdwI/icUTvq3tLI0+w7BGvsPAXpc9FbVVK5RSlyEO41kfjf6EpG1OQJxtC3BVHo3exbBG+/sdp7Wmb5PLppqqq7HSEHNodCNSJA9kYHK21V/Az55qZFHWyfk1ct6EKmurX7Np9IyPRn9GBkm1SBLExcBvYvGEb8XYZGvTPgxr5FscTmudZVO0pvIahjXyHPwlW5v+giScgJxzZ1t9KvJi+aOTEX+0E95+sg+54RXUU2IsMCacPoBhGGtN0zwMeYL4KMOVNgfSy5dFcE72ltzpW7Qgo63LkTh0LYBeu7qbvj67A34LKUpWFCyn8Q3kogi0ZqB7i3MRdO+Grb+IxRO/zfWeWDyxJNnaNBsJYz0ZiyfcOdQZezKO9QxspRhy0deTciwSAzasf2xpPFcPU4uTkJK/b8TiiWV+B1lOI6NRoHx4t0Z9G7f9KoBGnZZG7waeyKFRFcMafSyIPX29KcciMaBrfeeyswJo9AWkBPGbsXjCtxtcsrVpb0SjrxBQo57N/RrbXE3fpm3/F4snrsr1Hqtz2Gwk1PdkLJ7wzGSxNDoB0cjdBMWT/r60W6Mtbzz+6ln17R35Jk5PQ1Kkk7F44pU8x2ZhGMZbpmkejuj8aYZLvQ9a/9qAcwzDyNsycqwxpurpZ7DE/iwQ0+n0631nf/9baG1P9XpvfXtHoLt2keyZiIz2DgT6+q/9w4S0+bS98cht9e0do5rYLtRpaOgdnDR9VW9s1vqeGe9YvK3lwi+htf3Crq9v73jc9wOC2VSQ00hXVK/vm7bL+t4Zey7dcs/9G1PPPGXX6M769o5jRmlPQU5DQ9/gpOkrRaM9l2xruejUzEpNi8Pr2zuWjNKmvRjWKO9Co3RF1fq+abuu74vtsXTzvQ9uSD31pH1h09317R1+q7aD2pNJsjgDWx0gP6zzaHVvbNa63pnvWLK15aKTSaftaZhZzYlGYNM7GdYob62cdEXVG33Tdl3XF9vj1c3/feit1JOP2zXKak5UakzTPAR5spqJrN34o2EYOcNoY5kxM9K3YxjGYiSmhlU/215meAsygVZOe7Yh8W8AOs2n3WlnI37yKNBprELSAG9X8N9dTj+7B6CzYd7eSF37DNvwb9Sdz55CnEam1sztwO0zzxzuQdx5xa/c6Yuj0agQp7GaYY3utWk0B/ie7bgeRrh4z8oPz2j08TyHp3BodPHQqLPz51f+0XXsaDX6OqJRvoJ/a3Bq1A3Q2TBvT5wa9QFPeLw/iD2VyKT6GfissraRAv7HsEZDT82dP7+yzXVsuZ7yhzAM4wlGqMNYZEw6fRcfcL1+NMCjXalx25SzA5ebAp3GRiQl7FrgKZ/enW57Fte3dxS0lLxAp/E/pGTwbbF4YpPPMW6bCrpYC3QamxjW6MmAGi0pdJ1HsrVpDqLRV8mv0UMMa+TXmrMYGh2DNJf5BLnTjDch+lyLhKmCaPRYfXtH4OKJlk2zGdYo3+K2R5CyyreWSqOQbHYEp+9um7ddv/TOhnm7A/Zm5v3IJFdekq1NdcB3kK47QZzG1cDfY/FEzvaAjEKjZGvTh5CerJ8imNO4JhZPPJfrMzsb5u2Cs5PYIDKhHMSeKUgmyP8jv9N4GNHo5hJr9AFkIdCnya1RF8MamTmOo7Nh3kycKcEppFNTEHsmM6xRvhWxjzCsUb6aU6PR6P2IRkeRW6PNSDbW1Vbjdl86G+bNQOZSMqSxIgAhI2dHcPqjGlWXAPeF8Xh9e0fOvrbJ1qZJSJu+JiQ7yY/ATsNFwRolW5sOR7J18o2iC3EaGdwaPVHf3pHTKVsaxRGNsuscD9OFOI1r8jkNFyPR6DBk9fCn8hy6GNHob6PQ6Kn69g7PSWKbPRMRR/9Dck/wb0by8a/OlfnkQcGjaqvg2oX4FIGzsYRhjXL+nTbmul4/U9/e4W59GlIgY9rpdzbMi+HsGZrGWfd+exD4wki2NtUio/ofkXsi9FHkgripAKcBQGfDvGk4U9404qj9bDoEuUg9qxBaZEZj1xToNDIUotEEpProj8k9p5FxrDcV4DQA6GyYNwWZhLeTS6P3IhrlmnjewrBGI5k/KVSjMxGNcs1pPIZodOMINJqE9Hq243tjTLY2HYxodGyOj92C5MZfHTRd0kUY2ikBY9rpk32hmmPgTn+Q63WW80i2NtUgE49n4x+iGK3TyOBu7vx8fXtHVonXZGvTgUiNfne3KTsjGY15EUSjaiT2+xP8QxSjdRoZDJwhhxfr2zuyiuolW5sMRCN3M3A7I3asLoJq9DVEI7/qnVsZ1mg0VWUPwFky4uX69o6sgnHJ1qYDEI3cnd3sPI5odINf+mZA8moUUjhj3em7yyAEKqpVYnxtsjJfvorENv1K33YhFUt/FYsnNvscUxR7LJv2Q5qNfD7HZ9yHrFR8MMcxRbHJ0ugrQDP+Gm1mWKNi1CjPp9G+SIbYSfjHo+9HNHrAZ3/RbLImaE9HNPKrebMZWc/wizJplMmiOxl/jR4Ezo3FE8WqfjsWr/8dnh3N6Re8yKKYdDbMq8XpqNLAq9ZF+iVkaf47vN6LjMh+Cfw8R6bCSPDUyMqxPx9ZyONXWO9h5CK9t1jGdDbMq8HpqDSwLNnaVIEsmDkPmO3z9q3Ar4AryqjRecjKTT+NHkG+13t9Ml4KprNhXhXZGiy1NDrVsumd7vdZbEMWDC2MxROBSoAHxE+jvZC//zT8NVpsHfOfImpUSXafat+FaCHBCZ1+Ybjr1Lw2p+GQTyIjLr+CU91Ijv/CHIXCRoNDo2h15Zpka9NvkbCAX8nqx5CL9N/FukhtvBPnSHDlnIZDjkRueH4F7HqQ1ZOXl0ejitXJ1qarkPCSn0adiPO9uwQazcHpQFfPaTjkI4hG7/J5Tw+yWv3yHMXURoNTo6qK1cnWpt8gGvn5iScQjTyLqY2S2Ti/m3VjILT7tiB0+oXhsKeqrrYWWVDiRS9Sze+yWDyx3ueYots0872zL8I/Q+gp5CK9owQXqac9VVMm1CA1dLzoY1ijdT7HFN2mmQfP+Sn+Gj2DaHRb2TSaPKESqSXjRT/wW+DSWDyx1ueYots08+DZ5+Ov0bOIRreWSyO2/7X/tmHMOv3OhnkRskfP2/uLd4zCqqdO9Mq170cW5VziVzCrWFgaOR3IxBqvC/U5JNRzS77KmUXArZFXtskAwxqVtFpqZ8M85bapcpKnRs8jGv2j/BrV+mnUhpQAXlVKYwrQ6AVkfujvZdAodPolYsw6faSxhb3ZxgavbIJyEq2uPDzVN7yIs3KioxdICmlc0RKLJ8pSarVyYs07Brb1DtWej1REiVQ5vtJXEEd2U77ytsUiWl15WA6N0gxrlLNMcrGonFg9a2Bb31BVSRWNEHVqtBTR6G9l1Mh1Hjl6gaSRPrgXxeKJFeWwp3JSza4DW3unZF6raIRotaOi8DLE2d9QLo3IdvpFK2g43hnLTn/M3OmtRTHnV9RWneC4WIfrjD8GfGOUaYWF2vT+6fvtfv36zuFClBUTq1FKgYRNLkbiv2WpAmitSTivcmL1fKdGQw6tE9GopM3qXTbNnb7/Htevf2x4/q9yWKN+RKPLyqjRBODcykk1n7NrVDF8Y3wC0WhUhfIKtOnw2P6zrl+3xKZRrUOjnwE/K5dGNsbM9f92I3T6eUi2Nh2FdCOaPdjtPO8rJ1ZvRXLxryrXCCjZ2jQVuRDPHOx1lo6xRtX/Bc6MxRNlGxklW5s+hcTm5wy4NKqYWL0NyTP/dZk1ugQ4M9Xb70gvtEbV9yEavVQOeyybPoHE5t85sM11HtVWdyNpvq2xeKKgmkmjsKcOuemdNdg74NDIugndj2j0Yjns8cA9oR06/SIROn0fkq1NuyDZFCcBpAdTpPoc16NGKaNcYYpka5NCcu1/hVW3Z3Cbs/pDqm/wn8CJJZxcc9u0M5K5dApYGrluRGh9UIBORcWyRyENWH6FtSjO7WBT/YO3ASeUUaOdEI2+AJBOpUn1OmuYpVPpg0dS832E9ihkYdWVWIviBlznUXpg8E6kL/J2qbve2TCvmuz1Cb69FUIKYyw7/e12p0+2Nn0ZcRx1mW1u5wEs3eWHV5bL4e+CTOo12Le7bepNbvl7GZ3ZaYjjmDpkT3eWRq/uenZruRz+zohGjvISbofWm9yyqIwanYqk6w5NirqfFoHXdm/+Tbkc/k5IU3lH6YTs82hr2TTy4Z04U1pX1bd3FFSeJMSfsez0yz7St2L3vwa+7N43sK3X0VGoHPZYNh0J/BWPqpz9W3v7gSrbpnJoVIvk1H/FvW9wW9/20uijwA14lLwY2H4aXQk0uvcNbD+NPoJolFXyYntolIcxEdp9uzKWnX5ZH++smiI349339cmuV9c/iLP5c6ntiSLL8M8ne9n7APCzwe6+H+C8WEtt036IRl49TZ/a9Or6+4DvltGeKDKn8lOyV4sOAJcNbOv7NuXVaF9EI3dNJICnu5at68DZ8KbU9kSQQm0Xka3RIHD5wNbeb1JGjQIQhnZKiN+y6u2KtZTfnseWQuq5lwQrnLOEbIffg1ygh/Vv7nEX1yrFqsiMPTsD/0LS5NwO/yHgPcvbn2gB7A2u00jDlVLZdBqSgeN2+L3AAuDQ/q5ud3GtUmq0E9IU3MuZPQwcvLz9iQuAKe63ltCmUxGN3A6/FymHfGhfV7d7VWkpNZqJaHQx2Ro9imh0LrYQnUUpVkUXgnuNQMk0Go+M1ZG++0vfUN/eUfQYoxXOaUWKW7l5Efhcpq798vZ57hrvxax7YrfpY0g4xx2q0IiDuzAWT6SWt89zL+jZGKCh9kjsqUXi0l/12P0i8PlMXfsyavRRRCN3qEIjWTsXxOKJweXt89w15zeVouualYr5K6RkgZuXkfPoGSirRh9Gwjle1Tl/hhSPG1zePm8qzoHFlkI7ipWAsmg0XhmrTt/9pRd9BJtsbdofeQzf32P3dcBZrrKw7htRUW2yQhU/QUb37lHZm8CpsXjiHtu2cmiUK1RxPfDNMmsUQTTyCue8BXwxFk/8y7atHBq9G9HIXQYcxOmeEYsn7KP7cmj0I6CFbI2SiEZ327aVXKMRUFKNxjtj1emX+sL4EpJXXuva1YN0JvqTR/ZCyWyywjnX490v937gCx4lHUqt0ReRvPKJrl29SIerP5RZo50Qjbw6fT2AaOQu6VBqjb6A9Hh1a9SHdEr7fZk1mokMWLw6ff0POMWjpMNYdLBj0aa3DePK6efKPMEVzvGgJCOiHJknGhmtXeizYKeUGnlmngAvIRr5tSkslUa5QhUXY4VzPPaVSqN84ZzP52iMUyqNPgjcCOzusftSpIR22TQaJWPx6eNtw47i9Ecd07MewxfhnXniFaooqU3WIpmfIC3ngoRzSmqPZdM+wD/wDuf8BVmhWW6Nfox3qMIrnFNSeyyb9kbOI3dXJ/AO55TUJkujHyI3P3eZ6CRwWiyeuKtc9hSJsWjT24ax6vSLeqe3RkG3kX0y9SLhnD8GWIxStBGR1T3qd0jjFTd+4Rw3xdbo/YhG7snPXOEcN8XUqBIJnZzusftBJFSRr0JnsTU6Aiml7e533Iek8/5uO2j0W7wn2R8CTg5QoXMsjqrH4tPH24ax6vSLeWHMR0ap1a5djsyTXFgljN1pbSNKIU22Nk1BRoru+L1GRms/DVh/pZgafQbJhqlx7XJknuTCKs9bFJuSrU2Tgb8Dn/TYfQlw/nbQ6HhkJD/BtesVRKO8fY4tjYriZJOtTZOQCeRPe+y+FMnOCZKFMxYd7Fi8Eb1t2FGc/oge75KtTd9B6p64c92DhCrs1FGEtLZka9NuSN60OzTwFhLO+XcBH1csjeJIDN+t0Y1Ixceg3Yom4wwvdNe3dxRcmTHZ2rQr0lDkYPcusjNP8lEsjb6JzAW5Q0x/A75egEa1gL1mcR+SPFCoPbsgjWkOce3agIRz/BqyeDGmQikea3QGkTaaIUViR3H6Bd3prbS1y4EfeOw+H6lVXkje/6hHQ9aK37uQPgF2lgJHxeKJQvt/FkOjnyHxYDc/RZ44yq3RfohG7j7DrwKfHkFRsmJodDEyr+DmIuSJY1QaFbr+xJqbupvsHrvLkfOo0MqhY22kP2qNQnIzVp3+iB/vkq1NNcCfkYqUdlLIqOyP5bTHsukjwD/JDhEtAY4ZYc/T0WhUDfwRqzqmjRQyEdlWTnssmz4E3Er2Rf8YotEb5bTJmnf5A9Ko3E4KmfT/XTntsWz6ADLv4v6cxxGNRtJycqyFUsaaPW87xqrTH9HoI9naNA1xrh927doKfDZPpkfR7bFsOgm4FmdtE5AJwZNj8cRIqweOVKOpwC3AR127tiGx6VyZHkW3x7Lpc0h+uXve5Q5EI3cJjJLaZNWa/wdwpGtXNzIP5NfztyT2WDb5zU3dZdk00hDImB/pbxcr3saMVafvnlDM6xiTrU3vQC4Ad/2cdcDRsXjiiTLbo5C6PQs9dl8FfHuUDTNGYtMeiEbutNX1iEaj6dhUsD2WTd8DriB7TuEa4P9tB41mIXMK7hW2byIaPVZOeyybvo30dnBr9HvkqaOsGpWYsWbP246x6vTd+cY5T+pka9PByIXqrsXyIhLnXFFme6LAz3FW5cxwNtKib7RxykJtOghx+O4FTi8hGi0vsz0RxNl/12P3OUiLvnJrdCCikXuB0yuIRqOt9jgSjfzmps5Deg2XVaMyMNbsedsxVp2+2y7fL95qQ/cPYJJr1/+A42PxRDGyEdwnom/RLmu15vXAia5dA8BXY/HE9UWwB7I1ymXTPCSkM9m162HguFg8UYzKk4VoVIOEcz7r2jUINMbiiWuLYA8UptHHkNCguyrno0gXqWJUnixEo2pkbuok165BZG7qT0WwBwrQqEyETr/EjFWnH+jisHKnb8aZBgeS431aLJ7ozX7XiAh0E7Kqdt5Gdix4M9LGsKNI9kDAiyPZ2nQssi7ArdEtSJpowSmDPgTVqBaZsHWvU9gCzM+zCrlQgmp0NDJwcM+7/BPRqFghhqAaTbB+t3udwmjnprwYa052rN2E3naMVaef9+JItjadiORJu4/9JfCDWDyR7l60UCEZKvsDN9bOX+BXVycfeW9ClsO/g+wJ0tVAQ2aBU/eihe9EOnOtAG6onb9gpDemvBdHjpvi/wHfi8UTKUujk5E4/0218xfkXYjlQ1CNvG6KaxGNngLoXrRwDqLR68BfS6yR303x18B3bBp9HllfcVPt/AV5F2L5EEQjv5uiY26qe9HC2chq5ZWIRiO9eRfFyVoafQ54D3Bz7fwFT43QnqLdhLoXLXwHotFq4C+j0OhtxZhsokKeiyPZ2vRZ4CayT9jvx+KJ78XiiUxd+W8gGQ/nAE92L1r4w+5FC0fyN+ezZxISC/6o67jngLk2hz8BuAeJx/4BeKR70UJ3L+Bi2XQi8sTjdmZNWM7Met2IrMY9B3iie9HCs0ukUeam6Hb4LwBH2Bx+DaLR+UjP28XdixbuOwJ7gth0PN4O/0fAt2wanY4sVvsJ8Hj3ooXndC9a6P7sYtgzEcnqcjv8F5HzKOPwq4F/Ixr9HtHIq+PbqG0qgNOQQVhGo3NLoVFQuhctrGK4EdHvgCXdixZ6lVEfd4xNp19V7fiiKz53ylCDcisF8kacJ4dG4uW/cH3SEfaPAS4D7upetDCr32xOpkzpt79Ue+y5k2maUcueychimQ+53vUk8OFYPLHStm0G0vQ5w8GIoz2tIHsAql0anfh5u0ZeN0WNxIIXuib/7BpFkTIH/+petDCr32xOJrs0mrXHTJtGfjfFpxCNXrdtmw7sZXt9EOJETrdGk8Fxa3TciXaN/G6KZ8TiicvzaNSCaJTVbzYnU+qcGu0+a4ZpmhWWPX43xWcQjVbYtk3F2Uf2QKCze9HCrxauUY2j8U7FMSfU+R2aB7tGEaSQ4D3dixZ6VUb1x30e2TQqkDrg3bbXBqLR1wrVyDTNw0zT/KVpmn81TfNy0zTdPXx3KMaU0zdNcy/TNP9d8amGoVWrkQMP1hWHHi1zaHEAABXvSURBVPGwaZqtb1x97leQUanb4X/FZ9HVXz22fRJ4unvRQq/a9W57lGma36xecM7Vatp0cQKVVVQed+IHgJdffPSBY5HRxAdcb30c+LjHJPIapKCanYnAtd2LFv65e9FC92S0l03vNE3zXxWfPmZ2ZlvEOEhXHPGBB03TvOqNa847He+bYmMsnvi9x0feYO2383FEI6/aN257lGmaZ1T/sPn3anrM0qiSyuNOnAu88uLi/x2H/03x4x4TpOuAe13bapHFZNd2L1ronoz2smmOaZp3VRx17NDNI7K/oSs++JH7RKPzv4T/TfEaj4/00mgeopFX7Ru3Pco0za9X//CcP6jYjGGNjj3xcGDpC0seOh7vm+LTwDyPxXtvIk9DdmqRJ6O/dC9a6J6M9rJptmma7RVHHzfkwCL7HaArPvyx/5imebVpmu6FhPm4AWnZaedjiEYNAexRpml+rfpH5/5pSKOKSiqP+cxhwDLTNPPq7CKJXJt2JiCj/hu6Fy3Me3MzTXNP0zTvAP6LZOKdgqRhP2Oa5u9M03SvKdghUFqPfoWzUmpnZGJwAHkcO1VrvbaQzzBNcxYy8psKRNMrX0P39BDZ+12oSIRod1f/zCW3VinntZcGTo/FE9f5fW73ooXHAn8ie6WfRgpTnV87f4FnHR3TNC9CvuRa3dNNesVy1E47E4lJkcW6F/43WLt+mXsU8hjwqVg84bmoxDrZfofEP928ApxUO3/Bkz727IY4gmlANL3ydXRP97BGPZv7Zy7+Z6VC20cymZvin70+07LpaCRTxF1hE+Tp6NwcGp2PlHKo1T09pFe86tToxYdSteuWuh/ZHwc+6ZdZZWl0NdmZKyBlK06qnb/Ac92FaZq7IhpNB6LpVSvR3dtsGm3pn7nklkqlszRqzLVau3vRwqOQRXbuCpsACaC5dv6Cfo99mKbZjJRymKh7e0kvX4aauRORGTMBqHvxocHadUvd59GTwCf8Mqssx34V8AWP3cuAk2vnL+j0sWdn5AkiRkajbVuJ7PNuVCQCUhPIBD5gGEbg+kndixZ+CsnKmumx+wrgJzk0+jFwLlDrpRGSr3+yYRi3F2DPZOA3wBc9dr+KaOS57sI0zZ0QjWaQHXIC6AeeB+YahlGshJGyUCynHwW01jqtlDodmKW1bgn6ftM0I0hq3HvxmVyuXf0ida8stm9KIxk6f+1etLAWeB/yCLebxz+vCzXD60BD7fwFz7ls+hjyuO3urjXETg/9jeiA4/teDHx6wq47dyG1UQ61fnrZ5F5Zaf+7fg18p3b+gqEvx9LoIaAeP43WvETdy4+6P+vLsXjieptGB1i/f3eCa7QSOMY9yWua5keQ9RH+Gj18E9F+x/zZY8CnJuy68yakxs5h1k8vm3JpdBXwLZdGCknVPQwfjSaseZmpLz9i3zR0U7TmXNznkd2mXBqtAo720OiDyIjTX6NHbiba50gQehz45IRdd96IaON1HmXsyqXR1cD/89DofiQc4w5t2ekBrjYM43v2jZZGhyAhJfc5vTu5NVqNnEeOSV7TNN8P/IfsCqZutgL7GYYxVC7aCtXsiXznsz1s2o3sBV8ZNDIncoaHRvciT/D5NPq9YRhe63HGLEVx+o4PVOpbwCqt9S1B32Oa5gnICME3vFGxbSOxJ9qJpAYhGklVTpr024raCQBzkYyBkUwaZegHptXOXzB05Zmm+Qqwd6431b34ELXrpE5apLrquaqpdTerSOS9yAVV2LxBNlfXzl9wps2e45BJ6RwabSL2xJ2iUSSSqpw86eqK2glphjUaTbbWAKLRUEkE0zRfxBk3zaLupYepXSt10iLVVc9XTa27SUUiB1s2jVajttr5C75ms+doJLTlq1G0u4sZj99JJDVgaTTx6ora2jTynR3M6DWK1c5fMFR10zTN5/DuwzzElJcfYeKalwGIVFe9WDW17kZLoyPI7qhWKH+qnb9gqFOcFSa5mRwa2eid/uZLH5m6Yfneli1zGb1Gg8CM2vkLumw2PYN3j+Gs96p06qY5r9zzW8uWjE2j1ei62vkLhnpbmKbpt/bHi17kRrRilDaUjUBfnlJqL+RRZ+9M2EYpdSryWHu41nqlUupgZGQxFe866Ln4EnkEHpw4jeQhRzN9/QupiQNdESXNT4pFFZAZbWCa5l54t51z0PWuuQzWzSS29XVdkR48AO+uXCPlKNfr08juxepgcOJUt0ZnFdGeSqSm0V0gcXOyq2Fm0bXPEQxOmUFs60pdkR7YH8mmKBbu8+yL5NEoVVvHW4ccTWz986XS6GNIWiqmae6Jc+Lek817H05qciyj0b4UVyN3T+FTyaNRhqlvLY3WbVj+KNnlH0ZDBTJntAjANM3dgUAZbBX93RW7rOo8Ge+Q1mhwz++dSo4nMxcaOAFJFd8hCDSRq7VehoQ6vguglJqL1Bc/QWu90jrmKa314Uhc7uygBpimWYl3I+cs0tUTmDjQFVXFPQlBRvr/s73+TKB3RSLURFJUpAeLbQ9IvXRgSKOjCPB3p6trmTiwuVQa2SehTyB7cjObSITqaIqK9EApNBoqDmdleBxDgL9b10wolUYDgH0B3vFkT25mE4lQHU2XSqOhyUwrm+p4AvzdkdQA05LLKkukkX0S+ngCpmVO6VpJ1UB3KZJPhvpYWGHUEwie5DIB7w54Y5ZCHtMuA+5VSl2HPPqcqbVeAqCUqtZaZyZ8uiisSNJBBFyAkY5WolUUpT3PkaVIqeJllg3nkb2kHuSkW4UUGeu3/n+uawHQMeSPLwKQqnAv4hyiG4lfP239jsPILjuQIYnEO7uQSbTbkQVUGQ4giPMA0tEKtIr4abQMmXdYhnT+Og9JbXPjpdH59vAXcDRBNYr6hZ2zNKonuyR2hiSS/bQJ0ehOpDl5hv0IchMC0pEKdCSCSntq9CpOjZrJLokNcs6uZFij1YhG9oqgxxBwxJiq8NWoB9HoKet3HIL3BDdIA5TVDGt0F9JEKMO+BHTi6UgF6UiUaNrz0rRrtBHRyCuTZZDh86gP+f7Or52/YLPtmKMJqpH/eZTRKHMeHUx22fAMbo3+hUwyZ3gXhYeKDzJNM2oYxg6xejiw09daP6GUWoJ82Zdprf9m232IUuoy5I7di3fPTj+mEvBiRUVYN+sQpiZfZUJ3skOJLY8Ai2vnL3CktXUvWtiOONkIsvp1ufVvTe38Bfm+nMCpWJumzSE62E/ttjdWVQ70/Ney51Hg2dr5C4auGGvB02mIc1pr2bICWG6PAfswlYBOXzR6H1OTy5jQnbzXpZGjJr2l0eeQk3w5hWnkzobypWvabCpSfdRufXN15UD3vYg+j5CtkUKc+f5I6mbGnhUuR+FFQRqt3b2eacmlekJ38j4l9jwKPOqh0R2IRhXYvjNgdXE1egfRwV5qt765pko0sp9HQ5lTlkZ3IJPNhWpUR9DFTkqxbtb7mPbWUj2he8MDCv0Iw+fRevuh3YsW3o7crCtxXmtBNPLKGPOka9qelkZvrK0a6O7AeR65NboTmSdYZ7epqBoNk0LC0135DhwLBJ7IVUpFECE/CMywjexHhWmaRyJPDoUsCtFAZanurKZpPoVMfBbCJYZhnFMiez6CLM0vVKNqwzAKbusY0KbHyW7Xl4/LDcP4UYns+SDiDAvRKAVMKlXKnWmaS5DMm0L4uWEYXlU1i2HPXGT0X4hGg8BUwzBG2tMgn02P4FzYFYQrDcP4TonsOQwJ9xSi0QAwwzCMfDeUMUEh8bErkNHUK2R3ExoNGwu0A6CvxI9ShVad7Ke0vUVHotFAqRy+RaEaDYzgPYWwkcIfyzXyiF8qCq3MOTiC9xTCSDRSlLam/Ug0GkmnuaBspPDspAjShGiHIJAjUUqdgUxunoDE9puUUsWa4HmWwieL/pf/kFFxK4Wd6P1kryItJs/lPySLh4tuhZNCNeqjtBq9QOGP5Y8YhlHK/qu3UZgz6ME5EVxsXqbwAmaLy6BRIV2/Sq3RUgofCDy+o8TzIYDTV0p9HKnHcqzWej1Sr6QKmXUfNYZhDCKP5UFPrC1IvfpS8k8KG1n3IhNtJcE6oW4juEZbkXUPpaRQjfqQRUclwTCMNHIjChbXF2dcrLr9ftxKYaPGQcBzFW0xsDT6B2NLo9vIvQDKTRqZpyoJ1g3u7wQfQHQjq9l3GHJetEqpfZHFLqdprZ8F0FqnkK5QxYzNXkvwEVEFcpMoGYZhvI5kJgShD/hriUdDIBoFHVlHkQygkmEYxmpk5Bjk7+4DbhyDGt1WQlswDGMtslQ/yN/dD9xkOeZSch3BNYogN66SYRjGeuRpP6hGfy+DRtcjA7kglFyjYpPT6WutX9Raz9Bat7u2/1prPbeIdtyNpFzli0F3AxcahlHK2HCGryKPkvnopriLafy4B8lW8KxdYmMbcLFhGKWMe2ZoJNjF0Y2kh5aae5GwVj6NuoFLDcN4I89xxeBrBNeoucS2gKy1eIBgGi00DGNd6U3i6wTTqIcC1gCNFMMwHkTOpXxhnm5k4n11qW0qJmOiyqY1Avw8MkHj5/h7kJM1USabliC1wf2eQDTypR9rGIZncbUi26OR/Ox8Gj2MFJIrOYZhdCKFxPJpdLxhGKWc6M7Yo5H87EzuvBc9SJrfxaW2x7LpCWAB/qNru0alnMTN2KORlctrya3REqQ8cskxDOMppLBhPo0+U6bBDMiCq1wa9SLhygvKZE/RGBNOH8A64Q9Flmf3MBxT60O+8MuQL71sEyaGYfwSGc2uY3iySSNO7ingo4ZhPFRGe5KIRjfjrdFCxHmUU6Mrga8gGmWcf0ajp4EjrZFTuezZgCyEuwlvja4AjrPmkspl028YdiLu8+gZYJ5hGA+U0Z6NwOFI05Mehid3+6zXPweOLrNGv0VuRmvI1sgEPmEYxn/LaM8mRKMbcJ5H/dbrXwBHlThDriQUveBaMTBN80DgOGSR1BrgujLe4b3sqULqfeyLfOmPAneVIUady6YDkGyqaYgzua5M4Qo/e9waLQbat7NG+yNZZxmNrrdiyNvLnkqG23f2I6PpO7ezRvshGk1HNPpLmUI6fvZUMty+cwDR6I7trNG+wIlIBdE1iEYFlY4fS4xJpx8SEhISUhrGTHgnJCQkJKT0hE4/JCQkZBwROv2QkJCQcUTo9ENCQkLGEaHTDwkJCRlHhE4/JCQkZBwxmgbHISHjhppDz9QqEiVSWUUkEkVFokQqKq2fVaio/IxkXru2q0iUaEUEpZT8jCiiUetnhfLeHo2gIhCJKCLRCJGIoqIiQjSiqLJ+Vg+9jsrPqHu798/KSISogspohIhSVEYVEaWc2yLKOlYNHRN1HKtQCqIRiKCIRqRcbjSiiFg/lYKoUkQURBXydyqIWO9V6RRKpyGdAp1GpQdBpyE16LldpQchLdtl/yCkU+jBAfk5MDD0WqdTMDiATqWcxwwd2w/pNHqwH51Ok+4fHPqZTqVIDwyiU2lS1s/s1wPyeuh9KdKpNDqtSfWn0Cn5mXa9duwfSJFOaeu9mtRgmpTW9Kc1KY31U9OfxnN7Gvsxw/t+q1f4Vi4OR/ohISEh44jQ6YeEhISMI0KnHxISEjKOCJ1+SEhIyDgidPohISEh44jQ6YeEhISMI0KnHxISEjKOCJ1+SEhIyDgidPohISEh44jQ6YeEhISMI0KnHxISEjKOCJ1+SEhIyDgidPohISEh44jQ6YeEhISMI0KnHxISEjKOCJ1+SEhIyDhCaa23tw0hIeMCpdQ3tNbXhHYME9pSfjvCkX5ISPn4xvY2wGKs2AGhLV6U1I7Q6YeEhISMI0KnHxISEjKOCJ1+SEj52O7xYouxYgeEtnhRUjvCidyQkJCQcUQ40g8JCQkZR4ROPySkRCilpiul7lFKvWL9nOZz3OVKqeeUUi8opa5USqntYYd17BSl1GqlVGuRbfi0UuolpdRSpdSPPfZXK6X+Zu1frJSaXczfH9QO23GfVUpppVR9KewIYotSak+l1H+VUk8qpZ5RSjUU4/eGTj8kpHT8GOjQWu8DdFivHSil3g98ADgIMIBDgY+U2w4bFwH3F/OXK6WiwK+Bo4D9gVOUUvu7DmsENmqt9wZ+AVxWTBsKsAOl1GTg28DiYttQoC3NwE1a6/cCJwO/KcbvDp1+SEjpOB74s/X/PwMneByjgRqgCqgGKoH128EOlFLvA3YG/l3k338YsFRr/arWuh+40bLJz8a/A/OK/cQT0A6QG9/lQG+Rf3+htmhgivX/OmBNMX5x6PRDQkrHzlrrtQDWz53cB2itHwH+C6y1/v1La/1Cue1QSkWAK4CmIv9ugN2BlbbXq6xtnsdorQeBLiBWbjuUUu8F9tBa31Hk312wLcAFwBeVUquAduBbxfjFFcX4kJCQ8YpS6j/ALh67zgn4/r2B/YBZ1qZ7lFIf1lo/UE47gLOAdq31yuIPsPH6QHfaYJBjSmqHdeP7BXB6kX9vwbZYnAL8SWt9hVJqLnCdUsrQWqdH84tDpx8SMgq01h/326eUWq+U2lVrvVYptSvwhsdhnwEe1Vpvtd5zF3AEUJDTL4Idc4EPKaXOAiYBVUqprVrrXPH/oKwC9rC9nkV2qCJzzCqlVAUSzthQhN9diB2TkXmV+6wb3y7AbUqp47TWnWW2BWSe49MgT4RKqRpgBt7fX2DC8E5ISOm4Dfiy9f8vA7d6HPM68BGlVIVSqhKZxC12eCevHVrrU7XWe2qtZwMLgGuL5PABHgP2UUrNUUpVIZOSt+Ww8bPAvbr4i4hy2qG17tJaz9Baz7Z0eBQohcPPa4vF68A8AKXUfsjcz5uj/cWh0w8JKR2XAp9QSr0CfMJ6jVKqXin1e+uYvwPLgGeBp4Gntda3bwc7SoYVo48D/0JuaDdprZ9TSl2olDrOOqwNiCmllgLfJ3eGUSntKAsBbfkB8HWl1NPADcDpxbgRhityQ0JCQsYR4Ug/JCQkZBwROv2QkJCQcUTo9ENCQkLGEaHTDwkJKTpKqRVKqX6l1AzX9qesmjazrdeHKaXalVKblFIblFJLlFJfsfZ91FqYFFJEQqcfEhJSKpYjC4wAUEodCEywvZ4L3IvU+tkbWYH7TaQeTUiJCJ1+SEhIqbgO+JLt9ZeBa22vE8CftdaXaa3f0sLjWuvPl9XKcUbo9ENCQkrFo8AUpdR+VlXJk4DrrX21yCrgv28v48YrYRmGkJCQUpIZ7d8PvAistrZPQwada7eTXeOW0OmHhISUkuuQOkJzcIZ2NgJpYFfkZhBSJsLwTkhISMnQWr+GTOg2AP+w7eoGHgHmbw+7xjOh0w8JCSk1jcCRWuttru0/BE5XSjUppWIASqn3KKVuLLuF44jQ6YeEhJQUrfUyr0qVWuuHgSOtf68qpTYA1yANQ0JKRFhwLSQkJGQcEY70Q0JCQsYRodMPCQkJGUeETj8kJCRkHBE6/ZCQkJBxROj0Q0JCQsYRodMPCQkJGUeETj8kJCRkHBE6/ZCQkJBxROj0Q0JCQsYR/x8cnuCha/wtCwAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -490,8 +492,9 @@ } ], "source": [ - "# Plot time series graph\n", + "# Plot time series graph \n", "tp.plot_time_series_graph(\n", + " figsize=(6, 4),\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", @@ -503,7 +506,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "While the process graph is nicer to look at, the time series graph better represents the spatio-temporal dependency structure from which causal pathways can be read off." + "While the process graph is nicer to look at, the time series graph better represents the spatio-temporal dependency structure from which causal pathways can be read off. You can adjust the size and aspect ratio of nodes with `node_size` and `node_aspect` parameters, and also modify many other properties, see the parameters of `plot_graph` and `plot_time_series_graph`." ] }, { @@ -533,21 +536,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5icV3X/P8dNdaVVr7ZlW+69gMGmGAiYgE0nIXTT+cWUJBBiAoQkhBbAQIAQE0yHECBgMM02mGqMkXvBuMiSrG7VVZfL+f1xztG98847O7PSrnYk3e/z7DOzM2+5773nnu9p946oKgUFBQUFBd2G/Ya7AQUFBQUFBXUoBFVQUFBQ0JUoBFVQUFBQ0JUoBFVQUFBQ0JUoBFVQUFBQ0JXYIwlKRH4y3G0oKCgoKBha7JEEBUwe7gYUFBQUFAwt9lSCKijYKYjI/iLyj8PdjoKCgvYoBFWwr2EcUAiqoGAPQCGogn0NBwIHDXcjCgoK2qMQVMG+hgOB/UVk/+FuSEFBQf8oBFWwr+HAymtBQcEwQETOEJEL+jumawhKRBaIyK0icpOIzBvu9hTstQhiKmG+goLhxWnA0/o74IDd1JBO8SRVXTXcjSjYq1EIqqCgOzDC/1qiazyogoLdhDDKSoivoGB4MdL/WqKbCEqBK0TkehF5XfVLEXmdiMzz8F9ZqFuwsygeVEFBd6AtQXVTiO9sVV0qIlOBK0XkTlX9VXypqpcAlwCUHFXBLqAQVEFBd2AEe4oHpapL/XUl8F3g0cPbol2HiLxHRJ4x3O0oaEAhqIKC7sCeEeITkTEi0hPvscqO24a3VYOCo4FDh7sRBQ0oBFVQ0B3YY0J804DvighYm76uqnvDjuVtXdiC3Y6yDqqgoDvQVj92BUGp6nzg5OFuxxCgbRllwW5H8aAKCroDe0aIby9G2wEo2O3oeoISkVkiMmG421FQMMQoBDXMKCG+7kPXExS22/rLhrsRBQVDjLJQd5ix14X4RORtIvKk4W7HLiDC2t1MUOOBUYN5QRH5rYh08zMX7EEQkYmDcJmRwEjx4oM6FIIaWuyNIb4zgeOHuxG7gD2hSKKHQZQbEdkPOMuv23UQkceIyB+Gux0FnUFE5gCr+yOWDjES46CWtRCFoHYRIjJDRF7f4uu9McTXg/3o356KPSHEN47B9bzDGxs9iNccTLwUOGO4G1HQMc73113VAyHjLXVkIahdx1OApq2ZHHtdiA8YS5da4h1iTyCoQfWgSMTUL0GJyFNF5C2DeN9OccQw3HPQICIj97Gilmf6a8OWcyLyBhEZiL4bWXltQiGoXccJQCvhbPCgROQkETlORE7s9OIi8jgROWQX2ziYGEsHlpOI7C8i43dDewaKQlCtcSLwuPwDETlnENvRCnOH8uIiMsLDnEOFlwEfHsLrdxsOBzbSvCfq+4DDBnCdQlC7Af0RVDUHdTNwO/CF+MAV+d/3c/0fAwtFZJfXrInI2QMhxxZoSVAiMltEXuv/fhOYLyJHDUKsejCx2wlKRF4iIj8bwCnjGB6C6gEmxT8iMhK4WkTGDmJb6tDWgxKRg0SkSe78R+9Ob3P6l4Dn7GzjOsBs9uyw90AxDdvpJ5cVAXqxAp9OMRJ4iEJQQ4oTgfEtLLQdIb7KT4zfnL2fhFkerRBbPvXuSiMdryTFj3cW/YX4Tgbe4Irt+cAa4IfYlk/dgtoiCVeA5w7RPZ8GPHkAx/ewk6HhOiVOIqYxbU4fS6Z0gBn+2mCAici0wTI6/DoCbGpz6Eup91JeBPxFm3NnA8eLyIDzXCLyxQ6qH6dTIX8RuUREDvT300TkpQO872EVndEVEJFRmGzeC0zODOfRwP4MTE+NANazrxCUiDxRRKbtxvsdAMzEJledYshDfGOBDcCLaRTmccCBIcw1CIukpRUrIl8WkWo8+LCaePBUBmbh1KG/IolRmFILxbYMa/cukauIvGIQJ2v089GVPnss8J+7enERuVBELqx8vGIA5x+AycfOelDzvMoqx0A8qLxPYhyrJcU/Z/CMjlD+7SIEE6mX3QnAJBF5rIh8tsW5k4ELyCIXYOTY32bOLnOvoP3P+zQQlCvx12KhMIBzga+IyGPbXCfHNzGZ7DZMw+T5AaxfrhORo0ljM1APaj39GGN7FUEBbwf+bDfebxKwFlhNs5V5AGZRhKLpwQhqI40eSCj7Vutexvl5/Vm/5+PKREQO8InwaaA6+abG/UTkLwdqUfqEHU3/BDUNI231Y/s7vpN7jgQuBWbVfPf47P1zROSSFtfYz39LTEiK8A2Y8gkcC0zwHOGuhLSOBOaKyAQROcs/W+/t6MQrinsPmKDciz8Ml0UR6RGRV9E5QY3FlH14R60IaoehIyLfEJFdMUDGYP1zUBuvrIf6OTLB23cwFm6vw2SyfskwB7g895BE5ITMcImxaLfmp+pBhRcaJB7j/pQ218kxsXpfEblaRP5hANfoGD5Hzs3+f4yI1C0Wn04iqCmkDbFDBlrKgoiMFpGvZR+NBNaxt3tQYruhPwYTqN1ZTTMZWIV1cnVgRlRec4LKFWAo71bKYzywlBYelE+u3uz8lwLX+HWnVg7PPajnMvBwX9yjKcQnIv8MnITJ1AnAAkyhjK47fgCY69eseogTsfxIKLVTsVBafszhIvIRTHmd7m05ENjuh+T9cyzWN5/ALN6dxXj/ew7wQf8sZKB2Z3vP3f21/xt9NdKVxkBCfVMwAg5j5nTgnQzMgxqRHddEUE6CE4HRbrC8kIrx4J7Jt1qEvasYg82J7fRPymPpn6BGUzP3vY3R/uocPQYLL87JPnsnzWXUVePzKhHJ9w5tR1Bx34HopvE1x58DtKyyFJET3ZvpFyLy5pqxOQz7maPAY4HzaoyPacByTO8diT33dJJe6c9YeQrwYpcPwbznfSLENwP4GrufoKZglsTamvtWa/yDoDZQT1BNky/zWJbTOsQXijuU0qHZ/1WCmpLdbzw2QeNeP616Di5Hf559NBbzjMZlx/xaREZjSj0m7cnAQr/HAZXj8xxHJ4g2Vs+bjHmoYf0eARwqIjOyY94O/F12jR6MoDb7/1WCEowQ46dfznbjZ4SIHCgi0ztob6//nYARIyTlNafFOWdioV9IfTUC+Cdgq4jMEZGr606seB1BFPn9xtGCoERknIhc7u8PIZFj9PVMf80t+R5Mb4z27/enOawzGngBzWNWhzFYiHwL/RNUOw9qNPXKcQKwNe5VCaWHXByefTYqu08TQXl/PxqP1Pj/VYKKORnX7wXuo70nlt8j5CjHNr9XK7waeLlf450i0pSb88jOJ0jGR+AwYJTPZbBnnwisFd85RqwYJTyoVZgBBEZanYT4wvAbjc3bh7C5uGsEJZbk2225nZ1AH9ahY2m09p4lldxMK2QDMxCEB1VHUNUSygYPSkTmisiHyTwoETm+Ytkc4sf3F+KbEuf7awjwmOy7iIv30GjpHO3fTcK8j2q57ywsBBJKcCwmnBEm7MHKkqf7teN+QVChoOL444Edv5LcIWKSV8dxRxhGrDBgLlaUcWZ2TITY4hpjMYKKhPyU7NijgQcxgu8R+2XnKzBP85+AdwF/7KC9Ucl0PDDLxzPGrtVygRk0eqcPY3IT/TeXmt07ROTVfmwgCGqMGzdzvC2tiiSOIoWdfgWc5u/jvjMw2c4Va7wfnT1PVZGGTE8XkbEicpvYBrh1BDIaG4+t9L+901iaCXYiNR6UiIwXkSP9sMnA/cDXsbnUKyKHisjbMLnYRmMVYV55G3Mlf/7J2BhFOX4vpmyrHtQa0nyaAMync+N5FGbYVY+/25+vVT62h0Q8T6c+QhLPMsuvdZCIHEwqD485MS671r+LyGnAPD9uBXAryeCaTpKB08XygQeLyMWVe8d8jCrVrVj/7zxBich7MWvohSLyL+2OHybkBBVCOg64DPhyq5PcQ5jrA35/jQcxUURu6ee+kzEPqlWIbzP1Ib4e4DzMwo/JfDBWsXeS3/t4TAjW0xwWzFElqBCqsTQq4FzwwCbfUa5AIywwp3LtIzAZiXv3YN7cSO+zsLAn+zFBGidjIb4QvHEi8jks7zM7Lu4W/Pjs/7OluVjkOGx8q9Z4PM9YrI/OxAjlCL9WkAQ0e1BBUDNF5AXeBzMwBSB+zVdi3uKZ2AQ8DFNu7Srhcg9KMC9tNGbITHCFUL3GDBqt9lVY3y30z47wc6s5mhf5PQIxHv+K9dkcTHmGoqsaYYdjY3kANnbjsfHNCep2GhXlgAgKU4THAx8B3kYzxmDzZCsdeFAi8lGxhbF/jeV+Z3ibRvn3I7Cxi/DqZGCVqr4EU6y93p4XY3LxCwbgQWFjsRx4jP8/A1hJM0HdQ6Mx2OBBuay/WUSeW/OsrcJlD/rrbOrRA8xwOTkJOFssTJzPqRjbuMYzgcupJ6gjsT77DdZPYM+/2p/vAWzsIsS3BfOS3omR0VtE5FIRCaNxGjbOsVPKVj+npXPQiQf1sKp+WlU/ReqgbsM2bKKGRQVp8jQl1zM8FvgRRg4Tgb8RkVdm358EnCit1yBNIfOgRKRXLLkoNJdQVkN8qyvtfLO/BhkcSUogNxGU2Kr/kWQEJZaPisk2kUaCmooRae6KH4j1TyuCCgswJkpUIgbJRt+GVTkZsxzHYAQV6MHCAWdiZHWGK+mLgHdkx30BeJWIvDj77CzgJ/TjQWWf3UhS0i/EDJSHMJKLduQ5qFOB/8L6aT2p2q4Hk4kfe5t7sclF9gqAiGwWK0WOcMd4bPJPxAyOg7EJuBiTzdcBn3DjKEKMuQd1MkaUI7HwGVg46QCajZTjvA3HiMh9pPGY5NeLkOt074c6gsLbFaR5L8kLD4J6h4hc4J91QlARKnw5Ng5g4/9UmpGH+EaLyL9Uidg9r8hBvdHv+xr/en//C8U7HvME4xkiygE2Tw/HFOQUrL9+SSNB5R5UK4L6DTDVDfY3Y95RNcS3IOuHXj9mgohMEpG3A/+HGak7ih5E5LMicipZzkosxBxh7DGY7PY68VQNlh688APT7eOxEPel2THRT7Ncrx2O6blzsrbHsx+EVeK+A9MdYES2VlUV+C1wAynEt8iPOZ2U33sh8Blv6xRMviJnvhUj92oqYgc6Iagfu9D8K6Youg7eWX2YAIcwHYqFZHKr5TxpXNR3CtZpoYjPp/GHE8MCnyAiR0hzYrEa4ns68FFvyyuoJ6hNNK4lOttfo10xKeb463o/p2p1f9zPyT2or2CKaDtGkDlBzQDuotGDmu+fH40R5hwaEaGPsN7PwshpARbiCDKY4s80klTKu5oUfhqPhZOO9f+/i/X1CTTGwqcDf415WnjoYTRW9FGXg4IUEpuLkUAo6fOB/8X67xhgCYmg8lDSBD9nGTaOkLzPn2CTdxKJmHbkANyLHIWFkL4vtt1Nr5+7EJuws7GxW+L3OtGf+/HAtd6vMzDr/0AsCf4RGpcohGKv5kJmYmP9UWzsjsHGJ57vFP9+Biano/3cHp8HoZhzi3weaZxmAnf4+wgFxnwag82xCJs9W0Qi/xky9lJsPMEMrjOkeUugIKitmPJ7N/AMaSyVn4fNy8hDTcfk6QeY4lyTPcMEbF7EOE0hGYPrsDF9s38+3a+dP3+dB5WH+I7ADIgN2Bw4FxvnA8TylDMxeVlAMiiCoCZiIePX+uuzgOPcsH0S8HosqvKB7LxLgL/x/8diBVO9wFeB86Uxp9uDycAzgEcw/Xce8OSMzHIP6ieYntqEGesLgCkuh/HsK1V1G+Yx/h4nKP/u3cCHSB5UePyTgSdh6zsfj8nfSZgRshIzCt+Kzc2lJD3ShLYEparzgF+q6rtVtZt3HN7gr9NF5HGYlXUTjcL1IuDpkipdTsIGOybk8TRWnAVBTcZc2neCJQtF5Ec0F0nMwCbiWMwy2gjs74qsB9igqkEgMYEilj3VP68SVB+ZByUizxSReaRQUlgfk4E/xxRJeALHiUhUth0LXId5MAdiym++n38kcBWtCarX33/A++Qifx9kMIu0vuhO4LPA9ZhAgk2aMaQJO9vPOQ5X/O5R9WAKPPIHZ2PWaqy5yBHkOwvYpKr30ijsh2GEvM6f8V5SDiqs3a2YlXeMn5sT1FRswm7GFHn0c+5BTQDWqOq7MRJ9Pmn8FmET9gi/XyiWYzCD4Exv41GkEN/T/ZxrsPEZhRFbXS5kDKaE1PvxEUwZ3OHHXwQ8AfOAppMRFPCX2DKEIKiDSbgWOEFSdehi/zzCpLkHNQebY+MxhROyli8ryJP6S4Edhp5b8LkHFfe4HLhULH81FxvjCSTleho2L64jLfMIkpmJyU+M06Ekyz7GN0JM+2HymkdZqjmoVTR6UMdhin81No5zMONmM/B9jLyeQaMHleegZgL/q6rXqOpW4HfYOD0eiwD8FfBsLCo0E6sGjeUUY7DxGI/pt8+RvEOy+30FM9gWYHI2kxTCm4zpmVl+zImYN/oUjPCPxGTwJD/+AQBVXerPPDH6UVVvA/6A9XVv1r9XA08ELlPVm/yYZ/q1+jAD7TiMoJbRXLCxA51W8b1KRD6Uh7pEZKqIvKO/k3Yz+vz1SIyhD8Em64GSSnWnYErvFrEEa3hLj/bXHSXRbnGcjk38GNy3ishJwIVYeChCfJGDmuGfLfHjD8IE7SjMhQ4S3YgJSFgc6q8LgcPdup2DWYYR4gsP6lXerihDnYQJzjOBG1R1rR+/GQsL/dTPOwGbAEGOfVgsfZrf6/vAOSLy7KxPT/Zn6fX+XIlZXD/x9p/uz5/vv7VFVd/oAh3Vcmdkzxg4ws+rC51NF8sHzsZi96to7UEdSrKQl5CUzSFYf67ze9+HjW1ehr3SX4+n0YPqwQhpJUb2s6knqDBQAH6NTfJN/tyLMNJ/Jo0hvmP9/n/u9zuXFOJ7KZYzjcTxSGxRLNi45YpyrPdL5M9uwMb1dv/+AVX9NSY/4UHFc5/t7Tje2x+hum2YjJzoz7kS+B42Tsd4SPnRmMc6GiO4GzD5mE2qIO3BPPkcD2GK/X1An1gRwx/8OpGDOiY7/h5sj7tLSIQRXsATMGK50/sw96BOw8hgP5ehwzHjBFKYKvTBCmwOTMl02ygsL/dCrDhmAY39fgKWG15DMoaCoJ4OvMn77kZghBunvRg5H+B9uSy73jxMl0zAiHkL1r8LsXlzN/BYScU2MR8n4jIpVmX6E5Jh8HtVXeVtH+HX+nc3TCdhMnJI1v7bVfXn3h9vxeQl1jLGHMn7b2322SpSCPxH3gdvwXRvFBXNw+bBSkzv7I/Jyq57UACeYLwduEJE/kJEvgn8N2ahdgv6SB03FeuAhZgghYBNwSbYQZiiPwHroDMxBQYWzlLg/X7cz/37mzEP6hLMPZ9MY2goPCiwiYO3YStm6TydRFAbsEEJ8ggltxBz5+dhVtTPMaHYBDxfRN5EsnrHYILRgwnWyaQtlDb6c3/UX8GU0e3eT4eQci7T/P+fYZVq5wGIyHF+j1/4sx0C/FRVf6Gqj2AK+TzMU2ogqMr7SILekLUNbOufPhpDZxESXItZd1EN9QDN5bWT/Vo5QS3FCh/GY5NgrT/nau/HCPF9BlOUL/Y+O57kQT1A8qAeIE3QyAflBJXnN36Pkc06v+ci4EpM+RyKKZYjMIVxAxYC+R/Mkpzkz36KXycKBkb5/5uohKtJIeN12Dy+HTOm/uTf92WvOzwoD7E93p/xAEyRzMbGaQMpB3UksExVH1HVBX6df8AKENb7+XMwD2qCX2OO33McJhff8/+X+d9y7+sxmHwfTWOI7xjMowic7n1SxRP8Oa8E3ovJyAwsR34KNo9W+j2fQDNBhSwtV9UHsXE+RUTuJPX7G72P78ONI/cqjyB5UIHlGEGtVtVLVXW8ql5LCueHd7GGJGuBm7G524sRynS//gL//j+wsQtl/4Afmxtsz8Vkb5b3S/RhXONZ2Pic7+f9Huvb/SvHPYDJZ1TaLiXpJqghKFV92PviZGCRqv5UVe9U1eNVNYqRrsPSA+FBwWASlNj6j9mYorkIY9xnqep3+z9ztyI8AjDFcTimJNaQJvZkbIAWYdbR7ZgAHomFNiBZga/HQjZLsPjrPZh1exTmQfT5eVWC2owR92bMy9lKIonwIsKDCkGK4pMF3tbfY2Wxf4sR5UZMYX+Sxgkbye0QrFCWm/zvXVgZ9imYxXwHRtK/wYRjJUYuY/0ai0mewvOxRO4aUjggQiVg1tJvsATsnOzznKA2k8YkVpDf4fc9Gqu6m+re6jRMcW/AJsiR3herMcKfK1a9dZyI/Akbkxsw4lwN4BNiG2ZFL/Lc5DqMiDd4f40ErvWQ9W+9LSdg4/hzbGPR8E5X0bxN0XQROd+VVXjQkBT1wX7PRaq6BVNAUzE5muvP8inMyvwNJk9hhEzHxuVBTHnEItaTMYU/QWzpxEhszDb68at8bBaTlEgogvWkUNVhWOHGEkz25nm/HIxZ/Pd5CPoWzPjILf2bMKPu41iF3FxM7pfh1YBYQdHLMIL6hao+18fmJkwRrSR5OudjRHAIKcR3NJZb+StSsUPuvWzz10nAPFVdr6o/xGR0P29LENQk76NZmEcFliuEFGqOsV2CeWtHe5sOJpXczyeFQI/xPtpGmtOQCConHrDxOQwzPrb4OcfR2K85Qa1T1T5MRub7Od/DyORIv15EayaSiOQl/nogcJqqhjEYRvddmMy9xvvlJv/8duClqhqG828xubwmO7+dBxXPP7fm+QO/9tcHSXIZRWRLSZWHTeg0xPdZTGjPwtzOUSLyVRn6XY4Hgj5ssr2MxOgL8XUcWRUJwDcwhXwlScEEQR2CDczJqjrfvz8TuMdjxm/FrO8YuLDOI8T3fYxgInzXRxLwCCMEQa3BSCfCOAuxMfmKqr5EVe9X1ftJZdGvpLFsvpdEUGTPshHLy2zFQkPfAt7pgvgCP2YONkHPAO53ryivqHk+8B1/tn/DKnlygroEs9pCQQWqHlS06ev++lVSEvjn2MR+HmZF3YAp7GuwwoBJWI5nCzZpT8Em6zissu0GGj0osLDae0n9v86fawOegKexGnUtZhUvdKv3a37N9a6s8wm6CBvLr2Ex9lhmgCutN2NKYyXJal/grxH2vVNVv6qqn/RzjyGV644D+pxYt+Klu55fW4vJ5mXeh1FRud7Pvx+T2wirrvfXUAhXYpbsR1T1idh8vs6vcQhwq6pGqPv3WO4jV6RX+rN/z5/lBEyJrsO8gvVY3uKLwHtI0YKfY3Pi5qwvbyTlOI4leVCTsHFbj83VY0h5ti0k7xuSEoVEFjeRdjEJ3bQJJyJV/Q+yqjmS8bSEtEXaKL9vjN+D2PZPUzDSDmUb8/4Bv34dQW3ACiK+52N6PTZf8369B9Mbs0kEcDU2Bger6mpV3YjNo03eNwd7fz3J++dg/zyIMHA3sMD1wI8w/R1G1Z3AYlXdsfWQqt6uqp8l5R3/mRTlwdv3IEnGAtGPtQSlqnH80SR5BJtjISe1u810GuJ7jqpe7u7+w6p6EVat1U1VfX2YUv4qJgAHYYIXHtQYUux5ERbv/ww2WMswoX4EswRXODGACeJ4fFdxVf2yJwdXYCGCR2j0oN6kql/CQqA3+HVPxIjhE37NaFOfqr4FE6SHSQNctdpjgL+nqq8gCXK/BOXvH8Csm696+7+LKbLxfp+wOMEJSkSOwqz535KspQNIFijq8OcTkndY9aBuBp6hqiu8XT/EcoRgVvx44NuYhbdSVZdjoa/nY/0Z5PMHzFA4HPi8J183YkSbE9RF2GQPKzFCmRuyY3KCCuUW1WobMbIMZboie7brMGLqAT7mz7EjSa2q/+HK/9lY30EzQeWLfWMdzypSv8UE3kbjLghrsNzRPVi4eBKNHtRPseq/zZXrBK5U1VeoaiyefCfw736NXDnGcx6GebiBmOs3+j3CM1mJzZnov8gZ9Xmf/IWqflZVX0+S0+tJpdTHkDwosBDVeoz0IgcYVXNb/P91pDB69A2YEgaT57/F5vjFLqeBIO7FpPl2F2kpwv6Y4bEeM3L/neT9/Rvw+eyeq7CCk1u9T3LiAevbl2IGMZjxBEmh40bQYn/eKD74jKp+UVVzuV7m/bQOX4vkumczRlB3YEVYml17Eb4/oV9rK5YLvx3rvyXUYzGmS69S1cXZ5+tIJeY5VmC6bCOtcSbm6TUQlL+2rGXY6a2OVPVn2ETsFsT6HDBhWurx5SCDyVjHb8csh2tUdRlp0dndJJc5d9/D67mscr+IcYMJ1lSMLNYAqOrHVPV0jAz2B+5yYYQ0uWKANpPyJdBMUBP9mvF9kEYe4oNGgoq+eMDf58J+Hua1xH1CaYYH9X7gMx5fjue/lkalEAghj/BL1YPaoKo/9v9fhFl0W7Bk8m0Yib8a83yDRBf5dR9NGourMKv+MFLIZqP3wY5nU9W7VfUIVX2nfxQeVD55qgS1lUQkQWTxfyhJMK9jf2y8TvDPqkSAh57ywhewsd1MYx/GeIUHtdllFm9TL4mgFmAVn9dgCvUcMg9KVRep6uUkwyTadbC3KSdoVHWdK5QI8eVhmyuBf8E86MCdwGM9BBUkON+jDDf7fZ+NkSQ0GgSBIP3r/fUhv3e+oH2+P9NUTJEvxbyWL2HydDXwElfOgZCR3/m5C1X1YlX9mlqFZY5o17uxcCVYuP9DpL4WzLq/xZ83IgcXYIYSmMytUtWrfZ608qDGkX4y5wrgJve2cyzGPLd1tMZyEkEdnj1zH6Yf7qBeFvOfMbkNM7buwnLOv29xr/vrroXJSDW8F21rFd6Ldlynqrf4dYP01vt3n/Z+bsIu/QheheGHG1GODaZQovJnO+bt/RBTBErqILBJc5eq/lFEnokJQT4IPwOmVye432MEWHjHQ6gLKhMHUhx4efZZVFrFoGwmJdejTTm+R1rwCCack+nMg1oJjKxYVncAd3hl0Pkky24DFsf+M8zygyREtVv/q+oj/uzR33VFEnHsD7P3n/K3rX5s7k7M8wwZuwxLGJ+AKat4TkgkUIfP+TPlO7vnK+vXYGG3KNCIa0YoZwUmL1H5eBumkK/CPL12c2gZWDJZRJaTxh7SeK3CvJh8kgZBRf/9AFPot2Gy8nRSmCsPuVRDfK/HvIlW2IiR7g6jTFVXYkqb7LzqyfEAACAASURBVDMlhcHjHiHbpwIHqur2LJdQt8ntSmz+hXd7q5+7GV/S4PIUbV/mbbtXVT8gttv2A6r6o8bL7pCRDZgRc10/zxvzeHEoRTeY/kFsV4ej/Pv12TkLsZzXF7PPVtE4T1vloB7BjTg3iE+taVMYee0IKkjsUHzbI38exTzPx9SfugO3WTP0ERoX71ZxO7bAt4oo9KhiBW0IKsP1WOTq/TT2cS12+VdauwhRjg0mODFRPoz9tsqVmAKI+Hvgv2lUro/QOFmvoTHeHVhB5UfvSBO2+llUugRCSVU9qFBQDR6UT6RvZx+tIZW/dhLiy/dry6/7CFbaGv+riKzEimDCmvwcld/RaYNqiK8ar+4UUY0WHul2Efk4lr8KDyqesXYjVT9vGYDvtBDVcbkHtZhUYRhtBitgALN6F2ChrU2YLNyoqt8Ukato9MzqkBtDj1LVXLY2i8gWkgeVT9itGClu9WM3iMj7MDk+C8t3/RQb2/y8zZjC2uTn5YZRHaL91/d7VCN2eFB+D8V353AZgvrfwFqM5XYiVPxBbFume2jc6T0nqLtJ4cOoNKwi+nSzqv6iTdtjjtX9QGJd+AlSri3HZTR6IP+LEW6ODcCSLHLSCkFQtV6EYxnmVUa74pnDi15Kfd/k+D9S6Lkl3MP7Rs1Xv8IKZaq4hQ43wnVH4C6MoPp7XmDvIqivkdYB/BFndFW9G7hbbJfrmZ672AEPm4WXoCKygXoroYrP07y5ZR1BzcdyK7lnFRMuBmgLiaC2096yiLDUiTQSVJBgVPHh37W1VDKsJCnnUD7ttriahymYKTR7ULtCUNtpVCSfwDyuUPqzvY39eVD4MT/Finv2z7wlMMXy7ew4FZH/wUM5agnem0RkM7BRVd+aHds2gqCqt4rIMf6+Tq5Wk3JQ+YRdg+VnwlBAVT8AkO3YsBHL+eTjswnLB1Q9+VaIUuP+9pysooGgqlDV2oosVV3myxfASPROVY0Ni/+cxiKiR7Ay93zD0bYE1UHb4/xWBPWQtyOfMx+hcc/DCJ3dm/3/zZrrbaR/7z6wBAsp1hqSjqiUi3uGx7IB0x03YNGellDVgW7UXD3/QWrC/Kp6FSkK08l1HnYved/xoNQWpq3y9/9V8/1yGsNsrdARQYVlnmEZjTH7wI00hudQ1Y0icoiqxp5wV5Pc5O/n4bgWWIsRyRNJBNWXXe9bpKqYz7R7lgp+iIWTBoInkBYj5gT1I7LCigHiT1gFXx6a3EJjX15KZzuM70BVCfj1q5/9Vc2pOekPCKr6p36+XoWN3xYaJ2x4w1uazkgW94Yacn6AlPPoBL3exnZWfo7NmPHQaVhnByLHJiK3kiXpVfXW7L26AqvO183UW90xX+v6qoo4v87zjbWUsTdjtKedl9wKG+iMoPLlAa3wG8xAWiMi+2Xzog+bJ3/ElpXsKchTGi2x1xDUICIskgFBVWsXm7lCbHKrNVUJoqoPYJtWQoXMWuAHmLJ8A2ZpLiSVcaNWlhzvO5kgebv+qf1RTedsEZEoP80t/m+3PqstbsQKJ/q771LqjYKhwE4TVBvcQyoPzw2T8Iq3Np2RFHuT4nRD7XHVz/vB+7BlJAPBEuDlA/DSmqCqJ7c5JLbBydGKoFaTlgW0QzsPqomgdgGdRi/uoX2RwTwsUkFGTrCT+qoL8Aoa87G1KATVjE5DfMOGSBKLyApgrOeo3jjMbXpIRA7fFaVVvR4DCBvsBuSVkYMGVX0hgNgu+tuzr/rzoFZiXt8ut8e9gwFdx42uupDWYGIBprhzvJOa3JZHJKq/ZdYKnRAUDA5BfaT9ITvCwE/cyXtsoL4gpauhqr9sf1QhqDp8klRK2u1YQSU2PpxQW+u0t+ICUvXZUKDqQQVBNXlQWUVgu6T4HgtVfVLNZ3fXHevfrWr1XQWxqWtdvqrP/5RBIChNSwYG9dgKNpDyiHsdCkFVoNnK6j0AK2ixArtgcOEhlqHEJuo9qLoQH1iYbdA9ur0dHh5rtX4zFgNvpX1OqFsQC3j3ShSC2rOxgn62qi/Yo/BJGos1VgEP9lPZ9Vq6a7PmvQF9pLV7gxHi2x345HA3YChRCGrPxgr2YutpX0LNeqVVtPaeUFuVXzC4mIeVmT9Ec4FGV2Kwcr7dikJQezYKQe29eIB+CKpg8KGq12G7UFwy3G0pMOz0XnwFXYEFNP6iZsHeg/toU2ZfULC3Q9qvCe0+iMg8VT1juNsx3PC99A7IFugWFBQU7DUoIb49GB5/LuRUUFCwV6KE+AoKCgoKuhKFoAoKCgoKuhKFoAoKCgoKuhKFoAoKCgoKuhKFoAoKCgoKuhKFoAoKCgoKuhLDTlAi8l4RWSIiN/nfM4a7TQUFBQUFw49uWQd1sap29NspBQUFBQX7BobdgyooKCgoKKhDtxDUhSJyi4hcKiIThrsxBQUFBQXDj92yF5+IXAVMr/nqH4FrsQ1PFfhXYIaqvqrmGq8DXuf/jlTVE4aouQUFBQUFXYCu2ixWROYAlxfyKSgoKCgY9hCfiOS/CPtc4LbhaktBQUFBQfegG6r4Piwip2AhvgXA64e3OQUFBQUF3YCuCvEVFBQUFBQEhj3EV1BQUFBQUIdCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlCUAUFBQUFXYlu2M0cABFZAGwAHgYeUtUzhrdFBQUFBQXDia4hKMeTVHXVcDeioKCgoGD4UUJ8BQUFBQVdiW4iKAWuEJHrReR11S9F5HUiMs//yq/uFhQUFOzl6JofLBSRmaq6VESmAlcCb1LVX7U4dl7JURUUFBTs3egaD0pVl/rrSuC7wKOHt0UFBQUFBcOJriAoERkjIj3xHngaUMJ4BQUFBfswuqWKbxrwXREBa9PXVfUnw9ukgoKCgoLhRFcQlKrOB04e7nYUFBQUFHQPuiLEV1CwuyAi54jIyOFuR0FBQXsUgirY13AxcOpwN6KgoKA9CkEV7GsYCxw43I0oKChoj0JQBfsaxlAIqqBgj0AhqIJ9DWOBg4a7EQUFBe1RCKpgn4HYOoZCUAUFewgKQRXsSxgJCCXEV1CwR6AQVMG+hLH+WjyogoI9AIWgCvYlBEEVD6qgYA9AIajdCBE5UETKJrjDhzH+WjyovQAiMlVELhjudhQMHQpB7V6cCnxuuBuxD2Of9KBE5Kn+MzZ7G04C3jjcjdjXICJfEJFjd8e9CkHtXowgWfEFux/7qgf1NuBxw92IIcAoktEx6BCRc0VkxlBdfw/GK4GXeURo/6G8USGo3YtBJygROUZEJg3mNTu453QR+b8BHD9FRI4byjZ1iH21SGIUe5FhJCJjRWQCMJohJCjgb4DHD+H192RMBf4VeO1Q3qQQ1O7FoBKUK/0/MsRCUoNZwBMGcPyPgduHqC0DwT4Z4mOIPY1hwP8D3oM9V88Q3mcsbeariOwnIk8awjbsdrhB+aM2h00FJvnrrt7vpSJSK5/7HEGJyHBazyOAMb5gdDAwXD97PwaYGO69iJwmIo/NDxCRWSLyNP/3dODh7Lv/JyJHdXqzdh6iiBwkIn/RYbuh4kF5+6d12p7hhoiMHuApIxkmD0pExonItkG+7CxgCk68gzifquih0m8i8mgROTH76DDga0N0/waIyPUi8sLdcKvptN9QeSqDZyB8EtONTdjnCAq4TkQOH6Z7j8D6vCOSFJFTReTcfg4J4dgxiURk/M43r2OMxRa8BnE8G3hB5ZgvAj/NLKM/Zt+9GEtwt4XnAFaJyOR+DjsP+B8RmdhBu6HZg7oI+PNO2lMHryY7dGfPH+C9PgJsGuBpw+lBHQscNMgkMg2YiD3XAX79Sf5TKmNF5DNxoP9a9xR//xQRefYA7tNDc7+9FHhu9v9uIX83AE8Djhnqe2HPPKrNMYNCUCKyHzAOWFf3/V5HUCJykYj090OMs/wvP0dEREWk3aDsKoKYOhXopwJ/1c/3PcBDlev9sY0ybwkReYyIdBJzj0k7xV/H0PxM4SEd5m3Mf4NpGpY/6ARv9tf+nunlwFbg5a1CBY6xwDaaDYReYISInCwiT+6wXTleBbx9ICeIyGtEZH+XvR8PINn8dwNv3u7zoGrm0Fx/3en7i8jPKh7udIygQoZ6gCcC7wKOw5L4gZcD/+LvnwI8vQNDJlAX4uvBFGpgJIPoxYnI8SLy2ZqvTvPXcTXf1V2ndxf02Rjaz8+p+LO3uL+IyCH+fpaIPKPFdcYDG1X14bov9yqCciH5F1rERf378WTKzoU1fs13qCdxuLGd3qehrTXoAZbH9URkBDADmN5GUbfC74BvdXBcHUGN9jaM8RDUIf7dNMx7mpCdP5XOCSrKWXv7OeYxWPn+xcCOdTE+SfL79gIP0OxB9WJj83wqBoHnGNr15cS8fSKyqhryzL47yK/3KWxsxwNPp4NYfmZ4PVwltDah693iQYnIycDPKh+Hxd+RYvXrnCUiuYd9Io39k3tQkCz+XswwGuVzAf8sogpT/NxF0tmPVjaF+Pw58mcZhenR2hBVO4jIu0Tk6Oyjw0lklGMSsJjOcz7/RjLu2rXhlSLynOyjscCBInKAiLynRrYexvplhwclIq8SkcdkxzwaiEKqW4Eftrj9RGBNq7btVQSFCckBtFZmozDllCv91wNf8vcdx/ZFZK6InLIT7YPGkNx7RaSVII0jhdHqsIOgROTlpFj424B/bnWSiMysekqZVfnzfu4XiPbXeVDvBC709/dgE+pPQK+I3CUis7HnClJ9uog8s597jQUeocWYOhmOB94NfI9GRXwScEX2/2xgPs0e1ARsbA6tuc85wDdF5IMiMrNFGyfEeW4ETQLmtDj2AuBjpIKZkMVW187RA/RhEzr6HhEZByzw9/uJyBMr5w1ZFZ9b6h/0fydTiU6wEwQFvAIzFgI9NM7NKkHF973Akf5ZjONYUhhqMkZgYzAvrCXcGKjzPOs8qLhPf9cbLyLVfNaTsUq4p2Ufj2txrcmYoddAUCLS0yKs34sZbp3gHCxMH4h2jsJ0SXVMw9vpIfXtc4G8WGQqMM4NhQnAxhb3ngisbdWwvY2gQnBCWVStmhDanKDmkPIhA0k+v5ABVM+JyF9i4Yfqff4J+ISI3CsiVVLp1IMai+WAQtDnAJP7UajnkoWKxHa3OMf/fahF+0/2eDG0CPGJ5YsmkJTzNkyZLAU2Y8rjdP8u+uB9wOURDqjBWMxynNDi+8OAharah3mAefiml8bJdQhwLy1CfN7uKkFN878XkCWOReQEEQlva0J23sH+2ipPNAOzksH6IMb3sSJysIhME5E/a3FuENQyYIak/OQE/78H8zi/nbVTqFG0YrmaUdn/h4rIYhn4zgxzgTf5fcbSGJ04FZOrtQyMoKbgijgjivDQR2D90Js9U3hQ40mh5QnZdyGvk0kE1rC+SUSulcbcdJzTzoMa2eK4Kv4JeEPls3P8NfeG67w2sLbfgclijmv9r4oxwJntQo8eOp0C5MZ2PPto7PkmZccLNn82++dx7HRS1ITsu3GYQaUicn6VpLFx2vs9KLfC/9H/7fWO3yqN+ahQIrlXkie33yRWYdZycZ5Y3uCTmMA0WfUi8hapryh7LWlNRXgPBwHbgV9iSuv4yjnjaE9Qy7BBfjLJmpnpbbtHROo8jwk0KvwPY3kUaJ0c/T+Sgh6LWVE5QY3HlP94EkmMxCbUCpIQRgVUENQk4DfAs1rcdwxGUK284sMwrwi/R05Qo4ApGbEe7G08EHaEAE+hkaCq1miv/00ADnUSAHgN8FUROcPvGf0Zxs65IvLTuIiIjHZZnIx5cvFsMb7/AfwUeAbwjhbP2gNswMb8SOAnHi7Mx302MCkLAR6EFbRUrfL30Zg3eyJGCq1yBa0Q65Fm+vOMdm9hFfBq4OPAjewkQdGoLPHPV2AGwPTsmDzEt50kL3mhwxSScVKd44f7uYjIK0lytNMEJVauHW0MIshxBOb55rLdiqAmYUs1pkrjriDH1Vw32jMDmO3j0bS0wvXcAkxmjs9CeWOy12rE6QBs7vf55yF7M3DjTETeiRnBY7C+Wu/3uYxmkt5nPKjTsKICsAHPrVuyzwEOc2t1JI0EdSpGIvdlimgHRORnwK+AN2GWY51r/WQaXd3AtKwt/yAic7EBXerXBFM8OcZjZHuAiJwhzXmN8KBOwnIr6p/PwoRuFKbAq+j1677EhfJELA+3jMZihhxTSWGoMcAiGglqpt9vuj/nNv8/CCqEsEpQk7GKv3PFFgBXZbKlByVW7nsZsNA/qhLUSDzk6xN0ih87y0OcR2PW5/7+DLNoJsIgp15MofeJyEuwdWD3+PPkHlQYGecAT8ss2Iux0FUrggJTunOoCes6uU0hEVTkTWfSqCRmY4SUGwlxrxxzsT7/uHsOZwOX01kuLLfKY1yOJBHBi/wZTgHuxpTZYBFUyNNqknccIb4DsDG9k0YPKg/xBXYQlD/PBJL3+wnSEo6OQ3zulf5N1j8fB5aJ5UEnksmmH3MEcD2NMrcj/F1BhPhmAUtEJDfoloiVv68QkRF+7TFYH50JfAarnK3iKd7+4zBSD+8z+jz6MJfHEdjc3uh90eNzdhrJg3omVhU7FtNhfRhB9QF/XSM/e78HhQ3gHH/fS4qp5p3bi+Uznocp2C1YjDxKoKcBj8IGIQ/n7C8iR2Dkc5Z/HF5KHPN5EfkKNlGP9c/GZVZJTlDPwMpV55Asi3xSBWIiTARehoUVcwRB9WJKfIl/Pjrri8NE5FkVTyo8qE9iinYiptgWUuNBeShoLGlSj8WINdo3JvtuBinxOZJk8eYEpZilPQLr63ne3mXAp7P7HkLyoA73Ps7LbJ+PyfAi/7/Og4JEriuwMX8yZhTMIeUFDwceBMaLyMszouz1a+7nx6/GjJgjMc93DI0EFWMYMfcgqSl+zmSSAooQ3xb/f4HfY5JYXinHhcB/YpN8OYmg3oXJBiSCgmQ85IUEiMj3ReR0zDA7C/OcP4jlKy7DLPS/EMtttCKVPhH5YuV5j8ye63X+eio2pn1YPqLHPcn/FJG6QoBATlDVpRTTSR75bMw6P49EPiOBu6h4UO5R9pLyJ7kHNQYjt9k+X8eRDKmBeFAnYvnFV/pnMfefgOmhiQBuGN+GkUeVoHqAkdJc1TmJNL9vAC6QlMJYisnvVO+PX2Oy9Qu/x0wq5en+nM/zfw/A8sSPEiuWiGeuI6iI+kQIuwfr+4dJBDULI6b9sLHsA+4DvurH5eHEwfOg6tzEwYJYsvxPInKPiPzDTlxiMmky9mJWwSKaCer+mnPfDFyDkcgR/tkZ3q43YpVtc7BQRWAmZplPEJHnYSGqZ2PkFJVni4CvZaGdXPmfh3k396nq9VhOqGo5j8eEYbK3q2rdB0GBeVALSBMwFPURwKWYUs77YYofc072+UKsAqpHGhPtoezCgxrr982Vx4HZMTlB5SG+hZiFey82mb8GrMLGJKzXN3jo7Vhsoo3171+NKdPzs3Y9Duv3D/n//RHUIX6d7dn3+YLLGd6+SVjRzASfrNU1c9/0e96Grd0Ighrtkz4UVijMn2B5t3F4bjC7VnhQscvGIxhxTAKuFV/MLLbg+XEYCWzA5OpRfs6LSWMbIb78/tEHR7gsH4tZynMwD/AT2PgeDPzer/F1LOT4br//dGks834QeIWP0QQsb3kUyfI+zftyNKY8w4O6Fng/FuY5ixr4XJlA/x7Ucmysp2FjcAFpbdJyzIio5qAmYMp7DdZ/M0TktWLFQXHsYzHrH+AE0vhG2wST+TxykhdJBHGd7a9zgOuwOTgRkynBSt8jH/0nmj0osJzuVEm7VEz257oA20njVGxpRaAXk7Xj/Tl6gKuxarqppHL/wFsw/fNjjGyWYXPrDTR7UJN9Tv61P294UPHcMzBP+QA3hPPc9wxs/D+AFW79AHiW2BrP/dhVD0pEjvK/o7FE36DDrYVPY27hccBfycD3bssn/mGYQN+GK30ROQsrRY5w0AJ//b6qXuX/hzBuA57hIbV/xIoPjsUUSVgx0zGheB7wHcyyuAybkFNF5E5MkJ+NKYBqsvIIjBzy/EmVoKI6azKmKOsIKsKCDwA/wog2xwv9ukdmn/WSJtbZWD+BTdxRWPz4i9nxoSxyD2oZNQuFsWeehFlFo/z9akzZfQKTuV9hE+z5GEGtxTyZeB/PO83bGc/4P5iVd5aInI1Zh79V1Uf8+7oQX7T/RH/OB7PvX5S9j4mSE/znMEMCTLk9go31DEwWNpNyBmv82Uf5+8nAH7CJPJH+Cer7WGFDHDMGUyiRv/ip99X+GEHNJ43J/qQwdXhQW7Dc21RMMWzAxuytfs3j/FmioGKK3/teP25/zMuPvvwWyRACU4xfwipgJ2DEcwpJsT1IKjff4UFhlvX5mAfd45GJAwBE5CSxoopJ3n9jnfBDxqohvqX+fzx7eBNLMBmqVvFNweRrDXAzpsQv8ddQxE8llUafSCpACozxZxuXhalGZd+Nx+QnxniO98PhWF8ejfX7ezG5eoe39SgReZefk8+p1wAfdo/rIGCDqn4RuAUjgbsx4zMI+GZVvZeUn/stFv7fQVAe1VFv05cwAl2JjdGhfmydB3UutjRiOo0e1CN+rWVYpONkGpdxzAT6VHW5qj6AEeLTMC/wUd5Xu+RBfQhz/x9DfT5jMPBo4B5Vna+q2zFFNJAV35CE4hFMcf0JE8hQ+o/GhPwPWAhiGrBEVeM+m7NrXYoN2iVYAcFvMev9fqySBqzvejHFBRYm/AUmNBdjwrgIG6y6bXSuAF6CDRiYEq8uIByPhStmYUJQzXnlHtRKVf0AZkUFtmJCsIwUX4bGUOJJWJ+AkfdILBwwR6wkHGxyKzDTLbqTMAVRR1DR7o2YZT0FWK+qf8TGBMwzivDHalVVTLgX+t+hpPDbJpIAfxob25dge7GtVtXc+urPgzodmxThQT2IWfoLsj7ZTFrR/mRMpoLkbvbPwtu53ds2i1T6HcS/BlPIP8aMhiCow2gkqAjx3YaFWydgE3o1JjcTpbmEuA8jEkhW7Ej/PAjqFqzfzwP+EpsH+P3HYkp5gao+5G09HBujBzFDBz+/R0Q+hve/EwhYv34MCy3OxWT5USR5uNP7tU9VN3vbJmJycTg2Dr3AN/w92PKE9/h9V3g7ptDsQUWILyIh78LkPMZ9KTaGEdnoxebqTH+O1ZgXHIbhKKzfq0ryCL9PLttRkbYfFm6FRg8qCoUmi1XGjsEqS4+isaL0i6r6Q1X9sLf1WMwrgsY5dR5GlNNJ8wQfp7uA72KkMZbG9UTrvL8WYHI0CZjrpPoWP+Yof+aF/pzrsXk3jfoc1Jv8/SGYAb8J07VrMeNkIaZnTqexpDw8qMDvMV0MRuaPw8KcteiEoN6jql9W1S9hW8IMBWbRGHpbTPNuD68TkXkiMo/6yrYIQy3DBvVOTBiDoIJcD8fczLB0AzlB3a6qL1bVE1X1k8BVmMV/P/C3mGBACu+AEdTXsFDU2zGFHrmRuu1JLsfisjFBGzyoLL58A2bZjaDeg1rh70Ox5MJxGZaYfyWNBJVfZ2LWhvCgjsUU+Nnusk/FiHcGtk7qYNyDEpFZ1Cd1t2CKYwxJQJdiY3tvdlwoz8XYhFrobY3x2kQq/vgt1t+nYN7n3TX3FEnl07kHdZo/Z3hQn/TXH2JWdy8mA2FwPAebiPg5a1X1l5jhshkjlU0YIaz1Z3wu1n+h7DaRSLPH2zEi64/woFb5Z3P9+DA6Ije4DIiwd4T4HgFuyp59kffNREz2p5BCf9HHYdk+hkbPfRQ2V/DnC490Graj96OxxZaxQfBILDz4IyyCcJc/c+ScbsX6NLycPhrXhV3vbX0+cKJ7UU/z9h6MyfJ9WLipzoNaTtIX3wH+299v8fuuw9bvfCe770xsbD8MXKGq52Ee8iRvy+9IFWaL/XUFFmp7ghNOVFECvN7nRp6DCoKaiSniUd5Pp5OWb3xdVd+Z9UUYRDN8zkeI72hsHi7FKixX0IivYJ7tJr93nsuJa27C5tRaf38kVhiBv1+LGYtf976JzV9jOUPotsOwsb8BI6jtmJ7Z6v3xTKwSdzmWGpnn5z3gfbGDoHw5SBj5p2HzIZfjBrQlKFW9VUSe4u8XtTt+J1FXq68N/6heoqpnqOoZpAmXYzLWYdHG32CT7hViZd+HYYP1v6SBzK2mIKhtJAEN/Npf71fV20hhQjAFshj4P1Xdqqr3+rYd2zCltwYriIjQ0SYsuf514IlhFWFC1ZMlR6P65VZMWS7Bcl7jPMQ1wvtls98rCCom0FZgkap+GbP2I59xIUbSecjmbr/+fGxSHYN5Yuf4sx2NWeXTSaQeOago266u+wmC2uIWH5gXcjaNxkBOUOFBfY20TmsjZiAc5n11F+ZFHeTvd8C/X0WqpBuFTewZ2GS/leRB3YblAt6O/ejdATR6UMeRJs4iXFb8Hp/EvM6coA7Bog2Tsz7KCWocyfsKEgyCWo2N2yRShRr+/2w/78Penxs8ynA/Fml4jx+7hJTAv9ev+wRsHm3MjlG/b1itIT85QV3n7yN8Ng1T9rGuZoS3JebFWlLI5uuY4r/T/8DkOI++hAe1n9/3ZEwR34aF1G/EQtN/SSo4eL6I/D0pxBcEtSXrzyX+dw3weZIiXIV7uqp6mYeawMbmxZjBucrbvR3zCC/A+rwHm6/v8r7NvYHjMILaTiNBxbO+CCPaiX7ewzQaZ9C4B93Bfr+NWF78G9hYnEuFoFT1Q6o6z4+NEF/uQW33ebcQG9Mv+DVn+LVmY0bXPar6H9lzHeDfPeDtXo8ZKNdg8+1Qkge1BZvTp3sfLfNj78b6/16aPSgwwwZMv/wi04FN6LRI4lUi8iHJ1hR5Aq/Veo2BYjEpSQ7WQUtbHNsEsd0EOPk8LAAAIABJREFUhEbr/FJswE4AvozFvp+rqv+jqtuwzq0jqLeTJl7gBj8+iCs6fBummL6sqj+onLMJs0a+hVkYEXp7maqeo6oPq+oOr9FJLbdacoKagAnYeMzKvASLY4fnsxETwniv2EQNgV2KVQZNwuLeozCyzr8/3F9HYYR0BVatNgabrPdgEzTyVcswwgpPr0pQm73PcutJ3ciJvp5PsuR/BFxJqmgDU4Kb/LwF/tldWI5EafagwBR2bBY6Cpugx2HKaQvJg1qvql/xz8JTCmX3ECaPocQXkCkSVb1IVdfRSFCnkEgm+nUzadeH0ZjFeLTfYzUpxLeKZFjkBDXR23G/T+IV2XFXYx7lV/z/JaQ1SfMxhTwDmw9bVFUwWbrHj/+DP4t6G8NQ+DFGwH8kFVwopsTDMHjQ834RGl6HKeL9gZ+p6i9U9RpVjcKFlf7cq/zZFpC8+CXeZ8uwKq+zgR+r6lLMC/oz76+5GAFWQ3w5Qb0L+C9VvVVVX4Pl7uL+DZa8YzUp3LTen2kxsFxVv+jFS2AGkmLRkT4s53YbiaBWk0J89/mxv1LVb6rqVr9/5GVD3gPRpq2Y8o+w/dOwsf0jNg+rHlRgE/UhvpiPCzCy+QJW3DPD2y40RpDWZ+8P93MmYIbpkzDDYQWNHtQWLK95qc/PZVho9A7v/9XU9LuqXoRFsaZU7tuEjghKVV+CWXFXeAnqNzG3+q7+z+wYfwCOFJHDPDH6Iixx3Clikq/GEvD7uZUZiieqvO7LzllHPUF9tZLXwK91PjbBIXV4EOsGmrHJ2/V1zPr8L/+8v58eWE0KXx7i178HI47PY5N6GjYxLiQtbt1EY4hvgz/fGm+/ettPJimdxSQLc6k/4xZSiOE2zBMJ5XUpRlYHYaGZ2zFrK3/evKooPKiqUohjAS5S1X/3Nn5DVX+CkdSXsQlxNc1bpNzl5/+JeoK6jFSxNBLzfk4ieYzhQeUTI8ZkM5Zb+R42gSNUsZD6RG4oh7WquoQ0flUP6hCMaLer6l1+7/BAw8uOfgqCup8U4stDTn0AqnqBqt6U3WsJpgw2+vuTvM2LSeOymGTUxLPh11jt1/2oqn4DK1gKb34ZJg+TMXmP64WxspkUuajbQeMezFj4HRZeXEvyMsID2Ih5hL8jrQsMQzEn7DoPKvru3srcne/tifxcVRaj0hRSSuH+7H5gRsW7MHJ8IfAWVX0sRh5BUKtIHtQaf7482vRRkrHS4EG5YboS80DmYPMvyOg20kLa/ghqDI2GUZWgVnpfTMfmbJBkLtPRN7GxcxDUVjc45mEym+egtqjqIlV9tZ8bc+zmrG11/Q42bpOpl5cd6IigxFZDz8ass4uwHM2zVPW7/Z/ZGTxZeyFm8fwR+F9VHcgP3G3GNoldg4VAwmWcjwncp7CkcK6U1lKfg6ojG1T1Z5p23I1jlmATtpUS3g+4S1VfkB2zvebYwApSQcWRfu7DwGy3ULZhE1uAW1U1vKZXkchmg99rPY0CeCuNJeU/xayY7aR+2IZZf6tJE+ybnou7G/M+JgHzfcxyb2czjaHRLVQ8qMqxUBOq9X5+haq+Hxu7qgD/ydt2Ac0bk4I9c4+IvA1ThguxSV8lqLxdOwhKVX9MCk3dgoUbL8YMjSqibdF/G6knqDmV+wVBzcY8u4fcq38Qk4EPAx8heVDRr/fSvJh7AxY6WoqR3QZMLo/0Y5eTxul3mAHwRFXNlfAOgqpcF1KoODymJ/pnkax/GiZ7Efau23NtkT/balW9B1Ogc0mbjo7F5u1aVT3LvQ5UNeQ3jLapJINgPWYkbyIZG7k8gvXXBm/TTJrndj7/ozr3D2SGt6reiPX/DEzvhZF6O4mglmDez3hvy6qsP1ArhhiHFZX8rqZ/jsZyVoeTfsoGVd1AMqprCcrn4XZSEQg0EtRlmFf5EDYOy0jzLtcP0YdhdN5GWnAfCILKPagcIZu3+OsmzKBtRVCTaAz3N6G/n6XI8VlMGD6Idd77ROSrwBtUtdUmgAOCqv6IFJsc6LmrgM95AcV92ee/IC0eq1YgrqXZg9rqA9kOfVjnr8CUYCsPqu61Pw9qGamU+0jcQ8gId51/vobMw1TVXFGvwqyfj5KsZTCCejnmfh8POxbCvjyur6oqIlsxZRUTNs+3bcSURDzLBlKlXHhxU7HJGB5UnYUUQllVilWspnkbl18A41W1bv8xVPUREVmD5ZWilBYSQe0I8WWn5R5U/t0yVX1pP+2LZ8uLIg6q/P8wprzynN/nsHF8OY0k3QesUNW7xX5f6tkkLxxVbdoNwMdsDY0FCaEolpNVoqnqpS2eYzWtCep7pK2XriUjKL/mlQAi0pKgVPVhEZmf3SPCpb/BCHhs3XnZMyzB8hxzgTVOlqjqa/3eoQCryu4OzHvbgJFAnQcFFka82q/5dpqxAiscySNGd2AENQ+rCvwINt6fpEJQft2HSbk9Kt+tE5Gb/RoLaZT5BVkbWmETjR5UFEXgHnu0+17SDhPbPLwdiL65ENMVZ2EElYckl2Ne2PWkHFSORZgjEOMcY/oAzRg8D0pVn6Oql6vqI2q5k4uwmOZP2p27O6GqN3puoBPUEVSt91SDPlIopZWFEB0fg5gXYbTCMnwbJjKCyrAOK3a4kBS2bICq3olZyD9S1Vwp3ojF25dlxy6icVU3mPJZ5Rb9chpDFRsxKzGerQ9L5D4Lm0B/JCnc/kJ8oeA6IagGAVbVZapa93s5OVaSFtguwUgiJni/HpS/BkHVFePkqCMoaPagJuT3U9XvYRb4oZV7bMjaGcUVc0l5o1ZY439bMY9sI2nHiWW0sVIxpbgg/8C9oy2YLIQM3IDloaqKCfoP8YHJcpWgriEtpG1FULOwPAek0FMVtR6Uqi5U1ceTeauV86I9CzStpWuCG63LaSSoWNQ9FZO3r2DG8HqsQrfWgOoH12JGdCyWDizBwm79EVRUOEbf5x5UjnsweVhNc8g6+vDLqvorrC8n0Bi2z+fQxsp3QYanZh9FPr2uL7Zgxu2geFBNUNWfiUjL8sA9AD+nsbxxM60nSRVBUNWiiRwbsUqa8Mg6JaiLsMqlA6knqEdha55aVr54aKCKKLFeVjm26jFuIU3c22j8JdwQ+jwcep+q/kBELseqDU/HyKFliM+9nF9Tr2xyXEV9nqkd8utu9v8H4kGtA9Z5Xq4/VAkq5CcvkggCyhcIx7k9NBNUhG3XYEo19iLsDx/CxqqPxpL+ZVhBTb8/XKeqb23xVR+Nimw15uFXE/34cXfQ4pdRsTzsAr/fdl/nejNpIW3t3HNZiX5WBkBQGZZgkZ9WHtQS2mMxjaG/R3wxfuzo8B2MSNerrUccEFR1qYgswpT5zdnn4X3218ZRwOJKpKWOoG7ESLSOoPowLzHGYRNmjFZDfNBYxVd9jnz8x9BYxZsjyK1fD2qnCcob084C7lqo6sWVjwbiQS3ErL8QmlYhvk2V/6E9QfVgyekraCQHMAVwFkmJdQxV3eYh0GoOo4otuNJU1adWvsuFFzKF6qGmu7Bk76l4yJR68kZVn1D3eeWYm8km6wCQK7GoospzUA/SOA55FR+YwmtHnpAIraUHpaorRGQDaWuiQEzk3Ar9FKl4IfaKXKUtfm00oKpfgB2hrpyglnsep+VK/TaoElQfJp9bqwe6cqzuxp9//8XKRzdgRuJIUvVbK0SBAdSPS6sQX2Bp5bjASuD9kfNqg1fR7MnejhVRbMU8n1bt6xTvAa7W5uU8j9NUGt8Kt2Tv76Rm8auq/jeAiBxJc6XySmBeRnKrMVLP+yY2pN6O5X/bLTt6GY0/JZKjGlmqxd60Weyu4k9YFVFbqOr9qvpy+vegNtHY+fG+P6s8lOi5wPNqFFPkmnZ2EnyHflZtO3IPqoqNWIlx7oXsIEtVvV1V/57kPeUlwLsTOYFvwWL/QfbrgWdVPNCqB3UXaYeP/lAX0qv7fw7NodRbMDLPk+mXeD4VDzl9i/bhvRw5Qf2M9mPdDhuoT6R3otD7haqe7kp3E1YY1F/0Yj62iHYt9bK/DniohaUOyZCsljs/pKr/WHN8XXtv97B3jvhxz62e+hBtLMQaEFT1SzXkRAfkNJ+0WBlV/Z2qvqvVwap6t6q+vvLZBlU9M/so7pnnGx/CjNdtqrperbKvJVR1k9rC3DoEQQ2dB7U3QW3dxUBd83YeVE5QMSDtPCgFbmoRwosJ0S43UgtV/VgHh23t5/obaXymv6XeIwtyaulBDTEeIO0isjWS6bDD0q/mThsISq1i8i20xzbSdi+QlGy+kh+10ufq0gWlsaqyDh+ls1/aDewgKLUqyF1FH40hu3zNzmBhIxY2bElQTjzfEpG3U0NQqtonIv155LUENQgII6Zl/mp3QFWPaH/UgBH9XNVXy+nfyO4UxYPaDViKEUorD2qHdeAWcb4otA73ABdri8pItbLyKTV5o8FEfx5U9ZnuUdU6CygI6g/sXIhuV3EzVl4bbWmHqgfVEZxk8r0CN9G4keYuKXJVXdrOSq0g96AGA++gsZR/qAhqOp3lf9fSwnhS1bry7UCrEN8uQVVXYL/5VN0dYm9AkwflWE7/OqxTFA9qqOF5nUe1UNJVDwpsl4qW+QC/zt+1+t6P2SnvaQD4A825r8BG2giUYwuWHP3PtkcOAVT1MhH5DZY36ISgwiIcEEE53kWy0CNxvBG4sL/KsCHCoBKUql5X+X+7L0PopE87xQasMrWT/O+1pMXyA0EsWu+0wrdjqOrfDPY1uwTrsOrXofagCkENJTRth1JFE0Gp6qeHvkW7BlXtjyCrIb5W2JXE/GBhHRZ6aWvte4FH7KQxIKhtJhzYiIUUHyH74cXdiF9QX2E3mFjP4HtQ/ZWZ74Cq7tTP/fj4ztXOl6Ds8/AqxdXUe1CDMf4dhfgKQQ0dOvU29iRUKxNb4el0XrI/JPDy3H+jc6Lcxs55UDlqS293F1T187vhNn0MLkFFUcGQyoumXSkKOscDNI/1x4CWS1wGgI48qJKDGjrcT2Xx416AjjworwgaDCHeJajqe/qp7Kpijyeo3YTB9qB+6a/DatAU1GIVlRCf2g8P9rdouFOUIonhhKr+uJ8FkHsq9kavMHAhnS3Y7A9Nq+v3Qgy2BxX7eRaC6j7cy66t6+oPWyqvtSghvoKBYC1DkGjuBqjqNwfhMuvZ+xXtegbRS1TV+SLyLIZnvVxBP9C0S/lQIAqp+i0kKgRVMBB8m53c0Hcfwe+wH8DbmzHYHhTa/FtqBXs/ttBBNKYQVEHHUNubbjBKTPdK+M4f7fbN29NxM+23uCkoaIelwCfaHSRdkMseMERkntpPvxcUFBQU7KUoRRIFBQUFBV2JQlAFBQUFBV2JQlAFBQUFBV2JQlAFBQUFBV2JQlAFBQUFBV2JQlAFBQUFBV2JQlAFBQUFBV2JQlAFBQUFBV2JYScoEXmviCwRkZv87xnD3aaCgoKCguFHt2x1dLGqfmS4G1FQUFBQ0D0Ydg+qoKCgoKCgDt1CUBeKyC0icqmITKg7QEReJyLzRGQeMHI3t6+goKCgYDdjt2wWKyJXAdNrvvpH4FrslxsV+Fdghqq+asgbVVBQUFDQ1eiq3cxFZA5wuaqeMMxNKSgoKCgYZgx7iE9EZmT/Phe4bbjaUlBQUFDQPeiGKr4Pi8gpWIhvAfD64W1OQUFBQUE3oKtCfAUFBQUFBYFhD/EVFBQUFBTUoRBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXohBUQUFBQUFXoht+DwoAEVkAbAAeBh5S1TOGt0UFBQUFBcOJriEox5NUdVW7g0TkJ6r69N3RoIKCgoKC4cGeGuKbPNwNKNhzISJHiMiLh7sdBQUF/aObCEqBK0TkehF5XfVLEXmdiMwTkXkUgirYNZwBFIIqKOhydFOI72xVXSoiU4ErReROVf1VfKmqlwD/v70zD7ezqu7/ZwGZL5kTSAIkDBFBCogWQaWCUhSKqNVaFSytVupT1NpaUYviRK12UOrw0zoiVinVYrWoVAUUqgwyz2OIJCRkIrm5GSFk/f5Ya929z3vfc++59yb3nNzs7/Oc55zzjnvvd+31XWvttff7ZQAnqYKCoWIcML7dhSgoKOgfHeNBqeoy/14JfB84tr0lKhjFGOefgoKCDkZHEJSITBKRveM3cApwd3tLVTCKUTyogoJdAJ0S4tsH+L6IgJXpO6p6ZXuLVNAMIjJOVbe2uxzDQCGogoJdAB1BUKq6CDiq3eUoaBl3isgJHo7dFVEIqqBgF0BHhPgKdjnMAPZudyGGgUJQBQUDQEROFJF57SxDIaiCoWAcMLbdhRgGCkEVFAyMvwFe2s4CFIIqGApGA0GVLL6Cgv4xGZjUzgIUgioYFERkD2AMu7aCLx5UQcHAmEIhqIJ2QES6RGTMEE6Nc3Z1D2qMiOzZ7oIUFHQwJgNd7SxAIajdF/8MnDmE88Jz2tUJKv8uKBj1EJHB9tniQRW0DdOBaUM4bzQo9yh7CfMVtAUiMlVEPjeC91sI/GoQxwtlDKqgjZjE0IRvNHlQhaAK2oX9GFoEY6iYiRmlrWI8Fs4fVIhPRHZoSLAQlENEHhCR3UlhDZWgxla+OwYi8mwRaWWl+z5eoIjMFpG7RGSHvyhTRJ69o685hDJMEpGXtbscw4WIjBORk/33y9tdnmFgIjBtiOPAQ8EkBmeQTc7OawkichBw/WAKNRAKQQE+WP4sRmBAUESOEJEX7Oz7tIDhelCDDvGJyAs8dLCz8EHgj1o4rs6D2h84AnjHjiyQiMxhEKGVnYgXAJ+obhSRPURkVwrXHgl81rNJr/S1O3shIi/P6yMik0Vk7lBv5u2z39CL2xQT/XukXh00WIKakp3XABH5hIgsqDlnNpVhAzFcO9R+XwjKMLHyvTNxBXDDCNxnILQjxPe/wIFDOK9VdGGrXAyEOoKKZz9oZSQip4vI2U12TwemukIdUbhymO9/u4AJNYe9Gn+NTTsxCAU2CatH1KXaZ/8VI7HAN4DHh1G0Y4HLh3F+M0Tfm7UTrt3sfkPxoKaISPXNEq8ADm9yTlXG9gJOYIgRl92OoDzU8Y+VzeE5jQRBNV2/TkRO9lDTG0Rk6k4ux4gSlIcypgBDtmZbwGAI6mkaO+wEYCnmSQ0WrwJ+v8m+aVg/a0e67nOAH/vvLuoV1AGY5ds2iMiRwPYWIwtdWD8N2Z0oIq8XkbDcx5Osf0jTIoaK6ewcLyd0zUi1/SRgwiAMgSnAeuB44FuVfROpb5M6gupXX4jIH4rIYc0KsdsRFNYh312ZA9Mr7CNw/+X97PsK8AHgUqyM/xA7RGSfPFQx1Ni1iJzkIZC8k1ePObMfQQ5BG2xYKIgjr0NXvGalcv83isjzBnl9sPUBWyWobvp6UA8B+w0hHHE0MKfJvjA0pjTZvzMxhTQw3syDmkX711WMtmslPDsJe1Zd2f/3YCFMsDrmxl1//a0VTGZo2a4DIXTNLAARebOIfGUn3CcwCRBaJ+zJwDL/XfXyJlFPUFPoS4IDjVmfCbywWSF2G4ISkfEisj/WiGNotOSH5EGJyMdF5A8GOOarIpIrp02+vU6RTiEp2D8F3p7tOxd4p5+7B/BUjevdCq4GzqGJB+XX/nfsFSh1GGqILwQ6b/e/wQg57j1JRL4HfAebpzVYdNFaplIzgloBbKNRwfULEdkLG7tq5hlOrXyPJCaSiHHQBOVG0V7+W0Tk1JpjVESGG7aN/tcKEQRB5UbleJISHU9jW6/ycg41qWcyFqLd0ZO6qx7UC4E/F5FnDeYiHnU5o4VDo71aDfNNIRFUNZmjPw8KGnVDr0HrOvg/as6pk0tgNyIo4Azgc6QOm3eqSZXvVvFB4IoBxhdeR6N1Hcrg0PygbN7BdOAeYD7WMaK8M7PyneDfQ1V6R2BCUVffEKiDmpw7VILq40FhnXN+9n8O8Fr/PZRXeTQN8bmCjU4WBJV7gRMw42EJPg4lIl8RkSMGuOfBwEaae1ChdNvhQUVYJ9KF65RTfx7UJcBp/nsq8KMgrAqG/PZrN/AWAptpnaD2IBkik7DnGIq+6kEFsXy8GcmIyAUi8uYm95tS+d5RqI5BPeXfh4nIl0TkkkoZD26StXgK8Mo646HJ/VolqNyDgkZC6iUoT0L5aXYONBJO7kHtB7y+oi8LQTlmYkJWR1C9HpSIXCytpwU/UTm/Af4gqsuF7I0p3/mVwydinWk6cHu2PY6bQRKyV/r3UEMPR/t3HUGFAB/c5NyhZvGFgL/Xs4DOwuqUL+efez+9BCUifyQiTYU4Q0OIT0QOEJH/54rpAeBHWdnrPKjN2IB6JEocxcBjUjOw0OC4akaZo9aDEpGFIvKDAWtkx04XkT4ZeC0gyjMFa5u6MYhZNB8fm0MyVPbGQkS94Z7sWge0UhixjLjjKpvfj5HgEvoxuLJQcFWx93pQ/pxjrDMQz/g8+va5wEeBTzXZF0q3tq+JyHkytLk/EzHvLog17tMFnAS8uSLzL6U+w3Q2lhTy4wG8xGi3j4nI71R3isgYEXlftin3oCCFIvfE2jT682zguOwcqCeocZg8CY0G0e5FUCIyX0S+VLNrOvbwoxEXiMgsEfk70sObBpxNTUxURD6YC6JbpTMwIWsmoFOwB5Irrr0xD6naqaNc04H7ga2YgCzw7TNIYYEFwDq8Q/u40hj/3YpX9Vz/7i1X5l0MRFAtzYMSkROkMRllJvBb//1ObOD1UJoT1Hq/znjgP4G6Z1pFF7BQRD7s/w8GTsU60UIgBmPH+/WrSRKbsOcZnS8yxvrD3kAPNtYxx8t8vojE8+0zBiUiJ2Aydkz1YmLzfKqk+GygmYXfH0JepmJtswd9X1Lanwc1k6TUQ4HuIyLTRGQlSQYOabE8LwJ+XRlf3A+TgaU0J4FDgfUichqprwVBhQc1i/Q88z4wDrgSWE3/xkaz0HC/BAX8Ff1kpnpY617pO2Y8EVhMI0E9idXvXt+2KTMCJtHYVwKzgGjPyTX7A9HXz6ASvXHMBi7M7jcZa7OnMfnOPVSAeSLya+DPSXI2kAe1r//On8/uRVBYh6rLqIqX7E3FlPsC4M+A80nKIyYyRtz9S5myeBeJLMAae5Vfqw9BichETLFAXw+qP4KaAWzABoyvoNGDCkHYH7gTiw3vAfyA5FXdIyK1qauZhTUGG2vJifNhJ7degvIxiKqM1Ib4RORZXufA0UA+6XUGaRLfdv9+Nibo0SlyJRHXX+jfx9fVye8trvSjrOdlIdOZWFjxbmC2t0F4UBPEsoj+FWvbTcBakjIK67zungeIZZ11Yc9rGSl8+cfAsWJzRQ7Fwjd5pzwP+BPM6q96NK+mLxnPosUQk4icW+NtTCHJYFUZzALGV0N3Xq6ZwEEeWgoS2gdTVrNIRsxz/JzxlWucIyL5agknY57xO3z/HpjSnYd5UM1IIIj8TVmdQmHGM5pNc4L6L+DnOEFJ45gwwBY/DhH5gDROaM4Nxzp00T8xzMUMo2pUZiJmsEVfDY8lshR/4tujvl04QblB+hzfPpsUxpzi+w8RkTdW7pd7nnWEMBHTe7lBtR7TcbfQ6LGChXWPx7ynPZ2A6wgq1xcRBp8qIpeIyGx2Q4JqNoA3HSOHKcCDWIOfhSnrmDdxin/Hw3gF8CzvrFNptDTnYuGgDVQIyt3gVcCvfVNOBJMZ2IParKr/AzxCowfVJSK/8G13Yh16oZfrTd7h59A8k20SppjBhHGSl3cvL89MkkAdhBHkX2b12iOryyEi8iFJkxgfAG7N7rUfjZ16JnAz1m65IOdjBtOBZ7J9YJ37evofb5sP/BL3ujAZmEUKrx6MKYNlfuxY/z0Ta8uDSCG+J2kc35gQdZfGwehXYZ5geFArSUpzGqYMbwH+wO+dK8Uu4Hewtq56L/Oz6yAi78GMlb1drhCRM0TkHVVyE0vX/TzJ0OqXoDKl0oMZJBECxbePwSzuK0nJLPtmdTkJI/RDxFZ3WCZp3hVex+eLyIvFxlReCXybROSzSa9u6Y+gjgRu8v11Ib7woKJuVYLa6tff342oJRUyfTL7fRJpjDfaYVtd2bz9u+g/CzKU8nMr2yfhHpSIvA2TuWW+fTrwES/zjOz42SJyOJboFM8jT1OfLCL/jkWB/qzmfmD9vo4QYn8kR03GdMXhJONuPPBijNABfkrSteeRsjDztg1D82+BiKhMxWThAJon7wCjl6Amh7cgIi8TkRfSGOJ7GHuwh2IP+0V+7kxgEemhzyAJfm4hgFkzy7AB8i4R2SYix4vIh7B4du5N9BviE5ELsEmsYM9ks/9eTVKWM7xcL/Ft92Gd5nnANcDLvfxBpnXo8vLG9Sc46cQ9woPa6PWbD5wvIhPF4uEbgC9gbv8rgY9hITQwJXyopFdEz6ORoGYBa7BMuaey7StJoYsZwPeBX5CEvJegcoUstmJAKIbZXu8erOPej5FSPK+jsGf1KObZKdb5o4zTSSG+3IPKQ3wvwjzVwDSS4u/xukV9p2ME1ZO1TU5Qe5MUbNXb3Z9GA+MkjCTASGoG8FVMIVSXLvpTL8fHROQDJBnMCSpXHm/Gxs+6sTY6za3aKFcQ/tWkMNY+JPk6CQttngf8D9Ymp2fXn+THn+r3WoeFa6PO+aTox7F+VJfIcCRmgNQRVExA7c+D2go8hinuv8Ha/9hMVtdmx88lee1gMvQY9eQ5AeuvA3lQ0JegIsQ3F/g3jAjCg5qOkeYakizE84vxo0neH2aRUuknY0b2i4GZIrJJRF4dx2f3rnq6r8W8W0i6bwqwXlW7SWNlL8MSZ36LTe7+76x+F/r3M9SH+N5AMn7nYM8oQn67HUEBzPAHeDZm7c7AHvJUjKAic+hGTHjCcr8r+yPnAAAe0klEQVQHC72M9eNnkoQzt5T2I3lQCzE3ex+MMM4C7siO7YJeT2UcRi4H+Lb52CBtLuSb/LsbI9uzvV5hjS3DhHcapjh/5nUKDzBc/d7O7lba7V7eSEDYiglrdIJp/n8RJnhTMXL4S793CFIo3k2k0M9kzGOM8bt5wHT3PE7GjIGHVHU7Rg7b/Lj7snpNx5YF+hqpEx2KteUzNHasf8K8E0idaoOqftKPP4hGgnrc6/ufGJlFSG6a37fBg3LZmYiFv8biA8EiMtZj788hedUbcGXiVuZE7PnGCgargdeISFinuRxdJiInZv/3pzECMDM7fgqmrO8HvkffMazDsJUTfgd4PX2TJKBRGfwd1j96SM8xBrxn+n2+jCmlIIRDSUrpWK/7t4B/AT5JCjWDyf0+wO/6fU7HlGk8r5ygujFCbAi/icibsFDST6knqBjnDUNSK9cIglrqZY/xyc9g40fgBpuIvB6T2zzVezJGJKfWhAb3rnzXYS7Wn6orL0zE5GOsl3+c/+/yej6JyU3IQhDU4V6f6aS2uA5L2JqLtcNzsD49AfiWiBzj94t+WyWE72H9CRrHxCLashwjkwV+zx5V/QvM4KgS92rqCWqNf28mhTtDjoZOUCJykYh8VkSOFZF3DXR8OyGWshoDgPtiYx3HYJ1kOlbfOVjobCr2UO/A3N5Vft49GMm80//PIllkuSAejnXgDZh1ACYEC/x+15HGWt4tIreTPJg1wFgRmQy8Dfh6pSrh4az3e1/s/4NIfotZfb+LKaJLMAvzNb7/1WJZcttE5ERXtl/2NsgJaiMmcHHdqVhHWef3XuHnneplVz8uBP03WGhoL2+bH9FIUJMwcviZt9c9vm8xcBvWAVZk9w/LcQuJjOZgHbebRst4X9LkzFBWG/z7ERo9qKP9GqFA9/L/87AONo00BvWk/49OMwEbE4rwxDxMYR5NUvw9ft4MUocNojkD83gWksKlIUeKydp7snrtj3lK0bFzsopJo2uwEG++pA8YKV4GnIj1gxmYMoskiWeAu8Umhe6BEcRd3m51BLXKFVFkc20G3uJt8aifv0ENH/TtL8rK3oU9p+cD/6uqkYQyS2yy+JuxZ4WXYR02Ufq5ksYzT/P2uYeklLdiz3yDb9uIKcJpfv39JS36GwT1IOb5x1jb0VmdQ9Yu8zZemHnrU7CJ88+lMfQH6TmeIyJfFMNVIvKZ7Ji5WKi3Oq9wopd7VbZtmd8vyCH3oCZh8nI41vbTvQ1WqeofA1eR5GEW1m+2YlNhPubnB0nkYd6oQxhTUc4Yg4pyzSWNh4cBHfsheaFLgbnZmGbIQnDNz0jJSmGYDsuDekJV34UpniHPdxghvAsLdUGygp6DdZIY39gPs+CfxiyD8HRygnoW8HH/38yDOsrP3YARBZgiWOC/7yWloR/kx5+MWR+KhQ0+jGXBfCo7FhJBddM38+hWLJSzFhOYb6rq45gnGG76H2IxbDDlmHeOjVg4ZjWmEPalkaDGYwTxuH+WYILUhXlpkATzJowIZnh5rgNe6J17nt8rhHqdqq7z32/FwhprabQS6whqH4zE8qzFvfycF7gyDEEPgnrM2y0Iah7wuKr+UlWvUNVnSAQVIb48SSK3TidgnexXXtYIBx9EfYhvmrdPLCH0K1W9CpPLk/zckKNFfs0TRWRfEfkuZlBtIz2TPAQYK0OspTlBLVbVX2JjgsdhyuXPMYJcjXn6l2DKtkdVN5M8qIewMdd9MBkJRRRjNN/FjLIZmMKXrM1R1bWYjAQ5dGHW8gZVXeHHbMZCvO/0uoUXs8Hr9ScYUWwUS0KZ4m0bodcuUshppbfHFv+9v9fhE8D3fIxtHLBFVe9V1bHYeMoKTPdFKG+Cl/leTN6fIYWfJmPLRV1N32WJwqs5ys//PSwdPPfA5mLGWG8f9ASGE0lZo2DGbIS7e1xGqyG+pV7mxV7veSS9sd7LERjj9fxvzAjqQ1Ai8hZsnmZelzoPKvrKAv9fR1DTvA0exQzqz/v2IKgpmCF/O8mD2iEE9RsAVb0IuLaF49uJGSTByrNm9sUacBnW0OswwXgCa9ANNBIUpEY7HEuWAFcsbn0egSmJDVjjP449wL2wDv2Qb8vj2yeTHupjmDX6t6r6oB8fiiD3oOZjCiSs79Wquii7bmT7LCIp5NkYcfwAE7K3kshlA3Chqs7CPJ7XkcZOIsSXE9RyrJN1eZkhjSHdhFmiT2DK72Zvl/mkuH9YqXdHI6jqbzEvsBrGaImgMMXW4/f+FyxUtZbk2a31Y/OQzHU0YoXfLwbqZ5FCfHkoabwf9wmvz4t9+14kD2oDyYOajim6Lv8EKf8KOMYHuePa93ob3oo9q1CYDwNHicii7NgVfr8I/9yLkUlknO7tZQ0ldAfW9iswI20sScY/gxFQPM8gqJsxAy7GOcKqjmveh4Wj98DkFTKCclwDfEQsIzQm1f6mcswqrD0/jBFCXGc51keiHWIljG5V3YIRxyw/P76DoFZhBL1ZVf/J63Y6yYMKvI60OO7B3pcnYjJ8q9f5OiDGridg7b0CV94icpmIfJuUxTgO0ze/j+nI3NOfgz2LmZIyYs/F5GcTRkpLsb7e43UIPbAGe8axcsZi7Dk9SiKESEwKgoo+gNfpMb/Xfl4HSH3rfVgW83JSX2nFg9ro30FggR6S7vrTrG0gja2vI3lQc/1aQycoVb1KPO1SVdu+6vEAmEFq4CCohzCLJpRIFyYUqzDvcDtGNCsxF/p+P28T1uAnYg8RkuV7MLDGPYLooA9iArIY+GtsxfKl/gFTRMdjChlMcKZm93uApBDyMaixmML6RraN7Dr/59+P1rTHPVh44m1+/S3ARvfgwJY0ej19Q3xbSQS1lrSUTAh/hF8eIb1KYpVbx3d7/a/H2vsQTEFVF+i91suVE9QCrL22YAkcYzHSXYMJdnSifbF2fhIzHiZhRH2n7w+CmoyTjqo2KFK3UFfiKdKY4ZJ7UFHHCV731Vjbv4jUQSd7mcKDCoJajVmKq1y+UNWNmEK+2su0Blsl+7uYrByLeQ+zMdk8HUtMWI2F4e7xdj0OWOsKeyVpHGd/4LHs2S7y74+T+kQoqI96/YIcejBFeotfZzZwmar+te9fkx0X4b48NJfj49jz+H2SVX5z5ZiZmFHwC5I8b8A8jaNIpL431sahKNd6fVdi3lt4UFvJCMqPvQXzchsISlUfwPrKcr/uXOwZbyYR1E+wsPb5wF9nbX2CiHze963HxkoDXZhSvoTGsbW5WF9fj41RjiFNlH8Ke/7f9P0baCSo1Zin+Q9+/cVY2z6B6e6XkN6M0O33utH/bwJWuDzcjI29xvOe4OPTB2K6LIy35Vj4NRY3jv6+GnsWh2IyVOdB4eWP9h/nY3b5dJRNXs6YEzbHrzfsJIm3iMinsrgiYqtuv6+/k9qAGViDbMZY+odYaHICJrBR32UkDwrMw/g+RjqbVVUwUrg/XZpnSAR1DNaZICmrhzDBW6yql7hC/Bw2BwNMcI7ElA0k6/UB/34vyS3OQ3xgArsVI9BuACfHsaoanW8ViVSjXHeTlk1a4sfkCuU237c/1jHzEN9PgatdwJdhVm2cG8p7jaq+GLOsgzCDeH6JKZSDgZtU9ersvqjqU6p6q593iFgK9yQvZ3hQszGPcbvXe6rY3KJLsGf3IMlD+46qXuC/Y/B2MrZ0UrMJmvdh8vIEjQSVe1ATMIUaIdHDMFkCU5Jz6EtQazGDpLpc0xcwsugBnqWqF6vqxRjJPwDcpaqr/F6RHblKVY/E5PFlGHGF97yItNLDASQFBMlgWa+qK12m12Oh1m7Mqg8ZDCv8doyM55HIDOy5x4TNIKhVXo4q8a/FjJMDScbgjTRib2CJy1aQ0QZSu74W6zdhAEQ/WIsRTniCK7E2DwI5gJQCHc+j6kGBee8PYiR7ICmD8+uYV3EtNr45C5ORuNepmPdznR9bTZqYhyUc7Jt5S3OxNlvhvy/w+38e0xVfxgix29tgT1JWXij3N3ld4pl2YzrhVFLbBllc6d8PkvTb27B1PXuzdzESDaIIgoq09i5gkxtxeP8b6/W9k+YE1UNq60e9vjlBbSYZTv/rZVjOcAlKVc/EFN1PxZa2vwwb23iwlfNHAm5tB4E8iIXmVqnqakxYb8BjntkY0KP+/36SVxV4lERQ6zAFHtd/HqkzRQd9CFOoi+MCqnoNaYwrLJ34/xiwTFV7/Nh1NGa6xPczmAegmGD0CoWqPp39Vi9zCPFpmIUes9KXeB03ZudswxTjCVhn7Q3xqep3VfW//dDlmBca54byDkvvdlLbfQIT4p/4/oU0zjOpYjU2PnM5cI/XY7OXYx9SJ4sQ30uwMOImrM23YYorf3Zx7GRgpQ/O1+Em/16EKYbNTvhrsHE8SMu6hAe1J+nZr8MTBbyOc7DMwm7seTe8h8gt8SexMYa8Ta4Afi/zflZhxPMYifgjy3QsiaAexSbSXoSFe/KVu0MONmbbNpPa6eck5Xuxfy/DZOQoMnL1cj1JWjEDr2PV4AksxrzhLux5XVPZ/1pStl8PZnjlBHWrXzvmLQZBRdZXkOcvae5B9UdQ12CZvcuw5zcW2Kqq3aoa3tUsPz/6ZHhtt2HkFMZAPJ9zgAOd/NcDvycin8TkZ62X+RRskvI3VPWd7lWDycofk9oynst/YuT0GGZILvbt3d4u40g6OM69EusTi6KdVHWp3yvIewIpsnE7ycNdQnq9SDV8F+22kkRQYQxH+24k6cglWKSjgaBU9RduLF3l+5cwXIISkX2xBzkRm2dyj6qeoarfb+X8nQ1P1f5Jtul2zDoI4XkCszTyjKhzMPc6cC9m4QbuwgTnUKzDPEajB1VHUJCW8wmEEIalEwR1J5bRkiMnplAM3SSFtJF6wQksIlkoN7qyXeLnLaVeodyNeX53YWQynyTIgdyDuggzTvK6/Q9OwKq6VlWPU9W7/J7z6Z+gQgHsSRr/Cw8qxp8ghfjC6jsQ65yLsAmC4dFCY4ivauXlCPKOe0THeyu2RhyksGcPydq/BSOMWLcvPKgpWNbeLZgHcFbNPZfROE6Aqm5X1dzbuhCbr/NvJBnOl56K9lyEtcNrsNDjmuyYkIOcoLbE9VT1far6Rf8dnu792DN7Ho0eFH7t9a7o1ntbrKQ5QYUH9UhGvFHfy1X1jqg7lijRjcnqK91Y6yFltMUzjCki0RYP+LY6DypCx+OpEJQaurFncRBmkOVl7MaU5r40EhTAR1T1v/z/0ySP8gequth/Pw58FouKLPNrr8BI+XJVbVipX1WfUdX7qBCUqj6mqpeSCCuu342vRBEhZFIY916/z2KSDAS2YLrlKMxAWaaqzyXJU3hQHyJFfgKnAW/EdMhGL9/TeCgRGzrYThp/e4Iagsp+5wlNTQmqbmXiOnwJU0qfxKyIC33G8tursf02YRUpQwqMoM4mCdeZJGX0BPSOQfTCFcQXsv8fit8icjGmaCNl+xhSWGQD1pnC0l9cKdtGzEJcjFmqd/r1byMNJAbiAeYWf7jzsb0/gno35jm+JEJ/qrpdRO7CLOo6grod80guxcIXz8MSD3Isw6y/H6nqR0TkFOD90am9E9UhOtZAHhRYODbCgFuwcMlFpDGuCNvF0k7nYR3gcLUsuRyRkt4bEm2CqzBivtTLEc8wQh6bMAJaraoqIt3YuME9GAnGtXtU9SkR+VvgS5llnCfIBJYzwEK7qroE+IyIzCQpnuuwEN+eNHpQp/sx22l8tXzUJZfzzaT2rt5zEYCILMas+Wp48mskA+I+Upi8h75YjI0BP517+c2gqp/L/l7h3+uxej2VXeMUzBB8ClP+gfCgYswR+vegAhEZyBUn/qxX+/3DKAnCfsCP2S4iS7B2OIJG4+AGbKxwE4nAHscMqe80KQv09aACYfz2hm39fnlOwKUkor0SuDKf2O7Y4vWIsHi8fyqeYXhQryIlMgCgqj8BcL2/Pdu1HpOVIKIqQeUTr3O9Fn1k+ASlqq+ubIr1qq4kZTW1Daq6SURi8i1YuGoTyVq8A0BsSfpVtRfp//rf8pTX92JLiGxST5slZQCGIC+unL4BG6t5hr7Lj1QRHSX3YNbTIkGp6iKfX/JYZdfLMSE8isZ0djBSvtjv81UsJbnqQS3HOn90oHvom5lVh1YJaitwVoQ7SWujPY1l6MU1DvTt16plPj5ITWapqj4tIlswC7zpvVX1CVKq9nez7T3et8dj41fhFXdjHsYDmJdzbl4/Va0Sex1iiaUB4eHpkOELReRbmHzlY1BHY20yn4x8XIGeTKMV3ZSgMvyCGoJS1U9nv2PS8jdJ2aE5FmMhvjqCbhXrsbr1yruqNkQcJL1Fdwsp9NjKGFRgGTaOUxcCXoWN8W7P/ucRCjCFvhQbSug1BFT17V6+67NyxcTy/jKho/8/UNke8peHVxtWIHGj5rOVbQ2eK2aM/RJ7Nt9U1VjaKjzUkI3xNHndjareUtm01ssVxBTEEwSVRzByQ2DHEVSTgl7lk087BXdjjTQLq/yDNFo1qOqVNee1ig2Ykv4KycoDe0DLaE5Qi4EvtniPzVgsPLdQcg8qwitNoar3iS2cmm+Lcz5fc/wWvFOLvSywjqDCCgzX/nFamxMXY3j9kcQmETkoIyey+z+kqtEpI7V4Io1r/jXDWsyz2Tbgkc0Ry9hEx12HDe5vBv5VbFmg9Zrmd7WCZQz+VSWBx/ExSf+/iDQxXegr71XPshWCiiW3BjTkVPUHTbZvcIJvtrZeK+jBvNf+5L0bs+a3kta9DKW8mtY8qIOpJ6iVZCuXuBdXXeH/t1gE4tPU417cqFPVJ0TksBrS6IUbFfNq5GmZ798qIj2YzDW9Tj/X/7GIPEFjdAms/ttJiwhsGsT1T8MmXEfm4lnYGPUpmBe9BfN4I3ktEAS1DFvWcEydtz1kggJQ1TUDHzViuAtrpFlYg59LypjbEVgE/D2mwHMFeT02oN6NhagaFICTwwW0hs1Uwg3YA4xU9VjLrl9UlP1gEGWvduggiUGFc1V1o4hEOKi/46r7g6Dy7TGmMInWvOB1pNDIcBEe6Y0YEQCgqufXH94vHqX561n6hapuE5Hjs363ApOXsEAH6o9fY4BxZ1V9VET+mcaMwKHgIRrXtBss1mP9uansuEJ/EgttrXNSjEnza0jp7E81uUTMi7yzZt8qBn6B6d9hk5CbRTW+QSLMOo+mD2r6AthUklg44AL6RkgGg3ydz95yOfHFSiq13lMdVHWxiGwkEfE6YJ0TYaxXGit+1I1BrSLJ8I4lqA7DV7DY748xC6BO6IYMt5o/6HHnG7Pt20kKs7p452DxJH0Vw5kkIX8Nza3BHYGoRzMPaijjjUe1Mg6RQ1WfcWWTE1EQVAyID4S1NE4TGCz+AhufeA8e1lHVe0ljmUPF1xle5OI32W8VkUe9nHsxAEGpTZBu5R7vHfioAfEAwyOoHkzBVcdjqlhD6hNn4REMVd0SYzCViESOyLKsI7DIImwKjyT0t///+tvfKtSyUC/w3xcN83J9CMoRBLWGwRsn+fSWwB2YB3UiZmDvXYlmhAe1mkRQfbzlUbNYrKouJb1vqFla8Y64z7+p6k4JbarqarU5L/m27VkyQjXbaEcjhLbfEN9gMFhyqiAPDUaIL1YQGAirGQaZqM1PCWVQzYYaMtQytnakkfEoacyikyIalw/z/FBW/SW5gNV5C4CqfltV80SRfkOvWSjt6Jrdq+is9txRyJNIcqzH+nedkTwQNlAhF/cEL8CSJPIJvIGNmCOxCcuarY36jBqCcuSrbBcMEi4sm+hLUOswK3WkMzZzgorU8Zm0RlBvx+aRDAfRDnWrdHQKHiJNXegYhaqq32B4+iX68vX9HtXoQVVxd5PtOW6j3qO9ksZpKKMFzTyot2DjabeSptC0isux9z1VkUdeqgT1ODaNAlX9oTaZqziaQnwRGlpBEzYuaAmRVdcLDyXFemEjiXyy6DZP817hiR39QhvnFQ0V0al2mAe1E/ARLBnhlR6G7hgM09uPPvzjAY7r9aBqcAcWYuoPr6HvoruoanV5ptGCfJ5YL1Q1hi3+frAXzAzbKmLsOl+jL87ZiM316xejiqAcC4eRJFBg3kldhz+FkfUkjiet9BBYVbNtZ2IzZgVWU/M7Bj5A3y0iR7S7LDsYKzEvZqBxxP48qAFJRtPCxbsLnsYy9gbK5twRyAlqSFGtUUdQhZyGjRuoiUGrT+QcKajqDTWbVzOCBOWD6/MGPLADoKrDyezqOLiXfOqAB1Yy5Sq4lM4Oz444PBryYUYmHJxnBQ/Ju5edO+a+cyAiN6vq8wc+smA0Qez11TeoTbAtKCjocIiIYkuhTVPV6gsfB8So86AKRi80LV5bUFCw62ApQ0xYKgRVUFBQULCz8EbgGk1Lww0KhaAKCgoKCnYKVPU/hnP+aJsHVVBQUFAwSlAIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI1EIqqCgoKCgI9F2ghKRj4jI4yJyu39Oa3eZCgoKCgraj05Zi+8zqvrP7S5EQUFBQUHnoO0eVEFBQUFBQR06haDeISJ3isjXRWRa3QEico6I3CwiNwPjR7h8BQUFBQUjjBF5o66I/BzYt2bX+dgrxldjr23+ODBHVd+y0wtVUFBQUNDR6KhXvovIAuAKVT2izUUpKCgoKGgz2h7iE5E52d/XAHe3qywFBQUFBZ2DTsji+0cRORoL8S0G/qK9xSkoKCgo6AR0VIhvOBCRu4Et7S7HLoCZ2JhfQf8o7TQwShu1htJOA2O1qr6iurETPKgdhS2q+vx2F6LTISI3l3YaGKWdBkZpo9ZQ2mnoaPsYVEFBQUFBQR0KQRUUFBQUdCRGE0F9ud0F2EVQ2qk1lHYaGKWNWkNppyFi1CRJFBQUFBSMLowmD6qgoKCgYBShEFRBQUFBQUdiVBCUiLxCRB4QkYdF5P3tLk874QvurvR5YbFtuoj8TEQe8u9pvl1E5LPebneKyDHtK/nIQUT2F5FrROQ+EblHRP7Kt5d2yiAi40XkJhG5w9vpo779QBG50dvpMhEZ69vH+f+Hff+CdpZ/JCEie4rIbSJyhf8vbbQDsMsTlIjsCXwBOBU4HHijiBze3lK1FRcD1Qlv7weuUtWFwFX+H6zNFvrnHOCLI1TGdmMb8B5VPQw4DjjXZaa0UyO2Ai9V1aOAo4FXiMhxwKewd7gtBNYCb/Xj3wqsVdVDgM/4cbsL/gq4L/tf2mgHYJcnKOBY4GFVXaSqTwH/AbyqzWVqG1T1WuDJyuZXAd/0398EXp1tv0QNNwBTK2sjjkqo6nJVvdV/92CKZR6lnRrg9d3gf8f4R4GXAt/z7dV2ivb7HvAyEZERKm7bICL7AX8AfNX/C6WNdghGA0HNA5Zk/5f6toKEfVR1OZhyBmb79t2+7TzE8lzgRko79YGHrm4HVgI/Ax4B1qnqNj8kb4vedvL93cCMkS1xW3ARcB6w3f/PoLTRDsFoIKg666PkzreG3brtRKQL+C/g3aq6vr9Da7btFu2kqs+o6tHAfli04rC6w/x7t2snETkdWKmqt+Sbaw7dbdtoOBgNBLUU2D/7vx+wrE1l6VSsiJCUf6/07btt24nIGIycvq2ql/vm0k5NoKrrgF9gY3ZTRSTW8czboredfP8U+oabRxteBJwhIoux4YWXYh5VaaMdgNFAUL8BFnrWzFjgDcAP21ymTsMPgbP999nAD7Ltf+JZascB3RHiGs3wmP/XgPtU9dPZrtJOGURklohM9d8TgJOx8bprgNf5YdV2ivZ7HXC1jvKVAFT1A6q6n6ouwHTP1ap6JqWNdgxUdZf/AKcBD2Lx8fPbXZ42t8WlwHLgacxaeysW474KeMi/p/uxgmVAPgLcBTy/3eUfoTZ6MRZWuRO43T+nlXbq005HArd5O90NXODbDwJuAh4GvguM8+3j/f/Dvv+gdtdhhNvrROyN4KWNdtCnLHVUUFBQUNCRGA0hvoKCgoKCUYhCUAUFBQUFHYlCUAUFBQUFHYlCUAUFBQUFHYlCUAUFBQUFHYlCUAUFbYaILBCRl4rIviJyfrvLU1DQKSgEVVDQfizAVg1/QlX/vt2FKSjoFBSCKihoP84B3iwiV4nIvwOIyPUi8jl/F9MbRORyfxfVUb7/dBG5VkR+LSLV16sUFIwKlIm6BQVthoiciC0j9FXgQlU9S0QeBE4A9gRuxbysY7DldN4NXO3n7AH8RFVfNvIlLyjYudhr4EMKCgragFWqugJARB5R1S0isgyYBszEVhX/uR87W0REi7VZMMpQCKqgoP14GvOUcmiT3wKsxtYEfLmqPiMiYwo5FYxGFIIqKGg/7gb+AVtg9OmBDlbV7SLyaeAqEVHgXuDcnVvEgoKRRxmDKigoKCjoSJQsvoKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjkQhqIKCgoKCjsT/BwK4HJy/shONAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeZidVZH/P8WStTtJZ18IhLDJKsou4IIbrgxu6Ljigs4I7oq4jOM4LjP60xnRERVhxoURN1QcRUFUFBRZREgEAmQhkH1PZyEkqd8fVdXvue997+3bSaf7Jjnf5+nnvf3e9z3vec+pU9+qOnXOFVUlIyMjIyOj3bDPYFcgIyMjIyOjCpmgMjIyMjLaEpmgMjIyMjLaEpmgMjIyMjLaEpmgMjIyMjLaEnsMQYnIdYNdh4yMjIyM/sMeQ1DA+MGuQEZGRkZG/2FPIqiMjD5BRM4QkXMGux4ZGRnVyASVsTfjNOBZg12JjIyMamSCytibsT8wZLArkZGRUY1MUBl7MzJBZWS0MTJBZezN2N//MjIyBhgi8lQR+VCza/YbqMr0FSIyH1gPbAO2quqJg1ujjD0Q2YPKyBg8HAY8udkFbUtQjmeo6orBrkTGHotMUBkZg4ehwLBmF+QQX8bejExQGRmDh2HsxgSlwK9E5A4RuaDqAhG5QERuF5HbyQt1M/qOTFAZGYOHXgmqnUN8p6vqIhGZCFwvIvep6k3pBar6NeBrAE5SbQ0RmaCqywe7Hhk9yASVkTF42H09KFVd5MdlwDXAyYNbo37Bb0Tk0MGuREYPMkFlZAwehvpfQ7QlQYnISBHpjM/Ac4BZg1urfsEooHOwK5HRg0xQGRmDh902xDcJuEZEwOp4laruCbuV95q1kjGg2I+8DiojY7CwexKUqs4FnjjY9dgF6NWlzRhQZA8qI2PwkNPM2wy9WgwZA4q2JigROVlEXjTY9cjI2EXYfZMk9jSIxSv3qBCfiHSKSNdg12Mn0NYEBTwDeEF/Figix/VneRkZO4FMUG2EmOvYYwgK+AfgksGuxE6g3QlqFP0oL25M3NJf5fU3RORAEdl3sOuR0TtE5E2RyLYTGAbsJyINp5oyQfUzRGSfBoMsFM2eNAc1Bsge1K5DJ/1r0IwERopIu477BcArBrsSGc0hIqOAy7HfU9sZDC0d69Cugro743zgPyrORyfsSR5UJ2bl765od4IaRf8aNCP82FQGRWSaK6EBg4hEhGHTQD43Y4dwth+H72Q5w0rHOmSC6n+cBEyrOL8nElQHuz9BtXOaeX97UCNKx0b4OPC6fnxuKzjcjzrAz+0XiMjTROQ5g12PAcIZfqzZXk5EfigiZ1Rc3wiZoAYBx1Ad9qoJ8YnIQSJym4g8JiI9u2SIyL4iUmk1i8g4EdH+2o3CEzd2Bk0JSkRG+/FYEXnrTj5rV2B/YN+BmvcQQ1/CIv06B0VBTCN7uW40MCH+EZEjROSyfqxHFY71485a5ZUQkVP6qDz7ihcCz92F5bcTpgAPU7//6XTggD6UkwlqIOEKvxFBlT2oQ4ETsRDTxOS6vwe+0OARU/y404kJInIUcFOvFzZHwxCfiDwTWOP//hG4TEQ+JyKTdvKZ/Yn9S8ddjcnALX0gxMHyoDqBccn/x1JYzbsKh/mx4fu68fapivPHiciveyn/pcBrdqRiInJ0C5dNodSuqSHpdd9Zg7BdMAnb2adMUGMw46ZVDAU2kwlqwDAFU9hjKr4rE9RI4B7gDmot2knA2Abljy4d6yAi40XkyBbqOoPqUGRf0EHjrZtGen2G++e/AucAM3fmgf3s7UT2UM08lBPpi3emYBEZJiIvLZ0OGZjaYjE7TFAi8hHfJixFqwTVQa3ymUJJJkVktIh8ckfq1gBh6DTzoMYAF1co+unAQe6hvrzBveOBo0RkR0KIf/JNq5thMkm7isjBwG1JXT8DrG+VpESkQ0S+ugN1HQhMxnTXeBF5sYgc4edHU637GmEYZsTunQQlIu8WkfcN4CMnA/NpIcSHKZ9ZwF3UKvlRNFYgQUzNQjTnATU/o+whtn8tXTfRn4WI7C8irSrNFM1CfDHZfZAf98Xea4fnrERkMjCnheue3SgM6gM/6hSe0x9Kqa5PxTzcncFRwOdK56LfZrRYxg4lSbgS/CAebnHF3UnrIb6yBzUVGFtSrjPxeSoRGd7H0GUVRgKP05yQOzGdVU5s6cIItBO4ukGW4ng860xEep7hbfPXCEeX4XLRQWOjMVBDUNj4GkMRHRmCvePpvZQTOACLpqR1ERF5dYv37zRE5PAGX00GZmNh4LcBz/bzY+iFoJy4A8OAtewIQbkF+HYR+V8RuU5ErvL/d0mMeBdhGoWCHAhMAOYCHRWWftmDGoX9pH03NgACo2lOUItL15cxkVpLbh1wEYUQpdeNdqXzHOB/m5TZCJ3AqLJVKCJPoAhHHocJ4Qh2kqCw8OnB5bYVkRNE5Irk1LuB15aumSAiY4ArMCMCCoI6FlfI/i5HAseIyPd3oq5jgDEisp+IzHGlGP1ycKObRGRG8u+OelCj8JRy//8M4CfseIhvCia/6dgfl5T/dODSciEiMslloRWMBFbS3IMKuS9f04W1dycgVMvYeAqPOVWiUzAZTcNxl4jIK/3fKKvsQb5JRNJxWA7xRfvF+8e1kyvqVoXRmB5JDafhwLebGZMNyLl8zQipmOcWkatF5FT/PJWKNXMiMgIj24ewNp0OTHb5HkITgvIy54pIGBhD2QkP6puYRXMxZpV/ENji59seInInpoR7s3z6E+OBpcA66juqTFCdVBNUbx7UIpoT1ITS/Z3Ak0gmvR0TsQE7DBtMPWFBETlTRFoJ/3VgntFwv+/lLsAfB2KAH48RwnD/25nFfU/AFFC5bQ9P648pm7JFvwy4CmuLQDr3FJbuAdh7nUTyEy87MH8Q8fgjsPmVA+jFgxKbn7szeV4nMExEDhGRLzrZXdTCs2OiOuTgcOz9RpbOx3NHicjZyalO6kN8UDuWxiblHES1Yqrz5ptgJLCC3j0oqCYooQidVkUwUvlPvw+5OSQ5NxM40D8HQZXL/CzwTABX9ml7QNF+Ef4agynjVvXRmNIRiv57ctUNTmaPis137ZeQbBkfBy6sOH8SRTt0YV7zB0TknOSaScASYDkJQTWobxnP92MYtTvuQQGTVfVrqvqwqq7149e9grsDpvpfj2DtgJLpKyZgg2w19QJdzlgJgloPdIrIVLGV/s0IahTwKC0SlJMFmKFRRVBgSnQ0MEFEwur7J+DvygWLyJ9FJB3IHcAGikH8eWyT31HJ84KgOjCSjrDiZBH5fJP3qEIok/Lk7AQvPwbpQcDJYU0mHtd6arOM9i+VkT7jsKTMlwI/9ajCf4jIRSLytF7qOgZTmqf6/9Pp3YOaRqGER2DjcxhwFuYFTwc+X+GxHiwiF5fKiTLACDH1zMvy9QHgF/5+12DvXQ7xbaOeoIZ62x5ItWIahXsMInKGNM+ia8WDakZQUPRtFUGNpwgPj/Fw2ZOpJqgwpuIdIHl3H6ddFIkjMZbKHtRWCg+qC4uutLqwPdozvT7G/QkN7unE2nsiNg6/I9W7PUyhJIM+bg6kGFujMPn9N+DHIjJERJZjYd0lmB6aisnVZIrphzFiP5ckIvKM0nPDCBqFGceKGeg7RFA3eVjvtWITYa8VkW8Df2hyTzthHSWCAtaIyA9buVlEvpK4onFupIi8t8ltEzDLooqghgLbqZ2DSj2oOcCNOEGJyPNFZF7y7Ddiq+wfpfkcQhrii0E3AQsXpAM7DI1RFMIV1t4TqBfgfTGhn5b8PwzzGDudDKZgAp5Osj8RI6gYKKNE5FVYVtV5jV6igTHxBEyox5XOj/f3G4F5mMuxto3w7il+XOd1Xu//pwR1oPf3DGwADk3q/CnMWp4OXIAppt5+QDMUzJl+nI7122bqjYXAFGzrl/2xfun2eiz174/FBna5/z+ETcIHgqBeKCLv9HdKDZ/y/SELEzDDZH+vR8jLFEw+ywQFpsgPoggXpxhF4X29DHitiPxRikW5KUZgBNWKB3WsiEwUm0/8MUX4OghqjIgcICK/g55FwJ3Y3OIvsbE5E/gFJlP3UZu8k+4RF2MjHc+HYEZf9O0U4DHqPaiHKNp2DEZQ5VDhEYkhmaJH4Sfnot+Or7geCjKNsOU+FLKfYjyJoSYi/4dFFvalkM0oax2WUv5bv+94YIWqbqT4jb5JST3PBv4Pa9cbROR5IhIyEOMxlk9s9r+GRklDglLVjwCfxBrlaD9+RlVbddkHGzUE5Qp1FAWL10FEpojI/4nNVbwNONutrMAJNA9ZjCfxoMLV9u+GUuvO1nhQWCcdT2Hp/j9qQ0Ev8OfXhfjcWolOnkAhyBFXTxVQYCJm4aWZN0eKxdUPoD4MNY3aGPNIYCMWthjl5YWApyGiqcAjFAswRwFvxRTWpMTLuVBE0m1u7heRozxuHf33ZOB2GntQB/jnaf7MCPm8Bss6CsW9yo+porwUeKffEwNvfxEZ6+XOxRTccBLPICAiZ7lnFeejnU4H5nkZIzADo8s9yHKWVgzk4V7+EmqVZchuOUx0tNdhmIi8NnnPi7BdTQ7G+iTkpqwQwwMIJdyNkcV4D1+NwgjqH6XYHDjqMAJTPPtVlDsKm5841t/nBMyjrCL38KCGich0qd6EOOr/z8DrgTdhmaGRBj49eY/TgFOcNMcCq1R1Kdb3XRQyeghwPX3woPzaW4DD3Ls+E5OPMkHNpyDVHoJyvfBMEVkL3IuNh0hF/3uvc5UHFeO6kYETzzoNW5O1HjhDRP5TaufLxlEYmiOw0Ns7SmUHQY7CNi1Onx3j52ZMLsKDWuznT8Lmi/cBfo5tiwQmZ49QENRjVBvzPWg6oaaqs1X1MuCbqnqZqu5Ov2q7Dmu0EKwpmGU9NFGKkxJ2Bxs4Z1Io9vdQzKWAr3GSxqnOqQc1Bngf8HEPZY2hsOCh3oOa7+fD0n0C1oGBGX5chO2nllqrz6JIcpiIeWDTMAMjnhX1C0zCFGd4UEsxJXo4RlzlMFS0SQhT1H8NpqBCKY6nUIbX+rkVGJnF+x2BZbnti3nqp2MD6kTosXgPA74EfMzvOxZT2LOpJ6jw2sb5c16MEcE07+vzMAI6CmvvaL+UoDqwgTYV+FtyfibWp7dSLMScQH2o+3XAF4G/iSUGhII5FLM+I8T3KNaGJwKvE8ug/KUripDFEdhGvFdhXnf03/P8WCaoY/z4SWyOeAZmEKzw86dj4ZpJmAxGCDj2jSwT1HrM+j/U22QpNv/8ckxZpXUYiYWGtmOeS6rogwT+gnnSsRi3nLAT5azAiOFfgYtSz0JEzsOMRvw9JmH9eZefW0jiQWHGTJBrhN7B5PXbwPsx/Xck1rcx54TXoZkHdShmKI0G3oL1/VxqPdNx2PjqSO5/yI+fxsbGq/3vWX7Na4DvYP0cbTVWRH4klmXYgclihNHK6yVDTr6EyfwPMDm7iNrswXHAASJyCoXn/Sqs38seFFj/v8XfeSam3wC+D1yG9UUXtpcimHydi5H4Z4AnichhmJw9iG0H9xJMFhfRZNlFq2nmt4pIo7hnu2KdH7tc0A/ChKibQujegWV8BY7HOjkssmOp7aijsYHeJbajw/FgWWsi8mbqQ3wzMc/n3cAnsMFRFeLrpAjjTE2ema7ZmOHHVZiyGObPfjM2+Ce7txaTta/EFMPHkjKO9Hs6vA3uo/Cg5mCCdjgmWDOoRSieULyPYAr1y5hiDOXQMx8E3ObHZRRp59Mo4uRgA+cJmLIJpR/fnUmxgPOpwO8xRVMV4hvm9/1WVa/FCcrL3AbcjSmhB7H23hdTqinGYu0/u/Tey/y+CK1Moj4bawQ2yD8B/Au1oZmb/dkjKQjqSK/zc7EsyqdRENRkLJz7JcxI6cJCSjP8+/K8aicmK+FhnU6RZfU/2MLvxV7uCgpFeiHmYVV5ULMw+Z/q9x7l38WcTRDUGG+PILTZiQEXcrwv1sdDvOyTqEePB+Xv+U5sfjPe8SkU83kT/ZlHAD/2cw9R60GFvpqMyUFY96FcI4X7ICwxZVpi9A2j1oPaTK1RcATm+XT7Ox/jzx8hIh/1sGMsOYnw9yj/fywmU69X1Z9h3tsZbpSdj8naNRSLil+AKfvTKORnjNf7XSJys4i8LKlr4D+wvn8KprPOTL4b7214FiYDN2FzTZdiXvPbKDbt3aiqG1T1z1hbT4k2VNVbVPUL3g4HUxDUndhY+LqqXoLJ/1nYeFuMkeeLsIjSYvqBoC4GfpU0RA/E5qdubrGcgUQQ1H6YoB+ExVJXUQjbRGCmiDwgNpkYv+IbAyHWVgTCUg0C+4aH1j6AWVFhqa3BBskUL3MdJjxrsRDGWP8+Qnwd/reZQnkux0JMY8Q27ox6rPX3CRL4OmZtx1qQzZiyfDFmgYc7DvAtD7cchZHTKgoP6n5s0B+MWZT7S232zhMwkulKwgXfxwbTEMwqfowixIdfv4+q/pzCgzqRehzqzw2CCuW/HwVBHY6F6VZSHeID6+OV/jkss4OwgbMGG6gLKMJRj/u13X6MPksJaiamNJZSzFOEBZ9iPNZnP8bmqLqwftoMXIcpmDEYsQdBgSmi7RhRBUG9Hvi1qi73+8cA6U4JqbIcgbXtYxgJzsX6KqIdN6rqezClMgWTz/BMzsKiBikxgsnkPZi8T8Ha8hXYuq4jk7AZ/qyY9zsWM8BC4VSle/8VmCiW0jxTLEvsBGo9qBlRvpPdAmrniPalnqAepDZJ4mhsvE/CCOEh/y52N4l5SLzNwhDA6zBMbAeJV1C/tvFYClk8GNOjczG5vxhr39O9TrFWsNvbKGRsEYCqrsBI5yjM8PoJxTqvRZjXutrLG+nnxlC0/1OA08TWLEXm6hZMJ83y520B/k5sqcUQf7/FmKEgwN9U9cOY93YYNr0QXu6y5L2j7VZTiyWYPD+C5Si8x8//1Y9/xoh2GaYLo4/X0h8elKp+B9tr6osi8mEPS5wvIn/zl/lOK+UMMNaV/j8WE/SUoCZgnXQo5nGcgCmVUyk6Y4xYssg5WOfd69/fign9//N7w6peQuFBxcD/aVKnYZhgn0JtiG80cINft8nLWOfH25O6r/V7Xi0iYTFu9+eN8uePwIjg9xTK904/TsYUzyyKMOgY4AF/h1DorwX+HXos2BdhZDQGs1TnqOorVFWxENYrvMzJFNbnJv8+3mk7ZhQ86ue2+fEs/1wmKDBlNgIbvCsxJVaOwY/3+1OCCg8qJSgwoumm8EqWYmm3V1F4UPO9vpsoPKhlmGIECw2WPajwnudjBHiMf35YVR/FwoYvTur3JEzJnYeFe06ikJfnYLF7KAjqbr93AbUE1envsxaTowh5RZgyxsFaijD3iMQrORlTrisxglNMLsODmgIsVtW/YSGjo7DxfiYmm+E9rKEw4Gb4cRQWeluAtfXjXr+JmLz8CxbOOpXCg+oksdL9edOpXR4AZrB0eLt8AzO4Isw8CZOJO7Fw4UspCCrKDblcpaqPYfJyoIhcSOFBvRcLac6nWCe3H0aMs72+oUMXYqHxhf5Oh2IRhE6KFPPQPVNxgnL8FTNkx2Bec6SAz8cI/2PAm7ExGfOSqYG0GDMwP+bPuVtVH/fndQM/wryYL/nzV2F9Hl5VJGMtpwjpgslMSlCrS8fAUiy6sEhVz1TV3wEdqvoX//42TH8EQYGNyzXeDlNogJZ3klDVP2KsegmmJN6OTVYeoar/1Wo5A4j1pf9PopqgDsRI6cOYYrkdy4D5k18zA3NXv4cR0UPYgHoA+CjmvdyEDaJhWOcFQU3FlPKfvawR1GYpraNIkhhNsTBuAwVBgXXmrZh1dj+mjL+ADcr4fgw2YNdjFtO+FAQIltzxXUw5PAVTQBswJXEERYgvFPrvKUI/x2BW3Q3+Xgdi1mngN9hA+hK1ocH0pxM2Ugj71X58wK85CRtAKUHNxQbeXIwkgqDm4OEmsQ1AP+Ptt9DrHnMNZYJa6+eXert0AY+r6mRV/RwWK59IsZbtd5iSTz2oFOPcuw1ZGo9lNykmOzP8udFOv8IU/kasb48DvuJtcBlF2GUxNmDD8w2C2oRNpv8C82KnJuG99f5+a7y9liTtsDY5dvn5AzE5X+91uc0/T/f2XYspzWP82lCm92LEcAo2j3OXXzPXnx3zJqeIJRp1Yskwn/Y6LfVyg0ieiY3BgzHSX40p9iXePt1Y6JPkngjLHoQpYlXVN/s9+2NK9jis/xdhSvgsCoIKAyG8u+jXR7C5oEsxshyFJWDg94aVfzjwqKpuoDY6sRgbT4tUdZuqPkQxtidS6IVxOOkn9wZBdWGkdAVGoPOwrdAuA36IEV8YI4f486JOge/j4UuXxflY/3wAM3yO9Da4D5O5qzADE3+f32Fz5/jzW/WgjiYhXW+fQOjSrRQ6rYP+8qA8meAzmNK62f8eA36jquU4frtgHabIL/fPjQgKLEywH6aAl2PtEmRxkN9/jqrehHXuqcADqno/Nin9MWxwLHahCEGciFlxYc3G/Ex0XjfFHFQnJoRQKLFQLhNV9TWqerl3fEzo3oUN2PjZiAle9kYKZRkEtcHf7R2YVXgNlta+EhuM93t9U4+jw0MCL8Os59VYKPPH1BLUdzGl8AdqQzFlglrun//bj9f5veJljheR8RhB/RgLdd2FEWpYfndiacZDMCv83ZgiWU2tB/U3THmeCixQ1UhpDYK6mdoQ1CpMOS5V1a2q+jyM9IKg0oGKt8+ngP90oogMTiiSU+Yk7TTXj2F8rAEuU9XDMbKY4GU8jCmq6PsIPW1W1R/69+MwBXw5Jk/dXt5y/34eRUh1Xel4k7dLHO/FCKobk6srgItUda2//3NwZaqq6zCvbzpm0a/GSCkI6hjMS/qsv9MBmIKc7WU9ginGzX4++vpIr+8mTHkvUNVHvMzyWpoVyed0aiHIYg7F2rs0LBcE9QvMMwos8eOjFGv/JmKhy1DIQ4Ap7j09jWJudSUmF+rlbKTWM4rw/TnYWAtDYoPLY+AuLOIxDFivqpuw8fhV4E3uDV3v127wes0EvoZtoPAkimjEclV9ICl7HtaeazFD8uVe73v9+4/4/BJOrE/H5q7BjKqfJGU1I6h9S+/eg+Rdn0xtZGst1m8jpMEORQ1/areEh7AwxDNV9S8+ID+PJU+80N3/dsM6oFtV3yK2APVc6ueggqDmY0K7AHgDJgQRwx8J/FFVr/P/V2CD6n4AVX09gIgso3Yi9jCsA872Z0Zc/2WYQn4uJtxDvD6bVXWOFSX3ehkdmDdUDlfuByxT1dPFdhb4op8/gISg/Fx3clyGEfXHVPVB4EER+Uds0C7ABsgRmEBvF1uYN9Hr/CZqd8MIskFVtwILPBSXZsZtKn1ejBkBszDF+2V/t/MxKy4sYIB3qer1XuZ7cQ9KVbtF5EHM4jwIeJ2q3iAi3ZhSWel1WiqWxn0JFgICG2DR5uWU6FXYILs3ORdrqcoe1DbM6n0pZhV+B9imqlv82bf6PF0HRULCfD+G8bEqCX+uxjzobclzos9TDyrqebq333mYN7rev9+KGQn7UBhBQXRhjF4NXOn1VLF1fQ9gc2HTgSUekgTz2t9AobDAjIr9VfUxEdmIeT9zKeZawnNdgVn56zAieT4mP8u9PR/2tpmAEVTM1+H1ibqfjBHc0Zj8rMRkMoyMQBgmv8WU/QKMSCZhcvWAv/NmEbknKT/aewEmh3g9J/i7nIeR7fOxPpxCkU25yuv0OYx8N5J4Rqq6VUS2AG8EnuftfQP1C20fwEhmbSITJ6lqd3JNlBvGyCEY4azCZPRvmLFQjhy9l8K4ugfLxvsVhZxXkcqjGOneqKq/TM43CvGlJN8Ir6WYZw+s9Tb5FjYe636sslWCOk5VwwIM1/HdInIf8DsReU3pRdoB6ygGaSqEq7DUzf0p0jYfUdWrAUTkhdjkZsTOD6LWlY82+0XpeUupJahjgNmqutLLnYwpkFOACar6K7/2MRHZSm3oL5TYKMyir9qBOeLGad2aEVR4UEJhzYMJ+T2YcAyBHks53ultFGHKY5P7ygMBVd0otWs1N5Y+r/YJe0TkY1gbP45Z7WEQ/BvWL7/x/3+BhSH2Td71JkxJzEzepRtTKqGowMK2X8WUBxQKqW4nB1XdJCKbqU2QiHd81BXbOmzgCkZQT8fa5lUV5W2gkD8oCCo8qFSRbROR1ZgxUiaWIKgY2IsxK/5mzOs+i8IT3+Rx/7+IyEv8+ujLE5N6pfX8E4AT/HRqlc81GGHdkZy7Egs7xbuA9cFfsPb+JCbnT8Rk/TGX33ifMOYimzFCfHMpFNTdSRscjSWIHIgp1pGYEfUJitAUFLKxEvt5l/k+9VA1/RBtcqX/gYX2nkuRaLAPsEZVv+d1XoB58v9FMVe8EotUfNavKXtQYP0yNnmn66ifQ12E9WV4eZTICQoSSD2oH1Ckhv8GG581xmzJm5qFEeyfvD5zff6N0j1bRGQpSZ85GnlQoV8X0wCq+m0AETkXa7dxUb6qvqXRfS0RVEpOpfNfFZGHMAXS23b0A411FMp5GbBOVdeIyHpsvqGTwgJamNy3ArNo7sDCQ4upJYFZWCpz2atZSiGcq/HsmPhSbeU1IjKXwh0PPELt3E0QVBf1cx9gc1ERgoy6bcEs11CM4YmkBBWWVM8OFS6gx3nd3kDtbuHLsBDCi9yj6kkcoVb5pthKIVdlD6qHsFT135Lv3uTPH1YeMD5YHsQUVQyYb2AefWwfE+8HtXFwpUh9BdvC6U4ah7ZXUbsGKvop5hCXUYTc7sbI6r1YaKi3rY9i8G7359xX+n6Flx1tViaoOH+DP/cer9/zvay1mMwFykRXl4FbQjfWbz3KR1V/SpHgE+cepghbRn/OVdVVvtZlrsvKu/36KuNqGdZPkSV7MJaUECScejhgHsyZqvoGEbkEOCtIIUGMg40YSVaNm0AYHg+o6t1ez1XAU0TkTxS7L6QKegEwSlXfnpxbSRJJoD7EF89am0yFXE3JuHXjaCUFAVQhCCrmoGb680MuFvv9dYZjgjC+blXVRVL8TEYVLqX+lwOahfjWhI7rBQ9gUxkX0Px9gdY9qIbw8MqZvV854EgJainFoPoJNv/5fggAACAASURBVHhj9+XXU7tr7/cw11bd0oOEoFT1coqV0SnSEF80/J0V182l/icUFlKfXBBJEnUDTVX/Pfk36rYA86AW0TjEF4OpkcHxP6VTSzHCudG/XyAiMzye3QiLKdajlOegmgpwlTXnuB+YEspOVe9yC+8Aivcfl1zbqPywhpdh71WenF1G4cmBLydIvI6LsUShZ2J9+6Cq/oeHEpvu2u1eEphX/FHqB+cKTEFHG6UE1eXH8FK/hIXfurA5uNv9+seT8jYCW6JNS15QFYIcZje9qhYb/bmxLubB5LvbKu8wLKaYSxuFydeZSR1SD2o7NvcdP6e+ifqQN1h7KrZu54aK71PE/VVGVnmOJLCAevm9BvPWAr+ifsyvpzYcvp1qxfwo9Yq/B26oraTwoMAIaqt/DmO7GUE9gG1DNMvL3NroQlWt+2FIrH/O9TmyFHNp4WdwvNxZvs7qfOo9tDrsNEH5QxsqhUHEbVjIASy8EnNG9wH3+WK6U5K5Jfz7RRRrFLaLSDlbpxG+nFwXAnRXxXXzqN/aYxa1C+nSJInefu01njkfU9hzaB7i20Rz6zLFMuC2lDhUdUGT68EGaBVB1XhQfcT9uJeX4B3AvyYW+ilev1Z+kO4AzPsor6c6m9pkiG+TzL+o6o9E5InY3OZdInKSn99E7TxNIzwV+HMDIg6C2kRCLJgcDCdpS/XtxkTk2ZjXtB5blJl65htoQQEkmOllN1SSFdiIeUx1ba6qf/BMvip8EHvXjwBj1bLwYs3TpWrrv8DnDFX1r1iKPlg7VIWXt3uYtBUZi/vLYTQwgoowbtp+/0mxzCCe+QhF+BhV/aeK8rqp9eIb4VEaRyUCS/yaWF+0mGJqYDVmaM9vdLNassULW6hLo/uVYt1Zen6O+M90tFqO99XAEFQ7wmO4QT6/oIgbx/c1wtUE62mBoNQzYfzzVreW76649Grqf2r9fdT+ns7lWKhpH5rEdR1Rt3kU67hSgtqAZWVt83Ds61tU4mBKt5U2SvEaLCT1ELUEdQutEX0V7qN2bglVvQWbfwm8lloPoiF8oEIpM09tr7b0/yupRzeuSHrxJKue+/smX6+gIPG1pfNQO7kciL7pVtV7St+tpEFWVQOUyboVbKSBNw6N2ydIUGwz5FHJ+W0Ue8JBsdNA+ZlVHhTYO7dCUKnRVsY6f+4Ykn5Q1SUV17aC9bRGUK2Ms59jYclrReR/fMoidnhZHUQ/GOiDTgmsYW8mqBTeeFt28PZYK9LXZ1b+tIeqzqdk5Xjs9t7k/5/5x4aDP8EaLN10IRbT34DNmURsXbH1SeHSt/wjfGoLtPsENwy6PaGgOzm/M4u5r6OXPlDVH+1E+X1BJCT0NxZiynUfWieoyJqq8igWiEjVrh2N8Cxqt9ZqBddTGxLtK66k+VKXRgTVKIy1nBb6xo21chJLIBbH1xDUTmAVSfJDE8yjl186VtUPJJ8jShNk3WcdNch4P4Un2BB7BUHtJFryoAYLbnW+VUQiE2aDql7a7J4BwqmqWl47tENQy4T8ea8XDgx6PKh+xicxgvhHaj2ECHfVpeCq6jrPvqtUys3mGCqund9yTYt7ZtO3Oavy/duoTxhKsYh6I+0GkiSfEl5J615jjQGVILYSe5wWJvFbwD/Qmlf3efqwcUKCIOu21VFV8AScXpEJqnd8hSKttp2RpqEOOtRW0u+J+DnVodudQpCJiGyidQ8KzItqNjG+O+Ob2DxgDzxsWJV8hKourDrfAL+let3OOoptrnbag2o1DNwkQag3PIYlSuxuHlRLyATVCzxrb3dAzJ+0BUHtqXBvbmWvF+440iwtaOJBOfZYgvLwdDMPa2fK/vsGX62j+CG9/gjx7VJ4wsFC6nc62SOQCWrPQVt5UBk7jGsp9i6D3j2oi6jddipj59CvHtQA4fC+hHN3J2SC2nMQFlQmqN0YkWSSnGpKUNqe24ztzrgLMxIeovFcV1thTyUnyAS1x0BtK541ZILa07ASS55oFOLL6Ef4ms52XNe5V2JHskYy2hezaX0RbsZuAM90O0Nb20YmI2OPgvR9fVV7QkRuV9W+rPvIyMjIyGhjZA8qIyMjI6MtkQkqIyMjI6MtkQkqIyMjI6MtkQkqIyMjI6MtkQkqIyMjI6MtkQkqIyMjI6MtkQkqIyMjI6Mt0XYEJSL/LCKPishd/vf8wa5TRkZGRsbAo123OvqCqn5usCuRkZGRkTF4aDsPKiMjIyMjA9qXoC4UkbtF5AoR6Wp0kYhcICK3i8jtwLABrF9GRkZGxi7GoOzFJyI3AJMrvvow9ls4K7AdnD8BTFHVNw5g9TIyMjIy2gBtvVmsiMwAfqaqxwxyVTIyMjIyBhhtF+ITkSnJv+cCswarLhkZGRkZg4d2zOL7dxE5HgvxzQfeOrjVycjIyMgYDLR1iC8jIyMjY+9F24X4MjIyMjIyIBNURkZGRkabIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZbIhNURkZGRkZboh13MwdAROYD64FtwFZVPXFwa5SRkZGRMZBoW4JyPENVVwx2JTIyMjIyBh45xJeRkZGR0ZZoZ4JS4FcicoeIXFB1gYhcICK3+1/+5d2MjIyMPQht+4OFIjJVVReJyETgeuAiVb2pyfW353mqjIyMjD0HbetBqeoiPy4DrgFOHtwaZWRkZGQMJNqSoERkpIh0xmfgOUAO4WVkZGTsRWjXLL5JwDUiAlbHq1T1usGtUkZGRkbGQKItCUpV5wJPHOx6ZGRkZGQMHtoyxJeRsashItNE5LuDXY+MjIzGyASVsbfiAODJg12JjIyMxsgElbG3YiSw/2BXIiMjozEyQWXsregAhgx2JTIyMhojE1TG3opMUBkZbY5MUBl7K3KILyOjzZEJKmNvRfagMjLaHJmgMvZWdJA9qIyMtkYmqIy9FSOB/UQkj4HdHCJy2GDXIWPXIA/OQYSIvENELhnseuyl6PDjXuNFich48f3D9jDcLiJdg12JvQUicqiITB+IZ2WCGlxMACYPdiX2Uux1BAX8BNijfpLGCbfT/3ZF+RNFZOiuKHs3xn3AnwfiQZmgBhdDsVBTv0FEBnR/RTFc0qplLiL7iMiwXV2vFhAEtTclSowG9jRPYygQJLUrcCnw4l1U9u6KbcBkEXmKiLxrVz4oE9Tgol8JSkQ+BDzeX+W1iGHAp2j9Pb4CzN9ltWkdUd+9yYMaRj8bRIMFEZksIr8GhvupjmbX7wS6MGJvVhcRkTG76PmDAhH5QJOw6TI/HgU8tR+edUgjwzoT1OBiCDCiH8t7Tz+W1SpCMUwEEJHRIjIzvUBEhojIIf7vG7CfU4nvzurP+QMRGSYiU1q4tNKDEpFJFdfuKRjOrlPkTSEizxWRZ/ZjkQdj4cogqF3lQXVSInURmVqS2eOAXf5zQCIyQkQuHaB5xLcAhzT4LghqOP3T7n8ExlV9sdcTlIh8WUQOH6TH98mDEpEzewnh7ePXDeREeCi8CX58KfCJ0jX/CjzodR9CrQf1SeAprTxIRI4WEe3lskuAb7dQXB1BicgE4K5W6tIIIjJqZ+7vw3POFpF7+3jbcAbPg7oO+2Xs/sIkYJT/gfdnGEci8joRGV6+SUQmiMhZfXhOB/Wk/mHM0AqMBsb2ocwdxfuBCyvqsyvQQWPjud8IynVVF7C66vs9nqBE5On+q7yNcCbwhIr7FlUJeD+jryG+/8astUaI+g4BEJE3isg7dqRi7vWc2sKlZYKqGtAn+/FAP6ZhyIm07kV+wOtWScCeMv5a4DQRaRqWwdp9O7UhvvG4wnNjoE9ELyJjgfv7eM8xIZ8i8i4nyVbwNSrkthcMmgfleHRHbxSRF4vIucmpSC6a5sdOERkBzPZ+uxQ4wu89WkRu8OueBXyoD4+u86AwQkpDev1K/CJyroicWfHV2X4cCC9/JI3H5WY/TqEJQcUSDtclRze4rAPYrKpbqr7c4wkK+CzQTNGOwRQTACKyvyuJKRTW2a5CXwlqNEldU7h3sj9miYQSOg7YUe/wY5jr3RvKBFUl2FGHScA8aifqJ1Vc3wgn+bHR9TOwNrgHWNNLuG40sIraEN8YYKgruJ9jYaS+YAI2ebwvgIi8SkTe2cs9nwee7Z//gdZ/AqTTn9FS2/k7DcgclIh8qEQmgUV9KGMfETk9OXU6cFryf/TtAX7swN5tGDATG7tBIlOAqf55PDBWRG5sMVW6iqBSzw1/5g4Rv89fvTZkxvE84IyKy8djMjuxhXLHisj9rRhZItKVGrJ+TwcwXEROF5EDSrdEVuNhFHL4RBE5IyljHJbtB/ANYFaDx4+lgfcEewdBpYJahRqCAt5IEYpo2YMSkQO9U/qCGoISkaEi8lEROaiifKEJQWGC0u1/HSLyIyyG3CUiDzUTVBE5oeL0q1p8hyqCCo/grSLyYUxBPI4plfu9Tj8VkckkhCYiT5Lmiy7jWY36cybwAPBeQKmd6/qAiLzNPw/1Mh6h1oPqAvb1d+mgNDnudX6+iLy0wfMjzBPK69vAf1RdKCIHichNfm3IwHgKRdoQ3pedmEcyJTk/wssMxZcSbCiVXeJBicipicd9JDaBHt+FbGzqQ5FHAj9M/u+k1jApe1BpSCo89jCEOqmV03HAk2g8x5IivTdQRVAjeyMDEdm34pp/BL5J0o8NngkmH3+jRFAiUpXoMx4zDGdWfFfGccAnpFi0PgzLjBwBXAS8oHR9GHUTk3q+HHhTcs0UCuPhHK9n1fREF0a6ldgbCKqTBgrNG6yTWqV/GIWl1pcEhkuA17V6sYicR71FezTwL8ClIrK5FJocBuxHg8lE7D3WAxswa/NcP07DhHR0yUqLeowAbgshF5FRTpAHe1lVdR8rIiGkUccYNB3YYB3izw4hXYQRxiPARuBF1HtEvwLmNPEKOoClNE6VngnMVdU/AL+ndl5gOoUnNw1YjIUqyh4UeGiIerk5Bgshvi09KSLneftFveK4D43DWgdRWKAjXRa7gBlik/D7NgmxDgO2Ag8DU0QkyGAscKa33zHAr5N7wtgqT/jvkypNETlNRH7dJCTTCC8DXu+fO6gdU2/CUpP7Ml8xARifKM3ynMgkzAgJ+eqkeMcgqOi/juTZ4/3eMZSMARG5LH1vl+H9qfegOqknqH0pjIBGuJb6aE54mqmspUZL1CV01f3UGl4CbBGRslcV95/SrEJebsznBZkF6QzH3qlsFA/FDM7xWGhVMEI6MLlmLOaB7evlLAPOSPRGet3eR1AicoCIfAxr+C4fiFryTkLI0g44iKJdXicir5Qmc1GuSC6hgacmIh+XIoMtzu0DfAdTlKkgHgzcjrn4Q6mNNYc138yDCoJ6hZ/rohiEXwLeXnFfF2YtRflvxOL3AI81eNaXgFf65w5MUZQ9qPswgQ1CHYpZvUspXPpjk3vA2n0WRcirjJEYwTUlKP+8ilqCGk5BotOBhdggC2Ie7eehIKjyPNYYrI96ZEhEZgDfxQyLqNeYROk/KCLXVVi54738CCGNxfrhnzBSe7KXW4Xo68WYgv6rWFZZKOFQFqn8NErHvpradT7nAGcBz2/w7Ebowgg3njFORP5ORC4E/hl4CX0LmU/ElH70YTnUNhkLF6chvtSD2k7Jg/I+mUBBJOVsz6cATwQQkWcl9/cW4qskfy8nNeYOTOobOBQbE6nuqAorRihsCTAtIe7wJMv9Gvef6vVotJziO5iXBOZVpveOwMi3bBQPAVZibbkf1p49BCUi52DJUvi92zBivQF4d4P3qkSfCUpEWvYSBhnHYWGqkVjnP93Ppzs3hFBMFlsxLiTKx+95EfColFaTewjleqyDP0X9xGng9VgiRoqx2ODrwgbOB/zZBwN/oLC6U8GoISgReanU7iM3ioKgnkYR748QyFFY2KSMqPMZTt7HAcdjAtiImKdSKPMOTFGWCWo61pZjMQEdhinMpRQWUyR8jHBLazRwJfCCkvcY1uw+1A/m+P6FWJp9I4IaRkFQB2LexxbgFBHpwObc/sm/r/OgvK1HY310oIjMEZH/w9r6UT+OTe6Ldt8EPBfzaBCRF4rIf2P9OBzr4xHUGx4zqPCWXU5GAeuwdj8GUxLTKAgq+mdE4o3G4uiy4jsSeKWIvN/b/CmYIul1nqOEMkGNx0Lll2Jh59n0sp6ohJCn1DMve1B/I0mSoJDX44AHqfWgQpGm7VwmqC4Kub6CQmdUEVT6LtG2HSIyTkRelHx3GxYVEEw+eowr1ylTgL9S70GVCWc8sALzRD4K/NYN55DVkSJyRfLskVi7n+Iedt18sntPz8W8rMdwcqbWgxpGtQe1Krmu099juo+Tc7FIA5gsrsMyd7cCby9FcnbMgxKRoyr+jgbe2uieNsN4CpdzDLWMTnIezGNZilldJ2GWGdggOBkTqrD2Q0mciGUEvcxPT6ZWof1QRC72Ohzp50Yk10IhrP+GKZoZWEd+C+vMVMH2eHtuDV1NLdmGVd3t9bjVz8czZwAHi8g0qZ1zijp8DHiN12M6psCHpeGfBBMpPLMOTEFH/UZibbwfJrQhgMMpCKrsQY3weqzFEhwOAbpF5A3QQw7TMfJdDRwjIl8ohQIvxLyhmJhdSe8e1Bbg34H/9GdGeUdg7f8kEYk6dmDjZSI2QKdipPQ0LKFiJLUhvhjUIW9ni6WgT8NCufH9CL93PLXZjTMwhddR6oNzsbmZ8KDC6n0HhVc7lcJSD0Vf40GJyC/Fkkhm+H2fAN6HeW7XAlNF5Nn+/KrQ8CSPSMRCzS6MuCOjLQ33LMKU1Cg37PYXkVOk+T6UZYLqmYPy9pgM3OvvuQEbY5HV2IF54qkHFefHY+M82ilFSlDjKeSzlTkosPd+HvBTKRI8tmCG2gxMFsb6OxyGRQOWYMTTmwcVBLXN/x+DGRNBUB3A+f7s5ZgnfAs2ng8Hjpb6jZGfjhHt/sAcTLe8IXnfEZisV3lQKakEQe2H9ds0irafio3recDPsPGbhh13eA7qT5jAvj/5ex+1HsYug9g6j/tF5EER+eAOFDGBYlB2YUphCfUEtbji3ncBd2AK9VA/d5LX6yIsxDUTs+Bi8E7DQjsHuTX/QsyzEgrPZYPYYsUIvaRe2Ysw63yeqn4U+AH1HtQ2CuLdl3qhXkcxb/RnLPQW6PLyL6LwFKINwAR9AtZOYO2yFctqe0apfSLLEQoPKiWoCCdMpXDhh2BKZQkmkEswhbIQU7KXAsuxQRt1uNiPz8WEu9vL+hTWR6eAhVmxecMDVTXWMa2itv2CIMFkOEJ8YGGQNKFgKrAAy6r7Rw+fvYJa3IhZnc8FfkMtQY2hkL1QtJ/CDJFR/qzUKg2CCnJdktTnBjzkKSKnYEbRMVhfL6SYx3sjJnPg1mzp+VGfY0XkJdgOACdhMrIGuByzoNdj3sfZwP8CV2FKFxE5OAkVRblfdMLowhT/oZhMxHiDhKC8rKuA33mbNMLE0jFV2qFAF/j3y7D51suT+2dT9EdHcpyAKcsl2PzdC0Rkur/XSOCJLu/DsXbuTp4bobJhVBNUR/L56d4uUzEP6ThsDITR9H6KsbyGBnNQInKSGxJBUD/F5vT+AHwGuCx59nzMUPkm8BxsPM3xz8MovM3IsvshFrEASy6a7P/HOKnxoETkRSIynsKDCozBxtosf59pyXdTsL7/KjaerwVeLCJPcMLc4RDfvcD7VfX89A9r7F0KVzhfxoT5KOBVUkwEt4pUAYzBlOEtuNISmxe6GhuMYAMT4E5V/Sn2/jGoHwee7wriI8B5mAK5EVPiUEy8fh7rhDu9jLnAi0QkBuPTqd4g9oUYSaQhqjJBPezvFXNaZYKKEB/A9Zhln2IGNrdwRHIuBvFwLLS3xstYhoWnDgRuFJGp0BMWGEetB7WYwkpNLb9OTAA3YpbkNGyQ/SvmtewD3IQRzSv9u0ewtpyPJQwIpvRmYspijZf9Yyx88VJsAC5S1YXJs6tCfBN8UByLKbBYe3GUt01gDKZU98fa/dWYURLoxjzUedgAvI2CoELZDMMG5nhvz4f8eaO8/VJCDIK6E0vJ3ZbU5wSKAf8njDT3wfr6IQqi2JfCawkPaou/8+HYcotNXt8Pe/1O8zKmYiGgw7E+WOptNw4j7xhLc4EvJO15J9b/p/m734HJUBDCLzECXKyqj2EEdhgWfRgKbHOPaj/oSdgIkp2AecGhLNMQX3jiEcbeSD1mU4yPkM1o+znYguzDMMPn1RTj4AxsXIPJyRLqZXorjT2oNBQfz7+dwpB4hdhi83Ox6MvrMJk5V0Ri3i/N4vsa8Pde75WqulBVr/D3OxHTNff79V1Y5uijmMxswPoo5nQPBRCRKzE99ig2FsH0YDgfkSzRMwflRtpPsfnK1INSTB+txMbsdGoJaiqwTlUXqepDmE56DqYbn+nvtUME9WwKZdADVS2nHO4KnAw8qKpzfQHXd/FUxT4gJaiDMeG5m0Lpn+DXLMeEZH+sISP8lQr95ZhQXgl8HOuIV2IDdo5fI5hARnjwXuC3wC8wZR/hl6OpX2h3LWatDcG8MqgPUY3yZ02lOUF1e13/Qr3VPwQbdDOkSPlMy3giZpUvxhTAJop1OTGPNs7fdYqHfM/CFEUVQUW9NvnfJGCtezmxLuImCo9rhaquxxT73/xdJmL9NwQbcFH+1RixXYKllf+l9NyqJIlIIT/Or09DapGmDzbQw7MejZF66u2+ByOSef63nCLRYS6FBxVx+rmY3IylUGxpmHWE12sRFqXoxAhqFZ65WRFqXU9hzISsDsXaKAhqlpf7QcwwWuHXxdzfacB8Vd3kzzqUYp4jMAE4UkTe7/+/zUl+uD/3C15+F7ZbxCkUyvUOaolkHdaXMzCL/XG/9nER6cTDi2Lp8RO8/nUhPgpP/GH//w9YHwTWYMq3y72hMAamYJmbS/2eWLy7hcK4SDHTn5OG+Eb5uU4R+YyfS8Ono7F+mYClZ8/HjIDILAwSeK+q/lBVv+XPPQt4mdhc61BsTmk6RvhP8vKi/6AYPxdhBDjan7/WyxuGycI8iijQoW5ovsHrtgozCLdj/THDrwv9EiG+8RQ7Zwyj1oNa4fVbgI2Zw6nNjI05qMAdFBGlzZjneycN0JCgVHWdqm4DEJFpja7bRZiGKcrAI9SyMgAicoGI3C4it1M/kRf/L8Ea5H6sMYOgwkp4EhZOG0at25oS1F9V9VxVPUpV/wvzTkKZn4+lNIMpplB692JK6RPA31EM+mOpJ6iFWIr1D1Q14uMrqfeg7sf6LLYGauRBrfByNlHE28E8v0MxQZrh59KMuPAcFlN4UE/2dzpTbD3LRGwATgb+B2u/xdiAnUH1QtCNmDCGV4E/Zz612x7FAHzEzy/ACD0UTHdy7R3+7AOxcNUcalFFUPi1i1R1LYUHdb0fb6OYDwiC6sKU++MU8f+bVHUJNvhnURBnF9Y2z8IsyZCnDUl9gqCmU8hEeFArsD7swAjmbv9+LNb/j2FkvAVrxyVY26bbMy3weozFZHACnqBBocTDODmVguRWYopnZXJdyM4Z2C4emzBZPQLry80YUT8dk78bMNIb5uXcg/VltGUQFJjSXkNBlqMwpbndj5Mwj/Fc1z8pQU3yd1+YlPVG/7wFk63V2Di5EVP+UMyHfAP4kaq+AUs4GOvtNAfzpqAg1aUYWTxDRE7zegaRXSyW6JCG+EZj3sjp2FzyWAqCimjLu1X1mxSI8mZQa+i9BJOBJ1N4jYG/AN9Q1QWYfB2AGX/bKTySborxdR/mcYXuGAmsdgfgc1hfhT45xMuMEN9ozNi9FRv3KUEtw6I/v8f6+QSsX5ZiMhBtDoB70kFIx2HteQcN0GoW361SvZhzV6FqYr5uDzZV/ZqqnqiqJ1JrXYAJ3GMUVtZNWIOd49bgwZjV8Fm3IDdT62oGQW3BBlmKm/y4UFX/TKFoxmANPgv4paouV9WlWGdH54/DBCUljuux5JOPJOeqQnxrMYE9B7MQR4vIM8VSpFOCWubto5iQPgZ0q+r33M2eAxwhlkr7Nmqtz0XYAJuPKaQnYaGa473cd2BtuhFThmCKZx9s3c1MinBpIDyoqA/YADuTWkMgJagF/vdrjODxez9MsSPFZKyfY5I3xTLgMCmyAYf5ez6LQqFvwYjn74EXq+pZ2EDdh0JBzfDr5lMoxJCTnwHfUtWtmPKZ4tedis0TxCDeSNGfozDPmqTOPQTlRmGQ+UP+/VhMAT2kqp/HBv9679+5wPcptu+JhJVRFCHACI9H+0b9h2OkTFLXFaq6GevT+O4gr98jWCjwFK/fZr82wuQR4tuAyfKfsSmBmFsrE9RqinVBHRjRXY6RzVQsPf1azFveD/OIfkuxXCHkViiU4CNYP83D5j1iE9fVmJG7TlX/oKqxj+EqTCZ+jynsqzDZ+QOWBfxJf9cbMdmLud7A4RTr0iLE9xAmN8uw6My9fj7Gy0PUIgjqIKzfNnl7vBUzSGb6dz0E5Q7Em/3fbsxQW1UqbwMFQX0BI5ljvd2mepugqhdTS34zve4R4lvj9/0v1vZpiO8P/t1vMYI6GeuDKzB5iDmoFD/z4zMwY287DdAqQV0M/EpEXlb+QmyPrJtbLKdVPEIxyQs2OFveJsUxHiOgCLl9moLRPwlcALxTVb/i36+mlqBiLudCCg8pcAtGMKGw1mECGnHgz6rq3cn1GzBFsR4bMGdiHhPASFX9saquVNVUWZdDfKP9OfdgA/IHGOl9GhPi8zGF0k0t4XRj7Zm+272Y0voiJkAPJd8vAt6MpQhvwhTO9RShiVd7+WspQnP7eN1m+P+psOPlbMaUg4KRp6rGot2oU+xjdzVGTKlXvAHYoKqbVHWZk8I8CqIvE9RszJCIRIvhmII4nsLgeByzOleo6rV+LtZ+LcY8pinYGIRX3AAAIABJREFUYH2YYrDHwL5JVX+Q1O8A4L+wpQcdNPagPo1ZqX/1slIPCqwtlyb/j8XGQ9R7CcWg/wVwM2atg/VfzEstwLydaKN9VVX8XR7wc0FCK0vHy/1d7qOYb3wEs6JPxRRX7AzxoLfHBq9zt6pepqobVfXNqhqhtKVen+X+/DSjq8Pf8wpMjn7j5PdRijDzMCxr8iBgScgSRvzRHj8A3uLPfhu2fyVYf5bDTfG+5e2lFgLLVPW7qhqh4/CyL8Rk/0bM0DmawmMMDyoI6FpV/Q1FOC6M1CqCegyTn/Dex2Nk+Gusv06lflwFWiGouyhI9x4/l0aM1iafD8H6KBbqnoaR23xsPKQe1CexRI3feb0PBGar6ocw46muzVX108D3MDlNn1uHlghKVb+DuXFfFJEPe5ro+SLyN+D/YQOyP3EbZv0e7DHZV2ITdH3BeEzhLVdVUdXlFEo4sgLnJdevpjrE931VLTfwWsyFT0MX6zACmkb9IOimSBb4GmbtxlxT5SaJmMCXFxA/jJHlN/3ZY7CQ28XAVap6vT8rnUNYjw249N3uxqyesGxDYWzDwl/bffBv8jrcRhFivRcLCXRjnsx7MEJZTyFPK6hd5LvRyyq3CxSGwPtU9UoAVb1CVe/AEk7ei8XZH6A2xAfWv3dgntkD6Rde/+soQrlBUDHxDUWoLEXU+88UOyMEQc3DSLLqN7c2YAN3KTYwx1PIW5mg1qnqXIowXZmg1lN4CAsoCCoMoqV+Dar6AVW9jYJYHvVr12Fk9eTkfWMCfyHWbqsplOVajMhWeLnv9TDUJygiGguxsNupWHvGpqFpiPFh6vsp8CBmfZ+PjYM1FB5UJAaswFL/Qxa2UoQ6I0T2BGplfDyFoltdSpaJEOZiqsfmKgpDK+ZGHqY2InM45hGeiln9F6rqMzGddDTWFiso1lxGmy7wd1BMIf8aG2Op3gHrp7uxPjw8ebd7/d551If4UnRTG1JOCWoRZogtw4y4wygIKjVaI+qxFZurTT2oh1T15/giYUxOoh3Xqeo/+Nxx6MNIpNtAtQcFpg/G0WC3mkDLC3VV9Y9Y4sQlWGe8HXPBj/B5mX6DC+WFWGjpXuB7qjq7j8W8H+uQlKEfxgbJFzEPpkxQVSG+ysGmqn9KLLh1ft1ajEjKHRKdsEFVf6uqn/Nz2/1dq7CE2my/w4E5qvp9VX07JoRdGEENAf7Pr/sBZnUGuv2903e7hyL+CxYiuhIbIOnWPKGAYl7qdlU9wcOakcCw1F30NKy3ntqwaHhQVdZStPPK8heq+hNV/byqfsm/L/fFHMxTeqIbDWUsAyaJLagdibXDcAqF/XhFnYKgVmMhDfVyrsEMsedWPAesP7dg77oBG3zdfi7Wb43xv5CPtVi7RpJEeL7hQV2BjYNx1HpQf6FkhSdh6ke9vCCoA6lN+ADLpLocODPxaGPuotwPUdduTNlH9ts4Cvn4HMUiz5gTqUIYEQ95fVf7e22h2I6oW1U/o6o/Se6LsR+ycgSFEn8JtotH9GN5v79opyU09qACv/Pjb0mSblT1AaztxwGz3LgAMzKPwpT4w1i7jPZrt1CE9FDV81T1POBYf3eS72ZjBu98LPwfYzX6e74fGxHUBqwd474ew8j79VWYcRGh2DqCcj20gWJs/C/WH0JhGCzB9NtjFH2cvkuZoLopoitlhPHblKBa+nlwz8N/NxYWuxmzAkZjbnjD+OHOwBm7nCbdl/uvlNJPF6jqMorV7mVFU0VQm5oQSIrwnjZik4TlOZiNpWN8brSVEJgwTEoW1x1CIWBgA3IaJgC3Ye47qlp+jwVY+CdV7rOxQT4SOE5V7wEL11LriYTwrcQGYBpm3YBZdSFg60rfLcQILM3iq0K0SXkOsYwqgvom0Bn1r8ByzMKNNVuhMFIPqhFBbVTV7SKyFvPCr6U5NmDWu4rIBqxfNuOEpapb/fwB1IajZgNfx9qpxoNS1dUiMgvzoA7BwnmoarqOLcUqCgMjCCp939F+/1eoxkrq+yHq+kFsUv4xEbkHS5x4xMvbQuHlLKB6GQUUshWkEG1/M4UHVR47YMryJVhbxp5xy/3Z10DP0hSoTzmPsfAwNtdUlpXwOl6pqld7mV+sqMNSii17ArMx+VqGbQp8OcWczQoSggokc1/l84+LyF+wOasrsSU20Zfz/Nl1RpyjG2u/eJd1mGG1wcv+IYCIBFlHyLG8QHYtpituxxyDLmyeMQzxWH6wxp+5ndpM2GVe5yg/dEPV9Ex4UFVLBHrQqgf1EMacz1TV52JZNn/Gkif6uj5pwKCWpLC89yuB6hBf1WCpQnhQj1BhMTiJb6TWWthAE4JSy3ZZjyVEHI0pv1RBr8FIZpGqnuzXV5XzUlW9QVX/lJzbiPXpoSTCo6rPV9X5ye2bKKylhdQOuG7MG4l3Wo/F6Z+CKYHbvR3Cq+izB1XCCkrWlqrOcs++EZZRkNN2audwoHmILwh1LbXhpEaIMB4URBrEHPVeSeHdoJaw8ntsoO6f3BceFBShwUMphTErsMr/IslhJfaOizGFU56nK+OWimdE+yz2OSEwL+pECg8qxQIah/ii7CCNyFibi5HnUCoMGZffLgpZ2Y/aeVbUkku6KSk8NQgm75OoDvFBfSJUuQ7bsHZMCWoONl8WXtM12JhYiyUl9PXHL/+IGXUxVmNszseMpEbOQHdyXeibddT3Qxi4c7F2Kq8/Wod5tz/C+qGLpI+9/2O+bANmwGvy/VZgeuIhRug05iBTbML6cec9KMzKDrc2YqrvFpH7gN+JyGtU9ZctltWu+CG1TN9XgkrDWo3mWsoeVKP5p8AibH7nPup/CG81ZlXfWr6pRdyCeZMNtxnBhGiFewW/ozbEEMKfEtRmJ4w/ekruizCrONLMq7zRzdhEdtPJUszL6MvPNUCtEov1L9B7iO8xV0jQN4LaN/kMVt/UMIkdIlLFsREbyItKIeOo63r//khqPegqvJPCMFjn/bbIn3sCFZmwKdQW4pcRYyBVZqsxL6mKoG6l8c+hzMMW/4ccxMLi9V7ehlThVWAjJkN1BOVYR2MZCW+kPKbXe5lNCcoxj2LuGFXdIiLzsHD5ZkyHvBFLvPlcC+WVcYsfb8V2iYgEnNk0/yHMkKdbknOx4D7Fw1hUKjzlMkHFGiooljuUd9qJOdO1VBgipf7rxnRClcES/bTzHlRKTqXzX8Xim9+q+n53gs933Jac2kDrBPUXzHpqNAiivFRgegvxgQmHYsJf3u4p3OimHdwEt1CbCVWFTbhno6pf1iJjDQrhjOevo1aR34+tN9mU/NURt1u45/dSD1T1LlXt06/VusUXfbHJ65eGSmKBaorHqG3TNVQrwzJingmKtukJ8fn/n/V69VjCWiRcpPvCfQFXTt4uN2BKtKmXqao3uvUaSTvg84dq2Y9VhNIbopzVpXNDqCAoVb1VVf+lQf22lRT3e7DssG7M0+1tvHVjXst2qg2rtTQeD2noM62TYotQF5ZvqMA51P6ECRShzc3+3S+1wa/DtoB5wN+p6mJVvSSiP6o6W1Wf3uS+0OPpeqJvUCSI4OVsVdUXuPx9nSJJKvALCr0S/V02KpdgBtwSevkpDw+VNvrpnCCofvGgmlXiBqn+eeLdHX+l2AakKVxx3i8iryaJ/ZZQDj80DfE5FmMpmyeXv1DVDb65wBF1d7WG6+j9x/E20XhuqOxBLaPwTFDVVcBnReQfaB7i29VYTjEP9jBwaeIdfYPaVe9QT1DfoLVfFk495NSD6iEoVb1Gqn/U8sUkv6CqquWV9d8FJvRG4glSgvo6Pj+5g6giqEYJCX2Cv+edvnPEE2kcGgy8CVuz9tYG4a7lVOx+46gkKK9HS1nIavO7ZfwKI9lNHmY/u+KaluD9+5NeL6zHLGyRf48+UdVP9PKsOt2mqh9PPm93/VJeeL8EX8agtki4KZrI7MAQlFeiT5bt7gC11PIf9vG2R0jW+pSwMx5UI3yjb9Ur4BZQs806wUilEUFtKB0/Ru3i47SMhh7UAGAZPrfhHkTP79GopcaWUUNQWrvivxk2UEwYNwrxBXHXQC0Bo1kSxlUUi3tbwVr/Q1X/uw/31UEtKWIttd5bENSOeGRVCA+qKUGp6r0isozGIddzaGwEraaYm+tPRPbsjnpNOw219YQv30XFd5b+X8KOG8UpWgrx9QtBZfRgLtW7o0P9HFQ3vQ/w/6HJr3RqsZJ8V6EnxFeBmhBfk7BGKOn4iYiBxjewxblP7e1CR9mDahXdFESUhvg20Ltn0BTuLbQyRxJIPaj+wKGleYQou78Iaj1GUL3NsYERTWXIVVUbeU/4fNyj9DNBqeoSETmb1uYpdzf0/KBngqX0bli3goHzoDIMqrpQRI5v8HWqwMAms6smpdPyKlNSBxDXUb23HtSH+BphE+a9/K6X63YJVPVysd+4Oam3ax07SlBfpIjXpx7Uu2htfqM/0a8EpaplL3pXeFCTaS3r7WaqPfVWcCOleZn+wB6QINYI66ndzQbMg+oPbzF7UIMBbZDuTcmD8kymRut32gJqC3IboRvYor2vE7uFXaAU+ogVtD5fskME5WGWQI8Hpaq9pXbvClxGMh+4CxDkt1NzUAnWYxmQvXrYqho7yPcZqnrBjty3F6OKoB6g8YLhviB7UG2G8hzU7o6yR1gJVf3AANSlN9xI63s5bmbHMyMDVavsBwyqekvvV+0U+tuDCjLdk8bHnoCqhJKbMS92Z5EJqs3wU/rH8mgXlOfU2hZqC5Mb/uZMCevYyWxDtV0BHmeQCGoA0N8EFVsZzein8jL6B7tyzjiH+NoJ2vtWObsbWvKgdkP8mGKn+Z1BK0kwuytCcfXL+3kCw+00ThHPGBx8hOKHFvsbmaAydinmYZv57lHwObX+SDC4gT0zsys8xNihvr9wGr3sdJExsFD7qZDf7KLiN9HCHHYmqIwdgqouwn68MKMCqvqKwa7DLsY6+tFDbCHZJmPPQjctGIIt/9xGRkZGRoKL2MFsuowMtV+WOLW366T13VPaGyJyu9pPv2dkZGRk7AHIHlRGRkZGRlsiE1RGRkZGRlsiE1RGRkZGRlsiE1RGRkZGRlsiE1RGRkZGRlsiE1RGRkZGRlsiE1RGRkZGRlui7QhKRP5ZRB4Vkbv87/mDXaeMjIyMjIFHu2519AVV/dxgVyIjIyMjY/DQdh5URkZGRkYGtC9BXSgid4vIFSLS1egiEblARG73rfqHDWD9MjIyMjJ2MQZlLz4RuQGYXPHVh4E/YT/RrcAngCmq+sYBrF5GRkZGRhugrTeLFZEZwM9U9ZhBrkpGRkZGxgCj7UJ8IjIl+fdcYNZg1SUjIyMjY/DQjll8/y4ix2MhvvnAWwe3OhkZGRkZg4G2DvFlZGRkZOy9aLsQX0ZGRkZGBmSCysjIyMhoU2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS2SCysjIyMhoS7Tj70EBICLzgfXANmCrqp44uDXKyMjIyBhItC1BOZ6hqitauVBErlPVs3d1hTIyMjIyBgZ7Uohv/GBXIGP3g4gcIyIjBrseGRkZ9WhnglLgVyJyh4hcMNiVydhj8XngrMGuREZGRj3aOcR3uqouEpGJwPUicp+q3pRe4MQV5JU9qIwdwTD/y8jIaDO0rQelqov8uAy4Bji54pqvqeqJnkDR0lxVRkYJQ/0vIyOjzdCWBCUiI0WkMz4DzwFmDW6tMvZQDCV7UP+/vTOP16uq7v53Ecg8zzMhBEtA5knUKgVUQBxrLWpRW/uKb7VitSoa21rf1qp1aqvWOk9QLVJUhsokgkVkhjBDEkICgdwkZJ5IYL1/rLVy9jn3PM+dkvs8udnfz+d+nvuc5wz77LP3+q219j7nZDJtSbum+KYAl4oIWBkvUtVftrZImQFKFqhMpk1pS4FS1SXAUa0uR6ZrROQbwFdV9Z5Wl6WXZIHKZNqUtkzxZfYq5gMzWl2IPpAFKpOpQUTGi8ihrSxDFqhMXxkCDG51IfpAFqhMpp43AH/XygJkgcr0lb19FlyeZp7J1DMWGNnKAmSByvSVHEFlMgOT0cCIVhYgC1QGMYb1cvO9VqBEZD9solAWqEymM2PIEVSmDTgV+M9ebrs3p/ii3FmgMgMeERkkfu9ONxlDjqAybcBEev+oqMHspREUWaAyLURETu7n54xeCpzcg/Vzii/TFoyg9w1xIERQe2v5M3s3xwBn9ePxJgMTerB+j1N8IjK2RyXqgixQDRCRRf6YpX2BvgpU20VQInKajzE1ozaCEpGPicjPRGS33sguIkfs7n32ogxTReTlrSzD7kBEXisiB4jIi/2B0nsjw4FJ/Xi8EfQsW9CjFJ+37WUiMqinBWtEFqgaPE87Fwtx9/Sx3iUi0/f0cbqgVwLlAnAAvRAoETm9GwLSF34CzOlinUYpvt8HXge8YDeX6UfACbt5nz3lNOCvqgtFZHgfJsq0gn8DDgEuwM5pFyJykogcknw/QER6/WQaH7v5vV6XtDHDsaimv+iNQA2tCo6I/JmIvKFm/VH+V3X4bhCRMT0tLGSBasQwQLAGtKf5FvDhfjhOM3obQYUw9SZF9t/AQb3YrruMout0RiOB2umfM3tyQBEZLSI/b7LKOOzekn5FRAaLyOH+dSTWvqt8FPhg/5WqMy6S3R3EH4H1z5F0brt/hjkYwZuAu/tQtBOBH/dh+0aMoP8FqidOSDjob644k8dR72iFCFWPcQS9bPf7vEC5d/WTSseIvGt/vWl1WnWBiIwSkT8SkVeJyLl7+Ph9FageRVAiMgQTkD0SOYpITNzoSqCGYmJUFajhwJPArB4e+hjgtX5+dbREoIAXA9/2/0dRb6Rm0LPxiT3BUuCWbq4bAjUCGC4iLxORiKSGUa7nTbArM9IbxrJn6mY4MLpJe9nd9CaC2ghcRDkbMZz6SVUhaNX21XAilYi8U0SOa1SAfV6ggPHAm/0zCGPdXwJVZ6iPAT4B/C3wAxH5uIjs8gpF5OzocJ6C6LEnJiJHisiLsfPd3w17dZ0PiMjcBruIjtXTFF909l3nLSKz6s5BRL4uIkf3cP/hYHQnglpPvUA9Qs8FKso5tfqD5+dHUniZ/ckoCoPdKIKa5Ov1it007rAWOKGrffnvQykEagTwCoqoqSpQO/yzt9HKaMr2YXcR9mUSgIjcJiJ/sQeOE+n4bguU24IDgI60jM4I6gWqUQQ1mMZZlrOxiKyWfVagRGSoiPw+RaWm6aZeRVAi8oCInN7k94kick3NT50iKC/XsKQMHwRe6vsR4KcUHe5fgZU9KavzU+AmCkGui6K+hKV/6ujtLLhOAoWlOd8TX0TkIBG5GjgPeG0P9787BOphPMXnNzJ3xwCHQNU5HGMrn/3JcIp2PpJ6I9VQoETk5OT/A0Xk9ZXfz6RIi/aFcHS6EvHUgRzpn0Mo+sNQyvUc7XNOL8s1BhhR58D1kTiPKPfxwFfB0p3d3YmIXCwiXc22G1b57IrRWN/YXCkjVCKoZOJPpwjKbdUBwGB3pO+qTBQa3axM+6xAYfcD/AtFQ04FqpnBbsZ84N+b/D4DODa+JCmH6TXphxCoYcBCzNjO8d+iQ0Yj7q3Xtcg/uzrfRk8r720EFY17RnLe4ymP+RwIvMT/76BnhKHtJFAuNoe7AWgkUMMwgYoI6kVAs7Gl4HDMUeiRQHXDuPSVEclxG6X4agXKPe/fiEhEhS8F3ldZbayv26sUmohME5EPY2KzGUuFNiMVqIighlJ4+dUIKtrp5SJSO64oIp8Xke80OF4Y3q7K1VOi/4bxX+xlGQxsFpFXV8r4IRE5qLJsEPBGbJyo2ezMqLPupvjGABvw9CjlCKqa4ntQRCZQH0Gl49STMScunXyWBapBx5lAOeVSG0GJSIenwbo6RlR6Mw95HOX7CkYAW7AURLXxj8EawjDgLl82Jyl7lC/K/1hXZazhCf8M49NIoBpNFuhWBOWikHaMiYACHwIuEZHPY+eUHmcCRQfe4vsZKiJflK5nm3WKoDxF+hdYGug+4O00j6AeTcozme7dyDzW910nUHF9S9GBC8Dy7njMYm+avrYb5agyApuNNZjGKb7J1EdQ44BBmMMAZlCmVNaJ6KlbKVEROUVEjkgWnQic68dfToM+5I7FSIrrG+I0HLuGXUVQE4GXNSjWnwB/2uC3pgLlY9gN26S3/7pofjjm0ES54zhxfueKyOxk/TdhdZUyHrPjHwb+sFEZKPr2y0Tkuw3K+SkRme9fx9A4ghoBTPTz2h/rJ2OpH4NKx6kjU5Rem31boNwwLqsRqfGUc/MHefriUooGMg3zHA7yfe2qLxG5otIoZwDLaH5j2zgs1I0QdxQ2CLmMwgAEaYrvDmxMZI7/tkuggNnAKrxxiMgLxaeAish0EanuNyUM84v8c4RvN1vK94A1iqC6O0niNODi5PtE7JzBpnR/CJvWnx4nzflHOY/Apkh/qovjhaF9r4ic7/8fCByMRbn4/yWBEpGI6IZjhjLK0N3c/SjgIVygROSPReQC/61TBOWpsz/1ZaXxEREZIiLV1OZ04A96EamE+MWNlyWDIDZIP5p6gQphnuOfo3CHRkT+SUQeoWjzh1NDxTkB+AfgR0nadKYfZ3/gKRpHKvf5X7TNiAZHYNeyUQQ1FLgauIzO4ho8k5R3kJRnrYVT0Wgc6g00d2COB26sWT4ccyyj3KOBNRT1+cfAFcn6I+jcF6PdHErz1GjU2Xys7ddxGsWLYtMU3xo6p/gmYU7c1Vj9DkuOn17vWoFKbGDYuVoGvEBhjXgmnceTJvhvY7AU0mzMWLyeIqKIEDsazO0iMsc71lmUG+wMLERPBWgXIvJSisHAtINtAB7346ekAnURcDqWBx9J0RlGYF7rvdhF3w94C/AFN2LvBt5fWyvF9lv9/81JuT5P4Y3txLylF4pItWHXpvjE7nF6YbLoYModayJwJXANRaOeR+cIKogGP9/L2fD+JLH7X84BtvmiU/xzNNbJZgA3Y07HEMxBGOTX7AosBRuz+MYngtXMQ/6i1/0oLDUYEdR84ESxyR/nY3WdGpGXU4y7VW/YPAb4SnKM/TDjuh9d3N0vIvuJyEVSTDqJ6zqGmvtUKNrTKDfOqXMS5TpbRP4RE/oJInIAcBh2L1KU5xiP8qr3DD0mNgV/mGcajsIEJF6GN8vPbRM2UaKTQLkzuN2PH+IT5Y4IaqLXU12KbxFwA97PxG7wTccVn0n+/xzJeChNIigX9wNoPsHkQGC+dE7ljsBmLk72/ewHrMYM+TbgG5hgByOxtPihIvIVz56k7Wa0X/uRIvIdKd9fGdd0HI3b8nAKAY8I6n5MhKqTJMD69fBk22YR1BDKEdRN3k56F0F5Q32jiLw+Nbgi8keNtmlTSjNlEsZjFT0O8wQmYSH0emxaLhTpgOjoB2GdKYxM2ihnYEZtEyYk0wBEZKanM34DfNzXjYY6miKC2iVQ3vBC/IYDG1R1OZaSm0VhvL+OGdXFmPEbhYngbGyMbTzNU44jMXEDE+loeJOS46/1z48D3w/vXUTGASf5b4eKyC+lyJlfCNybRJgzKIv5RCwifDvWucHa4vhkm/EU4pkK1M1dnNMrgHdhUSUU3uJoP6/p2LUIgdru5z7Ff5/iy9cCz1N46OnA70dF5GX+/zAsqhvr6yylaGvjsWvxRszZqaavRlFEHdUZZrMoe+ULMMMJ3v5E5IMicpkU6eXgdMxROd0NX1zXeL/PsEoUNtnrYBSWAv2v5Lc4lz8BPoaJqvjyx5Ptr8Gcoc+k27sITMWM0w3Y8+B+SzlymIVd/4YChdXTw5iQhOGN7SPCHeTb1qX4tmP1P8vP/RcU0QKUBWoeFq0HozHBqIugRiXrNGI6VmfVm4WHY+3lWOw2gA2YPZiNXY9vUnbURmJ96f3AezGBT9vNGOBVWP2fCRwmIqkzGzTKBqT3ZY3B7M4ngB9gIioi8tFkX/9LcQ0+Q2HfUsEJJ/Yrfj5g1+ZgrF00SjkDzSOoH2AVdzTwvyIyz5f/3ybbtCMhUBMBROR1nnaJCz8D864mYZ7OVRSD80MwD2Kyi/RYXy8dcCbZTwjUDGCFiIzHZsr9o68TRiGNoEopPrHB6HXAn/s6O1U1psmupXxPRniqyyg69nGYQLzK16sN+927aiRQE5JzHIx13hOw/PeZvnw5NsnkWczYvwoTB/DBXorU4UzKnXuqH68DMxzBcopIazzwz9gTIaJDHUZFoLzTfD1xoqLDXAWcAcx1gxQCNQPrWIdjRvw57LqFiE4Htqvq837e4ciknegzwHkuDBHNTccEdTXF9RmPGd/n/Htar1CesDBHyvfDzMKEJNrvgRTjD2M8Olrgx3gjZd6MOQDfwmZ4phFUOEfpsT4HXOLlmQ28JElxTaSIRq+kGKudkpT9ZZj4XIRNoDgkSS3HsQ8CXogJ1fuxax/GMCLnZgJ1AnCP/x5jXWmEOCRZNgxzEsP5GeLnsBzLDFyKXYszpLh1YzvsmrAynXKUPgYT47pypc5mI6ZjY67V6dQhUH8AvJViUsJsrO2tpuykRIovTTlOpuhvozGbMNu3+3tglZ9TKlDVFO+JIrKU+ggKCgduItb2J2CZpg9T9Nc/8M8d1EdQ6VDDFN9HZKp6JVDTVfUTqvpJrCN/S0ROabJ+u7JLoETkGMwDPInCYM6kGBAfhHnXczHDCy5QyfqTKBpq2ihnYx1gExBR5njf1yt9v8HBUtysWo2gLqDM1uT/9VheOlI/6p/LsY57pq9/EZba2hVBeWoyoro5mFGeS2OBinMcign4PKxxxiugY92NyfbhxEwELqeIRGdg6aMxInIxJg4PuAgsw9J2G7xMYXQmYAZpIUUDngf5D1J8AAAd3UlEQVTcRtnIj8Omoh/m32P7dap6FWaYpmAdLgTqHsxoHYyNDTzp/w/F2sEW38czvv/heNQhIm/y3xZhabt/8e+zvC7WUBaoyRSd8zdYqudd/j11cL5AktKjMMKxr4lY+8TP5UAsCvk5cCRlDsKi6+ewa5COQcUxD/LzGYHNzPtLr5Ppvl6M1U3CvPszsQg+9nWBn9tOP/4mX3YO5pTFQ1DDgJ8B3K+qh6nqw5QFahYWrdYKlIgcCvwT9qioZ5K6CWckUnzq+xzq5x6GPI2goLhf6jzg//j/0caux9pAKlCjsbp+n3S+JzDqc56IzPDyThGR9NpOx/pZNUUeKb5BmPO6nrJA7WpLHokOx9pvZF4meB1cBfzQz3eOH2f/pJ6ux9piCE5VEP4ca09pBDU6Wf8pzLGY498HYZmbDgrHICZcHUC9QKWpykjtRiTcK4EaEh6dqj4GvAb4a8wL2isQkbdhjRDsQt6JpWOmUnT8mZiBeg6rxHgkSqSI7scE54f+fSJFB0ob4ZFYI0wFaoYfdwjwq2TdK7H7j0pjUCLyAiyV8vFk3S3J/+sxZ2HXKSZlXAt8zbe9CfPWpmPR3xOYIVvhHnk80mYqFYHyaGMCNqYlWAOLGYLfBI7yaCXEMWZw3ULRASf58SISDQ/5SCyN+gJsMgHArcC1dPYYx/uybRQR1FTgQcoCFV5YRGthtGJ67GIv12hfdzJ2nY8G5qrqhdj1j3adCtRaighqKHY9Y7LHCCxlMz/ZLgQqnJn4PBZrd38E/AfFfWXRfp7F2sjbRGSce7wRqUR9pCnqSAE/gwl4NXU0G2tjU/3cJ3t9RIpvB/AAFu3MApar6nO+zsH++0luFCcDj6nqL/3cgjdj1/cR3+9GVX1WVX8CXEfhUYdAvQZzLoJVWNtcgLXjRykEaqyI/I3Yw3WPxAzjrap6tf8e12gSlm2ICGqlLxuGORBf9DYcArUCc7AeTuopntk3DGsHx+PRQhK9jsaizGdq6jqu4ceABS5ST1N2NKdjM3GrEzQiggqqEdQm4ACxSSbDsesSDsRSCgfofiyaGY21m+gvs7BodX9sMlJcv6oghCNZjaA2+P8dmM2LunpWVXcmv4PV+2NYJP4SKR6tld7bdinwZYo+EwLVcAZrM4H6IIkno6obMc+jpc/r6iEnUFR+2sGnYhd3O9bY12Ed5mmsw0Nx7819WAd6ZbKfUorP0yFH+LabKFJvR1EY8hCo+H4c1vHSCOoKzFO8Nlm3GkEpZV6jqrdTNMofq+omrLMdjjWqGVi0tAoTwDS//giWnlmCRSFxf9A4/3wW8zyfxbykLVjDDwGIxnU75kW+BDNKVwAne93M8GOHgD2mqtsAVPVPsIbbSKC2UkyRHoV1zJHJAHd0qJNE5FUUkWhEdit8ndGYd7dOVXeo6j1ulPG6ijqZSVHnaYpvEOZFPoKl1sZigpumqTZibWm0l288JoYnAB3eqf8CGCcisyiMWxjMO7F03R1YX9uEGcrfT+rleayzj8OM9ULMaYixwf2w67NMVTdjxuslWFv/tpc7nK9PYw5cRBYbsfZyL9Y2z/e/8KTDwP0hlmqdgAkLFO0B4NfAKV6mEKi5mDMSdGB1/tdYH11JIVATMUdrIRbtpt58pPgiAuugiKCWY9d6MGaQj8fG44bgaVtV/RQ2/hRlmesO1zBMdC/zfT6U1OtY7Bot9GNGRmI4xTWcifWfc/x7ml3pJFAicjvWHp/0RUolglJVpYiiRmLtcYef/2NY+zoYsx8bsHZRfb7l05jz+HIqAiX2NJovUWQfBlMeg1oP4P2kg+JdUuHApQI1BHvyzYNYlue+ZDnYNboK679Vgep5BKWqv1PVp/1EZkRBVfVHjbZpQ9I8Z6RZnqfIgS7DjOd6XKBUdQN28UOg7q/s862YgYKicR4MrFbVdVgD2x/ruEdjhnsb1iGepXjiw0ZsptZGzIhNxBr5lyk6fQedBWoK8Engs8ky8PEJN4JgghOPhAFr4Odhs5NmUUSK61X1FOxhmOck9TXWt92GdaIV3mFWYBFQGKRI9T3h5/2/WOd6CusQr8SirEgTghmdlEexSCcVqEm+fURQk7E63ul1FgZgKhaBHoWNuZyEdYIo3zrMmMf619GZNIKaQTmCGpecY6RxF2FiNS/Zx0wsingOuybjMANyo5/TSgBPa16HpQYnYO3xAa+DX2Kpvrux+rwZq+sbsTa2CWuzaQT1FHado94mY4Pb0W7ux679RX4cKDz1dwMfoJjyv9HP6XaKyTibKZyrMHCPYoYo/odEoFT1cawPXUZ5xmEaQXVg4xg/9bayzo+/CEtPR7t9iPJ4SAjUKt93pKaH+nnMwsRoFXbT/Dn+266xTlX9CMW48E7MNgzH+tqdWHu4GktLvh+7djFmOsUj3FuxdpbeCnAYJogXUZ61WhIoH5s+zsuyCWtv99I5ggKr83/ArsUmP+/ZXr8TsX5/K9ZPBmHOcYgemEDdgV3XyJYMdeE9EWsDi7wedlKIaOoU4PsMZ3+Ll/1ZivFJsOu3y155mjOd4bsVu86RUZnmx+jzNPNbpMkD/dqYiRSpvPlYxX4LS+eNxow4mIGLCApsRtLDmKAswjzNtZgxmETxSJswesdQGN3oqI/4encCB3nEsJQiXfY7LA3yuBu1FcBidwLWYVHF45RTfOGxPIpd6HTZeZjnElRv3H0cGxc6DOvEd/ryaGxLsA4ej62JCGobZiyj0VcFKtrQGuw+iqcoPPSbMDG/wX+fh6XIIu+PH/u3qvpmXKDEXno20ve1DWvAUyjEfR3FtPqZmAGfT9HwF1AI0VrMWOwA/gcbR6uyDPM8n6MsUBFBRZQYhnEdFhU9nexjZlIna7C2NxbzGqH8NIz3YG3jKOyp7v+GXb+bMWP8VVWdhbWhM3wbAf4Gi06+jhnOte40LKbwnA+kEBwo2vgPsIjio5ihWEURqcf667C6DoGaDHzQ20acF1ibW+H/P+KfaQQF1rZPx/qIYkL3UPJ71EfM+Avn7l7f5n6sPTxBOd20FuuDq5L9RNS/3M8/jOYyihR7OhkHL/9OrM4P8fPegtXv7ViK9Cys/he4Y9SBzRBd4nWxgPJTXCb5+j+ieExWiOeDFMb/RMqZkFOx8ckQqIkUAjUXeCc24zUEaj+sf58MrFHVDm8H+2NR2cNed2Bt9NeYk/Hl5JhDKaaJ30WRnhaPDNM6B+v/x/q+NyfLUxHbRNmhPoJ6gYIiXbmS3SBQHwWuTgaIdyH24rCburmf/ibEaQ2W7npIVc+j8CqiIYdAPQXg61wOrHLBWIA1iIeTfW+jiKCO8/1BeezjcGBpRKLYOMndmPDdhRm/ELbHSTqwqr6RIsUVRGN4hsKIRhj+TVVNpwcvwRrDdiw1cZnPBlyMNbClwNYkzYWX6RT/LY2grsI8bbyOUoEKnlHVX2FiEZ3jv7AB+Ou9zIcAK1V1PfWsxm56/BHFJIqIoDoJFDap4HNYZBD1ocBPVDVmNq3FjNZ6VT1LVavRW5w3WCccR1mgJlJEULO8jOswY3QP5VdzbEy2m4vV882+bJdAuQOyGDMoH1HVm1T1eiwVcwkWhYK125g1uUZVv0wxY+v3KIzYEixVNc3LGCk7KByVzaq6VVU/h8829CjjEQqB+pl/hkBNoSysIVAbKQSqLsWHqm7xepqH1e+3K20t2sgN/rke2KSq27H00A1YdBL3KqYRFEmZn8SMYNxcPZuiz0R6rE6gHsXuM1ri2wzH+sOvvf8vxNrrhKSsK33dSZgTG2ms9Ly+honsDE/zHuJ1tQabKPRyzFn4ZzzVpaq3YNHl/Uk9hlOwEzPm76MQKCimp/+u5rw6KCLclar6qKqeRllMhmLXZgtmkzZg7fUZitm/6foxk/hi6p1mKEdQd2DZjapA3YrNLvwi1saeoK8C5QPJZwP/KiILxF5R8aci8gCWkriwO/vpL3x20tEUAnUvptZpQ7sZT2d5x/kp1uiC9ZRnnizBDFJckOdpLFBr/FiDSQZBVXWt/95BYWhizGsZZQ8T7II2EqjNlWVVHvP11gM/V9W/9OUPYB25g84icy+Wq15EcT/JdlXd6ONcUI6glibbhvG6C+9EqnoF8DZsqvgarLOm95tUWY11mldTpFa3ejmmUkQs6yjSXPg+H8EM/P0VQ7gOMyppRyrh1wWKfHnU+TXYu4VillwIVNR5ODYrKGbxgV2bK7Ao8BHg+xRtL4i2FdugqptU9U0uzGB1KV6O2D49tyj3EkwQL8f6aSoqYehSr3dbsr9PYQ4EwHcwg7GIQqDShxCnAvUkVk9PJMuqPIalTheq6vnpD6r6IDDD00R4meN8bsQi/A1YNJWmm+I8LvHPSzGDOZ5iLDccz4hkOwmUqq5X1fdi124aZiTTvrYOE61pyXlHvf4zlmIPRyCu5Xjf59OYiP0jJvor/JquxvrDDcC/qGrqkH5fVb9K0SdDYOZg13aYn/tqP9+4LtWHTz+Ktblb/XzS65Km407EHOj3YI7kRt/vGiwan0c5Q7AW6++L6BxBxTE2UtTz3XQWqC2q+pTPDF+K1e8ymghUt18/rao3i8grMCPwEawiPonlkJ9vtm2L+BWFgNyDRQbRKW/G0j0xoImq/owyt2M58uBbmDfyARFRrCGN8lzusZQFqoMilF1a2e9mCoF6LIkm/i3ZJthK2Ymoi6AaGd67sLTByZQb2gNYw1hFuaGBCVQ85eEM7B6abZV1VmD19iAWEY7FhDU68fco0lqo6kUAIvIodj26EiiwCDO8022YgTqBzhFUdIansU65WlWrL3+MCKqhQCWU6lRVbxWRK4F3+PJZWLokrtMy7FpuxvLz0VGHYUbrPd433llzrIhA6gw7fvyf+XjHYdjjoKD8tI2oy8ew+pmBRZBXJ+uEQKVe79bY1p3PON4qP0dEZAfm4aditwqLcnaIyAqKyUXQ2dkBa/tHUJ4ckZ7fiuTrF5LlH/AyzMKuferNR3uM9nEDxbjUcqx+Yqwt7kmri6CCFViKPlJ8UQYVkTW+v2jb0f7+W1Wf9Agp0vMT8HahqjtFZDWWdRiSnP9KbDbjeyvnnhIR+SLf11oRifY2BKvv9RTt+ZeV7W9U1c/5DOynPPUXhACvS7b7kZ/rBmwMays25nWlqj6abPtezBa9lPJszg1+XqNwm+jLl2Hinvb31AHYnKzXtwjK5/V/BjN4N/nfduD6dhQnvygLKQR4NdZ4V/vvH/aUykM0eNOm2oyfJ5PvV6lqrDsbm30U0zo3q2o03gjDGwlU/H4jyQ2Wqnqrqj5SWbdZBLUFMxbPUYOqLlHVd/o2qUBdBvwnhWFNuQNLP3zdv7+SeoE60I+9kiISXOvHXZnUU0p4hM0EKozdG7yM+PFPxkTxt8mxYort2ar6C+w1Bd+r2WdEUFXxrzIH63zzsZlrQaR1wwimEVQ83aM6DvMKYJaXqxErgB2e0mqIp+XuUNW3+qJPUzzUNI2gDsG89kMpR2tx7aue9Cqacy9mbHZFUB5pxmzH+7FUzQasbuscgMd8/TrxKuHnubWyeAOdU3zfBYao6tOqKm5/wmBGRBNtNm5sH07ndhyswIS9GkGB9ZHnKdpOiPXDXubnKMZnV1bE4Hxs3Oh5CmfkRiyqqBVsZ5rvOyJLkv1OoxCoxcAFyfABmHP5ed9mu6p+gTJRB3EeJyf7TiOokyg7OTFBbgfmoKVPE9qQ7G8jxQznp6lP8QXRJh5nN4xBLcaM0mmq+iosBXMrNnnisKZbto57KbyRLZQHDoNXUzyup9uoPXaoAxOYSymiJyhHUNvo/J6m9Zhns6OBIU/ZQvmibqCYjrqZxum9lO+RdAhVvV1tJuZtVF6b4GmPd3hDjJsc6wRK8AamNnh8VNqhGhBebTOBWo5NELgy8TDj+BerarzyImb7TcI7h59XdcYlmJGKZ7E1RFUfV9UVqvqQqqbtJMRnNT5dXm3CS9z4+VaKdNN1vq/NjRyHhBU0iZ6alPNJ7J68nZTHoI7F+vMIEg9XDakIYTzxohkxDlZyYlR1qX9uVdX/cAM3V21Ke5VFFKmp3rAJS5OOpRhr1Zq2tgYTgjDWE3zduFdnKs0jqIMwZ6HqbK/CxlZj+Rrg3VqkhMHawN2Y47cLVb1YbUx4CYVAfQSbNZfOsqtyGcUjgapM9zKtdwH6bPqjqq5pFjB4v34xVq/PU55VGWNQazBRWd5pB+yq/7Qur6EYZ92MpYtvpF6g0ig+2sRy7J7b2gcgd1egjlTVt6jqXUkh/wrLw97g95+0GwspKjlm55QMmItEV4a1EWEcjqQsUL/DZmatw2boVe9buhCLvrrDVjrfqLvWjd8WuiFQqvo1VX2iZvl2Vf11k003YgOjdbOfIDE6qrqQrlmFNf6GAuVGr/quoRDotFOHQMV9MM0I77c6vtddQqCqaZ5VWIp2A+ZtHqeqdU+sbkSvBApKY6bRvpdRvtlxTaeNytxHMeW4Edf4sartt648axv8FJNPuoygGuz3Oez6T6d5W18DbEuiqQMrv02nuUDFZIEq0WajPKqqVfG4DPilqjZ6KPOd+EQV73PfbFanHi2/u+ana7HrtpzevZw09n8znuKtOFEbsDqI/rmsum2D/X0NG07Z4lHWb1T15RRPnxhM4WTWRVAdWEq/9vmA3RqD0mKaaXX5f4jIYmzef29fp7ynuAlT8mlY5X29i/V7hKre5lNI76QcodwG3OY54HfWbFdN2zWjOga1FLtjHCwi+WKPC95NVFVFZBWdI6jwUntkdHx/f03XhrFKHD/N2a+ieFBmV6mqMJ69FaiIvKLjLvXPY9XGbCIdcyc9YyHFvWw9RlXfkvy/Q0SWUTyKpml0VPW8G6xznXR+CG1PCYewS5FrwgZsHKjZGOIaCgH6BvZUh/S3eTQWqA7MiNalgDvoQuzVZkU241x2z9uGz8QyFzsx29YX6iLojZitiWi00RhZHVvo7GytwNLOp/pvQ6kfg4p7PetSrH1/3YaqXovdtd1WqOoDamMw4RnsiWNswe7Sv7rmt+2qWp0C2lMuJpkhqfYome/4/+tU9dt93H9XdBIoD+9X0wuvWFW/p3ZjYk+oE6jV2MymnX4NmhGG58GmazXAHYoZ+FTzOF6IU29Rm7HX7O3LPSXuzYGuI6huofb0mL5sH9mJbr3IsAEbsOiwywjK/19A+cGoYYhrBcrTgDuod7BLEVRv8D7b53F6Vd3pGR/VzmN1PaVOoMJOrsFmHfZEVDsJlFoq+tPYU0c2JusFIVCrMQc/ffXJLro9i68Zag9/bFf2mECB5X334L7rxlT6k9XUDy6voJdpm14Qx09TfKuwKbLdEYmtWEepzal3B1VdEQ/abWOWYA7nKewmgdpNnEox/tgbIvXT7Jx2RVCePkv7+8PYWHOzySjXUtxvlvI4xTuMBhJbKd+uADZMMQ7LFHQrvZewGLt3sUrc4xYCldqSddjEkh3YmxBq2S0C1ebsUYEa4KyivmP3p0CFt1hN8U2gGONoiBusBV2t1w3qXuPeTvwYM6Yvo+sZi/2G2mzZvhA3WTfz6Bs5UmC3xUBzgfoKdv9flQux4YuBRvX+KNRnnIq936x2SKcR7qT/fc1P0Wc3UbzCJrZZnTxQtiH7gkB9mgZTyTNdsoriiekpP6S4wXhPswPrMGlKIv6/pfPqe4ylNDaCLcfHjPYHZu+OlFIbsZXGs9qCNMVXpUuBUtUrKacFY/lAqseUrTRImXr6cHdlbmK8egs1QUJ3sk8DXqBU9ZKu18o0oIOaV1mr33zbH3gEVH2PznpssLg/BepF2OBx2+JRxqdbXY7dzASaRz9gE2B+2+C3ZRQPYs0YK+jDTMDuoqrP+uzxIXR/YlgJ6cYs0r0CEbldVY9vdTkGEmKvdd+/rxMC9gT+hIe3a/mepUwm00b4U3fuBMao6ryu1q8y4COoTO9pcn9Ly1HVs7peK5PJtAE76fyKnW6RBSqTyWQye4qfY88u/EFvNs4ClclkMpk9gqq+vuu1GtPnG3UzmUwmk9kTZIHKZDKZTFuSBSqTyWQybUkWqEwmk8m0JVmgMplMJtOWZIHKZDKZTFuSBSqTyWQybUkWqEwmk8m0JVmgMplMJtOWZIHKZDKZTFvSdgIlIp8UkSdF5G7/yw8FzWQymX2Qdn0W35dU9fOtLkQmk8lkWkfbRVCZTCaTyUD7CtT7RGShiHzHX5pXi4i8W0RuF5HbgaH9WL5MJpPJ7GFa8kZdEbkWmFrz0wLgd8BqQIH/B0xT1T/rx+JlMplMpg1o61e+i8gc4HJVfWGLi5LJZDKZfqbtUnwiMi35+gbgvlaVJZPJZDKtox1n8X1ORI7GUnxLgfNaW5xMJpPJtIK2TvH1FRG5D9jW6nK0MROx8b5MY3IddU2uo67JddSc1ap6RnVhO0ZQu5Ntqnp8qwvRrojI7bl+mpPrqGtyHXVNrqPe0XZjUJlMJpPJQBaoTCaTybQpA12gvtHqArQ5uX66JtdR1+Q66ppcR71gQE+SyGQymczey0CPoDKZTCazl5IFKpPJZDJtyYAUKBE5Q0QeFpFFInJBq8vTKvxhux1+P1gsGy8i14jIo/45zpeLiPyr19lCETm2dSXvH0RklohcLyIPisj9InK+L8915IjIUBG5VUTu8Tr6e19+kIjc4nX0ExEZ7MuH+PdF/vucVpa/PxGRQSJyl4hc7t9zHfWRASdQIjII+CpwJnAY8BYROay1pWoZ3wOqN79dAFynqocA1/l3sPo6xP/eDfx7P5WxlewEPqSq84EXAe/1tpLrqGA7cKqqHgUcDZwhIi8CPou9t+0QYC3wLl//XcBaVZ0HfMnX21c4H3gw+Z7rqI8MOIECTgQWqeoSVX0W+DHwuhaXqSWo6o3AM5XFrwO+7/9/H3h9svwHavwOGFt5LuKAQ1WfUtU7/f+NmHGZQa6jXfi5bvKvB/ifAqcCP/Xl1TqKuvspcJqISD8Vt2WIyEzg1cC3/LuQ66jPDESBmgEsT74/4csyxhRVfQrMQAOTffk+XW+eZjkGuIVcRyU8dXU30AFcAywG1qnqTl8lrYdddeS/rwcm9G+JW8KXgY8Az/v3CeQ66jMDUaDqPJE8l75r9tl6E5GRwCXAB1R1Q7NVa5YN+DpS1edU9WhgJpahmF+3mn/uc3UkImcDHap6R7q4ZtV9to56y0AUqCeAWcn3mcCKFpWlHVkZaSn/7PDl+2S9icgBmDhdqKr/7YtzHdWgquuAX2PjdWNFJJ7lmdbDrjry38fQOc080HgJ8FoRWYoNKZyKRVS5jvrIQBSo24BDfAbNYOAc4BctLlM78QvgHf7/O4CfJ8vf7jPVXgSsjzTXQMXz/t8GHlTVLyY/5TpyRGSSiIz1/4cBp2NjddcDb/LVqnUUdfcm4Fc6wJ8GoKofU9WZqjoHsze/UtW3keuo76jqgPsDzgIewXLlC1pdnhbWw38CTwE7MK/tXViu+zrgUf8c7+sKNvtxMXAvcHyry98P9fNSLLWyELjb/87KdVSqoyOBu7yO7gP+1pfPBW4FFgEXA0N8+VD/vsh/n9vqc+jn+joFewt4rqPd8JcfdZTJZDKZtmQgpvgymUwmMwDIApXJZDKZtiQLVCaTyWTakixQmUwmk2lLskBlMplMpi3JApXJtAkiMltENvkDjzOZfZ4sUJlMCxGRpSJyOoCqLlPVkar6XKvLlcm0A1mgMplMJtOWZIHKZFqEiPwQmA1c5qm9j4iIxvPbROTXIvIPIvJb//0yEZkgIheKyAYRuS192Z2IHOovWHxG7IWdb27NmWUyu4csUJlMi1DVc4FlwGtUdSTwXzWrnQOci72i4WDgZuC7wHjsmXh/ByAiI7BXYVyEvR7kLcDXROTwPXwamcweIwtUJtPefFdVF6vqeuB/gMWqeq3ae4Quxt5hBXA2sFRVv6uqO9VexHgJxcNKM5m9jv27XiWTybSQlcn/W2u+j/T/DwROEpF1ye/7Az/cs8XLZPYcWaAymdayu57WvBy4QVVfsZv2l8m0nJziy2Ray0rstQx95XLgBSJyrogc4H8niEjd228zmb2CLFCZTGv5J+ATnprr9XiRqm4EXolNqlgBPA18FhiyOwqZybSC/D6oTCaTybQlOYLKZDKZTFuSBSqTyWQybUkWqEwmk8m0JVmgMplMJtOWZIHKZDKZTFuSBSqTyWQybUkWqEwmk8m0JVmgMplMJtOW/H9tzNrZd4j5JgAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -565,12 +554,12 @@ " data[t, 0] += 0.4*data[t-1, 1]**2\n", " data[t, 2] += 0.3*data[t-2, 1]**2\n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe)" + "tp.plot_timeseries(dataframe); plt.show()" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -585,7 +574,7 @@ " Variable $X^1$ has 0 link(s):\n", "\n", " Variable $X^2$ has 1 link(s):\n", - " ($X^0$ -1): pval = 0.00000 | val = 0.234\n" + " ($X^0$ -1): pval = 0.00000 | val = 0.234\n" ] } ], @@ -619,7 +608,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -639,7 +628,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -650,12 +639,12 @@ "## Significant links at alpha = 0.01:\n", "\n", " Variable $X^0$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.030\n", + " ($X^1$ -1): pval = 0.00000 | val = 0.030\n", "\n", " Variable $X^1$ has 0 link(s):\n", "\n", " Variable $X^2$ has 1 link(s):\n", - " ($X^1$ -2): pval = 0.00000 | val = 0.028\n" + " ($X^1$ -2): pval = 0.00000 | val = 0.028\n" ] } ], @@ -676,12 +665,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAADQCAYAAAD79kC9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2dfXwddZ3v39+kSU15CNLisgJ9UNFVTKo0ii7r3V2zupY2AvEJTbHC7u0CsttecVFuwba4BRe5vspeLGx97EJUWE3LFuhd3booIqIp2mYRtSi0ooi0LJHSSNL2e//4zaSTk5k5M+dp5px836/XeSWZmTPzO5PfmfnM91FUFcMwDMMwjEahKesBGIZhGIZhVBITN4ZhGIZhNBQmbgzDMAzDaChM3BiGYRiG0VCYuDEMwzAMo6EwcWMYhmEYRkNh4sYwDMMwykBEzhWRX4rIfhF5bRWP8yYR+WnM+i+KyD9U4DhzRURFZFq5+8oKEzeGYRhGwyAij4nIiIg8KyLPiMh3ReQiEWkq2O71InK3t83TIvJ9EbmgxMNeD1yqqker6g/L/xThqOq9qvqKau2/kTBxYxiGYTQaPap6DDAH+ATwEeBz/koReSPwTeBbwMuAmcDFwMISjzcHeCjJhvVsDaknTNwYhmEYDYmqDqvqvwHvAZaKyKu9VZ8ENqrqP6rqXnVsV9V3h+1HRJpE5EoR2S0ivxWRfxGRdhGZLiL7gWZgh4j8POL9KiIfFJFdwC5v2R+JyDc8q9FPReTdge3PEpEfe9anX4nIh73lfyYijwe2e62IPOhtdxvwgsC6D4jId0LG8TLv90Ui8kMR+Z3nUlsddR69ff3CO86jItIXedJzgokbwzAMo6FR1e8DjwNvEpEZwBuBr6bYxQe8158DLwGOBm5U1edV9Whvm/mq+tKYfZwDnAG8SkSOAr4BfAl4EfBeYL2InOZt+zngbzzr06txVqYJiEgrsBm4BTge+FfgHSk+03PA+4HjgEXAxSJyTshxjgL+CVjojeePgR9562Z7br3ZKY5bE0zcGIZhGFOBX+NEwAtx974nUry3D/iUqv5CVfcDVwDnpXQxXauqT6vqCLAYeExVv6CqB1X1QeBrwDu9bcdwIuhYVf1vb30hbwBagHWqOqaqXwV+kHQwqnqPqg6p6mFV3Ql8GfjTiM0PA68WkTZVfUJVH/L2sUdVj1PVPUmPWytM3BiGYRhTgZOAp4H/xt2s/zDFe18M7A78vRuYBvxBin38MvD7HOAMz+rxjIg8gxNQJ3rr3wGcBewWkW95MUJhY/qVTux+vTtku1BE5AwR+U8ReUpEhoGLgFmF26nqczi33kXAEyJyl4j8UdLjZIWJG8MwDKOhEZHX4cTNd1T1AHA/6Vw4v8YJEp/ZwEHgyRT7CIqQXwLf8qwe/utoVb0YQFV/oKpn41xWm4HbQ/b3BHCSiEjBuHyeA2b4f4jIiUzkS8C/AaeoajtwMyCEoKr/rqpvwQnCnwCfKf5xs8XEjWEYhtGQiMixIrIY+Apwq6oOeasuBz4gIn8vIjO9beeLyFcidvVl4H+JyDwRORq4BrhNVQ+WOLQ7gZeLyPki0uK9XicirxSRVhHpE5F2VR0DfgccCtnH/TiB9XciMk1EeoHXB9bvAE4TkdeIyAuA1QXvPwZ4WlV/LyKvB94XNlAR+QMRebsXe/M8sD9iPLnCxI1hGIbRaGwRkWdxFpKVwKeA8Ro2qvpd4M3e6xci8jSwAbg7Yn+fxwXufht4FPg98LelDk5VnwXeCpyHswr9BvhHYLq3yfnAYyLyO5w7aEnIPkaBXlyg83/jXEcDgfU/A64G/gOXofWdgl1cAlztnaePEW4dAqcTLvPG+TQuLucSGA8o3p/HgGKZ6K4zDMMwDMOob8xyYxiGYRhGQ2HipsEQkbUicq+IfNWr55A5XrGr73vmy1cXf4dhhCMibxSR+70Mki+LSEvWYwKb44aRN0zcNBDeRfWlqvomnJ/1woyH5HMAVyQqTdEswwhjN/BmVf1T4BfA2RmPx8fmuGHkCBM3OUJEXuGVw35WRP6uhF28Cdjq/b4V+JPKja50vAJTT2U9DiN7yp3jqvprrwgauEyRw5UdYWnYHDeMfGHiJgEicp6IPCAiz4nrK/KAiFzi1xeQI11o94vIkyLyBS9dMC2XA/eo6jGq+k8h43ipN4Y/DCzrE5Ffi8gpuMqbw96qYVw1zqqTYFxGzqmjOe4vm4drcnhnCWNIjc3xfCAh/ZKM8vG+33+R9TgqiYmbIojIZcANuEZrJ+IqUl4EnAm0Bjbt8XqMnA68DriyhMPFdpZV1Z/jLuYrvLG9EbgROEdVf4lLB2z3Nm/Hpe1VnQTjMnJMnc1xRORYYCNwvpcOW3Vsjtc3IjJXXDXeAyLyk7gbubhmmJ8X11DyNyLyoYL13d4+Dnj7nBOyj+PFVf4tKsREZIOILCvtk2WLiPwv7xwNe+dsesR2c8U17dwfeF0VWH+SiNwhrono4yJyUcH7m0XkH7yHiWc96+9xsYNTVXtFvHAC4TngHUW2ewz4i8DfnwTujNj2lcA9wDO4i/zbveXfxBVG+j2uSNLLI95/uvfeV+MqVL4nsK4D+JL3+zLgb2PGHDqOwOf5MLATZwG6DXhBkXMQOa7ANl8EXp31/9VeE/4n9TbHpwF34eJuin02m+MN9sLVdPlOCe+7H1frpg1XmfgZ4ISIba8F7sVZwl+Jq0HzNm/dLG++vAvXgfuTwPdC9vEZXE2comMF9gAnZ3xeJ3y/E77nL3EVmk/zztU9wCcitp2Lq9A8LWL9fwLrcL2y5uMezP88sP4fvOvHHFwV5VcX/b5mPVnz/ALehvPrh/5DwiYGcIp3If14yHYtwCPA/8Y9Eb8ZeBZ4hbf+HuCvE4zr67gb0sdC1vlfzK8BR0W8v9g4HgO+j+tdcjzwMHBRmeO6G1cE6n7gA1n/b+01/n+pqzmOK26219vPPYQIjITjsDme3Zy7Gbi+YNkdwIe83z8K/Nz7f/0YODew3QdIKW6Al+Mq6x4TWHZv1P8b+BXw1sDfHwe+4v2+DPhuYN1RwAjwR4Flb/TmwAXFxgp0Ajsj1q3GBajf5p2LB3Gdx8O2fbE3juMDy17rfVdagJfixME+b1k/cFxg2/Hvd4rz+iXgmsDf3cBvIradS4S4wXVYVwJiE1dQ8Rbv9xfiHoZemmZ85paKZxawVwMltkXku+IanY2IyP8IbLtZXPOz7wDfwpXnLuQNuH/kJ1R1VFW/iTN1vzfpgESkCff0exhX0XICqnqFqr5JVd+hruFZGEnG8U/qgjefBrYArylzXGep6otV9Y2q+sWiH9SoFXU1x1X1FlWdpap/5r1ui9iNzfH88iXgPYF4rhfiqvX6rQ9+jkuOaAfWALcGY52CiMhOCTSfLHit9zY7DfiFuqrAPju85YX7eyFOKOyI2Pa04DrvGvtzf72INAOfBi5lYi+pKM7CWSKjOBv4V5wA/xLuOzip/IGq+qI62C/rfcBX1bVwENyD74tx1qhTmNyOAe8zvC/mnD4jR6oRTzgX3u9/IF47iwh2e26nL4iI36RTCn76v/slFTpwD2Dv9FxgPxORD8YcA7CYm2LsA2ZJoK29qv6xqh7nrQuev3PUNT+bo6qX6JGMjiAvBn6pqsEMj924hm5J+T/Acbhy2n0p3pd2HL8J/H4Ad6Oo9riM2mNz3GFzvHbci7vxv8n7+53A/d4NGlX9V090HvbE6y4m9kwaR1U7dWLzyeDrEm+zozmSaOEzjOutVMjRgfVh2xbb198BD6jq9vCPPolFRLd8ANiuqr5A+RTOFfaGiG2/hCfePeF4nrcMVX1EVb+hqs+ry+r7FK6NwiRU9Usx5/Q4Vd3jbVp4Lvzfw87rXlyc3hxggbdNv3e8Z4H7gKtE5AUicjpOpPl12k7GCd2XA/Nw82W1iLwl4jwAJm6KcT/OnFmpWhq/Bk7xngB9ZuPMoEURkb8BzgXOwT05/r3/9FPLcVRxXEbtsTle23FNedT5Gr7CESva+/BudAAi8n4R+ZFvKcA9wc+avKfE7AeOLVh2LM7VE7atvz5s28h9iciLceJmZZJBeQGxfwR8N2az8WB1T6g/DrxYXKaeH5jrl//4KvBGbxz/Aycg7/WO9SIR+YqI/Epcv6pbKe+cwuRz4f8+6byq6n5VHVTVg6r6JM6y9VYvOQDcw8I87/PehJsPj3vr/Ieoq1V1RFV34ubPWXGDM3ETg6o+gzOLrheRd4rI0SLSJCKvwfla0/IAzl9/ubgusH8G9HDEHBuJuOj+a3AZK0/iJnIrpd2USh5Hlcdl1Bib48WxOV4VvoxzM8wBzsDFCOL9/RnczW+mZ0H8Lya6LMYRkYcKMnCCr5u9zR4CXiIiQYvCfEKy9lT1v3HB4vMjtn0ouE5cp+yXestfD/wh8GMR+Q0uA/H1niulOWT4fwlsU9W4DtvB8gdNOCvGr1W1X1WP9l4LvbE/g4sJezdOMH7ZE5LgXFIKdKrqsbhGnFHntC/mnAabZE44F97vT6rqvpjP4+OPS7yx71bVxap6gqqeAczExcSBC/oPvicZaQJ0puoLpyq/jzNdP4W7cC4DWjVlMBbOT/ktnAmvMFjuHkKCLXHqfi9wVsHyD+LMuaV8prhxTPg8ON/srbUYl72yedkctzmewZz7MfANYFNg2atw2XSvAJpxQbkH/TlD6dlS3wOux7l1ziU+W+oT3rx5off/f4Ij2VInePPpHd6+/hEvWwrX0fvEwGu59z06MeI4/wK8P2bMq4ExXOfvacCHvHnbEvOe9+ACj/cSCD7Gdfz+jHdOT8K5gR4PrE/8/Q6852041+6rvHP1TaKzpc7w/qdNOOFyG/CfgfWvxLmqWnHCay8TA4y/Dfyzd45fCfwW6I4dX9YT3F72spe97DX1XsBVuKfxdxUsX4tLBd6Liw35VgXEzVycsB4BfspEYdsHPBT4ezrweeB3uFTnDxXs6y+An3j7ugeYG3HMyLHiLBZPAC+KGfNqJmZL/RA4vcjnbPO2fahg+WnAdpwr6UfAZeWKG+99H/LO0e+ALwDTA+seAvq8398LPIqzpj6BE3YnBrZdgXuoeg6XsNBVcJyTgP/njf8XwN8UG5t4bzQMwzAMowaIyOuBG1U1NFDa22Y18DJVXVKzgTUQFnNjGIZhGLVnVdYDaGSmFd/EMAzDMIxKoarfL76VUQ7mljIMwzAMo6Ewt5RhGIZhGA1FXbulZs2apXPnzs16GEbO2L59+15VPSHrcVQCm+NGFI0yz22OG1GUM8frWtzMnTuXwcHBrIdh5AwR2Z31GCqFzXEjikaZ5zbHjSjKmePmljIMwzAMo6EwcWMYhmEYRkNR124pY+owNDTEtm3bGB4epr29ne7ubjo6OrIelmFUDJvjDUB/P6xcCXv2wOzZsHYt9FW5gXwWx6wDzHJj5J6hoSG2bNnC8PAwAMPDw2zZsoWhoaGMR2YYlcHmeAPQ3w/LlsHu3aDqfi5b5paHbTt3LjQ1uZ9h21T6mFMMEzdG7tm2bRtjY2MTlo2NjbFt27aMRmQYlcXmeAOwciUcODBx2YEDbnmQSgqSpMecgpi4MXKP/zSbdLlh1Bs2xxuAPXuSLU8jSIpZeJIecwpi4sbIPe3t7amWG0a9YXO8AZg9O9nypIIkiYUn6TGnICZujNzT3d1NS0vLhGUtLS10d3dnNKLyEJFmEfmhiNyZ9ViMfNBoc3xKsnYtzJgxcdmMGW55kKSCJImFJ+kxpyAmbozc09HRQU9Pz/hTbHt7Oz09PfWcSbIceDjrQRj5oQHn+NSjrw82bIA5c0DE/dywYXLmUlJBksTCk/SYUxBLBTfqgo6Ojoa40IvIycAiYC3woYyHY+SIRpnjU5q+vuLCwl9fLH179mzniiqk0MKT5JhTELPcGEZtWQdcDhyO2kBElonIoIgMPvXUU7UbmWEYtaGvzwma2bOdwFm5cnKwsLmcyqJhLTdWEMvIGyKyGPitqm4XkT+L2k5VNwAbALq6urRGwzMMo1b4wcJ+TI0fLAxHrDBBC8/u3dDcPDHmxqw1sTSk5cYKYhk55Uzg7SLyGPAV4M0icmu2QzIMo+YkTQf3LTwzZsChQ26ZFepLREOKGyuIZeQRVb1CVU9W1bnAecA3VXVJxsMyDKNaRNWpSVOfxgr1lURDihsriGUYhmFkSlydmjT1acot1FepVg91RkPG3LS3t4cKGSuIZeQFVb0HuKeS+7Q4M8PIEXEWl7VrJ8bcQHSwcNKsqTCSxPY0KA1pubGCWMZUw+LMjDwgIqeIyH+KyMMi8pCILM96TJkRJkj85Wnq05STNVUJl1adWn4aUtxYQSxjqmFxZkZOOAhcpqqvBN4AfFBEXpXxmLKhuTl+eV8fPPYYHD7sfkZZUsop1FcJl1aha+388904ci50cueWEpFmYBD4laouLnU/VhDLmEpYnJmRB1T1CeAJ7/dnReRh4CTgx5kOrBr098cX4vOzmwqJWh5HqYX6ynFpQbjlR73qFDl3ceXRcmOl6Q0jJdZ40cgbIjIXeC3wQMi6+i5UmaSp5Zw54e+NWl6JMRW6j8otBFjMwpPjrK1ciZtAafrPZj0Ww6gnLM6sfIaGhli3bh1r1qxh3bp1Fq9UBiJyNPA1YIWq/q5wvapuUNUuVe064YQTaj/AcsmqqWVU/EuU2ILyek8lsfAkdXHVmLy5pfzS9MdEbSAiy4BlALOtrbthAIy7YC1bqjT8gGw/bskPyAbsHKZERFpwwqZfVQeyHk9VSNrUEor3kErKJZfAzTeHu4XixFZcPE8xwrK6CsnpfTg34sZK0xtGeVicWenEBWTbOU2OiAjwOeBhVf1U1uMpiWKxNFD7ppb9/ROFjc+BA7B8OTz9dPj7yrWqFLaAEJk4hhz3usqTW8pK0xuGkQkWkF0xzgTOx12/f+S9zsp6UIlJEksDtW9quXLlZGHjs28fHH98+LpKWFX8rC5VuOWW0l1cNSY34sZK0xuGkRUWkF0ZVPU7qiqq2qmqr/Fed2c9rkiCMSyzZrk056Q9n8qJZUk7vqiaOUEKxZaIe18lU7aTpq/ngNyIm6ywIELDMCwgewpSaKXZty/aOhLm3gne6NeudQIoaaG7uMDgoNi68MJkwubpp524mjnzyLLC2Jwc16SpBrkUN6p6Tzk1bpJiVV0NwwAr/DklCQvCjWL27PSZSlFiImr7Sy6ZLLZGR5ONr6kJ7rsPRkbC1+c4ZbtaiEYp1Tqgq6tLBwcHS37/unXrIntQrVixopyhGRkiIttVtSvrcVSCcue40bg0yjzPbI43NUVbaoLMmAFLl8LGjRPFkB9c29wcXphvzhxn2YGJQcpNTeHbR+0nKYXBvmHrDx8uff8ZUM4cz6XlplZYEKFhGMYUJUmwbXOzc/fcfXd0pd4oQeK7sgotNZWsXBw2nihymrJdLaa0uLEgQsMwjClKWMZTkBkznLWmr6+0lGpfTCR1f0X1oqoE5WRy1WnjzNzUucmC7u7uCYW7wIIIDaMSDA0NWUFBI98UFtnz06mffnpyfZuoujZRBMVEEmEU5fpqaYFjj3XxN01NR9xKxVxQQWbOhBtuKC2zybc6+WPKeT+pIFPacmNBhPVDf38/c+fOpampiblz59JfJ08PUxEL1DfqhmDG09697hWW5lzMylOIyJHfi7mD/DTy9esnp5d/4QtuTLfeOtGyk0TYzJzp3rd3b+lCJEmbiZwypQOKjfqgv7+fZcuWcSDwJZsxYwYbNmygL+RL2yiBllCfc9wC9WtDo8zzupnjflBwUgtOSwtMnw7790dvI+IK4xUTH7NmOetNGoIBzaUSFXRdo+BkCyg2GpqVK1dOEDYABw4cYGUdPD1MRWoRqG/1qYyiVDpWxLfyBGvJxDE2Fi9swAmHJNextMIGKtPQMsrqVAfBySZujNyzJ+JLGrXcyJZKBepHCZhGdXuZ67WCpK09k4ZShEYcaWJ50lAJAVLrNhMVxMSNkXuiur9bV/h8Uolqv3ECJq7JZb3iu153796NqrJ7926WLVtmAqdU6i1WRMS5ngr/3771qRT27q2MtaoWbSaqgImbKUC9m/DXrl3LjIKnhxkzZrC2Dp4epiKVCNSPEzCNWJ/KXK8lEOd2irLqBmvPJHVZFW571FGVGP1k9u2DD3wgvPJxKTz3HLz//ZVzx9VBP6kgUzoVfCrgPwH7Nwr/CRiom6wwP2h45cqV7Nmzh9mzZ7N27drQYGIjH3R0dJQ1v+IETHt7e2TAcr1irteUFEtRjkrd9tsoJE1vDtu2paX8asJRHDwIy5e7caRpDxHF4cNH9jfFMMtNg9MoJvy+vj4ee+wxDh8+zGOPPWbCpsGJi9tJ4vYKWiuvvvrq3FstzfWakmJup7hYkWLvDVpqli6dvO3YGBx3XMU+yiT8mJ5KCds0MUJ1WrAvjCljuZmqRcWqbcKfqufVqC5xBTb9+RU17wqtlX65i0KrZZ7m7tq1a0PLHZjrNYJibqfCAn3Bonznnx/93kJLTZR1Zt8+F39SrWDg/v7oHlTVoo4L9oUxJcRNI7hmSqWaJvypfF5LQUROAf4FOBE4DGxQ1RuqecwkN/A83eR9Ojo62LNnD9u3b0dVERHmz58/Pq44t1eYtdInaLW84447OOTdPIaHh9m0aRNbt25lZGRkwnmoxfkx12tK4txOPn194TfluPemaZWwdi1ccIGz5FSSo45yoqJSwmbmzImNOwurL/vEWbTqcB5OCXET55rJ+iJebarZYiLqvG7durXhz2uJHAQuU9UHReQYYLuIfENVf1yNgyURn6UK1OANv62tDWCSKCh37Dt27Bi3uqgqO3bsYPbs2UX3XcwqOTw8zNatW8eFjY+qMjIyMr7Nli1b2LNnDzt27KiJgO/r6zMxk5S1aydaGSB5inLce6OsOoUcOuS2Pf74yqeGP/dcZfe3bx8sWXLk7927nSi77z7XENQXPFFWqDqN+5oSMTdxrpm8+uArRTVbTESd15GRkYY/r6Wgqk+o6oPe788CDwMnVet4SeKt4gRqFIVp2iMjI5NEQbn//3JixYpZJUVkfLxxjI2NsX379oaIWWs4yklRjnuv318qCapOOARbLdQLY2Nw000T6wBFUadxX1PCchPlmgGmhBul3MyVKOLO61SwipWDiMwFXgs8ELJuGbAMygsoTRJvVUyghv0P49w+UJpVtND1U06sWJi1MkialjNR29Zz2nnDEOV2KvW9/f3wu9+l35dqukaW9USdFOwLo2EtN8Fqn9dddx0PPfRQ6HZJn8LqvVZMNYhzbdnFPxoRORr4GrBCVSddTVV1g6p2qWrXCSecUPJxklQKjrNyRH0vkvxv0/z/wwr2Fds+jkJrpXhP1lLBJ+x6SzsXkbeIyGdE5DXe38uyHlPNKZYJtHJlePzMUUcdsfJE0YjCpo4K9oXRkJab/v5+LrjggvEntyeeeIJNmzZx6NAhOjs7J22f5GJqgbOT6ejoGA/ALKTeLv61QkRacMKmX1UHqnWcoaEhRkdHJy0vjLfq7u5mYCB8GP73otCq0tbWVtStk+b/X8wSFLZ9se9dmLVyzZo1iY8RR6Vi1mrMJcAFwJUicjzwmozHU3nigmaTZAJFuWYOHDjSgHLu3OjtGsl6I1J+082MaUhxs3z58kkXy4MHDzIwMMDAwAAiwoIFC1i8eDEw+UJceDEfHR2t+4DkamV8LFy4sGoBy42GONPB54CHVfVT1TpOoRj3aWlpYdq0aQwMDLBt27bxORAlbkQkVNg3NTXR3Nw8KSA3eJw0//+0Vr5SrYJx7q64dYVUKmatxjylqs8AHxaRTwCvy3pAFaWYeInKBFqyxK0766xocXL88U7U7Nnjfp82zRXbK6SehE1Tk8v4inqoqNM4myCSxv9cTUpJk+3q6tLBwcGwfSU6ZldXF+eee+6Ei1XUjSGKVatWJdouS8I+U0tLC/Pnz2fXrl1lC568pRKLyHZV7cpsABGIyJ8A9wJDuDkO8L9V9e6o90TNcZ+wcx9lTSukpaWFnp6eSHED0Tf9trY2WltbS86WCo5bREJjW4otTzvXor4H/vd/3bp1RQVO8HNnPdfTzHMROVtV7wj8/beq+n+rN7rkFJvjiYiyqMyZ4ywQTU3x4iPO6hIlZuqVmTPhBu/Wunz55GyvGTNy444q51qeJ8tNTdNkAQYHB3nkkUeYM2fOhMJgSYVNvbheojJPgheUKFdbEuFSrYDlRkNVvwNULPAjzKoSrN1SDN/6GCVgRCQ24Pjyyy9PNMbC+QOEFtkL4ovvYBq2T1RRvmIUK/5XLBC5ubmZ559/flJmWNLjZ0lQ2Hh/50LYxJKkNotPsaJ+canOEC98GknYiLiGmj59fenOcx2Rm4DiSqbJzpw5M/G2zzzzDBdeeOF4992kpul6cr0k/UyFwdVxnZmN7AkTrUmFjc/w8HBoOwOIzyryXVZxDA0NsXnz5gnzZ/PmzWzdujVUQPgWV79cwaJFi+jp6Rm3DIWRNi27o6ODFStWsGrVKlasWDFBlBQGIre1tY0fu729ndbWVg4fPjxhf/WUFi4iG0WkNetxJCLYNNJPVV62LLodQJQbxV8e1o5hKhJ2noKNMf32FNZ+oTrEpckm4YYbbuDCCy8MDagMY3R0lKVLlwLJzPAiMuGilventiQBoD7Dw8OsWbOmpFijvLmnGp177713gguqra2NhQsXhgbNR9He3j7+P9q0aVPiNGlVHY9ha29v59RTT53k4ty6deskMXD48OHIuaiqoW7eg0WenJOI96RzM84KGRWQXEeZgb8E7heRd6jqY/5CEenEZe5dmNnICklbLbdYUb9gO4apEBAcRrG0bmu/UF2KpckmqQFSWMr8qKOOYv/+/bHHPXToEOeffz7vete7mD9//iS//MKFCwESZU3l6SY/NDTE888/n/p9cRfssHWWUVZb+vv72bx58wTxMDIywh13OO9DEoETtD7GBRZDdPwLuP91mIszTQYUHHHzJonHCXtfFJWam+3t7fT3909oCbFgwYK6qSqsqleKyPeA/xCR5UALsAI4BqhqG5DUFHMzFRLXSyq4je+GKRRCjS5s5swp7o2QczkAACAASURBVG6y9gvVI0marKpuADaAC0SL2ldhKfNLLrmEm266Kfb4qsrtt9+OiHD66adPCpC87rrriloyouIgwnrWpKFUwRT29FwuYTeTbdu2sX379kljnDFjhombKrBy5crQ/+uhQ4cYGBhg06ZNEzICC/GtPMH/TVwfsrTWibTCxhdavivL/2zFhE0S93Cl2q/cf//9E0ScqjI4OMhLXvISVqxYkXg/GfNt4P8BW4DfAu9W1W9nO6QQkvSOCpImbqTQitPowmbmzOjzETxvUedg927npqqzeJzcxNxUO012/fr13HrrraGxBYXcfvvtDA4O0tvbO37Ruu666yLN6cPDw+MF/jZt2hQaB1FOefpSY1+GhoYSu6OSEnUzuffee7njjjsmjPGOO+7g3nvvrejxDceeIv1e/BvvNddcw86dOyetb21tnXRjD4u98f/f1Q6e9zOW0ohxEUmUll1OtWOf/v5+br/99tB1X/va1xLvJ0tE5NO4TL39wCuBbwJ/JyL5C0YJi5GJcqukjc+BI3Emc+Y0trABlw0Vdj4Kz1scwfN6ySXhxRCLFUmsMXmy3JwJnA8MiciPvGWxabJp8S05y5cvZ19MszNVZfPmzRw6dIgzzjiD559/vugF179QJolZKPbUWKk6O5UIdIxKfS0cY1gjwkOHDsX2KDJKZ/bs2eyOy/7wGB0dnRAb093dTWdnZ+iNPSqbyN9PWpK4lAqPnUaM+/v2U7ijYn/iLFJRBOf317/+db773e9Gbps2iDtDhoAPq6p/kt8nIpcB3xORd6rqzzIc20SSuJl8ynGn1GlTyNSEnY+kHdAL93PzzUfEkC947rsPNm7MVbxOburclEJcfYRibpxPfOITXHHFFbH7FxHOPffcVAGaaQgbVyXr7FSiImtvb+8kAXXXXXdReN5Xr14duY9az7G81rkphag5XliFO+U+6evrS+RKSTsfS0FE+NjHPgakm7NtbW0cPHgwdmxNTU2cfvrpoSnlYa45mPiZd+7cGRuL5B8jC4FTqXkuIm/G1RV7WQWGlZqy69xE1bARcRlAccyaVfmu3nkmeJ7iav+kddU1N7tO6YX4dYZKpFHq3FSMJHEvTU1NdHV1TbpJB/EzQn74wx+OZ1NVkrDAxkrW2UkaKxF1k+jq6pokvAoLxO3cudOsMxmQ1AoZxuDgIO94xztitwk+HCShqamJ6dOnl+QGVVXWrVtHd3d3qsw+KB7bc/jwYQYHB+nq6uKhhx6asO+RkZHQwGL/O7hz5042bdpUdAxveMMbEo83j6jqN0Xkz7MeR8kcf3y4QImrsuvHmkwlYQNHuqCvXRtf+2f2bNi/P/n5iRL3GVrGchNzU0mi6n8E415GRkZYvHgxvb29RSsaP/roo9x5551VGevY2BgDAwPjzTjT3ExGR0cnNPIsbO556qmnJooxOvHEE5k27YjObWtro7e3l0WLFo0v8wVjobDZvHlz7M2oXgod1iN9fX3s3bsXVeXiiy9O9d4rr7xyvLZTIYUxXkk4fPgwhw4dorm5OdU4fHyhf9pppyXax7x581KJoMHBQX7/+99PWh5Wp2Z4eJidO3eyZcuWolbHrq4u3vrWtyYeR15R1V9Wal8i8jYR+amIPCIiH63UfkPp74dnn528vKUlOu05GGsyFfFdRmedFV37Z/dud14L7x9R98qo72yGbRwaUtykuSh3dnZy7rnnFhUB27dvn/B3JTsMw5GLe1zBMv+YbW1tiMgEsXbHHXdMKpi2Y8cO5s+fPy4w2tvbmTdv3qT9Pvroo5OeaAcGBrj66qvHhVJY4bVt27bFxiJNmzaNT3/60wnPQHY0Qsfk9evXc/HFFyeel4cOHWLJkiWICLNmzZogdNI2svQZHR0tyz0zNjbGrl27OPvssyd19C7k0UcfTSTcg8SlsgfZtWsXAwMDRc9Bb28vixcvNgEfQESagU8DC4FXAe8VkVdV7YArV0JYPNixx06O9fADXpcsSR9r0mgcOAB33+3aLMyZE77N6KizyMycecTic9FF4YHey5YlDwCvEUXdUiLyPuDtwCFc6fgtqvrlag+sHNKmrvoxNXFFzFSVnTt30tnZSWtra2yAZVrTus/Y2BjTpk2LbEqoquMX9LDg3bD9DQ4Ojgum0dFRHn300cTjCZa5D6PYOf7iF79YLzVA6rJjcmFc2aJFi3j5y19Of39/rLu1kH379rFkyRLuu+8+1q9fn2lRuuHh4QmF9OL6PVUqDigoTvr7+7ntttuKvqerq4vOzs66qlQeh4icqKq/qcCuXg88oqq/8Pb7FeBsoDptdKLcHk8/PfHvSy6ZGAibhhkz3I2+kdowwBHLVVzvrcOHYWQEbrnliFg888zwQO+o5RmRxHLzp6p6nqr2qer7gD+p9qDKJaqcfCFtbW3jF7Y3velNXHPNNbHbb9q0iZ07d3Lw4MFYC8tpp50WevyWlhaamuJP+cjISKwpfGxsLLVw8revZFr4zp07Y60Ec+bMqRdhA17HZFX9MPBW6qBjclh5gMHBQYaHh8fdrccdd1yqfd50003MmjWLXbt2VWPIiSi0gqQVWmktqsH6OkuWLGHJkiWxFZGbmpro6+sbt9jUaYfwMD5Xof2chKuE7PM4IW10RGSZiAyKyOBTTz1V+tGOPz58edAd0t+fTthMm+asFeDcLQcONJ6w8fFTxOPcR36mlU+wXcNjjx0RMFHLMyJJQPF0EVmEm7AnA9F39ZxQmNLa1tY2KZ3brzpceGHavHkzDzwQ3vXBTxEHOOOMMyKPv2vXLnp6ekKztZIEala66F6lufPOO2MtA62trazN0BxZAnf5v6jqR0Xkb7McTBKKuY46Ozvp7Oykvb2dE044gaVLlyZyGe3bt4/+/n5OOOEEPvjBD1ZyyIkYHh7muuuuK5oFFcW0adOYNm1aYiE/NjbG1q1b+cEPfsBXv/rVotufc845dHV1NVxrEVVdVHyrRISpy0mqImkx1lj6++F3k4rYO3bvdi4ov1dSUmEzZ46LRfFrGtVPmn9pHDjg3HTFHgrqMGU+ibi5BOgFOnAC59KqjqhCFPaICYoK3+oyMDDAtm3bJgiPt7/97Tz44IORF9bDhw+zadOm2PTw4eHh8boihanU/rgqkaadBcWEzcyZM7nhhhvqyWpTlx2Tk1o0hoeHx1O+ly1bxoGEsQZPPfUUN910U+pA5TiS1r0px8I4NjbG/PnzefDBBxM/JDzwwANF073BWXr9GkH12FpERD4Ut75CxVMfB04J/H0y8OsK7HcyK1dCnAD2A2eTzPnWVvj8593vSd/TSCQp4ueLxTq5thd1S6nqAVW9VVU/oar9qlqX/3W/G3Bvby8HDx4MrRjsPw339PTEurVUlZtuuinWNVW470KighArHahcSTZu3BgrbESEvXv31pWw8amrjskkz0Lzt+vr62PDhg3M9M3tCXjyySe5+uqrQyscp8WvGVULtm/fnljY3HnnnYmETXNz83h/OaivbuABjvFeXcDFOHfRScBFuODfSvAD4FQRmed9n84D/q1C+55IEmvCgQPFrRLgYmqWLoXly6eesElKksrPOSJRtlS9XfjjiOsz4z8Nd3Z20tPTE7ufJ598kptvvrno8XyzdyFRpe4XLFiQOgukFmzcuLFoMHJUI9M6we+YPDe4UEQ6ReTzmYwohiRxZYXBrn7q+Lvf/e7Exzl8+DADAwNllUJoaWnh3HPPpaOjoyZzO2nRyGuvvTZx4PXZZ589yVpbR93AAVDVNaq6BpgFnK6ql6nqZcACnIWlEsc4iLPu/zvwMHC7qj5UiX1PIun1JqlL6tChxqx709p6JIao3IfnwvibHJM0FbyuLvxxxGX+BJ+Gk1QlfvTRR9m4cWPR7UZGRlizZs2E1Gpw/XSCado9PT0sWrSInp6eolahWrJz586iwkZE6i3OZgKqeiWwCtcxeZGInCMi9wBfAO7JcmxhdHR0TJo/XV1dk+ZTmNvktttu47LLLks1xwYHB0uy4IjI+MPDpz/96apWOk7Dxz/+cZ5//vlE277hDW8IvR7UcQr4bCCY7jkKzK3UzlX1blV9uaq+VFWrc1Ho73dF5ox45sxx7ra9e+HWW6MDsAuJs/DWSfxNogrFqnqliHwPd+FfDrQAK3AmzhuqOL6KE9dnpru7e0Jl42IVjMEJHD9FvBjB1OrNmzdzzjnnRJbADys4ViuamprGzfpJys8DXHTRRXXpjiqgPjomexTGlSVlaGiI448/no985CNFY6iClFKtu1g5gSy48cYbE9fjmTdvHgsXLpzUYqHOU8BvAb4vIptwwb7nAsWf0vKCX4Sv0H3U2uqsNEEBPWMGtLXVziIT1YYgC4466kjrg6hzFkZra3SgNmRamC8NaYr4BS/8NwMfU9UFqvovVRlZlYjrfFz4NNzX18eLXvSiovssxWTvm/uD8ThDQ0Ncd911DAwM1LwfU+HYIHk8wsUXX8z69eurPayqUlcdk8sk6JpdvHgxXV3JW7c8+uijrF69umoVu6vN9ddfz969exNt29XVxdKlS1FVWltbE1nF6gHPmnIh8N/AM8AFqnpttqNKQVTDx7Ex+Ou/dtYKv+jchg1www3RlXgrTV6EDcBzz7nzIALvf3/4OfMrC/s/58yBY46JDtTOuDBfGhJZbrwL/2Lgy7gL/yrchX+w3gKMozof+8sLn4a7u7t5y1vewpNPPhm5z9HR0cTWm0L8rAtwaeh5SQO/9tprE5ntzzjjjLoXNh710zG5TAqtKIsXL2bx4sXceOONiW/8g4ODDA4O0tvbW7XGspUmrrlrIYWfa2RkhMsvv7wKo8oGVd0ObC+6YR6Jcououqq7UY0aV66cui0Xou4rhw458XPyyUcyoeJqsW3Y0DjZUh5DwB+p6kdV9adeMb/7cRf+l1dveNXBz5xatWoVK1asiHwC8wulXXzxxUWL7w0MDCSKvynEj0fYunVrboTNmjVrEgmb5uZmzjvvvBqMqPqo6s0BYeMv+z849+vd2YyqOkTFilx66aXMmjUr1b4GBga49tr8P/SXI2ygruNrxhGR73g/nxWR3wVez4pIjB8iA/xWCU1N7mcwQyfOLRIlfPwCc1GtBqYyqhMzoaLO75w5dSNsIKG4mUoX/iBB8/0555xTdPukAcaF+I0888C1116b2CV29tln5yqWohqo6jeB+u2YHEJcptWll15Kb29vqmDj559/PreuqjvvvDOVsPHbKgRpbm6u5/iacVT1T7yfx6jqsYHXMap6bNbjGyfY2LLwxgvOwhCV9VMsHmTt2tq5qOoNPxMq7BxVwx0VJ2ArQFmNMxvxwh8keOPu7OxMFJvgBxjXGxs3bmT16tWJM0j8m0AjPNEWo5Idk/NAR0cH8+fPj1zf2dnJRz7ykdAmq3EMDg6WJO6rxcc//vFUPba6urpYvHjxhFpTbW1tnH322XUbXxOGiLxLRI7xfr9SRAZE5LVZj2ucsJiaYApyX59r4FgocJLcgPv6nGslRb2nKcWePUfOUWHsUiWtNsUEbAUouyt4o134gxTeuJMGXw4MDNSVwFmzZk2qhpp+N2SgIZ5opyJJ+kelyYry8QOOsxY5q1evTtWhfN68eSxevHi8Js+qVatYtWoVl19+eUMJG4+rVPVZEfkT4C9xmVLFi3bViijXUnD5+vWumWMpN+C+viOp0eammkic5auSlpZiArYClC1uGpmwG7fflLAYSbKMsmbnzp2sXr06VWZWMB6hra2tES/8VUVE3iYiPxWRR0Tko1mNI6k7cfXq1TT7mRQp8EVOrUX+mjVrUrmhwAmbpUuX1n0WVAp81bcIuMlrP5KfIq1RN9jC5eU2amy0OJxgxtPFF6e3TvmWr/5+uOCCiVaV978fLrywcpaWJAK2TEzcxBB1kevs7Exksk97ka0VvqhJK8CC8Qh+41EjOSLSDHwaWIgrd/9eEalU2ftUpHEnXnXVVYkEfRgDAwM1icfx3appSyj09vaOC5u45IIG41ci8s/Ae4C7RWQ6eboXVDvmw7dAiLgO4I2SQdXW5qxRjz3mLFt79zohEleVuLnZrZ85073//PPdqzAV/PBh16IiSDmWlqQCtgzyM6FzStRNIKnJPm8C5/rrry/JqnTttdeOF+mbQk+4leb1wCOq+gtVHQW+ApydxUCStG8I0tnZWdZcHhwcZPXq1Xz84x8veR9h+AHDadyqPqtXr6azs7PeC/KVwrtx7RH+UlWfAY4H/j7bIQWoZsxHMNYD8lWXplz27w+3pkQJBhHYuNG590ZGXKFD1eTtKqB0S0sNgpYly2Jx5dLV1aVpAgZLwU8HDysbn7QWDGQrcnbu3MmmTZtKKgzY3NzMNddcU1c1PkRku6omr0xXI0TkncDbVPWvvb/PB85Q1UsLtlsGLAOYPXv2gt1VerL0m8UODw8n7tgNxTvDJ6G5uZmrrrqq5PevWbOm5EKXIsKqVavGf/f7XtUbpc5zcRHTS4B5qnq1iMwGTlTV71d8kAmoxXV8nLlzS7fUtLTEdyHPGzNnugKGMLk6sYgLyl6/vrxz0tzsBFIpwrO/31l+9uxxAiyk43g51/JciRsReRuunUMz8FlV/UTc9rX6UgwNDbF169bQdO00oqXWAqecGwBMvAG1tbUxMjIyqehhHsmxuHkX7mk5KG5er6p/G/WeWs7xKBEfRZqif8VIUgywEt8fPyOqEBFhwYIFLFq0qOxj1IoyxM1NwGHgzar6ShF5IfB1VX1dxQeZgJqKm6amdJYJn6OOctaNnNQiS0xLC3zhC+73KCFR6jnxmTGjasX9GkLcePEIPwPeAjwO/AB4r6r+OOo9Nf1SAHfddVfoE2saC86sWbO49NJLi29YIpW64UyfPp0rrrgidF1LS0uu3VI5FjdvBFar6l96f18BEFf6vpZzPGjJaW9vZ3R0NFH9pTTzP0uSiKOurq66EThliJsHVfV0Efmhqr7WW7ZDVaPrA1SRXFtumpud1WPjxmR9mUqltdW1PahGD6w5c6KrNkPyc9LdDffcE+7KK3aMEinnWp6nmJvcxCOEMTQ0xI4dO0LXRYmAMPbu3cuaNWsqNSzAXbT9VyWEzbx582I/k19V2UjND4BTRWSeiLQC5wH/VutBDA0NsW7duvEO9X5/s8LK3UkLS15xxRUlBxzXgunTpye2+mzfXp8dCVIy5j1MKoCInICz5DQ+aYr4tbTAC14AN91UXWHT3Ax/9VcuALgamVu7d8encCc9J488Em25ymGn8ES9pWrESUCwZs7jwBmFGxXEI9RmZEysVhxGb29v4kBdVWX16tXjKailUA0XV5rxNHpl4mqgqgdF5FJcMGcz8HlVfaiWYyh0Pw0PD4/3Nyu0xPmuyCR0dnbS2dnJxo0bSwrurRZRbqgo8mLJrjL/BGwCXiQia4F3AldmO6Qa4btO/D5TfhfvOXPgrLNcb6rdu11MythYbWJsDh1yliFwQcGVRuSIZcZP4YYj5yJ4TvbsiXZR+S6tMCtPDjuF50nchOWrTTrLqroB2ADOnFntQfkUu5n78QJpMpH8WiBQXFhcf/317K/GxGdigGVSpkJl4mqgqneTYcuSMJHuW+Iq4Wb053C58V7lUqr7V+LSZhsAL5j427immd246+45qvpwpgOrJX190fEhfjZVNS01YRw44CxE1aDwe+incAfPQfCcRLmp/FidwvOT007heRI3jwOnBP4+Gfh1RmOZRHt7eyKBU2rKbFDo1JJSjzk8PMy6detyH1xsTCRqDoctL6ffmS+WK5FZlYZys7BaWloYGhpq2Dmtqioim1V1AfCTrMeTO8Iq5yZFZKKQ8DOSzjwzm47kM2dGx/DEuZHiBEyhlSciyykP5EncjMcjAL/CxSO8L9shHaG7u3tSNklTU1NoJ2+/nkea8u+1pBx3WJA4l4aRT6JEepglLomgL8bixYtZvHhx1d1VlZrTo6OjU2FOf09EXqeqP8h6ILmj1NgRX9gE3VyFN/2lS0urq+NbE5NYQgsDe6OsMH5xv7Bx+r8vX35EHAUb6cZZvnJEbsRNHuIR4vAvdMFsklNPPTXyqfSqq66q+VNrHH49j2LptnHvf8ELXjDpab6SLg2j+oSJ9KgidmHblkqh8KiElbLcffiCrlDATYE5/efA34jIbuA5nGtKVbW0i0MjERVTUsjMmXD00Ufic3zh4YuX3bthyRInEN79bhdTU4qw8cVHUGhEMWOGixuaO/eIVeWss+Czn42OHQqLwfEJXuv37YveLqfkJhW8FGqdCl7IunXrij7Z7ty5M9M+U3Ep3ZUkbcxONclrKngpVGOOF6Z8x7kWg9umCTBuBPI0p8MoIxU8NCVHVTPpQ5D1dXwCSWJugnVdyimAl4SLLw5PQ58504mmu++eKGTCti10l4WR1OJTpZTvKMq5lufGclOPJDHZ+3E4tQ6wrGX8jgUX1xcdHR2JrRLBbdetW9dQ4kZEOPbYYxO76RqFrERMXRAWU+JnUYXFmFQ7BXrDhnCLz9FHu1ieuwO5CbffHi7Kktx3Cj9HDRpbVhsTN2WQJiZh1apVVbXiHH300Xz4wx+uyr7jmIJ9eaYsjZb+r6qp3HTGFCFNTElSN1apRLmyfHeSL2bKHUNhKncdpXxHYeKmDNLGJPhWHCg/tTtt/Y5K0dbWRmtrayKXhtEY+O1HGg0/7bunpyexm86YwgR7IR1/vFu2b18yt081qFS6emvr5FTuOkr5jsLETRn4F8BSmlJmYWUpl+bmZhYuXGgX/inE0NAQd9xxR2TmX1OTK3IeljWYd1SVLVu20NPTw4oVK7IejpFnCmNxgsG9fuZRvcavHnPMZEtVHaV8R2Hipkz8G/3mzZvr8gKfhtbWVhM2DU5Yf6koYSMinH766Tz44IM1HmU6WltbGR0dDV03NjbGpk2bgIZO/TaSEtWpulj9G9V0mU3V4qij3DiDQqtY36qnnw5fXicp31HkqbdULonqwxOko6OD6dOnZzC62tJIwaTGZPzWDH5szfDwcOz/XFXZtWtX7kV9W1tbbOaTb8EJ+24bUwjfOrN7txMHflxLf3+ymJY9e5wY2LvXvX/mzPjtZ86c3NOptdX1tCqFGTPgn/8ZbrnFCS2/js3nPx/ft8qPo+nvj+9BVWeYuIkh7GIfdRGcCjf+Rs4gMYr3TwujHoKM/THGzV9rBmuEWmf8VgXNzcXf39R0RBhcckm89aalBW64wWVDFQqRL3xh4rJiIsnHT0/v63Pp2ocPu5++9SWsQaYfRxMn7OoUEzcxxPXhKSTuwtkWrO5YpzQ1NVkGSYNTD0KlFPzvZnd3Ny0xT8WN+vmNhMSlPycpwHfo0BFhcPPN0duJOAETJUQKl91wQ/Gu3Ucd5URYnNWlr2+ymPIFUZywq1NM3MSQpg9P1IWzq6uLhQsXxl5U64Hp06dbTEKDEyXQ29ra6rahZFCUd3R00NPTE/lZzDI5xYlKc549O9qlA+FWnbjg4ltuSR/LEveA3NTkKhAnsbpEWXUaoK5NISZuYoi62IUt7+joYP78+eMXThGhq6uLRYsWjV9U6/niORXcblOdMIHe0tLCwoULM+3wXQ7nnHPOBFHe0dHBggULJm1ntW2MWLdN1Lpbb3VCISkzZ6YTNr67KOjiam11+/GtLzNmQGHAfJjVJS6mJk7Y1SkmbmKIutiHXQSHhobYsWPH+E1AVdmxYwdDQ0MTMlDyQton8XoWZkYyCkV4e3s7PT09dHR0FP3/t7e3s2rVqkwsPHFW0W3btk2IkfO/p4XMnz/fLJNTnTi3Tdy6KAFQ+F2YMcO1TEgTtBvmLhoddRWKDx92oiuqXlrQ6lIspiZO2NUplgoeQ1izzKgCX1HxOVu3bo1Np82KsCaYUdhT7dQhqjVDXMHK4PyotYUnqvmlT2Hn+qig6e3btzN79mwTOFOduPTnqHVRBe+WLo3v/bR7N5x/Ptx3H6xfH37MYu6iuJiYoOiKi6kJfq46rmtTiImbIiTtwxN1cc2rOyduXC0tLUybNm18m2nTbJpMVQobZ/rzQkRQ1UmCP01LkkqQ5FjBLt9R2/vp4GD1buqOqNo0tSKpMJg7d7LAUHXBx2eeGb6PYm0Q4mJi9u9356avL1lMTZ3XtSnE7loVotYX9WoyNjY2oXbJyMiIXfinIH4pBN/SMTIyQktLC729vZHzIG1LkloRTAeP+p4GRZCRHhH5JNADjAI/By5Q1WeqetDCysG+uwVqL3CKHS9KYKi6wn8jI5M/x9Klkzt9B91Fcb2t9u07ci4aoFdUWizmpkJExefUK4VuNKsDMvVIUwrBJyxupxwqVUbB0sFrwjeAV6tqJ/Az4IqqH7GeUpjjhMS+feGf4+67o2N9IDxWpnAfK1c2ZExNMUzclIlfwXhgYIBp06aNX4z9YMy8CJxK3CTswj+1SFMKIUhHRwcrVqxg1apVrFixoiyB09raWvJ7fYIxQZYOXj1U9euqetD783vAyVU/aB5TmKOyktaunRxkXIzdu6PTt2FioHMUfuXkOJHUgJi4KYPCCsYjIyMcPHiQ3t7e8UZ8eSlNH1Zrp6WlJZXosQv/1CJNKYQ4illL4vBjfcrBz/jy6ejo4Nxzz02cCWmUxIVAZCt5EVkmIoMiMvjUU0+VfpQ8pTD398OsWbBkSXhWUl8fXHRReBZVVBVikeIZVb74KdZeIU4kNSAmbsqgmNl+27ZtuciSam9vn+QuCAaHFtLU1ERzQWEqu/BPPdKUQojDrwFVCuUKan/uh40pKu3diEZE/kNE/ivkdXZgm5XAQSDyrqyqG1S1S1W7TjjhhNIHlBd3S1g9Gp+gm2z9+sm9nzZscFWIw6w6qsldbHk5FznBAorLoJjZvtpunCRBzIUm+Y6OjkmBooX79LdPkgJvNC5hpRBOPfVUtm3bxsDAQKp5sWvXrtTH9+fuwMBA6vcG3x9F0kxI4wiqb2BpOAAAC3JJREFU+hdx60VkKbAY6NZa1AXo63Op1Bs2uPYHzc0uCLfWVoliXcOTZCUtWVL8vXE0YDp3OZi4KYMocRF8Ggxb39LSUnI2iYiwYMECFi1aBMC6desiBY6f0j0wMMC2bdvGb0RRtT7a29vH3WlgmVHGRAFQKIoLa8jEUYrQnz9/Plu3Rno2Er3f5nDtEJG3AR8B/lRVY+70FaS/32UT+RbyQ4fc32eeWdubejEBMnt28ZT1OXPKz2hqsHTucsiFW0pEPikiPxGRnSKySUSOy3pMSShmto9aX07dmGDl46hjAMybNw84Us8m2NG81EBRo3TqdY4HKSV7yiete6mtrY0dO3aUVSeqFGuRURY3AscA3xCRH4lITPfICpGXbKk4ATJjhivgV6zrtrmVKkouxA1ZpBBWgGJ++6j1cRfs3t7eosGXwRtK2DF6e3t5+umnI29ElQoUNVJRl3M8SKmi+K677kolnP14r3Jr5ZhYry2q+jJVPUVVX+O9Lqr6QfOSLRWVkj1zpnOZ3X13cRE2BTOaqkku3FKq+vXAn98D3pnVWNJSzG8ftj6qz1Qw+LFYL6rh4eFxl1RY7ENUnMLw8DC9vb2TYm4sYLi61PMc9ynmhg3jrrvuYnBwMPExWltbWbx4cclxNkHa2tpivyNGA5CH4nS+u+nAARfzc+iQEyZBt9P554e/t1CEmVupYuTFchOkNimEGVLMnRWsExJ34wgGLg8MDLBmzRrWrVvH0NBQrHXGMkUypy7neCnZU9u3b49cF5bi7cegJrUiRtWraWpqYnR0dMJ3xHfLGg1E1q6cYENKcMLGP35QpOQpZX2KUDNxk7sUwgxJIy7S1gjxL+KnnnpqYgG1YsUKEzYVoNHneFpRPDQ0lLqRpu86TTrvVZVVq1bR29s7YVzTp0+3KttTgaxdOUljfiopwqKKBBoTqJlbKncphBmTNA01LB23WCzB2NgYu3btoqenx9K5a8hUmOPBcgJ+SngwE8/Hz6yKIyr2bHh4eNK89xt1FuILmsJxxe3baDCydOUkjfmpVJp2Xnpp1QG5iLnJJIWwwfFvECZm8kEjzfEkKeFR5QZ8WltbGR0dDV1XKFjCjgmTXWJx9ZsK920YFSFNzE8lRFicpcjEzQRyIW5wKYTTcSmEAN+rSaR9RvhPl0ksKmE3kiTYRTx3NMwcj0sJ9+dx3Dzt6uqKDTIOi+EJs2AWfm+KCSoLmjcqztq1Ey0pUN2Yn7xkh9UBuRA3qvqyrMdQK9IWQit2wQ7DLuL5o5HmeJKU8LjMqkWLFrFr167ULqJilsi4/Zlb1qgKta4KnIfssDohj9lSDU3aQmjFLtjgsk4Ku5HbRdyoFnGZeENDQ5FVswsLXEZRatBv3LgsaN6oGrVsSJl1dlgdYeKmxqQthFbsgt3b20traysjIyP2dGrUhKiU8FNPPZUtW7ZEWmwKC1xGUWrQb6UafRpGbsk6O6yOyIVbaiqRthBad3d3ZCBlOb1+DKNUouJfkvYsCy5PWxSwlHHZd8FoKKzQXyJM3NSYYmIl6sIctnzdunVFAzsNoxqExb/EVcUOI+67UMlxpQngN4xMKNZU00iNiZsaEyVWgFgrTNjF2BpgGnkirSWmFpYWs24aucdq11QFEzcZECZWSrHCVNqsbxjlUIolptq1mJKkrRtGpljtmqpgAcU5oRQrjAVQGnkijz3LzLpp5B6rXVMVzHKTE0qxwlgApZE38lYV26ybRu6x2jVVwcRNTig1uDJvNxPDyBPVCFo2jIpS6yrHUwQTNznBrDCGUXnse2XknlpXOZ4imLjJEWaFMYzKY98rI/dY7ZqKYwHFhmEYhmE0FKKqWY+hZETkKSAkEqsqzAL21uhYcdg4JhI2jjmqekIWg6k0NsczJe/jaIh5XsE5npf/V1ps3NGUPMfrWtzUEhEZVNUuG4eNo1HJy7m0ceRzHHmnXs+Tjbs6mFvKMAzDMIyGwsSNYRiGYRgNhYmb5GzIegAeNo6J5GUcjUBezqWNYyJ5GUfeqdfzZOOuAhZzYxiGYRhGQ2GWG8MwDMMwGgoTN4ZhGIZhNBQmbhIiIp8UkZ+IyE4R2SQix9X4+G8TkZ+KyCMi8tFaHjswhlNE5D9F5GEReUhElmcxjsB4mkXkhyJyZ5bjaBRsjtscr3eynsNpyMN8T0vevh9xmLhJzjeAV6tqJ/Az4IpaHVhEmoFPAwuBVwHvFZFX1er4AQ4Cl6nqK4E3AB/MaBw+y4GHMzx+o2Fz3OZ4vZPZHE5DjuZ7WvL2/YjExE1CVPXrqnrQ+/N7wMk1PPzrgUdU9ReqOgp8BTi7hscHQFWfUNUHvd+fxV10T6r1OABE5GRgEfDZLI7fiNgctzle72Q8h9OQi/meljx9P4ph4qY0LgS21vB4JwG/DPz9OBlPKBGZC7wWeCCjIawDLgcOZ3T8RsfmuM3xeqfWczgNuZvvacnB9yMW6woeQET+AzgxZNVKVb3D22YlzjTXX8uhhSzLLIdfRI4GvgasUNXfZXD8xcBvVXW7iPxZrY9fz9gcT4bN8fyS4zmchlzN97Rk/f1IgombAKr6F3HrRWQpsBjo1toWCHocOCXw98nAr2t4/HFEpAU3qftVdSCLMQBnAm8XkbOAFwDHisitqroko/HUDTbHi2NzPN/keA6nITfzPS05+X4UxYr4JURE3gZ8CvhTVX2qxseehguO6wZ+BfwAeJ+qPlTjcQiwEXhaVVfU8thReE+1H1bVxVmPpd6xOW5zvN7Jcg6nIS/zPS15/H5EYTE3ybkROAb4hoj8SERurtWBvQC5S4F/xwVw3Z7Rl+BM4Hzgzd45+JH3ZGk0BjbHbY7XO5nN4TTkaL6npW6+H2a5MQzDMAyjoTDLjWEYhmEYDYWJG8MwDMMwGgoTN4ZhGIZhNBQmbgzDMAzDaChM3BiGYRiG0VCYuDEMwzAMo6EwcWMYhmEYRkNh4qbBEJGXiMjnROSrWY/FMKqBzXHDiEZEjhKRjSLyGRHpy3o8WWHipg4RkYtFZH3g738QkVsAVPUXqvpX2Y3OMMrH5rjR6IjIdyOWrxaRDxd5b+T3A+gFvqqq/xN4e8UGXGeYuKlPNgI9InKc1z14EbAs4zEZRiWxOW7UDeJIdT9V1T8u45Bx34+TgV96vx8q4xh1jYmbOkRVDwBfBtYC/wS8U1VHsh2VYVQOm+NG3hGRuSLysGdBeRA4RUSWiMj3vZ5L/ywizZ6b6C4R2SEi/yUi7/Hevz+wr5Ui8lMR+Q/gFcWOXeT78ThO4MAUvsdPy3oARsl8Htdw7WxV/bm/UERm4ib8a0XkClW9NqsBGkaZ2Bw38s4rgAtU9RIReSXwHuBMVR3zRE8f8Bzwa1VdBCAi7cEdiMgC4Dzgtbh78oPA9gTHDv1+AAPAjSKyCNhS1qerY0zc1C8fA56i4H+oqvuAizIZkWFUFpvjRt7Zrarf837vBhYAPxARgDbgt8CXgOtF5B+BO1X13oJ9vAnY5FljEJF/S3jsqO/Hc8AFJXyWhmLKmqzqGRG5DHgB8G5gecbDMYyKY3PcqBOeC/wuwEZVfY33eoWqrlbVn+FEzxBwrYh8LGQ/muag9v0ojombOkNE3oxT5UtV9R7gWBF5TbajMozKYXPcqFO2Ae8UkRcBiMjxIjJHRF4MHFDVW4HrgdML3vdt4FwRaRORY4CeuIPY9yMZJm7qCBGZDXwWeJeqPustvgFYkd2oDKNy2Bw36hVV/TFwJfB1EdkJfAP4Q6AD+L6I/AhYCfxDwfseBG4DfgR8DRh3W4nI3Z448v+270dCRDWVNcwwDMMwDCPXmOXGMAzDMIyGwsSNYRiGYRgNhYkbwzAMwzAaChM3hmEYhmE0FCZuDMMwDMNoKEzcGIZhGIbRUJi4MQzDMAyjoTBxYxiGYRhGQ/H/ATXQzLZNqhlVAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAADQCAYAAAD79kC9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dfXwddZ3v39+kSU15CNLisgJ9UNFVTKo0ii7r3V2zupY2AvEJTbHC7u0CsttecVFuwba4BRe5vspeLGx97EJUWE3LFuhd3booIqIp2mYRtSi0ooi0LJHSSNL2e//4zaSTk5k5M+dp5px836/XeSWZmTPzO5PfmfnM91FUFcMwDMMwjEahKesBGIZhGIZhVBITN4ZhGIZhNBQmbgzDMAzDaChM3BiGYRiG0VCYuDEMwzAMo6EwcWMYhmEYRkNh4sYwDMMwykBEzhWRX4rIfhF5bRWP8yYR+WnM+i+KyD9U4DhzRURFZFq5+8oKEzeGYRhGwyAij4nIiIg8KyLPiMh3ReQiEWkq2O71InK3t83TIvJ9EbmgxMNeD1yqqker6g/L/xThqOq9qvqKau2/kTBxYxiGYTQaPap6DDAH+ATwEeBz/koReSPwTeBbwMuAmcDFwMISjzcHeCjJhvVsDaknTNwYhmEYDYmqDqvqvwHvAZaKyKu9VZ8ENqrqP6rqXnVsV9V3h+1HRJpE5EoR2S0ivxWRfxGRdhGZLiL7gWZgh4j8POL9KiIfFJFdwC5v2R+JyDc8q9FPReTdge3PEpEfe9anX4nIh73lfyYijwe2e62IPOhtdxvwgsC6D4jId0LG8TLv90Ui8kMR+Z3nUlsddR69ff3CO86jItIXedJzgokbwzAMo6FR1e8DjwNvEpEZwBuBr6bYxQe8158DLwGOBm5U1edV9Whvm/mq+tKYfZwDnAG8SkSOAr4BfAl4EfBeYL2InOZt+zngbzzr06txVqYJiEgrsBm4BTge+FfgHSk+03PA+4HjgEXAxSJyTshxjgL+CVjojeePgR9562Z7br3ZKY5bE0zcGIZhGFOBX+NEwAtx974nUry3D/iUqv5CVfcDVwDnpXQxXauqT6vqCLAYeExVv6CqB1X1QeBrwDu9bcdwIuhYVf1vb30hbwBagHWqOqaqXwV+kHQwqnqPqg6p6mFV3Ql8GfjTiM0PA68WkTZVfUJVH/L2sUdVj1PVPUmPWytM3BiGYRhTgZOAp4H/xt2s/zDFe18M7A78vRuYBvxBin38MvD7HOAMz+rxjIg8gxNQJ3rr3wGcBewWkW95MUJhY/qVTux+vTtku1BE5AwR+U8ReUpEhoGLgFmF26nqczi33kXAEyJyl4j8UdLjZIWJG8MwDKOhEZHX4cTNd1T1AHA/6Vw4v8YJEp/ZwEHgyRT7CIqQXwLf8qwe/utoVb0YQFV/oKpn41xWm4HbQ/b3BHCSiEjBuHyeA2b4f4jIiUzkS8C/AaeoajtwMyCEoKr/rqpvwQnCnwCfKf5xs8XEjWEYhtGQiMixIrIY+Apwq6oOeasuBz4gIn8vIjO9beeLyFcidvVl4H+JyDwRORq4BrhNVQ+WOLQ7gZeLyPki0uK9XicirxSRVhHpE5F2VR0DfgccCtnH/TiB9XciMk1EeoHXB9bvAE4TkdeIyAuA1QXvPwZ4WlV/LyKvB94XNlAR+QMRebsXe/M8sD9iPLnCxI1hGIbRaGwRkWdxFpKVwKeA8Ro2qvpd4M3e6xci8jSwAbg7Yn+fxwXufht4FPg98LelDk5VnwXeCpyHswr9BvhHYLq3yfnAYyLyO5w7aEnIPkaBXlyg83/jXEcDgfU/A64G/gOXofWdgl1cAlztnaePEW4dAqcTLvPG+TQuLucSGA8o3p/HgGKZ6K4zDMMwDMOob8xyYxiGYRhGQ2HipsEQkbUicq+IfNWr55A5XrGr73vmy1cXf4dhhCMibxSR+70Mki+LSEvWYwKb44aRN0zcNBDeRfWlqvomnJ/1woyH5HMAVyQqTdEswwhjN/BmVf1T4BfA2RmPx8fmuGHkCBM3OUJEXuGVw35WRP6uhF28Cdjq/b4V+JPKja50vAJTT2U9DiN7yp3jqvprrwgauEyRw5UdYWnYHDeMfGHiJgEicp6IPCAiz4nrK/KAiFzi1xeQI11o94vIkyLyBS9dMC2XA/eo6jGq+k8h43ipN4Y/DCzrE5Ffi8gpuMqbw96qYVw1zqqTYFxGzqmjOe4vm4drcnhnCWNIjc3xfCAh/ZKM8vG+33+R9TgqiYmbIojIZcANuEZrJ+IqUl4EnAm0Bjbt8XqMnA68DriyhMPFdpZV1Z/jLuYrvLG9EbgROEdVf4lLB2z3Nm/Hpe1VnQTjMnJMnc1xRORYYCNwvpcOW3Vsjtc3IjJXXDXeAyLyk7gbubhmmJ8X11DyNyLyoYL13d4+Dnj7nBOyj+PFVf4tKsREZIOILCvtk2WLiPwv7xwNe+dsesR2c8U17dwfeF0VWH+SiNwhrono4yJyUcH7m0XkH7yHiWc96+9xsYNTVXtFvHAC4TngHUW2ewz4i8DfnwTujNj2lcA9wDO4i/zbveXfxBVG+j2uSNLLI95/uvfeV+MqVL4nsK4D+JL3+zLgb2PGHDqOwOf5MLATZwG6DXhBkXMQOa7ANl8EXp31/9VeE/4n9TbHpwF34eJuin02m+MN9sLVdPlOCe+7H1frpg1XmfgZ4ISIba8F7sVZwl+Jq0HzNm/dLG++vAvXgfuTwPdC9vEZXE2comMF9gAnZ3xeJ3y/E77nL3EVmk/zztU9wCcitp2Lq9A8LWL9fwLrcL2y5uMezP88sP4fvOvHHFwV5VcX/b5mPVnz/ALehvPrh/5DwiYGcIp3If14yHYtwCPA/8Y9Eb8ZeBZ4hbf+HuCvE4zr67gb0sdC1vlfzK8BR0W8v9g4HgO+j+tdcjzwMHBRmeO6G1cE6n7gA1n/b+01/n+pqzmOK26219vPPYQIjITjsDme3Zy7Gbi+YNkdwIe83z8K/Nz7f/0YODew3QdIKW6Al+Mq6x4TWHZv1P8b+BXw1sDfHwe+4v2+DPhuYN1RwAjwR4Flb/TmwAXFxgp0Ajsj1q3GBajf5p2LB3Gdx8O2fbE3juMDy17rfVdagJfixME+b1k/cFxg2/Hvd4rz+iXgmsDf3cBvIradS4S4wXVYVwJiE1dQ8Rbv9xfiHoZemmZ85paKZxawVwMltkXku+IanY2IyP8IbLtZXPOz7wDfwpXnLuQNuH/kJ1R1VFW/iTN1vzfpgESkCff0exhX0XICqnqFqr5JVd+hruFZGEnG8U/qgjefBrYArylzXGep6otV9Y2q+sWiH9SoFXU1x1X1FlWdpap/5r1ui9iNzfH88iXgPYF4rhfiqvX6rQ9+jkuOaAfWALcGY52CiMhOCTSfLHit9zY7DfiFuqrAPju85YX7eyFOKOyI2Pa04DrvGvtzf72INAOfBi5lYi+pKM7CWSKjOBv4V5wA/xLuOzip/IGq+qI62C/rfcBX1bVwENyD74tx1qhTmNyOAe8zvC/mnD4jR6oRTzgX3u9/IF47iwh2e26nL4iI36RTCn76v/slFTpwD2Dv9FxgPxORD8YcA7CYm2LsA2ZJoK29qv6xqh7nrQuev3PUNT+bo6qX6JGMjiAvBn6pqsEMj924hm5J+T/Acbhy2n0p3pd2HL8J/H4Ad6Oo9riM2mNz3GFzvHbci7vxv8n7+53A/d4NGlX9V090HvbE6y4m9kwaR1U7dWLzyeDrEm+zozmSaOEzjOutVMjRgfVh2xbb198BD6jq9vCPPolFRLd8ANiuqr5A+RTOFfaGiG2/hCfePeF4nrcMVX1EVb+hqs+ry+r7FK6NwiRU9Usx5/Q4Vd3jbVp4Lvzfw87rXlyc3hxggbdNv3e8Z4H7gKtE5AUicjpOpPl12k7GCd2XA/Nw82W1iLwl4jwAJm6KcT/OnFmpWhq/Bk7xngB9ZuPMoEURkb8BzgXOwT05/r3/9FPLcVRxXEbtsTle23FNedT5Gr7CESva+/BudAAi8n4R+ZFvKcA9wc+avKfE7AeOLVh2LM7VE7atvz5s28h9iciLceJmZZJBeQGxfwR8N2az8WB1T6g/DrxYXKaeH5jrl//4KvBGbxz/Aycg7/WO9SIR+YqI/Epcv6pbKe+cwuRz4f8+6byq6n5VHVTVg6r6JM6y9VYvOQDcw8I87/PehJsPj3vr/Ieoq1V1RFV34ubPWXGDM3ETg6o+gzOLrheRd4rI0SLSJCKvwfla0/IAzl9/ubgusH8G9HDEHBuJuOj+a3AZK0/iJnIrpd2USh5Hlcdl1Bib48WxOV4VvoxzM8wBzsDFCOL9/RnczW+mZ0H8Lya6LMYRkYcKMnCCr5u9zR4CXiIiQYvCfEKy9lT1v3HB4vMjtn0ouE5cp+yXestfD/wh8GMR+Q0uA/H1niulOWT4fwlsU9W4DtvB8gdNOCvGr1W1X1WP9l4LvbE/g4sJezdOMH7ZE5LgXFIKdKrqsbhGnFHntC/mnAabZE44F97vT6rqvpjP4+OPS7yx71bVxap6gqqeAczExcSBC/oPvicZaQJ0puoLpyq/jzNdP4W7cC4DWjVlMBbOT/ktnAmvMFjuHkKCLXHqfi9wVsHyD+LMuaV8prhxTPg8ON/srbUYl72yedkctzmewZz7MfANYFNg2atw2XSvAJpxQbkH/TlD6dlS3wOux7l1ziU+W+oT3rx5off/f4Ij2VInePPpHd6+/hEvWwrX0fvEwGu59z06MeI4/wK8P2bMq4ExXOfvacCHvHnbEvOe9+ACj/cSCD7Gdfz+jHdOT8K5gR4PrE/8/Q6852041+6rvHP1TaKzpc7w/qdNOOFyG/CfgfWvxLmqWnHCay8TA4y/Dfyzd45fCfwW6I4dX9YT3F72spe97DX1XsBVuKfxdxUsX4tLBd6Liw35VgXEzVycsB4BfspEYdsHPBT4ezrweeB3uFTnDxXs6y+An3j7ugeYG3HMyLHiLBZPAC+KGfNqJmZL/RA4vcjnbPO2fahg+WnAdpwr6UfAZeWKG+99H/LO0e+ALwDTA+seAvq8398LPIqzpj6BE3YnBrZdgXuoeg6XsNBVcJyTgP/njf8XwN8UG5t4bzQMwzAMowaIyOuBG1U1NFDa22Y18DJVXVKzgTUQFnNjGIZhGLVnVdYDaGSmFd/EMAzDMIxKoarfL76VUQ7mljIMwzAMo6Ewt5RhGIZhGA1FXbulZs2apXPnzs16GEbO2L59+15VPSHrcVQCm+NGFI0yz22OG1GUM8frWtzMnTuXwcHBrIdh5AwR2Z31GCqFzXEjikaZ5zbHjSjKmePmljIMwzAMo6EwcWMYhmEYRkNR124pY+owNDTEtm3bGB4epr29ne7ubjo6OrIelmFUDJvjDUB/P6xcCXv2wOzZsHYt9FW5gXwWx6wDzHJj5J6hoSG2bNnC8PAwAMPDw2zZsoWhoaGMR2YYlcHmeAPQ3w/LlsHu3aDqfi5b5paHbTt3LjQ1uZ9h21T6mFMMEzdG7tm2bRtjY2MTlo2NjbFt27aMRmQYlcXmeAOwciUcODBx2YEDbnmQSgqSpMecgpi4MXKP/zSbdLlh1Bs2xxuAPXuSLU8jSIpZeJIecwpi4sbIPe3t7amWG0a9YXO8AZg9O9nypIIkiYUn6TGnICZujNzT3d1NS0vLhGUtLS10d3dnNKLyEJFmEfmhiNyZ9ViMfNBoc3xKsnYtzJgxcdmMGW55kKSCJImFJ+kxpyAmbozc09HRQU9Pz/hTbHt7Oz09PfWcSbIceDjrQRj5oQHn+NSjrw82bIA5c0DE/dywYXLmUlJBksTCk/SYUxBLBTfqgo6Ojoa40IvIycAiYC3woYyHY+SIRpnjU5q+vuLCwl9fLH179mzniiqk0MKT5JhTELPcGEZtWQdcDhyO2kBElonIoIgMPvXUU7UbmWEYtaGvzwma2bOdwFm5cnKwsLmcyqJhLTdWEMvIGyKyGPitqm4XkT+L2k5VNwAbALq6urRGwzMMo1b4wcJ+TI0fLAxHrDBBC8/u3dDcPDHmxqw1sTSk5cYKYhk55Uzg7SLyGPAV4M0icmu2QzIMo+YkTQf3LTwzZsChQ26ZFepLREOKGyuIZeQRVb1CVU9W1bnAecA3VXVJxsMyDKNaRNWpSVOfxgr1lURDihsriGUYhmFkSlydmjT1acot1FepVg91RkPG3LS3t4cKGSuIZeQFVb0HuKeS+7Q4M8PIEXEWl7VrJ8bcQHSwcNKsqTCSxPY0KA1pubGCWMZUw+LMjDwgIqeIyH+KyMMi8pCILM96TJkRJkj85Wnq05STNVUJl1adWn4aUtxYQSxjqmFxZkZOOAhcpqqvBN4AfFBEXpXxmLKhuTl+eV8fPPYYHD7sfkZZUsop1FcJl1aha+388904ci50cueWEpFmYBD4laouLnU/VhDLmEpYnJmRB1T1CeAJ7/dnReRh4CTgx5kOrBr098cX4vOzmwqJWh5HqYX6ynFpQbjlR73qFDl3ceXRcmOl6Q0jJdZ40cgbIjIXeC3wQMi6+i5UmaSp5Zw54e+NWl6JMRW6j8otBFjMwpPjrK1ciZtAafrPZj0Ww6gnLM6sfIaGhli3bh1r1qxh3bp1Fq9UBiJyNPA1YIWq/q5wvapuUNUuVe064YQTaj/AcsmqqWVU/EuU2ILyek8lsfAkdXHVmLy5pfzS9MdEbSAiy4BlALOtrbthAIy7YC1bqjT8gGw/bskPyAbsHKZERFpwwqZfVQeyHk9VSNrUEor3kErKJZfAzTeHu4XixFZcPE8xwrK6CsnpfTg34sZK0xtGeVicWenEBWTbOU2OiAjwOeBhVf1U1uMpiWKxNFD7ppb9/ROFjc+BA7B8OTz9dPj7yrWqFLaAEJk4hhz3usqTW8pK0xuGkQkWkF0xzgTOx12/f+S9zsp6UIlJEksDtW9quXLlZGHjs28fHH98+LpKWFX8rC5VuOWW0l1cNSY34sZK0xuGkRUWkF0ZVPU7qiqq2qmqr/Fed2c9rkiCMSyzZrk056Q9n8qJZUk7vqiaOUEKxZaIe18lU7aTpq/ngNyIm6ywIELDMCwgewpSaKXZty/aOhLm3gne6NeudQIoaaG7uMDgoNi68MJkwubpp524mjnzyLLC2Jwc16SpBrkUN6p6Tzk1bpJiVV0NwwAr/DklCQvCjWL27PSZSlFiImr7Sy6ZLLZGR5ONr6kJ7rsPRkbC1+c4ZbtaiEYp1Tqgq6tLBwcHS37/unXrIntQrVixopyhGRkiIttVtSvrcVSCcue40bg0yjzPbI43NUVbaoLMmAFLl8LGjRPFkB9c29wcXphvzhxn2YGJQcpNTeHbR+0nKYXBvmHrDx8uff8ZUM4cz6XlplZYEKFhGMYUJUmwbXOzc/fcfXd0pd4oQeK7sgotNZWsXBw2nihymrJdLaa0uLEgQsMwjClKWMZTkBkznLWmr6+0lGpfTCR1f0X1oqoE5WRy1WnjzNzUucmC7u7uCYW7wIIIDaMSDA0NWUFBI98UFtnz06mffnpyfZuoujZRBMVEEmEU5fpqaYFjj3XxN01NR9xKxVxQQWbOhBtuKC2zybc6+WPKeT+pIFPacmNBhPVDf38/c+fOpampiblz59JfJ08PUxEL1DfqhmDG09697hWW5lzMylOIyJHfi7mD/DTy9esnp5d/4QtuTLfeOtGyk0TYzJzp3rd3b+lCJEmbiZwypQOKjfqgv7+fZcuWcSDwJZsxYwYbNmygL+RL2yiBllCfc9wC9WtDo8zzupnjflBwUgtOSwtMnw7790dvI+IK4xUTH7NmOetNGoIBzaUSFXRdo+BkCyg2GpqVK1dOEDYABw4cYGUdPD1MRWoRqG/1qYyiVDpWxLfyBGvJxDE2Fi9swAmHJNextMIGKtPQMsrqVAfBySZujNyzJ+JLGrXcyJZKBepHCZhGdXuZ67WCpK09k4ZShEYcaWJ50lAJAVLrNhMVxMSNkXuiur9bV/h8Uolqv3ECJq7JZb3iu153796NqrJ7926WLVtmAqdU6i1WRMS5ngr/3771qRT27q2MtaoWbSaqgImbKUC9m/DXrl3LjIKnhxkzZrC2Dp4epiKVCNSPEzCNWJ/KXK8lEOd2irLqBmvPJHVZFW571FGVGP1k9u2DD3wgvPJxKTz3HLz//ZVzx9VBP6kgUzoVfCrgPwH7Nwr/CRiom6wwP2h45cqV7Nmzh9mzZ7N27drQYGIjH3R0dJQ1v+IETHt7e2TAcr1irteUFEtRjkrd9tsoJE1vDtu2paX8asJRHDwIy5e7caRpDxHF4cNH9jfFMMtNg9MoJvy+vj4ee+wxDh8+zGOPPWbCpsGJi9tJ4vYKWiuvvvrq3FstzfWakmJup7hYkWLvDVpqli6dvO3YGBx3XMU+yiT8mJ5KCds0MUJ1WrAvjCljuZmqRcWqbcKfqufVqC5xBTb9+RU17wqtlX65i0KrZZ7m7tq1a0PLHZjrNYJibqfCAn3Bonznnx/93kJLTZR1Zt8+F39SrWDg/v7oHlTVoo4L9oUxJcRNI7hmSqWaJvypfF5LQUROAf4FOBE4DGxQ1RuqecwkN/A83eR9Ojo62LNnD9u3b0dVERHmz58/Pq44t1eYtdInaLW84447OOTdPIaHh9m0aRNbt25lZGRkwnmoxfkx12tK4txOPn194TfluPemaZWwdi1ccIGz5FSSo45yoqJSwmbmzImNOwurL/vEWbTqcB5OCXET55rJ+iJebarZYiLqvG7durXhz2uJHAQuU9UHReQYYLuIfENVf1yNgyURn6UK1OANv62tDWCSKCh37Dt27Bi3uqgqO3bsYPbs2UX3XcwqOTw8zNatW8eFjY+qMjIyMr7Nli1b2LNnDzt27KiJgO/r6zMxk5S1aydaGSB5inLce6OsOoUcOuS2Pf74yqeGP/dcZfe3bx8sWXLk7927nSi77z7XENQXPFFWqDqN+5oSMTdxrpm8+uArRTVbTESd15GRkYY/r6Wgqk+o6oPe788CDwMnVet4SeKt4gRqFIVp2iMjI5NEQbn//3JixYpZJUVkfLxxjI2NsX379oaIWWs4yklRjnuv318qCapOOARbLdQLY2Nw000T6wBFUadxX1PCchPlmgGmhBul3MyVKOLO61SwipWDiMwFXgs8ELJuGbAMygsoTRJvVUyghv0P49w+UJpVtND1U06sWJi1MkialjNR29Zz2nnDEOV2KvW9/f3wu9+l35dqukaW9USdFOwLo2EtN8Fqn9dddx0PPfRQ6HZJn8LqvVZMNYhzbdnFPxoRORr4GrBCVSddTVV1g6p2qWrXCSecUPJxklQKjrNyRH0vkvxv0/z/wwr2Fds+jkJrpXhP1lLBJ+x6SzsXkbeIyGdE5DXe38uyHlPNKZYJtHJlePzMUUcdsfJE0YjCpo4K9oXRkJab/v5+LrjggvEntyeeeIJNmzZx6NAhOjs7J22f5GJqgbOT6ejoGA/ALKTeLv61QkRacMKmX1UHqnWcoaEhRkdHJy0vjLfq7u5mYCB8GP73otCq0tbWVtStk+b/X8wSFLZ9se9dmLVyzZo1iY8RR6Vi1mrMJcAFwJUicjzwmozHU3nigmaTZAJFuWYOHDjSgHLu3OjtGsl6I1J+082MaUhxs3z58kkXy4MHDzIwMMDAwAAiwoIFC1i8eDEw+UJceDEfHR2t+4DkamV8LFy4sGoBy42GONPB54CHVfVT1TpOoRj3aWlpYdq0aQwMDLBt27bxORAlbkQkVNg3NTXR3Nw8KSA3eJw0//+0Vr5SrYJx7q64dYVUKmatxjylqs8AHxaRTwCvy3pAFaWYeInKBFqyxK0766xocXL88U7U7Nnjfp82zRXbK6SehE1Tk8v4inqoqNM4myCSxv9cTUpJk+3q6tLBwcGwfSU6ZldXF+eee+6Ei1XUjSGKVatWJdouS8I+U0tLC/Pnz2fXrl1lC568pRKLyHZV7cpsABGIyJ8A9wJDuDkO8L9V9e6o90TNcZ+wcx9lTSukpaWFnp6eSHED0Tf9trY2WltbS86WCo5bREJjW4otTzvXor4H/vd/3bp1RQVO8HNnPdfTzHMROVtV7wj8/beq+n+rN7rkFJvjiYiyqMyZ4ywQTU3x4iPO6hIlZuqVmTPhBu/Wunz55GyvGTNy444q51qeJ8tNTdNkAQYHB3nkkUeYM2fOhMJgSYVNvbheojJPgheUKFdbEuFSrYDlRkNVvwNULPAjzKoSrN1SDN/6GCVgRCQ24Pjyyy9PNMbC+QOEFtkL4ovvYBq2T1RRvmIUK/5XLBC5ubmZ559/flJmWNLjZ0lQ2Hh/50LYxJKkNotPsaJ+canOEC98GknYiLiGmj59fenOcx2Rm4DiSqbJzpw5M/G2zzzzDBdeeOF4992kpul6cr0k/UyFwdVxnZmN7AkTrUmFjc/w8HBoOwOIzyryXVZxDA0NsXnz5gnzZ/PmzWzdujVUQPgWV79cwaJFi+jp6Rm3DIWRNi27o6ODFStWsGrVKlasWDFBlBQGIre1tY0fu729ndbWVg4fPjxhf/WUFi4iG0WkNetxJCLYNNJPVV62LLodQJQbxV8e1o5hKhJ2noKNMf32FNZ+oTrEpckm4YYbbuDCCy8MDagMY3R0lKVLlwLJzPAiMuGilventiQBoD7Dw8OsWbOmpFijvLmnGp177713gguqra2NhQsXhgbNR9He3j7+P9q0aVPiNGlVHY9ha29v59RTT53k4ty6deskMXD48OHIuaiqoW7eg0WenJOI96RzM84KGRWQXEeZgb8E7heRd6jqY/5CEenEZe5dmNnICklbLbdYUb9gO4apEBAcRrG0bmu/UF2KpckmqQFSWMr8qKOOYv/+/bHHPXToEOeffz7vete7mD9//iS//MKFCwESZU3l6SY/NDTE888/n/p9cRfssHWWUVZb+vv72bx58wTxMDIywh13OO9DEoETtD7GBRZDdPwLuP91mIszTQYUHHHzJonHCXtfFJWam+3t7fT3909oCbFgwYK6qSqsqleKyPeA/xCR5UALsAI4BqhqG5DUFHMzFRLXSyq4je+GKRRCjS5s5swp7o2QczkAACAASURBVG6y9gvVI0marKpuADaAC0SL2ldhKfNLLrmEm266Kfb4qsrtt9+OiHD66adPCpC87rrriloyouIgwnrWpKFUwRT29FwuYTeTbdu2sX379kljnDFjhombKrBy5crQ/+uhQ4cYGBhg06ZNEzICC/GtPMH/TVwfsrTWibTCxhdavivL/2zFhE0S93Cl2q/cf//9E0ScqjI4OMhLXvISVqxYkXg/GfNt4P8BW4DfAu9W1W9nO6QQkvSOCpImbqTQitPowmbmzOjzETxvUedg927npqqzeJzcxNxUO012/fr13HrrraGxBYXcfvvtDA4O0tvbO37Ruu666yLN6cPDw+MF/jZt2hQaB1FOefpSY1+GhoYSu6OSEnUzuffee7njjjsmjPGOO+7g3nvvrejxDceeIv1e/BvvNddcw86dOyetb21tnXRjD4u98f/f1Q6e9zOW0ohxEUmUll1OtWOf/v5+br/99tB1X/va1xLvJ0tE5NO4TL39wCuBbwJ/JyL5C0YJi5GJcqukjc+BI3Emc+Y0trABlw0Vdj4Kz1scwfN6ySXhxRCLFUmsMXmy3JwJnA8MiciPvGWxabJp8S05y5cvZ19MszNVZfPmzRw6dIgzzjiD559/vugF179QJolZKPbUWKk6O5UIdIxKfS0cY1gjwkOHDsX2KDJKZ/bs2eyOy/7wGB0dnRAb093dTWdnZ+iNPSqbyN9PWpK4lAqPnUaM+/v2U7ijYn/iLFJRBOf317/+db773e9Gbps2iDtDhoAPq6p/kt8nIpcB3xORd6rqzzIc20SSuJl8ynGn1GlTyNSEnY+kHdAL93PzzUfEkC947rsPNm7MVbxOburclEJcfYRibpxPfOITXHHFFbH7FxHOPffcVAGaaQgbVyXr7FSiImtvb+8kAXXXXXdReN5Xr14duY9az7G81rkphag5XliFO+U+6evrS+RKSTsfS0FE+NjHPgakm7NtbW0cPHgwdmxNTU2cfvrpoSnlYa45mPiZd+7cGRuL5B8jC4FTqXkuIm/G1RV7WQWGlZqy69xE1bARcRlAccyaVfmu3nkmeJ7iav+kddU1N7tO6YX4dYZKpFHq3FSMJHEvTU1NdHV1TbpJB/EzQn74wx+OZ1NVkrDAxkrW2UkaKxF1k+jq6pokvAoLxO3cudOsMxmQ1AoZxuDgIO94xztitwk+HCShqamJ6dOnl+QGVVXWrVtHd3d3qsw+KB7bc/jwYQYHB+nq6uKhhx6asO+RkZHQwGL/O7hz5042bdpUdAxveMMbEo83j6jqN0Xkz7MeR8kcf3y4QImrsuvHmkwlYQNHuqCvXRtf+2f2bNi/P/n5iRL3GVrGchNzU0mi6n8E415GRkZYvHgxvb29RSsaP/roo9x5551VGevY2BgDAwPjzTjT3ExGR0cnNPIsbO556qmnJooxOvHEE5k27YjObWtro7e3l0WLFo0v8wVjobDZvHlz7M2oXgod1iN9fX3s3bsXVeXiiy9O9d4rr7xyvLZTIYUxXkk4fPgwhw4dorm5OdU4fHyhf9pppyXax7x581KJoMHBQX7/+99PWh5Wp2Z4eJidO3eyZcuWolbHrq4u3vrWtyYeR15R1V9Wal8i8jYR+amIPCIiH63UfkPp74dnn528vKUlOu05GGsyFfFdRmedFV37Z/dud14L7x9R98qo72yGbRwaUtykuSh3dnZy7rnnFhUB27dvn/B3JTsMw5GLe1zBMv+YbW1tiMgEsXbHHXdMKpi2Y8cO5s+fPy4w2tvbmTdv3qT9Pvroo5OeaAcGBrj66qvHhVJY4bVt27bFxiJNmzaNT3/60wnPQHY0Qsfk9evXc/HFFyeel4cOHWLJkiWICLNmzZogdNI2svQZHR0tyz0zNjbGrl27OPvssyd19C7k0UcfTSTcg8SlsgfZtWsXAwMDRc9Bb28vixcvNgEfQESagU8DC4FXAe8VkVdV7YArV0JYPNixx06O9fADXpcsSR9r0mgcOAB33+3aLMyZE77N6KizyMycecTic9FF4YHey5YlDwCvEUXdUiLyPuDtwCFc6fgtqvrlag+sHNKmrvoxNXFFzFSVnTt30tnZSWtra2yAZVrTus/Y2BjTpk2LbEqoquMX9LDg3bD9DQ4Ojgum0dFRHn300cTjCZa5D6PYOf7iF79YLzVA6rJjcmFc2aJFi3j5y19Of39/rLu1kH379rFkyRLuu+8+1q9fn2lRuuHh4QmF9OL6PVUqDigoTvr7+7ntttuKvqerq4vOzs66qlQeh4icqKq/qcCuXg88oqq/8Pb7FeBsoDptdKLcHk8/PfHvSy6ZGAibhhkz3I2+kdowwBHLVVzvrcOHYWQEbrnliFg888zwQO+o5RmRxHLzp6p6nqr2qer7gD+p9qDKJaqcfCFtbW3jF7Y3velNXHPNNbHbb9q0iZ07d3Lw4MFYC8tpp50WevyWlhaamuJP+cjISKwpfGxsLLVw8revZFr4zp07Y60Ec+bMqRdhA17HZFX9MPBW6qBjclh5gMHBQYaHh8fdrccdd1yqfd50003MmjWLXbt2VWPIiSi0gqQVWmktqsH6OkuWLGHJkiWxFZGbmpro6+sbt9jUaYfwMD5Xof2chKuE7PM4IW10RGSZiAyKyOBTTz1V+tGOPz58edAd0t+fTthMm+asFeDcLQcONJ6w8fFTxOPcR36mlU+wXcNjjx0RMFHLMyJJQPF0EVmEm7AnA9F39ZxQmNLa1tY2KZ3brzpceGHavHkzDzwQ3vXBTxEHOOOMMyKPv2vXLnp6ekKztZIEala66F6lufPOO2MtA62trazN0BxZAnf5v6jqR0Xkb7McTBKKuY46Ozvp7Oykvb2dE044gaVLlyZyGe3bt4/+/n5OOOEEPvjBD1ZyyIkYHh7muuuuK5oFFcW0adOYNm1aYiE/NjbG1q1b+cEPfsBXv/rVotufc845dHV1NVxrEVVdVHyrRISpy0mqImkx1lj6++F3k4rYO3bvdi4ov1dSUmEzZ46LRfFrGtVPmn9pHDjg3HTFHgrqMGU+ibi5BOgFOnAC59KqjqhCFPaICYoK3+oyMDDAtm3bJgiPt7/97Tz44IORF9bDhw+zadOm2PTw4eHh8boihanU/rgqkaadBcWEzcyZM7nhhhvqyWpTlx2Tk1o0hoeHx1O+ly1bxoGEsQZPPfUUN910U+pA5TiS1r0px8I4NjbG/PnzefDBBxM/JDzwwANF073BWXr9GkH12FpERD4Ut75CxVMfB04J/H0y8OsK7HcyK1dCnAD2A2eTzPnWVvj8593vSd/TSCQp4ueLxTq5thd1S6nqAVW9VVU/oar9qlqX/3W/G3Bvby8HDx4MrRjsPw339PTEurVUlZtuuinWNVW470KighArHahcSTZu3BgrbESEvXv31pWw8amrjskkz0Lzt+vr62PDhg3M9M3tCXjyySe5+uqrQyscp8WvGVULtm/fnljY3HnnnYmETXNz83h/OaivbuABjvFeXcDFOHfRScBFuODfSvAD4FQRmed9n84D/q1C+55IEmvCgQPFrRLgYmqWLoXly6eesElKksrPOSJRtlS9XfjjiOsz4z8Nd3Z20tPTE7ufJ598kptvvrno8XyzdyFRpe4XLFiQOgukFmzcuLFoMHJUI9M6we+YPDe4UEQ6ReTzmYwohiRxZYXBrn7q+Lvf/e7Exzl8+DADAwNllUJoaWnh3HPPpaOjoyZzO2nRyGuvvTZx4PXZZ589yVpbR93AAVDVNaq6BpgFnK6ql6nqZcACnIWlEsc4iLPu/zvwMHC7qj5UiX1PIun1JqlL6tChxqx709p6JIao3IfnwvibHJM0FbyuLvxxxGX+BJ+Gk1QlfvTRR9m4cWPR7UZGRlizZs2E1Gpw/XSCado9PT0sWrSInp6eolahWrJz586iwkZE6i3OZgKqeiWwCtcxeZGInCMi9wBfAO7JcmxhdHR0TJo/XV1dk+ZTmNvktttu47LLLks1xwYHB0uy4IjI+MPDpz/96apWOk7Dxz/+cZ5//vlE277hDW8IvR7UcQr4bCCY7jkKzK3UzlX1blV9uaq+VFWrc1Ho73dF5ox45sxx7ra9e+HWW6MDsAuJs/DWSfxNogrFqnqliHwPd+FfDrQAK3AmzhuqOL6KE9dnpru7e0Jl42IVjMEJHD9FvBjB1OrNmzdzzjnnRJbADys4ViuamprGzfpJys8DXHTRRXXpjiqgPjomexTGlSVlaGiI448/no985CNFY6iClFKtu1g5gSy48cYbE9fjmTdvHgsXLpzUYqHOU8BvAb4vIptwwb7nAsWf0vKCX4Sv0H3U2uqsNEEBPWMGtLXVziIT1YYgC4466kjrg6hzFkZra3SgNmRamC8NaYr4BS/8NwMfU9UFqvovVRlZlYjrfFz4NNzX18eLXvSiovssxWTvm/uD8ThDQ0Ncd911DAwM1LwfU+HYIHk8wsUXX8z69eurPayqUlcdk8sk6JpdvHgxXV3JW7c8+uijrF69umoVu6vN9ddfz969exNt29XVxdKlS1FVWltbE1nF6gHPmnIh8N/AM8AFqnpttqNKQVTDx7Ex+Ou/dtYKv+jchg1www3RlXgrTV6EDcBzz7nzIALvf3/4OfMrC/s/58yBY46JDtTOuDBfGhJZbrwL/2Lgy7gL/yrchX+w3gKMozof+8sLn4a7u7t5y1vewpNPPhm5z9HR0cTWm0L8rAtwaeh5SQO/9tprE5ntzzjjjLoXNh710zG5TAqtKIsXL2bx4sXceOONiW/8g4ODDA4O0tvbW7XGspUmrrlrIYWfa2RkhMsvv7wKo8oGVd0ObC+6YR6Jcououqq7UY0aV66cui0Xou4rhw458XPyyUcyoeJqsW3Y0DjZUh5DwB+p6kdV9adeMb/7cRf+l1dveNXBz5xatWoVK1asiHwC8wulXXzxxUWL7w0MDCSKvynEj0fYunVrboTNmjVrEgmb5uZmzjvvvBqMqPqo6s0BYeMv+z849+vd2YyqOkTFilx66aXMmjUr1b4GBga49tr8P/SXI2ygruNrxhGR73g/nxWR3wVez4pIjB8iA/xWCU1N7mcwQyfOLRIlfPwCc1GtBqYyqhMzoaLO75w5dSNsIKG4mUoX/iBB8/0555xTdPukAcaF+I0888C1116b2CV29tln5yqWohqo6jeB+u2YHEJcptWll15Kb29vqmDj559/PreuqjvvvDOVsPHbKgRpbm6u5/iacVT1T7yfx6jqsYHXMap6bNbjGyfY2LLwxgvOwhCV9VMsHmTt2tq5qOoNPxMq7BxVwx0VJ2ArQFmNMxvxwh8keOPu7OxMFJvgBxjXGxs3bmT16tWJM0j8m0AjPNEWo5Idk/NAR0cH8+fPj1zf2dnJRz7ykdAmq3EMDg6WJO6rxcc//vFUPba6urpYvHjxhFpTbW1tnH322XUbXxOGiLxLRI7xfr9SRAZE5LVZj2ucsJiaYApyX59r4FgocJLcgPv6nGslRb2nKcWePUfOUWHsUiWtNsUEbAUouyt4o134gxTeuJMGXw4MDNSVwFmzZk2qhpp+N2SgIZ5opyJJ+kelyYry8QOOsxY5q1evTtWhfN68eSxevHi8Js+qVatYtWoVl19+eUMJG4+rVPVZEfkT4C9xmVLFi3bViijXUnD5+vWumWMpN+C+viOp0eammkic5auSlpZiArYClC1uGpmwG7fflLAYSbKMsmbnzp2sXr06VWZWMB6hra2tES/8VUVE3iYiPxWRR0Tko1mNI6k7cfXq1TT7mRQp8EVOrUX+mjVrUrmhwAmbpUuX1n0WVAp81bcIuMlrP5KfIq1RN9jC5eU2amy0OJxgxtPFF6e3TvmWr/5+uOCCiVaV978fLrywcpaWJAK2TEzcxBB1kevs7Exksk97ka0VvqhJK8CC8Qh+41EjOSLSDHwaWIgrd/9eEalU2ftUpHEnXnXVVYkEfRgDAwM1icfx3appSyj09vaOC5u45IIG41ci8s/Ae4C7RWQ6eboXVDvmw7dAiLgO4I2SQdXW5qxRjz3mLFt79zohEleVuLnZrZ85073//PPdqzAV/PBh16IiSDmWlqQCtgzyM6FzStRNIKnJPm8C5/rrry/JqnTttdeOF+mbQk+4leb1wCOq+gtVHQW+ApydxUCStG8I0tnZWdZcHhwcZPXq1Xz84x8veR9h+AHDadyqPqtXr6azs7PeC/KVwrtx7RH+UlWfAY4H/j7bIQWoZsxHMNYD8lWXplz27w+3pkQJBhHYuNG590ZGXKFD1eTtKqB0S0sNgpYly2Jx5dLV1aVpAgZLwU8HDysbn7QWDGQrcnbu3MmmTZtKKgzY3NzMNddcU1c1PkRku6omr0xXI0TkncDbVPWvvb/PB85Q1UsLtlsGLAOYPXv2gt1VerL0m8UODw8n7tgNxTvDJ6G5uZmrrrqq5PevWbOm5EKXIsKqVavGf/f7XtUbpc5zcRHTS4B5qnq1iMwGTlTV71d8kAmoxXV8nLlzS7fUtLTEdyHPGzNnugKGMLk6sYgLyl6/vrxz0tzsBFIpwrO/31l+9uxxAiyk43g51/JciRsReRuunUMz8FlV/UTc9rX6UgwNDbF169bQdO00oqXWAqecGwBMvAG1tbUxMjIyqehhHsmxuHkX7mk5KG5er6p/G/WeWs7xKBEfRZqif8VIUgywEt8fPyOqEBFhwYIFLFq0qOxj1IoyxM1NwGHgzar6ShF5IfB1VX1dxQeZgJqKm6amdJYJn6OOctaNnNQiS0xLC3zhC+73KCFR6jnxmTGjasX9GkLcePEIPwPeAjwO/AB4r6r+OOo9Nf1SAHfddVfoE2saC86sWbO49NJLi29YIpW64UyfPp0rrrgidF1LS0uu3VI5FjdvBFar6l96f18BEFf6vpZzPGjJaW9vZ3R0NFH9pTTzP0uSiKOurq66EThliJsHVfV0Efmhqr7WW7ZDVaPrA1SRXFtumpud1WPjxmR9mUqltdW1PahGD6w5c6KrNkPyc9LdDffcE+7KK3aMEinnWp6nmJvcxCOEMTQ0xI4dO0LXRYmAMPbu3cuaNWsqNSzAXbT9VyWEzbx582I/k19V2UjND4BTRWSeiLQC5wH/VutBDA0NsW7duvEO9X5/s8LK3UkLS15xxRUlBxzXgunTpye2+mzfXp8dCVIy5j1MKoCInICz5DQ+aYr4tbTAC14AN91UXWHT3Ax/9VcuALgamVu7d8encCc9J488Em25ymGn8ES9pWrESUCwZs7jwBmFGxXEI9RmZEysVhxGb29v4kBdVWX16tXjKailUA0XV5rxNHpl4mqgqgdF5FJcMGcz8HlVfaiWYyh0Pw0PD4/3Nyu0xPmuyCR0dnbS2dnJxo0bSwrurRZRbqgo8mLJrjL/BGwCXiQia4F3AldmO6Qa4btO/D5TfhfvOXPgrLNcb6rdu11MythYbWJsDh1yliFwQcGVRuSIZcZP4YYj5yJ4TvbsiXZR+S6tMCtPDjuF50nchOWrTTrLqroB2ADOnFntQfkUu5n78QJpMpH8WiBQXFhcf/317K/GxGdigGVSpkJl4mqgqneTYcuSMJHuW+Iq4Wb053C58V7lUqr7V+LSZhsAL5j427immd246+45qvpwpgOrJX190fEhfjZVNS01YRw44CxE1aDwe+incAfPQfCcRLmp/FidwvOT007heRI3jwOnBP4+Gfh1RmOZRHt7eyKBU2rKbFDo1JJSjzk8PMy6detyH1xsTCRqDoctL6ffmS+WK5FZlYZys7BaWloYGhpq2Dmtqioim1V1AfCTrMeTO8Iq5yZFZKKQ8DOSzjwzm47kM2dGx/DEuZHiBEyhlSciyykP5EncjMcjAL/CxSO8L9shHaG7u3tSNklTU1NoJ2+/nkea8u+1pBx3WJA4l4aRT6JEepglLomgL8bixYtZvHhx1d1VlZrTo6OjU2FOf09EXqeqP8h6ILmj1NgRX9gE3VyFN/2lS0urq+NbE5NYQgsDe6OsMH5xv7Bx+r8vX35EHAUb6cZZvnJEbsRNHuIR4vAvdMFsklNPPTXyqfSqq66q+VNrHH49j2LptnHvf8ELXjDpab6SLg2j+oSJ9KgidmHblkqh8KiElbLcffiCrlDATYE5/efA34jIbuA5nGtKVbW0i0MjERVTUsjMmXD00Ufic3zh4YuX3bthyRInEN79bhdTU4qw8cVHUGhEMWOGixuaO/eIVeWss+Czn42OHQqLwfEJXuv37YveLqfkJhW8FGqdCl7IunXrij7Z7ty5M9M+U3Ep3ZUkbcxONclrKngpVGOOF6Z8x7kWg9umCTBuBPI0p8MoIxU8NCVHVTPpQ5D1dXwCSWJugnVdyimAl4SLLw5PQ58504mmu++eKGTCti10l4WR1OJTpZTvKMq5lufGclOPJDHZ+3E4tQ6wrGX8jgUX1xcdHR2JrRLBbdetW9dQ4kZEOPbYYxO76RqFrERMXRAWU+JnUYXFmFQ7BXrDhnCLz9FHu1ieuwO5CbffHi7Kktx3Cj9HDRpbVhsTN2WQJiZh1apVVbXiHH300Xz4wx+uyr7jmIJ9eaYsjZb+r6qp3HTGFCFNTElSN1apRLmyfHeSL2bKHUNhKncdpXxHYeKmDNLGJPhWHCg/tTtt/Y5K0dbWRmtrayKXhtEY+O1HGg0/7bunpyexm86YwgR7IR1/vFu2b18yt081qFS6emvr5FTuOkr5jsLETRn4F8BSmlJmYWUpl+bmZhYuXGgX/inE0NAQd9xxR2TmX1OTK3IeljWYd1SVLVu20NPTw4oVK7IejpFnCmNxgsG9fuZRvcavHnPMZEtVHaV8R2Hipkz8G/3mzZvr8gKfhtbWVhM2DU5Yf6koYSMinH766Tz44IM1HmU6WltbGR0dDV03NjbGpk2bgIZO/TaSEtWpulj9G9V0mU3V4qij3DiDQqtY36qnnw5fXicp31HkqbdULonqwxOko6OD6dOnZzC62tJIwaTGZPzWDH5szfDwcOz/XFXZtWtX7kV9W1tbbOaTb8EJ+24bUwjfOrN7txMHflxLf3+ymJY9e5wY2LvXvX/mzPjtZ86c3NOptdX1tCqFGTPgn/8ZbrnFCS2/js3nPx/ft8qPo+nvj+9BVWeYuIkh7GIfdRGcCjf+Rs4gMYr3TwujHoKM/THGzV9rBmuEWmf8VgXNzcXf39R0RBhcckm89aalBW64wWVDFQqRL3xh4rJiIsnHT0/v63Pp2ocPu5++9SWsQaYfRxMn7OoUEzcxxPXhKSTuwtkWrO5YpzQ1NVkGSYNTD0KlFPzvZnd3Ny0xT8WN+vmNhMSlPycpwHfo0BFhcPPN0duJOAETJUQKl91wQ/Gu3Ucd5URYnNWlr2+ymPIFUZywq1NM3MSQpg9P1IWzq6uLhQsXxl5U64Hp06dbTEKDEyXQ29ra6rahZFCUd3R00NPTE/lZzDI5xYlKc549O9qlA+FWnbjg4ltuSR/LEveA3NTkKhAnsbpEWXUaoK5NISZuYoi62IUt7+joYP78+eMXThGhq6uLRYsWjV9U6/niORXcblOdMIHe0tLCwoULM+3wXQ7nnHPOBFHe0dHBggULJm1ntW2MWLdN1Lpbb3VCISkzZ6YTNr67KOjiam11+/GtLzNmQGHAfJjVJS6mJk7Y1SkmbmKIutiHXQSHhobYsWPH+E1AVdmxYwdDQ0MTMlDyQton8XoWZkYyCkV4e3s7PT09dHR0FP3/t7e3s2rVqkwsPHFW0W3btk2IkfO/p4XMnz/fLJNTnTi3Tdy6KAFQ+F2YMcO1TEgTtBvmLhoddRWKDx92oiuqXlrQ6lIspiZO2NUplgoeQ1izzKgCX1HxOVu3bo1Np82KsCaYUdhT7dQhqjVDXMHK4PyotYUnqvmlT2Hn+qig6e3btzN79mwTOFOduPTnqHVRBe+WLo3v/bR7N5x/Ptx3H6xfH37MYu6iuJiYoOiKi6kJfq46rmtTiImbIiTtwxN1cc2rOyduXC0tLUybNm18m2nTbJpMVQobZ/rzQkRQ1UmCP01LkkqQ5FjBLt9R2/vp4GD1buqOqNo0tSKpMJg7d7LAUHXBx2eeGb6PYm0Q4mJi9u9356avL1lMTZ3XtSnE7loVotYX9WoyNjY2oXbJyMiIXfinIH4pBN/SMTIyQktLC729vZHzIG1LkloRTAeP+p4GRZCRHhH5JNADjAI/By5Q1WeqetDCysG+uwVqL3CKHS9KYKi6wn8jI5M/x9Klkzt9B91Fcb2t9u07ci4aoFdUWizmpkJExefUK4VuNKsDMvVIUwrBJyxupxwqVUbB0sFrwjeAV6tqJ/Az4IqqH7GeUpjjhMS+feGf4+67o2N9IDxWpnAfK1c2ZExNMUzclIlfwXhgYIBp06aNX4z9YMy8CJxK3CTswj+1SFMKIUhHRwcrVqxg1apVrFixoiyB09raWvJ7fYIxQZYOXj1U9euqetD783vAyVU/aB5TmKOyktaunRxkXIzdu6PTt2FioHMUfuXkOJHUgJi4KYPCCsYjIyMcPHiQ3t7e8UZ8eSlNH1Zrp6WlJZXosQv/1CJNKYQ4illL4vBjfcrBz/jy6ejo4Nxzz02cCWmUxIVAZCt5EVkmIoMiMvjUU0+VfpQ8pTD398OsWbBkSXhWUl8fXHRReBZVVBVikeIZVb74KdZeIU4kNSAmbsqgmNl+27ZtuciSam9vn+QuCAaHFtLU1ERzQWEqu/BPPdKUQojDrwFVCuUKan/uh40pKu3diEZE/kNE/ivkdXZgm5XAQSDyrqyqG1S1S1W7TjjhhNIHlBd3S1g9Gp+gm2z9+sm9nzZscFWIw6w6qsldbHk5FznBAorLoJjZvtpunCRBzIUm+Y6OjkmBooX79LdPkgJvNC5hpRBOPfVUtm3bxsDAQKp5sWvXrtTH9+fuwMBA6vcG3x9F0kxI4wiqb2BpOAAAC3JJREFU+hdx60VkKbAY6NZa1AXo63Op1Bs2uPYHzc0uCLfWVoliXcOTZCUtWVL8vXE0YDp3OZi4KYMocRF8Ggxb39LSUnI2iYiwYMECFi1aBMC6desiBY6f0j0wMMC2bdvGb0RRtT7a29vH3WlgmVHGRAFQKIoLa8jEUYrQnz9/Plu3Rno2Er3f5nDtEJG3AR8B/lRVY+70FaS/32UT+RbyQ4fc32eeWdubejEBMnt28ZT1OXPKz2hqsHTucsiFW0pEPikiPxGRnSKySUSOy3pMSShmto9aX07dmGDl46hjAMybNw84Us8m2NG81EBRo3TqdY4HKSV7yiete6mtrY0dO3aUVSeqFGuRURY3AscA3xCRH4lITPfICpGXbKk4ATJjhivgV6zrtrmVKkouxA1ZpBBWgGJ++6j1cRfs3t7eosGXwRtK2DF6e3t5+umnI29ElQoUNVJRl3M8SKmi+K677kolnP14r3Jr5ZhYry2q+jJVPUVVX+O9Lqr6QfOSLRWVkj1zpnOZ3X13cRE2BTOaqkku3FKq+vXAn98D3pnVWNJSzG8ftj6qz1Qw+LFYL6rh4eFxl1RY7ENUnMLw8DC9vb2TYm4sYLi61PMc9ynmhg3jrrvuYnBwMPExWltbWbx4cclxNkHa2tpivyNGA5CH4nS+u+nAARfzc+iQEyZBt9P554e/t1CEmVupYuTFchOkNimEGVLMnRWsExJ34wgGLg8MDLBmzRrWrVvH0NBQrHXGMkUypy7neCnZU9u3b49cF5bi7cegJrUiRtWraWpqYnR0dMJ3xHfLGg1E1q6cYENKcMLGP35QpOQpZX2KUDNxk7sUwgxJIy7S1gjxL+KnnnpqYgG1YsUKEzYVoNHneFpRPDQ0lLqRpu86TTrvVZVVq1bR29s7YVzTp0+3KttTgaxdOUljfiopwqKKBBoTqJlbKncphBmTNA01LB23WCzB2NgYu3btoqenx9K5a8hUmOPBcgJ+SngwE8/Hz6yKIyr2bHh4eNK89xt1FuILmsJxxe3baDCydOUkjfmpVJp2Xnpp1QG5iLnJJIWwwfFvECZm8kEjzfEkKeFR5QZ8WltbGR0dDV1XKFjCjgmTXWJx9ZsK920YFSFNzE8lRFicpcjEzQRyIW5wKYTTcSmEAN+rSaR9RvhPl0ksKmE3kiTYRTx3NMwcj0sJ9+dx3Dzt6uqKDTIOi+EJs2AWfm+KCSoLmjcqztq1Ey0pUN2Yn7xkh9UBuRA3qvqyrMdQK9IWQit2wQ7DLuL5o5HmeJKU8LjMqkWLFrFr167ULqJilsi4/Zlb1qgKta4KnIfssDohj9lSDU3aQmjFLtjgsk4Ku5HbRdyoFnGZeENDQ5FVswsLXEZRatBv3LgsaN6oGrVsSJl1dlgdYeKmxqQthFbsgt3b20traysjIyP2dGrUhKiU8FNPPZUtW7ZEWmwKC1xGUWrQb6UafRpGbsk6O6yOyIVbaiqRthBad3d3ZCBlOb1+DKNUouJfkvYsCy5PWxSwlHHZd8FoKKzQXyJM3NSYYmIl6sIctnzdunVFAzsNoxqExb/EVcUOI+67UMlxpQngN4xMKNZU00iNiZsaEyVWgFgrTNjF2BpgGnkirSWmFpYWs24aucdq11QFEzcZECZWSrHCVNqsbxjlUIolptq1mJKkrRtGpljtmqpgAcU5oRQrjAVQGnkijz3LzLpp5B6rXVMVzHKTE0qxwlgApZE38lYV26ybRu6x2jVVwcRNTig1uDJvNxPDyBPVCFo2jIpS6yrHUwQTNznBrDCGUXnse2XknlpXOZ4imLjJEWaFMYzKY98rI/dY7ZqKYwHFhmEYhmE0FKKqWY+hZETkKSAkEqsqzAL21uhYcdg4JhI2jjmqekIWg6k0NsczJe/jaIh5XsE5npf/V1ps3NGUPMfrWtzUEhEZVNUuG4eNo1HJy7m0ceRzHHmnXs+Tjbs6mFvKMAzDMIyGwsSNYRiGYRgNhYmb5GzIegAeNo6J5GUcjUBezqWNYyJ5GUfeqdfzZOOuAhZzYxiGYRhGQ2GWG8MwDMMwGgoTN4ZhGIZhNBQmbhIiIp8UkZ+IyE4R2SQix9X4+G8TkZ+KyCMi8tFaHjswhlNE5D9F5GEReUhElmcxjsB4mkXkhyJyZ5bjaBRsjtscr3eynsNpyMN8T0vevh9xmLhJzjeAV6tqJ/Az4IpaHVhEmoFPAwuBVwHvFZFX1er4AQ4Cl6nqK4E3AB/MaBw+y4GHMzx+o2Fz3OZ4vZPZHE5DjuZ7WvL2/YjExE1CVPXrqnrQ+/N7wMk1PPzrgUdU9ReqOgp8BTi7hscHQFWfUNUHvd+fxV10T6r1OABE5GRgEfDZLI7fiNgctzle72Q8h9OQi/meljx9P4ph4qY0LgS21vB4JwG/DPz9OBlPKBGZC7wWeCCjIawDLgcOZ3T8RsfmuM3xeqfWczgNuZvvacnB9yMW6woeQET+AzgxZNVKVb3D22YlzjTXX8uhhSzLLIdfRI4GvgasUNXfZXD8xcBvVXW7iPxZrY9fz9gcT4bN8fyS4zmchlzN97Rk/f1IgombAKr6F3HrRWQpsBjo1toWCHocOCXw98nAr2t4/HFEpAU3qftVdSCLMQBnAm8XkbOAFwDHisitqroko/HUDTbHi2NzPN/keA6nITfzPS05+X4UxYr4JURE3gZ8CvhTVX2qxseehguO6wZ+BfwAeJ+qPlTjcQiwEXhaVVfU8thReE+1H1bVxVmPpd6xOW5zvN7Jcg6nIS/zPS15/H5EYTE3ybkROAb4hoj8SERurtWBvQC5S4F/xwVw3Z7Rl+BM4Hzgzd45+JH3ZGk0BjbHbY7XO5nN4TTkaL6npW6+H2a5MQzDMAyjoTDLjWEYhmEYDYWJG8MwDMMwGgoTN4ZhGIZhNBQmbgzDMAzDaChM3BiGYRiG0VCYuDEMwzAMo6EwcWMYhmEYRkNh4qbBEJGXiMjnROSrWY/FMKqBzXHDiEZEjhKRjSLyGRHpy3o8WWHipg4RkYtFZH3g738QkVsAVPUXqvpX2Y3OMMrH5rjR6IjIdyOWrxaRDxd5b+T3A+gFvqqq/xN4e8UGXGeYuKlPNgI9InKc1z14EbAs4zEZRiWxOW7UDeJIdT9V1T8u45Bx34+TgV96vx8q4xh1jYmbOkRVDwBfBtYC/wS8U1VHsh2VYVQOm+NG3hGRuSLysGdBeRA4RUSWiMj3vZ5L/ywizZ6b6C4R2SEi/yUi7/Hevz+wr5Ui8lMR+Q/gFcWOXeT78ThO4MAUvsdPy3oARsl8Htdw7WxV/bm/UERm4ib8a0XkClW9NqsBGkaZ2Bw38s4rgAtU9RIReSXwHuBMVR3zRE8f8Bzwa1VdBCAi7cEdiMgC4Dzgtbh78oPA9gTHDv1+AAPAjSKyCNhS1qerY0zc1C8fA56i4H+oqvuAizIZkWFUFpvjRt7Zrarf837vBhYAPxARgDbgt8CXgOtF5B+BO1X13oJ9vAnY5FljEJF/S3jsqO/Hc8AFJXyWhmLKmqzqGRG5DHgB8G5gecbDMYyKY3PcqBOeC/wuwEZVfY33eoWqrlbVn+FEzxBwrYh8LGQ/muag9v0ojombOkNE3oxT5UtV9R7gWBF5TbajMozKYXPcqFO2Ae8UkRcBiMjxIjJHRF4MHFDVW4HrgdML3vdt4FwRaRORY4CeuIPY9yMZJm7qCBGZDXwWeJeqPustvgFYkd2oDKNy2Bw36hVV/TFwJfB1EdkJfAP4Q6AD+L6I/AhYCfxDwfseBG4DfgR8DRh3W4nI3Z448v+270dCRDWVNcwwDMMwDCPXmOXGMAzDMIyGwsSNYRiGYRgNhYkbwzAMwzAaChM3hmEYhmE0FCZuDMMwDMNoKEzcGIZhGIbRUJi4MQzDMAyjoTBxYxiGYRhGQ/H/ATXQzLZNqhlVAAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -722,26 +711,12 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd7hkVZW33wUN9O3b4XbOdO4mS5IgKuCAIJgj6Og4qDiOjuMYPhMqmDE7JsDAmIVBEEVBBFEUBrAJSkMTm87ddM6ZXt8fa+17dp06FW6s6nv3+zz3qVtVJ+yzw/qttfY+p0RVSSQSiUSi2div0QVIJBKJRKKIJFCJRCKRaEqSQCUSiUSiKUkClUgkEommJAlUIpFIJJqSJFCJRCKRaEqaQqBE5AciskpE5jW6LIlEIpFoDppCoID/Ac5udCESiUQi0Tw0hUCp6u3AukaXI5FIJBLNQ1MIVD2IyIUiMtf/UiowkUgk+jj7jECp6hWqeryqHg/saHR5EolEItGz7DMClUgkEon+RRKoRCKRSDQlTSFQIvJz4P+AOSKyVETe0ugyJRKJRKKxDGh0AQBU9fxGlyGRSCQSzUVTRFCJRCKRSORJApVIJBKJpiQJVCKRaHpEZLyIHNXociR6lyRQiURiX+BlwHsbXYhE75IEKpFI7Au0AAMbXYhE9yEi+4tI1TZNApVIJPYFBpIEqq/xDWBNtQ2SQCUSdSAiB4rIZxpdjn5MEqi+xwuA1mobJIFKJOpjJPBfjS5EPyYJVN9jdK0NkkAlGoKITBORLzW6HB2gFWgRkW4bMyJyooj8U3cdr4+T5qD6HiNqbdAnBEpERovIexpdjmZERA5ogjKMLPh4Bhbi7ysM8teWbjzmC4GXduPx+jID6d66TzQHq0VkhogUPtWoTwgUMARIApVDRI4DftfgMswE1oiI5L4azL5lcEKufFDVrTrGQGrk4BPt9EiKT0RGisgp3X3cRHUie7AauBMYVbRdXxGoLaSBXsQ4YGyDyxBEKJ9vbmXfEqhBudfuoKWbj9eX6ak5qBcAl/TAcXscEdm/0WXoAsP8dSc2DrYXbdRXBGorSaCKGIpFKo0ktMthBZ/vSwLVmnvtDvapCKo75986QYcFSkQKvfIcg4DxnSpR41kgIo0e350lzD+F1G2fFqjtwMB93KPoMiIyNDfnNIQeEigReY2IXFTHpuH8+7pA9VQEtU8IlIi0AIsLUrW9RQsd7y/3i8iUOo67zwmUOwsHY6tL90UGY3a7FRBgd9FGfUKgVHUvsI0GpktE5PAmWJDwXeCV0fuhmEj1BNOBo+I7wUVkuIicnduurwhUh+agRGROHZvtMwKFteNECq5fRHpj3HUoghKRg4BJWJmr0QIMr/VEgyYk1Pmwqlv1ICJysIjUXCpegcHYTbrDge2qqkUb9QmBchqd5vsh0O1LhkXk2yLy3Do3n03p0s2hWGTZE7/7NRibV1okImGQnAR8LLfdEGAv5ZOgrcCA7hZ1ETmjhyLpYBBq9jERGQo8WEe0MZB9Zw4qlHOkiEwN1yYi04F7euH8A4EDOtC2QZhqzcEGJ2lcp0rVOILj12GBEpHHXcC7yoeAN3dy38HAWsw+FKb3IAlUGSJyQCfTGGOBaV09fwFHAZNrbeRlnk5pxBT+74k0XyswBxhDZgwGUn5vw2BgBeWRXGirsijKDeDwTpbrZ8CsTu5bjY5EUGOAA6jdH/elCCq00yjgVqxfghn2Cd15Ik8fn5n7OEQ49RrWSf5ar0C1p/nEOLiek4jIF4r6qoj0dLt2SqA8NTiT7smsjOjo+SNCBAVJoDrE77BIoCYiMlhE1L2RMZhA1LPfq0Wk3tV1I6kvFTac8kURQ/21JwRqMNmgDt5nJYFaHpUl/hz82kTkTSJyrn92CfC6jhbIRbqNOu5Q7wQdmYMK5681ePclgQrXPRaYQtbmbUBbV6JWEfluLsV2NnBibrMwBupNxQWnbkyN7coECjgBuKWgnFNF5J25jz8AnC0iV4jIy3w7AbYUzX9Vc35F5FMicniN8gY6G0F1ai5VRJ4jIsNE5CQRCW3TRvm4rudY7wRei0VQYNMzhfQlgdqCN5qIvExEPtXJ40yj/kjoRf46FTiwA/t9EKg3bVevQIVzx57R0ILP6kZEXl8lkokNaxjcA4ERuUEYBKpWBHUGcKz/P5KOzTe0icidfqwDqHBPhW/7rg44BzEdWcUXzl/LeOxLq/iCQTsa2J/M8Ldhk9yd8qR9FdpbgeOij0dTbkBDf2gfCyLSKiLPr3DoyZjhqyeC2ktpFHg8xVHhczFByjMGS6/P9vehTc+LNxKRZwHzq6yGfBlwTI3yBnpUoArm5D4HnIYJy2v9s6oC5c+vLIp4nwc8H1jv7/tdBPU64CIRqbexY8ZSfz76Zf4aOma9AjWO2p5d8LZG0DGBiqOlulJ8/iSOAwu++hjmTRZRIlAi8p9Yym9A7nz1pvgmRPuNoECgPPXyHRF5u4i8O/pqHDaww2AdLSKzKizB/Qbw7368gQUecSUGYfdsdCSCquVdtgCDemNlnIi8REQKJ6LrJLTTs/01Fiio47E1UVlERO4WWwYe0sPxzbKjKRWim3y7zZT2i9OAr1U4zSTgfmoL1CDgSWxFXOA4oLUgTTcZmFKwMGA0panO4NS9PLfdxdgYqZSCnkT9Kwp7TKBEZBZwn4h8LJr/HoWN4ZFRGYfXOP+vgX8UfD7aj7EZ2EE/FKj9gI3AqZU2FpHpPpkdf9aKNXy9HnboaHOAx6hDoNx7qilQIvIFbFDuT/0ClReCodjyzVopvu9SPpjw81cqZzjmdux6/hnzPKHUWNUrUOOjY1aKoFqBfwM+DXw9+ny4bx/KOhprj4srlD200zHA1+ucMG7F7novWsX2KxH57+ijkhSfiOznc5sDReTN0XYDsfYtcg66mxd3cf9w3aGNQ10HY1y3QGGG/gRs3EwElNKMQnsE5eIdoqT1lPaLiVQeqxOAB6p8H2gBHsHSloEQyef3DSJ2nJctLD6a4NsGgWrDsgaH55yPI4H7gJeILdtvx23PcDopUB1wxutZ7HMMNqafA5zsnwWBGkFpereaE3YEmfMeE8bHFszp6xcC1Z7iwxr5N5SmDfJ8lSxUDYQOWRhB+ZzToCjfPg54FBtoDwOD86GxiLwydEYRmQ38CYsyKg4cEZmEpRJChDYo+q5VRI4Vkfe4Bxpyukdi3ko+gipKr+WZhUUdbxCREF0M8f3G+PvxInJnNOBagV2YERiPDa5wT0Z8b0Y1gXoGewBrCza4w6ApiaAkWyUYjOKD/nnov8GLD/MOYQDsqXC9QaCOwATiIhE51Nv3xArR5CBgFbmBLSKnYe0Uzz/m56BeDlwJPAu4POojwUhVTfN5WvL91bapg1r3AxWdV0TkMjfEoayTgYV0MoISW5L+Cn87AxOZW4HnR45CHEENi/7fQKlATQLGVEiZjcX65qSC72JKBMqv9RDgIcrH6GQs2jrS34d2OwSrhziCegqzSfECp2HAbcAXgXzkHsrZYYHylPV9IlJPG9ST4jsCE55hwHQf8yOJIij/rFYEtaXC52Oi77seQYnI2E7m7etGRM4WkUdF5AkR+VAnDrEVC8u/hBmgG3BPSESOLzA6syiPDioKlIgcihnGK4E3eQPFAvU0ZsBGR/sMAa7GvH4wwXye/18tggrL1cNAjr2tNwE/AD5OtpjjU9j9Tw9SHkGtoEoE5dcxHets55ClcMJACeU8E/OmDvH3g7EFJTdQLlD5CGo1tkR4QGSEWrFVPJO8jG2YwO9HJFD+foGLcWifnf4aDEXw4oMRDoYiTMKGaw1L2mf5dR/h7y8CXo+lhG6mOJosi6D8GF/EbjGIl/KPxiLX4F2OAw4lm6s8TkROx9q1MG3oYvkNP8c3KPipDxEZJyJfFpHDROQsEfl+QbkDVQVKRFpE5EI/Z1hBdzDwduDwXBmvAN4sIheTCdR3RORkavNesrTcdEyg7sccvFO9fwzFUp8voNRgb6F0LEzE6r3IMI8F/or1qXaREFugFI/vdoESkTZsLnQlJjD5MXowFgGF8wWBOhabxwrpyuFYtPcwfv+ft+MwrL9cSfmCqklYn6k4vSAinxSRl/jbwZhgDyMbs/8qIkeLyP+rsP/LgXeE/aXywpbguI31cg7z90OxMT6ObL53qB/7chH5du44ZQLl43lU9P1OurJIwjvhq4HXiMgna23fGbyivoUtOjgMOF9E8jd21mIrZpjeh3ktfwAmeef8G3CG2I2kB4itFptBFh2cLiJjsIpfTHEnOQUzMCdiAtKGKf8KzGg/7X9xp34uJlpv9/chJbiD6gJ1GnANmVC1uDcrwLnYEt/hmKENqYFWoghKRF6JDajlwE+l4IGY7s2+HROD4VhoP1pEphLdRyIilwCfx3LG4QnkrVhdX4/V+3CygZsXqM1YZzwJ2OFGKAjUi8m8sFasw+9H5ilPI0srxGmlzdhqL8iM5MHAJrI0VD51NwwzHHuwtjgSuN2/ew2wDLiMaI5A7D4fMAO9hlJDfSw2YL+DDzqPdN4ELAI+KSKv8/NOIxOJbwN/9OtagzlWeSdiOvCvft2V0rTPwQz+R7FUyqH5DbzbHOB1E97PFEshIyLHic0fzgIu9WsKNxmHFWU/A96GiffnsYgH4HSs7tdgY+M0d0Kq3dt2Lia4nyGLoJZh/ejVZA7edD/PadG+OyhP8UFxNmIsNjZvBc4UkXN8/HwIOD/argVYgPWprwG/wpzOp+Pjish4rP0epLS/LsD61KPARBe5Nv/sIWxRCV5uVdWngavI6jgwGRu/1SKo12OpdLD+sMzLcgImkF/CMkeXisjHRSQ4w4jIhcB1wAX+0U/JMhH59gqO2ySsHYKghBRfm5dzT1QXLwXeETsDmE1GROaISHC22zCxg25K8T2jqt9S1W9S4XEU3cAJwBOqukBVdwG/IEtv1ctWstzxVlVdB9yERRsA7wfWYVHJDZgnO8Y77f8AH8E65N8pFqiwtHIKNrc1DfO01mOD6ilMjMYCiMgLsQjjF2Qe/SysDueFc7vn8azcuQ7DjFigBfgmJp7PA5b65zMpTWE8CAzxa/q6nz94nO0/bSG2pPvzmGH7jn88ERPaycDjWLS0CTM8/4GJ/EXAW8V+w2gIVucrsU4sZB7li6JOPwTriJu9vGCrm0JE8hJskO/FBl38jC7IBst4snTJcOCXmCNzMlkEFcrevmBEbCXi/SJyLJlA3YJFhEcDH8YM5hxgPpbCmeH1NBB40sX+EDKDEHgr8CM8cnbhfT0mPrd5mY/2fYZjKb6fYEZzpR9jnZ9/rthc1VB3oM4lu9fsH34tA0TkDrGlvm/D+ulvMaGehKVefiSW8Wjz49yHCcmDmKfaijkFHxCRozCD/WXMAWvDhC6IxBFYHzgMcy4eVNUP+/WC9Y3hZKnUw4FPYhF9O2Ip6T+IyM+9Hj+AiV0QqOWYwXw1WRuHMRg7xTuwG8/niMhzfN/10baIyFdE5HzMu9+Ejb+veT2F850plqp/r++7FUtbvsoP84gf93IROdPH063A77FxHhyiVt/3T/75gVh7Dseim58D73RHcBg2Lw4mZoeISPyUi0nYGCsUKN92DPBCsWzQEMwOjMGivt9h7TsBS71fgo3v8FSN7+QOeRBwqIhcDjwi2XRBC1ka90DM3gWhHko21p7wax3q+wzzehslIlNE5KNkwvMIcK3YLxtchbULdFOK70YPLT+FGfyeYCKwJHq/lNwjSsTSD3NFZC7Fy4i3YAK1FevwYJ3+OMwQhnTL2zGPbw/WuEdjDfFGrAP/Hcvrtni4/L9uBM/BOuEyrIPdixmZDX7cBdjADV7+UcBdwGexQXUQJlDXYMZrLGac3wB8Q0T+PfLyDsGM0hWY4T4KGzyvxozG7V6GWVhnWoJ57Kv8s8W+34vJGv8Ur8fJwFewtOPbgWuxjv1cbAAdhqVNLsRy+KcCd6nqyzBD+jBm4Ed5Xa/DJrkDf8fuLg8/RhgLVBCOE8lu1BuG5eM/5nXypG8zUkQ+R5bG+7SfH2yQ3Oj1/3MyUTsY+D9sQOz0c4dl0ZdhfWojFl2/A9iiqncCITX2mJ8/RE1BjH6JpVS/iUUJx4pNSr8ScyRWe9l3YEb7LEzs8M9D3zsN+F9VfS/uvfr1nYk5Lq/x8v03vtIQ69NPYHV9DBY1vQfrG2/A2mgZln0Yj82rfgIzsNdiffpirN9t9LKMxtrjq37uq8juOxuFOU9j/Tr+GzNW4KkYVV2I9ZPxfqxYoM7HhDjmFKxf/hY4UVV3YtHNaC/PBlVdivWtV/i1jvHyjsLGHVhfnoI5k3d4Xd9LaQT1X1jEt0GNX/l1zMXG0Sisry/BhHmmH/cUTJz/ROao4PsehTl6ryNLq0EmUNdj4/UYrC+0AetV9S4/763YmA8CtRgTksd9vION43nAQS5oiD0+TUXkLVi7/8nLfRQ2fv7s52rz6/4Qthz8Q77tCSLyCa/7dZiNiLkOsyfzyCKrQzEnL6THg4MCJqJbyVLs4Yb047Ex97TX7++x8RpHZo9jgcAZZOOh6xGUqs4F/qyqH1PVv9XavpMULbMtWRKrqleo6vGqejzZHcgxG7FG/x42QFHVX2Od97dk6Z5nYZ7vLzCD9QXMeC3FBtcDmEGYg0Vfz8M61yew+aTHsEENZhCDQD1JqUBNAK5R1TVYpz0Ga/x3Yx0ILM3xNmyQfAKLGscCu1V1raq+HZsPOQz4u6rerapLvMzvIxOo27BOG3K+I4Ff+fOtzvPrPFVELsVSBNdgnvzFmBD9h29zDyZOW7FOf7kf77ten6qqb8AiUIBtfo4QDYAN+hHABWI3Kk7CDEwQqO2YcBwUlfdPXqYZ0XEO93o6Dxss8YKX4diAe5Ef4xz//GBguaoeignwYGzAfANrt2uw9rrBzxUe0RMG7qN4BOVeamjLT6vq5V7338ZE4MXAD1V1ldeXYiLzDlXdQ9Z/x5IZtAnRuUK/+TnmHF1FlnqaThYZH+v1t5EsCp4ZfbcKMzBHYnV6kH/+eUwAfoC17ZWYsRmKtcNHsLmLL2IGOU4PjsachkFYH3iXf95uSFR1PiYyR2HCeiRZtJhPz08FvqWqP1HVx/yzrVj7BCMPNu6ei7XD/lj0BxZZvA6r+8/5fvf6/w8Bx7ghD7cCQCRaqvp/mFN3utfXIV7uK32TbT7eVmBt8T+qehlmTE/GotnrvK9vJBdBqeovPLKcj/XNMAcFljY9yc+50cuzFxv3m8j6/CRMfFaSRYTvxpyeOV6Hj/t1H+t1sMrL9mpVfUJVv6GqF6nqV73spwD/gjmif6H0OZ0A31fVU/y7MZ5l+CvWnzZ6u6zChHs15hys9ev+ODb29seWk/+vX/NbMKFaiTnJYGNvJDY+v4O12QayCKrLN+peICKXSvRMNxEZIyIfrHP/WiyldLXLJLIoqF5+5q/3qurPw4equhszjmHA/0hVr8fSDGH1zWcwT2ciJlBhcnMG5ml/XVW/h3ksN3lHvQbrkOuxSl6BC5SnGGZH17AaSwV9RVXXeAf9NuaBXovljcdgRngONkAD2zFPJHR4VPUfmFEf49e1RFU3kRn8i7C5CVR1t6ouxzywt2LzIz9S1Xep6jdVdS2ZIZjn13INNkiu8b8gSIHFfuzQAWOB2qGq67EfIfsUcIeqbvM2mO77jvbrOtiPs8PLHvrjBrJUwgGYQMYTugPIHjB5NdaOa7E+FAz/ZmwQj8Tq/4N+3g2quhGba7jTz7/B93+ELG3yccy43Keq8fMF78JS0odiAw0vxxrgelW9yrcL4hYiqK9gaeaHo2tEVV+vqj/x84ZoKU5rHUe5QM3GItWBfm2PUcrhwErvE5cAz/F23kQ2H/Z3zPO9lPK503Dj6Tc9sgkOYd6QhEzGfao6D3MKwjzmYBGZLCJfwwz0U7l9w2+4DSYTqMVephB9bvI6ea+qXq2qf/T6ORH4rKp+FhOe8GOlR2JG/iHKmY85lstUdbmqLiPL2sTCu9r7I5gDczQ2Jh/xz+IIalBUdjwy3EXUDz2KCu22Mdr2e5gYhPsMg0CtwFK1kzDhv8S/m4DZk/uwPjEEywA8pqqhT7Wjqs+4E/FJzMF4nMiGOOv8dS3WlqdhkeIarO43+ndzsPabCqxV1WewCCmM0bmq+jm/5pMwwYsX/zzgdTYG+ICqHuHXuY7uWGbuXvNDwM0i8loRuQqLVPIDo7P8DZvwn+ae63mYKteNG51BWGSQZzMmRJ/G5hwgG3S/dI93rm/3FGZETsbq51eq+kE/x42q+gXfL3jRG4AFbqzDHNSl2LxALFCzMDEKfB441zv1932fwzDj8ni0XWi8dZSyDTNQk8N5IsF4zDtRXD/3e/kOwNJgMaHjLvSyLlLVHaq6S1Vf4yIfszT3fkVBeW/ForXr/X2IoIJAbSWLBCAb6L/EPL024G5scC+LjhkMXTAif/DXxf4aIpRw28EorK2XY20VBOwCspQhwFE+B7rHj3U2kdcbcQ9mRA8nM6Rg9TYvev9VzEsOEdSvVfXLUV1uoJTlWFveT+l8wRysXTZgTsZmzDjd79+vIhuHC/x1MCY6qOp6N8b4tfwGMyIL3LjtIZtT2k3WPrPI+mElgfo9Fl3u8nNdrqqLvDyHYYbxP73cC3P7hvsWW8kcq8VY/2wXKFW9Pyo/mBGfSOYUXYc5f2DGfgk2YZ9/qv6DWF3GfTX040IDqaqbffvTyfpXWQSV220d1q9jMfgzlgat1JfA2n6pn288Ft19BXOIwlPZl2ER1Gn+dz+1+RE2Ju6NyhTaMaTx1mDjZAA2l/VJTKA2+fUchjkGB3gZQzZlDyagb/XjrMeczqcx4QkLe57A2vgZVQ31dYqqPkF3CJTYssxJmAB8GHhIVV+qqtfVs38t/ELfhXX4+cDVqlrkBdU6TqXHtm/210UuCOGcYBPa4fUqN/IPYemjJRWOFxpIMS88PNVgJebpjMM8/ligFGuosP9mVb3b/79HVT+EGZizKR3MhQLl596KtUts7O73MhXxK+A7BdcUC9QqynPVeRbm3q8kMzJBOH6AGYrL/P3TZCmuMV72S8i8363RduEYK904BQP6UrK0XKiXkHYO9ROiwS1k922s8Wt+kMyz3R4Lr0eZgScxz/1gckZFbfHNIixFFAvUMsxTDNutxpylMZROkAfy3mwwwiu9DrZhxlbIIqjBZEYpvMYR1N/J2uFpytlMtgAiNtRh27lY3xlDsUCVGBJVfWUuugzcgs2ZDsKcDMj1GXegdpHNZUImAiFa2UQ5IeoJAqyq+hYso3AisNgdjd/n9gv9Jp6/ripQzqOYeISybcBW623D5gDzArUWi67bnTi3KSsKrudpbK61lWyV6ArMfkzGHNqllEZQd2N9/GbN0qUVUdW9qjpVVa/284doH7IxEwRqOHCn2rREHEFNJ+sLJXZZVS92pyTUjfh17SITqIV+rlXRfqH/d8uTJC7DJgGfgyl+i4j8RLrx1xxV9XeqOltVZ6jqZ7rruE4QqHwHGa2q9/j5H1XVt/nnd2PpvcXUQFW3qGpYdrsIS3GEycFgBFZjA6faQADrBKfmzlspggK7rglE16Wqx7oRLeIjqvrlCsd5ButIf8AMVTX+F/MqAwvJvPcdXo41qnpDJIb3+msQqC2q+gNV/bpvv8f3jQUqGNvVwCq1VGGojx3RfqeRpduCZx1SfKPIPMV/UFyPeZ7EBtr+lAsLwP/zc22OPjsfi07a8VTRDrLl7zH5tEwQyJVeZ1dhka5i/SGUIwhwEMNVmEG/BbtV44ro8zztT1qJou14269hczAjsHnQYEQ2YdFVxbmCHFdgS+RbsDqJJ91jtpKtBoWs38cpvjzB8OcFeDkWGS6hAK/TsVjaLBDG566ifZyQbg9lC32yBXNiiyKoAZSnNJdR3pfCb9hNApZ6GVdiEdQwzOAvw8b4JCw9+Yyqno+l6juEt/lGMoEKjm0sUHGbhwhKyJygaoFD2DeOoNZgjtNabBzn2Upmn8uo63eCVDV/4+KHfanxTdT/0NNGEiog7w0XLbZAVReLyEIqdPYqLCa7R+cZVY0NbD3p0CewRRH1CtQWLPQvGshlVIsGReRnwJNqk721jrMH81gDX8GikxvIxCVPEL3F2KrJ/MDGP4sFKrTbw2QT2uG7eN7gz5LdwBjYgg3ycE8K2EKUvdTmyej/MoFS1Rsl9/SCqK3zrMTmc/J973opfdTWBuzaVvr3F4jdg7hMVXeKyAbc0fHtH8Dqa61HgmdC+71t76U4gprqx873g7DtOlXdIyLXEhlY7x9rqB5pxNf2mNj9QEMxx6zocTdgbTSSTPiWYG0eMg2VIqitBfW9AnMq55fv0l6uvGi3p6sq7YON23XhfKq61xfe3Yrdp5gX7bV+DUURciWBejbZM+tWYIFAGzZfut2jtSlE8/I5B6MjrMdEY2OURSoSqI1Y/QfHojCCyhEEbyVZBPVyVb1HRNZRfJvS+6kiUJ1+1JFHDR29V6lRVIqgqvEnaqe6SnAPfxWWN46fjTUXy+3WIgzMIoHKd3iw6xpFx66rEFV9k5e/M/vuIhPQSkZsHuZVLfT3RQK1Bau/EoFS1ac9BRofPy+EF1G63HgzlibZFAai2kqtonrM8yQVnJpADaMWE1KQZW0UR2B+vGWULjhZRyYUG7G6W4td0ybgYC2fH1yNRcNFDs06CpwutXmBbWEfVX2VquYfrbSG+iMofNsRVHZYwPrAdk/3hXJM9v60ncoCtbLg8xAN3VZvAd1BreWkP0SWHYgJKdb8UyzWAU8V9I+wACcm3Jd2Btlc6grMkdifrK+HxTx1OQg1WI/1kbh/bPRyjCazM6uxsRi2C7awmqOdj6AGkYnSOgoiKFVdVe26uvRLq2org/YFOiNQH6BzNyYvwpY6LwwfqOpN1HcPWfDcYyNSK4KCbhCobiAYr0KDpKq7/X6yMNdSSaCKUnwx23Ov4fghnRYfSyi+JaEWf8U8u8upIFAd4FbgDQVCUsSVWDok8DDZHGksUGugfT4szwos6irysF9I8S0dYBP51TIGH6O+SfnAdsx4VzOqW8j1A7XFTmD9qaju78Fui8izAgGcLEQAACAASURBVHhUbal43WhuMVEBfyX7WZ2YsNBoRu7ztZTP0aKqFxUcYytmxE/HlsyDie8cLMIJIvdSSp+23hXWUyo8ISrML+74MXYrzrmYw7NWVWs9dX8DFjltJEubhtd1VH42X0V64qfAm5EOC1Sl9F8dLKLjS+QDjwALcx5FrTkoaA6BCoamosesqvdL9hMGRQL1r5gRDM8TLAr9w/F3FnxXtN28qlsV4I7XFWKPA+qqQF1PnTe45+deVfUWsh/Ouw2bD1lAlWtS1UUiUviQ5NycWf67cyp9599fX+37ArZjKaNaEVQlo1UYQbkjcmPB9n+gOK3ZJVwk8rZgiKpu8ad5PJL77kkqP6Q4T0jxjScTtRXYnFO8oGovBaLXST7ux84/t3ENtlpvvZ9zD7DHhWtVHUIOJs4rPCUcxmdwzG6iel8opL8I1Kbca0/ye4pTEDVR1aUickjus90iUillszn32kiqRlARQXDLBEr9RnARqRVB7aiVYvNBshd/3EsnWUMXBcqjnCIPvKPHuTt6WzW13gXnqjvZhk3sV+sPZRFURKUUXyFqqyZvrblhNxDNR32v4LsflO9RkW2YiKv66mIsulHKb0PoFtSenBLOE/N3IoGKeByzafXwCNlDDELktNvP+5vCPWrQXwSq1wx5Uaft4P5FkcE3KU5VbQF2VtintwmGpmqe3NMJ26hsmCCLjipFUHV5Yqra6Z8hd7osUP2Y7dgilVoRVKV+8BSdz0TsK4Rf/I1vwt8jIqvoIYGqwh3YStSS86o9PeVf6zmAO41hMUUYw9VWSNakvwjUOuCBLqx8aSiq+p4KX22mOdJ7kEVQ9YhltdROELFdFbbZTp2rybqBd1F91VKiMpUWs8RsoUI/UNWzur1Ezcc2bDFEfgyvpPcdo3vBMjbddLySCKqz9AuB8tVpnfn592anaQQqLIKoM1ddK4ICM2yVIqheESi151AmOkfhYpYc1SKo/kCom/wYXkHvR1B3k/2+XHfQLRFUX/pF3f7IFppEoIDw3LF6qMcwVRKo7XRisjXR69QzJ1ltDqrP49HKbppAoNS4u/aWdZMiqETzRFAdpB6B2kbxtfVmii/ReepJ8VVN9fYTtlLezx9h3+/jaQ4q0f47S/sa9QjU2ZQ+0SGwmX3zmvsb9QhUeIBxf6bMEdPsgdT7MimCSnAT5fdh7Assp8ZSfFV9tMJXd2JPu080NzVTfH4De3+nUqZgXydFUP0dv6F0X3maRztqP9/S2X330gM3ZCa6ne3YA2frWTTTn+mrAtUtEVRaJJFIJHqCtJilPvqqQO3EbjjukoOSBCqRSPQE20gCVQ99VaB2YRF0vQ9VLiQJVCKR6AlSBFUfRav4+gI76eL8EySBSiQSPUO6HaA+fkfHnhK/r7CLLs4/QVokkUgkeoaU4qsDVb2s0WXoIVIElUgkmpaU4uvf7KQbIqgkUIlEoidIAtW/6ZYUXxKoRCLRE9wJXNLoQiQaRrek+NIcVCKR6Hb8p9v/WHPDRF+lb0RQIvIaEXlIRPaKyPGNLk8ikUgkusxWssdddZqGCxQwD3glcHujC5JIJBKJbuF+4BVdPUjDU3yqOh9ARBpdlEQikUh0A/4EieVdPU7DBapeRORC4EJ/O7CRZUkkEolEz9MrAiUitwDjCr76qKpeX88xVPUK4IpuLVgikUgkmpZeEShVPaM3zpNIJBKJvkMzLJJIJBKJRKKMhguUiLxCRJYCJwO/FZHfN7pMiUQikWg80sWf60gkEolEokdoeASVSCQSiUQRSaASiUQi0ZQkgUokEolEU5IEKpFIJBJNSRKoRCKRSDQlSaASiUQi0ZQkgUokEolEU5IEKpFIJBJNSRKoRCKRSDQlSaASiUQi0ZQkgUokEolEU5IEKpFIJBJNSdP8oq6ILAQ2A88Ae1T1+MaWKJFIJBKNpGkEyjldVdc0uhCJRCKRaDwpxZdIJBKJpqSZBEqBm0XkXhG5MP+liFwoInP9b14DypdIJBKJXqRpfrBQRCao6nIRGQP8AfgPVb29wrZz0xxVIpFI9G2aJoJS1eX+ugq4DjihsSVKJBKJRCNpCoESkVYRGRL+B14IpDReIpFI9GOaZRXfWOA6EQEr089U9abGFimRSCQSjaQpBEpVFwDPanQ5EolEItE8NEWKL5FIJBKJPEmgEolEItGUJIFKJBKJRFOSBCqRSCQSTUkSqEQikUg0JUmgEk2JiAwQkXMaXY5EItE4kkAlmpXpwOWNLkQikWgcSaASzcog4KBGFyKRSDSOJFCJZqWFJFCJxD6JiLxORLqsL0mgEs1KCzCw0YXoD4jIWSJyWJXv/5+IvLc3y7QvICInisj0Bp37oyJyXCPOXSc/BMZ09SBJoJoYEXmuiLy20eVoEC3AgeIPaOwpRGR8kw/03uCNwOlVvp8ITOulsuxLXAi8rDdOJCLHi8jboo+eCxzaG+fuKCJyIJb9aOvqsZJANTfPAV7Q6EI0iBZ/7ek030uB9/XwOZqdodicXyWGAKN6qSyFiMjBPXTco7qw+0A6aIRF5DAR+edOnOs44KzcuQd34jjdhogcJCJFz3Md4q/Du3qOJFAdQIzerLPB9JM0l4g8J2csgkD19PW3Aa09fI5mZwhZfRcxFBjdkQN2Z+QrItOAwh8v7eJxRwB3deEQA+m4ET4ROL8T52qltJ+2kAlBo/gUFkXmCeWqKd4i8h4ReW6l7/uFQInIZd2UKz4f+Ho3HKde9nmBclGfUcem5wMvj94Hj76nI6g26vBEReTPInJID5elbkTkTSIyvpsON4RujKBEZBSwt4J3HbYZJCKvr/OQw4CR0b4H1FuWGowEWrrgdHYmjTWIzkWjgyntpwNpvECNpNhx6UgE9XzglEpf9guBwiqhZigvIvvV6KxjgQndVqratLKPCxRwJHBneCMiM0TkmILtBgEjovc9FkGJyKkicqW/rTeCmgaM6+ZynCci/9bJ3d+JpYA7es7hBdFNPQJVMYISkQP9h0YDb/DXkUXbO4cDn6lW1ohWYLCIHOBOwh117leLYEAL+5iIPEtEhlbZvzMRVCudE6hWSgWqhR5M8dUp2oMoFslQZ/WIdyswpdKX/UWgBgP15LA/AHxERMaIyEsqHGdYt5asOoNpkqXWIvJTEZnUiV1PAMaISDACbwLeUbDdIEoHe0/OQb0ceLP/P4z6BGoEZiT/S0TOqrahiHyqzrmNQ6jDcapAG51zlq6j3GMtmYMSkXtzhnkIMKpK2u4C4EvR+3P9tVpasI1Sh6SMyEgGQzwMcxLL+qEvdnlxlWN9qiDyCuevJM5fAl5XpYgdnoPC+lqH0qXOYEr7ac0Iyp2RRSLyio6cSESmAg/WsWlrhTJ0JIIaTBIohgCT69huBiZkJwLvL/i+lW5YmdIBaqb4vBP2hoidBRxdoxw3FxixZ/trMKbTKTZMlQSqJyLIpdA+T1IzgvL6DYPxFKDikmznIuBHvu/0KoZ9EJm32VGGAzVTfCKSNxJjKF/+2x5BiUgbcCylRnQocCCVDeIYYGZu+91UMMQi8krgJGBopXSdiIwGHve3QaDavAwjC+r0lcCHKxxLgA9h4hYT6qaSQI0DjhKRC0Tk7QXfdzaCGtKJMVsUQZW0h4+/K6KPJmP2rJrIFnE4MLuOKKpSBFXXHJSIjKO/C5R3znojqPHYoGqhOFJqDZ97qqorK4DK8OWZiMjRIjKGGgLl1/Y7engVmpdrJKVGKM+lwJmYIYs5DtiGLVUGS5VVEqiiFF9PiO92fx1JfSm+UK4wF1MrtbIBeJa3z69xYReRfxOReDHCIMxITyw4RkUiYa0aQYnI4cCfch8PIzIcboRagXEi8iWy5eRx/x8CbAIm+iq08SKyPvq+DZgavW8BFpETKJ+PPAL4D0xQoLKBPwyY6tca2icI1IHRZ/hc13HAwWIry/LzxC3Yr4fnDWZZBCUio6Nofxz2S9+nUuycdTaCgurpzxI8mi2KoPL98ExKbxcI19fRrM9srL7G+PlfICKvKtiuJIISuzerFXNQlCri7X1+rl/DlEpOXJ8XKMzADaAggnJvMTyY9L1Y6mAU1qHbfEA9L9plMFmHvAAo8qq6wt1iCwq+gA3gWhHU8zBv99TuOLmITJXihQDB457p2x0Tien+IjITOMO3yXuj44EHyNIyJQIlIrPdi85HUOE4HY6gXOBfVGWTcMyZ1JfiC+UdjBndWgK1y1+H+PFHeiTzLSxyCLRi1/xkZBTDNQwSkY9XOP4g4ABqp/jGA2NF5GMi8hr/rM3/EJGXkc2rHYHdDzUt2i6I4RDgSeC9wEPAT/HxEW17cORxDwIWUh5BzcRSR4cDs/yzSmm+QzD7FC8OGE5mEEd6+d4IbMWihAlYhP5uKV0U1RbtHxPex07D14HXep8cgaVgD6F43qgzAhX69RgReXbVLTP+ggnw4KjOK6X4VkX/jwBW0/EoPbRNGLOnYuKXpz2C8ojwEqy+hgArqV43bWRjKYyDMvqUQInIYBHZP/dx6NxFYeQ8F4R3AF/GKnc01vjDsA4fp61agWH+fhYVGl5EJuc9AhF5noiMFZHDpfKNoeOwNMQxZI1XzUBPB/4AnCRVVkz5+YeJyInR+yOk/N6SNwLvjrYZICJfIDNiM/267sMiN7AFKH/1bVZSbuzbMKM20aOHCZQapR8Cp9G9c1AvoyCtISKvFZGXRsf+Jy9fa410RhxB1SNQQzFDMcL3GY5d437YnFxgENYvD6LcmB+JzYkWEQZ+rRTfKC/DJcDV7t3G9XwZttgCP/8wrE9B5nUPBPZibfwmrL8FLz209XAsqgkptEEURFBk9T462ncEtBu4mOAofZFs0UUb2ZgLEcgx2LzaDmANJn6QzYPF11IzgsIyLcO9jKv9mMdTWaBaK6Up84jINWTp4dOAX9azH1avU7H+c5DbuAMoFqino/9HAk/R8QhqFqVZj3anJkcrJrRfxtprf38dAiymevqzFeszI4Cz/Xxl9CmBwvL+L819NhjraCPdkzwP2lMb4zGP9tVYR9yPLMU3FIsc4lC6FesYLWTedxGLMW8z5sPYPM6bKb53AD/nYdhgCIbwIBEZJSJvEZFDQuTiDME81XXUvtP/TCwyC1wFLHKjFe41GU5pnn4iZiQnYh70LLKOeoS/zvF95gObKU2XhDvKH8MMzVm44XbBfJXvO9r3G+GpTejaHNQUip2HMzBBbQF+gxnnCVg6ouw+IBF5vogMJjOGYbnz4Gib8SLyw9w1DwCW+bZDgHOw6OleygUqGIH8vNAhmMecT5mCtdMqakdQI7H+utLfB8+4zbMH44D/jLY/iEwYjhdLYQ/B2vWPmEH5NFmEOFJE5kX7TI2uaxHwCSldSl5kUEd4JHFz7vPwlIRTyeYxQ4ovnPtUf/9HbCw/gaXkoHSFYxinlSKoWKAm+DGDw3UtZheKUnJBvOuNoo7Dxs1WLGVY7zLx2M78kEz4434YttkRbTsCsw8djaBmYCtvQwQ1nMpTHodgti5kceb4+f4BHCMiJU8oEVu5ek1U9gHALaoal7udviZQMymfaxqCCdSBWOWFXHIbdv0n+j6/xQz9MKzy9iMz+sFox5O1M7GBvkBEWjw3H3tSH/L012EedYz0v2lkRqkd94oGYZ4VlEZQZ2JLcq/GvP742jYDW6h+oyVkohfY7K9hHu1+LPccC1QwgLOxDjse81AfA8Jy5TnAM8A8zAsa5Nf9DqwuN2B1C7Z67inMEJ6EefahXOHp5cEDbMEGf80ISkSGikhs4KZSPCjHkjkdf8HqE6zdh4jI8bntL8UeKRM87clkaafACVhkEQhtshYb4PsBL8Tmgt5C6aq9QWRjMC9QwUAXpcDaMGPc5lFui4g8LiKn5CL34PWPx5ym2dH+h2Cp13zEe7hv+5/Av5HNP/0ZeBjrB+8EFmBicLgfaz6Z0zIIWOH/nxcdOxjkJ/11DzYmplMutlOwfj0NE9lnKBWoyVidTgQ2qeouL/fRWD+MjX+lCGo4kXPidTcB6ztjsb74E+BWKkdQi8iEv4QC52KY7/M4cDLW56re0OyRZeykvRYTECi9xmCrWt2RvQDrO+0RVEGUWnQ+wfrLPeQiKBGZIyJf9kzVL7F2DuX/V+DvwAexBWYPYOP7AhFZHGV4vgG8iqzfbVXVvZXK0yGBqjeU7QwicraIPCoiT4jIhzp5mCmUpz0GYwZjG2YIw1xUGPgnY53yBmAJZlBDw4SOEIxHqNRZZCsDp2GG6ErMOwcbWCswb+chTMxGkA3GouXaobMdhQ3gWKCOwQbMEZTeixOMx05qG/JRlBrByZiRnuXtOsyvKz5+MBqHYnXzGBYNzMcMxiDM6H0K+DbmGbb6Mb6OdewNqjofi6CmAusxQZjs78PCg3jSOzzZYCP1RVBjMSEJTKXY4xvnddCCLZT4P/98K7Y671o//6Ei8gsv/3Cs3VaSGYFYoDb6PsELD22yliyimID1g6WUeuKx5z5abIL/ne6shKikyHMfjtXjZrJ5sZlYyiiOWMK+e7G2mxXtfyjmVOSNw0zMgIbl0EOAzaq6XlUPV9U9qvo9zDM/O9rvauDsKP30D/98SbTNEKyOw7Lnhdi4GE95dDMCE8HQr1eQzUHtxtJuYP0oOFtBoBZj0edAEXkzmTCdJyIfydXParJ2GO7nG4L1p5Wq+g/gxRQvsx+IZW3emPscj+52is8t+r7BaboPGzf7U7t/x/14o7+OI2v7wNFYn2jF7NBFWB0uwurifKLoSuxp4/9ScL42LEK+lyxyHe6fn4CN/zdhc+SxQB5NaYamFevzZ2BtNMzH9Si/jnaBqnbxNQVKbBJ7tojMAT5Ra/vO4J36W8CLsBTX+VLl6coVjjEM6wDjo88Ea6TNWEWMIYuwRmIe4dGYMfk1ln5bHW0TVq392FODrX6s12ODOGw3CWvA8X7OQZSmGsf4+UaRCVqe0HlnerkmYFFfEKgdmLcyNrfPZv8uP8mef9DqaCwtMsA9u9GYVzybbABPozzFB2YsV2IG7SWYYVmL1e1s4CpVvRuPoMhSS+PIBtUGP/4G33cyWScNEVRgPCYi66lvDmoI9kSAAe6pTfa6Cc8L2yYip1AaQe3AjOVrMYdiOjZPdgAWFR5Ddq/OsZixnI4Jc2wYQvnmuPEbTiZQ8bznCq+LYdF8Vxy9jMGMylewdPAsP068oORFYquf2rB63OTX2YYtPvg+paneIFBrsfabhRmfNr/GR8iEJDCKbHn3aC/XRspZi43XPf7+F1h0fzywTVXvAf6FzHt/HzaXtIlsIn8BkUCFeonG7cLofEvJBGoxmUAd7MfEP5+EieJgzKG7kszQngx8Rmw+eIJ//39Y1P9FsrT8KdgCqO8CePppF6UptQHYePwJNiYQkX+WbA48tP1b/LUFEyQw4x+omOYTmyOOFyeE7MJYbEpiUNSXzgCux/pUeLjvsVhdbwM+mzv8P1E81TAO66s3AsdF/W0Y5rBPAMKzBPdiEejtwOdV9WfYePgw5vA/SebwDvdyPYWN9WBztlS6fqgvgroUS8ecRO15js5yAvCEqi7wUP0XdPwpwUEsxkH7HNNcrKK2YAI1liyCGol16IeBxaq6S1UfwBo+bBMEajp27a1+nAuBj5DV32SsAcdhHXGXqi5U1X/G5jrGkqUF98dC+3xKLnTUFi/TVC/3QZiIXocZg3wEFQQqb8ivpbRzhxTFiVhHWYlFQvG80gGYtxUMZxxBrcSM4BFYJ1uHGZFJWD2CDYRX+R/YIN3g/2/wbTf4vnEqdiwmxjOxpwSMxzrxBmCgpwxLlvmKyPtE5DR/G8R9CFZXe6PP/gur0+PJFqG0ANtVdbeq/i/WpjOw9pzo24Ql6K/C5g6+ig2yJdiy2JAeDO34CywNexRZim9qVOQVqrrHzxXaOoiyYmLwEuCTWD5/BCYUcQT1QcybzwvU8KheR4jIi0XkIcyR2oo5XasxZ2Kx7z/Rr+XVlC8oiQXqrVjfyxOu74/+/gmyNHSY8N5AFgEch0UloW4Ui+rG+99+lLbjDi9z4F5s4cgQrN+G/hCcNMj64WJKb6p/n9cNwK8wT/8WLPpZhrXD+4GP+jazgL+r6l+j86+hNM0XnJynsIUCxwM/JrMdB/uxTxdbRBBHQvdF/8fLtM93QcDtwyJMAANB2MdhdbyFLLI7w69tMNa2uzGBWof1k6mUMgVbXDVWRGKndDwWOW73OjqdLIKajtX3EZiIbfW/q1X1wwBuRz/vWZMlZA5MuG9viV9HsK1dFqiPq+qPVPWHVLgRrhsIgyWwlNw8jYhcKCJzRWQuuXyw2EMfv4d16BBBhRsOIROo0ZiXvD828NdiudZF0eE2kkURM8i8xxFY46/CVrBdH+0TIqhxWIeLK3011uEFM5ILgOVejm+IyLt8u3jO5GGyFNderHHfgxmok0Tk3327OMWXTxUcCxwuImHOKtTZ7ZgnuxgzELMpTa88E11/nINeiS2suAi4Buv44zBRC/cVheW+IXVwMKUCtZ+/ricbyLv9/+2q+iQ2qCdQGkGdhKffoN35+BJwm+fVwyAfii2Bfi92f9H+wL8DP/BjBCFooXQyeSvZ6rUpWNQwgix6vYOsj9zt9fIaEZlFJlDTMIfoBKxN1lEaQYWFChsonZx/xo89xj9/gsxjDRFGYCK2Ou1jXo7NmFF9N5lAHY0Zyr/4Pk9gxnUV1g+fIjMWK73O49VkoTzhfC/Bxlaetf56HZYC3IOJ02QygdqIGe/vkqVKw7bLsPms2WRjNtTLSL+WOHK71a9tlJ8nnm6oJFAjyIx6uKaLMGN9MSZK27G2W4PNmazE2j0Wx3C9sbMwENihqs/4Pp/MXcNkzDl+MdYfZ0f7PuFl3k1pBPU+stsQZmNtATa+d2HjAWx8bgduw9Ks4zDHdx5ZBPV533YDVo+LgT3RvNgUL/fFwM+hfY5qPNn84XJsvLRh/TzMiw7AnNWtfh3LKMDbOdT7cGxcL8fse0hhd02gVPXBYORUdXGt7TtJ0USh5spxhaoer6rHY50pZi/WGe8l6+yjsI4AZgi2YhU7ABOUIFC/oFRsNmKNolgjPuSfj8Aa/yRVPVdVd5MZ5pmYIQ13Rm+OjreKrDGGkc1FvAHL5V7g38UCtdRft2Odc72qrsImIU/EvFoojaDaBUrsnpvxmHf8Y/ewQu53PyxnvgB4FBsI8cBbQBalTSBzHFZ6VPgZVV1GZoA3qWpoq21YZw6GORaoMLjCgAnt9JhvH4zacj/vIN9nINZeU6LBdYiX835MiEPdjfNzXoa1x7O9fn6OeYJLvE7Hk7UdlArUwZgBiO/xWUE2kG6L9juXTKB+iwlZEKgQYQTPPQz69WQR6yAsbfMIJlBtmICMxgzwErL7fcIE/kuA61X1x36e52ELa2KBmo8ZHrA0S4igRmFps9A/VgC4kd2J9dW1ZF73MOApVY37c2CNl/V+srZd5/UWR1CHY/01LNAJ9Xg45izN8bLsAiaIyAKysbkR6w9gxvQxr995mDMQ+lac4sPrbYgf5xb/bJmX82Fggqpe7WN4Gxb1PqGqF3v9QrlArSa7cTVELMHJWYwthNlGqUDdTJbWOzk61lZMuOaS3Uckvk8Yi3MwUQZrw+Bk78b6+Q7MOXiFb/so2RzwBP/uJV5Xm/z7DWS3yUzBFpmcgT01YqTX2xSyvroGa5uBWHscg/Wfp7B+uxVro0KBcm7EF1WR9bklZIurujYH5VwgIpdGKzEQe17dB+vcvxZLKb2RdhJZx6yJqm5Q1Vl4+iOaYwmdbApZRfwSS1uOBNap6q2eOw1sxAZZEMG7/Dhjsc62I7ftE2T3XoQIKh7Qq7HGCI3+INZp3oKlGCaJyBSyyd+wzwVYnngHmZELOegwhxXSGzux5ehvEHt6QCjP0VinmI0Zp4d929nA79zwrCKLNMEGzZGe/57g+0AWAQTWYQY4vtb8vQz5FF94jReiPOxlC+2zguyJHkswoQmr54LwnYzNHdzp/wcv9GjMoD7j5TqYLJU5FhtIT/tx8hHUDD/39ym9mTZce7jOkNJahxnLFixqe5uf53jfNtwHtRhzoEJf3ABMlmzV5kpMoIJzE+ZRNpLN84GJRUgJBpHc5PU4gkyghmPpxJWYEzSXTHjAVldtw6KpuE23Yd7uaqze78IM+qMUsxAzcA9gaVQwIxqMPpROhocFGpsBVHUTNsYHY/31Eaz9pmHtEwRqGdkc8g3RMc4CfhYf0+tgC9kcVEjjh+v7jjq56z6KLK0ZxC6+4RWsrkJm4UTM6QnL7Zdg/fMvlArUk5hDugRb9r4Nc3x3qOrtfn1DROStWB8Jc9VgNuM+rA3ux6K9b2LR8Ris//4G+724YygVqInAclW9wUV4I5lAtfn+W8gWcE30843GflUg2KqQ/dmAjbH9vUxBoLZhiyXiObUSVPU/sH4SC9RSzCGMHb9C6hIoVX2DX8zNYjc7XoWF/Y/Vs38d/A1bTTbNxeU8bNFCh3DDtBYzeKMwkXkGa/xgAD+ITe4GLy1P6KDXYBX538BrsA63Nde5N2IDNCzoGE+xQB1CVlcPYkZjMtawd5NFASFyWq2qV3rEGgtUMCijReQkrNHjCOrtmEd0BNbwwaD9GDPWf8PSXbvIbrSdh3nh28mWE38OS6NMxNo95LtjwiKAWgIVL5IIrxsxg/sXrJ4hi1iWY4NlP6zuQgQF2arKo7BBeyc2rxEiqOPIouZNvl8whJ/A5g5XYWIQR1AhSv4frA3yN1KvIEsHP4kZmXvIFnM8raprsL4A1ueCYX8My9GHdM16LFV6vl/jA5jYzsTqcj1mCMJikhnuCE73awttFK4xEFKn4P3EHa/Lsbmh+zFv9nLMKRBK+3+7QKnqE6p6Flb/j1CAqv5KVS9Q1Z2qeq1/plhfjQUqENpoc3QMxfrobq+nUO8zyFJ8a7BIYgVmoMEyCuu8wMy4wgAAIABJREFU/Lsxpysc729YdL0b679rsSXzn1TVMMcUsw0z2HG/gfIIaiVZZuHVuWta4vsvxeYAgzO1BFss9UXMkXqKUhuyGetDX4zOE1LxISpaCqxxe3AHZj/GYinxdX697/Ztt5E9ji0uf4igNpJlOBZTugglrIKdSeaErcEEaj02RxxS8AuwcbRVVedXWyburMfWFJxHFkHth7V53hEooS6BEnuo3ySsM30YeEhVX6qqRZOnHcZzle8Cfo95oVer6kPV96rIaswTGI1V8CRsaWQQqNgrz3dCyAbVNao6WVUXkS2Lzoejm7CBPxgb3EGg8nNQw7GOthnrYMHjeIBsHmgoWTotNhyxQK3D5l4WY0ZqJqXLzGdhne+FZHM2X8IitYXYPNY7gUPdg4VMoJ7EjNxfvbyHY4ZyEZbeK0m5kkVQsZGM62cPlSOoUMc/VdWrMcEMiyYWYZHJSr/292OR8RqyidVp2CC5BfMgw6A+lszQbMQM1GZ3mj+pqo+TDYhYoIJn/guyG1eXRtuuUNXtqnqiD8atmECFubLtAL6Sca6XNXjuW1U1/oG6Db7PMdhqt7dg6cGh2JL8nX68jZgTcSw2n/AiP+YUT7FCuUDl04mo6jpVXaaqi1T1HBfKhzFRjQ3LWzFjF4+JigJVhVigNhV8n08XnodFTuvIIvmZ2Bi4HbhCVV+hqqs9zT1MVcP42IC3b3S9L1DVBdgYPBjLkvx3FXsS+kEYk6F81QTqHH8N0e1CbCyvx8bOCcBSr/vFWGo+ZDDab+r2c70PSwWGp4eHCOpwzBYuoVToN5Gl+MBu75gKPBo5QStybXsxFm2GCGoCJjQL/ftl2NL0q4DjVDXURVhYExzjG/04P8EFivpYj82VTfD9giP+A8zuV6TeFN9l2HLU52ApjBYR+YnYXfbdgqr+TlVnq+oMVa33d2KKCAslJmLe4Er3brcCe9RWCa7CvLWlBfuHzhAbsJA6yacd12IdaxfmHe0kW8UVlwcsUnqWd9iHsOjhYUyg3oytEluCeYe7o/3bBUpV96rqB3y7MB8TIqjRWMedg6UGf+Df36Kq31TVaZqxIDr+3zDHYx4Wts/H7msa4Ne7nvL0Xrj26RRHULswoQnPZIPyOSjIOvj90TEWYh7tSmyw7o951L8DzvX8+TQslbcKM6DhsTaxQMURVEwQnTjFF86/DGuXvVjbPOWf569/CwUCBaCqz1bVj0YGIn9TdqiH8EQBVHWrH2N9tM0GVV2CRec/x1ZkLlPVDdGx4rovi6Cq8DCRiHkZbsLm0H4bfXwpcFONY+VZSybYIdUK2WquEoFS1atU9WEve3gKxAxMWBao6q9y2+dFuWh+DKyNQqqwGmGxRUibbqM0JRtYic2RTaXcMfsh9gDcMC/7X5QuPAn9a52qxgZ5M7bw4LuYwG3GbgUZgjmbD2DjIS7LRkqdomt927jdFsYFV9WHPNoKAhVSbWG7P2AR1GPeFoE1WP3Mw8bc+1T1LrVbCO4jm9+rReiX78ScjmB3t3hwUpF6U3wv93zmXlV9Rm1J4ZV0vPP2Bqsxj/NiShdTbCWLbFZijVQkUKHj5QUKSg0p2Gq1G/04G7BUxMspHTTzsZVW31LVpwDUljc/38XyMbJFFM9Q+quyYKK3LvfZUrL5qi2YsT0SMwIvxJyJ+dG21Qid7F7gDG/jj2MCs9yPdUPBfk9jghgP1G1+DUF4wVNdaveS7KRYoL4XXeNyv7YVmMiGJdCXkEXD08jE41bMiIe5w3DdYX4mb8DKIigXbVHVtS4AR2FCF86xIneMWzCB2h9zDLZTmfyNthuwFOERlKZEV1EQZXofeRjzcB+glE2YMd2NCdp2L0u+vHluo9Sg4ee6Q221bnj/G1V9Or9dDeIICr+OjdiYK0oVB+IfIZxNcXYjz3qKozSIIqgaxwhzYtv8Vf2YRQL1Ssy5fITIWVXVrV5P67FVo5OxVGr4PvTB/AOrQ7+5B7Mjv8b6y8nAfR5Nf4jSVZRh7LQ7WGop2djQL6xwrXmBWunHvwlLC+Yd8FAH89QWSIU5N1T1QVW9tMJ58oT0/WVuB0KmqOr8E3ThUUeqeisdv1epN1hN5onlBSoYxKcxI1E0kMsiKB/4Oyi9fwFVXeUdY6nvdws2gbol2mabqn5WK+dpH/WyfAybxL09932c4gvMx8LxeAXWEViUNsDLsdY/rypQkUe6K+edLsQ89r+r6ucKdg2GKxaArV7WszHheAZLxQX+jA2KEoFS1e+p6sjoehZjacUFainAwzzq+zbmne5U1XCMcKNpGFzBAyxaxBGXu/DZX16Gh7B+tAh4h0c48fdvVNXVfs4ZVBaoY7AbgWPWYe00gVJDvpryhSSB+dggz4tKWC34dLT9OmoIlBuXi6tt0wXyArUBa6P12DVWEpQbsFT07WQ329ZiNZUjpC1Y2rRqBKW2GjJvB79MuZFf6dsNwhyF/EpiyCKFz6lq0bjLP8h6ipdhk6r+HHvOYRCoO/y7zVr6nLrQ7/9UfEVQUPZAiUC5M3opVudQLlDrMNs0r8q56mEpWAbI36+gdF1ARao+AbsWmuWCm4l40i2+VyKOoJ7GcvC7KKfMQ3HWUh5BBUKe+EZ/X3TcQlR1uYgcpaqVOkGZQKnqJZ7q+n60zcGYKDwbuFVVnxGRQyNDXo2WgjI/RfUOVCRQ27A0xtMishFYEKcr1Sbe8e+ocvyFRGkqtZv+wNImX6c0kgj1ttNfV0WvE6mc4qsW9YBNyO/nacRKVBUotRu/8/wUS1c+QWlkWhhBOfdhBiu/KGkTZij/SvZ8u3fTdYPSFdZSOu4+js0pvRi7rWJ+0U4eufyLiHwNixbrEag7yG4KzxMiiprH8XPH7z9dsFnoj5/HFrWcTunjtSATqKJVbePJ+mhgKaVPHw/3Wh1G6a0vMWFBxlUVvv8epfNcMYrdpLyCqO+p6gqxh/4uKNnYbMjtlD9tpEOo6m+JbiVS1T0iUnMFH3RRoJqUEJaeS7YaBUojqJVUjiyKUnxg9xtUWk65EPPqn/anCz2rwnaFVBEnKI6gwqD6k7/dSXZj6xuwJcKElGId5y+KJq4ku1GwiGC48ym+4LSswCaHi6glUPdQYMhUdZWIzKbU4w3Lg8f6NsHYFAloXO6KEZQfp8hDzrMcM1K1xC4+7jpgndgP98X5/lWUztNtiPZ5inJjCFaPq1X1wmjbawu2602eIrr5VFWvE5GzgCMqCHaeUAf1CkulFN7Rvk2lOaqOshFL6f9YVVVEbsTmamP2+jnLbpFRW/af54OUPvxgPZZqO4LSlX354xQ+nNa/f1uVa7gZW5Ec3+sUOK7IYVfV06ocryu8mgrOSkxfFag9wO81W9UC5Sm+SgJVtEgCVf1blXPGKbBTqT0x2xGuIJdaLCAY242qek3VLevEJ0Krfb/DI6HYANyB3akPFiXkf0IhUFWgVPUjRZ/7dwtz73e5U/BBSp8wUiSg4fMwb9NVlmOeYd0CFdDyVWXLKO2f9cz9/JEscmoKVPVbBZ/9HluhWw/rsbapuvy4DlqpPW7qxsXwR9H73ZSL4x+xueCOHPOZ6P0eEfkHttinu27hic/3BxF5BVYv+UUydWd9uqksd9WzXV8VqIU5cYLSFN+vKZ9wDlSKoCoSz1EUzCF1CVWtFOrHhNRBPem87iS+gRVPJ97m/yuVRaBWBNUhVLXoSSSVIqiV2ErJ/LL5zhAGeYcFqoDPkj095SNUj14B8En0bjdkDWY9tkS71r01tZhD9zqKNfEydzW9ejMwPjcf3J38HUsD1lrp2RT0RYG6m+KfYn8Av7FO7d6mRQXbgBnPP2qN5Y9NRoigNlTdqvt5msqT3tXYQh2POekihRGUqq73NGF3EFI5XRYo9VVk/n/V9GMfZw2VJ/nrRlX3VeG+jvLVft2Gi2i1NGBT0ecEygf3Hws+f5jSnH+l/fdQ+qOA+wLtKb5ePu81VJ5nqojn8F9Q5wKOzlIpggrzQN1BtwlUop0/UDm70efx1Po/19ywn9DnBKqf0pAUn6p+owv7dmsqtIBKc1DdSRKobsYdxFr3cSX6CX3tJ9/7K42KoJoWn5+5mdo3anaFJFCJRA+SIqi+QYigensOqqkJ91314PE3i0h40nYikehmUgTVN0gRVOM4ocbNvIlEopMkgeob7MDu/Uqppl5GVTv6tO9EIlEnSaD6Bjuxm3S7496eRCKRaAqSQPUNlmEPuEwkEok+g+yLTreIzFXV4xtdjkQikUj0HCmCSiQSiURTkgQqkUgkEk1JEqhEIpFINCVJoBKJRCLRlCSBSiQSiURTkgQqkUgkEk1JwwVKRC4WkWUi8oD/ndPoMiUSiUSi8TTLw2K/qqpfanQhEolEItE8NDyCSiQSiUSiiGYRqHeJyD9E5AciMrxoAxG5UETmishcYGAvly+RSCQSvUyvPOpIRG4BxhV89VHgLmANoMCngPGqekGPFyqRSCQSTU1TPYtPRKYCN6jqEQ0uSiKRSCQaTMNTfCIyPnr7CmBeo8qSSCQSieahGVbxfUFEjsZSfAuBtze2OIlEIpFoBpoqxZdIJBKJRKDhKb5EIpFIJIpIApVIJBKJpiQJVCKRSCSakiRQiUQikWhKkkAlEolEoilJApVIJBKJpiQJVCKRSCSakiRQiUQikWhKkkAlEolEoilJApVIJBKJpiQJVCKRSCSakiRQiUQikWhKmkKgRGSyiNwmIvNF5CER+c9GlymRSCQSjaUpnmbuvwk1XlXvE5EhwL3Ay1X14QYXLZFIJBINoikiKFVdoar3+f+bgfnAxMaWKpFIJBKNpCkEKsZ/9v0Y4O7c5xeKyFz/S7+6m0gkEn2cpkjxBURkMPBn4DOqem2V7eaq6vG9V7JEIpFI9DZNE0GJyAHAL4GfVhOnRCKRSPQPmkKgRESA7wPzVfUrjS5PIpFIJBpPUwgUcArwRuAFIvKA/53T6EIlEolEonEMaHQBAFT1r4A0uhyJRCKRaB6aJYJKJBKJRKKEJFCJRCKRaEqSQHUCEZnc6DIkEolEXycJVOe4T0RGNboQiUQi0ZdJAtVBfEn8CGBwo8uSSCQSfZkkUB2nBau3lp44uIi8QkS+2RPHTmSIyLtE5NxGlyPReERkuIgManQ5EuUkgeo4Q/x1YA8dfywwpoeOncg4Bpjd6EIkmoJLgDc3uhCJcpJAdZwgUD0SQWHC11Pil8gYBBzY6EIkmoJh9KOUvRj7hI1JAtVxelqgWkgC1Ru0kASqHREZISI/bnQ5GkQr/WvMvQjY3uhC1EMSqI7T0ym+FEH1Dk0fQfkPefYWE4EzonMP8Ac49wda6YDDKSKDReShHixPT3MQWBs3uiC16HcCJSJdjXxSBNU3aMEHalcRkUNE5NndcazomBOAv3XnMWvQ6n+Bd2BzM/2BQXRszA0BDtsXDHwF9vrrrIaWog76nUABd4nIjC7snwSqb9CdEdTL6P5J9hH+11sMBlr9NgqwxTrjevH8jaSjKb6w7fAeKEtvEGzXsxpaijrojwI1HpjQhf1LBEpEunslWErx9Q7dOQd1EDC0m44VGAq09KKX3orZg1AnQ7HFA/2BDqX4yCLvkT1Qlt4gXOuhDS0FICJvE5GKPz7brwTKvcM2utax2uegRGR/YJ6ItFbboYOkCKp36M4IqicEKvSz3lpd1pp7HYqNlf5ARyOoIFC9GeF2J+Ger2ZwQM4Bjqv0ZZ8QKBGZJCLfqWPTgcABQFceUxRHUMP9eN3Z0P0mghKR14rI+Q06fYcjKBE5UERGF3x1EFm/iLd/k4ic3cnyBcErO24P0W0CJSL7ichtIrKv2Jeac1Aisr+IXO9Obti21yMoEflzNzxmrQX+f3tnHnZVVS7w3ysqIIoICCog4JyamplZznotx9LSpNIGB7Is9dbNHG7dWw7pdepq5ZCm5pCm5nAtc0BzFkVU1FBARSaRGT4BGd/7x/su9vr2t8/wjefwsX7Pc55z9t5rr732Gt5prb0P82h7o6ol9KRMOVaXDlQNX64iTVAkrfWgFmONHPJpS0uzU3pQIjKg4NmLPYC2Xlxwg4hUMzfQEg/qSOCagv2lPKjPAZ8tykhELhaRctfvaAUVPLW28KA2BPYjs9TrnWo8qF7Al/y7liG+3YGhrcyjO/AhHde3yrFGKKi5FExYutUTd6K2UlAzsA4dLJm2VFCdzoMSkZ7AFGC4L9EN9d+bNrTi3Lr9JrB9FenKelD+XFC+n/SjeOFAKQXVnYK+4Yr6TKDIGwvUyoMKSqXZc1Aicrx7TSH0VXMLXUQ2FpGtyhzvgo23SnNQoS/0o0YhPl+B3I3WL15ZD1NQNW8f1hAFtQjoUmChjwA+iLYbKSgfUM2dhA4KKvagGg1kEfllK9zw7sA6PnDaHRHp6Uua25Ov+fdK4CzgfN/uQ1R3/uzNKa24TrBut6iQbh2gC+U9qNOAn+X29aY4PNwoxCcinxeRH5GFgfOEv2spJyA2yH23ChHpLiKfL5MkH+LbAOgVreqrlH8X4CZs9V8YFx1moXuY/6v++4sicrEf+hZwTplTg0KuZBTGCqpNQnz+DsBrROQLVZ4S+lJrn4/rjsmwNldQIrKpiJQ1EHN0fgWlqorFVFdZq6549gVmRUnzHtQ1wBBP30NE/o3KbAxMxhq5lAd1MrBd9XfQiND5Vz2j468mKbsQQ0S2EJF9W3C9E4ALW3BeuO46IrJLhWSD/XsD4CC8zmnqQW0BXFXN3EWJNGHgVlJQwVoup6B603S1Z2+KvZ68B3UtcCUm7IsU1Ob+XU5ANPGgvB9UpTAK2Bf4fZnjRSG+LlQvDPti8qQPkQclIl1dCDdL1rTAQDsSONt/fxp71yJYG5ZTJNUqqHBP/WmDEJ+IbA2MAnai+pBdKENFD8o9x1ILbNozxPdN4IJmpO9ZrhydQkE5+TBfEEKxENgQmAn08cZbj6yTnQE8WsV1+gPvU2IOygdWP8qHb8oRyh0PmF0wb7ARItJNRIb45qHAD1twvcHYWwTyef+niPykivP3BG6vkGYQ8K5fZzcyAZ1XUIOAtamwiMXreJSI5Ff/BIVSSUEFoVTuQd2NaCoINgI2KvC6uwLrRftDOXqTM15E5FNk7dQsBQXcArR00cUAyvfJohAfwNQygi6mv383UlBYuPV72JxUWUTkzqhNn6/GEheRI8TeSr8rsK0r8MFkfWgzyofiwn0XhvhEZAcRuZWmIb7ltG6x1VaYoTaIEs9T5cY3ZPdRjdFwCfDdEsfaM8TXn2he2RfMPFIUqfJ965UrR2dWUOthymgtn/foggmLd7COFQ8oou1ViEhf7yQDo939gYlkc1AraCyE+mKWZ5POW6UV2S33HfIset7qKOA9ETkIU74tiU1vTvFzYbsBO1Rx/kD/NEFEtvRVbwOBsZgQmQhs7oKkD407Z1Bcx4tIOQ/0CMxC3jW6Vg9s4E6jjILy0Fvw6Mp5UL08v7Aa71AyAZG3nIOiW1/sbxt6AHMwhZAXPkdg1j40DQ1vICIvet30BOYDG4jI5WLP2w2kwvxaGQYAG5fxwHoAy7CHdbvQeIHDUC/f5iJyRok84vEUh/h2BJYCx8WJxf5WJi+09gJ28XHySWCQ3/uX/JzTpekzM98FvoJ5TetjY2AI0FdEbvTrl/N0egANlPagDvRPaPugoN6ndXNBgzH5O5DSD/weAdwQbffGwuTVXHebMuma7UGJyK0isrf/PqHMFEZ/YIBkr+nqjUVNimREz9x3EzqzguqOzU19gAnb5ZhAGItVVmi80PGKrMuZwJvAH2GV5d6bLMTXB5gEbOiKrEuUb1EDrnDXHs/vFyLyH7k03YGPseesNnNB3QOz3PMNGcr8GUygtlRBFVlk25EJ8nIMwIRoUSc7FzgFsxLH+rXeBRRrq940FtJhbuYC4Ktlrrk/NsC2BVshiBkemwFPYK+haSJEvX3OBw7wXZUU1CYuLM8DvkHWV/JtGxRUT6w+pmBCb2Oahn9Dna6g6cDcCWvLTTDhMQVTtv+OeU89ycKjzWUg5R+JWB/r7z3898LoWHjzykHAFcCxBecHBdWXxh7UjsD9RKsZRaQXcDemhMK+Hlj7bYnVYTdMGfw7cJS3w1lEHqS38eewCEMImW2L1VE/LNy0YyiPiOzpxlzMesBsSiuo3bH2GIDN2/T3tO9RZfhTRPoUhN/jsVXKwxtA46mC3sAEMsNpsIhcVOLcrSn9tz1hDmqDME7c0zmgRHoww2gn/30uudWp7snugNXPx5ixAZlMCkZOrBRbr6BE5DcicqWI7C4ip1VK31JE5GAReVtEJojIWS3IosiDWowpqCN8Xy/M8plHVsF9ROTHWIy+iC2Az3hD9vVzG7BG7o8Jxl7A85hACZ7OKoUnIsNF5Ae+eXSU9x7YAIgJzygMA4YDvyULQwz2aYh4Lm0B1hFbqqAGY8pvVYhD7CWhW5J5NETHNpXG7zMM4cFB+bRevk+SeVCbYe00CRMcgin373n6zTErviuwhdi82p4F+Q4CHsMVFDZ4+gOfB0ZjhsmWXt6tRGTHKF0Qmkspr6CCAt0HE9if9e3ZNDVmYgU1COsHCzFlkLeOhwC/AP5C04EZ5vL2x/rdVOCLwGt+3obkFJSI7CQi21KZ0E57icjSSDB9QUT+B+tjM/x7A6xf/Q14i0xB9cbqbb+C/ItCfMOx1Yp3AUMlW8S0HyZ7dorOD9fYguwdccFIWYB5y5vkzhnsZd0VeBUYgwn0zbEoRnjZbW+/33NpumCiB9amTUJ8fs4efs+7YHURPKiJwGZlPNKY42j6eMJgzEgBG3+bichOuTSb+DXW92NnYeMo1PXRwI8lNz/tBkBfyiuoBdj4e0xEumJGW5NphIiNsTZcx8uej7qch82998dkVpB3oaxDRaQ3sCC6z55UeB6rGg9quqqehg3+vDBtE9yy/R32Gvjtga9L81aCgAm+3pFrGXtQQUFthoVNxmDWINiA+hrF1tBKbLK7ATgd6/gfYhbCppiV8HesE/fDlNRPiOLTHuK6lmxgfCcKbezon5huWKNdgIXw9icTSkOw1WXTPOTUF+uwQUGtL7n5ArG5pOHR9jrR7+5Y55hMZpV18ftYG9hKbIK7hw+STTArNbbaguAbGOV7rthcSx9gb6+PadiAmIt5UXv6vvWBa0Skn9fva57NltizbSfRlEHYYArWZTAKDsE83pFkffU04FL/faCX5ZNYHa8rIuuJrQDbR0QOE5EbRaS/1+cK7H1lz2ADbSvgbYo9qBWYsBzo9Rk8kPVzoazBmHJ6B1tEICLyA7HQ4M6Ygr7Z720aFmZ9EFN0GwJ7x+2Jze8M93y28c/ogjobgI2HmzDB3cu99+O93npgfftS7HmfBap6OHA1Zizs4ff2CMXvcNsEC2uGEN80rI1f83PGAzu4QD8AmJ7LZyu//rFkgnIfrJ36YwbkkzRWUEcA92Hj85+Y0viMb4fVuwsxBbONl2c3sdDz90VkC6wtV3lQInKIZPM+w7zOnsVCiOM8fVc/Zyk2Rt6PFH7RvOZBwHYi8lPJIg2DMWNqGdY2jwDPiMiBnk9vMpm0C/AjTHFPIAtZHuLn75O73laY7FqloETkukg2rOf3tRbWFmfh40wKpiH83vphXtBgTPkPiI5vismxL5ApqM1E5FgyBbUF2WKQP7lc/DNmhJUONapq2Q9wYPR7eKX0LflgbvrD0fbZwNll0o8q2Hc+FjpSMsH4DHBVtP9h7KWev8YE1VxMMU6O0qyPCYPPYUJnLeAVP/Ya8Dg2/6FY2OUw//2/2CBSTAD/3cs1DOvIYzHv7XHgVEzYLPT0F3meXbCO9U5UnjnAU/77DGxV4s993x1Y+PExbIGHYoI9WMG7kimEtbw8Y7C4/UHA68CLwHOYst0d+8uFydjqvlCGSzEBMwH4g5fpPM/vBcyyPMnrTPycmX7PCtyJCYdwr9/1ungFEyaKTerOwCyxaZiXdT5wR9TGJ2MdfTqmrN/EFOZoTGDMwBTraZgX8xmsDyz3evrA214xRfMe9sbusd7WDX6f/wF85Pd1lbfz/VE73+b3eTjmZYzDLNJlXqYLsFCjenv29fKvhRk33f0al/r9KKaUngf+4eU92u9DsYEd+kr47IK9cfwezEi6Gutnr/j5p2HCey+/9kxv5xVev7t4WdTLPcHvS71Nn/HzDsH6UGjT071udvP6uQBTKM9iffIv3ibP+jn7ej63YP1Wsbe0n+e/L4zG/J+i+5vt3494Xd6ALS5ZBAz2c17ChOIzmKD9jrfri1ifeMHrc4rndS7mzc3HZEHoM8d4vRzn9/aYt+9r2Hi42c8/y+v3v8n6zYl+bE9MSC/AwpDbYo8p3OL1HOrj25iCmIOtnh3j+5/18o3wOtXc50H/vtbb6xxsjPwK64O3eV0dgbX9816WD73eFHMyevk1d47yXuj3rZjc6A+cEo27nn5sNObRK3BddPzr2PiY5cfWwYz2ycCP/V4fw4yp+/1zA5msXIHLpyZyvUoFcmA16VqhoI4Gro+2jwd+m0szHOv4o4CJBXn83m/4X96ID3uDbesV+C4mPI7yTqdYWOAubGD/EliS6xRzPe/NMOv+LUzrd8GUUTfMmr8N6OlpX8MG6Uu+fTUmoD/2630CG+gnYANJMUXxLtlbKoLQDgP0XT//Dky4rIsNrHHAT73DveTlPxLruDdhMfg7vEwHYkI95BuE6lqe5kHvpMuA//WyK3Ax1skXYQKuh9fpIu+IU4AbsYGlmDU31cu7wPPekmxAnIkZAe96uwThod42W3p/WIIplfuiNh6JCfal3gZrY/1CsbDZyZEiuNb3NWAD/7+w0NP2Ub1OxfrEEq+j1zGD4hFMyD+MCflrMK9C/f6neh383fctwVZR7oEJiI2A//NjwVM4AxOm06P+fCcm8Mdi/XYyJlwe8TTrAQP99xSv02BMve7fb2B9ZrLXZ6iWKdiNAAAT/UlEQVTLt7H5otl+38sw4+JlzBP5uZ+30u9nMfCQnzsWuMuvuw7mxd/uxw7GPJU/ez0pNp90EzZfpF5nZ/rvoEwu8vsNCrGfX28kJhBHYB7zQZhy+IanvcDr5nnM6DzNr78xJtjWBrr5NcK4/ou33SVRP/anUVgXMyrDIp0vRmnmY0J8kpdlOtbPzsE9QKzf/tr3jcD6hmJj4wdYP5ru7TIT8wD3wQyCi7xsJ2H9Y33MqFPMEPp81H7hc7q3YQM2zoZg43G8t0t3v9bl3qaPYsbGIX7+eG9jxeaDx/nvbfz7Nky2refl3pzMs9vUy/4vr5t52Fiahhna23ud/wpTtjeGevY6fRPrazdifWohFpH6KSZLwz02ABu0RkHdhgmqtaN9/YCftZGCOoamCuqqMumLPKhBmMfwN2/AacD90fFXvJIP8O2TMMviDTKhESyA8JmYu8ZQ4FNV3M+WmLX+V0x4DfP8nvTjv8M8iKvInh95EXuocE50/cWYxR6U21RgpOdxr6c53DvWeL+X67BBNA2zSi/GBvUEP/8hTHivAJ72vIIXeCImMA6KBP1aXm9P5u7xX5jAex0LPSzCFMc92OCb4Hmu6+mDp3ByQT6TMOXYPdo/we859qzfxzr8+9E+wQTiJrl8h2GD4p3c/q6Y0tzWyzMLE4af9Lw29v0LMONlJObpCPBZz+NpbOCOjtpqaO46d/j+P3tbTMeUzP1R+cK55/n1lmJGT9eCPjUGmBHVw0rMAwzC5zeYpbs82jfU7+FCrD/+ArgMUxSvY/3vZE9zHeZFv+V946rc9X/keX7Kz1+ChcaPJVMQB3ia3pinsAyXGZhQetmPj4lkSIPf9yKgR3S9YKkfiY2JeUAfP3YNNoYW5Mq4HZk3fgtwaqR83qwwZhV423/fjgnX3+fSbIwpi8uxUP6tmFz5HdbvP8DG29Zep7OBadH5m2Le6IPA13zfRmTKY10sejIz6hv9/XqKOwpetpXAVmGc+ndPr8vgAS72cr7teU70NlEsXDsa2D8q33hM3jzq9/YLzPBVbBzc5eU7h2zsLMfkzXBsTD0R5Rc85hOx8aJenmP99z8xw/lloH9Ru1S1ik9Vv+mV8ojYCz7vBK7HtHFbMIXGk+wDsUFdNao6WVVHe179sIZdFCVpIFu6i6pej1llO/g5kIVRQmx8Xu4a76nqK1UU531MOU3GwkyP5/J7GrNUnlPVWaq6ErMyTsMEFZiQeADr0F2x+t8sKuvr/v0W2cT0K5hF8zgmQA7GhP+tns/NwGWq+j1Mmb3qeTyECeE7gc+p6qN+vyu9bCM975jRmBf4VVUdj018/zcmUEb5vTeo6lJP3+Dfc3P5LMAU5mWqGv8N9SSsbcLcgGDzHHthgwQvo6rqkao6PZfvK5jAuifeqapLVHUYpjAApqrq7ar6uuc1E+t7G3iZNwUW+rGRfs4MrI9tiikJsPqOCXMfISx0JBa3fyi6b7C2+SPmqcxX1Y9VNZ8XWL3N99/vYX3sTUwQvQ38VVUXYGGlJ7H+Mxnz8g7zMl8C/Kff+46Y0fEHzLv7iao+g1nIa0X1EwhjfQYWjloXeF1V71TVj/3YU8AOqjrH72+yqi73Y3PI5kb+BqCqMzDD5BXgl6oarxwMD9i/ignxlao62/e9hHkAC2hMGBsTyUKGYHX8cyoT/iByJOYd3JM7Ph+TId0wo/EtTFZMxJTOJsAEVR2vqsdggndMOFlVP8Dq4Qt+jZBnUKBLybyowCyyPjbVv2dj7T7N813p36H9T1bTEB9iMu5Ev//BWPsDLFbVXVX1iehaDZjndRPm6XzD7+F1YKaqHqOqW+KrmrE+uBgzhCaq6tuqun+U31X+vQCTCcv9nMm+/0lVHaGqn1bVDymgqtf8+OT4QMwNPBu4V1V/Vc25VfISsLWIDMUaYRhWOS0h3PxaNFVQkA1yMOsdshU8i7CGn4gJl0YKqlp8UJ4atqOFCSG/Z/z7uei0ezFL7EJMSIxU1WNF5Aw/Hv5iOtxfUFDTsXvrjXX647AO/ShmHV/qAiP/Utb7cKXjHfynZW7pCswCi3nKTtVxnseLIjIVG1xXYl5k/IR8KQX1I+CNnHICU1Brk7VNWEE2rUJZA+P9c22J40Fxzi449lusHRowofNR7vgMTDn1xYyBoRQrqEWq+j5wmCvYxzBBBtkCpRNUdZnX3UJKM4dsNed7nnYiJiB2DkpNVS8Te/fcYFVdLiKTMUX/RKhjEQnKZ5SfM5WMcCx+RRg0VVBLsPpdhff7MKYmYXNAcfl7YpGSs6P9I4FbVfXu3PVmk4UfwdokMA8z8OKxjKp+JCLzMGE5Jdp/PNUxyr+fwxTDk7n8l4rIcmweZ4mXXTDFGMbjO9EpL/rxmOexepjkea4UkWej8+djBudyYE9VXSEi7/qxWEHNU9VYvoUyXhFtHgK8paoqImEV7RVYqLGory3A+sosVX0RX4Qk9jxZrDRnYLLlRiyseSXWF/NlmecyfbLfx31+n+HaU/Ln5Kn2PXTXYB7TRViFny/2dPUpqpofvM3GB9IPsbhxF+CPqvpmhdNKEd90LPSaKChVXSwij5IJwYXYoGjAGqHRAGgpLoAayLy3KWIPH06K0kwXe3PDLZgQC4ootpo/prEHtdTLPAmzMsdEacdjnWjVNXJl+q9mlP+hgt1/wPpEnG4qFp/HBWMs/JdgVv2c3Dml/tY83H93X234dd+3g1uHlcq8UkS2C9ZlAeUU1EWYlfhDzLPJD+aZ2Fzi3Oj8vIL6iKj/eZnjZ3CeBr6vqst8expNFWHMXLJnmN4kC4tOL/C4ppJZ3VOwMTUjOv4hJoDfL7hOsGTzHtT7wEnel0djofLllEBVX6axkRnaPW+gfIXGwi++h7P8ekNp3I+Dgnq14Lx/khlzzWEYFpoGU1Q7lri/+Zj3vITM45qCeVMLaKy0w0KQmOewUOWq/aq6d/T7YxFZBnzkSgIshPaRqgYZNosqIkyqOjb6PRsL2SEiXUqMiwbMM56V2/8A0fN8fu71ntcbvruUnJkY/T4mXB+TBVOLzompSkGp6pG5XWf7csh/kD2Q1SpU9e9YOKK1hEl3obEHFQZ/XukcSmbNLsIsExWRD2mhB1WCuXF+qvp/+QSR9RN3kHDORzR2j8cBR3lZr8fc6bf82EQs7LOCEh2ntfgAK6coGikoL2cDTQVUKUK5u2FzlFdhIdGKyim6ZinlhFt0UGCEhPCIlxeKPaiwVDqEmQo9qDLXn0/jZ2Oq8aDCM1WX+ffRZAolZhRZ24T+EiuoscDfStRloYLyurzBfyuNvf9qCH0hb6AUtpEr7kv898Tc4XlYv8iH+FDVo5pZrnDendHvEB4rYj7+MKp7CLdgXspyEdkmDlUVGA5gXsd9FYozj8Z94W2yt4+A1WVF4V6KMuMiVoBx+nvLZPcq8JBmYd5qrr9CRCZRhWxq8d9Jq+oIESmyYGrNc9jy22to6kEt1mxOBFgVlggsJFMIba2gwkRvcwkCdCFmtYyEVZ0sKPSrsXDCTEyJjVfV2SLyCVWtViG0NY/TVOAOo3qFGdJ1x6xsKH7dU2tpKHMsCMAiD2onLFwT5hDy1vZCGve/SkyqkH7VHFRQLCLyME09HVT1H5jxiKouFJG5RApKVZ/3shfxkX+aNQdcBXNy360hjKM2iXA0kwWY9xZCqt8KB0rNo8R4mLVSv5hP1Od8rMcP0VblQbWAQgVVDpcvh7bgWmG1b1larKBgldtYV6jqIhG5A1NQ+TmoSh16EZmF3x4eVEsGVCjDQlW9tCiBqq7AFBQisqVvo7Z4oSb43NS43L6Hm5HFe5ig7IZ15gco72G0lHIKqpwHtQEmJBYASwq8kY8o40EVcCHlPdKR5OaF1CbFn64i7yk09qBK4p7uLtp00UlrmZv7bg1hTDTxoDqAOMTXXsyjfN+5jfb5u/YG7L6a029bRDxHWI5WKag6JjxHlPegKimI2IN6hLZVUC/RslWPsQdVkaCcVndUdZy/jWIMtorxq+XmPFpBNQqqyIMCm4f7NMXCqlkelIf8yh1/rNq8ChhNbkFDhWu9UzlV8/D53sW0jQcV6qpWCgpsPri9mEeZvqO2GjC/iKUtaMAWSFQdRm9vOqWC8gnyBprOQVXjQc3zPO5o4zLl//yuWlZ5UG1VltWIiViIb2E7KSeoLsSX96DeAr6sqs/5irkiBdXSkG6bo6rfqXUZnDm0gYLy+Z5qxnN7EK7Znh7UfJoXHm4rGmhGeK8j6JQKysm7ydV6UPVWJ83yoDoTLohW0L6CqNkelCvLB3xzAcXC6lGav5Cgs3MO2UKe1jKP2nhQ4Y8U3y2bqnXMo309tFI0ULyqtWbUmzBuS/JWSHjgrxyLKD8P0OG4kH6c2liL9cBi2k8QvUfjZ3XylPKgYuZToKB8Yruc8lvjUNU/VU5VNbVSUGcCZ6o9ZNxezKN9PbRSvEf0YHE90JkVVCMPSlXfwN6eUI67ySykukFVD6x1GWrIx7STclbVSv+8W2oOKmZOheOJ9mEeNTDaqlmp1wZcgz2P2aH4PGdr5jrbnM6soL5P46e6K6Kqr1VOlehgFlM777HUMvOYMdj7EBMdy50UP6i72qOq7Rk+XK3otApKW/4mikR9Ed6KXgsWY4shSq6M9BVPVS2ZTbQdqvrbyqkSqzudVkElOg0186Bc+TxQMWEikWgXqnqbeSJRQ9ptDiqRSNQ3SUEl6p32XMWXSCTqmKSgEvVO8qASiTWUpKAS9U5SUInEGkpaJJGod/6CvUsukUisYSQFlahrVPX2WpchkUjUhhTiSyQSiURdkhRUIpFIJOqSpKASiUQiUZckBZVIJBKJuiQpqEQikUjUJUlBJRKJRKIuqbmCEpFLROQtERkjIveKSK9alymRSCQStafmCgr7a+wdVXUnYBxwdo3Lk0gkEok6oOYKSlUfUdXlvvkCMLCW5UkkEolEfVBzBZXjBOChogMiMlxERonIKKBbxxYrkUgkEh2N2H+ytfNFRB4DNik4dK6q3u9pzgV2A76iHVGoRCKRSNQ1HaKgKhZC5NvAKcCBqrqo1uVJJBKJRO2p+ctiReRg4GfAvkk5JRKJRCJQcw9KRCYAXYHZvusFVT2lhkVKJBKJRB1QcwXVVojIG9if2yXK0xeYVetCrAakeqpMqqPqSPVUmVmqenB+Z81DfG3Ix6q6W60LUe+IyKhUT5VJ9VSZVEfVkeqp5dTbMvNEIpFIJICkoBKJRCJRp3QmBXVdrQuwmpDqqTpSPVUm1VF1pHpqIZ1mkUQikUgkOhedyYNKJBKJRCciKahEIpFI1CWdQkGJyMEi8raITBCRs2pdnloiIn8UkRn+XFjY11tEHhWR8f69ke8XEbnS622MiOxau5J3HCIySESeEJGxIvKmiJzu+1M9RYhINxF5UURe83r6pe8fKiIjvZ7uFJF1fX9X357gx4fUsvwdiYh0EZFXRORB30511Aas9gpKRLoAvwMOAbYHvi4i29e2VDXlJiD/wNtZwAhV3RoY4dtgdba1f4YDV3dQGWvNcuAnqvoJYA/gVO8zqZ4aswQ4QFV3BnYBDhaRPYCLgSu8nuYCJ3r6E4G5qroVcIWnW1M4HRgbbac6agNWewUF7A5MUNV3VXUpcAfw5RqXqWao6lPAnNzuLwM3+++bgSOj/X9S4wWgl4hs2jElrR2q+oGqjvbfDZhgGUCqp0b4/X7km+v4R4EDgLt9f76eQv3dDRwoItJBxa0ZIjIQOAy43reFVEdtQmdQUAOAydH2FN+XyOivqh+ACWegn+9f4+vOQyyfAkaS6qkJHrp6FZiB/fv1O8C86E9G47pYVU9+fD7Qp2NLXBN+A5wJrPTtPqQ6ahM6g4Iqsj7S2vnqWKPrTkTWB+4BzlDVBeWSFuxbI+pJVVeo6i7YP13vDnyiKJl/r3H1JCKHAzNU9eV4d0HSNbaOWkNnUFBTgEHR9kBgWo3KUq98GEJS/j3D96+xdSci62DK6TZV/avvTvVUAlWdB/wTm7PrJSLhPZ5xXayqJz++IU3DzZ2NPYEvichEbHrhAMyjSnXUBnQGBfUSsLWvmlkXGAY8UOMy1RsPAN/2398G7o/2f8tXqe0BzA8hrs6Mx/xvAMaq6uXRoVRPESKysYj08t/dgX/D5uueAI72ZPl6CvV3NPB4Z/93bFU9W1UHquoQTPY8rqrfJNVR26Cqq/0HOBQYh8XHz611eWpcF38GPgCWYdbaiViMewQw3r97e1rBVkC+A7wO7Fbr8ndQHe2FhVXGAK/659BUT03qaSfgFa+nN4Bf+P4tgBeBCcBdQFff3823J/jxLWp9Dx1cX/sBD6Y6artPetVRIpFIJOqSzhDiSyQSiUQnJCmoRCKRSNQlSUElEolEoi5JCiqRSCQSdUlSUIlEIpGoS5KCSiRqjIgMEZEDRGQTETm31uVJJOqFpKASidozBHtr+HRVvaDWhUkk6oWkoBKJ2jMcOF5ERojIrQAi8ryIXOX/xTRMRP7q/0W1sx8/XESeEpHnRCT/9yqJRKcgPaibSNQYEdkPe43Q9cD5qnqciIwD9ga6AKMxL2tX7HU6ZwCP+zlrAQ+p6oEdX/JEon1Zu3KSRCJRA2aq6ocAIvKOqn4sItOAjYC+2FvFH/O0/URENFmbiU5GUlCJRO1ZhnlKMVritwCzsHcCflFVV4jIOkk5JTojSUElErXnDeDX2AtGl1VKrKorReRyYISIKPAv4NT2LWIi0fGkOahEIpFI1CVpFV8ikUgk6pKkoBKJRCJRlyQFlUgkEom6JCmoRCKRSNQlSUElEolEoi5JCiqRSCQSdUlSUIlEIpGoS/4fcEHkl6OexlwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd7hdVbW330FL7yEhJCEQILQAigFBxQIqqFwVFRUV+8Ver+X6Wa8VG5arXkUsKGJFLAiKiIgC0qQTQCChpfeeEDK+P8YYrLnXWbucundO5vs859lnrzrXmnOO3xhjzrW2qCqZTCaTyXQaO7W7AJlMJpPJVJEFKpPJZDIdSRaoTCaTyXQkWaAymUwm05FkgcpkMplMR5IFKpPJZDIdSUcKlIh8X0SWiMht7S5LJpPJZNpDRwoU8EPgxHYXIpPJZDLtoyMFSlWvAFa0uxyZTCaTaR8dKVCtIiKni8j1/pfTgZlMJjOI2K4FSlXPUtU5qjoH2NTu8mQymUym79iuBSqTyWQyg5csUJlMJpPpSDpSoETkp8DVwAEi8pCIvKHdZcpkMpnMwLJLuwtQhaqe2u4yZDKZTKa9dGQElclkMplMFqhMJpPJdCRZoDKZzHaBiOwkIu9vdzkyA0cWqEwms70wCvhcuwuRGTiyQGUyme2FocDOItKRk7sy3UNExorIAY22yQKVyWS2F4aVPjPbNz8C7my0QRaoTKabiMinReQ/2l2OHZChpc/M9s2+zTbIApVpO2KMaHc5usH+wIx2F2IHJAvU4GJSsw2yQGU6gacCP2t3IbrBCP/rE0Rktoj8sK+ON4gJYcopvsHBxGYbDFqBEpGbtjOvvN8RkeNEZNc2nn9nEXllxaqJwPiBLk8vGAEM78PjTQNm9+HxBishTDmCGjwsF5H3iMjoqpWDVqCAqfShlztIOIv2GsJ9gHNFZLfS8hFsX17xcPpWoIb18fEGK/2S4hORQ0Tk2r48ZqYxIiL+71Lgw8CQqu0Gs0CtA0a2uxAdxmjae0+iEe5fWr69CVSfpviwa8/OVHP6K8V3FHBkHx+z3xGRPUVkTrvL0UMiY/Io5pxtqNpoMAvUenKnLzMae9ixTxGR4SJyWAubhjgeXLF8exKo/oigtou2KiKTROQpbTp9tyMoETlZRGY22WyVbytNtus0/gN4X7sL0UMipTcMq8+NVRsNZoHaoSMoERknIm9Mvu+GRTD9cU+OA/63he3qCVRfj+n0N30dQQ3t4+P1J8dhKZl20JMxqHcAz2hx23HdK07bGQmMaXcheshIYDUmVI+o6raqjQazQLU1ghKRs0Skr3PlO4nIcS1ufjTwnuT7qNJnXzIS2F1EXi0iIwFEZIaI/LpiO4D9Ssu3xxRfS4IqIu9u9rQ87kWKyM69Lln/MwyYUF4oIkeJyFH9fO6ejEFNByY32Sba3p7dLlF76ZFAicjhIlLug91GRI4Wkbf3cPeRwHLMKahM70EWqH7BZ8r9Jy08iNZN9gPOa3HbfagVowip+yOCGok90/BZ4HG+bApQzo+PwuqlPGNnJDCsL1MsIjJVRFq9V905rmDi1GrbeinFPalHGMjtIYocDkz019R8Nll+CvCSvjyRiEwtLerWGJTX1TSaC1Tc9ymtl67mPO1yhHsaQb2RvqmrJwDH93DfUcAyYGfqpPdgcAtUn6T4ROSVItJ0vr5vO1RETgV290XNct+xX6vvFptA65HGTGoFKv7vD4EagZVtD4pOPpSuU8dHAgvoGsWNwBrqrgAispeIjPL/PyUi5ZRgK+xN66md7jAUCJFqhd3pKshVx6Qbx2wnw7G6Pgx4U7J8LL14VMBT0uOT7/sBfy9t1t0U30TfttUI6jGBEpHRIvKFinLuLCLlVOA6b7MviGtwW/DRFsuZHv/QbmzeU4Hq8RiqP1Qfj6qM7cn5RWQ65rwv80U7pEA9FkGJyBAR6Wk080EsXdYKr8MinHhCuqlAichw4CERaaUuuitQI5OoJIxkj1J8IrJLgxRUiN7OFJ18GDBCRIaUtltIV4M9ItkH4MvAi/3/E+hGJOqR01OwzjOxUVQW6chuEmXtjkA168Rx3dvDONQwrP4OAMYnxmocvXuW7X3AJ5PvU+jaVrub4pvun90WKOAY4K0V254EnB9fkva1N/Ax4Fj/vi/wSRGZle4sItNE5KSqQojIGOCmUp9pxCisnXeXbo+hevr+vdj1XeCLx9Hc+ari/cB7gRX+fYdM8aUR1CuAe0Rknx4cZw//a4UId6NDtHK+Kb59Kw1tArBrixHXPsAuFFO7e5vi+wzVHRZqG/sUEZlMMeCcGq0QqKoICgpDMTXZZgIVBsnH4w4Qkf1LHfq5wLux+7kLde6riDwRWJt8H1LxfFYVIUxNO7gfbwwdJFAiMl1ETujFIeL6I30b2YWxVIxNNSnLviJyjH/dC0hnB04iccY8ip4DbKPkpInI9XXSbNOBebQmUGsoBA0sfTWi4rgzgSMTZy3azDTMTsQ4VvS3V5T2PxP4Up1yTMNscrPyBiO9jN19u3vTCMrHTvdLIrqDMadkOoXj3TCCEpEni8gHKlZNwup7LbCZHT2CojCSr+nOAbziJ9K6QEWn3QcTyFZSfNGg6zZKN54zKAxAwyjKvbqZwBYKQ99SBOWN6i0Vq/al/vvnUtGbAnwViDdGpAI1imqBiv3TwepYNp5qj/kIzJO9G4u4gug0IUyTRUQrItTh8JjXCibAVZ2pzAhsWnKXDi423f60ZFEY7y6d2CPnYCAjqB8Cf+zF/lHueG4o2m1PIqg3Yp40mFNyaFIfuwPDkwjl9cCJwEqS9iD2BoIn+P5lpgH/orUxqLnUtu8n+Gd5372wthkTX6LO9vVtoxzhoD0pKetQ4AXA1Io0IRQC2epYWPSR7kYxDcdQ/Z7/D5Y9inHGiVi/nZCUbxyNna8PAJ+vWL47JuzrgE30RKA8h/o2EfmpiPxRRM7z79vLbKtUoPYE/knR6LogIh8UkZNLi3fHxhuaCpRX6h5YBzoAuJ4Kg56kRCLf/Dz/2ujFiacBv6COQInIrjGg7NHETECpFYNRXrZmEdRxwLPc2D43WT41LaOIvCa5ljjmfKzxTky2LUdQ9cagoDBIe2LpyYiAqgRqDwpj+axkeaQdQqCOKJ0jiDIcnmx3hIg0Mw4jsKffqzr4t4AfJUY1xiLHgEVUIhJprDtEJB5YjutrKFA+TtPbiTfdfsmtt694A0nc88djqZmo556MQR1Jkb6dhrWNp/r36HsRHUe91AgUhSBU9dHJwB3A6CbR8TC6CtTj/FxVArWBwhmNOpuDpbjD4RwLXA0ckuw7Fpta/SCwQkTKZe6pQI0RkdeKyLta3K9ZBDUd60N7UWSBdqcQqLGuA81SfOvrLI82sw6LoHqU4vsR8Aimoi8D/hvzyH/UYJ9OYh1m5A7CGt7vaSBQmGE+vLRsj9LnY3iq5GMi8mGxBwHHYZ7AQkygbqUkOmLTjR9MvKc3YPlYaOzlPcvLHh0oTX38FjgD+LEvejXwJyy1sZZaL6sqeikT13IcFgkFe0YZRWQS5onH2NwIYDFwDda5xlMYqzTtMxJYhAlR2vZGYPU1EfguNlliJIXIDPXzjhCReN4qUkBbgDTPXxao8GDL1x3rH++CcijwbGCupw7/IiLn0JXhmECl3j0icqTvD0WnrREoL/NHxQbSZwBP9WM0jKBEJK7hb8A9Fet3EpGDXUj2E5FTqo7jNBQoP8Z4EflPKR6TOAGIRwZS5+gfwMs9pRtjfi9sdPzkPL/BUuL7+j2YitV9/IxJ9J0wpGH4V5XKMM0/q/rPZKzN303St0VkZCkt/JhAiTHMy/PPiuNOx5zPKE/UWaQqY/k44GZMHKOtjcEE6ov+vTzLNa6lUqC8bK9M2t1IYCt2708CThSRYRXXlx7jEJo/JhFpvWnATD/fRKxdR3+OOh/iGZ7ZIlKe0beuzvF3T9b3LIIC9lDVs1T1AVVd7Z/fpfX8aK8QkRNF5C4RuUdE/rsHh4gI6hfAyZg3s5vYIOUyEXlZcq5dsSnck/z7UK+UyZi6V3lnJwBvwaaTv8C3WUQRQd2Oddj0Hj8Lq+h4dmAWRR1U3lff/3hMcKLzDvN1E7CG+UaKlMM+mFd6HyZQo8Ty5QfgHmp67aVzDaUQqCOS+7ET1vEmic2u+ozvEg1yJObIfATrXOMoGnI5glqD3dOZIhLOzghsRs/zMNGOZeWI8XHAm5K6GerXiRTji2mK71EKES1HjmOxDnKMH2tn/xsDfBu4CXhRKkJJudZiwph68h/A0iHzsHofjTkOK/1aX0QhVE/zz5OwMZWTMMPbRaC8bf7Dj7e3LyuPORyLtbdPYzMX30QF3g52wQenPSKLY04VkT2B5wPfw4xoCP9sYH+x38CKOrkEM+qv8/KPwdI2F0iTySdiEwee49e8DWuvjwI/AZ7v5QwjNk9EPk6tQLUaQUWfvATLCsS40ecpHEOw9rXQ/38tNnvwPuBhqiOoWygcnBFYv9ode64nFagV2D2KKGoMsFpVfwB8DTiwdOzpfs56EdQs4FzgIP8eKfMxwBOxtrwIS31/XEQee7zBMyKHALf59hNE5BypnpwVAjUduzeTqU3xQdHP47o+BFwqtTNu1/m5d3JbFbZkYrK+x2NQV4il9U4Tkef757mY19SveEP6JtaIDwZOle5PNV6H3bj9set8GMu9vwm7yU8XG1zdx9ftTdEYfwe8DWvgt1Dd+I/25TMwgzMFaxyrMCN/L2bIYtrpccDpwB+wKbpQGID7MeM/RLr+EN50rBK/TzKO5JHEF7EodzSwp9iAbqQJIoIaBZyKCek8LGXyX3FwsbTT68Sm0j+ApVjGYwI1RkTOxiYexODtxzCj9BvMmOyEddL7/fhjMWELY1wWqHVermOA00TkCb58KWYctyTbxr5hkA7FoqsxFBHUUCyyeIGXJY2g7qeImke59/lS/z4W68jHY971zX5NS7DB+h97WUKkvyAiX8Pqe73/xTjWeCx6OhcT2t39Wp6AtYlDsbcvxD15hpctBH4nzLjNFkup7+LHHeNlE6wdb8MEb4yIvEnsWaTdsbZ3D/Ai/3+KiLzExQ2xiPDdWDT5cFIfX8AEYBcsPfkrrE3PTu4xFC8Y/h3mmJ2EjQeFU3AotUbmYBH5hpTGWcTepv9crP2do6rjMCE4FnhYVe/F2uAzKQRqNPAJCsO/kSKiHoN5+VtJ+qiIHOQiOBmL7P+EZRa2isiTsb5+om87BWsLG7xOzsTq7U7f90PulCEi38Ha3F0UdTnCr+F24EZsHO2jWDtcBVyBZaCgiKDwY5Qf4J4OXEt9gQrHJmzESOAhzEYOw9L6o7G2+C7gerHoFszpuM3/n4KJ3KuBl4nId0Rkr+Q8s73skXWYSSFQ47E6OAO7jyv9nDOxNnyw36t9KVJ8vwaWef98oZcTigiq+yk+Vf0I5imPwDyAEcAZqvr/6u3ThxwF3KOq96nqFuy3gl7QzWOsxyohQt2FwM+BKP8hWEN8M9YZdsJEYiLWEN6NdYqbsA4vIjJGRF7s3uxTsYpaiqXDvuTnWOnHvwczdtHJ34ZV6I/9PLthnesurGFPxiKr34nIsSJyigv1gVhn+a4fZwvm/R2JNfZ4ndEaLAqc7tvchzWAj2BvlHgbxWSCQ6SYnfR5TPx+j4kdWOd6PObVvgyLDu6iMLyzgJf78R/1+7VOVR+ldnxmI/BFEXm1fx9FIVAhpC+jiKAOwAZnr/L79mbfZqxYqjY8u09iDxoOwUTiZ8BXMEM2zo83kVpnaiT2Oqafi8hTMaN0C+blvgm4TlVP9X12Af6NORkxRnIC8E4/9zlY/UY66xPAL1R1lV//x/2+no6JBlj9pgL1Z//+KV+2BmubzwZeKCJXAT/A6gbMYZiH1flk4Bt+jiVYnfwJM1JPwQzQD4G3iMglmPB+Dpsk9D1M4NLI8L+w9jwJM9zxloFJblQOxRyrYK2qKuas/BZrKyuT9Sdj7a2cUv855niOwOoLTBSOoHgm5kfYzLdJmCCnDgu+7zCxtPoqiugxdSLPxNrrkZjIXILdR/WyTgWOdsFZgEXuGzEn4n+wNjAXM54zgFeIpbVfhonyCmojqPXAZVha/5fYmPFYvyefB14pIi/H2lAqUG8Uka8n5Z5GSaBE5AgXkCFYHf2GIpU8EssMfdrPewXmaFyJ9ctlWEq5POa0G4X4nI05St9L1h+K9UEw53g/rF9FBLUTxVjhgxTPxV0GjPOI9x4KAX6BH+eLmFO4C1YXTSMoVLXpHzC1le366g8zPmcn308DvlGx3elYPvh6YH5p3dP8JlwFXOzLdsG8jzOw2T3qN+fzfkPvwgz6rzADfx02e2ghZlD/hBnxu7B0xK+xDvo4P9b/YUZwC5Yu+hvwdD/3ZZhnOBsbuD0cM4AHYU/hX44Zmy/4edUbyjuBb/oxDgX+inWIk33ZrtizV7/1+3YvlqYII6X+N93LdBLWqL9O4eV9FuvIM/z/rd5wbkv2PwfrmOcl93gccKGvP8iX3ZDs8ym/5lWYl7WEIod/tm/zfb9fF/j3oZgB1+RvqX9e42Vbl6zb4uV4CjZJ49++/B7MQB0GXOrXvQJLIS7ycr4eq3sFXuLl/xLwoP9/HnBa8r8CL/bvj8eikWGYBzjel6f3fApmaKOcpybrPuLbv8W/3+bX9lrM2Gjp79tY574RE1TFUlHq1/Uxv4ebk30uw1LcrwL+4vdtH6zND/f78lXf9nNYG5qf7P8u4KeYERqFtW8F5iRt4OmYuN6CGfjv+DbbgHcm24nfp1GlfnqOlzH66NGYkV6B9UHFDH/U/6sxw/spXzYfM9B/8HswFetLD/v6kcm53oEZ8GV+39+POYwKPKN0TbMxAXgbReblPF//XOCixFadjzlEkzHHdy5mG6KtfCG5pz/wZRP9+/Lk/qzDxOKGZFlc+wFYm30u1p+GYO1lGNaHJiXl3xVz8g/GxOpMTMSP9XsbZbkIa5+zsMhVMOdiE/BR32au39+NXn/zsKGKd/r6yzEH4Bas73wVi6Qe8OXq3x/B7NrcZNkzsDb8+Xpa0Oo082s8FTNQVD1cqV0W2BjZHFWdQ+GBBTf550pVfY5vv1VVf49VcAxIXoflT4/HKuodmEd5HTaIeRNWuYdgKZKvYYL1KqxS7lDVONcYzGua59HEEmya80ys4yygiKq+h4nuXOBiTHxuw6LWGNCdg0VQd3n5b6VILS3zZY+o6iuwhrO3n+cXqrqQYuzmyar6oKo+qqoXYhNe/gPzaP6KefxHqer9HiGvwlIHCzFxOAlLEc7HDGXc/5VYI4RiQDRy+QBLVPVSv4fvApap6oOYQZtJkeNf72VHVTfRdXA12ulEzNCmYzW7Yp3nSqwD7YcZ6b2AVap6i9+rsZhI/hDz0o/w6zzXjxO/BzQv7jcm9vuJyO+x1MbJqhoPad7k5z4euFdV46HDpf45yesgPOZd/Rpv93NdXrpfp2L1dTdFSi2NWuZQRFCRGjwAMwTjsHZ1N8VzOWBt6gpVPReL/E5W1TjGaEys/g8bP/wkhZMSTMKE+Dmquja5tjQlMw8Tr3tU9TOYsbwCE/5I90zHopQNfpyUdVgbiDp/AGvzQ/x/sAzAN1X1iar6Iyx6PAU4X1X3xurwSCz6OQ6r+18AqGralu7AorpRwHdU9YuY6EHixavq5ap6m+/7S0w0D6VoI6spIqjhwHpVXaaqizHDOwGrk4gqv0QxtX+1n2MZVldDPCMzFhP1uygiqCMxkfwbZq+mYu1uDeZ4rVPVjar6elVdkpT/EVW9VlXv8Pv0RqwurqM20l3h+z2M9a1hmLAOwZw4sPo9AHNShmBt4jqvg2Mxm/ksinHUEzDRmU8R9d6Nid6+WEbhAKxPrqcXs/hSPghcIiJd3t/k41NXtnicVnmI2ofmYgpqy6jqauxGvLNi9VosXXUZ8A61N+k+6Ot+r6r3Y17+Vsyg3IF56Nswr+vZaq7KGVinADM+78AawL2+bAk2dnAX1mkepnhB4oH4LDnvCG8HPuHlvohCIA+gMJhQdKQV1LIGMzjrVTUqfH8//lXphqr6N6whvgEbC3jErzlYiTXMJcD9qvoHtVTrMap6Rem8d/pnlUBFWS/F0oTRSdd6We/HGvw6an8jKnLXP8SEbRx2T19OUU9gUYkCm70+LvblD2GCEJ12HWZ4V7rjcKMvX+Wi/5zkuL+lSLvdi9X7SRSpHQD8fNdg43FzkzItBRar6lLfbrPfo/v8Gv/ohjbSj3G/VqjqI1g7PwCLBF9AkXY9FKuTVZiH/yjWhuNaQqCgMEITMdFBVf+mqn/25Wswp2wmlnn4gqpujG2TbaZg7Trac5VAxZjWl/0816jq0zDHJcaNr8dSyPPoSghU1PkiLIqen5znn6qavpT0QeweLfJz3on1GTDhnYpFSrdRyx1YZLFEi7dnR71XGkk34GuwjEwI5iq6pviCFVh7jexEHCNeexQOC17fN2FCNM3Lshh78fIoLJPzCT/vPpjwLcEiqTdj/achqroA+6HScP5WYnYMzBbFtcdMSrBoMcp5H1aPIVjDsYke27wNXwt8WlUf8GPv59tupvbxk7B7D6nq3VhkejO9mMWXXuRPsE76dbFp1bv6wPodWMP8SSvH6QbXYbOG9vGxmpdjA7TdQlXvVht4LRNe3JWqerNvG5V2dfJ5kxuY2zEj9oAaW3yfTV7pePSxHPPk4yWlizBPfResUaxxA7kSuNuNXJT1p4nxPwV7gDGmlqcdu55ArcVEMI0kb/TyVHEp1mguqli3AmtUS/wzyri5YtsQqOikCzFhB2t8YGNEP6B46G8F5oCEQK3HIqOY1Zd608uxzvMHVb0OM5ILVFUw47gpuY8hxOO8vNHJ1mKGNu7Nrf4ZBuSPcQxVfcgFHMwwP9n/35vEuDhXYx7hHcmypZQMo6oehInmrIpjhEBFvS7w613kbWW+77MbZixWY8IU5/iXfy6hcGRuwgQMakUn2IA7bqU6jW3nY23nSExso2xd3p2mqluByapabmc3YRMGxnt57ydpSwnrsfGjdX68bdi9ut/LqXR9niZEZVGy7PVY9uFxmCPyb1Utv9duEXZfpiXL4lj1x0Hsvs6mEIRV2MO238UimcfK57ZhI+aMpM7aQ/5Zrv/7MGGYjqWWH8HswxFY2z7H9z0SE9atWF96LbUPqDfiAxRjdCsphGmFl1mxut0fywidhYlylG+WX8tOwNKS3Xqhqn40OfYu2H3eQq1ArcDsQdTzpd72+uZNEqp6NRbKfcgv5m2Yuh+gqt9q9TgtnmsrFlH8CfNOf6Gqt/fhKUKg1pSWH48bSfcOnubLr8cazAM0wUPrSBs9SDHN+eGkYlNjUnWMGOc6gMKzCqIyV5Z2W4c19MeuSVXfoKr1flzuj8DjQmxLrMQa1XwKAarHQ9h4YRxnIUXHDPG+R1Xf6WkNMM9pZ+x+TsKivheo6muSawEzmCFyUWdLKQR7Y7I+rukMLB2XesTrMIGJjhn3vpFRAhOomGSzG12Ny3eS7YLfYBNsyizG6rN8jDCyca+2YNcYy2/DHDYoIigwLxqKCGopVldLsTGRC335Y6mfhEghlR8OD4F6M5b+nU0RlUEhUDXRRppeSpatxFKUb8QclouovU9BzLZNRegBrO1txJy6cno/+sNj4ptkQZ5InX7qxzmA2glXIRzNBAoKgYoU6Ruxe1UW0BWYbU0FdAl2H8r1H4/DTEvKshAbm466fgi7rof9On6H1c25tIBHO3GvVlLMnkud3GWYEIVdCTsyj0J0oLENjPIupjaC+jfW95ZU1GXDCKqldzj5VMX3YJMSYobIGOCvWueHpnqLql5EtXffF4Sxq2ksqnpZ6Xt0xMj7NhWoEvMxY/AotSnKpdR2/CqWYY18deLBghmHDRG5JazFBKqc1qjEG8pDdVbfi0UZv6N6PDA9zjZsfCr4mZf9F9RveNf75/1YOqfcweN7lUDdSTEWsJFab349Ni34v7HxwSAE6nbf7hFPVzerg4V+/BjLK7eX5WJvA1iaLFtJV+cBrINPpOQUqeoWETk6aWtgbSUMwilYdPBMimgKCmG6BYsylqjqShGZqarrRGQFZoirIqhJwKORhkwIobkFsw2bKTIKJNfZTNiDv2FO7SbMsa1iXekTCoHal64GHaojKLD7Nhtrg5V4RiUVyrimquxAcBd2zeHgRPu8ChuXLrff5dRG9qjqNhFJxySDDVjabCaFM1glUIdjzk8cL00rd4eVfs4N1ArUUiyCira7GrNbYSNaEajYN42g/gsT0hNI+knCV2gwfNPqSwbvxXLIx6vqjT5F9Uxs8sRJaoNx2xNrSp8NUdVHReTv1EYyrTDfP3+IheXBPRSpmXrnVBG5hyJfHGyka3oPzIBPosVranLut6Vfu7nvShEJ41kW0eBG7LrCIy138C2YtxnjEVCkBlLHZVOdcxxBbXolxrwidYcWkx0aXYuKSKQ4dqXi3iaeaTMirdjF4KrqNaVFD1OMrzwqIsuxtOYmEVmFXVuM/SzAJsGs9O3D0C/B7uMqqrmlYllcywpV3Swiw0oe7zLs10+3VuxbxQYsmt2UpFvLrC99gk3aWYvNqK265+v8PpQFaiHmUP2tvE89vI73rxDrlDuxsVhN9gF7VOBJdO2jy6mOXO+nELkgBOqZFM9LlQUqxKg8waQnrKR4ji8tS6T44p6u8r/YJpb/qcGxyxHUMGxi1BZvw13eYqOq15eXpbQqUIep6n3JQRV4j4jcCfxNRF6lqo0K3mlURlBN+BD1O3s9HsK8kNvTHL2qvqH+LjXcg6XCUhoJFPSBQPUBEQ1UCpSqrheRV1KM3awrrVcRWYc19EhDVXXOmggq2f/G0qJ12H0sz/RshXMxI/QMHxPqKZFyqztjKeEfFLNQwRyjSHGvxhyfZVh0/Qi1UU6wBBs/qnIwDqa6DS3AhHAzPNbPUxZhU6ZbZSPFg5316BJBqc00REQ2UL89f4raySlQeOKX0Q1Utcvro0pcjs3aLRMiP6O0fDnVUfRL6NoGN2AzhMcnx1uIDTf80cv3bxE5nNbaTjPqRVDLsHYe93QBNg08BGoh5qQ16gNpBLw93jUAACAASURBVBURaaT+V9CD36BqSaBScSot/46I3EvtbyBtD3TbmKvN9uoWqrpVRB6mmzMQE+6ia6XWE6jo4J0gUOEN1zVMqvozKX6gruqlkm/DDHG8PaNlgaog7s2/W9i2BlU9Q0TeR/HS2R6hqgtFZAn106rptp8rfb9Oip/IuBXLZixocqzbqfNwe730kKqukQY/SeOR00canLPMBmzCSr1IGoq6qWoDdQVKVc+sWLwYmy3XTHC6hTsBN5QWH4iliH9E4XwEC6hIhdWJtjdg0dLdyXBJPHeZzvirinh7wtWY0KylNopehs909fMpcKtnyx7FJu00i5xDoBZTCFPMQr2B7megWo6g6qKql4rIsc237Ch6EkH1lCvo6um1yhcZhBFUQlV6BwBVPQ9AROIYVS+erJfiKxNe648bbtV4/163FVXt8Xssk/TStfgYnIgc1WD7bRTjVN05T9WkmZ4SEdT8BtvUbQO+f3ecyEexh0r7HVWNiROvqVj9EYqZrM1Yj41T35wsi/R0dzM2TVGbdl41RhfZjJrIz7MZ/6K1CWKbReR4z5DURFCqekGDXevSa4Hyk9edkdahDFi0oaqnNd+q7r5VUcPt+E+jlxhI0W2IT0J4hObisQXzzuq9lh+6TpJIaSmCUtUrRGTnXkzo6ROB6mtKEys6kY1YBNytFF/CMqoneXQ0pUlNzYifLEltUb8JVAP+7p9VY6R1HaGKbSO9Wo6gekSfCNT2hg883091JNLRqOrlFG8hSOmkCAqs4zUUKPfONlD/tfzQBwLl5+rNbNO/Y6/RyXSPViLpRim+H1M8UzhY2YBlSVJhGHCBUtXFPvGj2a8/t0p5DKpH7JAC5czsrynybSI6eKcI1EupnUlXj5hRVI9GAtVqiq9X+Ay0S/v7PIOQcB4a1VHUfRcnxfvnYOqjVYSItzuCApsk0dJjKi2QI6jeMMjEKSZkdCtn35+o6iXNtwJaF6iqKKvlCCrTFsL4tpLia9QGBjNdBEpVN4rIagZYoNRextBX9EkE1fKbJDLbBWvpEIHqBs0EajM2TtWrFF+mLbQSQW3CoqRGad7BTL3Mx230fPZvJ5BTfJkuDDqB8vHC2T7Vt8wa6vxMeqYjaDoG5eOQ5zLw6axOoSrFh9Z/Rdn2Qk7xZbrwOvouhzxQzKP2V167oPa26iq+Q9dp+JnO4REsOmoY5WrxDsYdkUqBGgTkCCpTi6r+vflWnYWqvrIX++b0Xgfj0VH5hb6ZWgarQPVJBJXHoDKZTH/S9HGDHZxOm33bV+RJEplMpuPJEVRjNmMvZB6sApUjqEwm07FsIM+0rIu/wqrRS3G3V7aUPntEFqhMJtOf5AiqOR+m60+HbO/0SQSVJ0lkMpn+JI9BNUFVv9buMvQDOYLKZDIdT36YesckIqhW3+peSRaoTCbTn6xlx32N0Y7MZuzXl7v1i9xlcoovk8n0J2+n68+cZwY/W+jl+BNkgcpkMv2I/0BeZsdjM70cf4IOTPGJyCkicruIbBOROe0uTyaTyWS6zSrgpt4epOMECnuX3Iuwn0rPZDKZzHaGqq5V1Wf09jgdl+JT1bkA/uuOmUwmk9lB6TiB6g4icjpwun8d2s6yZDKZTKZvaYtAicilwB4Vqz6sqr9t9TiqehZwVp8VLJPJZDIdQ1sESlWf2Y7zZjKZTGb7oRMnSWQymUwm03kCJSIni8hDwDHAH0TkT+0uUyaTyWQGHunlmygymUwmk+kXOi6CymQymUwGskBlMplMpkPJApXJZDKZjiQLVCaTyWQ6kixQmUwmk+lIskBlMplMpiPJApXJZDKZjiQLVCaTyWQ6kixQmUwmk+lIskBlMplMpiPJApXJZDKZjiQLVCaTyWQ6ko79RV0RmQ+sBR4FtqrqnPaWKJPJZDIDSccKlPMMVV3W7kJkMplMZuDJKb5MJpPJdCSdLFAKXCIiN4jI6VUbiMjpInK9/902wOXLZDKZTD/SsT9YKCJ7quoCEZkE/Bl4h6pe0WD76/M4VSaTyQweOjaCUtUF/rkEuAA4qr0lymQymcxA0pECJSIjRGRU/A88G8gpvEwmk9mB6NRZfJOBC0QErIznqeof21ukTCaTyQwkHSlQqnofcHi7y5HJZDKZ9tGRKb5MJpPJZLJAZTKZTKYjyQKVyWQymY4kC1Qmk8lkOpIsUJlMJpPpSLJAZToeETlGRH7d7nJkMpmBJQtUZntgMrB7uwuRyWQGlixQme2BYcCQdhcik8m0hoiM6YvjZIHKbA8MA4a2uxCDHRHZR0Tq2gQReb+ITBnIMnU6IjJaRAb8hQcisrOIvGSgz9sNLhORQ3t7kCxQ2xEi8rR2dIYOYEAESkRG9/c5Opyf0filzKeR3/BS5v+AkwfiRCJybLyjFJgGfGcgzttDJmKp+V6RBWr74vvAQe0uRBsYzsCk+P7SF17fdsxYYFSD9aPIY4FlRgOTurODiOzXw0j0s8BT/P9hwMgeHGOgGIW1p16RBWr7YiQ7wFiMiEwXkbTzDVSKbxIwfgDO06mMxpyBerRVoETkPBGZ3Q/HvbfU3rrDUGBcN/d5D/DaHpxrJDAiOe9uIrJbD47TJ3hE94GK5YK1pab3RUSOF5F9663fIQVKRE4RkZl9cJwXi8ipfVGmFhnJjjEW8znglOT7QAnUWAoDUImIHCUi7x6AsrSEiByapH16yygaC9RouiFQIvI6EflIk232EZFG50w5CNi71fO3gojsCszErq0nDKX7kcIILAXWXVKBGuaffVX3PeEg4JiK5UOBnWlNuP8TeH69lTukQAGvA57ZB8eZAzyxD47TFBHZGTMe261AicieInJH8n2MiEyo2HQkkC7vt1l8IvJCEZnq93c0zdMmRwDH9XEZ9hSRt/Zw9y8Bz+uDMuyMGb9KsRCRIcCudM+wfh/4eJNtvgr8R4vHG4kbPRE5R0T6IpoLcal33c0mQfQkguqpQI2gaJ9hB9qZ5htBtUDGslaEeyQNnI4dVaBGAns120hEXiUir/UfUDywYpMR9EGetUWiA7U9xef35bAe7HoMcJAbO4B3Ah+u2G44tam24cAQTx30NRdgEVt40A0jKEw4R7q4/lejDUVklog8qYUyHErPUj5gxnHP7u4kIn8RkXTsJAzdcF8/XkTOTNaH0akrCiLyUxE5xP/fwxdf06QoE6h1RhoxkqK/PRvYp6IMT2hQvhMqJsJEO6sXxZ0NNMqSDKRAjaSop5YiKBF5pYh8qLt9R0S+LyLTmmw2vM754x63cl9GAjPqrdxRBWoULQgUZlCPxDrDmRXrB1Kgyp5TJe4J9zevAE5oUIadROQ9nj5JOdI/w6DuR7XBG0GtQEVn7K98+zSKemxFoEYBBwNva7Ltx4ArfUrwLg3qZjg9TzH1SKCwSDDdL84fhvowag1zrG8UtTzO90u3q3wexu/Hidh9rytQIvIZEYk0UipQo8r7ichewLUNxmU+DRxdWtZMoKYDTxCRE0WkKhU1ICk+F5gR1I5BQSIQfk9XlsToDdjkiqndPNdLsTbeiL6KoLJAlWgpggKmYB1tONU3eyTeAUVkmoj0ywC7iOxHCwIlIk8E7mz0LEsfMQXYv8H6t2KCXp5meiTwKCYIYB5w1T0bTq33FQLVX+nNVKCapUzGU0wWaLbtA/75NCxSfDeAiBxemsU1HOjp8zRjaSJQfr4Lku87Ye02vcdhVA4WkZOxcZmxpfWbgYkiMkREdhWR54nIW0pl2Tu5poeomOEmIiMwoTjH92nUb54PHJgY6HFJOrIsbHMwmzbVx4eHldaXr5nk+2PbuqGPPrQHNrX+RZijWqanEVR305NDsWtrFEFFO04FOv7vjgO0h5dxGoCIjBKR11RsNyI9rov4xKRMde+LiIwVkTvJKb5KKiOo8DzEeCFWQbtjjWGsr0vTCmkE9Wng1X1VQLGpqL/yNMxcCk+0kZH+KLAvfTAV3aOgA+qs3gOLfhCRiWmkJPYE+Yv9azkamQHcSiFQM0mMk4hM8Doop/h6LFAi8sw641wpPYmgWhGo9JmVSRRC8lXgjcl20dEvq0qdisgbqlI0vqyVCGomMEtETheRg71cQtGmj6EwNCcCp2POw1ARST31eZjT8W1MfC4EvpWcZyyFNzwME+jxFQ7THcDfsShiPHUiKBeiWVjbH5aUOe77RN9usojcCHzZl88AfoUNwKeMpaujWRVBfQGIe74HFhkeSHXU0+MUn4gMc4PeEBHZH7jSvzYag9qnYtkEYC11Itk6zPLP6KezqZ+KTwXyi1j7GQ2soPF9GY/ZkFHA2IrUK7DjCtRIYFpFx7nWG8Mp2NjE4ykEaozYdMh/lI4TDX4WdUJaqZjCKvYCVBGRo6V6FtNemOd2BLALRcdvZKRnA1cAT22wTZz/0OT/3aTrGNsTgF+X9nmjC9AkigjqduA+v5a9MCN2GLCYrmmTscBtmIc7FEs7pMbpMt+3HEH1ZvztMxTPjqTX8lH3sNdh9bu3r2omUBFBTQSGNUmpjgZWU4jaeI8enkztA7HD/bx7U0p3eFR+NtWdfSQ2W6qZQIUQfAdzEKKdjvO2dyXFpKFJmDGLWa5h2EYD9/v1vAQTKLD7h9fnUGojqNWYcSyXPZzDnbB7Xy+C2geLAA6jeCh1HIVRjLZzCHYfRgPLkuOX671RBJW21X0xIR4FbPXrOJr6AtVSis9TvT+jSI29ETPqzZiOiSQ0nsU3s7QN2L2dR/cFaiuFQI2j+hpHYOOx7xabSXqg/40CHqyzTxBtdxKWcdlWtVG3BUpE+ixK6G9E5AMi8t+lZdEpNgJvFZHXJqv3B47FZvmBCUMaQe0BTE6ELY2g9qOiEXjHXSvJgKN7ZpdReKNVs8JG+/Ee79/DOxoqIseJPStUHsQcBVyKpTqacZWIhGE7GZgrInO8fPHwYflhwv/BxG8V5gEOxxrWNKyDH4Q1ZgXuI+kofs1jMUH7OPAMrOOPF5twcCxmaKf4fuOTFE1vUnx7U6oXL8v/w+7pBuAibMYZVAiUiAxNIpsJWOeaVN5eRN4ntRMPRgHzKQRqD8zxuR94YhIVhXGcSteUWDgOVUZ8LLAG2LMqwkoIgVqF9flIL40FDsAik/ck26cC9VRvD6P8XH8BHgG+4uvvd2fnN/597+SaNgDLgQulNn15e6l84wFE5LelCDKu/RjgZUmZw9ueIPa4yB6YET4YE/OIAB7rB94Pd6OrQFVFUHv6OfYAFmF1tivVkd5QYFQTRyUY7dcxCdiCOYGtRF9jsDoCOFRE3kS1QNVEUN4mQqC6k+LbD7iWkkBVtLERWHv6MjYuvQtWZ6OBfwNTRKQmLSoiTxKRb1H0m12As1V1XVVBGr136+CKv0OAN3XjQtvNIXgqKmEE1nHWYg3/KWB5Z6whPBHrZL/AOuR4ium3UzDVj0Y9Ehs7GIt1+v1E5FI/XjSWMI7v8yhjGsVzPRMxQ1A1WyYE6gj//phAAZ/CXrFyYWzsjWc05tk2fK7EDf9IijGiGECNZ4++iaV5xonPuPP7swcmQg8D92Be3XhgoX+GYbgVWA8M92t+BXYPNwMX+7lPBe7CDM5TsUY+gWLML8QDis7YNIISkaeIyAf9/+GYMSh3ztHYfZzkn69P1o0UG09MO/7TKFJZ4zFjEZFOOcXx2tJ55lEI1GFYm4wJJuEARGfdifoCVWUcx2FptJ2BEWJjQ5d4P02ZgBnniDD2S/Y/CPiXX9dmXz4G89oXYcL9PN93LSbmf8Xa3vexujoeG595CMtMDKMQqP2w6CMt/3L/XIw5M7HucGojyH2ATf65q29bjqC+BbwSWKuqizHxPxyLAFLHZGzpM6iKoKZSK1A/AW6hFEF5n9iJ2qgtXS+lLE20wyGYA3c01ZMMyqRlPhS73i6TJEgiKBF5M1aHm7x8Y5o4MSlTgX9S2KWx2P0fISLfE0v/fzJZvxM2GeMeLL3/baxdvh14t4hcKSJxn78OvIWizW9W1UfqFaRRBPVP4H3A+5O/99FgxkVfIjbgdpeI3FOOgrrBXnSNAkZhaYn1mIGOhhWi80Rf9jssTF2XHCM6duo970QR5RwGPM29qZvdmx6FddRTsXedPUjRIQ/w9fUEajfMgDxAIVDDMWF4LrWpnSFYB15D80gjOloI1F5YmuegZHnM4JmUfO7k2yzEOuxJfj1Lsft3APBd4GvY/Y1ZRz/xY65S1ZuxZ3f2wTrOer+OgzHDP5mus/WGYcaxlQhqNhBTu6OtlgVqcvI5DIvkghHYGMRpACLyVeBZWEQXYz4rqc73p8eO886nEKg9gfmqeh9mnKMeUuM4yc/7SrHUcNRJlUCN9bKs9uNP8rL+Q2yiQxDnWYnVXTgSIVDh6IQDEA7Xv/36dvfjrwXOB16iqquA//JyHYXV3QLgBiw6DoG61I+ZisUo3+ZKrP3EvZ1CbaQ4ATPkUa7FFBHUNl+/L1bPa3ybB7D++ABFJPHy5P4dKSKfSoz1BGy8ZJhvuwtWh6P9uhap6vWYMzuxZOSHYAJwPiYaZd4OrEv2iXugwE0U/b8Zsd+G5HtkgdL2dzhFv/uYl2kF1j7GANvEZk4iIiNF5Kw6ojUFuArY26PnEJeDMWfuWGy8+4hknyOB/02+7wtcj9XFk7BoamcsaiQp9/pGF95IoOYC71fV16V/wM2NDtgX+IV8E3gOdlNOFRvc7S4z6CpQY7GOth7r0CFQEzDv60As/D4fiyKWYZ4IFAJ1vog8E7vJG4GX+77TsZB1GtbwpvjnPVhoH8YrUiwxDlElUNFw98VSIuEdHYZ5M4J1mF2S7ddgHaYm0nBPLk2xhMEK8dkL+BOFMRxHkaqJ51kiyjoI8ypvxWZYzcM6wQTM8F2gqr/BOtNwCsOwF4UQrPTjr8K86ekUHtVeFB0xoqBhvk8rAjWKQpDiGmKm5RwRWZ1c0xSsvjZjBuj9Xo4pyb7HYp7uOEz81vv1zsQMTReBEpGXiE0wKUdQYAKBX3uV97672FuqzwG+gaWd15MIlIg82VNb4/w4a/xckUL9LoUIQVHfS4ElfsxHffsDgTtL1zAC6wOLokz+t0YdX77ay/5kTDBWYhHWf3p5N6jqszBDNdYjvN/7vVjgZbnPr2M85phUCVTwEMUYYMwQ3Bvr52t9m/uxtroI2ElsyvlPsb4MZjA/Apzmab9nAZdj0f77gA9gdnE2ZoS/D6CqG7D6TutqKNbffgKc7JHFy5L1U7G2G2PC0S43YPYVmj/H9GTMBkBRH2P83Etjf7F0/R7YGPlYzNa8BGura4AXJPuCtY//pLadBFOw7MZlfoxopyEuacDwKDbp5QIsmh0NvAs4C2v70dfGYW1oKWYzY3llai9oJFDPwhp/Dara66fWW+Ao4B5VvU9Vt2CRxwua7FODi9x0EoESkd9iHTgiqEnAdPciJmCpq5uB+1V1k6pehd3QELEQqAOxRjMCE4rTscYc3kikWKZgBmytql6uqk/H7mk0uCP9e70ICqwh3kGR8joa+CM2DrCNQuwiBbOZrob8BGxWUxD7HCA2i2g61hine6cdhxluqC9Qt/h1hkCN9+Pc79ut9/PGmOUMiva0yo+3yvdN0yMzfN+DsehjCmYUVmIP644Rm3YPPDbb8GtiEzTiPsS9OwpL9Yz2Oj7L18X73PYCNrnN/SdwNUXqM6KvyRSzDb+Ldc61mBF4GPiaiMTzXWAd+pdYyqORQK2keubgJOCF2LMrx/m+/6bWcL8bi8gjmksFKu7peBE5WezNHc/DDGkI1CwschmHtb0HsIgmHYdaSlFfU7GI8jfJelyoVvpxbvTtz8YixbdQOBrhwe+ORd0T/R4uwRzA1RTPT5UFal7y/WHMuB2CGfgDsXY6kiKCetA/l2P9PLIM70y2uQirx8uA67CobziWov2MbzMLmKuqFyfnX0Ztmi8E6m5MKE8AfibFrNYpWNT3Uk87hzisp3AK0ueYRETek3w/EROcmI242D8jglpI0ZeP9+tZQ+E8HeHfV1NMGCk7byeJSPkZqSl+7AswHYh2GgJ1LNY+wOrwalV9kapuVdW1qvp1Vb1IVTdijghYve7p3x/EokfoqUCp6hpVfRSg4gL6m6kUDQ3MW+pSBrFps9eLyPUkDcejhbOx3PxEKQYww5PZGWskMd4RU12XY0++h5EFq9ww0vtReGqT/TiLsWnD1yb7hAHcgyI1EiylqJw52HTbaWLTta+VYmp3NKSNXp7dKDrIvb7vbcDn3TinEVRZoJ6AhesnuQDFvfpvrEPuhXmq8zDvOhrktuTao6OPxgTq75gof4NCoEZTGIEN2OSLGLNMBWolJuZhTCNC3erbbVDVuVhj3pPaCOrl1D40fSBmfH6clG+0iMzCUiyfwzr0k7G6vgYzxpv9XJuSY0V6ZDIww0UtJovshonmbynE+w4/7iuSYwyhyN83E6g0gtqGtflJvvxuimnR91Gb4puKiddnMVFdg9Xl+5N7+kRMUONNDv+mNoKaRzHxZ5GqXo6NLQWpQJ0MPKCq/6Iry7EIaT6Wwl2OReNTKQRqFZYaiqn1kcV4CGtLdwNP93Xj3FDHAH8aQa3FUk/PwbIStyTr1oDZreQerMXqeKVvEzMPv4oZ8J9jmY0NXqYtmEgvxeoxjHBQT6CWYXX43uT6wNr17zGBeT+1AjUXa+9pBDUJOFOKyUHHYu1iiJctBGo01if+CDzT7d0RmA1aj9mXm3zbORR9MuocTKAWYem320RkLxEZnowfrsD63+50jaBGYG0cP8bD1Ode/xxHIXwPUmRrehxBpVwjDV4h0g9U5UW1ywLVs1R1jqrOwRpJuq1iYeoKYJJXYjSGvbCKjOvfj0KgfoZNkAhWU3h1UzGjlB5jH1V9D7XjGGkEVSVQMfA9Cps0MB2b2TaLYrbS6GT7uLb5/rlCVW/BGsdpmDFKI6jyZILZFDMGn03hwe6EeX3DscY/FzPC0YjTEH0qhTe00D2lT3s5llOkXqIzrMc823AsyhEUFOMnsc2/fbswbAswQz/E9xni9yqd+HIMJhpzxCZ0RAR1KDbGca1/fz5wHhZBP8M/Z2AOQLCe4sHRGVinSt+GMQIz8FF/cR0nlXL5n8DawDDMuQiBWk39FN9S7P5P8jI8SPEw6r1UC9TfVfXb2D1/CmbkV2L18XjMgH/K90kFahxWt+Ox+o0yxX1fTiFQa7w8N1LNMuweP5jcjxWl463GosIX+nfF7vUPMMN9p5f9ES/TmcBrqE3xLfR9rsTqfC0WqcY50z52v9+HdVg9zvflkY69FZitql/z1N1GrN0/pKpfxZwO6CpQSynGCHfB3iG4ySPJB7A62URRr3th43sxAzAezViPtb/jsEk5IcgxrpmOUccY3n0UKb5tWB++y6/1WN/2Tr/mWZhoTMPaRdima6gVqMsx0RlLkUr+EuawqF9vCNRSbOw7Hj6/2j8fpjaYKHMxZjNDoBZgjsKBfh19IlAfBC6Ril9wFJHni8iVFfv0hocovGqwG72gzrZdUNVHVfX1qhoD+lOwSl+JNaCxFINzP8MqZQKwXFWvUtWfJIeLyg2RuAKrlOnAulI+HsyYxDNGEUGllRAGLhpbpBFPwQbnoxOPxjyspcCfMS/9274uDEB4VNMpRVAisoeIfMzXH4I1tClYp9gdazTbsAjlYlXdhhnII7HIEKxBzxaRx2FG8TZfHmUPVvgxRyTXuqG0TZVAraJWoO7A6iYVqMOwetuAeazTgX2TqPhJfn/uwrzIGIPaHzPKafprMdaJJ2CpnbJArfPjL8Hq7gela1jiWYVdKCbQPOLbTsKcg2lYnR7mx15H8RaAJcm9W4k9DzbO71tEEmEQlnvZ9yCJoMRmhUXaOiKeNX7+URTRw2jMkbgPm1l1l19/tPuLMaHf4kaa5L7Pw9rdXcAffFl5nCq4HUstfZtiqn7M0ot7u8rvQYx3rPO06lZV3eTneapf/3jMoZpGbYpvrt/L3/v3bZiQvTa5B8EDfg9CoKI8u2PT4xcn/Tau+zCsvaTHWlK61kUU48gv9mNFBP4g1pZvpXg4eZrfm7Vepif5PdmgqttU9e9Ymxnh+0V9VgnUt7AU9Qsp2udGbKz8xb7tXVj9zgIeVtWHVfVGL5fiY4F+vL0xgYpUdjh9b6VwWJb5PRtLIfIXY/c27tXbMMevElX9nJcxHiiPCGqG/997gXKDfRLwdRH5sNhrTl7n+e0vY4OEfcl1wP5ir+LfDUvr/K6Hx1qMdd4YoLsca5DRUeP9XHtSNOSUEJ5zvFxfAN5BEUEFmzBjdSNF+NoogrobG2C8E2s4k7G05MFJtPcwsFRVl6nqT6n1cKEwdrOxSGgtRYrvaOBNHlXs58t3wjr0R/ycl2NTjM/348zFOlF0ut9h9X6jHyOeX6kSqL3wjufLyrNzyik+KARqONbwz/HlW/xzAebhLUyuaxqWbgtRm+3luxIzcjGF/GAsDbQGS61EPcQbBr6GeaFpii8EfxiW+iy/ey067tuxZ+XWYXX0MDauuNGNQkzCGeGGMFIgv6RIS63EBpPP8Ou/GnMI1lNMIIn7NB8T5S9izsZqzBH6i69PjXMI1GPlVdVfY+MrXwEuAb6gqr/CHMGFyb4bKCZHLFXV872MUEegVPXNqnqJqt6lqnf74qoICorHBcpGKUTo/zCB2hszaBO8jFuxtniDqt7l17jVpyfHvU372FWYsxMCtQKLMp6lqu8tiVOUcxzWXqC4n+UIahGFc3Cif0aE/QA2fh1vUNgDG3tei/Wdi7DIbx61fWMN9hqlQyhS8xPcAdsPEziwcZ4bVfW32P2cjLXdX2PjkXsnx96T2rTbKl+3iEKgZmA2IJyI9NVlP0+ufyK1mYRL/ViLsTp4IHFw6rES60vvoxAoMIf3/no7QTce1FXVq7EBsw9hyvo2LJVxgKp+q8Gu3UZVt2JG4E+Y0fyFqpYf7muVCMsn+v8vplZc1mAeyWy6SnmzIwAAIABJREFUNkgoOtcFqnqUqi7DBKJGoLzRr8aM5VCswe5JtUCNwCrnNlXdjDWU+1R1CWaU4/dpYgp3EMY0DMD5mOf6Gkw00xTfLKwznYCJ0IN+nldhDfAcVT0em64eKc25WCe6D/O4YuAbLJcddZAaNfx+7F26zrTRbsUik1SY4jP+/4mqhnccnvb9+FRfzHCejYnQEgqPb6aX949+LZEaPQLz8lZTpP3WqOo8VT2bogM/FkG5uC4ARqlq+XeMHot+VPWbqvoXzAA+6PvsR2009lKKcYAHfb8Pq2qcdxUWie2PCdTXVfVcP8+w5N6swaL25VgHP9XLfpCqlj3+OG6NQPm5V6rqKlWdq6of9MV3kDgbqroSu7+rKdrdCixaqRdBVREOVDoGlbK29P1izAm9BOunMygi8tVY+/5fd9LwbT5ROvZj90BVz3BxjTGo5ar6D1Wtl+mJcsZ43SbMeawSqEh5xwOoMUnhXmyyRYzHPgePiLxf34zZgkuodejXYk7Ke5NlE7D2FFE11A4hxLj4RhfsW4CdXLBD/O9Otv8X5miuohCoELH5mK06wvfdV1W/4uXe7PdiT99mFSaYH8LaacMp4gkrsJTzKP8/xgJ/pqrvbLRjSwIl9q6rM7CB8Sv9bzPw18Rj7lN8FsgsVd1XVT/TfI+6LMW87cMxr3CDD+TGzV2PeQNzqM6lRsNIPe0VmFF5oLTtAorc7N+xtEG8CyuIh9K+RjEwfDFFOulurBE8AWs8i5N9awRKVa8FzqWox2hQkU4RTLh+gzWoB1T1QlV9uape58dYkXiUMb4W6b4lmKNwEyZ6t/vxU4MI5rDMLC2PTr+JYpJHjCeUU3xQ1Ed4bVC8omURxXNZu2Be48vFHqaN8bPLsE4QKYtDKCKoeBNCWg8RbaaiAjb7LF4/8zfMUEVZysK8DutsC/AIKlZ4+43n46raVYj1vn4Ncf1LMEFfj4uUt9kTsQkfz8LSN+nDjU0Fqg63l7dR1WuwtPcl/v1RTPgf6rJ3fepFUGCORo1AqU3I+rnvFw/lzgRWeirsvNTOeAo/2mzVGFRQTvHVI+r4j378eJ6wnOJbCMwUkXjOC4q2+mVs0tBKbAzr7RSZCTDnEOBmVf1esjxStt/A2tFqP+axwJUegd1P7Rj7aqwfhD04jmKcPNpRpOPxezgXFyjPSo3F+to8LBA4BmtX6aQU/LzzsLHxaW4v/uxlOpPWiLb+OuyeRH9oKnCtRlD3YhV9vKqegE1bvRabPNGT55MGkqXAm7GZO2klx81ZRxH6VnXC6FypIYsGf0Np26OwaaGKictczKCkned7wFNV9W61hx1R1ZtV9dO+/m6KNMJnMe8qiAaZdri0zHtRPAc1CxOsZ2IDtYtpPJiJ2rRQsAHkQ9zjvgCbsbMZE6rPVKRIFmMdJL3OuL/XYvl1sBw5Pu6wiWqB+hBFTjtSPwuxyC9Sbh/EBqifB8yz4QzdiKVgw8PFrzcEagy1XrZiBih1PFDV36lq/Iz1iRTPn91HV4N/JTYVt4tAlaiK/qPTTsFSKGHMl2CipNRGmGAOxBy6/sZSXNdGivG6LRXlLfNraicEAeBOzM3J9z9V1HkjqiKouI57qRYTKIQNLA1eldEo0yWCSkhTfI1YiI0vpudbU3H+RVgkcinWF9biMzrVHkvZ6Od6CyZI6bT8SO1uLR1zpu//CPbs58WYU3ss5uSCRTUrk31qbJK3/1gfQn4PXVlN8YzUUnc+PosNc2ymepx/KZbp2aSqacZok6p+smL7KqJf/EztsaGwQw3Hn6B1gTpMVU9VG3CLG/Ie4PPA30Sk7m8DdQDpc0zp+7LWYznU9IHERhFUanyiMdTMbFLVeG3HQt/vz9h41NpkmwfVBkfrcRs2K+31wF0e7QXlFB9Yo/qT/7+F4jmo/bFc/MOYMMynutGW+TDuSSbMx7yrTYmQpsT9K0dQW7EZc3/ARDs9/9kUHiO4QKnq91Q1nspf6sdZ5Pft98AYtanE53lZU4/v1uT/aKePYHU3ja6GcQn1RSWE9GHMCH4am7adrr9CVX9JIVD1cvFn0PW3dRZ72VdSvG0kylSe5RjEw50XUssa33YBhbgtp4lAqeo/3QHpa1Zh9Z0KVMysu506EY2X+2Dgk5iRLmcoqvbZiqUfV1asXodF7g0jKFW9VVXLPw3zfro6FtHOI/1dJaDRN7/oKbI4R4yrbum6i6XjVPWzmJM1ARtDvsqXP1raPmZU30FXpvo+Va8PihTfDFyMVPVKVX0AE8Oq6eJLKfWrHnAvcKf3J7A2vZ4WIqiWfn+mIuyL5d8RkXsxY9Hld186hDRM35z8n96gxdiAZpUXlnqngBkun1V8S8X2UEy5vRwzovU8xiq+D5yr1QOPkRtPI4FHgBN9NtgWLIW4M5YbPwdL66mI/D/qvDE4xTtJmXk0ftYh0mXlCGq5qm7ztzfMTxooqvoOABFZlWxfLouKyHxqx0ni2s/BxkEvSnZJDUpa74uxnH65fhfTQKD8fI+KyLTUe6wgBGpu1Uo3TnNLy+72B3z/BVya1PcSasfqyhHUj+k65Tu8/bMo7sFz8Ih1oPF7topCoK7CxpF+AfwIG1Ort+9cEfk+9qqepgLl+9T7eZloj1WGvNkxf1mxONrhGzBHcjOW/kwJJ7jKGRxJVyfmQmojrWUU7wO9m2reA2xzcS7zfxRjn2VWYeNJf6erk3M+1W+1+H2D47WE68dByXcVkXDOGtKTH0grn/xSsTdRdyrh5ZyE59Wd9RQh5iLq59irIiiA8aWwO+VfWNQReeeWfybCG11VwwMTgXTMKN3vsbKIyCZs/OmLeIep05hb5UIaDJJ7g1tErQCkKZK76dohgri/9cL98+iaSkVVbxF7T1jqXaaO1L3J/yFQVRFU0yxCE3GC4oHGqgdZGx13hdjPnKSOU/qAbJoCjRRs1a8JLMae4flysm2/v5KsCedTeOmPYO+mvAi4Q1VXN9yzMFwNU9ItEBMCulUv9VDVVSJyuNqzf2Dt8kOlzVb7tl2cwap2pKr/UVq0GBvDeiCNwEr7/L5qua9bgmVgqliPTbT5EiV7pqo/rHO871Qt7wOOo/nYYO8FCkBtJkmnEkbytlLYm0ZQC6jvrVUKVANxQlXfGv+LyGxaS621wgOY0DZjM/aW4KYNoBXcu68XLQaLqRWoeJlsGMt6s3XKY1Dlc9edIJOkTYJrMcN4BrX59Jh4sKm0/RK69zs59YhzNYzGqkijSmcuxQObt9PaTKlrsfG4jkFVyz8WiA8LtMI6ijdr9IZHsEijzyZyJeJUj7OxKLGnXIONo5bT7L3GHdsvi8iXGKCXfjcoy7LmW/WRQHU4iylmW6XE+/jAnrH4J9WsxjpL3VfCN0J7Pj2+6lhK7SuV6rGJ2rGLgWARtWNtSpNnHJyGAtUd1GY8dXmYnCKFW448b6brz9L3hBjr6bZAlVHVS/GHM9WeX2plH6Wr+G63eFp4FS2m+BrwISxVOGB4XVRGPi3uv0pErqF/07NPpHvDDm1j0AuUqq4RkX0qBhqvx2aDxXz/et7aSuDDVWm1DqYdArWYnjX61djAcrOH/XpDOboDQIvnanqFqm4UkZX0gUBlHuMGemmkm6TLO5kv0XWKe5+h9njKdsGgFyioDic9bfXnFvbdRu1U7+2BzQy8QH2DHkRBqrrVJyGUHYi+pFKg+pgFZIHqM1T12c23Gpz008zK7ZIdQqB2QOIZowFDVXs8FVWL56/6i55Gd90hC1Qm08dkgRqctCPF18n8g9pn4PqDLFCZTB+TBWpwspkBjqA6GZ96W/VcS19yA/2fRsxkdiiyQA1OcgQ1wKjq/7a7DJnMYKPlt5lntisGfAwqk8lk+posUIOTdbTwlHYmk8l0MjnFNzh5N3k8JJPJbOdkgRqEaO3PBmQymcx2SU7xZTKZTKYjyQKVyWQymY4kC1Qmk8lkOpIsUJlMJpPpSLJAZTKZTKYj6TiBEpFPiMjDInKT/5V/UjmTyWQyOwCdOs38K6r6pXYXIpPJZDLto+MiqEwmk8lkoHMF6u0icouIfF9ExtXbSEROF5HrReR6YOgAli+TyWQy/Yy045fMReRSYI+KVR8G/gksAxT4FDBFVV8/gMXLZDKZTAfQFoFqFRHZG7hQVWe3uSiZTCaTGWA6LsUnIlOSrycDt7WrLJlMJpNpH504i+8LIvI4LMU3H3hTe4uTyWQymXbQ0Sm+TCaTyey4dFyKL5PJZDIZyAKVyWQymQ4lC1Qmk8lkOpIsUJlMJpPpSLJAZTKZTKYjyQKVyWQymY4kC1Qmk8lkOpIsUJlMJpPpSLJAZTKZTKYjyQKVyWQymY4kC1Qmk8lkOpIsUJlMJpPpSDpSoERkuoj8VUTmisjtIvKudpcpk8lkMgNLR77N3H8Taoqq/ktERgE3AC9U1TvaXLRMJpPJDBAdGUGp6kJV/Zf/vxaYC0xtb6kymUwmM5B0pECl+M++Px64pmLd6SJyvf/lX97NZDKZQURHpvgCERkJ/A34jKr+usm216vqnIEpWSaTyWT6m46NoERkV+B84CfNxCmTyWQyg4+OFCgREeB7wFxVPbPd5clkMpnMwNORAgU8GTgNOE5EbvK/57a7UJlMJpMZOHZpdwGqUNV/ANLucmQymUymfXRqBJXJZDKZHZwsUJlMJpPpSLJA9QEiMrTdZchkMpnBRhaoXiIiw4D57S5HJpPJDDayQPWeMcBkEdm53QXJZDKZwUQWqN4zyj/7Jc0nIueIyKH9ceyMPXPn9zj3hR0YERmaU/WdR+6UvScEalg/Hf9A8oty+5NdgVcDu7W7IJm28i7gA+0uRKaWLFC9p18jKEz4smfXf4RjkQVqx2Y8MLbdhRgo/FVyHU8WqN4z2j/7K4IaShao/mS4f2aBAkTkSBH5SLvL0QZGsGP1sy0i8ux2F6IZWaB6T3+n+HIE1b90fAQlItMH8HQHAU9Kzj1sBxmf65ZAichEEbmhH8szEDyt3QVoxo7Q8BoiImP85bQ9JQvU9k1EUEN6eyAR2VlE3tDb45SOKcBdIjK86cZ9wwj/C34EPGeAzt1OhtO9PjweOLifyjJQzGp3AZqxwwsU8FvgmF7s398ClVN8/UtfRlATgf/tg+OkhOEc3WzDPmIktQI1CZg8QOduJ91N8Q0Bhg6g49Af7N/uAjQjC5R1wCm92P+xSRI+ZfmoPigT8Jj3nCOo/qUvx6CGAMNEpC9fwhzCNKrhVn1HOYIazY4xeWAE3XMyI+Ke0A9lGSj2ancBRORdIvKUeuuzQFnnm9iL/dNJErOwiKyv2AWroyxQ/UdfCxT0rZgMtECVI6gdSaC6089i2wEVKHeCe+UAJfv3V9anOzwVOKzeykErUCJydYvh9xh618jSFN9E+rYzRwMa9AIlIu8VkVe14dQ9SvGJyJyKscsQqNGlbQ8RkbN6WL52RFBpv+mxQInIK0Tks31Sqv6nqUCJyG4icoPXe9T1+H4vWS1PB37Vy2MMA9YDu3bAdPPRNEhfD1qBAmYA4xpt4JUznN4L1Eas0idgqb5eD7g7w0qfgwIReYKIlDv2bPpw0FZE9haRC1vYtKeTJC4GZpaWhYErd7gZQGXqV0Q+LSKPa3Ce7TnFNxO79u2BVlJ8E4EjMKe2LREUMA3Yt5fHGA5sANYycO2qHmPYQQVqJSWBcg/oyGTRGP/sTYpvFLCEIoJKj9tbhpY+t3tEZApwPfAGEZkhIgf4qgn07USAWcAzWpih2TSCEpHnpcfxadfjgd1Lm1ZGUH6Oekb+JOxtIfVoR4pvqM9IHILdl5YFSkQOTGYy9nWddgt/kXPM1D2lyebDad7PwqmaRB+OQVU4a83K0Jsx8//f3nmH21WVCf/3AoFUiElICCmEEkpwCAgoCpYPCAIioMMoRUQFUVEH/UDKUHREZBiGAfmEUUQRpEkXcEKvCS1IDSSBNNITUm5CQhrh/f5433X3uvvuc8+59Zzcu37Pc55zztpr7732Km9ba+8N1h9XAyuovoLqsh5UIwUF3AK8GP0PiqQ/gIhcJCLNVS5bAQuxzh0UVP2AdqX4VAuXsndoiM+F0tHtfJpw/PXA2cAZ/r8fkWIXkYEickkrzrMtJnTKrUBrcg7KvewHaGh09MHGTikF1cf3HSUidwN7Utqb346mhXibKigR2V5EvtpEluA99YzO3ZwxsT9wnP/uTwcKQB9rf/B5mhHAa77pU8DPy+xeiQcVlNEg2kBBiUg/ERmJ3UZQ6XH6Af1FpDVzprEH1aYGhIgMFpETmrFLUlAR+0GDScK8B3UavvTSrfv/rOA8A4F3aehBxRbnYGwisBfNp9CDEpGdRaTJjiUiV7bg4Ze7AH8pOFY3ERlabmfPd0qZbOGm0z7AwdH/vLW9J/Ctcuf08xbdyBqszHwYLk85Dyq0ZWy1Bos373nnPaivA1/BwntbSu6J996GfWlaATRSUCKyjYj0bmKfphgDfL+J7eG4vaJzDxKRT1R4/EFkQrtfOIaI/FBEyj7rTkQ2E5GP+e8tRWTbCs8L8E/AKdiYHAkMd8NwW5qYK3KPuEkPyus7XNdA2ibE9w3stoQBNDZ2ShEryZK4sfnlEptjD6qtPdz9gYtyZWkqfN6yEJ9f4FdF5Oh41UgFrnKtUKSgtgA2kDVuX2AeZpF0w60T33YS8LMKzjMIex9UmIMKxw1s49+VdsCYUh7Ur4Gv5TN7e43wQXkazV9Guh3QW0TyVu+RFCiuAkYCvy3jLQ4FJmNhrR2jMjbwoDx9ULkVSyIyGphV4PkGwVZOQZWbgwp9aBs/n5AJu3IhvqA4B/p37FkPJvPmGw1QERmQ2xa3ycXAt0uUtxxDovIU0Sv63hKowwyXGyo8/jZkijs2Ov4P8OO8ki7gK2R97bvAr6C+3gsRkT1E5E5gb0/aBRiBtceW2DX3b+IYTUYqxJZBP0HW7sGDWkvrpgdGkM1NFnrYInKgiMTjOJShXJhvFHBTiW09MA+qYgUlIn2C4VCGQcD2Uf8FmFxkaPjYjj31RjTlQd2ITQjuCYwTkZ08/QcVFLIWKFJQPYFpwGAXbFsB07FOFgZtUDKNFIqIfFFsRdbn/H8PrKMuIPOg1tFQ0IaONCB3rM1EZFQubdfcICo1B9Ub69x57gKmeFm6kSnHSgkDId+Zdge2r2D/IVh9FNXdQWL3iA0DJmGLIiaRWbl5D2o4IMAfRGT3Js75E//e2c/Tz/MPBt6mxISyK/LbKL/MvN6DEpEdgDfJ2rISBTWDYs/645ggjfOHsgnwlo+5PsASoI+IjBWR72JCqpL2KGIoTSuo3pjgDYJjlqfvEPqmiPy7iFxZYv9CDwrzbnoR3RQvIp8VkRNz++9GVi+7AFuLyNeBj3yfI0QkbywdDByEKaj1ZAoKbDHLD7D2LbWqtxewnNIhvgMw4yv2Xrpjhmlr5oPihVylPLwzgDgk2w+TMeXOOxLz2ouUbk+aPwd1GvBLABH5noj8c4l8wfjfx/N2w9qi6KbgLXPfjWhKQW2rquer6i+wmPJ1IvKFJvK3KSJyqIhMEZGpInJOCw6xjKjRfXD1wBTSSOBVbJDPwOohKItgaRV5PA8CE4Hz/P9AbIFEWMU3wI/fV0TGiC0ACB2p/ngeUjgQeFMaLvN8AouXB4Ir3t33O8dj1b0oVlAfYgMxXHdzFVRYcZVXULsBQ8t5M2SvBSkKB34dC2kMA97yc83EPNrh2D1fsWIP3se3iJ4NV8BewDtkQu0E4Eqs3h8BRpfY72BsgUI5BRV7UN/B6iII2SbnoLB6mBTliw2mEdHvvPc3zPfZFRu8c7E2ORC43POPoGUMwYT+JvG8h4j0FpGwgm8RmQc117P0JOtPY4DTRaRo1eU22M3KYXVsH/fIhwP3YEZv4Ds0DuPuBIzwvjYSG1M/irZ/HQuZx3wGU/6HAf9LQwW1L1m/7C8iXxCRq3P798I8xU1K9PFPYXW+I6awwyKJ6TQeK4WILbTJC/V4hWMp72QwWd8GG9tTPB0RuUlEjivYLzgURcZIkCvvE71sVWxF6U4F+UM5grE3htzTd0TkBBE5HVNQC4Ev+qbQ93fwfIdJ9mzHVimoLULsUFVnAF8GzsQsv3bFK+xqrMONAo7LexsVkPegtsAsj7nYtYAJkGXAG1ilgw2qWdhAKEW4ByY0xmqsk2+HdZ7dsMH4NFknHODXFsKMYSLxEE/fGhvc8csJe3j59nYlfa6Xq96DEpGD3RvogVmZy8kGZyMFJU3PXQ33stUPOh+wuwGbknsvlYjsJyKfjZKCYhoW5QkeYX9MWQShvRWwFKvrvXCrUETuiMqy0n/vKCInisgRBWUeBjxKNoh39uMNxdpgv8jyv1iy+ar9sTbbHlhDTkFFgyj0ocFYf5wOHI71o3x4p36ZuZ9zGBbODIorr6AuxkLJ+TYJy86PA071cx0CTMD6xNbkFJSIHCPRAhdXQEU3QA7FjIErgcVR+i8xw6s3pqD6koX4fujnDgJKsX5fNC8VLOhwT2A3zFJf58cY7eUTzEgYnYsa7OTlOxhr0wG40eZy4TBMqPYN14kpqHlYH7sV6wMjsP4TK5z+wMnAt3OeRS/svqA1NJ7v7YH1lSWYhzaJzIOaAWwrRrlQ2ff8EzMCC7UBfExETpPGUyj1CkpE3sYU7iTMyNgcC78fWXC+4LEM9H03kSy8GhZJrACuAk5zQ/k8zAgqYiBZuHwnGr+j7puYsTEIm4I4yQ2g0B+29zr6Xyx0C9a/FtNCBfV/iQaUqr4PHOXp7c0ngamqOl1V1wG3+bmbwzJgF7HJ2a3I3Nr5WJwbrJKXY6t9wqPn+1PgAUSW1Wf8WE9jgy0oqK9hA/slbBDcjSm+H2OdIQizMHcQBvsZPkCD4o8NgO5+Hb0wV39LP08vzMrcDrjdz7kDNogWkt1P1EBBicj3gNlu0SIiw4LF5IJ7tNdFbBU+6ulvATPF5rn2E4vL3w/c4JZ3qM/1RAoKmCR2s2Y/TNCs9DLi1/YmJvDfxTyPY0RkIDYIwhzNjpjV3OB+IbfSewLjgANcaO2CteGmwJP+vbsPzp8A3xKR3bD2XoYZBHXA5iJyqnvuZwHzxEKAfbH2Hez1PxYTElOIrFMf4N39+kdhCvYjrL8F4hDfdlgIcj7ZQoL7ROR4v85lwPFe/hlef09jSn0EsJeILImOdxBwlNgqqnOBE4G/i61si4XuED/Gj/2cm4vIRG+DPb0+l/h17gW8r6rXeFkPEZHLMKHzMLCn2NPO9xCRXmILCQYBc7D+uAobX+97Pb/q++yEWeCCKbsvROUb6fnHep1v58d5H1OIK4FXyJ4+cIBfz8NYP5iG9b8RwD+wqAKYYXEY5jXPAv5VRB4UkQuwMb0EU1B9ROQ3InKs73c21o/G+/mnYnJxC2+7Hpi3sFxs3n4rEakX8p62M/bk8E+LyCNe58FbfdWv6VRvk+vEFsFs5p7RQN/vIDKl8w7Wx7/k1z7Gz9NLsocTjMT67QFi8z9nYQYRNFwkATYuxvrvoDDzDMRkzibYeIyN2J5ehztg7fwS8GfgWjIFFd8T9ysR+TwmaxbQEgWlqs+r6gIvwBBP26CqpSbe2pIhwOzo/xya/1bZZZhX9FtMGI3GKn8GmZU0FBtAr/v2YBWvDwdxgfVNbLVNnao+h4X6BgO/wYTtPMwC/4WfY0vgj8Al2IB/h8zVPcivbXvgD1gDfgNr2OnYwHlNRPbCOlKd7zcAC4ntjnXsbTFL5EbgKSzOvhhTkkFBDRZbrn2aK8FzaOgdng/cJiIPeVkXYx11WxE50wX13pjBEOanfgs8BzyDebnPAdNdCA7BBtxwEbncFeEumOc3GBvU12DCJrTRjZj19Q4+zwA85G3yhB9vR7/++jkCsVcd7Iv1jb97O8zC2nwKcLOqbgCuwxTdPlh/PwMT9L/2ax3idbyNX9tdwKWYcXE4NrAm+/beZBPPrwPbuMIehXkI53jeQzErdzwmXMEEZd6Dmon1vy3dUv8yNrB3xSxNsH7ye/99mddZWGnXz9v2Gax9RmMGxfFkYc47gToROdsFSXcyb3EF1h93x9ppX6zvh/uyRmP9CeB5rI+d6ed62LffCLyM9YMw/zkVGwvvYm09SVVnYcbIblhbj/djLgUeF5GhLkg3wwTXG94Om2HjZQG20OJN4AUsxNjNr/VG4D7gT553B6y/vIYprLO9vS7G3pz7M8xbeAIbK1dgbbcaW4H2aeBKN2xPwZaoB2H+Kub9b4EptPmYIsfr8kjgMRG5UER+hgnpV7zMbwKfxYytL/n1P4uNpY9j3sxTfsw7sdtilnmbPUrGVMwI+jO2InOiH3sxsEhEdsUU+KN+bXOxMb+X2OKcYzA5FTz7BV5P6zAFPVhExrshh4j8E1lYczTW/2J5vCfW78PN6wuxMf85zCid6XXzA89zLdnbi0dhxmHxEy1UtewHEwJ7V5K3LT7AvwDXRf9PBP5fQb5TMW39EjAzt+0zmHV2A2ZZvY0NDMEE/KOYQDsFUxKKdZjHvaH2wDqlRp8Z0fE3we6PuSB33q2BT0T/z8AUwR/8mIswxaaYUggW/C3YoJmMDZK7sNj7/dH578QESB02sJ/ClNRXMEH4hO93Nyb4xmKCRL0jrMMmXJ/HBtU0bFAqZsXtg4VW5kafR/06TsA69mwsDHgR0NO3vYaFQaZ6+gI/5mned2b6Pid63e/u2/8V8xD+A+vwy6JrHYop+p39Wp4BLvfzbYYps6uAx6O6PiW61n5R+ouYkL8NGzT9Pf0qsj4y3evjQ0yA7YsZIlO8Pl8ku29kll/bqZghcmxU7kv82BL1XcUMoyv8WNdg/WAIpgxW+HEm+DlewcbAFQV9/lk/3rHeD97z/+H7WUzAhvLUYUp7qbfRjCh9CibkpnobrsT6y6romKflzv8PTLgN82uYgwnwWZg3szc21tSv73Xgtmj/1d4XFFOtaZIIAAATTUlEQVQKAzGD4SKvg1uxsGCov8XYOHvG2+MyTAk+5L8fBA7Pjcu13pb/Bjzk6Q/6OTfx/5tG+2zq3ws9z3DgMWwF4UTfdgBmSI70Y1+NeTzjsVDyXN//JkwAv+jXuRJ424/RE7gAMx6eBP7Z00/y834O+Kn/Huffr2EG2no/1gDMcFoKTPD9d8TmJjfHjLWJmLH1n36M+/x7DnC9//4vr2uN6uEyTHE8go3ZizDF+ZF/ZvmxJvoxLvfr+S3wV0z5KtDbj3ct1od+43kV+B8sFLjU/6/w3/3yfV1VK1ZQJ2Au8DEF244Exrexgvp06Fj+/1zg3DL7vFSQ1g0bPOuwgf96tO0eTBgd4/8HYqGGRcAcT5vvef7ulflq7vibAN0quJ7DvfMuwizj7/jxzvbtE7yMo/1/b2+0yzHrULEB8EtMOCg2YNdgYYuhnnaHd4CJmEX7hnfKxzBrdB4m3OdggyfMI9zu19ndr2kSNjjHEA1+L9vtwLu5tD95573Xj/8gZtFNwRTsM16+Hp5/uP8/MXecmV7uF6M08U48D7jG04b4/rOBG2JBAxxQUP+/wwb36bn0bTAFeL4f76fAjtH2Mz39Sr+WDTQUbEf69f0UE4oK/CJ3jq96+rlex/djwmaybx9Mpkx+gxko64FdS/SlB4C1kbL6CLPO1cv3M2+D5WQGVk+vg7s978WYsH0KU1THYIbVzZgS2w5T5gp8JXf+W3FDzet/hfeZnlGePwKX+u9xuNL2/3PJDJiDPC0IUgWOz51vCqbQ78DGyLc8fQfvE88C++f2mYb1+SOBCz1tIpEwLlG3Cizz3xdjYy3fngMxpXkdZhz+FRtHZ/h1r8ciAj0xj3gdcEe0/yex8fUBmYF3pJ+7P6aAHsTGrgIPep4ZwJToGArcW3ANp3r5BmH9dzKm+F7GxsBi3/dabBx+Ltr3Qq+3yZiBPwfzGEM/+hSmtD4RtZdiBs1/YGP1KDLjYj/ffiGZE3AONs+lXl99MQ93q6I2qehGXVW9GYvdXiUi54ndkPltEXkLE6I3V3KcZjABGCl21/vmmLV4X3MPoqrrsUHUDRP6cXz1fUygLfe8i8hCcSGsscrznO7/66L9UdWP/BzlGItZDfuqarB+4uONwyzLiX7clWSTiW94nh9h94fUYYLubczlno0N+mWYEbEIC9e8hM3jbI1ZTSdhiuVDTEHuDYxR1Zcxz+stVV2jqh9hCvUSVX1EVUOoKTDOjx3zMibsf+jHPwzzMHbCPLrZwGpVXe35Q4hvae44k7GBXn+zr1pPn4UJ8hDiCysjh3rZQ94NqjqOxryMCe0G/VRVF6jq25gQAXhPVadFWW7x7zpsgK1TCxsGFpG9rmWyp63JnTss9HgJG0Pf8PKEeg2ho9MxAyQYEXMpZhneZzGhNR2bHwQLW97qbTAaiwYsUNUPyLzchap6nlqofj4WrnpeVd9T1RNUdbyqvosJUTBlEjOFbA5xHPCGj4P6saWqJ6vq2f73fS9nYCnWJ/8LUy542dZiAvD23PkWY+2v2Dh+3tMXkt3kvCK3zxwsonKfqv7S046mshcMTvDv57H+dkdu+3KyZ/GtxdpyINbHX8TabqqqfqCq92OG2mvR/q9i4d2pUZ0tw9ppiaouxoyD7Xzby/49HesbkC1uKeoj1wP7qOpCzHu9U1WfJlOMV3m+0ao6y7cFwlzhK5iheJbn/zWwXFVfUNULXGaARQTuxZTxTDX+pkHbqz6PeceveXmmYmHfcOvCu6pap6qXqmro0w2o+LHtqvqciIzBLLCzMGH+C6+Aj5rat7mo6oci8iPMjd8U+JOqvtnCw8VzWXkFBdlgR1Xn2lRNfUw55H8X64wNFFSleIONjZLyCuphYHhO+N2OTb5ei1mY96nqBhGpwzuE55utqioib2AddyGZl/QepswewpTbU16eh3NFvJNIiKit2izFtTQ2SO4F1qjq3HC9IvI0MExV53ksO57Qj+eg6lHVQ0uccxYWFgxzh4Ox0MpdVHYD6f3Aeh/8RQQFFZcRL/ttmBL8OQ1XvYEpqLD6cgoWwl2byxPmoD5Q1fEAIvJjMmET+tjtqrpEROYCK9UWJRWxlEwgT8cMr5nYYoYLorLP9GOFtpxNdltEYAHWX4oEXVBC83Ppb5AJ+r9T/gG/V9NQQC/BPK4rI4PlUeAsVX0xv7OXcQbWVxarajAEPsAU1tZEY9iZTTY+AFDVqWXKGQhPCh+HRQbeijeq6loR2YApxzVkCnMOJoDBPLjA74ger6aq63z+dEqU5xUyIxjsevoAN6rqv3nadDIDLfTTeeRwg3mm/34Yky1Bpv6L7/MOxW2+AqvPxS6zbgFwuf9eLm8fVV3p869Hk6vvqDyfj/6eThbGBquzJqlIQYnIICyMcSomGDZgVsQTba2cAm655633lhBXwurodyMF5YwhW9CwClilqutFZCEtVFAFBMFcB6CqY2mowMCE6ihVXS4imwSrhMyCm4kJpVD+p7GBETyIDZhVv6mqvicir2CKthGq+h4WViiLqq4h5yWo6hws5BGnKdkAmk0k/H2wrKGxB1WKYHH1EJHDMMFxn6peUWGZ52OWZSkKFZTve5xkS85X5Ta/R+ZBBUFVSkHV971YELsy/5iqhr41lwLBE7GUrM/eg3khA2ns6YD1/XCPVTDU8gpqQtS3yG2LvwP3YIoJrWDBlKrmnyi/NPeNW9dXUcx3sX7eIFLh9bYMG6t5D+oqKu9bMT28f6Oqy7DVuEUsxzzqtZhnvAGr6/lY36yvY1X9fcH+NxG1sUdMYs8x9IVYNk0ga8sVmOFZyssuRFVn+s9bS2QJMjFviD2JRWDiY4XIwDtYWLMpozbsUy/PRWQRFZS/Ug9qGiYwD1LVV3xF2H8DL4jIEar6VtO7V5VZWCXuREMPKlRwPmwXr5b5INrelgoq70E1woXGe9HvQB0Wq55OpHBi61lExmMhwOFkN6L+ngoslnZiOplFHniZYqFaRFBQ3bF7SQbQUNC2lqBUGikosFCuiLxP1mcCKzEPf0cyTy6voMI+pZbvEiknyBanlKI+xBdCLb7i87WCvDeRLW0PCipuhzsx4VPEQmzVat4Y+YjGYczmsATztleXzWnna0rR1GEKqoG3WcITq+RclV7XcswoWKuqq8QeYDDbx2kppRaf53dlsjRSUKp6bfRb/RaDZimoCihUUG4cPNs4u20TkaMwGdscbsBCkE1SqYLaQ1WnR4VS4KciMhl4SkS+oaoPNbOAHYKqrgJ2dmuryRBfAavIvJ0OVVBNUIeV61lsqWojVPUAABGZj4fFSlhyHcVDWGi4HlXdvxn7BwXVj2wJdEuebViKkh5URCMF5YJiEbYUPIRsynpQZRhHtty+iCU0NqrCqj9y6bPJFFPo/7F1P5UsLJVnCqWf5dYaltIy76aIOiwcuqFszrZlOba6LXhbRfOerT1+/F3EOLJ5z7YieKKlQuGFeASoWahq2QcHQ4UKKlZOufTfi8g0LFbZ1PO9aoHlNA7xrStjNcUe1DzaaGCp6moPcTXVAUuxHBuUYfFAU+eZ0NT2jsIFSFPCvxzjsXmvQ7A2OIwS4cpW0lR7rKBxiA+y+8PCGCk5B1VJAVzZvNJElnux+mgWrkxn09iTLZW//mbeNmYJbaugWjKGWstyskUS7UFRiK8BqnpMO5y3VIivarTq3fZgITFp+LibWqWOxh5Uuc69iqyznE/rQht5vkiFwiJH8KC6DKo6Q+zVJ8djq8aaLaDL0NvPUzQXEygK8YHN/d1B1k9a60E1iUcEWtr+p5PzZKtAW3tQ+fmnjiDIjbaUBzHhmjpa+XY+BQWgqlPK56o6y2msoMqF2Oo9KF9I0GZow+WdzaHLKShnDdk9UW1NJe9WKvSg4lVKIrKKnIJSW3l5JhV6UO1JjYThp9P8+YpSxEvuO5Kwmq7USstW4YuIVpIUVNsoqI2EOhpasUtovHQyTy0qgmUUW/KdndB27TFoK/FuSnlQMcspCPuo6uUtKVRnRFUfx+7Paguq5UH9GVvBXOnS9ZZQjfBlqMvWhOPblK6koPIeVLhxsineofRrGKrFbdiig65GCKe0x6D9HfC3MnlW0EIFlWg3qjIHpar5m4nbg/vJ5jU7BL9Ha/9mrGZsd7qSghpLdNOuzzcsK50dVPWP7V2o5uL3PVUjrFFt2s2DUnvywuwy2UotkogJjypKdAzzaN0LA2sWVT2tSuctXE5eLbqMglLVUjenJTYO2tODqoQXKKOgqryUvyvyF9r+MWuJGqLLKKjExo1PHH9IlRRUJU9NSHQsftNwuzzJJlEbVPSw2ESiRlhN1wxvJhJdkqSgEhsTa6jOqq1EIlEFkoJKbEwkDyqR6EIkBZXYmGjp46ESicRGSFJQiY2J5ynx3plEItH5SKv4EhsNqnpS+VyJRKKzkDyoRCKRSNQkSUElEolEoiZJCiqRSCQSNUlSUIlEIpGoSZKCSiQSiURNkhRUIpFIJGqSmlNQInKZiEwWkddF5B4R6VvtMiUSiUSi46k5BQU8AnxcVfcA3gbOrXJ5EolEIlEFak5BqerD/gI5sCcHDK1meRKJRCJRHWpOQeX4DvYm3EJE5FQReUlEXgK6d1yxEolEItHeiL35vINPKvIosE3BpvNU9W+e5zxgH+CrWo1CJhKJRKKqVEVBlUNETgK+Dxykqh9UuzyJRCKR6Hhq7mGxInIocDbw+aScEolEoutScx6UiEwFtgCWeNLzqvr9KhYpkUgkElWg5hRUWyIiE7GX3CWKGQAsrnYhapxUR+VJdVSeVEdNs1hVD80n1lyIr41Zo6r7VLsQtYqIvJTqp2lSHZUn1VF5Uh21jFpfZp5IJBKJLkpSUIlEIpGoSTq7grq22gWocVL9lCfVUXlSHZUn1VEL6NSLJBKJRCKx8dLZPahEIpFIbKQkBZVIJBKJmqRTKigROVREpojIVBE5p9rlqRYi8icRWeT3g4W0fiLyiIi8498f83QRkau8zl4XkU9Ur+Qdg4gME5EnRGSSiLwpIqd7eqojR0S6i8iLIvKa19G/e/r2IvKC19FfRWRzT9/C/0/17SOqWf6OREQ2FZFXROQB/5/qqJV0OgUlIpsCVwOHAaOA40RkVHVLVTX+DORvfjsHeExVRwKP+X+w+hrpn1OB/+mgMlaTD4EzVHU3YD/gh95XUh1lrAUOVNXRwJ7AoSKyH3ApcIXX0TLgZM9/MrBMVXcCrvB8XYXTgUnR/1RHraTTKSjgk8BUVZ2uquuA24CjqlymqqCqTwNLc8lHATf47xuAo6P0G9V4HugrIoM7pqTVQVXnq+rL/vt9TLgMIdVRPX6tK/1vN/8ocCBwp6fn6yjU3Z3AQSIiHVTcqiEiQ4EvAdf5fyHVUavpjApqCDA7+j/H0xLGIFWdDyaggYGe3qXrzcMsewEvkOqoAR66ehVYhL3xehpQF71YNK6H+jry7cuB/h1b4qpwJXAW8JH/70+qo1bTGRVUkSWS1tKXp8vWm4j0Bu4CfqKqK5rKWpDW6etIVTeo6p7Y260/CexWlM2/u1wdicgRwCJV/UecXJC1y9ZRS+mMCmoOMCz6PxSYV6Wy1CILQ1jKvxd5epesNxHphimnm1X1bk9OdVSAqtYBT2LzdX1FJDzLM66H+jry7VvROMzc2dgfOFJEZmJTCgdiHlWqo1bSGRXUBGCkr6DZHDgWuK/KZaol7gNO8t8nAX+L0r/pK9X2A5aHMFdnxeP+fwQmqep/R5tSHTkisrWI9PXfPYCDsbm6J4BjPFu+jkLdHQM83tnfiK2q56rqUFUdgcmbx1X1BFIdtR5V7XQf4HDgbSxWfl61y1PFergVmA+sx6y2k7FY92PAO/7dz/MKtvpxGvAGsE+1y98B9XMAFlp5HXjVP4enOmpQR3sAr3gdTQQu9PQdgBeBqcAdwBae3t3/T/XtO1T7Gjq4vr4APJDqqG0+6VFHiUQikahJOmOIL5FIJBKdgKSgEolEIlGTJAWVSCQSiZokKahEIpFI1CRJQSUSiUSiJkkKKpGoEURkuIis9AceJxJdnqSgEokqIiIzReRgAFWdpaq9VXVDtcuVSNQCSUElEolEoiZJCiqRqBIi8hdgOHC/h/bOEhENz28TkSdF5Fci8qxvv19E+ovIzSKyQkQmxC+7E5Fd/QWLS8Ve2Pm16lxZItE2JAWVSFQJVT0RmAV8WVV7A7cXZDsWOBF7RcOOwHPA9UA/7Jl4PwcQkV7YqzBuwV4PchxwjYjs3s6XkUi0G0lBJRK1zfWqOk1VlwNjgWmq+qjae4TuwN5hBXAEMFNVr1fVD9VexHgX2cNKE4mNjs3KZ0kkElVkYfR7dcH/3v57O+BTIlIXbd8M+Ev7Fi+RaD+SgkokqktbPa15NvCUqo5po+MlElUnhfgSieqyEHstQ2t5ANhZRE4UkW7+2VdEit5+m0hsFCQFlUhUl0uA8z001+L5IlV9HzgEW1QxD1gAXAps0RaFTCSqQXofVCKRSCRqkuRBJRKJRKImSQoqkUgkEjVJUlCJRCKRqEmSgkokEolETZIUVCKRSCRqkqSgEolEIlGTJAWVSCQSiZokKahEIpFI1CT/HxKlzwlVZvD3AAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -771,7 +746,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -782,15 +757,15 @@ "## Significant links at alpha = 0.01:\n", "\n", " Variable $X^0$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.034\n", + " ($X^1$ -1): pval = 0.00000 | val = 0.034\n", "\n", " Variable $X^1$ has 1 link(s):\n", - " ($X^2$ 0): pval = 0.01000 | val = 0.017\n", + " ($X^2$ 0): pval = 0.01000 | val = 0.017\n", "\n", " Variable $X^2$ has 3 link(s):\n", - " ($X^1$ -2): pval = 0.00000 | val = 0.025\n", - " ($X^0$ -1): pval = 0.00400 | val = 0.018\n", - " ($X^1$ 0): pval = 0.01000 | val = 0.017\n" + " ($X^1$ -2): pval = 0.00000 | val = 0.025\n", + " ($X^0$ -1): pval = 0.00400 | val = 0.018\n", + " ($X^1$ 0): pval = 0.01000 | val = 0.017\n" ] } ], @@ -814,12 +789,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAADQCAYAAAD79kC9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXgc5ZXu39PaLHmRvBssyzYgDBiZTWYJcFlEGIztAIaszlyY3MST5GYGzwSYgJOAJ3FIJsyMM5MhuSYbMzgLSSw7GEwgChASFlsGbLHaeJERtrG8SZbV1nruH6dKXWpVdVd3V3dVl87vefqRuqq66uvqr6vePisxMxRFURRFUcJCxO8BKIqiKIqieImKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEXJACK6iYjeI6IOIjovi8e5nIjeSbD+Z0T0TQ+OM4OImIgKM92XX6i4URRFUUIDEe0moigRHSOio0T0AhF9nogicdtdSERPGNscJqKNRPQ3aR72AQBfYuZRzPxq5u/CHmZ+nplnZWv/YULFjaIoihI2FjLzaADTAXwbwD8B+LG5koguAfBHAM8BOA3AeABfADAvzeNNB/CGmw3z2RqST6i4URRFUUIJM7cx8+8AfBzArUR0trHquwAeZubvMPNBFjYz88fs9kNEESL6KhE1E9EBIvpvIionohIi6gBQAGALEe1weD0T0f8lou0AthvLziCipw2r0TtE9DHL9tcT0ZuG9el9IrrDWH4lEbVYtjuPiF4xtvsVgBGWdbcR0Z9txnGa8f98InqViNoNl9p9TufR2NdO4zi7iGix40kPCCpuFEVRlFDDzBsBtAC4nIjKAFwC4Dcp7OI243EVgFMAjALwfWbuYuZRxjbnMPOpCfZxI4CLAJxFRCMBPA3g5wAmAfgkgAeJaLax7Y8B/K1hfTobYmUaBBEVA1gL4H8AjAPwawA3p/CejgP43wAqAMwH8AUiutHmOCMB/AeAecZ4PgTgNWNdleHWq0rhuDlBxY2iKIoyHNgLEQFjIfe+fSm8djGAf2PmnczcAeBuAJ9I0cV0PzMfZuYogAUAdjPzT5m5l5lfAfBbALcY2/ZARNAYZj5irI/nYgBFAFYycw8z/wbAJreDYeZnmbmJmfuZeSuAXwC4wmHzfgBnE1EpM+9j5jeMfexh5gpm3uP2uLlCxY2iKIoyHJgK4DCAI5Cb9UkpvPZkAM2W580ACgFMTmEf71n+nw7gIsPqcZSIjkIE1BRj/c0ArgfQTETPGTFCdmN6nwd3v2622c4WIrqIiJ4holYiagPweQAT4rdj5uMQt97nAewjoseJ6Ay3x/ELFTeKoihKqCGiuRBx82dm7gTwIlJz4eyFCBKTKgC9AD5IYR9WEfIegOcMq4f5GMXMXwAAZt7EzDdAXFZrATxqs799AKYSEcWNy+Q4gDLzCRFNwWB+DuB3AKYxczmAHwIg2MDMv2fmD0ME4dsAHkr+dv1FxY2iKIoSSohoDBEtAPBLAI8wc5Ox6i4AtxHRnUQ03tj2HCL6pcOufgHgH4hoJhGNAvAtAL9i5t40h7YewOlE9NdEVGQ85hLRmURUTESLiaicmXsAtAPos9nHixCB9fdEVEhEiwBcaFm/BcBsIjqXiEYAuC/u9aMBHGbmE0R0IYBP2Q2UiCYT0UeM2JsuAB0O4wkUKm4URVGUsPEYER2DWEiWAfg3AAM1bJj5BQBXG4+dRHQYwCoATzjs7yeQwN0/AdgF4ASAv0t3cMx8DMC1AD4BsQrtB/AdACXGJn8NYDcRtUPcQZ+22Uc3gEWQQOcjENfRGsv6bQD+GcAfIBlaf47bxRcB/LNxnr4Oe+sQIDrhy8Y4D0Picr4IDAQUdwQxoJgGu+sURVEURVHyG7XcKIqiKIoSKlTchAwiWkFEzxPRb4x6Dr5jFLvaaJgvz07+CkWxh4guIaIXjQySXxBRkd9jAnSOK0rQUHETIoyL6qnMfDnEz/oZn4dk0gkpEpVK0SxFsaMZwNXMfAWAnQBu8Hk8JjrHFSVAqLgJEEQ0yyiHfYyI/j6NXVwOYIPx/wYAl3k3uvQxCky1+j0OxX8ynePMvNcoggZIpki/tyNMD53jihIsVNy4gIg+QUQvE9Fxkr4iLxPRF836AhTrQttBRB8Q0U+NdMFUuQvAs8w8mpn/w2YcpxpjOMmybDER7SWiaZDKm23GqjZINc6s42JcSsDJozluLpsJaXK4Po0xpIzOcf8hm15JSuYQ0X1E9Ijf4/AaFTdJIKIvA/gepNHaFEhFys8DuBRAsWXThUaPkfMBzAXw1TQOl7CzLDPvgFzMlxpjuwTA9wHcyMzvQdIBy43NyyFpe1nHxbiUAJNncxxENAbAwwD+2kiHzTo6x/MXIppBUom3k4jeJqJrEmxbQkQ/IWkmuZ+I/tGyrtiIZdxN0oDySpvX/tAQ/4eJ6DEimppkbB8iohcyfpM+YNTP2Wyc181EdG6CbccRUb3xA6GZiD4Vt/5TxvLjRLSWiIb8MCeiaiI64VqIMbM+HB4QgXAcwM1JttsN4BrL8+8CWO+w7ZkAngVwFHKR/4ix/I+QwkgnIEWSTnd4/fnGa8+GVKj8uGVdDYCfG/8vAfB3CcZsOw7L+7kDwFaIBehXAEYkOQeO47Js8zMAZ/v9uepj0GeSb3O8EMDjkLibZO9N53iIHpB6Ln9O43UvQurclEKqEh8FMNFh2/sBPA+xgp8JqT9znbGuGCJuLzM+/yvjXnsXpHDeZEh37v8BsCbJ2L4J4Ks+n9f7IAUOU3lNMST+7R8gtXn+3nhe7LD9L4zv2Cjj/LUBmG2smw3gGID/Zaz/OYBf2uzjKeOzcTVW3ydskB8AroP49QuTbDdw4QcwzbiQfsNmuyIA7wK4x5gcVxsf6ixj/bMAPutiXE9Bbkhft1lnfjl/C2Ckw+uTjWM3gI2Q3iXjALwF4PMZjusJSBGoFwHc5vdnq4+BzyWv5jikuNlBYz/PwkZguByHznF/5tsPATwQt2wdgH80/v8KgB3GZ/UmgJss292GFMUNgNMhVXVHW5Y97/RZA3gfwLWW59+A/Y22BUPFzQ8A/Ivl+XwA7yQZ3ysAzrdZPgPSrmGJMaf2Afhygv08CeBLccu2AFhk/P89SEHDdgCbAVxu2e4+pC5urjXOFVmW7YEhBOO2HQmgG5YfMxDh923j/2/B+FFuPD/V2N76mX0CUmTQ9VjVLZWYCQAOsqXENhG9QNLoLEpE/8uy7VqS5md/BvAc5AOL52KIMv02M3cz8x8hpu5Puh0QEUUgv377IRUtB8HMdzPz5cx8M0vDMzvcjOM/WII3DwN4DICjydHluK5n5pOZ+RJm/lnSN6rkirya48z8P8w8gZmvNB6/ctiNzvFg8nMAH7fEco2F3CjNtgc7IIkR5QCWA3jEGudkhYi2kqXxZNzjQWOz2QB2slQENtliLI/f31iI2N2SbFsHfgzgUiI6maQMx2LEEjzsxn8SxMrzaoJ9XgWgGnKOvpLApfZzWOY2EZ0FcQE/bizaBJnf44xtf03SksFuXE7n9CgRfcXYbDaArWwoD4OtsD9XpwPoY6mYbGI9r7NhOecsLuBu43WmG/qfIVWSXaPiJjGHAEwgS1t7Zv4QM1cY66zn70aW5mfTmfmLHMvosHIygPeY2Zrh0Qxp6OaWfwVQASmnvTiF16U6jv2W/zshN4psj0vJPTrHBZ3jueF5iEXicuP5LQBeZOa9AMDMvzYEZ78hXLdjcL+kAZh5Dg9uPGl9fNHYbBRiSRYmbZC+SvGMsqxPtq0d2yDWi/chFpIzITdlJ64H8GScQIhnOTMfZ+mJ9VM4/0ioB3AuEZnNPRdDXGJdAMDMjzDzIWbuZeZ/hbiSZtntKME5rWDmbxubpXpeE22bbP03APyYU4xtU3GTmBchJk2vamnsBTDN+AVoUgX5MiSFiP4WwE0AboT8crzT/AWUy3FkcVxK7tE5nttxDWuMG/kvEbtJfwrAanM9Ef1vInrNtBRA4psmZHDIDgBj4paNgbi97LY11yfb1o4fQGJtxkNcMWuQwHIDETdOvaxMrDf0ZohoB0nWovmoMixTj0PcNzD+Ws/rl4noLSJqM85rOXJ7XhNt67jeCFK+BsC/pzpAFTcJYOajENPog0R0CxGNIqKIccJHprHLlyH++rtIusBeCWAhYiZZRwxz5LcgGSsfQIqFFSO9m1La48jyuJQco3M8OTrHPecXAG4xrAwXQeIDYTx/CMCXAIw3rIevA7AVkUT0RtxN3vr4obHZGwBOISKrReEc2GTsMfMRSGzLOcm2deAcAD9j5sOGxeQ/AVxIRENEBEll7SsAPJ1kn9YyA1UQ0Q5mHmV57DHW/wLAJ0ky+UoBPGMc63IA/wTgYwDGGue1Dc7n1emcdhDRPcZmbwCYEyfw58D+XG0DUEhE1ZZl1vP6BiznnIhOgViWtgG4EhJ/tIeI9kOSAG4molfsxj4IN4E5w/0BMfFthJiuWyEXziUwIsMRl0mSZF+zIfEKbRgaMPcsbIItAZwBCaK8Pm75/4WYdNN5T4nGMej9wCGIKxvj0oc/D53jOsdzPN/ehNzY6y3LzoJk0s0CUADp4t1rzhekny31EoAHIFaVm5A4W+rbxpwZa3z2+2AJkoXcdEdAAoqvNf43G1D/FCLUyiEB7fcAeN/hOFcD+GOCMc+AuO9WAygz5vIBWIKdbV5TAikH8jSAf7csvx4iiqZARPnXIbFjZoKA7dxPck7NbKnbjeN+CYmzpX4JEV8jISUm4rOl2iGuypEAHoERxG289ymWxwOQHxe2n9+gY/o9yfWhD33oQx/D6wHga8bN+6Nxy1dA6nMdhKRvP+eBuJkBEdVRAO9gsKhdDOANy/MSAD8xbrYfwMjisqzfbYzb+phhrBtviJEDhoD6M4ALHcb0AIA7kozZmi21H8BdLt7rj43XzbUsKzCWt0PE2l0YnP2YsrgxXnceJPMqCsn6Os+y7h4AGyzPxwFYC7Gm7gHwqbh9fcpYfhySPTfO4Ziux2oqTkVRFEVRcgARvQngFmZ+02H9DAC7ABSxJZNRcY/G3CiKoihKjiCiYgD/7SRsFG9Qy42iKIqiBAi13GSOihtFURRFUUKFuqUURVEURQkVhck3CS4TJkzgGTNm+D0MJWBs3rz5IDNP9HscXqBzXLFD57gSdjKd43ktbmbMmIHGxka/h6EEDCJq9nsMXqFzXLFD57gSdjKd4+qWUhRFURQlVOS15UYJPk1NTWhoaEBbWxvKy8tRV1eHmpoav4elKGmjc1pRgk/gxA0RFQBohJStXuD3eJT0aWpqwmOPPYaenh4AQFtbGx577DEA0JuBkpfonFYCR0sLsGkT0NoKTJwIzJ0LVFb6PSrfCaJb6nYAb/k9CCVzGhoaBm4CJj09PWhoaPBpRIqSGTqnlUDR0gKsWwd0dgKTJ8vfdetk+TAnUJYbIqoEMB/SX+QffR6OkiFtbW0pLVeUoKNz2h3D0gLvhwVl0yagogIYM0aem383bRr21pugWW5WQpp69TttQERLiKiRiBpbW1tzNzIlZcrLy1NarihBR+e0a4aXBd4vC0prKzBq1OBlo0bJ8mFOYMQNES0AcICZNyfajplXMXMtM9dOnBiKMg+hpa6uDkVFRYOWFRUVoa6uzqcRKUpm6JxOjsUC/yO/x5IzrBaUSET+VlTI8mwycSLQ0TF4WUeHLB/mBMktdSmAjxDR9QBGABhDRI8w86d9HtewJ93sEHMbzSxRwoLOaVeYFvjRThsQ0RIASwCgqqoqR8PKIq2tYrGxMmoU8MEH2T3u3LliITKP19EBHD0KXHFFdo+bBwRG3DDz3QDuBgAiuhLAHSps/CfT7JCamhq98MeRT/EIYU57zkS0h+UceI3VAm9cx21h5lUAVgFAbW1t/jc4NC0oZswLkBsLSmUlcMMNYiH64AM53hVXDPt4GyBA4kYJJomyQ/QCnzZmPMKYZBv6SZjTnsP83nxmeFrg/bSgVFaqmLEhkOKGmZ8F8KzPw1CQenZImH/pe0E+ZQSGWdh6+d50zscYthZ4taAEjkCKGyU4lJeX2woZu+wQ/TXsiryJRwhz2rNX703nvDJAPltQQlgIMDDZUkowSSU7RAucJSbfMgLDnPbs1XvTOe8MMz8b9JgyBaEtBKjiRklITU0NFi5cOHDRLy8vx8KFC21/lYb5l75HmPEIuwH8EsDVRPSIv0NyJsxpz169N53zSt6TShp7SwtQXw+sWiV/AyyA1C2VAsPVt+42OyQVF9ZwJN/iEcKc9uzVe9M5r9jipZsn2y4jt2nspoWnokK27+iQ5zfcEEgXloobl2TqWx8Owqiurm7QOQLC80t/uBLmtGcv3pvOeWUIXoqAXAgKt2nsedbqQcWNSzLJrhguQYdh/qXvNWHKCBwOwt2JZHN+OJ+bYcumTUBfH/DGG0BbG1BeDkyZkp4IyIWgcJvG7lehwjRRceOSTHzrYU6pjSfMv/SVoQwX4Z4Ipzmv52aYsm0bsHOn3PgrKoATJ0ToRKOp7ysXgsJtGrtfhQrTRMWNSzLxredr0KH+6lSSMZyEe6rouRmmHD4MFBQAZWXyvKxMhM3hw6nvK1eCwk0ae561etBsKZdkkl2RSAA1NTVlPLZsYP7qNAWY+aszqONV/CFfhXsu0HMzTBk7VtxSnZ0As/zt65PlqTJ3rgiI9nagv1/+Hj0qy3ONaeEpKxMLT1lZYIOJAbXcuCaTeJK6ujqsWbPGdl1Qf8V59atTrT/hxsmiCchnP5w/a82kGqbMmiU3/v37gSNHJOZm+nSgtFTSp1PJegpa5eM8KlSo4iYF0o0nqampcRQ3Qf0V58WvTo05CBd2QjUfhbtbMhXmmkk1TJk7F9i7F5g9O+a+2bULOHZMRE+qWU95JCiChIqbLGK9OBIRmIc2vw3qrzgvfnVqzEF4cBKqCxcudHxNUIW7G7wQ5po9OEyxs7ZMmSKWmzxJow4DKm6yRPzF0U7YBPlXnBe/Ot1Yf9RtlX28OMeJhGoY3S9eCXPNHhymxFtbVq0SK46VAKdRhwEVN1nC7uIIYMCCE/QbuRe/OpPd9NRtlX3SPcfxgiiRUF20aFHo3C8aDKx4Sp6lUYcBFTce4fZmwMy49957czy61Ih/L4sWLUpLbCSz/qjbKvukc47tBJET5eXloXS/hNEapfhIfBp1czPw+uvAKadIkHEIunAHDRU3HpDqzSCIWAWNlUysKcluevrrOPukc46drI7xWIVq2NwvGgyseIo1Duftt4EdO4Czz5YsqoD3aMpXAiNuiGgagP8GMAVAP4BVzPw9f0flDrc3g4KCAnR3d2P58uWB+nUbL87iycSakuimp7+Os0865ziR8MkXt2qmhNEapfiMGYdTXy9/h1Nwcbabf9oQGHEDoBfAl5n5FSIaDWAzET3NzG/6PbBkJLPUtLW1obS0FF1dXYgaJbiDFF/iRpwls6akE7Sqv46zTzrnOJlb1Xy93/PWS5zmb5jeoxIQctWjyQdB4TgOH7qJB0bcMPM+APuM/48R0VsApgIIvLhJdDMAgEWLFqGhoWFA2JhYLSJ+Zg25cQOVl5fbpraXl5ejuroaW7ZsSTloVX8dZ590zrGdILISpriopqYmbNiwYdB3M0g/PJQQkovgYp8EhS0+dRMPjLixQkQzAJwH4GWbdUsALAGAqqqqnI0pkfhIdDNoa2tzLHJmrvcra8h8T8koKipCdXW1bWp7W1sbGhsbh7zG6QZodx6XLl3qwbtRnEjVAhEviOwIQ1xUIndsmAScEjBy0aPJJ0Fhi0/dxAPXW4qIRgH4LYClzNwev56ZVzFzLTPXTsxRGl2yPks1NTVYuHBhWrEi5eXl2LBhg2NGS7aIf0+Jxrdw4UJs377dVVyRlfh9a7+q/KGmpgZLly51nNNhiItK5o4Ng4BTAkguejS1ttrX1Wlt9e4YbjEtVVZykAYfKHFDREUQYbOamZ3NHTkmUTqtiXkzSAXTIhLvrjLJ5sU10YW9tLQUpaWlGY8l/gbo5jwqwSKThrFBx42wV5SsUFkJ3HQTsGSJ/PXamuKToLDFp+afgXFLEREB+DGAt5j53/wej5VEpvn45oDJ4m+s29XV1SW8sWfz4ppojL29vUNcZKWlpY4izA67G2Ci87hy5UqNtwkAdm7DhQsX2rpk8726dLLvand3d1rNP/P9vCg+4SYAuKUFePJJoLERIALOPx+YN2/odrlwfbnFp+afgRE3AC4F8NcAmojoNWPZPcz8hI9jApD4IhgfG5MsGBPAgFUkUSwOAFRXV2PlypVZuUg6vScisrWuFBYWoqioyPF9zZw5E4cPH0441mSVbsMexBn0cgeJ+kfFWyXDUF062Xc1Go2m/J7CcF4yIehzPCekmqVkCpaGBolNqakBOjuHBgC3tAAPPwxs2waMHw8wA3/5iwiG224bfAztJh4cccPMfwZAfo/DjkQXwfjAw2TBmAUFBYNSwhNhDdT1+iJZV1eHtWvXor+/f2BZJBIZ9NxKNBodyPqye18tLS1YuHChZuEkJtDlDlKpZhyG6tLmOOvr6217vwH27ymRZSYM5yVDAj3Hs06qWUrm9tu3AyedJNs/+qi8dtw4ET2f/axsawqmCRMkTgcAIhHg4EH7QOFh3k08UDE3QcUMGHYi/mZfU1NjG6sAJBYQyfAiPqWpqQkrV67EmjVrhowj0bjEawjHIFM3Y3MTeB3mIE5m3sfMrxj/HwNgljsIBG4zo5qampK6GJcvX46VK1cGPli8pqbGUdiYxDd6TRQUH+bsMjcEfY5nHWuWUiQifysqZHmi7Xt65LFnj7yus1P+NjSIAAJE2HR3AyNGxF5fWirL/AgUDjiBsdwEnZqaGkerBRENXNzi68DEk2rGUTyZXCSTVSJOBDMPWI4yuYCbacmmuy2e4RLEGcRyB26qGZtzKBHxN34g2C6ZZLE31kavdlYeq2VGq27HCOIczzqppj2b25eXS6+pESOA4mLg+HGJqZk8OWaVmThR1p04EbPcRKOybOLE4BTtCwhquUkBJ2sMM2Pt2rVYt27dwIUt2a/BdMnkIum2TYQT5kXci/TgMGfhJCOI5Q4Ad59JqnMoH7LhnL7XQOz9m6LO6Xttfu+H87y2EtQ5nnWsWUoHDwIvvihupx07YhYYu+2rq4G2Nomj6eoCCgpE4NTUxKwyc+fK9gcPAvv3A6+9BjzzDLB5s1h47roLWL9elj/3HPCzn9kfc5ig4iYFTLeK6aKx0t/fj76+vqT7KC4uzmgMmVwkvTCNt7W1obu7G5HI4KmT6gU83kVl1tMJ8i98LwhquQPA3WeSzhwKuksm/n2b32/r+08m6szXDtd5bSXIczzrmGnPu3YBL70k/xcVAVOnisiJFxvm9sXF0kjzxAngyBGgqgq46CKx5Jjir7ISuPVWYPZsab55+LBYhWbOBLZuBd59F9i9GygsFHH07rvAhg05PwVBQd1SKVJTU5M0yykR3d3dab925syZaV8km5qaHF1lqRKNRlFQUDCQHp5uJtdw690T5HIHJsk+k0RZdk5zq7S0NPDp0U7v24xRSyTQ4oX9cJvXVvJhjmcFq0uouBh49VWgt1eymqqrJQi4vX1o4K81q6mqSoRNX58EGL/1lril/uEfBm9fXQ18/vNiFdqzBzh0CGhuBsaOBUaPBvbtA844QyxBv/mNWINy7aYKgIsstOImmxdTt7VsvObw4cNpva6pqQnr1q3z1FXW19eH4uJi3HXXXZ7tcxgQ2HIHbnHKeEs0t6LRKNatWzdg2bTG4gC57S0Wf12orq7G9u3bbY/vJkaNiIadZSYJeT/HU8YuQ+rIEeCaa4BJk2LbOcXemFlNLS1ijdm4UYKJy8okyPj3v48dZ9s2cUWNHCniZ8IEEVEdHcCxYyKmRowQIbVjh+zHbW8prwRJQPpahVLcZLvWhN0FPhKJgIhcuabSJV1B1dDQkJVxBd3dEDSCXO4gGVZRUFpaisLCQkSjUdfWwPj519PTM8QCmu0AZLvrQqJyC8lcUZFIBCUlJVizZg0aGhoCZ43yg3ye42lj18dp8mSgqQmwuuqTVQjetEnibc4/PxYw3NkpLq6HHhK31c6dYonZtk1EzY4dIqDGjBH31jvvAHPmyGt6e4FzzollbZnHSJSSnkoKu5MQCkhfq1CKm2zXmoivZWMW5bNe7FOt6OuWdCr5ZkuEuA0gDrpLQklMvCiIRqMoKirCokWLMnLR2tHT04MNGzZkPD/iu32b39FkwdDW60Si701paSm6u7sH9p8vmWFKFrDLkKqpkSDf9nZ3FYJbWoCnngLefFPEwsknSwZVaSnwxhvyfP9+2dcZZ0g8TVubuLD27RMBMX68BCEfPy5xN1VVwAUXxI6RKGsrFUGSTAj51CgznlCKm1RSldO98Zp+9fgLPzOjqKgI8+bNG3Rx9Yp0LqJexdpYKSgoQHd3N5YvX57wvA33iq1hINGPhWy4aKPRaFptD0xMN6zVWpTK99B8P8nSuuP3GeRifUT0YQAfA/BfzPwaES1h5lV+jysUmBlP3d0SK9PWJkHE55wTa46ZqEKwKRZKSkRUHD8u+5kyReJpdu+W/fT1yes7OsQaE43KcTo7Zf3UqeKumjBB/p86Vf43SWQ5SkWQJBNC5vkwlyc7dpYIZbaU21RlL7pUJ7rwz5s3zzHFNBPcpteawZBeC5vi4mIw85BfrXbnzen81NfXB77AW1hZvXo1ZsyYgUgkghkzZmD16tUJt0/0YyFRGnUmZJI+nqkb1syWSpTWnYfF+r4I4E4AnyaiqwGc6/N4wsPcueIGeu45ERwlJRJz09sr65I1xzTFwjnnyN+uLtnPCy+I1eboUamBs2mTHOf110UsEIm4GT9eLDyRCHD99cDNNwN/93eSMeW2WWUqjTaTdRz3qVFmPKG03NjFxNilKnvhvkp2kSssLMy4cF8qxzVpamoa0l7BK+wyvkx3AjA4QNRpnMyMNWvWYM+ePZg/f77nY1TsWb16NZYsWYLOzk4AQHNzM5YsWQIAmDNnzpAilOXl5QldrA0NDaisrMSuXc+y5tEAACAASURBVLs8HWcmIiFTgWH+GIh3P1stlE4FPQNcrK+VmY8CuIOIvg0gt3eaMFNZKVaWgwfFekMkVosdO4D//E8RGoliTUyrSSQCXH018MorwB//KPubOBGYNg04cECCjZ9+WkTTqFHSruHgQRFCY8bI8oKCWPxLKr2lUmm0mcwyE5C+VqEUN4kuSla8+PWV6AbudTyCFTOGwInHHnssK8ImEdFodJCgcnMeGxsbUVVVFUhTflhYvXo1li1bhj179iASiQyxanR2duLOO+/EZZddhqeeemrQd2bOnDkoKChwbBvS1taWFWtFJiIhU1eZm2O7/QEVIB43/2HmrxDR3/k5mNDR3w9cdZUIkJdfFvfQ6NFyc08WmLtjh9TEmTJF3EijR4tQqaiQYOEjR0T4ADGLzbhxsm76dLGMRKMiStLNSEpFkLgRQgHoaxVKcQO4qzXhRal0N13As8GJEyds4xLMQMpcj8ckHUEV1DiFMBBvqXFy1+zbtw9r164dFBu1Zs0arF+/HgsWLMBFF12E4uLilEQDEYGIUp4TmYqEurq6tH9YFBQUDBzbTbxYvgTKM/O6uOf/6ddYQolpzdi+XYRNWZnEwkyeHOst5RSYO3WqiIOWFuBPfwJOOUUsMP39kv3U0SH/E0mm1KhREjBstmMYOVKsPx/96OAO4qmmY7sVJHZC6PTT5fkTTwSm9UNoxY0bvPj1FX+Ry0bwrh12bh27QMqgkOi8BDhOIe9ZtmzZgLBJBBHZCuLu7m6sWbMGr776Knbu3Inly5e7PjYz46abbnJ04TiRad0Yt4U27eak9Xkyt3W+FesjoocBfI6Z068kGlYyrfFiWjP27xdhs327CJY5c6Tq8PHjsW03bZLiei++KK6dq64CLr5YWif09Eia94gRwN69EpxMJM/7++XR2yvC6f33xWJTWCgWnOuuG3yMbKZjW4VQQOraxDOsxY1Xv76sF7lULv5e0NjYiMbGRtTW1uKNN94IpLAxz6vTDSfAcQp5z549e5JuU1ZWllQA7dq1Cx//+Mcxe/bslMT7mjVrksbt2L0mk7oxmQSq9/f3o76+PqE4suuSnicWnPcAvEhENzPzbnMhEc2B9ID6jG8j8xMvbs6mNeONN6TX08SJEiBcXCzWmMsvl+02bQIeeECCgEeOFKFSXy8BxyNHimWmpUVEjvmdZJbtiopE5PT2SmzPlCkibvr6JD3cfC+bNgG//a2MadYsWW6KLWbvrSoBqWsTz7AWN4D3pdL9ql5sLUbmFwUFBWDmQW4I0xJWU1ODPXv2DBlnwOMU8p6qqio0NzcPWV5QUID+/n5UVVVhxYoVuPPOO7Fv376E+3r00Udx3333pTyGtra2Ib3I3LwmnZIBjz/+uOvvgpNISybe7Lqk50OpA2b+KhG9BOAPRHQ7gCIASwGMBvA9XwfnJ5ncnOMtPjNmiCgxM5gOHJAWCc89J8ueflr+jh8vLRNaW8Wq8+tfi4Vm924RIIVxt+aCAhE3FRUS1zN2rNSxKS+XdgzFxcCTT4qbqLVVAo1bW8UKNHKkxOeY1h+rcPOiKnFA6trEE8pUcD+pq6uzbawZVsz3alZnLikpGQh2jm8aOH/+fCxatGhYNxXMNStWrECZWe3UoKysDA8//DD6+/uxe/duLF68GN/97ndd7W/9+vWDnptxNclIJxYr1Y7iTU1NWRf5brqkB7wT+p8APAngMQA/BPB1Zr6Amf/b32H5SGuruI5efFEEwosvynMztdkJ0+JjxtZ0dkpPqdmzJR38vfdEwJx2mgQJd3aKkIhGZbvt20UAFBaK+2nnTkkDP35cnlu/M6NHi/g5flyWz5gB1NYCl1wiQcijRomA2rZNhFB1tVh43nxTXGWAHN9MN9+0yX78ds09k5FKGnkOCZTlhoiug/yCKADwI2b+drr7smaImL9OFy9enHS766+/Hk888cSQ161evRq33347Dh06lP4bVFwxffr0IZ+X289TGYx5jpKdu8WLF+Mvf/kLfvCDHyTcn5ndNmfOHADJrRyZ4tYK2tTUhPr6+qyOpbS0FPPmzXPVJd26PChuKyL6LwALAPwCwJkA7gXw90TUyMzJA7PCChHw/PNiTRk7VsTH888Dl16a+HXxFp/ubunv9OST0tF79OhYET2zQN+YMZIZNXq0HKu7W0SUaQ3s64vF1lh/NBw7FttPVZVYYv74R3kds4ixzZulknFnp6SJT58uAur11+W4H/qQ7KOpSQTMSy9JMLOdxcr868aik0oaeQ4JjLghogIA/wXgwwBaAGwiot8x85up7itRLY/4G2b8dtaLu/m6v/zlL/jRj37kWwbScCP+83L7eSr2LF682NV5evDBB3HppZfi05/+dMLtzHgUU+Bkm8cffzxhLSTTNZSLQP54UZIs4zJgbqsmAHcwsxn89Cki+jKAl4joFmbelusBBQIzCwkY/DeZRdLqjjl4UFLAp0wR64lZeO/kkyWVe/JksQhVVIiFpqBAxEQkIi6liRPFWtPVJe6nSCQ2rr4+icGZNAk49VTZ9vhxcXcxi+A5cEBE2dSpsu3WrTKu8ePl9TNmiLWISITVtGliNTp6dLAIGzVKGnLu3es+BikgdW3ioVxcENxARJcAuI+Z/8p4fjcAMPP9Tq+pra1lOzP0jBkzbOMMpk+fjt27dyfdLp6CgoJABuqGHfPzcvt5mhDRZmauzcEQs47THM8mq1evTipwAKC2thYLFizIwYjkWE4CZ+XKlZ7EuZmVtxP9iLn33nsHPW9qasKNN96InTt3Dtl2+vTpuOyyy1BdXT1kXXl5OZYuXZr2WL2c40bF4lXMfJoX+0sVP+b4IFatErGxY4cIjPJyERF9fVJd2In6erGSjBkjwqWrS5Z3dcmy554T8XDppXLDP3FCqg5PnSqWk7Y2yawqKJBjHjkCbNkiAqSgQI7f1xfLlrruOnltYaEU+mttlfUVFSJw9u8XsXPmmSJOenpk/4WF4sLatk0sRTNnimXJDDKuqBD3FiA1c7ZulSwva5G+9nbZ1003Ze9ziCPTOR4Yyw2AqZBofpMWABfFb0RESwAsASRY0g6nDJH45W4ySQDn2iBKdjE/H7efp+KOZG6SdF1U8RQVFXlm7dy8ebOtuGlqavIsgL+7u9tVM9CLL74YL7/8ctL9NTc3o7m5GTNnzsStt946aF2Qyh8w8x+J6Cq/x+EbEyeKSDFv8EDsZp4Iqzvm6FERIJ2dIhwmTBDx8sorsXgZQLYpLwfmzxdLz969Ijg6OsT6E4lIrEx/v1h0+vpiQufll2XdhAmSBl5cLNu1tYmFaOJEETj9/WLZKSgQIXP++bLv9nY5vjk+QFxTH3wgrzHdSePG2bdX8DlAOFWCFFBsZwMcYlZi5lXMXMvMtRMdApacRE/8cqft4ikoKHC1neIt5ufj9vMcbqTaIwpw30/twQcfxBe+8IWk+1tnXtwNysvLsWjRItx777245557sGjRohTekTPMjMcff3zQsmzF2ThV/y4tLcXkyZNdCRsru3btGhKIHbTyB8z8XvKtQkq6vZBMd0xZmVhM+vsHC4eDB0XIvPkm0Ngoz6uqJOZlyxaxDh0/Ll299+8XgTJpkogS0x1FJOKnq0te398vFqYjR+RRWCgWmr17Zf2ECcDZZ4s7qaoKqKuT4OJLLgHOO0+sOub4JkyQ4OcJE0S4lJXJ+zn99MEBwgcPAs88I0Ktvj71gGOfCJK4aQEwzfK8EsDedHbklCGyYsWKpNvFU1ZWhiVLlmSlOaDijPXzWrFiBUaMGDFo/YgRI4Z8nulCRB8mooeI6FzjeQJbdDAw45Cam5vBzANxSMkETirZPQ8++CDGjx+fcH99fX144IEHBp5XV1djw4YNWL58OZYvX44NGzaguLg4hXfmTGNj4yAR1tDQ4HmcTX19PWbPnj0kA2zr1q342te+hgMHDqS138bGRixfvhzr16/X8gdBwypSrDd5t9V6b7oJWLYslpLd3y8NLt9/X6wpF1wgQmPHjlidGUBiYE4/XcTFtGkiZEaOlL9EMauNSVdXLLYmEpH1vb1ijenuFkFWXi6C5eqrRdCY42lvl+NMnDhYxBUUSO8ra3NPq9g7cEDca0eOyHIzo2rTJhE6q1YFVvAkFTdE9Cki+iURrSainxPRJ7M0lk0AqoloJhEVA/gEgN+ls6PFixdj1apVmD59OogI06dPx6pVq2wzROK3+8IXvjDkdQ8++CB++tOfJr3QK94Q/3nNmTMHCxcuHJJC7mFAa951TLarPNzZ2Ylly5YlfF2q/dS+973vJRUnHR0dA8UrGxsbBxXri0ajto1W06WhoQFNTU24//77s+LaYWa88sorA+Jm69at+Na3voU1a9Zk/D6YGY2NjXj00UcDV/6AiKb4PQZfMUVKsg7eiV5vFUjvvw98+MMiZrZuFctNezvw9tsiXMwA4ZkzxTJy8KAIldLSWI0bM3MKkP1YhXx/v6xvbRWrz/Hj8npAxnDbbcCttw4WbHbL7ESc9b00NkpMzpVXynjHjJHjPvRQ5inkLS1ZFUhuYm6uYOZPmE+MdMJfeDoKAMzcS0RfAvB7SCr4T5j5jXT35zZDJNXtnIIXy8vLUV1dbVtnY+bMmZ53TQ46ZtqsXXuLVGvbNDQ0YPbs2Zg9e/aQ5R7dJPKuY3K6cUhu+6lZ43I++tGPJrUIMTOWL18+JODWa8yeV06sX78+7Vo3BQUF+NrXvob+/n488MAD6Iiv3eERW7ZswerVq4OW6fdjAM4paUpyzJYELS3A3XdLNtOePbF4FjOeZswY4KyzROS89lqsMF9rK3DoUEy4ADHBkoje3pgb69AhEUrW8VhxEhB2xfxuumlwx3KTffvkWJlUJM5BywY34qaEiOZDgn0rASRuR50BzPwEgCeytX8vSPTLd/Pmzbbrdu3alZOeU6WlpZg9e3YgqhVHo9GkvXnc4kX39iTkrGOyV7WcnCoPJ4tDctNPLT59ubq6GhdeeCE2btyYcN/MjG984xv42te+lspbwf33348uM9PER/r6+tKqwJwOt99+e6DEDTOrsPGClhbgZz+TvwcPigupq0seROImOnhQMpfMejXRqLh9Dh8WN1GK1bwBiNhob491IT9wQKw01irE77wjaehTp8oxX34Z2LAB+MhHpNigndAwC/RZM6c++EDGbSXVgOMctGxwI26+CGARgBqIwPmSJ0fOUxL98k10s822sIlEIoMKjPktcBKdj1RFiRfd2xORq47JXtZyWrFixaDaP4B9XFk8bvqp2YnS66+/Hq2trUktkKZASJQmnol1JaiYlso5c+Zg/fr12Lx5c8LvvB/FQInoHxOtZ+Z/y9VYQsumTSJeqqvFBWVaXgoKJBUcECERjYrVZvRoWd7XJ3/TqOQ9QF+fiKT9+0U8PfmkpI+bFpKjR+W4Tz8tlqORI0Xw3HmnFPi77DIRVlahYVegr7BQgp+tpFqROActG5KKG6Ny5SOeHTHPqaurw9q1aweVk49EIqirq0N9fX1OConFQ0S48cYbB7U5qKqqGvILPVeYlgCnbtCpihIvurcnI0cdky8E8C4z7zSO+UsANwBIWdy4rTxsR7J+ak7i89Zbb3XtrjEbupqunmy6efykuLgYCxYsGBT/tWDBAixYsCCpiPPBNTXa+DsL4no1YxoXQtoyBB8veiFlk9ZWCe41G1yagiUSEYHT3R3rEm4GDnd0yPNIJCZ2rK6pVOjokGyso0djfapMC8mxYyJuioqkmvGJEyJwenpEcLW0iOCorIxlctkV6Pvc54CNG8VSlG5FYjuLkMctG1zZv4joYSPIVwGGZFIQEfbs2eNbRpWdoKqpqRkUhJsriGggpqaurm7IOUlHlMS/lyz1pDI7Js+wLiSiOUT0E4+OYVfLaWr8RkS0hIgaiaixNUF/m8WLF2P37t2DekR5QaI5c8cdd6S0L9OSE0Zhc9FFF6GrqwuXmx2f41iwYEHChqFustu8hJmXM/NyABMAnM/MX2bmLwO4ABJy4AlEdB0RvUNE7xLRV7zar2e9kLLJxInignr9dXFBlZWJmOjujqV2m/eP7m6JkWGOZT8dOyaiKJPaat3d4n7auBH45jeBNWukyCBRrCrx4cMiTEyL0a5dMobOThn/88/HxhkfbD13bvrZZSbppt+ngFvnXi4u/HlBQ0PDkKJ+fX19aGxs9DQrJFXsUnlramqwdOlSz2qNuIGZB0SHl6LEfC/33nsvli5d6nm2CTN/FdJr5w9ENJ+IbiSiZwH8FMCzHh3Gs1pO2cROlFprPdXWhqL4c0ZcfPHFeOmllwDYny9AXFUrVqxw/NHjJrstS1QBsF6sugHM8GLHFtfrPABnAfgkEZ3lxb4HxWmY7hOzCWRQmDtXrCO9vSJ0IpGYcCGSbKiCgpj7yWytYN5TMnFLWTEDjM02EAcPSrG/Q4diQuvIkViV42hUxJjp5k7WfsLr7LJ0BFISXFUoZuavEtFLkAv/7QCKACyFmDm/59lo8oAgVRa1kmhcuexQHP+rP5kLJGBYOyYfAPAxZvbSXO9ZLads4hSXs2HDBkSj0YFYmrDFzbjBLpYoWRzTtGnTHNtZ+FRl+38AbCSieoi4vgnAwx7t2zPX6xByEKeRMZWV0rqgogJ44w1x7UyeLDVuAHEDjRghQsMs/Gf9sczsLkPKLdGouJx+/3uJA4pEZFl3t4isceNi3c937ZKxlJYCF1/sndBywi6by0NSab+Q7Qt/XpAscNgvnFwJXpanByS+qD/BpO/u7sby5ct97X6cDjnqmDxQywnA+5BaTp9Kd2fZ7DbtJErN2KcFCxagqqoqaasCv5kwYQK+9CXnHIjly5cnjJNzen0qIn7x4sW48847sW/fviHrpkzJfXkZZl5BRE8CuMxY9DfM/KpHu/esjc4QchCn4QmzZklRvnnzxGKyfbu4ho4dkwJ7fX3SY8pawwYY3MAzU8wigMwSAHzsmLiq+vqk0F9Xl1hu+vtFbJlxM6ecIpakjRuBa6/1Ziw+4Urc5OjCnxfYBbf6jRnQHI+Z0pspZhp7eXk5uru7BxVpi8dc53P343TIesdkL2s5+dFt2txvfFdwrwWOGYScC9Kpy5NO3NjVV1+NRx99dEhQ/NVXX53y8b2AmTcDsK9dkRmuXa8AVgHSOHPQSqegYbvMnVQDWbOFdcxEkoo9Y4aIhw8+EAHR3i7bTZok3cN375Zt40WOF5hF/woLpalmSYlYanp7ZTxTp0rF4kOH5GE27zQ7jh84IOLH7v0FMZDbBreWm6xf+PMFOxN0dXU1tmzZMuTCVVhYmFAIOJFKF3IzBdXuhmaX0psON91008D+zUq0bkinpo1fMPMPbZb9KxG9Cqm95EnHZK9qOXlVQygdrNa7OXPmYM6cOfj+97+Pg2bxsBQpKSnB3Xff7eUQs0o6cWPV1dVYuHDhEEubXcfwbEFEf2bmy4joGAYLDgLAzDzG4aWpkJnrNVlxt/jMnSuuyOwm68VN227MzOKWevppcUFNny5i5913gffeE9fPqFGxNPBsZdlGIhJLU1gorqjeXsnIOnZMnpeUiKVm/HgRN52d4jqbOlUsPU7vz+OCe9nAbcxNTi78+YKdCbqqqmrIhQtAWlYeN8LGTaVfr9xRZsxOTU1Nym65ZNtm07XiBUHtmJyDwoa2NDQ02LolTdeN25TvRHVwgk4687O8vHxACMYvzxXMfJnxd3SybTMgM9drsuJuXsZpeHXTto552zZxOTU3i0tqyhRpVnnihCwrKJCYl8pKERNbt8aCeLNBT4+4oIqKxHp0/LgIqZISYOxYET6trTK+a66Jne+OjlhdnmSfSUCtOqnE3AwhqBd+v+nu7h4IviwtLU3bguNEImuNFa/ig6wuD6cWE4nG4MTjjz8+aF9BdWUFsWNytgsbOpFsPqWaKp4qblyj2SS+DIRbclGryS1E9FEATzLzMSL6KoDzAXzDi7ibjF2vuQwa9qpKrjnmbdukR9Lo0SImTpwQ11NhoQiYSEQK7EUiInxGjIhZS7JFYaGM5dixWFsGQATWoUNipTH7WRUWivAxKyafeaa8n9/+VmKIzCafQOwzCbBVJ+Ou4EG88OeSpqYm/Mu//AvWrFkzcOGPRqMDF1/z/0T1LlKluLjY1c3fKUU1HUyXx/bt21N6XVtbG1auXDmomzMg581OJDl1qFYG41UNoVTJdd0kK+b7mzdvnq81pVauXInly5fbzmsnclSryS1fM4TNZQD+CpIpNcQ6ny7M/AQzn87MpzJz4pLZ8ZhBw1ayFTTc2io3aSujRsWyh9xijvmFF0TYjBkjAqGiQgTMu++KhaS0VARPaakIjvfeEwtKRcXg+jdewixj6+yMxfZEo2LRKS6W8VRUyHvo65P6N3198ry3V15XWSmutZdfjgkk8zMJcHp+RpabMJKKmyQ+qDMRiTKMUsWtNcYpPijdFN5kxy0tLUVxcfGQ7ewsMokETBCz0YKGmzYK2aCurs6XDCmnNhF+zBXzmG4tjfHXlEWLFvltmTT93vMB/ICZ1xHRfT6OJ0Yug4a9yr4yx7x/v1hidu0Sq8jo0TGrTX+//C0oiImI9vZY0b5kdWVSwcy6Mq02BQWDa+kUFcXq4IwaJRaXs86Sc2y6lrZvB/bulQeRjHP0aLFOFRfHPpMnnghser6KGwupZqB4FbCbKqn8eraLD9q+fXtWbgqmq8yuc3p8sGui4/tpHcgn/KghVFNTgz179uSkxk15eTmWLl3qOA7zvVvFQ65JFsTtR1abC94nov8H6XH2HSIqgQdWfE/IRtCwE14JKXPMv/ud3PzHjRMXjhnLMmZMrK+TWVfGLPgaicSCib0KKjaLBJaUxESTKZyIRNyUlIgFadIk2cZ6zT10CPjLX6QFQ0WFvAdzP++9B1x4YewzCXB6voobC6lmoPhxMSWijF0P2Uhnr62tTSpcrMsTxQP5EYeguGf+/Pk5ETepWChrampSsqR6SbICmn5ltSXgYwCuA/AAMx8lopMA3OnXYIaQadCw2wDXTIVU/HFqa8V9M26cxLL094vFo7xcBMIpp0gl3t5e4P33Y1aVwkKxopjZTOmInIIC2d/48bH99PTIo7tbxmLut6srdswxY+Q1hw/H2lo884xYlTo65H2Ulcnyvj7g5pulIrFJgNPzVdxYSDUDxY+CfiNGjMj4ohjv0sgEO3eBm2BXJ4FlFUlKcMnF3E/Vghc/r4uLi9NqiVJaWppSwHKicfqV1ZaEKICRAD4J4J8hFeeP+jkgz0g1wDUVIeVUy8Y8zs6dwIc/DLz5pmxTWgqcd54InlNOEQH11luyvLJSxEZpKbBvn4ggq1Xl+PFYjEwkkrxaMLOIkL4+Cfrt7haXknX+m+6qnh4RQ+eeGxNDZ58ds7709IjVprlZXFGlpXL8AweG9n7KpaUtRVTcWEg1A8WPgn5eZYlYzfp2bqRkJHIZuMkM8StmRPGGXMz9dCx48a66pqYm1NfXJ6xCbKW2tjahVSq+QndRURGqq6sHvkPx89ivrLYkPAigH8DVEHFzDMBvIZ3C8xsvMqDsLD/AYNH0zDOSUXTyybFA2smTRaRceqm4dd55RywkpvvHrEa9b58IkSNHxFU1YkQsU8kUIFYxY/5fVCTCw8TqaiopkTG0tcn+urtjMTf9/fIw3VOjRwOnnSb7uvRSsdpMnx7br2lpmjxZ9nvkiOznqqsyF4g5RMWNhVTTNe1u0J2dnVm94GfjopjqjSpZVo5b4ZJnfacUC+bnZpY88BovLHhNTU3YsGGDa2EDSL8ssyK3Hcw8sJ6IUFlZOaiAZ3xMTZBSwC1cxMznG3XKwMxHiKjYzwF5Rqap5E6Wn+LiwaLJLHy3fbtYSg4eFEHx7LOyburUWCDvkSPAn/4kr2UWq0x3t4zVdE0VF8u6ggJZbzbc7O2NWXRMt09Bgawz3U7FxbK+rCwWF1NeLscwKxUXFMjrR44U0XPXXXJOPvc5Sfe2xs1UV8v7GDcOuOiimKtp3jyvPqWcEAhxQ0TfBbAQ0p12B6TXSc7NpOlYE+IDG9euXZvxOIqKinDOOefYVj3OxkUx/n0nMsu7rbGjwiX81NTUoKGhwXNxU1xcjPnz52e0j1QtNlYSvca6jpmxa9euIdtYY2oCaqHsMbp3MwAQ0USIJSf/yTTA1cny8+c/A9ddF9uuvFysLm1tImxeflkEB5HEtLzzjgiO4mLZ7u23xUXV3S3Py8pEcJjCY9IkETVmxWCzonAkIv9HIrLfkSNjTS+LimICyOzsDcRq6gAyHtOCA8SCgx96SI61Y4dse+iQuKamT5cxn366jClgrqZUCIS4AfA0gLuNAlDfAXA3gH/yYyCZ3JSdqremAhEN1L+wq3qczb5B8eZ8669yt6JGGV5kI3akoKAg432kYrFJZKlJF+t5CaDQ/w8A9QAmEdEKALcA+Kq/Q/KITANcnSw/Zr0Yq3XjuedECL3zjgiEY8dEWEyZIkJl714RJKZFZd8+2UdpqTw/9VSpElxWJq/dtUu2MSsIjxwp25vuqEhExnbokDwfNUoehw7JNkePyt+KChE00agIHzP9PBqVfZaUSPwMc6yI39SpwOuvy/hnzQJuvTXvxEw8gRA3zPyU5elLkC9b3uHFhZ6ZBy6Efl4U7YIz3RD0dgqKt2QjsNgLS5CbfWTS/y0Z6biPV69ejWXLlmHPnj2oqqrCihUrsHjxYk/HRVJi+U+Qppl1kL5SNzLzW54eyC8yCXBtaRFLxksviUCprhaXU0eHZEIdNZwJo0aJdeO002S7Z5+VCr6RiGzf3i4ipa9Plp04ESvWF43K63buFGHT0iLurUOHgKoqERddXSKOKirENdTdLcc87TSJl4lExGI0cWJs3yedJILFdFOVlcVq7HR1xSw5kYgEN5eXx6oRT5wo21xxhbzOmg2VxwRC3MTxGQC/clpJREsAAAjWrwAAFihJREFULAGkn1OQ8OJCH5QaL+nU5whoTQ8li2QjsDgX34HS0lL09vYmFDbmNqm+t3Tcx6tXr8aSJUvQaZTib25uxpIlSwDAU4HDzExEa5n5AgBve7bjIJFOgKsZazN1qoiYo0dF5MyeLZaPG26Q7ayi6bbb5Djjx4uIeOEFYOZM4KmnxGJSUhJL8T7tNFk2cqQIkNGjRUhMmyaCauRIsQpddpm0bDh8OJYldfiwbN/fL8e96CKx4JSWAi++KC4xM4C4okLEjZnW3d09OK171CgRZIcPx8ZdWipxQQEpvucVOSvcRER/IKLXbR43WLZZBqAXwGqn/TDzKmauZebaiQEoFGQl03YHAQg0HCBRfQ4vX6PkL6aVrqenJ+2eS/FEIhFPvgOlpaVJt0kkWoqKijBv3rxBLRNKS0uHtFEpKipCbW1txm0Vli1bNiBsTDo7O7Fs2bKU9uOSl4go/zOjvMSMtZk5E7j4YvnfrEdjppFXVopVY8kS+WsKqLlzYy6haFQsMoWFsUJ65eUxkTJpkrigZs4Uq4sZpzN3rmReTZkCnH8+cMYZsm7ECImFOecccWMVFMj/zMDjj0va+dlni4Vn8mQ5VlmZiJbTTgMuuABYvFisNZdcIvs4flzEzMGDsm00Kq8LSPE9r8iZ5YaZr0m0nohuBbAAQB177QDPEanWj4lEIigpKUE0Gg2cCyed+hwBremhZIF4K51XX9mSkhJPvgPz5s1L2CYikcUm/rsYH4uWDbfrnj17UlqeIVcB+FsiagZwHOKaYmaek/hlIcYaazNhgjz6+8WSkcwKZLrCnnxSUsDHj5dl7e0iQiZOFDdVJCKup7POisXJtLTI3127pFFle7tYc8z6MjNmiMA5elQCmnftkkrIV1wB1NVJptPbb8trjh0T0dLTI3EzJ50kQuvIEeDaayUGaMQIETFlZTKmadPk+fTpcozTT5d9BqzDdzoEwi1FRNdBAoivYOYstkjNPm7rxwRNzMSTTn2OgNb0UNIg2U08W61HvKzj5JSmbs7HdER3tuLgqqqq0NzcbLs8C+RXTm8uyDTLqrIS+Oxn5f8XX5RmmZMmiYuoo0PcXbffLoXxKirEqtLcLNacOXPEQrR9u1hRzEDfUaNE4JiWFSAWyzNmjDxuvhn4zW/EgjNliox3xAix7phus1WrRLhNmwZs3iwWo85O2W7kSBE206bJths3BrLDdzoEo58I8H0AowE8TUSvEZFnHWr9xKlz86JFi7B06dLAChsgva7TfnWqVrzFtMrEN4i0dsDOVm8wL4WwXfdwcz4mciHbvd9ss2LFCpSVlQ1aVlZWhhUrUmuq7QZmbrZ7eH6gfMJ0LbW3i8WmvV2ex1fkTcZ114lb6eabJQh58mSxonzrW8CCBdKXaetW4Ne/lqaTfX0ifM49V1xYHR0Sc3PWWSI8GhvFZdbeLm6knTvFEvPkkyKidu2Sx8GDIpROnBDRMmZMrDO3tdN6b6+4qq66CrjySnFpffrT4mZraQlsh+90CITlhplP83sM2SCgNS5ckW7Nn1RfM1wISi0nN7jph5TISrd06VJXVa/tqv16KYTdzEcnF3JPTw82bNiQs7lsBg1nO1tKccCrNgLW/YwYIWLGdO20tIhlZOpUibNpbJTYnClTZJlp0TFbN7z/vmQxzZolrqsnnoi5ryoqZLvnnxc31CmniKXoxAl5remCAmLp8du3yzpALDcXXSSWJbN6c6YFEANGIMRNvuHG7x6/zaJFi/LuJp+OCT6ANT2CQmBqOSXDTexUssq7dXV1WLt2bcK6TzfeeGPWxUOi+WiuW758ue36aDQ64NbKRebf4sWLVcz4iVdtBJz2s2mTWGrefDPWkLK3F3j1VYmxMSsYjxolMT8f+5hkO23fLqnf0Wgs5Xv/frHG9PTIPoqKRJwcPy7bVlWJeDHHc8MNwDe/KRaZigqx2FjjioBAd/hOBxU3KeIm3Xm4pkRrjRtn8qmWk5vYqWRWEfOvU1BveXl5YISw2xIOAejmreQjLS3Ahg3AI4+Ie2nCBLG+nHQSsGePCJKNG0XU9PaKa8u0opi1cwDg0UclTueMM8QF9d57sv2IETFrT1mZBCtHIoMFVmUl8Fd/JRYbJ/ES4A7f6RCUmJu8wU26s9M29fX1OfXj5xI3cRrKAJ8BsMFpJREtIaJGImpsbW3N4bAEN7FTboRsTU0Namtrh+w/aHFYqZRw0Mw/JSVaWoCf/UyyqMaMEUvM/v1AU5OIl+JicSUdOSJWmxMnpF7Oq6+KkLFy5IgImMmTRRzV1IhosTa5bG+Xba69Vo5tJVlckWnhKSsTa05ZWd4GEwNquUkZNyZ7p22YGWvWrMGGDRtC18rATZxG2CGiPwCYYrNqGTOvM7ZxVcsJwCoAqK2tzXlZhGRWGbeWyaamJmzZsmXI/s8555xAzYn495uoHYNm/g0D7LqCp3uD37RJgn3Hj5eMp5YWERYdHbLcbKFAJDVsamrkeXu7CCJAspnMhpnl5bFMp7FjJXtq9Gipc9PeLv9fe63E7sTHyriJKwpoh+90UHGTIm5M9snM3NFoNDRuKusveDuG0y/dMNVySuQySmSZNF/rtB0AbN++3ePRZo71/TrF4AAIlMVJyQJOXcHTtWC0toq1Ztw4ETDnnSdWmWPHRPBMmSLHKioSy0tZmYifrq5YiviIESJEFi4UYbN/v1hcJkwQIfPqqyJ6Zs2KtYxob7ePlQmReEmGipsUSRZI6bRNPGGwasT/grdDf+kKYarllMgyaRXt+Sp4nX6cENGA5RVAIItvKhni1BXczChKlYkTY53By8okK6qwULKZpk2T/U+dKs03zUwms3Lxvn0ibi6+OOY6WrdOWkJYY2LuuSdWn8a0+uRxrIxXqLhJETfppeb/9fX1CSu3Bv0in4xkhdyCFlvhM98HUAKp5QQALzHz5/0dUnokskyaKdQ1NTV5W9TR6ceJ+V22FgZ0SijQwPo8xet06LlzgTfekKJ+/f1ivenqklYIt94q26xbJ5ab48dF1Jgdu/v6RFB1dsasR05upZNOyjyNPWSouEkDN1ke5vpElo2gX+STkayQm17UY4SpllOyNO9oNIqmpiZXVk4/SCY+UonBAQZbYYdrpiSQX7WcHPE6HbqyUioFb9gAvPKKiJbLL5eMKLP2TXGxZDjt2iWZUGZKeH+/uJqs1iNrT6v445jbtLbGCu8NY4Gj4iaLmBczuzLwQbjIZ0qyQm5KeEnWKLOhoWFgDgTJiuFWfLiNwTExvwfDPLA+b2o5OZKNdOjKSuBznxu63Brfc8stkh31+uvijjr9dBE2Zhp4MuuR17FCIUDFTZYxL5JhNFUH9Ze5kl0aGhrQ19eXcBvzZh+UWjYm6YgPN3VwkvWryncXtBvyqZaTI15VKnZDfHzPzJkSZLx1q2RNpWI9yjRWyMsMsYCg4iZHBO0i7wXabiHcOAlyNzfqoLpc0xEfyRIErII+X+OMssBnAPzKaSURLQGwBMhac9D0yVVGkVN8z9ixYi0yn7uxHmUSKxRSq4+KGyUjwijalMTum2SWjCBb79IRHzU1NdizZw82b94MZgYRobCwED09PUMEfditmWGp5RQInOJ7Zs0Sy0m89QgA6uvtrSuZxAp5nSEWEFTcKIoyhETum7q6Ose2CgCwcOHCwAredMSHWYzQDCo2/9r1iwu7NTNMtZx8J1F8T7z1KJl1xW2skJ37KWQNM01U3CiKMoRE7puamhrbIHkAKC0tRUNDA9asWRPIG3s64iPVOJ3has0MUy0nR7yMTUklvieZdcXNvpwEUnFxqBpmmqi4URRlCMncN/PmzRtiASkoKEBXV1dOO2mnQ6riYzgHCadIaGo52ZKN2BS38T1urCvJ9uUkkKLR1GN88gAVN1kmjFlSSvhJ5r6xs4B0d3cPseaEIQ1ag4TdEaZaTrb4GZviRf0dJ4F0/HjuMsRySKDEDRHdAeC7ACYy80G/x5Mpw7mgl5LfuK3EbX3uVA8m3y0cYQ8SVlySi9gUJ7eXF/V3EgmkEPacCoy4IaJpAD4MYI/fY/GKYV7QS8lzUnXfhNXCEfYgYcUlXlcvbmkBnnwSaGyUtgwzZgC9vfLXzu2VqXUlGwUKA0xgxA2AfwdwF4B1fg/EK9RXrwwnwmzhGK5BwoqFuXOBhx+OdfouLhaRYfaIspIs8LilRfa1bZsU7mMWoTN+PHDyydJjyi5oOBPrSi4LFAaAQIgbIvoIgPeZeUuysu75RFh/ySqKHWrhUEKPmd3e0QEcPgzs3ClWFrNXFOAu8NgUPhMmSLdwQLqFHz0KrF8PTJkClJcDp54qMTFOpJq9FUL3kxM5EzeJij8BuAfAtS73E9zKlnGE+ZesotihFg4ltGzaJC0Spk4FXn5ZxASz9IPq6oqJFzeBx6b1Z+zY2P6Li6V7OCANNE+cAP70J2m0aYdX2VshbL0AAJFcHYiZr2Hms+MfAHYCmAlgCxHtBlAJ4BUishNCYOZVzFzLzLUTA56HX1NTg4ULFw5YasrLywNd4ExRFEVxoLVVYlW2bwdGjhSLS2kp0NMjAsPsxG1uZ2XUKFluMnGiiJkTJ2LLurrEHVVWJjE4gPx1qoVoFVGmG8s6DjeYAqmzUwRSZ6c8b2lxv4+A4rtbipmbAEwynxsCpzYM2VKA/pJVFEUJBWZAcVtbzOJy4oS4j6xZU24Cj+fOBd58c3DMzfHj0nqhshI4ckT2e/nlgFOTWi+yt0LaegEIgLhRFEVRlMBjZhsVFYkQiUTk79lnDxYvbrKSKislENmaLXXuucCZZ4rry6S9XSw5dq6jbNa+yfPWC0AAxQ0zz/B7DEr6aNFCRVFCiZlttGED8MwzwKRJIjKKiweLF7dZSZWVwGc/Kw8g5iJqbx8sik4/3T625sILgY0b5bXZqH2T5wRO3Cj5ixYtTE7YClUqyrCishL43OeAefNilpSysqHiJZ2sJCdR5OQ6amnR2jcJUHGjeIYWLUxMGAtVKsqwJFsp1Xb7feIJZ9eR1r5xRMWN4hlatDApoStUqShKlsm26yiktW9ylgquhB+n4oRatHBwoUq/x6IoSh4xd664itrbgf5++Xv0qCxXHFFxo3hGXV0dioqKBi0bTkULiegPRPS6zeMGSLHKr7vczxIiaiSixlZrbQxFUYYfpuuorExcR2VlqRfqG4aoW0rxjEzK74chy4qZr7FbTkQ1iBWqBGKFKi9k5v02+1kFYBUA1NbWOlTwUsJGGL4DSpbI1HUU0irEiVBxo3hKOkULw55lFfZClUrmhP07oPiIV20a8gx1Sym+kyjLSlGGA/odULKGF20a8hAVN4rvDLcsK2aeoVYbxcpw+w4oOcRNr6sQouJG8R3NslKGO/odULKGmUpuJSRViBOh4kbxneGeZaUo+h1QssYwTSXXgGLFdzLJslKUMKDfASVrhLgKcSJU3CiBIJ0sK0UJE/odULJGSKsQJ0LdUoqiKIqihApizt8aYUTUCqDZp8NPABC0jBcdkzCdmUMRLadzfAg6JmG4zPEgft5+MdzORUZzPK/FjZ8QUSMz1/o9Dis6JsVLgvjZ6ZiGF3puY+i5SA11SymKoiiKEipU3CiKoiiKEipU3KTPKr8HYIOOSfGSIH52OqbhhZ7bGHouUkBjbhRFURRFCRVquVEURVEUJVSouFEURVEUJVSouMkAIvouEb1NRFuJqJ6IKnwax3VE9A4RvUtEX/FjDHHjmUZEzxDRW0T0BhHd7veYlPQIyhw3xhKYea5zPHcQ0X1E9D4RvWY8rvd7TLkmSHM/X9CYmwwgomsB/JGZe4noOwDAzP+U4zEUANgG4MMAWgBsAvBJZn4zl+OIG9NJAE5i5leIaDSAzQBu9HNMSnoEYY4b4wjUPNc5njuI6D4AHcz8gN9j8YOgzf18QS03GcDMTzFzr/H0JQB+NO+4EMC7zLyTmbsB/BLADT6MYwBm3sfMrxj/HwPwFoCpfo5JSY+AzHEgYPNc57iSQwI19/MFFTfe8RkAG3w47lQA71metyBAF1kimgHgPAAv+zsSxQP8muNAgOe5zvGc8CXDNfoTIhrr92ByTGDnfpDRruBJIKI/AJhis2oZM68ztlkGoBfA6lyOzYBslgXC10hEowD8FsBSZm73ezyKPXkwx4GAznOd496QaA4C+AGAb0A+728A+FeI0B4uBHLuBx0VN0lg5msSrSeiWwEsAFDH/gQwtQCYZnleCWCvD+MYBBEVQS76q5l5jd/jUZzJgzkOBHCe6xz3jmRz0ISIHgKwPsvDCRqBm/v5gLqlMoCIrgPwTwA+wsydPg1jE4BqIppJRMUAPgHgdz6NBQBARATgxwDeYuZ/83MsSmYEZI4DAZvnOsdzhxG8bXITgNf9GotPBGru5wuaLZUBRPQugBIAh4xFLzHz530Yx/UAVgIoAPATZl6R6zHEjecyAM8DaALQbyy+h5mf8G9USjoEZY4bYwnMPNc5njuI6H8AnAtxxewG8LfMvM/XQeWYIM39fEHFjaIoiqIooULdUoqiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVNyGDiE4hoh8T0W/8HouiZAOd44riDBGNJKKHieghIlrs93j8QsVNHkJEXyCiBy3Pv2lU8QQz72Tm/+Pf6BQlc3SOK2GHiF5wWH4fEd2R5LWO3w8AiwD8hpk/B+Ajng04z1Bxk588DGAhEVUQ0QIA8wEs8XlMiuIlOseVvIGElO6nzPyhDA6Z6PtRCeA94/++DI6R16i4yUOMBoa/ALACwH8AuIWZo/6OSlG8Q+e4EnSIaAYRvWVYUF4BMI2IPk1EG4noNSL6f0RUYLiJHieiLUT0OhF93Hh9h2Vfy4joHSL6A4BZyY6d5PvRAhE4wDC+xxf6PQAlbX4C4C0ANzDzDnMhEY2HTPjziOhuZr7frwEqSoboHFeCziwAf8PMXySiMwF8HMClzNxjiJ7FAI4D2MvM8wGAiMqtOyCiCyCdvs+D3JNfAbDZxbFtvx8A1gD4PhHNB/BYRu8uj1Fxk798HUAr4j5DZj4EwJeuzYriMTrHlaDTzMwvGf/XAbgAwCYiAoBSAAcA/BzAA0T0HQDrmfn5uH1cDqDesMaAiH7n8thO34/jAP4mjfcSKoatySqfIaIvAxgB4GMAbvd5OIriOTrHlTzhuOV/AvAwM59rPGYx833MvA0iepoA3E9EX7fZD6dyUP1+JEfFTZ5BRFdDVPmtzPwsgDFEdK6/o1IU79A5ruQpDQBuIaJJAEBE44hoOhGdDKCTmR8B8ACA8+Ne9ycANxFRKRGNBrAw0UH0++EOFTd5BBFVAfgRgI8y8zFj8fcALPVvVIriHTrHlXyFmd8E8FUATxHRVgBPAzgJQA2AjUT0GoBlAL4Z97pXAPwKwGsAfgtgwG1FRE8Y4sh8rt8PlxBzStYwRVEURVGUQKOWG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQsX/b7cOZAAAAAAG+Vvf4yuK5AYAWJEbAGBFbgCAFbkBAFbkBgBYCUAv90P691cqAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAADQCAYAAAD79kC9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeXgc5ZXu39PaLHmRvBssyzYgDBiZTWYJcFlEGIztAIaszlyY3MST5GYGzwSYgJOAJ3FIJsyMM5MhuSYbMzgLSSw7GEwgChASFlsGbLHaeJERtrG8SZbV1nruH6dKXWpVdVd3V3dVl87vefqRuqq66uvqr6vePisxMxRFURRFUcJCxO8BKIqiKIqieImKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEXJACK6iYjeI6IOIjovi8e5nIjeSbD+Z0T0TQ+OM4OImIgKM92XX6i4URRFUUIDEe0moigRHSOio0T0AhF9nogicdtdSERPGNscJqKNRPQ3aR72AQBfYuZRzPxq5u/CHmZ+nplnZWv/YULFjaIoihI2FjLzaADTAXwbwD8B+LG5koguAfBHAM8BOA3AeABfADAvzeNNB/CGmw3z2RqST6i4URRFUUIJM7cx8+8AfBzArUR0trHquwAeZubvMPNBFjYz88fs9kNEESL6KhE1E9EBIvpvIionohIi6gBQAGALEe1weD0T0f8lou0AthvLziCipw2r0TtE9DHL9tcT0ZuG9el9IrrDWH4lEbVYtjuPiF4xtvsVgBGWdbcR0Z9txnGa8f98InqViNoNl9p9TufR2NdO4zi7iGix40kPCCpuFEVRlFDDzBsBtAC4nIjKAFwC4Dcp7OI243EVgFMAjALwfWbuYuZRxjbnMPOpCfZxI4CLAJxFRCMBPA3g5wAmAfgkgAeJaLax7Y8B/K1hfTobYmUaBBEVA1gL4H8AjAPwawA3p/CejgP43wAqAMwH8AUiutHmOCMB/AeAecZ4PgTgNWNdleHWq0rhuDlBxY2iKIoyHNgLEQFjIfe+fSm8djGAf2PmnczcAeBuAJ9I0cV0PzMfZuYogAUAdjPzT5m5l5lfAfBbALcY2/ZARNAYZj5irI/nYgBFAFYycw8z/wbAJreDYeZnmbmJmfuZeSuAXwC4wmHzfgBnE1EpM+9j5jeMfexh5gpm3uP2uLlCxY2iKIoyHJgK4DCAI5Cb9UkpvPZkAM2W580ACgFMTmEf71n+nw7gIsPqcZSIjkIE1BRj/c0ArgfQTETPGTFCdmN6nwd3v2622c4WIrqIiJ4holYiagPweQAT4rdj5uMQt97nAewjoseJ6Ay3x/ELFTeKoihKqCGiuRBx82dm7gTwIlJz4eyFCBKTKgC9AD5IYR9WEfIegOcMq4f5GMXMXwAAZt7EzDdAXFZrATxqs799AKYSEcWNy+Q4gDLzCRFNwWB+DuB3AKYxczmAHwIg2MDMv2fmD0ME4dsAHkr+dv1FxY2iKIoSSohoDBEtAPBLAI8wc5Ox6i4AtxHRnUQ03tj2HCL6pcOufgHgH4hoJhGNAvAtAL9i5t40h7YewOlE9NdEVGQ85hLRmURUTESLiaicmXsAtAPos9nHixCB9fdEVEhEiwBcaFm/BcBsIjqXiEYAuC/u9aMBHGbmE0R0IYBP2Q2UiCYT0UeM2JsuAB0O4wkUKm4URVGUsPEYER2DWEiWAfg3AAM1bJj5BQBXG4+dRHQYwCoATzjs7yeQwN0/AdgF4ASAv0t3cMx8DMC1AD4BsQrtB/AdACXGJn8NYDcRtUPcQZ+22Uc3gEWQQOcjENfRGsv6bQD+GcAfIBlaf47bxRcB/LNxnr4Oe+sQIDrhy8Y4D0Picr4IDAQUdwQxoJgGu+sURVEURVHyG7XcKIqiKIoSKlTchAwiWkFEzxPRb4x6Dr5jFLvaaJgvz07+CkWxh4guIaIXjQySXxBRkd9jAnSOK0rQUHETIoyL6qnMfDnEz/oZn4dk0gkpEpVK0SxFsaMZwNXMfAWAnQBu8Hk8JjrHFSVAqLgJEEQ0yyiHfYyI/j6NXVwOYIPx/wYAl3k3uvQxCky1+j0OxX8ynePMvNcoggZIpki/tyNMD53jihIsVNy4gIg+QUQvE9Fxkr4iLxPRF836AhTrQttBRB8Q0U+NdMFUuQvAs8w8mpn/w2YcpxpjOMmybDER7SWiaZDKm23GqjZINc6s42JcSsDJozluLpsJaXK4Po0xpIzOcf8hm15JSuYQ0X1E9Ijf4/AaFTdJIKIvA/gepNHaFEhFys8DuBRAsWXThUaPkfMBzAXw1TQOl7CzLDPvgFzMlxpjuwTA9wHcyMzvQdIBy43NyyFpe1nHxbiUAJNncxxENAbAwwD+2kiHzTo6x/MXIppBUom3k4jeJqJrEmxbQkQ/IWkmuZ+I/tGyrtiIZdxN0oDySpvX/tAQ/4eJ6DEimppkbB8iohcyfpM+YNTP2Wyc181EdG6CbccRUb3xA6GZiD4Vt/5TxvLjRLSWiIb8MCeiaiI64VqIMbM+HB4QgXAcwM1JttsN4BrL8+8CWO+w7ZkAngVwFHKR/4ix/I+QwkgnIEWSTnd4/fnGa8+GVKj8uGVdDYCfG/8vAfB3CcZsOw7L+7kDwFaIBehXAEYkOQeO47Js8zMAZ/v9uepj0GeSb3O8EMDjkLibZO9N53iIHpB6Ln9O43UvQurclEKqEh8FMNFh2/sBPA+xgp8JqT9znbGuGCJuLzM+/yvjXnsXpHDeZEh37v8BsCbJ2L4J4Ks+n9f7IAUOU3lNMST+7R8gtXn+3nhe7LD9L4zv2Cjj/LUBmG2smw3gGID/Zaz/OYBf2uzjKeOzcTVW3ydskB8AroP49QuTbDdw4QcwzbiQfsNmuyIA7wK4x5gcVxsf6ixj/bMAPutiXE9Bbkhft1lnfjl/C2Ckw+uTjWM3gI2Q3iXjALwF4PMZjusJSBGoFwHc5vdnq4+BzyWv5jikuNlBYz/PwkZguByHznF/5tsPATwQt2wdgH80/v8KgB3GZ/UmgJss292GFMUNgNMhVXVHW5Y97/RZA3gfwLWW59+A/Y22BUPFzQ8A/Ivl+XwA7yQZ3ysAzrdZPgPSrmGJMaf2Afhygv08CeBLccu2AFhk/P89SEHDdgCbAVxu2e4+pC5urjXOFVmW7YEhBOO2HQmgG5YfMxDh923j/2/B+FFuPD/V2N76mX0CUmTQ9VjVLZWYCQAOsqXENhG9QNLoLEpE/8uy7VqS5md/BvAc5AOL52KIMv02M3cz8x8hpu5Puh0QEUUgv377IRUtB8HMdzPz5cx8M0vDMzvcjOM/WII3DwN4DICjydHluK5n5pOZ+RJm/lnSN6rkirya48z8P8w8gZmvNB6/ctiNzvFg8nMAH7fEco2F3CjNtgc7IIkR5QCWA3jEGudkhYi2kqXxZNzjQWOz2QB2slQENtliLI/f31iI2N2SbFsHfgzgUiI6maQMx2LEEjzsxn8SxMrzaoJ9XgWgGnKOvpLApfZzWOY2EZ0FcQE/bizaBJnf44xtf03SksFuXE7n9CgRfcXYbDaArWwoD4OtsD9XpwPoY6mYbGI9r7NhOecsLuBu43WmG/qfIVWSXaPiJjGHAEwgS1t7Zv4QM1cY66zn70aW5mfTmfmLHMvosHIygPeY2Zrh0Qxp6OaWfwVQASmnvTiF16U6jv2W/zshN4psj0vJPTrHBZ3jueF5iEXicuP5LQBeZOa9AMDMvzYEZ78hXLdjcL+kAZh5Dg9uPGl9fNHYbBRiSRYmbZC+SvGMsqxPtq0d2yDWi/chFpIzITdlJ64H8GScQIhnOTMfZ+mJ9VM4/0ioB3AuEZnNPRdDXGJdAMDMjzDzIWbuZeZ/hbiSZtntKME5rWDmbxubpXpeE22bbP03APyYU4xtU3GTmBchJk2vamnsBTDN+AVoUgX5MiSFiP4WwE0AboT8crzT/AWUy3FkcVxK7tE5nttxDWuMG/kvEbtJfwrAanM9Ef1vInrNtBRA4psmZHDIDgBj4paNgbi97LY11yfb1o4fQGJtxkNcMWuQwHIDETdOvaxMrDf0ZohoB0nWovmoMixTj0PcNzD+Ws/rl4noLSJqM85rOXJ7XhNt67jeCFK+BsC/pzpAFTcJYOajENPog0R0CxGNIqKIccJHprHLlyH++rtIusBeCWAhYiZZRwxz5LcgGSsfQIqFFSO9m1La48jyuJQco3M8OTrHPecXAG4xrAwXQeIDYTx/CMCXAIw3rIevA7AVkUT0RtxN3vr4obHZGwBOISKrReEc2GTsMfMRSGzLOcm2deAcAD9j5sOGxeQ/AVxIRENEBEll7SsAPJ1kn9YyA1UQ0Q5mHmV57DHW/wLAJ0ky+UoBPGMc63IA/wTgYwDGGue1Dc7n1emcdhDRPcZmbwCYEyfw58D+XG0DUEhE1ZZl1vP6BiznnIhOgViWtgG4EhJ/tIeI9kOSAG4molfsxj4IN4E5w/0BMfFthJiuWyEXziUwIsMRl0mSZF+zIfEKbRgaMPcsbIItAZwBCaK8Pm75/4WYdNN5T4nGMej9wCGIKxvj0oc/D53jOsdzPN/ehNzY6y3LzoJk0s0CUADp4t1rzhekny31EoAHIFaVm5A4W+rbxpwZa3z2+2AJkoXcdEdAAoqvNf43G1D/FCLUyiEB7fcAeN/hOFcD+GOCMc+AuO9WAygz5vIBWIKdbV5TAikH8jSAf7csvx4iiqZARPnXIbFjZoKA7dxPck7NbKnbjeN+CYmzpX4JEV8jISUm4rOl2iGuypEAHoERxG289ymWxwOQHxe2n9+gY/o9yfWhD33oQx/D6wHga8bN+6Nxy1dA6nMdhKRvP+eBuJkBEdVRAO9gsKhdDOANy/MSAD8xbrYfwMjisqzfbYzb+phhrBtviJEDhoD6M4ALHcb0AIA7kozZmi21H8BdLt7rj43XzbUsKzCWt0PE2l0YnP2YsrgxXnceJPMqCsn6Os+y7h4AGyzPxwFYC7Gm7gHwqbh9fcpYfhySPTfO4Ziux2oqTkVRFEVRcgARvQngFmZ+02H9DAC7ABSxJZNRcY/G3CiKoihKjiCiYgD/7SRsFG9Qy42iKIqiBAi13GSOihtFURRFUUKFuqUURVEURQkVhck3CS4TJkzgGTNm+D0MJWBs3rz5IDNP9HscXqBzXLFD57gSdjKd43ktbmbMmIHGxka/h6EEDCJq9nsMXqFzXLFD57gSdjKd4+qWUhRFURQlVOS15UYJPk1NTWhoaEBbWxvKy8tRV1eHmpoav4elKGmjc1pRgk/gxA0RFQBohJStXuD3eJT0aWpqwmOPPYaenh4AQFtbGx577DEA0JuBkpfonFYCR0sLsGkT0NoKTJwIzJ0LVFb6PSrfCaJb6nYAb/k9CCVzGhoaBm4CJj09PWhoaPBpRIqSGTqnlUDR0gKsWwd0dgKTJ8vfdetk+TAnUJYbIqoEMB/SX+QffR6OkiFtbW0pLVeUoKNz2h3D0gLvhwVl0yagogIYM0aem383bRr21pugWW5WQpp69TttQERLiKiRiBpbW1tzNzIlZcrLy1NarihBR+e0a4aXBd4vC0prKzBq1OBlo0bJ8mFOYMQNES0AcICZNyfajplXMXMtM9dOnBiKMg+hpa6uDkVFRYOWFRUVoa6uzqcRKUpm6JxOjsUC/yO/x5IzrBaUSET+VlTI8mwycSLQ0TF4WUeHLB/mBMktdSmAjxDR9QBGABhDRI8w86d9HtewJ93sEHMbzSxRwoLOaVeYFvjRThsQ0RIASwCgqqoqR8PKIq2tYrGxMmoU8MEH2T3u3LliITKP19EBHD0KXHFFdo+bBwRG3DDz3QDuBgAiuhLAHSps/CfT7JCamhq98MeRT/EIYU57zkS0h+UceI3VAm9cx21h5lUAVgFAbW1t/jc4NC0oZswLkBsLSmUlcMMNYiH64AM53hVXDPt4GyBA4kYJJomyQ/QCnzZmPMKYZBv6SZjTnsP83nxmeFrg/bSgVFaqmLEhkOKGmZ8F8KzPw1CQenZImH/pe0E+ZQSGWdh6+d50zscYthZ4taAEjkCKGyU4lJeX2woZu+wQ/TXsiryJRwhz2rNX703nvDJAPltQQlgIMDDZUkowSSU7RAucJSbfMgLDnPbs1XvTOe8MMz8b9JgyBaEtBKjiRklITU0NFi5cOHDRLy8vx8KFC21/lYb5l75HmPEIuwH8EsDVRPSIv0NyJsxpz169N53zSt6TShp7SwtQXw+sWiV/AyyA1C2VAsPVt+42OyQVF9ZwJN/iEcKc9uzVe9M5r9jipZsn2y4jt2nspoWnokK27+iQ5zfcEEgXloobl2TqWx8Owqiurm7QOQLC80t/uBLmtGcv3pvOeWUIXoqAXAgKt2nsedbqQcWNSzLJrhguQYdh/qXvNWHKCBwOwt2JZHN+OJ+bYcumTUBfH/DGG0BbG1BeDkyZkp4IyIWgcJvG7lehwjRRceOSTHzrYU6pjSfMv/SVoQwX4Z4Ipzmv52aYsm0bsHOn3PgrKoATJ0ToRKOp7ysXgsJtGrtfhQrTRMWNSzLxredr0KH+6lSSMZyEe6rouRmmHD4MFBQAZWXyvKxMhM3hw6nvK1eCwk0ae561etBsKZdkkl2RSAA1NTVlPLZsYP7qNAWY+aszqONV/CFfhXsu0HMzTBk7VtxSnZ0As/zt65PlqTJ3rgiI9nagv1/+Hj0qy3ONaeEpKxMLT1lZYIOJAbXcuCaTeJK6ujqsWbPGdl1Qf8V59atTrT/hxsmiCchnP5w/a82kGqbMmiU3/v37gSNHJOZm+nSgtFTSp1PJegpa5eM8KlSo4iYF0o0nqampcRQ3Qf0V58WvTo05CBd2QjUfhbtbMhXmmkk1TJk7F9i7F5g9O+a+2bULOHZMRE+qWU95JCiChIqbLGK9OBIRmIc2vw3qrzgvfnVqzEF4cBKqCxcudHxNUIW7G7wQ5po9OEyxs7ZMmSKWmzxJow4DKm6yRPzF0U7YBPlXnBe/Ot1Yf9RtlX28OMeJhGoY3S9eCXPNHhymxFtbVq0SK46VAKdRhwEVN1nC7uIIYMCCE/QbuRe/OpPd9NRtlX3SPcfxgiiRUF20aFHo3C8aDKx4Sp6lUYcBFTce4fZmwMy49957czy61Ih/L4sWLUpLbCSz/qjbKvukc47tBJET5eXloXS/hNEapfhIfBp1czPw+uvAKadIkHEIunAHDRU3HpDqzSCIWAWNlUysKcluevrrOPukc46drI7xWIVq2NwvGgyseIo1Duftt4EdO4Czz5YsqoD3aMpXAiNuiGgagP8GMAVAP4BVzPw9f0flDrc3g4KCAnR3d2P58uWB+nUbL87iycSakuimp7+Os0865ziR8MkXt2qmhNEapfiMGYdTXy9/h1Nwcbabf9oQGHEDoBfAl5n5FSIaDWAzET3NzG/6PbBkJLPUtLW1obS0FF1dXYgaJbiDFF/iRpwls6akE7Sqv46zTzrnOJlb1Xy93/PWS5zmb5jeoxIQctWjyQdB4TgOH7qJB0bcMPM+APuM/48R0VsApgIIvLhJdDMAgEWLFqGhoWFA2JhYLSJ+Zg25cQOVl5fbpraXl5ejuroaW7ZsSTloVX8dZ590zrGdILISpriopqYmbNiwYdB3M0g/PJQQkovgYp8EhS0+dRMPjLixQkQzAJwH4GWbdUsALAGAqqqqnI0pkfhIdDNoa2tzLHJmrvcra8h8T8koKipCdXW1bWp7W1sbGhsbh7zG6QZodx6XLl3qwbtRnEjVAhEviOwIQ1xUIndsmAScEjBy0aPJJ0Fhi0/dxAPXW4qIRgH4LYClzNwev56ZVzFzLTPXTsxRGl2yPks1NTVYuHBhWrEi5eXl2LBhg2NGS7aIf0+Jxrdw4UJs377dVVyRlfh9a7+q/KGmpgZLly51nNNhiItK5o4Ng4BTAkguejS1ttrX1Wlt9e4YbjEtVVZykAYfKHFDREUQYbOamZ3NHTkmUTqtiXkzSAXTIhLvrjLJ5sU10YW9tLQUpaWlGY8l/gbo5jwqwSKThrFBx42wV5SsUFkJ3HQTsGSJ/PXamuKToLDFp+afgXFLEREB+DGAt5j53/wej5VEpvn45oDJ4m+s29XV1SW8sWfz4ppojL29vUNcZKWlpY4izA67G2Ci87hy5UqNtwkAdm7DhQsX2rpk8726dLLvand3d1rNP/P9vCg+4SYAuKUFePJJoLERIALOPx+YN2/odrlwfbnFp+afgRE3AC4F8NcAmojoNWPZPcz8hI9jApD4IhgfG5MsGBPAgFUkUSwOAFRXV2PlypVZuUg6vScisrWuFBYWoqioyPF9zZw5E4cPH0441mSVbsMexBn0cgeJ+kfFWyXDUF062Xc1Go2m/J7CcF4yIehzPCekmqVkCpaGBolNqakBOjuHBgC3tAAPPwxs2waMHw8wA3/5iwiG224bfAztJh4cccPMfwZAfo/DjkQXwfjAw2TBmAUFBYNSwhNhDdT1+iJZV1eHtWvXor+/f2BZJBIZ9NxKNBodyPqye18tLS1YuHChZuEkJtDlDlKpZhyG6tLmOOvr6217vwH27ymRZSYM5yVDAj3Hs06qWUrm9tu3AyedJNs/+qi8dtw4ET2f/axsawqmCRMkTgcAIhHg4EH7QOFh3k08UDE3QcUMGHYi/mZfU1NjG6sAJBYQyfAiPqWpqQkrV67EmjVrhowj0bjEawjHIFM3Y3MTeB3mIE5m3sfMrxj/HwNgljsIBG4zo5qampK6GJcvX46VK1cGPli8pqbGUdiYxDd6TRQUH+bsMjcEfY5nHWuWUiQifysqZHmi7Xt65LFnj7yus1P+NjSIAAJE2HR3AyNGxF5fWirL/AgUDjiBsdwEnZqaGkerBRENXNzi68DEk2rGUTyZXCSTVSJOBDMPWI4yuYCbacmmuy2e4RLEGcRyB26qGZtzKBHxN34g2C6ZZLE31kavdlYeq2VGq27HCOIczzqppj2b25eXS6+pESOA4mLg+HGJqZk8OWaVmThR1p04EbPcRKOybOLE4BTtCwhquUkBJ2sMM2Pt2rVYt27dwIUt2a/BdMnkIum2TYQT5kXci/TgMGfhJCOI5Q4Ad59JqnMoH7LhnL7XQOz9m6LO6Xttfu+H87y2EtQ5nnWsWUoHDwIvvihupx07YhYYu+2rq4G2Nomj6eoCCgpE4NTUxKwyc+fK9gcPAvv3A6+9BjzzDLB5s1h47roLWL9elj/3HPCzn9kfc5ig4iYFTLeK6aKx0t/fj76+vqT7KC4uzmgMmVwkvTCNt7W1obu7G5HI4KmT6gU83kVl1tMJ8i98LwhquQPA3WeSzhwKuksm/n2b32/r+08m6szXDtd5bSXIczzrmGnPu3YBL70k/xcVAVOnisiJFxvm9sXF0kjzxAngyBGgqgq46CKx5Jjir7ISuPVWYPZsab55+LBYhWbOBLZuBd59F9i9GygsFHH07rvAhg05PwVBQd1SKVJTU5M0yykR3d3dab925syZaV8km5qaHF1lqRKNRlFQUDCQHp5uJtdw690T5HIHJsk+k0RZdk5zq7S0NPDp0U7v24xRSyTQ4oX9cJvXVvJhjmcFq0uouBh49VWgt1eymqqrJQi4vX1o4K81q6mqSoRNX58EGL/1lril/uEfBm9fXQ18/vNiFdqzBzh0CGhuBsaOBUaPBvbtA844QyxBv/mNWINy7aYKgIsstOImmxdTt7VsvObw4cNpva6pqQnr1q3z1FXW19eH4uJi3HXXXZ7tcxgQ2HIHbnHKeEs0t6LRKNatWzdg2bTG4gC57S0Wf12orq7G9u3bbY/vJkaNiIadZSYJeT/HU8YuQ+rIEeCaa4BJk2LbOcXemFlNLS1ijdm4UYKJy8okyPj3v48dZ9s2cUWNHCniZ8IEEVEdHcCxYyKmRowQIbVjh+zHbW8prwRJQPpahVLcZLvWhN0FPhKJgIhcuabSJV1B1dDQkJVxBd3dEDSCXO4gGVZRUFpaisLCQkSjUdfWwPj519PTM8QCmu0AZLvrQqJyC8lcUZFIBCUlJVizZg0aGhoCZ43yg3ye42lj18dp8mSgqQmwuuqTVQjetEnibc4/PxYw3NkpLq6HHhK31c6dYonZtk1EzY4dIqDGjBH31jvvAHPmyGt6e4FzzollbZnHSJSSnkoKu5MQCkhfq1CKm2zXmoivZWMW5bNe7FOt6OuWdCr5ZkuEuA0gDrpLQklMvCiIRqMoKirCokWLMnLR2tHT04MNGzZkPD/iu32b39FkwdDW60Si701paSm6u7sH9p8vmWFKFrDLkKqpkSDf9nZ3FYJbWoCnngLefFPEwsknSwZVaSnwxhvyfP9+2dcZZ0g8TVubuLD27RMBMX68BCEfPy5xN1VVwAUXxI6RKGsrFUGSTAj51CgznlCKm1RSldO98Zp+9fgLPzOjqKgI8+bNG3Rx9Yp0LqJexdpYKSgoQHd3N5YvX57wvA33iq1hINGPhWy4aKPRaFptD0xMN6zVWpTK99B8P8nSuuP3GeRifUT0YQAfA/BfzPwaES1h5lV+jysUmBlP3d0SK9PWJkHE55wTa46ZqEKwKRZKSkRUHD8u+5kyReJpdu+W/fT1yes7OsQaE43KcTo7Zf3UqeKumjBB/p86Vf43SWQ5SkWQJBNC5vkwlyc7dpYIZbaU21RlL7pUJ7rwz5s3zzHFNBPcpteawZBeC5vi4mIw85BfrXbnzen81NfXB77AW1hZvXo1ZsyYgUgkghkzZmD16tUJt0/0YyFRGnUmZJI+nqkb1syWSpTWnYfF+r4I4E4AnyaiqwGc6/N4wsPcueIGeu45ERwlJRJz09sr65I1xzTFwjnnyN+uLtnPCy+I1eboUamBs2mTHOf110UsEIm4GT9eLDyRCHD99cDNNwN/93eSMeW2WWUqjTaTdRz3qVFmPKG03NjFxNilKnvhvkp2kSssLMy4cF8qxzVpamoa0l7BK+wyvkx3AjA4QNRpnMyMNWvWYM+ePZg/f77nY1TsWb16NZYsWYLOzk4AQHNzM5YsWQIAmDNnzpAilOXl5QldrA0NDaisrMSuXc+y5tEAACAASURBVLs8HWcmIiFTgWH+GIh3P1stlE4FPQNcrK+VmY8CuIOIvg0gt3eaMFNZKVaWgwfFekMkVosdO4D//E8RGoliTUyrSSQCXH018MorwB//KPubOBGYNg04cECCjZ9+WkTTqFHSruHgQRFCY8bI8oKCWPxLKr2lUmm0mcwyE5C+VqEUN4kuSla8+PWV6AbudTyCFTOGwInHHnssK8ImEdFodJCgcnMeGxsbUVVVFUhTflhYvXo1li1bhj179iASiQyxanR2duLOO+/EZZddhqeeemrQd2bOnDkoKChwbBvS1taWFWtFJiIhU1eZm2O7/QEVIB43/2HmrxDR3/k5mNDR3w9cdZUIkJdfFvfQ6NFyc08WmLtjh9TEmTJF3EijR4tQqaiQYOEjR0T4ADGLzbhxsm76dLGMRKMiStLNSEpFkLgRQgHoaxVKcQO4qzXhRal0N13As8GJEyds4xLMQMpcj8ckHUEV1DiFMBBvqXFy1+zbtw9r164dFBu1Zs0arF+/HgsWLMBFF12E4uLilEQDEYGIUp4TmYqEurq6tH9YFBQUDBzbTbxYvgTKM/O6uOf/6ddYQolpzdi+XYRNWZnEwkyeHOst5RSYO3WqiIOWFuBPfwJOOUUsMP39kv3U0SH/E0mm1KhREjBstmMYOVKsPx/96OAO4qmmY7sVJHZC6PTT5fkTTwSm9UNoxY0bvPj1FX+Ry0bwrh12bh27QMqgkOi8BDhOIe9ZtmzZgLBJBBHZCuLu7m6sWbMGr776Knbu3Inly5e7PjYz46abbnJ04TiRad0Yt4U27eak9Xkyt3W+FesjoocBfI6Z068kGlYyrfFiWjP27xdhs327CJY5c6Tq8PHjsW03bZLiei++KK6dq64CLr5YWif09Eia94gRwN69EpxMJM/7++XR2yvC6f33xWJTWCgWnOuuG3yMbKZjW4VQQOraxDOsxY1Xv76sF7lULv5e0NjYiMbGRtTW1uKNN94IpLAxz6vTDSfAcQp5z549e5JuU1ZWllQA7dq1Cx//+Mcxe/bslMT7mjVrksbt2L0mk7oxmQSq9/f3o76+PqE4suuSnicWnPcAvEhENzPzbnMhEc2B9ID6jG8j8xMvbs6mNeONN6TX08SJEiBcXCzWmMsvl+02bQIeeECCgEeOFKFSXy8BxyNHimWmpUVEjvmdZJbtiopE5PT2SmzPlCkibvr6JD3cfC+bNgG//a2MadYsWW6KLWbvrSoBqWsTz7AWN4D3pdL9ql5sLUbmFwUFBWDmQW4I0xJWU1ODPXv2DBlnwOMU8p6qqio0NzcPWV5QUID+/n5UVVVhxYoVuPPOO7Fv376E+3r00Udx3333pTyGtra2Ib3I3LwmnZIBjz/+uOvvgpNISybe7Lqk50OpA2b+KhG9BOAPRHQ7gCIASwGMBvA9XwfnJ5ncnOMtPjNmiCgxM5gOHJAWCc89J8ueflr+jh8vLRNaW8Wq8+tfi4Vm924RIIVxt+aCAhE3FRUS1zN2rNSxKS+XdgzFxcCTT4qbqLVVAo1bW8UKNHKkxOeY1h+rcPOiKnFA6trEE8pUcD+pq6uzbawZVsz3alZnLikpGQh2jm8aOH/+fCxatGhYNxXMNStWrECZWe3UoKysDA8//DD6+/uxe/duLF68GN/97ndd7W/9+vWDnptxNclIJxYr1Y7iTU1NWRf5brqkB7wT+p8APAngMQA/BPB1Zr6Amf/b32H5SGuruI5efFEEwosvynMztdkJ0+JjxtZ0dkpPqdmzJR38vfdEwJx2mgQJd3aKkIhGZbvt20UAFBaK+2nnTkkDP35cnlu/M6NHi/g5flyWz5gB1NYCl1wiQcijRomA2rZNhFB1tVh43nxTXGWAHN9MN9+0yX78ds09k5FKGnkOCZTlhoiug/yCKADwI2b+drr7smaImL9OFy9enHS766+/Hk888cSQ161evRq33347Dh06lP4bVFwxffr0IZ+X289TGYx5jpKdu8WLF+Mvf/kLfvCDHyTcn5ndNmfOHADJrRyZ4tYK2tTUhPr6+qyOpbS0FPPmzXPVJd26PChuKyL6LwALAPwCwJkA7gXw90TUyMzJA7PCChHw/PNiTRk7VsTH888Dl16a+HXxFp/ubunv9OST0tF79OhYET2zQN+YMZIZNXq0HKu7W0SUaQ3s64vF1lh/NBw7FttPVZVYYv74R3kds4ixzZulknFnp6SJT58uAur11+W4H/qQ7KOpSQTMSy9JMLOdxcr868aik0oaeQ4JjLghogIA/wXgwwBaAGwiot8x85up7itRLY/4G2b8dtaLu/m6v/zlL/jRj37kWwbScCP+83L7eSr2LF682NV5evDBB3HppZfi05/+dMLtzHgUU+Bkm8cffzxhLSTTNZSLQP54UZIs4zJgbqsmAHcwsxn89Cki+jKAl4joFmbelusBBQIzCwkY/DeZRdLqjjl4UFLAp0wR64lZeO/kkyWVe/JksQhVVIiFpqBAxEQkIi6liRPFWtPVJe6nSCQ2rr4+icGZNAk49VTZ9vhxcXcxi+A5cEBE2dSpsu3WrTKu8ePl9TNmiLWISITVtGliNTp6dLAIGzVKGnLu3es+BikgdW3ioVxcENxARJcAuI+Z/8p4fjcAMPP9Tq+pra1lOzP0jBkzbOMMpk+fjt27dyfdLp6CgoJABuqGHfPzcvt5mhDRZmauzcEQs47THM8mq1evTipwAKC2thYLFizIwYjkWE4CZ+XKlZ7EuZmVtxP9iLn33nsHPW9qasKNN96InTt3Dtl2+vTpuOyyy1BdXT1kXXl5OZYuXZr2WL2c40bF4lXMfJoX+0sVP+b4IFatErGxY4cIjPJyERF9fVJd2In6erGSjBkjwqWrS5Z3dcmy554T8XDppXLDP3FCqg5PnSqWk7Y2yawqKJBjHjkCbNkiAqSgQI7f1xfLlrruOnltYaEU+mttlfUVFSJw9u8XsXPmmSJOenpk/4WF4sLatk0sRTNnimXJDDKuqBD3FiA1c7ZulSwva5G+9nbZ1003Ze9ziCPTOR4Yyw2AqZBofpMWABfFb0RESwAsASRY0g6nDJH45W4ySQDn2iBKdjE/H7efp+KOZG6SdF1U8RQVFXlm7dy8ebOtuGlqavIsgL+7u9tVM9CLL74YL7/8ctL9NTc3o7m5GTNnzsStt946aF2Qyh8w8x+J6Cq/x+EbEyeKSDFv8EDsZp4Iqzvm6FERIJ2dIhwmTBDx8sorsXgZQLYpLwfmzxdLz969Ijg6OsT6E4lIrEx/v1h0+vpiQufll2XdhAmSBl5cLNu1tYmFaOJEETj9/WLZKSgQIXP++bLv9nY5vjk+QFxTH3wgrzHdSePG2bdX8DlAOFWCFFBsZwMcYlZi5lXMXMvMtRMdApacRE/8cqft4ikoKHC1neIt5ufj9vMcbqTaIwpw30/twQcfxBe+8IWk+1tnXtwNysvLsWjRItx777245557sGjRohTekTPMjMcff3zQsmzF2ThV/y4tLcXkyZNdCRsru3btGhKIHbTyB8z8XvKtQkq6vZBMd0xZmVhM+vsHC4eDB0XIvPkm0Ngoz6uqJOZlyxaxDh0/Ll299+8XgTJpkogS0x1FJOKnq0te398vFqYjR+RRWCgWmr17Zf2ECcDZZ4s7qaoKqKuT4OJLLgHOO0+sOub4JkyQ4OcJE0S4lJXJ+zn99MEBwgcPAs88I0Ktvj71gGOfCJK4aQEwzfK8EsDedHbklCGyYsWKpNvFU1ZWhiVLlmSlOaDijPXzWrFiBUaMGDFo/YgRI4Z8nulCRB8mooeI6FzjeQJbdDAw45Cam5vBzANxSMkETirZPQ8++CDGjx+fcH99fX144IEHBp5XV1djw4YNWL58OZYvX44NGzaguLg4hXfmTGNj4yAR1tDQ4HmcTX19PWbPnj0kA2zr1q342te+hgMHDqS138bGRixfvhzr16/X8gdBwypSrDd5t9V6b7oJWLYslpLd3y8NLt9/X6wpF1wgQmPHjlidGUBiYE4/XcTFtGkiZEaOlL9EMauNSVdXLLYmEpH1vb1ijenuFkFWXi6C5eqrRdCY42lvl+NMnDhYxBUUSO8ra3NPq9g7cEDca0eOyHIzo2rTJhE6q1YFVvAkFTdE9Cki+iURrSainxPRJ7M0lk0AqoloJhEVA/gEgN+ls6PFixdj1apVmD59OogI06dPx6pVq2wzROK3+8IXvjDkdQ8++CB++tOfJr3QK94Q/3nNmTMHCxcuHJJC7mFAa951TLarPNzZ2Ylly5YlfF2q/dS+973vJRUnHR0dA8UrGxsbBxXri0ajto1W06WhoQFNTU24//77s+LaYWa88sorA+Jm69at+Na3voU1a9Zk/D6YGY2NjXj00UcDV/6AiKb4PQZfMUVKsg7eiV5vFUjvvw98+MMiZrZuFctNezvw9tsiXMwA4ZkzxTJy8KAIldLSWI0bM3MKkP1YhXx/v6xvbRWrz/Hj8npAxnDbbcCttw4WbHbL7ESc9b00NkpMzpVXynjHjJHjPvRQ5inkLS1ZFUhuYm6uYOZPmE+MdMJfeDoKAMzcS0RfAvB7SCr4T5j5jXT35zZDJNXtnIIXy8vLUV1dbVtnY+bMmZ53TQ46ZtqsXXuLVGvbNDQ0YPbs2Zg9e/aQ5R7dJPKuY3K6cUhu+6lZ43I++tGPJrUIMTOWL18+JODWa8yeV06sX78+7Vo3BQUF+NrXvob+/n488MAD6Iiv3eERW7ZswerVq4OW6fdjAM4paUpyzJYELS3A3XdLNtOePbF4FjOeZswY4KyzROS89lqsMF9rK3DoUEy4ADHBkoje3pgb69AhEUrW8VhxEhB2xfxuumlwx3KTffvkWJlUJM5BywY34qaEiOZDgn0rASRuR50BzPwEgCeytX8vSPTLd/Pmzbbrdu3alZOeU6WlpZg9e3YgqhVHo9GkvXnc4kX39iTkrGOyV7WcnCoPJ4tDctNPLT59ubq6GhdeeCE2btyYcN/MjG984xv42te+lspbwf33348uM9PER/r6+tKqwJwOt99+e6DEDTOrsPGClhbgZz+TvwcPigupq0seROImOnhQMpfMejXRqLh9Dh8WN1GK1bwBiNhob491IT9wQKw01irE77wjaehTp8oxX34Z2LAB+MhHpNigndAwC/RZM6c++EDGbSXVgOMctGxwI26+CGARgBqIwPmSJ0fOUxL98k10s822sIlEIoMKjPktcBKdj1RFiRfd2xORq47JXtZyWrFixaDaP4B9XFk8bvqp2YnS66+/Hq2trUktkKZASJQmnol1JaiYlso5c+Zg/fr12Lx5c8LvvB/FQInoHxOtZ+Z/y9VYQsumTSJeqqvFBWVaXgoKJBUcECERjYrVZvRoWd7XJ3/TqOQ9QF+fiKT9+0U8PfmkpI+bFpKjR+W4Tz8tlqORI0Xw3HmnFPi77DIRVlahYVegr7BQgp+tpFqROActG5KKG6Ny5SOeHTHPqaurw9q1aweVk49EIqirq0N9fX1OConFQ0S48cYbB7U5qKqqGvILPVeYlgCnbtCpihIvurcnI0cdky8E8C4z7zSO+UsANwBIWdy4rTxsR7J+ak7i89Zbb3XtrjEbupqunmy6efykuLgYCxYsGBT/tWDBAixYsCCpiPPBNTXa+DsL4no1YxoXQtoyBB8veiFlk9ZWCe41G1yagiUSEYHT3R3rEm4GDnd0yPNIJCZ2rK6pVOjokGyso0djfapMC8mxYyJuioqkmvGJEyJwenpEcLW0iOCorIxlctkV6Pvc54CNG8VSlG5FYjuLkMctG1zZv4joYSPIVwGGZFIQEfbs2eNbRpWdoKqpqRkUhJsriGggpqaurm7IOUlHlMS/lyz1pDI7Js+wLiSiOUT0E4+OYVfLaWr8RkS0hIgaiaixNUF/m8WLF2P37t2DekR5QaI5c8cdd6S0L9OSE0Zhc9FFF6GrqwuXmx2f41iwYEHChqFustu8hJmXM/NyABMAnM/MX2bmLwO4ABJy4AlEdB0RvUNE7xLRV7zar2e9kLLJxInignr9dXFBlZWJmOjujqV2m/eP7m6JkWGOZT8dOyaiKJPaat3d4n7auBH45jeBNWukyCBRrCrx4cMiTEyL0a5dMobOThn/88/HxhkfbD13bvrZZSbppt+ngFvnXi4u/HlBQ0PDkKJ+fX19aGxs9DQrJFXsUnlramqwdOlSz2qNuIGZB0SHl6LEfC/33nsvli5d6nm2CTN/FdJr5w9ENJ+IbiSiZwH8FMCzHh3Gs1pO2cROlFprPdXWhqL4c0ZcfPHFeOmllwDYny9AXFUrVqxw/NHjJrstS1QBsF6sugHM8GLHFtfrPABnAfgkEZ3lxb4HxWmY7hOzCWRQmDtXrCO9vSJ0IpGYcCGSbKiCgpj7yWytYN5TMnFLWTEDjM02EAcPSrG/Q4diQuvIkViV42hUxJjp5k7WfsLr7LJ0BFISXFUoZuavEtFLkAv/7QCKACyFmDm/59lo8oAgVRa1kmhcuexQHP+rP5kLJGBYOyYfAPAxZvbSXO9ZLads4hSXs2HDBkSj0YFYmrDFzbjBLpYoWRzTtGnTHNtZ+FRl+38AbCSieoi4vgnAwx7t2zPX6xByEKeRMZWV0rqgogJ44w1x7UyeLDVuAHEDjRghQsMs/Gf9sczsLkPKLdGouJx+/3uJA4pEZFl3t4isceNi3c937ZKxlJYCF1/sndBywi6by0NSab+Q7Qt/XpAscNgvnFwJXpanByS+qD/BpO/u7sby5ct97X6cDjnqmDxQywnA+5BaTp9Kd2fZ7DbtJErN2KcFCxagqqoqaasCv5kwYQK+9CXnHIjly5cnjJNzen0qIn7x4sW48847sW/fviHrpkzJfXkZZl5BRE8CuMxY9DfM/KpHu/esjc4QchCn4QmzZklRvnnzxGKyfbu4ho4dkwJ7fX3SY8pawwYY3MAzU8wigMwSAHzsmLiq+vqk0F9Xl1hu+vtFbJlxM6ecIpakjRuBa6/1Ziw+4Urc5OjCnxfYBbf6jRnQHI+Z0pspZhp7eXk5uru7BxVpi8dc53P343TIesdkL2s5+dFt2txvfFdwrwWOGYScC9Kpy5NO3NjVV1+NRx99dEhQ/NVXX53y8b2AmTcDsK9dkRmuXa8AVgHSOHPQSqegYbvMnVQDWbOFdcxEkoo9Y4aIhw8+EAHR3i7bTZok3cN375Zt40WOF5hF/woLpalmSYlYanp7ZTxTp0rF4kOH5GE27zQ7jh84IOLH7v0FMZDbBreWm6xf+PMFOxN0dXU1tmzZMuTCVVhYmFAIOJFKF3IzBdXuhmaX0psON91008D+zUq0bkinpo1fMPMPbZb9KxG9Cqm95EnHZK9qOXlVQygdrNa7OXPmYM6cOfj+97+Pg2bxsBQpKSnB3Xff7eUQs0o6cWPV1dVYuHDhEEubXcfwbEFEf2bmy4joGAYLDgLAzDzG4aWpkJnrNVlxt/jMnSuuyOwm68VN227MzOKWevppcUFNny5i5913gffeE9fPqFGxNPBsZdlGIhJLU1gorqjeXsnIOnZMnpeUiKVm/HgRN52d4jqbOlUsPU7vz+OCe9nAbcxNTi78+YKdCbqqqmrIhQtAWlYeN8LGTaVfr9xRZsxOTU1Nym65ZNtm07XiBUHtmJyDwoa2NDQ02LolTdeN25TvRHVwgk4687O8vHxACMYvzxXMfJnxd3SybTMgM9drsuJuXsZpeHXTto552zZxOTU3i0tqyhRpVnnihCwrKJCYl8pKERNbt8aCeLNBT4+4oIqKxHp0/LgIqZISYOxYET6trTK+a66Jne+OjlhdnmSfSUCtOqnE3AwhqBd+v+nu7h4IviwtLU3bguNEImuNFa/ig6wuD6cWE4nG4MTjjz8+aF9BdWUFsWNytgsbOpFsPqWaKp4qblyj2SS+DIRbclGryS1E9FEATzLzMSL6KoDzAXzDi7ibjF2vuQwa9qpKrjnmbdukR9Lo0SImTpwQ11NhoQiYSEQK7EUiInxGjIhZS7JFYaGM5dixWFsGQATWoUNipTH7WRUWivAxKyafeaa8n9/+VmKIzCafQOwzCbBVJ+Ou4EG88OeSpqYm/Mu//AvWrFkzcOGPRqMDF1/z/0T1LlKluLjY1c3fKUU1HUyXx/bt21N6XVtbG1auXDmomzMg581OJDl1qFYG41UNoVTJdd0kK+b7mzdvnq81pVauXInly5fbzmsnclSryS1fM4TNZQD+CpIpNcQ6ny7M/AQzn87MpzJz4pLZ8ZhBw1ayFTTc2io3aSujRsWyh9xijvmFF0TYjBkjAqGiQgTMu++KhaS0VARPaakIjvfeEwtKRcXg+jdewixj6+yMxfZEo2LRKS6W8VRUyHvo65P6N3198ry3V15XWSmutZdfjgkk8zMJcHp+RpabMJKKmyQ+qDMRiTKMUsWtNcYpPijdFN5kxy0tLUVxcfGQ7ewsMokETBCz0YKGmzYK2aCurs6XDCmnNhF+zBXzmG4tjfHXlEWLFvltmTT93vMB/ICZ1xHRfT6OJ0Yug4a9yr4yx7x/v1hidu0Sq8jo0TGrTX+//C0oiImI9vZY0b5kdWVSwcy6Mq02BQWDa+kUFcXq4IwaJRaXs86Sc2y6lrZvB/bulQeRjHP0aLFOFRfHPpMnnghser6KGwupZqB4FbCbKqn8eraLD9q+fXtWbgqmq8yuc3p8sGui4/tpHcgn/KghVFNTgz179uSkxk15eTmWLl3qOA7zvVvFQ65JFsTtR1abC94nov8H6XH2HSIqgQdWfE/IRtCwE14JKXPMv/ud3PzHjRMXjhnLMmZMrK+TWVfGLPgaicSCib0KKjaLBJaUxESTKZyIRNyUlIgFadIk2cZ6zT10CPjLX6QFQ0WFvAdzP++9B1x4YewzCXB6voobC6lmoPhxMSWijF0P2Uhnr62tTSpcrMsTxQP5EYeguGf+/Pk5ETepWChrampSsqR6SbICmn5ltSXgYwCuA/AAMx8lopMA3OnXYIaQadCw2wDXTIVU/HFqa8V9M26cxLL094vFo7xcBMIpp0gl3t5e4P33Y1aVwkKxopjZTOmInIIC2d/48bH99PTIo7tbxmLut6srdswxY+Q1hw/H2lo884xYlTo65H2Ulcnyvj7g5pulIrFJgNPzVdxYSDUDxY+CfiNGjMj4ohjv0sgEO3eBm2BXJ4FlFUlKcMnF3E/Vghc/r4uLi9NqiVJaWppSwHKicfqV1ZaEKICRAD4J4J8hFeeP+jkgz0g1wDUVIeVUy8Y8zs6dwIc/DLz5pmxTWgqcd54InlNOEQH11luyvLJSxEZpKbBvn4ggq1Xl+PFYjEwkkrxaMLOIkL4+Cfrt7haXknX+m+6qnh4RQ+eeGxNDZ58ds7709IjVprlZXFGlpXL8AweG9n7KpaUtRVTcWEg1A8WPgn5eZYlYzfp2bqRkJHIZuMkM8StmRPGGXMz9dCx48a66pqYm1NfXJ6xCbKW2tjahVSq+QndRURGqq6sHvkPx89ivrLYkPAigH8DVEHFzDMBvIZ3C8xsvMqDsLD/AYNH0zDOSUXTyybFA2smTRaRceqm4dd55RywkpvvHrEa9b58IkSNHxFU1YkQsU8kUIFYxY/5fVCTCw8TqaiopkTG0tcn+urtjMTf9/fIw3VOjRwOnnSb7uvRSsdpMnx7br2lpmjxZ9nvkiOznqqsyF4g5RMWNhVTTNe1u0J2dnVm94GfjopjqjSpZVo5b4ZJnfacUC+bnZpY88BovLHhNTU3YsGGDa2EDSL8ssyK3Hcw8sJ6IUFlZOaiAZ3xMTZBSwC1cxMznG3XKwMxHiKjYzwF5Rqap5E6Wn+LiwaLJLHy3fbtYSg4eFEHx7LOyburUWCDvkSPAn/4kr2UWq0x3t4zVdE0VF8u6ggJZbzbc7O2NWXRMt09Bgawz3U7FxbK+rCwWF1NeLscwKxUXFMjrR44U0XPXXXJOPvc5Sfe2xs1UV8v7GDcOuOiimKtp3jyvPqWcEAhxQ0TfBbAQ0p12B6TXSc7NpOlYE+IDG9euXZvxOIqKinDOOefYVj3OxkUx/n0nMsu7rbGjwiX81NTUoKGhwXNxU1xcjPnz52e0j1QtNlYSvca6jpmxa9euIdtYY2oCaqHsMbp3MwAQ0USIJSf/yTTA1cny8+c/A9ddF9uuvFysLm1tImxeflkEB5HEtLzzjgiO4mLZ7u23xUXV3S3Py8pEcJjCY9IkETVmxWCzonAkIv9HIrLfkSNjTS+LimICyOzsDcRq6gAyHtOCA8SCgx96SI61Y4dse+iQuKamT5cxn366jClgrqZUCIS4AfA0gLuNAlDfAXA3gH/yYyCZ3JSdqremAhEN1L+wq3qczb5B8eZ8669yt6JGGV5kI3akoKAg432kYrFJZKlJF+t5CaDQ/w8A9QAmEdEKALcA+Kq/Q/KITANcnSw/Zr0Yq3XjuedECL3zjgiEY8dEWEyZIkJl714RJKZFZd8+2UdpqTw/9VSpElxWJq/dtUu2MSsIjxwp25vuqEhExnbokDwfNUoehw7JNkePyt+KChE00agIHzP9PBqVfZaUSPwMc6yI39SpwOuvy/hnzQJuvTXvxEw8gRA3zPyU5elLkC9b3uHFhZ6ZBy6Efl4U7YIz3RD0dgqKt2QjsNgLS5CbfWTS/y0Z6biPV69ejWXLlmHPnj2oqqrCihUrsHjxYk/HRVJi+U+Qppl1kL5SNzLzW54eyC8yCXBtaRFLxksviUCprhaXU0eHZEIdNZwJo0aJdeO002S7Z5+VCr6RiGzf3i4ipa9Plp04ESvWF43K63buFGHT0iLurUOHgKoqERddXSKOKirENdTdLcc87TSJl4lExGI0cWJs3yedJILFdFOVlcVq7HR1xSw5kYgEN5eXx6oRT5wo21xxhbzOmg2VxwRC3MTxGQC/clpJREsAAAjWrwAAFihJREFULAGkn1OQ8OJCH5QaL+nU5whoTQ8li2QjsDgX34HS0lL09vYmFDbmNqm+t3Tcx6tXr8aSJUvQaZTib25uxpIlSwDAU4HDzExEa5n5AgBve7bjIJFOgKsZazN1qoiYo0dF5MyeLZaPG26Q7ayi6bbb5Djjx4uIeOEFYOZM4KmnxGJSUhJL8T7tNFk2cqQIkNGjRUhMmyaCauRIsQpddpm0bDh8OJYldfiwbN/fL8e96CKx4JSWAi++KC4xM4C4okLEjZnW3d09OK171CgRZIcPx8ZdWipxQQEpvucVOSvcRER/IKLXbR43WLZZBqAXwGqn/TDzKmauZebaiQEoFGQl03YHAQg0HCBRfQ4vX6PkL6aVrqenJ+2eS/FEIhFPvgOlpaVJt0kkWoqKijBv3rxBLRNKS0uHtFEpKipCbW1txm0Vli1bNiBsTDo7O7Fs2bKU9uOSl4go/zOjvMSMtZk5E7j4YvnfrEdjppFXVopVY8kS+WsKqLlzYy6haFQsMoWFsUJ65eUxkTJpkrigZs4Uq4sZpzN3rmReTZkCnH8+cMYZsm7ECImFOecccWMVFMj/zMDjj0va+dlni4Vn8mQ5VlmZiJbTTgMuuABYvFisNZdcIvs4flzEzMGDsm00Kq8LSPE9r8iZ5YaZr0m0nohuBbAAQB177QDPEanWj4lEIigpKUE0Gg2cCyed+hwBremhZIF4K51XX9mSkhJPvgPz5s1L2CYikcUm/rsYH4uWDbfrnj17UlqeIVcB+FsiagZwHOKaYmaek/hlIcYaazNhgjz6+8WSkcwKZLrCnnxSUsDHj5dl7e0iQiZOFDdVJCKup7POisXJtLTI3127pFFle7tYc8z6MjNmiMA5elQCmnftkkrIV1wB1NVJptPbb8trjh0T0dLTI3EzJ50kQuvIEeDaayUGaMQIETFlZTKmadPk+fTpcozTT5d9BqzDdzoEwi1FRNdBAoivYOYstkjNPm7rxwRNzMSTTn2OgNb0UNIg2U08W61HvKzj5JSmbs7HdER3tuLgqqqq0NzcbLs8C+RXTm8uyDTLqrIS+Oxn5f8XX5RmmZMmiYuoo0PcXbffLoXxKirEqtLcLNacOXPEQrR9u1hRzEDfUaNE4JiWFSAWyzNmjDxuvhn4zW/EgjNliox3xAix7phus1WrRLhNmwZs3iwWo85O2W7kSBE206bJths3BrLDdzoEo58I8H0AowE8TUSvEZFnHWr9xKlz86JFi7B06dLAChsgva7TfnWqVrzFtMrEN4i0dsDOVm8wL4WwXfdwcz4mciHbvd9ss2LFCpSVlQ1aVlZWhhUrUmuq7QZmbrZ7eH6gfMJ0LbW3i8WmvV2ex1fkTcZ114lb6eabJQh58mSxonzrW8CCBdKXaetW4Ne/lqaTfX0ifM49V1xYHR0Sc3PWWSI8GhvFZdbeLm6knTvFEvPkkyKidu2Sx8GDIpROnBDRMmZMrDO3tdN6b6+4qq66CrjySnFpffrT4mZraQlsh+90CITlhplP83sM2SCgNS5ckW7Nn1RfM1wISi0nN7jph5TISrd06VJXVa/tqv16KYTdzEcnF3JPTw82bNiQs7lsBg1nO1tKccCrNgLW/YwYIWLGdO20tIhlZOpUibNpbJTYnClTZJlp0TFbN7z/vmQxzZolrqsnnoi5ryoqZLvnnxc31CmniKXoxAl5remCAmLp8du3yzpALDcXXSSWJbN6c6YFEANGIMRNvuHG7x6/zaJFi/LuJp+OCT6ANT2CQmBqOSXDTexUssq7dXV1WLt2bcK6TzfeeGPWxUOi+WiuW758ue36aDQ64NbKRebf4sWLVcz4iVdtBJz2s2mTWGrefDPWkLK3F3j1VYmxMSsYjxolMT8f+5hkO23fLqnf0Wgs5Xv/frHG9PTIPoqKRJwcPy7bVlWJeDHHc8MNwDe/KRaZigqx2FjjioBAd/hOBxU3KeIm3Xm4pkRrjRtn8qmWk5vYqWRWEfOvU1BveXl5YISw2xIOAejmreQjLS3Ahg3AI4+Ie2nCBLG+nHQSsGePCJKNG0XU9PaKa8u0opi1cwDg0UclTueMM8QF9d57sv2IETFrT1mZBCtHIoMFVmUl8Fd/JRYbJ/ES4A7f6RCUmJu8wU26s9M29fX1OfXj5xI3cRrKAJ8BsMFpJREtIaJGImpsbW3N4bAEN7FTboRsTU0Namtrh+w/aHFYqZRw0Mw/JSVaWoCf/UyyqMaMEUvM/v1AU5OIl+JicSUdOSJWmxMnpF7Oq6+KkLFy5IgImMmTRRzV1IhosTa5bG+Xba69Vo5tJVlckWnhKSsTa05ZWd4GEwNquUkZNyZ7p22YGWvWrMGGDRtC18rATZxG2CGiPwCYYrNqGTOvM7ZxVcsJwCoAqK2tzXlZhGRWGbeWyaamJmzZsmXI/s8555xAzYn495uoHYNm/g0D7LqCp3uD37RJgn3Hj5eMp5YWERYdHbLcbKFAJDVsamrkeXu7CCJAspnMhpnl5bFMp7FjJXtq9Gipc9PeLv9fe63E7sTHyriJKwpoh+90UHGTIm5M9snM3NFoNDRuKusveDuG0y/dMNVySuQySmSZNF/rtB0AbN++3ePRZo71/TrF4AAIlMVJyQJOXcHTtWC0toq1Ztw4ETDnnSdWmWPHRPBMmSLHKioSy0tZmYifrq5YiviIESJEFi4UYbN/v1hcJkwQIfPqqyJ6Zs2KtYxob7ePlQmReEmGipsUSRZI6bRNPGGwasT/grdDf+kKYarllMgyaRXt+Sp4nX6cENGA5RVAIItvKhni1BXczChKlYkTY53By8okK6qwULKZpk2T/U+dKs03zUwms3Lxvn0ibi6+OOY6WrdOWkJYY2LuuSdWn8a0+uRxrIxXqLhJETfppeb/9fX1CSu3Bv0in4xkhdyCFlvhM98HUAKp5QQALzHz5/0dUnokskyaKdQ1NTV5W9TR6ceJ+V22FgZ0SijQwPo8xet06LlzgTfekKJ+/f1ivenqklYIt94q26xbJ5ab48dF1Jgdu/v6RFB1dsasR05upZNOyjyNPWSouEkDN1ke5vpElo2gX+STkayQm17UY4SpllOyNO9oNIqmpiZXVk4/SCY+UonBAQZbYYdrpiSQX7WcHPE6HbqyUioFb9gAvPKKiJbLL5eMKLP2TXGxZDjt2iWZUGZKeH+/uJqs1iNrT6v445jbtLbGCu8NY4Gj4iaLmBczuzLwQbjIZ0qyQm5KeEnWKLOhoWFgDgTJiuFWfLiNwTExvwfDPLA+b2o5OZKNdOjKSuBznxu63Brfc8stkh31+uvijjr9dBE2Zhp4MuuR17FCIUDFTZYxL5JhNFUH9Ze5kl0aGhrQ19eXcBvzZh+UWjYm6YgPN3VwkvWryncXtBvyqZaTI15VKnZDfHzPzJkSZLx1q2RNpWI9yjRWyMsMsYCg4iZHBO0i7wXabiHcOAlyNzfqoLpc0xEfyRIErII+X+OMssBnAPzKaSURLQGwBMhac9D0yVVGkVN8z9ixYi0yn7uxHmUSKxRSq4+KGyUjwijalMTum2SWjCBb79IRHzU1NdizZw82b94MZgYRobCwED09PUMEfditmWGp5RQInOJ7Zs0Sy0m89QgA6uvtrSuZxAp5nSEWEFTcKIoyhETum7q6Ose2CgCwcOHCwAredMSHWYzQDCo2/9r1iwu7NTNMtZx8J1F8T7z1KJl1xW2skJ37KWQNM01U3CiKMoRE7puamhrbIHkAKC0tRUNDA9asWRPIG3s64iPVOJ3has0MUy0nR7yMTUklvieZdcXNvpwEUnFxqBpmmqi4URRlCMncN/PmzRtiASkoKEBXV1dOO2mnQ6riYzgHCadIaGo52ZKN2BS38T1urCvJ9uUkkKLR1GN88gAVN1kmjFlSSvhJ5r6xs4B0d3cPseaEIQ1ag4TdEaZaTrb4GZviRf0dJ4F0/HjuMsRySKDEDRHdAeC7ACYy80G/x5Mpw7mgl5LfuK3EbX3uVA8m3y0cYQ8SVlySi9gUJ7eXF/V3EgmkEPacCoy4IaJpAD4MYI/fY/GKYV7QS8lzUnXfhNXCEfYgYcUlXlcvbmkBnnwSaGyUtgwzZgC9vfLXzu2VqXUlGwUKA0xgxA2AfwdwF4B1fg/EK9RXrwwnwmzhGK5BwoqFuXOBhx+OdfouLhaRYfaIspIs8LilRfa1bZsU7mMWoTN+PHDyydJjyi5oOBPrSi4LFAaAQIgbIvoIgPeZeUuysu75RFh/ySqKHWrhUEKPmd3e0QEcPgzs3ClWFrNXFOAu8NgUPhMmSLdwQLqFHz0KrF8PTJkClJcDp54qMTFOpJq9FUL3kxM5EzeJij8BuAfAtS73E9zKlnGE+ZesotihFg4ltGzaJC0Spk4FXn5ZxASz9IPq6oqJFzeBx6b1Z+zY2P6Li6V7OCANNE+cAP70J2m0aYdX2VshbL0AAJFcHYiZr2Hms+MfAHYCmAlgCxHtBlAJ4BUishNCYOZVzFzLzLUTA56HX1NTg4ULFw5YasrLywNd4ExRFEVxoLVVYlW2bwdGjhSLS2kp0NMjAsPsxG1uZ2XUKFluMnGiiJkTJ2LLurrEHVVWJjE4gPx1qoVoFVGmG8s6DjeYAqmzUwRSZ6c8b2lxv4+A4rtbipmbAEwynxsCpzYM2VKA/pJVFEUJBWZAcVtbzOJy4oS4j6xZU24Cj+fOBd58c3DMzfHj0nqhshI4ckT2e/nlgFOTWi+yt0LaegEIgLhRFEVRlMBjZhsVFYkQiUTk79lnDxYvbrKSKislENmaLXXuucCZZ4rry6S9XSw5dq6jbNa+yfPWC0AAxQ0zz/B7DEr6aNFCRVFCiZlttGED8MwzwKRJIjKKiweLF7dZSZWVwGc/Kw8g5iJqbx8sik4/3T625sILgY0b5bXZqH2T5wRO3Cj5ixYtTE7YClUqyrCishL43OeAefNilpSysqHiJZ2sJCdR5OQ6amnR2jcJUHGjeIYWLUxMGAtVKsqwJFsp1Xb7feIJZ9eR1r5xRMWN4hlatDApoStUqShKlsm26yiktW9ylgquhB+n4oRatHBwoUq/x6IoSh4xd664itrbgf5++Xv0qCxXHFFxo3hGXV0dioqKBi0bTkULiegPRPS6zeMGSLHKr7vczxIiaiSixlZrbQxFUYYfpuuorExcR2VlqRfqG4aoW0rxjEzK74chy4qZr7FbTkQ1iBWqBGKFKi9k5v02+1kFYBUA1NbWOlTwUsJGGL4DSpbI1HUU0irEiVBxo3hKOkULw55lFfZClUrmhP07oPiIV20a8gx1Sym+kyjLSlGGA/odULKGF20a8hAVN4rvDLcsK2aeoVYbxcpw+w4oOcRNr6sQouJG8R3NslKGO/odULKGmUpuJSRViBOh4kbxneGeZaUo+h1QssYwTSXXgGLFdzLJslKUMKDfASVrhLgKcSJU3CiBIJ0sK0UJE/odULJGSKsQJ0LdUoqiKIqihApizt8aYUTUCqDZp8NPABC0jBcdkzCdmUMRLadzfAg6JmG4zPEgft5+MdzORUZzPK/FjZ8QUSMz1/o9Dis6JsVLgvjZ6ZiGF3puY+i5SA11SymKoiiKEipU3CiKoiiKEipU3KTPKr8HYIOOSfGSIH52OqbhhZ7bGHouUkBjbhRFURRFCRVquVEURVEUJVSouFEURVEUJVSouMkAIvouEb1NRFuJqJ6IKnwax3VE9A4RvUtEX/FjDHHjmUZEzxDRW0T0BhHd7veYlPQIyhw3xhKYea5zPHcQ0X1E9D4RvWY8rvd7TLkmSHM/X9CYmwwgomsB/JGZe4noOwDAzP+U4zEUANgG4MMAWgBsAvBJZn4zl+OIG9NJAE5i5leIaDSAzQBu9HNMSnoEYY4b4wjUPNc5njuI6D4AHcz8gN9j8YOgzf18QS03GcDMTzFzr/H0JQB+NO+4EMC7zLyTmbsB/BLADT6MYwBm3sfMrxj/HwPwFoCpfo5JSY+AzHEgYPNc57iSQwI19/MFFTfe8RkAG3w47lQA71metyBAF1kimgHgPAAv+zsSxQP8muNAgOe5zvGc8CXDNfoTIhrr92ByTGDnfpDRruBJIKI/AJhis2oZM68ztlkGoBfA6lyOzYBslgXC10hEowD8FsBSZm73ezyKPXkwx4GAznOd496QaA4C+AGAb0A+728A+FeI0B4uBHLuBx0VN0lg5msSrSeiWwEsAFDH/gQwtQCYZnleCWCvD+MYBBEVQS76q5l5jd/jUZzJgzkOBHCe6xz3jmRz0ISIHgKwPsvDCRqBm/v5gLqlMoCIrgPwTwA+wsydPg1jE4BqIppJRMUAPgHgdz6NBQBARATgxwDeYuZ/83MsSmYEZI4DAZvnOsdzhxG8bXITgNf9GotPBGru5wuaLZUBRPQugBIAh4xFLzHz530Yx/UAVgIoAPATZl6R6zHEjecyAM8DaALQbyy+h5mf8G9USjoEZY4bYwnMPNc5njuI6H8AnAtxxewG8LfMvM/XQeWYIM39fEHFjaIoiqIooULdUoqiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVN4qiKIqihAoVNyGDiE4hoh8T0W/8HouiZAOd44riDBGNJKKHieghIlrs93j8QsVNHkJEXyCiBy3Pv2lU8QQz72Tm/+Pf6BQlc3SOK2GHiF5wWH4fEd2R5LWO3w8AiwD8hpk/B+Ajng04z1Bxk588DGAhEVUQ0QIA8wEs8XlMiuIlOseVvIGElO6nzPyhDA6Z6PtRCeA94/++DI6R16i4yUOMBoa/ALACwH8AuIWZo/6OSlG8Q+e4EnSIaAYRvWVYUF4BMI2IPk1EG4noNSL6f0RUYLiJHieiLUT0OhF93Hh9h2Vfy4joHSL6A4BZyY6d5PvRAhE4wDC+xxf6PQAlbX4C4C0ANzDzDnMhEY2HTPjziOhuZr7frwEqSoboHFeCziwAf8PMXySiMwF8HMClzNxjiJ7FAI4D2MvM8wGAiMqtOyCiCyCdvs+D3JNfAbDZxbFtvx8A1gD4PhHNB/BYRu8uj1Fxk798HUAr4j5DZj4EwJeuzYriMTrHlaDTzMwvGf/XAbgAwCYiAoBSAAcA/BzAA0T0HQDrmfn5uH1cDqDesMaAiH7n8thO34/jAP4mjfcSKoatySqfIaIvAxgB4GMAbvd5OIriOTrHlTzhuOV/AvAwM59rPGYx833MvA0iepoA3E9EX7fZD6dyUP1+JEfFTZ5BRFdDVPmtzPwsgDFEdK6/o1IU79A5ruQpDQBuIaJJAEBE44hoOhGdDKCTmR8B8ACA8+Ne9ycANxFRKRGNBrAw0UH0++EOFTd5BBFVAfgRgI8y8zFj8fcALPVvVIriHTrHlXyFmd8E8FUATxHRVgBPAzgJQA2AjUT0GoBlAL4Z97pXAPwKwGsAfgtgwG1FRE8Y4sh8rt8PlxBzStYwRVEURVGUQKOWG0VRFEVRQoWKG0VRFEVRQoWKG0VRFEVRQsX/b7cOZAAAAAAG+Vvf4yuK5AYAWJEbAGBFbgCAFbkBAFbkBgBYCUAv90P691cqAAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -868,7 +843,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -899,7 +874,7 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^0$ -1) --> $X^0$ (1/6):\n", - " Subset 0: () gives pval = 0.54700 / val = 0.006\n", + " Subset 0: () gives pval = 0.54700 / val = 0.006\n", " Non-significance detected.\n", "\n", " Link ($X^0$ -2) --> $X^0$ (2/6):\n", @@ -907,19 +882,19 @@ " Non-significance detected.\n", "\n", " Link ($X^1$ -1) --> $X^0$ (3/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.284\n", + " Subset 0: () gives pval = 0.00000 / val = 0.284\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -2) --> $X^0$ (4/6):\n", - " Subset 0: () gives pval = 0.77400 / val = 0.002\n", + " Subset 0: () gives pval = 0.77400 / val = 0.002\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -1) --> $X^0$ (5/6):\n", - " Subset 0: () gives pval = 0.57400 / val = 0.006\n", + " Subset 0: () gives pval = 0.57400 / val = 0.006\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -2) --> $X^0$ (6/6):\n", - " Subset 0: () gives pval = 0.25900 / val = 0.011\n", + " Subset 0: () gives pval = 0.25900 / val = 0.011\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -928,7 +903,7 @@ "Updating parents:\n", "\n", " Variable $X^0$ has 1 parent(s):\n", - " ($X^1$ -1): max_pval = 0.00000, min_val = 0.284\n", + " ($X^1$ -1): max_pval = 0.00000, min_val = 0.284\n", "\n", "Algorithm converged for variable $X^0$\n", "\n", @@ -941,27 +916,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^0$ -1) --> $X^1$ (1/6):\n", - " Subset 0: () gives pval = 0.43100 / val = 0.008\n", + " Subset 0: () gives pval = 0.43100 / val = 0.008\n", " Non-significance detected.\n", "\n", " Link ($X^0$ -2) --> $X^1$ (2/6):\n", - " Subset 0: () gives pval = 0.08000 / val = 0.018\n", + " Subset 0: () gives pval = 0.08000 / val = 0.018\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -1) --> $X^1$ (3/6):\n", - " Subset 0: () gives pval = 0.39400 / val = 0.009\n", + " Subset 0: () gives pval = 0.39400 / val = 0.009\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -2) --> $X^1$ (4/6):\n", - " Subset 0: () gives pval = 0.46900 / val = 0.007\n", + " Subset 0: () gives pval = 0.46900 / val = 0.007\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -1) --> $X^1$ (5/6):\n", - " Subset 0: () gives pval = 0.66300 / val = 0.004\n", + " Subset 0: () gives pval = 0.66300 / val = 0.004\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -2) --> $X^1$ (6/6):\n", - " Subset 0: () gives pval = 0.29600 / val = 0.011\n", + " Subset 0: () gives pval = 0.29600 / val = 0.011\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -982,27 +957,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^0$ -1) --> $X^2$ (1/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.149\n", + " Subset 0: () gives pval = 0.00000 / val = 0.149\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^0$ -2) --> $X^2$ (2/6):\n", - " Subset 0: () gives pval = 0.27500 / val = 0.011\n", + " Subset 0: () gives pval = 0.27500 / val = 0.011\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -1) --> $X^2$ (3/6):\n", - " Subset 0: () gives pval = 0.67900 / val = 0.004\n", + " Subset 0: () gives pval = 0.67900 / val = 0.004\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -2) --> $X^2$ (4/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.242\n", + " Subset 0: () gives pval = 0.00000 / val = 0.242\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^2$ -1) --> $X^2$ (5/6):\n", - " Subset 0: () gives pval = 0.09200 / val = 0.016\n", + " Subset 0: () gives pval = 0.09200 / val = 0.016\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -2) --> $X^2$ (6/6):\n", - " Subset 0: () gives pval = 0.12500 / val = 0.015\n", + " Subset 0: () gives pval = 0.12500 / val = 0.015\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1011,17 +986,17 @@ "Updating parents:\n", "\n", " Variable $X^2$ has 2 parent(s):\n", - " ($X^1$ -2): max_pval = 0.00000, min_val = 0.242\n", - " ($X^0$ -1): max_pval = 0.00000, min_val = 0.149\n", + " ($X^1$ -2): max_pval = 0.00000, min_val = 0.242\n", + " ($X^0$ -1): max_pval = 0.00000, min_val = 0.149\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^1$ -2) --> $X^2$ (1/2):\n", - " Subset 0: ($X^0$ -1) gives pval = 0.00000 / val = 0.070\n", + " Subset 0: ($X^0$ -1) gives pval = 0.00000 / val = 0.070\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^0$ -1) --> $X^2$ (2/2):\n", - " Subset 0: ($X^1$ -2) gives pval = 0.14500 / val = 0.022\n", + " Subset 0: ($X^1$ -2) gives pval = 0.14500 / val = 0.022\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1030,19 +1005,19 @@ "Updating parents:\n", "\n", " Variable $X^2$ has 1 parent(s):\n", - " ($X^1$ -2): max_pval = 0.00000, min_val = 0.070\n", + " ($X^1$ -2): max_pval = 0.00000, min_val = 0.070\n", "\n", "Algorithm converged for variable $X^2$\n", "\n", - "## Resulting lagged condition sets:\n", + "## Resulting lagged parent (super)sets:\n", "\n", " Variable $X^0$ has 1 parent(s):\n", - " ($X^1$ -1): max_pval = 0.00000, min_val = 0.284\n", + " ($X^1$ -1): max_pval = 0.00000, min_val = 0.284\n", "\n", " Variable $X^1$ has 0 parent(s):\n", "\n", " Variable $X^2$ has 1 parent(s):\n", - " ($X^1$ -2): max_pval = 0.00000, min_val = 0.070\n", + " ($X^1$ -2): max_pval = 0.00000, min_val = 0.242\n", "\n", "##\n", "## Step 2: MCI algorithm\n", @@ -1059,142 +1034,118 @@ " link ($X^0$ -1) --> $X^0$ (1/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -2) ]\n", - " val = 0.009 | pval = 0.53000 \n", "\n", " link ($X^0$ -2) --> $X^0$ (2/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -3) ]\n", - " val = 0.006 | pval = 0.63900 \n", "\n", - " link ($X^1$ 0) --> $X^0$ (3/8):\n", + " link ($X^1$ 0) --> $X^0$ (3/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ]\n", - " val = 0.003 | pval = 0.89600 \n", "\n", " link ($X^1$ -1) --> $X^0$ (4/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ]\n", - " val = 0.284 | pval = 0.00000 [cached]\n", "\n", " link ($X^1$ -2) --> $X^0$ (5/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ]\n", - " val = -0.000 | pval = 0.98400 \n", "\n", - " link ($X^2$ 0) --> $X^0$ (6/8):\n", + " link ($X^2$ 0) --> $X^0$ (6/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -2) ]\n", - " val = 0.002 | pval = 0.96500 \n", "\n", " link ($X^2$ -1) --> $X^0$ (7/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -3) ]\n", - " val = 0.009 | pval = 0.12800 \n", "\n", " link ($X^2$ -2) --> $X^0$ (8/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -4) ]\n", - " val = 0.007 | pval = 0.30800 \n", "\n", - " link ($X^0$ 0) --> $X^1$ (1/8):\n", + " link ($X^0$ 0) --> $X^1$ (1/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^1$ -1) ]\n", - " val = 0.003 | pval = 0.89600 [cached]\n", "\n", " link ($X^0$ -1) --> $X^1$ (2/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^1$ -2) ]\n", - " val = 0.004 | pval = 0.82700 \n", "\n", " link ($X^0$ -2) --> $X^1$ (3/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^1$ -3) ]\n", - " val = 0.008 | pval = 0.54100 \n", "\n", " link ($X^1$ -1) --> $X^1$ (4/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ]\n", - " val = 0.009 | pval = 0.39400 [cached]\n", "\n", " link ($X^1$ -2) --> $X^1$ (5/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ]\n", - " val = 0.007 | pval = 0.46900 [cached]\n", "\n", - " link ($X^2$ 0) --> $X^1$ (6/8):\n", + " link ($X^2$ 0) --> $X^1$ (6/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^1$ -2) ]\n", - " val = 0.008 | pval = 0.49400 \n", "\n", " link ($X^2$ -1) --> $X^1$ (7/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^1$ -3) ]\n", - " val = 0.013 | pval = 0.12300 \n", "\n", " link ($X^2$ -2) --> $X^1$ (8/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^1$ -4) ]\n", - " val = 0.012 | pval = 0.05700 \n", "\n", - " link ($X^0$ 0) --> $X^2$ (1/8):\n", + " link ($X^0$ 0) --> $X^2$ (1/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ($X^1$ -1) ]\n", - " val = 0.002 | pval = 0.96500 [cached]\n", "\n", " link ($X^0$ -1) --> $X^2$ (2/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ($X^1$ -2) ]\n", - " val = 0.022 | pval = 0.14500 [cached]\n", "\n", " link ($X^0$ -2) --> $X^2$ (3/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ($X^1$ -3) ]\n", - " val = 0.002 | pval = 0.96500 \n", "\n", - " link ($X^1$ 0) --> $X^2$ (4/8):\n", + " link ($X^1$ 0) --> $X^2$ (4/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ]\n", - " val = 0.008 | pval = 0.49400 [cached]\n", "\n", " link ($X^1$ -1) --> $X^2$ (5/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ]\n", - " val = 0.007 | pval = 0.40500 \n", "\n", " link ($X^1$ -2) --> $X^2$ (6/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ]\n", - " val = 0.242 | pval = 0.00000 [cached]\n", "\n", " link ($X^2$ -1) --> $X^2$ (7/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ($X^1$ -3) ]\n", - " val = 0.006 | pval = 0.40600 \n", "\n", " link ($X^2$ -2) --> $X^2$ (8/8):\n", " with conds_y = [ ($X^1$ -2) ]\n", " with conds_x = [ ($X^1$ -4) ]\n", - " val = 0.001 | pval = 0.97200 \n", "\n", "## Significant links at alpha = 0.05:\n", "\n", " Variable $X^0$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.284\n", + " ($X^1$ -1): pval = 0.00000 | val = 0.284\n", "\n", " Variable $X^1$ has 0 link(s):\n", "\n", " Variable $X^2$ has 1 link(s):\n", - " ($X^1$ -2): pval = 0.00000 | val = 0.242\n", + " ($X^1$ -2): pval = 0.00000 | val = 0.242\n", "\n", "## Significant links at alpha = 0.01:\n", "\n", " Variable $X^0$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.284\n", + " ($X^1$ -1): pval = 0.00000 | val = 0.284\n", "\n", " Variable $X^1$ has 0 link(s):\n", "\n", " Variable $X^2$ has 1 link(s):\n", - " ($X^1$ -2): pval = 0.00000 | val = 0.242\n" + " ($X^1$ -2): pval = 0.00000 | val = 0.242\n" ] } ], @@ -1213,7 +1164,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1230,9 +1181,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD+CAYAAABx26EtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZgU1b3G8e8PUBoU0WlN1HE37hsmbuNVoyaucYtRo3HBPTbmumXRqDFEo16vmhiv2i6JS9CLiVwNKC5RFDE6aNwBV0REBtcZZRsamJlz/zgFNE3PTC9V3TXT7+d5+pnu6lp+NTPVb1fVqVPmnENERCQu+lS7ABERkWwKJhERiRUFk4iIxIqCSUREYkXBJCIisaJgEhGRWFEwiYhIrCiYREQkVhRMIiISKwomERGJFQWTiIjEioJJRERiRcEkIiKxomASEZFY6VftAmIt0zwI2BnYDhgILADeAl4kkZxdzdJERHor0/2YcmSaDdgbuBzYFWgF+gMrAW1ABh9SrwOXAU+QSOqXKCISEgVTtkzz2sD/ATvgw8e6mWIeMBU4gkTyo4irExGpCQqmJTLNewJjgFXwe0eFWrIXdTSJ5ONRlCYiUksUTACZ5l2Bp/F7SaVqBQ4jkRwXTlEiIrVJweQP370NrB7C3OYB25NIfhjCvEREapKai8NNlLenlC0B3BHSvEREalJtB1OmeQ/gIGDlkObYD9iNTPMPQpqfiEjNqe1DeZnmsfhg6q71XbEaSSR3D3meS6XNDN9IYxCwKjAA/yWjD9A3z/N8w3KfG7AQ35BjQc7P5Z6nnOuIat1ERGo3mDLNdcAs/DVKRZn24XSuvOaPzJ49h1Ej78o7d2AzEsmZ2QODQBkMrAWsGTwGZT1W7eR57utVCD9Mi7GIPIGFbwDyFfAl0Bw88j5PObew8mWLSE9Qy8F0HHAb/oN+Benb72TSlLe55U/XAnDp8Kv4aMbHjLgzvXSco447JW8wNU9+a8ELF/7muZlPPzsHHz5LgiiJettYYh75w+sLYAbwUfDz45Rzi6pVpIhUXi1/SO6E3/PIa+gJx7LF9rtx1e8u5V8vTGTs40/ywjOPdjvTL9+czEP7HDygrbV1/zCL7YVWDR4bdjOeS5t9wrKw+ij3eco5dQ8l0ovUcjDtRheNPwYOHMhxxxzJJcOv5LEnxvHk2FEMGDCg25m+979/p621Ncw6a50B6waP3fKNkDabzfKhNRXfp+EUYFaqZg8LiPRMtRxMa3Y3wqlDj2erIQ2MfmAEm26y8dLhzc0tXDL8Sl57YxJXX3sDv/7leUvf61dAeIVkATA3eCwA2oGOrJ+5z7t7D/z5tgS+MUWik+dFn5OrgMHA9sEj15y02VssC6olzz9WYInEUy2fY3of+FZXo/xk6Jk89cwEbr3xOo484pCCZjtv5izGHHg4sz/o9Brb+fhzKkseX+PPt8zNenT3en7KubaCCgpZ2qwPvnl9vvBaFahj2fm0ZCfP66j+pQrzWBZS2cE1Q60ORaqrloPpdXxnrXldf8PNPN/4EuecfQa/veIann3y4YJnvXD2HJrGT/jsiWNPvgB/Mn9pEKWcW1Bu6T1dEG6rs2JgrQmsA2yAP/e0IfDNCpfXig+ofwMvAS8C7ymsRCqnloPpbmBovreeHj+Bc35+MY3jH2PQoEHsuNs+3HXbjQzZYbtilvAIieShYZRay9JmCWB9lg+rDbJ+bkBxne6WYg4+qF7Eh9VLKec+iXiZIjWrloNpGHAtOd0RzZgxk70POJyxD41kqy03B+DuESMZP+F57r7jpkLn3gb8lkTyqjBLlhUFe19rsyysNga2ArYJfobV3VSumWQFFfByyrl5ES1LpKbUcjBtBbyCPz8StnnA/iSSjRHMWwoUhNYG+JDaOngsed7ppQIl6sCfp3oJmAiMB6aqgYVI8Wo3mAAyzW8DW0Yw51nAerqzbTwFgbUeywfWktDKe8F1iT4GxuFvqfJ0yrmmEOct0mvVejCdAfyRcL89twKXk0heE+I8pQKCLqPWx198vQuwa/B81TDm/xlMew2mvgtffA7PfgV/djW9AYrkV+vB1A94F9gkxLl+CmxMIpkJcZ5SJWmzvvi96l3xYbUL/nqpvsXM51Vg9Fprseeee7LZZptx3333cdzMmW9vDGPxe1XPpZybH3L5Ij1SbQcTLLn1xROEc5K8FTiGRHJsCPOSmEqbDQR2ZFlQ7UI3X24eAwafcAK77rorBx54ICeffDK7Pv989oV0i/GNKcYBTwGNKefao1kDkXhTMAFkmi8CLqW8Q3rzgVtIJH8VTlHSk6TN1gJ2BhqAffB7WEt7VvkMeAiYBoweN47LLrssN5hyfQk8AvwDeDLlnPq5kppRy10SZbsGf4HnMArYc1r46ac0pW+lfc4cvnH00QzevaEVuB+4MOI6JaZSzn0BPBo8SJutCuwJfA/Y95sw5CywGwqf5ZrAycFjQdrsn8Bo4JFgWSK9loIJCFrP/ZJM80vAnfj+4PJetNmxcCGTjzqGRZ/46yu/fPgRNrr0kj+sc9YFv6lYvRJ7wTVNjwUP0mZJYJ+5cANQX+TsBgCHB4+OtNnz+JAanXJuanhVi8RDtfsri5dE8gF8k+F78B2jrnDB5NyXX1kaSgA4x/Qrfp+v81CRpVLONQ+DBz+B95cMmwZXAX8FimlG3ge/J3Yd8H7abHLa7Mq02c5BM3iRHk//yLkSyRkkkmfgL8wcBvwFmIS/lcLkjsWL8jVs2L+xvi7sCzalFzGzLfr06bOgT58+e5sZffv2ZUyfPhcP8534rg9sgf9/G4O/G3ChtgEuxl/Y+3HaLJ022zdoTSjSI6nxQ5Ea6+v6Ap/g70qb7UcNTS0PVqEk6QHM7LiDDjrof6+++uqlw6ZPn84RRxzxjnNuq+xxg1Z/+wFHAIfiz38Wqwm4D7g35dyk0isXqTwFUwka6+v+DJyWM3hEQ1PLSdWoR+LPzL4J3At8I2uwA25zzqU7my5t1g/YnWXnmDYtYfFvACOAkSnnZpUwvUhFKZhK0Fhf9wN8U95sXwPfaGhqWVyFkqQGBD1TbMOykNq5yFl04K+Tuhd4UJ3OSlwpmErQWF+XwN9nKbermv0amlqeqkJJUoPSZvXAYfiQ2pfibv/Rir+06l7gqWrdeFIkHwVTiRrr6/4OHJ0z+OaGppafVaMeqW1ps8HAwcBPgAMp7lKQz4CR+MN9r6lHdKk2BVOJGuvrfoI/uZytCdigoalFdzuVqgl6ofgxcAK+B4piTAFuBf6acm5O2LWJFELBVKLG+rrB+MN5uYdPtm9oalErKImFtNnm+IA6AX8TxULNx+9BpVPOvRlFbSKdUTCVobG+7il8lzPZzmtoavlTNeoR6UzQcGJ3fED9GFijiMn/BdyCbzCxMILyRJajYCpDY33dr/FX72cb09DUcng16hEpRNqsP3AQcCJwCLBygZN+DvwZuC3l3IyIyhNRMJWjsb5uV/xttLPNAZINTS1q5SSxlzZbA9+I50RgjwIn68BfLnELvudznVOVUCmYytBYX9cPaGHF23Hv0tDU8u8qlCRSsrTZ1kAKGErht5ifCqSBu1POtURVm9QW9ZVXhmCv6Nk8b+1b6VpEypVy7q2Uc/+J7/08he8jsjvfAq4HmtJmd6bNtomyRqkNCqbyPZ1nmIJJeqyUc3NTzt0K7IDvyXwk/g67XUkApwCT02aj02YNEZcpvZgO5ZWpsb5uB+D1nMELgNUbmloWVaEkkdClzdbG9w/5U3xv6IWYAFwNPKGLdqUYCqYyNdbX9cG3VsrtAXqvhqaW56pQkkhkgk5lf4C/Rcf+BU72BvBfwCh1fSSFUDCFoLG+7gHgqJzBwxuaWn5XjXpEKiG4ePcs/CG81QuYZBpwLb6hRDH3nJIao3NM4dB5Jqk5KefeSzl3AbAecA7Q3bVNm+Bb8E1Pm10Y9O8nsgLtMYWgsb5uC+CdnMGL8eeZWqtQkkjFpc1WAo4DLgS2LmCSOfhrof6Ucu7TKGuTnkXBFILG+joDZgLr5ry1f0NTy5NVKEmkatJmffA9Svwa2K2ASRYCdwJXppxrirI26Rl0KC8EDU0tDh3OEwEg5VxHyrkx+L759gYe72aS/vjrpqamza5Lm60ZcYkSc9pjCkljfd0p+G992V5qaGop9rYDIr1O2mwI/hDfMXT/hXgucB3wx5Rzc6OuTeJHwRSSxvq6DYHpOYM7gLqGppbZla9IJH7SZpsCv8C35Ovfzehf4jtJTqsVX21RMIWosb5uGive8+a7DU0tE6pRj0hcpc3WAc7FXw/VXb98HwO/A+7RdVC1QeeYwpWv49btK16FSMylnPsk5dxFwEbANfjeUjqzPv52G1PSZscEjSukF9MfOFz57vSpYBLpRMq5liCgvoW/xqmrPaLNgb8BL6fNDgpufii9kIIpXAomkRKknJuVcm4YsAVwL9DVOYYdgUeBZ9Nm/1GJ+qSydI4pRJ00gGgFBjU0tehmaiIFSpttB1wBFHI36DHABSnnPoi2KqkU7TGFawb+avZsA/FdsYhIgVLOTUo5dwTQADzTzeiHAW+lza5Km60afXUSNQVTiIILbXU4TyQkKecmAt8D9gNe7mLUlfE9TbybNjte5596NgVT+BRMIiFKOedSzj0F7AL8CHi7i9HXxZ+jei5t9u1K1CfhUzCFT8EkEoEgoB4EtgNOBrrqV+8/8K33bkubrVWJ+iQ8CqbwKZhEIpRyrj3l3D3AlsCVQGd3ijbgTOC9tNk5Qe/n0gOoVV7IGuvrBrFiAwjwLfPmVboekd4u6OboerpvwTcFODfl3Ljoq5JyKJgi0Fhf9wErtsRraGhqmViNekRqQdpsf+BP+D2prjwI/Dzl3PTIi5KS6FBeNHQ4T6TCUs79E7+dnU/+oxZLHAm8kza7PG2WqEhxUhQFUzQUTCJVkHJuccq5G4DNgL/QeQ8S/YHfAG+kzfasVH1SGAVTNBRMIlWUcu7zlHOn45uYd3UIfXNgQtrslrTZapWpTrqjYIpGvmDauuJViNS4lHMv45uOnwR82tWo+N7LD6lIYdIlNX6IQGN9XT98E9bcq88TDU0tC6tQkkjNS5sNAi4BLgC6ajo+Et9674uKFCYrUDBFpLG+7hNg7ZzBGzc0tUyvQjkiEkibbYO/v9NuXYzWDJwH3JcKPiTTZivjr5vaH5gEnK/wioYO5UXnkzzD1ql4FSKynJRzU4A98HfQbe1ktCQwAhibNtswGHYV/rbw2wPHA0+nzbq7PbyUQMEUnVl5hq1b8SpEZAVB7xE3AtsA/+xi1IPw557+Ezgg571t8YcGJWQKpugomERiLrjI9kBgKNDSyWirADey4qF5gF+nzdTiNmQKpujoUJ5IDxB0DvtXfMvZv3Ux6pp5hvUD/pI26xdJcTVKwRQd7TGJ9CAp5z5LOXcsvs+9rnouz7UT/nyVhETBFB3tMYn0QCnnxuDPPd1WxGRXBJ3JSggUTNHRHpNIz9UKbFXE+AOAO3Tn3HAomKKjPSaRnuvHwF5FTrMPcFoEtdQcnbCLzmf4DiSzv0ElG+vr+qv3B5HYG1zidLekzZ4q6JYameYE8B2gAX+rjpWAz4EXgUYSyWLOc/UqCqaINDS1tDXW133Gik1M1wY+qkJJIlK4UcDvgdWLnG4lYCz+HFV+mea1gZ/j++drx/d0vuRC3Q5gHrAymeZXgd8C40gka6qLHh3Ki1a+w3k6zyQScynnPgOGADcD7xQ5+RadvpNpPhGYCvwMf33UaiwLJfCfyasBCWB34B/Ao2Sa1yiyhh5Ne0zRmgXsmDNMwSTSA6Sc+wgfIKTNvoHvxmgvYE98aHX2xX7FC3UzzX2BO4GjgIFFlLEK/tzVu2Sa9yGRnFLEtD2WgilaagAh0guknPscf0v2BwGCezftjg+pI1l2O/dF+FtsLJNpNvxNC4sNpSX64y/ufY5M87dJJKeXMI8eRcEUra/zDCvlH1NEYiTl3Bzg8eBxSdpsAP5L54epFW/ZcBZwNOVt+4Y/xPcUmeatSSQXlTGv2FMwRWtxnmFd3QdGRHqglHMLgGkrvJFp/iZwLeF8Ie2Lbzx1PnBNCPOLLQVTtNranOPR1kW8sHAxn7V30OY48QOzt4GHnG6GJdLbXU+4X0ZXAS4j03wPiWRXd+Tt0dQqL1qLR7cuZNzm25C666/c+8JEfj/i3i223HLL/0N9a4n0bpnm1YEfASuHPGfD94beaymYotU2v8Ox2mqrceONN7LXXnsxevRoRo8eDXCxqfsSkd7sGPx1SkWZP38+Q08/mzOGncd9Ix/IN8oAYFjQqKJXUjBFa/H+A/ozuPFf/PDdN7ln0EqMGjWKDTbYgH79+q1F+N+kRCQ+jsUfeltB+vY7GXbuL5e+vnT4VZx4agqAB0eP5agfHsodt9zAmLGPdzbvtYANO3uzp1MwRatt7X59+MXqA9ml/0pcN7uVn/3sZzz00EO0tbW96JxT10Qivde2nb0x9IRjeXjsE3z99WweefQJxj7+JLff/AcAZjbNYv316gHo27dvZ7NYBGwXcr2xocYP0VoMsNg5Lv1qPusfcjjHHXcc++23H8A51S1NRCKTaV6VLrozGjhwIMcdcySXDL+Sx54Yx5NjRzFgwAAA1qtfl5lNsxiyw3Z0dHR0NotV8MH0cNilx4GCKVptbc5x2VfzSR5wMBdddBEHHHAAc+bMuQb4sNrFiUhkVsd/Me20Rd6pQ49nqyENjH5gBJtusvHS4Uce/gN+dv5FjH38SQ49+IDOJu9H/jvq9goKpmgtHt26kJX33Jvbb7+dM844gy222ALgwldeeeUsM1vbOZepdpEiEokuLwe5/KprWWutNWlrW759xCqrrMJdt/9PIfPvtadiFEzRWtzS7lvljR49mkMOOWTpG5MnTx68aNGiAYCCSaT3mUMXjZuuv+FmMpmF/P3eP/PbK67hyCMO6WzUzrSTr0++XkLBFK22w1bpz8jHH+Hhx/yh4JZ2N+35hYufBl52zn1V3fJEJBKJ5BwyzXOButy3nh4/gbtGjKRx/GMMGjSIOXN/w+tvTGLIDkW1ZZgPTAqr3LhRMEVr8Tf79uG8wcv1RvJ6Q1PLGdUqSEQqZgq+k9elZsyYyemp8xn70EgGDRoEwLlnn8kNN93G3XfcVMy8+wFvhlZpzJh6xYlOY33dEcBDOYPHNDS1HF6NekSkgjLN5wJXEU3HzZ8C6/bWGwj22pNnMaFOXEVq1334jlfDthC4rbeGEiiYopbvm5IuqhWpBYnkl/jbYrSFPOcO/E0Hey0FU7Ty3Q5ZDR5Easc55D9yUqpW4I8kkjNCnGfsKJiipWASqWU+QK7At6Irl8PffPT3Icwr1hRM0VIwicg1wNPAgjLnMw/Yj0Sy3PnEnoIpWgomkVqXSHYARwHjKW3PaTEwGx9Kb4VYWWwpmKKlYBIRSCQXAT8ALsPvORXaIGIe8BqwNYnkixFVFzsKpmgpmETESyQdieQfgCHASHx3ZHPwreyyteL3rN4DTgd2J5GcVclSq009P0RLwSQiy0sk3wNOItN8PrAHvneIrfDXOH4BPAe8AEzqzdcqdUXBFC0Fk4jkl0g2A6ODh2TRobxoKZhERIqkYIpIY31dH/LfwVLBJCLSBQVTdFYDLGfY/IamljCvAhcR6XUUTNHRYTwRkRIomKKjYBIRKYGCKTpr5hmmYBIR6YaCKTqb5Rk2s+JViIj0MAqm6GyRZ9i7Fa9CRKSHUTBFR8EkIlICBVN0tswzTMEkItINBVMEGuvrBgIb5HnrvUrXIiLS0yiYopGv4cOMhqaW1opXIiLSwyiYoqHzSyIiJVIwRUPBJCJSIgVTNBRMIiIlUjBFQ8EkIlIiBVPIGuvrjPxNxd+pdC0iIj2Rgil86wCr5gxrBZqqUIuISI+jYApfvsN47zU0tXRUvBIRkR5IwRQ+nV8SESmDgil8O+cZpmASESmQgil8e+UZ9mLFqxAR6aEUTCFqrK9bF/hWzmAHPF+FckREeiQFU7j2zDPs9YamltkVr0REpIdSMIUr32G8CRWvQkSkB1MwhUvBJCJSJgVTSBrr65LAtnneeq7StYiI9GQKpvDskWfY2w1NLV9UvBIRkR6sX7UL6MmCO9U2AO+jw3giIqFQMJWosb5ua/xhujp8k/AZeUZTMImIFEmH8kp3OT6UAAzYMM84Or8kIlIkBVPpNu/m/Y+B4Y31dY831tedVImCRER6AwVT6eZ18/6awKnAAcA9jfV1x0ZfkohIz6dgKl13vTkMyHl9eFSFiIj0Jgqm0hXbzVC+xhEiIpJDwVS6YoJpFnB9VIWIiPQmCqbSFRpMrcChDU0tn0dZjIhIb6FgKl0hweSA4xuaWl6NuhgRkd5CwVS6QoLpwoamln9EXomISC+iYCpdd8F0J3BdJQoREelNFEyl6yqYngFSDU0trlLFiIj0Fgqm0vXvZPgHwFENTS2LKlmMiEhvoWAq3ZQ8wxYDBzU0tbRUuhgRkd5CwVSihqaWt4CJWYMccEZDU8v7VSpJRKRXMOd0GqQcjfV1pwFbAbc2NLVMrXY9IiI9nYJJRERiRYfyREQkVnQH285kmgcC3wX+A3/79FXw3Qv9G/gXMJ5Ecm71ChQR6Z10KC9XpjkJXACcA3TgA6lv1hjtwPxg2O3Af5NIflrpMkVEeisFU7ZM877AKPy9lBIFTLEweJxAIvlwlKWJiNQKnWNaItP8c+BhYA0KCyXwF9muBtxPpvnKqEoTEaklCiaATPMZwOXAwBLnMBA4l0zzr8IrSkSkNulQXqb528BzlB5K2VqBg0kknw1hXiIiNam2gynT3Ad4HdgWsJDmOh3YnERycUjzExGpKbV+KO84YGPCCyWAtYCfhjg/EZGaUut7TK8BQyKY84fApiSSNfzLFREpTe3uMWWaNwG2LGXSf4x5lDOGncfhR5/AP596Jt8o3wB2LKc8EZFaVbvBBN/HX0CbV/r2Oxl27i+Xvr50+FWceGoKgCMOO5g7brmBu2+/ib+Nynvn9JWC+YuISJFqOZh2pouWeENPOJaHxz7B11/P5pFHn2Ds409y+81/WG6c3//X9Zz901PzTb4ysFuo1YqI1IjaPceUaX6Vbg63/eri4cxvbeWxJ8bx5NhRbLrJxgA457jo0svZ73t78/19v9vZ5B+QSH4r3KJFRHq/Wu7EdVB3I5w69Hi2GtLA6AdGLA0lgP+55Q6eeuZZZs+Zw9QPpnHWGafkm3zVEGsVEakZtRxM3e4qXn7Vtay11pq0tbUvN/ycs8/knLPPLHv+IiKyolo+x9TS1ZvX33AzmcxC/n7vn/nTzbeVMv/ZpZUlIlLbajmYJtLJXs3T4ydw14iR3PPnm9h7rz2YM3cer78xqdj5v1p2hSIiNaiWg+lV/H2VljNjxkxOT53PA/fdyaBB/jTUuWefyQ03FbXXlMEHn4iIFKmWW+V9A5iBv3VF6HMHtiWR/CCCeYuI9Gq1u8eUSH4OvBDR3N9WKImIlKZ2g8m7Gn+rijDND+YrIiIlqO1gSiSfBP4FtIU0xw5gCv727CIiUoLaDibvTPw5oTBkgFPUq7iISOkUTInkR8APKf+Q3gLgBBLJt8ovSkSkdimYABLJp4AfA/OA9m7GzuXwoXYaieRDYZcmIlJrare5eD6Z5k2Bh4H1Kayvu3nAl8AhJJJToixNRKRWaI8pm2/ivT1wGvAO/vDcXJb1EOGC1634u9QOAzZXKImIhEd7TJ3JNBt+z2k3YAd8b+TzgUlAIzBdjRxERMKnYBIRkVjRoTwREYkVBZOIiMSKgklERGJFwSQiIrGiYBIRkVhRMImISKz0K2vqzJcO58C1Aw5cB/51R/C6HZzDLX3dAXR0Ot7y82hnuXl35Px07bjc8br8uWS+2Y9gWEf2a6AjqKsjeJ093tLhWT/b25f97Mh5HUzncoe1t/vp24PfR/bPDocLanLt/ldMe0dQost6n+B9B0vGC6ZZbtpgfNfegXMO1+Z/dx1tvpaO4PWy4b6WjrYOnOvAteWfznU4Otrbg59+nPb2juC1r6ujvYOOrPc7gvfbc17nTt/u/1OW/nRZz4v56fBdx7tg2HDnrKz/+UrS9qXtq0a3L+0xiYhIrCiYREQkVhRMIiISKwomERGJFQWTiIjEioJJRERiRcEkIiKxomASEZFYUTCJiEisKJhERCRWFEwiIhIrCiYREYkVBZOIiMSKgklERGJFwSQiIrGiYBIRkXhxzpX8AM4sZ/owH3GpJS51xKmWuNQRt1riWGstLLMW1rGnL7PcPaYzy5w+THGpJS51QHxqiUsdEK9aulONWmthmbWwjj16mTqUJyIisaJgEhGRWCk3mG4PpYpwxKWWuNQB8aklLnVAvGrpTjVqrYVl1sI69uhlWnDCSkREJBZ0KE9ERGKloGAyswPN7F0zm2pmF+V5v7+Z/S14/0Uz2yjsQgusYy8ze9XM2szsqChqKKKWC8zsLTN708zGmdmGVazlLDObZGavm9m/zGzratSRNd5RZubMbKco6iikFjM72cy+CH4nr5vZ6VHVUmJ9nW5TZvbrYPi7ZnZAlMszs43MbEHW7+nWENex0+3VzIaa2fvBY2iFltmetZ5jQlxmp58FEa5nV8uMaj07/Zwp+n+2gHbpfYEPgE2AlYE3gK1zxhkG3Bo8Pxb4WwTt4wupYyNge+CvwFERttUvpJZ9gIHB81QUv5Mialkt6/lhwOPVqCMYbxAwAZgI7FTF38nJwE1R/Y+EUF/ebQrYOhi/P7BxMJ++ES5vI2ByROuYd3sF6oBpwc81gudrRLnM4L15Ea1n3s+CiNez08+fCNcz7+dMKf+zhewx7QJMdc5Nc84tAu4HDs8Z53DgnuD5KOB7ZmYFzLsY3dbhnJvunHsT6Ah52aXU8oxzrjV4ORFYr4q1zMl6uQoQxYnFQv5PAK4A/hvIRFBDsbVUSznb1OHA/c65hc65D4GpwfyiWl6pytleDwCedM61OOe+Ap4EDox4maUq57MgyvUM+/OnnM+Zov9nCwmmeuDjrNczg2F5x3HOtQGzgWQB8y5GIXVUSrG1nAY8Vs1azOxsM/sAHwrnVKMOM9sRWN859wdThPgAAAa3SURBVEgEyy+qlsCPgkMdo8xs/YhrylbONlXKdlDuNryxmb1mZs+a2Z7dLKuYZYY9bbmfEQkze9nMJprZEQVOU85nQaXWM/fzJ7L17ORzpuj1LCSY8n1ryv3GXcg45arEMgpVcC1mdgKwE3BtNWtxzt3snNsUuBC4tNJ1mFkf4I/AzyNYdlG1BB4GNnLObQ88xbK9hUooZ5sqZTsoZ3mfABs453YELgD+18xW62Z5hS4z7GnL/YzYwDm3E/AT4AYz2zTMZeb5LIh8PTv5/IlsPTv5nCl6PQsJpplA9rfJ9YBZnY1jZv2AwUBLAfMuRiF1VEpBtZjZ94FLgMOccwurWUuW+4FCvyWFWccgYFtgvJlNB3YDxlg0DSC6/Z0455qz/iZ3AN+JoI7OlLNNlbIdlLy84PBLM4Bz7hX8+YHNu1leocsMe9qyPiOcc7OCn9OA8cCOYS2zk8+CSNezs8+fKNczS/bnTPHrWcBJr374k3Ibs+yk1zY545zN8idO/17sybUw6sga926ibfxQyO9kR/xGvFlUdRRRy2ZZzw8FXq7m3ycYfzzRNX4o5HeyTtbzHwITo/w7lVBf3m0K2IblTyRPo/vGD+Usb60l88ef+G4C6sL8f8jdXvGNAT7ENwhYI3ge9TLXAPoHz9cE3idP450Sf7d5PwuiXM8ulhnleub9nCnpf7bADelg4L1gRS8Jhl2OT2KABPAA/qTWS8AmYW3ERdaxMz6d5wPNwJQo6iiwlqeAz4DXg8eYKtbyJ2BKUMcznW2sUdeRM+54IgqmAn8nVwe/kzeC38mWUdVSYn2dblP4b8EfAO8CB0W5POBHWb+nV4FDQ1zHTrdX4NSglqnAKVEvE9gdmBSs5yTgtBCX2elnQYTrmXeZEa9np58zxf7PqucHERGJFfX8ICIisaJgEhGRWFEwVZiZHWEldAlkvgufEVmv+5nvUueRrGEHBdcnvG1m75jZdcHw4Wb2i3DWQKR3MrO9g+3stKxhOwbDfpE17BfB9jXZzN4ws5OC4eMjamVacxRMlXcEvouOYs0HtjWzAcHr/fAtpAAws22Bm4ATnHNb4ZtmTyuzVpFYCpq0R2ES8OOs18fiGwosWe5Z+G1vF+fctsBe5L9OR8qgYAqBmf3DzF4xsylmdmYwbF7W+0eZ2d1mtju+D6lrg44ONzWzIcEV2G+a2UNmtkYXi3oM+EHw/DhgZNZ7vwKudM69A/7qfefcLWGup0glmdlJwXbxhpmNCLahP5jZM8A1ZlYXbHtvBtvQ9sF0383qpPQ1MxtkZuuY2YRg2OQuerCYge8Z4ZtBl0wHsnyvCRcDw1zQ/Y5zbrZzrpIXZ9cEBVM4TnXOfQd/hfU5Zpa3Oybn3AvAGOCXzrkhzrkP8J1JXuh8DwSTgN92sZz7gWPNLIHviPLFrPe2BV4pf1VEqs/MtsE3Md7XObcDcG7w1ubA951zPwd+B7wWbDsX47clgF8AZzvnhgB7AgvwvRw8EQzbAd+kuTOjgKPxTatfBRYGNQ0CBgXbrURIwRSOc8zsDXxniesDmxUykZkNBlZ3zj0bDLoHf2ggL+c7n9wIv7f0aDkFi8TcvsAo59yXAM65JT3JPOCcaw+e7wGMCN5/GkgG29TzwB/M7Bz89tUG/Bs4xcyGA9s55+Z2sey/44Mp96iEUb1u0GqKgqlMZrY38H2gIfhm9xr+YsXsf+BEkfNcP+tQxFk5b48BrmP5DQb8hW2V7FZHJEqdhcD8nHFyOefcfwGnAwOAiWa2pXNuAv5LXxMwIjhM+MOs7WynrBl8CizGn0salzV8DjDfzDYpd+Wkawqm8g0GvnLOtZrZlvg+4AA+M7Otgs5Lf5g1/lx8v3E452YDX2Ud7z4ReNY593FwqG+Icy73xmx3Apc75yblDL8WuNjMNgffaaqZXRDaWopU1jjgmCWHxc2sLs84E4Djg/f3Br50zs0xs02dc5Occ9cALwNbmr9R3ufOuTuAvwDfds49lLWdvZwz78vwh9jbc4ZfDdy8pCNbM1ttyXllCU9ULVtqyePAWWb2Jr67jYnB8IuAR/DdvU8GVg2G3w/cERxmOAoYCtxqZgPxrehO6WphzrmZ+K4/coe/aWbnASODeTlgbJnrJlIVzrkpZnYl8KyZteOPROQaDtwVbHut+G0J4Dwz2wdoB97CN144FvilmS0G5gEndbP8Fzp5K43flv8dzGsxcH0x6ybdU5dEIiISKzqUJyIisaJgEhGRWFEwiYhIrCiYREQkVhRMIiISKwomERGJFQWTiIjEioJJRERi5f8BJYBzAmv5rdsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "link_matrix = pcmci_cmi_knn.return_significant_links(pq_matrix=results['p_matrix'],\n", " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", @@ -1271,9 +1235,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAEYCAYAAABBfQDEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9d/zlR1X//5ztu6mE9ACpkASC/ujSSwCVZsECCIqgoOBXrIACAhaaiCBKU8BCEw0QQbqhQxICBNJI771nk83uZ/ez8/tjZvaee+6Z8r73fnY3ybwej/u47zLvqWfOvOa8z8zbee/p6Ojo6Ojo6Ojo6AhYtqMz0NHR0dHR0dHR0bEzoRPkjo6Ojo6Ojo6ODoFOkDs6Ojo6Ojo6OjoEOkHu6Ojo6Ojo6OjoEOgEuaOjo6Ojo6Ojo0PgTkOQnXOf39F56Ojo6Ojo6OjouONjxY7OwByxtzxxzj0cOB9wAN77q8W9/YBr4um+6Z5zbm9gtff+cufcKmBXYA2wG3Az4GN8twKHAhd579fHZ/cHrgcOAS6O4dYBq4FbgBXe+1ucc/t776+KebgO2CfGvzH+3wAs995frsqzB7Cn9/7ieLwuPntOTPNmYD1wQMzf3WNcdweuDVUwUQcQJklbvPfXiuu3ArvH8q733t8m8n0PYDHe2+S9v9E5ty+jydYGYC/v/UUxrk0x3O3xfAuw1nt/WUzvGOAs7/2iqEcX2/M6YDNBTm8EfgI4CzgYuDLGvQxY572/2jl3t9hma4FLYxkccDfgvBjPKu/9zc65XeK9DcB9vfenx/TvBiwAa7z31zvn1sT4Vsa0rgaOiG21AdgzXrspXtsar+8PnAvcB1gOXOu9vzKWz8f87h/LuKf3/joUnHPrgMNiPq8FdgFui7e3xvbdM5Zra2yTA4AzvPeLzrn07K0xvT1jne0K7EuQ04O892frtEVb+FjuPQlyfDuwCrjee7/ZObdPLOuZwNHx+pXOOUeQz2WxjIcCF3vvF+Izq2LbLo95vybma59YRhflbSVBvjcCe8X/S+LzW2L8e8c41sc6ujKmd4n3fpNzbjVwL+ACRnriGsb7fopnc2y/XYFbYhnXEmRorff+/Fi2fWO5jibI5F7xd0vMx0GEPgmi78U6TTK0lqAzrgF2F/K2xnt/Uwy/G7C39/7CeH5ErIPbCPK9MbbtgcDm1I9FWutiXs9gJMd7xPq6MNbPfvH6rsBlBDkm1u0+3vtTY3xHAlcQZGw9Qaa3xHu7xvq8IMbnoqwsxHZ6IEGXnBnD348gv3vHvO0Tn/GxfHeLOmSvWPcrgYsI+ni10mUutaVzbjlB/1zrnNtP1PsaggzfHsu+T8zrnsAh3vtT4/HGeP+w2L43xfq/StarPBd1nfr1aoJOujHe2yXWpey/h8V6uV48tx9BZpIeuzLWyTpRjj1ine4R6+8ogm4gtttCrKv1BD1OTJeY3i4E+V4R+9d9Y/gzCGPFrTGvtxJkdDGGT/nf5L2/JOZln1ify2Pcu8Uwt8br6+Lxmliue8fyLgcWks6LMn4f4PsEWb2WUV9cHfO3WbXBvQj9M/WT3WPaN8WxZi+C3ltwzh1M0Hu3C92/zHu/PsmqGJNXEuT7hwQ5kmnuEst4a2zHpAMOi/FfGcu4K0Efrkjh4zjpCLry7t77051zK2K5r4/tLOUg5elwRlxlF4J+SbrvAIK8HghcHtPbGMPuTRgD18S4AbZ671Nc2xDbcXnMt4/l2xjLdYWQvZUEnbMuxrsh1teNsV73ZzT+Xk/oRzfHsLsJuVlD0MfnxbAHxDZPOnpFvH4TQf52J8jr1TGvGwljwjb+pcqTuMo947OL3vsfx3tjclOF9/5O8QNOUec+/s4nEAZ971nAU0MVbLv+lVh5AG+P4b4h4kq/M+P/21Sc74v/bwc+JMJ/lTCYQFBEh8fr7zHi9jJPIv4PpusExZHC/lYujlKc4vqVwPfitWPitR+I+yeJ8Pe04lTX3mNc/y8dLp7vF88fauRL/54f/9fH/88DJxEGdA88HjhehP+92E4XxfOnAP9DUPAQFOC5hIHbE4iilccPq3y8u7W+gecU6upBCJnJyPTXKvH/dfy/KJYnXX808EgV9qEEJf5p4Lvx2nW5tDNtcaM4fosK82xVzl836uxdmXi/C9yfQNjl9YOBvzHCf5YwAJ8i2vdG4DMEpfzKeO1fYnr/Gs/fK+I4VpYd+H/i3gfi/5vivf9RZXtaPH94/H+zyt+1Os+qTqUMfRd4OqM+8mEV/u3G82ep+FfENL+dab8bjGc88CuEgdQzrlP070AR3/Xi+mtEWm8V9SOf/Qyh793IaEKzhwrzJ+r8dtH+8vo2narK+UyR9u+rfKyMx8fF8w3A20SYN8XrB8T/jwC/KNJ8j5GeBx6bqeu1wPtVm31H3L8MJurXEyZXHviodV/EtTHWqQdeUGgzz2icSr8r1Plu4vgl8f9kwgT0FwrxrlRl3gScqMLcpM7fEv9Pj7LwdVGmP4/3jmSyn07UgUj7Y+I89bnPqH4mZe2diSsQJoeyDEep9J5vpHmyqNek218mnvlncXyLOD4uPv90ce1A4Eni/MpYNweJaw+N/+cwkpsTKm0uf1eX6rAy5v6VOD46hvvrTNjbgEdl7h0njlfFeP4znr+YUd+4Kv5/gzDJS33hrTLv8fi6+H9ZoTx7YZQbJTe1353JgpzDYQTlr7E3YXYqcQgj68nB8X+58ezR8f9u6voR4tkDxfUjGVmudhXp3ieXaQMyPtluu+iAA7E/QalDUCYQLLUJR4rjVQ3x7WVcOzjOnrchnqf4VjbEu6v6P5SQ993j+Z7xWsIaRu0Eoc7vLdK8L9GiXMnDIer8MHW+iC0jKU85pHwfWQhzVOEejMp7MIFUJKxk1KYyvVUxziSLd4dgPfXeb62kBePluYe6t5s6308c30vk00LqE/dS11cZ1yD0szUEUp3abxmhPhxhkIEwEZX/sq61nMryHK6u3VuFvXv8T33vEHV/b8o4XBwvJ5Q9ybWWLysup86T9Xsxk97nCSRSYxWj+iuNBbJvyHqTbbxP5tkjYxpfIxAEx2Rf07K0Jv7vrq7rdkjYVx/HNwIwerOV2n4t42XQ/f9wxvWc1CkSWt4TlhEMCRJS7g7CRkqzNiasFnnSfVzjaHV+gDqXY0eqk6MIZduPPJYzPqauMtLaQ52n8SvpYNkHUtnTuKjjymF/cZz6iWyvwxjXzamPHU2wgkqsUee7QBinEjMT+TqSUf1I2U3yuZlx+Uj1LvvySsblbH9CG8g2TfmVct9aNzDeL4ZC5i3lQ8t1wjry/eEQcZz6YhoH9mZUtlSfRzDqi4fKfIg+nfRvri9BWZ/tX7g3hjuND3IFPnNNDzTOONZhJuI1lLFjvIFkHKsZddpS3Bq5BtckvwqR34lb8V/el3XXIi/WIJ0sRxKrGNVDjmBK6InASibbSw68us2XY9d3LQ+6PFvU+e3kURvASulCXT5yMmbFmepjBZN1M1iGjDhKk6f02i9XHtknJBYzz6S0ZXtvFufpmRXq3OrfqLDy2GfCpvNUby3yK6FlKpFkC1b59fNS71jYgN0+y7F1oxXOguwLuQnmCkZuNFvjsY4vV3at83IyJsud8qT7dU5/6nBO5U/39wTL6JKe18+01HFqwxZjQU4uh0KSxFRmqSdysOShlpdUX7pvyviKbWWMW7W+oeNJcmY9p9szEWYpc+k5qZcsHbxBxWW1l9UPHOOykuRIXtteRs2hbZybnMvrKc4t4p7uKzK8Z7y81XEquliBymt0Z8G6V0InyPOJNym11Jm0kpXprGK6es8NUnomPEtcJhkRQteivIcQZD2xKEGX01IU8ppu85xiqeWhRpAXMs9BG0EulX0IQa7FWSLILW8GcvG1xJEjGfLZXJ5LBFkTI10fWlmW6nO5cVwjNtJ6PQQWwW0hf6XnS9ADdoIlCxaW6TdAEbJdSwR0GSOCvIzJ/C4FQV6h/nM6zzJuyPxthbGBV6dj5WUagpx0awsBSnmZpt9KlAhyadI3DUnTdSLjT/Vda6uWdDUhk88M0VFJd1vPSIJsjfM5gixh9QMdVhLJhKGT8Wkxq06zrqe2GEKQZXlb5D33RmyqvtIJcj6cN67l4k0KPkeQZeOsZtKyNQFjQMp1jBYSpjGIIDPKv34NZcEaODZjD4pDCLIupx7c9WzTsiDnFFUpD7o82tKQUwyw9AQ5ZzEvKd6VTNbDPCzIpclTqqNcX5KyILGMMkGGUftIgqwHeYsgW/Khj3M6QPf7oXpUy9QyGizIwoKm3WHS9Vz95ghy62CbG8xlX6gR5MX4s+LKDV5apnIyJts15UlbJaclyCluncccQV7GpI4YQpBbjBBDDBYlSP2k+0pJNkpvqHLQ1lCLILda+0tpynbRVtrUx6zndJ9KdSP7ZXpuC9MRZK2jdT/wKkySI12m7YEaedfI9Qcr77Jcuq/I8Jogt4xTKUzu7UGKtwmdINdRqqPUqVapf02QV6vjdF5ScLoj5JTGUluQtzLKbwvhs3xZLYI8qwXZqrtafVrlG2pB1h265Ltbqq8W95JpXSwsYiktyDrPEwQlYzG04kso1X3tlXDOgpxrM2sQSbud6OdluqUylVwschhEkEWdWgS3xcUi59LR4mJhIVe/GsuMNGEYQS5ZkHMEeRoLco4gt75B0gQ5Z63dVnbVVyyC3OLfr99CljAvgizd1pKuarFkz+JikSDjT/W9Rv3X0m1xsbDGYes5fW0aF4uUVouLxRALspSfndWCnCPIlvV7s7inJwEy/FbGy9vSN1oIcjPuKgTZUlBJWddQUhTakiQ74ETHjK/plmPPTjV0R9geLha5Dpvy2WJBtuK2XCyk1bCl0w91sSj5mErU8lBzsWgmyMoPquX1fE0+cwOk5d+W8tlqQa4NvlkXC8NXsIVoWvXfQpC3in+d5xSnRSBLb2hqLhbaqtiqR3NvjpaTV/4y7hxBrvWfTZnribzWoF9VJ7T4ILcQ5JxemcaCrH2QZ3WxSMdJh6fzRSNMOp7FxWKIBXmeLhapDVL683ax0ATZsiCvU/8aLeOEJmStBEvLZGmMTm9CwJ5Ya4JsjREtfc9aE2TVQcsEbCjmxQ1bXSw2G+GXyoLcfZAVchZkjdIirlK8FkG2Zsipg7YQ5Jw1TGMagjxEwUkXixYLspwMJGzBXpijCUwJQwmyRSKsNq/lYW4EmXEFncozixWoRPq1bA1dpFdTRiUL8tCBO+disYK6MpMER9eHPp/WB7m0uFA/W0LJAtyi/HP+dRMuFkb/s6AtbDnkLMgtPsgti/RyK+Dn4YPc+tpevm2wyJt2o7NIdIpnGoKs30KWkMoyqwVZ6tSkq7TvtoVprJipTizXhHRcI8ilPC2q/xRv6yIvHXfKQ87FQqahj1tdLHJGARlGX7PqoOTmNy2GtnGubWqL9NL4mepGjqeDF+lh70q1mSknk3cVgpxDy0yihSDXXCwStKtCqdF2FhcLaUFuSSuVTVqFlmKRXs3FQsfZakHSKC0igGEEWXbwVJ6SDMyySK+08KllgZ11TfuH5cLrZ1ssHENcLCxyYhHkkl9laRFnzcViWh/kVC9DCPK0LhYyvtwA2mpBloO59QoYZnOxWAqCPC8fZG2trRHkaS3IQwjyUliQtX4d6oNcg64Ty4CU8pAzxCyHMZcWq921TLZaIPV40upi0UKQ9fOQd7Gw5Kpk+IH6IuhpMJQbtryBtQiynoDKdKdZpGe5r96CPdGp4q5CkFtdLKyKm4eLRcIQC/IdwsXC8FW1rADzWKS3jvF2rFmQdZzz2sViyP0WglyyAk3rYrGMPEltdbGwrsnXpCU/Zu0yMWSbK4kWH1nZfjUXi1af/3SsrRta3ptdLOKreev1XyJkrS4W2i8vl76Mbx4E2Zo0SHmouViUFunlCLKuk2kW6c3VxQJ7INfH22uR3lK4WOg0LMziYpHqwqq/VhcLazJhvaIf4mKhy7TULhZDCHLJNSzlZ96YF0G2JtGyrbSVXI8b83CxWN/47AR2SoLsnLunc+4rzrmznHNnOOdeNmOUg/ZBVoPgEAuyVJ6WEtEW5J3NxaK2i4U1s9dKp5UgT2NBlnsOW/WxFBbk2pZaJeuoHnSGEuQaObSsG5B3sUgyP60FWb/+kpDlkAtRrbAWci4W1nVdVk/ZxcJaUKPR6oNsKewW+V2BbUFOA2WLBXkV8TPBKsyEi4WKr+RiMYsFuWWRXkqjZEHWHwRJyBJkY2FcwhYVtuZiofu/zp/2N18qgjzko0lL6WKh07Awq4tFbheWlJ9c/ClP2t0F8gR5WheLaXaxGOpi0UqQa9gZCPIQF4tSOpogT+tioQnyncrFYgvwx977o4GfAl4avxk/LVoJsuV/NY0Pcu45vV3aEBeL7WFBnmYXCy201muyeS3Sy726SihZkGsEuWUGbMU7xMVirXE8i4uFbHstszpeuT+rznOrBblkFdY+yKuMsK7wkZqcP15txfkywodILJ8+7WIh81hapFdysZB5sgbqHJaL8JogW+1l5XM1oQ/UyqnzNIsF+XbGLXFSdmS8syzSy1mQtQyW+ndCqoOkYy3LlDSEWBNky8Wi5IOs23PIOoWElsVxOr2lJMjzdrHIyQ1MEuRaunqyArO7WOQI8jxcLKy1DLm+J6+1WurvaC4Wcswtvemd1y4W2sWieZFe0/eod/QPOB54UiXMKYXvi98AvAn4AaNvwm8BXhqPP8b4N9XPEccXqbjk758I3w4/y7h3vXHtsfH/04U40++7wG8D/wr8L3BBaK6Jsp3dEJcXz74N+Lpx/5OMfzc9/S4V+bZ+78nk53fV9V9V57eLsBuAk4AbC+mcA1yurt0sjn8x89xWox0/LI7fLcJ9UT37L8C/NbRTU/0DLxHHb2Akm2my9vEY5sex/m4bELf8XSnKlX6PifVshX8d8E7gEcBXCf3tm0Y4mZ8TY7h0/h/iWLdT+t1E6GvWPStvX8uEPVedXw9cE4+3xLKke28Ebs3kJd1/PPAJce8KcfyTwJni/NPA6VO0ySbgbzL3rmNSLj8LfAH4VDz/tfh/oyir9ft+rONjxbUXFsL/XEPerwZ+KR4viOunEWRW1reWO0+Q5aQnPo+tZ6zfbxfufYDQT6Qu+y1G8vWg+P8R4CGZOJ4FfDQeP09c/1Nx/O34f3zM98Xx/ORY7lNUnO9lNMa8JOrcizPpy9/mhjA1XTTLT5fj0kr4Px4Y/6v1tVg3f07QV54w0S3F8ULg9wifLPfAeWK8vyxe+zFwYTy+gJEcyDiSHnuiuJ7TWacQ+uDh2Hpkkzg+P/6/0wj3AFW+n8qk9y1x/ITGur16QDtcSSCaDwVeTtD9Vjipz88j9POPDkjH+n0EeL84X8/kGHeeOL5I3ftbI85nxTiPAx4JPNmou6Qj/kBc2wi8FjgEeGuWV+5o8ttAjg8BLgF2N+69iCDApwAXFQiyRVY9obPVGrWkKKzBIP1uNq69KP6fxiQZ1ORM/yyCfHElf2O/+OxNreFF+Y8dGH4L8HYr/zP8LiN0qFwd/7LxzOtjXtL5PxhhNlXSzQ1Kiez8GnBCPP4l4CmFuP7OOE5lSr7BknDnCK38XU6YpV+lrt9EIH2fjeePw1bwHvhO/H95IZ0XM04Udb39p/HMxxhNAOb5O0+dX8GIZC5gD1Cl37sYJ8hywHkvgai/oRJHGvxyE7Vpf8cb127AnsDI3wfE8W+I4zNUuNeL4/cV4kvyujhFGV4a61hffzrw9/FY923P5CR7yO/R4vh/CuGS3H5VXJNtfWLmuPTbNhEaQJB39O8MJvvV0N8rjWtvi/+vI4xxP1Z1o8P/QWx3S87SOP6nwI8QYz52P7kYeJhx/TTgWuCvB5TtVdgyKn+XEkjXfxj39GT/EQ1pPrkhjGd8Qp/Llzy/F/VJqqXPT6g8czF5A0jpl8aVq4B/L4STBoQvE3hhOl8kjF9p/P3p+H86wQiSi/NPibJo/XZWFwsAnHO7EhryD7z3t+j73vv3ee8f7L1/MGGAzMHnkjCulT6JqVGqP2tjeel3+ml1/4uFuMDO61kMd7EY+nrMWhR0YyH8OuBUJl/ZzSpra8nv5wp2ub6orv9f/JevwGr5kq9qzhLHV8T/jYQODvAZ7/1nC3HpD8bApF9qbUGGxnqCzJ6jrq8gWBNPjefpNbcF/RpZY4Gg4HOvlcF+3ftVkf76TNzTQNfLAqO8yTL+qDE++coUbBeGUrveTLA0QngTM0/ktp4sfeIcxvWCfM15ngon++n3xfHnVbicv3XN7Sk9M+Hm4b3/NGGQg2At15jmVX6C9ZU4C5aLRc7F7sL4fwllTONisaOxlpEMT4vjjWvHESbrKwn98UwjjMQnCOTsZnX9x+J4NUGvyLbZwqQMJRcL3R4O+BzDFm5pHWFhHfA9bJemloW1GvNysbjUyEvNb7nVfed6cXwyozF2CD4X/3/AZD19L/5vYLz+f6jCJTcKvebgdMZlZxB2WoLsnFtJ6Fwf9t5/YsbocgTZKn/piz8tzyfozreJ8a299MCi0zXTUj6cCwwnyENXIHvjmZLCX0d4bbKLuj6rrO1CmRRYg6AOn+q8tthPIue7lBTMVnFcUzolgqwXoEBbna3MpJtIVLqXFrPl4oD8BxvkHrYyfgnLP2wTozrbmIl7GuiBSi4C9eJ+aUIlUdqCKp2X2jZZMLaZxeaI3O4eNdnIEWTdJySRlPWl9VGOTNyeuS5RmpylvFl9exYfW6l/WnS4rM+1xn0Y5bGmq3NfsYSdlyyvoW2yU4LVhmn3klWM68rc1zpTeN1mkqCuJowx2iddp59857UeWBGfz+k7qw+3+Pmui3lo+Z5Cy+SvVf6H7rQ0LUG2+pGs82kXC5a+hrpB/Mt7OmzaqcJaRzb1IsadkiDHjvN+4Czv/dvmEGVOKbVsmTLtYgXLyiUtyEMJsrUae4G2r9uFDIV6HWqV8cYzJYFbQxg0NXGfVdZWM6kAZR3XvvQFo8FcDuo1q0COGMgvuLUS5NJewZYVt8WCvCqTbhoYUh2U6j/JkJ7UJMgtunKwFOoCo3K1ktUW1AiyTL8FtT7fMqAsxUpysGWgZfcJ2f9kP9DtkNp+K+P11UqQWy3I0xDkqbZmipDlH2pBXmPch1HdNRkzBO4IBHktsxNkq48n3bESRZCxdUaOIEsZXsVo8WiCRZBXxJ9FnG8nv99yjujXsIZQB5a85XaeKWGpCPIK6oS/dWcj2ebTLhaUBFnXnSTI8p4Om3aq0Dxpm/FiGuyUBJngbP084AnOuVPj7ykzxLdULhZDtg6pWZBrwmWtxq4paiuOeRDkmpLfwLBV0a3Qimtl5jgh9xW8IfVm7cYA4wR5K4D3vlYvlgU5IdWPHJxbCbIlO2lgSHWwnHy7JbnM7SYgdyAo5UNDDhZDZbUEa/KZ0km+ZSn9FtQIcm1A2Vq5Pwv0wJr6Y60/5d4s5SzIWxivLx0uR1Zvq+QDyrKX6s16wzALQW51sbD0au7ZVD+1iVeJIC+VnMyKpSLIW+IvWZBl+WX7bjbCSySf5PScJkzLmdQxOQvycuwxKsGSxVaSJXWRTrN0bmEFbXqzJlP6fu6tow6jYfVHWbdDiKgs14L4L1mQZZ3pek4WZL3Di9y9aTCm2fB7yeG9/yZDtuKYHi0W5FIdtXx6OWFWgmxtAzSUdLTueyox1MUCwqB5d3VtHpMx3Tayw1ptofM5zUwyR1hbrcYSJQtyqmNZjpY+kFN2jkkLcm6imOQytx/tLARZbw4/D+h8SB9kWcZprdbWHuQ1F4ulIj5arjeR/zS3RG4LQF0nKf5FyoNdzhjQ6mKRq7903WqrWT6EkSu/hmVBXmfch9FAXuvzd0SCnEjnLKi5WKRjCCRUE+SVIkzpreUqbBeLVoJcc7HIEf0WSJ2n86LzUEMiyDVL8lALcu6tow7Tck22+ZAxXpZLEuRdVbici4Um08mCbO0RfqezIM8bQ1wsNIkozfSGEORZXSxSWnoWNQQtHUNjGguy5WIxDwuytdgiwXIP0PnUn6FtQe5V7Vb134IWC7JMbxYXCwjKusUHudWCXKq3movFUFktYd4uFiXrTnJLavJBXgLofrQ55qk2wObktkSQZX3pOr4ju1iUxrkhLhYpj7V+WdKXSyUn88BSWZCli0XSwRsYJ1xy8mHVkbY8t7pY5CzI07hYtOjjnItFy6JmjZWZvGjUyLtlWGo1yOnnNGTdDhlXLXcuy/re6mKRW6QH5T5XbNO7CkEe4mKhsRQW5GkIcvrUsp5FDcFqxl9VtcD6AENNyW9g/j7IOl1dX+uMazqf0t2gFTmiIRfptWIoQW6ps5yLBbQt0ttKnSC3+CDXXCyWkiDndrFotSCvUHFam9eXBpTtSZAl4Wh9rjSpzrlYbC+CnOp1KQlyaZHlkEV6qX5aP39une+sFmRYOgvyFiZ9kDeQcbHIuKrpRXqaMOUW6a0g72LR6oaU0m95o5FzsdA8oiUuiyDn6qYELXOJB5SQXGL0cxrzIMhy8Wuri8UWda5dLKQPcqnPFQ0Nd3WC3FL+UqM3L5BjdheLFMcsLhbJ2jhEScvXFgktPsha+czDZUZ2av1qd61xLedisaMsyC0uFkNR8idrcbGQCm4WFwuLsEn3nHm5WFhE3VKs0E6QSz696Q3KjnKx0P1ILnpqfa7kYpF0mHax0HU8q4tFzYK81C4WuQlacv8YQpBr40ap7u60FuQCsbV2sbgdmyDXXHHA/uR6ycXCIs4bGOZiYS0czD3b4mLRItuWD3IubyVM42JhjStWnls+N29B6svWRXraKlxysWi1IBfb4a5OkFuIUonYTetiAZOC3jLA6tnpNBbkZIEqQSq6lUzW0zQEed4uFnpg3sW4lnOxGNKRc0RjqVwspkH6GIqGdLFYXgiTMO9FeildmJ8FeTOTdSeV9HJGfXaIi0Wu/pOLxc5iQU4T3NoAO6uLhUZpj+waWhbpWQP/PF0scpOltLirZZFeq4uF7idz8YfcDmiZ7AyFdrFIOmgjeReLXDy1RXpDtnkrLdKzZKX1res8XSysid00/tE67y0uFtabSas/yrinHcOkD3Kri4V2+dMuFnKRXqnPFXXMXU/iFsMAACAASURBVJ0gtxClUuUO2YNYE+TcDgsl6NnpUKtcerVSU9KyE8qtUxJaFuktBUEuWZDXGde2hwV5iMuK7Iya4MxiLcv5x7W4WGwvgjwvC/JmJi0/su9Il6BWMpK2gyrd31l8kFNaNXmRslaaVKf4tQVZy1Muvdbtr2qWQYtoz9OCnCPIyfKYsyCXrO853FEtyC17lQ/d51sv0ktIi00TLIIs+7W8nnyQndhL2bIgg913a7tYWO3cOma0uFi0vAFKz8zDgqzR6mLRQpBLH1gqQT4nfZBzLhba59wz3s9yu1hAtyBXkevU+zc8W2r0gwbkQbpYwKTwtRCIBcYXow21yu1BEJYawdWkaS91v2WRnl6NOvSDJhZKBPnuxrV5EGRZDt1BE1rdR6S8HajuDXHX0cjJt3SxWIdNgKUM6XZOSAS51IY59wy9UnlWeCMfsi8tZ9RmrW4P8hmNNbQR5Hm7WKT0rMWnaxkmLyWSd2j81/sg67EhZ2lpGZwPZjoXi5xMtWA/cVxysdgr5mEXdS3hXuK41cViW76dc/sw3u92Zh/klj46dB/nNN7spp5dYCR72+JVH9rRixtTv9+DUVvs5pzbndB/rfzvgb0It0SQrbH4gExYjZyLxT3F8QJwRENcezBZpmn2aNZtdjB1gr6PEW9N5wx5MyvHTOmDrOtZWpC1jpblWk/Ic3pehi31uX1LmbyrE+QXxP9rpox3COnTBHkROEOctxLkN4jzi2I8lzbm4TsEYXlPPP/fQjoJy4E3q/sti/TmjeuBD4rzw9T9pwFHqWs5K32NIF9H+Na7xjvEsf7UpcT7jDQhDNqXxd++wLXi3q9U8mQhff743sC/Gvc3ASfG4w8yOSDcDFytrn3IiCdZgUouRXvG//TJ91sJnzVO8cm2uIjp+5xFmh4T/z3BIvDceN6yRy/ArwEPF+fyk8vPI0xsai4WnwK+Ia7N+rr6HYV7W6godoG3ED4hnHSEJKJyMP8goU3SJ9RPBi4XYSVBlte/W0n/dODZ5GUn1av1meOniuPSp74t/Iw4XgbcmAn3EwTZlURYb1GZoF0sTsmE+3VxfA3jVqo0qF+VebaGG5nfZ9vfo84vM8K8V53XdL/+sNctwE8Svm2wlVHd/QB4dyVeWW/rGBG0n2LUFjfH3wOxyeOvMZJpGPmyDrUg/1UmrPXsf1TCrAVe2RDXX9DmYvGvmeeT/tP852+B3zfCSx6xjnpbX8j4WPcF4KTKMwlSxybucwWT4/qFhDHlXIIcJTjG+esFwAOAV8Xz18X/0tu99YzGChNZguycW+Oce6lz7qPOuc875z4Sz4f43e4skOWUxOft8f+dwF/KB7z3qSMnUiYHyHcDz6ikeaI6X2C8Qy56748R5yn+c4y40vfrNwF7MxpMTvberwC+JcL+Zvz/eCZfi977l8fyfUBc/wVxnDrhO9Wz58b/pOR/Nsbz1nj+p/H/lkzaqV6twVDjJeL4Xd77vb33Mr9ywP5w/E9t9nWVz/TqcJsF2XvvRBtrPNJ7/yTgWeLaG7z3f5Pi9d7LdhpTQN77FzOSs7fGdJK15GXAa+Lxi8VjlnX3e8a1RCxPBJ4v0vxATOdjIuyC9/50RvUjcR/v/Z6EgQrg7BjP8+TzhMnRto+hRGi5SPL3V8AfxXh2895f7r3/i3jPAUne3w0808iThSQrj81ch9AnYFwRPo/JSedumTaXsnSS9/5BwJ+oMJaSTcrYe+8/471/jLj3PsYHnETQfmzEY+HNjCZQmty9T51fJOT5n8T113nvX+G9/x6jgScNuCd579cQB1Hv/Wu89zcBz4n3T/Pe30PEJSf3ciLwceDJhXI8Ov7XLNCnF+LAe//UzC1rDEvymPr9CsJg+JB4/vxYV8foBykP8GMWZO/9Qwph/0id/3z8T7rieRlZXCSQvRx+6L1Pk0Q5AfxHHVDpuGRYeZy4/7uIfuS9Pyse/nf8/znv/e8wLlOWIec5KR3v/R/Hax+J6d8qwm3zG/Xe/x6BAObiTROij8T/1M6nxX+LKMpJ6UMI7e+B98f8HUtoX7lI70rCZF5ikWBMglFdJBxDIIISp6YD7/1i0sUxzUeosK8EbhDnJzDJJc4Ux3qiLY1PD47pfFC08z/H/1/w3icras5A+Grg38W5Jqc1l6IHee8/Spzsee/f7r3/EfCLIsw34/8RjE8yPs7I2pt0wIWMjHFpjPmy934fJjmD7vcl/WHp7pWESVsRJQvyvxOE9hXArxIadoHxCr2jQJbT2qqr5bWXfH2whfqrJu2buonx13g6zXRuxSud2Hdj1GlS2JYvAsp8yTwlrDeu6zhSeVK6udntPCwc+rW5hlSoOj29gC7dT2WvvQrKlS+HFhcL6WOXyiYnEtbbCEtBybQsWZGvzjYVwqVrJWt6+tiIJshaLkp+pDKu9FzLQtEU9nZ1jroOI7mUYSx/tiGvh1s+MlPqs05dX67+a5Dp6fh1Ped8NaX8bFXX0rmu19zi09z+3LVdcVJec31uUf0PgnolLxeAwajfJxcZuW4A7P5Vavch+6i3untpeCOsxLSf9k110vKmUstGbW9xK7+5LSVzC0ZzMp1kTbeZ1XbShzptW7g747o37Y2c9kHWW6fKvGLcs8pf+8qmDqvdG3Scsn9pv3BJkK10LZ2fI8iL2OtqdFw55PiHte+3/oqidOnSrjcQ8+y9b+VoubzmvqRXW5QMlAny/t7793nvL/He3xz//5lx3647CmYhyHqgS+FbtlaR8VouFhJJcZUI8ibqBDl16FyZdJ4S5Cxa+gRJaIKshXJ7EmQ5ACWimfKr85ny0zrAlQZQaCPEOoycdKT4ZT1ZBLlGOC1ZsfxNLVltnSxYBFnLRU4eJORq4paFopoglxarSCUs7w/dvxtG7ZbbAcW6Zg1ATl1P9TwNQdb5Lu2AoycJIYOjLbjSs9akQqal08wR5JouTOkVfR4V0Z0WKY4kM6l/LWM8n6WdM0rt3tpnYLLvti7KrtWDjFfGUdNJ0xDklGeZp9bFtlY59NZc1l64MqwVX2nfbEkeEwHajXHduzLGtZHR9oNWe6b0dH8dukjOmhjJ9JIRAnUtQU+0ap92thY75mRqbC9hY5u+GoHMldsypsgt/tK5Hp9kXWh51mnlxtemfEZ9U110W+roX3fOfQT4HMHHZw/gpxmZzO9IkARZW4Kh3un1tkqbscmJ/HziFnWuV7fmCHLJUpVmxLersEMIsoxfdgCpXJLg5AhyjkCm+LIuFgMg81/b43a9uGatXtUW5NpgUrMg6+ctBaQnn1IZpPjTpKS2AM5KK/f5XmsAmtaC7BnthCHTyslFjdBL8lUjAmm3ilaCvELFaRHkIRZkXbdWXZf0hpYR6wtPrenXLDstFuQUj26j3GRHp6m/LijTy7al934xbjSQK/c8iLGOSxPknAW5ZcGT3FYw3SuR/QXsfWZT2tYHbSRa+oV1XFtPlHsraEFPkmoWZEuHtFiQc2XJpS2v11wsFhkZlKTuXS3upWulPqnLNnSRnEX09P7NQwhyaeIs82e9WdGolb1GkJMM59pIHusxRLaB7BspzZpxQ8t7Lq8lH+TpCbL3/tXOufsRfMjuQfCDe1P0abyjoWZBrhHkzYwT5C3YJEsSNG1B1mkMcbGQCn03RtYAy4Kc0s+VKTeAWsc70sVC722rIfOWiGbuq0OJsKdOWrPitVhEJSxZsL72lvKQ0k/xp09z17ZS0/HvLC4WtUE/xSVdLGpEoOZisVmFXa3S3x4uFqW3PrO6WOjXkRIlkqsnCRLSajPUxUJCE+QW5EjlPD4glKAJcur3s7hYWJOPEkFO+/vqeHR/y5W7xXUvQbZ7qwW5hSBr2bBegUvkPhJkxau/hpZQGx8TSm1nuVjszbjuXSXupTxZyLlYDN2HWLeLdrFwTNaptQWadc9K19LruTJaY6EXaSy1i4U2WEkLsh4HdVmHWJBz7bOt3p1zznqLVbRmeO/PAM5wzh3kvb+8FHYnh95QPKHVv0ULae7LXVLQF9VzNYtUC0HexLhVTVslEPnKEeSci4X1uqs2eOYsyNuDIEuk+tACbrlYzEqQpQIpQYeRZEp/PCMR5NvI70VsxV9zsZjVgpziqBHklj09pcVbkpUcUn3lBnZNkGG+FuRZXSz0vtPz9EHWcpnr69aEUVuYWi3IEtN8OnnaL0UOQcpzzsVCE78WgpzbWzeHjYS3fDWCnENt4mj5RMPSEORWF4uSD6++lnuLWnOxSCi5WGgL8gJhvJQGn9XiXi6fMD8XixZXAR2n7F+lNzmldGWbNLlYiPS0ASeH2uQipZGujek0772Pb5fkRz1SmjUL8li9eu+3jrbEnkCLBdn8GFSrteok59yDGsPujJiHi4VEy6dtk4tFQo0gl6xRWqFvKISd1sXCsiAP9UFOac5jm7eai4WltHMEWVqQhwwQlhK2lE3OB3UUYDQ7lR+y0BZkXW+lwXKID3ILQc6VK1mQS4PkULeBFhcLLUs6zVrbTBDkgX6uOYIjkZM7Kz9JHobUle5vCSUXi1YL8iwEWaLVgrwjXCxqFuSWBWdDCXKuz7X0t9L1hJzVtUaQczrdwjwIcosFeQhBrrn3waQPsl7QJ10sauNAjiDPw8VC3y8RUWsP55Z0Wwiy5WIhw5beYslruXE3pZGu5Sb9KQ/Smq65ac0HuYRWgjyBVoL8CuCLzrlf0jecc89wzn3LeGZnwqy7WFjuEDWCrDth7RVBum81plYKJR9k6QNtYYiLRc1Nw+zY3vshq6tzqC3Sa3FrsHyQWwb0YvmmzEuC/GpbjSCXlEDuE5rSmtsiU1I5WWlsAhYVuZyGIGsXixpSmNziIr1XN0ySw5Z8lQaPUaBQ/pxVuWWRXkKrBXkrkyv4E0oE2RXCSdIwdJGexM7qYpGQ80EeK5tYIS+h28yS1ZqLxbY0BFr6m5W+xqwW5BaCrMfFmg9yyxukFK/+olwu3tx4WbL+awOVRZBXAVuEPqtN3MbuZ8a2oS4W+n7JB1nnzzLwWZBt0rqLhYZ8zjJ6WfxDXpfHmg/JMLJP5Bbp1fhTCSULus7DGJqsGd77DzvnLgCOc84dSdh8/rmEfW9XAn/fntcdgnm7WGg/ogTtYpETCJ0Peb/mgwyTPshDXCxy/mTTuFjM6+toFoa4WORgLYZrHdAh/wq2ZWKZ68DLsV0s9gZuGpC3qgVZDALzcLGQ2B4uFlrGcm9cwCbIuU++amzE/mBArh9a7gUtLhYJTbIsXj9aeakttMuFs1wspvFBLr0CzmF7uFjktnnLuVhYqA3MUHexgLoFOYelJsgt7VWyILfWx1AXi9wivVy8lszLNNMCYxgfz1arZ2sEuaW/zmpB1v1U9i+tW7eHi4WFiS/ZFd7INblYiOOZXSymgdKxZjs3Ky3v/Xecc08ibLT9csJHI14H/LexPcjOhhWZ41lcLCxSMMTFIieYLS4WpW3eahZk2flmXaTXamGdBkNcLLxxDUb53ADbOkSL9TLV5ywuFjkSLQlyqr+NBAvylQ3xyvgtWbHkch4uFhLTEOShu1jonTFKJHEWgpz2Q9XIEWRZ1pKLRc6CPIQo7qwuFtv0jRpkSsjJyDxdLFKfS2WquVhYyK0dkGixIG9vF4vapD2VuWVyXyLItbdWCUMX6bW6WKSPtFhyl1u4pV0s5GK+mlzOSpBrrgK1XSymJcitFuSSi4VEyW1yVheLlNdZdrGYFdMTZOfcfsAfAi8ifKVokbDt21fuAOQYxnegsF7x1Hy5WhfpaReLEkHOrbCvLdKDNoKcI/2WjyrYi/d2JEGuzfKdcZxbTat902rQr/Mkqv7GlTxtc7EQCwsWCQS5tJp5Iv7MINFKkLVPbMnFokaQZRy5PE9LkHO++ZZ86ElTi34bIsM5K/ZSEWRrT2brlWxOfy05QR6A7eFikfR8Klt6czRvggz5+qn5IM/TxWKID3KKt2Uyq/1950mQcy4WNQtyiw+/zkfOxULGXSPILf113j7IrS4WS02QS9vNSbTuYpELY7lY1AjwvF2zzHZuZeHnAwcDx3rvfxp4KnAyYfHefeeTvyVFrqFlB0rH+rOum5jc1zd9wlJDhtugzmuWyyRItxn30jX5Sh5GQiZnxIsqjMYacbytY6rXJWlg0UorEU299dYQ31IZTwmlTeTB/rBJuqbrR4a9uSHtBMsdZb26vpXJrx3JPOi8W/sypr1WS19N0tdy7WvlxRrMtRVbf241XbMIcm5P4s3GPZkv6RNdk5Uk8zmCLOsm1YV+rdjiAqTloSSbOmwqt9VnF5is002V+DWSi4As+20i3XRfpiPr37LKpWspH1q3lQiy3llExltDy64684Y2WLQQZN2vLB2+mbweSW5SFiHYzOT6EY0bKvmz9n+HuqynvOsx39Ij2o9atre1Q5ElK7n85N5a6j6UzlPaSV5LE1o5zss1A3J8Ws54/VpvjzYa6UvoPmz1/wS9DkbnfyOTdVVqV9nXLTmx9kHO1dkik+WTactylr5toPVcjiDrcTNBTshSXmvGotYP1ljjl4WZXCx+wnt/QTqJZOoPnXM/Br7mnHuu9/4LjXFtLxxDqJxdgPsRLN5fJSi2Iwl7O3+MQP6/A3wN+DKhYVKneQDh++Br4/N7EYjMtwgNdg5wHfAEgsvJj4D7xjQuJJDRYwjWwdOAa4CvAw8CvhHTuC9wP+/9tc65xxG+w74vwSf1HgSFexbwIeAi4AzguFi2ROZ/B3h3DP9J4H+AHxK+EX858GDgsljuM1IFee83Oucey0j4fiqW9bvx9ymC0N5C6ASnAfsQXAGOEaT6nwjfSv88Yd9sgMfE/B0M3BM4W+T3ObFe7h3LdAHhC43rgINi2U4mtNt+Md2Eh8T6+SHwRODSWJcO+Arhe/I/AO4TLbTPAr4U6wLg8Yx/lOPw+Esff3He+/Rt+Wtim2wQ9fZARp3pMQRZ+H6sK4lnAz9DaKuERxFclJYD34vXfpHQvo8HTmF8u7eTCG0HwSJwYCzjLowG6J8nyFrC0wkyJSdC/0yQqwuIysh7f22893xCHV9PkPFUrsNjWlcT3h4B/FxM+0sEmftKLMvNwLHAxwnycomqi/sB13rvF5xzz47P3RTraCWh/x1CkIekUD9NkMdvA98X/eM2Qv/5CKHP3oPQBvclDPa7E2T4EuAPgL8D7qbyc2zM92EE2XkUQb5PJfRngM8CL43HV8T/hwGPI7TLQwn64igmydIDCXplHXB0vHYJI8v5SkIdnx7zv3+MazVwf0aD1GMJ7XgYoT02Al8k9MfnEuTmgYzL2HsIcrQ7QR9JPBO4KqZxVbz2XEKfTjgf+I0YN8B9CH3r8Yxk72LgvYzk5cSY11WEMeVggqylQewYghwdFMvqCf0Wgk5+TDw+PD57SLx/BON648GxXGsIZCfJ/aMJbbwPgWCeTNDHXyfoqn0JMnYF8OsE/ZDwGIJefjxBJj9HkPNvx3SuZaTDvxzDX8ZITo+Kx/eMv88AT45pP4ygx/cmtMV9CDrmkFhnEPpGevayWE9nEPrGapHWVoJOOE08dy1wAHB3gg76EEEWjyHob1nGbxHa6FzgGYzq/9kxfHLveiSjsePceO3NBLnYAPwf8LSYr0MJbfzfjOOpiHEmxv9owvjweUZf4/0Ood7vRZDhT4hn/oqgT84H/oEwjj2FML49IIZ5HKH+NxP6xknxGrE8fwV8WIxTlwMvJNQxwM/GZy8ltMnBwHmM+s2rCXV8NEFfJJ36CsKYt4ogc58EPoC9huQ7hHq/mKBnPkOQAw88HPiC935L1G3JeLKeIM/HEGTuLQSdtoHQvgcDezJJWh9KqPcvEOSBWGdnAW8jyNCehPH1kTHuE2IZ9o7hH0zowwcSxqhfIrT1mTH/LtbRPUW6j2V8ovFD4MWxHm8nyMwGgk7/ZYJcfyeGfURM55x4bQ2hj34K+McUYRyLnxXzfmVM4zRCu50dgx0V8+0JbbYF+K9YZ48T+ZOE+WkEHWpuTetm/cKnc+6JwEe89/vOFNGMcM6d4r1/cD1kR0dHR0dHR0dHRx4zOzp777/MyGrY0dHR0dHR0dHRcYfGXFYCeu/Profq6Ojo6Ojo6Ojo2Pkx760yOjo6Ojo6Ojo6Ou7Q6AS5o6Ojo6Ojo6OjQ6AT5I6Ojo6Ojo6Ojg6BTpA7Ojo6Ojo6Ojo6BDpB7ujo6Ojo6Ojo6BDoBLmjo6Ojo6Ojo6NDoBPkjo6Ojo6Ojo6ODoFOkDs6Ojo6Ojo6OjoEOkHu6Ojo6Ojo6OjoEOgEuaOjo6Ojo6Ojo0OgE+SOjo6Ojo6Ojo4OgU6QOzo6Ojo6Ojo6OgQ6Qe7o6Ojo6Ojo6OgQ6AS5o6Ojo6Ojo6OjQ6AT5I6Ojo6Ojo6Ojg6BTpA7Ojo6Ojo6Ojo6BDpB7ujo6Ojo6Ojo6BDoBLmjo6Ojo6Ojo6NDYKcjyM65v3XO/dg59yPn3Cedc3vu6Dx1dHR0dHR0dHTcdbDTEWTgS8Ax3vufAM4B/mwH56ejo6Ojo6Ojo+MuhJ2OIHvvv+i93xJPTwTusSPz09HR0dHR0dHRcdfCTkeQFV4AfC530zn3IufcKc65U4A12y9bHR0dHR0dHR0dd1Y47/32T9S5LwP7G7de5b0/PoZ5FfBg4Bf9jshkR0dHR0dHR0fHXRI7hCDX4Jz7DeB3gGO99xt2dH46Ojo6Ojo6OjruOlixozOg4Zz7GeAVwGM7Oe7o6Ojo6Ojo6Nje2OksyM6584DVwPXx0one+9/ZgVnq6Ojo6Ojo6Oi4C2GnI8gdHR0dHR0dHR0dOxI7+y4WHR0dHR0dHR0dHdsVnSB3dHR0dHR0dHR0CHSC3NHR0dHR0dHR0SHQCXJHR0dHR0dHR0eHQCfIHR0dHR0dHR0dHQKdIHd0dHR0dHR0dHQIdILc0dHR0dHR0dHRIdAJckdHR0dHR0dHR4dAJ8gdHR0dHR0dHR0dAp0gd3R0dHR0dHR0dAh0gtzR0dHR0dHR0dEhcKchyM65z+/oPHR0dHR0dHR0dNwJ4L2/U/yAU9T5+wEPfBJ4KvA84L3AS+J1D7wuhn1TPP9RPP834JnAmnj9fcDPx+M3AkeksDH8K0ScHvh4vP584F3AmfH6PeP184FHAxcA/yGe+3r83xLzcAnwgvjMbwEfjccPT/mN8fxXzN+5wKNEHH8N3EfE/23gDODzwKnx2rNiWC/yshk4Mqb1e/GZrwDXAv8d6+YTwM8ALwD+EfgV4H+Ndnkk8CXgphj3NcADVZh7AWcDrwdeDvwm8GPgQ/GZt8Z0U/4eHfP1EWABOCPGczGwb0xjV8ABtwL/AzwJeDpwAnAQcG585ndjnC8FrgI2xjo8F1gfw9wthvlizN9m4M+BQ+P174q68bF9PXD/GP9bYzw/Ag6L9w+I7f22eO8jwM8BnwGOjde+BfxkPP5t4CPx+J2x3n8a+BSwHLg0pvmuWDdvAX4IvC6m62OY38r0ny8T5OryGPY1US7+CHgH8KIYLrXBWuB6FcdHGcnlqcA3jfvPiMdPieV/GfAvhL6wvwh7dIzr2tguDwPWAdfFtr0AODSGPZKRjP+8iGM9cB7wWnH/wvj/Q4JcS33wNOAG4Lh47oDdgKsJcnWBiPt44AOxbjzwLXHvU8D3gW+La4fEcH8OvDke313c/yngNEI/88A74/XvAUfF4y3A7bFcHjhB1e8ehP6wIMp0Wvw/MIZ5HHAFoX8ti9d+Q4T3Ir5jgJOiTPw88LmY9u2ibrz6pXTeAvwDcKUoU9KpNxDk7RnARfG6B65S5fmXeP24WKbFWAePJMjNGzOyfG2UlTF9I+riT4C/VM9cAewJPJmR/nxmLO/5BD36RwSdehBBjl6nyv55gi7ewrhefxrwnJjO74h8vJsgzx74VLz/JIKe/l2C3ns58J7YBr9I6MMLwO7AjTGMJ+iCFxJ08csIOupDsa6/T5DTr8Wwb4xpPTre+yJB91wS68YD9yboxFSGM2Nan4zP/g/wxNi2D4vtnMK+PIa5nJFOWAOcxWh8uorQbw9KbRyfuYggFycA1xP0zBsZjUuPY9RnPxTr+YexjfaP7bhJtcvPAN+Mx0fEdP481v+FwJ5SbuLxLxPG4BPjc78PnBPjfw1RF8ew741hLhJpnge8O97/Y4LcJB5wWbz+npj/4xnJudaprwT+gjAe3QO4DNgr3vOMxtUPqj7z2lj/vxKv/z1BZ76T0HfPAB5C4EW6D79epP/38drPxrR+mdE496FYP/9FkJukdw42+qQDbo3Hb2VybJA6fBNwt3j9QwS5Pz62x3+m+ov3D4zPnEuQwxPEc5sJffgGI/xrgfsC3y3yyhrxvKP8mCTIssE/DHwnHl8s7+mw4vx/gf3EvbeI42ensDH8hVrI4vXvq+sPEfH/tSGY1u8d8ZnPiHj/Jt7bSiBKHvhC/P8z9fxvVOL/eub6b8S0vmXc+3T8/zeCcvJEJWG0yxuN539JhXm6uHcbQXGV8vw2gqKw2i1NHg4FVogw7xV5+WnxzFfitUtF2D9U8f5/4p5Uvo+inM+fI8qbyN8vx/9Hx/+zxb1Pxf9/Etf+0Gh/T5CtD8TjXVS6V6rjzeL89Ez/8cAbjDLcGP/PUn3lnrq9rTow7n8iHr8qnl8twj9AhH2yius5hEmFJ0yoPPCYGFbK+BvitWXi2okYeWNS/l+r7i1nNAl6pCxPvLbRKmvm2i8YaT9E3H+uVXeM98Va/R5phYm/J8Qw/yCurU26M5NnSZD+T8W3kmAo0Ok8IJdXAsHeR5yfoOu9Jk/x90YCmZnQN+K5e4jwv6LiW59J62jgn0W4r4rjYxn1hYcy3jdqvz9jNBH+ci5cvP/yeH5h/L9dhPkLcXxv9fwHGBHv69W9rcDJ4vzkmNZvi2tfjP+3xP9fV+W35DLV1etVmPVG+6Wx9GXi2pOIuljFK+voABXPO1C6X/wel7n+QdmOMZ1Fce0IkfZB8fhLQbGolwAAIABJREFUKg6pUy9N+a3IaSrTzYU6NJ8RccvJbqqrBxAIZynOJJt/aaSVxsVnEYw72TyIa6+O/xZfuJpxOX260SdXx3vLiAYbdf83VZz3F+l/ppC/B4nrrzXq4Ysq/LHi3ot1PvTvTuNiUcGW+JtnfBJbM+G8Ol+eOS4hhdNxAWwQ91cPjDdhVeZ6KuPmwj15nEvXqvdaHldX7i/Hro9aOla6Vjzb0nfOucxzufh0PDrMFvW/2Bifbodk9a89t5ow6CWU6m2I7NTaqJaGJRerjXDyfFHdS+EteZRyvaKQH1kfOk/LM/lM2FC4NxSucK9Vd5XCefUPo/rLyYSMT4dZbVyDsgytwNaVQ3VWC2R9tspqaZyQspDiax0/l2PLai0vGqsL92VbaHmX4wSMdIkMl+KTOsXS/RK5fmXlPdVVyxhYq6Np9THY7bA86nkY18c55Mb7pUCub66sPJf0n1UnkiuUdKMFHX7RiKcku8sZrjdL7SrvWeluBXDOLTPCVPviXYUgL9Im+BKOcSUrj4fGlSDru1UwS8IhFd8aI40W5AhyKqMlROmeE/dz5bHqalaCXKo72U7L1XXruRRe1psmavI5GX+trlcbaep6lffTsSV3uh1KBFk+v4pgMUsoEWSZl5qM5+SmhpRGKk+OyOi6lZOiJOslgizjaiVIusySlFttXSK1IcBIMZu3G+NqJVWlgbs4EcxA1kcrQS6Vd6W6n8o8lCBr3Wwh159luuFknBxtyYSTsjCUIC8Tz7SOHbX+oetenmvytAFbz5QI9wrjmkZKR7eF9ZxF2JYbz8JkHenznP5vGVNNgmw8W5KvoQS5qicKkO3qxH+t75YMZvJejWhr6PALDCfIizDW7yzIe6V2rRHkFE+SPylL1b7YCXIZuQZsjUt3JFnfQy3IVqecB0HOdZBWgpyOhxDkmiKrka+cJaqWTqnOV2WOV6h4lmWOc3HqNFN9JOtM61uFEkHW5dTkoJUgy/RrMr4GqgSwlIaV9xpBTtfWqfDzIshWmkkHTGsxL8ly62SrlSCXBpxU37LfrDKuSZQI8irjGtQJsiXjQ61YtXQ0avrEsq7qNFYwSZBbsQx7gC7BCpfTUVAnyGvE+Sr1D7YFuSZ3qd10W2xxzul2TnUm2zqn72TZHfbE1ULLmJrKLMu2Qly3jBQaS2pBVsQx18da3rLKfwlZ1ta+l/KkZWuzkYYlu5IgJ3kpkfPWcbFGzFNa1gS1E+SIaV0schbf1ri0cE9DkFO6ORcLbQ2YF0FucbFYxuRr71xYiaV0sfAqnLzeSpC1BVlbohNaLMg55WHVm+VOk451O2ymzYK8guAfpuOzUJuNSySSOtT6l8KnussN+rpuV4hra1V4WTde3YNxclCC7gsTaaqBv8XNpyTLrZOtzRVrS0KpLbaXi0WpHLkBeagMeTIERkzYShZkqywpfyULsnbfabUMSkLTOnYk/WC1l8wDRjjLxWKtOF+t/iUksaq5WOQsyJuNuC1S3uKiYRH1ebhYyLJJFxitnywMNba16AmJnI5Jx472N3hWHdcsyFb5tCU2YbORRmlyJ3VASTfKdFpdLCx51eOMzFt3sYiY1oIsK182Zmtc8yDIrT7ISQHKNFo6Zs3FwhI6S8harAEJpbK3vD4qEWT5GirnYmENbEtFkGtW7JpFJaVnEeRkySgRZAgLCxNK1o8hFuR5EeScpdfyQU7XShZk7Z8sw9eg5U5aO3aN/6sESR4yINdQsyC3DIil/KR2H0KQay4WFqaxIE/jg5wjpymu3JsJ61lJGDZnwlkuFtMQ5FlcLEoW5FK/3sB4H7AIsu6PQ3yQLRcLXedWmlq3Juh1Ga0W5BZrqGVBXi6u5+Keh4tlK2QeZLsOcbGw4kqQZR3q6qnTXWAyjZoFOYWXMpzrk1TyWCPIuXxDtyBvwzwIsmzM5PhdU5ClRXpDBXOaRXotZd4RLha1AbHFxaKF/A9xsZAdSFpbtNUr5+NsYZuLhbBspbKtVP+1+Ia4WJQI8rxcLNKAO/T1uCaX83axsIh3iSDnJsHpXrq/uwhTssBptLpY1Nq+Ja2WxYiy/VcZ1yRqLhbW+FF7HTovF4saQZb9qqZPJGGwZAlsF4shi/Tm4WJRchsq9euNjPcBy5qr622Ii4VuC89knecIslwQneKbliAPmbBqgqzHT12moYanWVB7SzUrQZZvTFrf6Fhv/MAmyFa/sAjyPCzIQ10shqyzuUsS5CEO87XBu6Z4d4SLxSABoF6GEkGe1sWiNpAvxS4WHvuVoDOuSYIsBzeNIS4WKQ7tHtA6U/aQXY1bsyAvVPJppb9UFuSc3yK0u1iktC0fWqtvyvbUKL22lmnuJsKsJuyvXZPT9ZUwRRcLYaneauTNQktbTGtB1vlbbVyzwknMy8UC8no8xS8J8rQuFvrtTqqPWVwsav0qxakt/usZdxUa4ge9mbqLhdXfWhfp6WctApdzsbDe3Ok2aF2kN62LxQomx09rgp7gYMLdap7IlW97uVhYsAwPYPsgW2nWXCxKb6haXSxKBNl6Q1BdLHhXIsg1VwALOetSywwItq+LRVKeUuBnIcgp3tZdLOblYlHKk3x+rD6EkEsFp5Wa1UmsziwHojErh8IQF4sURyJ3qZ3MmbJQvikNvVhsC3cOFwuJaS3IlttLK4HIudboNHcTYVYR/LprdVQjyDV3HUnEWsozbxcLCZ2/nAV5Z3Sx0Pqk1cViuTrWC0CHEORWUq23G0vn6xknuUNcLLScWpPz0q4xOeR8SWV5UWGyFmTxjLYgt/ogt5C9VhcL3U5aFmRc88bO6GKRMwouMil7Jat1zsUiFx5mc7GwXIf0vWw+dkqC7Jy7p3PuK865s5xzZzjnXjZjlFuYnP23IOdi0dpBJgiyQeRa82B1FIsgWyuTS8gplZK/rvSPG3OxMGZjS+GDbO1iYb0i1HVsWdmttLSLxbQEWe5iYRHkTeRnytriojuzXKS3FC4WrYv0pnWxqBFkLSNSsWqCbA1erQNI6bW1JMjaxWIT4/VqYT2z7WIhyzcvFwtrF4ucTOR2b0l5m5UgD9WFLenUXHcsSMKQI8iWi8U0FuRaWVO5dJvcgu1HnFDq11oHp2dLb2yWUy9f0rV6Eawlry0EOR1vVWF0/nP5aukjlgW5xcWitk3ePFFzsWjZxQKCa800LhYWcmXeSpsLjCbIeuzT9T2Ni4VlEdbjgbXm545FkAmD8x97748mfIL1pc65+84Qn3SxGEKQc0q2tYNYFuSWLU6sPFjb+MgVpNYq01l8kEtExvJBzr1us1DrlNO4WOhXq9qCLF03StYlmK+LBYy/IpfuAZtgzFps5Uv7O0oFn9vFQuerlSDfUV0sLFeF1n5eWviUc7FIbddCkOdhQbYschZqE08YZkG2Jh7y2RaCrF9lW0RjKVwsSgS55GKh85swi4uFRcBy0PUnXSxqBLllNxKA1ZFE1Fwsavot1Y8myBaBa3GxsPqz5WKRQ8mVSqcxdJu3dH1BHC+VBVnKXc4HuSVtvf91QqqnIRbkIQS5xcViA+UyFF0sBAkuWcjl/dLb46yOnmbmvuTw3l9J+LQj3vv1zrmzCN9sP3PKKBcJn6eFkSUIAOfck9X5w+PhUYTPlSYcIo6XizCXWwk659LncCWOYPjs837OuX1T+nGicJ94L33FRuLR4vhuwGGV+HNCem/n3OHA4ca9RELvD1wTjw+O/w91zi0ysp4dbTx/sHPu0YQ2voHw+dmWPCU8hDA7lkj1cG+RH6nkHsHIF3c/AOfcYdjt8BhxvDvhk9IW7lfJ5xHxf5HwGeCULwh1uBjz+NR4bVfx/4h4nAazFFfK790ZDeb3VOnqfi19kFc65x4W0079KfUJ2dYpzj3TBeec7A9Jyf6sc+5bZCzOzrndgD0YtenhzrldgAON4EfGZ/aJz0jcm1EfTpPlI6NP9hhBds49kFA/LThAHGtZOBLYOx4ngvxk4AeEOh3z7Y665BJxaSOj9nsEk1jjnHsiQYfoNoQop4S2z/qRO+cOIgw4D8uFAR7rnLtOhTnKOfcVYF8V36OAmxjJHEzqgT2xicuxzrlTxPntjPTFChVnqu9t6TvnHgF8J30vNoPdGG275wifA9+LoHN+Iob5KRH+UCW7yYd0L4J+TG38SOAnRThplFnOSP4OEuVpwf6E3U8OLT3jnDuCUb86RKWxnvEyHaUez259x2Q7bSWU+z7i2iNVmCOwdb9E0mn3V9cPZDyvMCqPjHM54+PVMeJ6wsMYHw90PiV0mgkPF8cPcc7tzXh/259Rva+LHOChKo4kq1KeV4uFhSaccz+ZuV567gDgqngs+0Fqr0cyGitknPupS7cDRxhvdZMuuxeFSUWsJ5229YZYT5COdM7dAHyHUFf7Maq/gwjtu5UwFp7inLsb8EAVx66Rf8DkWAChT1+EPYm/l7iWxoZDgW+o8Ikr3Ae4zkiD7Deod5YfoWNdAuxu3HsRcEr8XaTuefF7hzqXvwsK96zfOYRvmKfzhwLnG+HOAL5mXH9o/P/fAWlOfMs9/l4HvHlg/nf2322Mf/e+9bdHQ5jPTRHvGVOW4xJxLL9Tf3H8fyZhclGL523A08T54VPk5cGZ688BPtoYx1kEYpjO/7bxuS/H524U115ghLsBuNzou7Xfs4BnGPn6vynqqdQn5b1PA6eqNvZGe34ZeCJBOVtxvqmQ3o3An4lzUw6nqC/9+88pn9tUuPdqcXy1OF6vwv0w8/zBA8r1tMr9C4DTgfeLaxumKO/7p3hG56NWb6Xfayr33wGclrn3HEYy9a5Y/qumLcscZC793hL/N6r8fGxO8evfRca1zer8W5U4riKQKU/QxX/SkK41fv9RrY5jPV8/Q3lTWR5DkL+FWNcvrDz3g5h2Sz/5QeHeQQSO4oFfFdcvJ+jP98Z0zjOevboh7ecCvybOf72Qv3+PaT3DiivHP3dWFwsAnHO7AscBf+C9v0Xf996/z3v/YO/9g8nNAAL0DOf6+P9C4N+N8M/OxPMaQifLvb47SxwfTKh8Dfmq1sLrjWu7G9deSFhJ32rF+K/GcNPgjDnHV7OuW+lVXzl57382c+uZhccOrcVrYCuB3CRYO06sou3V4WqCdUyeD4L3/hSCvGgsx7Zc5pBm5q27KkCwhhxKsDieG6/tYoT7P4Kf5VDsRbASHE8YrLQbhsQHCvF8iXKZ5L1dsbeO/Ko6X2C0qM/CWvJ7zZ7JeN/eDXhFIX/T4mBxvHc21CRKdSXdtnI+vTqcROuHXcCWJYnvE4iYTKvmGvFvwD9k0vmhEf4xxjUN7fd7AvDxhucSPky5f1hjDYSJ3fHx+Afe+5cQSHqyNtZ2uDmtOYcBVw8Iuxtwjvd+DfBOcd0a014zMB8QjBEST1fnLyAYTSRq+lC6NS5n/E1Vrg0stL7hGhKnxpfi/y7AZcCTCDK0W/aJgPRWvMVlJfmL32rcW0mwzsOkpfdTjMqmx9i/R73VymCPGNd/EeS4tO2kXNB+vBHOxE5LkJ1zKwnk+MPe+0/MGJ0mFVJBWn6EOaWRFsXlVvvr18yWcCehyxGd1i25NmG7WORQ2/R9FrTmuQUt/lVWerP4g20o3JtmIYZjXK6kjKT4VtJGkOVCv2nzo/OQoGW5FYn4taar/dktxbtpyrykMmyNP8sHVaaRQ61M8t467K9z6vg3Mdl+Os7bMvf0AiZrNf8sSHmVacwrflneMfceFS5HkIfIeMu2aVpP1uRMf2QoXQNbV7TUm+XfPoT81HRsbhcL6SOa8inltKT7SvHmMGQsWCvCl+QE6vm0oNtF583yn20Ze2bxnR+KWT5rLcubfOgXqBPkIeVK+bPaXY4v2vfX2j85oba2Q6eR4iqtiZD5aNZzOyVBjj4z7wfO8t6/bQ5Rlj4UYDVGroFuZ5JUbGFya54SkiUiNwi0CsdCTLtVmJfy+/FDBLoFtQHSSm+WFcUl5TttH5EKwyLIQyzIud1UhsBKawXDlGGS82kJchpYrP64ienWRCTFmCy6yfqYI+E5WJ/HldAE2bIg60EirdTOlWs1458Bl9C7pwxZrNSClFeZxrzil+XNLXqDvCwP6cstg92iSrtloVyuzSxd0dqPJYYS5JqOzcUlSWD6l3I6b4I8xBCzC6NyyfJZcpHrJyXodtF1aPXhmuxtZtynvgXWG4vWBZ6zWJBTedNXZBfjNeuNtMSQMaH0xV05vuj+V9L3QyZZKxgZV6x86/QH6dGdkiATnNCfBzzBOXdq/D1lhvhKBNlqjJIFWa/EXswcg61c9BZVrWlrJAvyLJ10XpinBbk0OJXSWyqCPC1qFuRV2BYdDU2wpi2nRSSGrGKWSJbR1nS1xcXqjyWLQglptX2yICeCbKVRUow10i/Luwv24KrbMcVZsiDnZE9bkJeKIA/dFrIFOQuyRk6GhkwCW+pEGxJq4578LL2GRdSmIcjWTjwlLDCdDrcI8lJakC2ilKufdYzko0aQp9HRtQnsVowdPipxLjC+laj10amdBdqCvIU2C/KQMaFmQbas7dLqa2GoBTl9VdZ682BZkJv16M66i8U3ma+w6cFSKiZLAeQa6DbsmUqKb4iLRW4QaBWOoS4WS/k6aJ4W5Jbt76z0lsrFYhp48gQ55VO6WJTI2c7kYpHkWe9hWcJWJmfxS2FBTgR522r0gfFspn3boXm5WKwiL3t6C6zt4WKxFBbkEkHeHi4WKcwQ2bJcLNLzlu6ZxsUiuQW1Iqdj0wQ0F9ei935r3Mgg9d8hFuShMpHi3sqInFhfW4PQV1O5ZJ6sfphzRSqhNoHVLhZbMmlLyIlKq+60eEDr5GiWN7+yvIkYbiIQZGm40NgeLhYll7ohfGIFo+9cWPpEt1UK34Sd1YI8b+jB0toTVGKIi0XOHzkXv97DtTVtjQXunAS5RSZ3doLsGFcYVofUBDkHbYGcJ0Ee4mIhZXkB+6tXOehZfI4gz8MHuUSQS4OSLJMFWe9rmY+LRYkgL7UFeSkJsmzH0iv37eliMdSVSIcvyfs0JGYaH2QrfLJol1wsUGG2hw/yFuOaxjqRF5kni+hM42JRm8BqgpzG9xK0y5Cs9yHtuT2szantVjLpYlFq93kR5FYXCz3mD3kjnYh/jiDr9AdZkO+qBFnCEuohi/S0P3It7nm6WAzxQb6jEOSW+LanD/K0qH3eeSUjedF7OktIguwZtsJfYt4uFqvFcQukJXmeBDm5WCQlmQhyywpsiaEuFpYFWffdebpYrGaJXSy89/Nap9DqYpGzIM/7AwwtlkEJy8UitcVSTCKqiG1jkaokP1uxx5vaG9J5W5ATgZTPlQiy5WKxvRbpLaowLWnoXVmWmujO4y1/eoslXSzmRZBLPsg5C/JSuFhsod3FoluQFYa+bs01kOWDLDuJVkbTEOShLhatHeiORJDXV+7f0XyQc19Ja7Egy1f0tzNclhNqLhYtA2GS8yEEWS5gTa/W5ulioX2Q14rrQzBkkZ60WkhMs4tFq4vFoFeDDbAsyPNCq4vFPCzILXptcWCclgU5PT9PP+15TEiS/HhssmalIdukZpmd1gd50bimIS3INReLefgg63xoC3JLGtqvtwWz8Kx5TBbTJF26WJTKOo0Pco4g53yQh7pY5MaZZBlfxK4rTZDvFIv05o2SD7KFnFK3XCzkawQd71K6WGxm53GxmOciPbD3VJSwBqlZFMm8Cb5nvE5yn95sdbFIz8+bIEvZHWIpku4IrW2fZHWB+SzSk/taWov0hmKIDzK0E+RZXSykDlnqXSzmhVYXi9z4MyRPLYN5bvDMYaiLxTQYukiPTPhpLMCbMscW5uFiUSLIrYv0pnGxGMu78XXGWQlyq5vMLFbgeRDkVYyI4bwtyKmOLTnKuVh4yj7QQzZOkMaKEkHuLhYF6NettdciOaWRFhvo2VBOoCwBmJeLRRKyVmFeygWZ8yaYJZcDsAnyLAP9PIkHTPogW6/7p3GxmIUg51wslhfua1iL9Fq3n0qyWrIgD1HMKb85H+ShGOJikdLfHi4WpV1yiJ/angaJtCzFK+JWF4scWkmBdNspYQvDLchL7WIx1AcZ6i4WFmouFvMmyENdLFp9kKcZY2o6Te9isVQuFpaMtvbblkXrNSQdtIU2C/I0BHmIi0VaVDcPC3LNxUKn310sDNS+tqSRXRGM7WJRshBp1AjyEIV0Z3WxqA2q1iA1NUGek++lrgM5+FmEUFqQS/W31C4WKwr3NeQ+yEm2W9t+3i4WKb85H+ShGEqQt5eLRZEgF+KuYd6TQoncPsitaO3LnqVxsVhmxJvafym2wpsF0rLa6oO8kDm2MFROUv3oRb0aW8kTZGvcnGaMqeVd9+FpCHILrHCtk8B5yIl2sagt0ptGDw9xsUj1PitB9nQXi7kgNwu7BbjJuJ5T6qlRZcN+gdFnO+Vz64BHG3E8O/7nZp6tFpeNMewvNIa/vB5katQsvhI19wkIn/ItwZrwfGxAHpYC2m+69mWolzHqqKVBV76i3wL81cB8XWrkJ+H1wIHxuKY07g3cTYQ9Jh5fUXnuoeKZ5YQ+knOxWOWcO6USX0LK7/OAZ9BmQb6+cG8zZWuQ1pV70EaQSy4W9yM/SOwPPJZx2djCJOF5f+b5Gi6a8rkWPFccT0OQX+2cK33+PWE58N+VMFcznYuF/mTy/eK/JUND9F/C5czHBznpnbXA/Y37Mg25hiCh1j4TeXTOfbYQPo2n8jPPlu65hqAX0z1J9C19OY9t3mphWsamlN/NwG8y/vn3CzLPWDzrD0uJOOduHaALc7g5/r+U8OnmBUZGltI6n4Odc7V+lZDk4xrj3gnAk+PxX4vr6SNnT3bOlXZmkbD62D8BBxDacC/sT74vI7TVY5xzlwNvZSkJsnPu14c+s4NwXvy/L+Eb5A8HzlVhPgH8J3CIuPZJ731q7Evi/2cI3wtPlrNVwNuB88VzhwFXxePTmBxs5Tftf1TI99XAz8Xjo4HDgcfF8xfF/3O99+cy+ta6xu/F/yR8DwB+CzgqE/67hfwQ8/Nt4/pTCJOAr8ZzS0E/APgooW4OB/5fvH6hCPMnjMoGoS4Pi8fnMt65Hs/kt9tfEv8/bKT/qpjH9E343zbCEOO8VJx/itDGCQ9R4d+kzv9JnnjvrwRqCi4pWw88LR5r5SBf0f+vEcfphfh/E/jJeHwy8C4jzCsJg74exD5LIMWJgK0AziC0y4vjtXcyIuwfAF6u4jhDnaf9oXMEGeBB4loq2+uAb2XCfxl4FOME2VKAbwf+jtDXjyikL2FNcBMOIO9i8SqCvNVcLGDyq1afY9RPvwr8UNxbJEzGDxfXnse4HnpkIa2Ecwn9QBoH/lIcv1scv5lgSAB4YCa+zxTS0vV6E6F8/6Kuy7o+AHgD4zoC4FhsGS7hjwjtVHvzIgm5I+ipA+L5DeLef6jnnh11scSvVtLah6A7JTk4AZBfjf0x8G/x+OnxP43XX4v/RxP05nsZTXQ1JMFNzyeC/FTGOcDj4v/LMs8n/GwmLYBPx/8niGuvJEz2jiC084PjuczL6eJZvY7ghd77awmT8v0IuvowJnFc/L9X/F8gTGwOyISXrnDPYHyy/zvx/xeA+4jr8tPYup2fwHi5W2GNy7swrgst/Jg8BwA4nmCgeAnwRAK3eA2BD/0mcGPmuV0Y7w8lbCXo1A/E8+cXwv47od0fT56k/jbwDXH+0fh/HKH/X6vCH0Foi+MJevHfGB93ljFqs9RHpE4q1nGWIDvn7mv87sdocNzZ8RUA7/1Z3vsve+9PZDRb9vGe995v9d7L2a4cbE6O/xd67y9i9Mp0FcECkBriOu+9VOZaYcJoNgdlQroo8nC19/4C731SiBfF/0tj/jdiW8C/K8N770/13i8yOeAkaPKhcTXjBH9bOvGjLonUna8DeO9PJRCwK7z3FzCqB2mh+RKB6MjnUl4vBr4jbp3PZOdKz1ok/jTv/Te99yk9c5Yf21cOWJuAb4pzXXdfE8fnMG59SPFcFv91p5ZppPBpQnemCpPkTcYncWImboCTvPc3AnjvN2O38xcJeiDlJSnNc7335zFeB2d771NfALiS0cz+m6IMCbIfJP/jRWyyYlmy0luP25i0eKb8nkYYUOUiPcs6crn3frP3/mLv/YScYhDkKNs5RW4t9kh5+kGUt5qLBca92xhN1L7N+ER70Xt/XexHEl8Vx+dRt7ZdHHWHlCdZJ1LWL4lx4r3/QSVeC7pdz/fen02QHQltsYVQv5Kc/gg4aUjisZw5mZOQ+s1572/33ieDR5ogbGTSkmXJ0teMazJP13nvb2Fc39zOuP46n1HdnR3/05uIm2I8P/beXxHD5mRMymgKk2T9fMbfbpwprie0WrnH+kIsX8Il3vuve+/Pj7r4e4zaf1MMv8io/Pot0EkxzBne+2u89xep8Tbh4hhum6HDe3+m9/6qTHjHqM9+nfEJb+IEp6gJ0Gb1vw3e+0vIj7EWLovPnV0LKCBJ7VWU315s8d5/13v/Je/9NyLfuSzyoeuB7w1IN4fEn1J9WP044ZooB98nr1cvjmNVQpLFjd77E5jU07sR2vBsgtxcyjhfSG8tJVKbb43PZd1NSr4mJxJeX2lL6MGFZ+4oKL1KtRpO+l6ujr/0miBdr0G+Niq93pCvUbWFKuUjt41S7atKueu5V/xp66DaHps1V4FNIqxVV5vUdXlsfXRDt9GC+rfuJZRer+jPhspnc2kmyAGq9UtLKQ4n4tedNcmblSaUX5FaG+NrJOvaDeJcxlva8F+SRKvt5bU1BGWeIytWu6Tntxppp/MNBBKaCPIqgpLe08hrCbWFuRolgiz/Sy4WVr7kDigL6tlc/1qvwtQWfyX5lPFZH5RIYWoLkYYsJJJtKmHJdno9mmDJQQtafNNlv8uVN03yJKw+1UoqdTtpPafHl9yOM1vJt4HMS3o+lUH7gcqv4OXymEOKa+hWcwtGOF3QtpEyAAAgAElEQVSWVr/vaRY9WrtoyHzptDer+xpD3GamcT9qfmaO+5qXoLe4LbWVXqjXghQu6UFdpt0IbbFAkBt9fxmTkwg9rmf1c0lxnwX8aZxpbINzznrNuzNiaGdJKBGoNOCtZmQNS9drkHVdIsiLTBLPBO1wrtPeTOWzo5nrOWGVq8StODU5ysUvCbJVVwvqujx26ry0OKrFub+1Y+p09XP63OpLQ0hZik9b/yRBtpRjiTDoe7k2TPKczmV+5DO6LuWKYKvtZX5XE94e5HYUKLXLViPtFF7mO+XB6l+1hSe5PpzLl7UvsR70W1wsdL68935L/DTwIuNkIde/blFhchOhlJbcm9qKW28tp0mPJlYlgmw9i5FHXf+O8dej6dlpdzOQr+03M5nnVoJc6lPJBW8agqw/Ty8NAel6bseZ0vaGMi/6c9l6FyStA4YgfYzFqjsrPunLm5Abs1vz07LNqoQkyLkJuE67tCjNCl/CPAjytDxnXkj9KMdZJPRCvRakcLmtdHcnyK20CkvoSTZM8omsfi75ID8J4/W99/6phWfuDCgpt6QAE6FI9deiEKVCLq0gLRFkyzJpWV5NC6axD6RMs4RllC3IW2P8uXpYoEyQN6nrskzLmBTo3KcppVXfiis9n1AiZTULsi6r1claSZkX8Wsf5CRvYCvUWS3IKV09IKR4S1t2yRXBJQuwfD4na9Z12b9y7SitXql8tzCJVmu+Rq5+Wy3IQ10sdD+TMpSru/UqjNVXZTmWibAJQyzI2iJTkvNWgtxqQZ7HbgaWC4rWORa0LtLIDdJgy1HNgqxl3JrYpPRyFnLLgiz7uvU2UuardZ1SylOTBVmMRaVPNedIag7TWJBzY5e1XR2MypLTC0OsttO+DdmZoC27pfK36DKNGkGWFmQrfYsga8PAchctEhpZ4ffe3xL9gnDOHZQLtxNj2v09s50s1kfanmbohw1avy411MXCWpFshdNp5M5zglsiyC37Sg9xsSi5M1h7P0tCosumBzQZd8l/y7JcS7QQ5Hm4WGxmtGvHkA3Uod3FQobdov5zbyvSvZKLhTVzz8mXJUOSINcsyJIgWxbkaV0scpMoiyDr17XTuFhooion1rO4WNQmMFszx5YFWdfVEIKcc7GwtknUFttZXCwkLANF7c1S7m2hLF+JIFv1r3eY0LpcyzjYLmZDCbLpYiFIouUuVkOSuVYXi1IcCVon1Z7T6dTyXrpvuZjJNObhYjGNLA8t41JDW5BL5Z+Hi4VFkEsWZOutz7Y4osx7Mly4dXZ4knOutqLyzoLaLDTtI7iJ6QlySYikBTnXGXKkpWhBFtBWSv2aUMPRvsemBWk5zLlY5JSFRVRnIchbCvdK6eYUZcI0BLnFxWKB0U4HQwlyi/+1bhdNeGsEueRiYbVFiXBqSEtnbqIzL4Kcq8dSfnOyJt9ozNOCnOtv2sWiRpAtS2TOgmwR5HlYkHPWd/mcdrGY1oJce6uk81NyE8gZLWS8NTKckCOEKR1LZy4aeSj5WMsxXluQcx+aku05lIDNkyC3WpAta3QLSmWruVhsDx/kWfzbtxf0Pvrb28UCxgmy5ZZam4hk3SxaCfIrgC86535J33DOPcM5V9sFYUdgWt+cls9Qp1lLqdE0pCWoFH7bgGS4RMzkYiFQIshWp825WCRhbJlUFF0sCu4flouFLpfsnDr/JZJYsyBve9Z4Bac7YmmgyZXNcrHQ1q1NBHmD4S4WrT7IMqx2sSi9+ZBW1FldLEoE2bIc6gVM0ge51cVC71piYYiLRQqrLchDCLKGrP+cvm4hyNZr85wPskTJxSKVdx4+yDkXm3n4IOu4rUmPDGPV8xYo6mQoW5BrxEZ/nj73Vs8iyCULsmwby4JsTW5qBLm0hmYpLMgtLoAt8WnovFofNxnqYjHEBaJG3FoszDvaB3lHu1jAcBcLKw1TDzd9McV7/2Hn3AXAcc65I4G3EDaD/1NCB/z7lnjuIGghe4kg60UvJUhFVQpfWjU+LxeL/7+9Mw+3rKgO/a+6bw/M8ySgDAoKiogYNb4gTjjEKU7ROCWaGP1MnkPyHJ4ZiBmMEudnTEyicUJFcRZENIAToMigzNDQjE03dDM09Ny93h9V1WfdulW1a59zbt/b3ev3fefb++yhxlVVa6+9qnZfBbnLgtzHxSI3wKVxpqtJpJaVSfkSEQkuRJIJa1wuFilpQ6xN0iuVj66vFgU516kUG39Gqe/jYpHzQc69WteWtbQM+rhY1MovncCECqfVgpwLP6fcpJTKN/dFprQsW1ws0nNpHeUUnJTN+RWRTYXF9/WxrlUsulwsYrt5AL9aSE1BTpWXrIuFasM6vdPlg5xbokvH3zrRLL22piC3vIFL+/K5MW3qeF8XC1036SS9kmLQNVatZNAnpeSub7VCl8qj5XW8bv+tpOnS/7eEi0WX4raOqZMvZ9qlImVYF4tWBblrFQvonqTX9aCRG7smRdqJiJzvnHsGfk3Cd+DXOD0Z+NoWWk5kS9GVl6iwjOKDXCM3CS3SsopF6TpNTUHO5d8VjvdxsSh2LBXrcYw7tSLVyr2Pi0VNQe6akDMOF4t04IOpCnJ8YwH5zrGPH1vNgtziYpGzILeuYhHj6ONioS3wfSbpzZSLRboE1LhdLDoV5EBXW+3rYpH2R6mCPI5JejlyCvIwk5RK9VSij4Ksy6ZkxSodq7lYlJYX1G9KdNilVSxy8jOqi0Xti3O5sav1TfUok/RKb05q1NI17CS9PmnoujYnM7Pt68d9LMha1vrKRKuLRc4tdWgLclMinXP7Oef+Gf+Fk5+F31rgnG1MOYbpc7HQnU6Xi0UXXS4Wues0NQW5ZAGoWaX6uFikSnyO1Nq1eeAI8lZTOMblYpELS9OiIHe5WKDOt1iQc3XTZ6mgUV0s0nx0uVjkLHd9XCx03Gk+xz1Jr5SuPi4WJQvyuBTkkiKaupS0WpBbFOTcA0LMX/SXny4FOZ1gI/RXgnSckS6LZK6dtVgx+07S61rFoqQg93GxyCnIo7pYDPPZ5xZK5dEiK8MoyLX4Sy41XRbk7Y1hXSyajbOBYV0soLuuRvZBXoT/QMjTROSZ+E9U/gI/ee+oxjC2FfQkvfh6oeW1R+vEh9wrzfS+0scDWl0sUsWwNEGl6iLQYfnV6Ffrcds6qKYW5Nq92lUhkpvQotOl0e2hZDXPhZOmKS3/FvmI4aUPL1HeSuH0eUCtKbGpxSR9tZWj7zJvjsFXAXNhpdTWAM5ZvksPGaXwW6itg9yiIO/M4NO3pXBKOPKvyFNqPqGlcKHtlWfOghzzF2W1jw9yV3yRXUO4eh5A/HBRX0qyUyKNY07lnpyLRa2d1eKuupKp+3P5GdbFoqvd9X0oH8XFIiW2p5ZxZpg3CzUXi1K/mvaXo9CnXGK8XR+82dLE/rxFvkdRkGvX1ybpQd2FE8bgYnGM/rxp6Kje5py7GjjPOfcqETmrMawtxWn477ZrPggcg/8c5D7JuQ8Db2PwmeYvhd9C4Ovquh/jB4Yl4fyT8D7ZAKcCr8F/D3wx8Pawvxz/Wcnj8N+T/xH+s5q/ZPJ371cFH8IlTP4uPPjPWl8S4lqsjv8cOArYC/g48ES8+8sNwL8zVSG5HTglpP274d74+dZz8N803wf/jfMNwOPxn2P8BvBm4Cz89+a1IC5SaXoP8I/A+4G9w7HrGHyy+L5QHh8D/g7/meZIFNS/D///Df+2Ig6SF4ftB4H/wH/bPcZ7NXA58MmQv+vx9Z8qS8vxnxF9CPBPwHvVuY/jv9e+R8jvvfi6juuBLwYOwZftncAZwNEhPdcDB4U0xM71I8Cx4dwpwPuAl+E/8flqfN39O16m1uM/9XoJ/hOi+wMfYrDm9mHApSHc9SEtq8M9V4S0PBj4ffwneePScJpb8HVxYUjjArw16Hr8A++akH7Bvy0C/xnvn4RjF6uwvg58NZTN9SHsG/F1dQXe6n0WXh7OxSs85+GVjV3xX+5bEsrxRPznQb8OvEjF8f+AP8PXbRwk1+Db5CnAAXh5vjWUw634z1NfiW9bq/DyczRwelIW78YriK8J5XY9XkYPxtdHbDcfxtfRQry83cxgWcK7kjDvwst37JBX4GXlqfhPGT8KuAz4Pr7fuCyk8ynAa0PYp4Z7zwnXrQ5l+VJ8vUY+FeJ6Dv7zs1Gmwbefx+Nl7Srge/ivC74QOBz4RLjuZ8CBIa83h2MX4uvrdODFIc5PhfsAPo/vI27By8bj8TLzEXwdfSWUKcAyfP+3O75fWsagr7kaX1d6CdH34tven4e8LcKX/dEM2uAtoUwcA7eCtSHew/Ey+iwG7Qm8S8D1YXssvh6PAHYL6TsiXHcHXka1rHwML2P349s3Ib+X4NvwonDs0/jPtj86+DP/BPgdvCw9Afgovg5PHQTN6fh+djnwzRDHNfiHqm/iZVGXzz/jZfwy4OHq+HX4vuHY8P8/8TK3BDgzHPsgg772ulA2G4B/BR6H70/By+P5IY8Pw8v/U/Ey83jg+BDmoxi8WVwW8rcHvk+L/cRHgLcytZ1EzgtlFvmfENZ6fNv9SPiV3vTdiZetf8LLy0/xcga+jr+duefn+PI9BrgIX95xbPoqvryfjO/79WfOF+Hl63J8HZyNr4M78WVyTrhuFb4eb8e32wPC8XfhXVLnMOhbPqbydlrYn4OX373x4+OHQ16uwPeTi4EX4Pvkb4Z7VuPr/nv4Me/FDNpzjU/hZe/EkI9H4seow/F9x8V4/UCnWXMFvv0Q7r8BX3/XhLS9Ey83bw7XfE7de1MS1t+G/F4R/n8SeFP4fxpeXwHf70dZvQpfl0vwRoLbQtxXASfh+/VL8XJ2KL4+9sDX1V8x0GF+TeGByLUbAfM4554OnCoi+44U0Ig45y4SkeNnMg2GYRiGYRjG1s/IDt8i8kP8k7JhGIZhGIZhbPWMZUakiFwzjnAMwzAMwzAMY6aZbUuGGIZhGIZhGMaMYgqyYRiGYRiGYShMQTYMwzAMwzAMhSnIhmEYhmEYhqEwBdkwDMMwDMMwFKYgG4ZhGIZhGIbCFGTDMAzDMAzDUJiCbBiGYRiGYRgKU5ANwzAMwzAMQ2EKsmEYhmEYhmEoTEE2DMMwDMMwDIUpyIZhGIZhGIahMAXZMAzDMAzDMBSmIBuGYRiGYRiGwhRkwzAMwzAMw1CYgmwYhmEYhmEYClOQDcMwDMMwDENhCrJhGIZhGIZhKGadguycO8U5d7Vz7tfOuW8453af6TQZhmEYhmEY2w+zTkEGzgYeKSLHANcC757h9BiGYRiGYRjbEbNOQRaRH4jIhvD3AuCgmUyPYRiGYRiGsX0x6xTkhNcBZ5ZOOufe4Jy7yDl3EbBwyyXLMAzDMAzD2FZxIrLlI3Xuh8D+mVPvEZFvhWveAxwPvEhmIpGGYRiGYRjGdsmMKMhdOOdeC7wReJqIrJrp9BiGYRiGYRjbDxMznYAU59yzgHcCTzbl2DAMwzAMw9jSzDoLsnPuemABsDwcukBE3jiDSTIMwzAMwzC2I2adgmwYhmEYhmEYM8lsX8XCMAzDMAzDMLYopiAbhmEYhmEYhsIUZMMwDMMwDMNQmIJsGIZhGIZhGApTkA3DMAzDMAxDYQqyYRiGYRiGYShMQTYMwzAMwzAMhSnIhmEYhmEYhqEwBdkwDMMwDMMwFKYgG4ZhGIZhGIbCFGTDMAzDMAzDUGwzCrJz7vsznQbDMAzDMAxj62diphMwRvZODzjnjgFuE5HlzrkTgYOBO8LpQ4EfAxuBfUTk58653wMuFJHbnXPHhmu+CbwS+DZwP/BqYGfgLOBAYAWwJ/5h4y5giYjc5ZxzwKuAe4GLgV2A3wYWi8iPnHNHhPBWAkcCi4AHA0uBFwICnAusBp4CnA68BPiCiGxwzu0MvBhYBVwHHBDuPRpYAswP+VwJnB/uORI4BNgPuDSU2W4hj78PXCoiVzvnngT8IqRnvYjcrMr0KcBlwEHAniJyrnPuQcDOInKtc+4Q4NkhXRcCDwHmAsuAG0IdLAWeBJwPPB84T0Sucs4tBF4O3AxsAlwsU+DwENaNwFXAo8K5TaGsNorITc65nYCjReQXIb17AQeKyK+dcycA9wCPAe4G1oWyeyiwNtTrUmANcHuI/3eBr4vISufcb4e8/wFwU5CfV4X8/Q+wq4j8Ksja/cCuDPgZ8FvARcBxIvKzmFZgQ6gvATaEMJ6Ml629Q53dGdJ1eCjbW8K5OcCPgAeFMj4aL/PXhPw/AzgCL0enAUepsjk2hH0hXubOBfbFt4mloXx2Ak4AviUiS8J9J4Z6PzGk5QoReUDJyHzgFcC8UIZXAZcDLwMuCen5HvDoEMfdwNOBa0XkB865HcK1ZwH7hHzvCOwR4j0opHc98FkRWRPifTLwYxGR8P8pInJOaIsvA3YAlorImUFOXajnx4ay3ohvDzuLyLkqPwfi5fQWYI9QJouAhXiZ/CawO/BE4JfAI4Dv42Xt5aFuvxzq/3x8P7BziPNA4KcislTFt3+IZ9+QxoeFfK5D4ZzbHXgB8B0RWaGOHxTyKsDhInJWOL4Tvv5/6Zx7cSjbZSFNTwhpPwK4Fd9H/ALfTsHL86qQ9vnAMhE5zTl3QMjvLSG9F4fynAv8JKRvIb6dzQ11tgg4Dt8XnJ7IzpOBn4jIJufcrsDxKstRvi8L6dkhhHcYcH34f6DK14qQrmOA84An4/uPR4W6WQY8HrgPuFhEbglpeIqInKPS5PBtYEPI38uBW0XkbBKcc/sAL8X3DcvxfcAqfB0eFMr2PHyfc5+ILHHO7RnCXC4iXwnxPTnI+lz8+APwNXybWYDv+w4C7haRC51z+4ZzhwOfj2XqnHs2vo9YAfw6lN+OIezH4OXMAReEcroELwuEa47E97F7qH7jJfi2+us0/+H8CcBPgWeGPMX7TgxlvTtwFHCLiHwr1PlcfL+/Ft8G98TL0/749nGpGlOX4futz+HlI7apufhxdteQ19V4Gbsz5P8F+H76AHxbvy3UwxHh+ouBFwE/x/c3EyG9EyGeu/F92UNF5Czn3PPD+d1CPBtCHT0M32ftFuTgd0TkPOfcU0MaH8C3oV/hx/AHROSroXz2BX4jIlepMjsKL0OfC2ndCOwmIheFa47Dt6kjUX2xc24Bvh/+Al4uVob6XoYfL27Gt51r8XKxHD/mHxLC2wkvY9cBV+Lb1RLgGcBewDX4Pv5mVU5H4tvYniLycxQhL+fhZX3PUNc3hPpdF+RgKb7/OBXfXkn64t/Cj3uHATeIyBlJHEfhZcbhdRwHPDekcxG+3V5LKyKyTfyAizLHBC+w+4b94k9d/w61L3iBEnxjP1Ed//tCWN8O9++uji0qxHU58IGw/4Ww/eMkvFvDNl730HD/BzJxryyk6YVJntLfoZm0vTpsb8+U6feS669Q+/dX4vli2L4tbH8TtmeHex9XuO97eIUj/v/H5Px6YEUI429jWsL/05J83VGTA/X7qsrnKer+j4ftFcCfZ+5bWAjvzWF7hkpPlKGb8IriGnwDrtVV7veDsP2prpdMOP9ZOPeOQrgrgB+G/YvCPXPD//3VdScnMpLK8Oa48R29AH+ZizPc/67w//zC+X9Qxx6X5OfxYd+p+tg/E8ZK/AD6p4W876TCzdWz/v1d5tgL8YNO/P+msH1J5to/T8rvQnVubdgek+nf/iOcOzU5fgOqvanjJ6v86/jfGbbXJ8ffRCXfIZxfJcfPVPtPTM7FvuEMdeyETP9yQtj/aCX+m5gsT0sL18X0HBG2Hylc975UblSajlXXfUfnP1Mnf6iujWVzaxLXSWF7cbjnJaHOolHgaFW+z1P3fTeT7tXhunPVsRML7V+PWXsk594btrGfmiIn4f+8Wv7VPU9L7puTSfuyTBpvYdDuVydh7JVc+9t4xe2YQp3q31+H7W8q13wo+X9G5prNbSr8vzk5/0oGRhvBP2Dm2lwa/pQ+KnPP0yvXfCJs/0YdPy4ce3jY/jps43jxubD9YEP5xTr5TubcT8mMq4lMxHHjwMz9r8/k9ZFqf6dCeUyRQeC/1Pmv5dJbktvcb5txsaiwA75yWtmU/I9W9vn4zgG8QjafPAvCVpftjpW0Taj9GE96TS7cBUxl50I8XfmflzkW07U57cGaMelYQFtKd6BMTHOML94X010q053xZU7hugkVVnouzdselfRpFjDIpw5zB7zSMp+8i5IrhDelPBmUx24hnQvwD1Z9iffUyr52vvQmaUe8ggmDcoxloWUqlcWcPMVwSnKuieEtLJzX6U3rYH5yzTymtmnwMrWQfFphcj3mymddx/k5yfG4n2u3KbqecuUd2akQZtquJoUVLHGaWIa7Jser8hT6g/QaHWdaLjG9ug3k2lDMc6n+YZDWGH+pj90lbCW5PiXKwUTyP01j11tXfT7GtVNyTSrfcxgo03OZXNc6Hbk2E8PYRR0r9fc12Yt5LPVftTTUwiv9h3w65zMorzSuXFuf25imWC9pXaThdaUvlZ81mTB0GdbGXi2zXX13V1gLMtfMT7ZRRtI+uNQHaqKc5WRoIfVyhUHdtcSlr4dB221Bp28h7fLamYhtFUd3o9dsSP7rgS2Gs5ruga61bKPiF8NOw43pmZNsx0lNaLVwlhqUbpRp+eXCitfHcEp51+nrqsNS55Gmp/VhSQpxTuCtVgsyYVO4p3Q+lketzFooKQcpJdkppVkYpC1ucw+ALe0r7eRq9VAMr6LcRaJMLVDbnIIMPk+lzleHm0urvi+X3jmF47m2lqYhl6ZcGkplOLdwPm1/XeF1tZUF1Ou1VI/6eE4m034hR+tAG6/bGLalPKV9kO6LdB4nublk0ANySbbmJefnhPStZWqZ6v1aP6HLo5THmsyuT7YlWh7wcrQqyBsY5DMtvzSMBeFYS5pifmsKU1d8OpxI2rekaakpdzqsLgWzi9xYkspy2q4k2baQ60u7ZAYGZRn1Kd2OcnLd1b+WSNvtSGOrKcjxIudixaUCoC1nWkHuejLpGmAjs0FBzuUlpkeXR0xbzoIb2UiZGFZqpWlRkGsKWUkByqVnXAryfPIdQ5cS6jLHamXWQquCXMp7Kc3C1IEz1n1fBTm9ZigFmamKZ4uCPCk8pWRvpDw4zC3sR6ZTQc7Jcy4NJWtmPN6qIMd0puF1WUtzCrK+ZzYoyFEOuvqYmoKs66NLQS4p1pqY9hjunLAfFeQ5sFlOdRnU+okWBblW7rNFQV7PIJ9rO8IYRkGuXTuMgpxLk6Y2Numw0rc3fYlhDaMg19KYkpPB9XSPAakFWctZ1zjaR+fR5e8YcWzdHhTk0kCVkhv49XE90K6hnwW5pkxHgS494aaWj9luQa4JZAyrr4I8QT3ftTi7GkhpEIv+gCnzGFiQ+yjItfOjKsgtr+dKcUNZEdrE1IFzWAtySk1BrpVhel96berKsKByzUbKg0OXgqzvy6V3TuF4i2KXk8lcHZXKsKQgpw+okZjOvhbk+UwtP31PqR67Br+JyrlIq4KcuqiV2krqujYOC3JJtnIW5E0h7PlMfTUeqfUTuk5bjACpDKRvikoM+8q6Vs8arSCnZZ0bm+c0pqlFQU7rq6ggO+dKLgNpWmrWWR3+LsWr+qFlROsuMLVdxfz2sSDnZDCVmZzc91WQdTvto/P0aTOdbA8KMrTlM+fDA5MtUn1cLGo+mpouC3Ks4NIgNg5y6cu9fpliQQ4dRasFOYaVNtyu118TTM532qBrcXZ1+CWLScmCPI9B/efC7nq9mQtzVBeL1tdzpXZQS3PJxaLFUlhj2BV0Jphc/2na9ZyBuE2viedqLhY5/2FN16DSpbxq0noZl4tFGlfJglxyyZguF4uuOFpko1Xm0j6r621LTjnVeexjYe2SLV0f2oKs06DDaFWQW8ovLffptiC3yq92sUgtyOn1C8Kx6XKxyKUvHadTeUpdulqVz+lQkFPZL/UHfRTk3LXrk+O1cTHrYqEeOCJaQe6j85iLRU8cbQWcs4zB5M5qWBeLSQ048aNMLcgz4WKRs6qkr2Eg72Ixh35uC/r+1tefqQU5HRxrjaDrCbJ2b24QnsvAxSJ3bx8Xi8i0uFioSZWRVt9TTaog5zrbcVuQa+HNTc4PY0GO52rl3mVB1vRxsRinglxShEoKbyms3MS0WviRXB/YYskch4sFtA1+qUW4pCC3+iCPQ4FMFWTtgzw/SUOLRV6HCW39cXpNqwV5S/ggt1qQx+2DnFJzsSg9cKXjgkC2L9ZhweguFpE+LhaRUX2QNyRh5sKrWZA3MLUOtdHHXCymkVYFro+LRd9JeqlA6oGoy8WiK33joPaKvsvFIi3f2qAaw0oV474+yCmjuFiUBoSai8UaBq9FU0rpTH1jNaMqyCX57poFHhnGxWI6FeRRXCxyPsg1BXk2uFi0KMh9XCxKb5tKLhYxTcNYkGsuFiU3iHG4WEDb5KDUxaKkIM8GF4toQdZp0OHV6qPFB1kz3S4WLatYzMkojlpB7vJBHsbFotZXNbtYULcgT1GQyadxW3WxKPWHOi06nNyqYF0r3ZQwF4ueONpeOZUsyHrAjedGXcVCV2Ls5FMBisS0L0yuGye55ZRqLhapgtz6ei9VkHUYUO7oUgW5j4tFVwOpuViUFJxo7ckNRKX6qS1dNaqCXCIt59LgMKqLxTAyWZOT2iA2Qd0CmS5Hl1uOL56rTdLr42IxUxbkmiK0KRNXycWi1O5GdbEoxd+lII/TghzbW5eLRWqgmJ85B90TmoZxsdA+yFpB1tZkfV8O3ScP42Ixbgtyyc9ds5Gpxpn1lF0sRrEgt/RRLZP00nE6lyY9ppTGPJgsV1vCxWI6V7HQYUzAJD9tmDrGpw8RafkM64NcclEdilmpIDvnDnbOneOcu8o5d4Vz7i2jBEc/F4vS4JG6WPTxQS7F5ZjaIZWUxx2S/33oGmhqLha6QeQGj3Tdzq5BO71fxzWbXCxqq1hswA9mLQZSOm4AACAASURBVNbASM4yFRmXgpymN42rVDclS19cXB2m1t2oX+FscbEoubjUXjv3dbEYdhULzairWJQsvbVroF4HGzL3lBTkUv23uFjUVrFIw83FX7Mgd/VbLRbkcbhY9JmQOswqFtoHWU/S62NBHtXFosXCGtPUQsvbiI1MrY8+k/Ri2+5jQa7RoiBH5pPvt0uud+NQkFvyoOPWcqT7lGFWsaituLQxSVvcz73ViOWg05mrw3G4WMS0Dc2sVJDxhfcXIvII/Gcv3xw+ITgMrQpyXxeL2iL2uXA0uhLTSXqlxcp3SP6Pk1YXi5IFWTeOWvpKT9MtCnIcRHKMMkmvr4KsLci5civlP+ZNy036qmvctLpYlAYYbUVPLSdaBoZxsaitQtDlg1xTBnIKcm5yD9Qn6XUpyF1K3tzC8WEtyH1cLMDLaElBTsOaLgtySUHuUubGqSBHYp2XJrTWFORWP2BoWwe55oOculiU0lEKs3adTnsqA52rJAWLYKuLRZcrFOQVZO3P2jVJL07AnS4LctckvVWZ86kFOf0QWClNo1qQc/2DliM9zo3bglxqp7mHzJyLRa4Od0zOZ8msi7/tu1iIyBIRuTjsr8R///zAIYMbl4tFakHumg3d4mKhLXSlL22lDWyYOutqALnGm7unNEkPBoLYtYatDifSsorFHHy559I2XS4WJQtyTUHu42IRZWtc7TAtl9LbiJQ+CnLJD70vtYE2N0E0kq5oMlMuFl1uAqW5Dy0Kco6+LhYbM3GN28UiZ0GuPVi0WpDH6WIRiXksTYaquViM24Kccz/QFmTdz86v3FcKM77irs19SeumxYUvdfmo0eJisYG8ghzTNk4XixYdoI+LxXzyCnJqQY5lntMXdN22TNKbIk+qjnOub1qOagpyCzVr85xCWLk2pPtefW5YF4vS28Hx0Oe71DPxAw7Bf+98147rLkr+P5eBAtrye7LaX99x7b93nL+v4/wtav/MzHn9XfPLw/bisD0hbL/QM3+3V85dpPbXhO2/JNc8H/jdzL0XqP27OtLw5bBd3TPtgv8Ua6lerg7bvYF/DPsPAP8BnAL+++uFe69riPujwOmqrL4BLCpc+zcdYd0/RN77lFHc/yLwo8J1PwUWq/8lWboLOC3sfymU4Ysy1308hPf74f+9I+ThllhnPX/Lw3YFcAXwpfD/m0Om49HA6yrn16r9T4xYb7Ft/2HY/ixzzUuVDK8A3qXOnR7OPUcdWxrKQYAzkrCuTP737UuG/a0rxB9/b1L7n9pCaYq/f2cg6/r3yo78HAAcy1SZEOAXHXGuUfsfA34M3MpAllt/5yf//xR4b0d8xyXn/m/YvkQde2Nyzcrk/5vxitdyfJ/+PnXu5Y1pv6Ry7gdq/1LK4+pfN8Tz8Z5l2vU7C7ixcE4ff1rYHp+57vqOOJ7Ycf7F+L5cgG/F46EvOAu4Z4z5rdXT18mPaweG7TmZc5eq/Xdkzv+z2j+iEvd5wPfCNasY9DHFXyifD4T/h9b0yllpQY4453bGKyZvFZH7Muff4Jy7yDl3EV450jyvZ3StkyEgP5P5HLWvX5f8OHPtQWr/uMz5P1L7l4Vt6gJycNjeqK7dH/jPTHjgO/IcH2NyemM5HJtc9zDyT2ePV/t7he3Pkmteg1dY49N0HAhzlKxCOwKfKZy7Jmz3TK7/40o8EW1lWVa57kVhO4/Ja3WmvKojvlS2fhC2t3XcF/ka8P3COZ2XPwCeileSUo4HPqz+1yzIc/EPaTeHY7m24YCH4MsbytaQJxSOA7w+bA9islXgJuDVeNmuEev+OHzHvB/wPwxksosVwGPU/7kh3hKpxe7cxnhyfUeMN8aXk1kd3x7AI/GKueahav8yBvLw7OS6R4TtPPwDSan+/7Vw/Cy8ctSX0ioakaep/T8ZIvxhWBG2c4GXhv2D1fnXU2Ye3oDzkPA/luMn8fLQZ0LfJvxD7YH48o3cCexGuc3D1HY1F/iLzHUlF4tLGaRdW5aPwj8kR3YO29hnvT5cvyfeAv2uJA0tHItXFD+SOactyEczeZzSst9iNUzT83Hg/4T9ZzTcn3IS/oFD86Ow1WODfjN8VXL9jvix8LRCHCd0pOEFwJPCfuryeRJebr7VEUbKFwrHc29OLgxbLVdvVPsx7ydm7o0W5F/hxyPwfdaD8A/H2uJec2c9AW8YOABvdc657p2cORbr/uGVsGevguycm4dXjr8oIl/PXSMinxKR40XkeCY35GHoY5rPDXI3Z46Bf7KqkRucVqv9dI3SOcnxzQ8OIrK0Ib6U2wppSBXA+HptRebalJXJ/zvxeYp5uI3yq8rSMkoLmVzH+rrSl8OI8WReN4K3SOt77i3ErRWW6INcct3o8tFLlYMlYdsqvxvpV8cPZI7NxVuqIrVJenPw9RnlruaX1+XOUipfmJyndMLH4iDbnYjIYgarASyifaCei1fGI10PybrvTNdmrlHLR5Sz0uREzQKm9jm1ybNTIxPZwGBNbxjIYuSOwq1r8dapvsT89Z0sOp1EmdRpKuW7RNrm78XXYdfDuWYTg778bpWuJcE4lGvHOdZRll2t0KX5zbl7zWeyASayirwLj6bPJN4HyJe57uPTPk8bzLrmA+XSswL/cAi+vIchdQHZxFS3Lf3hovT6HfDtaIrxr5Hckm4pfdvpLd2XbCaWm3ax0H1Irf+J+sUyBmlfKSJL8LKvXSyGWZVFk+oj0DjvZ1YqyEGZ+S/gKhH50BaKts8C4jm/1Zw/EkxtFCm5QUHfEys+fcKPdZcqlH2d0lfR9qniOKM6J2wpuU9PRv86qJdJKf07MPnBIXXy11tN6kObxqWPr85cA5MVluiDHPOYWhG6Bvk0jVFuuuRE06eOc+HOTY53+SBrv8BRFOTWyZTpMm59JzHGyT8raf8M99wkDX0mw3Yqo4qa32wMo2Wli5wPZDqhqyVNG1V8aV9Sk8lhvlA1GxXkmEedpr59aGpcWRXC66Mg6z5lI4O6iNvW8l5HuXxL/uHxE9cwuT8sTUSDwYTCEn3az1ryhpG1hX2Y3Fe3KMhperSRo9Tvd5GmOa5KpeVYLxOb1uFO+Hz16fs1uSXdUkr1V6JlDEyPaQOBjq8mH7Es9GpQa9VWT6Zt0c1alHFNUxuflQoy/rXBq4GnOucuDb/nTHOcfSzIucItCWKfheVz96QKcmrJSxtX3869ZcIhDGZUtzztpgIZO/wWBbmkDO1IufHGssg9aU5UzqXL07R0lHGZt1jOqYLc50ELBg9brZ1kbmnASG5AzslfGkaXgryeqW8u0vBgNAVZnxuXgnwfbbINgwefSB+rcLoMYY2aopN+Jjt3LrKAqfKaKsgtlhetIKcyWFslYpTZ4aV0zYSCHNvH5jRFJ8VAiwykY8dq+o+t0foIg0nAqG1reUcFuWsNbr2vP9SQKsgly3V8S1OiT12uI9//1RRk3e+2PATnJoyOqiDn0ryRye1XK8hpHc7D571LRyixJRXkmmFEy4yWl1rfG/t0LXv6oVDf2zKm1vq60tJ00NG+R13LdFoQkZ8y3NJRmr73T5eCPKoFeYLJT1mpopI2Lj0Aa6W0xCransCji0WLBTktn2hBLg3E6bU5FjK5U8wta1Sb6Z87l64Vmyq7OaKLRUxnWv59FeTSmp8l4pJQOXIynyvr1Ie65mIRLas1F4t4btgl9aCsIE/QX0GOs+NXUl7WKyVd17RP31ha0i1Hy+etczKUc7GoWZDT1T5KbKD84DpuBbnLB7lv2xkHOQtyHxxT0x2/tNmnjLSCvIFBWcVjrdbo0geMoG5Bzn1NcT5lhUm/EczRpy5LVtR1hX2SdLUoyLkVXWIZt/T7OXJ9tn7g1PHmFGQYnwW5VN59lf9SWbQqyDq+moIc064VZP1QqOu05WGra0WflKY3MrPVgjwT9GnQucId1oKcI3WxWM9UBbnFgtyyTqiePFej5mKRNsJUoUldLGplUvs86+rkfyQ3wSSGVfNPTteKbXnajpbGeF86cPW1gpW+GlVjVBeL1Ie6xcWiZkFuTVeri0XqBzmKi0WrBTnmM9LXxWKcCnJOhnJrF6fymvogt1qQS+1ylPXFc3S5WMyEgjzFgjwEJQtyXx9k7WKR0ipfaynnRZd7akHO+SCP4mLR14Kc5nkV7S4Ww1iQNzF1idK+lIwPJQU512ZK7iUt6PCm24JcW55Sy4yOr9b3xraRc/FKXSxGVZBrfVW1XW3LCnKfzgn6WZB1gXe9phnm6TB1sdBPWak7QU1BbhnEWn2Oai4W6Wu4VK7iZ1RbLMi1zqqU1thBpo1YK7KjuFikky7GqSDH/I7DxSJHycqhy7mU5qj4aReL6fJBLlmQS1+s6oonuli0+iDDZEW8j4Lcx8ViWAW5ZkEWdUxf39cHuY+71jBKxWz0Qe5KU1cZClMV+2EUZN0mc+tzt8pjdLHIyaMOU4dXcrGYz5Zxscj1famCPKoFOediEceEYT/UVPJtza1dXerHSu4lLWRdLJIJ6a2TOyN9FGRtQY5y02pBjrK4ian9z5ZwsYjyUNX7tmUFeUu5WMSKLj0Ftgh/eo3+H/2U5qn/UH4tuqGwX6L0hJl2cDUXizSMnII8iotFvL7UeHci/+UwfSzXYbe6WGhZisu8xfvS9Pa1RPV1sXB0Kye63nNlvSm5ptQBzaNtkl6rJaYmj6VJevMYzsViIV5WW9yHgCm+p9M1Sa+Wl6qLRTLwdblYtKZJW7xSWakpeDOtIA+rVJQYVkF25C3IfSfppT7I6fjV2q9EF4uuT9q3uFgspG5BHqeLRUpc07Z0jT43rIJc6sNbKSnI8xikt+aDDNPjYtEy8bxEKS05XVFP0ovx67fWNQU53ruJgayO4mJR6+dz9VTrazezLSvIfenToPsoyC2KTyrE6QoDugPTn77Ohb+xsK/RQlzqANMOtuZikYaRU1RbXSxyaY7lU2q8O5L3vdNLEZUGjGFXsShZkPvS14Jc822Maam9mozX5XzAUqKC3DVJr/XLZ8NYkIdRkGNYLf7yJabLB7kmL12T9LR85xTk1HI1qovFdCnI4/BBHnZiVYlSmrrKsKQgjzJJrzagd1FzsSj52Ou5KjqeHagryDXFpU9d5saDLhcLLZvDLPOmFeRhXSxKk7+0O2CLglwaD/v0p6XvOPRxsUgNJ5ouH+RcWba4t+X6n2FWsWjxd9bU9ILNmII8IP2Geg0tRDmlRNOi+KSWS91g5ifpisISn7ByK0bk9jX6nlID0kK5hoGLRYuCnHZGfVwscspQ7GxKHckO5Nf/1JbPURTkdPa3VrxHVZD1cjd970mJHVZtcktED8algW4+bZP0FlTO5eLsOpcODDOhIE+Xi0VNXmKcOYtYahHOKS/jdrGopXWmfZDHrSAPa0GO1jNddlFB7vOQ1eWD3NfFIkfJx14/JOu+IF1aM42nRt+3AamspRbkmiFopizItclfcUzXD725NlNzseh6q13yQe47r0anpUSXi0Wkr4I8DheLNR1x1Xz6TUFuZAHtSooWzNi4RlGQaxbkNF3pt93TRtfiYtGiIC9IrplPuwU5pyC3roNcU5BLDzA1C3LtVUrqYlEaDNJle/R9W9qCXHKx0Me6LMgwkIEuBbnFB3lh5Vwuzq5zqYLc18ITwxp2AX6Yvkl6LQpyrrNPFd5dGJ+LRald1hSH6bAg91GqZpOCnC6HFlex6PtWUrtYRLrKLKW2ikXJxUI/JKUK8jhXZyrR4oNc848fdpLedPkgw0A+R1nFoitfJReLYRXkWp22Ksi6TGrpr/kg93WxWEVdQa6NO+Zi0chCygpyOqhNq4tF+MJV5FAGiuEmBp81jQKRNrpxWZAflaRv13CsZRWLXGe0Af8ZVaiXSU6BaFGQBXgJ8Fx1fAH+G+0w9XO74F/j7Kz+lwbdA9R+dHGYbS4WmxjUWZcFeRcmW5AfXInvgHDNic65E5j6CXIYfDr9UZlzmlYL8tHJuZmwIB/B5E9P1ziAqWku0aIg5zgOeLT6vwsDeX2oc+5BwBPV+f1pe/U8h0H9T7cP8h5hW8rnwT3CGnZprhKlATYn75qX4j+lq/uO1Xh5OD53Q4Fxulg8snBOfwL+mUnc8Z7nqeMHU57k1dVfHddxXtPiYpH7+FTk0IY4ai4W47QgR8UuykPsE0+ivAxnaTw8qSP+x6t9nb+nq/1xKch7ZY5F/XEfdUyXSVf6I7HdaxcL3R6fSZ31wIsq5yfVk3NO9zOHOude65zLKvNFBdk5N9c59yLn3AudcxPq+EtL92wl5L5RD16wtQL2XbUfG+drwzZVkP8buLYQrha6VeS/jX4j/pvkmveF7S5MXkD7r9Q1N+M/1QgQvziYs26nxHyex+RPUV4CnJG5/kDgf+G/e55rcJ8FTlX/z03Ob0J92lhENgFvUWk+S12bk8k4GN7G5E8kf1Tt7wX8MXCMOrYTAyXnX4B/Y/KnftO8pgry+WGbfqRmA90uFosLxzW/oH2Zt0VhOxf4T3U81vE8lab91fkb8B/dOT0JL8pwl5Xi8JDGQ/Dy8vLMNY8N2yMy5yLfZZDXxcm5r4djp4T//ys5H/P4vbD9bLhHt1FdfjFv+vO06WeUId8WI//EZIXiA8Af4eX868m1d1bCSUnl5Uq1X7OUvBj4ufr/OXzb3YhXnK/Dt4E/Ad6L7zcALiyEF+Xh22G7BPh0Jq0fVv+vVvstLhZvwZdVl7W3T/lFFnec/37l3IfxdXmyOvaE5Jr3ZO67Xu1HmXwTvs+5VJ3TCs8G4BuVtFyiwsu5WMQ+8qPANZVwIlcCzwr75wEfL1z3R2p/E4OH3BPU8dxSgsvxY9PpwNmVdJyY/M+9zYllthY/BsRPp/8YL4vnAx8Mx26dfOskuU4fHv4cuDw5llOQvwd8hDYF+brMsVRmTmbQ934OLwdRZ3gS8HB8XxzT9mV8G45918eS8OLYVZLlkgKq+yddf/emFyZ8JPm/lPK49Da1/9CwvZDJsvuUSlzXAJ8BDlPHYlxXAl9h0N+9pBIOwH4MHkbfro5fFLYbgH8Ezgz//zfws7D/Nrz+pvv6ASKS/QFfBP4BX+kXAA8Nx/+ndM9M/oCLkv+fwjcC/ftxOLc8c+7z+O+Qx/9O7a8M293D9o/VuftDmAerYzeo/T9R+58Bfj8T9yfwSqgA71R5iOd/Erb3JvctBN4d9vcP97xenb8mE5fgOxsBHhLuWU+YxB/+/0XhPsErSKLi/UyS3jOBP03ueRS+0xbgLer6x8V4ga+F87fl6i1s9wvXnqXqKC6JdHdyz8vScFS8PwrHjkyueUvY3hO2D1XnfqP2/wr/YJLWtf59Fa/IlcpR8IPI28L+Xyfnbkr+vzJsv6/Keg1ekUvDXa32j8jIk+CVWcF34rm0PUvtf7QjH7VflLXHqjR8Wp0/XaVvXiGMw8L54xM5+H9JnURZiu1lDl6pEfxD6LVJuLqNS6aMBD8ICvDEpH/R15zQozwuVPvXMOgfLsHL1H83hHG9Ssfz1fFPhGP7q2NH6fJRZfPopMxfix9odDyvYbBc2d+rfH8LbyHU174EWJGWZ7jnHer485man99L/p9SyXtM/1sq10gSZ/ydodOVyMqUdIfzse8/Hzgn7K8Gbk/ue4/af5ja/wMGfft3M2l6RNj+BV4hEvwAflOalpCebyf3/zj5/7ywvbIgq/r3vrD9u8o1z1P7dyVp2amjDuJvEV4ZFQbjhuAtnQKcnMjyviqOKMu/Sxinwm9Opiw21x/wSXVsE17Z0te9VcUxoY6fmQnz1aoc357kK+6fn5T1Hkwdf28I1/yTrtuQt1Runog3mgnwh43lfF7m2CPU/nPCdo06dkZSbi9Q517BYLzXv5Xh2p8mx49KylLwuk0urf8SwjhXHXtHRt5/oc7f2JH/H4V7PhT+Hx22z1Dh/W/8Q+M38Q9om+srp1fW/JoeJCKvBHDOfRb4jHPu5Mr1WwM1q8ckFwsREbWq0lr8q/j4dCTqvrhfcm3Q1oRN5F/LzFPHa6s4pC4GeoH1TZlrSi4JsRz0PVoWatbMmJ8+PmbRB1nHWSIXbsz/pDwmdZTKci0PpUlJ6WRAnVb9Slf7+WlZKMVTQrtqpLJZqjudz9SHWocbKZVDvKb0FknnfZgJWWk4pUl4Op+l1/Zp24hbHY6uBwcgIpucc/raSXWVyE+JFheYPhMsU3mJ4Uc/uvvpRoeR89PMHYuWpCjjudf5ORcLUfuatK70hxdS+vpE1so6prfLKj3KRLdcOI7Jq7Wk4ev06LYjDPKTS9Mqda42BkTStpiWQ3QranHZivmp9cnaTSlNV6tbWGlsjPtpf6vD1cc2v7kLbbvW96Z9Q+prqu/V+c91CGl9Rmr1tImp5Vp66xjzn/bbsW+s5VNTky9UeLqdDrPyUO4DIeDT3CojMU96PCvpRrXzmhhWuuxo2h/GyecPJMenUPNBXuCcWwAgIjfinyT/krJ/09ZAbaBPXSw0UYBz90vmXGnQKSnI+nO6uTiicjZpIBbvqpAqyH0m6ZXiTAd8XS7p+o4tr6fiKhYt1+ce2mL+cw8BkXTwa5mRW1p8Xvt8p2mI93W5WOhJICW0gtuqIOsOQ7t6pOFGulaxKCkNpUGhLzW5nnQ8yHMtjFSpKynI6UNEem0fWlYZ6bOOaVqWMW9RQW4JS+cl52+eWz82DpRRjjfCwGzE4JP2k9KqzqfpTutTKJdxuuZuFy1f2uzyQc7J2zBfy2tVkHV7TRWunAIU0f2injhbIj2XlkNUaFvKuWWSmlaQaysm1dio4sg9eKfGk5yCvI6pfWIt3WnfkK5WkDNypffl4hlFQS75PMf8pnpDX8NE1xd+o0zoPNZ0wFwe9P1pWa1T/QUMlnetkY5nKbm+vEQs35iuXN8dP3AzweSHy94K8tsZTKpARFbize9vL94x+6kt41ZTkFMLQG5gLj0lp409V8l6rdc+FmSYquyuz5zruie9rmRZ1ef6LHNWsiDnOqMWC3LLJJZhLMhxsMkpyOlTaNoYU4R+FuTagKuZl1wzrAW5q7MZ9qtyKbn20ScdOi2pj2ZJQU5n6IPv64ZRklssyH0U5FT+tYLseoaVxp2zIMfBIbUgp+WuP24QKSkOOQWxVr66Plry17LKTR8LcgyvtpZriVhOetm23ERZ/V/XsS7X2rJg6YdCSqT9QloO9xeuyzGSBTlRhmpsYCBLOq60bcVr0reu8ZrcQ1lKPDYnOVZUkJN8pDrRBsoKcq3vqinIabpz8rGO/g/3pVUyIlEm0rZM4b/QT0HOrTTStcZzl4W4jwU5HZNLFuQF4drNDw8ikg27qCCLyAUicgeAc+7AGIiIfKEjkbOZLgty10oUuUIch4uFtiDXFOTSZ4Nj2NBmQU4VwC4Lcm7A7asgj2JBzrpYdNw3jAV5VXK8xcWihGTSVLsmrfdS+sftYlFLW6RltZuSrHUN+n0U5FYXi5yCPCzT7WKhFeTWsEouFuuAdBWcLheLyERmkKi17Sn3Ux7I049SdJGzFkaGUZBjnKO4WEDdmlVSkCcY5CUni7r/7uNiEeumtkRoFy0WZP0aeti2tIm6ghzrZw5MeZOkLcgtfUXpLW/NxaLGGsoKci2MmotFSsnFoq8FufaGAvIKd0357qsgp217A93y2OVioc931Vm8NlWQ0zdqOReLLK3LvF3onHts92WznlEV5Jyw9HGx0H5mmgl1PJfGFgU5d39pkEk77Jxvcy4OmOpi0deCrMPK3VtTkGtllHvyLxHj6PJB1mktuVjULMgtr3RLLhatCvKoLhZd6YI2C0bJt7T24Adtlq6SjPd1sRjGVWTcLhYaYbIPcmtYJReL3L3x2Jpkm1Nwc+kr7afyWlOQh7Egl+QpprtLQc71wV15rMXX5WKh45ukVCuFLzfeagW5j4tFrMe0HKI8tMh66eFcU1tqrRXty67jSl0scm/c9ANqi4tFzkra5WKhSWV4NeUxq/bAlRvr+7pY9PVBztWP7h9yhoU0v2k7z8lGHwvyllSQSy4WqREh52KRpVVBfifwA+fclOU2nHPPd879LHPPbKQ2GC+snE/99XIO/q0W5C3pYtFnkp4mbcA5hauPBVm/Oh6HBbnUUeuwa3U9r3BN2lHpvJUsyKU21OJiAf1dLCaSa7osyJ2+vwlp/VKII6XU2eQsR5oWBbnFxaLkEqJdLIZhOl0s9P8+CnIp7ty965JzsbxzCm5Kra2m8jqPLaMgt/ogt7pYdDEOF4tILn4t031cLEoKch/5aXGxyC2f2BdtQc758Ob6HH1vTEfaV+TGntxEtE1MVZBLeU77idXJta2uZ31cLHIGmdpblBJT6qdgjd9SFuSai8Uwk/T6KsjNLhYlmiYtiMgXnXM3AKc7547Erwn6KuD/4DPw4dr9s4hhLci1+/r6IJeEoKYgx3TlGsx0TNIrxQHDWZD1RJWWSX0pLZP0wKdzTuEancd5kF3FoI+CXOokItOlIKeTGqoKcsVPsDTYxVdQXQN7SpcMldLRx8Ui3aZ+hpGcgjzsJL2tzsVi0oV+tr9+1VlyF8vJah8Xi3m0rWLR6mJReuAaps8axcVCv4HQFuRWF4uudjSsi0X6RiAybgU5Z4Hsi7Yga9K2lZPBmotFLszS26VWF4u0n6i5WHQpyGkcfXyQx+ViocnleRgFObuKRcZFq8XFomuSXh8FubSKxdAuFs2zekXkfOfcM/DreL4Dv3D2ycDXKrPPZxvDTtJLKz73arf0im0cq1joTqKUtj6T9Lp8kGuf+k1fV7bUfR8Lco4WH2Tw6Zyn9tNzkZLc1ybTlCx1pQ5mUyUeTbympfOHqZP0cnG0DGTpA12qqOtwW6yvw3TO0E9B9gHllf6Si4VWkIdRknOv6VLGtYpFa1g6H10W5Hg8tSCPqiC3+lem51otyF0W4q7BstXFogstPzVrl44v9UHO7afhtLpYxPqLeSpZkFtkveUt4LgUcRUDswAAEh1JREFU5Jz1Mm1bXRbkURTkYV0sagpyTZ5yq7qUyrtrFYvWfmsYI8Uwq1i0UnOxiHnq42LRlZb0gSXXd2sLcqeLRVOH4ZzbD/9Bgzfgv0CyEdgNOGcrUo6h24LcqiBrBDZbanLXpx1MaSmTmgU59yQUSV8795mkV/Pp1eR8Hvu6WNQmOnbR4oOcHk/rskVBrqWxZKlr9UHeRL4zKlmQWyY8lSzILR1qKidpODqevuHlGJuCrOgzSW9YC7IPvDDLObClLciluGtzKNIl4FpcLPr4bLf6ILdakEvXzU22JcZlQW5VkEsW5C5XpWEtyKlveXq+hdTiNoXkLdt0WZBrLhb6mmEVZMfUsm9VkPW3BtL7ivIUyi3NT7OLhYhsDG9++tBVP337wL4uFrn0dLX36fRBzulN6xi8Teh0sWj1y1sEPAR4mog8E//ll1/gJ+8d1RjGlqbm75VjB9qXxOqayVqapFdzsah1jjXLac3FYlgf5NKrIX1Pnw+FjNuC3KIg1yw8pbTnnuTTNOjroN5JdL0+gulRkFsUAR2frv9Y931dLIa1IPeZpJeG0eJiMeokvU4jQofyPOXy5H+8t48FueRi0WJBzrkPwegKcquLRasFuXRdTGfLEoppnONysdDHc/Hpcqi2o8TA1EdBju0mXRs/5+tbYl6y7WKUSXq5/T4uFn19kHX/OY+pvvitCvJayhbkLnlK89PHxQLG86EQTa59dumAuTBLHwpJqblY5MaZLheLLlo/FBItyGNbxeIYEXmFiFwCvhGKyNuA9wPnOeee2RjOluR1mWM3he1VwJLk3AT+QSDHVcn/uyrnwH/eNqIrYT35V4c3MbkjSImNe2XmXAwvCtzd6lyax0hqkb06Ob8i+a/zE9NyW9jemly7FLgzE19s7LqT0/mJ9+TSfC9M6vx1+i7Hp/824AoVvlZo78B/9jNyLf5TsSmxrmJ56MFHp2sVA1m6NhMOwM34z1CDz+dvMtfcr8JN6z0NdwX+U8S6Lq5hUP53qOPXFdKU+2rd7Uyu/5jne9SxtI5z3FE4HtOi5f4WBgphS9gxrWnb0XKg41+M/5w8DMrrBvJ1lUu3bkM1C8hdPY/DZLm7ToV/b9i2fGlO16+Wm9K9KxmsjxuvSR9Ul2XuW672dT92E1PldTlwJXnZ03lOy/M+pvY391P+ouAN6poaWlZi27+eqWWU6wc08d5bGMjPNeF/KT6tVOi+ULfdlPVMVuKuYSATmpvDNrbZUjl05UuH1eoiVOpXIqXxZgO+TcLkcor7sU5SOYDBuLaOqeNUOs6Al0GYXD8TKo5YB7l7wX/OWHM/k8tH33cdg7q+ganEtN/FYJyCqeVUUpBjm6z1JzruddSV6diGdZ+7OIlb18EK8v2fbk81rqIsn7EMrlXpyeUzp3vEbayLW5JrY3gbYYoB4wHgcOAI8vI2Cde+1nchAOeeDpwqIvuOFNCIOOcuEpHj1f/H4gUs+vLMw39LfqNzbkf8E8QO+IbzkPD/CmBvYIOILHfO7RnvA/YWkaXOuX3xFbNvuHejiKwKcT4I3+jvx39kZa2I3BOs7AvwgrwS/3305fgKXA+sFpG1YQLkDSKyPoS3D/4hZhXwUHzjPQQvXJtE5E7n3HzgUBHZrAA65w4J990Zrr83pGsusHtMv4hcGa5fACwUkXtVGIfhld398Z3tgcB6EbkplMtKYFfgniiAzrkHh7juA/aJYYnIsnD+CGCxiKxT8ewrIsucc7sAe+KFNtbPRNi/AThERK4N9+wIHCAii5xzOzHwL40+yLuJyM0hvlWh/jeIyF3q/rkisjLU5+Z0hv93A7uIyArn3MGhri8NsrE3vuHvCOwU8rpbiGNOyAP4xjoRzsWlguYADw5pQkRuDK/hdgvleUi4dj6+49qLAXcSPncuIqucc7szmGG9S7hnt5Cee0LcO8SyD/mO6VwY5HvfkKb45D4Rym8ixL9fyM/VoT53D9evCNfF/O+Of0A5OKRpWSinFXj53kXJwF54Gdk3pPs6bUVzzh0adleH/MyNchrO7yciS8P+ziGeGOc+oQ73AuaLyJLQPg4P5Xe/qo+FSu42ATuG9rR7KI9DgNtE5O4oo6ouYjrvDGV8ZyjL9fh2sjiUzVpVTnPxdbw2XLM8lN16fNu+AXgU8GuVxv3xCrwL5bVjSOuNIrL5AVDJ6GVxDeSQHhf6rP3C9nB8W94lkYu9gbtD37gvvl+cEJFF4fzhwO0isto5twfwgIisC653e+Lby9KQPhfyK6rOo4zPDWW+d4hjI3C/iNwXwgI/wN+Fl329XFO0JN0F7KXa6uZshHujPN8LHBbSdi+DN4TzROQ+lffdGbQfAe6L/UQ4vxA4NNTD2nDtA6E+D8Q/LOyIb3NHhnJaEdImwPLgfqfHjd3w/fHqIDub+0Xn3MPxfce8NK0hPXNCem4j9L/4wf62cP0y59xBoVzvCfccGspnJV7e1uNXbVoZ6moNgzYS+7DVIYxYzmuBNSIySZkOY9QOIU8348e53UL6l+P7jeWh3mLZPQy4RUTuDWPj1aGMHKENJ3HEMWIBflzdKfT9uv3vjG/f9wU5nRfimwjXrA9ltQrfrm7QcxlCHuPk0J2AB+FlZy2T20asw53x4/C8UJb3hDF8T3zfcnv4fsQeDAxgTkTuD3W4l4jcqeNXbWNe6Lt2CnEtDnUuIX17MFmm14VyviMc2zGcF91O1L6ENO8Q0rZ7qNt7VVnE6+fi9RVC3vcAVoRzC0N9HxiOxe9mHBrSea9K297h/nX4thPLdEe8zO2Y1nsIa58QxwMhzXvh5WxhiGMvvHztqOp+Aq8DLE/77iBjj8a3h8tC3u7MxQ1jUJBDpEdqBW0mSBVkwzAMwzAMwxiGYdcGncRMK8eGYRiGYRiGMS7GoiAbhmEYhmEYxraCKciGYRiGYRiGoTAF2TAMwzAMwzAUpiAbhmEYhmEYhsIUZMMwDMMwDMNQmIJsGIZhGIZhGApTkA3DMAzDMAxDYQqyYRiGYRiGYShMQTYMwzAMwzAMhSnIhmEYhmEYhqEwBdkwDMMwDMMwFKYgG4ZhGIZhGIbCFGTDMAzDMAzDUJiCbBiGYRiGYRgKU5ANwzAMwzAMQ2EKsmEYhmEYhmEoTEE2DMMwDMMwDIUpyIZhGIZhGIahMAXZMAzDMAzDMBSzTkF2zp3inLvaOfdr59w3nHO7z3SaDMMwDMMwjO2HWacgA2cDjxSRY4BrgXfPcHoMwzAMwzCM7YhZpyCLyA9EZEP4ewFw0EymxzAMwzAMw9i+mHUKcsLrgDNLJ51zb3DOXeScuwhYuOWSZRiGYRiGYWyrOBHZ8pE690Ng/8yp94jIt8I17wGOB14kM5FIwzAMwzAMY7tkRhTkLpxzrwXeCDxNRFbNdHoMwzAMwzCM7YeJmU5AinPuWcA7gSebcmwYhmEYhmFsaWadBdk5dz2wAFgeDl0gIm+cwSQZhmEYhmEY2xGzTkEeJ865y4E1M52OrZy9gbtmOhFbOVaG48HKcXSsDMeDlePoWBmOByvH0blLRJ6VHpx1LhZjZo2IHD/Tidiacc5dZGU4GlaG48HKcXSsDMeDlePoWBmOByvH6WO2L/NmGIZhGIZhGFsUU5ANwzAMwzAMQ7GtK8ifmukEbANYGY6OleF4sHIcHSvD8WDlODpWhuPBynGa2KYn6RmGYRiGYRhGX7Z1C7JhGIZhGIZh9MIUZMMwDMMwDMNQbJMKsnPuWc65a5xz1zvn3jXT6ZmtOOcOds6d45y7yjl3hXPuLeH4yc6525xzl4bfc9Q97w7leo1z7pkzl/rZhXNusXPuN6G8LgrH9nTOne2cuy5s9wjHnXPuY6Ecf+2cO25mUz/zOOeOVPJ2qXPuPufcW00Wu3HOfdo5tyys+x6P9ZY959xrw/XXOedeOxN5mSkKZXiKc+7qUE7fcM7tHo4f4pxbrWTy39Q9jw39wPWhnN1M5GemKJRj7za8PY/hhTL8iiq/xc65S8Nxk8XpRES2qR8wF1gEHAbMBy4DjprpdM3GH3AAcFzY3wW4FjgKOBn4y8z1R4XyXAAcGsp57kznYzb8gMXA3smxDwDvCvvvAt4f9p8DnAk44AnAhTOd/tn0C234DuAhJotN5XUCcBxwuTrWS/aAPYEbwnaPsL/HTOdthsvwJGAi7L9fleEh+roknF8ATwzleybw7JnO2ywox15teHsfw3NlmJz/IPA3Yd9kcRp/26IF+beA60XkBhFZB3wZeMEMp2lWIiJLROTisL8SuAo4sHLLC4Avi8haEbkRuB5f3kaeFwCfDfufBV6ojn9OPBcAuzvnDpiJBM5SngYsEpGbKteYLAZE5MfAiuRwX9l7JnC2iKwQkbuBs4EpX5baVsmVoYj8QEQ2hL8XAAfVwgjluKuInC9eQ/kcg3LfLijIYolSG96ux/BaGQYr8MuAL9XCMFkcD9uignwgcIv6fyt1pc/Av6oBHgNcGA79WXi1+On4ehYr2xoC/MA59yvn3BvCsf1EZAn4hxFg33DcyrHOy5k8AJgs9qev7Fl51nkd3goXOdQ5d4lz7jzn3O+EYwfiyy1iZTigTxs2WSzzO8BSEblOHTNZnCa2RQU552dja9lVcM7tDJwOvFVE7gM+CRwOHAsswb/SASvbGk8SkeOAZwNvds6dULnWyrGAc24+8Hzgq+GQyeJ4KZWblWcB59x7gA3AF8OhJcCDReQxwNuBU51zu2JlWKJvG7ZyLPMKJhsPTBankW1RQb4VOFj9Pwi4fYbSMutxzs3DK8dfFJGvA4jIUhHZKCKbgP9g8OrayraAiNwetsuAb+DLbGl0nQjbZeFyK8cyzwYuFpGlYLI4An1lz8ozQ5is+FzgleFVNcElYHnY/xXeX/YIfBlqNwwrQ4ZqwyaLGZxzE8CLgK/EYyaL08u2qCD/EniYc+7QYI16OfDtGU7TrCT4M/0XcJWIfEgd1/6wvwfE2bTfBl7unFvgnDsUeBh+IsB2jXNuJ+fcLnEfP7nncnx5xdUAXgt8K+x/G3hNWFHgCcC98XW4MdlCYrI4NH1l7yzgJOfcHuEV+Enh2HaLc+5ZwDuB54vIKnV8H+fc3LB/GF72bgjluNI594TQt76GQblvtwzRhm0Mz/N04GoR2ew6YbI4vUzMdALGjYhscM79Gb5znwt8WkSumOFkzVaeBLwa+E1cNgb4v8ArnHPH4l/JLAb+FEBErnDOnQZciX/l+GYR2bjFUz372A/4RlhFZwI4VUS+75z7JXCac+71wM3AS8P1Z+BXE7geWAX80ZZP8uzDObcj8AyCvAU+YLJYxzn3JeBEYG/n3K3A3wL/TA/ZE5EVzrm/xysnAO8VkdbJVls9hTJ8N36FhbND275ARN6IX2Xgvc65DcBG4I2qrN4E/DewA95nWfstb/MUyvHEvm14ex7Dc2UoIv/F1LkZYLI4rdinpg3DMAzDMAxDsS26WBiGYRiGYRjG0JiCbBiGYRiGYRgKU5ANwzAMwzAMQ2EKsmEYhmEYhmEoTEE2DMMwDMMwDIUpyIZhGNsAzrkHO+fuj+uiGoZhGMNjCrJhGMZWinNusXPu6QAicrOI7Ly9rgdtGIYxTkxBNgzDMAzDMAyFKciGYRhbIc65zwMPBr4TXCve4ZwT59xEOH+uc+4fnHM/D+e/45zbyzn3Refcfc65XzrnDlHhPdw5d7ZzboVz7hrn3MtmJmeGYRgzjynIhmEYWyEi8mr8Z6SfJyI7A6dlLns5/nPyBwKHA+cDnwH2BK7CfwoY59xOwNnAqcC+wCuAf3XOHT3N2TAMw5iVmIJsGIax7fIZEVkkIvcCZwKLROSHIrIB+CrwmHDdc4HFIvIZEdkgIhcDpwMvmZlkG4ZhzCwTM50AwzAMY9pYqvZXZ/7vHPYfAjzeOXePOj8BfH56k2cYhjE7MQXZMAxj60XGFM4twHki8owxhWcYhrFVYy4WhmEYWy9LgcPGEM53gSOcc692zs0Lv8c55x4xhrANwzC2OkxBNgzD2Hp5H/BXwTViaH9hEVkJnISf1Hc7cAfwfmDBOBJpGIaxteFExvWGzjAMwzAMwzC2fsyCbBiGYRiGYRgKU5ANwzAMwzAMQ2EKsmEYhmEYhmEoTEE2DMMwDMMwDIUpyIZhGIZhGIahMAXZMAzDMAzDMBSmIBuGYRiGYRiGwhRkwzAMwzAMw1D8f0fvmKoyzDKhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
                          " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "np.random.seed(1)\n", "data = np.random.randn(2000, 3)\n", @@ -1282,7 +1259,7 @@ " data[t, 2] += 0.3*data[t-2, 1]**2\n", "data = pp.quantile_bin_array(data, bins=4)\n", "dataframe = pp.DataFrame(data, var_names=var_names)\n", - "tp.plot_timeseries(dataframe, figsize=(10,4))" + "tp.plot_timeseries(dataframe, figsize=(10,4)); plt.show()" ] }, { @@ -1294,19 +1271,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ - "cmi_symb = CMIsymb(significance='shuffle_test', n_symbs=None)\n", - "pcmci_cmi_symb = PCMCI(\n", - " dataframe=dataframe, \n", - " cond_ind_test=cmi_symb)\n", - "results = pcmci_cmi_symb.run_pcmci(tau_max=2, pc_alpha=0.2)\n", - "pcmci_cmi_symb.print_significant_links(\n", - " p_matrix = results['p_matrix'], \n", - " val_matrix = results['val_matrix'],\n", - " alpha_level = 0.01)" + "# cmi_symb = CMIsymb(significance='shuffle_test', n_symbs=None)\n", + "# pcmci_cmi_symb = PCMCI(\n", + "# dataframe=dataframe, \n", + "# cond_ind_test=cmi_symb)\n", + "# results = pcmci_cmi_symb.run_pcmci(tau_max=2, pc_alpha=0.2)\n", + "# pcmci_cmi_symb.print_significant_links(\n", + "# p_matrix = results['p_matrix'], \n", + "# val_matrix = results['val_matrix'],\n", + "# alpha_level = 0.01)" ] }, { @@ -1317,14 +1294,28 @@ "source": [ "## Significant links at alpha = 0.01:\n", "\n", - " Variable $X^0$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.040\n", + "# Variable $X^0$ has 1 link(s):\n", + "# ($X^1$ -1): pval = 0.00000 | val = 0.040\n", "\n", - " Variable $X^1$ has 0 link(s):\n", + "# Variable $X^1$ has 0 link(s):\n", "\n", - " Variable $X^2$ has 1 link(s):\n", - " ($X^1$ -2): pval = 0.00000 | val = 0.065" + "# Variable $X^2$ has 1 link(s):\n", + "# ($X^1$ -2): pval = 0.00000 | val = 0.065" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/tutorials/tigramite_tutorial_causal_effects_mediation.ipynb b/tutorials/tigramite_tutorial_causal_effects_mediation.ipynb index f22c8bc2..8f8f097b 100644 --- a/tutorials/tigramite_tutorial_causal_effects_mediation.ipynb +++ b/tutorials/tigramite_tutorial_causal_effects_mediation.ipynb @@ -6,13 +6,15 @@ "source": [ "# Causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI method and create high-quality plots of the results. \n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results. \n", "\n", "PCMCI is described here:\n", "J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, \n", "Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019) \n", "https://advances.sciencemag.org/content/5/11/eaau4996\n", "\n", + "For further versions of PCMCI (e.g., PCMCI+, LPCMCI, etc.), see the corresponding tutorials.\n", + "\n", "This tutorial explains the Mediation class. See the following paper for theoretical background:\n", "Runge, Jakob, Vladimir Petoukhov, Jonathan F. Donges, Jaroslav Hlinka, Nikola Jajcay, Martin Vejmelka, David Hartman, Norbert Marwan, Milan Paluš, and Jürgen Kurths. 2015. “Identifying Causal Gateways and Mediators in Complex Spatio-Temporal Systems.” Nature Communications 6: 8502. https://doi.org/10.1038/ncomms9502.\n", "\n", @@ -170,7 +172,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEgCAYAAABxQp66AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2debwbVfn/309u0n2j0BXKKjsFAg2URWUn0BqoQBUVQVFAEP0qfEXUr18UF+AHKMoXUFFUQFnUQigaQWSRpRA00FI2Zb1Q2lJKW7onN+f3xzmXzp2b3N7eZDLJ3Of9es0rmTNnZj5PMjPPnO05YoxBURRFUWohFrYARVEUpfVRZ6IoiqLUjDoTRVEUpWbUmSiKoig1o85EURRFqRl1JoqiKErNqDNRFEVRakadiaIoilIzkXEmIrKViHyshv1fFZF5IvKUiDxZT231plZb3THaRKQgIrPrpSsIarFVRAaJyBMi8rSIzBeR79RbXz2p0dZJInK/iDznbP1yvfXVizrcq78SkcUi8kw9dYVFPe7nZiAyzgQ4HNinxmMcaozZ2xgzpR6CAqQetn4ZeK4OWoKmFlvXAYcZY/YC9gbSIjK1bsrqTy22loDzjDG7AlOBc0Rkt7opqy+1Xr+/BtL1kdIU1ON+Dp1IOBMRORi4EjjRlSy2C1tTUNTDVhHZCpgGXF9vffWkVluNZaVbTbilKeMH1cHWt4wx/3Lf38O+KGxZf6W1UY/r1xjzELC07uJCIErPrkg4E2PMw0AeOM6VLF7py2GAe0TknyJyRn0V1o862fpj4GtAua7i6kw9bHXVeU8Bi4F7jTGP11tnPajT/wqAiGwLJIGms7WedkaBKP0e8bAF1JGdgRe8CSLyN2B8hbzfNMbc6Us7yBizQETGAveKyPPuDagZ6bOtIjIdWGyM+aeIHBKoyvpQ0/9qjOkA9haRUcAsEdnDGNOsde21XsOIyDDgj8B/GWNWBKKydmq2M2J0+z1akUg4ExHZHFhujCl6040xR/T2GMaYBe5zsYjMAvYDms6Z1MHWg4CMiBwLDAJGiMhNxphP1VlqzdTjf/Xss0xEHsDWtTedM6mHrSKSwDqSm40xf6qzxLpQz/80ClT7PVqRSFRzAdsBC/q6s4gMFZHhnd+Bo2jCB46jJluNMRcaY7YyxmwLfBz4ezM6Eket/+sYVyJBRAYDRwDP10lbvanVVgF+CTxnjLmybqrqT012RpDI/B5RcSbPA1uIyDMicmAf9h8HPCwiTwNPAHcbY3J1VVg/arW1lajV1gnA/SIyF1svfa8xplm7Qtdq60HAKcBhriH3KVf6bDZqvn5F5PfAY8DOIvKGiJxeV4WNJTL3s+jkWIqiKEqtRKVkoiiKooSIOhNFURSlZtSZKIqiKDWjzkRRFEWpGXUmiqIoSs2oM1EURVFqRp2JoiiKUjPqTBRFUZSaUWeiKIqi1Iw6E0VRFKVm1JkoiqIoNaPORFEURakZdSaKoihKzagzURRFUWpGnYmiKIpSM+pMFEVRlJpRZ6IoiqLUjDoTRVEUpWbUmSiKoig1o85EURRFqRl1JoqiKErNqDNRFEVRakadiaIoilIz6kwURVGUmlFnoiiKotSMOhNFURSlZtSZKIqiKDWjzkRpWmaN3/3wWeN3l7B1NIJZ43c/PGwNilILYowJW4PSxMwav/tgYHdgc2AzYJT79H73pwEs6s0yY+H8dVXOGwPeBv4AnDNj4fxSAOb5zzkc2A0YTXUb/bYW6Z2ti2csnF+sct7RwBLg28D3Zyycrzel0nKoM1Hex5UCtgOmepa9gUSAp30XmA/kPctLwGTgaZfnz8DHZiycv7JeJ3XOamc22HkA1mkGWVpfgrXJa+sbQAa4w+W5Hji7muNRlGZFnUk/Ztb43YcBKTY8TKcCY0IVZVmGfZvf2ZP2L2DajIXzF/blgO7tfz822Lk/MLJGnfVgEbAa68Q7yQEzZyyc/144khRl0+k3zqT83tJJ5XWrZmLMWEQWxwYOvS02fHR72LqCoJqt7m38QOAk4BBgD1qr3ewV4NAZC+e/1pnQg60J4DDgROCDdHVMrcCTwFEzFs5/F/T6VVubn/7gTNpKS9ovpbTuLIwZ+n6qyCriA6+LbzHpAqAjPHl1pZutplxm6dwX1vzn17OeW/zgE+OBiX047kvAy9gqqWXu0/vdnxYDxm1kGQ+MBdo2UcurWIfS7re1XOpgyRNz17702zv/veTxp7bEtn1sCgZ4Hni9B1v9dg/sha3jsCW+TXXc/xy67dZHHzb75xf21+sXUFtbhFCdiYh8AZhsjDnbrX8P2MYYc0q9zlFa0n45xbXnVc2QGHRFfItJ59frfGHit7Vj7TruP+Fc1ixYvCmHWQk8Dsxxy+MzFs5/u75KLa6kNAmYgq1um+KWjVU/vfbBW666Z9TO23y+M2HNwrd58OSvUly2STVDS9lg52NAfsbC+cs35QC9Zdb43duA7dlgZwrYBxjS036DJ4xd9KHfXzFuwMjhlTNE+Prthtra1ITtTIYAL2AbWw8GLgYONMasqcfxy+8tnVRetfS5Lp6/u4hVsWGjd4kNG/1GPc4ZFtVsffzci1n88D972vU57IO086H67IyF80N7I3IO5hvYa6Eqg8ePMQf+8nsyZOI4AIwxPHDCuax8perf2AHMZYOdc4B/h9lzatb43ePAtcDneso3ctftmXrtd6joUCJ+/XZBbW1q4mGe3BizWkR+D3wfOAY4sl6OBMDVRVb/w6yIoeW1q2bGho2+sl7nDYNqtk7KHEYi3sHCOc/SsXY9Eo+vM6XSH4HbgQdmLJy/rPFqqzNj4fzyrPG771Zh0xLgP8BL4w6dOnbCofsf2bFuQ4cnEWFS5jBWzp/PG/cXMB1lYgMHrC6vW38ztnvxIzMWzl/VGCt6x4yF80uzxu++R4VNbwEvjZq886BxB+8zZcik8ZRWreniTIwpw+oVMGRkpK/fLkT8Xu1CC9oaqjNx/Ar7dnycMealuh7ZmLG9zDeurucNgyq2jtt/NybsOpq1y1axaoVh5N57/9/gHXarXrwOGdc9OQU8TNeqtvff0Epvv34ppXVH+vfd+uj9SByxKzt+4kjWlgYxKrn3NQMn7fjfDRO/icwav/tQYEfgbzg78VQrOjunVNx5+duwcimsXoHZfNL2jdIcGHqvVsrXUrY2gzP5NnZwWv21iPSusUBkUd3P3Wgq2GrKHcRWLgFg0KihDBoFrH1712I+25ZIZZq5cW+3HsdZVLK1tJ5E2Q5DGTJmJENEYNXibYr55ySRyjRrL5O1wLiq1YpVrl+zbrV1JADrVsFbL5xWXPD8PYlUJhuU0MDp5/dqlXwtZWvYbSbnAQcBPwG+Y4z5cD2PH9W6yUpUstUsW7ThodOVR4BTEqnMKw0TWEcq2vrOG7CmYuP7ncDnE6lMIJ0IgqSincbA4lehuLbSLj8HvppIZZqqOq839Pd7tRstaGtoYwxE5DDgM8CpxpgHgBEisnc9zxEbPrqd+MDreswUH3hdK/1h1aho64gxMHRUpewHAf8s5rNHN0Jbvalo66jxMKhij6fjsLbu2wht9aSSnSICm28JAwZX2uUM4LFiPtty1V79/l7104K2hlIyEZGtgQeAacaY51zaacAhxpjT6ny6yPXn7oGKtpo1761l6QKDKfufQGVsz6nLmrgqqBrdx9QYA6uXr+PdhTEw/hAw64AzEqnMbxsvtSYq/6ewimWLCqxcOpXuVcTvAicnUpm/NlRp7fT7e7WVbe0PgxYBKK9culV57aqZGDMOkUWxQUNvazXP31sq2drx3MNFbGeHYyvscjvw2UQqU7fYV42iiq2DgJuwIVP8/BQ4L5HKtFTsq2rXbzGfnQLcDOzk34UWfVHo7/dqq9rab5yJAsV8VoDzgUvoXsX5DDAjkcr8p+HCAqCYzyaAS4GvVNj8IDAzkcps0mjOZqWYzw7FvijMrLC5ZV8UlNZCnUk/pJjPHgncig2j7mUZtnok13hVwVDMZz8F/AIY5Nv0BtZ5Ptl4VfXHvSj8N/BDKr8oHJ9IZerb9V5RPKgz6ae4RtpZwJ6+TQb4JnBJq1WPVKOYz+4D/AnYxrdpHXBmIpX5TeNVBUMxnz0KuIV+8KKgNBfqTPoxrnrkF8DJFTb/ETgtKtUjxXx2C2xp7LAKm1uyHaUa/elFQWke1Jn0c1z1yFeBy6hcPZJOpDJvNlxYABTz2Ti2HeWrFTY/AByXSGVWNFRUQLgXheuBj1fYfAtwaiKVWd9YVUqUUWeiAFDMZ4/APmQ29216BTgikcq83HhVwVDMZz+BfdD6u0o/iXWe7zReVf3ZyIvCX4ATEqlM3WLhKf0bdSbK+xTz2W2x1SP+waMLgCMTqcyzDRcVEMV8Nom11d+O8izW1gWNVxUMPbwoPAhkolIaU8JFnYnShWI+OwT4HXbkuJd3gKMTqUyP8exbCdeOchd2Gl8vL2NLYy0ZbqYSxXx2O+Cv2MCSXiJVGlPCo5WmbFUaQCKVWY2d1vdm36bNgb8X89kPNl5VMCRSmSXAkcDffZu2B/5RzGd3bbyqYHCO8YPAPN+mKcCDxXx2QuNVKVFCnYnSDder6dOAP37QCOCvrRrTqxKut9o0wB9xd0vgIdetOBIkUplFwCHYUPdedsc6z20brUmJDupMlIokUpkycDa295OXwcBdxXz2hMarCoZEKrMWOBFbvedlC+D+Yj57cONVBUMilVmKLY3d79u0A/BwMZ/dpfGqlCigbSbKRinmsxcCP/All7FhOqI04C8GXAOc6du0BjuC/J7GqwqGYj47CLgN+Ihv09vYtrFC41UprYyWTJSNkkhlfgh80ZccA35dzGdPD0FSILjS2BewXWm9dJbGjmm8qmBwpbETgN/7No3BlsaSjVeltDJaMlF6TTGfPRUbUND7ElLGvrXfFY6q+uPGZ1wIfN+3aTVwSCKVyTdeVTAU89k24Frg875Ni4ADotSjTQkWdSbKJlHMZz+KHbPgnS9kDXBYIpWZE46qYCjms+diZwH18jZwYFSiK8P7zvMybERpL//G2rqk8aqUVkOdibLJFPPZ47Gxu7wllHeAgxKpzAvhqAqGKg7lZexDtqXm6O4J51CuoHvI/seBw1txKmClsWibibLJJFKZO4BzfMmbY7sNR2q8QiKV+Snde7RtD9xdzGeHhSApEFzgx/OxpU4v+wO3uLhmilIVdSZKn0ikMtcBF/uStwH+UsxnR4QgKUguBG70pe0L/MFNwhUJXAeE0+g+iHM6cJ0rvShKRdSZKLXwv8AvfWl7AX8q5rMDQtATCO6t/XTA3zX4aOD6KD1kE6nMOmAG8LRv0+nARQ0XpLQM6kyUPuMesmcBd/s2HY7tNhyZ68tFBTgR8Mcm+zTdx+C0NC7w4zHAa75N3y7ms/4xOIoCqDNRaiSRypSAjwFP+DadTPfxGi1NIpV5Dxt6xR+O/+uuoT4yJFKZt7Alr6W+TdcU81l/EFBF0d5cSn0o5rNjgEfoHpX2lEQqc1MIkgKjmM/uCDyKDbfSSRnbPfrBcFQFQzGfPQC4j65zv6wC9o1azz2lNtSZKHXDhTl/DBjnSV4FTEmkMs+HoyoYivnsftj4VkM8yW8BeydSmcXhqAqGYj6bwc794q3JmAfsr5NrKZ1oNZdSN9xo6WOBdZ7kocDtbp6UyJBIZZ7AVu95mQDcFKW2IoBEKpMF/NV4k4GrQpCjNCmRuuiV8EmkMv8CvuRL3oMIPngSqcxs4Ie+5COxXYmjxrV0H4Py+WI++8kwxCjNhzoTJQh+QfcAgp8r5rOfCkNMwHwbeNiX9t1iPvvhMMQEheu5dyY2xIqXnxXz2Z1DkKQ0GdpmogRCMZ8dju1G622Qj2r7yVZAga4N8guAZATbT/YG5gADPcnafqJoyUQJBteN9iT6R/vJG8ApvuSJwI0RbD95CviyL1nbTxR1JkpwJFKZp+k/7Sc5urefHAV8PQQ5QfNztP1E8aHORAma/t5+cnExn/1QGGKCQttPlEpom4kSOFXaT1YCuyRSmTfDURUMVdpPXgd2T6QyK8NRFQxV2k/y2Em1OsJRpYSFlkyUwKnSfjKMaFZ3VWo/2RobFDNSVGk/SWHjtSn9DHUmSkNw7Sdf8yWfUMxnp4WhJ0hc+8mPfMlfKeaze4WhJ2B+DtzhS/tBMZ+dGIYYJTzUmSiN5P+AJ/1pxXx2aBhiAubbQLtnvQ07J0ik7jnXfnIuttqykxF0d6ZKxInUha00N64e/UxsUMROtsE+eCOFax/5oi95KnBGCHICxVXtfcuXPLOYzx4Thh4lHLQBXmk4xXz2R8B/eZI6gH0SqczckCQFRjGfnQUc70laju14sDAkSYFQzGfbsNMQ7ONJfhXb8WB1KKKUhqIlEyUMvg284Vlvw3YrjeL1+CW6VgGNJIJVQFVKndsC/xOKIKXhRPHmVZoc17vLP5hxKvD5EOQESiKVaad7Nd7Hi/nsUWHoCZJEKvMktl3My/nFfHaPMPQojUWdiRIWdwBZX9olxXx2XKXMLc5Pgad8adcW89nBlTK3ON/CxiXrJE4EOx4o3dE/WAkFTy+gVZ7kUcCV4SgKDje18ZmAt4Fye+Cb4SgKDjd/vL/UeRDw2RDkKA1EnYkSGolU5nW6D+b7RDGfTYahJ0jcZFrX+JLPK+azE8LQEzB/Au72pX03oiUxxaHORAmbqwB/L66LQtDRCL4JeHtxDQIuCElLYLhS5xcBb0j6CdjSmRJR1JkooeKqgPwzE2aK+eyUMPQESSKVWQ58z5d8VjGf3TIMPUGSSGVepXtj/IURHaCqoM5EaQ7+AjzuS/tOGEIawPV07RY9kGhO8wtwGV3bxMYCXwhJixIw6kyU0HHVIv7us8cW89n9w9ATJIlUZh3dSyefL+azk8LQEySJVOZtbE82L18r5rPDwtCjBIs6E6VZuBd4xJcW1dLJDcBrnvUBwDdC0hI0l9N10OYY4JyQtCgBos5EaQqqlE6OLuazB4WhJ0gSqcx64GJf8unFfHbbEOQESiKVeQf4sS/5a8V8dkQYepTgUGeiNBP3Aw/60qJaOvkt8LJnPUEEx504rgRWeNZHY8cYKRFCnYnSNLjSiX/cyeHFfPbDYegJkkQqUwS+60v+TDGf3SEMPUGSSGXepftg1POL+ezIMPQowaDORGkqEqnMg8B9vuTvFvNZCUNPwNxM13nU2+geyj0q/BhY5lkfRdfI0UqLo85EaUb8pZMPAfuFISRI3BgbfzXeKVGcpdCNsbncl/xlHRUfHdSZKE1HIpV5BLjHlxzV0dO3AM971tuA00PSEjQ/AZZ61jcDTgxJi1Jn1JkozcpVvvWPF/PZzUJREiBuHpCrfclnFPPZeBh6gsRNPfArX/JZYWhR6o86E6VZ+Stdx2IMBk4JSUvQ3AR4ZyPcCojqlLc/960fWMxn9wxFiVJX1JkoTYl7Y/c/eM6KYkO8a0/4nS85km/siVTm38DffMlRrcLsV6gzUZqZXwElz/quwAdD0hI0P/OtHxPFQYwOv62naIiV1kedidK0JFKZhdgZGb1E9Y39SeCfniQhgtMYO+6kayj+4cDJIWlR6oQ6E6XZuc63fmIxnx0TipLg8dt6ejGfTYSiJEDcgM1f+pIj+ZLQn1BnojQ799N1YF8COC0cKYFzC13DjowDjgtJS9D8gq7TGO8TxTls+hPqTJSmJpHKlOlex35mMZ+N3LWbSGVWAjf6kiP5xp5IZV4D/uxLjqSt/YXI3ZBKJPkNsM6zvgNwREhagsbvOA8v5rM7haIkePzVep8o5rOjQlGi1Iw6E6XpSaQyS4A/+JIjOeYkkcrMAx71JX8qDC0N4C9Au2d9MPDRkLQoNaLORGkV/A22xxXz2UGhKAkev60zIzq+pgP4tS/5pBCkKHVAnYnSKjwELPKsDweODklL0MwCip71nYHJIWkJmlt960cU89nNQ1Gi1IQ6E6UlcG+x/qqumWFoCRo3/8e9vuSo2jofeNaTFAeOD0mOUgPqTJRW4jbfeqYzhHkxn922mM8OD0FTUPhtPamYz4pbdotYIEi/rTMBnK1RLZFFDnUmSivxCF1HTg8DflnMZwvAK9hR41HhTrpWde2EjVX2AvAPoCMMUQFxu2/98GI+ew3wOnBDCHqUPqDORGk1HvatnwzsDbQnUpkVFfK3KquBf/nSPgfsCMx3UxxHhdeANz3rbcAXsNGT54eiSNlkolRUViKKC59yCZABtqiSLRIPnWI+uyN2bvhjgRFVsj3TOEXBUcxnU9hpio8CqvXMi4St/QEtmSitwBLgHao7EojOQ+dlbHVdNUcC0bF1Pna2xZ66eEfF1sijJROl6UmkMqaYz14ADAXOrpKtYSWT2RMnC7Zr8ihsu8bb0xfMK/W810aP+V/AT6YvmNdRzGdPwQ7gy1TJ3khbY1jHNgpb9fbO9AXz+txeM3vi5IHA56YvmPd/iVRmdTGfnY7tubZflV0iUeLsD4gxUap6VaKMi8f1SyoHetw3kcr42xh6zeyJkwcBSex4jtHYN+bNsA9R72fnd2+p3mBLTos2srwFvDV9wbwuN93siZO3wo4Evx349PQF89a6AZlZ4MgKcjdPpDJLK6T31tZhwBTs/DCb0bOtI+nasaEMvN0LW9+cvmDe2xXOfRC23esq4DznPEdjA3r6Z1xcBoyOWPtQZFFnorQUxXy2Dfg9XUdKrwOGu9DmG8WVLLYBpnqWJDCgvmorsgTIe5YngcOAm932R4Djpi+Y904xnx2Cnb74YM/+LyVSmQ/09mSuZLEjXW3dk8ZUcb/JBhs7P88Cvu+2/wn41PQF89YU89mx2F5q3jhkf0ukMpWcqdKEqDNRWg731n4PG2ZdfDyRykytln/2xMlDsW/iU4ED3Oe4oHVuAuuAgZ71F4Bjpy+Y97J7a38UOwoe4NZEKvPxageaPXHyKGyVUaet+2NLGM3Cero67ceAzPQF85YU89nt3fpYt+2SRCpzYaMFKn2j3ziT8sKXJpVXvD2Tcnkssdji2Igxt8XG79C+8T1bj/5ga5eHbFviYRky8lGvrbMnTt4OW3o5EdgH2920nqzEVsMMxHYMqPcYl7eAQ6YvmPdiMZ/dDngC2ILEwPtlyMi7vf/p7ImTd8cO9PsosEeddYCdY2U5ts1qdADHfxY4bPqCeYtcD6+HgEEMGHKHDB72cBSv306idK+G5kxEZFfsfAY7GGPKIhIDcsBNxpjf1vFUbaUX51zKmvfOotwx9P3UWNsqBg+/Lr7T1AuIzgCwfmVr8dl/XMuqdz9HrE0k1saaxe/y1kNPr2//y5ylaxa+M74Px3wZ+9B+HXgX6yzerfB9+fQF896vUps9cXIc61DGbWT5APaB3Fveio8YdvgR2R+dblYtP5vSusG0xRGJ8V7726tf/sODT731t8dHAbv1wdbnsFVPCzZi6wpv54LZEycnsCWHajaOBcZjq9a8pa2N8eyg8WOPOOSW759nVi07h9L6QbQlEJHIXr9Ru1dDLZmIyF+Aa40xWRG5BBhqjDm3nucovTjnclYtO69qhqGjrojvNPX8ep4zLPqjrcaUAWHt28t48DM/2JRDrMI6jjlueXz6gnmLet6lNmZPnNyGra5KuWUKdsBl1YdufOjgVVOv/OLQYVuNxZTLIMK781/hiQuu3ZRTL2ODnZ22LuurHb3BOZ092GBnCtu5oWoJccDoke8cdNWXNh84egSm3AESs86kkwhev1UztKCtYTuTo4CvANcD/wUcZozpVSNqbygvfGlSedHLz3Xx/H5ibati43fYJTZu+zfqdd4wUFthzvlXs+y516rt9gK2Pr7zgTq/1u689WD2xMk/Bb7YU56Bmw0ndclZDNvKNiWYjjIPfvYHrF2yvFL2MnZshtfWF6cvmFeuq/A+MHvi5NnAtJ7yDJ00lv1+cCYDR1cYZhPx67cLLWhrqONMjDH3iMgVwA+BD9fTkQDYusge/jCAcsfQ8vLFM2Pjtr+ynuduNGorbHnUfoz/4F68fOt9rF+xmsHjRr+8ZuE7VwJ/mr5g3lshSO0NH/atLwCeBl6aeNTUSeOn7nrckAmbM3jMhjZ0aYux1TFTiQ8awL9v/Csd64pljLkHGzDxzukL5vW523BQuFLZwb7kV4B5wEtbHnPQtuOn7jJjyITNSQwfUvkgEb9+u2ZqPVubYdDio0DBGFP/m71cHrvxTEC53Ew9e/qG2srEQ5K0DUgwKb0/HeuKDBg34Q/xXQ78v0bL6y2zJ04egW3YvgJXipi+YN77b6Kl5x+9lDWVw41te9wHiQ8eyFZH7UeHabt96MEfqdrDq0nYEfgnXavaFndu7MnWLhTX7xKUwIYR0Xu1GZzJbgQVGTQWW7zxTEAsFmhdeUNQW2kbkLCfAwfQNnAArFt1UKmQGxJPplc3VF8vmb5g3go2dG/uTg//aXywbWaJDxlEHE4qFXLzgR/Gk+nQq+4qMX3BvOeBw6tm6O31u371qaVC7kngF/FkujW7okb0Xm2G2Fy7E1D8ndiIMbcRa1vVc6a2VbGRY/3zKbQcamsFyh0HAU+WCrm9gldVf3ptp72Pvws8WCrktg1WVTBsgq0DgJ8Bd5QKuZackTGq92qozkREJgHLjDErgzh+bPwO7Qwefl2PmQYPv66VGrmqobZWZVfgsVIh94kgNQXBJtoJcCDWeVYvATQpfbA1g7V176A0BUVU79X+MGgxcv25e0BtldgajFkPZmSFfa4ELmjWqqAqVP9P4wPuYf2ag4Exvn3KwNeAK1usKqjaf7qKeOJhiusOpvs4nTXA6fFk+veNFFoHInev9gdnAkB50ctblZcvnkm5PI5YbFFs5NjbWs3z95b+bmt5wYvLgR8Dn62wy9+Bj8WT6SWNVVob1f7TUiE3Dhv8slKX298Dn2vWNqNq9GDrDtgYZvtX2O0K4Ost9qIQqXu13zgTpf9RKuROA66j+6DA14AZ8WS60HBRAVAq5AS4EPge3cO6PI219ZWGCwuAUiE3AOs4Ko3NuQ/4eKu9KEQFdSZKpCkVcilsdNqtfJvWYN/af9d4VcFQKuSOAX6HDSHvZSm2NPa3xqsKho28KBwfT6afariofutyyRgAACAASURBVI46EyXyuKqg24APVdj8I+BrrVY9Uo1SIfcB4A5sL0kvZeAC4IoWa0epintRmAVs6dsUuReFVkCdidIvKBVyCWz1SKXYb/dj39y7TebUipQKuWHYsVsnVth8C/ZB25tuuE1Pf3pRaHbUmSj9ilIhdyp2nIK/euQV4Mh4Mv1S41XVH9eOcgHwA7q3o/wLSEfIefb0ovAX4MRW64TQiqgzUfodpUJuCrYdZZJv01tYhxKZecdLhVwa26vL347yHNbWNxuvKhh6eFH4BzA9nkz3Il6L0lfUmSj9klIhNxZbPeIPtPgO9q39ycarCgbXpfYOuk+c9QpwRDyZfrnxqoLBvSjMonuHiyeBY7SnV3A0QzgVRWk48WR6MXAkcKNv0+bA30uFXKU6+JbEVd0dAPh7c20H/KNUyPVlcq2mxL0ETMF2ifYyBRtuZmLjVfUP1Jko/ZZ4Ml0ETgOu8W0aDvzVdbWNBPFkeiXwEeBO36aJwEOlQm7fxqsKhngyvQg4FBud2MtuWOe5XeNVRR91Jkq/Jp5Ml7ED4C7xbRoE3Fkq5E5qvKpgiCfTa4GTgJt8mzpLY9UjGLcY8WT6XWzJ8+++TdsDD5cKuV0bryraaJuJojhKhdzXsRO1eSlju9IGM01CCJQKuRhwNfAF36Y12NHyf228qmAoFXKDgFuxgSG9LAGOjifT/2q8qmiiJRNFccST6UuAc3zJMeBXpULuyyFICgRXGjsHuNS3aTBwV6mQO6HxqoLBlcZOxEYG8LIFcH+pkPPP/qj0ES2ZKIqPUiH3KeDXQJtv05fjyfRPGq8oOEqF3IXYsSheysAJ8WT6jhAkBYIrjf0fcJZv02rg8Hgy7W9fUTYRdSaKUoFSIXc8tnpkgCfZYAMJttSkRRujVMidg6328rIW2234kRAkBYIbyHkJNjy/l3eAg+LJ9AuNVxUd1JkoShVKhdyR2PEZQzzJ67F17Q+EIiogSoXcp7EhWLxV3+8CB8eT6WfDUVV/PBGWv+/b9CpwYDyZfqvhoiKCOhNF6QE3gvwuIO5JXg58MJ5MzwtHVTCUCrnPAb/wJbcDB0RppDxAqZD7HvBNX/JTwId1pHzf0AZ4RemBeDKdAz7nSx4J5EqF3NYhSAqMeDJ9PfC/vuRJwF9KhZw/HEur8z/YkpiXvYE/uTlTlE1EnYmibIR4Mv0b4Bu+5IlYhzI6BElBcjHwc1/aZGBWqZDzx7xqWVwY/jOxgSC9HA7c4BrslU1AfzBF6R2XYHsDedkVyJYKucEh6AkE95A9B8j6Nh0C/DZKD1kXAeEkIO/b9Am6d5tWNoK2mShKLykVcm3YHl7+cRh3YMOcdzReVTCUCrkh2FheB/g2XQV8JSoTbAGUCrkxwKPAB3ybvhJPpn8cgqSWJDJvGYoSNM5ZfAob0tzL8UCkxp+4+T8+Ajzv2/Rl4LzGKwoON6/L0cBi36YflQq5mSFIakm0ZKIom0ipkNsM61D8U+Oe5tpXIkOpkNsGeAyY4Ek22DEo/rhXLY0LdvkAMMyTvBqYEk+mnwtFVAuhzkRR+kCpkJuEfch65x9fDaSiNC4DoFTI7QU8BIzwJC8C9o4n0wvDURUMpULuKOBuunYFnw/sp7M19oxWcylKH4gn0+3AsdiR4p0MAW4vFXJDw1EVDPFk+mlgJrZE0sk44CbXjhQZ4sn0PXSPz7Y78NMQ5LQU6kwUpY/Ek+m52PD1XnYjgg8eF0nYP2r8cLoP/IsCvwBu9qV91kUJUKqgzkRRauNXdJ8f5DNuPvKo8R3gQV/aRaVC7rAwxASF66l2FuCP1XWtzoNSHW0zUZQaKRVyw7BzjO/sSY5q+8lEbNiRMZ7kqLaf7Ak8jp0orRNtP6mClkwUpUbclLgn0T/aTxZgu0f3h/aTucC5vmRtP6mCOhNFqQMu6GN/aT+5h+5zoES1/eSXaPtJr1Bnoij1oz+1n1yE7S7cJa1UyB0agpbA0PaT3qNtJopSR6q0n6wAdnVVRJGhSvvJa8Du8WR6VTiqgqFK+8kc7KRa5XBUNRdaMlGUOlKl/WQE8KNwFAVHlfaTbYBvh6MoOKq0n0wFzghBTlOizkRR6oxrP/m6L3mmm2grUrj2E39csq+WCrnJYegJmF8Cd/rSLikVcuPDENNsqDNRlGC4GviXL+0aF403avwP4J2JMQ78LErh6uH99pNzAW8V3kjgynAUNReR+rMVpVlwEYbPBLz16dsB3wpHUXDEk+n3gC/5kg+g+wyVLY8Lo+OvxjvZxfTq16gzUZSAiCfTT9J9Qq3/LhVy/mjDUWAWcJcv7dJSITcuDDEB8xNsxwMv10RpkrS+oM5EUYLlW4C3F1ccuC7CVUDekeGjgCvCURQc8WS6hC11ejse7ED3qZ37FZG6oBWl2Ygn0yuwE0p5ORj4TAhyAiWeTL8G/K8v+ZOlQu6IMPQESTyZfgK41pd8QX8ee6LORFGC54/YOTK8XOami40aVwFzfWnXlAq5QZUytzjfALzxyBLYwYwSkp5QUWeiKAHjqoC+CKzxJI8GLgtHUXDEk+ki3auAdgQuCEdRcMST6eV0L3V+GDglBDmho85EURpAPJl+FRuCxMupUawWiSfTc4DrfMnnlwq5LcLQEzC3Azlf2ndLhdyAMMSEiToTRWkcPwK8IemF7m0MUeEbwNue9WHA+SFpCQxX6jwHWO9J3oYItoltDHUmitIgXBWQf4zCzFIht0cYeoIknkwvAy71JZ9bKuTGhqEnSOLJ9MvY2Rm9fKtUyA0MQ09YqDNRlMYyC3jasx7l0sm12ImzOhkC/HdIWoLmh8A6z/pWwOkhaQkFdSaK0kBchFm/8zixVMjtFYaeIHGzEf7Ql3xOFGNZxZPpN+neTvTNiPZiq4g6E0VpPFm6x+26KAQdjeDndB20OZgI9uxyXELXHnsT6UdRhdWZKEqDcY22/raT40uF3L5h6AmSeDK9hu6zMn7BzYUSKeLJ9ELgGl/yhREN7tkNdSaKEg5/Bp7wpV0Ugo5GcD3whmd9IHBhSFqC5jK6hpQZj52pMfKoM1GUEKhSOpleKuT2C0NPkMST6XXA93zJZ5QKuUlh6AmSeDK9GPipL/nrpUJuaBh6Gok6E0UJj3uAR31p3wlDSAO4ATulbycDiG5gxMuBlZ71MdixKJFGnYmihESV0km6VMjtFoaeIIkn0+uBi33JnykVcqPD0BMk8WR6CTZGmZcvlwq5eBh6GoU6E0UJl78Dj/jSzgxDSAP4LfCqZ30gcGo4UgLnSrrOyDgRmB6SloagzkRRQsSVTq72JX86ij2AXASAn/mSz4xilN14Mr0UuNmXHNWXBECdiaI0A7PoGsdqFDAzJC1BcwNQ9KzvjI20G0X8gxiPLhVy24eipAGoM1GUkHG9nX7lS45kd9J4Mr0I+JMvOaq2Fuja/VuAz4ckJ3DUmShKc/Bz3/r+pUIuGYqS4PG/sX80onPFQ3dbT49qeHp1JorSBLjIs/f4kqNax/4g8IJnPUF0Q7bfCiz3rI8BZoSkJVDUmShK8+B/i/1kqZAbHoqSAHGdDio1xEfueeSCXf7WlxzJar3I/XmK0sLMpmtQxGHAJ0PSEjS/oWvI9m2Bo8KREjh+x3lIqZDbJRQlAaLORFGaBNd19npf8lkR7jp7qy85ktV68WR6PvAPX3LkogmrM1GU5uJ6oOxZ3wuIXLwuh79aL1Mq5LYMRUnw+G09LWpznagzUZQmIp5MtwN3+5I/EYaWBjAHmOdZjxHd8TV/BN7xrG8GpEPSEgjqTBSl+bjBt35SRBunDd1tjaQzcWOJfudLjpStkbtAFSUC5OgadXYCcFBIWoLmD771qaVCbptQlATPbb71TKmQGxyKkgBQZ6IoTYabnTDrS47UW2wnrlrPH4b/xDC0NIBH6dpbbyhwTEha6o46E0VpTvxvsSeWCrm2UiE3slTInRyxcOa3+9ZnApQKubGlQu6kEPQEQjyZLlPd1q1LhdxHGq+qfqgzUZTm5K/Ae5718dhQ9W8Dl8eT6VIoqoLBX9W1X6mQewRYCHw5BD1BUqmq65/YicM+FoKeuqHORFGak62Bl3xp+2NDj8xvvJxgcGNotgDe8m06EBsYMUq2tmGfues9yYOBfdz3lrY1SkVlRWl5SoXcztiQ9Lv2kO2ZBskJlFIh9yFsqJGeGtyjYutM4CdATwEtW9pWLZkoShMRT6ZfAG7ZSLaWfuh4eBi4byN5omLrncBTG8nT0rZqyURRmo+LsT19vlZle6DVIXdP2lOwccE2w07U1fm5GljkliXT2ud29OHYw4ErgHOmtc8tlgq5M4AhwMer7BK0rTFgOF1tHYltr1qItXXptPa55aoHqX7sXbEDTr89rX3uulIh91HgL8CHKmRfjW03aVnEGBO2BkVRfLi2hJ8AX/RtKgMj4sn0qu57bZy7J+05ENgbmIqtStvMs3gdR9tGDlUGlrDBufiXN4GnprXPXeI7/9HYcTT3AidOa5+7olTIJbC9nI7znWNhPJme0Bc73bmGAvtibd2xgo2djmNjNTQdwOIKNnYu7VhbvaHmuXvSnmcB1wI3Ap+b1j53vYsCfS+2/cvLnHgyfUDfLG0O1JkoSpPiRr3fAHzak/xMPJme3Jv9XQljEvZh2rnsAwyss9SeeAV4Esi75Xg29NCaCxw7rX3um6VCbiA2jMzhnn3viifTmd6cxNn6ATbYeQCwJxt3ivXkBTbYmQfOA05w2+4DTpjWPnd5qZDbDHgI2MOz70/jyfSXGqi17qgzUZQmxs3KdzdwhEu6IZ5Mf7ZS3rsn7TmEDW/inQ/UPr/ZN4g3gGOmtc99plTIjcS2o3Q+ZL8dT6YvrrTT3ZP2HAmk2GDn/sDmDdBbC/OwzvONUiE3CRubbKLb9ul4Mn1jeNJqp984k/LClyaVV7w9k3J5LLHY4tiIMbfFxu/QHrauIFBbo2Wre8jOAXahbcA9DBpyT6edrg3iI9jBb2nqV+pYBbwLLHOfy7HtOOPcUs8H9zvA4dPa5z7tHrJPAONJDLqdAYMe99i6BXaWwpnAYdSvA9F7dLV1Bbb6q9PWUXU6D8DLwKHT2ue+Xirk9sI6z2EMGHI9iQHPt/L1G6ozEZEbAO881+OBAcaY0XU8TVvpxTmXsua9syh3DH0/Nda2isHDr4vvNPUCbJ1oFFBbo2ertXP1ii9gykMASmvWsTj/3LrXso+8vuLF17Zm0x3Iq1jnlMeG9/A+SN8Flk9rn7u+6t7A3ZP2TGCnoB3nW8Zi7+NdsdVMve3ks7RtyJAjj7jrx59g9YqzMeXBAOvfW82ix55Z9/rsR99a+eqCSWx6tdULWFv/iW3f6LTxfSc5rX1ujwNAXTvTWLf47R0PTMba21vn9sqA0Zsddujtl36R1SvOwZQ3hKJv4eu3aUomIrIddgKZs40x/rhEfab04pzLWbXsvKoZho66Ir7T1PPrdb4wUVs9RMTWSnYu/3c7c877aW8PsRrrNOa45fFp7XP9AwQD4e5Jew7CzscyBVsldQz2gVyR2MABa/e/5AuDRuywYUqThY/M5elLb+rtKZcDj7PB1iemtc99p+dd6sPdk/Ychn0xTrnlWGBEtfyJEUOXH3Dll0YOHrtZ5QwteP02hTMRkc2xQdCuNMb4p7jsM+WFL00qL3r5uS5vrn5ibati43fYJTZu+zfqdd4wUFt9RMDWanYaY3j03CtZ+fqiSru9in0peww3X8jG3rwbxd2T9rwfOKSnPIO2GMl+l57N4DH2IVsulrj/1IsprVxTKftz2GqiTufxfF+68AbB3ZP2fJWeB2MyfLsJpH5wFomhFQIHt+D1G/o4ExEZjJ37+rZ6OhIAW5fewwMHoNwxtLx88czYuO2vrOe5G43a6s/U+rZWs1NEmHj4FF68wc6hFR82eGlp5ZpfYOM+Faa1zw3/DdGHqyqa6klayIbJsV7a7b8+mRq793bnDNhsOCIbZimOJeJM+FCS9j/bwMIDRg1/a/2y964Bbp/WPveFxlnQe+6etOc2dHUkr2JLTM8CL+1+/qf3G7vXtl9KjBjaxdYutOD1G6ozEZE27DzQzxtj/qfuJyiXqxapffl6CnHQGqitlfK1tq092DnxkH1Yv+w9xh+8FyP22PX6xG4Hf72R0vrAJOyYi85SRLvX6ZWef3Q31qyovOPR+zNg5FDGH7Qnw3be8cb4Lgd+ryGK+85E4BI2VCsu9G4sPf/ontVs7UKLXb9hl0yuwQau+3wgR4/FFvcyX8X6gpZCba2Ur7Vt7cHOgZsNZ+fPTLcr8XjT2zmtfe5/gK9WzdCDrcO3m8Dw7SZ05msFWx/DVjNWJqLXb2ixuUTkf7F94k8yxgRSpxsbMeY2Ym09jxSOta2KjRzrDwvdcqit/kytb2t/sRPU1u6ZWs/WUJyJiGwLXITtq/6wiDzlllvreZ7Y+B3aGTz8uh4zDR5+XSs1clVDbfURAVv7i52gtnajBW1tit5cAdNfxiOA2hpFW/uLnaC2trSt/cGZAFBe9PJW5eWLZ1IujyMWWxQbOfa2VvP8vUVtjZ6t/cVOUFtb1dZ+40wURVGU4NDJsRRFUZSaUWeiKIqi1Iw6E0VRFKVm1JkoiqIoNaPORFEURamZHsOpDNz380ZibcTiA5C2NtriA7DrCfuZsOsS824b0GVbWzyOxIS2tljXz3gMiVE5XYS2uHRJHxCP0RYT2mLCQPd9QLzNfcZoE/sZ9+Tt9tkWIyZCok1oEyERE2Ix9ylCoi1Gm0CiLUZMsHna3LZYjLYYtMWEGEJbDMTl6czbdd0G5GsT7HpMENynMUi5BKYM5Q7ElN33EpTLbps3T8nm6egAU34/3ZSKUO7AFNdDuYwp+T6L6+32znydnx0dUCpiyh2UiyVMR/n9z45i8f31ckeZ8voSpmw/y+Uy5fXFDevv72foKHZQ7jCU19vPjmIHpsO4Y5Qpd5TpKJbtOdaXMWX36dbLxrC+bOh4/xPf54b0oqmUz36/zrxaJXJe86H3l95fUbq/tGSiKIqi1Iw6E0VRFKVm1JkoiqIoNaPORFEURakZdSaKoihKzagzURRFUWpGnYmiKIpSM+pMFEVRlJpRZ6IoiqLUjDoTRVEUpWbUmSiKoig1o85EURRFqRl1JoqiKErNqDNRFEVRakadiaIoilIz6kwURVGUmhFjTLAnEDnDGPPzQE/SS1RL8+qA5tLSKjTTb6ZamlcHBK+lESWTMxpwjt6iWrrTLDqgubS0Cs30m6mW7jSLDghYi1ZzKYqiKDWjzkRRFEWpmUY4k6aoL3Solu40iw5oLi2tQjP9ZqqlO82iAwLWEngDvKIoihJ9tJpLURRFqZlAnImIjBaRe0Xk3+5zsyr5LhOR+SLynIj8REQkDB0u7wgReVNErq7j+dMi8oKI/EdEvl5h+0ARudVtf1xEtq3XuTdViyffiSJiRGRKGDpEZGsRuV9ECiIyV0SODUJHK6P31/vH1PtrE3UEen8ZY+q+AJcBX3ffvw5cWiHPgcAjQJtbHgMOabQOT96rgN8BV9fp3G3AS8D2wADgaWA3X56zgevc948Dtwb0f2xUi8s3HHgImANMCUMHtl73C+77bsCrQfwmrbzo/aX3Vw2/SWD3V1DVXMcBv3HffwMcXyGPAQY5owcCCWBRCDoQkX2BccA9dTz3fsB/jDEvG2PWA7c4PdX0/QE4vN5vj5ugBeBi7ANibQAaeqvDACPc95HAgoC0tDJ6f+n91Vcdgd1fQTmTccaYtwDc51h/BmPMY8D9wFtu+asx5rlG6xCRGHAF8N91PveWQLtn/Q2XVjGPMaYELAc2r7OOXmkRkSQwyRgzO4Dz91oHcBHwKRF5A/gzcG6AeloVvb/0/uqTDgK8v+J93VFE/gaMr7Dpm73c/wPArsBWLuleEfmQMeahRurAFoX/bIxpr3eVcoU0f9e53uQJXIu74X8EnBbAuXutw3Ey8GtjzBUicgBwo4jsYYwpB6ytqdD7a6Po/bWJOhyB3V99dibGmCOqbRORRSIywRjzlohMABZXyDYDmGOMWen2+QswFVun2EgdBwAfFJGzgWHAABFZaYyp2ojWS94AJnnWt6J7kbIzzxsiEscWO5fWeN6+aBkO7AE84G748UBWRDLGmCcbqAPgdCAN9u1aRAYBW1D5v4ssen9tFL2/Nl0HBHh/BVXNlQVOdd9PBe6skOd14MMiEheRBPBhoN7F8I3qMMZ80hiztTFmW+B84Ld1uNAB8sCOIrKdiAzANgBme9B3IvB341rG6kyPWowxy40xWxhjtnW/wxyg3hf6RnU4XgcOBxCRXbH1/m/XWUero/eX3l+brMMR3P1V7x4F7r/aHLgP+Lf7HO3SpwDXe3oe/Ax7gT8LXBmGDl/+06hTbxN3vGOBF7E9LL7p0r6LvZBwf+TtwH+AJ4Dtg/g/eqPFl/cBAuht0svfZDdsL6SngaeAo4L6TVp10fur19eS3l/df5PA7i8dAa8oiqLUjI6AVxRFUWpGnYmiKIpSM+pMFKUfIiKdvbwmisgfeps/aFwIlL+JyFMi8jER+aALCfOUiAzeyL5/EJHtN+Fch4hIkOM+6nZeEZksIr8OSFJdiJwzcXFvbvSsx0Xkbe+fJyLHiMiTYmMWPS8il7v0i8TGD3rKs4yqcI4J9boIReQ0qWO8ogrHf0A2MQ6QiNwiIjsGpUlpHowxC4wxJ4atw0MSSBhj9jbG3Ap8Erjcra+ptpOI7A60GWNebpTQRiEicWPMPGArEdk6bD3ViJwzAVYBe3jeYo4E3uzcKCJ7AFcDnzLG7Irt/+29AH/kLtzOZVmFc3wV+EUw8sNFRNqAa4Gvha1FCR4R2VZEnnHfTxORP4lITmzwxssq5N9CRB4TkWkVtn1abPDApztf6ERkGxG5z6Xf1/kwFJExIvJHEcm75SARGQvcBOztXuTOBGYC3xaRmzdiyifxdE0WkaOczn+JyO0iMsylp90L5MPARz35x4gNVvkvEfmZiLwmIlu4bZ8SkSecpp+5e8Rve0pEHnW2PyEiw0VkkIjcICLzxAZWPLTCfqNF5A73+8wRkT1d+kUi8nMRuQf4rct+F7a7b3MSVFe5sBZgJfAD4ES3/lvgAmC2Z/2zVfa9CDi/F+d4GRjovp8G/AnIYbtIXubJdzIwD3gGTxA84DPY7nsPYp3S1S59DPBHbH/xPHBQhXO3AZe7484FznXphwMFl/4rj74HcN0Qe9CzEtt98HHgYOxLxitAPOz/U5dgFmCl+9wWeMZ9P81d2yOx3Wpfw4YA6bxGxrlr5MgKx9sdeAHYwq13dhO+CzjVff8scIf7/jvgYPd9a+A59/2QznvVrf+6817eiD0PApPd9y2wgzOHuvULgG87m9qBHbGjxW/zPBeuBi5039PYkeNbYKMI3IUtLQFcA3zad+4B7ndLufUR2AHh5wE3uLRdsGM8BnltBH4K/K/7fhjwlPt+EfBPYLDnPAcBd4V97VRbolgyARvg7ONiR3fuib0BOtkD+ydV4yueKq77/RtFZDvgXWPMOk/y3sDHgMnAx0RkkohMBC7FXiB7AykROV7sSOHvYC+MI7H9vju5ClsySgEnANdX0HcGsB2QNMbsCdzs7Pw18DFjzGTshfwFn+6KetzmodgHyv7GmIeNDa3wH2CvHn4nJZrcZ+wgu7XY8SnbuPQEdizJ14wx91bY7zDgD8aYJQDGmM6R5gdgHQfAjdiXFYAjgKtF5CnswLoRIjK8Bt0T2DD4bipuPIU7/qnOjl2AV4wx/zb26XyTZ/+Dsc8NjDE54F2XfjiwL5B3xzocG5XXy87AW8aYvNt/hbGxwA52NmOMeR7rnHfy7evN83dgcxEZ6bZlTdeqvcXAxF7/Ig2mz+FUmhljzFyxcxecjA1mtin8yBhzeQ/bvRdtJ/cZY5YDiEjnDbg58IAx5m2XfjPwIZffm34rGy6wI4DdZEMMoxEiMtwY857nXEdgw2qXnK1LRWQv7E3yosvzG+Ac4Mee/VJV9NwBdGBLRF46L9yeHK8SPbwvSR1seEaUsNfC0dhSgB+hd3GvOvPEgAN8D0uk7/G71mDf+ju13GuMOdl37L170FjtxAL8xhhzYQ/nrmZ7b4zpKZ7WKl/6IKydTUlUSyZg33YuB37vS5+PfdPoK96LtpNKN2BPF1K1C7rzButsr9nS50ig8oXb14u2k7XGmA5fWlNfuErDMdhqql2k8uRP9wEzRWRzsG0BLv1RNtTzfxJ42H2/B/hi587uQV8LzwEfcN/nAAeJDXaJiAwRkZ2A54HtRGQHl8/rbB7Gts8gIkcBnRN93Qec6NpzOts4tqErzwMTRSTl8gwXGwvsIazNuPNvja0K9OLNcwiwxBizooqNO2GrqJuSKDuTXwHfNbYXhJf/B3zD/bmISExEvroJx30RW8+8MR7HxkbawjXYnYx9o3scOERENhcbM+kkzz69ucHuAc5yF2vnTfs8sG3nzQOcQve3x2p6qrET1vEqCgDuhePjwKFiAzd6t80Hvg88KCJPA1e6TV8CPiMic7HX5Zc96VNcw/OzwFm90eCqmipxN7YtAlf6Pg34vTvvHGAXV3V3BnC3a4B/zbP/d4CjRORfwDHYsP3vGWOeBb4F3OOOdS+2dsJr+3psNfdPne33Yl/GrgHaRGQecCtwmq96HGzbyBR37EvYEEusEoc6O5uTsBtt6r3gGhZ9aYfQtVFvOrbI3hm36P+ZDY1eb2Jj1nQu21Y43n3AB9z30/DEGwJm42a0Az7BhgZvb8O8twH+KjY0wG+BvejmOl3XVTh3HHujPouNr/NFl96bBvhqelb6zjEOeCLs/1IXXXq7AIOxTqOtj/sPxHU4wbbzPBW2TRX0zaGJO8VobK4+ICIzgH2NMd8KW0sQiMhXgBXGmF+GrUVReouIHI3tFfZ6H/bdEdu7KwasB842rkG9GXD6tjTGPBC20CXVWgAAAFBJREFUlmqoM+kjIvI5Y0yl3lYtj4h8BrjRuEZ+RVGUjaHORFEURamZKDfAK4qiKA1CnYmiKIpSM+pMFEVRlJpRZ6IoiqLUjDoTRVEUpWb+PzdFCqt+YN8iAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEjCAYAAAD31uwUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeZwcRfXAv7Xbk5NwQ7KBcC8IIQmjDAgqh4gMJAwEUBBFVG4URFDhh4iAICgCIjdygyKHBIcEhhsUuUYdSAgC4U5IAiGcyeaY3q3fH1VLentmd2d2uqenJ+/7+cxnpquvV9Nd9ep49Z7SWiMIgiAItdAStQCCIAhC/BFlIgiCINSMKBNBEAShZkSZCIIgCDUjykQQBEGoGVEmgiAIQs2IMhEEQRBqpmmUiVLqHaXUNgFc5zGl1FKl1CL7eTkI+YIiqHx6rtdu83tLUNcMigCf6S1KqXlKqU+UUq8opQ4PQr6gCCKfSqnBSqlrlVJvKaU+VUoVlFJ7BiVjUAT4TH+klPq3UmqZUuqGAESLhKDLc5Q0hTJRSq0NrAv8L6BL/khrvYr9bBHQNWsmhHwCXAbkA7xeIASc13OBjbTWqwIZ4Gyl1BcCuG7NBJhPB5gN7AysBvwSuF0ptVGN1w2MgJ/pXOBs4LoArhUJIZXnyIi9MlFKbYYpRC3AQqXUQqWUE7FYgRNGPpVSBwEfAQ8HIGJgBJ1XrfVMrfWy7k372bR2SWsjyHxqrRdrrc/QWr+pte7SWk8F3gAaRWkG/Uzv0lrfDSwMSsZ60oz1VuyVidb6VeCnwJ22J7GW1tqt8bLnKqXeV0r9Sym1S+1S1k7Q+VRKrQqcBZwUlIxBEcYzVUpdrpTqAF4C5gH3BiBqTYT07gKglBoJbA7MDOJ6tRJmXuNIM/4fsVcmlgnAcwFd62RgE2A94GrgHqVU5K1YS5D5/DVwrdZ6dkDXC5og84rW+lhgBPAV4C5gWd9n1I1A8wmglEoAfwZu1Fq/FOS1ayTwvMacpvo/mkWZbAM8X26HnVDXvXye8B+vtX5Ga/2p1nqZ1vpG4F/AXiHLXymB5NNO+H0NuKgOMg+UwJ5pN1rrTq31E8D6wDEhyV0tgeZTKdUC3AwsB34UntgDIvBnGnN6/T/iSKzH6OCzwrM1vWh4rfUuNd5CA6rGa9RMwPncBdgIeFspBbAK0KqU2kpr/fmaBA2AOjxTh8aYMwk0n8o8zGuBkcBeWutirTIGRR2eaazo7/+II83QMxlqPzXnRSm1ulJqD6XUEKWUo5T6NrATcH+t1w6AwPKJGb7bFNMy2ga4EpgG7BHAtYMgyGe6rlLqIKXUKkqpVqXUHsC3gEdqvXYABPlMAa4AtgT21lovCeiaQRFoXm35HAK0YhpCQ2I2gR30s4+c2GdEa70YUxm+qJSaU+PlEhhzwwXA+8BxwL5a68jXmgSZT611h9Z6fvcHWAQs1VovCELWWgn4mWrMkNYc4EPg98AJWuu/13jdmgkyn0qpDYGjMI2D+WrFOqlvByBqzQT8TAFOA5YApwDfsb9PC+C6dSGE/yNylATHEgRBEGol9j0TQRAEIXpEmQiCIAg1I8pEEARBqBlRJoIgCELNiDIRBEEQakaUiSAIglAzokwEQRCEmhFlIgiCINSMKBNBEAShZkSZCIIgCDUjykQQBEGoGVEmgiAIQs2IMhEEQRBqRpSJIAiCUDOiTARBEISaEWUiCIIg1IwoE0EQBKFmRJkIgiAINSPKRBAEQagZUSaCIAhCzYgyEQRBEGpGlIkgCIJQM6JMBEEQhJoRZSIIgiDUjCgTQRAEoWZEmQiCIAg1I8pEEARBqBlRJoIgCELNOFELIKycTBk1VgEbAW9Pnj+zM2JxQmXKqLFrAK2T5898P2pZBCEspGci1J0po8YOBf4FvA68PmXU2J0jFik0powaewzwPjB3yqixv58yaqw04ISmRJSJEAVfB3awvzcAHpoyauwxtrfSbPwSU84SwElAbsqosWtFK5IgBI/SWkctQ11w581SwG7AOEADzwGPO23tTfcHuPNmjQEmAqsC7wJ3OW3tn9bj3lYhJIBh9tMCzJ88f6brOWZbIF/m9KuB4ybPn7m8knu582Y5wL6Y4bKlwD+ctvbpNWWgCqaMGtsKDMXkcyjwweT5Mz/1HfMMsJ3v1NeBzOT5M2dWei933qzxwE7AEOBN4G6nrd3t86QY4s6bNQLYDxgJfAJMc9raZ0crVfDY+mhnYBtAATOAh+NcH60UysSdN2t74HJgc0xFB+BiHuCxTlt7ISrZgsSdN2t14FfAURiFmQCWAZ3AqcDVA62ApowaOxKYgHn5xwPrsUJhDAOGe363+k7vBOZgKsHuz5bAN8vc6gnggMnzZ77bmyy2IO4DXAKsBgwGujB5ngac5LS1v111JoEpo8YOAcZi8joB2AIYQfm8Di5ziQ/omc+lwJHA2r7jFgGHTJ4/8+6+5HHnzdoAuADTOFAY5bwM+Ag4DsjGuQLqxjYMjgR+g3l/BgNFTJ6vBM5y2to/ik7C4HDnzUpi6qNxrJi3LgKvYOqjZ6KSrRaaXpm482btCdyJaTn6h1E0sASY6LS1P1Zn0QLFtuj+A4zBtF79dABTgYP6qnymjBqbwFSgE3yfkUHL3AdzgH0mz5/533I73XmzTsYMHw0vs7sILAa+4LS1v97bDWwPahSl+dyCUmUYJr8Czp48f2aXf4c7b9YmmGc6nBWNIC+LMZXs78IVMVxs4+A2YC/KP9OlwGzMM61LDzss3HmzdsWUw77qowOctvb76i1brTS1MrHDPf+j/Avq5RNgc6etvdfWcKPjzpt1F7An5RVJN4uBU5y29ku7E6aMGjsc2AVIA1/CtMoHhSdpxXQBp0+eP/Mcb6I7b9ZOwH2YnkFvdGKGksY6be1F+Ex5bI3J525AElg3BLkHwovAdpPnz1zcneDOm5UAZgKb0Ldy6wD2dNra/xGuiOHhzpt1HHAufZfTpcB9Tlv7fvWRKnjcebNGYnofq/Zz6GJgy7gN70WqTJRSmwLTgc201vNs2reB84HttdY1/ZnuvFl3Y4YH+rOgWQ7c4bS1f6eW+0WFrWDvpX+lCdDx5BGn7bLw3y98BVOx7kT54Zpa6MQUiA7Mf+8f4qmG9snzZ74Kn7Vg3wA2rOC8jo55753x8F5HvoFRsmlgdA1y9Hof+1kOrEP5HkQl3D15/szJ3RsVVrDdvAVsHMfhLjs0+w59Nw66WQzsFVfF6c6bdQvwDfpvrBWBe5229n3Dlyo4IjVT1Fq/ppSaCpwAnKyU2gG4FNgjAEUyFNiDyvI4CNjXnTfLiemk5ncx3eZ+mXHe1c7Cf7/w7ADusRR4AXjefl7C9Og6/J/J82cWvSdOGTV2GEYB7A5cXOV9twBetb/HUqFiWlh4cVj+hN/8hoG942+wIp/TMUYMJfkElk6eP/OzCtxOyLdh8noTpldRKRv7to+gMkUC5j/ZCtOTiRsTMY2PShgKHALETpnYnuZkKuv1J4A93Hmzhjpt7UvClSw4GsHm/bfAI0qpm4G7gKO11gOp7Px8HdNa7GvYx0snppX+SAD3rhvuvFktwP5UYOa9ZP4C3rzt3kpe5nmsqEyfx1i+zfJaZFXD5PkzO4D/TRk1tmReoB/ewfS4utmfClv+r15/F8VPFvX3fi/FGGF48zp98vyZH1cpJwB28eUcYM6UUWPfpHJlojFzQMBnwyGbV3FrB/PfxFGZHIIxcKiEFmB/d96so5y29mrfpajZCWP0UynLMY2vbDjiBE/kykRr/V+l1LPAM8Bvtda3BXTpSVT+kgKsgpkAjJUywVhFVfQcE6uNoGVQgq7lRf+uNzDzEPcDT0+eP/O9YEU0TJ4/8+Upo8YeBRyLGVp73/NZ6PntAvOBR7wtf4zJaEXzOUPWXqNccgfm+eaAR4FXBqogK+BI4DKMUlhIz/x1fz7CzIfc71sdvxumMql0+HEwRpmcFYjk9aXaBasJzDsfN8W5J6aOqZQRwN6IMqkcpVQLplfQhemlBEUbpdYSfdFiz4kba1PhMIEzdAjbXXwar954F+8/M30qWj+AqVhf9VXaoTF5/syrMetJBsKalR645Y+/S9fyYufCwouvLZn7XhaTzycmz5+5bID3rorJ82e+hpmnGQhrUf3cS8X/TaNgh36qna/rxPw/cWM01S0S77Y2jA2RKxOMDf3qwCzg28B1AV13IHlrhP+jWqoyY13nixNY54sTujDmh3WpWAOk4rwOWm0EybNPcIHLnbb2audpoqaV6hpCEE9vFq2YRmS1ptj1NN0OiqavjyJ9AZVSR2EmpfbF9Ep+ppQKyqXGBwM4Z2FA964nH1N9xaNjqEgAql1j4GKMBOLGx1Q3vg7V/zeNwEDeQUU8n+lAnHwOpA6LjMiUiVLqa5jVrntrrd/FLCwchFnZHAQPYlYZV8onxG++BIyFVUXzCLrTRS94Gz13Vmcxnz2zmM82wnqSaniICof09Cfvo+fNGqbfefk7xXz2cyHLFTRPUmEDQS9fin73DfTcWesU89kjivlsbPybWVPm56o8LYExmogbj1Kdwl+EqcNiQyTKRCn1OeCvwCFa6xkAWutO4ELg5IBuM5Xqxp0HY8bVY4XtYTxU0cGfLIBli6HLHQScDvyrmM9uFqZ8AXM7Zq1Bn+jlS01eO12F7voq8J9iPvuDuFS0Tlv7y1TaKv1oPhSXQpe7JmYu6m/FfDZO8yc3YQwjKuUhp629It9tDUaO6hYDD8LUYbEhEmWitX5Ja7221vpeX/plWusdejuvGpy29gVU3oLRwJNOW3s1PZlG4maq64V1sy1QKOazcVms+cQAzxsGXAvcWsxnVw9QnjD5M8aiqx9K7CYmA88X89mdghcpFO6m8npoEeZdjx3WDcxTlHlgvTDdaWuPVfybOE7aVcNxGF83/bEUs3AyrtyFWQXdt+39iLWX0tLiVzqrADcX89mbivlsNaaLdcdpa+/EuHHvs3eiBg2B4auXG48/EKM8vxiGfAFzPpW02FcbuYTSuYf1gUeL+ewZxXy2oSerrUPOG+m/nHZhHGfeFbZMIXICpq7pjyXAj0KWJXCaWpk4be1PA2fTd6HsAE6up+vyoLGr9vfBjMn21vIpKifxGoOHfw6YUmb/IcCTxXzWvxK70bgWsx6mr8pnCauP2gs4jNJnvxHweDGfPSwc8YLBaWtfiFk70mc+1eBh92J8jv3bt68F40QyW8xnVwtHysA4EeNLrWQBlEVj3u19bYMiljht7c9jhvH7q4/OjqPn4KZWJpZzMe7XF9GzYHZgrGZOcNraL4lCsCBx2tpfw6yyfY6eLfcuTL6zwK6JrXd9B1NJHUNpK2kc8O9iPrtb+BIPDDtpezBwFSZf3gpoEWYF+uTE6M0fSaQy1wGfp3SSdxBwTTGfvaSYzw7Ul1boOG3tj2CGrd6h5zMtYvJ+FfDtRCrzKsZJ5/llLrMX8GwjGyE4be0dwK6Yd3QJPXvYizHPbyf7jscaW9f8BFP3eOujJZj391RMnRU7mtprsBfrUO5ETKAijQkbe3HcXVr7sc4Q98b461oDU7n+oVzMlmI+uzXGEGKsb1cn5r+6JJHKNOwLYmN9/AyzIrrbxf51fv9qxXx2MMb0/MdlLvMY8M1EKrMgXGkHjl3c9wOMH6thGE/Y55eL2VLMZ7+OmdT2hwz4BDg4kcpMC1ncmrCxPk7ADNV9iMnLPXF0YtkXNmTECcCOGMu9Z4EL4xyzZaVRJkJ5ivnscOB6jDdTPzcAxyRSmUrGeRueYj77TUxe/R5q3wL2TaQy1ZqpNiTFfHY9zNyCP8KjBk4Dzm3kRoIQT0SZCFiT2VOAcyhd3/AMsF8ilZlbd8FCoJjPboOxIPK7se8Avp9IZW6vv1TBU8xnh2AiFB5aZvftwA8SqUy/ZtaCUCmiTITPKOazk4C/UOogcx5GoTxdf6mCp5jPrgPcQXkng78BfplIZeLmlbYE20g4HuOyyG/V9TymN/ZmveUSmhNRJkIPivnslsDfgXbfruXAEYlU5qb6SxU8duL9QsqbYE7FzC80xXyaNai4nVJnkO8D+ydSmdjFBxEaD1EmQgl2Yd+tlPd6e2IilbmoziKFRjGfPRy4nFJvCc8AeyVSmVj5R+qNYj67CaaRsLVv11LggEafmBcaH1EmQlnsYrdzKO/e5kzgzGaZxC3msztiJqz9FlDTga8nUpl36y9V8NhFqTdi4sJ4cYHvJFKZoGIJCSshokyEPinms9/CWHX5/QpdBJzURAplfUzL/fO+XbOAryVSmRIz3DhSzGdbMBZdZ/p2aeDIRCpzTf2lEpoBUSZCv9gx979TGpP8WuCoRCoT21XJXor57KrAPZjFn15mYxTKK/WXKhyK+ezRmOE9v/VeUw1jCvVDlIlQEcV8dgdMPHa/o8TbgUMSqUwcPbmWUMxnh2HCIezp2/UesHsilYmt2x0/xXz2YMyiQL+l1xnAWc3S6xTqgygToWKK+ewE4AFgXd+uezGTuJU41Wx4bJyXWyhdyPkRsGezmEgDFPPZDKZB4A+f21TDmEL4iDIRqqKYz26BiZ+yvm/X40AmkcrEMQpeCdYA4WqMGxMvizH5jGMgtbL0MYx5DXB0swxjCuEiykSommI+uyFGofgDa/0TY/3ULO5XWjBrUfw+vZZi5lD+VX+pwqGPYcw/YebFpKIQ+mRl8BosBEwilXkL+AomZLCXrwB/afQYGpViV8H/BDjLt2sIcE8xn/U7yIwtiVTmKWAXzNyQlyMwcyiC0CfSMxEGjA0PmwNSvl1XYRxENs3LVcxnTwJ+70ueA+yYSGVmRyBSKBTz2c2Bhykdxjw2kcpcEYFIQkyQnokwYOzq8DTwom/XUZgY801DIpW5ABNsysv6wP0xi7neJ9b8eXdKY9BfVsxnD4hAJCEmiDIRasKjUOb4dp1h1zI0E78G/K3zLYGp1qS4KUikMi9hYqd4rfMU8OdiPrtLJEIJDY8McwmBUMxntwKewATk6qYLYzJcLkxwLLHzQbdholV6mQpMTqQybulZ8aSYz07EWHl558A+AXZKpDLPRyOV0KhIz0QIhEQq8yIwiZ6t2Rbg1mI+619RHlusmex3MKbQXiYBV1m3702Bdf54mC95VSBXzGc3jkAkoYERZSIERiKVeRI4EBP2t5vBQLaYz46LRqrgsabP+2AcQXr5AWYorGlIpDI3YgKneRmFmStaOwKRhAZFlIkQKIlU5h7gSF/yasBdxXx2tQhECoVEKvMxxuXKm75dvyjms36vvHHnd8AffGntwC12LY4giDIRgieRylwH/MKXvBlwbZMNA80F9sAEmfJyfTGf9S/ojC3WxPskTIwbL3tQ+pyFlRRRJkJYnItxx+Flf0pXk8caa0q7N1D0JK8K3FnMZ4dGI1Xw2AWc3wP8q/7PLOazX6u/REKjIcpECAXbmj0OKPh2nW9ddzQN1vHjSb7kCcAfIxAnNKxn6AOBBZ5khfF6sF40UgmNgigTITTsRPU3gI89yQ5wexNO3l4K3OFLO7yYzx4ahTBhkUhl3gEOxgTT6mYd4K/FfNYf+lhYiRBlIoRKIpV5Dfi+L3l9mmzy1vbEDsdEZvRyRTNZsgEkUpmHKPXX9WVMmGdhJaVpCrPQuNhFixf4kptu8ta639+fnmtthmLmT0ZEI1VonI2JbePlZ8V8dp8ohBGiR5SJUC/+j/KTt7tFIUxYJFKZGcCxvuTNgWuazJKtC7N48x3frhuL+ewmEYgkRIwoE6EuJFKZInAQPc1oFcaMtqla7YlU5gbgOl/yN+2naUikMgswefK6kFmNJjMBFypDlIlQNxKpzBxKJ2/H0GSrxi0/onSF/B+L+ewa5Q6OK9brwc99ybtQOk8mNDmiTIS6kkhlHqR0/uT4Yj67XRTyhEUilVmC6Ykt9ySvC5wfjUSh8gdK509+X8xnR0YhjBANokyEKDgDeMOzrYA/NZtpaSKV+R/wG1/yYc3mxt1ash1DT8ODNYCLopFIiAJRJkLdSaQyiwF/rJPxwIkRiBM25wEv+dKuKuazQ6IQJiwSqczrlAYP+1Yxn90zCnmE+iPKRIiERCrzAHCLL/mMYj67aRTyhEUilVmGiaPuZXPg1AjECZuLgOd8aVcU89lVohBGqC+iTIQoOZGe4WGH0GQxQQASqcwTwFW+5FOK+ezYKOQJCxsY7AhMULRuNgTOikYioZ6IMhEiw5qW+oe2dgMOiUCcsDkFmO/ZTmDmiZqqDCZSmX8DF/uSf1zMZ7eNQh6hfjTViyzEkpuAh31pFzZT7BOARCrzEcbxpZcdMAG1mo3Tgbc82y2Y4a6m6nEKPRFlIkSKtQQ6GljqSV4L+Ek0EoXK34B7fGm/asLJ+EUY6y4v2wKTIxBHqBOiTITISaQyr1JqQntiMZ9dKwp5wsIqzh8ByzzJ61MamTL2JFKZ+zDK08tZxXy2NQp5hPARZSI0Cn+gp6uVEZSurI49iVTmbeAKX/KpxXx2eBTyhMwv6TkZPxYTD0VoQkSZCA1BIpX5FLMmw8txxXx2VBTyhMx5QIdneyTww4hkCQ27aPPPvuQzm21xqmAQZSI0ElcA8zzbQzHehpuKRCrzLqVRGE8u5rOrRiFPyJwJdHq2NwO+G5EsQoiIMhEahkQq00FpgKWji/nsmCjkCZnzgU8822sCJ0QkS2jY4Gh+D8qnF/PZwVHII4SHKBOh0bgGeNuzPQgz9t5UJFKZDyh1eHlSMZ9dMwp5QuZsejq83AATlVJoIkSZCA2FdT9ypi/5B8V8drMo5AmZPwALPdurAj+LSJbQsEYHV/qSTyvms8OikEcIB1EmQiNyE/CqZ7sVODkiWULDhvn9rS/5+GI+u3oU8oTMufT0KjwKOCwiWYQQEGUiNBzWx5PfA+3BTVrJXkZPNyvDaEJ3MolUZj5wiS/5GFkV3zyIMhEalduBOZ7tZq1kO4DLfcnNWsleTE/Lri2BnSKSRQgYUSZCQ2J7J1f7kpu1kr2GnnHUtwS+EpEsoZFIZeYCd/uS/XFthJiitNb9HyUIEVDMZ9uA2Zg5k252xlgGHYaJnXG5dVMSa4r57B3AAZ6kv2L8W/0cGA781lbGsaaYz+4GPORNAsYAXwbSwL2JVGZKFLIJtSE9E6FhSaQy8yhtyZ4API4xLb2U5vFr5bd22h+4FrNo83jg3rpLFA6PArM82wmM9d6dmGd6VzGf3TEKwYTaEGUiNCzFfPYIzJoELxnM2pNuYl/xWLPno4FPPckJYKJne0LcTWmL+awDnEFPf10AB/m2v1gXgYRAcaIWQBDKYVun/jkT6DnkBT0r4LjyN2B8mXTvKvFOerrpjyNHUH4Bqj92TTM805UO6ZkIjUqlLlTe7/+QxsUaFKxfwaELE6mMv0UfNyrJJ8T8ma6siDIRGpWp9HSr0hsLwhYkTKzxwGUVHBrrfFqup6e35N5ohryudIgyERqSRCqzGNiXnqumy9EMFc9ZwIP9HBP7fNogaN+v4NDY53VlRJSJ0LAkUpkC/bvciP2QiF1TcxDweh+HxT6fAIlU5naMa5W+aIq8rmyIMhEamkQqcyvwuz4OaYpWrPUivA+wuJdDmiKfll/Su6lzJ/BhHWURAkKUiRAHTgVyvexrmko2kcq8QO+Boz7pJT12JFKZTuBg4JUyu5c0gaHBSokoE6Hh8VQ+75TZvbBMWmxJpDJ3Ab8us2uVessSJolU5mNMT8xv7hx7bwYrK6JMhFiQSGU+BPakZ2XTkUhlihGJFCZnAP/zpT0TgRyhkkhlXqLUN1fsXcasrIgyEWJDIpWZgbEG+gj4gJh4EZ46etxGU0eP26TS4+0wz47ATIw1292JVObmsOQLiqmjxw2fOnrctlNHj/MvLO2VRCpzI2ZObDHGS/T+YcknhIs4ehSEEJk6etz/Ab+xmzcCx0yaO6M/c+fYMXX0uE2BZzGx7N8ADpg0d8Z/o5VKqCfSMxGEcPmx5/ehwONTR49bLyphQuQ7GEUCsDHwxNTR4/w+t4QmZqXxzeUWcq0YF9/jMePuBWCKk0w3neWIW8iNxSz4WwMzBn2Lk0y/F61UweMWct0BszbBrKx+zEmmHw/7vlNHj2sBhmICdnV/hmKG3uZMmjvDG5vkJWCkZzsF/Hvq6HH7TZo746lK7+kWcjsDu9h7vQ7c7CTTlawmHzBTR49TGKeaw3yfTuCtSXNneH1ovew7fShw69TR4yYAp02aO6OTCnALuXUximk0xkT4bieZnllTRhoQt5BrASYDSUAB04E7nWS6ov+pEVkphrncQm4P4ApgHUxsCDBjtO8AxzjJ9KNRyRYkbiE3Cvg9sB/G66yDsZbpAs4HznOS6bg7C8Qt5BTwA0yeBmGeaRcmr3ngWCeZfnEg1546etxIYILnswUwglLF0RudmLH/N+3nI+BATMxzL8uBoyfNnXF9X/K4hdxWmEiMKWAIZjRhsT3/p8D1TjJddSGeOnrcEGAsK/I5DliXUsXR1/zHB6zI51vA5zHxZvxMA749ae6Mj3u7kFvIDQFOAX6GyeMQTMCwInAX8FMnmZ7f2/lxwi3kdsWEHBhNz/roPcy7e39UstVC0ysTt5D7JsYnUG/uuzuAg5xk+p76SRU8biG3FvA8pkJIlDlkCfAEsGecWz8AbiH3W+CHrCiIXrowBXOHvlq0U0ePS2AUxQTfZ2Rv54TEJcCJvt4M8FkP82nMu1tuSHoxcKmTTJ/S1w2mjh43CtiGUiVZ8UR5AMwCJk2aO6NkbYkdNbgPEyCrnKIuAu8C2zjJdKxNwd1Cbm9M4LO+6qPvO8n07fWTKhiaWpm4hVw7Jhpff3EgFgNbOcl0JY4FGw7bUn8QE+p1UB+HdgDnOMn0b/o4pqFxC7m9gDvo+5lqTO9gCyeZXgIwdfS4QRgLqTSwG6YlPrjXK9SX2cA2k+bO+KA7wS3khmKGjtbHDIP0RgdwgJNM39edYC3H9gT2ALbHNDAagU7gqElzZ1zrTXQLuVMxC1PLNQ66WQ78E9h9ID2xRsAt5DYAXqTvfIJ5pts4yfSsfo5rKCKbM1FKrYHxCjtJa/24J/1mzJ+9v65d011GZRXGYOAi4muWuDum0uhLkYCpgC5J890AACAASURBVE9zC7mrnWQ6dv6PrNK8lv4bBwpY65PX3jn1yYnj5mAq1t0IduHfEkyh7/4sx/RqBlJxjwH+jJGzm+OBtehbkQAM051d105db/zhaJ3GKMv2AcjQG0V65rMDUz7HUL4H3BetwJVTR4+7ftLcGV0AbiG3NnAafQ8dgnm3v4h51x+o8r6NwkVUXh9dimkMxIbIlInW+kOl1NXATzBhWFFK/RLYCvhKrYrELeRGADtRWVfeAfZ0C7nBTjK9rJb7RsR36b+1000nsDdm6C9ufJ4KFcKC/7w87LlzbjyV6i0WlwEzMEOGz2MmRt+lZ2W6tLsy9DN19LhhmOiQU4FNq7ivXwl9n/6VJp3Lizx78hUj0XpaFffq5k1MHp+z368Bi1iRzyWT5s4ouyjUriVpA47DxKmvFAfzTLr/vwzmnayEboOL2CkTt5AbDOxFZXVuK7CzW8it4iTTi8KVLDiitua6EHhVKbUppqI4Etheax2ElUoaUzFUOpRRBHaldx9QDYkdb87Qfwu2m1Uw1jJxVCb7U+HzfOvv/6RzWbE/RTKfFRVp9+eVcvMXlTJp7owO4KWpo8e9QuXKxAVO+myjkFsf2LCSExf+9xU+fmV2f/lcCrxAz7xO72tCvD+sddacqaPHPUF1yuQu3/97CJX3GBWQcQu51hjO+30V03sdUuHxyzB12J2hSRQwkSoTrfU7SqlbMcNRXwD20FoH5U5hL2DVKo4fgelWxkqZYCxyquXLgUtRHzJUOLQyrG2tcsnvYp5vDnh00twZ7wYnWglHYFZ2b47xH7YQ41rd+1mIqTTyk+bOWO45d1eMgumXoaPK5rOImV/IYVrxM2tRkP0wFWOBtS+mh+HPY/enA5g1ae4Mf/nescr7tWDe+ek1yBwFe2DqmEpZFZiIKJOquBAzrHCg1jrIFbPVjl0r6m/JEwRrsmLIoFISbiGXcJLpuPm1Wr3SAzf//kRUa6u78LlZLyx6a/5tmIp1em/DU0Ezae6Md4BvD/D0NaiwbI7YaBTbnHoIcx/575L3np55PSsUZV2GRybNnaEx5ui/r/Zct5AbRPV1UCfm/4kbI6l89KCbdcIQJCwaQZkMwrTO7gr4utU+uIGeEzUDkVkP8LyoqVhmZ8ggtjwy04lZh/HHEGUKA0UVeR31pfGM+tL4D5xk+ochyhQGA30H4/juDsTbSKw8lDSCsBOAF7TWQXfDq7VH18QzwttHVF+4upxkenn/hzUc1cb0KAIDnheIkI8wslfDp/0f0lhYY5dqe4otxPOZvkf17vVjtaamEZTJNpiJwaDJUV0B+xR4KAQ5wuYFqu9hPhuGIHUgR4VzCZZVgOPcQi4Vkjxh8U+qX1A4xi3kTrEGGXEiX+XxI4Az3UKuIgOFBuJhqq+P7uv3qAaiEZTJBMJRJvdS3aK0QcTQ5NDOe9xH5a2excBN4UkUKrdj1ndUwxeAJ91C7mfWH1LD4yTTr2MszaphOCa2+kNuIRcnR5I30Xuo4t7YG3jOLeQOCEGesHiA6uqjwfQe2rghibxwaa130VpfGvR1nWT6Q0wLvJJKtgt4tHu1dAy5mcoLZCuQDVGWMHmG6od/wPTcfgfkrP+yOHATpVEIK2EXYLpbyGWCFSc0/s7A3LqsDtzhFnJXWYefDY11yvkolQ3raeBZJ5n+KFypgiVyZRIyP6SyArmMnq7C48Y9GDcN/Q0BdQB/dJLpeeGLFDzWw/MxVKY4yx2zO6aijcPK4gupbFhkCaVzSWsCf3cLuUusxVTDYt/FSzDvZl+4GC/Cfo4E/u0WclsHLVsI/BhT1/THEuDYkGUJnKZWJk4yPR04kb5f1A7gqLj5wfFiK9n9MBO3vS3m6l7Z/ct6yRUSd2Ac5fX1TBdjFonti/Fs62Ud4D63kPu5dc/SkDjJ9CfAJPp/d/8CfA4zJu/nR8CjMeiNnYZ5N3uraDsx7/Z4jMcMf+90S+Bpt5CbHJqEAeAk068AR9H/Mz3JSaZn1Eeq4GhqZQLgJNNXYhaQvU/P1upizLj0IU4y3fAhUfvDSabfwfgueoSeL6uL6Z1dD3w9plZcn2Gd/B0NnIN5ht4KaBEm1O3XnGT6WSeZ/jtmTs4f40QBvwX+3MhDJE4y/SzGp9iLmLx1swyT93OAo23r/usYF+7+3umOmJb7tuFLPDDsO7kH5h1dyoo8aMy7/AjwRSeZnuMk03/AvOf+xt9w4C63kDujkefGbF3zXUzd46+P3geOsHVW7Ghqr8FebLyEwzFxITTwJHBD3CvXcriF3JcxMTTWwnikvcpO6jYV1u3+MZiW6SLgfkzAM+07rhXjlfYMShtQBWDfRvYYbXtQ+2EUxirA/4Aryrljdwu57TA9t419u5ZiKqpbQha3JtxCbhNM630MxjT2NieZfqLMcatghse+V+YydwPfdZLphjWXtsOP3wd2wDRu8sA1cY43tNIoE0FwC7ndgdsoXUG9ANjfSab/WX+pgsct5NbEKJTdy+y+ADjFSabDcq9SV9xC7miMUvGbx88E9nGS6dfqL9XKScN2BwUhaJxk+kFgO8ywkZd1gEdsxRR7nGT6A4xvugvL7D4JuNcqnNhjh4R2wzQIvIwF8rYBIdQB6ZkIKx02PMHNwD5ldl8FHN8sw59uIXcI8CdK1zi8hmm5N0V8dRt4agrG+7iXLowjyoviGlQrLogyEVZK7CTtr4DTy+x+AjOPEit3Fr1hPQBMAfyLGRcB33KS6an1lyp4rDHFNcC3yuy+CTNn1BSNhEZElImwUuMWcvthKhp/cLGZmBCxsVyT48eaB/+NUpfvncChTjL95/pLFTzWWOFnwHmU+qy7DzM3FtfFyQ2NKBNhpcct5MZhVmL7LaBew5gZv1l3oULARvu7FGPV6EUDxzjJ9FX1lyoc3EJuT+BWYDXfrseBjF3HIwSITMALKz12gVgKeMy3a1PgCbeQ+1zdhQoB66X3SMxiRm8rUgFXuoVcNRETGxonmb4PY2zhX4+yM/CwNSsXAkR6JoJgsWuRbsc4EvTyPmbBZ6H+UoWDW8gdCNxCqUntOcAvm2Wy2i3kRmKcLI737WqqYcxGQJSJIHhwC7kEcCOlk7gfAxOdZPpf9ZcqHNxCrjssrD8u+SXACdZNT+xxC7k1MPMl2/t2NdUwZtTIMJcgeLAu/Q8BrvbtWg14oJnWLTjJ9DRgT3q6agE4DrjOLeQaIRJrzVgP4rtjvPZ6aaphzKgRZSIIPpxkuhPj/8sf13wYMLXRHQpWg5NMP4ZZ9Of3yHso8Fc7aR97rGuVvTAetr2sB/zTLeSS9ZequZBhLkHoBWtm+gvg1/5dwN5OMp2rv1ThYF24Pwj4PQzfjlmL0ixDXr0NY34AfMlJpl+qv1TNgSgTQegHt5A7HrjYl7wY+Kr17NsUuIXcZpjQ1f6QuJdivAI0RWVhHX9egfEm7uVtYEfrgVuoEhnmEoR+cJLpPwI/oKc57XBgmlvIbR6NVMHjJNOvAl+h1Jz2R8D/1V+icLDDmEdR6rtsA0w0Tr8jUKECpGciCBXiFnLHAX/0Jb+Fac3OjUCkUHALuQ0xIRpG+3Yd7iTT10YgUijYYcyrKV3E+U9gD1kpXx2iTAShCtxC7hxMbBQv04GdnGT64whECgXrFeCf9FxB3oXxWeafxI4t1mLtb0DGt+tu4BvN4qq/HsgwlyBUx2nAdb608ZiY6/71GrHFegXI0DOSZQtwu1vI+f17xRarLA7COPf0si9wWSOHdm40RJkIQhXYSeijAL+n3Z0xYYBb6y9VODjJ9D8wFa3XkmsIxjx6bDRSBY8dzspgVsV7ORITnVOoAFEmglAltjV7IPCUb9d+lM6pxBonmb4bExrZyxqYiWq/S/vYYhc2pjFhrr2c7hZyR0UgUuyQORNBGCA2WuETmBj0Xr7vJNM31F+i8HALudOBM33JTwK7WK8BTYFbyG2JeabeSJQu8BUnmX46GqnigfRMBGGA2PC4ewBzfLsutxPYzcSvgSt9aTsC50YgS2g4yfT/gImA15LLwcwViafhPpCeiSDUiFUczwBDPcmzgG2bKW6GnQ+aihkO8jLZDoc1DTZo2t98yfcBk5rFG0DQSM9EEGrEWj755xXagWuayRrILvY7hNKe2A1uIbdpBCKFhpNM30XposY9aaLFm0EjykQQAsBJpm/ExB/38g3M6vGmwUmm3we+iZlH6GY14I5mMo22nIKZF/JyllvIfTUKYRodUSaCEBzHA8/50i5wCzl/HI1Y4yTTT2HirHtJUuq/LNZYw4IDMcHRumkBbnULOb93gJUeUSaCEBB2vcI3AO88SQLTam+2yduLKZ1TONIt5L4ThTBh4STTc4Bv09Mv27oYhdIU8V6CQpSJIASIdZb4fV/yGOBmt5BrmvJmF28eBrzq23WVW8htFYFIoeEk0w8AZ/mSdwLOjkCchqVpXm5BaBTs5O1FvuQ9KVUyscb6IjsAWOpJHgZc30yeACy/xrjn9/LzZhvCrAVRJoIQDidTukL+924hNzIKYcLCSaafp9TIYDvghxGIExrWku3bgNc7tAL+ZANurfSIMhGEELCTtwcDHZ7k1WmySWrLdcBdvrTfuIXcBlEIExZOMv0e8D1f8jjgp/WXpvEQZSIIIeEk028Cp/uSD3QLuYkRiBMadv7kOHoaHgynCb3uOsn0g8DNvuRfuYVcexTyNBKiTAQhXC4GCr60y91CbpUohAkLGxzsZF/yJMycSrNxIrDQsz0YuLLZFGe1iDIRhBCxHoaPoKcb9w0otQ5qBq6mdJHfJc0WBtcu3PyJL/mrwKERiNMwiDIRhJBxkun/UGrd9WO3kEtFIU9YWJ9VRwBeL8Ijgd9GI1Go3AI86Eu7wC3k1o1CmEZAlIkg1IdfYeLFd9NCE1oCOcn0i5R6Ej7CLeR2ikKesLDzREfT07vwmpQ2GlYaRJkIQh1wkunFlDqDnFAmrRk4F3jZl3Z5s609cZLp1ymNxHiwW8jtUn9pokeUiSDUCSeZvg+41Zf8C7eQGx6FPGHhJNNLMSFvvYzFhABuNi4Cnvelnb0yTsaLMhGE+vITYLFne12azLMwfBY/3m9Ce2YTDusVgWN9yV/CBE1bqRBlIgh1xEmm36V04eLJbiG3WhTyhMwZ9HRVvylNaPHkJNNPAtN8yStd70SUiSDUn98DH3u216DU1DT22DmFa33Jp7uF3OAo5AmZX/q2vwDsG4UgUSHKRBDqjJNMfwhc4Es+sQnd1IPxrLvMsz2G0vmU2OMk0wXgTl/yr5vN6KAvRJkIQjT8gZ6rqEdQGnAq9th4IFf6kn/hFnLDopAnZH5Fz7gnYzFRKVcKRJkIQgQ4yfSnwHm+5OPdQm5UFPKEzHn0dHg5kibzKgyfrbH5sy/5zJUliJYoE0GIjsuB+Z7tocD/RSRLaDjJ9HzgEl/yKW4ht2oU8oTMmUCnZ7sd+G5EstQVUSaCEBFOMt0BnONLPsot5NaOQp6Q+R09vQqvCRwVkSyhYSNtXudLPrWZomz2RtNnUBAanD8Bb3u2B9NkERkBnGT6A+BCX/JRTVrJng0s92xvCnwtIlnqRjM+SEGIDU4yvQy41JfcrJXs5awElayTTL8N3OFLbka3OT1oxhdWEOLG9awclewCVp5K9grf9t5uIbd+JJLUCaW17v8oQRBCxS3kbsHEGO9mCsZNx5mYqIVn2PH4WOMWcl8G/ulJ6gQ2AvYC0sA0J5n2L3SMHXb1+3Rga0/ymRhl+gvMotVT7ZqjpkCUiSA0AG4h9yXgCU9SJ/AAsKfdftlJpj9Xd8ECppdK9mbgEM/2V51k+tG6ChYCbiF3LHCZJ2kuxmX9pnb7DieZbpp1KDLMJQgR4xZy2wC/BhZ5klvpOdS1Rdy9C7uF3BDM/JDfJHiyb/vz9ZEoPNxCLoPxQ+b1TTaaFYoEmiCfXlaKxTSC0ODcCpTrdXg97Lr0XPgXR46i1MMuwCq+7Y/LHBMb3EJuFYxrlf48JMc6n36kZyIIEWKHfSqJkf6+je4XZ9as8LgFoUoRPqtRWUM97vnsgSgTQYgQqyD86y/K0QwVz7VU1hqPdV6dZPodSoOglSPW+fQjykQQouf3GOutvni/HoKEiV1/cRA9nSGWI/Z5xQzpzejnmGbI52eIMhGEiHGS6S7MZO3MPg5rilask0zn6N//WOzz6iTTizDxTD7o47DY59OLKBNBaACsF+F9gN7WHTRTxfM74K+97OsEPqqjLKFhg4N9k56OH7000zMVZSIIjYKTTL8GHAh0ldm9uExaLLHzRIcBz5XZvaQJDA0+w0mmHwZ+2stuGeYSBCEcnGT6QeDnZXbFeo2JH+sxeV96rq2B8oo07lxMaZwT6L3HEktEmQhC43Eh8B9f2iNRCBImTjL9FqWxPt6KQpYwsT2twyntieQjECc0xJ2KIDQgbiE3FLgfE/r1TieZbvjYH9PGjB8FTAD+OXH29IoXWLqF3InAKZg5hL2skmlYpo0ZPwjYAXhn4uzpFftLcwu5DYH7gLWB85xkuhKT8NggykQQhJqZNmb81sDTmOG4BcA3J86e/likQoXAtDHjW4B7MI4pwQxh/XTi7Olu72etHMgwlyAIQXAAK+Z11gEemjZm/A+njRmvIpQpDNZhhSIB+DFw/7Qx49eKSJ6GYaXpmVgnc4cB22IWTT0N3OAk08v7PDGGWA+0BwFrYaL4XW3NFJsKt5BbCxMPYwuM36r7gSnNZA0En7lcmQzsAQwDXgYut9ELQ2HamPEJe6/h9tv76cTMbczpbpFPGzM+A/y9zKX+BPxo4uzpFZUzt5DbBDgS2ABYCPzVSab/VVtuesf2NIZSPq+DgfnAmxNnT//UHj8EeBHY2Hep14F9Js6e/kIl93ULuUHA94AvAgozf3Kdk0wvrTFLkbFSKBO3kPsWpjva/cKAMbX8FDjWSab7W30cC2xBvAL4MqaAKIyDQBcTl/r/nGT6k96vEA/cQq4VY/H0C4x33SF212LgDeBwJ5l+JiLxAsUt5LbHuCHZkBUOEZdiKvSzgfOdZLpqq6BpY8aPxMxvdH/GAeuyoiKtxLdUJzAHeBOjXMYAu5Y57l/A/hNnT3+3twu5hdyqwHmYkMWO/WiMy/YngGMG0iCylf9YeuZ1E1YojiG9n92DD1iRz8XAJGB13zGLgEMmzp5+d18Xcgu5/TCu6UfQsz7qAH7sJNOVuGJpOJpembiF3NHABZgXpxwdwFFOMn1L/aQKHreQWw9jt78GpoL1swwoADvHvTfmFnJ/Ag6m72e6q5NMP1s/qYLHLeS2Ax6l73z+xUmmj+jtGtPGjHcwPbdt6FmhjgxW2n6ZB0yaOHv6f/07bCv9HxgZB5c5txOzmHMb6/eqLB4DgO7PNpi8lysPYXIWcObE2dNLzJzdQu47wFX0/UxPdJLpq0KULxSaWpm4hdx4zHDW0H4O7cC8qLPClyp4bLzwpzDxEfpqUXYAlzjJ9Cl1ESwE3ELuG5gwt/2tu3gP2MyuLI8dbiE3AngNM0bfFx3A95xk+g6AaWPGtwJfwEQt3MP+LldBR4EGTpk4e/rvvIluIfdb4Ef0XsGC6V3/B9ihexhz2pjxbZg8poFdqL+C7Iv/AeO9E/NuIdeOafD1lU8wvbHtnWS6P99eDUWk8UyUUqdTukDLwbz8B2mtb6vxFpdRWTd2MGYYbK/+DmxQJgFb0f/zHAb82C3kLnaS6XnhixUsVmleSWUL+FYFTsSESo0jJ2GGQfpjWOey4hX3bzhhGF16D+DrmLmyWulkxdCL/zMcM+y2bpXXVMC508aMv2Di7OmdAG4h1wYcT//l1AHGvn7HIyfNyvx8bYwCmVDl/XujXB47MP/B+pj5m/5ik/jZEhPwzOuH7GIqq4+GYOqunaq8Z6REqky01mdhuoQAKKVWAR7CTLzdVcu13UJudWA7zAvcH63Arm4hN9RJppfUct+I+C6Vr5DuBDKYrnbc2J7KC/UQTCjYuCqTQ6ig4nGXLOOpE/+4Bl36hiqvvwx4AXge01p+HtMTWgR0TJw9vdjfBaaNGT8M0xj8VRX39VuQ7kOFK8Ffv/3h4bNuuf/8Ku7VzZuY/HXn9QXMsFkHsGTi7Ol9Ds/Y3t56mPm4aixgV+v+4RZyw4CvVni+ArZ3C7nVnGQ6NgG0GibSolJqKDAV0xraX2vd78vcDxMxBWZQhccvB3YHsjXet664hVwC00qr1ARzOKaiiqMy+Qb9D1l6Wc8t5DZ2kuk3whIoDNxCbmOgrZJjFz43i453FvRXQc2np9J4Hnil1rURE2dP75g2Zny1llbXdvdKLIdQYUPoran/6u8dX0qpgpw+cfb0mipkK+/b08aMf4OeYXf74j3gNM/27pj6qNIhx2WYOuwvlcoZNQ2hTJRSgzA9kUHA17XWQZjHpalsmKCbEcRQmQBbU70/o+3DEKQO7El176yLGSqIlTLByFxRa32VDUZCi4KuHo3rj4AHgRzwwMTZ0+cEL6Jh4uzpD04bM/4wVvQw3u/jM3fi7On+sr1dpfcasfFoFhZe8SZp4FnMqvIc8J+QFw/ujRl+HE3f+Xx34uzpC33nfo3q66M9EWVSOUopB+OOeiSwq9ba7/htoFQ7bqwwbg7ixupUr0xa3EJuUAytulat8ngHz1BDjFidCofzhq+3DtueeTjzHn9u8TsP5S/EVKrP1nNF9sTZ06/DmJ5XhVvIDaaKYaMJPzuY1257eNmCf790X8c7C24DHixTaYfGxNnT/4fxsTUQ1qXy0YNuYrUQMuoJ+BbgBoz53s5a6yDHBwdiphZH07aByKwGeF7UyDMtw1oT2llrQvuH21x/7elhCRQSVeUzscowPnfY3ks/d9jef3CS6cfDEiokBuINOVYelKN2p3IFZgXo17TWQfv2f6/K4/UAzmkEPqT651h0kula56SioNqgSS69B5tqZD4Eqn0+sZmo7cb2jKvtQbUQz2f6LtU3bGIVPCsyZaKUuhAzJrib1joMM9V7gWpWe3+KcccRNypy3+AjNPcUIXMP1VWyDvBYOKKEymNUN2pQJH5zfd08OYBz+gpv3Kg8gKljKuUTYFpIsoRCJMpEKbU18BNgFDBTKbXI83nXDn/VSo7qFmsliGHMCOtKI0vlrZ5FwM3hSRQqd2KsXCrlTSeZDm3yOSycZHo21cX1WIb5b+LIzZQGyOoNDfx9IO5jGoCHqdyyFEzdlQtJllCIRJlorV/QWiut9SCt9Sq+z0itdc1jhXbl8z+ozCrGBe5zkulqKqpG4mYqD+vaimnhx5H/UnnF04GZj4sr12NWQlfCIoyrnDhyD5W7O1lMTBtCtm65j8qG9TqBfzjJdFDGSHUh6jmTsPkhlbVkl2F6SnHlAeAZzFqZvlgMnO0k07GMPe2JHd5f4CWNWfj6x9CFCo8/YsxM++txdgA/iKunZCeZXgCcQ/+NoeWYd/zB0IUKjxOovD76YciyBE5TKxPra+sH9F35dADfcpLpt+sjVfDYiuQgzIRdb3MKSzDj07+tl1xh4CTT92JcTfRW+XRhWup7xtSbAQBW9r0w+eytp74YuNRJpu+rm2DhcB7m3ezteRUx7/aBcVWaALaOOZj+66MfxNFPYFMrEwAnmb4N2B/jUmERpqWn7e9XgL2dZDquwz6fYXsbKeAOTKHsHt5bhnlBzwf2iel4s5+TMa28bpcYYJ5pB8Zd+Q5OMh3HSdoeOMn0CxhrxycwiqO7Iu3A5P0ETLjbWGPfyX0w72gHK1rvnZh3+Q4g5STTdVtTEhZOMp3FLH58hdL66A1gf1tnxY6m9hrsxcbA+AbGOVwXZvx9ipNMx8qWuxLcQm5rTOFcA+P6+2YnmY6j2XOfWH9HhwCbYSrbx5xk+rFIhQoJt5DbBeMZdzjwKuaZVhxnPS64hdy6mGfahlGYdzdDw8CPdVq6H5DENOqfB+6Ic2NvpVEmgiAIQng0/TCXIAiCED6iTARBEISaEWUiCIIg1IwoE0EQBKFmRJkIgiAINSPKRBAEQaiZPj2TDv7CEVq1tNLiDEK1ttLqDMJsJ8x3wmyrFu++QT32tToOqkXR2trS89tpQbVQPl0pWh3VI32Q00Jri6K1RTHY/h7ktNrvFlqV+XY8x5Z8t7bQohSJVkWrUiRaFC0t9lspEq0ttCpItLbQojDHtNp9LS20tkBri6IFRWsLKHtM97E9tzH5UCYQXmuLQmG/tUZ1uaC7oKsTpbvsbxe6uuw+7zGuOaazE3TXZ+naLUJXJ7q4HLq60K7vu7jc7O8+rvu7sxPcIrqrk66ii+7s+uy7s1j8bLurs4uu5S66y3x3dXXRtby4Yvuz8zSdxU66OjVdy813Z7ET3antNbro6uyis9hl7rG8C91lv+12l9Ys79J0fvaN73tFelGXO878vlK/WW0AosiQ8iXlq5nKl/RMBEEQhJoRZSIIgiDUjCgTQRAEoWZEmQiCIAg1I8pEEARBqBlRJoIgCELNiDIRBEEQakaUiSAIglAzokwEQRCEmhFlIgiCINSMKBNBEAShZkSZCIIgCDUjykQQBEGoGVEmgiAIQs2IMhEEQRBqRpSJIAiCUDNKax3uDZQ6Umt9dag3qRCRpXHlgMaSJS400n8msjSuHBC+LPXomRxZh3tUishSSqPIAY0lS1xopP9MZCmlUeSAkGWRYS5BEAShZkSZCIIgCDVTD2XSEOOFFpGllEaRAxpLlrjQSP+ZyFJKo8gBIcsS+gS8IAiC0PzIMJcgCIJQM6EoE6XUmkqpB5VSs+z3Gr0c9zul1Eyl1P+UUn9USqko5LDHrqqUekcpdWmA908rpV5WSr2qlDqlzP7BSqnb7P5nlFIbBXXvamXxHHeAUkorpbaNQg6l1AZKqUeVUgWl1HSl1F5hyBFnpHx9dk0pX1XKEWr50loH/gF+B5xif58C/LbMMTsC/wJa7ecpYJd6y+E59mLgL8ClAd27FXgN0GG9TgAADE9JREFU2AQYBDwPbOU75ljgSvv7IOC2kJ5Hv7LY40YA/wCeBraNQg7MuO4x9vdWwJth/Cdx/kj5kvJVw38SWvkKa5hrH+BG+/tGYN8yx2hgiM30YCABvBuBHCilvgCMBB4I8N7bAa9qrV/XWi8H/mrl6U2+O4Hdgm49ViELwK8xFcTSEGSoVA4NrGp/rwbMDUmWOCPlS8rXQOUIrXyFpUxGaq3nAdjvdf0HaK2fAh4F5tnP/Vrr/9VbDqVUC3AB8LOA770eMNuzPcemlT1Ga+0CHwNrBSxHRbIopZLAGK311BDuX7EcwBnAd5RSc4B7geNClCeuSPmS8jUgOQixfDkDPVEp9RAwqsyuX1R4/mbAlsD6NulBpdROWut/1FMOTFf4Xq317KCHlMuk+U3nKjkmdFlsgb8I+F4I965YDsu3gBu01hcopXYAblZKba217gpZtoZCyle/SPmqUg5LaOVrwMpEa/213vYppd5VSrVprecppdqA98ocNhl4Wmu9yJ5zH/BFzJhiPeXYAfiKUupYYBVgkFJqkda610m0CpkDjPFsr09pl7L7mDlKKQfT7fygxvsORJYRwNbAY7bAjwKySqmM1vrfdZQD4DAgDaZ1rZQaAqxN+WfXtEj56hcpX9XLASGWr7CGubLAofb3ocDfyxzzNrCzUspRSiWAnYGgu+H9yqG1/rbWegOt9UbAT4GbAnjRAfJAu1JqY6XUIMwEYLYP+Q4AHtF2Zixg+pRFa/2x1nptrfVG9n94Ggj6Re9XDsvbwG4ASqktMeP+CwKWI+5I+ZLyVbUclvDKV9AWBfZZrQU8DMyy32va9G2BazyWB1dhXvAXgQujkMN3/PcIyNrEXm8v4BWMhcUvbNpZmBcJ+yDvAF4FngU2CeN5VCKL79jHCMHapML/ZCuMFdLzwHPA18P6T+L6kfJV8bsk5av0PwmtfMkKeEEQBKFmZAW8IAiCUDOiTARBEISaEWVSIUqpc5VSJ4Rw3Y2se4UBW9YN4J6PKaUOH+C5I617jsFByyXUhlLqTaXU1+zvU5VS11R43hlKqVvCla7P+yul1PVKqQ+VUs/atGOstdgipVS/a0OUUutYNyJDBnD/upfBvqhVHqXU8Uqp84KWqz9ipUxsYVmulFrbl/6c/fM38qRtp5S6Vyn1kVLqA6XUs0qp79t9uyiluuyL6v3s0Mt91wG+i5nQXKnRWr+LWQzXSBHkBB9a699orQfUYIiALwO7A+trrbez1mcXYiaHV9FaL6zgGqcA12utw1pdHieuxixMLFlEGiaxUiaWNzALbwBQSo0DhnoPsErhEeBxYDOM1ckxwJ6ew+baF9X7eaqXe34Ps/BqSXDZiB+eltKfgaOilEVoKjbE+IhabLdHYiyxZlZysu0lHwpE1rtqFJRSjlWo92EawHUjjsrkZnr+SYcCN/mOOR+4UWv9W631+9rwH631Nwd4zz0xign4rGczRyl1klLqPaXUvO5ej92/mlLqJqXUAqXUW0qp05RZBYtSqlUp9Xul1PtKqdeBid4b2XOvtdd8Ryl1tlKqtZxQ9lqnKqVeU0p9qpT6j1JqjN23o1Iqr5T62H7v2Ms1Wqx8b9m83KSUWs3u6+5uH6aUehujoAGeATZRSm04wP9TCBnv0JXnOR6qlHrbvntlV7ArpRJKqVuVUn+zaxX8+4cqpS6w78vHSqknlFJD7b6MMl6KP7JDqVt6zhttr7lAKfWGUup4m34YcA2wgx0duBV42Z72kVLqEb8MZdge+EhrPcdzv17LUQVlcGOl1D9smXpIKXWZ8gwDKqW+qJR60ubzeaXULr0JppQao5S6y+Z7obJek/sqd2WuMVoplVVmhOVVpdQRnn1nKKXuVErdopT6hBWr7B/z5yt0wrK7DsmG+k3ga5iXbUuMLf1sTMtGAxsBw4BOYNc+rrMLMKeK+y4AUr7zXYz9dgJj290BrGH334RZwDXCyvQKcJjddzTwEmal6pqYISMNOHb/3ZjhtOEYX0fPAkf1ItfPgBnAFhhXChMwvbA1gQ+BQzBeDr5lt9fSK+zcD7e/f4Cxw98Es0L5LuBmu28jK9tNVp6hnntPp4wNvXyiLx/29xnALb7n+CdML34CsAzY0nus3TcNuAFo7eUel9n3Zz1b/nbEOJLcHFiMGa5KAD+379UgTKP1P8DpdnsT4HVgD3vN7wFPeO7RLa9TYb5/CEzzpfVajioog08Bv7eyfhn4xPNfrgcsxJT5FpvfhcA6ZeRqxaznuMjKMQT4st1XSbnrludx4HJ7/jaY+mg3z7MrYpxstnSXUeDzwAd1ff+iLgADKSzAacC5GLcAD2IqzG5lsp79/bk+rrML0AV85PsM7+X4ovd69vwl3pcd447gi/YFWobH9TNmSOgx+/sR4GjPvq93vziY7v0yelba3wIe7UWul4F9yqQfAjzrS3sK+J79/RgrlMnDwLGe47aw+XU8L3XJYi/MwqfvRv1OyKe0fNjfZ1CqTNb3HPsscJDn2KyttP6IjcBa5vot9r2fUGbfL4Hbfce+Y8vK9sDbvuP/DzPHAbUrk18Af/Vs91mO+imDG2AaisM8+2/x/JcnYyt9z/77gUPLyLUDpuIvyUeF5c7BKLxOYITn2HMx/rW6n90/yly/Heis5/vXENYLA+BmjI+hjSkd4voQoyjaMK2P3pirtV6/j/3+a47wpS3UxhNpNx2YFsbamBbNW559b7HCe+doenr29B63IaZVN0+tcIrX4jveyxjMSlc/o33X9cvQ17FvsUKxdVPu/iMwCliID/M9v7vf126+iHn3vqVtbVSGtTGt437fOa11l1JqNuadKwKjlVLe96UV+GfVOSiPv3z2V476KoOjMS36Dk/abFb4vNoQ+IZSam/P/gSmd+NnDPCWr57w3qe/cueV51Pfsd7gWr2Vz4/LpIdGHOdM0Fq/hZmI3wvTPfTu68C0wvcP8JbTMd34SngfU3i88wkbYFppYNyBj/Ht62Y2pkW1ttZ6dftZVWs9tpd7zQY2LZM+13d/vwx9HdvdMvPGvuhRuSgzEb8ZpgsvNAcPYFq8Dyul/BVaN+9jYnH0+84pU4uPwbxzs4E3PO/06lrrEVrroKL8+ctnf+WorzI4D1hTKTXMk+Y9djamZ+LNy3CtdTlT3NnABqq8iW8l5a77uDWVUiN8x3rLcjnlvyV1Lp+xVCaWw4Cv6hUWIF5+DnxPKfUzZW3UlVITlFJ/HeC97sU4yusXrXUncDtwjlJqhJ2kPpEVlia3A8crpdZXJszpKZ5z52EK9QXKhDltUUptqpTq7d7XAL9WSrUrw3ib33uBzZVSByvj6O9AjE+ecrEUbgV+YicdVwF+g4lIV6411c12GOsbf+9HiDFa699hoiE+rHzm93Z/F3AdcKGdFG5VSu2gjDXV7cBEpdRuypj2noSp0J/EDKl9opQ62U7gtyqltlZKpQIS/VlgdaXUelbO/spRX2XwLeDfwBlKqUHKWIb+f3v37xpFEIZx/PtaiGCnTWJtLViKhWARIeSwFLn8AxbpxMImhWK0kUCaQDSFaJHKzkJtRLFQUOy0MCkiFpKLfZrX4hm5I7l1Tza5H/B84Jrbub295WbfnZl3ZntbIU+BVkRcKb/jRCghp18vxwcUnO5HxMlS9mLZNlC9y8xtdA6XyufPoWvfs5pzcglldA3NxAaTzPyeFatuZuZ74HJ5bUbELsq9ftFT7EwcnGdS1Zp5AsxGyVoZwAIajNwE3qEKul62raE+1i/AJ/a1rFCm2nG0ON9v9IS46YrveYgqxks0SPgY9RN3gDlUoTsouM5l5k6ffazT7TbcQneedQ/MaQOrNWVsAmXmHTR4/ToiTvUpchMlfXxEy7k/AI5l5jdgHlhBLZgW0MrMvXKD1UKDx1tl+yO0JPxAQlli7Ypj3kNJA/M9b/+rHtXVwTYa7+gAd4ENFBj/XtyvArfReMg2SoQ5cC3t+d1n0Wq9P4BrZfP/1LvraBzlJ/AcWMzMVxVlCU3cnKX7lMmh8EKPA4qIe8CvzFwe9bGMUmgi1BvgfHqCmI2J0MTit+h/eajzwSJiA/iamYuHud+jEhEL6KmOt4b6vQ4mZmZdpfttF7UYZlBL7UJmfh7pgY25Sc3mMjM7KlOo6+s06pq64UBSzy0TMzNrbGIH4M3MbHw4mJiZWWMOJmZm1piDiZmZNeZgYmZmjTmYmJlZY38AZf2HaopRjBEAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -182,7 +184,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD+CAYAAAD/AehRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZwcdZ3/8denu2tykJAQwrmQhJuwERixBSRyiOCoodEVRHBXcd1lXXQFddcfIiq6CyvCgiwosipyiMqhQoM4cgqEs5GBcISbhPsSEsgxmeru7++Pqkk6M1UzfU93z/v5ePSju+v8TE/XfOZ7ljnnEBERqUVirAMQEZH2p2QiIiI1UzIREZGaKZmIiEjNlExERKRmqbEOYKwUX312tlvx5l7OXzMX3AZgK82bsNimzLg7sdk2S8c6PhGRdmLjrWtwYcmi+W7V8uPx+xdQLEwYtkEi2Y838VqbPO3s5JxdF45BiCIibWfcJBO3anmq8PziU1n99nG4YteoO1higMkbnp3cau6JNnlavgkhioi0rXGRTNzqFV5h6YOXsvqdwyveedLUK5Kz5h2lhCIiEm9cNMAXnnv4lKoSCcDqdw4vPL/41DqHJCLSUTq+ZFJYsmi+W/bKTWVVbcWxxIBN3/xAtaGIiETr+JKJW7W8vDaSEQ9S7HKrlh9Xp5BERDpORyeT4qvPzsbvP2To8sXPPMcOC46mWCwG2xWLfPjYE7nk2hvjD+b3Lyi++uzshgUrItLGOjqZuBVv7hXV/XfutrPYac7W/OH2ewE46dwL2XH2VvzDgg/GH6xYmOhWvLlnw4IVEWljHT1oMRiQGO24T3+Msy+9Cj+f584HHuWG879f0/FERMazji6ZBCPbox209x688NobnHTOhfz6tBPxvHLyavzxRETGs44umYCtHGnt3rvOZfedt2OLTWYw2KvNzKo+nojIeNXRJRPzJiweaf3iZ55jtx23DbY1w8xwxQKukA+eXZHSrtOjHU9EZLzq6JKJTZlxt1vxZj/FwsSo9Y8+s5R5288ZslMCij6UDL9xGCQSBbf8tXnFXPYt4CHgVS+d6exBOiIiZeroZJLYbJulxb++cC1rVh42dN3zr7zO9KlTmDJ50nrLzSxIHqXZBAfFQhIK3ypZ+Iafyz4EPEyQXK7z0pkXG/BjiIi0PI2Aj+CKBSgWKjnNEqDbS2eWVRqfiEgn6Og2E4DknF0XMmnDsyvaySr6WPLAkUokIjKedXwyAUhuPfdEJk29otztzayShPJNL525u7rIREQ6w7hIJjZ5Wj45a95RTJ5+OpYYKG+nsj6aVcBVtcQmItIJOr7NZKjCkkXz3erlxzHQvyCulxcQdAku+OUcciXwReBi9e4SkfFq3CWTQeE94Pd0A/3z6H/n34FJQ7dxhTy4YrmH/A3wr2o7EZHxaNwmk1L5vt5zgC8NXe5cEQoV3WBxKXCUl87cWa/YRETawbhoMynDxVELrbJeXQCzgdv9XPbbfi7b0WN4RERKKZkE7iMYKzKcJUrrud4CvgWsGeFYCeC7wC1+Lqv7n4jIuKBkAqS6exxwTeTKRKJ0VPvnvHTmv4A08Mgoh50PPOTnsp/3c9mRZo8UEWl7SibrZKMX26ZAATjHS2euBvDSmYcIEsqPRznmVOBnwHV+LrtV3SIVEWkxaoAP5ft6u4DXgQ2HrnOF/E9xxS976Uz/0HV+LpsBLgA2HuUUy4HjUBdiEelAKpmEUt09A8CfotZZMkVUIgHw0pkssCtw0yinmAZcCFzt57Jb1BCqiEjLUTJZX3S7CRyS7+uN/ay8dOYl4GDg/wGjjXQ8BHjEz2WPUluKiHQKJZP1XQdEjVLcHNhjpB29dKbopTM/AN4DPDDKeTYCLgV+6+eym1UTqIhIK1EyKZHq7vkrcEfM6kPKOYaXziwC3gucTDCj8Eg+TlBK+WS5MYqItCIlk+Fiq7rKPYCXzvheOvNdYE+CG2eNZGPgMj+XvczPZWeWew4RkVaiZDJcXDLZPd/XO6uSA3npzP0EXYhPIehePJJPEpRSPl7JOUREWoGSyXCPA0/FrFtQ6cG8dGaNl86cBOwNLB5l802B3/m57C/9XHZGpecSERkrSiZDhKPhYwYwll/VNZSXzuSAdwM/ILqRv9SngUfV40tE2oUGLUbI9/XuD9wSsWoA2DjV3bOiluP7uezeBGNOdixj85uBL3rpzGO1nFNEpJFUMol2BxB1X5IugvEkNfHSmbuA3YEzgdGy+QeARX4ue4qfy06u9dwiIo2gZBIh1d3jA3+MWV11VVcpL51Z7aUzXwP2BZ4ebXPgRIIG+orbbUREGk3JJF5cu8lH8329yXqdxEtnFgK7AeeUsfkc4Bo/l/29n8tW1LNMRKSR1GYSI9/XO51g4seom1y9L9Xdc1e9z+nnsvsC5wG7lLH5KoL7ppzlpTNl3axeRKRRVDKJkeruWQbcHrO6LlVdQ3npzG1AN8EcX6tG2XwycBrwQJiERETGjJLJyOIGMO7TqBN66cxAOMfXLsBVZeyyC3Crn8te5OeymzYqLhGRkaiaawT5vt55RE+HsgqYluruGW3urZqFDe7nELSXjGYZ8A3gp146M9qIexGRulHJZGSLgagxJZMpr12jZl46cy3wt8CpjD69/XSCNpc7/Vw23ejYREQGKZmMINXdUwDui1n93mbF4aUzq7x05psEN+GKGkw51HuBe/1c9td+LrtNY6MTEVEyKcc9Mcv3bGoUQDgK/kCC6VZeLWOXTwGP+bnsGX4uu1FDgxORcU3JZHT3xixvWsmklJfOOC+d+RWwM3Auo4+g7wK+Bjzt57Jf9XPZCY2OUUTGHzXAjyLf17sV8HzEqiKwYaq7Z2WTQ1qPn8vuAfyE4A6P5XiWoJH+ci+d0S9fROpCJZPRvQi8HLE8QTAL8Jjy0pm/AHsBxxI9n9hQ2wC/Ae72c9n3NzI2ERk/lExGEU5J3zLtJlG8dKbgpTPnAdsDZzF6ry8Iqulu83PZq/xcdqeGBigiHU/JpDwt1W4Sx0tn/uqlM18F5gKXl7nboQQTSP5Igx5FpFpKJuVpi2QyyEtnnvbSmSMIqr8WlrFLkqCa7Ck/lz1RU92LSKXUAF+GfF/vNOAtIOquh5ununvK6aY7JsI7NR5KcIfHHcrc7UXgv4BfeOnMmkbFJiKdQ8mkTPm+3kcJqo+GyqS6e+Lm8GoZfi7rAccA3wE2KXO3F4DvAz/30pn+RsUmIu1P1Vzla6uqrqG8dMb30pkfETTSnwqUkxy2IhjL8rSfy37Zz2UnNTJGEWlfSibla+tkMshLZ94Op2bZgeA+9OUUTbcEzgae8XPZr6hNRUSGUjVXmfJ9vXsQPU/XMmDjVHdPsckh1YWfy+4GnA4cVMFur4X7nOelM2M6aFNEWoOSSZnyfb1dwNtA1HQkO6W6e55ockh15eeyHyJoH9m9gt3eAM4AfuylM+80JDARaQuq5ipTqrtnAOiLWd1WVV1RvHTmTwQj+g8F7i9zt5kECWhJ2KV4w0bFJyKtTcmkMi09Er5W4SSSWYJ5vhYAuTJ3nQGcQpBUvuXnstMbFaOItCYlk8rENcKP+Rxd9RQmlT8QJMkPA3eXuetGwPcIksr3/Vx260bFKCKtRW0mFcj39e4CPBKx6qVUd8/fNDueZgkHPn6QYIzKPhXsWgCuBM7y0pm4Up2IdAAlkwrk+3o3IPo2vg6YlOru6ejR4mFSOYAgqexb4e53Az8EfuelM+VMRCkibUTJpEL5vt7XiB5BvkOqu+epZsczVvxcdj/g28AHKtz1BYKBkD/10pk36x6YiIwJtZlUbmnM8tlNjWKMeenMrV46cyDwfuCGCnbdiqAH2At+Lnuen8vu3JAARaSplEwqp2RSwktnFnrpzMHA+4DrKth1EvAFYLGfy/7Rz2U/FFajiUgbUjKp3JKY5eMymQzy0pm7vHTmowSTYZ4HrK5g9x6gl+C+KsdouhaR9qNkUrm4ksmcZgbRqrx05jEvnTmWoDrrBII2knLNBc4Hnvdz2dP9XDZqlmYRaUFqgK9Qvq/3ECAbserWVHfP/k0Op+WFU9//HXA8wc26KnUXcAFwuZfOvF3P2ESkfpRMKpTv690VeDBi1ZJUd882zY6nnfi57F4ESeUwgrs7VmIVcAXwc2Chl87oiyvSQpRMKhTedXFZxKoCMDHV3ZNvckhtJxwZ/0WCm3VtVMUhniIorVzspTMv1jM2EamOkkkV8n29bwFR80/NTnX3PNfseNqVn8tuAPwDQWllpyoOUSRouL8AuMZLZwbqGJ6IVEAN8NVR9+A68NKZlV468xNgF4I5wK6v8BAJ4CMEU7a86OeyZ/q57Lw6hykiZVDJpAr5vt6rgUzEqs+kunsuaXY8ncTPZbcDjg4fW1V5mBzwC+BKL515vT6RichIVDKpzpKY5SqZ1MhLZ5720plvEXS17iFodK90Lq808GPgZT+XvdHPZb/g57Kb1jdSESmlkkkV8n29XwX+J2LVz1LdPf/c7Hg6nZ/LzgSOAj4P7FrlYYrArQRVYr/z0plX6hSeiKBkUpV8X+8nCP4oDXVjqrunknupSwXC6Va6CZLKUUR3giiHA24nKPX81ktnXq5PhCLjl5JJFfJ9vXsA90WsejLV3bNjs+MZj/xcdhLwMeAfCe61Ui0H3MG6xKKuxiJVUDKpQr6vdyYQ1bC7Bpic6u4pNjmkcc3PZecAnwU+R+3tVneyLrE8X+OxRMYNJZMq5Pt6DXgH2CBi9Zap7h5Vm4wBP5dNENxf5VPAxwnuTV+Le4E/An8C7vXSmUKNxxPpWEomVcr39T4ORFVpvSvV3fNws+OR9YVzgu1PMHXL3wEzazzkW8CNBIMk/6TqMJH1KZlUKd/X2wfsHrEqneruiWpPkTHi57IpYD/WJZZ6dBN+hDCxALd76Ux/HY4p0raUTKqU7+u9E9g7YtW+qe6e25sdj5THz2WTBPevPwz4BLBZJfs/sfRFTrvwSjL77cmh+6+dBHk18GfWJZcnNBGljDdKJlXK9/XeDBwQsergVHdPJbexlTESJpb5rEssW5Sz361/eYhl76wsTSZDLWVdYrnZS2eW1yFckZaWGusA2lhctcbEpkYhVQsb1G8FbvVz2eOAfQgSy2HAljUcejbwL+Gj6OeyDxF0P76DoLfYUpVcpNMomVQv7ra0k5oahdSFl84UCQYy3u7nsl8hGGn/IYIpXfYBPIBX3niL3918J6v7B9h9p22ZvcWozS8JYLfwcWy47CU/lx1MLHcAD3jpTKVTxoi0FFVzVSnf13spwSjsoT6b6u65uNnxSOP4uexUgirNweSybZ1PsZqgG/JggrnLS2ferPM5RBpKJZPqxZVMVM3VYbx05h2CWzVnAfxcdnvWJZYDiB5vVIlJBL3N9htc4Oeyj7Ku5HIn8FRYepIOUFzx1mw3sHovV8zPxbkNMFtpidRi65p0d2LKRnG3uGhpKplUKd/Xey7B3QKHOj7V3XN2s+ORseHnshMIqsE+FD52a9CpVgIPAYtKHg956UzUXT+lRRWWvTLf+WuOp+AvwLkJwzYw6yeRuta6Jp6dnL75wjEIsWpKJlXK9/WeAXwtYtUJ3rs//HvgROAq59xVzY1MxpKfy24BHExQatkf2LzBp3yOILE8yLok85SXzuj20S3E+f2pwvLXT8Vfcxy4rtH3sAG8CWcnp21yonkT2+J3qWqu6sVWcznnnjCzC6l+VltpU+EMxBcBF4WzHM8hKLm8L3x+F2B1POWs8LGgZFm/n8s+wpAk46Uzf63jeaVMzl/jFZa9ein5gcMr2KsLv/8/Cstem5OcvulR7ZBQlEyqF9c1WL25BICw+++z4eOXAH4uOw3YkyCx7APsRe1tLkNNBPYIH2v5uewbwNPAMxGPFzX3WGMUlr92SmWJpER+zeGF5a8vSc3c+ut1DqvulEyqFzvOxMw2JxirMMnM+pxzbdmgJvUXDmC8PnwMTvXyLtYvvcxq0Olnho89I9b5fi67hCCxDEs4YScEqVBh2Svzg6qtGvhrjisseyXb6m0oSibVG6ma6xXgS80MRtpT2LbRFz7OBfBz2a1Yl1j2Ikg2jS7xesAO4WOYsFQzmFxeBl4DXg2f1z68dCbuuhiX3EB/mW0kIx6lKzgOSiYdStVc0hBeOvMCcHn4GJz2ZTuCgZSlj22aGNZgqea9I23k57LvEJ1ohiUegts4DHTCbADh72gyQZXlFGAjJm04l0lTDqVQgOLQR57zr72dh596lnP/+2QAvn3aWSx94UUuOueM4Sco5hcUV7w1u5W7Das3V5Xyfb1HAZdGrLo81d1zRLPjkfEnbH+Zx/AkM2Us46pQAVhF0PV58DH0/WjLBtt6bJTn0dZ5BMlgMCFsUOb7KVQxvmzV5I2Zd9Bh9N18LXfc+xe+84Mfcnv2MiZNij6UTdjgiOSMLS+v9DzNopJJ9TSdioypsP1lcM4vYO0NwuYwPMFsT317kdVLEpgaPsaVyRO6OOJjC/jW98/kT7fcxh9/c2FsIgFwxfzcJoZXMSWT6mmiR2k54Sj5wbaNtWOc/Fy2i2ACym1LHtuVPLdTaaYzFPIc/alP8K79PszvfnEe280Zpd+Fc/Xu9VdXSibV03Qq0ja8dGYAeDJ8rCccD7Mx6yea0mSzNa1ZqmlvxQKnnPUjNtl4BvlCGcNIzFY2PqjqKZlUbyBm+fApEkRaWNgA/kb4uHfo+pJSzXbA3xDcqXKz8HnTkvczCWZJljKcdcGv6F+zhl+ffzbfPeN/+fhHPjTi9pZILW5SaFVRMqleXLXAqqZGIdJgI5VqSoU9mmYQnWiGvp9B0HjdSX+DBjsErADexhIrmbjBniSSSRJJSKQInpPccs99XJS9gYXXXs7UKVN4+50VPPDwo+w+b5foI5v1W9eke5r4s1Ssk36RzbZhzHLdVU/GpXAE/evhoyxhqae0l9TkIe9HWzaZ9avg3JDnuNdRywqsSwYrK3i9ElgVNatz/rUlV1DwDytd9twLL/GFE77H1Zf8H1OnBP+T/ts/fZb//dlFXPDD06I+Jkikrm3lbsGgrsFVy/f1fh74WcSqS1LdPZ9pdjwi0noKy16Z71avuKm2gYs2YJOmHNjqI+BVv1k9lUxEZETJ6ZsvxJtQ2y0pvAltMR29kkn1psUsf7upUYhIS0tO2+REUl1XVLVzasIVyWmbnFjnkBpCyaR6cclEJRMRWcu8ifnk9M2Owpt4OlhcL9Chew3gTTy9XaafByWTWqiaS0TKYt7EfGrm1l+3SVMOJNV1JWbRg57N+kl6V9qkKQemZm799XZJJKDeXLVQNZeIVCRs+1gY3gN+z4h7wN/T6r224iiZVE8lExGpSpAw2jNpxFE1V/VUMhERCSmZVE8lExGRkJJJ9dSbS0QkpGRSPVVziYiElEyqkO/rTRHMCRTlnWbGIiLSCpRMqhPXXrIi1d1TiFknItKxlEyqo8Z3EZESSibVUeO7iEgJJZPqqPFdRKSEkkl1VDIRESmhZFKdOTHL32hmECIirULJpDo7xix/oqlRiIi0CCWT6uwQs/zJpkYhItIilEyqo5KJiEgJJZMK5ft6JwCzY1arZCIi45KSSeW2JfpzezXV3aOuwSIyLimZVC6uikulEhEZt5RMKhfX+K72EhEZt5RMKqfGdxGRIZRMKqduwSIiQyiZVE4lExGRIZRMKpDv650CbBmz+ulmxiIi0kqUTCqzfczy51LdPaubGomISAtRMqmM2ktERCIomVRG7SUiIhGUTCqjMSYiIhGUTCqj0e8iIhGUTCqjkomISAQlkzLl+3o3AmZGrCoAS5objYhIa1EyKV86Zvmzqe4ev6mRiIi0GCWT8r0/Zvl9TY1CRKQFKZmUb37M8oVNjUJEpAUpmZQh39fbBewVs/r2ZsYiItKKlEzK825gYsTy5cDDTY5FRKTlKJmUJ6695I5Ud0+xqZGIiLQgJZPyxLWXqIpLRAQlk1Hl+3oTqPFdRGRESiaj2xmYEbF8DZBrciwiIi1JyWR0ce0luVR3z5qmRiIi0qKUTEan9hIRkVEomYwurmSi9hIRkZCSyQjyfb1bA7MjVjngziaHIyLSspRMRhZXxfVQqrtnWVMjERFpYUomI1N7iYhIGZRMRqb2EhGRMiiZxAhvhjUvZrWSiYhICSWTeO8DLGL5klR3zwvNDkZEpJUpmcSLq+JSe4mIyBBKJvEOilmuKi4RkSGUTCLk+3q3IriHSZTbmhmLiEg7UDKJdkjM8qeBx5sZiIhIO1AyiZaJWX5NqrvHNTUSEZE2oGQyRL6vdyrwgZjV2WbGIiLSLpRMhjsI6IpYvgw1vouIRFIyGS6uiuu6VHeP39RIRETahJJJiXxfbxJYELP6mmbGIiLSTlJjHcBYyvf1ngm8BPw21d3zLLA3sHHUpkBvM2MTEWkn4zqZANOBrwCn5/t67wdWxmx3q6acFxGJN96TyZMlr+MGKYKquERERjTe20yeHH0TAHbJ9/V25/t6oyZ+FBEZ98y58TsGL9/XuyvwYAW7PAv8FjhbMweLiKwz3ksmT1W4/TbAjsBrDYhFRKRtjetkkuruWQW8WMEuVwOHp7p7BhoUkohIWxrXyST0RJnbXQV8UolERGS4cdubq/jqs7Pdijf3IpGcTrEw2uZXAUcokYiIRBt3yaSwZNF8t2r58fj9CygWJpSxy++BTymRiIjEGze9udyq5anC84tPZfXbx+GKURM5DpdIPmlTN94tue27Vzc4PBGRtjYu2kzc6hVe4bmHf8WqZf9RdiIBKBZ2cAOrL3Krlo+7EpyISCXGRTIpPPfwKax+5/Cqdl79zuGF5xefWueQREQ6SsdXcxWWLJrvlr1yU0UlkqEsMWDTNz8wOWdX3c9ERCRCx5dM3Krl5beRxB6k2OVWLT+uTiGJiHScji6ZFF99dnbxlacej+q19fnvnMkDjz+99v2rf32LAd/ntT9fEX2wRLI/sfn2Oyc222ZpwwIWEWlTHd2w7Fa8uVdc99+ff/era18/++IrHPD5f+e8k74Wf7BiYaJb8eaeKJmIiAzT0dVczl8zd7Rt/rrsbRZ86SRO/KejOGS/vWo+nojIeNTRyQTcBiOtXd2/hkOP+w6HHbQvxxz2kZqPJyIyXnV4MrG4OydSKBQ46oT/Zqc5W/PdYz9T8/FERMazjk4m5k1YHLfuS//9I/x8gfO/VX4nrZGOJyIynnV0A7xNmXG3W/FmP8XCxNLl/3n+pdy/+Clu+ulppFLJ8g6WSPbblBn3NCJOEZF219FdgwHyj95+BWtWHjb4fslLr7LDgqOZs+VmbDhlXRPITrO34lenfSP+QBM2uDK1y/urG0UvItLhOj6ZaAS8iEjjdXSbCUByzq4LmbTh2TUdZNKGZyuRiIjE6/hkApDceu6JTJoaM7R9FJOmXpHceu6JdQ5JRKSjjItkYpOn5ZOz5h3F5OmnY4nybnJliQE2mH56cta8o2zytHyDQxQRaWsd32YyVGHJovlu9fLjGOhfMLSXFwCJZD/exGtt8jRVbYmIlGncJZNB4T3g9wymSHEbgK00b8JimzLjHk3mKCJSmXGbTEREpH7GRZuJiIg01ogj4Cfs8c/OEkkSqS4smSSZ6iJ47wXPXvDeEqXrutZbl0ylsISRTCbWf04lsATRy81Ipmy95V2pBMmEkUwYE8LXXalk+JwgacFzqmTbYc/JBAkzvKSRNMNLGIlE+GyGl0yQNPCSCRJGsE0yXJdIkExAMmEkMJIJsHCbwW3Xf0/wcxjB+4RhhM/OYcU8uCIUC5grhq/zUCyG60q3yQfbFArgimuXu7wPxQLOH4BiEZcf8uwPBOsHtxt8LhQg7+OKBYp+Hlcorn0u+P7a98VCkeJAHlcMnovFIsUBf937tfs5Cn6BYsFRHAieC34BV3DhMYoUC0UKfjE4x0ARVwyfw/dF5xgoOgprnxnyvG6576K2C17/xC2xJl07NdP1peurk64vlUxERKRmSiYiIlIzJRMREamZkomIiNRMyURERGqmZCIiIjVTMhERkZopmYiISM2UTEREpGZKJiIiUjMlExERqZmSiYiI1EzJREREaqZkIiIiNVMyERGRmimZiIhIzRp+214zO8Y5938NPUmZFEvrxgGtFUu7aKXPTLG0bhzQ+FiaUTI5pgnnKJdiGa5V4oDWiqVdtNJnpliGa5U4oMGxqJpLRERqpmQiIiI1a0YyaYn6wpBiGa5V4oDWiqVdtNJnpliGa5U4oMGxNLwBXkREOp+quUREpGZKJiIiUrOGJBMzm2FmN5jZk+HzRjHb/cDMHjGzxWb2v2ZmYxFHuO2GZvaimZ1bx/P3mNnjZvaUmZ0QsX6CmV0Wrr/HzObU69yVxlKy3WFm5szsPWMRh5nNMrNbzKzPzBaZ2UcaEUc70/W19pi6viqMo6HXl3Ou7g/gB8AJ4esTgNMitnkfcAeQDB93Afs3O46Sbc8GfgWcW6dzJ4GngW2BLuBBYJch2xwL/CR8/Sngsgb9PkaNJdxuKnAbcDfwnrGIg6CR8F/D17sASxrxmbTzQ9eXrq8aPpOGXV+NquY6FLgofH0R8LGIbRwwMfyhJwAe8OoYxIGZ7QFsBlxfx3O/F3jKOfeMc24A+E0YT1x8VwIH1vu/xwpiAfhPgj8Q/Q2Iodw4HLBh+Hoa8FKDYmlnur50fVUbR8Our0Ylk82ccy8DhM+bDt3AOXcXcAvwcvj4k3NucbPjMLME8D/Af9T53H8DPF/y/oVwWeQ2zrk8sBzYuM5xlBWLmXUDWzvnrm3A+cuOAzgZ+HszewG4Dvi3BsbTrnR96fqqKg4aeH2lqt3RzG4ENo9Y9c0y998emAtsFS66wcz2dc7d1sw4CIrC1znnnq93lXLEsqH9sMvZpuGxhBf8WcDRDTh32XGEjgQudM79j5ntDVxiZvOcc8UGx9ZSdH2NStdXhXGEGnZ9VZ1MnHMfjFtnZq+a2RbOuZfNbAvgtYjNPg7c7ZxbEe7zR2AvgjrFZsaxN/B+MzsWmAJ0mdkK51xsI1qZXgC2Lnm/FcOLlIPbvGBmKYJi55s1nreaWKYC84A/hxf85kDWzDLOufuaGAfA54EeCDHrr5UAAAhzSURBVP67NrOJwEyif3cdS9fXqHR9VR4HNPD6alQ1Vxb4bPj6s8DVEds8B+xnZikz84D9gHoXw0eNwzn3aefcLOfcHODfgYvr8EUHyAE7mNk2ZtZF0ACYHSG+w4CbXdgyVmcjxuKcW+6cm+mcmxN+DncD9f6ijxpH6DngQAAzm0tQ7/96neNod7q+dH1VHEeocddXvXsUhL+rjYGbgCfD5xnh8vcAPyvpeXA+wRf8UeDMsYhjyPZHU6feJuHxPgI8QdDD4pvhsu8RfJEIf5FXAE8B9wLbNuL3UU4sQ7b9Mw3obVLmZ7ILQS+kB4EHgIMb9Zm060PXV9nfJV1fwz+Thl1fmk5FRERqphHwIiJSMyUTERGpWcclk3CqgktK3qfM7HUzu7Zk2YfN7L5wmonHzOyMcPnJ4ZQPD5Q8pkecY4vS49UY79H1nGIi4vh/rnTqBjP7jZnt0KiYZOyZ2WAvry3N7Mpyt2+0cAqUG8Nr7wgze78FU8I8YGaTRtn3SjPbtoJz7V+v67gS1ZzXzN5lZhc2KKS66LhkAqwE5pV88Q4CXhxcaWbzgHOBv3fOzSXosvdMyf5nOed2L3ksizjHV4GfNib8sWVmSeA84OtjHYs0nnPuJefcYWMdR4luwAuvvcuATwNnhO9Xx+1kZn8LJJ1zz8Rt067MLOWcewjYysxmjXU8cToxmQD8Efho+PpI4Ncl674OnOKcewyCkbHOuR9XePxPAL2wtmTxOzPrtWDCux8MbmRmR5rZQ2b2sJmdVrL8c2b2hJndCuxTsnwTM/utmeXCxz4MYWZJMzsjPO4iM/u3cPmBFkze9pCZXWBmEyL2jYtnhZl9z8zuIRgXcDvwwbBvvnQwM5tjZg+Hr2O/yyXbzzSzu8zsoxHrPhN+Jx8crB0ws9lmdlO4/KbBP4ZR33Uz2xT4JbB7WBL5F+CTwLfN7NJRfpRPU9I12cwODuO838yuMLMp4fKesDZiIfB3JdtvYsFklfeb2flmttTMZobr/t7M7g1jOj/8h2voz542szvDn/1eM5tqZhPN7BfhNddnZgdE7DfDzK4KP5+7zWzXcPnJZvZ/ZnY9cHG4+TUE3X1bU6O6yo3VA1gB7EowF89Egu5v+wPXhuvvB3aL2fdkglLMA+HjlohttgH+UvL+aIKSzbTwfEsJBg5tSdCnexOCwaE3E8xdtEXJ8i6Cbnrnhsf6FTA/fD0LWBxx/n8FfgukwvczwvM+D+wYLrsYON6VdEOMiyfcxgGfHHKeG4A9xvr3qUdjHsCK8HkO8HD4OvK7PLg9wfxa9wAHRRzvb4HHgZnh+8FuwtcAnw1f/yNwVfg68rteeq2G7y8EDivj57kVeFf4eibB4MwNwvf/D/h2yXWyA8Fo8ctL/i6cC3wjfN0TXhMzCWYRuIagtATwY+AzQ87dFX5u6fD9huE19jXgF+GyncPrbyLr/z06B/hO+PoDwAPh65OBvwCTSs6zD3DNWH934h4d+Z+nc26RBdNNH0kw/0wlznLOnTHC+i0YPsjnJufccgAzexSYTdAH/8/OudfD5ZcC+4bbly6/DNgxXP5BYBdbN+3EhmY21Tn3Tsm5PkgwE2o+/FnfNLPdgGedc0+E21wEfBH4Ycl+6Zh4rgIKBAmq1GsECegvI3wW0nmivsvPE0wUeRPwRefcrRH7fQC40jn3BgTfy3D53qwrAVxCMNEhxHzXa4i79Lrci3A8RXj8LoJZk3cmuE6eDH++XwLHhPvMJ5g1AOdcr5m9FS4/ENgDyIXHmsTw0eI7AS8753Lh/m+Hx59PkCxwzj1mZktZd60Pmk9Q04Fz7mYz29jMpoXrsm79qr3Ba7IldWQyCWWBMwj+Cyid3O0Rgi/Hg1UedzXBfxel1pS8LhB8riNNRBQ3uCcB7O1GqBsOj1vOHERR+8Xpd84VhiybSPCzyvgS9V0GyBP8Y/EhglLAUFHfyyiD20R+1636+btKr0sDbnDOHTnk2LuPEGPciQ24yDn3jRHOHfezV3tdDh5r5ZDlLX1NdmqbCcAFwPdc0HBV6nTgRDPbEYJJ2MzsqxUc9wmCqoHR3EMwncXMsI71SIKL8B5g//A/EA84vGSf64EvDb4Jv/xDXQ98YbA9w8xmAI8BcyyY3A/gHxh+wcfFE2dHgsQrAsEfuH8Edrbomz/dBHzSzDaGtd9LgDtZV8//aWBh+Lqc73olFgOD3/+7gX0Grwczmxxe748B25jZduF2pclmIUH7DGZ2MDB4o6+bgMPC9pzBNo7ZQ879GLClmaXDbaaG1+dtBD8z4flnEVQFlirdZn/gjcGSTYQdgYdH+RzGTMcmE+fcC865syOWLwKOB35tZosJfjlblGzyFVu/a/CcIfuvBJ4u+cMdd/6XgW8QTAP+IHC/c+7qcPnJBMXuGwnacAZ9GXhP2Bj3KPCFiEP/jKDudZGZPQgc5ZzrBz4HXGFmDwFF4CflxBMVu5ltBqwO9xEBICy9fgo4wIKJG0vXPQKcAtwafi/PDFd9GficmS0i+CfnuJLlo33XhzGzB2JW/YGgFoKwKvdogmt8EUFy2Tm8To4B/hA2wC8t2f+7wMFmdj/wYYJp+99xzj0KnARcHx7rBtb/e4EL7h1yBHBO+LPfQFCK+DGQDK/Jy4CjnXOlJT8I/ha8Jzz291k3l1iUA8KfsyVpOpUqmNnHCRqnTxrrWBrBzL4CvO2c+/lYxyJSDguGAtwC7BNRZVvO/hOAgnMub8HU7Oc552otLdVNGN+tBJ0W8mMdT5RObjNpGOfc7weL8x1qGUFjqUhbcM6tNrPvENwM6rkqDjELuNyCe48MAP9cz/jqYBbBLZJbMpGASiYiIlIHHdtmIiIizaNkIiIiNVMyERGRmimZiIhIzZRMRESkZv8fzImAjaTYo58AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD+CAYAAAD/AehRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZwcVbn/8c8zU50NwhISYPixRGBYo9BCIwhiEJBGoYVrFBAVcOEioKi4gBvLvV7Fi6DCZVGRVRYVhQalZdFAWAINdIhAIMEgEIiELYSQhHRPn98fpybpTLpnep1e5vt+verV1bWcenqma56pOqfOMeccIiIitehqdgAiItL+lExERKRmSiYiIlIzJRMREamZkomIiNRMyURERGqmZCIiIjVTMhERkZopmYiISM2UTEREpGZKJiIiUjMlExERqZmSiYiI1EzJREREahY0O4BmymVSY4H3AlFgXWAlMA+YGUTjrzQzNhGRdmIjcTyTXCa1G3AGEAeWA5FwyofvxwLPhtvcGETjuSaFKiLSFkZUMsllUusBVwAHAWMY+jbfUuA1IBFE47MbG52ISPsaMckkl0ntDNwOTMAnknI5YAVwYhCNX9GA0ERE2t6ISCa5TGobIA1sAFiVxSwHTgii8avqFpiISIfo+GSSy6TGAXOAzam99dpyYL8gGn+w5sBERDrISGga/H1gIvX5rGOBq3OZ1IhuBSciMlBHJ5NcJrU1cAowro7FbgacUMfyRETaXkcnE+DL1P9ZmnWA03OZVLV1LyIiHadjk0l4K+pY/PMj9bYesGcDyhURaUsdm0yAGEN8vjnzn6f3kGPJ5/MA5PN5Dj7xO1x9651DlT0O+ERdohQR6QCdnEx2ZYhbXDtuvSXbT96CP894CIDvXXgF2221OZ855IChyu4C9qpLlCIiHaCTWyXFKKPi/ZSjD+Pnv72JbC7H/bOe5I5Lf1xu+TvWFJ2ISAfp5CuTzcrZ6MC9dmPBolf53gVXcN053yESKTu/rlt9aCIinaWTr0zKTpR7vWdHdt1hG3omTaikfLXmEhEJdfKVyZJyN5wz/3l22W7rSstfWekOIiKdqpOTycNAtpwNn5z/HFO2nVxp+c9WuoOISKfq5GQyG1g21EYv/PsVNhi/LuuOG1tp+Q9XFZWISAfq5GRyP2V0Nb/FppOYe8vllZb9FnBbNUGJiHSijk0mQTS+GLgLPx5JvXUDNzWgXBGRttSxyST0M8q41VWhd4Drgmh8eZ3LFRFpW52eTO7ED4rVV8cyc8B36lieiEjb6+hkEkTjDvgC/mqiHt4Gvh1E44vqVJ6ISEfo+JEWAXKZ1BHAb6htXJNl+Er3T4RJCoBsOhkFUvix5d8A/gDcCtwXiSXerOF4IiJtY0QkE4BcJnUicC5+tMRKvQ3cBxwaRONrPKyYTSffxHdJP5ADHgPuAWYAMyKxxMtVHFtEpOWNmGQCkMukpgI34ge4Gl3BrtcDRwfReL5wYTadXAdYWkE5c/GJ5TbgT5FYIj/E9iIibWFEJROAXCY1Efg28CV8xfx4hu5na3YQje9SbEU2nVxGdVc7dwBxJRQR6QQjLpn0y2VS44GDgQ8Ae+OTykpgHvCxIrtsE0Tj8wcuzKaTJwAXVxnG/pFY4m9V7isi0jJGbDIZTC6TehjYbcDiU4No/Lxi22fTyd8D06o41MGRWCJVxX4iIi2lo5sG16DY0+2HDbL9icBrFR7jMfxzMCIibU/JpLg/FVm2Ty6T2rjYxpFY4hXglArKfxP4n0gskasmOBGRVqNkUtyTwDMDlhmQGGSfaym/88f1gRuy6eTvs+nkplXEJyLSUpRMiggfSix2dVLyVlcklnDACVTWVHga8GQ2nTw2m05q5EYRaVtKJqUVqzc5MGwFVlQklngeOK3E6lJdumwIXA78NZtOvquyEEVEWoOSSWkzgYFPrI8Cpg6x38X4p+UHuhf4yyD7HQg8nk0nv5ZNJ7vLDVJEpBUomZQQPu1+a5FVHxpsv/AhxM+z9pXITOAQ4Gjg1RK7jwPOA+7LppNTKgpYRKSJlEwGd1eRZYMmE4BILPE0cCjwIv4p+xuBH0ZiCReJJa4FdgJ+O0gR7wMezaaTZ2XTyUq6fRERaQo9tDiIXCa1KbCwyKqNg2j8lXLKyKaTYyKxxIoS6z4CXAJsMUgRc4CT9aS8iLQyJZMh5DKpJ/BXEoU+GUTjv69H+dl0cjzwI+CkITa9EfhGJJb4Vz2OKyJST7rNNbRiVwRD3uoqVySWeCsSS5wM7AM8NcimHwfmhLe+ahmXRUSk7pRMhtbQZNIvEkvcB0SBH+KHBi5mDPAD4KlsOvkJPZsiIq1Ct7mGkMukJuBbXw38w71FEI0vaMQxs+nke4BLgT2H2HQ68JVILPGPRsQhIlIuXZkMIYjGXwcyRVbt16hjRmKJ2fhu8Y8B/j3IplOBWdl08sJsOjmhUfGIiAxFyaQ8w3Krq1AklshHYomrgO2AnwDZEpt24Svv52XTyS/pgUcRaQYlk/IUTSa5TKrhdRZhBf23gSnAnwfZdAJwEfBINp3ct9FxiYgUUp1JGcL+uF4HggGrtg2i8X8OZyzZdPKjwPlA7xCb3gCcpqbEIjIcdGVShiAafwt4qMiqht7qKiYSS/wZf5XyLQbvofgIYG42nbxA3dyLSKMpmZRv2OtNSonEEisjscT/4utTrhpsU+Bk4J/ZdPJ/sunkhsMSoIiMOLrNVaZcJrUfayeURcCm4fgnTZNNJ/cELgB2H2LTxcA5wAWRWOLthgcmIiOGrkzK9wBr9wS8MWt3tTLsIrHETHznkJ/HJ7hSNsB33fJMNp08KZtOjhqO+ESk8ymZlCmIxlcA9xdZtdtwx1JM2JT4N/iK+TOBtwbZfFPgQuDpbDr5WTUnFpFaKZlUJl1k2XuGPYpBRGKJJZFY4ixga/zYKKVGeASYDFwJPJZNJw9T9ywiUi0lk8rMLrKspZJJv0gs8WokljgV2Bb4FX5clVJ2xo95PzObTu4/HPGJSGdRBXwFcpnUu1k7obwcROMt3/Q2m05uB5wFHFnG5n8H/ge4KxJL6AsiIkNSMqlALpMahX+2IzJg1aZBND5wvPiWlE0nd8X3TPyRMjZ/BPgx8KdILDHYlY2IjHBKJhXKZVKPsfatrQODaPzOZsRTrWw6+QH81cc+ZWw+D98/2NWRWGKwOhgRGaFUZ1K5tqk3GUwklpgB7Iu/Qpk1xOa9+HqX+dl08tRwdEgRkVWUTCrXEckEIBJLuEgscRu+efMRwNND7LIZcC7wfDad/K9sOjmp0TGKSHtQMqlcxySTfuEzKr/DP4D5HxRvAl1oA+B7wHNh319bNTpGEWltqjOpUC6T6gFeGrB4JbBOEI2XGm63rYTPm+wHnAYcWMYufcC1wE8iscTjjYxNRFqTkkmFwjFMFgETB6zaOYjGn2xCSA2VTSd3A74NTGPtoYuLSQH/B9ymFmAiI4eSSRVymdRdrN1j8FFBNH59M+IZDuFzKt/EDyU8sGl0Mc8BlwCXRWKJVxoZm4g0n+pMqtNx9SZDicQScyOxxBeBd+Er4QcbSwVgK3ynkguy6eQ12XTy/equRaRzKZlUZ8Qlk36RWOLFSCzxTWBLfCX8q0PsMgo4GrgPeDSbTn4xm06u0+AwRWSY6TZXFXKZ1G7AwwMWvxBE41s2I55myqaT44DjgK/jO5csxxLgCuDiSCzxVINCE5FhpGRShVwmNRZ/m2fgld164RC/I042newCDgJOBD5KeZX14AccuwhIRmKJbIPCE5EGUzKpUi6Teg5/q6fQ9kE0PrcZ8bSSbDo5GfhP4Aus3eqtlJeAy/Fdtgz18KSItBglkyrlMqkHgD0HLN4viManNyGclpRNJ0fjmxSfBOxVwa4PA1cD10diicFGjhSRFqFkUqVcJvVH4PABiz8VROPXNSOeVpdNJ6PAl/CV8ePK3K0P+Cs+sSQjscSyBoUnIjVSa67qDXwKHnzfVVJEJJbIRGKJ44H/B5zC0P2AAXTjO6K8Dvh3Np28PJtO7q9hhkVaj5JJ9ZRMqhCJJRZHYolfADsC+wM3MvgokP3GA8cCd+L7BDsnm06+u2GBikhFdJurSrlM6jjgNwMWXxdE459qRjztLJtObgocBXwGiFa4+2PANfj6lQX1jk1EyqNkUqVcJnUQvh+qQncH0fjUJoTTMbLp5M7Ap/F1K1tUuHsauBm4CXhSQw6LDB8lkyrlMqn34P8rLjQ3iMa3b0Y8nSZ8bmVffGL5BLBehUX8k9WJ5f5KOp00s/cBJwPvBSYA1zjnvlnh8UVGFCWTKuUyqYnAwA4MlwbRuEYhrLNsOjkWOBSfWA4GggqLeBW4BZ9c7hiqVZiZ3X/22WfvlUgkCIKAKVOmvOacK/d5GZERScmkSmFX9O+wdg+6I/Yp+OEQju54BD6xvK+KIpYDt+MTy63FejQ2s7/sscceB7/22mvMnDmTSZMmKZmIDEHJpAZ6Cr65wm7xjwY+DuxcRRF5fAeUN+MTzOORWMKZ2SRgn/Hjx/9x/vz5SiZSldzCeRFgF/wDu1OAMcAb+Lq9B4Bng57ejvkDrGRSgxJPwU8NovG7mxHPSJZNJ7cFPhZOe1Nds/dF+L7C/nbrPQ89eMxZv3hMyUQqlVs4bwN8H3XfxH8PI8DYcLXD9+sXAPOBM4Cbgp7eth9ITs+Z1GZhkWV61qQJIrHEM5FY4qeRWGJfYFPgc/grjuUVFLMxcCTwy33fO2VV44rRkcjobDrZU9eApSPlFs47CHgW+C6wAb7hyNiCTQz/zNRY/NX0FcBDuYXzNh/eSOuv0opMWZMeXGxBYT3I5cDlYRf5B+KvWA6ljI4nX35tMdempq96393dte6v//TXlz6+ZOlTG6637h34q5fpkVhicSPil/aTWzjPgLOAUym/uyCAdfFjIT2RWzjv0KCn955GxDcclExqU+zKRP/BtpCw5dbNwM1hNyzvBw7DJ5dtiu1z5qW/5d/ZCCeddBJjx47l+BO+xLUzHub1JW/t8K1jpu0AfBnIZ9PJR4G7gOnAg5FY4o3h+EzSkr5L5YmkX4C/gvlLbuG8qUFP78CxktqCkkltiv1nWs2XSYZB+KzJDGBGNp38BrATkMB367I3voKU7q4uli1bxqJFi/jKV74CwIoVKwi61+gSrAvYPZy+DZBNJ+cCDxVMsyKxxDvD8NGkiXIL5x0MnE7t5/46wF9zC+dtG/T0tt0/JqqAr0EukzoeuHTA4l8H0fgXmxGPVC+bTo7Bt7rZ/5U33vzwX+9/dLdsLreqTnHc2NEcuu/7GDdmdEXFArPwieXB8HVeJJbI1zF0aaLcwnlj8XUkm9SpyBXANUFPb9v9DVEyqUEuk/occNkT/3yOP9/zILPnzmfBy6/+675ZTxzlnJvZ7Piketl0cj38E/j7Ax/C39euh8X4pqH9Vy8PRmKJl+tUtgyz3MJ5ZwDfor53JJYDewY9vbPrWGbDKZnUIJdJfSabzV014YPTOPHEk4hGozz++OOcc845v3POHdHs+KR+sunkxsB++MSyPyXqW6q0AHgCeLJwUgV/a8stnNeN7wVjwzoX3QdcEfT0fqHO5TaU6kxqk+vL5+nu6sbMmDdvHnvssQes/VS8tLlwxMcbwolsOrkVPrFMBfYAdqih+M3D6aDChdl08iVWJ5dVySYSS7xew7GkfvanMX9Du4EjcwvnnRT09LZNnZuSSW2yY0aP4oqzv86Nd97LW93rsMsuuzQ7JhkGkVjiOcLmxwDZdHIDfGX8HvhuXt5H7ffRNwunAwoXZtPJl1nzSmYO8C/gxUgska3xmFK+w/FNewd1yZXX8vhTc7nwR2cC8INzzue5BS9y5QXnDrZbDl+HN732MIeHkkltcgCHfWhvIkHAr+5INzseaZLwltSd4UQ2nTT81UZ/ctkDn2zWqcPhNgmnDw1Yng+vZp4Lp+cHzkdiiaV1OL5478M/hDioz37icHb+wEH892lf576HHuEvd05nRvKGoXYbDbwbJZMRQ/8FSlHhWCovhNONAOFzLjuyOrnsgf+DUa9hiLtYfcts72IbZNPJ1ymSZIB/A6/he1h+IxJL5OoUU0cJf4cbAhPZbLte6xr6Vzdu3FiOOOwQvv/j8/jr3+/htuuvYOzYMUPtNgb//WgbSia1yQEsXbacp559oXD5Rmb2Lufcs80JS1pR+JzL4+F0Gaxqkrw9/pmXnfBdbOwEbEv9kkyhCeG062AbZdPJN/DJpT/BDDX/GrCy1Qcky6aTAf7W1PiCad0i8xvge0uYFL72z0+g/2rkpbm4cevDhj2YDX6BcuyRH+fdHzyYP15+MdtMHtg3bEmTKvpwTaZkUpsswEEnnE5+zHimTp3KRhttxF577bXvnDlz5pvZu51zjzc7SGldkVhiBX6QtTUGWsumk6OB7VidZPoTTS/Dc95uGE7bVrBPPptOrsA3bV0RTpXMv4P/Q92FT6RdVcx3428llkoSQ14SVGTZmzB2vJ8G8cPz/49JG00g11fRBd+Qt9BaiZJJbbIAL7/2Bl8+9Yust956zJ07l+OOO44LLriAxYsXb4L/L1SkIuGT8/8Ip1Wy6eQo/B/4/iuYnYGt8UMhNPs/2S788xYjqxeI3MpBV59/yWWseOcdrrv055x17i84/CMHDbp9gbZqtadkUpscwC9OO4mbp98JwJKlby/6wx0zkvhOIGc0MTbpQJFYYiWrW3GtIezUcstw2qrgtX9+c3TO15nBmNJtKv5+7wNcecMfmXHLDYxfd12WvLWUWY8/ya5Tdhqq4HfwD7W2DT20WINcJrU7/mnmQo8G0fhuzYhHZDBh5XEPayaYrYAtWF0vsBG+vkBKexN4lciYCOtvvKWVSCbPL3iJA6Z9mpuv/iU79vq7hVfe8EfufuBBfvOzc4Y6xhLgP4Ke3rvqGXgjKZnUIJdJ7QpkBiyeHUTjethE2lZYST0Bn1g2YnWSKfa+f35D2uOqxwFv4QeoeqtgWjpgfgm+gcEr4Wv//Ovh1SG5hfMSwDX4uph6Ww5MCnp6325A2Q3RDr/8VlasabCefpe2FjYLXhROZQuT0JhwGlvBfP/raPxQynl8lyLlzhcuywPLKJ0kltWxxdltdSpnoDx+9MW2SSSgZFKrYhWNbdP9gUg9hUloaTh1vKCnN5tbOO9S4CTWHE2xViuAn9WxvGGhYXtrU6yDt7Ybh0BEqnY2/o9/vawE/hz09LZV5TsomdRKyURkBAt6et8CTsDfWquHFfiRPNuOkkltlExERrigp/d3wK+AWus4lgEfC3p623J8GyWT2iiZiAjA1/Atu6q5QulvNHBk0NM7vZ5BDSclk9oomYgIQU+vC3p6TwA+j79CGfyx+NXexg/7u1vQ03tLo+IbDkomtVEyEZFVgp7e6/Edd16Mf1ZkCWFPGQVW4JsqvwR8HZgS9PQ+NZxxNoKaBtdGyURE1hD09L4IfDW3cN738UMB7A1E8c/RLAbuBR4AHgl6evuaFmidKZnURslERIoKW3qlwqnj6TZXbZRMRERQMqmVkomICEomtVIyERFByaRquUyqG1i/yKrFwx2LiEizKZlUr1gieSuIxisal1NEpBMomVRvYpFlusUlIiOSkkn1eossWzDsUYiItAAlk+ptX2TZ08MehYhIC1AyqZ6SiYhISMmkejsUWaZkIiIjkpJJ9YpdmbR9Z20iItVQMqlCLpNaH9hkwOI+YH4TwhERaTolk+oUuyqZH0Tj5Y5hICLSUZRMqqPKdxGRAkom1VEyEREpoGRSHSUTEZECSibVKdYsWC25RGTEUjKpUNhbcLGuVHRlIiIjlpJJ5bbEj+VcaDHwShNiERFpCUomlStaXxJE427YIxERaRFKJpWLFVmmW1wiMqIpmVRu3yLLHhz2KEREWoiSSQVymVQEeH+RVfcMdywiIq1EyaQy7wXGDVj2OvBkE2IREWkZSiaVKXaLa0YQjeeHPRIRkRaiZFKZYslEt7hEZMRTMilT+LDiB4qsUjIRkRFPyaR8U4D1ByxbCsxqQiwiIi0laHYArSyXSY0C9gJeovgtrvuCaDw3vFGJiLQeJZMScplUD3Af8K5wUbGOHHWLS0QE3eYazKmsTiRQvKfgGcMUi4hIS1MyKW27Ida/AxyZy6Ruz2VSXw0r6EVERiTd5ipt6RDr+4ATw/kDgTHAjxsakYhIi9KVSWlvDrF+4JPwH2tUICIirU7JpLShkslAzzckChGRNqBkUlolyeQt4IxGBSIi0uqUTEorN5nkgSODaFxjwIvIiKVkUlq5yeRrQTT+l4ZGIiLS4pRMSisnmVwEXNDoQEREWp2SSWlDJZPbgVM09ruIiJLJYAZLJk8Cn1S/XCIinpJJaUtKLH8DOCSIxittOiwi0rGUTEpbCAy8heWAQ4No/NkmxCMi0rKUTEoIovF3gN8PWPzfQTR+XzPiERFpZeac6o8Hk8ukPo4f0+R3QTT+ULPjERFpRUomIiJSM93mEhGRmo3YLuhzmVQE2AfYG/gAsB5+jJLZ+BEUpwfR+KvNi1BEpH2MuNtcuUxqHfw4JKfhk+lYIFKwSR4/lkkEuB5f6T5/uOMUEWknIyqZ5DKpXYFbgAmsPR5JMdlwOgW4TE+7i4gUN2KSSS6T+iRwOf5KxCrc/W3gJuCzQTSer3dsIiLtbkRUwOcyqTg+kYyj8kQCsA5wOHBJPeMSEekUHX9lksukNgfmAOvWobhlwAlBNH51HcoSEekYI+HK5CJgdJ3KGgdckMukNqhTeSIiHaGjk0kuk9ob2J81W2vVajRwVh3LExFpex2dTICv4ivc62kMcFwukxpV53JFRNpWxyaTXCY1HjiE6ircy3FIg8oVEWk7nfwE/F74J9rHDLbR5884j1lP/3PV+5dfe4OV2SyLpg/sMHgN44GPAn+sQ5wiIm2vk5PJeyjjFtdlZ3191fyzL/6b/T7/DS7+3qnllB+rPjQRkc7Ssbe58H/sy67XeG3xEg45+Xt85wuf4tAP7lnOLttUHZmISIfp5GSyYbkbLl/xDh875QymHbgvx0/7SLm7DXr7TERkJOnkZFLW05h9fX186rQfsf3kLTjrxM/WvXwRkZGgk5PJy+VsdPKP/o9sro9Lv39KpeUvqzwkEZHO1MnJ5CFg+WAb/Nelv+XROc9w/U++QxB0V1r+01VHJiLSYTq5NddsfPfxRVt0/eullzn70muYvNkmfPBz31i1fPutNufac04fqmwHzKxXoCIi7a6Tk8lMBrnymrzZJmQfva3aspeiZ0xERFbp2NtcQTS+Evgt0NeA4t8B7m5AuSIibaljk0no58DKOpf5NvBTDZIlIrJaRyeTIBqfgx8Ua0Udi30DOK+O5YmItL2OTiah04El1Oe5kGXAMeEtNBERCXV8Mgmi8SXAgfhK81osA74bRON/qz0qEZHO0vHJBCCIxmfjE8obVFeHshw4M4jGf1bXwEREOkTHjwFfKJdJbQz8AYhS3pjwb+MTyeFBNH5vI2MTEWlnI+LKpF8QjS8CPghMAx7EN/FdAhS2zFqKTyKLgNOArZRIREQGN6KuTAbKZVKbAHsC78X3MrwceAp4AJir5r8iIuUZ0clERETqY0Td5hIRkcZQMhERkZopmYiISM2UTEREpGZKJiIiUjMlExERqdmgg2ON3u2Lzrq66QpGYd3ddAej8O8j/jXi31tX4bpRa6zrDgKsy+ju7lrzNejCuii+3IzuwNZYPiroorvL6O4yRofzo4Lu8LWLbvOvQcG2a712d9FlRqTb6DYj0mV0dYWvZkS6u+g2iHR30WX4bbrDdV1ddHdBd5fRhdHdBRZu07/tmu/xn8Pw77sMI3x1DsvnwOUh34e5fDifg3w+XFe4Tc5v09cHLr9quctlId+Hy66EfB6XG/CaXenX92/X/9rXB7ksLt9HPpvD9eVXvfZls6ve5/vy5FfmcHn/ms/nya/Mrn6/aj9HX7aPfJ8jv9K/9mX7cH0uLCNPvi9PXzbvj7Eyj8uHr+H7vHOszDv6Vr0y4HX18qwrtp2fv8T9y4bp3KmZzi+dX510funKREREaqZkIiIiNVMyERGRmimZiIhIzZRMRESkZkomIiJSMyUTERGpmZKJiIjUTMlERERqpmQiIiI1UzIREZGaKZmIiEjNlExERKRmSiYiIlIzJRMREamZkomIiNTMnHONPYDZ8c65Xzb0IGVSLK0bB7RWLO2ilX5miqV144DGxzIcVybHD8MxyqVY1tYqcUBrxdIuWulnpljW1ipxQINj0W0uERGpmZKJiIjUbDiSSUvcLwwplrW1ShzQWrG0i1b6mSmWtbVKHNDgWBpeAS8iIp1Pt7lERKRmDUkmZjbBzO4ws3nh64YltvuJmT1hZnPM7BdmZs2II9x2PTN70cwurOPx42b2tJk9Y2anFVk/2sxuCNc/aGaT63XsSmMp2G6amTkz270ZcZjZlmb2dzPLmNlsM/tII+JoZzq/VpWp86vCOBp6fjnn6j4BPwFOC+dPA84pss37gfuA7nB6AJg63HEUbPtz4Frgwjoduxv4J7A1MAp4DNhpwDYnApeE80cCNzTo9zFkLOF244F7gJnA7s2IA39f90vh/E7AvxrxM2nnSeeXzq8afiYNO78adZvrY8CV4fyVwGFFtnHAmPBDjwYiwMtNiAMz2w3YBLi9jsfeA3jGOTffObcSuD6Mp1R8fwD2r/d/jxXEAvBf+D8QKxoQQ7lxOGC9cH594KUGxdLOdH7p/Ko2joadX41KJps45xYChK8bD9zAOfcA8HdgYTj91Tk3Z7jjMLMu4KfAN+t87P8HvFDwfkG4rOg2zrkc8CawUZ3jKCsWM4sCWzjnbm3A8cuOAzgT+LSZLQD+Any5gfG0K51fOr+qioMGnl9BtTua2Z3ApkVWfbfM/bcFdgQ2DxfdYWb7OufuGc448JfCf3HOvVDvW8pFlg1sOlfONg2PJTzhzweObcCxy44jdBRwhXPup2a2F3C1mU1xzuUbHFtL0fk1JJ1fFcYRatj5VXUycc4dUGqdmb1sZj3OuYVm1gMsKrLZ4cBM59zScJ/bgD3x9xSHM469gA+Y2YnAusAoM1vqnCtZiVamBcAWBV7672QAAAiaSURBVO83Z+1Lyv5tFphZgL/sfL3G41YTy3hgCjA9POE3BZJmlnDOPTyMcQB8HoiD/+/azMYAEyn+u+tYOr+GpPOr8jiggedXo25zJYFjwvljgJuLbPM88EEzC8wsAnwQqPdl+JBxOOeOds5t6ZybDHwDuKoOX3SANNBrZu8ys1H4CsDkIPFNA/7mwpqxOhs0Fufcm865ic65yeHPYSZQ7y/6kHGEngf2BzCzHfH3/V+pcxztTueXzq+K4wg17vyqd4uC8He1EXAXMC98nRAu3x34dUHLg0vxX/AngfOaEceA7Y+lTq1NwvI+AszFt7D4brjsbPwXifAX+XvgGeAhYOtG/D7KiWXAttNpQGuTMn8mO+FbIT0GzAI+3KifSbtOOr/K/i7p/Fr7Z9Kw80tPwIuISM30BLyIiNRMyURERGrWcckk7Krg6oL3gZm9Yma3Fiw72MweDruZeMrMzg2Xnxl2+TCrYNqgyDF6CsurMd5j69nFRJHyp1fadYOZXW9mvY2KSZrPzPpbeW1mZn8od/tGC7tAuTM8944wsw+Y7xJmlpmNHWLfP5jZ1hUca2q9zuNKVHNcM3u3mV3RoJDqouOSCfA2MKXgi3cg8GL/SjObAlwIfNo5tyO+yd78gv3Pd87tWjAtLnKMrwO/akz4zWVm3cDFwLeaHYs0nnPuJefctGbHUSAKRMJz7wbgaODc8P3yUjuZ2c5At3Nufqlt2pWZBc65fwCbm9mWzY6nlE5MJgC3AR8N548CritY9y3gh865p8A/Geucu6jC8j8OpGDVlcUfzSxlvsO7n/RvZGZHmdk/zOxxMzunYPlxZjbXzO4G9i5YPsnMbjSzdDjtzQBm1m1m54blzjazL4fL9zffeds/zOw3Zja6yL6l4llqZmeb2YP45wJmAAeEbfOlg5nZZDN7PJwv+V0u2H6imT1gZh8tsu6z4Xfysf67A2a2lZndFS6/q/+PYbHvupltDFwD7Bpeifwn8EngB2b22yE+ytEUNE02sw+HcT5qZr83s3XD5fHwbsS9wH8UbD/JfGeVj5rZpWb2nJlNDNd92sweCmO6NPyHa+Bnj5nZ/eFnf8jMxpvZGDO7PDznMma2X5H9JpjZTeHPZ6aZvSdcfqaZ/dLMbgeuCje/Bd/ctzU1qqlcsyZgKfAefF88Y/DN36YCt4brHwV2KbHvmfirmFnh9Pci27wLeKTg/bH4K5v1w+M9h39waDN8m+5J+IdD/4bvu6inYPkofDO9C8OyrgX2Cee3BOYUOf6XgBuBIHw/ITzuC8B24bKrgK+6gmaIpeIJt3HAJwcc5w5gt2b/PjU1ZgKWhq+TgcfD+aLf5f7t8f1rPQgcWKS8nYGngYnh+/5mwrcAx4TznwNuCueLftcLz9Xw/RXAtDI+z93Au8P5ifiHM9cJ338b+EHBedKLf1r8dwV/Fy4ETg/n4+E5MRHfi8At+KslgIuAzw449qjw5xYL368XnmOnApeHy3YIz78xrPn36ALgjHD+Q8CscP5M4BFgbMFx9gZuafZ3p9TUkf95Oudmm+9u+ih8/zOVON85d+4g63tY+yGfu5xzbwKY2ZPAVvg2+NOdc6+Ey38L7BtuX7j8BmC7cPkBwE62utuJ9cxsvHPurYJjHYDvCTUXftbXzWwX4Fnn3NxwmyuBk4CfFewXKxHPTUAfPkEVWoRPQI8M8rOQzlPsu/wCvqPIu4CTnHN3F9nvQ8AfnHOvgv9ehsv3YvUVwNX4jg6hxHe9hrgLz8s9CZ+nCMsfhe81eQf8eTIv/HzXAMeH++yD7zUA51zKzN4Il+8P7Aakw7LGsvbT4tsDC51z6XD/JWH5++CTBc65p8zsOVaf6/32wd/pwDn3NzPbyMzWD9cl3Zq39vrPyZbUkckklATOxf8XUNi52xP4L8djVZa7HP/fRaF3Cub78D/XwToiKvVwTxewlxvk3nBYbjl9EBXbr5QVzrm+AcvG4D+rjCzFvssAOfw/FgfhrwIGKva9LKZ/m6Lfdau+/67C89KAO5xzRw0oe9dBYix1YAOudM6dPsixS332as/L/rLeHrC8pc/JTq0zAfgNcLbzFVeF/hf4jpltB74TNjP7egXlzsXfGhjKg/juLCaG91iPwp+EDwJTw/9AIsAnCva5HTi5/0345R/oduCE/voMM5sAPAVMNt+5H8BnWPuELxVPKdvhE68I+D9wnwN2sOKDP90FfNLMNoJV30uA+1l9n/9o4N5wvpzveiXmAP3f/5nA3v3ng5mNC8/3p4B3mdk24XaFyeZefP0MZvZhoH+gr7uAaWF9Tn8dx1YDjv0UsJmZxcJtxofn5z34z0x4/C3xtwILFW4zFXi1/8qmiO2Ax4f4OTRNxyYT59wC59zPiyyfDXwVuM7M5uB/OT0Fm3zN1mwaPHnA/m8D/yz4w13q+AuB0/HdgD8GPOqcuzlcfib+svtOfB1Ov68Au4eVcU8CJxQp+tf4e6+zzewx4FPOuRXAccDvzewfQB64pJx4isVuZpsAy8N9RAAIr16PBPYz33Fj4bongB8Cd4ffy/PCVV8BjjOz2fh/ck4pWD7Ud30tZjarxKo/4+9CEN7KPRZ/js/GJ5cdwvPkeODPYQX8cwX7nwV82MweBQ7Gd9v/lnPuSeB7wO1hWXew5t8LnB875AjggvCz34G/irgI6A7PyRuAY51zhVd+4P8W7B6W/WNW9yVWzH7h52xJ6k6lCmZ2OL5y+nvNjqURzOxrwBLn3GXNjkWkHOYfBfg7sHeRW7bl7D8a6HPO5cx3zX6xc67Wq6W6CeO7G99oIdfseIrp5DqThnHO/an/cr5DLcZXloq0BefccjM7Az8Y1PNVFLEl8DvzY4+sBL5Yz/jqYEv8EMktmUhAVyYiIlIHHVtnIiIiw0fJREREaqZkIiIiNVMyERGRmimZiIhIzZRMRESkZv8fbnSwW1X0tpIAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -205,7 +207,7 @@ " var_names=var_names,\n", " path_val_matrix=graph_data['path_val_matrix'], \n", " path_node_array=graph_data['path_node_array'],\n", - " )" + " ); plt.show()" ] }, { @@ -247,7 +249,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note that per default self-loops are excluded in these measures." + "Note that per default self-loops are excluded in these measures. Currently, the Mediation class only supports lagged causal effects coming from a PCMCI analysis. For contemporaneous effects, coming from a PCMCI+ analysis, the problem is trickier and will be addressed soon." ] }, { diff --git a/tutorials/tigramite_tutorial_missing_masking.ipynb b/tutorials/tigramite_tutorial_missing_masking.ipynb index edbe2177..ad0728da 100644 --- a/tutorials/tigramite_tutorial_missing_masking.ipynb +++ b/tutorials/tigramite_tutorial_missing_masking.ipynb @@ -6,13 +6,15 @@ "source": [ "# Causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI method and create high-quality plots of the results.\n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", "PCMCI is described here:\n", "J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, \n", "Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019) \n", "https://advances.sciencemag.org/content/5/11/eaau4996\n", "\n", + "For further versions of PCMCI (e.g., PCMCI+, LPCMCI, etc.), see the corresponding tutorials.\n", + "\n", "This tutorial explains the missing values and masking and gives walk-through examples. See the following paper for theoretical background:\n", "Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "\n", @@ -93,26 +95,32 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^0$ -1) --> $X^0$ (1/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.682\n", + " val = 0.682 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.682\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^0$ -2) --> $X^0$ (2/6):\n", - " Subset 0: () gives pval = 0.00002 / val = 0.532\n", + " val = 0.532 | pval = 0.00002 \n", + " Subset 0: () gives pval = 0.00002 / val = 0.532\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -1) --> $X^0$ (3/6):\n", - " Subset 0: () gives pval = 0.00419 / val = 0.371\n", + " val = 0.371 | pval = 0.00419 \n", + " Subset 0: () gives pval = 0.00419 / val = 0.371\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -2) --> $X^0$ (4/6):\n", - " Subset 0: () gives pval = 0.19048 / val = 0.174\n", + " val = 0.174 | pval = 0.19048 \n", + " Subset 0: () gives pval = 0.19048 / val = 0.174\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^2$ -1) --> $X^0$ (5/6):\n", - " Subset 0: () gives pval = 0.99720 / val = 0.000\n", + " val = 0.000 | pval = 0.99720 \n", + " Subset 0: () gives pval = 0.99720 / val = 0.000\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -2) --> $X^0$ (6/6):\n", + " val = -0.042 | pval = 0.75189 \n", " Subset 0: () gives pval = 0.75189 / val = -0.042\n", " Non-significance detected.\n", "\n", @@ -122,26 +130,30 @@ "Updating parents:\n", "\n", " Variable $X^0$ has 4 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00000, min_val = 0.682\n", - " ($X^0$ -2): max_pval = 0.00002, min_val = 0.532\n", - " ($X^1$ -1): max_pval = 0.00419, min_val = 0.371\n", - " ($X^1$ -2): max_pval = 0.19048, min_val = 0.174\n", + " ($X^0$ -1): max_pval = 0.00000, min_val = 0.682\n", + " ($X^0$ -2): max_pval = 0.00002, min_val = 0.532\n", + " ($X^1$ -1): max_pval = 0.00419, min_val = 0.371\n", + " ($X^1$ -2): max_pval = 0.19048, min_val = 0.174\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^0$ -1) --> $X^0$ (1/4):\n", - " Subset 0: ($X^0$ -2) gives pval = 0.00006 / val = 0.507\n", + " val = 0.507 | pval = 0.00006 \n", + " Subset 0: ($X^0$ -2) gives pval = 0.00006 / val = 0.507\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^0$ -2) --> $X^0$ (2/4):\n", - " Subset 0: ($X^0$ -1) gives pval = 0.61423 / val = 0.068\n", + " val = 0.068 | pval = 0.61423 \n", + " Subset 0: ($X^0$ -1) gives pval = 0.61423 / val = 0.068\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -1) --> $X^0$ (3/4):\n", + " val = -0.036 | pval = 0.78960 \n", " Subset 0: ($X^0$ -1) gives pval = 0.78960 / val = -0.036\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -2) --> $X^0$ (4/4):\n", + " val = -0.160 | pval = 0.23381 \n", " Subset 0: ($X^0$ -1) gives pval = 0.23381 / val = -0.160\n", " Non-significance detected.\n", "\n", @@ -151,7 +163,7 @@ "Updating parents:\n", "\n", " Variable $X^0$ has 1 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00006, min_val = 0.507\n", + " ($X^0$ -1): max_pval = 0.00006, min_val = 0.507\n", "\n", "Algorithm converged for variable $X^0$\n", "\n", @@ -164,27 +176,33 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^0$ -1) --> $X^1$ (1/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.800\n", + " val = 0.800 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.800\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^0$ -2) --> $X^1$ (2/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.720\n", + " val = 0.720 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.720\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -1) --> $X^1$ (3/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.734\n", + " val = 0.734 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.734\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -2) --> $X^1$ (4/6):\n", - " Subset 0: () gives pval = 0.00003 / val = 0.521\n", + " val = 0.521 | pval = 0.00003 \n", + " Subset 0: () gives pval = 0.00003 / val = 0.521\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^2$ -1) --> $X^1$ (5/6):\n", - " Subset 0: () gives pval = 0.09525 / val = 0.221\n", + " val = 0.221 | pval = 0.09525 \n", + " Subset 0: () gives pval = 0.09525 / val = 0.221\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^2$ -2) --> $X^1$ (6/6):\n", - " Subset 0: () gives pval = 0.92663 / val = 0.012\n", + " val = 0.012 | pval = 0.92663 \n", + " Subset 0: () gives pval = 0.92663 / val = 0.012\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -193,32 +211,37 @@ "Updating parents:\n", "\n", " Variable $X^1$ has 5 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00000, min_val = 0.800\n", - " ($X^1$ -1): max_pval = 0.00000, min_val = 0.734\n", - " ($X^0$ -2): max_pval = 0.00000, min_val = 0.720\n", - " ($X^1$ -2): max_pval = 0.00003, min_val = 0.521\n", - " ($X^2$ -1): max_pval = 0.09525, min_val = 0.221\n", + " ($X^0$ -1): max_pval = 0.00000, min_val = 0.800\n", + " ($X^1$ -1): max_pval = 0.00000, min_val = 0.734\n", + " ($X^0$ -2): max_pval = 0.00000, min_val = 0.720\n", + " ($X^1$ -2): max_pval = 0.00003, min_val = 0.521\n", + " ($X^2$ -1): max_pval = 0.09525, min_val = 0.221\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^0$ -1) --> $X^1$ (1/5):\n", - " Subset 0: ($X^1$ -1) gives pval = 0.00000 / val = 0.680\n", + " val = 0.680 | pval = 0.00000 \n", + " Subset 0: ($X^1$ -1) gives pval = 0.00000 / val = 0.680\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^1$ -1) --> $X^1$ (2/5):\n", - " Subset 0: ($X^0$ -1) gives pval = 0.00001 / val = 0.557\n", + " val = 0.557 | pval = 0.00001 \n", + " Subset 0: ($X^0$ -1) gives pval = 0.00001 / val = 0.557\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^0$ -2) --> $X^1$ (3/5):\n", - " Subset 0: ($X^0$ -1) gives pval = 0.01177 / val = 0.332\n", + " val = 0.332 | pval = 0.01177 \n", + " Subset 0: ($X^0$ -1) gives pval = 0.01177 / val = 0.332\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^1$ -2) --> $X^1$ (4/5):\n", - " Subset 0: ($X^0$ -1) gives pval = 0.00762 / val = 0.350\n", + " val = 0.350 | pval = 0.00762 \n", + " Subset 0: ($X^0$ -1) gives pval = 0.00762 / val = 0.350\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^2$ -1) --> $X^1$ (5/5):\n", - " Subset 0: ($X^0$ -1) gives pval = 0.53826 / val = 0.083\n", + " val = 0.083 | pval = 0.53826 \n", + " Subset 0: ($X^0$ -1) gives pval = 0.53826 / val = 0.083\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -227,27 +250,31 @@ "Updating parents:\n", "\n", " Variable $X^1$ has 4 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00000, min_val = 0.680\n", - " ($X^1$ -1): max_pval = 0.00001, min_val = 0.557\n", - " ($X^1$ -2): max_pval = 0.00762, min_val = 0.350\n", - " ($X^0$ -2): max_pval = 0.01177, min_val = 0.332\n", + " ($X^0$ -1): max_pval = 0.00000, min_val = 0.680\n", + " ($X^1$ -1): max_pval = 0.00001, min_val = 0.557\n", + " ($X^1$ -2): max_pval = 0.00762, min_val = 0.350\n", + " ($X^0$ -2): max_pval = 0.01177, min_val = 0.332\n", "\n", "Testing condition sets of dimension 2:\n", "\n", " Link ($X^0$ -1) --> $X^1$ (1/4):\n", - " Subset 0: ($X^1$ -1) ($X^1$ -2) gives pval = 0.00000 / val = 0.680\n", + " val = 0.680 | pval = 0.00000 \n", + " Subset 0: ($X^1$ -1) ($X^1$ -2) gives pval = 0.00000 / val = 0.680\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^1$ -1) --> $X^1$ (2/4):\n", - " Subset 0: ($X^0$ -1) ($X^1$ -2) gives pval = 0.00032 / val = 0.463\n", + " val = 0.463 | pval = 0.00032 \n", + " Subset 0: ($X^0$ -1) ($X^1$ -2) gives pval = 0.00032 / val = 0.463\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^1$ -2) --> $X^1$ (3/4):\n", - " Subset 0: ($X^0$ -1) ($X^1$ -1) gives pval = 0.93261 / val = 0.012\n", + " val = 0.012 | pval = 0.93261 \n", + " Subset 0: ($X^0$ -1) ($X^1$ -1) gives pval = 0.93261 / val = 0.012\n", " Non-significance detected.\n", "\n", " Link ($X^0$ -2) --> $X^1$ (4/4):\n", - " Subset 0: ($X^0$ -1) ($X^1$ -1) gives pval = 0.97020 / val = 0.005\n", + " val = 0.005 | pval = 0.97020 \n", + " Subset 0: ($X^0$ -1) ($X^1$ -1) gives pval = 0.97020 / val = 0.005\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -256,8 +283,8 @@ "Updating parents:\n", "\n", " Variable $X^1$ has 2 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00000, min_val = 0.680\n", - " ($X^1$ -1): max_pval = 0.00032, min_val = 0.463\n", + " ($X^0$ -1): max_pval = 0.00000, min_val = 0.680\n", + " ($X^1$ -1): max_pval = 0.00032, min_val = 0.463\n", "\n", "Algorithm converged for variable $X^1$\n", "\n", @@ -270,27 +297,33 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^0$ -1) --> $X^2$ (1/6):\n", - " Subset 0: () gives pval = 0.00293 / val = 0.384\n", + " val = 0.384 | pval = 0.00293 \n", + " Subset 0: () gives pval = 0.00293 / val = 0.384\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^0$ -2) --> $X^2$ (2/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.607\n", + " val = 0.607 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.607\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -1) --> $X^2$ (3/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.771\n", + " val = 0.771 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.771\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^1$ -2) --> $X^2$ (4/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.773\n", + " val = 0.773 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.773\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^2$ -1) --> $X^2$ (5/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.737\n", + " val = 0.737 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.737\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^2$ -2) --> $X^2$ (6/6):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.607\n", + " val = 0.607 | pval = 0.00000 \n", + " Subset 0: () gives pval = 0.00000 / val = 0.607\n", " No conditions of dimension 0 left.\n", "\n", " Sorting parents in decreasing order with \n", @@ -299,37 +332,43 @@ "Updating parents:\n", "\n", " Variable $X^2$ has 6 parent(s):\n", - " ($X^1$ -2): max_pval = 0.00000, min_val = 0.773\n", - " ($X^1$ -1): max_pval = 0.00000, min_val = 0.771\n", - " ($X^2$ -1): max_pval = 0.00000, min_val = 0.737\n", - " ($X^2$ -2): max_pval = 0.00000, min_val = 0.607\n", - " ($X^0$ -2): max_pval = 0.00000, min_val = 0.607\n", - " ($X^0$ -1): max_pval = 0.00293, min_val = 0.384\n", + " ($X^1$ -2): max_pval = 0.00000, min_val = 0.773\n", + " ($X^1$ -1): max_pval = 0.00000, min_val = 0.771\n", + " ($X^2$ -1): max_pval = 0.00000, min_val = 0.737\n", + " ($X^2$ -2): max_pval = 0.00000, min_val = 0.607\n", + " ($X^0$ -2): max_pval = 0.00000, min_val = 0.607\n", + " ($X^0$ -1): max_pval = 0.00293, min_val = 0.384\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^1$ -2) --> $X^2$ (1/6):\n", - " Subset 0: ($X^1$ -1) gives pval = 0.00004 / val = 0.518\n", + " val = 0.518 | pval = 0.00004 \n", + " Subset 0: ($X^1$ -1) gives pval = 0.00004 / val = 0.518\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^1$ -1) --> $X^2$ (2/6):\n", - " Subset 0: ($X^1$ -2) gives pval = 0.00005 / val = 0.513\n", + " val = 0.513 | pval = 0.00005 \n", + " Subset 0: ($X^1$ -2) gives pval = 0.00005 / val = 0.513\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^2$ -1) --> $X^2$ (3/6):\n", - " Subset 0: ($X^1$ -2) gives pval = 0.00836 / val = 0.346\n", + " val = 0.346 | pval = 0.00836 \n", + " Subset 0: ($X^1$ -2) gives pval = 0.00836 / val = 0.346\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^2$ -2) --> $X^2$ (4/6):\n", - " Subset 0: ($X^1$ -2) gives pval = 0.00065 / val = 0.438\n", + " val = 0.438 | pval = 0.00065 \n", + " Subset 0: ($X^1$ -2) gives pval = 0.00065 / val = 0.438\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^0$ -2) --> $X^2$ (5/6):\n", - " Subset 0: ($X^1$ -2) gives pval = 0.00660 / val = 0.356\n", + " val = 0.356 | pval = 0.00660 \n", + " Subset 0: ($X^1$ -2) gives pval = 0.00660 / val = 0.356\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^0$ -1) --> $X^2$ (6/6):\n", - " Subset 0: ($X^1$ -2) gives pval = 0.40395 / val = 0.113\n", + " val = 0.113 | pval = 0.40395 \n", + " Subset 0: ($X^1$ -2) gives pval = 0.40395 / val = 0.113\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -338,32 +377,37 @@ "Updating parents:\n", "\n", " Variable $X^2$ has 5 parent(s):\n", - " ($X^1$ -2): max_pval = 0.00004, min_val = 0.518\n", - " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", - " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", - " ($X^0$ -2): max_pval = 0.00660, min_val = 0.356\n", - " ($X^2$ -1): max_pval = 0.00836, min_val = 0.346\n", + " ($X^1$ -2): max_pval = 0.00004, min_val = 0.518\n", + " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", + " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", + " ($X^0$ -2): max_pval = 0.00660, min_val = 0.356\n", + " ($X^2$ -1): max_pval = 0.00836, min_val = 0.346\n", "\n", "Testing condition sets of dimension 2:\n", "\n", " Link ($X^1$ -2) --> $X^2$ (1/5):\n", - " Subset 0: ($X^1$ -1) ($X^2$ -2) gives pval = 0.03298 / val = 0.285\n", + " val = 0.285 | pval = 0.03298 \n", + " Subset 0: ($X^1$ -1) ($X^2$ -2) gives pval = 0.03298 / val = 0.285\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^1$ -1) --> $X^2$ (2/5):\n", - " Subset 0: ($X^1$ -2) ($X^2$ -2) gives pval = 0.00000 / val = 0.687\n", + " val = 0.687 | pval = 0.00000 \n", + " Subset 0: ($X^1$ -2) ($X^2$ -2) gives pval = 0.00000 / val = 0.687\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^2$ -2) --> $X^2$ (3/5):\n", - " Subset 0: ($X^1$ -2) ($X^1$ -1) gives pval = 0.00000 / val = 0.649\n", + " val = 0.649 | pval = 0.00000 \n", + " Subset 0: ($X^1$ -2) ($X^1$ -1) gives pval = 0.00000 / val = 0.649\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^0$ -2) --> $X^2$ (4/5):\n", - " Subset 0: ($X^1$ -2) ($X^1$ -1) gives pval = 0.67377 / val = 0.058\n", + " val = 0.058 | pval = 0.67377 \n", + " Subset 0: ($X^1$ -2) ($X^1$ -1) gives pval = 0.67377 / val = 0.058\n", " Non-significance detected.\n", "\n", " Link ($X^2$ -1) --> $X^2$ (5/5):\n", - " Subset 0: ($X^1$ -2) ($X^1$ -1) gives pval = 0.00002 / val = 0.531\n", + " val = 0.531 | pval = 0.00002 \n", + " Subset 0: ($X^1$ -2) ($X^1$ -1) gives pval = 0.00002 / val = 0.531\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Sorting parents in decreasing order with \n", @@ -372,27 +416,31 @@ "Updating parents:\n", "\n", " Variable $X^2$ has 4 parent(s):\n", - " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", - " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", - " ($X^2$ -1): max_pval = 0.00836, min_val = 0.346\n", - " ($X^1$ -2): max_pval = 0.03298, min_val = 0.285\n", + " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", + " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", + " ($X^2$ -1): max_pval = 0.00836, min_val = 0.346\n", + " ($X^1$ -2): max_pval = 0.03298, min_val = 0.285\n", "\n", "Testing condition sets of dimension 3:\n", "\n", " Link ($X^1$ -1) --> $X^2$ (1/4):\n", - " Subset 0: ($X^2$ -2) ($X^2$ -1) ($X^1$ -2) gives pval = 0.00000 / val = 0.695\n", + " val = 0.695 | pval = 0.00000 \n", + " Subset 0: ($X^2$ -2) ($X^2$ -1) ($X^1$ -2) gives pval = 0.00000 / val = 0.695\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^2$ -2) --> $X^2$ (2/4):\n", - " Subset 0: ($X^1$ -1) ($X^2$ -1) ($X^1$ -2) gives pval = 0.00039 / val = 0.461\n", + " val = 0.461 | pval = 0.00039 \n", + " Subset 0: ($X^1$ -1) ($X^2$ -1) ($X^1$ -2) gives pval = 0.00039 / val = 0.461\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^2$ -1) --> $X^2$ (3/4):\n", - " Subset 0: ($X^1$ -1) ($X^2$ -2) ($X^1$ -2) gives pval = 0.25270 / val = 0.157\n", + " val = 0.157 | pval = 0.25270 \n", + " Subset 0: ($X^1$ -1) ($X^2$ -2) ($X^1$ -2) gives pval = 0.25270 / val = 0.157\n", " Non-significance detected.\n", "\n", " Link ($X^1$ -2) --> $X^2$ (4/4):\n", - " Subset 0: ($X^1$ -1) ($X^2$ -2) ($X^2$ -1) gives pval = 0.33333 / val = 0.133\n", + " val = 0.133 | pval = 0.33333 \n", + " Subset 0: ($X^1$ -1) ($X^2$ -2) ($X^2$ -1) gives pval = 0.33333 / val = 0.133\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -401,23 +449,23 @@ "Updating parents:\n", "\n", " Variable $X^2$ has 2 parent(s):\n", - " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", - " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", + " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", + " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", "\n", "Algorithm converged for variable $X^2$\n", "\n", - "## Resulting lagged condition sets:\n", + "## Resulting lagged parent (super)sets:\n", "\n", " Variable $X^0$ has 1 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00006, min_val = 0.507\n", + " ($X^0$ -1): max_pval = 0.00006, min_val = 0.507\n", "\n", " Variable $X^1$ has 2 parent(s):\n", - " ($X^0$ -1): max_pval = 0.00000, min_val = 0.680\n", - " ($X^1$ -1): max_pval = 0.00032, min_val = 0.463\n", + " ($X^0$ -1): max_pval = 0.00000, min_val = 0.680\n", + " ($X^1$ -1): max_pval = 0.00032, min_val = 0.463\n", "\n", " Variable $X^2$ has 2 parent(s):\n", - " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", - " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", + " ($X^1$ -1): max_pval = 0.00005, min_val = 0.513\n", + " ($X^2$ -2): max_pval = 0.00065, min_val = 0.438\n", "\n", "##\n", "## Step 2: MCI algorithm\n", @@ -434,29 +482,29 @@ " link ($X^0$ -1) --> $X^0$ (1/8):\n", " with conds_y = [ ]\n", " with conds_x = [ ($X^0$ -2) ]\n", - " val = 0.507 | pval = 0.00006 [cached]\n", + " val = 0.507 | pval = 0.00006 [cached]\n", "\n", " link ($X^0$ -2) --> $X^0$ (2/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", " with conds_x = [ ($X^0$ -3) ]\n", - " val = 0.080 | pval = 0.55892 \n", + " val = 0.080 | pval = 0.55892 \n", "\n", - " link ($X^1$ 0) --> $X^0$ (3/8):\n", + " link ($X^1$ 0) --> $X^0$ (3/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", " with conds_x = [ ($X^0$ -1) ($X^1$ -1) ]\n", - " val = 0.070 | pval = 0.60886 \n", + " val = 0.070 | pval = 0.60886 \n", "\n", " link ($X^1$ -1) --> $X^0$ (4/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", " with conds_x = [ ($X^0$ -2) ($X^1$ -2) ]\n", - " val = 0.013 | pval = 0.92609 \n", + " val = 0.013 | pval = 0.92609 \n", "\n", " link ($X^1$ -2) --> $X^0$ (5/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", " with conds_x = [ ($X^0$ -3) ($X^1$ -3) ]\n", " val = -0.114 | pval = 0.40860 \n", "\n", - " link ($X^2$ 0) --> $X^0$ (6/8):\n", + " link ($X^2$ 0) --> $X^0$ (6/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", " with conds_x = [ ($X^1$ -1) ($X^2$ -2) ]\n", " val = -0.105 | pval = 0.44605 \n", @@ -471,35 +519,41 @@ " with conds_x = [ ($X^1$ -3) ($X^2$ -4) ]\n", " val = -0.024 | pval = 0.86467 \n", "\n", - " link ($X^0$ 0) --> $X^1$ (1/8):\n", + " link ($X^0$ 0) --> $X^1$ (1/8):\n", " with conds_y = [ ($X^0$ -1) ($X^1$ -1) ]\n", " with conds_x = [ ($X^0$ -1) ]\n", - " val = 0.070 | pval = 0.60886 [cached]\n", + " val = 0.070 | pval = 0.60886 [cached]\n", "\n", " link ($X^0$ -1) --> $X^1$ (2/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^0$ -2) ]\n", - " val = 0.610 | pval = 0.00000 \n", + " val = 0.610 | pval = 0.00000 \n", "\n", " link ($X^0$ -2) --> $X^1$ (3/8):\n", " with conds_y = [ ($X^0$ -1) ($X^1$ -1) ]\n", " with conds_x = [ ($X^0$ -3) ]\n", - " val = 0.062 | pval = 0.65340 \n", + " val = 0.062 | pval = 0.65340 \n", "\n", " link ($X^1$ -1) --> $X^1$ (4/8):\n", " with conds_y = [ ($X^0$ -1) ]\n", - " with conds_x = [ ($X^0$ -2) ($X^1$ -2) ]\n", - " val = 0.414 | pval = 0.00167 \n", + " with conds_x = [ ($X^0$ -2) ($X^1$ -2) ]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " val = 0.414 | pval = 0.00167 \n", "\n", " link ($X^1$ -2) --> $X^1$ (5/8):\n", " with conds_y = [ ($X^0$ -1) ($X^1$ -1) ]\n", " with conds_x = [ ($X^0$ -3) ($X^1$ -3) ]\n", - " val = 0.266 | pval = 0.05226 \n", + " val = 0.266 | pval = 0.05226 \n", "\n", - " link ($X^2$ 0) --> $X^1$ (6/8):\n", + " link ($X^2$ 0) --> $X^1$ (6/8):\n", " with conds_y = [ ($X^0$ -1) ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -1) ($X^2$ -2) ]\n", - " val = 0.168 | pval = 0.21886 \n", + " val = 0.168 | pval = 0.21886 \n", "\n", " link ($X^2$ -1) --> $X^1$ (7/8):\n", " with conds_y = [ ($X^0$ -1) ($X^1$ -1) ]\n", @@ -509,9 +563,9 @@ " link ($X^2$ -2) --> $X^1$ (8/8):\n", " with conds_y = [ ($X^0$ -1) ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -3) ($X^2$ -4) ]\n", - " val = 0.004 | pval = 0.97732 \n", + " val = 0.004 | pval = 0.97732 \n", "\n", - " link ($X^0$ 0) --> $X^2$ (1/8):\n", + " link ($X^0$ 0) --> $X^2$ (1/8):\n", " with conds_y = [ ($X^1$ -1) ($X^2$ -2) ]\n", " with conds_x = [ ($X^0$ -1) ]\n", " val = -0.105 | pval = 0.44605 [cached]\n", @@ -526,59 +580,59 @@ " with conds_x = [ ($X^0$ -3) ]\n", " val = -0.209 | pval = 0.12526 \n", "\n", - " link ($X^1$ 0) --> $X^2$ (4/8):\n", + " link ($X^1$ 0) --> $X^2$ (4/8):\n", " with conds_y = [ ($X^1$ -1) ($X^2$ -2) ]\n", " with conds_x = [ ($X^0$ -1) ($X^1$ -1) ]\n", - " val = 0.168 | pval = 0.21886 [cached]\n", + " val = 0.168 | pval = 0.21886 [cached]\n", "\n", " link ($X^1$ -1) --> $X^2$ (5/8):\n", " with conds_y = [ ($X^2$ -2) ]\n", " with conds_x = [ ($X^0$ -2) ($X^1$ -2) ]\n", - " val = 0.606 | pval = 0.00000 \n", + " val = 0.606 | pval = 0.00000 \n", "\n", " link ($X^1$ -2) --> $X^2$ (6/8):\n", " with conds_y = [ ($X^1$ -1) ($X^2$ -2) ]\n", " with conds_x = [ ($X^0$ -3) ($X^1$ -3) ]\n", - " val = 0.136 | pval = 0.32855 \n", + " val = 0.136 | pval = 0.32855 \n", "\n", " link ($X^2$ -1) --> $X^2$ (7/8):\n", " with conds_y = [ ($X^1$ -1) ($X^2$ -2) ]\n", " with conds_x = [ ($X^1$ -2) ($X^2$ -3) ]\n", - " val = 0.084 | pval = 0.54650 \n", + " val = 0.084 | pval = 0.54650 \n", "\n", " link ($X^2$ -2) --> $X^2$ (8/8):\n", " with conds_y = [ ($X^1$ -1) ]\n", " with conds_x = [ ($X^1$ -3) ($X^2$ -4) ]\n", - " val = 0.244 | pval = 0.07281 \n", + " val = 0.244 | pval = 0.07281 \n", "\n", "## Significant links at alpha = 0.05:\n", "\n", " Variable $X^0$ has 1 link(s):\n", - " ($X^0$ -1): pval = 0.00006 | val = 0.507\n", + " ($X^0$ -1): pval = 0.00006 | val = 0.507\n", "\n", " Variable $X^1$ has 2 link(s):\n", - " ($X^0$ -1): pval = 0.00000 | val = 0.610\n", - " ($X^1$ -1): pval = 0.00167 | val = 0.414\n", + " ($X^0$ -1): pval = 0.00000 | val = 0.610\n", + " ($X^1$ -1): pval = 0.00167 | val = 0.414\n", "\n", " Variable $X^2$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.606\n", + " ($X^1$ -1): pval = 0.00000 | val = 0.606\n", "\n", "## Significant links at alpha = 0.01:\n", "\n", " Variable $X^0$ has 1 link(s):\n", - " ($X^0$ -1): pval = 0.00006 | val = 0.507\n", + " ($X^0$ -1): pval = 0.00006 | val = 0.507\n", "\n", " Variable $X^1$ has 2 link(s):\n", - " ($X^0$ -1): pval = 0.00000 | val = 0.610\n", - " ($X^1$ -1): pval = 0.00167 | val = 0.414\n", + " ($X^0$ -1): pval = 0.00000 | val = 0.610\n", + " ($X^1$ -1): pval = 0.00167 | val = 0.414\n", "\n", " Variable $X^2$ has 1 link(s):\n", - " ($X^1$ -1): pval = 0.00000 | val = 0.606\n" + " ($X^1$ -1): pval = 0.00000 | val = 0.606\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2dd9gcVfXHP98k9JZQQ+8gIB1CAAGpQqihSBNEwKA0RYogKvBDqkgRAaWETug1NKmCgEgQBKSXSA0dQVDq+f1x7hs3m919Z+vMu+/5PM8+77szd+6cuTsz595zzj1XZkYQBEEQFI0BeQsQBEEQBJUIBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUkkF5C9CDpPHAR8CXwBdmtlK+EgVBEAR5UhgFlVjbzN7JW4ggCIIgf8LEFwRBEBSSIikoA/4o6WFJo8p3SholaVz6PJGDfEEQBEEHUVFSHUmay8xelzQ7cBuwj5ndU6XsuPBRBUEQdDeFGUGZ2evp71vANcCwfCUKgiAI8qQQCkrSdJJm6Pkf2AAIM14QBEE/pihRfHMA10gCl+kSM7slX5GCIAiCPCmEgjKzF4Fl85YjCIIgKA6FMPEFQRAEQTmhoIIgCIJCEgoqCIIgKCShoIIgCCog5zeSps9blv5KKKggCILKLA38BNgsb0H6K6GggiAIKrMJ8AqwXd6C9FdCQQVBEFRmU2A/YC1JQ/IWpj8SCioIgqCMlBN0CeAG4A5gi3wl6p+EggqCOpE0laTNJe0v6XRJN0v6Rt5yBS1lBHC7mX0GXEqY+XIhFFQQ1M//AYcD8wJPAS8Bu3RSAElTSLpN0gJtqHtBSVO2ut4K55mm3edogk2Asen/G4FV0qgq6CChoIKgDiTNCnwf2NzMfmxmpwInASMkdfJ5Wh1YCzhbKYllM0iaVtIukh7AEzVfKmlgs/X2wn2SNmnzOepG0lTAesBNAGb2cfp/qzzl6o+EggqC+tgfuNzMXu7ZYGbPAR8By3dQjo2B44EZcYXZMJLWxaPVtgGOAWYDZk71twVJy+Dt9a12naMJ1gSeSkv/9HAZsG1O8vRbQkEFQUYkzQKMwl/i5dyIK41OsQlwHfA94ChJ8zdR1/eAn5vZxmZ2vZl9AozER4V7t0DWSuyIBx+s3ab6m2FTPDiilFuAZSTNnYM8/ZZ+oaAkzdIBc0XQ/ewHXG1m/6ywbywdUlCSFgKGAA+b2T+AE2nQ1JfMkusDN5duN7P38UCBn0lq6UTVdM4d8NHoPEXy7aQ2LPU/AWBmn+Idgm3ykKu/0hUKStIgSUtW2SfgHuA3nZUq6CYkzQz8EDi6SpE/A4tLmqMD4mwM3GRmX6XvvwYG05ipb1ngAzMbX77DzF4CNgfOqfZ8NciawHtm9nfgXuCbLay7WZYEBgKPV9h3EXCgpG077G/st3RLI88N3CNp6gr7lgVmADaTtHWrT9wKB3XQJ/gRcG16aU9GCke+HdioA7JM0sM3sy9w0+NhDVgKNgD+WG2nmT0EHAxc1sKoux2Bi9P/dwHrtKjeVrAJMNbMrHyHmd0B7AwcADwkaf1OC9ff6AoFlUwuj+C9vXK2By4Bvg2cIWnRVpxT0kBJY3DzStDFSJoW2Ivqo6ce2m7mS4lLVwNuK91uZo8AbwDr1lllTQWVGI1H9jV9r6cIuS2BMWnTXfTih5I0Y5pr9p1mz5+BbYFrqu1MSmoYcCxwmqQLJE3RAbn6JV2hoBKjgd1KN6Rh+HbAGDMbBxwGXNlsTzCNmk4C5gd2SeafoEEkzV3wkehawD/M7IVeyt0MrNeqOUSSFpa0Qtnm9YAHzeyjCoecD3y3jvqnw1+2d9cql0YTewDrS8rsg5E0WNI3yn7bEcBjZvZK+v53YDZJc1WpYxZ8ZDoY2D3ruRtB0rLArLjSrIo5V+DWmcHA9aktgxbTTQrqGmCFsmim4cDHwGPp+xnAk8DvmnwhHoD3+kYA19PmB6ebSQ7yZ6njxZoD61M2YqmEmb0JPAc0lVUiTcI9GHgQuFXSyiW7N6bMgV/CGGATSTNmPNWaeKBFJWU3CWb2Id7ZO03SgrXKphHPz/G2GIPPqerJZfcd/mfeI/nR/kSFUZSkOXHleXfav0w1RdYidgEuMLMvsxQ2s//go8EJwB1JmQYtpGsUlJn9F09JUvqi2x4fPVkqY7gjeSU8E0DdJDPDPsBGZvYBcAqwdwzzG2Z/4C/AsQUeiWZSUImmzHySVgEexgMHVsatAtdLWix1qjbGQ9onw8zewXv/WUc5Wcx7pfWPA47DO3rV5N8TeB5YDDdFLga8Cfxd0hb4CPDKssMmM/NJmgcPbroU+Gl6vm8AWu5HTuebEveNnVfPccn/tyuuZO9NE7n7JJJ2krRalX0DJA3rePYPM+tzH2Bcle0r4GlnBgCD8J7NIhXKzY6nqDm4zvN+HXgLWKps+5+Ab+fdLi1o12mAKTt4vlmBd4H5gNOAMzIeJ9w0dU46/oX0G1yMBwsoQx0LA6tnKDcX8B4wMKNsKwJP19i/YPn9k7ZPic+vmoCHYKtk3+7Ai7hyeraX848E7sko6z+Aler8zaYG3gEWrLBv3tRWX6uwb0PcR3Z1hX1LAy+UtcUD+Nys0nIjgPvadC9uAdzbZB0nAxe3Q752f4BlgE+B66rs3xj4EPg33qH4Be7X3x7YCVfu07RcrrwbpsHGrKig0r5HcEfx+sBDNcrNhff09q3jvBdWUmrppXB/3u3Sgna9Ajipg+f7FXBm+n9IeoEN6+WYLYG/JaX006TcFsV74DsD4/CgmGkrHDs3Ppfpr3iv/n1gql7OtzNwZR3XNCDdV1tU2Dct8DSuVC8Dlkjbvw48ipuL56hS76HAZ8CJvZx/SuBtYKFeys2bFE0mxVt27G+BIypsPwI4tcZxQ4BZq7TZW8B86fuJ+GhpQIVre7enXIvvxWuBXZusY9p0X27cavna+Unt+iiwL/AvYOYKZS4DfoBHRI8ATkjvizF4+P0jwKENnn/OqvsyVjBHtQenhY20IfBMerhrjmyoraD2wXvSo4Gf9FLP/MA/gV0yyDdvejgGV9g3EB+5rZL3zdZE+y8MfJBeFG0fRaWX1SQ9cbwn9nC1lyauhCbg6XEGVCkzDXBBemAWSL/NRunl/166L9bHR9j39PYywTsle9R5baviCnDesu2npYd5Oly5voWb697GR0lVR374qPGnVBh9VSh7KnB4L2V2BS5t8LdbFni59HcCpgBeA77eYJ2X4+b5kcD4Si/JVO5s4IAW34uzp3t/hhbUtU5qmxlbKWM7P3hH8fp0j10BfL9s/2CqKK6SMl/HO5hT13nu+dP9P7Ti/gwVHI6H2O4N/F+bGmgg3vNYCNfmfweWrFG+loKaJd1s7wNzZzj3UqmBat5Q+ETf39TYvx/u78r9hiuT6xJgVIZyp+ImpruBkR2Q6zDg3LJtwk11e1UoP096ANbLULfweUsT8I7DONyXM11ZuX3LZahQzwQqmLMyyHAIrgAHpe8j0ot3cEmZGfHJvwu3uG1Xwk2Cwnv1u+ARhr/seRHgvp2GRwx4R2KDku8jgT83Ud8P8dRHb1FjFE0vlpEGz70fcH4L6zsbOK2VMrbrA6yS7vGe+2IkcGdZmd2BqzLUdTOwWx3nFp5C6mdVy2So5BeV/m9xI60K3Fry/RDgkBrlqyqotP9S4O46zn9RzUbyHsR7lPWIy8rMlMrUNK108oP7aV7HRypVe974aOZ93AS2C1Xs0C2Ua8Yk06IV9i2ZXlKHkUZywFS4T6LqPVHlPCtSw8eSrvddqowYcbv88w1e4wA8sOJwvIf+OrBWh3534f6lK9L1jcX9Wr9Pv/NFaXvV+znDOfYELiv5fivwnSbq+xpgwD69lBuEj05botRTWz0GrN3C9h+CjybX6MTv3YSc0+Am521Ktk2d3mNzl2z7ExVM1hXqWxePkq5o3ahQfhfc0jFF1TIZKlkJX//mSGDlNjXU1sDZJd93An5XVmYU3hMeB4zvpb75gaXrOP/X0kux4hAfn0l/QYZ6foSP/po2FbSoXW/Ee6a7J7kq+ltKrw+YHh+Bts2ki6fmuajG/rlxH8RjScmchvsIMt34dcpyH7BhlX37kzFwo8rxc+KjvoeAYzv824/EfULzlW2fGZ8mcXaT9Q9O98ksuHn4beo075TVJzyqMEuAy+nU2VmpUs9A3Mn/UqvvrdT+L7RKkbbpHjmECiMjStwjuJn8HTKY/dNv+AgZfHDp2XgLWK5muYwXsm6bG2qbCgqqlrO15giqQRnG4OGs5dunwnu/y2T8gc7E7bl1O59bfD3D8CUUpkpyXU0FEyVuUn0NWLZk23n04r9rUCbh2Rj+QQ3HaEnZHdNN/CwwU5vaab9qL2vc/NCUuTO9dG/O8oD3tQ/u690Xz6pQ1fzdhvOuBTzaxPEL436XV1PnoWIHpQVy7omP9jZoR/1NyjZj6lRUirhcj2RGBX4OnF5HvTsCd/VSRvi81V/1Wl/Gk16Mz38YVLJt9kov9AYbq6UmvgZlWCrdTOV+it2AW+qoZwrgTuCETt90ZXKMpcSXg/d0XwXWLyu3M760dem2tfBkmSrb3mvvtoY8A/Dor79RIZKrxnGz9abMmmyn+fAe4hRl26fG13iaLCgmPhPbaB08BdKbwOIdPO9A3J9Xd7QcPhXlPTxSMLOVpQlZ18Q7uAc08/y0Qa6fU8WKkdp3Aj6H7RlgeB31ToEHiaxYtn0mPJBiQ3xk/yS9RNCaZVRQ6QQ7pxfvt/GQw+tpkTMdtyu/iM8R6QmSqOUzabmCSvVeDuyf/u9Ju/8ydY4gcTPKs9ThMGzxdayclNHUZdvXSzfer/Fw7TlTW29UVm5A+j1WKLnpjksvhUbCkgfic5buK+ILH8/YsF7ZtnWBB/KWrcifkvvkjhzOvUZSjJlDztMzfS8ZgoZaLOu8eFBJVTMvHTQFJmXxNrBYjTKn4J3cZ+tVrLhp/Ebc5XFZeod+lJTSrbgJMVPnIOsJhwI/w2f8PwL8sg2NNiI1xgv0Ek/fRgW1DO4z2C5d56PAlg3WtVhSBhtlKDsNPrLYrEXXcQOwd5V9q+K9pxvxnuRkI6VU7jA8sm+B9LvfhJvm1qxTlilxxX87MH07frcWtNeBwO/Lth1Lhbk+8Zms7UZSRw+7xec+CA+eyWQ+xRPBPtJIJ6sFss6enre5KuxbDg8QaVmgRi+y/JJeohbx6D5r5F2Pmw9vx4NydgYWqVfJTawr4wmvxUcTA/De8DF4JFAuL5x2KahU96W4XXqzRhu1pK7huA9ltV7KjcInj75BhtBf3K+xJW6umDn9LvOn7T+lwuipSj0DqB44sSAe8fUW8JNU9hfAyXVc/3S4H+eaLPLk9UnX+ma6t6fDO2PvUmamiE+xPumevIFeJi+nstPiPfncIuvwTBOV/MA3pBf6g82+czLIMBgfPU2WYaesXI+faP5cf+MmLnRdmpj30GQjt1NBtfQGwW2ub1JlAmN6yJ7CJ6EujkcUHVJNDjzi7qXUaXgUn0D3BR7ocCeeJ62uUU4N2Q+lZE4K7qf7Z5Y2wkNt78MzbA9qhTztvqfwaME3UielqvkjPsX5pA7aeNxXvALe81+dMr8lHu7f0MTkFso6Dz6Kmq1k2/CkOHusKFu1WYbDqTH3r2ifZi92lpx+6LYpqDbJuz0eUbdAhX0b4WYHpe9z4eHVZzHpXITSCLi5yuroSIRYkuGZWiOL9KDtgDvPT6ENoeFturbv437V5fOWJT51/3Yr4z6ev+GWiAfw0f+leGb5+WlTiqQGZP09cFTJ9zuA3dP/38LnJbWlQ5feLe9Q4ND3yWTOW4AGG7pPKagk8z74SGmmsu23ATuVbRucXu7vpRHIsngE3MPUEQHXpus4pvQBK9m+JD56exd3hG5DgaKW4tO/PnggwL6pQ/UhvaR+6qBcC6RnZAhuhXqWFEGaOoB3UpZqqEXnFT7doRDtkPXT02vvU0gaZ2Yr5S1HvUj6He7v2MzMvpS0DO6jWcB8yfDy8kPwheL2xYNHNjGzf3VS5goyDcMdrEuUbJsZHzH9ATcfvJyXfEFQSlq0dDi+7tWnecsDIOlc3Ew/AjjFzMaU7BuGz1lczMw+aeE5R+G+7lXN7PNW1dtuQkF1kLRm1K34CPAgSaPxVDo1lxKXNBD4ygrwY6UH/p/45MOn0rZzgE/MbJ9chQuCPoCkxfDpHc/hmRS+Ktt/JT5R9rgWnW8hPABjLTN7shV1dopBeQvQnzCzz9OS2X+V9Ba+Bs2iGY7LtMJnJzCzryRdg0cRHiVpbTyB51L5ShYEfQMze1bSyfgE+a8qFDkan5rRtIJKndvz8DlYfUo5QRetqNtXMLN38RD2w/CoondzFqkRrga2TKtrnolnrOh12fAgCBwzO8TM7qiy+1FgRknzt+BUP0p/T25BXR0nTHw5IWk54FXzZbr7FJIG4eHYt+DzqL6ds0hB0FVIGgPcZmajM5QdZL70fPn2oXjU7ypm9nwbxGw7MYLKCTN7tC8qJ4D0MFyHT97eN2dxgqAbuQNPTVaT1NF9rcpo60hgdF9VThAjqKBBJC0KzGNmd+UtSxB0G5IWwAMbhtYKjpJ0Kp5BZgKwTo+/OkUI34Yn8f2g7QK3iRhBBQ1hZs+FcgqC9mBm44F/4xnAKyJpKjwJwAg8b96BabvwFcCP7MvKCSKKLwiCoKjcjk/mfbzK/s2Ax8zsBUk7A+Mk3QbMgWdQ/0NnxGwfMYIKgiAoJr35oXYBzgVIk+P3BS4BTgAO6EsTcqsRPqggCIICImlWPIPMrOXKRtJceITePGb2ccn2C/B13jYowsT+ZgkTXxAEQQExs3ckvQgMw1cGKGUn4KpS5ZT4Hp7br88rJwgTXxAEQZHp8UNNJAVB7EIy75ViZl+a2X87I1r7CQUVBEFQXCr5oVbBF9e8v/PidJZQUEEQBMXlXmAFSdPDxNDyPYHzusWMV4tQUEEQBAUl+ZjGASdKuhlfrn1RoNcUSN1AKKggCIJi8zvgCzwx8/xmtqqZTchZpo4QYeZBEARBIYkRVBAEQVBIcldQkg6X9JqkR9NnRN4yBUEQBPlTlIm6J5nZCXkLEQRBEBSH3EdQQRAEQVCJoiiovSU9Jmm0pCGVCkgaJWmcpHHA1B2WLwiCIOgwHYnik3Q7MLTCrkOBvwDv4OuZHAnMaWa7tl2oIAiCoNAUKsw8rSI51syqLtIVBEEQ9A9yN/FJmrPk60jgibxkCYIgCIpDEaL4jpe0HG7iGw/ska84QRAEQREolIkvCIIgCHrI3cQXBEEQBJUIBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUkiJkMwdA0njgI+BL4AszWylfiYIgCII8KYyCSqxtZu/kLUQQBEGQP2HiC4IgCApJkRSUAX+U9LCkUeU7JY2SNC59YtXdIAiCLqcwCxZKmsvMXpc0O3AbsI+Z3VOl7LjwUQVBEHQ3hRlBmdnr6e9bwDXAsHwlCoIgCPKkEApK0nSSZuj5H9gACDNeEARBP6YoUXxzANdIApfpEjO7JV+RgiAIgjwphIIysxeBZfOWIwiC/JA0a0wzCUophIkvCIL+jaQtgDclHaRkSgmCUFBBEOSKpMWBM4GtgB2AP0iaIl+pgiIQCioIgkxImkrSb9NcxaEtqnMGPGr3Z2Z2LbAGMBdwo6SZWnGOoO8SCioIgl6RtABwLzAvcDNwt6S5m6xTwGjgz2Z2NoCZfQRsAbwAXNJM/UHfpxBBEkEQFAdJWwJLAa+lz8zAycBxwElmZpI+BP4kaV0z+2cD5xDwc2B+4Dul+8zsC0n7AS9LWtTMnmvuioK+SiioIAjKORj4B7AwMDcwLTDSzO7vKWBmx0v6FFdS3zSz8VkrlzQE9zktCmxqZp+WlzGz/0oaDfwQ+EkzFxP0XQqT6qgeItVRELQPSe8Bi5vZ2xnKHg0MMbMfZqx7deBi4Drgp2b23xplFwDGAfOZ2SdZ6u8kkuYCvjSzN/OWpVsJH1QQtJAUSPC8pKslbdbXotEkzQwMBLLORzoL2FrSlBnq/jZwFZ5n80e1lBNAGpU9AGyXUZaOka73ZuCUvGXpZvqdgpI0SNIJKaVSELSabwFvATcBPwVekbR/viLVxaLA85bRtGJmLwHPAuvXKidpEHAssLWZ3VCHPKcDexVwbtTBuBLfUNIseQvTrfQ7BQUsD+wPnJS3IEFXsgNwvpmdbWarA98EDpTUVzKlLAI8X+cxl+DXXYsdgH+a2Z/rrPtWYDAFSh4taWlgH+C7wA2UBXkEraM/Kqg1gQuBdVO0UhC0hDSnZyPgyp5tZvY0cBQeAdcXaERBXQFsXM0qIWkgcChwZL3CmNlXwBnAXvUe2w7SSHA0cIiZvQqcA+xewBFeV9BfFdRYYEfgDEnz5CxP0D1sDtxrZu+Wbf8DsIikdUs3SppV0l8l7dMxCXtnEaCusO60RM4DwGZVimwNvAvc1aBM5wKbSpq1weNbyf7Av3DFBPAnYGoKNMLrJvqVgpI0AJ+pfq+Z/QU4Fbgg9fCCoFm2p8LkUjP7DPgZcHy6B5E0LW4eehj4gaRTU+88bxoZQUEVM1+63p8DR2b1a5WTFP51wM6NHN8qUlThgcD3e64l/T0H2C0/ybqXfqWg8MmH75jZG+n7MfhcsIPzEyloN3J2lPRiesm04xyzAasD11cpcgXwJbBdUkRj8JHKnum4rwHX9ayLViJ3p01HjSqoa4E1KwQMbA58CjS7fM5FeAcgT3YALkuBIaWcD2wjafocZOpq+puCWhOYuIy8mX2J33Q/kNSbkzcoOJJGSLpd0h4pXBpJc+Ivz4OBZ4Btqxw7naQZmzj91sBNZvbvSjtTT/sg3B91BjANsLs5HwAj8KwNT0t6TtLbwGf4hNZekTS1pHUkTdPoBUganOSqe15PSlF0C57wtae+ntHTrxodPZVwFzCvpEWbrKcZtsY7GpOQOrz3AN/uuERdTlcqKEmLSqpkE55EQQEkR+dGwEmSaobKdjuSduqrbZD8E2fj4d3rAi9Jugl4FHgMWAk4nuovkd/RXGTn9vioqCpmdjeeoWFFYKtk+uvZ9zmwBx6mvjGwJLAcHsacZRS1L25me0vSzZL27VHS5UiaTdJBFXYtQh0h5hW4BNhB0lKSjgFeAt6n+qgyM6kzeTk5zYmStBCeVePeKkXCzNcOzKzPfYBxvew/B3gaGFCyTcAbwPxVjlkDn7+yUt7Xl1ObLg/8B7g7b1kalH8McGLJ9xnx0fFyJdsGAhOARcqOHQx8CLxOyq5S57nnw+fETJmh7AzA9BnrVZJpoV7KTZ3KLZ2uZWvgauBuYGCF8pcCXwGDy7ZvB1zZxG8wFR4M8SreGVimxb/xqsCTjfxGLTj3gcDva+wflH6DJTotWzd/um4ElXqbG+EP7SYluxYBPrMqiS3N7F7g+8ANkpZpu6AFIjnsL8ZDeb8uaf6cRaoLSVsBK+DmJADM7EMzu8TMHi3Z9iUeAl4+itoJH3n9m8ZWdt4OuMpKRkTVMLOPrIoZsEJZw6PEvtlL0Z2Bv5nZ42b2gZldCWyDK7hJJglLGom31f2476uUuiP4yuT9FFgC7wQeZGaPNVpXFf6CmyDzeD63pmT6QDlm9gU+gtyxYxIVDEkDJc0jaXVJG7Yi6KfrFBT+gvkYn8V/YMn2ycx75ZjZdfgDfYeko9OLG5gYEvwLSRd1oTP0eODveDjvFfShhywFJ/wO2MWy5Wu7nBI/VOrQjMJDwW/GfUH1nF/4hM2L6zmuDu4G1qpx/oG4b+vY0u1JGe8MHCBp+VR2CN5WuwG34VaDUhoNkCg971vp3C0nKexL6XCwROqwLYR3FmrRY+Ls83OiUnzOn+WLSVbav01K6fWSpJclvQZ8AjwE/Ab4FfCIpA2akaMbFdQIvDd8FTCPpOFpe68KCsDMLsGV3ELAE5J2kHQa3rNcIBW7VtLUpcelFEp7Spq3NZfRHpKM3+qRX9IIYFPgh+kFcCGwU14PmTyX3Y51zE87DbjQzB7IWP4+YDZJX0vfV8VNU3fjCmqjeuQFVgGmoLpvoll6G0FtBUywChkakrVgP+DiFDxxInB1shbcgz8TpTStoDrAGDwSspP355bAdeZ+wlo8gkcsDu+lXF9gcXyEvVOV/QcAh+P+3jXwa57JzOY0s+HAysAvgdMl3ShpsYakyNvG2MiHGj4o4M/Ahun/fXHTC7jDdvE6z7Mh/kI7Chiatg3Ee+HXAoPStvnwF9RTwOPph8q9nSpczxK4r+TPuM/lRtxuvlZJGeGLxa2Yk4x7AOOTnA8Dh+HZrCuV3QTPAzd1nec4Bfhl+v884ID0/zSpXQbXUddZwMFtbA/hfrMFquz7G7BJL8ePwRXwSyT/F76ExsfAtCVlJwBz532fZmiPfwCrdfCc9/W8UzKU/Tnwu7zbqQXXvDeeSf5Fynx+eL7GCT3vv17qmRIf4b8MzFi3HHk3RIONV1FBAUPSC2aa9H164G1gbTx0tiXO1dToNwMX4LbpN9OPMAA3odxOBod5Du32c+CU9P/MuKlrqwrljgBOzkG+gUnhrIk7ndfEk4U+A0xXVnaapEg3aOA8q6eX3BDgA2DWkn03AttkrGd6PEptzja3y2W4CbN8+wZ4h2hAL8cPSde7ftn2+4G10/8z4CaamnUV4ZPu41M7dK658cCPTM8zvobWW8AUebdTk9d9HR5k9BSwatm+w+t9P+DTJaoGmVQ9rs6TtK3R8dHKM7iJoWaPtIaC2hYYW7btV0l7X9FieafFzSQvAMNKtg/Ew2rPa5VCbKHMjwJrZii3aFK6vfaQWizfSODB8nbDJ0KeVbbtMBqMOEsdiVeA3wNjyvbtDZybsZ5dcdNPu9vlh5VkwucGfSdjHZPdi7jf6rD0/3LA4538vZtoj0U6dX/iSWHPq/OYB4CN8m6nJq55EN5xmx34RWlnAB/BPk+d0c7ATOmZW6eu4zJUvFj6LI5PuGtHgwxML/qF8NHJ34Ela5SvpqDOA/Yq2zYHbhaW2TAAACAASURBVBfepw1yT0UarZVtnw53Fh6W981WItMi+LB8srDjKuUfAEak/4VHhV0OzNBGGe+nwugF790/TxrtpfvkHaqY/jKe60TAgG+WbV8Yn47Q60gCN/1s1oHfbkngpbJtI/AOXcOdRny+1R3p/22Aa9p9LS2+VzZv8zmEm8OrmlCrHLcPcFHebdTEda8KPJr+7+kMTJG+D8en8DQyHWNj3GSYaZqFWbYw8+OSUMOBBTOUb4Rh+ATBF81DdS/FU6RkJs1a3wg3vU3EfLXLXfCXa0sxs0/N7D8Vtn+MBx7s2UjIuqTZJR3a4txsW+EO8qwRVj3BEgviZq/D8JHHZe3IGSdfaXUOfP7OJJhnKdgRd7jOC5wM/MbMXm7ilBfifsNJIrPM7AXcTFwz3FzSEvjzcFMTMmTlKWC6nvB/+WJ5JwH7We+O+1rcBwxL9TUVYp4Dp+NpotpCSjl1OR4Ac1udh18GbKK+u+bc+ribAjN7Hvdd9iQ6/g6ufK3eSs3sRlzhH5X1mCwK6pdmdoGZnQ8cUq9QGZkbH/718GraNhFJoySNkzQOqJTVeHngfTN7sXyHmY2xDi/LbGYT8B/imAYO3wYfWl9RHi3YBFvjkY1ZuRwPQngIN2WugIf3DgR+24YoqgPxibYVFaiZPQj8FjdrfQ0fATWMmT1iZmtWedCyhJvvClxgPv+lrSQZ/8T/ws33xTt0TSlH8xRLz+O/bV+I4CvlSmB5SYu0uuIUWv0g7l9cy3x+V2as9+zuRWc9JlXKlwA7yleH/jYVEiLXwY/xvIWrZSncq4Iys8eVlglossdai0ovu0leHGZ2ppmtZGYrUXk56p7w8iLxB2AJSVXnsVRhQ3zS8OfAjSpJINoI8gSpC9D7PI6JmNk7wO7AymZ2rJl9lnrr38bDSn/SjExl8i0OrIbPw6rFsXhk0Q/qfWnUSc1w8/Sg7oSvC9Qp7gbWkjQUzyu4X4vqvRcPRulTCsp8ufhzgR+0qs400XQnvE1ONLNR1suy9DW4BNitmdyIeZDeNSvgI50eLsMtQlsAz1UaBGTFzN7D79/jMnVyM9oOL8ZNfYNKts0O/LSFNs9bS74fgi8IVq38ZD4o3Ca9XivkaeUHN039hYw2WzwDxod4lN1APPrlr3iIeF3h1CV17k9ZkEGT1zQfPsrdvkX1nQkckfdvVeE3GFJl/2b4ki2dlOnruJ92NPDrFta7Nb7sx2s04dPL6XdaCI/SncwPXGc9U+BugGfwkc/KLZBteryj8z4e5LMhDQZ1pOf3DjzTy1wtbL8BlESwpm0bA3dVKHsr7ov6YQvOOxA3W/cagVtPpTsDd+I96MvwSLWRLWqoQbjzbEH+FySxVI3y48q+z4ovIjZVq368Ft8EjwJbZiy/HnB/yXfhYd8v4MEeE5IyXrAOGe4n4zyOOupcFo+OPIqMgRdV6tkbN+/OlvdvVSbXWODbVfadDuyfw330Nj5vre75JDXqnSMp4//QB0LMK8h/IxVC8Os4fml83t0dwDq0OPIWmBP4ET7yv7ne+tPz/1Kq40LgPdzkPnMLZNsVD6FfomTbycDPKpTdGbfozNKidtkW73jXbI+slQ3FF1z7Cz5b+pdtuNFG4HNgXgAO7aVsuYIaklUB5PHBM1Q/TbaJbb+p1r7pJTUnnj3hxIznnifd1C2fl4WPou/Cl1mo+8bFh/ov1KNsO/ib7QOcU2Xfc7Q4EWpGmU4BtmtDvc8AT+bd5g3KvjHw1yaOPxI4oQNyToFn1a/L6oBnKnmq50WOd+BvA7ZugUy34QFp44F50rYnKJk2U1J2GuqMZuzl3ANSe2xas1zGyq7FHeYD8OHZMfgCYpnDBVv8Y9fMZl60T+oF3YlPcKvZ88EnVNY0MeAjzXfIYNrAe17ntfHaBgEn4CPgDXvrEZW0x6/Sg1fIzAX41IpXy68H9+W9SR8cbdS41rOA6/OWo0HZB6YXbENmOeCPvb0kWyjrqvgIuJ5MJScBh5dtOyRrB7VGvXPg5sdp8CQDT+DTGd6jCYtInTJsgVuXqj5LzVS+LvDnTlxIhXP3KQWVZF4SH+J/iKenOYEyezLu23k7y8sPDwjZpcq+galDcV264b7RgevbLN3kD+EO1YqKCs9EfTk+Ei+UWa9Mzh7TylJl23cHLs5bvhZf65rADnnL0YT8BwOjGzhuAGlCagdl/T1wRh3yvUrZEh54bsYHmpRjLzyHZc+9fiLe6b2qg20h3PRZdTTY7AlaYo9s4Lx9TkGVyD4lnmrn7NR7U8m+UVlffkkJPFhh+/q4T+cvuI25Y6Pc9EBthfsQH8fTPo3C59CtjztaX08vlLZN+G3h9ZxBma+JKmmH4pPr7zR7UjR1+ebwwKMXOyzrkPQMDM9Qdg3gsQrbp8PzKDYUNJXquIcSk116dk+jQuqzNrfHRvgaXxVHbU1lMzezd5s5vj9iHq59H56+ZnYmXTpgQ8omGtfgJmCopBV6NqQM4BcCu5rZcDMbbRnXHmoFZvaVmV2Fz0nbCw9bHo4rquNwe/eC5mHrH3VKria4FfcfAhMng69LmsQYFAPzeUc9AVz1sArekesYZvY+ngn8D2m6Qi22xZ+Z8jo+xv2GK0x2RAbSe2IpvIPcU+dXZrZXen47yS3pU3n156TF+hSSxpnPh+rTpGXpr8Nvln/jSSYXSw9cluMPxbNcfz9ld7gTuMXMjm6XzP0JSTPi4ddzmNknqTNwsZktkbNoQRmSNsGjzzJNAE3H/B54ysxOaZ9kFc8rvPNzh5kdV6XMQPzeW908u0n5/t/h6a9+08D5f4Knktu93mM7TTeuB9VnMLO/4jPij8MdqM9nVU6Jc4CtJc2EpyL6L2UL1wWNY2Y9/sK10qaJKWCCwnELsEBKQZWVjo+gYGJmkFH4YpLV5F0LeLWScko8gL8zGmE7KozMikgoqPz5OW6HPYzs5j1gYjqlP+ITXXcFdjKzr1ouYf+m1My3PvXnZQs6gHnKqQuA72Upn/LkLYZHkXUcMxuPL+h3bhotlbMd7u+sxgPAqvWmHJO0MDA/npmk8ISCyhkz+xceCr423guslzPw3H07W4fzDfYTbgU2TClrVqGPPNj9lHOBnTP4dgBWxJcXaWfKrN74A74G1yRpq5L8I6md4PolfIrHfHWec1t8mZq255BsBS3PSh00xNV49Fsj5oY/4SsF96VM1H2JR3AH7o54RNWHOcsTVMHMnpH0Am6RuL6X4qvgCWFzw8y+krQb8JCksXhQ0aZ4dpXHzeyfNY41SffjZr6K5SStjM9ZnQFXaOPx1FaZRplFIEZQBcCcepbCKD82lFObSCbTP+LppsK8V3xGk+0FPJwc/E/lmNlL+AT+a3Elsj/uW66arLiEin4oSUMlnYsr6TH4CO0G4CPgCnyZlT5BjKCCoHduxUdQoaCKz+XACZLm6MXkvQq+xEsROB0fLNxtZo/VcdwDeGq0iUjaAp9jORq3rPSM+O9vhaCdJsLMg6AXJM2OP+BLWHMLBAYdII0eXjSzI6vsnwc33c5uffEFmEh+0XfxhAn/SYuj3oEvNz8uX+laQ5j4gqAXzOwtM1sklFOf4UhgX0nLV9m/CvCXvqycAMxX834CWEnSLLiZcN9uUU4QCioIgi7DfEG9HwFjqiy7PpycAyRayAPAN3Bf01VmNiZneVpKKKggCLoOM7sED4KolCUilwm6beIB4Bfp/0PyFKQdhIIKgqBb2QdYS9I2AJJmkbQVnsPuoVwlax1/wpXUdn1lblM9RJBEEARdi6SV8Awtr+HrqN2HT1QdnatgQSYizDwIgq7FzMZJ2ix9HReBLn2LUFBBEHQ1ZvZA3jIEjRE+qCAIgqCQhIIKgiAICkkoqCAIgqCQhIIKgiAICknuCkrS4ZJek/Ro+ozIW6YgCIIgf4oSxXeSmZ2QtxBBEARBcch9BBUEQRAElSiKgtpb0mOSRksaUqmApFGSxkkaB0zdYfmCIAiCDtORVEeSbgeGVth1KJ608R3A8DT5c5rZrm0XKgiCICg0hcrFJ2kBYKyZfT1nUYIgCIKcyd3EJ2nOkq8j8QW4giAIgn5OEaL4jpe0HG7iGw/ska84QRAEQREolIkvCIIgCHrI3cQXBEEQBJUIBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSEJBRUEQRAUklBQQRAEQSHpkwpK0i15yxAEQRC0lz6poIBZ8xYgCILOIWkqSQPzliPoLH1VQQVB0L+4EPh+3kIEnSUUVBAEhUbSTMBmwPC8ZQk6SyioIAiKzkjgNWDFvAUJOkthFJSk8ZIel/SopHF5yxMEQWHYHjgcWFjStDnLEnSQwiioxNpmtpyZrZS3IEEQ5I+k2YFVgKuAp4Bl85Uo6CRFU1BBEASlbAPcaGafAOMIM1+/okgKyoA/SnpY0qjynZJGSRqXzH8RZh4E/YPtgTHp/4cJBdWvkJnlLQMAkuYys9fTkP42YB8zu6dK2XFhBgyC7kbSfMDfgLnM7DNJKwLnmtkyOYsWdIjCjKDM7PX09y3gGmBYvhIFQZAz2wFXm9ln6fsTwCIRKNF/KISCkjSdpBl6/gc2wG/GIAj6L6XmPczsUyJQol8xKG8BEnMA10gCl+kSM4t8e0HQD5A/+KOA44C3gWeAl/H3QrmZv8cP9UAnZQzyoRAKysxeJHpFQdDvkDQjcCawBPAN4EtgMWBxYG8z+7LskIeJjBL9hkIoqCAI+h+SlgOuAO4AhpvZf9Kup2oc9jCwV7tlC4pBIXxQQRDURtIAST+WtGjesrQCSUOBW4DDzewHJcqpNx7HAyWmaZ90QVEIBRUEBUfSYOAG4AgKntFb0vYp0KlWGQHnAGeb2cX11J8CJZ6mxCUgaTtJf5M0ZSMyB8UlFFQQFBhJSwJ/BV4ENgI2zUGGKSTNIWkJSatLqjgHUdIAYEPgHknz1KhyDzwA4ogGRZqYUULSMOBU4CsKrryD+gkfVBAUEElTAbvjSVIPNLPzkgIYLGkRM3u+Q3JMDUwAPgXeS5+7cCUxCWb2laRdgIOAv0gaaWYPldW3GPArYA0z+7xBsR4GVpE0N3A13k4vAzdJOt/M/t1gvUHBiBFUMBFJ00iaIm85ikAyQ+Vx3ilTqq9ngY2B9c3sPHAFANxIZ0dRywDjzWwOM1vCzFY3s59XK2zOccDeuML4gaTl0whsSuAi3O9UKxCiNx4GVgWuBU4zs+vM7BFcce7XRL11kVb5jeeljYSCCko5Bbg6r5dzwbhB0grtPomkpZPf5nBJY4Dnga2A7cxshJk9Wi4XsEm75SphRVwh1IWZXQushyvZ84B/AJ/g85xOa1Kmx4GFcSV+bMn2XwA/kjRbk/Vn5UjgjjTanYTU0Vi7Q3J0LYXJxVcPkYuv9SSl9BrwMXCimZ2Rs0i5kcxQ9wDzlaTZade5zgemwSenPgP83cwer1F+OuANYF4z+1c7ZUvnOxv4m5md3oK6pgY+SyPBZuvaGLizPPpP0u+Az82s7SMpSQ8AM+Lmzl0svUzTdV6BK+clzezpdsvSrYSCCoBJ5qRsAvwZWLNJM0yfRdLxAGZ2UN6yVELSTcD5ZnZZB871CPADM3uw3edqBZLmAJ4EVjSz8W08z5TA+8BCuNn1ajM7OoW/XwN8CDwHzG5mEbzRIGHiC3oYAdxkZs8AhwKXVDJddDvpxfNd4Oy8ZanBDXTAD5VGAosDj7X7XK3CzN4EzsADNdrJssAL6XybAT9IASJjgXeBHYCTga0lzdlmWbqWUFBBDxsBN6f/zwL+idvY+xubAk+b2bN5C1KDscBGktodhbs08Fwdk2iLwh+Abds8mXcV4EGYuBLDZsDv8GjCnc3sCzN7G7gY2LeNcnQ1/V5BSZq+E87wIiNpCN4j/BN4JBYeuruDpJ3ylC0HdqfYoyfM7BX8Rbhqm0/VUIBE3qT2eRjYoo2nmaig0jkfBRYBdivLH3gi8P2e1RqC+uj3CgpP6f9XSTvnLUiOrA/cU9pTNrN30vZjJP2gtLCcrSV1Mpqs7aQF8oYBV+YtSwbGktHMl9IknSnpGEmrpvlUWeiTCioxGvheG+ufREEBmNmE8gCQlAj7dmIScUOEgvKRwznAkZL279RJ6wnlljSXpHnbKM4I/mfem0gKklgL+KmkA5IsSwN34lkARqc0PB0jKcahbap+V2BMHzFp3QBslvE+2glXNl/h5tvXJZ2WAgpq0ZcV1LXAiqnT0VIkzQwMxYMxsvBrYL9qqZgkDZJ0bX/0+fZGrwpK0smSfitpmKRutKUuC1yGp/rfTdLx7Z4HlCb33SFpx4yHHAE8nCLtWi1LT3qayRQUgJm9AKyJmyluwzNPX4G32/XAwa2WqRrylVTPpQ3ZrCUNxBXUWa2uu02MA94B7pb09WqFUgfiWDwS71Az+zqwOj4n6QlJ+1TyZaWX5deAv7dF+jZjZv/Fn+t2WEaGAQ9XWAqkmiwP41MItquy/ws89dMaLZOwwCS3ykwpMcCgWu/bLCOoCWa2L7AaXbYMe3o5L4PPPXkFv0HWxCNwKpVfQtILkp6T9LSkJyX9uIFT/x8eHfWdjOW/AfweuFXSag2crxbLA+8nU0RFUtusic/UX8LMTk8P1WG44mp5L7UKI/E5QDvVYaaqiKQhaYLsTpJ2xX+TN82spS9kSQMlLdjKOmFiVom1gEuBuyT9WtL0FYoeAdxQmnLIzF4wswPT8SOBcRU6P0sDz/eR0WQ1zgW+1+y9UoHJzHsZOAqo9Pv0MJbOTsDOk6OBV/C0WZ8CX1aNdDSzmh9g3ZL/R/VWvhMfYFyL6lkIeKVs27TAwCrlp8JnsC+G9y6XBIbWec4N04+zID5XYqZeys8K/AsYmI59G1ivhW35C3xibqPHH4nPyenE734r7jN8DFiryboWwF/uF+IvsjOBb7RITgEr42HGbwBXtrldZgfOxyMvv1WyfRngLWDWXmTdA88QPqhk+x7AuZ34XdvYLsKzTjR1r1So9yZgZIvrXA6PmMy93Vp0PVPWUXYgaU7uZPsyVrBu1pN16OJbpaBGAmM7KPfc6YW1Zvp+A7BDL8dsBtxS8n2N9NJZtUUy3d+MwsNn0k8AlutA272HZ13YHzinU79bnXIOwHvXz+GJXhfv4LnXB8bjPtXBwL24aa+344SPjncr2XYmvqJt7m3aZJv8BDivhfUJn+c0V4vlFPAqsFjebdbENQzGTarXA68DUzRbZ9ah766Sjiu1VUuaXdJPMx5fVJalQzb21HaX4Mkt70mbrwa27OXQb+CZHQAws3uBHwLnq5d1dzLINCuwFP4iawgz+xAfRR3fjCwZ2BG4ytzkdAmwZfJJFY0VcaW9mJkdbj7xuSOY2W24ae5T4CXcGtCrT8387XIwcHjJ3KG+HCBRykXA5vKl5VvBIsAn5nOfWkb6DW6ij5r5JJ2Kj+C3BC7HXQGNZqufSCYFZWY74ske/yjp25Iuw+eKFHkyYxY6pqBw89ynwDEl224A1u9lQuEkCgrAzK7C1wg6puIRGZCvM3Qnbsb5tNF6EmcC80s6S9IyTdY1GcmJ+l3gAgAzewP4C+2d59Iom+I+n1xyiJnZR2a2J/6i296yO/IfBB4C9koBEkvQRwMkSjGzt/CIvpNbFPy0Cn7vtYOxeP6+PoWkDfBI4PnMbAszu8halScy49BtKPAz/Id5BPhlzkPJVpn4XqSzJpjJ7LK4kti8SvlpgH8D01bYNwQ3CaxTpwwCRuG+rN2oYvtt4NqG4kETr+Jmw21b2G4rpt9KJdu2p8T0WZRPej7WyFuOBmVfEjcfrwM8nrc8Lbyu6XFf1B4tqOtU4IA2yTkd7peeMe82q0PmKXH/5abtqD+rie/3uGN6NWAlYBpJF1WJGioclaJ4JM2EO5c7svAbgFXOjH0N7gurxMrAE2b2SYW63scn/42uZr6QNJ2kIyRdLOk8SWcCtwB74n6wcyzdZc1iPknxCDz44DjgN5Jalengu8AFZbJeCwyTNFeLztE08lVk5wUeyFuWRjCzJ/Fe/Fl0h3kPAPMFDLfE5zoOb7K6RiL4MmFmH+Oduw3aUX+b2BfvPI5tR+VZTXxbmNlYM/vKzL40s0PwyKdb2iFUG7hBnp6/lGXwl38mE0gbuRbYVJUXPpvMvFeKmd0M/BE4szzUO2V5+AcedXgznsZoHB65NtzalKncPAfZdXjY9mGVykhaXL4aaq+kyY3bkcx7Jef5D+7DqzglICc2AW42D8HvqxyOB6R0jYICMLPn8HluV2SYoFwRefLcpWhv29xIL2Y+SZtL2lXSCPlikDO1UZ5acsyJ+y5/3KqO7mQ0ObybJadh5biy7/MAx1UpOz3wOWXReviKn3/IQ/4KMv6VCpF0uNN0i16OnQFfEO5tXCGdAFyFR5G1LBy9gWuaEs8Xt0rZ9hlxZ+rTwJBe6pgK+Clwb5X9a+Kmm5aYKVtwzTfSQtNmjtexNTBn3nK06doOB+4GBjRw7Ijyd08b5FsIeLOafPjctdfxAcLNwKP4Om6D2ilXFVkuAI5t6znyvmEabJhyBTU1brud7IWHZ+l+CF+7Zc6S7WcBe+Z9LUmWg/HovtJtA4EPgNky1jEQn0h9OO4vnLoA1/VDfAmP0m1nprY/BbiNCqGoeKTU8bg/5I/42j6V6h+QrjXznIs2XmuP/6DmvLb45P479UwDqDm9o8JxPb6WzTog45PAsArbp00dz83Ktj9EB6YC4f7r2ZOSPAD3N0/fznN2RS4+87Qm91DZdrsOHi13NZ6TrIdORvD1xtXAyLKUM0vhWTzezlKBuen1r+ahzUenNsmb0cDSklaGidE+38LnMe2Pj2x/2xNdJWk+SRfidniA1cxsA/NUMZNhbnI+2tq86m1G1gUesg6schs0jnkGjgOAo5PJLiv74f7qG9oi2KRUM/P9H945v75s+5X4qLdtpBycE4Cn8KwYX8OtBf9u53lz79E0qMknG2bjjv/JMhrg9uJvpM+TeC9gIL60+Qx5X0uJnGPxbAADSq7n7LzlasF17YU/1DPhpr31S/bNCDwBHILni3sXfwgL87vUcZ1n4bb43GWJT6bf6xrgoIxl58PzHi7UIdlWTufbk5TVBg/OmEAFiwpucZhAlQw4LZLpVjwgoqPm9NxvlAYbq5KCWpAy2y0wM252mTIppmfTD/01PM9Y7tdSIuu0+CjwjCTrJcAuecvVguuaGjcF3EkFnx8e9fcKnv1g7rzlbfAaB+AZQhbOW5b4ZP7NFktKoGoaqJKyVwKHdVi+JfEJ9A/ipvt/ANvVKP8oKUNNG2T5Fp7stunMEPV+usLEB2BmL+E98NLFB78J3Gdmn5m39Hn4GjFFMu8BYB5Kvgku/2/wEd99uQrVAsxNjcfi0YQHVtg/Hp/gt5uZvdZh8VrFisAH5pnfgz6A+YrJY4Bf1ion6Vt4QuV2Z0qZBPOQ/7Vwn+3NuHnxshqHXAls1Wo5Upb/XwMHWwsyQ9R9/qQh+xSSxpnZShW2nwB8aGb/l76fBrxkZiek7/PiiukC4L2eckUirTVzFz7xdaj1xR+ojORjmt7MPspbllaQ5nftgZuJP8HTCz1mZgflKlhQF5Jmw30qq5qHoZfvnxF3EfzYzG7stHwlcgwGPjefJ1WtzBJ40NF8VrZoYpPn/h4+oX+NPN5FXTOCStyMh4L2sA5uWgImLhvxED7BtVAjqB7M7D1gPWDnblBO4HnGukU5JSbg88qews1ED+Km2aAPYR6A9GvgnPK8jmnkcDFwW57KCcDMPqilnFKZp/BVD1Zp1XlTmxyJZ87I5V3UbSOoqfDQ5EVwv9NjuFPxq5Iy2+FD+wWTeSkIgn5KUkSj8Qwgm/YoAklH45lz1s/DtNUIko4ApjOzA1pQl3Dz55Jmtm3TwjXIZCtp9mXM7FNJd+JOPYC7Kwx3r8UT3f6zo8IFQVA4zOzLtGDlOcDYlIFlUzzX47C+opwSVwHXSzowy4hH0hA8BdSHuP/+XWBRfLrOt4Cv8OkTudFVI6i07/vA2njm8IfM7PSOChcEQZ8jjaTOxqPnFsKzsBTSDVCNNOp5Bs9i32s6JklX4AuivgfMkj6v4iHltwJP5+1m6EYFNQ/uX/oY2MDMnu6ocEEQ9ElSUunj8NRa5ZNh+wTJNLkj3kEfgqdCO9TMflNWbmvgV/hCo0WY1F+RrlNQaf9jeG9gnrx7AEEQBJ1C0gx4Fpr302c6PKDnIDO7NJWZFc9huZWZ3V+triLQVT6oEm7EJ32GcgqCoN+QomUnWVAxreRwh6QJZnY3cDJwadGVE3SvgjoKqLR8RRAEQb/CzB5P0cuXS/o1MBxfbqjwdKWCsnYnMAyCIOhDmNmdkvYDLgTWtgqLoBaRrvRBBUEQBJMjaaiZTchbjqx0WyaJIAiCoAp9STlBKKggCIKgoISCCoIgCApJKKggCIKgkISCCoIgCApJ7gpK0uGSXpP0aPqM6P2oIAiCoNspyjyok3oWFQyCIAgCKMAIKgiCIAgqURQFtbekxySNTmuUTIakUZLGSRoHTN1h+YIgCIIO05FMEpJuB4ZW2HUontjwHcDw5YXnNLNd2y5UEARBUGgKlepI0gLAWDP7es6iBEEQBDmTu4lP0pwlX0cCT+QlSxAEQVAcihDFd7yk5XAT33hgj3zFCYIgCIpAoUx8zSDpCaCwSxcXjFlxv19Qm2inbEQ7ZSPaqTrvmNmG5RuLMIJqFf+NJTiyEcuVZCPaKRvRTtmIdqqf3H1QQRAEQVCJUFBBEARBIekmBXVm3gL0IaKtshHtlI1op2xEO9VJ1wRJBEEQBN1FN42ggiAIgi4iFFQQBEFQSLpCQUnaUNIzkp6XdHDe8hQFSfNKukvSU5L+IelHafvMkm6T9Fz6WzFBb39DMT/e+gAAA/9JREFU0kBJj0gam74vKOnB1E6XSZoybxnzRtJgSVdKejrdV6vG/TQ5kvZLz9wTksZImjrup/rp8wpK0kDgNGAjYElge0lL5itVYfgC2N/MlgCGA3ultjkYuMPMFgXuSN8D+BHwVMn34/C1yhYF3gd2y0WqYnEKcIuZfQ1YFm+vuJ9KkDQ3sC+wUsorOhDYjrif6qbPKyhgGPC8mb1oZp8BlwKb5yxTITCzN8zsb+n/j/CXydx4+5yfip0PbJGPhMVB0jzAxsDZ6buAdYArU5F+306SZgTWBM4BMLPPzOwD4n6qxCBgGkmDgGmBN4j7qW66QUHNDbxS8v3VtC0oIWWKXx54EJjDzN4AV2LA7PlJVhhOBg4CvkrfZwE+MLMv0ve4r2Ah4G3g3GQKPVvSdMT9NAlm9hpwAvAyrpj+BTxM3E910w0KShW2Rex8CZKmB64CfmxmH+YtT9GQtAnwlpk9XLq5QtH+fl8NAlYAzjCz5YGP6efmvEokH9zmwILAXMB0uAuinP5+P/VKNyioV4F5S77PA7yekyyFQ9IUuHK62MyuTpvf7FnmJP19Ky/5CsLqwGaSxuMm4nXwEdXgZKKBuK/An7VXzezB9P1KXGHF/TQp6wEvmdnbZvY5cDWwGnE/1U03KKiHgEVThMyUuDPy+pxlKgTJj3IO8JSZnViy63rgu+n/7wLXdVq2ImFmh5jZPGa2AH7/3GlmOwJ3AVunYtFOZhOAVyQtnjatCzxJ3E/lvAwMlzRtegZ72inupzrpikwSkkbgPd6BwGgzOypnkQqBpG8A9wKP8z/fys9wP9TlwHz4w7SNmb2Xi5AFQ9I3gQPMbBNJC+EjqpmBR4DvmNmnecqXN2nttrOBKYEXge/hHd24n0qQdASwLR5J+wiwO+5zivupDrpCQQVBEATdRzeY+IIgCIIuJBRUEARBUEhCQQVBEASFJBRUEARBUEhCQQVBEASFJBRUEOSMpAUkrSNpqKRD85YnCIpCKKggyJ8FgHXMbELM4QuC/xEKKgjyZxSwk6Q7JF0EIOkBSadK+ruk7SRdLekxScum/ZtIukfS/ZI2zFX6IGgTMVE3CHImZa9YD8/Q8Csz+46kZ4E18Owof8NHWSvgqZh+DNyZjhkA3Gxm63Ze8iBoL4N6LxIEQQ68bWZvAkh6wcz+K+l1YAgwK7AEcHsqO7skWfQ2gy4jFFQQ5M/n+EipFKvyv4B38PyK3zKzLyVNEcop6EZCQQVB/jwBHIMvCPh5b4XN7CtJJwJ3SDI8U/Ze7RUxCDpP+KCCIAiCQhJRfEEQBEEhCQUVBEEQFJJQUEEQBEEhCQUVBEEQFJJQUEEQBEEhCQUVBEEQFJJQUEEQBEEh+X9UaI4igVyxXQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2dd7geRfXHP980AoTQQm+hN6UGCCAgnYQaem9C6AKKFKMCoiAIolKlg0LoCASMhN4DCYIgRTqE3ovIT8Hz++PMhZc3b2+7997zeZ73uXd3Z2fPzs7umTlz5ozMjCAIgiDIG32yFiAIgiAIShEKKgiCIMgloaCCIAiCXBIKKgiCIMgloaCCIAiCXBIKKgiCIMgl/bIWoBySXgI+Ab4EvjCzYdlKFARBEHSS3CqoxNpm9m7WQgRBEASdJ0x8QRAEQS7Js4Iy4BZJkyWNLpVA0mhJk9LviQ7LFwRBELQR5TXUkaS5zex1SbMDE4CDzOzuCuknxThVEARBzyG3PSgzez39fRu4Dlg5W4mCIAiCTpJLBSVpekkzdP0PbACECS8IgqAXkVcvvjmA6ySBy3iZmY3PVqQgCIKgk+RSQZnZC8CyWcsRBEEQZEcuTXxBEARBEAoqCIIgyCWhoIIgCIJcEgoqCIKgDJL6SrpD0txZy9IbCQUVBEFQnpWB7wLbZSxHryQUVBAEQXk2AyYCO2QtSG8kFFQQBEF5NgUOAxaQtEjWwvQ2QkEFQYtI4xUDspYjaA2SFgJmA+4HriLMfB0nFFQQNIicn0q6WdIzwGfA7RnIMVunr9lL2BS4ycz+B4wlzHwdJxRUEDTOBsBOwNnAlsDswLckzdEpASQNAl6RtE0L85SklZLynalV+Za51kyS1mnnNZpgU+CG9P8DwGBJ385Qnl5HKKggaAB5oMhjgKPN7AYz+4eZfYQvDTOig6KsB7wOnJaWpmkYSYMk7Qc8AlwODMdjYk7TvJhl2Qe4JJVnbpA0I7AK/jxJvajLiV5URwkFFQSNsQEwGLi6aP84YJMOyrEJcBpwMXBmkx/6M4FRwOHAorgH2/vABZJa/q1Isu6C9zwXbXX+TbIRcI+Z/atg31hg+7wp055MKKggqJOC3tPPzezLosN/AdbrhLNEUhobAzcCRwNL0uBAfsprBLCXmU0ws/+le9sZWBD4ZWuk/gbLAIOAK4C8mfkKzXtdPAr8l1ibrmP0SgUlaStJq2YtR9BtKdd76lpg8ylgzQ7IsSLwoZk9b2afA7sDv5M0ZwN5rQC8a2avFO40s3/jPamtJO3brMBF7AxcCtxKjhSUpH64sh5XuN98+fGxwB7Ri+oMPVJBSeon6YJStvNUsU7GbevzdF66oDtTpffURafMfJtQ8BE1s4eBc4FTG8hrQ+CvpQ6Y2bvASODnklrSe5DUF9gRV1B3AGu3w4zYIKsDL5vZlBLHzge+A9wj6TudFav3kZcK0VLM7AtgKLB5icPDgX8DpwNXSOrfqutKWlfSgq3KL8glZXtPBYwDNu1AK/sbCipxIjCiAYeJDSijoADM7DlgP+DyFnn2fRd408yeTL22j4ClK50gaTZJa7Tg2tXYHDebToWZvYqvVXcO8CdJN8UE3vbRIxVU4jzgeyX27whcBhyPvxS/asXFJG0A3Ayc0Ir8gtyyL3Byhd4TwN+BAcAS7RIi9f4XBO4r3G9mnwDX4/W81rwG4ya+uyulM7Nr8Dp+XguU7y7Anwq2b6eCmU/S/MC9wDXJBNcWUoO1q2dXEjP70swuARYH7sR7UzEu1QZ6soK6DhgmaYGuHalibwuMTW6juwBbStqqmQtJWhGv0KOA9dPLFNRJMs2ek9eJp+njtTb+kS5LGqtoiZlP0vSSTpI0QdIMBYc2BsYna0ExF+HjUbWyNjCxyGOtHIcBC+G9qapIWlXSDZJ+K2m6tG86vJcytiBpWQUlaTHgHny+2Yvl0rWIEcDzZvbPagnN7P/M7NfAaOAmSRu1Ua5eSY9VUGlwdyywR8HudYEXzez5lOZ9YBvgLEkrNHKd1L2/EdjbzG7G3X0Pakb2XsxOwG7ASVkLUoaV8frzVg1pm1ZQkkYATwBzA68B1xaMq5Yy73VxFzCTpOVqvFTZ8adikjPGdsCxkpapIPuqksbj7+DNwBzA5PSebYYrxDcLTrkDWDONTRXmsxzeSznWzE7F5yJtX+N9NcKewAX1nGBmN+IK92JJu7RFqg6QQnV1bJJ5TZhZj/gBk0rsWw54Geibti8CDi6RbhTwJrBMndccAjwPjC7YNxR4D5gh6zLpTj+gH/As7t77KrBmHef2wT+yR+Ot2Y3xcYL+LZbxWODEGtNOC3wMzNLAdYbgH/bngQ0Kyuda/AM9fbW8gZ8Dv63xes83UPd/APypzLGRwBvpWQwo2L8D8DbwErBzifOeAIYVbC+Y3sutC/bNg8/NmqYNdXB24MNG311gKbwhsXarZevEL9WZF4E+JY71wRviF+GNyPk7IlMFYQcCB6QXZTw+bnMAMG3WBVlG3qkUVNo/OX28pgU+AOYqk247fEb+knVc8yTg7BL7rwK+n3WZNFme3wbGdPB6uwB3pf+3Av5R+HErc85cwI/TS/UIPv53Hj4X6Rk8PM3cFc5fGjgOeBLYrQYZHwDWreOebqCg8VJ0bOv0Qd4V6Fewf+P0kTsFmK7onIF4b+KBrrKqcO2FkzKoVoaLpHqvOp/XrOljPnOJY+OBXcucNx/we2BQiWO/Bw4vuNfJwCEl0t0FbNaGOvgD4KIm89gYV/jTt1q+dv7wqBlvJtlXL3F8rfSe7AdcmerWu+n3IfAJsE/L5aog8JV4C2h+YMb0d2/gqqwLs4y85RTU/uletgYmVMljF2AKsGgN15sR7yktUOLYqulB9826XJooz6uA/wBDOnCtvkmhrJu2hZuFjqhwzreAd3BvqhVLHO+DK6/XgO8U7B+Cj6M8gffUTgGOBO6sIuPM6SUcWMd9rZhe5IWK9s+X9o/GHROeSXXvHFzZrlWl3j1CCUtAibR3A1tUSXNAox9lvDd3QNG+hdJzqbmcCs7dAh9XAzgr1cGpFGf6SF7W4jqoVCfKln0def0J+E0r5WvnD5gu1cGtgTHAmSXSnA8cVrDdBzfbzgbMkr55r1GlQVQi3374+P2cJY9XOPHueva3odA2SoX2HHBkDenLKaiZcA1/J7BHDfnsi3thTdXNLUp3OGVMHOn4g8CorCtfkUzzUVtPYWG8ZXRdLR/CFsi1E+6hpYJ9CyUZhpZ5pv8Edqkh7xHAW8DP0ofjQ3yccI2uZ4z3rj8s95KkNFsBf2ng3g4GHu56cXFlfCdwVNoWPjZ6Oz6HaXANefatVj9Tuj2B6wq2h+CTY+ct2Hc9sEODz209PLpC4XM7EfdybCS/mXHT5R7p+ZYsC742xbWslwKshDcq6+pJlslrCG7iHN4q+dr5w0Nl/Sn939XA6F9wfDoqWJ8K0k0Adq/z2kem80qWe6UTf4Gb9XbBBzW73EKP70CB9U2VZSHcXfcxYKkq55RUUOnYH4HPgRlruLbSB2XrCmmmwc0iZe32uMmwI8q8jnK9BPiCNK5RId1puBv+Oqnsm35pqzzrp4H1Sxwbg5uzhhbs64Obzk6r4xoL463xQygzbpPq+v4V8vgDcGgD96ekBE5J20fgJqq2966BGdKHfBRuqv8Q75m+j1sV1sGnWszWYP598B7fiml7GrxnWNUCUSHPyXhP9dtV0v0V2LaFZXUW8JMW5rcdbhJr+VhZi+vI+rglYeaCffcDGxds70gNjbOU1xO1fi/wMbuSjdCv0lTJYGm8R3FU+vutDhXaqsBfC7aPIrU4K5xTSUEtj3sB1Xr9TajQi8LnV1V8YHjX9Ulg36wrYZJncbxlNArvipf8KOFjC+/j4ztdH6AV2ijXTumFKGXK6Ye3sN7FPSP74D2he6nTlFCDHKOAO8ocEz6wv3SDec+CO+uMSR/wjgwwp2ufk+ryQV0fIXyi8YF4w+DBJvP/KXBWwbO8pcn89qBC47Ao3bUtKqPpcHP9fC0sdwF/Bn5d6we70z98nO9lihqsuNn30oLt8dTQy073/DdgZA1p++JWprKNQrMqCqogs3k6XHBbA+cVbO8CnF4i3WhgUvq91OLKNQnYqsSxPunFruqpgw9Av0mJ3kGnf3gvckz6/1e4R04ppTAGuKBg+xjq6K3UKdN6SWmuViXd4kkp/Q1XrhVNDQ3K0mXmm6PEsUXxscmGPzR4+JwvgO2zrgsFMokmnZ5ws/H76SN/Lx0ya+Nm3o+owSpSIY+l8bBnbxbW+RbKOCdugbio2XJuUxkeDNxQYn+XCXUQPsXhfYocdirkuRNVxnNTusPwqQWVh1JqvOgUSgxEt7HgtimhoCp+JKnQg2pQhk1S5epTtH8L4KFaP1Z40NC3qWKibHN5Lp5kGJy2B+BmzOIB7oG47Xzpgn0L4j2YlpoqUjm+DaxRY/o+wF4UuCG3oZwuA/Yrsf+AVnzA2qFY8/ADbsJ7Cq9R4JHYgeteDxzUwHkDgNuSvCcAi7dRxulx8+okOthzrkGu6dK7vnyZ4zfjpr0fFX6La8i3P94rW6nM8X7AsPRNWbhqfjVedCe8CzxV1xsfn7qvxYXXUhNfgzJ09aK2LNg3F24jr2qCKMprV+AFYPZOVsKC618K/Lho36J472VPvKcn3HR5c4nzbwe2Kdj+Nj6m0+h8kZ3Ty9GxRk+Nco0Cbi+x/3py1PPJ2w9fTdiAYzp83aVTHV62zvMOSx/gjnjZpnfrh6nOlzWX00FTYCqDayoc3zk1PJ6gjjmJ6dxD0/dhCdwUew4wMTUI/pP+7llTXnVcdFXcMWBM0pJ74GMsz1LFjthA4fVLH/QF+dpJoqL9v9UKKuW5Ke6lNBQ4A+/qntJIxcadTh6kBs8jfF2fX9GCiaapkrxdSpngAUKvxAdJ38EbIeuUqax/SS/afints418tPHeyKtk2KOsIFuXmW/2gn39cVNS293tu+svvaO30+GhgHTtnXCPv5pMfXgj811gsQxk3Ysy5i88EsXDdKAHipvu3qKCT0FK8wllJu5WyX+G9I14EbdKHISbuOet9/7qvbGlgU/TCzsJj2tXl/B1XGtkqnjPU8OE0TYpKOE9pg9wU0DDPaCU14W491FFc1l6qK/ig5NTTWgsStsvKbTBRfv7A4vhA7W1uOnPi3t1lRqXmi4p55vwOTiLpZet5jlx6f5/lhTbgu2oMy165mNJji34OMdvgIeylit+FZ/ZWXh0+ao9EHw8qKZoIG2Qsx8+bWaNEvufBl6hxp5Fk3IcBVxeY1n9tNF7bYmsNV5sDrxF/376wN6MR1FuyD21TYXecgVVcO9TzZZv9KHhc4uupEwvDJ8Q/T7uTXc+3qoqqRjxFv+NeM/2X+m8v+Hzxz5Pyv2aakquRtmPTR/radL2bHhDpergLz5+9Psk21ROCHn64eaqe3DvwXfSM2iZd1f82vLMBuIN5kNSXRuQGlX9i9INx81LmYUhw83otxTt2wOferAK3jCtySGhwevPmOr1EjWk7V+L0m9redV4U5+mluXyaVv4omgvkBNTTbsUVBvkHIgP0P6h1MPHvYp+U1DOx+G9jhWK0s2Ae8Fc1lWR8AmCw/D5BW2ff4GbdapFKlgyKeS7acLjqoPPZ1rc1Hk5bRw8j1/Ln9uCuNnK8HGOz3DLx+npfeiTGntVJ3e3Wc4B+JSF4Wl7GtypYLW0fTUVIqi04PrHAX/M+nnVLG+NN7VQmf37JG28YeY30k0UVJJ1hvSyHFO0fzAlwielFtaUpBA2ToroIdy0kVk4JXwuzSUl9g/G581NxHt3J5BDN9sK99UxT7T4tfS5qbDRh5utf447JzyOz7dry5BEnXLuC9yU/j8YuLHg2GLpm1p3kOEartsVemveVufdrp+S4A0jaT08Lla9K3i2FEmTzGxYljLUg6Q58Q/4j8zsyrTvUGAVM5tqOQFJA/Axvx/ivZLf4p6NzT3AJkiL5j2Ohwj6T9rXF58P8zbeS7zFSq9ZFAQdIb07mwOPmtmzOZBnGtz8vjPeU9/QzB4rOH4W8C8zO6yF15wWH08/zszGVkufF5pWUACSFjezZ1ogTzMydCsFBV+tdTMBjzv4GD6Auo2ZPVzhHOE9rJc6ImQVJN0P/NzMxqftg/FxnLXNF4UMgqAISd/HPXvHmdmORcfmwt27VzCzl1t0vVPxSbfbZ9morZeWLFiYtXLqrpjZo7iZ9M+4ueyVSsopnWN5UU6Ja3CFhKSheOibvUM5BUFFzsVDUP2s+ICZvYEHNN6rFReStA4e/GC/7qScoAevqNtdMLNrcVPYqbiXXHfjWmALSf3w+zjZalguOwh6M2b2bzP7jpk9VybJTXgosKaQNCM+vWUv8xXEuxUtMfHlge5o4usime1GAdeb2ZdZy1Mvkh7B50etCKxsZv/NWKQg6NZIGog7S8xrZh9VSdunnMVC0inATGb2vTaI2Xb6ZS1A4GY7vCfSXbkG95YK5RQELcDMPpf0APBdPNRWJc6W9G8zO7hwp6RF8eXZl26PlO0nTHxBKzgXH3ydnLUgQdCDuJUqZr5kwtsWN7NvWnT4JNzk/lab5Gs7oaCCpjGzt83sqqzlCIIexq34IoCV2Baf+L8jcG7yAETS2sBy+HSUbksoqCAIgnzyKDBE0nwV0uyJLwVzH3A2cHFyWPoNHpHi8w7I2TZCQQVBEOSQ5PhwO7BuqeOSlgIWwOOjgs+rmh64BY/N2e2tGqGggiAI8ssEyo9D7YGHGvsCIP3dGY8084PuNuepFOFmHgRBkFMkLQg8gK/GbAX7++ORz9cqDpRQye28uxE9qCAIgpxiZi/i5rpvFR0aATxXKopPT1FOEAoqCIIg75RyN98TuCADWTpKKKggCIJ885WCkjSdpJH4BN5u7wRRjYgkEQRBkG9uBy6QdAewEr4y9UFm9km2YrWfUFBBEAQ5xszeS8tzvAXc0xsUUxehoIIgCHKOmV2YtQxZEGNQQRAEQS7JnYKSdIyk1yQ9mn4js5YpCIIg6Dx5NfGdamYnZy1EEARBkB2560EFQRAEAeRXQR0o6e+SLpA0c7lEkkZLmiRpEjCwg/IFQRAEbSaTWHySbgXmLHFoDPAg8C5gwHF4DKo9OyheEARBkANyHSxW0lBgnJkVx6EKgiAIeji5M/F1rQiZGAU8kZUsQRAEQXbk0YvvJEnL4Sa+l4B9shUnCIIgyIJcm/iCIAiC3kvuTHxBEARBAKGggiAIgpwSCioIgiDIJaGggiAIglwSCioIgiDIJaGggiAIglwSCioIgiDIJaGggiAIglwSCioIgiDIJaGggiAIglwSCioIgiDIJaGggiAIglySx2jmAEh6CfgE+BL4wsyGZStREARB0Elyq6ASa5vZu1kLEQRBEHSeMPEFQRAEuSTPCsqAWyRNljS6VAJJoyVNSr9YeTcIgqAHkdsFCyXNbWavS5odmAAcZGZ3V0g/KcapgiAIeg657UGZ2evp79vAdcDK2UoUBEEQdJJcKihJ00uaoet/YAMgTHhBEAS9iLx68c0BXCcJXMbLzGx8tiIFQRAEnSSXCsrMXgCWzVqOIAg6i6SdgY/N7IasZQmyJ5cKKgiC3oekdYCTgS8kLQH82vLqxRV0hFyOQQVBkG8kjZD07RbmtwBwGbAjMBzYAThX0oBWXSPofoSCCoKgZiRNI+l3wDnArZKGtyDPaYFrgZPM7HYzmwKsAcwO/CWUVO8lFFQQBCWRNHNSHl3bCwL3AAsAywC7AzdIWquJawg4G/gncGrXfjP7FBiFD0Ns1Wj+QfcmFFQQBFORFMdzwIeS3pf0OPAQMBYYZWYfmNlfgO2BqyRt2MA1BgEX4Mpur+LxJjP7EvgtcEBzdxN0V0JBBUFQitnxcGMDgcWBnYFVzezUQkViZrcDWwCXSZq31swlDQMeSddYw8z+VSbpjcD8kpZv7DaC7kwoqCBoE5I2lfR9SUOylqUBFgWeNecdM3vMzJ4rldDM7sfHkHaoJWNJhwA3Az81sz2TOa8kZvYFbgLMZS9K0jmSvpe1HD2VUFCApOWTSSMIWkKqTycDGwLPSbpO0sYZi1UPi+Amvlq5DNipWiJJywJHACuZ2RU15n0esJWkWeqQp+1I2hIfH/thfD/aQ69XUJJmAiaT0xZa0G1ZAegLbALMD4wDzpK0UaZS1c6iwLN1pL8LGCJp6SrpfgKcbGYv15pxisc5DtijDnnaiqRZgdOBzfHnvGq2EvVMer2CAr4DPAkcLWmZrIUJegw74SG6zMw+NrPzgYOBkyT1zVi2WqirB2Vm/8MdKHYslyYprzVxk129nAHsLykv36zfAVeY2b14D2/vjOXpkeTlYWfJWsCVwA+AyyVNl7E8QTcnKaDtcbNXIX8GPgZ2LXHO9yRt3gHxamUR6utBAVwK7FjB3DUGOLWCQ0QlJgIfAJn3QCVtBqyC3w/AxcAWkmbMTqqeSSgoV1B3mdkfca+iU6ukD4JqfBd4w8yeLtyZvN9+BBxX2BCStCtwNHCGpCOzHs9I11+U+sagAB4DPgNWK5HnEsD6eE+oblLZnQHs38j5rSINCZwJ7GlmnyXZ3gZupUYnkaB2erWCSkt6LI23zsAr/7qSYmJgD0XOjpKOauNldmLq3hMAZvYA8ABwSJJnI+DXeM9gOLAtcEHG0RNmA/5jZh/Uc1JSIpdS2lnix8DvzOyTJuS6ClhD0mxN5NEsOwH3mNk9RfvDzNcGerWCwlt6k83scwAz+xhvBZ0lKRZI7MZI2lrSwZLmLNg3D3A9cBRwZNeaYyXObbgHI2kgPi/o8grJjgJ+IGkEcAmwpZk9mUL8rAnMDNwj6cLk/XeHpBNrvL4kDW5U/kQjvacuxgLbSOpfINMiwEjgtGaESu7oNwFbN5NPk2xN6Wc7AZhV0godlqdH0ysUlKQBkhYucWgt3PvoK8zsYeB7wPXJLNErkTR3+oB2O9JzOxtYCXha0gRJPwf+hptxV8RD9mxW4twZgGeTMmuEjYG/mdlr5RKk+USX4pNQ9zaz+wqOfQpsiXuI3QP8ETgF2EdSLasP7IxHf5go6VhJw8s5FkiaRdKaJQ41Mv7UJf+LeNiiDSUNTT3Vv+C9p48aybOIroCyHUfSHMBywF+LjyUnkQuAvTotV4/GzHrED5hU4dho4DVgmqL99wLrlTlnd+AlYN6s7y2DsuyLK+73isss7z88dttEYP+0PR2wDa6wli1ItwtwQ5m6YnjonUaufy3wvRrSDQbWrCPfx4FhVdL0wT1SRwBrAyfhyuK0MumvBF4ssf8XwNFNPIP9gfeBd4CzcE/ZPi16vgOAd4EFMqhb+wGXVjg+b7rv6TotW0/9ZS5Ay26ksoK6HvgI2KNg33TAp8D0Fc47HF9qfkjW99fhsjwKuBO4G4+7lrlMdcj+Y9zcUvGDmBTER8DMBfuE97D+BFzbwLVnSnnO1Ib7Og04rEqaUXi8PBXJ9BKwSVHarYGngbeB+YuOXQ7s1ISs0wLrAgPa9Iz/AByRQd26HdiiSprxwPadli0vv/QOzQwsVlgPG84v6xtqYcGUVFDANOmjsW1qXfZJ+9cBHqihsI8F3gB2K3rxp8Vb2z9qxYPIyw83i70NzAfsCVyXtUx1yL5sarXPX2P6a4saLSsBLwJzAB/W+4EF9gGubtO9bQWMq3BcwMOlGhT40hVvAHOk7SFpezXgamDnovSTgZWzfp4V7nUt4LEOX3P2VCemrZJul0rPqTv98OAFJRuowFDgBrwxeBveoH0cn0bxcapf9+ARQxqXIetCaGFhllNQ6wP3pRd4MrBp2n8M8Ksa8x4GTMLNXt9J576Fz26fhHthqeic/kkp9s+6bCrc17KpfKZJ24PwsYdt0vbg9FLOmpF80+JOA1UVBW76eQzYvY78twPGF2yfDxyZ/n8QWKdOeR8GNmpTWcyWnkW/MsfXo6ABVuL4L3AHA+HjOL9J+w8CzilIJ7xBN0uWdbNKWfQBpgBLd/Ca+wBja0g3KD2n2bIupxbc8+PAvWWO/Qp38Nkg1b210/dkplSH+uJj+a/h4601NRqnuk4DQu+adcGVkaucgvotMCb9vx3uIgpwBzCijvz74i2Kl/HF2pZM+2cB/o4HvuxKuzA+DvIO7n6ayx4WcD/wD7zFMw43T1xQlGYsaTwnA/mOSmX4Ie5ivCtl7Pv4pMmb6ilrYPr0MZ4tvVgf8HUv42d4SJ5a81oOeAXo28byeJwyLVLc/FT23cQbTA+lcny2qxzTR+WZgnSzA+9lXTdrKItfA7/o4PVuxb0ta0l7GXBA1mXU5P3Old6Hd4AFi471AV4Fvl1DPoNwK9QUCszpNctRIeOlSvyWBu7LuvDKyFtOQf0TWD793w94AZ9I+SkwuEXXnjNd5xC8i/8OHtZmBrzX9tNWXKfF5TUf7gQxICnZ7YBfAoOK0o2giim0TfINxM0E38ZNbnvgjYpripUQbm54r/hFqvE6l+Ot4wPx0DVd+4cBT9aRz2nAMW0uk9OAH5XYvwo+zlSxt467j79HgXMG3vD6AJgzba8GTMy6ftZQFsund7ntjT++7r1WNO8VpB+ZxTvT4nveJb1rZ5Ia+AXH1qZOEyvulXph3XJUyPBj3G3ywqLflA4V0EbAM/h8jCNrSD+Vgkov5Ot8c+zogFSxyzpVNCjv/Hjv6km+6S02Jz6usXvWla5I3oNrqTC4Un8TWKzD8u0N3FS0bxrgUWB00f7rgZ80eJ0tkuJ7Ali7YH8f3IxbVenhpsj3aLNnGT4OdVOJ/X8GDqwxj6lMhLi7e5dZdzfgT5181g2WhXAnj1U7cK3RFDReakjfHx/HXTjrcmrini8B9k0NlqeKvqHnU8Vhp0R+g9J3d2Rd51XIcCIlxh5KvSBtKJy+wPPAQnw9trBUlXNKKaiDgfOK9k2Hu6me0ga5ZwEGlti/RPrYbZB1xSuQ6d5aKwvwG+C4gu1heM+jIbtyDdfrgzdO1ipxbEm8h7pU2t4E77025A6P99Q+Stcr7pldRA3mTTy6wPhGrl+nrLMlWfsV7FsDN7c07NoMHAacnv4/jjb3BFtYHj8Gzm3zNYQ7AWxd53mnAT/LurrTVvsAACAASURBVIyauOc38KEKJcWyQjo2Le5KP3cD+a6T6uqMNZ9TIbPBtNGeXuVGVgX+WrB9FHBUlXNKKai/UsJujIfIX7LD9/RdfMCwrFt7hXO3ANZtoSzzpEpWk5caPr7yIu4+ejreo7oI73W0w6V6C7yBVNJ8g0+G/HuS5wVg/Sav93uKemVp/7bU4JGF98Dq+oA1IetX41B4Q+5RmnRrBlYG/p7+H0sTLuad/OGm3w9oYGyjxvynx6ccPFpvAwAPWzVVo6c7/HCz+gsF278gNejTO3FLE3mfSVGnodKvbCQJ8yUCvoSvQsR0knlwTdvFlLTvG0gaLWmSpEm462zhsenx7umtxeeZ2fVm9lRrRa6Mmd2J91oOaeD0Y4DrJLUqGOWWwI1m9p8a0z+Gj9k9j5svlsLHhG4Hrmll3LgUZugI4CRLNboE5+Mv/yN4w2RCk5c92MzOKbF/ArCmpGkryLsoXh43NClDrdyJN3bATU8fAbUu/FeOvwFD04KAzYQ56ihm9ha+Mu/urc47PdcHgS+B1SwFhq2DiXgDYlirZesA6+N1v4tLgR1SlP5dcKXdKEcA60lav6bUNWq9KcCKHdTg21CgZVOhlJwNX5BmUtH2ZsBtWbdGimRaBDcv1uyCiivm9/BezBRa4B2ET8DdtM5zVgeGF+3ri49/XEyLWoq4G/+zVOm9472ncbQ50kcqq7Ku48AJwK87WIe2wr0VZ8XHOZZtUb634JaFD8mxi3kJuVdL9aVVkSr64d6ib+NjMA3Xa9x77SJKmP3z/MNDU21dtG8yHqf0Q4ocqRrIfxTeK636zGqNxXcEcIukqYI0StpM0n0lzmmGKbiXWRfz4s4O9TASb13lBvMYbGPxVUVrZSNggpk9io83HCLpl5KWlDSoXhkkzYV34W+p5zwzu8/MHiza9yUeF21J4FfNLiaXek9H4e7dX1aR5wMz28Q8wGo7uRmPrzcV6X53w52JOsXduBI/HrjSzB5rUb534crvf2b2fovy7AQP4L372lrkZZA0jaTReM98LzzyxtmWvqgNcg7uPPWGpIslbVRjPMVi2fpKmizpWkk7pSU/WoKkhQuDI0uaBm+M3l6U9FLcPDfOPF5kM/wZ+C+1BP2tQ+utiiuJMbiZZw/cY+1ZWjxPhq/dwRfkayeJipPyKOhB4QN7rwBLZN0aKSHn7HgvaqEa018N7FawPQfu/vk0vvbO+6QB7hrzOwD4Yxvu6X7czNXQmFR6ZqfiLaua3Hk79LyWBZ4rc2w54J8ZyPR4qkMt6+ngjZ/P6AYu5iVk34sScRXrOH8hvFF8M7BGG+SbG3fYeowqlqAy56+b3ovdcI/Vj3ETeLNyzQT8H3BCwb61S9WBdA//o0UT0YEN0zes5MTzr9LVmenSeGvlIzyCwra0qGtd4lojce+s5ynywy+TvlBB9cVbvbkcoAR+Sm2z0vtTMHm0xHHhE+reA4bWeO07gM3bcE8DcGeDZ4Fl6jy3Lz6udD9tGvBu4r6EN8wWKXHsR/U0Dloo0yG0ON4b7s34ORWCoeb1x9eeuUMbPP9A4PwOyDkL7h03vM7zzqXArRs3+3/Q7LcXD2V2K97R+EHadzxlJkCnRkxLHOfSe3U3BY3vkulqzGwOPLTF+7hn3M14+KDchPOgxfOa2izr9OmjdyAV5tngYX4m15DfqYWtoArpFsJtyG2zieMmv3dws/AMNaQfgEfVnkCTtu023tMFlJhnRBq3yVq+Ft7nnXQTF/MSsv+GGkOXlTj3UnyF3E7IuSPek6opBFp6P95j6oC+z9JkqKdUf7fBh1NexsfeJlFiekebymIN3Du4rDdxrWMGzwML4K7OG+K9k4eAiZKWqjGPIGFm/8IjN6wOPCDpJUlnl/AWG4EPWFbjbGDPZD/+Bsl+PULStbjX2wmWFmhsB2Z2GV7xlgeel/STUjZzSf0kbYd7Sg3AnTaatW23i/H4WOBXpGe1Kv5R7ymcgJuPuyNn4e/AwAbOHY7Xw04wFp+mcWiN6dcHnjKzV4r23487iDREWttqZXxe66t4/T4Jj0L+QKP51oP5qsTP4DH7yiaqRdOVHC/BQ8S8A2zYCY1bRcZu04Mqklu4m/JNFHWtcbvz6jXmM4Gi+Sv4xM5n8CCmo2lRaKc67m0J3MPvA3wQ/vRUZ36Ah+a5B/cca4uZuIX3MQtu9x9YsG99ygTSjF9mz2kCdZo++TpKecfqID4B9l1qi1LyR0p47qb36MImZDiAoogheDT/wzv8zIbh438lx51bcYH1gLc7eVNl5OiWCqpA/rmSsv9W2u6aTFtxELHg/FEUxEnEozGMp0GzR4vvbQg+0HsIbi67BFgla7nqvIf7KVjcEg9WenTWcsXvG89oe9zjtZ5zNqWJiadNyHokbh0pO06OR20oOQYNLENBkN8Grn8vRWuEZfjcvkeZ6BJNL/luZrfiJp2gCczsDdz9/NzkvtzlXv5FjVncCCwgabm0fQQe/6oel/a2YGbvmtltZvZbM9vTzHY1s4lZy1UnxWa+4smMQfb8GVhe0tA6zumkea+QU3DPuJ0rpBmJN7zfKnHsH8CckoaUOFYRSfPj1o26ppq0CzM738w+KnWsaQWVLvBMK/IJOBefub4vtY8/AZAU2R+A/SStgbu1bl+Hggsq85WCSvb7BfBx2CAnmI+tjqW+yBLD6dCYSyFm9l9czlMkzV0m2fZ4zMtS53+JR6sY3sDlt8NXjK41kkxmKHWxuj2SJplZdwwr8g2S08lduIv5Emb2Zh3nzoW7jH6Kx5arWcEFlUlhXt7CnT/WxGfaj8pWqqCYZEG4Hh83rzjZOz3TD/CxoPc6IV8JGY7Bx2E2tYKPsaQZ8LGZBa3MxOl07gAz+3Gd13wEd1svnoybO1rSgwpah5k9ic/YfrYe5ZTOfQO4Dh88DeXUQtLH7hZ8gmGY93KKecSVd/Exz2osBbyRlXJKHI+PN+9WtH8b4O5yyilR1ZNPUh9JC3TFy5S0OL4E0F2Ni9w56g67EXSEY/GVgBvhe9ZTusX5YzzudTgcj/Ac5JPz8YH3amMsWY0/fYWZ/UfS7sAESXfhnnT74spzxyqnTwSGSeqfTIbfQNJ38O/IUGCwpDfxEENXVetd5oXoQeUQM/ufmX3Q4LmhnNrHLfj6U//B5wYG+eQyYENJs1ZJl7mCAjCPp3gaPvl2X3xe4/zVTHDJseBFPBzXV0iaX9LleDn8Bp9uMj2wFh4W6thW30O7CAUVBDWSTK7/wL0royGQU8zsQzzSfSUPOciJgkocj4+brWNmV9bhwPANM5+kJfB5j0/ja95dZs5/zexFM7ujitkwV4SCCoL6OB73tgzyzR+AQ8tF/k77F8AD72aOmX1pU0eLqIWvFFS6p+uBI83sGPOINd2aUFBBUAdmdrWZPZy1HEFlzMPojAPOKVxOooCV8DiX3X0axgPAqskj8TJ8JfILM5apZYSCCoKgp3IYsDg+7lJMnsx7zfAsPr50Ph6R/ofZitNaQkEFQdAjSRN3tweOLxHUukcoqDQWej/uALFtKW++7kxM1A2CoEcj6Xt4HMgD8UnWa+MTrpcoE0aoWyFpGeAz8xW7exShoIIg6NGkMagz8eUl7ki/e8vFfwvyQ0zUDYKgR5PMYPtlLUdQPzEGFQRBEOSSUFBBEARBLgkFFQRBEOSSUFBBEARBLsmdgpJ0jKTXJD2afiOzlikIgiDoPHn14jvVzE7OWoggCIIgO3LXgwqCIAgCyK+COlDS3yVdIGnmcokkjZY0SdIkPA5VEARB0EPIJJKEpFvxZYeLGYPHx3oXMOA4YC4z27OD4gVBEAQ5INehjiQNBcaZ2bcyFiUIgiDoMLkz8Umaq2BzFPBEVrIEQRAE2ZFHL76TJC2Hm/heAvbJVpwgCIIgC3Jt4guCIAh6L7kz8QVBEAQBhIIKgiAIckooqCAIgiCXhIIKgiAIckkoqCAIgiCXhIIKgiAIckkoqCAIgiCXhIIKgiAIckkoqCAIgiCXhIIKgiAIckkoqCAIgiCXhIIKgiAIckkoqCAIgiCXhIIKgiAIckkoqCAIgiCX9BgFJWl81jIEQRAEraPHKChgSNYCBEEQBK2jJymoIAh6MJKWlXRq1nIEnSMUVBAE3YW9gd0kKWtBgs4QCioIgtwjqR+wLdAPWDBjcYIO0S9rAcoh6SXgE+BL4AszG5atREEQZMi6wAvAm8CK6f+gh5NbBZVY28zezVqIIAgyZ0dgLDAYGAZcla04QScIE18QBLlG0rTAZsCVwCS8BxX0AvKsoAy4RdJkSaNLJZA0WtIkSZMIN/Mg6KlsAkwyszeAycCK4SjRO5CZZS1DSSTNbWavS5odmAAcZGZ3V0g/KcapgqDnIela4EYzuzBtvwKsY2bPZStZ0G5y24Mys9fT37eB64CVs5UoCIJOI2km3EHi2oLdkwkzX68glwpK0vSSZuj6H9gAeCJbqYIgyIAtgVvN7KOCfZNwR4mgh5NXL745gOuSmbkfcJmZRay9IOjBSJoHuABYBPgn8AywNvDzoqSTgcM7K12QBbkdg6qXGIMKgu6LpBG4cjoDdyFfDFgcmAsYY2afF6SdDXgOmNnM/peBuEGHyGsPKgiCXkCKEHE8sAOwXYEj1DPAjaXOMbN3JH3A1z2toIeSyzGoIAhKI2c/ST3FSeA43AFq+UpeuiWYylEiXM97HqGggqCbIGkQcAXe4zgoY3HKImk2STvVkG5NYDdg2wYixnzDUULSEsDLkpapM58gx4SCCoJugKRFgQfx+JSrACMl9e2wDHNLWkbSWpJGJZlKMRj4maTfJhNeqbxmAi4B9kpTSerlqx6UpFlxc+CTwAkN5BXklFBQQZBjJA2UdBBwH3Aa/kH/J/AGMLyDcqwHPAtchpvldqNMVHEzez7JtiRwU1JGxZwB3GRmNzco0mRgBUkDgWvwuZKbA0tK+m6DeQY5I5wkgpKklu88ZvZy1rJkSeql9DGz/3b4ugPx9Y+OxM1Z65vZYwVJbgA2xRVXJ1gVON3MjqglsZl9IGlj4BTgQUm/BKYArwGrASvQxGRbM3tP0nvA9cBHwFFm9qWkMcBJklaxDrgoSxoCfG5mn7b7Wr2R6EEF5dgFeFTSfFkLkjEj+GYUg7YgaSVJP5B0tqQ78I/5esBmZrZ5kXICN2lt1m65ClgR77XUjJl9YWYHA78ARgLHADfhZridzOyzJmWaBMyZ8voy7bsC6Ats02TetfI7YEIKaPsNJM0vaVSH5OiRxDyooCSSrgbmAz7H4559WeWUHomk64EbzOz8Nl9nb2AZ3L36GeApM5tSIX0fvDeyRidi0kmaAqxpZrlZh0nS/MBnxQ4WyRx5NrBku3u+kl4AXgXeArbvmpclaWHgNmAWYFEze6udcvRUQkEFUyGpP/AOsBTwJ+A2M/tltlJ1nhTZ4HFg/jyacCSdCzxpZqe2+Tpz4g4Is3bCbNYKJP0Vb1ic0cZrzI43JubGA1rfbWY/Th6Ft+JjdcsB75vZmHbJ0ZMJE19QitWBZ1PA3l2B70vq2IB8jtgDuDKPyilxA50x860ITO4uyikxBji8zZ6OqwATzezfwChgW0m/AG7Ho1/8ATgZ2KcrtmhQH6GgglJsDNwMkMxM+wGXShqcqVQdJJnQ9gLOzVqWCtyGr400c5uvsyI+3tNtMLNJwHvAOm28zHBgYrreO/h7sytwqJldnPY/jz+nkmvaBZUpq6Ak9ZW0paQtCucySOrU4GMmSJpH0kG9fFb6SHwwGwAzuxb4CzCuFymp9YH3zKwux4BOkpwM7sQdOdrJMOp0kMgJFwB7tjH/4fjcNADM7BlgATO7oijdicChkga0UZYeSaUe1CW4K+hywL2SFkn792u7VNmyKfBb4KI0FtOrkDQUmI2pW8zfB/4B3JYmRnaln07SsZLO6ZiQnWFv8t176qJmb74U4WGKpDskHVrwTlej2/WgEpcBIyTN0uqMk+lwGPBQ4f5SZlAzewR4CqgYXaM3fm+qUUlBzW1mPzGzY/BAjuf1kglwy+H26yHA9Wk9qrYjack60h6ZBmjbwQhgfHGU6LS9P26uuDtFFdgeeBqPOr2OpPXbJNNUSOon6ao2fXzmwBfJu6zVebeBccCGkuatIe2JwJ+B3+AOMPdKekjSauVOkDQ3MBDodvPhzOx9vOe/QxuyXxJ4y8zeqzH9r4Ajkul4KtIY7+2tEq7HYGYlf8D9wDQF2zPgL8Pb5c7J8gdMalE+DwBrAP2BC3Eb85AyaWcAvoVX1sWBRYHBDVxzC8CAZWpIOy/wX9x7aP42lOM4PKp0pTRHAp8Bj+BuzuALyz0G9O3Q8x6Zymz/NuR9BHB+J+6jRfIeCbyLr5E0oEya1XC39MEF+/oAO+Jzri4G5ixx3qbAX7O+xybKZn3gkTbkuxdwSR3phfdCtyhzfBrgQ2C2rMusA89kFXye5Xbpu7EJMLBk2gqZDC+usPgEuJ2zvsEy8jatoNL9fQrMmLYF/BLYsEz67+Bmr6eSwngOD3xZzzUXBN4GbgGOqSH9Dngr+GC8VbtEC8twWuBjfJ2damkXK1RGqazuBXbv0PO+IpXDxBbktTdwdcpvXPrYD2+xvAsnBdKvTeWxCD5u+BQ+b63wWD/gUWCHMufOAJyU7nu9omPHAMd34pm2qVz6pPdk+Rbney5wQJ3nrAQsXOH4NcCuWZdZB57Jzvj0lSvwEFXjgFlKpq0xw3myvqkaZGyFgloceKGDMk8DPAwcgrdwH6/hnDOAH6b/d8Njsq3QInk2wudyNHr+cLw1Pl2by21mPLzNEOB1fEJmM/mthEce2AJvzbVEOQGzAofi4xRvAaeTGj9tKhfh8eheSR/QrobWQbj5SFXO3wQ32fYr2DcO2LKdz7Pdv6Rkf9/iPB8HVmxxnl3TGjIvsybvY3rc7b5P03nVeMEprX4YbSiUViiobYFrOyjz71MLQqml9wawWJVz/g6sUrC9FW66mbUF8pwGHNlkHlfgc0DaWW77dr3IeMv/V516ZnXK2dUr24A29ZzKXHcwHknhVdzt+R1gqRrOE3AHHpC2a/sN3DMt8/JsojyG4r3DkmakBsv3U6B/i+WcA/iAMmbaPP+AQbgTyLWp8XgLLTBX1nrxnfA5BVuXOLYZcF8OCqgVCup44OgOybs18AIF5jTgzEoKAu85fFL8YuCD3ldWayFXkWeu9EGrOg5WJZ+F0segbb1u3LV3ZPp/6dSA6sjYVx0yDkwvatMNhyZkWBt4vh4Fji8eOAWYDpgnKbeG61Vefnhkhz1blNc6wL1tknMiRSbavP9SQ+a2VMa7U8Zc18ivpom6ZnYp3v3/vaQxkvpL2kPSk3i04ktryacbsBxuq+8E0+LOCB8U7LsGHzQsx2rAQzZ1fLExuLPG9o0IImlT4G+4WejxRvLowjxW26+BJyRdIGmVVs4pS2FkFsBbaJjZP4A3ca+7PLEO8JjV7uXVcszsDnys8Kg6znkIdxT6Pt0zgkQ5jgBOlLR0C/L6xvynFjMO/9Z2J7bBp6ZsZGYXmXtPtoY6NeXSeNf2I9wjZVtaYGdskRZvRQ/qNWBohvfQH+99lPTOw6NAH1vm2Iq4s0XZngve0pkND2A5A26qOA14CVi9xfcyO+4U8Bw+zjZTi/I9Afh10b6DgEuzem5l5DwL+FHWcjQo+2KpHp4O/CJreVp4X7sC/2y2LuIhpqayJrVIxuXxdbe6Ra8VN+29igcSbnn+NfWgJM0h6VfAPfj6M/cB/wfcYUXzZboDqVU/X9G+2fDBvczme5j3jG7EBxhLsQb+DEqdOxn/oFxQqsciaXG8C/5c+r2OK7RZgeXMrKXrCpnZ22Z2Ev6x+yfuddgUaXLkLrhLdCFjgU0kzdjsNVpBKv9N8Q9Zt8N8QcSr8Xlv3TGCREnM7BJgPB62q6Ewb+nZrkIKcdQGHsXNq4u1Kf9WMwa4y8zubkfmtT6k53GzyrpmtiEec+ohYKKkpdohWLNUmbh4Cu7ZU8iywKOWmgUZUtLMlxawW57KpoUT8HGq21OkgCXSiqzH4o2KG/ExkVnMbAYzG2hmO5rZh224D+CrCb5HAweVWllV0gmSao1Tti7whpk9UXSNd3EbeF7CcC2PLwPxTNaCNMGx+LjzQ9USdjN+iLf6j2nw/KHAF/g4XctJ35+KZj5JG0l6RdJjksZLukjSt9ohTyVSo3dv3FLSHmrsxi1UZv8++CBqyXlCHe5qTir4vy/+cs1bIt0MuJnyA2BQwf7DgN/l4D4G4hP25ijavwbwcA3nD8IV3Dl41/sz4KpSZdHh+7qIIgcUPGrFy3hvbmSFc+fDP5ivU2agG3evHpf180uyHAOcnLUcLbiPlnqp5eWHm59fA1Zt4NzTgTPaLN8muHWq1LGZcOW4Od4QGoE7V3XUxI0PF/yVNOWlbddpgaDrkYPoEhSNQeFhakaXSLcxPifkBmCPgv1/KtzO+F4uL5Yd+DFwagOVaKroABnd0yL4uMZMaXvmpEDXwZcTfxtYtuicVfFe33v4WNm3K+Tfj5y45+JmsbWyliN+FZ/RbrgzSM1jPfg475u02TMTN/F9TImxMjwA7hlF++ZMjdqWuNFXkGtrfAXhv+Jz7R5tdyOm6eU2zOxWvHWfN27Cw+EUsy5uDiqOdLwsnfPgq8ZVwIFFkcO/Q5nxp3KY82ZLJWsQ81Vfb8QnJYNX9OvN7HYzewB3dLhR0lySFpN0DT6n6gZgPjM7yMzKehiaLy/+nzbfRlWSaXkoblIN8ssf8YnyNZmF0/jnWcBR1mbPTPMo9XfjZvGvvtGSRuBTB44oSv8m/u3aoF0ySVoFn7f5Mv7ufhefG9vWFYszb8m0ULsX96CG4N6G0xTtfwx3E+2Pz+5fDDer/bs4bYb3Irzbfi9usutLCbNfd/vxdS9qN9xRY/qi4z/BW2bv4C/htFnL3MA97gf8KWs54lfTs1obn4tYteeBD2fcS4e8lvH4ng/himppYMb0bqxXJv2BwB/bJIvwBlfHLUw9dsFC84HzfwBrdu1LEcAXwJXZf/FW1O54BXjWzP4vA1GnwrxWHIh7v92Ah+J5y8zeylSwJrGve1EX4DH7/lWU5Je4YlrSzE40X6m0u9Ftvfd6G+bzxJ7Ae+9lSd+N4/DAxB3xWjazp3AT91h8za87gL+YW6xKcS3uyTpNG8TZEvdwvqQNeVekxyqoxM34mFMX6+AukV+k7Qvx1vyK5Me8B3zl/bY3HmpmHN566wn8BA+IOdX9mDM2NS66BZJWT9MWvpWWTFkDt9EH3YPD8WUwhlRIcxLeO/l7h2QCwMy+NLOzgG/jQxY/qpD2dVzZtnTJm7TI4onAYWb2ZSvzrun6qQvX7ZE0ycyGFe1bHrjCzBZL2+fiAVl/X5DmQdwz5lwzO6WTMtdCWs34LOA6M7s5a3mCbyJpHO4VNj0+uH2vme2SrVRBPUg6DTfzj7aiD6KkPfFIHCuY2SdZyFcrkg7Go7bv3sI8D8XNihtXTdwGerqCEu5OupaZPSvpBWBT8/A4XWlGA3/AH8JtHRU6CILMSYte3olbKsZ0KSlJq+PBnNc0s6ezk7A2koPO33HP3aYdhlK5PA1818yebDa/RujRJr5U0W4GRkpaCI9/V1zQV+BuzLky8QVB0BnMY8etg3v9nihnftybdtfuoJwAzGwKrlBqjkspaVD6KW33kbS8pCPweJfXZKWcwOeO9HRuwj2rPgNuL+7Cm9lHkuaydrtLBkGQW8zsXUnrAhOA3wJr4ZOtx2crWd1chbvO/6VaQkkL4nP2BgJ9JL0PDMA9bSfgk+MzHU/t0Sa+tH8GPALBnfhaTxd2WrYgCLoHkmbGP8qP4+tidasPZOr5PYqvTDBz+r0EHFHogZjmV90KjDezkyRNi8fl/F9yuMgFPV5BpWO34t3eBczslc5KFgRBdyJNyv1fd1NOXUjaH1+p4IP02x+f/3lIwfjafrgH8+pZeOfVSm8w8YGPQ4VyCoKgKnn+YNeCmZ1ZuC3pFjwKzQ+BkyUNxed1rZH3e+0tCupiwgkiCIJeiJl9mMIk3S/pDTzE26/TZOBc0ytMfEEQBL2dtCTH3fiCiKsXBCzILb2lBxUEQdCrMbMnJK0JfNgdlBOEggqCIOg1WNFin3mnR0/UDYIgCLovoaCCIAiCXBIKKgiCIMgloaCCIAiCXJI7BSXpGEmvSXo0/Uot2x4EQRD0cPLqxXeqmZ2ctRBBEARBduSuBxUEQRAEkF8FdaCkv0u6IEUXLomk0ZImSZqEh4wPgiAIegiZhDpK0cXnLHFoDPAgvh6J4QEN5zKzPTsoXhAEQZADch2LL0XdHWdm38pYlCAIgqDD5M7EJ2mugs1RQLcKzREEQRC0hjx68Z0kaTncxPcSsE+24gRBEARZkGsTX7NIegL4PGs5cs4QfMwvKE+UUW1EOVUnyqg075rZRsU789iDaiWfxxpRlYl1tKoTZVQbUU7ViTKqj9yNQQVBEAQBhIIKgiAIckpPV1DnZC1ANyDKqDpRRrUR5VSdKKM66NFOEkEQBEH3paf3oIIgCIJuSiioIAiCIJf0SAUlaSNJz0h6TtKRWcuTByTNJ+kOSU9J+oekg9P+WSRNkPRs+ls2OG9vQVJfSX+TNC5tLyhpYiqjKyQNyFrGrJE0k6SrJT2d6tSqUZe+iaRD07v2hKSxkgZGXaqPHqegJPUFzgBGAEsBO0haKlupcsEXwA/NbElgOHBAKpcjgdvMbFHgtrTd2zkYeKpg+0R8jbJFgQ+A72UiVb74HTDezJYAlsXLK+pSQtI8wPeBYSmWaF9ge6Iu1UWPU1DAysBzZvaCmf0HuBzYPGOZMsfM3jCzR9L/n+AflHnwsrk4JbsY2CIbCfOBpHmBjYHz0raAdYCrU5IoI2kwsCZwPoCZ/cfMPiTqUjH9gGkl9QOmA94g6lJd9EQFNQ/wasH2lLQvSKQo6tb7+gAAA29JREFU8csDE4E5zOwNcCUGzJ6dZLngt8DhwP/S9qzAh2b2RdqO+gQLAe8AFyZT6HmSpifq0leY2WvAycAruGL6CJhM1KW66IkKSiX2hS99QtIg4BrgEDP7OGt58oSkTYC3zWxy4e4SSXt7feoHrACcZWbLA/+iF5vzSpHG3zYHFgTmBqbHhx2K6e11qSI9UUFNAeYr2J4XeD0jWXKFpP64crrUzK5Nu9/qWuIk/X07K/lywOrAZpJewk3D6+A9qpmSmQaiPoG/Y1PMbGLavhpXWFGXvmY94EUze8fM/gtcC6xG1KW66IkK6mFg0eQtMwAfmLwhY5kyJ42lnA88ZWa/KTh0A7Bb+n834PpOy5YXzOwoM5vXzIbi9eZ2M9sJuAPYOiXr1WUEYGZvAq9KWjztWhd4kqhLhbwCDJc0XXr3usoo6lId9MhIEpJG4i3fvsAFZvbLjEXKHEnfAe4BHufr8ZUf4+NQVwLz4y/VNmb2fiZC5ghJ3wUOM7NNJC2E96hmAf4G7Gxm/5elfFmT1mw7DxgAvADsgTd4oy4lJB0LbId70P4N2Asfc4q6VCM9UkEFQRAE3Z+eaOILgiAIegChoIIgCIJcEgoqCIIgyCWhoIIgCIJcEgoqCIIgyCWhoIIgJ0iaX9KnKeBxEPR6QkEFQYZIeknSegBm9oqZDTKzL7OWKwjyQCioIAiCIJeEggqCjJD0Rzzqwo3JtHe4JOuK1SbpTkm/kHR/On6jpFklXSrpY0kPp8j0XfktkRYKfD8t2LltNncWBK0hFFQQZISZ7YKHBNrUzAbhYYKK2R7YBQ+RszDwAHAhHirnKeBogLTcxQTgMnyZix2AMyUt3ebbCIK2EQoqCPLNhWb2vJl9BPwFeN7Mbk1rCl2Fr+sFsAnwkpldaGZfpMUpr+HrwKRB0O3oVz1JEAQZ8lbB//8usT0o/b8AsIqkDwuO9wP+2F7xgqB9hIIKgmxpVbTmV4G7zGz9FuUXBJkTJr4gyJa38CXUm2UcsJikXST1T7+VJC3ZgryDIBNCQQVBtpwA/CSZ5hoeLzKzT4ANcKeK14E3gROBaVohZBBkQawHFQRBEOSS6EEFQRAEuSQUVBAEQZBLQkEFQRAEuSQUVBAEQZBLQkEFQRAEuSQUVBAEQZBLQkEFQRAEuSQUVBAEQZBL/h+3eedwdtkhQgAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -633,20 +687,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " array([,\n", - " ],\n", - " dtype=object))" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAADQCAYAAAAK/RswAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eXwcZ30//n7m3ku3dVi2Tl+R5Uu+dEEWaENCIKFADUlMw9W0QH6UAqVAac3wbbkSzgAFSgOkDYldSmihUMpR5bB825EvxZcs2bLO6Fzt7uycvz+eeXZn15JlO3GcuPN+vfSa1ewzM8/sfJ7P8/5czxDHceDDhw8fPnz48HEjgbveHfDhw4cPHz58+Hix4RMcHz58+PDhw8cNB5/g+PDhw4cPHz5uOPgEx4cPHz58+PBxw8EnOD58+PDhw4ePGw4+wfHhw4cPHz583HAQrteFCSG9AGIALACm4zgbrldffPjw4cOHDx83Fq4bwXHxGsdxnr/OffDhw4cPHz583GDwQ1Q+fPjw4cOHjxsO15PgOAD+hxBygBBy32wNCCH3EUL2u39HX+L++fDhw4cPHz5eoSDX61UNhJCFjuMMEEJKAfwGwP/nOM5Tl2i/38/T8eHDhw8fPnxcDq6bB8dxnAF3OwLgCQCbrldffPjw4cOHDx83Fq4LwSGEhAghEfYZwC0A/BCUDx8+fPjw4eNFwfWqoioD8AQhhPXhx47j/Pd16osPHz58+PDh4wbDdSE4juP0AFhzPa7tw4cPHz58+Ljx4ZeJ+/Dhw4cPHz5uOPgEx4cPHz58+PBxw8EnOD58+PDhw4ePGw4+wfHhw4cPHz583HC43u+i8uFjXqiq+kYACwD8cNu2bddnZUofPnz48PGKgu/B8fFKwF0AHoRfeefDhw8fPi4TPsHx8UrADICfAOi63h3x4cOHDx+vDPghKh9XDVVVwwDeBODxaxw6UgCM+OEpHz58+PBxufAJzg0MVVVF0LDOgWtEDr4N4J0AugE8ew3Oz6C4fz58zApVVSUAPwbw77j2hNuHDx+vAPgE58bGUwCaAGzGi0xAVFX9I1ByA1xG6EhV1e8CqAXw+quYfGQAgSs85rqitbU1pOv6p8Lh8Kc7Ojr8yfba404AbwXwOlwDwq2qaj2ACICuVwJ5amlpCaRSqQfz8vLu9+XPx/9V+ATnxsY6ABKuTe7KXezDZSr894DK2xpc+eTzsvHgtLW1vdYwjM3BYPALl5o4xsfHnzxx4sT6lpaWwwC2v4Rd/L+KCXf7fbzI8q6qKgFwGkAfgDerqroIwBYA975cyU4sFvuPY8eO/WFLS8tTuEHlr729vcw0zVsVRXnEJ3E+ZoOfZHxjQwYum4BcKc5fYXsBgIWrm3wUvEw8OJ2dnb87cODA53Rd33KpdjzPTwGAJEk7XpqeXR9s3LhRXL169RPRaJRc564scLdj10Dew+52G6j8/g2o9/JlW9UnCEI/cGPL38DAwJ6urq4fzDcWffzfhe/BufFhXaPzJq/mmKucfF42HhwAEAQBkiTtqK+vP7FgwYJtiqJsz7UgOY4zAOClsiyj0ShJpVJbZFne8VJas7ZtP3jkyJE3t7S0bMH19RQwgnMt5KTA3Qrbtm1zVFUdc/9/2Vb1cRxnAi+d/BFCnE2bNv1lIpF4VW9v753r168Xr/W1HcfBggULhq8niWttbb3DsqyqQCDwrevtRVJVtQVACEAegCfm0rWqqi4B8AYAD11vD6Sqqt8G8BiAZ65FX3wPzo2P1DU6r3QVxyTYB1VVN6uq+gXX/T8fXjYeHIAqVtu2a3t6epZ1d3f/y2wWJCHEfCn71N/f/9y+ffsevxprtqWlJUAIca7GCyNJUqe7vd6eglJQ+bqWBKfdlVfD/b9VVdXHLlOGX2rYACW+L9UFjx079uWhoaFbZ2Zm+JfCq2JZViCVSkWuJ7HYtWvXfxw6dOihl4kXqRPAr0AT7S/lXXwngM/N0+alwvsB7MA16ovvwbkKRKNRouv6FkmS5rSWL6fNfFBVdQjA2wDsBPB6AH8K4G1XyHT1q7n2ZSCffVBVlVxmn7xen28BWA/gccyfkyPjZeTBsSwLhmG0AcCKFSs+Osfkfk0ITnNz83ts2y4OBoMPeuWK47iEZVmwLCsUjUbJlcicbdv3AkAqlbobwKNX0h8PkeMAWKtXr37CMIzSsrKy9svtg0sQ1uCFJfAuADCCa0OEGcF5G4CvI0NwPgHgjQC+iGtbRXjFcBxHcbdFAMbmaf6CwEhUOByOWZbFAy8N4dV1XR4fHw/V1NSQ3t7e60ZyiouLJ14GBJ/hLICluLR3cRrAoXnavJT4Cq5RX3wPzlUgFos9uGvXrktay+fPnz+1d+/eq7KoPSgDdfuvAfBXAN4CD9NVVfU9qqrePo8FeS0Jzn8CcHD57Nv29FV0t5cj2C8rD45t29B1fT1APRizTeRs4o9Go/yLee09e/b886FDh76UK1eCIMQAoLu7+3tXKnOiKHYAACHkqdbW1rdfidXvmUgLAODIkSNvPnHiROsV9uECgN/jhVlxTaAkp1JVVaKq6j2zjQtVVbeqqrrhCr0uBQBiAE6CyisjONPu9rSqqu+9Xp6cpqamb5aXl097n5tt2/nuduG1vj579sPDw/nj4+Nh4NqExtra2porKyvH2H2mUqmAaZooLS399Gzt29vbqy8lz+3t7ZXNzc3vfKFeLlmWE1dyv6qqBlVVvfcaycukuw1eok0eAPN6h6c8GL1WfXlFe3Ci0ShJJpN/EQgEvn4t3ZRtbW1rpqamHigpKXl9R0eHQwjRAMC27Z/NdczExMQiy7Ku2pLxCP9DoEp1xv3fSwj+FLT0+la4FqSqqr8Arfa4321jz+VhUVX1zaDVJ09dhYDlA/geaCz3kiRFVdVC92MlMlVUBcDFCdCqqsrufX3L811WDk57e3uFYRjvCAQCX3shz721tTVk2/ZdiqL88+WehxACx3GQSqWWA4Bt23mztXMcR3a3JQCGr7aPs6GsrGwsV67Y9ZYuXfq1y5W5tra2wlgs9nAkEvk8AOzatetcXl6euXLlSuAy82kcxwm522K4noL8/Hz9CuW+AsBuXKUV5673tAJ0XaYyAK8C8K8AjiEzLu4G0ACaIDwA4HZcvtelAMBRABVuDg4jOCXu9k9ArdADV3DOFw2Dg4Nbh4eHI3V1dek8KMuyQgBg23YFgCPX8vruswcA8DwP27Yv2b61tfV20zRvCgaDX55t3DU1NX1zdHR0S319fZn3+6mpqc8MDAwUVVdXbwGw3bZtLhwOW44z+9DduXNnbzgctlatWgXMIs87d+7slyTJWb9+vT7b95cLQogNXJEn8mMAVAALVFX98osxubt6E8g4LQoAxOdono9LE6BLXYfd46sALAPwoReh/6EXePyceEUTHE3T7tm7d+9XN2/ePAQa6rgmGB4e3n7mzJnlLJHSsqxKABAEYROAp2c7hhBCgBdkybBns8jdcsBFhMAA8FVkTwy3g+YifN/9vwRzl2Y/AWqF3jzH95dCvvvHu327VDLzzQAGQfOBWF/z52j7lwA+D+AZT5+yPDgnT548NTo6GmppaRnAC1BMExMTv+3p6dm8fv362OWeh+M4WJYFTdPqACCVSt0G6n3Igm3bAXdbiheZ4MiyPJkrV7ZtSwAgimLv5crcwMDA/t7e3rr169cfY/tuuummD0mStGPTpk0f5nl+MDdpefPmzR8ihBiKonyno6PD8RCcoo0bN4oAEAgEYqlU6u5oNPrj2fqiqurnAewC8HOPPE+8AEW5BsAQKMF4C4Aed/9ZT5tH4ealgIaWulRVrQDwLgBfmOfaBQCOA1ivquo6z3lucbfjoF6o6+Ly53leB7LDQrZtM4JTdqljg8GgtXr16g8oivK9q9VVbhgMhBAYhjFnu5aWlj+2bbti7969X+d5Hps2bTqPWcbduXPn3js2NqYsXrw4K3FdluUuAK8fGBjYAQCGYfClpaX9sVjsTdFo9O9n639dXd2/s9+lra3tZsuyFiuK8ihrm5eXl3yh4SVCCNN9m0Hleh0urU8r3O1fAfjtPG0vF+ycpe62AFQmZ8MVExzXiFgJ4D9A5b8G1Hv/DObQnaqqCqD6/MF5xtc3VVXtBvC/V6ID2tvbK2zbfvWl0kBe0QRHEIROdzsrybhStLe3L9F1/S3BYPAB7w8WCAROAljOBoKu6zUAMDMz8+fRaPSZ2X5cr1XR3t6+wLbt115hPg5j5H8CSlaywomqqr4X1Gp9mAmFqqqMCf8bgDPu52nkKF5VVW9FxpV5Nvf7y0QZgP8HSlpkeBKIZ8FtoKW2Xk/SXASHTUrePinwJEsnk0kFeOFxfsuyAuXl5UNXch6e52FZFniejwOAIAhHZ2tn2zYL3SyY7fsXAp7ntdx9juOIAGBZVsXFR1yMaDRK4vF4CQCYpslINERR3GcYRtO+ffu+GolErMbGRsCjwHp6ej6fSCSUNWvWjAPY7jhOEABs2y60bftLADA4OFg8Pj7+L01NTSZylJ+qqo8BuAOUWJxDRrlfVs6SqqobQcn0eQCfBJWNGVB5rHD/Z2XdxQCmPIdboOPonOuJeTeAvwVNzLzUJFPm9k8D8FPQhQS9WASgHMCnVFX9nGc8pi160DydZQD+6IVYvO3t7ZWmad7BCKa7mwOyjSnLsthzKZnlNABo+DSZTHLHjh371qpVqyZxlcaCbdtF+fn5Rjgcnrpw4UL6em1tbfmapn0mEol8pKOjw9m9e/cOQaBTTiAQsOYad7ZtEwAwTTO/pqamr6ampsb1nAsAUF1dvRDABV3XCc/zem9v74aioqItALZ7cx8BQJKkE+x36ezs7FAUxVm3bp3B7lUUReOFev+ZBwfAKXd7ep5DWkBl6fd48UjxZnfLxn/BXA1BQ1SXHfJXVbUYwPOgurkKwL0AfgTgIGiC8FzYCuBLAH6DWcaXqqreOe3RnTt3/qCiouKDy5cvL5jvmUSjUbJ///4LkiRdpKO8eKXn4JQDACHkspT6fBgdHd3R1dX1hVnyG8bZRwDQNK0CAE6ePPmOuXINHMchANDS0vKWnTt3jhw5cuTRS+UlqKpaoKpqs6qqvKqqKQAb3a92gg6C3Gf1fdCcg3rPvle5Wx5UiGMAZI/CvUlV1bWgCv1XbtsGXF3uAwslJTF/AnACdCDkVl4lZolDm0DGU+V+LwMIqapKVq5c+TvTNC9S6JeLjRs3/u3q1at/Eo1GiaZp5TzPa3Odp6ioSFu1atV/emP0HMc5AGDbNiOg4dzj1q9f/9Xu7u42t11p7vdXi7a2tlUAQAi5qDLOtm0BACzLuixCtXfvXnN0dJSF19IxBdu2yyYnJ78CAIsXL/7tLKEwUldX92u2nxEcx3EKDcNYEAgELAAoLCycnmMCeweo9bgD2cr9cpcz2Asquw+BWofvB5XfR0CJRwDZBMerSJnLnhkCMoB+zD/JvA50peQ4gA/i4srEje49/T2ArR6ZPg6gw+3fne7fV19I7sWZM2eO79mz59teXeI4zkV6nBGcZDJ581w5JqZpVgPAkiVLvv9CjAXHcQpEUTSDwWCWp3J4eHjvwYMHP+ztKxs/AOZMhDdNU3D7fueFCxeq2PGWZRW62+XRaDQCAIFA4HRlZeVp1v/R0dHfHjx48DHPNUXvuSsrK09573Wu8NblIBqN5pIEphPmG4McaP5i7BKl3DWqqt56BbLCvDXMaXEpgnNJD46bw7bWc+073O2H3W2Ru53P6zrqbrOMQFVV3+p6cb3zwT+eOHHi3qGhobzZ5sm2trZCb56Z4zilqVSK1NfX/+hSsvuK9uC4+Q3zumEvFxzHzcxm0TuOwyaPFW1tbQP9/f1LOY7DwoULT8/14zKCMz4+/kkAqKqqemYeJTIMOrm/A/TBP+Lut11rc65k1ec9n/vdbRx0WflhAPWuoCqgCve8p40BKuzH2QlUVV0BagV0zCO8eaDu2BTmJzghUCG/J2e/govDZ7kTnQiAAAhZlrXm+PHjr53nWhehtbX1FtM01wSDwQefffbZz5qmiZaWli3xeLwgEAgIc1UdTUxMyPF4/I2LFi16bvXq1ceKiore6ipoYppmGAAcx7mI4ExNTd3OPieTyVui0ehF6+TkYv369V8WRXHfbGvqMHR2dh4GMvkVXjiOIymK4uQSnE2bNv1Vf3//J5ctW1bsPW8ymeQAQBRF6Lq+jO23bXsBIWQGAILBYDqBur29fZllWetM0xQEQXie7feEQvLHxsZus22bA2gC6Dz3fCxHvq6k6ux7oOT97e7/awHcBGpR5npwgIy1ypQ++34pACmHTEdBZXUEdCJqB3XN/6X7dx50cvg+qGeyFJS4MHwRwJCqqg+DenZ6QAnUXrg5C6Dj5qq8JYqiTADIsyyLZ3I7B8FRRFHE6dOn71i7du1FaxRFo1Gyc+fOM27bkrme1dKlS49GIpFn8vLy3s/arF279mHbtguLiore0tHR4di2XcDzvCkIwpTn/GIqlWKJzqS5ufnPBEGArusEAAzDIE1NTQ/l5eV9iJ03EomYDQ0Nf5FKpTgA4Hl+KD8/X2N607btQgAwTXMJgAFBEByO42ZyjBRrwYIFw5Zlhd1jsiZyURQncu71qsmmm98Ey7IYsfESnLOzHkQRAg3t3OXKXAA0bLrNMyZ6QA2PDaqq9gHYAOC3l9DJYdBQKSMfq1VV/eUc7dMER1XV1wP4FwBlnrZvAg1FsVBb1N3PHAnNoHp6Pi8Q8wwXqap6G+j89HtQQ/zdAH7haVvB5Hi2eTKVSn3Mm2dmWVaD+5VwKT3ziiY4tm0vcLcvCsFxHCfMcZyZ+4M5jhMAgEQi8T7btiXTNMnChQuHAoHAqbl+XGYZsFCFoij75lH4EjK5AwBdp+DboEQCmNvb9m5VVccB/BcyyYQBUIIzBUpAmpER/L8GfSlhJahLdQLAG1VVfQLUUv0NqFemFXO47V2yFQKdZDTMT3DCoERMUVX1p6DvDALogMy1njn3GtK2bdt0UAsdAHDgwIHeea4zKw4fPvzLeDzONzc3n4tEIqmJiQl5YGBgx/T09OPT09NyVVXVnIvULV68+PSZM2eWEUKWbd68eYvjOCCEoLe3twrITPBeyLJ8DnTyxIkTJ+5du3btr+c6P0Ang4MHD37EDQk5l2oLAKIoXlT2a9u2EAgEDNM0C9euXfudmZmZ15imucI0zb8eHBwsrKmp2QJge3t7+wrTNDew4woKCmamp6eXe85TwvJqWK4ZAOzcufNEMBi0bduGZVnp8CIbG4ODg58YGhoqWr169TefffbZ+ycnJ6WWlpZ7ZFlO5+GoqsoS5QEqn16kCY77lvpGAHvmUNCjyB4PPKiVKSGb4HxAVdVf42JrlT2zpaDKlwBYCGAfqBL/hPv9fQC+AxoC+xSoURAGHV//CrrUwVdBQ8Xl7jH/CJr4z5R7HYA/cPvwI1BCf8XekvXr13/ZsqwyURQnAVR3d3f/qLGx0QINE140SZumKefl5SXHxsYCiUTiD6PR6I7e3l5EIpFfFBcXv9FxnLRnkeM4Vg2Gtra2iK7rHwqFQp/r6OhwTp8+vVKW5Yampqb/hSuXExMTtwwPDy9samra0t7e/oymaa/ied4QBIG9LgOO45TE4/ECANizZ89jPM+D53kHLqFIpVLk0KFD92/evHkngMej0SiZmZnhjx49+g1GglKp1IpYLKYMDQ3tj0ajGyzLigBAIpG4TZblMsMwiGmaxSzfzb1uqL+/v7y/v//7QKaazPM9n/P/VRMcNj5M02SeiDTBUVX1NQD+DsDHQb3kbwNwhyvPQVD5bQKVh3bQUOlPATyrqurH3N9pAlQ/9oCGhtZj7lBqCDR5nun5j2Lu0GsegKAr93eAEjKvock8ukw3s0pcNkZfDUr0A6qq3gngMwCaZhmri93tHwL4ITL5nmOguUcn3M/fsm17XSwWKwIu9sxHo1FimiaT1180Nze/a3Jy8v0AMD093X6pZTFesQSnvb29cvfu3UyIiwFg3bp13x8bG3tjXV1dxVw33NTU9C2O42bC4fAncttYlhXs6+tb3NDQ8FRpaenNHis1CAAnTpy4v66u7vGSkpKZSCRywrbti6x3BjZwkslkRTgcti+ThD0Pai0ClDgA8xMc5p7/qGdfEHQCYaWt/w7gd+53xZ52C0ErTb4NGsP9uLv/GDzEw10hM+nuWwmgEEB827ZttqqqGgBZVdUHQZM8Z3uTc9jtCwD8EeiCVACgzdJW8RwzDjoAbQCGIAhXFe7xuqEDgUB8YmJCLi0t/WhfXx/KysqmJUnasXz58n35+fnbg8HglwFA07T3AIAkSaMAlnoIK1m4cOHohQsXFvA8D8dxcifqdH5Ofn6+UVJScjbXIlm5cuVvCSFmSUnJbR0dHY5lWY0AsGzZsi9fTqiAJRTn7BNkWU4mEona3t7emwGgqanpKxcuXBAAgCVm7ty5s1uW5fQPEgwGJ8+fP7/Ic570hGGaZlbod/HixQd6eno2GoZRvHbt2n8pKCj4E0Zwzp07V+VWmAXYb37s2LEfNTY2evNwvGQw93fzeu66QGWzxa30uxnAaz2yIiO7QoTJDCPb7DpvAg0fDSPbul3mKvcVoHLGQkjsfve5WzbmdFBS/gDoJPMq0FW5n1VV9QQyFi5Aw7Enc+7tF6DrjuwAsMn1yF7R2j8HDx78CCEEixcvvgAAy5Yt+5LHs8EBwObNm/+UEKLH4/Hbx8bGStiaNN3d3e9Zv379b0pLS6v27dv3ho0bN35ckqSd7NyWZTFyhtHR0V2nTp1a2dLSchruc6uurn7WK5eEELukpOR5SZJ2PPnkk3YwGLTz8vKmeJ4fYm2SyeQfx2Ix2XMNiKKYJjgMPM93cxznbNq06X4AEEXRLC4u1sfGxsIcx83ouo4TJ040FRUVbbEsKw8ATp8+fcdNN93UHQqFTEVRDieTySWe62SRWcuyckM1PADcfPPN+e73VzwHNjQ0/D4YDO62bTsCAKlUyhvyBGhhRwuoXPwCNN9xGTIkIgRaNTgIKus3uccNuvL+gPt/3JWVGlCPYpeqqnmghujPcuQmhOz1jn6NuUOvxaCe8SZk8oW8bVnVKw9KatgcVO1uK0DHmg2aI7oWsxeyNLlbprcfd6/zVtD5QAIdWyd/97vf/d3kJE0LZYRl7dq1PM/zDxJCZrq6ut4HAIIgVDz99NM/YBc4d+5cfVlZ2ZwG6is2B2dmZuZz7LNlWSUAMDQ09Nbz58+XsRjemjVr/nXTpk0f88agBwcH7z5+/PjHZovzWZalOI6D7u7uV3m/Zwq/vr7+J6IojgQCgSme5xO57s85+pkXDoenDcO4nNyIGVCBAagincH8BIfB6/1hHpwYqGdnJzLx0OXIMPL/BPA/AH6GbCt3xOO250EJyc8A/ADAflDCxJKK2aTyOgBfA7BllrhxyL0XFqJqdrezWU9ssgq5+UL9AL4LIE4IuWJP3dq1a/lEIsEDgCzLOyzLEgHg+PHjXwQAnuetjo4O5+TJkxu6urq+lEgk3j48PPzMnj17vg8A8Xi8CqCvZ3CPJ/n5+Yfc89mzyQDHcXEAKCgoGIrH4xeRsuPHj7+uu7v79UzGTNNc417j7CUWjkxbnrquX3ROx3EEnufNvr6+KgAoLCzUxsbGPhKPx8NuX/6JjYNIJJJOUi4sLPyVt6zXsqxCy7ICoVDINk0zK0FVkqQRwzBw9uzZ1q6urq26rm9hHkr3t/4aIeSD7vVStbW1O9jE6L6g0otZCY4rO3WgFRpdAN4HOlGscasyAEpKvCGtn7ptmSyGkZH3YlDZZv+nQD2bJcgkDp9Gdqi3yt3e7W6Vbdu2PQs6nh7KaTOQcx8l8OQ0uegDnSyOAKh25fqjyOTnXBYURbFZxZQgCOlqOeba37t37/cOHz78cH9//53JZJIvKys7BwA1NTUHJUnawfN8DwDE4/HXmaZZy84bj8eXMdngeX4CoGGCaDQqA0AwGOzKSWAOuGEZCQAWLVp0UFGUmCzLzyiK4gDAvn37vm6a9BGxxGLMMt41TXuP4zh49tlnHwKAqakpaWZmJiTLsmMYRppgS5K0wzTNkHs/OyVJOizLssHz/JRpmvKGDRs+G41GidebAwC5Rij7rUzTrAGARCIhsXtva2vbsGnTpo/Pty5Od3f3a44cOfIJ0zQXSJLkOI6DzZs3f9ATqlqLjH78NTLrJlW48h0EJd0sPMqexW0Avum51PNuQQiQIeI/BpX376iqGlFV9U/dc4YAPOe27QOQdwniHAIdbyeRWX7ECzZWGTlkXrAqZCpCfwIq04zUzkamFoKOOzbfTLl9kjx/OoDHh4cz6VsevfhfBw8e/HAymWQJ1LBtO03Gi4qKkoqimJcyCl+xBMcwjPRkxzw4eXl5PUDGWj18+PA9hw4deiCVSnnJDKmqqjrAfpSmpqaH1q1b9wPXDZZW1jkllwGAluDatl0sCMIMx3EzudaCF8yDk0qlhPHx8XxmZbjJW51zJI8VgFqVO0GFZxSXT3BYzJe5QBnBiYEOHGYl3A8qWCaoUB4DTVRu9JzLu+IwE+6HQbPnWcUUmxDYpCKClsz/EK7SVlVVVlX1SdDBOYOLB5OMi8GewTnQeG05gKfc62RN7DU1NX3Nzc3vv5RCkiTpo27FPgC6+ikAVFRUdMuy7Li5DDxAvTP79u177OTJk62s/fPPP1/BcRyYsjZNE5IkDQKAoigGS7L1wnEcCaDlo6OjowWzkemioqJ0eaphGCuAS1dA2ba9VJZl56abbnqGeYhyvueDweAFx3HAcRwIIaisrFzN8hm6urreOzEx8a8AoGlaOvFSUZRfes9jWVahbdtKMBhMxuPxau9vy/IaUqkUy6P4KVvoT5Ik5OXlfeTQoUOpxsbGnycSCUnX9VrPxJj7ctYIkC4l9eJmd0tAST7z7HQh45kpQiZB8aR7zBpQGckHrdB6DFS2JdBcAvabHQFdhuC9oImZE7i4qoSNFZbAb7jjNYaMDLNFK70EJw5KcLISW0HHSr77GzigyzNUgHqKLruKRhAEh3nvLMtKE0bTNNPkNxwOxx3X3VhSUvIz18sou7kytQBw5kOw5FkAACAASURBVMyZP0gmk+k8sQsXLtQzGRVFcRygYQLmWUQOMdF1XYnFYiHTNAsAWh7O87ymKMqP1q5de1c4HM7Kp3I9NzAMg4RCoSzyNz4+fjuQkSkAWLp06ROSJJmxWMxLioOWZQUDgYAjiuKY4zh5PM9bHMdNJhKJyIEDB/42kUh81LKsrHC5aZqR1tbWt9fU1LDkVN693t0AkEwm06+V6Ozs3Hfw4MEvXs4ileXl5YM8z09GIhFtbGwsuHfv3m8ePnyYkZH3gHo7ngZ9LQLLF/klqPzZoHLHyFeNu/0iqJx8w/1/GtTboYFWxXYhozPvA/BZ0Hy0raBjg8n4KICGORa6lEDlcwLZRq2XCLLQEiM4eaAe0Cpk5pldoGMmBcy6npkAakx3gI4/IKPbWR8kAPq2bdssAD8PhUKWJEkO04uapi1yt+nFKi3LSs/78XhcSSQSAi6RInHdCA4h5FZCyAlCyGlCyCfmPyIbkiSlFSbLCWBJbqWlpWmvjWVZ6UqC9vb2Ok3TghzHJQBg/fr1Xzx06ND9R44ceZeu61ssy0q7/r0Wi6fkN2hZVqEgCDM8z8e8g6m1tfXWjRs3fpJdl1nFlmWR6urqA4ZhhNzv/hzUfeldkZgpqDLQBMfdyLDfPFdQ53tWrC8WsgnOU6CDI4hsL88wMpn3r3aPZ8rHWyXC3Pp3efZVg4aliNt2Jehg0JGJGwPAa9xzl4AOvpjnHAnM/j4rr7AeAyVbKQDJ3JLrvr6+qqNHj35zjqz7PyCEODzPH2EKV9M0KZlMinl5eUZ/f/9NpmmSVCol2bZdDwDFxcXTQObZRSIRM5FI8MXFxTPuAma1HMeB5/lRAJAkKcXIb3t7exlbNZVN+oqiDEiSZHvJMpOPQCAwc/78+RNVVVWDmqatAADTNOf0UBmGsUpRFFOW5ZOMQHlhWRYvSdIIAFRUVDxvWRY/PT39D94cg9OnT78DAGZmZtKkwrbtLBf+9PT0JtM0ZUEQ9MHBwYXe39Y0zax8BkmS1ti2LRcWFmqSJFmsbXFx8Z11dXU7BwcH123evHnru971Lm/eA5MB5sHJde+nQJ/7ACgRUIC0AmVK+L3IEPKHQMNLLKxVCprTUA7qsv8ZgC+7bd8B6h0CgE+7n1O4uKqEhYkrQJdCmAYdrzNuH8YAPOjuY2NqAtRSr8PFyZdx0EliCpTsfBBU/p0rKRknhDi2bbNk8goAqKysfJ6FggKBgDk2NhZhVUiBQOAn9fX1hziOSwKZqqny8vLzhw8ffrt7ThQUFMSYjHIcFwOAm2++udgwjLVARv8xaJqmxONxXtf1uwEglUqVMl24a9eu7cFgMOtFvMzAsCwLwWAw7T3kOA6Dg4N1okj5oLs2ztbz58/fIUmSNTIywkIlME1znWEYAVEULcuyAi7BMVyCIwPAzMzMraZpZhlNJ06c2LRr167Hx8fHdQCIx+MVtbW1ZzmOOxOJREye5yFJ0o7W1taQ+9uMXk6Y+Ny5cwunpqZuDQQC6fyllStX7nY/ngLVhd8BTUb3Eo2VoIQlDiDs6tBVoAZnD6i8s3SCaffY/0bmRcVeOX3G3X4RwBJkCI4J6hWazTvI5DAOKqfs2Xq9tazogHlO8kHnilpkyP9p93gdmLXy6jbQFJgwAKZDvAQnD3Qe1AGgsrLyzpUrV36YEJKee6empmoBYGRkJJ0jmEgk3sI+19bW7g2FQsbMzMyn5zJyrwvBIYTwoAl6t4Gy27sIIQ2XPiob+fn597HPyWRymXdi6e7u/rymaW8HaC5AV1fX+3Vd37Jz584zk5OTYjKZrJqYmHjk4MGDHwcAURStgYGBHZ5ksSywkmDHcYKmaRYIgjDFcdw0c0m2traGdu3a9avDhw//QyqVuisQCNi6rjNXKGRZHh4aGqrQNG3LmTNnKl0D6xuqqv6lu3YNqwyqBR0cz4MK7Awo6diM+Z8VIyImMiEqBdRdWQqqrL1u+CH3+12g7NwGJUMAcLeqqg+5wspydlbkXG8J6AASQSeBYtBJRfAobRYWYCEqrwdnApf24AB0IpFBFYIGoLigoCDr1RNLly7954GBgR0tLS1vr6+vP1JfX3+ipqaGxOPxrQCQSCTepSiKLggCBgYGzmiaRkRRNDVN4yRJsh3H4SzLYgMoPUiKi4uTlmVxABAMBidkWbZN02zkeR4cx40AgCiKSRai2rlz5xBbCoDJiyAIk8yDwmCaZhVA5bKvr2/p+fPnywcHB/+QEIJkMpmlkJqbm+VNmzZ90k3AfGcikRANw6h0HEdobGz85bp16x72EGpeFMUhAMjLy3vONE1e07Tq+vr6Axs2bPiYIAiorKxMl2vyPI9gMGizya+qqupcdXX1ucHBwepUKpUXDAYHi4uLp8fHx+9vbm5+v9v3rLDS5OTkF2zblsvLy3etWrXqHjYxdHR0OPn5+d+ampqSjx079qNEIvGg57CfuNtcgsOe+zLQWP5eUHLizc0JISPf73b3TW/btu1ZV+b2gMoyQK1HljPwQ1BZ3AEakgXouNju7l+P7ImjyfP5B6B5YF3IkLM/B11QsMu9Xg9oMvxfgRL9XItyxt0/5bYfdv+PeCcGVVUDqqreOVdpMCEElmUJoVBIN02ztL29vX1gYKCYeRcXL158gBCCVCrFAwDP82OBQOA5VnVnmmaFoiiOYRhpa33ZsmWdoiimPOEuBQD6+voOTk9Pvx0AUqlUnbcfbFywcRCLxUoHBwcXe7xAWav9GYaRvh9JkpIAsH79+s9WVVWdTqVSZMmSJf/tnheBQODHDQ0NW/Pz83u8odN4PP4uTdMiiURC0DSt2nGcMM/zJiFkXNM0AgA9PT2vTaVSs+ZFxmIxlotW3NvbW6Np2m3hcDgOUHmNxWLbAUAQhGRHR4fT3t6+bNOmTX+bO3HW1dWl17g5e/ZstaIow5IkOQAwPj5eAyoTdcgYmF6jMt2dbdu2maDkOgCqO58ElbvfgCbgwv2+HFSu2X155fSd7vbzyPYuApRs5+aCAZSsTIES7CZkyHirR+4E0HE34v6fB0pwCkET5VmFYQAZo9gGTWpuVlX1r91rHHV/D0b8vATnFtBxyQP0GSiKst2yrPTvnUwmlWAwaM/MzAh1dXWnCSHwJBsjGAzuCYVCye7u7k/M5XW7Xh6cTQBOO47T4ziODpp8dOc8x2Sho6PDKS0tjQHAqVOnVvf19fUwK6Kuru7fBUHY6W3vtY57e3trjx8/vhWgVo+mafzChQu3MMsHADZu3Pg3GzZs+NiqVaueMAxDkiQJtm0HLMvK43l+guO4KUZwLMu6DwDKysqGbNtWNE0jTOkAQDAY/J/8/PzEkSNHHn3sscfeODg4CNBERRVUKP/T09WbQYnOcmRilL+Bx6WvquotyIaFzNoLBoDVoJntt4KSmyJQZc8s03OgicmfBK2mioAOnH9CZmG0+0AJTBEySZc/QcZ6Zcp+FHSZegXUA+W1XplVUIqLPTiToF6g9+UodO/kYCCzyF/ScZwiSZL0tra2UmYVyrLcFQqFOnbv3v14T09PY09Pz7Li4uKvsITH6enpTRzHGTzPIx6PFwuCkHbpNzQ0POAOmnpBEBCLxUI8T50N5eXlv1+6dOkjALWcJUmypqamPmrbdjp+L4rizOTk5IbW1ta3A8CSJUt+KEnSDtu2lfr6+u7z58/fwnEcHMdZ2NbWti4QCNiapm0FgGQyGZFl2QaAycnJoLuAYBaBGB8fP7Bv377PsVyXqqqqU7IsH9U0LXLs2LHbjh079m42sG3b5gVBOAcAiqJ0p1Ipbnx8fGkwGNwzOjr6lYULF14QRXGE5UhYloUVK1Z8Q5blHe7/oby8vP0LFy48RwhxZFketW2bO3HiRPuRI0e+CQC6rqc9OEVFRcne3t7XpFKphTzPpzo7O7PK2xVF2R4Oh83bb7+da2ho+LDntliwvdyTOwBkyO4SV07GQF3vCgCoqhoFzU84BlrWyrxCxUx+XJJzBpQELUAmJyEIN2ETmUrDBtB8Mgt0MTLvelLs1REAUOIhUEx+xzz7WNLkDtAQ1FpkQhIMAff+loES+0JQgpMHmiO3B3Ss/Tcoqfsb75jwTLKOZVmCoiixRCKxIhaLvc97EUEQUpFIJMV0DyFklOO4SRZK13W9NBQKpSYmJgoAIBgM2oqidDOvR1tbWyFbobuvr69qZmamwT3vqPc6uq5z+fn5pmEYGwGax1JdXZ0O+7M8IYB6abyrG4uiGAcAWZZ/HgwG+wBAUZQ+Np47Ojqczs7O7cFgMKvM+uTJk+82DIMvKysb5Xk+btt2mOM4neO4dGJteXl5P2gIMA1GPnIxPT3dJEnStGmaaG1tbR0dHW13CaQEAAcOHOjev3//Z73pDdFolJw9e9YrJxBFcXLt2rXv5DgOZ8+evR2UwBaC5rHMYPbXZLAKphlQwlEFGs6SQMn2m0DHyQJQgnMalAx/ExnSDmTmzAvIhKh2gM4f4/Csx6Oq6htUVf0bZDw4DmgorMZt8gBonlsbKOE6g0yycT5oLmS+25c/BnVQEGRSKACamxkF8AXQPMvToESK8QwvwWFILy1ACJm2LAvRaJS0tLS8OR6PcwsWLDgPAGVlZW8qLy+fIISkhUkQhN5IJHK6tLS0j6Wl5GJegkMIWU8I+SAh5NOEkPsJIRvmO+YyUInsmHy/uy/32vcRQvYTQvYj24UGAKitrb0vEAjYANDb21uTSqVKAIDn+RgyDw4AcOTIka95/2fWAc/zzAL+mZfg7N+//+8PHDjwwNGjR9+cSCQWyLJs2bYdNE0zwvP8OCFksr+/f0FTU9O3eJ7fDwCyLD8/NTX1Ae913PLIc7Zt84lEghcEIe2yBfWeAFSZswf9dVBFx4N6XD4NyqjZQX8KukaBF4PICDNbdl8EJR6HQBm36H4G6MB4CFQx7wJVvoWgVVAfcttIoPk6RaCCugmU8X8QtNrq1cgkdjK3cxkygxfIPDM2mL0WBpss/gnZrlQvwclz+5YCoDmOU8jzvCUIwrinqqnA61lQFMUeGxv7CEtG6+/vryGEEJ7n7Xg8Lq9evfpruq4LACDL8q8dx+FM06wOBoNmIpHg8vLyUgDA87wxOTn5HoDmJYiiaMzMzNSWl5ePyrL8CwCwLEvq7+9fcPTo0X91z3fIXZdEVhTlbENDw1ZFUcx4PP5hTdO2appGWMWKaZq8LMsmQL05tbW1+03TDLLJbOPGjZ85derUSvc6ofHx8Q2SJJ0nhCRisVgeQN9iPDAwsGPNmjWPWpbFCYLQAwCSJB01TRNTU1PymTNn7lu4cOGWQCAwqGlalSiKFkDDb2yFWQAwDEPheX6K4zjDtm1RFMWB0dHRMABUV1c/BQCJRCIsCAJ4nkcoFJqsrq5+iuf5+GwLD3Z0dDiBQEDPz8/3yjtAvTMmKAn/GKhCBzKewjWgcjkCKo+MMD8MWm4KAP+LDMH5SI789IGGBW4HLfeOg8otS/r8JTKrePOgobCv5PYfNDyWRCZBFMiQsHQl4rZt2xwP2fkf0LHSjGwwi7kLlOAUIUNwmCu/DjTspnnvqb29ffGTTz5pA8DMzIyYTCYVQRAS586dWz42NvYGdoHGxsb/6u/vb3VLsQEAhJBxnucnTNMMRKNRMjw8vHFmZkZOJpNcZWXl6Jo1a+4OBAK/Mk1TjEajkc7OzvGzZ8+uW7Ro0aAsy47jOI77rqf0hNTc3CwbhoFIJDKRSqUaALqmUigUOsxkief5rBCVF2zcmqbZHolE/hEAFEX5hicRmSErV6e6unonAC4UCl1wHEexbTvM83ya4AiCAI7jLNu2s/Kf1qxZ807Mgv7+/ipCiAMAu3bt2jk8PJxfUFCgMXKmaRpHCEE8Hn/Tpk2bPtTU1PQQC9kBwIoVK54GgHPnzrVzHGcWFBRobvL+CDLPOIaMrHlRAPp8Y6BLFcwgQ/w/A0pS/h5U/ipA5+kwqO5lpONRz/lk0NBRHDQMeyuoXHtzFh93z/l6UFI/Dlqazvr3BdDQ7jOgevwMgEZ3kUxWgg73Gk+DjtEksqtyn0fGqOBB56W4p8+zEZw0Ge7o6GB6RNm/f/8TQGZRU9u21wQCgQnDMCrC4bANAIIgnBEEIT44OFizcOHCK/fgEEK+ChrvHgSdCC8AeDch5BuXOu4yMJsL9iKm7TjO9xzH2eA4zgZkh1cAUCvxpptu+ioAhEIhi+f5lOuCXWhZVlUkEkm7t4uLi7OOt20bZWVl06tWrbrHJSFrpqenL1pMr6CgICWKYlKSJNNxHEXTtDzTNIsIIRMAcPTo0Q/oun6H298AISQrhOLmbPRNTEzIsiw79957L8rL04ngrBJjITLleoc895oCrWA6i0zVyAzoAPJiBJTgPIlMqetfAHjAVbwnQQnlCAAwhexRzOOgBDMBOqkwvBc0PsyBWrtvBbAj51gNmTVAit22TMl4c2Y0ZHtwvImyua9l+DmogmtEJkSVtG27kOd5o6OjI/1cbdsuZMmOACBJkt3b2+swj50oirYsy9MATWQMBAKfq66u3udWaTRblsUlEolmN1kNLJ9B07Tampoado2QKIqp8fHxivHx8RKWfLlgwYLvAkB1dfXP3XZsYTOJ5/lkZ2fn9pmZGeHAgQMfY6W8mqY1BYNBS9M0ged50+2jI4ri2IULF2qZR2ZkZCQdgt27d+8/Dw0NFfb29kYNw1iSSqUEgK4KW15e/u7Dhw/frWmayHHceQAwDKMWACKRSKqhoWGrJEk7BEGYfv755+uSySTLz8h63YOu6xKbDN3F/M6zyYi9BmJqakoBgDVr1nxNUZRhURQnHccRDcNYMFsMXBRFU9d1gJIapkh3gMqRCOo5eQxU4TL5VgBsA/VqtIAqzHPIJD4OI6O3vgBq7Xrl53cA3uh+7gL1iCwGXbODuPvYe9o+BkouxpEhWsxb8RXQtaC852ZG0vhsYSR3PDwKSlq8WAgg4RlrhaDWsHcl6eWgsv5r9xxdAJBKpd4HZF4RMj09LSqKMlBQUBDXdT09UcRisTetXLlyazAYZCE6dHR0WBzHjZmmKcfj8W0TExPK0qVLfw4AiqKMd3Z2bud5fsQwDHFiYuIhAAiHw1okEnnOMAwyPT1drmkan0qlKltbW1ubm5v/zLKsDxBCQAhJnT9/PsquxXFcukTc+yoR7xINhJB0haEoitsBBNwk6FWMmDE5CofDj+YcpxmGwUuSNORWu4Y4jtMty7oAAJIkWYZhBL0J1wAQDAZ/zAi2l0TxPO8oinLO2zYvL2/Utm25ra2tEAAKCgq0I0eO3HPgwIGvHzp06P6RkZGHWdtAILALABoaGv5cluUdoVAoput6JajOHgOVubkIDpB5gfIfgJIXpsP2unJyAnQslILm2BTmHO99Nc7rQT0nNwFUv4Pqei/BYUbg50GTfhm5ZwbEILKrpqZACRXzEjLPUTHT/6AEx+t4WIRMUcrn3HMmcJkEB6DPyHGcvMLCwplAIOCEw+GDrGiC47hEPB5fFAgEWE5Z3cDAwM1NTU13zZU3NZ8HZ73jOB9wHOenjuP8znGcJxzH+SCoG/aFoB8ZhQXQHya33HJedHR0OOFw+AEACAQCKdu2pVAopMXj8eWmaS6UZTn94zG27oUgCKnOzs7toig658+f/w8AKCsrm1QUJW09iKJoOY4jiqKopVKpspGRkeK+vr47dV1fBQCLFi06JQjCcwBw5syZJc8991xL7nVs2+5xHAfhcDhVVlb2Jx6LllUJELgLw4EqQOZ2TSEjeCz2Wops1gzQZLQFoAT0k6CEYKcnF6YPQC/cePAsynkcVNEnkG2xAlRgbwGwxkNqvNCQCX0xsL56hX8NsklNeoC6az0cUlX1naCD4BegFQLloNY38+DkcxyX1T/LsvJisVh6IHtyn4pLSkqSyWSSEwRBM02TeepeW1ZW1uIOiv9wY77GokWLzgFARUXFUHl5+cTAwEAjIxscx6U4jkslk0mhtrb2dzzPP+Ke6yuRSMQMBoO/d/8vcrcSe+N8KBRiZEwBgJ6enlZRFO1UKkXYBKXrOhFFsT8/Pz9dWWWaZm4lDhobGz8ky/I+14K2kslkmOf5PQC1otkKxKdOnbofoEnVAB0nPM9PT09PC1VVVadXr179w2QyqbD7W7BgQTwcDk8QQsZN01Qsy+IFQWDvMkMsFlvu/tZYtGhRbyQS+YggCDHLsvKSyWRpX19f82wxcFEUbZfgLABV0r2uHOzLaToBuubNr0HJwDOg+iAI6ontQmbNLgEZz+eZWWTyu3BJj7t/FFQ5vx5Uhh1kvJx3uH2qBR1XQ6ChKQ1AY+65t23bNg4aWs71OnqxK+f/baB6lk36Xg8Om3Q4975+AuqdSlelCIJwNBAIWIqimLW1tc8BQF5e3k91XZenpqbyXOMMvb29jqvLsogrIWRM07RALBZ7dWVl5WgoFPoQQGU6Go0SjuMGdV3nTp06xUKnkiAIM4qi2NPT00J1dfUJQRCmd+3atfPAgQPfMU1zSUFBQSoUCvVOT0+nZdRbAej14DCCU1dXd0qWZVsUxRn3vqYVRXl006ZN75BleceSJUt+GQgEHCZHkiSxBFqEQiH7/Pnzr0kkEpwgCAO2bcu2bQc5jtMcx7k1EAjYlmVxmqaFDcPgAaC+vv6EJEmOrutbqqqq+gGAeUyB9JjLIh+SJE1aliV1dnaOA4BhGAJAjWFCCM6ePbuW53mEw2HLsqxKSZIcQRCmOzo6HEEQpkdHR5c6jpNCxgCdQfa70HIRA50D9iETyvIatyWgcvNH7r5RZKqYvGvOiKAG8tuQkcsR0JfDenU9078cqKHQioyRHUAmimK5/ekEHU/dcOUSnlXvQQmOdx4fQyYXFKBh3wQy3qx5CQ7P847jOBGO4+zly5c/HIvF7t68efM7ZFne4TiOODQ0VMJxnL1ixYrdzz333AMNDQ1bcsPjXsxHcPYTQr5DCHkbIeQWd/uPoEuivxDsA7CUEFJLCJFA3Wr/Oc8xs+LJJ58crq6uPjc5ORlMpVIRSZK0/v7+uqmpqXumpqbS+SCJRCJ/FjcoWxLcMU1TWrJkyZFkMhlevnz5PwF0GXvTNAV3srFPnTq11nEc1NfXf5Pn+UGAWtGO4+Sy6zR0XYfjOLcCwPT0tPKb3/zG+0DDyLwU8+vudhzZQs5isUyQVuLi6qNpUGHSQF2RLci2PHtBhfFx0AGSq5zZgEy4ffIOfB3AP2PuctaU2x+vW5r97ss9+7rcxDqG9D2oqspyFx4CDcFpoASHVRPUgebgRHiezyI4mqatjMViQY6josw8JbquFyiKMgUAHMclWDURe+Gpa73GLMsipmmWRCKRLgAIBoMDy5cvL2ZJs5s3b37v8PDwCsMwFMuy4CblRmVZdmRZvkNRFN2yrHoASKVSSwghzuTk5GJGcDZs2CDyPI9YLPYagL6jKRAIxERRRDweFwBqtQSDwYdTqZTEBurExESRd0E+SZKcYDD4bWYB5+fnj8ViMQkZjx0IIfGbb76Za2xs3Lpx48Z7BEFIe7p4nh8HgJGRkdpgMPjfjY2NWxmZqq+vf28sFisyTbPGNE3JNE1eEIRTAJCXl2ewtXQAQJblUZcwxSYnJ1ePjY0Vr1ix4tuzWVBuZRVAPSpfBFXU3mRdBmb93wJKaAaQMXj+FhnlCtAl61k+3UUvHc3xLgKZ9+D8EBkZfhaZ5M9pUI8LDyr/h3Dx+PFiJ6gHaq7vn8r5/ziop4aNj3HQcVGAjCf7POi9HwQ1aNLP1HGc4kgkkli9evXWoqKiHQAgy/LTU1NTgmVZpKSkZEIQhLSc5IaHTNNcNjU1JU9NTa0bHx8v1nX9w5IkOQMDAyt1Xd/CcdygpmlE0zS+oqJiQtM0juO4JHvhpaIoJ+COVZ7nHUKImZ+fP5pMJl/tvY6iKOll95mMerF48eLl69atuzsYDLIweYKNw46ODqe4uPhNa9euTVviTz755AWWLyYIgjk9Pc1el1NgWZbICI4kSTvWrFlzd0NDw9dt2+YMw+AAID8//1+YZV9TU1MFAJqmCQDAQhzsdSsMoig+r2laOomXeXXde4Jt26itrT3c2Nh4z9TU1DvXr1+f7m8wGDy5e/fu0p6ensXI6M8aXOzB+ZT7jNeARi22gMoEI0Je3V8BN9/Ls49VEbFwvwVKhE4gWy5N0HdHeXU9D6rPz4F6C/8O1BgwQY3JP/accwIZT6iAzBzhfbYp0Jw5Nqd9HDTZniUivx507mIeodkITlZ42yU4+bZtC4qiPM2Ie0dHhxMMBg+LoujIsjxdVlbWunLlyq1zeW4YLrmKo+M4HyGErAMd8MtAH9b3HMc5dKnj5oPjOCYh5H5QdywP4GHHcY7Nc9icKC0tfSiRSHyG4zgrGAz2W5YlCoIwUlVVderMmTNLAWB6elpetGhR7+DgYDXHcU4ymeQkSZoC6I86MzOTv2jRon9YsGDBBfdH+zNJkkxN0wTLskRCSBBIhzx2y7K8Y8WKFX9sWVbAtu1CSZLgKnNUVlYOj42NlbLsfvd8j1dVVZ1knz3d7wElJ/8FqszHkBGmJch23eeGphhE0Lj/sKvYc1eUfA608sNCpvrDCzYINVAFf4/bH4AmTD5yiXJWFqK64PYXAN6nqmpW3pTn+MdAS87bPedgnqw46GB4NWgi6T7QvItDAN5q23aE47jcEGBS13VSV1d35PTp06t0XUc0GiXJZLJkbGysAKBlrsySzGH6M5ZlQdf1gvz8/JMAwPP8lNtmOwBEo9EfrFy5Mj4yMvLp4eHhAkVR9smyvKOpqQlu6Oe7hmEsAoAzZ868CQDGxsbCZWVllex6hBCcOXNmOUCXdQ8Gg8lAIJBW2rZtQ5KkQzMzM3xzc/NWQRB+res6t2HDhnv27NnzaGFhoZZIJGRd17cQQpIA4HqlEI/H72U3QwiJs75Ho1GyatWq9BubOY6bBICVK1d+y8HrjAAAIABJREFUUJblrLfay7K8o6GhAY7jmKZpvlPXdc4wjAYAKCoqGuzt7a0qKChITU5OyoQQIxqNEp7n02+OFkXx2dksKEmSnFQqBY+CfhYAVFXNnQC9Vq6ETCXUKVBZbfN8/31kSMTlvL+Kncv77iuWGNwFGiJYAZqbUw13heK5TjbH+PJ+n1JV1btrITKJnQD12rwF2bo3Bqpjd4PK+hJVVcm2bdsc27YLRFHUOzs7t7NkdhaKtCwLgiBYXoLjJRfRaJTIsvwTSZI+IYpior6+/unx8fGPNDU17QYyZJ8QgkAgYBcUFBwdHBx8FSEksWjRomOnT59uTCaTK3ie1wVBQCqVIpqmreB5Prlo0SL09fVBlmUnlUoR9wWYxCW/sy0eh87Ozu0bN25sEAThouX4vWOOoaqqquvkyZNrXSIPAFAUZZdlWa+xbTvAcRx7B9X29vb2AU3T/sI0TYRCIevkyZPqqlWr7mHXIYSgvLz8+QsXLpRIkmQAkM+dO5dF0kRRHInH41mrLzNUV1d39/T03BSJRJ7etWsX62e6v6FQ6BHHcW5zQ2RMLh9B5rU0DP0A3gAqe2dBvSbPIeM5Z55tHZQceOda77pAzOB1QPXsyRy5fRqUIHWpqso8hQIo4b4XNL+SXU8HNT4YuQsgE2oCKBlic4R37PaBRh4GPP1ZAuDfQMkNkCHrU6Cv6rkV2V6e3BCV7ThO2LbttEeaQZKkc24VbHI2eZkN8yYZO45zyHGcbzuO8zl3+4LIjee8v3QcZ5njOPWO4/zDCzkXz/MThBC4rK/PsizBMIzF4XB4P0AXITNNE5FI5Nl169bdtWbNmrvdPkgAwHGcHYvFeEmSnmVscenSpYcSiYSQTCY5juOc2tranQCwcuXKB9gEEQgEjlmWFbJtuyAQCKQ9CwsXLvzCunXr7mIWOBtkoVBov6fbg6CEYwMoSWBJ1xOup+MYaEXVFmSvb8DyWiaRYfFDoANnrjDfv8EdVHOEmVhIjrnwR5CJH5cgM0nMBg3UovYS1M+CThjRWdqz1Ywf8ezTQQcqW9DpDaCWBxtUKdAcnAjHcSkAYNZdMpmsC4fDZklJyRcikYjphv+CALB8+fLHAGqZeUtOGQghM5ZlIZVKhQVBOAsAHMdleQWYlSlJUgygsua1PHme17u7u9/m9oUD6IJssizPauEnEgmZ5/ksq8W2bXR0dCRlWbaPHz/+w2Qy+an8/PzU7t27fwwAxcXFZ5g1SgiJu/d/Li8vz/SuUWLbdlr5ePsI0JCde9z3ZptcWD6GpmmiYRh47rnnvgYA4XD4Wffc3JIlS45cuHBhs67rW9iKt+5vNuuEJkkSC1FlYY4wJ0Bd8AQZOdwC6nnxnv+wuzAYcIk3InvAwr1pGc7x8kyDJlHuAfWyzJkge4Vg1zsBOlmwezwOSmRkZErgZ0ANvbtA9UGDZVlrNm/e/OfuulspAOA4rgsAdF0fZ9V+kiRNCoKQFu78/PzHmKda1/UtgiAMWZbF2bYtBwKBzt7eXmfXrl3bd+3aleXWJ4Q4giCMuNdJGIaxuqmp6WvhcHiP4zhiJBJJAUBvb+/rBgYGlrBQkqIoVklJSfLEiROf9YR0WRgK7v9g1Ug8z19gfZ8PFRUVTc3Nze9obGz8LjvGrV4VbdtW2Hpm7v7BRCJBIpGIsWrVqnsaGxvvybXug8HgkHuvNgCsXLnyPu/3giBcSKUuypcHAOTl5T0DAIZh1MyWbxYIBLZHIhG4a26xsM9snr7/B6THwAhoeHQEmdwvBtYRJkfbkPF8DgL4M0/bYlzsFe0GJR0Pg8rV88iQ6i5kiFQ+qOFcD5qvBlCPPyNL3wHlCSwNwDsWWRl57o82BXeuQWbumgKdu34FWmDAEPaG0TiOsx3HybMsiyeEZN0TC5vzPO/NP7okXrErGXtBCJkwTVOwbVuQJOlEMpmUEonEArZqpSRJFkCTRWVZ3sEYOCvz5nmeuSyrmPDqur5+7dq1X3f3c8xzEAwGH2GKgeO4CdeDk6coSnpiFARhpLOzc7uiKGkToLm5+R19fX1bXCXwKVDGfg+oS28c1JIEMguYrQJdKn4HMu70ODKClgRNADsLGlZiybgXYRa3fS7YeglsMB4A9aIMgQr+fASnArOv9zBrX0AH662gLyx0QO+Lheg+hYyFw6xeloMTZASHxdOnp6fLJEnSBwcHH2tsbNwqiiJs215gWZYUCoV+BwC6rpfNRnA6OjoMQggSiUTQNM1KgOYmzNZvnuenASprOftT3jJYnudhmibxDsKNGzeyd3whmUwS95iLxl4gEDCWLl36taGhobsFQUix1Vd5ntc9ZCUB0NW1I5HI5P/P3nfHx3GcZz+z9SoqQRCkSIBVJAEQYAEJFkfnFsex7DifbVqynTh23FsU9xKb3jhOvjiO3L64RO4tIuOS4iJHLnBskRKLwAZSYAVBESRRiHq4uy2z3x+zczd3uAMOINigfX4//Pawt2X29p13nnnbJJNJXngL8Xj8w4UKXqmqetFbObxglVZJkq7G43EpFArR+vr61wDAhQsXXhQKheyRkRG1srLyk3zgkCRp0Hu2j/FU81zoup6X4OSBCSY/Q8heB41bWrImVYJCXF2oZowALrsTFij1wAu1WZhdgnMQbFBZjGyCMwJmxRlBZlDjk5u3gPWJ8Z/+9Kev2r9//5euXbv2ci6TjuM0qaoKQshL6uvr9wSDQUop1WVZTuuZYDD4uU2bNt3X2tp6n0eIe23bhmVZATGlWkR1dfVIIpGQhcrs411dXe6hQ4f+WpblJKVUIYSgvLw8mUgk5MWLF7dz8uA4jlRfXx8W3QWyLI/W1NQMtrS03LdkyZJuXg4BYNYnQog71XIIACPe+/bt211WVvbWpUuXclfjSCqV0hzHCfAaTt51LwFAIBBIch2fS+QppXw8SAYCgQmWJlmWc6ttp6Eoyts3bNjw2YsXL74gXx/y3GwYHh5eiIyF4oig7wCWHfdSZOSbE4QAmJXvHDIuJa6H+Dv7BDKZq4vA4sf2IFPhPR/BaQCr6v0nyIQNLPPuIeq5QTDy0eX9fxmZyeWnvPN52QTRgsPbvxDZeIfwHFwPDiOTjCLK4bOEYyHLsuO6bthxnAkWHEVROgG2pFIx8gPMEYLjZQrIjuPIqqqeGB8fl3p7eyvPnz//MiBDYLq6up6bU5lVBTKBcE899dRD/Puuri73ySeffAAAFi5ceEnX9ae8e50V7nvNtm3dcZwSXdfHhP2XAUBVVRNIm4r38IwWsOyPPwET0D1gKa3fAYtuPwKkSclur4N8FEzoKsHStQHWiTrBzN2XwTpI/unH1Ojj9xTufRhM8KOYmuAQ5MlyE+Dk/P8JsHa/HWxACYIVdgO8mYnXFk5wkj/72c9WtbW1lZmmGYnFYmTx4sWPAMDAwEBoeHg4VFNTs9OztFDXdefZtq1KktQHALZthwDkpisDYLPMRCIhnzp16n3eMXkHOFmWeTxP7m+R1YfmzZs34q04niY4mqY97F0D3jWSPBiaxw55MpJUVbV7YGCgqq+vr6SysvJBfnz6h3Sc1QDQ3d29QZIkc3BwcGltbW1Xc3PzQ+fPn39LIQITDoc/tmnTpvsmXbfFk9tgMJjau3fvbi+e59X19fUPhEIhSggBJ1r8dwiFQp8tFODnBXkWup0IXpL+EoDTeeSQy8FHweIGmsCU8asw9VpOAznbXPAGvgvM1Tu/CNJUDAiYe5UHZXK5GgEjPUPI9Bn+fI/BK+EvSZIDABcuXFhGKeVlDfbwd1heXn5fc3Pzq3Rd7xMJDicFfIBva2tzVFVFIpEoSHBqa2vfFAqFHNd1dSBT8Rhgabqu66qO48jl5eVPA8xKJFgGSa61kBAy5LqupGnanqVLl9Z57eQLg84HMCnRzkVbW5sbjUbbJEnC+Pj4y0dGRrREIlFt23YlH+ja2toSANDf3x/NWZoHALBy5cojvb29q1auXNk+OjoaXbt27edy+wIvs8AhxsAdOHDAikaj7xZ0+ASUlJTg0qVLSyilbwcjrVw2P+FtT+VMNDnB5aVFRIsP1+WEuyuF7FfeL+4Ds3AGMZHgLEMm9TyMTGmRHyM7aB/IuNT+wtt2IyOTPcJYAGQTHO46fFTY1wuWncifQyQ4HGK9r38VjgUhxBkYGPjreDwuu66b+0zHAEC0IE6FOUFwCCH9nOBIkpQeaFesWPGFxsbGH5imyQu7fUgUTsuyNG+BNsn7Pq/wRiKRM3zNISFXP01wKKURTdOGhP2XAaC2tvYL4XCYmqa5U1QC+YR1CivLz8CsGqJgjADplMAUro/gXADyZlfxZyo0OEC4Z2580BXhsyVeOyfNMAQ2sJwGG+A+gIzA89m1mUgk4o7j4PLlyytN09xZWVn5J2vWrGmTZRmiiR6A293d/aPBwUENQF9LS8v7h4aGqoAMmRAhSZJr2zbWrl37FoBlZeWbHXCLBd9yiKXhdV13eeo3dyUBrKIxAIRCIQdggaCO44AQgvr6+j2hUIiaprlT07SEbdsLAWDdunXfGhgYeDcAWJaVblMwGPxca2vrfc3NzfeHQqGL/f39IQByaWnpmydTvrmDUIFj0gqFx1N4Rde+2NTU9CrRUiMsapjXPQUAqVTqZH9//9gksy0ei1YL9s4HkN/NypUjL1XAq8Xei6nXcuKEdEEB4qKCWW8+CBa38GZMYwHMAngYGUssJ1CiBWcR2DNxyyn/DYc99/QIpXRDRUVFwnVd6Lp+Bch+h4JbMcHJUCGoqkrj8bjMKw/nIhgM7mlsbHx1aWnpRwBA1/V0lhshJEkpVSzLkgKBwCUAUBTlaf69WHlWuN+psbGxSK7eA4BAIPDt9evXF0zrLYSSkpJ3bdmy5b5wOPwAIQS9vb3V3d3dO8SBbtOmTe8XM2BFLFy4cH1DQ8OrTdPc2NjY+BqxBhSHLMunAFbFPBKJOLxmFMdUfci27f86fPhw6aOPPqohU/1adMnmnsfl+uWYGD7A5eb5KCCP3rFd3r+5/fAImJX8BJh1hlvAjnvniVma/PrvBrMSbUUm7o1biDlRWS70I+5r5EStB2yisEd4DtFFxcGDu3niQfr5JElyT506tZlSCsdxsmKkKKXPiUaj9po1az5frPxMe6n42xGSJPVblkUURZEJISMrV6482NPTs17X9cdLSkr2LF269BcnTpx4fm9v7z91dXW5ALBhw4YHT58+/S6vSiwBWBBcvusTQizHcUpy90uS1GfbtmrbdpRfAwBM09wSi8U6I5HIh9atW9c+3c6cCx7YaBjGBrDA7BSyWTInGXldVEXgJFgMT+6S91yoaw3DGChAvvg9c7MFjoCZJP8WzPSee23s2rXL8gIyTTC32L3ImHXT1961a5f7jW98Y+f69esfVFX1cR4cGYvFnlNaWroTYLNbABgbG5PHxsYWA4Bt2xtDodCn6+vru/ft2/dwPoLDrTpXrlz5+saNG2tPnz79oWg0uhM5AWyyLA94x2dZqvjyHoqioL6+/nPXrl37EwAVpmk2cJIAT/kEAoGUl/GVaGpq+u6ZM2deFQ6Hf9TU1PQjTdP2qKr6d47jzKeUktLS0g8cPnzYbWpq2t3V1fWyqqqqnQC4ct0NAK2trSkAP9Y0rbfYoLti0N/fH/RmwbuB/AGghBBLlmU+E897X8dxvnblypU/qKysLHQMjz3jy370wVvEMkfWuHKM5wRSFgz25fCCfg8A+CKY1TD3nD1gllDel36EqUnTVOCWpSPIEB3eT/izDAH4DIAWeG7nXbt28cF5wDTNu0tKSq5eu3atznGcrPXCREiSlMzNLMyFqqpOPB6XChEcITBdBwBCSDp4mxCSoJTKlmVJuq6fBXCPJEnp+jGWZUGQcwAszquxsXEon96bqZyKwfOO48BxHNLQ0PAF8R7hcPjT69at6y7ivln35xlS3Dofj8f1NWvWfH54ePgFY2Nja3KvVQhVVVUvLS0t3alp2p4CujKXfHELy+N5juc6/dOYXB45EcqydghjRjfYUkD8XnwrZjJ9Daxu2uNgk12eiHIQAkkzDGM9WLXil4H1o++BeR+4fL4I2fpbbFe+ekA/BpsMpJ+vqqrqkatXr74CAGRZ/r54sKZpexoaGtLB8Xl/jRzMCYJDCOm3LAuyLEumabaaprl53bp1O/kPsWnTpiOKojzfq3a4GwCi0eh7Gxoa9muatsd13e8VuvaGDRv++cyZM3+1cOHCfQCyOjMhpDcej6uJRGK9F/WN5ubmzz711FNfXbt2bdIjTLMy6Hg4DJZOCmQLEu8MVXkGh2Kvm1swDWBxQECmOFu+AYUr7oqc/RaYT/nHyJhFC4EWyE5JEzaPmP61+OVUylKSpK/zYwgheQkOx8KFC3dqmrarvr6+I5+C5OZ9QkhWMCB3c7a0tNynadqe4eHhFwLA6dOn39zY2Pi/8EgJIQSKoiQBhAghibKysj9ft27dT8TOunr16mHHceZblgVCyDUAKC8vvz8cDu/M1yZCCC9KWJM7yMwUS5cuPfv0008vn+q4UCj0T5s3b74wGXkPh8P/Vl9f7xQ45n6wYmAv8f4/AqY8HwJLMxVlgc9OZ2qh3IIM4chCHrmbkjRNBfGahmHks+AATOE/Bvb8r8+5RD+Ajb29vTIAOI5TUE9LkpTgVsNC8NaGUrlluRDa2tpSXkzas2Ox2Gc9ueUWHKiqehIAZFk+DwArVqzouHjx4tpckjubZDtPG11CyIRK3NdzX0VReAasvXnz5vtPnDjxHV3XH58/f/6B7u7u74nL7kzVtinun9s/48jE3eTKHZf1X0yhz/lxue4cjj4wMsMt6pzkihYcXvZlIKc/5LZJzD4EWL2qF4Mt64Nd+bMPecD1JrB4Ub5wLQAkd+3aldUnI5HID1VVfYUnbyPidzN5v3OC4LS1tTneTJx2dnb+fX19fbdojYlEIu9vaWk5KCpa8ccKh8MFfe7RaPR99fX1BxzHkaPR6DaxMzuOU5tMJiUAUlNT02eDweDjly9f3rN27drHr9dqkw+TpKhyJfoGMDIyLSU9yXX3gVlhPozCBIUr7g+Amfc/CCbET4DFTOQy+nwoZGK/CjDXWbGkraGh4aednZ0vsiwL+/bty4qnkSRpwjW8+CxZIBp5OxCP5yGEZHW6cDh8bXR0dCE/f9WqVSYArFmz5qO5MsAHomvXrm2ZN2/eBIuhoiiDpmnWyLKMtrY2C5i8U+u6vmf9+vWtZ8+efcdklpTpYMmSJSsXLFiQl1CJKEbZTHHMbrD02LR8GIbxK2Rq5aSxa9cu6ln61hiGcWC6BH6q1O4bjFyCwwciCWCDgmEYuWlFV1/2spepTzzxxLseeeSRz1NKtUIEVpKk8dzil3mOcYBsF2Qh1NfX/6K7u/uF3IpJCElYlhXwlkK4DACEkCsAsGjRosaqqqopZeVGIBAImLNB6L1r2ZqmEdM0dwaDwd2NjY0uf6Z58+Z96cqVKxOs9zPE0hxdlksYRHC50abQf/y4eQWO4xOyAbBYG27ByXe9gu5mYGI/EqxEFCiop/mzVYNZhj6KDMGZILe6ru+56667/vH8+fO1bULF+pliThAcAGhoaPivjo6Ol6xYseJnuR1uKmUsupdyIZpGGxoasmajgUDge42NjS84d+7c/cFg8PF89RFuEjiL/2dcv3ldxOvAytNPRlL4TOClYNku+8FITmiK80Tk9ZuDxRWdR/4ZTl5UVla+uK6u7sjp06cbc78rUM06K5W/ECRJuqpp2oTjampqPjw0NPRVTjB4xkswGPxu7rGKosTr6+sf6e7ufn4+QiLL8sDg4OBGsa7JZPDcdO+ur6+fNUJ9I2ffIvKRjimIyBjY4rRHJjnmdgTvmwkA2LVrl+mRtXuQkevjQNYAcZkQgtbW1t8PDg6+4+TJk58tRGAJIcOUUmUyCx5PoijGyjdv3rwXlpSUpEkLISRhmqamqqorSVKneOzNkpV8cF2XzJbVUpZlp76+/rX5JjmLFy8uKkq+CLwXrBDe4/DkdzJ590j9H4IlnxSyngMZ+Xo/WH2o3OM4SVgI1of44rTfBkt0keFV0Z+B5Z/jUTCLbL4wBNcwjHeAjQlANomaQGDa2trc1atX8+rj1405EWQMAKOjoy9dv379Z0dHR++drtBPRnA48gWYtbW1uRUVFX++bt26VxdKlb1J4EJ+4jqEdAKKSC8HMr7cdiF4+OdgKfDFBmuSAgGgR5C/MGFBtLW1uYFAoGDKem7AqyRJhchVdgMJ6YxEIsnc8wOBwLfFFFlOcPgsN+caZN68eX+cr0YHAKiqeranp6ecUkqKTYMsJnh4jqAE2Sm2dwpyLTgAi3kQFf0+ZKcI/yeY+8INBAJfnKxiq67r+4eGhionyypJJBJBAMiXXZSLPBlRiWQyqUiSRCmly0tLS+3pZEDdCFRVVY3F4/HAbLVDkqSCfYhXQJ8FPIhp6jIAv8TkVbOBjO5/U4HjeIbTfjBX6JfB5Oy3AJ4LVqvsGpA3yaRY/Jd3rULt/CIyIRBiFtaqfPfMLeZ6PZgzFpx8MRrFIl+NlGJxK2cxAriQTyiRfhPQARaYJrL3b4MJczGd+QjY8hN52X/uvmKgKMpFIHvGWlNTM3jt2rWy3JlwPrdVPlBKWx3HUaaKN+C1l7iLKQfSZPISiUT+BsCHLcuaNHj3mYhb7Ga6HnA36QLBQvNGZMcE5boqfgFW6fvIVPolEAh8raGhYXQyC97dd9/9kZMnT/79TBpPCOlNJpNEkiTZdd2CmaY3E2vXri3xsg5npR2SJDmzZQ0qhJnIb5HncDLw2wITUV6moBaskN95ZCzrPE6s3rtO0Zby6bQz51682n0fGPG5mHsuIWRSl+t0MGcIzvVALMl9h4ILedEVHmcR7ciZWU+zM78ebPXwWYOmaY9Fo9G3iiRh1apVlfmU4lQptsI196xduxZTKVW+8naB7yadIbW1tbm6rsM0zSnv4+OOwUqw/vlSMHfv4UKxDIX+nwzFTLDC4fA/rVu3btKA8ElQoiiKK8syeB2kGVxjVjGbk8pNmzbtOnXq1Efv4AmFDgC7du0qNLntAfAIPFdXgUDg7yO7wOaNRB+YtZIvYTHhnoSQmSYTTIBPcJDxUd/BuGUWnFmYWbfDSy+cnRYBgUBgd0NDg1soqFxEOBzu6+vrq51qBlesUnVdt2CfKsbcreu6Y5qm/AxwOT1TcAQsi4t/vum4HkKgadqeTZs2AciUYphLCIfDn6ivr+8sRP4ikchZSZIqb7SF5zpQBhROxPBiYPjSN3nl7yZbR/8ZbOmgQllXvotqtlFTUzM4VaDebQ5OcG6FBee6cCM613QUenV19cevXbv20GzN4CYjOCgi5s1bAby4xXp83Pa4g11rAG4bF/wNw1TPV1ZW9plIJPKd29jCkwRL0ijoXrrNZLAdU8QV8YWBZ2M89gkOgNra2reePHnyu7exEE+FWxmDc0cjEAh8q76+PjFbLiFeVj8firHgeDVLtKmO8+HDx41HIBDYXV9f797GLuOb6V66bhRDtgKBwC8ikcj9szEe+wQHzPRaTHzFbQyf4MwQsz1D5QsAFph90KlmJbqujwAI38HWRB8+5gxudwvWbWadmRV45Ves2RiPfYKD21+Ii8CtDDL2IaC8vPyLkUjkS7mzj5aWlg92dnb+3VSzkpqamk8ODg5+7g62Jvrw4cPHjDGb47FPcOYGCADs2rXrjk8Hu9MRDAa/2tjYOJI7+wiFQp+qr6/vmmpWEgwGv9jY2Nh/B1sTffjw4eO2gE9w5gb893iboNDso9hZyRywJvrw4cPHbYE5U8n4GY70WiC3uiE+fPjw4cPH7QCf4MwNjAG4hOKXRvDhw4cPHz7mNHyCMzdwBMC9uENSBX348OHDh48bDXKnVPElhBx0XXfTrW6HDx8+fPjw4eP2h2/B8eHDhw8fPnzMOfgEx4cPHz58+PAx5+ATHB8+fPjw4cPHnINPcHz48OHDhw8fcw43neAQQj5OCLlECDns/f3xzW6DDx8+fPjw4WNu41ZVwP2M67qfvkX39uHDhw8fPnzMcfguKh8+fPjw4cPHnMOtIjjvIIQcJYR8nRBSXuggQsibCCEHCSEHAQRuYvt8+PDhw4cPH3cwbkihP0LILwEsyPPVRwA8DqAfgAvgEwBqXNd9/aw3wocPHz58+PDxjMUtrWRMCKkD8BPXdRtuWSN8+PDhw4cPH3MOtyKLqkb4908BHL/ZbfDhw4cPHz58zG3ciiyqTxFCmsFcVF0A3nwL2uDDhw8fPnz4mMO4Yxbb9OHDhw8fPnz4KBZ+mrgPHz58+PDhY87BJzg+fPjw4cOHjzkHn+D48OHDhw8fPuYcfILjw4cPHz58+Jhz8AmODx8+fPjw4WPOwSc4Pnz48OHDh485B5/g+PDhw4cPHz7mHHyC48OHDx8+fPiYc/AJjg8fPnz48OFjzsEnOD58+PDhw4ePOQef4Pjw4cOHDx8+5hx8guPDhw8fPnz4mHO4FauJAwAIIV0ARgE4AGzXdTfdqrb48OHDhw8fPuYWbhnB8fBs13X7b3EbfPjw4cOHDx9zDHeMi4oQ8sitboMPHz58+PDh487ArSQ4LoD/IYQcIoS8Kd8BhJA3EUIOEkIOAlh9c5vnw4cPHz58+LhTQVzXvTU3JmSh67o9hJD5AB4F8E7Xdf93kuMP+nE6Pnz4uNNgGAYB8AYAX921a9etUbg+fDwDccssOK7r9njbXgA/BrD5VrXFhw8fPm4gWgD8K4CmW90QHz6eSbglBIcQEiaERPlnAH8I4PitaIsPHz583GCcyNn68OHjJuBWZVFVA/gxIYS34fuu6/pBxD58+JiLUL2tDsC8lQ3x4eOZhFtCcFzXPQffXOvDh49nBkSCM3orG3K7o6Gh4WeRSGR3IBD4dltbmx+vNAfgxaBtBbDvZseg3eo6OD4EGIYhAfgmgNeuRyrEAAAgAElEQVT6wYg+potYLEZM09ypadoef3C4rSASHB+ToKOj44WRSOQPGxsbkwB23+r2+JgVbAHwvwA2ATh8M2/sE5wZoqWl5SMAtHA4/PFZHExaAfwZgAdxkwXBx52Pnp6eY2fPnq3fsmUL4A8OtxOeEQRn+/btpa7r/tFMCXYsFpMBYPXq1Z/UNG3P7Ldw9tHc3CwTQr5YWlr6Fn9SURBnwcrCHLnZN/YJzgxx+fLlB65du1bR3Nx8ArM3mJz0tp2zdL2bAsMwFgD4AIB3+5anWwqLUgrHcYKxWIz4Cve2wTOC4Bw7dqwfABoaGoAZ6ETXdecDgK7rvytGdm+VxXLLli3v2L9//xfuueceiRDy5cOHD79h69atv4bwzIZh3AugAcA/+joRGhjXIGBE56bhjqlkfLtBlmWztrb28VmeaWjeNjiL17wZeB+AB+DHVd1SaJo2AAAnT558yDTNndM5t7W1Vd+6deurY7EYuTGte0bjGUFwksmksmrVqs/OVCdSShcBgOu6Rem/RCLxV/v27Xt4urJ+vRgZGXkNAHjk6gAA5HnmewF8EL5OBDJyz/sBDMOoMwzjfi8+54bBt+DMHJKqqtemO3PwXmgTgCN5mP2dSnAue9ubboK8GdixY0fVlStXfnvXXXfV385WEUqpDgB33333x6c7yJw5c2ZoaGgosHnzZhu+e2u2MecJTiwWky3LgqIop2baRyilNQDgum6gmOMVRTkCAOPj4z+Yyf1mClVVuwFs0TRtTyqVeh1vDgBLOGwMwCOYozpxmtCEbcr7/AsAq8C8FjcsHMMnODMEpVSmlIaKObalpeUjsix3BwKB7z772c+mAK4C+CNMfLFcAd5pBIcAwFw1xY6NjX367Nmza+bPn78Tt/Hg77quDgC6ru+b7iAzMDAQAPLORKdEXV0dqaio+HxJScm7bmcCeAsxgeAYhlEGoA75Jzp3HFzXXQAAlNLKmV7DcZwF3rW0qY71jqsAgJKSkrsAXJjpfacLSZIoALS1tbmtra1Bry0LAFwUDgsDGJkL73YWwOVefK/j3vaGEkCf4MwQruvKlNKiiEhnZ+fHXdcljY2NvAbGD5D/xd52FhzDMMoBrAPwv5N0Vkk4fjIL1R0JVVVPAjMb/G8mKKUaALiuG57pNWZCUKLR6H+0t7e/pLW19fe4DgLoyU4zgMNzRXY85LPgDIINiC/BHEgooJQWJDjbt2/ffOHChZ+tWLGiajL5opRWeR+LsuBQSud728W4iQQHABXaEPW2NcgmOBHxuBsJwzAiYCECn7xN+00+gmMBN35S7MfgzBCUUtlxnKKIiOu6ZMWKFd8UBsiLBV7sbUdwAPwdgP/A5L5k0Y/6pwDapzj+jgIhJACwwX/btm1hQohbV1d328WqUEpVAHBdtyjL4mxheHh4o3d/1NfXP9rc3PyNGcbybAOwH3NIdjwUclG9H3PEhSGQjfLc78bGxt576dKlylQqNWmsDCc4xbqoKKXzvO0icf/69eu/uHXr1lfdwHiyNHFxXTcCAI7jLMw5JozsAf26YRjGvYZhbMgTt/IuAJ/ALew3hmG4hmG8pUBMjZazBQD7eu+5Y8eOtS0tLR+b7D37BGeGoJRKlNJiOyJRVfW8MHspVM30dnRRxQH8DJMrYlGOborp8WbCdd10cByl9M8BoLq6+s23rkX5wU37xQ4QswVVVccAgFK68MSJE887cuTIX4yMjHxuBgNML5hV+alZb+StRSGC8xSf6BiGscowjH+60UGXNwqc4DiOUyru37hx4z/z2DBJkia1sti2Xe5dq6hYJcdxKr3jq8X9hw8ffuvx48e/faOCjwkh6ckpt5by5xcw6wQHwH97f7lEhmff3mqd+0nkJ1lZFhzDMN6JAla6u+66q3fjxo1F6Y6Ojo72gwcPGpO952e8iyoWi5HR0dF/jEajH5iOed51XWkaHVHKmdkUIji3owUnBGBsClOilPv5NjWVzgicMMRiMVlRlN8AgKIoZ25tqyZCsOAULT87duyoOn/+/PWukaQCgCRJY+Fw2E4mk8rZs2ffWl9f/xim57Ka520rAVy6zjbdTsgiOAKJEfvIVwDEAHwPU7islixZcnnRokXv1XX9+7dLzBO3vjiOU7Jp06a/UxTldCAQ+PaTTz75blmWAQBDQ0OfmD9/fuvatWtL8rU7mUyuAYBUKrWxyHtWePeszv1u1apVX7iBLmVHaEPI21blHBNGdtDxbOGDmEhkEt5WEtvGIcZ7ISd8wDCMtWAWoLfORGcbhvFKAB/1/v1+nrYBggXHMAwZwOdRYAy8dOlS1cDAwDvXr1+/F1PoDtM0FWDy0IFnPMFJJpNvefLJJ9+3ZcuWowC+W+x5lFLJcZxJCc727duf7brufMuyQCktExRbIcHnglDQxWAYhgLg2QB+eZNIRAhTy4nItqdlFTQM424AbwbwntuVFHE/u+u6EW9xWDiOc3csFvvVZHU4WlpaPiZJ0kAwGPzizRiIKKWK186iCc7g4OD3enp65k19ZAY7duxY1dvb++8LFy5sbmtrc13XVQDAsqz10Wh0nFIara2t/WE8Hn9xLBabTo2SZwTBQaafi/1qlbctOAvfunXryyzLar148eKCoaGhbzY0NEya8bZ169b/QymdHwwGv3Kj5Y/H3lBKI4cOHfpIKBSiTU1NSQAoKSlJDQ4O6qdOnXqebdvwZtwT2q0oygAAaJp2utB9tm3bto1SuiYQCHzdtu0yALBtO5dcQNO0J2/gM4sWnBAAJBKJrTm1p8LIWLOvG16Ve0Cw+gng8lUGYCDnPAIW73UewGmwsWMzMiT6QQAvAPBlzCwW7E0A6r3PVwrocFHuuYVvAEBNvgvW1ta2F0NOXdclwORxg3e8i2rVqlXty5Yt65qpv1WSpG4AkGW5Yzrnua4rOY6jTnbM3r17f33s2LHvUUr5IMkHnkKEoRgLzmcA/A9unr81hKmD/hQAMAzj4wBe7n2e9LcR8BEAf40in2f79u3P2bhx46ev17++Y8eOqtbW1rcXcx1KaYn3sYT73G3bXnr+/PmLBw4cKFiHo6ur64PHjx///Gyayjdv3vxAS0vLh/K1eyYEJx6P3z3Z93ffffehLVu2ZP1O4+Pj7z579uw6/lz8vu3t7W/VNG1MURQ6PDy846mnnnr1NJ9dJDhzCbkEJ5CzH8go+4L9oKOj4+FDhw69FwBWrVr1qakGgccff/yHhw8f/tLNqBPD3Uu2bUcAYNmyZT/l7ZMkyQWA+fPn9wOZGXcsFiPbtm17pSBbes52Avbt2/dYe3v7Q6Zp7kwmk8sBYGho6HkNDQ3q1q1bX9Xc3CwD0+sDM4DL288TTc6ePfvCnN95tl1UPHEg3zW5POXrN/x3eAOAhWAyJ5JoHjs0G+6tQnxCJDjck1Hw/ei63l0MOXUcZ0rdfcdbcE6fPt0MAAsWLJhRCq/jOGsAwHXdNWDBsUWBUkqmIjgAsGzZsj1Hjx6933GcKFhkPVC4AxcTg8OPuVn+1hCyLTT5wDvYLvE8wzBGMHVGFY+3KOp52tvbH00kEtLWrVsP4Doydk6dOnWur68vsnXr1v6pruO9O7iuG+Uztng8vr2vr6/Gtu3JTKRuXV3db2fLVF5XV0cuXLjwGV3X3Q0bNpzLbTelVJEkaVoxOLIsp6LRqD06OpqlC3bs2FGXSqX+4tSpUxtCoVBzU1NT+ndSFOVMIBCg/LkopTI/b2hoqEqWZcd1Xbmqqqp/ms/OZ+ITLEqGYWhgM8/HbldL3yTIJTj5skp4HztiGEYtgGoAB8RnLS0t7R8dHV0AAIqiXChmECgvLx+ZrvwtXrz4SnV19TcjkciHirWCJJPJBgAYHR1dAgCBQOBYW1ubSwiB67oSAMiy7OSc8+cHDhz45ubNmwFgN49pnCpNfN68edc0TdsjSdL7y8rKkt3d3UuXLFly6uzZs7VNTU3cTVsy2TWuE7yvhLiLqra2dn/O7zzbBIePHfn6Nt/3B4ZhnM7pH5wYPQ2PmOV8v+Y62yXGXBUiOGKQMSc40UIXJIQUCuHIguNM8MZNwB1rweHsHwBkWZ5xCq9lWSsAwLbtFdM5z3NRTUlwVFXtAQDHcSLICGkhwS/GghMCbmqMSwhTxwTl63RfAHAIwG8xuXXm2nQaI0lMZKfzvnfs2FFdXl6eEq0QqVSq6LovlNIwwFxUnOCcOXOmlc9MOzs7rxWwqMiyLI8XW3Y+ZzY7AVVVVX8LADU1NRfytZtSqmia5vJ6OMXAdV0tGAymcvefP3/+0MGDB3cBwPLly/9TvJ/ruuWU0rQ53nXdNMFJpVIKAJimGSGEoK2tzTUMo8owjOYiAmg5sWkyDIMYhvFc4bzvAvgdZmC5NAxjhWEYr7yFAbyFLDi5esD2+nUXgEchPGtTU9N3r169mo41cRznrmJufPXq1ZLBwcGH88lVU1PT7qVLl57P/e7pp5+u7ujoeP90LD+KovQHAgHa399f5u1KyzyllACAZVm8ZkwZAMiyfJxSCgBPbdu27ZXc5e84TjTXaihCVdVkW1ub6zhOuLq6+gilFK7r0gULFlxQFOV/vHveMILDXbKu60Y4KVNVdSCnn0cwu4UdiyE4D2Fi/+AE5zkAGvOcq4DF7czUI1AmfC7Uv0RCX+F9lgsci7GxsaZgMEhz3//WrVuDYrX1OU1wksnk6/bt2/cwACiKMqP6HQBgmuZib1s3nfMcxyGmaWqFOmEsFlO943gqo0hwCgk+V3jLJlHGNyQF2DCMvzQM4+V57lsMwcn3/Z8BWA/ma53MOsPfW1FuCU4qpvO+U6nUm4eGhjRRYee7zoYNG/6lubn5K1u2bHmN+F4dxxEJTiQSidi2bcN12alXrlwpyzcYOI4jW5ZVVHzLhQsXup544olJy84rinISAHRdv5Lv+SmlsqqqdDoWHMdxNE3TErn7FUVJ8s+6rneK96OUllqWRYT/08pqw4YN92uaZiaTyYBlWbwdvQB+gqmV6HKwFNx3gsnOLwH82DuPK9KZWC7fBuBfi7j/jQInOLVe/ypIcITPJyA869GjR18t/uZ50pILorOz8xVcrlpbW/WqqqrxWCxGuru7X9rV1VWXT+Zqa2ufLHYSQQhxE4nEqlAolCopKUkC2bWYHMeRgMykwnXdam+7DAAef/zxwx0dHd81TbMKAHp6eu5vb2//f5P0BT7AhUKh0BMAsw7JsmxJkhQEmIwW0/aZQMhWDLuuGyCEQKyJ5r3jMICSqUi1YRghwzDWF0G+ucWjEMG5ivzrPPH38KU89+bfXcDMPQJ5LTiGYYQNw9joPVc+F9UEcJ07MDCwNJlMktz3f/z48ZFDhw59V9xPyOQ/2x3rolIU5ff8syzLMy6oND4+fjcADA8PP2c6CxTatk3Gx8fVQgFzfJZiWVYNADiOEzx9+vSisbExNDc3T+Wiei2AbyF/0JfYkZ4NJtS/BROcFcgxa08DXwULijuTc98Qpi5YNdmAOj5Fe/i5zzYM4wdTtZ0Tk+lAVdVfAjDABlkA+WWmvb39bQCg6/obN2zYYMF7r1x5eQQnGAqFEqqqqoODgwEAKCsrS/X09EwYDGzblizLKtihRQwODtZQSie1KHGzu+M4Zfm+dxxHVlXVng7BoZSqqqpOCIbUNG0Inn+eB/MJ55Q4joNYLKa2tbVZlFIJYMpm7969uxctWvSla9euRWRZFgfwv8fUSpQiM7Dzommv9/6nwIwtlwNgfSTv/Q3DqAezOD4X7JmfBiDNopWUE5xXgc2yuezxtFlOEMX7BSe7f25g7Y4dO6oopc/JF/BeW1t7QHAnvrO/vz+YTCZfGYlEhoeGhqryyZyqqn1epV7dNM0HS0pK3pFPN95zzz2LAODixYury8rK4olEghOMtAuCW3ASiYTq/V8F4CnHcWr5MatXr35nf3//AwBgmqZWXl4+pmnanrKyMnP58uVfikajD+Te37btoKIoA6qqwrKsUkmSLCFtO7pt27aXuK4b1HW9YKB7c3PzNwkhbmlp6euL1f28bITrumFKaSAQCLg5JUM0MAtFLRipnix496cAVgN4Yb7jDMNYBqAEggXHy3x6PYD3eTISBFv64MWYKOOTFf1cCiaLjpBVtQmMTLUVKf+ipUzUE/8G5lL+I+R3UfHnI8J9QkAmDT9XLsfGxpTy8vKkuJ9n6BXCHWvBIYSklbwsyzNWRLIsJzVNcy9fvrxkmsF4RNd1WmhAcl23HAAsy+L1IYLHjh177U9/+lOcO3euyTCMF+dh7VwQ8tadMQyjDkxgOH4N4D/BOtFDKG6WPBna89w3jJm5qDj6pziXk7qHAPxl7m/iWZVew/dz4d+8efMDW7dundSlwyFJUggAFEVJFwQjhBQkbdXV1T3ie7VtmyvtiOu6QVmWnYqKivMAsHDhwv54PK4vXLhwguxYlkXi8fj8YtrIZyKTKVnXdaPedSP5vqeUSoqi2B0dHW9sbW19QywWIxs2bPj0ypUrjxcqTOg4jqooyij/f8OGDV+IxWJEUZS4cN8sQi5klc33tjLALKkAIMuy7WXLKF7WHwBcyKcwPVfUJu/9lgI4BqZ0+QB+xjvveqrC6gCsSRT2h8GyS5oAbPH2bb6O+6XhPRdfr4j369wYnDBYqm9AkP/cuipZGB8fv1uUq46OjovHjh37Htdh/DtvANC4XMmyfMHb/kLX9WGAxcLkyih/p/F4/Eft7e1vK6QbbdveCLAA4lAodC0ej8tAJn3a+0xkWUYymSTe/1XeuWk3m6ZpjwHQFEVBIpHQKKVyW1ubOzw8rJ48efKd4v054bYsS5ckqU9RFDeZTEZs2w54vyUopaX79u37z+PHj6d/kx07dixat27dD8Vn7evru7ezs/O1pmnujMViZP78+aNT6RVOcH7/+98ftW1bk2XZOXny5LZ169b9wDuPk4p+TE3qawA8nO84r0LxWQA/AqsmDzBd+wkA70FG1wfAXP16HhmfjOA8H8w9JR5zAIwsFTuOiEaS3Gzab2GivFcgsx4VIATaC4UbZSC/LoxGo0NewdUX831zstAfr4EAZNYGmQlc19WDwaB91113nZ7KJNvQ0PAIr5zoui4R4xDyXJdbcCoAIJFIlEqSdGXJkiVYtmxZC4D/wkQh0sAK65kFlPEb+QfDMHhA73+CCZGFAh1lKhiGwWcO+e47UxcVR3yS74AMOSoFyxDL/U3+Hcy61ARkCM6hQ4c+45m1pySlPG5GrHgqSVKWAzfHJRUQ36tpmqUAkEwm7/EIjl1aWvoLSZIwMDBQWV5ePppPdmzbJn19fXndVxx1dXVk27Ztr+Sz3MlAKY3KsgzLsvIqLY/gmKZpko6Oji+bprmzvb39PWfOnKmvrKx8MN85juPIiqKM8P/b29vfYZrmTrFKdzKZXJdzTsS7XwW/L8Csa7FYjEiSZALA2NiY9Lvf/c7yXHn1yI83ginVJjAZOAcWi8Nde7wdWX3cMAzFq+w64XczDOPbhmE8JHynIzMDzocF/FEB/ND7PFrg2KJhGEYNWL9sBav7kfT6V66LKgpgCGyw4Qq/ejK3xcWLF1eJcmXbtrJ8+fLdXA5d1y2RJAlLly7tkGV5mB/nOM5KAJBludRxHA0ATpw48bVcGeVxJoqiXAIKx6pZltUIsAmDpmmDXkwNKKURIVaCBAIBsfpv+fbt2yvj8fg2YV+F4ziqpmluKpVCKpVKW//q6uoey7k/8Z5ZlSSpX1EUmkwmddu2dd7XR0dH1wPA0qVLf8jPHRgY+OGxY8f+j/islFJlyZIlBzVN2+O6bllfX1/kxIkTk+oV/tsAQDweX5hIJBQA6OjoeJl3XhhFWBy91O+lyE9MAOamBVgqdp/3OQDgivf5omEY7/P2DQII5pGZyQhOGMwNLN57DNnZfVNhQg00DyFkrPeiBach57j05JivLWbbdvr77du3b4xEInZZWRkBAE3TBmKxWHjfvn3/5R2Lyd7VHUtwXNdN+/5mSnC2b98eTSQSFaqqWoqijPJBbdGiRQObNm36W3HQ27Rp04c7Ojpe0NHR8XHTNHdSSmHbdkEFRCktA4BUKhUFgP7+/rJUKrWhrKwMhBD+u+eSEQ1MkAv5j8VU9o97W0tQmqkZmtU5qcjnTplukPFQznfFEhyAzWLzEbTH+X7uoqKUYtWqVf/XcZx5U1lIBIKTDtLMJTiu66ZjGkZHR0vFaxJCbADo7u7+c0ppiBDiRKPRd2/evPm+lStX/reu62O5RDcWi8mUUoRCIbvQ4BCLxciFCxdoR0fHd4tJeXRdNxqJRGzTNPNazBzHkRRFSQHAqlWr/oXfV9d1lxDSQwhxc38rx3EUWZbT70zTNGiatkckOIqicOWKzZs3P9DR0fE8rz18xiUtW7bsjKIormmaO2VZTmdB7N27F1euXAGA9CCbgxZvewRM7s+CxWNNSnDAqqbmq+oKsPivvxS+0zG5ol/mbV8r7PvDWQhKfjcywZSK0IZcghMBI1QJsOd1wHRzwVn0ggULLotyZVmWJMvyoBD4vUjXdTcYDHbxIHkAsG27zvu+lFsmV65c+S+5MsoHca6rcuW7ublZDgaDNJVK3Q0ApmkGVFVN12Dx3Lohr23QNM0Wvqt48sknezs7O/m7h+M4lZ671AGARCKR9j3oun4230TSsixVkqQrsizT8fFx2bIslbuoent7l3jXXcDPDQQCR4Bssua1u9+r51QFAGvWrHnHFK7iNPnSNG103rx5owBQUlJieueFwQjHVFlUi7xj1hWQtQ3e9iKyg4x5HbWPAfgUgMVgxMTOc8/J5L4BrAqyeE7Su87YFG3Phw8ZhnHAMIwXe/flXhYxe1ABW46F40H+7NzrIY6rIyMju+LxuFxXV/cNgMVd2bad7heSJM3NQn9iEBkPYpsuLl++3N7T01NRVVU1JrLynp6eit7e3o9u2rSpA14cxqFDhz4JAFVVVRe9AeBhSilisZjc1tY2IZybE7CxsbEoAJSUlCRlWR5RVTWJjNJ+rmEYJlh2iARWbbIXeQiOYRgLAbwSzOx3HzJC87S3DeD664fkK0AYwiQR7x5EYrQcLObBRiZCfzKI7o8qCD5rodN3cuImupa6urreOzAwEJgq1VsgOGmzfy4pFuMBxsbGFDG2isvGtWvXAgsXLlwnSZLtKc3dLS0ta4eHh1vz3JNb8OSprHwrVqz4/KlTp/6qUPs5KKXhQCAwPjY2FubxYhs2bPh/tm3fVVFR8aeO4xD++2iadoSn6WqaRuPx+MsATCiy5llw0gNTMBi029ra3Lq6uvR7EQNGu7u7DaE9aQtOdXX1A9XV1REvfffj/Jht27ahuroayM62EMF/Ox5IfBbASgB/wJvEmwGwNW/A5J9bWPIRYgdMZo94gZQrkWPBMQzjtWDxZnuRkdHfglWKBYC/AdCG61sIc5nwWUJmsMl1UUXBBpQkWD+2Aci/+c1vjvz85z//i0Ag8K3cC8uynOJyFYvFiGVZxLbtmh07dlTH4/F/CAaD35FlmRJC4mIArGmadwEsjsq2bV2WZSiK0iNeyzuUZwrl1a2BQOB1yWSSDA8P3wMAqVQqJBJhx3FCPGbMdV1ompbiz0sprUgmkxIAqKoK27YRj8fvHx4erlQUxQag2LaN7du3l/PzW1paPhEOhz/m/U+8Z5EkSbqsKIrtOI5qWZYilHHg9XDSfU8g8iF4E69EIqFxwsJdJJqm/WoKV7GoD7VgMDgIIKqqqu1lDXKCk55QGYbxdjDCu0KYhN4DJtdbMFHvNYEREADYiEw6dx2YnABAp7eNe/vGvWcTXUATCI4Q97IOrJ8FDMPYBuD3YLL33wBeYRjG/xUnzEUupLwJzKV2AZlxQZT3BWBu6O0ALoPFEj0KViZgAsGRJGkcAILB4G4Ar5VleVwkONxiWAh3sgWnJBAI0EAgQIuZ/RaABADBYHCED2L33HNP3qDQ8vLyVHl5eTIajbYD7IeVZTltVsvXPgAYHR1VAoGAC4A4jlOqKMoYMkL3KJhfvgmMqLwNTDjzpTj+O9jKwxFkV8jkwhxAJgVvpshi/178hAZm+pwszddCJgOEd74LYEp7Qd4zMsi1RogDVszbpp9LXAdmYGCgqFRvXvTLcRyR4GQRL29FYnjXc8Vr8kJ2AKCqarckSenZKCEkIWYRCfcs13UdqVSKxGKxrBiWWCxGNm7c+Cm+lg4hRJoqG8BrR0SSJGd8fFzmZtnBwcEXnTp16iWmae60bVtKpVI8XqgsFosFvetD1/VT3rNl/VaO40iyLKfjpCRJsmOxGBGrdFNKQ9u3b3/OqlWrjtm2nf4tOEGjlEqSJCX27t2725sJEwAIh8PO/v37cfXqVaAwweFkXrTglAPghI/Lh6hQPw9v8CigaAeE7x4H8MeY2De+icwisvyZRG35H7j+WlO5s+DcVF/RguMiY8GxAWB8fPy9Bw4c+EY+E7y4TIzruiWUUliWNb+vr++Rw4cPv25kZOR9iURCtm17nuM46T7GkypSqdSLLMvSSkpKTDEWhrfNcZxga2urPjQ09Ox8D8aTPHRdv+odL0mSlLYEplKpGtHKrmlaOisvkUikl2JYuXLlLyorK+PHjh17+cjIiCL2g7GxsS8DwPnz51998ODBv+G/g+u6aG1tfUMqlSKSJF2WZdkGGOERC/xFIhE7Ho+v4qSNB987jtMIsEzXRCJBhKDhSm87gRTs2LFjFY/NyVmbTvF0uqibImAEhy/N0QJW0HQZmFuJP+RFAD3esaKsPQbgf5Eh91fAdL4DZiHnE9H7ve1yML2bwERrexgsw0qEOGn4ANg4+Aow198IGGF6D4CNfHFPr80UmaxGFBgPvupdJ4gMwRFdVAuQWfn9v8FIHXerlgHZ6d+2bS/wvqvztoplWasBpte8ul+FdMudS3AopSXz5s3rb2xs/HChWcZU4GZ4VVXH+SBGKV0GAOXl5cPEVJYAACAASURBVHFd18VBTi4vL7/smdE0QghUVXW5WS1P+6IAM6EFg0HTsizFcZwSVVVzTfVnwYSbE4Eh5FhwDMO4F2ylZYB1CNHyxt0BQcwywfGumfDu9xMAZwzDeJYn8GJtEw2ZGXUSrDMHwDJTZCGIVHymzYZhNIMpAf6bmMi2Qp31tukZSb7gYHG2JUmS29TUlFX3QyA4FQDQ3Nz8dcuydABYv379V+rq6oiYduu6btY1HccRCUxQkqS0pYsQkhQJkHCNMlVVaSAQcG3bXt7U1PS9lpaW98RiMZJMJt/25JNPvu/q1as/BoCRkZHnFhmDEw6FQldFs6wsy6mFCxee86yK6O/v5wsWlnLSZlmWxGdCyOnztm1Lsixznz5GR0cDXgxOWhYcxwn19/d/+vTp0w1iX+MzLkopIYSkSXcymZwHAI2Nja/euXNn94IFCwBgeR4Z+G8w8zrA5EUBs+KJaes8dkeMC/gUPMulYRjX8ihasbbScm+bz13wHbC+lzfmYBayqAq5C3IJThPYDJ0iY8GBLMunC9X44u9n+/bt5WNjYx8BAMuyKnVdPwcAoVDokfLy8vFAIHBUJKtcdlVVPWxZlhKJRIb5IAJkkdbg6OjoL7q6uuoKPBt3T4aBtDUlDgDBYJASQpKJRCJNzGRZTruqz50797z0DxIOtwWDwbTs6LoeB9gk4+zZsy8HgJGRkaw1h/r7+6ueeOKJh7xTxvkzpVIpkkwmd/BraZpmX758uUYgRhEAiMfjr43FYsS27eXib8nDCvIRnMcee6zz2LFj3zdNc6do7XccR+U6XSA4aReVF2ezH5lK1YuQ7Tq9ACAiZDHtBrAVGcICMAtfGRjREV1U/Fk3ImPByUdwenP2bfH6DK9qrCITWhAB6z98Yc82r718nPsBMmRMw8RVwT/ltUVFtgUnCWZ9qkFmsnINwjqHQ0NDf5ZzLaRSqfkAYNv2EoC5B03TXFZdXT0SiUQcWZbdZDL5Z4XCFO5YguO6blRRFDMQCOyejouqrq6OrFy58tiGDRs+x2MZZFlOu6i4q8J13SzXgmVZkqZpV23bLnVdNyBJEryaIxUAsG3btmUrVqw4ybNVeMaL4ziQZdkxTVOybTuiKMpgTpOGkG0+/wNMdDW9Tficyjmet3E2XFSRnMEiBEZckgB2gs1AHgYT+F5krE8qMkRrHYB/AHAvWDT+s8CCSJv5RT0T7hNggdY1yBCcTjC3HTEM46fIVEZOP2+ua0lRlLRZPRaL6a7r4vTp068ws7MuggCQSCSaduzYsfrIkSOvu3r1ahQADh8+/KZwOPxzy7LEImqkrq6ObNmy5Y1NTU1fHxgYSN+fUhomhIgEZ5wH2YpwXbdMlmUnEAhYIyMjf3v06NFXHTt27J+8GJXHAeDChQsNANDd3d1QTNEqSmlQVdUh71hOyANezRrJcRzMmzdv2NtfSildFAqFqGVZhM9eKaVpV9z27dvvSSQShBDSAwAbN278+7KysoSmaXts2xZnqcFwOPyY9zn9rOPj41s9aw+BQEri8XgUAHRd37N48eJeb1b+IkyMKbnX2ybB0rNHwZTnh4RjLntbcdA5i4y1pTzPdYeA9AyTk9N8QcbDnnKN5jlmwgKO3jW3GobxkSLjc0TL3Tgy/TOX4AwD+JW33QRPL0uSVGPbueMHAy8y2tXVdebJJ598HwCMj48vkCRpBGC1ZoLB4KgkSSOitcdxnJD3fTSVSsmyLCcsy0qnnAt6KyDLcq6ugnBcuXi9VCpFCCEJAJg3b17fuXPn1hw8eDDtztQ0jZMALFmy5Am+X1GUbkmS0hMYVVVTAKvAXFdX96t89+buLYC5XEUyfvr06dfxYqAlJSWXKisr05WcuavuqaeeerNpmjsTicTrvWvwbEDuEssbkF5bW/sbLxhZJDgy/52EyVcYTJZtZAi2CE4QePaTahgGf0dcb1FkZL4EbNJ7GdkEB2BWwnKweJ0EJtZJWwsWyCziW8jo7XFkp28/JrRvAYBu73/eH96A7Oyt3BpaF739pcI1F3j3eiNYf+TW2WsQKhp3d3fvgIBt27a98OzZs2sAYHx8vFVVVVBK1UQisWpoaCi6cuXKL2iaRk+ePPlgoUDjO5bgUEqjkiSlJEkasKziFm3dunVrcGRkZPzMmTMNx48ff1cymQwCgKIoaRcVpfSuaDTqpFKprFmdbduSpmlP27YdBRCSJAmyLFPO+i9duvTbs2fPrq6oqPgX7zoRVWWXGB4eDnk+8pCiKLlp0xpYiirH1wCEDcP4F8Mw/t1TpOLK1Slkp+PxdgYAzC82MNIwjBLDMF6fc3wNsgeLEFgHiAttEOuZ8M8aMosjHtm1a5e7a9euw8gW/lcI93qOt33Auz5XcEMAPge2Ou0fIxP0mR7cRBcVwFyFXLhTqdS9ALB06dJf51TeDQBAV1fX1ng8/n6+f+PGjW/VNI1evHjxeWNjYy/g+23bRmlp6cP79+//16NHj74ux2RakmPBSeVzUVFKS2VZppqmJcfHx1cDwPLly3/ltasSACoqKkYAYMGCBU8X6aIKyrI8rqpqOsDXtu2A4zgB13XLFEVJu97OnTv31qtXr34hEAiYtm2jt7f3Jd41lgHMTbZ379427xorAUBRlB6AWcRs21Y0jY0bnotDBYChoSFtw4YNDyqKgs7Ozj/t7+//0fj4uOS6bvpdV1dXH9M0zfXeCzePWwBIjrwNgc10E2AEKAQmf49733cjMyMVFbeObJdVriuJEwjR/RQ2MgsWQtjH03qHkHGj9aMAwQHwajACVkwaLR94u8BcALwtq73tWsMwXgpmeT3rXfM7XvtTkiQtdF03rwnecRwFAIaHh9PW3qtXr5abprkCALq7u98ly3JCkqQhkazywGLXdStM0yRXrlxZ3N/fv1Fwv5QALOtTrH/EC5dy8Pgrfj2Akf3Nmze/Y2BgYMLil8Fg8FhTU9PXVFV1xQB2WZbPybKcEv5PBAIBNxAIjHZ0dDxfvEYymXy9+H84HHY0TdvDSbeiKFi6dOnPS0tLTe+eVyVJcvhElVIaKikpsXRdN3t6evbIstzjnTfmfc8tOHmLqWqa1i0uLus9v6IoCrcYihacOJhe+9Pc6wiWwQAYuR8EUCZkxgKsT4TBrDaiBWchsgnOr73tK72tWCdtHVhZkU95u/7Ba9MXwfqM4v1PkSFBJ8Emr9ydf9VrL+8Pv0Gmv3ELv/hsSbC+pAGo8vpXHKwvHwebxPIJzDV44RieZVuura3t5td6+umnv6qqqgsAkiQlwuGwRSlVCCHm0qVLn4hGo+8OBoOpFStWfKVQmMKdTHBCsiwnAYxRStHa2ppVfba0tNTKzYQyTfPvBwcHA4qiuBUVFYO8Y8iyPMzdDCdOnPhnRVGsZDKZHrS8ID6oqtplWVbYdd2gJEmuoigO9zNzX7Su61+vr6//ZXt7+/s1TXMAoKam5jKlFKlUKjQ2Nhb04t44228FW82VowOMwLwVbOHKJjBh4zPZXJeYGKhYiYx/tNEwjFfkEh7DMH5sGMYLwFKyv4ZsRZ32BXvnbQUjIAlkmPYIMnLTIaQB9gITzPpc+E95z8PvxWuMqPCUufDsQ2BF+Xh7AGFmzWMGw+EwBZCVpTQ+Pv4ygMmGaH3jCmvx4sXHxdkepbQ+FArZq1at+nQoFDoApJf9AJ+NcjQ3N38FAJLJ5LIiLTilsiw7hBCnu7u7HgA0TbvoKUg+U5S9e5qkCIZDKQ1KkjSuqirlAZGO42gjIyM1o6Ojn5Rl2eUz+6GhIe3MmTP1lmVJANDT01Pu/UYvj8ViZHx8/L38urqu7wYASZIu8Rgby7JkRVGo98wVYl0TAKlFixZ1W5ZFOjo6Xuodz0krFixY0LJx48b7vffyj2CzugS80giehW47mAL/Q7DZbgTMHH4EmTTYc8gobNGCsxpC7FYeVxJ/P53I1nFbcvpD2PtLgs2EOVnoBXBXgcmCArYqczHxOXxWTsCsmPwZVDDZfjVYTMOzwJT9t8XvCSG84u+EVZf5e+LBtJqmuaFQyObWhN7e3gilVJYkadhxHHX79u2VNTU1g6Zp6pqmwTTNhlAoRFevXv3Vvr6+iOB+KQGAvr6+Msuy0rE5uVYNISBUdH+NBYPBLy5fvvxHue2VJClVVlb2xsWLF5/iq4B7+097ehxAmuDYqqqO5F5DlmVxogdd1822tjbXsiwNABRFcVVVvRoOh0cAtkyOuJyO67qBysrKi0NDQ3pZWdk3HMdZ7O3nBQj5+89LcJLJ5MrVq1fvp5Qq8+bNGweAVCqlyrLcC2RV1Q2DyVMKLFg9vxkuQ3CGwGT/48J3tnedy2AkoAxMF78AgBgzdR6MPLwXLPZMbPu/g7l8D3j/PwoW88KLwarefSxkCA4Fk39OaPh74G5Mmoeg5YLrzvlgOl8Hm+jUghH5Y973g/DGFUrpGl3X3dLS0nSG1djYWAWvcWdZ1nxFUSzHcRRKaTgYDB5ta2tzA4HAuKIoVwsFhd/JBCciSVKyra3NVRQFJ0+ezArGGxkZUU6ePPkRcZ+iKKcqKysTa9eu/bbjOLppmgoAyLJ8jQ82o6OjyuDgYMCyLPAgTQARQghkWb6QSCRKHMcJyrIMWZZt3ikIIaq3XfrUU089l1Katjbout6v6zpGRkYihw8fflaetFnRBZUAs4bw3nIEjLX/rff/BbBgY34+H7Bl7xyuBI6CBW81GYZxv2cN2g4Wsf8NZAYOUVGrgvA+D8D3hDZx83oNMjNdPpNJE5wccEHfh+zihXxW3wUm/Ny9dRHZcUTU+671wx/+8Gu2bNlyP7eWhEKhBMCUmldx9S87OjruBwBZlrOUIzfRK4oyHI/HW7kJW9f1XymK4qiqeowQEvCOgaZp1DRNMQMGoVDooUAg4HpWQzEmKC/BcRyn1HVdBAKBa5FIhCuBLEWaSqX42jsBIdkjC4sWLernxfccxwlYllWhKArlKa22bWv9/f2h9vb2N8uy7IZCoaz3kEgksuJAOjs735hIJF4pBlzLsjzmbZ+2LEsGmEs2kUhIAHDlypWqkZGRdM2SQCDwi3A4fF68rqIo6cystrY2lwccg2VmvATs3f+jt30N2ExwdNeuXQfB5KQRmYxALh/DyBCZEDIDxQAmL10QzNly/Bs8guX9HwFTsDxFm08eTDAFn89KcxeAaJHxOfy3fwpswOMEZylYxWaOP/La+hfIDBhjrldIkVJanct/c+LCEI1Gk5ZlyaL1wSMOQ729veHBwcEfXLlypSwej4dCoZCVTCbvDofD46WlpW+ORqP23Xff/WnPGlISDAap54JPx2a5OYtX8v9t207LFyEk3tbW5kqSNGHQI4QkvQHpaUKI7U0kXELINUmS0pMJWZbjuq6nRCspAEQiEYcHBwvXdAGAT0Y9gl/CLUKU0qAYFO9VHb5QWVk5fvr06T8bHx9v9RJFsvqlW2Al8q6uru2dnZ0tpmmWLlq0aLeiKLAsSyaExL3zuR7gxHkIrM7M0XzXQyY2ZRAZqx4vBeKAyecVsAr1ZWAxMX3IFE/9Hlj14veD6foEWEJI0DCMQ2AE3/Ku8WGwAOAxAD8xDONZYPrIApN3HYxA9cEj+N49uC6tBtPXojVxggXHA9fnjvc8mveMNcgQP0BwUZmmuVHXdVM4F4lEQm9oaPgEIQQjIyPLR0ZGQqZpBmzbDvLECFVVR23bLrhsyYwIDiGkZeqjbiy82WwCYIK9evXq92matmfHjh21DQ0NPwGAZcuW/QRAu2B+LQ8EAuOapp0bGBgImabJq30OUErlWCwWBViQnKqqbiKReEssFiOU0ipVVV3btlf09/cH9+7de3x8fJx4pcFLvPakY3h46hovACXLckJVVSeRSEhr1679Ky/oMh/z5fu5ouezU/EFpsACfv/B+19coHME2QQhBTagvAnMGvQ7MEH+MjKCK0Ls2KuE9ogEpwmZGiV89qYiU4hKBBf+s15bPmYYxj5kLz4YQDbBEc3bMryA0UceeeQ7R48e/b5lWWpzc/O/Dg0N8fWhCABcvXr1Y9yVRHMW2hPiTwKO42iLFy++CLCBXZZl23XdEter1ivLMlVV1U4kErXz589PZ8HIsjysqip1HKdgDA4hxOVWw3g8/tLh4eEQIUQaHx/na/DwbA1eOFCRJAmO42ic4PDCf9zy2NPTU3nixIm3m6a5M5VKVV64cKFVkiSXUloJZGbyAKCqqjN//nyDu0YBYMGCBVmEZ968eZf279//bx0dHe/hxddSqdSQ164+XmTLcRyyZMmSbu8zzp8/n44lkCRpLNfVmm+5B4DJr+euvIjMYpIJMBno98jGOFjs1p8AaPLM3C8Fy6Lj9w0jQ/rDmHxNtnxuLYCtccVdqgCbUYoEhytvTrDyWWkWA1hYoMAgMQzjzYZh7DEya/C8HixN/W6wWItNYMGWPOg25d3/qPfbcOIY51k9lNL5uQRYLIYGsPiPZDJJbNsuXbt27a8BIBgMdlNKFwLAqVOnYgCz+Oi6nhwfH78rGAwOt7W1uaFQKCFJUmJsbOz/t/flcXId9Z3fele/7ume0YxGt2Rd1jUjjQ7bOmwIY2ATkkAckqziQxACBNgsIYnZZLNAGCabhGzCYcJhQrgXeyMFSBayCRAgHcdIPmTLsoUlWad1jEbW3Fd3v6v2j6pfd/Wb7rmksWbk+n4+8+np1++o996vqr71Oz8aRVFNOp3OO44TDQwMbFEuUeZ4S2TA9307kUhQG4YBIJFIPBJ/NoyxPAAYhpEPwzCVTCZD13VDz/N2k3OyPF+tbdvDauQXAKTT6cGhoaE3qttc1x0ChP+PvAaXrgvB9u3b33X27Nk30CJ2xYoVbGRkZLlhGPk5c+acX758+U8YY346nfaVAJM0UHIyXrt27eGdO3e+7bbbbrPlfZHzd84wDM+2be55HgzDeEm+E+p4GyCIRwAhA2WLgfb29t3t7e1E3ongEH4iP0mDk4Mwb86DGLMXopR+4HkAvwpgn9KvNkA4H2+DmDf+GEKO/0Lue05e9+9k23z5Vw+RTf6dEBpF0uCsl0EuGyE0Mqo2cZQPjpR71eWgXl6HnJjfhJK2aACiT9hDQ0P3DQ8PJ3zfL851+XyepVKpT1qWhaGhocyqVav2G4YR+b7vGoZBBKfMST6OMQmODF+N/5kQvhfXFTLhT6a1tZXZts0dx3k0m83y3t7er/30pz/9RUB0+gMHDhw/fPjwwzI5X71lWYVEIvF1wzCKMfSGYfRwzs0oihYlEgm+ZcuWe6Xz0l9JtW2DjIj5J7UNURSZvb29b5PkiQhOMVvu/Pnzu+X5i0Jw+fLlzzLGdqF6eYM8Sv4shAaIyCSglG34+xBCQ9dzISKsygiOEioLiAnCgdCMxCsbA8Lrn1aGb5WfdRBCTOe9C8J0pR7rQDgNx0MHSdDPQKxG7oQwyVGYaDNEZ6KBIR51Ysp7RF1dHTZs2BAxxuC67g8aGxt7ATERA4BaboAy7RKIvERRlMjn8/X19fU/BgDG2IBlWb50yCWCwy3L8vv7+xfMmzfveytWrDgj9x00TTMKgiDp+/4cIiAyz0jxno8dO/ZBz/N2e543d9WqVU8mk8kzhUKB2mFu377993t7e+8DgEKhgGQyGUmCwwDgxRdfjA4dOvRwb2/vF3bu3Pk2AFi6dOkLMr+Mt2rVqh84jlNQTARlBMd13W/Mnz+/SD6SyWSReM6dOzff3d29GADS6XS+trZ2uK6uLgiC4CO1tbVBEASv9jwPUluERYsWrd+2bdsDsXcCxtiwZVnx0FMvvl8M51CKmCISexMEYabw1k+hRCq+A6Fip8HfQCmqbrzkkzRxxAnOeQifCJLf7RCyGECQLLUSdg7Auvb29jtjMr1cXvsttL29vd1ub2//JQg/iM9DTEh/BCHPz0JMLIchZPmbEBMUOVQ+A9G3yI+jONkrUWoNpmkik8kUncHiBKe/v7/GdV1eKBQWKoEMVjKZ/OyyZcsu1tfXFwmo4zhDg4ODDYwxX46f+YMHD7Y99dRT/71QKLQahhFmMpnBCxcuFMeyCiYqKhtikimeMTYIlDSoK1euPJVMJjkAeJ63srW1lTHG8kEQuLZth83NzXtIrgFgw4YNP7548eK6KIosGpup/IdlWYVTp079LF0/k8mEtm3nAKCpqenfk8lkBICHYZhmjAXJZPKL69ev/xPqV+l0+vtnz55dEQTBXMdxegzDyPm+P9e2bb+3t3fR9u3b/5jGDc55srW1NXHixImW559//ouGYbxN3h/du8sY88l8whgLa2pqou7ubrelpeXD0mfqoxCLvoUYvfj7HQiz0yoIOVXli1wRiOBQ+Zx6AA9A9Idfk/t4bW1tzyjaxARE2DeNy7cAeE4uMmihQXLzEYjxlQjOHAi3hbsAfENpz3b5vRYidYLqOJ9E+UK9A6I/f0d+H8FogvMgSrmlfAiNTqZQKCxdtWrVk4lE4rhyPjDGBjjnGBoaMmtra/9PFEVWEAQOkUrbtruDIKgaXDOeBmcIQsX2I/lJf9vGOujlAOfcunDhwiYZlRKR9z9FEQCA4zjPA8DChQvPhGGIMAzrTNPMW5Z1JRa1MhJFkRlF0YJEIhHt379/r+M4wZo1ax6QattGy7IiwzDKBLW7u7v2xIkTzd3d3f8YiSycCIKgyHAp5NEwjBxNxLJm0eMQnuyVUEBJg6OGgL9d+R0QQv8gAN7e3v6nEOaiTpRHUtHxEYRaM4IgGptRGvwzyv55iKRPtSglmYpQrsG5gJKwqgmczkP4TKhq/eUQq9M5EIP+a+R2WomRA95Kec5OlMOR233btpFMJg2Zc2XEsiwPKEvySL4ICIKgbLXJOU9YlgXOuTM8PJxKJpM/AADG2JDUwmU457Y0Q0aGYUS9vb0Jz/NW19bWPiH37TNNM8zlcrXnz59vUUyfw2oepptvvvlhx3H2DQ4OLnNd93nTNHsAkU04iiL7ySef/MSJEyc2U5E413XJrlxsbxAExrPPPvvOxx9//CsAYFlWn/TdcZLJ5DOWZXnk5Ek+NgBgmqYvTQRqcrPixJZKpbrJZ8PzPMd13f6mpqY93d3d9zc3N+9xXfchxhhyudw7Oec4cOBALplMjvKnYIwNG4ZRFmEzgUKF51EyDxHBeQZCjkcgJvkTNFjLz7MoVeB2UBo4V0AhLxW0KUmM9kfoh5D9b0H4IgBiBZyU5zNR8sFhEHJ7FMC/oOTXloKYPC5BZFImWf84RMmUBpRMDH8uz1dQJqGLEMQnCWEuI+2oCaBR3sd5AOju7s4cOHCgGRC1m8IwRFNT0x66mXhgxaJFiy65ruv19/c3EtGIoighzUI9nuepE1M0NDSU6OzsXO553m5V+2bb9nHTNIOGhobHVJlUCc7tt99ec+jQod8CRHi4bdsBIPqT/OwFgEQi0bF27dqvAsCZM2fuktqanO/7CdM0IzJjzpkz5zcAIJ1OP7R+/frPDA0N1dXW1h6oqakJly5dehYAUqnU+YULF1IBVliW5VPo+bx58+7csmXLvbZth2EY1hiG4cv7/paiXS3INp2wLKsrCILGXC63oL+/P9XX15c4ePDgn+Tz+ZXyXpNBENwGAOvWrfsT27b/AwAKhYIFAAMDA3MBFKhgr2ma39iwYcOHAODUqVMf6ejouBViAToEofGIE5w18rMHoxe0RHCoRtRZCLeCUwB+Re77gtynISb7LwH4rDyGEHeWJ+12H8ScQQTHBjAcI0yEZyHmgSdQ7gOqmqgCiECBwxDaoQsojf1kogJEn8orxwwA2NHX17eypqbmaXpPBJnfS+wcBKujKDI8z7NN07wMAKZpvjQyMrJiqmHiRwG8mXN+J+f8tfLvTgBPj3PctGPhwoU7paZln2maIRGcmHnCBYAzZ86sfu655x7O5/PNpmnmstnssGEYkNoA7vt+cxRFRhRFC6mzWpYVOo5zRE4scyzLCkgt1tDQkKcMnABw5MiRX/I8L5NMJv2hoSGqH4JUKnUSAAzDGK6vr+8GgI6ODlInnpa70WqbBEVVWQZSo5KA8GUAJMFR1Nn3QWh3ChCDetxEBQhB/ChKBOKNEIM6IDpAF0Sn8OS+d6EUXuugpME5DdFhqTbRzco+T6O0UiU8DRH2HrdB71fu9bsQVZzvhCDPKlKybV+wLAtBEBRzrpDPFGW9pPwsqVTKpyiNFStWsG3btn06iqKE4zg8CILk8PCwwRj7LgAUCoU7DcMoRFFUyzl3HMeBaZpRMpnsAYCOjo7NFD6ezWYLhmFEURRZK1euLNbGkYn+GHWwRCLxlCwSmD59+vQeUuUHQcB8319WX1+fl/uFAOA4Ti4IgjKCM2/evDLycPz48R1bt279ahAENmNsUBIcypRc7NimafoAkMlkDtFq0zCMoV27dt0tn5Elr80HBwdN27ZH9u/fv/fs2bNFnxnLsvjRo0cfpJWzYRhxbSIADNDz37Rp0z9W+L0SbIj3rJo4u6Qcj0AMvIXYMQxCK0IhrR+GkONhCDmlPnF3e3v7q5TBnsJvVYLTg5KzuqV8noOQz5cgCDldlzSCHSjJ9BKICSYLsbL+vfZSkVBA9NujyjXJh4xAWq8hiJDZXShNbh+V99kLAI888kjRBywIgsWmaeKxxx77O9rGOYeaQDKRSPQkEolCb2+vG4bhAgDI5/MLZW2wYGBgwFyyZMlLgHBq930fK1aseNxxnH0URQQAYRguiqLItG27aCaX1ysuGnzff7/yP2zb9gDA87wd8np98jo513V/UFNTE65du/bTjuPsY4yNyBILxRXmo48+emnnzp13v/DCC3/juu7+5ubmPX19fW9vaWm5L5VKnQIAx3GuRFFk19bWBrt27bo7kUjkqSAs+XyZpsmDIEgFQZCidoyMjLBVq1adNk2zW7ZpxLKsTt/35zDGsGTJknP0PMlUduXKlT1nz579JgDYtv0YFXbO5XIMy50XWQAAIABJREFUAPr7+x3f91eTD5Bt20PkaPzqV7/66cWLF8+D8IUkghP3TyTScROEzKvlbGiMVgmOg5L2cwhiPshCZPRWF5Tkb6PKfXyupvlxLoT8ByjJaLWyOqsgxv8zAOra29ubZQ4z0pRyeS6alw5DmKIuYrQGZxClfk7k6gtvetObhk+dOvUO3/eLIe2u6xaLWZumiUQi8cPh4eHEwMCAzTm/BADJZPLHvb29C6caJv5GVHYi+vlxjpt2qI6McuKh/A1qzpLi/7lczpA22GEAsG2b19bWelu2bLknkUg8KjU4jaQZME3THxoa+pUlS5ZcGRkZeYNhGAFj7CUAqKuru3jrrbfevW3btqKpzjAM37bt8Ny5c+S7Atu2L8nfRpYsWfJXqVQqUqpO03P9BQjNBmme8hBhfIAQPAo5zCvbUOF/BkFw1Lom9HtKXo8mznMoqePvgBC6N8vPFISwEtlIoERwLkIM2uSAdkVey4KoiVXG/hW1aDyjqxr51SGPe6atra2A0Vk3PQDnFYJjMMaGSfUcBAGkidAEgEQikcvlcrWtra2svr7+84cOHXpvoVBYZtt2MDQ01AgAnPNf2LRp0z8cP378gSiKnCiKaiTBCQ3DCClnx/r16z+mqkxN0wwKhYKTTCafIY0FY2w4DENGobycc/c1r3lNved5RnNz81td130MAJYsWXLRsqwrruuOAIBt21RSYUgmgQQAysxpmqaJuXPnFlfWzz///Fs9z0sZhjFgGEY+n89vu+2222w1T4r0I2N1dXVfTqfT5C8wpNSk6rIsCw0NDb3yt1F+M47jRGvWrPmsZVkUnlkkOKR1YowNmaZ5yXEcrvpPjIMshHweRkmDk1M+Vds94bPy04WQGQ9i9Uo+OP8Lom88DCVCC4L8qIQGECQqnsCNVq49EMREnSzovq4oMr0UYmX6FMQA/hvymJvk76tQvlpPxO7pMoQvTp/SN4hI7YF4Nj0AkMvl/p4O6uzs/BXDMPiKFSuKwXay6vY7aR/DMLxMJvMiACQSiYMtLS37uru7l3qet5tqqXV3d8/btm3bA4lEohMAXNd9VpLafkC83xdffPE9fX19Gcdx/oOc8YFygkPmAUIul3MB4Pjx438mr9cj98u7rru3paXlvkwmc78sHZLzPM9Us4HLNu9ramrak0gk9qmkm8zLtm1fGhkZqQNEwj/btgvxYALDMMJ8Pt946dKlZWo7zp07tzIIAiIV3LKsjkKhkMnn8+lkMln0jykUCgsA4OzZs6svXry4QG77TyMjI2Wh3pxzJBKJ4kJOaou+fO+99z68c+dOyJe0DqVxr1IARgChVcyjMsGhhS3J8Gcg5GMQYizeB6HRUReUHkQ/UQlOvGjs1yHG8M0AQinbJN/V/EKXQCxmL0PI8xGI/rZBXo8CWw4DZeN+L4DfREkTT+1RNThXAHzopptuKmzfvv19iUSiWBrFdd1iiL9hGDAMYyifzzPOOUjD5rrul8jUWanhYxIczvklzvko2zrnvFrY23WBdBQlglPsiPF8BufOnVtCmTcdx4lSqVTuwIEDew3DyHPOjSiKGinRlGVZfmdn5+s7Ojoan3/++bfKvBMBIDrS/v3792YymQ/RucMwdJPJZH9dXd0IOXlalnVB7j+YSqU+tnnz5nuVF0HP9SCE8++H5fd8W1tbP0T4bC2EDXRIGWRVVZz6bqiQ2W+jNFCrJq4RlKJQ5kII3RDEappYN/lCrEfJMY40OHPl5wso+eckID3xx4kqiRMcGmzqMHpSOxf77gEIiODIeksjpLGRA74LKcumaYbd3d1pz/N2JxKJJwAx0Nq2Hfi+b6fT6cBxnH0NDQ2/KgfULs55TRRFjm3boWEYIfkwpFKpv1WjOQzDCHK5nGEYRjFTLmNsKAxDUFQT5zwdBMHO2tpa/8CBAw+TDKZSqTMALMoqq0RcRIODgyb5KixcuLCHCyCdThc1OQsXLuwEwBljg1EU2adPn349Y+wd6oPq6uqq8zxvt+M4+zZs2PDbss2D2WyWp9PpsLOzc0Mmk8m7rksEZ5SjuW3boWVZHRQins1mi+/HcRwut4XJZPLTt9xyyz2u6/4zUF6NvQouQBAbhpKTIfnRENEqk4W2trZeiJDsbwNgbW1tIcRkQD44i1EiLQ+i5EAcQAykakbwiyg3x0LuS8Tp35TtDCUZVR0YqaihmmzyMEp+cHeh3GGUzk24DGFuUAvS0vl+IvtQLwAsWrTo15ctW3bJMAxcunRpnu/7bO7cuZ9Ip9Oh67rcNM3o6NGjnyo2mLECTdZBECzv7++/e+PGjXuk1sQHgFWrVv04k8ncTyH/YRiSzJqAyCnV29ubsiwrMk0zv3DhwmKNMnUsDcNwHWnAAWDBggXHEokEv/nmmz8jr9cLCM11LKIOhmEMy6zHZT4C8f0Itm2fk/d3YWBgIDk8PGxJt4QC+WDSvoZhhFEUGcuWLXtejrN5QKSSsG37vGx7vWEY5y9evDivq6srSQEI8reiDyA54HPO7aeffrqYO4vged5a1fE7m83ytWvXPs4YuwUiN81hlMa9SgEYIyhpQFSCQ2PLNgjZp8Xuv0r5GITQisT9b4ASYU+iJHfxPv6/IUqdcJTSKdjAqHQLZDoGRL9cBSGb1NaPy/bvQMmsFscJiMSFDSj1C0qACAi5HwDQyRhL3nHHHX8PhZyZplmUEcZY0Yldyl0OqC43hFkbJq5CEhzqtMUHFMvdAdd1o0QicQooDuTEJPNRFLEwDOdSTgbDMPy+vr4kANTV1Y1QCnv1fOpD9TwvKVfjTjqd9gDAsqyzgJgEK7yICCiyXY5S2Ci16d8hhPBFlHeAagQHEMLyTxBhpxzl0SQ5lIoKpiEG7k6I/AnLUHL2fBoi7JDuleysDRAC/x2UQrvVlfVYUFcRAyglkarF6FXD47HvHgBfNVFBRJgUk3txzudQvotEItGTyWQ8mXG0AQDy+fxS27a9kZERO5VK5bLZLFfU2nnS4Ei7fmBZVpdcMZxhjBXvzTTNUGam7lbaNxJFUbGQZxRFac/zNjuOU5AOnEdqamqiIAgauKijYgMl36HLly8vk+0OAMB13e5CoZB0HIfH8oP4URSZjLH+ZDJ5YdmyZc8SqSfU1NT4juPsy2azPJlMfhUQBAcAbrnlFrulpeXepUuX/tPly5dXAIDv+42IwbKsIAiCpeRfoELdRs+PMRam0+mwmoqY0NbWloNYsb4WJSdIGhipny6LHweRXuAgSjI2AiG7C1BaFABASvYjGtzJwZFkj6FyDikHYqD/d/VcKGk41eSZmyA0nkUSI6+ZgCBwpLZXz6+SNgZhplMdaAYB9LS1tdGzPQGgcOedd25etWrVkjVr1jwGAOvWrXu0u7v7/g0bNvw327ZD27aj1atXf4VOYhhGIZFIPAUAp0+fvnfx4sW7abwhguO67rFsNstramqekt8fAUr+KZxz1NfXD2/cuPE+mYX6vXR+dSz1PG/l6tWrn1m6dGknADQ0NHxq27Zt9yhamj7ZplHaf8bYcBAEZZPXWEgmk9+tra0N8vn8Ts/zGGXadl33woULF25V5c4wjND3fTeZTJ6iPg4Uo1kpm/k6znmonP+gejz9v2XLlnvr6+vzjuNULLZ6+vTp3RVqIBIhuA1iPCWCQyk9voWS1tJEieComtRa5fszEFoaALCkHA6iJLNxqBocWqCWaXCkvD4HoWGic5TVypPYCqFVBErVv3tQ6oePQGhkvwfhTzaC0WkVPgwx3jdCITgKkTJk+zKyzSNqFBXVGANECR7y8dqyZctnksnkmPUHi8dNZKeZDsMwAnKCC4JAZeRpAJD5S+B5nmGa5iAgNDTkXMdEPSHj6aef/t1CoVDb2trKTNP0giCA4zh8aGgouXr16p9UU4MBQD6ft23b7pXFNUcAgDJlxh2nJOKMM69+trW1eRCEZCfKNSCVCM7nIFYJ/fKYbfIYGpTiGpwrKDlL/gCC1BBjp2P+FsJRkvJ3vAGi81GH6YHoGNU6mwq1/ecxNsF5n/wk00gaCsEJggCe572eCIJpmpxzXkcZVU3T9BljyGazPAzDRgDo7++fZ5pm3vd9OI5TNugahpF77rnnfrG/v3+1YRieTL1+OZlMRtlsNuSc+4DQUJA2h3yxADHRy4i8JQBw8eLFtx08ePCjvb29ac/zdruu+7WWlpZ7Hcfp4Jybvu9bAEApCtauXfv3AGDbtg8AnZ2dq0dGRmxpLit28OHh4YYgCEzDMPpt2+4zDCPnOM6hZDIZplIpCve2aFDPZrM+AJB5gghJQ0PD7paWlvsAkcAvrnmxLMsPgmABaXBURBXqZSUSiX2bNm26b7yCpxLdEEUuaRCjCYWcR49UOCaCIEX0LBZBlDOYA+A9yn4kYz8HIZNUfLYAsaLejlLlckJRg9PW1kaLiB9BmKKIKLkAfkb6HFyBiCTZHztPHYQfjxG7BzXHEyCiGS2UO5UOobx21jdlOw9LzdujADB37tw/P3v2LE8mk5/auHHjHtd1CyrRNgwjb1nW8UwmE6xZs+Yz6vsggkOh2rZtnwUAy7I6AaC2tvbBdDodAsDAwEAN9R/Xdfdu2LAhaxgGCoXCrle96lU3z5kzxysUCouZqFJPmpqcunjLZrOhZVlFp2MVhmEMyc8JpZ93XXdvc3Pzntra2j8GgEwm05nNZvmCBQteJftV8T4NwwgLhYITLzEhF0bJmpqa8PLly02GYeTWrFnznHwGF5T9iiTuwIEDex3H8aMoKgtBltFa2LBhwx+TBkvpQzS2fBYlcxKUz89DmGoBIV+VNDhPA7hX/k+ZnG8D8DcQBILOVen5kQYnhZImvNLisxHC/4v6+Kg6bZKEkP8Okf//pByThpgXzsm23YFYWgV5jiMor3WlEq5VKGlaXQB5wzCGyDSqEhzGGKIoGgSAVCr1qQkENQC4gQjO+fPn79+1a9d90kMfABAEQYNlWdiyZcs9S5cuvRCJCuD9AGBZlkde+NJR1ACAl156qbZQKOymZFVhGLJ8Pm8kEgk1i2bx4W7btu0Bxhjy+bxp23ZXFEWg8EXP826R5x+7prsAkSB1ws9DpNlWX2YlgvMhCJPWMyiZn/4S5UnScihNEqfluU9BkIzzSh4Fwj7lvNQBX4OSjfgCJq7BUTvweWXbKMdShd2flZ+dAALTNMlEhaNHj36eck6Yphn19/d/8OLFixTlFRD5oVwxfX19ju/7VFg1bpMGAFy+fLnOdd2BoaGhdBAEjbZtB5Lo9pimCRkBQibKMpu6aZqgYp2XL1+uA4DGxsZe0qbs379/ryThlud5RktLy75EIhEBQDqd/jog8vksX77cWL9+/Sc9z2OO4wRQTCFdXV1pz/MMGc3VF4ZhhnM+N5lM+ps3b76XfG4qmIrKBoJsNssPHDiwd+vWrZ/r7+9vjGteJLGfr65mt2/f/vvyeY4iOOOpiGN4ESIfB5mO6JiKJiqJFyAGTuoXz0LIbRolJ2Og5DyZgvAfIwfHPETSyr0oaSUJDsrrqAFCW/TLEMTjpxB9Jgux+l4G4XRcNDnI8g8ZiIHeRHkitFTs3Ocgxty4iapIcMh/gfqBZVkvyM9ngNLzdhynEIbhEsUvqpBIJPZt3LhxD2lS6JxxgkPnNAzjEiBIxIYNG/4HACxduvRFIg3ZbJbPnz//tfPnzx+wbfvE4ODgn/X399s9PT3N58+fbyGtTiUiY1kWN0oFXotQzAwTcnOg+00kEj8FAMdxBtTtsfsMpQm5L36eoaGhlsWLFz/T3Ny8J5FI7EulUs8CgGmaxcisQqFQlnrAMIwoCIJ4wk9Pfj4wODhoyeNIruh+KcM7kRDK8n0zhDtCCNG3afxTx8fNKBGFP5P/P4VSAAc962oanASEb9gAZORihf1egPCbKUtAWiEakcafDwN4CwCK1gVKBGc4LrMxnJCfcYKzHWIR7UCYrgttbW1RXV3du3fs2HE3UAqaAESOoyAI7mSMIQzDYjX68XDDEJzOzs66I0eOfC2fz7s0eQRBUGfbNj9w4MBe13W7AMD3/UWkoaHcKYyxHIXbJpPJEBBVmgFg4cKFXQBw8uTJt9BkoGYVzWQy98+dOzcXBAEoN4hlWSO33HLLx06cOPEBuVsldWxcGAqxT0B0mAdR7qS2XBFEOm+/dOrqgVi1LoJYtaba29u3oqTBof0vQqgM+yGiqWjFoxKcy4qzGCVby6NEcC6j5IMzJsGR6ncKc6dBgKIBKjm2vQViFU0e/r5lWcjn8zBNEzKkmTo6P3r06H10YBiGNURwwjAsTja9vb0ZAIingC8UCosBoZ6vra39UUtLy72u6z7ieZ7led7uVCr1V9u3b79bzdfBGCtzhGaM8Vwu16puy2QyZ+KDL+fcllqkPU1NTe+R2w8CQE9PT3Lx4sW7Xdf9gTwkgkJwTNMkB+te0zS7Tpw40XzixImvWJbl79+/f29TU9Mf2rZdyVRU0RRQW1v7XvLRULdbllXwfb9BXT0lk8lPjT7DlECar7i8kNxVIjg5iHGKBrthiEGxBuX+BURwNkFkcB2BmFAoF1Q8GRiVGIkT9Dop87+EcpPW3Sip6NUJNC2vRff2fpSbHNSJiFbVak2uQYhoyYo+TKZpUh6mshQKlmXlfd9fSH5RhmHkqpFNheAU5Dmfl8dcBIpOsvsAwHXdc+rx2WyWO44zzDlPep63AAC6urpSq1ev/q7jOFSiYBSRsSwronD1WFsmpcFR2jGuM7thGIE0IffEfzt9+vSaMAwz9HxM0yQzGjlEI15/0DCMwPf9m2S7aRv5puUaGxuH6flL0HOg+/4rCFJAPjwfgEg7cCtKJtRFKI2BW1FO5h9Vc9goPjhAdQ3OqyAIVQGlDOJxeBB9ivr4XohxIk6G5kHI9WaIrMm/ilIfXQfhaD/ee6F2kp8a7X9Qnu8MhLm5zKcGGEVw4LruQzt37rw7kUhMyDwF3CAEJ4oiGwCWL1/+Q5knJQIAz/MypGonjczp06fv8jxvt2VZBdLmABj2PI/Zto2Wlpb75APkAFBTU9MBABs2bPgDmgw8z0vTSlkODpTqvhMQ4bhdXV1/qOStqKTB4UAZa65EcAoQdZlWy/3+C0RWYhLEFFAkEEA5wemAEK5vyW2qBucCBLnpQznBUUPs1Uy1IxCd7lUQKxBATAxkohpPgwMIOy1QWv2S8Faa1B6CWEX3QyE4IyMjsG2b79+/f+/SpUs/kslkQsdxgvnz519ZtmwZqZoDCh0Pw7COCkauXLnySUBknFa1HOpKMgzDJfv379+bSqU+Rw7hsUnDAwDOedlkYxgGP3ny5JvUbWQKVRDIavJ48sknfdM0B1zX5VEUtcp2oaOjYx/lcerr60vJwq5Ip9OhNM2BCA4AdHV1JSE1eslk8oFKhCWKoppKDsDVJkPTNPNBENSpBIf2sSxrQn4TY+AKROQFydZENDgjEBof1QdnKYBeRe6BkuyuhEidsATCrEr3rj6XTgjzbBKjTay0gMhCRBbS8cdQ2aG+DkJOqQ+9E6KfqPl8CESMfxalPnwBog9WLN7JOZ+byWRGEVfLskZ8329UkuxVinaF/M1X9zFN8xgAeJ63k2SDJnqKqFIhc0W5w8PD65Tr95JGKIqiigSHzFGxtgzQOau1dyxwpdBlhXaShrWoYdu8efPXyeTBlAzkKE205IgcqfUH5XmiI0eO/Fwmkwluu+22t8jNESA0pc3NzZlbbrnlHmXCLSM48t1/GGIiNyAJh1KI+CaIxHzL5P5EYojgVErRMBbB8VDqQ4NjaFUKEAsEOsdnUNlR+BCEWUotoPzX8rdPQiQSHFUINgYiWCMQBL8FKIu0GoRIBRHFSX4YhrYin7zamDUWbgiCQwXf8vn8ykKhYAVBYJimiVwuV0eDMjm8rV279gsyd85AFEVJmV0zF4ZhcfLMZrNcyWw7DACpVOrz2WyWr1ix4mxPT09Z3L1lWRR5dQEALl26dBM5+QEi62eFSeYyxMulgY2cjlXVLQn6arnf36A8NLAGKCNJ3RD+DYsgBvEchLqS0uFXIjhqjoIQpUlHrfvyp/J81GkvQaxCFmNiPjhAqePRAEqrrFEanJjwF6OocrlcMbw6mUx+buPGjfelUqmBIAiSNTU1FxsaGvIvvfTSaoXg1NbW1uYAIJPJfA8ALl682Ky+u8bGxr+kiAlSg1frSJR3IwzD16rbE4lEuGTJErW20CgHd8aY393dvcI0zWjFihUskUjs27p16z2O4+xraWnZp6QQGAREiQXbtvsAYNOmTfeRnw1jbMAwjCLBSiQSVVX2O3bseNuZM2feNp4DsArDMHKe59XEJ6Bbb731Q1Sn6irQBUFwaHKZCMHJoZzgUA4c1dG7CyWz1zBERuR/hSD5JG8PK8f8PEQ2WBPlBP13ILJrb1ZkkPpWnMx/GKLPbpfXoOv8GMJUPIr0S0K2HeX95VGIlXDF4p2O4+zbuHHjKB8n0zSHfN9vUJLsjUVwSPOYB4R/1q5du+4+duyYWr+PNCujIusYY0E+n29mjPlz5szJA4Drut+l0PEgCO6IH2MYRuh53roK4x4lA5zIoqjivVSL2KPFiuojN2fOnLdt3rz5U7LNRX8bWvB6ntcKAI7jBEEQwLZtOI7D5bwQAKI+IfWHefPmPVVTUxN5nre7Qp+jd1B8hqr2JUY4chDj9HtRyolGoDGxUng5nbuaBofyoI2q6K6gAOnbKL9T3ppRPjQVSNIDEIn8CC9gbBDZfAoiyrCSnC+CUigaAObNmzfc09Mzt5LVZDK4UQiOAwDnz59f63kea2lpece6det+GIahQd76JNCu634/m83yhoaGv75w4cIdMl8CrWyKK0IiOIRsNpsDgOXLl6+KO1VSPhHTNM8BwM033/yPHR0d+wBg165dd588efL9FSaZf4NIgkcvPAdULXXQBVQUuH55HAnGAghGbUGEeuchbKAUCUVVXM+iXNVOq887AdyDkqqU8DjEalZNePYxlMwF4w5Wss17IAgXULIlV8u9AJQIjm9ZFgqFQlGLoPgiDA4NDdWYptm/adOm1KZNm94ShiFaW1tZEATpdDp9BQAcx3kMANavX/9p9d25rvuV9evXfwUQuUTGuoeGhob3A8ClS5fKJhvHcfx8Pj9f3ea6bhnhYYz5fX19iUKhYMydO/cT6uBYX19/N2mMaIJJJpOXyXdL3qcarl4kOKS9rATXdb/e1NRUNUdEJZimmbt48eJc3/eT6kRSU1Pz58uWLTs61rETQBcEcaYw8fjEUE2DMwejk5HlZV95BIKovK69vf1OCCJyAoKEL6BzSvkblv8/AzHgxn1wPovRgzA9A9qX3sMDKJlsfZQSnVEplbiGlnAQymQyjv/CWJq2wUKhkKG8XZUiloo3UCI4xX0cx9mnyoYSxj2qP4Zh6J45c+a1nudl6uvryQz/Yjqd/oE81z/Ej1mxYsUXTp069a74uBcEwWb5mY4fMx62b9/+Xzo7OzdVTepWCgIoEgMZUfjPcntRvmpqaj6ya9euuy3L+n+AMCEDQEtLy58nEgmqkRXKfYvzguM4p+LOzQriJqqxMAIhT/+O0WZkStOxKX4QSkEgyyv8RjWlAGBFNbMnSvnVfGB8GVShZBgnjGei6h7nGqr2r9jvmpqaMmpaFUqqOFlUVffNJlA9nsbGxt7Lly/XP/7441+95ZZbNudyudfV1tbSymREfnYBQDKZ/GJzc/OADCeuBcoJDuVEiKKozMNcDgR71W2KM93gli1bvnTmzJnfaGpq2g1grxxIEO8Q8kWrIYhLIQRnM8prdQBSTVjh1v8FwO3Kb4chUsH/nvxegHAEzkCowR+CICopCLUodYba9vZ2JttUdm+V2trW1sbb29tfgLD1juuDo+Bh2ZYHUSI4lSY1QhnBAUQYs7qDbdv9w8PDBpUzAPCwaZoPAUjJkg0hAHDOjwOA67r/M+5jcPvtt/8LgHeMtQqWWFxXVxdITUvxOVmW5XV1dTXW1NSEVAoh7lhOA+jNN998qLu7+371N1WmXvOa1wzIcw6oWiCSTUnILyrnrdrxK8nqeBgaGloBCGf7lStXFu8zm83y5ubmywCaJnO+GK5ARHB8F2KSn6gGJ4VSX6B3tAair7QCeDeETH0bog8UIIhHBqNNvgQiJcVIpwp9EignOCqZz8tjt0AUpl0MCEIjz0OLR7U/V7vGpGGaZv/w8HC6pqaGVvRVnXYrEZwxZGPUO3Acp2f58uXnBgYG1iSTybMAlhuGcTaRSDwq2zJqkstkMr/X3Ny8Pz7uFQqFBwF82rbtUX4y4yGZTP5Nc3NzbzXCTiYo3/e3tra2PqKQtivys0je6P5vv/32X6+trQ1IQ+C67gMbN258Vubz+QsA2Lhx49ulGervwjCcQ6brCk0gOa5UyDgOIjV9kOYhRXYOY3QSPwLla6q02PBQGtOXIyZ7CgoQi94pmQlRTmrGIzi9QNm9xfGIbIet/q7Kp8yBMyWCc6NocCz56ZC5AQCT1XVtGeKbA0rsXl0ZkZOcTH9O5g0bKFUJHwuccwcAPM+7va6u7rfiK6MJ2g0Po1xLAsjBtRq7jrNi+fmXECp4clZbADEwfxVCpf4rEILzZpTCAN+HKj4AY2AeBLlqxgQJjpKDAZicBicggqP6hgCAZVlU0FQ1WaC3t/dv8/n8nM7OzuWu6/J8Pv87NTU1Eef89fGLUDTJeAQnvupV2lCQlW/V4+N9yweAurq67589e7aqLJCPgmma/Zzzor0/nU5fpjZwzpfU1tYGQHlahGuB2traI0DJJ0j9zbKsS9SeKZ6eVu29se3j+eAAJRJC/fvfIH0DIEy3DwH4sjxHASWfAlW+inKqRLmovghjIa7tCVDKHv4TCNJ2AaV+RAujiqanq4Vpmn39/f02jU9jRWoq5qCx+hqAci2Hci3Ptu0rst7eWQB48cUXe2zbzgJAoVBdE0C8AAAViklEQVR4fVwmqo17zzzzTAiUZ5mfKCY6lh47duyvYvlxyBl6VP92HGdfc3PzHsqJNjQ01KPMCxEgNKHZbJbv2LHjPefOnfulMUy+dP6JaHAohxWHkKUzkLIzjkaFFjeV3jdpcB6GiBysJntqqYSpQPWtGo/gMIj+Xm1+OYxS/bbqJ3klExxaxQwPD7uUMC0Mw/cDwODgoFsoFHYTiYlHwAClnCGDg4M2CW9DQ0M2kUjwQqHQAIw9qLuuewIAHMf5zlQcoYCqQj3piSR2njyEz8MpyDBD1R4M0RHPQ0R+THYgfgIi7PdFiCrkE22rGkUFjE9wfJRrcMrIlGmatDorrgijKMKzzz57j+/79rp16762ZcuWe3p6eu6vplqmaJLxCM4Yvjl5AOjt7S0O2p7n3RRzZiZHz1EOmfFrmKYJ0zR7E4nEecYYPM/bnUwmixEvNCgDgO/7lZJ0TRnz5s17/Zo1a55xXZcrZUUAiKRrmUwmmIxPTww/lp9kvstIuckBCGJOwwR6J3ES/WKM2L8AIVtUHoFy7aihv/FzeBCkayIEXU0KSNekDN+XUCrfoPaj8TJ8TxnJZPJdAOD7PhGpsQhOQX6OKXuAcMyPj3WGYRQ4504YhpZhGMPkL5bNZod37Njx3mPHjn15sjIxFRPVePB9vx4A4qn7mSyxUykfGfVpSiORSqWoUnexvh31d9d1vzCOyZdkdSLEgTQwFBZeTWNThra2Njr3rRXGXIqOGhrH5KSS9KlAdSweT76fgtD0V7y3tlIR2krm3CJe0Saqm2666Q8GBga+MDw8bKbT6RFArBS2bt36+RMnTvwWIBJMSVVXVfUhpfEHgPr6+ru3bdv27eHh4Td1dHTcJztwRXW/bdtUyG08E8dkMdWVMqEAYc/tRmm1q+IQSp79kxWgLojJoRnCbFFNHRpHXI07lomqC2JF4lO+jwp+MhYgIqAqHG+kUqnvk7M3qrw/wzA65L9TcnykVPdNTU0Pnzp16u7ly5f/x4ULF15dV1dXlBmF4Iwb7mpZFkzT7J4zZ85bdu7cudtxnH01NTU3A7ijtbWVkfo2lUo9bNt2Xtl21chms7y1tXVbY2Pj7vhA7rru3o0bN/LJ+PTEQL5DfRBh11RgkqL0KqFMg6MgvkrugzBbEcE5JLerg3gBKFOXky/CRN57pZQIeQiT23AV09NYsn1VOHDgQI4xhu7ubiJwY0W4lUVRVcP27dt/5/jx459samr6PpS+whjz8vn80lwul3Ac5183b978CMmA67qfa2pq6pqsTFxrzSMA5PP5WkD4rKnbs9msL01QVcdTSi2h3gf1a+U845l8V2G0m0E1/AlEFNJUzJZfAnA/RESrepyaSmEsXK0G55Dy/7r29vZHqs0fE7y3f4CIPKz63F7RBMd13S+vW7eu5emnn36f4zjFgbKuru63W1paso7j7AuCoNlxHIw1EVAGT6AkzK2trftuu+22747VgcnGO5HJa5K4WoKTh6gVshUVhOcq/QHIn+ISRIbWiWqA6BmRxuWmajsC+BqEuvVcV5cIjKCVFqGmpubtAHYzxobiE30QBJbqkFsNNACqBQUnA/LXqq+v39PS0vKdjo6Ofc3Nzbtjq8gJaXAA4W9jmmaXOqDefvvtJ2trawOVaLe0tLz76NGjD45FvqeCagP5VHx6VLS1tQXt7e2A8Af7AES+msMQBLkaGai2Ko4vVPogVpYJyNw38lqqpuCjENlkqS/4mKIGR2nbXFSfUMY1CV0N6urqvP7+ftLgjDWukQZnzPEpmUx+tqmp6Up8rGOMFU6ePNkMAGEYbn3sscfa6LepykQ+n6+5lsQcAHK5XBIQ2vZK5yVXgkrwPM8CysvvkAZnEqjkZlANj0Nk3Z6KCfO3UJ4QkEByPCo8v8p+UyU45A7wDYgw9ydwdX5lX4bQ9FR9Fq9ogpPNZvkdd9zxLwDeR3402VItkr0AsGPHjmEKMa4GYvHxc2OcDmyaJpm9xp28JolrQXCWQDD+a+oL0NbWNtLe3s4hSE7nJDRA9Iy+CxFqa43hgPY4hOrWWbhQ5GmLm2T2798/vGPHjvuPHz/+l01NTY9CeVeFQsEk/5qJIJ/P72ptbX1gsoMuRfHFZCUuMxTOOy4JNk2TG4ZRZkqVZqmyFaaspDt4FRqV64EIoljrXmkmRXt7+xBksrsKckDEJ66hGInt3wuh7YtX8FYJznchcnFQXyAT1UQGeheCzMQ1ODcDeLLKMdOmwQGAtWvXfvDo0aN/MTQ0ZHqet77axD5RE1W1sU7VmjqO852rbffWrVs/d/LkyXdfa2I+f/7853O5XEu186qFNeMoFAqjxv64Bmc8TGbBeDWLyzGOJTkej+BcrQaHwvC/DlF086rmlok8izAM2VQI8Q1BcICSD8ZLL73UuGzZslECzhgbGC9RWYXiaRMCEZyJrM4niWtholoN4Ilp8gW4AhGNNRnTHE3wIwC+AOAjEB1klICT4Le3t2+lKIeRkZFRg1QymXygqampIz7R5/N5NlGCs2zZss4zZ868uaamZtKDLpWNGKsDKpEs4xIc27b9MAyXqeerNPlcrUblOsHC6NVnPQRxqKhllJoYdbLZCaHZyyr7l2lwlH2LBKfCQDoZH5wfQxAatSCoB5Fa4XiVY6ZVg5NKpT6+adOm8wMDA/edPXv2V6rJLuW/wRQXYMrxiNd5mgpkFu1HrjUxX7x48dZKplUC57xqSoUwDGEYRlkfnoIG53qD5HjOGItG4OoJDmlwhmmRMp3YsmXLV0+dOvWWqRDiG4bgMMa6AGDFihXPVHEkPUUVnqtNQpVq7UwESmTWVAWmGq6FBseFiO6YDlyBMH+dncQx1Ak5RLHESqrWOAIAWLZs2bDv+2H8HY410Wez2YlENGDVqlWLPc+rOjiOhZtuuunBkZGR+8fqgIqJarzVFdasWXP/sWPH/rqpqelItfPNVlRZrR1G9bTyhLnKoP0ESrV5CH0Q5RjG0uDEMRkfHED0o2PK9ycgQsRPVdl/WjU4qhm9tra2quxO1ERVDWp4NWPsqgnOdBHz8c7LOTerjf8bNmzIvvjiiz+j9uFZSHBo/nkHRObuauSD9qsZhwhVQ6XSPtOGurq6t2/cuPF7UxmbbxiCQ34w6XT6QBUCU18oFNyxJqEgmJpTOee8GD57LW3KuDYEByjPc3Mt0QsRjvh34+1IUFbk9iTUtD4ArF279v0HDx78zLVWbQNXN+im0+k/bGlpOThOByQNzrgEx3Xdzzc1NfXMMtPTlDFBOSj6kVXZfw5EAsFhxAjOGLI/GQ0OUJ6PB7INb0N1H5xpJTiE8WSXNDBT1TCr0UdjBWnMZOzYseOtx44d+3I6na44dsyfP/+1c+bM2R1zMp5tBEctvlx1sdDW1hbJMfg2TDw4RD2efOk2tre3TyhB4NXgasbm2fYCx8IQAFiWdbbSj9VymKgIw6mV2uGcb0yn05UKHV4troWJChC1Riab52YiIG/6c2PuVRlLJxFa7gPA9u3bvzmRzLw1NTXFF3kVOVsmjImkBlA0OONqlKaaauAGxo8gzCtjaXgehTAVqcn92iCyfVeTfQ+ixMNYmlfV56QB5WSIVrCNVY4dmoSMTydo5TZVgqMmCLzaemTXBa7rfmOssaNSn4uiaLbNjyTHP5kg6fhnTN1/5g8h6iROx7xyzTDbXmBVkGD6vn9TpUltvEmDfDymMiE6jrMvXr7hGuFaaHAuY4I5FqaA0xAmgcmqKm8D8GlMvHMEAJBIJPyJTPy33npr0dZeKBSuNemcKiZMcDRG4YMoVTWuCDmgH5FfqSjk/4QobFlN9ochElYuHePav4xSvR0X5WTon+VnWVkOiV+A8NeZCRMAVcCeEmFWfXBmK6ayaJiFGhySzXEjRyVOXYX25WOYvnnlmuGGMVEBwLp16544derUe5qbm8uiaSaC5cuXn+3o6FgxFfPHNDp7Xm0HywO4MI2OYNS+hjH3Go2nMNqHYiz4sc8xkc1m+YIFCwb7+/uveTKxqULxg9AEZ/J4AhMLv30OwH+GjGqagOnrewBeA8CvZsaSJlV1u6rBofxJlaJtvjfBNr8cuKpxRDVtTYMZfsaCNDiz6J7pPU/UT2pU5fiJ4lqVHJlu3FAEZ+HChTsbGhqm5Ci6fPnyVYsWLZrSsdMIBoxZx2M85DF9DsYAsF9+npzMQVPoHERsJuwktWHDhrqpOg1PEyhMfFb6MFxPTEJeqLDfmOkgFJyEkK2PQKQkqHYNNX9KkWQrvgxz4310hk0AV6UJplp7juPw6fB/m6mYN2/eY319fa+fRfc82SCXvvF3md24oQjO1WhSZmjI7VcB/AGm4AgmkYesujxNjmBUtXe6vemD2Oe4mKHvczoi7TRKmGwBx28B2C7/H0vTouZeijskb5XnOYSZQ2jKwLno+lehiQgBYNu2bffMoAXDtKOxsfFnx4pOm4GwMfFMygDgTuPcMCNwQxGcGxB/AVExfKpq7icAvAtTJ0jj4Yr8nO5oER9Tr5syU6D72vSjB5i4xnMSWhaV4MQJ6mFMztz6siOKokZAVKLHFEg/59wCgAMHDsy4BcN0YqYuksbAZDIpvxkiSd+/Y4YS82sBPejOYFwDNfcPAdyFaRp829rafKmiT03H+RWsgag9NF1EbdrBOb+mRTE1xsS1lpOqGpwZZoqqiFQq9fFdu3advwpNRNUSBxozB5OUxf8Loe2ZscT8WkATnBsYL+Pgu2GaVZ3PYIyKtLMEuq9NP/4VwmR0reXkHwHskf+va29vf2k2qfWvVhMRRZEJzCpnW41xMBuI+bWAHnQ1rhbfhqgM/TCmqcPcCJ3xGvhBaIyDaZSTj0MQ7AyAhwC8aZquMyNhWdaJmpqaaBY522poANAER+Pq8WuYWLmFVzRM0+zQk8SsxWEAvxj7/oqB67oPtbS0+LPI2VZDAwDAaGX5sl2QsY9AlHsnB9UPcM7/ufoRxeMOcs5vnc62aWhMF1pbWxmFrWsNjoaGhsb043oRnCHO+ccmeZwmOBoaGhoaGhoTwmxLRa2hoaGhoaGhMS6uF8F5L2PsWcbYlxlj9dV2Yoy9izF2kDF2EKIOjIaGhoaGhobGuJgWExVj7IcAFlb46YMAHoMonMchiuEt4py//Zo3QkNDQ0NDQ+MVi5fdB6fs4oytAPBPnPON160RGhoaGhoaGjccXnYTFWNskfL1zQCOvNxt0NDQ0NDQ0LixcT3y4PwlY2wLhInqLIB3X4c2aGhoaGhoaNzAuK4mqqsFY+wIRMVsjZmHRghfK42ZB/1uZi70u5m50O9mZqKLc/6GSj/M9kzGeZ0bZ2ZC5y2audDvZuZCv5uZC/1uZh90HhwNDQ0NDQ2NGw6a4GhoaGhoaGjccJjtBOcL17sBGlWh383MhX43Mxf63cxc6HczyzCrnYw1NDQ0NDQ0NCphtmtwNDQ0NDQ0NDRGQRMcDQ0NDQ0NjRsOs5LgMMbewBg7zhg7yRj7o+vdnlcaGGPLGGP/xhg7yhj7KWPsd+X2BsbYvzLGTsjPermdMcb+Wr6vZxlj267vHdz4YIyZjLFDjLF/kt9XMsYel+9mL2PMkdsT8vtJ+fuK69nuGx2MsTmMsW8yxo7J/rNL95uZAcbY78vx7Ahj7P8wxlzdb2Y3Zh3BYYyZAD4L4OcBNAG4hzHWdH1b9YpDAOD9nPMNAHYC+K/yHfwRgB9xztcA+JH8Doh3tUb+vQvAgy9/k19x+F0AR5Xv/wvAJ+W76QXwDrn9HQB6Oec3A/ik3E9j+vApAN/jnK8HsBniHel+c53BGFsC4H0AbpW1EU0Ad0P3m1mNWUdwAGwHcJJzfppz7gH4OwB3Xec2vaLAOb/EOX9a/j8IMUgvgXgPX5O7fQ3AL8v/7wLwdS7wGIA5sZpkGtcQjLGlAH4RwBfldwbgtQC+KXeJvxt6Z98E8Dq5v8Y1BmOsFsDPAPgSAHDOPc55H3S/mSmwACQZYxaAFIBL0P1mVmM2EpwlAM4r3y/IbRrXAVI1uxXA4wAWcM4vAYIEAZgvd9Pv7OXFAwD+EEAkv88F0Mc5D+R39fkX3438vV/ur3HtsQrAFQBfkebDLzLGaqD7zXUH5/wigI8BOAdBbPoBPAXdb2Y1ZiPBqcSSdaz7dQBjLA3gWwB+j3M+MNauFbbpdzYNYIy9EcBLnPOn1M0VduUT+E3j2sICsA3Ag5zzrQCGUTJHVYJ+Ny8TpN/TXQBWAlgMoAbCRBiH7jezCLOR4FwAsEz5vhRAx3VqyysWjDEbgtw8xDn/ttx8mVTo8vMluV2/s5cPdwD4JcbYWQjz7WshNDpzpOodKH/+xXcjf68D0PNyNvgVhAsALnDOH5ffvwlBeHS/uf54PYAznPMrnHMfwLcB3A7db2Y1ZiPBeRLAGund7kA4gn3nOrfpFQVpa/4SgKOc808oP30HwG/I/38DwP9Vtr9VRoXsBNBPKnmNawvO+f/gnC/lnK+A6Bs/5pzfB+DfAPya3C3+buid/ZrcX69EpwGc804A5xlj6+Sm1wF4HrrfzAScA7CTMZaS4xu9G91vZjFmZSZjxtgvQKxKTQBf5pz/2XVu0isKjLFXAfgPAM+h5OfxAQg/nH0AboIYMP4z57xHDhifAfAGACMAfpNzfvBlb/grDIyxVgD/jXP+RsbYKgiNTgOAQwD2cM4LjDEXwP+G8KPqAXA35/z09WrzjQ7G2BYI528HwGkAvwmx0NT95jqDMdYO4NchokQPAXgnhK+N7jezFLOS4GhoaGhoaGhojIXZaKLS0NDQ0NDQ0BgTmuBoaGhoaGho3HDQBEdDQ0NDQ0PjhoMmOBoaGhoaGho3HDTB0dDQ0NDQ0LjhoAmOhobGjARjbAVj7LWMsYWMsQ9e7/ZoaGjMLmiCo6GhMVOxAsBrOeedOteVhobGZKEJjoaGxkzFuwC8hTH2I8bYNwCAMXaAMfZpxthhxtjdjLFvM8aeZYxtlr+/kTH2CGNsP2PsDde19RoaGtcVOtGfhobGjITMxPx6iMy/f8o538MYewHAqyGymD8NoeXZBlGW4vcA/FgeYwD4F875617+lmtoaMwEWOPvoqGhoTFjcIVzfhkAGGOnOOd5xlgHgHoAjQA2APih3Hc+Y4zpGkEaGq9MaIKjoaExU+FDaGpU8Cr/MwBdEPXRfo5zHjLGbE1uNDReudAER0NDY6biCICPAlgFQXbGBOc8Yox9AsCPGGMcohr0f53eJmpoaMxUaB8cDQ0NDQ0NjRsOOopKQ0NDQ0ND44aDJjgaGhoaGhoaNxw0wdHQ0NDQ0NC44aAJjoaGhoaGhsYNB01wNDQ0NDQ0NG44aIKjoaGhoaGhccNBExwNDQ0NDQ2NGw7/HwDKk8BAxL5wAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAADQCAYAAAAK/RswAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOx9eXgdV3n+e2a/q1bLkixb3m3JkmU5li3ZLrnlVxKy0EIAZy07lEJLIaVQoOAOO6WEAEnYIQRosEvZSaGBRAmJ7TjxFsvyJtnyIsnal7vPdn5/nDm6o2stjmMnTpj3efTMnZkzM2dG3/nO+y3nHEIphQ8fPnz48OHDx8sJwotdAR8+fPjw4cOHj0sNn+D48OHDhw8fPl528AmODx8+fPjw4eNlB5/g+PDhw4cPHz5edvAJjg8fPnz48OHjZQef4Pjw4cOHDx8+XnaQXuwKcBBCugDEAdgALErpuhe3Rj58+PDhw4ePlyquGILj4i8ppYMvdiV8+PDhw4cPHy9t+CEqHz58+PDhw8fLDlcSwaEA/o8QsocQ8q6pChBC3kUIecb9a3uB6+fDhw8fPnz4eImAXClLNRBCKimlPYSQMgAPA/hHSunjM5R/xs/T8eHDhw8fPnxMhSvGg0Mp7XG3/QB+DmD9i1sjHz58+PDhw8dLFVcEwSGEhAghEf4bwDUA/BCUDx8+fPjw4eOicKWMopoL4OeEEIDV6b8opb97cavkw4cPHz58+Hip4oogOJTSEwAaXux6+PDhw4cPHz5eHrgiQlQ+fPjw4cOHDx+XEj7B8eHDhw8fPny87OATHB8+fPjw4cPHyw5XRA6ODx8XCl3XCVi+1oGtW7deGZM4+fDhw4ePKw6+B8fHSw2fA5sI0k9K9+HDhw8f08InOD5eaiAAfg3gwItdER8+fPjwceXCJzg+XmrQAIz74SkfPnz48DET/BwcH5cEuq5rAM4CmHOZyYd2Ge/t42UAXdfDAJYD2OcTYR8+/nzhE5w/E+i6LgD4EoA7L7XSdxN/PwWgBCw3Zv8s5QsBvBrAtouoiwYWpvLh4zzouj4PjGj3gcnYjLLow4ePly98gvPng78E8H4AP8ClV/qvBPBB9/ehCyj/fQCvBXDkIuqi4SUWWq2pqfmTIAj2nDlz/rK1tdX3KFxeXOtuf4FLnKflkqcHAPzV1q1bqa7rpQCWAnjqSvUUlZWVxefNm/eTgoKCd/my5+PPDS+pjsLH88IZd3vkMtz7lOf3cwkhXUwHpD3HZ1w2hEIhu7Gx8VuxWGxGj9KRI0c2Hz58+GrDMLa8UHV7MRCLxcjGjRtvnu17XGaMu9tDl4F0vA6MzPMRfAMA/oAreETfwMBA+PDhw29/ucreunXrPrN27dpvvMgy5+MKhe/B+fNBkbsNAchc4nsXeH5rAOKzlA8AwEV2QBoA8SKuu+RIpVLCkSNH3tHQ0PDHDRs2VAYCgbuns5JVVXUURdn+QtfxhcRjjz3mhMNhu76+HgC2vUjVmONuLwcJPuluBzzHenGFj+irqqo69kLIXktLyy2U0hLbtu9Pp9M/LS0tvf5ye40GBgbe2tfXV7527dpH8eLJ3BWB5zJHmK7rEQBLLqTs5YSu63MAVAHYfznq4Xtw/nxQ7G5Dl+He+QRnNgS8O7quC7quv8ptoLNBzb/+xcT8+fMPjY+P//3u3bvvmslKJoSQFypEUF9f/6uWlpbbL8aqbW5ufvOGDRvef7EW8eLFi3/2IhO5Mnd7OQhOobu90SOrNoAKXddfcYHy+4JDUZThF0L2du3a9eDevXvvSSQSvzt06NCrXyCvkVNYWBh/MWWOEELXr1//4SvAi3Q7gH0A/qjr+idmkcdTAH6GF9/72I/LOK+Z78F5iUDX9bkAXgHgp278vwmAA2DvBTJfrwfnUqPQ8/tCOpZg3v6/A/g4gEbMnpOjAZAvuGaXGbIsDxuGUQIAMylZx3Eu6XNjsRjJZrO3qar6X97OKxaLiW1tba/RNO3GNWvWWHiOVu1TTz11vyzLWLduXe9zvRYAFEU51traSjdv3jwnnU5/NBKJ3PkC536UATiHy0OCuZx/GsBT7m8ZQDeALIBmXIFJzZTSF8zjGQqFMpIk9QAzt4dLBcuytHg8Hr7cz5kNhw8f/kx9fX0XXlwvEpf5vwTQAuBXmEIedV1XwfqD1+PK8D7+Hy5TPXyCcwnQ3Nz8tkQi8caZXLL19fW/1jRtfygU+sRFKvwHAFyDHAnYDcZ+rwWwX9d1EcCNAH41DeG5nATH68FpAHB8lvL5nY/qbi9EyDUAygXW67KDUiobhlEKADP9Xymll9S6SyQSn9uzZ8+HW1paJpEYSmkYAGzbvujnlZaWjlxs50QplQCgu7v7ma6urgUtLS27cIFKX9f1mwBUArj3ebirq8BGUGkzuex1XS8CUD3VuRnACc7PkJNVLotDAA7qut6Iy+Runw1XXXXV52VZPqRp2o+8skgpfcE89aOjo1oikbhsnps1a9aIgiB8NRqN/kNrayvNZDKhVColZDKZdwP4+uV67nSIxWIBAFi+fPm9z6XNXKYlZ7xE7xim16dcX5+8QpLjM5erHj7BuQhs3rx5nmVZf61p2jdaW1vpsWPH7h0ZGdFaWlq2YBpl3tbWdqOqqjesXbu2bboys+CEu/UK7b2e/VsAfBceK1LX9SDY8O0PYpYQlcvq1wN44iKErQDAVwH8P0xOOJ6pPHRdJ+6zCoHzc3JcJdACYKfnnIYcIXrR4TiOkkqlogDzqkxHcmzbvqTPJYTEgSmt5DAAlJeXn1NV9YIV7ubNm+fYtv1KAOjt7S2aO3fud2Ox2NsvgoxLAJDNZiPT1G8m/A8ACuAJXIQnxJWXzWCh93lg8vgwPJ5BXdeXAFgJ4DdgOTU3PYdnFYF1HIrrRQVy3sQ0gK8AuNV97gvuydm7d++HQ6GQs3r1agPAtlgspgIApfQFNQjC4XBmdHRUo5RGAYxNVWbNmjWipmlv1DRt21Qytnnz5qWJREIvLCy8I+/8D/bt23d7S0vL4wC2OY4jSJIESqk1TV2surq6f9I07b6pnlNRUTFaXl6+raCg4N0XY3g6jjMPAGRZPvIcr38cwDow/XapZMXrSbdm0OOc4OR70i8Yuq4XAHgfgE9fAnJy2TxwLyuC09zcrD711FOZq6++WricbvH29vaO0dFRrbm5eRjANlmWTQDabMp83rx5J56H2/asu12r6/pe93eXR7i63T8vAfonAHcC+CGAZe6xegCPTXH/7wG4DRcWJspHIRjxGMEsISpd10sAlLq7fM6commK3wC2LIO3TpMITm1tbevIyEjjihUrCp/P/3zNmjX3O45TUFxcfNNzuQ+lVMpmswoAuDkHU5LXSx2iopRGgPO9Rvw4IWRGj5IXmzdvrn3yyScPBYPBiUq2tbW9tamp6fctLS2/opT+TX5HtGnTpoht22/UNO37ra2tNBaLie7zVQBIpVKzKi1d1zeCyc7/euQ4iYt3Vy8FCxV9E8BCAD3u8QPu8wiADrcMALwDwAFd16NghsHDsyjrQgAHwbxEHHPdrQ1GrH77POr/vLF06dKfcB1DKS0DAMuyZvTaNjc3/61lWSvD4fC/XQq9adu25D5/DvIITnNzs0oIecPg4OCXe3t752zYsIFiijbT3d39R9cD+CvveUVRDgC4vaenZ7v7blJZWdlwIpG4IxaLfSe//slkUjx06NBX6uvrB8FIHzEMY4uiKNtbW1vpuXPnCkZGRt65du3aR6aqx2zgBMdxnCIA0HV9E4D3ALhjFllqwKXPE5vn+T2TEXjRBEfX9beDjVS8E6zNHMMM303X9TIwr+xMnqpXut9tx6X25LysCA6l9B0AkMlk3gQ238vzQn5j4McNw5AppRPWqSiKDgBks9lbY7HYg9MpCUVRhp6HAuHX/QzA37i/HQDQdV0CcB0AmicgXPkeQE6pn/Pe1J2B+CrkRlYRj2flQrEUbFK145i90W4ES4Rbh9yQ9cJpyvKh7d4OY9Iw8TNnzmxKJBLSokWLpiUXF4LBwcEbhoaGShobGy/oPtw6dhxHEwSBAjN7Kyi9tHybh6KmOB4CANM0LzgHJZFIfBQAKioqOjo7O5cDuTDVzp07HUIIXbt27aSOqLOzs3tgYCCyYcOGJIBtrrUOx3FCsViMjI2NyQBw8uTJs7FYrCpf7nVdXwcWUqgE8CrkCGz2QmRP13UFQC2ANgDXg4U9VwCIgMm6lwhzT0KTu98BYBVcA0HX9Y8D+DuwHLeZyH0xWFi4cYoETgms4wgCiOm63jrVe+i6/m8AngQw5fmLBSeYqqru49/acRxOcGbsyJ566qkHCCFobm5+Fs+jDQUCAae8vLzr9OnTi/nzY7FYZyaTuYOHzU6dOnVuYGCgUNM023GcmdqMAwCU0vaampqdc+fO3ei+lwIA1dXVVQDOGIYhKIqSOHHixF8UFBRMars86Xf58uVf48+ZaqTf8xll5jhOhbvlpOFOMK/gFzGNLLkjhwBGFLov5rnTYKnn9yUlOLqubwPzer4VzAPa556a9ru5baQPwGmwPmu6tlUC4Nd9fX2vq6+v/1BJScmNF9JPVldXd5eXl/97IBA4j9hyvKwIjiRJe9ztU7OVvRCcOnXqRH9//4KGhgbA03A0TTOTyaTIP2omk9EA4NChQz+oq6uzMb2ScNauXfulrq6u90Sj0WBXV9eFKPJ1YKEj3ql/CLkOn1vcW93j/XmXr3C3DWCK34QbonJnNl4Nltx7E4BfumV/CeCv8dy8OAaAe8CI0mwEpxFAHRihCrrb/JAVB/9NPL81AAFd19f87ne/q3UchwAXl9C4cePG11iWtTQYDN6dzWaDVVVVh6e7z9KlSw+VlpZ+VdO0b7W2tlJKaSEAWJYVIIT1dVM1svr6+l8/13rNhlgsRjKZTN1U5yilQQAwDOOCrMOWlpabDxw4cDsAyLI8ALbEARRFyVqWVWYYBqqrq8/kf5fx8fGQt4PyEJywaZqbJUmCZVk4e/Zs5bx586YijU+72wcxmcBOGWqYAlkwsv5bAG93j/3Sfc5RABuQc32XgBGcDnefK/iwZ/sMZve8rAfrYIsx9aiPAjCv498AWItcWGwnWPt8AixknADwDl3Xt18sySGE0Kampg8Gg8G7XHmsBCYTX8dxSgAgnU5HZwqfAoCqqvT5JgXbti2Ew+GDtm0vdutSkkwmP/rMM898uqWlxQCwzTAMzbZtKIpieXXoFPcKuHX/0PHjx5uLioq2gIWkigHAsqyaWCx2zjRNBIPB4/PmzUvz+jc1NX0sk8lsiEQitwKALMuHvc+prq5+2Puuz8fwtG27HJhEcLrc7Uyy9BdgeqwDzNM4MFUhNwy0CBeep+N1E18yguOmOmwBmwPqHBjRuRqYdaoP/px/ged76LpeDeBvAXzGU/bB1tbWfz98+HBsqlSPhQsXkmg0+tPi4uI3uB7jwOnTpyuHh4e/Xl9fP55fnuNlRXCQGyJagUswoR2lVJo/f/6e/IavKAq3ELFp06b18XhcBYCFCxf+ZiYlQQixjx079r5kMiktWrToLgAfmKqcy3wdMIvzf8FCOve7p/s88X8u0Hxys/zREqa7PQpmxZ5DLgfncTCy8Tt3vwKs0/gqci59AcAmzJ6XUwBmSa/C7ARnBMBDYLkSIQDDyOUH5S/zwHMHgmCdApBLMv6fXbt2LeYFn0M4Zp5lWX+hadq2nTt3/koURTQ1NfXE4/FASUnJ+FT3icVipLOzs7avr+/e+fPnv3HDhg3bZFl+DADS6XQRJ1mxWExtbW3Neq9ta2u70Xuf2eq5adOmIsMw3h0KhT4/XdlEIvHp9vb2q6d6JqU0LEkSstnseW27vr7+N6FQ6Beapn2X33toaOhj/LxhGOX8NyHEyWazf8d38+uST+p4x+o4TnhkZOST/LwbmvvNDK98Kk+2LpTgAMCPkbMkASbPApiHMIAcgSkFy2Hjss9DTHx/GTBlDtgKsPy1d4G1jxAY+f9fsDZigpH7tHueh8QIAEHX9Q1gbvxmMCLHZSEMtmzKUVxE/gX3TDz77LNfbGxsPAvW8ed7EkApLQWAoaGh0HTh02XLlrXx39PJ26ZNm65OpVJ/W1BQ8E5eZtOmTVeNjY19prS09Dq3wyGmaUJRlE5+nUuwRPf3H5qbm98SiUQGhoeH5/Ok+82bN891HCfGveSrV6/+aSAQeJQTdFEUT4bDYZPrVdu2i93tEkLIYUmSIAhCQhTFNK/b6OjobadPn65pbGx8i/vsYnigKMpJt86y+50uuh90HKfU3UbcQ+PArB3/aTBv9xEwb98zAOaDGRd/9Fw7CpbT+Fpd1w8DqMHMZCcEJosBzDwQYxLBcb0zXwPwJL+3rusPAfgWmNHwRrf8z8BIjgY3OqDrurx161YTU2OBux0ES/p/A4AfgRnUH8VkvUAEQcgCUxurc+fOfc/u3btvam5uvhXAf9m2XQsA1dXVj8zU576sCI7jOHPc7dzZyl4IbNtWJUkay2/4siynABS0tLTcPDIy8gFCCCKRiBUMBn86Swfm2LYtAkBnZ+edM5TjAvjfyHX+PJYddUNSQG5NJv7MiK7r7wVwH4A7wIQRYIIcAZuUbJlLoDaBNR6ulJsA7AEQdgkUAcvLeTNmz8spdOuXwewEJwxm5dwM4D90Xb8NuU4t3+rRPNckdF1/JZhlkrVt+3YAO2d51nl45plnTluWJTQ1NVGAddS2bRdls1liGEbZVNc4jrMCAJYuXfrA/v3736pp2ivr6uo+JggC+vr6IoLABqm4Xp2+qe4BAJlM5s3IEdUp0d3dfeDUqVPzW1paTmAaq0QQhCH+2yUWXoITDAaDVjqdlmKxmDwyMvLDYDD4a0LIL9ra2m4IhULXrV69Oh6LxbZns9ktsix3A6gvKirKJhIJb7uhsizvd+85MQpn0aJFJ0zTDOeH3CilBe47Vg0MDCyvrq4+0NHR0QAAhmF8LBaLfYy3DTdMwxHBZExkY1/ASJNhMILBUQRmWRaAKWVOcG7Udf1pnJ9gz88vBxB3n1cOlsPzl2Dt761g3qZvgsl3Eqw9EfcvBjZh2oNgo7I4fgYmq5w03u2Wd9z7/A+eY67OwoULSUFBwbZwOPx3AMCJNQDYtl3pHot6jhUVFBQYY2Njyvj4+Jtisdj21tZWumnTps2WZdUEAoHvdHR0rHLLTgq5bdy4MQTgRkVRth86dOjhsbExuaWl5WG4MhmPxz9x5MiRa9evX8+JU5gQAlEUeVgZjuMUZbPZ1QDQ2dnZNTw8HK6oqBgAgPHxcQUAnnzyyXORSMSuq6sDgG0HDx58vaZpN8HVadlsttk0TXF0dPT+WCz2Ftu2iwAgmUxep2la1LIs2LZd7DjOREhWEISUYRiks7PzC249SvI+peQerwYAy7KiuEhYllXqfj9+jzgwYRz+DVjY804A/wygE2wJkRDYqDsLwIfBEuF3gpHB9bquH3CvAVie2LNg7WK2UE8YLOS1FEBohlSDfA/OFjCD8wbPva8D6xO6kPMwHQVrV+vd+sQBFOq6/gCA66d4Fm8PJQBSYP9Tw61jG5j8p8DaVLNlWRSYmmhLknQUAERR/NOmTZsa4/H4vwFAJpNZkF920nUznXwpYdOmTUW7du36DpBj1U1NTR9NpVLXzLQG0Lp16z4pSVIvHxHlPWdZljI4ONi0bt26T4bD4a38PCHEAYD29vYfzZkz51h1dXV7PB6vwjTJst4ETNM0iSiKaGhoKAcjHFOBx2jfBTZHQBI5l2MBch0/Z+nUs38PmOD+h+d+nOAcBWswD7rHSwBwLwgBc5deqzP3kINc5+F1L84BE9w9YA11pVunCYKj6/o1YOGxe6YQ+hBy3phb3DpLwJRWj+a5BmAeLwrAPHv27LREYiZks9mJzpqHUThhEEUxBQCNjY3f0TTtYVVVt7e2tlLTNJuAXAJtYWHhmCRJeyKRiEkIcUZHR/lolQJMQ3ACgYBDCEnmH1+1atUfI5HI9zVN+7H7rCAwc8jNtu1qz+8ImLKEW4ewqqpGPB6Xzp0713r06NGNkUjkDcuWLfsaACxevPiXiqJsHxwc/P2hQ4detWLFij0AEAqFxnt6euZ4HkMppUUAYJrmRNijq6trEQBomkYBYOPGjdeAyf0IAHR0dNS733UihHb48OEPNzQ0HECOsH3K85x8guP14PwEzGPSouv6ArB5O96SN6JuxFNeBJMPTrR5vT8ORjgEsLbE5Snsut/ng3ljGgD8J9goKCA3ESo3FHaBeYfSYKNfJLB2sMe9br6nLu8H8AXkCM4XwYyJDBhx6n2u4am5c+e+Y/fu3W9samp6GgDKysoG+Ug5T75N8fr16/9ZkqTfdnd3b00mkwoAHDp06Hru+t+xY8efJElCU1PT+HTP2rlzZyIajVqrVq2CYRgiMFkmRVEclGXZURRlu6IodOnSpX9yvSkTBMcwjOqhoaEY33e9eRQAAoGAnUwmRQBYunTp18+dO6dv2LBhDgCoqmoahiEqikIB2KlUSjhw4MCbWlpaHuJEorOz84ba2toDoVDI1jTt2UwmM+EppZQGAGBwcDDkPrcIyHm+KKWye3wBAJim+ZwJztq1a+9RFOWJdDq9BgAymcwi/mncbRGYtyIIJjdfBPPuXA0mf0mwUXz/BaZfNTB9e8At+8/ufRSwcCfghnp0XS8Hk6t84h8C61OWgsn+VWCh13zw1IXlnmOfR85zz3nBXe6xGne/AMyYLQJrp+Ng+XOvxtSLLC90t3xQyXGwnJ3bARiuIS0C+MLZs2f/8+jRowBynu5YLEbS6fQ/CYLw37t27XoYAAghc/fs2bM7k8kQADh9+vSKsrKyafMmXzYzGadSqYkO3bbtOQDQ2dn58fb29ok1gNatW/e55ubmN3tnnDxx4sSH2tra7plq1k3LspS+vr6C/fv3f9x73nEcBQBqamreLwiCEQgEjsuybPCGlA/uKk4kEtXBYNAKBAK2bdtLZnidOXn7KnIhpChy88jkExyOD+btB93rvgumyDkjbwNrKBRMaX8BrFG83j0vAucRj36w9XfeC9Z4fu/WdxS5juVWsE5sqjyFMBjBeYu7f5N7zNuwOLweHIBZEz8AMG6aZjmeI66++uoCgJENVVW3S5JEASCVSt3mFpGvvvrqOfv37397W1vbjw3D2LJ69ertu3btegAAxsbGWgBgcHCw0DCMayVJsiORyDDAOnyehzIVSktL++Px+Nu9sheLxSLt7e2vbG9vv5/Ll23bCjBzyM00zQmCYxjG673nKKUBQRBsRVHosWPHNgLAggULfmtZVknuEmOL4zgUAARBGAeASCTSzsNKAJNxx3GKNE2j2WzWax3zLQWAnTt3/r6tre3H2Wz2Gl5GVVV7+fLlX+P7VVVV+3jn6Ca1e5H/zbzj6a8Hk4EDYHlmbwLQ4EnwVZELwwLMnX4ATJY1TCZPQbAOwJvUWQPWGQyDySQPO3EMulv+vXvcthAHy6cBgAb3WJfnuj732vxw2+fBCNnTAK7SdZ3ouv41XddfdyGzIEuSdBgABEHoAZhnzZNQPAcADh48+Nqnn376P4eGhh7o7u6eU1xczI0J8JFHAJu2wLvvOM4EAeDbZcuWfUlRlO3pdFoAJsukbdslmUxGABA0TRPHjx//C1EUHUqprCgKFQQB+/fv/6eenp4SIDcQI51OR926T7yvIAjGyZMnVzz77LNfBYCxsTHFsixRVVXbNM1KXk5RlO0uoUd1dfUuWZb3K4piiaI4ZpqmtmHDhnfHYjHC83c8dS1wn1novmsEACzLmg8AyWSygL/z5s2bV+b3EfmIxWLyvn373tve3v4j0zQLXWKXbGlpudlxHG6IvgI57zg3ZB8D06lBMIITB5Dw6FcJTM9zcgMwr88n3d9Bt2yve6+/1XW9Rtf1Jld+wmCj/PgzveTfi7S7HfYcG/DUg4/GGnKPcY/PfOQ8MbvBCA7P++TTmHjxCjBDeZW7P+LeTwGguHVWANy9e/fuiYu4LozH43ft3r37y6Ojoz/h5xzHmcvJTTQaNTRNs2YyBl82BMfb4XGXZEFBQR+Qszz27Nnzr/v27ft+Npv1khVh0aJFv+Vlrrrqqi81NTV9LBaLEcuyJACIRCKm9yPyYZCyLD/uOE5YkqQhURQNb/zbC+5RSiaTBalUSpIkyeZWuK7r79N1/d15Co4TnPeCNQTD3Q5gsgeHN6b8zvC7nt/9yHlwTOQSIQGWG7AWzJI4C5Z/44C53YHp13zqAvAPYJaAAUa4vCEqA8CjAD7vaXzQdf0usJEvCeRmggVyRC0/bswV1W90Xb/HvfdOAGnLsiaRwLq6ut81Nze/bSbFZJrm1ZIkTQyh5i5+27bDqqrCcRzZtu2VAFBSUnJ2586dPzlx4sTr+PUDAwPzCSEIh8OGLMuHRFG0ZVnOAICqqhZXoF6IIvuEiqKMdXZ2XuMlyqZpbgKAZcuWTUwSZlnWrLM0m6ZZsWrVqt8Hg0FHluUnvec4wdE0zaKUghACSZL6h4eHryWE4ODBgzfv3bv3Qdu2SwBgfHy8DmChumg0OhHqsixLpZRGQ6FQJpVKyfy78vfxkqElS5bcL8syV6yor6+/PRqN3rlixYqnVVWlmUym3NM5pjEZU3pwXMuOy/mbkRvldwA5OYl6fo+Cudkb3LJFYDkvnwcbjVcF1g66Pff5DFhbOIpc5+HtHDmx5p4ZyZVlr+eDeze9nrt2MKs1f/KjQbeeEhh5awCzgO/DBUxV7zjOIgCwbbsGAAzDmKhrfnuAS9RCoVDfypUrdwBAZWXlFoB5LimlE/vuPSc6Fk7URVHs5/+3QCAwScfYts2T7BsBoLCwMKUoiq1p2ra1a9feWllZ2ZtXXgKAdDqtBAIBaprmRN8zPDx8AwDwjgsAFi9evEtRlEw8Hp/wilFKq3hblWV5BECBKIq2IAij6XS6YPfu3V/PZDLvsW17EonmXh932PrEfiaTucZ9Ps9RwpNPPnn4wIED359pmQn+f1iyZMl3CSFOJBLJHjt2bP3u3bt/cuLEiUa32H1guvYYmEEIAK8BMwr/EYwoxMHSCvi3EMDCQk8iF3ZWwIiCgckh1iiAL4IOPhsAACAASURBVIPJ2qNg8uMl8IcBXDMNcS4Ak8Wgrutc33iN8wV5x6JuXavBSNM59/5p5LwzUxn3FQD+5DnH66K4fyIAZ+vWrXY8Hv8/TdNsIEfEM5nMSgDgXm0gR+Td83IqlZIwQ77RFUNwCCGvJoQcJYR0EEL+9blez8MLAIs9A4Cmaf0AkE6n37Fw4UICAJZlkUwmszEWi5HNmzfPzWazkiiKQ11dXVi7du2X9+7de+fBgwc/ZRjGFsuyRAAQBMHJs154clqBaZohQRAGRVHMeOPfLS0ttzQ3N98Si8UIpZRn/kvFxcUJTdMSqVTqerfT+ApYfN6r4HguSA2Y61sB6wj6MbUHJ1+IvQr4HHIEZxeYRVCB3BBsgCnp7q1btxpu+Ttm+NQAs3q5m7MMjJBxgrMQTKBtMOX93553eweYi7YEuTAVwBpmFudn/nNFVQUWrit3y2Vs256UL3Po0KFr29ravj2VYmppabmpuLg4nUqlXuM4DizLIrFYTLUsC8Fg0Dl16lQsEokkbduWbNteDgC9vb3VAJBMJiUAKC4uTieTSamsrCxOCKEAwqIoWoQQEwAkSXIcx4nGYjHiXQeKezyCweDhioqK016izENfkiSdfeKJJ5ympqaP8OTgmYhaNpudQymVJUmyCSGThotTSoOCINiSJDkAUFZWNi7L8pmRkZGSOXPmjAOsDViWFXHfc457zwo3eR4AkE6nNdu2o7IsG5lMhvDvyt8nDwaAoCAI0DSNcgJZXl6+YeXKld/r7++vaGpq+kDeO03klOXdi3s9FoBZocfAiEgEmPAmckV/G3LW4VawcNYBMPleACZ/RWB6bptbdgyMnHMP6kfB5oYS3ckuvQSHJyPPc++/AUyW+WKyPKwFMNmlYHI9jqkJTpn7/KfBRtAccK+bSOyfCbZt85DKYkVRwOdfWr9+/QdOnjz5bl5OEAR0dnZuBABJktLFxcU3CoLgHfEGABgcHPwQv4YQAkLIQ+75Qvc5EyEMWZZt7/+Pk4RkMvkWd1902wV27ty5TZZlb24UDMNQACCdTgvhcDhtmjlHWXd39zJJyjlv169f/w/nzp1bJ4oi7evrm+g4LctqNE0zqCiKZVlW0HGcqCiKJiFkNJVKqQCQSCSutSxrUod36NChawgh9Pjx47vdMitWrVrVKghCfygUsiKRiKEoyvbNmzfzxNWds4SIlwBAX1/fG5PJZEUwGBwHmBdsyZIl3JPxIJj+egfO18+vQG5R4ghYSJTLyt+DGYG8LRaDEYHHAfR7CAmQI05BMBlXkCPaY2Cen+lG+/W613Ed6yXIze52haf8WbB0hjIwcnQWjODw66YiOLVghOs17r6X4Khgo8kMAFiwYMGrGxsbbyeEYOHChUEAGB0dXQ8AfX19q/kNLcuacGRUVlaeDAaDVjKZ/Lfp9OUVQXAIISLYrLzXgX2UWwkhtc/lHkVFRbfw3+l0uiYWixHHcWQAOHz48NfLy8vfBTAh3L9///sMw9jy5JNPnstkMiSVStUFAoHWffv2vR8AAoFAtqenZ7vXyvDCM5FVgWmaAVEU+0RRTHOC09zc/JZdu3Y92NbW9qOxsbH7Dh069AcAyGazkqZpSVEUnePHj98Sj8fvcpVNB4BHXZd1M3IEZzmYdTkIRioGwBRzfg5OPjHwdhqD7r4IRkCOgCUYe131IwCSLts/C0aE/sRP6rp+NM8SCCHnNeKjsFaCxWdvA7N4S8Dk6+/B4sYyWGNOAjiEySuOK2CdwnQEB2AJdmn3HdKU0tJoNDopBLB8+fJv9/T0bN+4cePNy5Yt27t8+fL9CxcuJIlE4h0jIyOabdslRUVFGcdxSEdHx2nHcZBOp4VkMiklEomgYRgRy7IWA0A0Gp0gzGVlZeOpVEoDgEgkctqyLMm27ULHcQS4HbIgCDalNDo+Pn7frl27fsQJgSzLDgC46/NMGo2UzWZXAYBpmvNs20ZbW9un0+m0BACZTGYSydy0adMqTpzGxsYqTp06FQNATNNcuWTJkmOe/IKAIAgW904FAoHRdDq92bZtkkwmQ6qq0kgkkiWE2ABrD6WlpYn+/v7FkiRlACAYDNpjY2NqJpNZEwgEhgkhyGaztWvXrr2X/9+9HpyRkZHrHccJzZ07d6SxsfFW3jm0trbSQCDwsGmaQltb25eKior+3fNKPNE4AkwkFAM5Rb8cjNw8CiZj3tFpnNRFwToQABjfunUrXyLhMeQ8RYuRc7lbYPJ3HxjRB5hc3QvWIWzE5KGz3qH4nwLwWjAiwmX3RuSIySfB2tQ7wNpsPc4PUZWBeUhHAKhuXSfyl3RdX+PqgApd1zfnW9+WZc0DAMMwqsLhsJHJZEQA2LNnz108DwwA5s+f38VDiKIopmRZHnVPBWOxWIhSCkmScPz48bUA0NjYeLeqqlQUxXlAzoPT3t7+zvXr178bYETfazxwgnzs2LG3AkAqlVLi8bjCy6iqOml+l0wmM8FggsHgKABcddVVn1i0aNExwzCE6urqA4WFhQYABAKB+2pra+8oKio66J0gM5FI3JLJZApTqZSUzWarKKURURQtQRCG0+k0AYCOjo4bs9nslMOfz507VwAAp06dWtDe3n51JpNZF4lEUoIgoLW1lQ4MDPzQLSq4ydjrmpub/z4vrCzu3bv3twCb8buvr6+wpKSE54cATIe1g+npEIAdmDoP5jSYHIXBvDmHweTgagCfQ468VIORkbNgbcVLRBa62zhYH5JCznA4DJbvMhVx5gSnGjlCX+ORN258mp7yZ8HI1iH3/Rz3edyD85Cu6w+68nuL24+FAPyVew2Qy/lVwPqLR+C299bWVrpjx45tsixPEOxsNhvUNM1JJBJSVVVVHwCkUqm/4i9RWFj4cCgUSrW3t390Oo/bBREcQkgNIeSzhJBfEkIecbefJYTUzH71BWE9gA5K6QlKqQGWXPg3s1wzCa2trbS0tDQFAMeOHWs8c+bMEZ7PsGTJkvtFUTzkLe916R4/fnxdZ2fnKwCgoKAgOz4+rlVUVGwxDGaEJBIJdf369e9dtWrVr5qamj5omqbounkjpmmqoiieEwQh7ThO2C1/CwAsWLDgid7e3ptHR0f5TLeQJCkbCAT6SktL+/bu3fv+Rx99lI+EKQSbAXMnmOXJ8RkwlrscTKjeADayA2BxzErkEoU58q3ih8AEqQEsHNUMRiQBlpT8arDcmwawuGwYLITEPWnLkct94Er7STAB/zVyychd7r6E3CSDfLZlngNSBNaAvB6cFBgBe1+eUvcSHE6AsgDSjuOUKopibty4kTcwKIpyIBgMPr5r166fdHR0NB4/fryhpKTkLkmSzgJAIpFoDAQC447jYHR0tBjIWbPLli37qSAIlmVZ80VRRCqV0ri3Yv78+f+xcOHCJwFAFMWMYRji+Pj4a0dGRsKO44T4fUZHR9/p1nPCWlYUxQqFQo5t24XZbDYMAPX19b9YunTpsVQqtRIA0ul0M8AWKgQAWZapKIp8tmoAwI4dO9r279//w2w2uyWRSGirVq36gCzLZldX12dPnDixLJ1O3+7WQ3MJjgAAkiQl+/v7NxYXFw/V1dXdXltb+xVRFKllWQUFBQUWAKRSqeCyZcvuCQaDvQBQW1v7r4qiUEmS+kVRTGuaRvfu3fuJAwcOvCdv+DcKCgqM3t7eBdlstkkURWvHjh2TZjxWVXX73LlzBzdu3EgaGho+4XmlZ91tsScWD+TCosvBZHEYTOYLgYnZj78JRiLuR05p8vtwLw+3pFchp+SXAUi55/nw6FqwTigNlt/lDTNWIyfvDR4CxQnOnzx5C8+AWarbwWT0bTifsK8AG5FY4dZXAGur88Ha9kNgpOkMmPKfZH3btl0BsOH8iqKkbdtGc3Pz2/JnyS4sLPw/0zR5SDHR2tpKFUWhjuNUmKa5XFEUR9M0W5IkyLIMVVV3qapqO45T0dLSEshkMlsAlpB/8ODB+wCgqKgo7fVqWJYVjEQi9vz58/e7ZUlZWdnEGmaiKE4k1IuiCMMwEIlEbABQVbUXAARBSBQUFOwAgEAg0KOqahbIdXaaph3zvtfx48dvtixLLi8vH3INyrAoioYgCDxXCpWVlafzvjl4rl0+UqnUAkVRxh3HETZu3HjdwMBALSEEjuNosViM7Nix4+l9+/bdm0fsrvaG0lyy2LV27dovEELQ1dVVA+YFvxYskdZGroOf9HgwHRgBm+vmEHIh/ncD+Km73wxGRuJgBPwbnnusd7c8fJUAIzgmWLtwPMO+RV3Xf+62kQIwGf1rML0PMLlrcGf1XgXWfrhXpgCMvEfBPERfB8uhlJAjOBVgI2OvAvNe/Q+Ycf0Z912B81MrgLyQtSiKlFIa2bRpU/PQ0JBWXl7eBQBVVVVvqqqqGuAecwCQZbkrEol0lJWVnfLmk3kxK8EhhNwK1ulWgbnJ/gvMQpoHYAch5ObZ7nEBmIfJIZOzmDztNK/LuwghzxBCnkHuw05g6dKl7wwEAg4AnDhxYjlf5VkUxVFK6aThZAcPHvyqd19VVUuWZWpZlqSqqiMIwv/xzs8wDOzZs+ee9vb21zz77LP/YZqmqGma4zhOxDRNWRCEXlEUkwcPHrxhw4YN7+YNLhgMPpZKpSblGAiCkJZleTibzUbcRDz09vbyMjyhbg5yivUmMGETwZKAj4DlJACsU+gGU6ZeeAkOV5Kc2RtgAvY/7v6PwfIQrgPrCIaRSybzjsR6xL1vGsxVX+k+95vu/gGwBhkHaxjclcitKa/lkXQbPkcKzDr4CCYrdW+4gII1kAwYwSkSRdHyWKdwHKfIMIwS/n8Lh8PW0NDQnXwyrjNnzix0y8EwDLGhoeEHAKBpmqNp2tOUUtEwjIpQKGSlUimhuLg4BQCyLJ8tLi7eCgChUOgPhmEgnU7Pra6u3i9J0iAADA4OBo8cObLRNM0VwOSEzJUrV34xGAz+Op1Oh5qbm+84ffr09Z2dnct4QqJt23x5A62qqup0IBCwstnsRJirrKwsAQCVlZXtY2NjbyeE0EAg8DVRFO1kMhl032nRxo0brxsbG3s1IWTCgyNJUnxgYCA0MjJSKggCgsHgLyzLkrLZbCgQCCQBoK6u7r2RSORO/i2DweD3bdsmlNKwKIoZWZZtACgsLMxwz4BhGIIkSchkMnJRUVFckqQuURTPmw/D9eIMhUKhSV4fMHe16crFR8CUN5BLaLwKzHXfB0ZGKlwZuB+MkNtgMsl12AfyZKcLLEfhBjBlnAbLN+Md712YPLfSANiQ3fxE93swmYwDOQXNXfjYunUr9RCgb4IRlnyCY4NZ5k+AtZEC9ztc755/CGxkYTa/HitWrNj77LPPvhYABgcHqx3HEQKBgN3W1vYtXqa8vHwkFAo5hmFMzGgrCEIKABRFcRzHKR8fH/+UaZqCKIq2ZVlYs2bNv6qqul2WZctxnLnt7e3je/fu/bdwOGwVFRVlysrKzgSDQRsAzZvNPRAKhRKcSANAMBgc4GVEUYx7jnNiw71wDgCYplkTCoU+AQCSJJ3hXkUOkicwCxYs2EcpJaFQ6KzjOJornwaldNB9VxBCLO5hBwBZlrFmzZr3YQqcPXt2gSAITjqdlnbu3PnQyMiIVlBQkJUkaSyVSv0zAJSVlZ1LJBKvb2lpuW7dunWfTKfT1/JnVVZWDgFAR0fHh0RR7BQEAQsXLuwG09HjyOncqdbj4nktnOAkkSP5rwcz8veCyWYaTAbfjly4B2DeTYDpz/lg7eN/wYjPPuQiAQAbCfhasDy1JWCE6nHkDIGdYDp8DMwLeQ7AfA8h4m076V53E1jb9Op1C7l+/GdgbbANOeM2P/IATPbMQpIkh1IaPXLkyKMAeK4VHMeZHwgE+k3TrAiFQtwr3inLcqK3t3ehN5/Miwvx4HwWwA2U0jdRSr9EKf0OpfQuSumbwVjfFy7gHrNhqvjZeaybUvotSuk6Suk65EY4TEBV1Qdramq+CgCFhYWmIAiGpmnUsqz5tm3PC4fDEw2ouLjYm0EO0zSlqqqqk7W1tR8lhMA0zTd4z4fDYRNg60k5jkMURTEppcWpVEoyTbOWd6rt7e33GIaxEpg86VYoFLIB5gGQZXmov78/XF9fP3LrrbeioqKCz3XDk39r4cZSt27dut/zrlkwIeQjOLigeP+PFljjOQNGFEvAGsi17rU73HJ8WN2Qq5i5ch4CayzJvNFTRWCNIwGWQ/B6ANvzFDu3QPhQQiBHUrwNoSrPU+N9Tv6yDL8HU4iLwDqMDIAMJzitra0T/1PHcYps255IxFMUxerq6qJ8rgpZlh1N0wbcsmR0dPStS5YsOeL+v2scx5HS6fQyN3EN8Xg8AACmaS6hlD7l3uOsJEkYGRmZ29vbu5qHJVevXs2XBuEjUfhQVEHTtP8VBKFjZGRE3bt37w/D4fCYe04JBoNOPB5fDLD8hEAgcFZRFPPIkSMfNgxjSywWEwcGBkIA0Nvbu/Lw4cOvsiyLGIaxRRAEO5vN8jyx4Z07dz7U0dGxyrZtlc9rQgjJAMCSJUt+0dPTs10QhN5MJiOOjIxEh4aGogAQCAS+2draSkVRHAKAU6dODdu2Ddu2CwRBmLDEVVVNi6I48b8KBoPWwoULd8uynKaUBi3LkqeKhUuSlMpmJ/QYH1nyONhQawJm5T2SJwcyGAl5EoyYdIMNM13onh9ETu7/A0zxe2Xnt2CeH7jH/wCWlxN2ZW8f2BQMANNhPHSUPzrvTrBcAe+9uXE0Zd7M1q1bu916L887VQU2EssAk2OeQMvb/wAYaUqCtdkufuHIyMgygCUIj42NKUNDQ5FAIJCZO3fuxMR6RUVFe1avXn1bYWHhpz3PdACAE5i+vr6rZVmmkiRZABAMBu9ubW2lkiRl0+n05vHxcUlRFEdRFCsajQ6Pjo5WGoYhWpYlbd68uXrdunWfdYfvhoaHh6Nnz56t5w+SJGmiIxcEYYLgqKpqAMDQ0FAQAERR5CMPW5944okzc+fOHT9x4sTbOFniMhQMBu/xfjxCiGlZliTLcr/jOJrjOCFBELK2bTe5z7FN0wzy3EkAME0TAwMD93rq5b0fgsHgUe6pB4BoNDrgOE6Q6/BsNhs5ePDgG/ft2/ebPXv2fHxsbOx6ACgtLY2bpqkCQG1t7R39/f3foZTCMIwiMHIwBzlPXwbnYww5grMazJuiAkzne3RxDVji8VRLs3AyQcEmzauA62kEy9f0Ehz+v7kHTN4IWH/C9bPheUbcvXcjmNFQi9zIWoXrfEzOwQGYEc5l+R+Qm5aBH5uK4EzK1RIEwaGURgOBQELTNBoIBPYLggBBEBKCICQTiURVIBDIAIBlWdXd3d2xtWvX3jpdztSFEJw5YExyKuzDFJ6Ui8BZTJ5Dogo5RXjBaG1tpeFw+D8BQNO0lOM4cigUyiQSiXrDMOZpmmZMd202m4Xrjv+Z4zjk8OHD9wFMoaiqSsfHx2UAEEXRsG2bKIqSHRkZuS0UChlHjx69e2xsrBYAli5d+h0+9Hbfvn3/FI/HJYDl9QDMohJFsQ8AbNs+U15ePuIxVFa62wwmf1cvwelFjhFPNR33CBjBEcAY/1awkRvcdX/SLcddueV5ZGMYTPhTOB8xuNPUexqhFxmwBuN180/lwfkyJlvbkzpFXdfbdF3/BFiDeBwsXyMKFp/OguXgFAqCMCnHwbbtaDwen2jUhmHIAGCaZnFpaWk6k8kIkiQlAebFqays3FJVVVW7Zs2a21RVfcJxHNFxHKGqquo0AFRXV+8vKyuLHz9+/CNwZ6G1LGu+JElOKpUSV6xY8TlZlnsBIBgMflnTNCpJUrdbrrylpeVmy7IEQsg4H/lSWFiYCIfDZwCgu7t7sSzLdn9//4THzXGcYCQSOVddXf2YoijbDcOYGH6dTqdFgM1/oijKdm6FRyIR27KsiXCxoigjVVVVB92whKJpmnPmzJnXVFZWbhEEoTubzRJN06za2trvuRY/H13TD7DRNoqiwDCMOaIopniuRyqVCvNE0kAgYNXW1t4RjUZ/Ytu2lk6n1w4MDMyZKhYuCELC7UT6wJLqu8BkaE9e0TiABbqu7wfr6HeB6QENjHjsQW71bgE5st45hTx+A27SsXt8AEyvbEFuaHcPmDz9KxiBeiUYiQKYm30MU8v6WbB2NNPIp6c9v//g/gmYPESXh5bne7YlYO32NHIeXaiqmlQUhdbV1d0NAJFIJBuNRnuGhoYW8ZFtkiRl3DwGHv4D3LYliqIxPj7+1pGRkdDq1avfZtu2AABdXV0GAMiybHR0dExMIChJkq2q6sD4+LhUXV19BAB6enoe27Nnz0ey2eyWZDKpLF++/JdcJt3rJjouQRAmyI6qqikAWLly5SNuGxl1yyTc44WrVq26Y968eQ9omkY9+Wv7+LvJsoyjR482j4+PS5Ikddu2rXCCo2naD+rr638BgGQymSjPnVyxYsUeTdNoZWXllnnz5g0CTG55vSzLgqIok3KFVFUdGxoaqjtw4MDbAcAwDBXIzZ81MjKyRFVVmkqlgnPmzNkVDAYdNzRFNU2zOzo6rnIch6/3501Gz0ede54nEX8e53sP+bQgPwHLRwNYfg73KPL+jHvyvUs+9IO1Ja5buYzxugyCEXCeCqIhl3NWCtb2+sFCr0uQm7vKG2lJY3K/LSCXoAyw9jEfubSE/MEx3ncAwKYTcBwnLAiCtWzZsl+NjY29c8OGDbeoqrqdUqr29fWVEEJobW3tH48ePfq52traLflhcS8uhOA8DOB7hJBJ87a4+992zz9fPA1gGSFkESFEAXPT/upibvTYY491L1my5PjQ0FBBNpsNq6qaOXPmTM34+PgNY2NjEyGPVCp13pwljuMohJC4bdtEVVWjpqbm942NjbfU1NR8E2DrtViWFXFHANDjx4+vTqfT8uLFi+8pKSl5xL1HhC946AWf98G27bCbcIqTJ0/WHT58+MeeYipYsthxTE4C9hKcHuRirxVTfIJhsPwXFYyAfgrMBc6tzS53WwJmGdyPyYqae7Y4wXmL59w7wXIfphvxkQEjMl6h5d98jefYG/Pu4W3YZ8BiwB9x/7JgjZ+vlbUAjOBE80MimUymbnx8fCJ3hnsxstlsNBAITFKqwWDQ5tPD79ixY5sgCCnHcUTDMKKRSGS/W+bZmpqaglWrVt2hKMr25ubmWzo6Ou4UBMFxHAeCIMSj0eh/B4NBx3GcFsdxCJ/Rt7+//5e7du36iWmahBAS1zTtRw0NDT8YGxsLjYyMLAcY2YlGo/2O44CPItE07ZCmad0AI+zxePy9oihOnHffS3PfxQaAgoKCwUQisUmWWd8viqJZUVHReNVVV91aUFBwt6IozpIlS+5x3zcJAKlUSg4EAg+vXr36Nm79RKPR97S0tNziTt5mZ7PZItM0iwzDIPwa/k2TyaTkzlw7MDQ0FO3p6WlatGjRU1NZUqIoxl2CwxchfB2mliFu6TaAWY8RMFLkgM2q7dU1Dch5W86zkPM8iwBLugQYweLPfh+YQt4OFlK4zr2nBaZ/YtPU84D7LjONfPIahYXITfHA6zoC5hEFGAnhS51Uuu/ZAw/BEQTBXr58+W8KCgruBADHcURN086MjY3JFRUV59wyKQB47LHHJiZ+dO8NQgiOHz9+veM4RBTFdGVl5eOEEJSUlNwFsNFWiURCmjdv3qBhGEQURUtRlLMAEAgEOl1PZBcAiKJ4QBRFWlJSclN5efnEXCuapvG1viYRHEVRkgAQCoVe3djYeGswGPydW6c4kMu5iUaj78tLUrej0ajh3sPmXnJKadglOEFRFDOtra20uLj4ppUrV95HKSVcXqPR6LfXrFlzq6Io2xcuXFgHYGIJEz5AgefQcciyPJjNZmUAkwxbACgsLDSGh4cDK1aseKCuru72ZDJ5TUNDw0T7KS0tPfPzn/98Xltb2zL3Ej4jfD7B4bkqrwSTt8Vg88rkD3fOgun4duQ8MLuRG9jB9awK1pf/I3IyWQTm9ea6nY8I1MBG5n4ALBH+Y2DyHgDgzZGzwcgJJ7B8Xiuv4Su7z/C+3/fAJvw7C0bg0mCeoTFM7cGZlEAmiqJNKY1QSiVN0/Z0dXVRTmCCweBuQRCgqmpizpw5r+J6GTPgQggOz+9oJ4QkCSE9hJAEWAyP4Pz8j+cMSqkF5tL6Pdzsb0rpVIlZF4SioqIfFBcXxwkhdjgc7iouLh4RRTG+aNGifQCgKArGxsbkZcuWHdA0zeF5O5qmnSaEjFqWhVQqFSgpKfnn3bt3bwsGg98BgEgkkh4aGip3czsKABb2UFV1V3Fx8a2VlZUjkiT12LYdUpTc/3DlypVPZTIZBQBUVT1BCOkHgNra2veuWLHi624x/o/eA0ZwvF4NzswXgyk+CczCm8ojJYAlUwYBZPIV/datW0fBiMMPwAT79ZisqDmZ4qGJBzznDgA4PMMMrBmwButVsB/Wdf1N8DD7rVu3Pu3eg09H7iWbPPeKv/N17pYvy3AQLEQVFQTBACaN6LEppVi6dOkeALAsSwCAdDpd0NfXV+4eiwLs/+Zl/YSQpG3bQjabDSiKchgARFE8x5Vva2srVVV1e21t7R3cG6coyoOBQODehoaG2xzH+a5hGBPzgxw/frwRYNYwIWSstbWVhkKh7xqGQXjIybIsJRgM9gPMIgcASZKGFEXpSiQSK92RgGp1dfWxxYsX7waA+fPnn0ulUgE3RGUCgKqqI11dXQ18MjVCiMHrHQgEtq9ateqOSCRyp/d9FyxYcExV1e1e68f7rrIsW8lksvD06dPr+De2LAt89llCCHp6eraLothnGAYZHx+X+Voy+ZAkKeGGqHZOQTy88HrkBDAL0gHz4r0Ok0M+P0YuVDs5y3ZqcJk84GkL3rqMgRGMb4Ep5fR09ZzlHTi8IfRGsCRQL8GxwFYw5/foBwtVpJDz1DZzC9y2bTUQCOzyLPAriaI4DgChnogFJQAAIABJREFUUKgbAAgh53lds9lsZSwWI6qqjs2dO7enuLg4oSjK9mQy+erGxsa7h4aG7gRyScFlZWW/BABBEKxgMPgHSZJw4sSJ60zTFCRJigPAyMjIV3kb0DRtIhSVSqXqPdMjTBAfHjIKhULWjh07tkmSdMqtr3ck5ST548fmzZv3sDuKb8JTpGnaI5ZlyY7jBARBSPNrg8HgL+PxeECSJBoOh+3Dhw/fy6cs4N7JhQsXtrt1SQLAyZMnb/LWQZblPj6SMRAImJxUKYqCwsLCUwAQDAa/tXPnzm3ezhcACgsL/+g4DhzH4e2gBoxg5Ovp/wbLh/k+mOzyJV4EYNKIwiwYURlCTh+uRm4CP/4cFcwYeNojk0+413G55wNXloDlX/IpAgz3fkGw4etc7+dPFsvbmHdutDa3zvkz8h8ACxlfC9afAax9qe5SQl5nyaQohDsaNWTbtpQ/87ssy12maUKW5cxUsjIVZiU4lNIRSumtYB96E3LrVhRTSm+jlE43W+JzAqX0IUrpckrpEkrpZ2a/YnqIojhKCKEuCzzpOI6czWbLI5HIHwFA0zSbUopIJPLHNWvW3FZfX/8W97pka2trllKKTCZDzpw50w4AjuMs1TTNSSaTgXg8LkWj0ZGSkpIxgE1qxqf01zRtmFJaZNt2wOsKnTt3bkt9ff3tABsSzycilCRpxJOM9zMwIZLBBC4ATAh7G5gwfwO5uOppTA77fBuMdc8FC0kpmDr2C7Ccg9eDKft8Rc0Fbi4wEdZ6H5jgV2Hy7Jf54IsOjnqOtYCRqdgU5e92t17L/DCY8ueuz1owJcHvyZOMI7xD5QQ1nU4vjkQiRnFx8Rej0ahlmibceYhITU3N9wBA07ROgK3G7K0IISThOI6QSqVkRVH2ARNDuyfAGxWfL0aSpH5+7OmnnzYBoK2tjSeMQhAE2LYNQsg4MHmJBYANrVUU5QzARuoBbAp8Sqna09NTYRjGlmQyuVzTtO5gMNgGAAsWLGipr6+/XVGU7YQQCwAKCgp+V1xcPMaTgQ3DmJiZdTpFIMvyTP9HSJJkJpNJdenSpb8AAEVRaGVlZR8ArFmz5huBQMCurKzcQgjpc+uN7u7ujVOFqBRFMQzDmG0BQiC3anw7WEf/Q7D/PU+Q/K2nrLdzzJ8scCpwRX9e7p6Lcff5re6z8yckfK7whgtEsE6gwHPfHjDPNU/y7AXTx0HkrO73Hzp06E0bNmx4v2maiiAIwwCTK8MwEA6H/wXAxAKX3nypNWvWfFsQBJw9e3aNYRhb3PXz5GAwmGhtbaVdXV10z549H+jq6uJJwaMAoKrqL919MxAIfGXdunW31NbWfhAA4flt7e3trxofH9e8JLu2tvaR/v7+JZ75kkYAFlrq7e2tBAA+waogCCcBTLSLmVBSUvKaDRs23FJXV/cVj4dyzLZtyUtw3Pv1ZrNZEo1G03V1dbfX1dXd7p2yAABCodABADBNUwaAVatW3e59niRJZy3L4s+ZIM6CIFBN0/rc97gFUyAUCn1H0zTU19fz3K7fIpe4y5FGLuzpgMljNRjBfQBMz/H/Pycww2DG/6/BRtCecO/JUwEU5JKWAUzo7WcBPKbr+kfBEvbPgnlRipEzavmCx0vB2gBfxoeHrh4B62t4nbzeFz7nTv7/UYDbtyBHmFJgnp57wIgPR9ibIiGKokUpDTuOI7qOlAl41qO64LZ5wfPgUEpTlNL9lNIn3O1UORpXBARBGLEsS7ZtW1QU5Vgmkwkkk8kix3E0AJBl2QTYdOOqqm5/6qmnfggAlNJJLkKema2q6vY1a9bctnLlyq8AwPDwcCnP1Pd2HqIopmzbLrBtWxNFcSL5tbW1le7cuXMbAFiWVRQKhT7LQwFgoaJesETL28ASK/8fGMsfBBOsR8E8IDciRwqGMDmJ7CkA68ASKx0wpTrlysyzWKCcbHg9aPeAxYHnY7J3Jh8Z932mI72TLG33+beB5Vv8i3s4BBZGAFiCOw+vcYKTdRwn7U6waABsBBwAjI2NzZFl2ejt7d2+atWqOwRBAKW02LZtKRQK8ZmCywCWzOatCyEkaZqmkMlkiCAIT7tlzk71ErIs/3/23js8juM+H39n23VUkgDYCVYBIAFWAARjnRJ3Oy5JTMuSu+P6VVyU2E7c6HX7ucWWS2zLTtwkOxbzJO6O3GLIhRQpVrFK7CRAAiB6ubL198fM3M0t7oADCDZ43+fBs4fbNnv7mc+882mTkmUZ3pXDxz2s4/CqyXy2+z1eVRagcV+app0GgNra2idYO0ZCodCvSkpKUo7jkAsXLiy+ePHiM3jJekVRLnCZ40GOiqLssywrwLNOLl++vGKiSqz19fW/uXz58qaJjlFVNZ1Op0kkEvn5mjVrdsmy7JaUlBxm+x7jJIsvG7Bu3bp/K2QyDgaDaTGQcwLYoAHF50FdlZyE86BGkTjfg6zSXV3EUgd9nq0XopJO4toJDidSrwR9lhJQ2eaTjmHQAeq37P8DwvYwKNH/0c9//vP/2Lt37+fT6XSQr5m2fv36T7CEiY319fW/Pn/+/N8AVIb5zUtLS9+8ZcuWu7kLUpblRDKZjCmKkve5AoHAJQBIpVLPBAAuW7t3734kFAr9j+M4xHGcyNy5c0cBYO7cuf3s/afZ/88UCYUkSX2apoERpG/zSQjbdwkADMO4a6KClkBWd5aWlr5r+fLlfwDopDudTquWZQVN06zg13Ach7vUhnbv3v3I7t27xxF727aj7Pc5H4lEHE+iFmRZ5vEz0DQtZ4xLJpPP2LBhwwP9/f3vyNdWVVUPplIpJBIJPq4+xbYHkCU5W5FrMedyNwQaDnCXsJ/rF75kwotBLZmfAp0wfhs0oFmFh+AwHAd1IX0IuUUAv4xssD5A9XUUlADxex4Wti8W/s9HcLwLXvIq3UDWpSUqAHFyVSEcC0mSLOaCHGfB4UuVpFKpcl64dzLcEoX+ZhqEkH5WjE1WVfXw8PCwnEgktDNnzrwFABRFMQDgzJkzr/SsMZUpEMVjNIBsJwuHwz8CgJUrV/5QXEuFQ1GUUdu2Sy3LCngHUA7DMOYAOcToMNggvmPHjkdAAydfCuAdoGbFwwIh4aTkblDLiBjX8n62PQgq7KmpLubHwNcWyTwfu85J0I400cxfjC/Ih3wzth+AxjP8K7JKnxe5ule4P1cQqR/+8If1v/3tb2PJZHLO0qVLSW1t7b8qioLBwUFtaGgoUlNTs33Xrl2PBAIB13XduYZhyJIk8c4oAfktOHzNHcuytgKALMvjamoANCtIVdUJf9uSkhITyM3aYFa+pwE6s2XXOgUAsVjsUQAwDKNJkqRLjuPIiURiuyzLWLVq1ZfYqt856eehUKgXAFKp1LOGh4dDtm2TTZs2fUiMY8iHOXPmPHsy/7Usyzwo/umqqqptjY2N98RisW9GIhFbluWMVYgQ0s+e51Ihk3EgEDCGh4cnrM7MD2VEpg+0sraXhHMZuBfZInvfAO0vky11MBnB4QG/XwAl4ouKIE0TgZOxbtBgZx5Tx/vIELJF3ICs6b+LPXMvAEfTNBMAhoaGVEJILwBEo9EPcII5Z86c59TV1d0H5FpwuM7ig7yiKMOJRCIgVnwXMTQ0dPeGDRseGBgYeCcA9PT0lHPdSAgZZVl14ZKSkk4AKCsre6q9vd3lk4w8lsKLmqbZmqbtLC8vfwML5M/E1jQ1NX3n5MmTedcAzIf29nY3Fov9kAX43js6OqoMDw/XXrx4caOwxMRzAZrCnk/WGhsbv3fx4sXn1dfXP9rT07Nq9erVX/T2AUJIhkTzGDcOr9UrTxvT0WgU+/bte5njOH8NuiZfI6ib5l+BnAwpDh5H1phn4slJwTy+Mjjfz/rJH5B14avwpFyDLtkzAhqgfAlUtw+D6lsxwJ9PhFeD6n0L2f4UQe6inmJSCieDnxWu9SoIkwOhHIhY60q0uH4XAuGTJMm8ePHiu3p7e0NeF6YkSU8Fg0Gns7OziseOTYZZSXAkSbpqmqZs27Yky/J5gMZCLF++/MsbN2786NDQUAwAGhoaXi0KuOM4Ad4xvDEa7LpXACAWiz0o1lrgkGV52LbtmGVZmkhw+DU3btz48atXry4XO3WeGJkcIS5AUnYim57vgArtv4AKCk/9m9C6UAgFBBnIEpvIBIqfK+9Bz/ecKCSAHB+z9/lHQcmZAZql8l5khT9jwQmHwz9VFAWdnZ01lZWVn4tGo++/4447fsQW+cv8Xslkkhw4cOBoIpGQXNftamlpubuzs7MNGG/BcRxnxHVdhEIhJxgMfg8ATNNsyqcoZVke5RWK8yESiViu60oALQQmXoMPQuFwmFdA7gHo8iKNjY3fPnv27L22bdelUilFUZTO6urqq7FY7H5u8hevZZrm2g0bNjwQDAb/l8fHhEKhh/LNXEUU478mhDisXavEeJ5169bdywcqfi3WlmWFCExfX1+ir68PEwxmfKbL13rqRW6QPQeXgTFBZt6M3BlmIUxGcB4FdSu9D5TkfAxFrA9VCMz9sAO0Jg6QHay48h8Gnb3yyQBX/nyw6QNQaZqmVllZmQQA0zQ3ALnvj5HmbwOUiBRqjyzLI4lEQpJlOe8x3sE7FAplFjEUCE4oGAxeArIuzkLuAtd110iS5BqGsT2fvJWWlr6urq5u0iBREeFw+IENGza8QlGUN7qui76+vpL6+vp/EYpq7ly/fv2XkslkNJ+slZWVvaq+vv6Vo6Ojz29oaBgXl8aedRgAli5den5kZCTf8gMToqam5qEDBw68+de//nUEggUSudlHIri+yye/XGa+iDyyKBAdALDzjBWHQZNMSkBlOwGgm50jEl1+7f8BjYXdzM79PiiB4vt/Duol4P/zSeMv2bYDNJzCW7IByCU1PAziQVCLVebZCCFGd3d3CQCYprlROAft7e12VVWVIsaOTYZZSXAIIb2WZUk8RbepqelBVVXtQCDweDQa3VFVVXUBoHVzuIBv2bLlvsuXL28UfMjjlL9lWZ0A4DjOH0zTlAF4B69h27ajyWQyxKuLqqqaUezRaPSDxUR+TwYmyJ8HteRcBl2naSf7nneKQvE3xWATAB25nYor4rehsOLn91Q8978KKvA8cLTQ+bzT7QGdZewUOm0mBicYDH5z48aNdzc1NT3Q19d3P8+i2LBhwysaGxvvEQdgHhRrWdZdPEgYyA7gHJZl/SWQJbatra13nzx58qv5FKUsyyOKonjXGRJBVq5c+SUgU1Qwcw1udg0EAin2/8CGDRseOHv27FtCodCj9fX1rySEfDWdThPXdcuCweAAq0S7LxaL2eK1+KAUCoV2zp8//zIAjIyMeAP+poXS0tLfAEBXV9e3+HeFiFFDQ8PPz5w584ZCBCYWi71748aNdxeQ+07QGeYOUNltBF1GYSAPkfamxxYb8Atk48cKLQHzQwDPBp08fAmTZ0kVg48iG8TPJxyiBQegcr0Z2WQNLle96XR6UTKZlBYsWPDfAKBpmhjwnwF3gRJCCvoBeVaTWIBvIhiGoQjB52kAsG07pGnaKXYdbulNAePXTtM0bedEuq7YINF85+zfvz8J0L6lquoFMUi+pKTkHYXuy8/3BgeLcBxnjizL6OnpWbRixYovL1myJK8VtxCqq6tf09DQ8EpN03Z65LLQpPAB5Mbd5FyObQtlHYoY9+7ZvfeBWgqHQeNhOCkRCQ5PdDnh6U+vRHZ9N4ASFzEjdx7oRJRn+21H/rhOgFqHvIlD5+FJcqmsrPwv/lnTtJ96n2kyK5oX46wQswGSJPWk02kQQkgymWwbGBh469q1a3/H04K3bNnyb729vZ9iCvkRgK5/Ul9f38s6xg+8AyDDC0tLSy1CyIvmzp17MZ1OLxOvIUlS76lTpxqCwaBtWVYwGAy6dXV1X/AEuj2S57pTxo4dO1xd13eCpW3nMWu63Kw5jcsfwPjsKn6dl6BwZ+PK+3mgwWm8hosJqsR5Jy50Pm97QpiZcPDBzRZ+x8xvOdlvGwwGuUJ7hBDyA68FJxgMfhfAtzlx0TRtZ11dHfIpSkVRhsUYKxHz58/vXbx48X2MZL1TUZSca/A0debfj5qmuSkWi91fV1f3OJdP1h4YhrFAlmW+WvnOhoaGvO1pb293161b9/uOjo67JUn6JGgK6DUhFAo9HgwGX8Pi0CaU2crKyr+OxWLbJxrMJrjGS9i+D4GmZnPZuB80yyQjB0zmgcKr3E+EQ6CxbYWK87nivTyfpwXxmrqueyce3F07COou+FtQ9zKXy96urq7NmqaBEJIEgI6OjkIB0hwFJ6yyLA+w7aSBvRUVFSnTNJV4PJ5ZO40ttxBRFKULoEX3ACAWi/0oHA7fKepBYGZ1XSGIYQTXet/y8vL0wMBAoLu7+yubN2/uBWifi8Vi91+4cMHxurQLYYL7FyI494MmYeSTS+42PVyEHrcK6HtORIdBSU0XAOzYscNkfQmggfXvgcfy7u0TefoIL5fA5XLvBO1UQdPSfwJWUwzU6pTTz2Kx2HtXrFjx/NOnT9cXI6uTYVYSnPb29mQoFHJSqZR0/PjxrzU2Ng7v2rUrI3ThcPhf161bd0nsHKJgEkLGuTCA3EFv8eLFO6urq3OUeiAQOAwAqVRKrq+v/0UsFvsuz7C6Hs+ZR+DEQWAuKKGYsqLOd11Qk3kv6PoqE6WJA9S8z4v5vQVAeYFreiGuJeTFAmR9w0U906ZNm953+PDhT5imCe878BJYFk8CXk11IkUpSdKgoijjindVV1cPDw4OVixZsiRzPRaMLKajj7Bjv9jR0fExMKUiyidAqzCPjo6uCoVCHZO1BwCGh4fv2bBhQ1exptvJEAwGv75+/frBYqyN1ziY8cE9o8R1XT+M8QRbxMqpkvci5e96gltwuEuHW3DmADQ2g/XbEma5Klu8eDHuvffeY08++eQBIJP0UPB3TqfT60VSIkLIwMq3bEAOVqxY8faTJ09+RSQtjOAEJEkaZPdaEY/HSSgU+lJjY2P3tVqlp4NAIGDNlG4tKSnpdhxn/vz587d7+yJbaf1ab9EFUPe8KLeTyOUBZFewn0x2wwWO8xIcO0/f4bWAcoJ6JwNvu67rvPBsIbf9z5HNnDqALMEZdzybrJ0GUE8ImVRWJ8OsJDgAUFVVpVRUVHxOVdXHp8Py8xGcPOflXCMYDH69ubl50DCMlv7+/vuPHj16XYhNkbiMazexi/gjWNDzBMdwgvMTQfgPAnhGkQPSRDPz/cj6hotCJBL55IIFC95y/vx5b5T/uABCDr6G00SQJGnAdV3iHUxWr15dZhjGdo/FxhvHNQIAqqqebm5uft3Jkye/UVdXNwyPLAUCAbOzs3NBbW2tN54pL5jJ9potNxw3YgYOFCbp3u8E3A9a0Ox3ExxzK8JrweH65f2gsn0INCj0uaAD1Z8IIVi0aFHH6dOnH2xtbR2YjEScOXPmVQ0NDY8iz3vjweCmac4pRII4QqHQv9fX1w975dgwDJUQMrBs2bKzly5dekZpaSknA9ddTgrAnexZioWmaYN1dXXvKfQbzwDBuQxWwRvFy+17QOs9FaPzLhY4jtcVmwfgAmjJBd6GZtACqp9nx0yJ4AhYBBpjVOjZPgpaJbkRuZleeXUwL1lQTBmByTBrCc61Knzvwm/FIJ/r5CYiMU33VF4UOQNeDaq4xYCyfaDBwsV0bAKMn+VM4f45aG9vd9esWXMFwGKvIuTrJnmVo7h4YCEoitIzMjISKcYs7yU4vNMSQkaDweDOurq6ZD6lOn/+/J29vb2v0TTtXJGP++eCB0DJzUyS9xsBbwzOadBBiScHALRSeCOYNUvX9RcC+PJdd93VyDIsC+LOO++UvORahOu6JQBw/vz555eUlExoCconx4QQd2RkRDYM4w7HcVY0NDQUvNeNQFNT07fPnDnzKm8fnC5M0ywRXcTXAYdRXCxNBlPUeV0F9D2/XxQ0zu1/hO+eQDYL6yCAqmmGNRxGbqyOF3uRDW1oFr6fm+9+3I2Pa4sjBTCLCc61otAM/zZC3ho41xmHQEuQi4J+AMUHbP4n6LpTM6K0ACAUCh2VZblZVISNjY3fPXv27L35lGMxFpxwOPyxxsbGp4tR8HkIzgjbjk5kJeGVZW3brsi3/88Vt4Crabrg1sk4s2ruA8v+EjMokftsv0CRg+JkFrdIJPLRlpaWpwDkjeOaDJqmGYlEIvj000+/Z+3atYe9bpwbjdLS0tc3NDQ8OhMkKxqN2j09PYtramoK6p1rteDcALnNa+llRDkl/J83pkbX9beC1iJ7fKrtnOzZPPfhFqW7Qeuc/Zf3XB5zNhNk0yc4BVCojs1thBtOcKbhbvDiw6DFqWZsZlhaWvrGLVu2/FpUhGVlZa9taGj4RT7laJrmONeTF1Nx33jliMcweItYecFS1d8WDAZPTHScj9sGXwddCuI+AP/HBpoJ+8VMDorX6nJcuXLlu44ePfpvK1eu/NLNtNxwzKQLdePGjepE1i8AsG0bM+UOu06YaEWBZ4MGMk9kRX8QlNxcb8voftB4zqdQIM6OE5yZgE9wCqCQC+M2ws2w4FwTmEKf0ZlhPkVYSDmuWbPm8QsXLmyZKbM3kNeCwwlOwZolAKCq6jGg+LReH7c22Ez6HaCLEd5u7jWEw+EHm5qaBq6zG+emYDKytHbt2p+cPXv2hTOpF64D8gUPc/wRk1jRb6Bl9CcAnomJM8MypQeuVdZ8gpMHa9eu/eH58+dfdIsL9GS47QjOzUZVVdXW8vLyGY0tyENwhth2QuLy2GOPDbGsrsBEx/m4fXAbu9duWND5rYiKioqXRKPRmxpzNAnuAV3qJ6+F5laSu2LaQghxCSGYifHXJzh5UFFR8be3uEAXg9s9huiG43ooca9pm2ezpNPpZ8Xj8e9MNkNJJpPrbnNLog8ftzVuA3L3A9C1y247y2A+hMPhT7a0tJydifHXJzh5cBsIdDHwLTg3GbW1tae7urpqxZlIe3t7uqqqavTEiRPfqK+vT2ICOZs3b95oR0dHS3l5+e1sSfThw8d1xK1koZkJzOT46xOc2Quf4NxkLFq0aFVVVdU4S+Add9xRMllQ41SO8+HDhw8f4+ETnNkLn+DcZBSaiRQ7Q5kllkQfPnz4uCmYlYtt+gAAhCdY9duHDx8+fPiY1fAJzuzEv4Iu1FZo1W4fPnz48OFjVsMnOLMT7wZd0GxWRNX78OHDhw8fUwVx3dsz+5QQss913U03ux0+fPjw4cOHj1sPvgXHhw8fPnz48DHr4BMcHz58+PDhw8esg09wfPjw4cOHDx+zDj7B8eHDhw8fPnzMOtx0gkMI+TAhpJMQcoj9Pf9mt8mHDx8+fPjwcXvjVqlk/HnXdT97sxvhw4cPHz58+JgduOkWHB8+fPjw4cOHj5nGrUJw7iOEPEkI+SYhpLzQQYSQNxFC9hFC9gEI3sD2+fDhw4cPHz5uI9yQQn+EkN8AqM6z6/0AHgfQC8AF8FEANa7rvv66N8qHDx8+fPjwMWtxS1UyJoQsBfAz13UbbnJTfPjw4cOHDx+3MW66i4oQUiP8+1IAR29WW3z48OHDhw8fswO3QhbVpwkhTaAuqvMA3nxzm+PDhw8fPnz4uN1xS7mofPjw4cOHDx8+ZgI33UXlw4cPHz58+PAx0/AJjg8fPnz48OFj1sEnOD58+PDhw4ePWQef4Pjw4cOHDx8+Zh18guPDhw8fPnz4mHXwCY4PHz58+PDhY9bBJzg+fPjw4cOHj1kHn+D48OHDhw8fPmYdfILjw4cPHz58+Jh18AmODx8+fPjw4WPWwSc4Pnz48OHDh49ZB5/g+PDhw4cPHz5mHW6F1cQBAISQ8wBGANgALNd1N93cFvnw4cOHDx8+blfcMgSH4S7XdXtvdiN8+PDhw4cPH7c3blsXFSHk0ZvdBh8+fPjw4cPHrYlbieC4AH5FCNlPCHlTvgMIIW8ihOwjhOwDsObGNs+HDx8+fPjwcbuAuK57s9sAACCEzHdd9zIhZB6AXwP4B9d1fz/B8fv8OB0fPnzcLtB1fQGA5wH4jx07dtwaiteHj1mMW8aC47ruZbbtAfBDAFtubot8+PDhY0bxMIBvAGi82Q3x4ePPAbcEwSGERAghMf4ZwLMBHL25rfLhw4ePGcUA2x6+qa3w4ePPBLdKFlUVgB8SQgDapu+7rusHEfvw4WM2wQEA3z3lw8eNwS1BcFzXPQvfbOvDh4/ZDedmN+B2QHV19eCiRYu+EIlEPtze3u6TwVkAXdc3AbAAHL6RBP+WIDg+8kPX9XcBaAbwCn/W52MqaGtr+wvXdedrmrbTHyRuGfgEpwh0d3eXjoyMfKCxsfE4gEdudnt8zAh+AkpwXgTg0I26qU9wZgi1tbWn586d+9lQKPTgDA4o7wZQA+CTuIFC4eP2x65du34fjUbttWvXAv4gcatg1hOcrVu3vshxnEXBYPAr16IHly9f/mNN03bOZNtmEtu2basyTfPvQqHQV5LJ5BtHRkZeNW/evGeIz6zrugKgATfYanGLQgLwDtzg+DOf4MwQrly5Utvb2/vlhoaGAczcgJJi29smKFHXdQKqyDcAOOR37BuPeDwuA0BFRcWVy5cv37KDxJ8hZj3BOX/+/LcHBwdLm5qaejENPRiPxwkABIPBvcUQpHg8ToaHh79YUlLy9htpqXzqqafO9vb2hltbW3vPnj37+d7e3nBZWdl25D7zHwAsAvBC+BPUAICzN3o8uCWyqGYDXNfFypUrvzDDsw4buO2CEjW2/W/4cVU3Ba7rRgGgq6trwfz587dP5dzW1tZQU1PTw3yg8TGjuJ368bSxZMmS3dPVg67rlgAAIcQq5vixsbF/Pnjw4H2GYUxJzq8VyWQyAACapu3UNC3FP3sOCwP4CG6jCep1RID9AQB0Xd+m6/of2YT4usEnODME13WJpmnHpjKL0HWd6Lr++glesj1DzbuRCLKgrsBWAAAgAElEQVTtqzELO3ZTU9NDJSUl5i1OAKIAUFNTc2mqA83Y2NhDhw8fvvdGDxh/Jpj1FhzLsgKKogxN15riOM5CAHBdNzDZsQCgadoT7OPPpnO/6UKS6NDZ3t7uyrJs88+ew6IALt1mE9TrhQCyk18A+HsAbbjOk2Cf4MwQbNuG4zilkx23bdu2uiVLlnSyAfIVAP4DhV/y7agQQ2z79Gzs2D09PS8YGRlRbmUC4LpuDAAURUlOdaDRNO0k205rBr5s2bLzzc3N993iBPBmIac/67perev6+673LPZGwrIsxbbtmPf7eDxOWlpa3jyZXDiOswAonuC4rjsPABRFWTKd9k4XrKQJ/1zI2hSBYLX4c4Wu6zIo1xAJzmW2va6TYD8GZ4bgOA5c152U4CSTyTd1dHTMX7BgwXYAl9jXhV5yUWbaGwVd1ysBfAjAOycgL9yCE2Dn/DXoc86KQDtZlg2AEoC2trbSVCr1/lgs9t5bKVOJu6hc11Wnei4hxAHyzkYnRUtLyxvOnz+/pLe394GGhoarW7duxXSzuHRdfxmAU5glcsPgnbB8AsDrAPwCsyRGwzCMvAQnlUq9cs+ePV9rbm5OAfhOofMdx6kBiic4tm3PY9uFAI5Pr9VTByEkI5OSJBXS01HkDurXDbquXwDwNQCfvBn9Rdf1WgArAfwqz/35uxR/CxO4/uEXvgVnBhCPx2XXdeE4TnSyYxVFOaaqqstmyBow4Uu+1VxUzwPwVkxsVuQWHC7UPwHw40nOuZ0gA5QA9Pb2/u7AgQPvvtWsOdyC4zjOdCYw01Y4o6OjLweARYsWPXbp0qUHdu/e/YPBwcEHp2rN0XVdBbATdMmW2SI3wPj+3Mu2mQmOrusBXdfX365WHdM0Jdu2I+J38XicOI4TAQBCSCr/mRSO48wFiic4juPMYduF4veEELelpeXvb4QlMR/BYe8vjBm04Oi6/jpd1w8VkI3FAN6Hm9dfzgD4eYH75xAc1v7KfBdpa2tb29LS8tpi3ltTU9N3a2trz0x0rE9wZgZhAHAcZ9zMJQ+ilmURNqudjN3fai6qy6BKeSKzYsaCw0yTAPC2Sc65beA4TqbPaJrWwba3VKaSYMGZEsFpbW1dOzQ09OLp3ldRlE4AiEQi/9fX1zcPAJ5++uk3TIMAVrDtOzFL5EaErutchiRg3AQnBbrY8IQDVVtbW+mNGsCLRTwelw3DgGVZIfH7Y8eOjR46dOirADAyMvL3ra2tm7Zu3fryfG23LIsTlqIsH7ZtV7BttXff8ePHv3odJx+Zd8ZdVDx7kSEEgGBmLTivBZWLQrLxBKbRX3Rdr9B1vWk6pJrFkb6W/WsUuL/XguMAeH2+6+3atevJgwcPfrOY93b69Ol7zp07VzvRsb6LyoO2trY7jx8//svGxsZQsaZ113WDAIqy4LiuG7VtG/F4PHTXXXeFAFovYceOHfnMnLeaBScMQJnErChacMLs87liTJGsg20D8Mdb1S3hum5GiamqerWYc+LxODEMY/uNKrrnum4EmJoFJx6Pk3379j1pWRb/X21vbzcnO6+trW2L67rLRIuk67rl6XRaqqysTMyfP//HlmWVxONxMoVnn8u2vbeqHEwT/H1ooEQmZ4LJ6qYAwHcxwUC1dOlSMjo6eqW/vz/U0tIyglukzpHrutUAYFlWqKKiIjVnzpyn5s+f39Tb28v1AE6fPv1X6XT6iZKSEqu+vh7wtD2dTjcBgGEYa4q5p+M4nOBU8e/i8bgKAGvWrPnI9Zp8iDE4fCLBnr+Tfc3HgpmMwUmybcGQhnz9Rdf11wGIAfgSgH8CJdCHd+zY4TKd2wfgIoAXY+qu0r8G8C322S3QXwOeLQB0A1ia74Jz587tK/K9EWDiCeass+Bs3br12Zs3b/7odGc2Q0ND/zw4OBiYCvN3XZdbcCKFjtm6deuLKisrk47j8GPngQodULgTTEpwdF3/ha7r22+QSTuMLIEpBG7BmQvgWcJ5xeDvAfweRZpZ4/E4KTQTvF5wXTdzL25ud123etOmTR/fsmXLu/O1JZVKvWHPnj0/mMnZZDweJ62trffku59AcOTxZ+aHYRjP4eSGXaNE3L9t27aalpaWN3jvt2vXrj1Hjx79nmEY27lb4cqVK6+VJAnhcHh4bGxs08GDB78+xWef49nOFvCYKN7fvfr3RWybLETs4vE4uXDhgtPX1xdyXXdS62Fzc/N9oVDIvhF9hMfPWJalDQwMBM6dO7fO+95ramouAcCaNWvena/tqqp2sm1HofssWbLkUkNDw6PxeJxYllUKAIlEYgN/Rq6PVVU9dL0mFGIMjm3bKmvDq4XfmY8FM2nBUYAJQxoKjT/fBPA5ABsBfBrA/yCrY5ey7XSt7N3C50J8QvNsAWCs0AU1TRsp5r05jkOAieMFZx3B2b179y/37dv3gekOJqqqXgIA13V/MoXTQgDAyUs+DA4Ovru/vz+YTqcb2fXnYnKWX4wF53kAvoIb43uNYHKCw/c/CloLByie4PDZT1Ed7dy5c5f27t17zcThjjvu+GN9fX17MYOA6KLiljvbtuv379//vsOHD38qX1tkWX7CcRwQQn51Le0UMTQ09LXHH3/8e/nu57oul8eiLTjJZPLvPLPSnID5AwcOdOzbt+/fxfvx32vVqlWf0jRtp+u6GgBcvny5kmUVKrZtByKRiDnFmTS34OT109/GmIzg9LBtLwojpy9NNhAMDQ29KpVKSVPtI9u2bavbvHnzv0yFGHErSjKZDAJARUXFaJ73TgBAVdV9vO3r1q3b2dLS8pp4PE647GICYnDx4sWFTz311HMMw9ieSqVqAeD06dPbBgYGHlq/fv23bduOAoDjOGXFtn2qEPsKd6edPHnyo8LvfD0sOJP154ITbFBCcYZ9fi2yOraJbc9M01paLnwuJCsZF5Wu6/y9KkCOuzZ7EZboMBk4wZkIs9JFpSjKtOMiLMtayK5RB2B/MecIA0rBgTwQCDwFYJuiKJfZsUUTHF3XySTC9yBuTKxCGICs67q6Y8eOQu6LYJ7vluq6XgNgCYDPTPAs3AQbATA6WWMGBwerbNue0rvevHmzatv2F0tKSt7GFezJkyfbCCEoLS31ViIdB9d1Mx3ScZwAAIyMjLwZAAzDIIZhrPC6YwghZQAgSdJKAHuLbetEGBkZ2QoA+SoVu64bURQlh4xNBlVVT5WWlpqDg4Mqu0YpAGzbtm3Jn/70p/MAoGma6/mto+z7/e3t7e7atWtzBiVN0wZSqdQ8x3GkKc6kcyw4zDrZCCrjzwbw/wC8eKoKmbmAGgEcuEmuL/778P7uVdBcH4R0Xa8C0AVA4m2Nx+NkaGjoc1O5YTAYPAZgSyKReE48Hh/nIl26dCkpLS39QXl5+d3ivmPHjh0cHBzUWltbz6JIF1g6nX42AIyMjKgAoGlaqr293RXJgGEYnHxkrHMnTpx4WTAY/Ju1a9emuA6dLAOQkydCyPuXLl16qqOjY+Xw8HDrlStXljU2Nh5i1yif6BrXCNGCowDAqlWrviT0j+tmwZkAjbquvxTAj/LIt4SsRf28sP8v2bYBwMlptGmu8HlSgoMsIeLnBQEkPMe769at+3FFRcVLJtIbtj35/H/WWHBaWloCS5YsuQwAqqq60zVNGobBzaxF+YCBHIJT0LohSVLKc+wcTO6i4i6GvJ1EcEudmkmFzTI5npXH7cUJ3ERWnHz7vgPgBwA+hYktTfx3mF9MOyVJcoGppTQbhvHwwYMH3+Kd0QYCgZzBe9u2bStaW1tf3tramuMC81pwCCE4fvz43/Hvjh49+lHvtTlZsG27tpg2rly58siWLVv+aaLZcyqVqgaA6urq13j3OY4T1jTNnYqLynXdSCgUSgj/lwCAYRiv5t9JkpTzWwsZL+VsmxmUotGo7bpuIJVKhdLptAwAuq7/UNf1txXhTq0HHUC2CUt/8Ey8d4D6/adjsXwAwK+mee5MgP8+PKDT+ztwfRACsJV93sB3ptPpew4dOvSmKd4zAACHDx9+nSiXW7dufW5zc/Pb586d+54nn3xyeyqVerV4kmVZMlB8AP3mzZs/ZBjGkkgkYimK4gL5Z+KpVIq76OcCwJ133llqWRZGR0dly7Kq+KRhdHR03YoVK04U6gOqqhrt7e2u4ziRcDjcYVkWbNsO1tTUXFIU5TF2j0nLdswEuItK07SjQv/gBOdGWnCAwnXVosgSVTFWlOv0s9Ns0zzhczEEhycQ8O04o8DVq1eXHjly5EVePbpu3bqddXV1v+MyIbrUC2HWWHBc133jxYsXawBAluVpZx+l0+k5ADA2NvaSeDz+/SIHzyAApFKpeRMEU7oAYNt2GQA4jlPpum6UzW4KsXwuGM26rv8hD4nhcRLyDAfofhW0Psd65Aad8U4bAjBc4Nx8FhwRxWRgPUPX9UlJmyRJU37PmqY9CWB7PsXN31s8Hid/+tOfTgFAJBJx1q1bBzDlIFpwXNcNzJ8//2pnZ2dmFrN8+fJfea/NFa1lWUuLaePp06cbwuHwpxobGy+hwOyZp6bKsnzQu8913bCqqvZULDiu68ZUVU0CKGX/lwCAoigHhGO858wDss8nZr6sXbv23r6+vn9KJBKLDcNAPB4P3HXXXS8B8FcAdmHiYMYUaMZeHFkT+ttBZWeA/T8di2UatGxB3nN1XZ8HOsv9Pqi18U0A3j+DkwdOcL4CWhvK+35EgvMU+8zdVpBl+TdTvSHXN0CutW/37t3/q6oq1q5d+wkAIISMiOd5Jw+TBcrv27dPl2UZ5eXlyWQyqbBr5iM43EJYAQCO46zk+06cOPG56urqpwCgv79/ycjIiDpv3rztmzZtqpNleSAUCn2B35vLomVZ4VAotEeSpLsAEEmSLEIIj0EriuA0NzffRwixg8Hg14qdLIkxOI7jyJqmwXEcMW5tLdsuxATQdT0K2hdWFiFnmfFa1/U1oOTgIDsvAeCPAHZj8r4hEhw+6RJTuDcB2Fek3FcJnzPyrOv689h1PobcIGOvVW3chJiP3149euTIkZcRQiCu+SVaB/Nh1lhwFEXZzT/LsjxthZRKpUoA4NSpU39brN+aW2UuX768sNA5PADZNM0q9n/FQw899Lz29nbYth0okKbHB4yHkJ+VP4NtQwDuBwvQ1XV9rq7rv7mGwGNOjb0dZSoWHCPfzkk6DSc4nwRwj7f9rPLrXfx7rmTa2trKiw02liQpb3Cb6M91XTdjQVqxYsU3xY5m2zYBMrU9ArFY7JR4HUKI7FWSnCwkEol4sTENtbW1v5xo9uw4Dh8sx1VwdV03pKqqlUgkAjyOoqWlJdDY2Pi95ubmu/O1wXGciKIoGQvOyMjI61lMRIVwGPGcU8m2Zey+GQvOrl27HpFlOZlOp/mxC9iuxzC5Ai4DVfoHAFxg351msuMA0y4QFgCQmODcXwJ4GLSv/TOAf8EMWXtYbR8+2L0P9DfIR3Bc0H7AB4VFfKckSeMG7JaWllfy99nS0vKGNWvW7Bffr23bmUHXuy7Z3Llz+1VVfRoARkdHcwLIOcHheOyxx5wjR47kjfniKC8vTwQCgTE+6OQjOIlEQmLtKmfb5XzfypUrvyrL8jAhBKlUSgmFQramaTv379//ocOHD3/Oc28CAKZpBmVZvqqqqmsYRtSyrLCQ9FFGCHGbm5vfyZ9t69atkebm5neJz3r27NlPHz169MuGYWzftm1b1Zo1a/ZM1k/5M65du/ZnpmnKiqI4g4OD24XAf05Mhya6DoDnA1gOoCXfTl3XP6Lr+u+ZzhPddidA4xwb2b4QgHMoLvNQJDjLAVwVrv0hUDd6sXK/TPgsyvPzAbybXUcMMhb1CZBnLBGXwfDuKysrS2uatlN8P38WdXAIIRlmeC0WHEKIGw6H7WXLlv2uiAyFt7e2tr7ccZwgMHF6G89sMQyjAgCSyeTmZDI554knnkBPT89eUMXvFaoAKNn4J+QfFHggdB1obALYcXcCuCvP9SaFruuNAN4I5B1EuAVnoqBhTlKm43vmSr0SNK7I2/5LYJ0ayBKcQ4cO9R47duzhYggpV7qu6+YEIIr+XNu2M6RBkiRb7Gi2bUsAkEqlXu66riZJUrqmpmYAAKqrqwd4LRgRvD7SmTNnnl0saQ4EAk9N4n9W2XaRd5/ruiFFUYxkMkn27dv3CcMwto+Ojv74ySefvIdnPOVpY0SSpDT//8iRIy9hmVHlwnW95/CaJdzqk3nn8XicSJKUFI7dz84fLpDKGtV1/TJT1mUAToMqXW4d44rQu9wBKVTDQ9f1V+m6/lphXwC5yt2LOraVAPwN+3zNsW26rq8DJWr1oHF1l9lvkI/g9IA+q2jN5NlBJZ7jceLEiW/x9zkyMvKqM2fObBDfr23bsTvuuOP3eeKnEA6Hr7JkB5w+ffp54nmihYJjxYoV382n3+LxeAgAQqHQmCzLlqZp/NycdxUMBkWrRxlr31L+HVsmJKBpGlKpFDFNMzNZWLhw4al897YsS5Mk6aqiKG4qlQpZlhXgBGdsbGwTABw/fvyz/Nl6enqe2Lt3bw5ZMk1Tqa2t/bGmaTuTyeR7Tp06taWIfuoCwNGjR1+QTqeVVColPf300y1Hjhx5iJ3L5WwyPchjGQvFHL4XwF+A6jyvx+VhUEt6M6hcjSC/bvYGq0QAQNf1UtA4txgAHpLB27GyyAmyGD8jHj+CbF0e0UW1CbkV+jMERyAqGTlpaWkJ3HHHHX/i+6LR6CBACTdAddJE72rWEBzHcTKKWJKkadePcRxHCYVCZiAQ6Gxvb3dbWloCdXV1f1i6dGnOy25ubn7T3r17v3Ds2LGH0+l0HKDEqtCgxIPnDMMoBYCzZ88+x7IsLR6Po7q6OggqHF5lqoGy665JWPlrwQgOO+4Cu96RqT09AOAzE+ybbgxOsRDdWxGM/z0U0HoNh4GsEk4kEtKqVas+Wky8gBADlRPnIxIcx3EW88/Dw8N3ijMEPsin0+m/sG07IEmSsWjRordGIhFb07QR5HHR8crCCxYseKpQGzdu3PgpYY0yYJIMOtu2lUgk4ti2PS5eyXGcoKIoGbLCgjHTALB69eqvXLp06fNbtmz5oOe5wiLB4efxOiPsupl98XicnD179susLSVsv1JRUZGSZRmGYWwXCc6uXbvKurq6gPEzOI43AqgBdUmVgmZ8zMF4guP9Xd4J4CDyk/nvAvi6sG8ygqOx639GuO8zZ6AEwyHQZwOAQaENKpBZqwfse05w+KDwj7z9+QjO6tWrP8RlSpKkwWg0aogyZllWVNO0TsdxxrnOFUUZtm17DgDU1NScFc/LR3ACgcB+7zU2bNjwpaGhoU8DgGmamiRJpmD9kTznZwY2x3FK6uvrf7V3795P8u9s2y5zHEdTVdUGgHQ6nSFPmqZ1i/fm5RpM01QlSepWFMVOJBKKaZqZ+ltXr15dAwDLli37qfAbpdn1Ms+aSqVUTdPOtbe3u4qinAwEAs5kusTz+5CKiooEACxfvvy/2Lk8UWKyGBxuwVpWYL8GKjOHkc084vJ4FbSf/C+o+zWB/PrXmxDC5a8BdIw4iOyyQbxg4ldR3AQ55366rn9B1/W3gD4/D5AXCY4F4EnhlHcLBJ6Hb2TkxjTNT5w8eXJrMpm8FwA0TRt0HCdj9ZNl+c+jDo7Y+V3vVLNIrF69en9PT09EURSDz0Zt237viRMntgUCgb18QIjH42Tv3r0PAsCSJUt+rGnaIXZswZgmHoA8NjYWA4DFixfvc11Xqq6uTjJzZwzAXR5lGgAV4nGmaV3XV4EK5Y8xXqg5YZpOkF3fBPuKITiLhc/vhsdVNclg4SUH+TrYWU72xBicvr6+Vx85ciQxmWlZIDjcZTLOjyuShkuXLq0RZwi88x06dOhthmHMI4SkQ6HQznXr1t0bCAT685WY5wUgCSEFCXB3d/frL168OD+dTvN7TSjDtm0roVAolUgkWuPxOGlqapLXrFmzl7mVAoqiZEris2DMMgDQNO1UR0dHzdGjRz/sea4QD4T3nJeRIfF3SiQS7+zp6YkCQDqdvgOgLqqFCxf+95YtW+7WNG2n6A5csmQJqqqqADqzy4dNbBsAteCcASUZ3HTPZc4FAF3XH9F1/QXIymQhS8sogMNM7qrgITi6rm/wWICuIJtOCwDfxrW7qUQBGxDa4LV2xkD7u0hwvgf2bJ4YDwCAqqr7hbiUqGVZSnt7u9vW1raptbX15YZhhG3bjlqWlSmAt23bNh43YXICSwjJcQl4XVQM4yzjBw8evO/IkSP3AUAqlQpJkpTp77Zte7PqMgOt4zglFy5c+Et2LwBAMplsTSQSVYqiZEisaZor+CktLS2vEvo3AQDDMGRJkq4oiuKYpgnTNFXexwcHBwPsGtX82VRVHQJyYoti6XQ6U/IBQBkhZCpFKeE4DgmHw0MAEAwGD7JzIwD6IVhwdF3/oq7rr/foQB5E/tIJdGMYVAZ5X+Tn8GsfBCU3SeS34HjfG5e/OlB57wOg6rr+X6DWot+AusCKsV56dfbbQcnRVmTjbUSCUw3gmNCuewBsBwDXdSsBwLIsCaDjrCzLPQDgOE41AJimWWJZ1kZ+s8kyqWYNweGKmBCCdDo9rdS8/v7+NewaLh+oFEU5DQAXLlzYyAcETqYkSYKiKN0ANEIILMsqmNrICc7Q0JCqaZqrKMqwZVlqIBAQa178FtSnqui67iJrss5Xz+EpUP98vmBfPhhMp45IRmJY3IAI7qJqmKAzDiA7OB9ENobiGKhATzRYeDsLD7SEUD8hQ8BEH/+5c+eW9/f3ByczLfP3wIuSAXQWIEIkOHPnzu3NF4PDzksQQtLt7e0uizkx8pWYd103qqoqTNMcRzhbW1tDLS0tr4lEIufYM/2M7ZowAcCyLElRFOvs2bNxwzC2B4PBtzz11FOb0+n0dsdxgt4aOLwgGh/QlixZsld8LkZwkuI58XhcFQdVTnA2btz42atXr75d+B0G2XMqsiynd+3a9Uh7e7vLCU4gEHB7e3vd7u5uoLDJnsv4afb5HKiC5BZFLtNcZ20HJR/zgAljckrZvsdBrZxVnv37QV29XC6TyCWXD2BmSzAMINuPiiE4w9/61rfOr1ix4ni+pWBEF6Jt27FEIiHF43Gya9euJw4fPvz9sbGx8nPnzr1AUZRMYG86nX4r21bbtl1RUlJim6aZc22xb23btm0Fu1feB6qoqBhl95ckSTIty8pYV8TjNE3LyFcikajlVpilS5ceX7BgwdVz5849t7Ozc444cRkeHv44AHR3dzfv2bPnu4IOBgAYhiFJknRZlmWL3VPm4QCsEKKbTqcrOTGSZXkIAOLxeIC1eTU7llejLxP7OIe3qKin0B/hi/AKdXyioAQnwNyozwbwD6BZTh8R9GcCVCZeDEE36rp+Vdf1LezfS6AyyMkL14v1bBsBDcxPID/B8fY5TnBWgQbyh9kxfwfq7uoHnXDk6Gpd1x/Sdf2dHt3vnezqrB31yGZYiUHGNaB9G6AW1kug687Bdd05AH2HbH/QsqxlQHYcliQpbZomf25IkpTXsskxa7KoHMcpXbBgwdXKysr2s2fPvnQ61+AZMsFgsJ8HTDqOswgA5s+ff44PCK7rVgYCAbe0tHRMUZRLrusGA4GAW4wFR5IkhEIhy7btqGEYSiAQ6IEQSAgqvFywYqBKMGdg1HV9h+d4L7jirARdkXkqEClxKXKLjs0DVf4fAzBP1/UzoBknQLZOiQo6a46BdrrvgsYQvQt0Njqurg/LXlkIFgSKbCddBOBp9pl39swAlS+IURy0q6urhxYsWPCguNq3oMjmLl26lJSXl38jjwUnk/pICMkpOeBJTVRFtw4hJGP5E+E4TiQajRqGYUTj8ThJpVL3SJJkaZq2s6+v7/FTp06tW7x4cQcAGIbxXnbOhK4+y7KkUCh0NRaLndM0badpmhsBQJKkR9Pp9Ae6urqqPcfzBThLAUBRlH5PyndIUZSrnnPm2bYdC4VCbjKZJK7rIh6PqwcOHPhHVc2OXTyAnpEq8fdIAMC6devetnLlymdUV1e/AnnIOisl/3z2bxhU7vpAlR/vG2tArZWiAv8SWO0kXdd/DeDZHqIzgmxmEpeffJO69yG7EjVPS+dIzXDNHAPjLTh8AIiBPo8YZBy5cOHCYkIIYrHYnd6L8ffZ1tZWnkwmaxzHybhYFy5ceKy/v3/5qlWrvnby5Mm3spipbkVRngYoQbdtuzQajQ6n0+mcgVEcwHlGYTqdbgGdnedAVVUTyFhT0ul0mltXcqyZLIi9EgA6OjrW8H4Xi8WOSpK0lmcjBgKBJICgoig4d+7cCwCgv78/CGT69w9GR0ejvI0XLlzo5wQnnU5LYt8Jh8NGZ2fnyurq6u0AHuHLKiQSiXfE4/HPWJa1CgBs2w7w3zOfVYCthv7d1tZWgGbwcIsQTNPM6CLB4ilacF4NSsY53gVaBPUQ6Ls+C6rnuKXxT6DuWa7LCGjJkDAoGeJy8zK2XQmqp5MY7zLKN6FYzu5zFcCP2Dli1fA/AGgFMF/X9f8DUMn6wCtBJxbtyGZBevXUEdAMSEW4pgbqJqsGtcryCUM/hOUdxsbGXgpQ1yRA3eamaS4GAMdxatl3qmEYK8rKytKmaaqGYUipVOo18Xj8S/msbrPGguO6bomiKOmSkhJ9KvU/ALoq6ZYtW95lGIYCAKqqjvEsFcuyagDqDhEGyTmapjmhUGjQdd0q13UDmqY5tm1n7tva2tpSX1//KI/d4R3Itm0Eg8GUbdvRVCpFQqHQFU9zSpGtgQHQdENvTZ4PC58HMB4iwZkqxN7d6mHrDmhp7k+DMnVec+E0skssaMgGqi0C8HHQWcJ+UOE+COBez3W7Qf3Ii5G10JwEc9npuv4B0BlOTvu8aeKiJSYej4e6u7tLTp48+Y+iVYcTnGQy+ReVlZWfOXTo0BtMk1rOa2pq+u7QNuMAACAASURBVJcuXUpM08z8bqZpBvnsbcOGDZ8X41Acx1EJIZlZqSRJhQhOOBwOj6TT6eDAwMD39uzZ8zAPitY07TIAXLlyZSEAnDx58v2snRNWf7YsSwoEAv2KoowyuZzDfoNKWZaHFy9efEI83jTNSDAYdLlFRhwEmpqa5OHh4RWckCxcuPAqIQSGYdzjOE4sHA6nWZsys6VIJJJxRSSTyQXMNaaIhM80zfkAEA6HH1y1atU+NqAtymP9+xrbdoEO/mWg2WH3CsfwrBSxWus5ZOXhmRhvHRwAxrlFMy4qoYpqN3JTtMU+4LX48HNfqOv6RG6FQkihsItqEYDngPZbnj4dAYBgMOioqjpuMsPfx65du/o7OjoWAUAikXgjAMiynLJtWw2FQj9VVdXmM2S2TAxc1w1YllWiKEoylUrlkJF8kwdVVU/neyA+MUyn04S7qEKhkJ1IJDSRKInruFVXV1/iVhhZlq/IspxxjyqKYgBAeXn56NKlS38t3mtwcFACgNHR0cy1WHaYA9AJSCqV2sz3lZaWds+bN+8qn/hwuT9+/Pj/ZxjG9kQi8SIAMAxjOdtfko/gKIrye/a7/EJ8Ztb+zP+ClS1jwcH4CsPiophBULm32UC/HJRcAJTAA7QcSCloRhYnwCLKQeU2nwXnLzB+nH8laF9RQavHG8jKG0AnpBWg/a8cuf3KRa5FMwQaI8QxCKrDqwBEmRegFpSgPQvUavRmdmw/sqVOcPHixbcL14FlWetOnz79HAAwTXO5JElwHEdJJpPrEomEtnr16i+qqmqfOHHCm2GXwawhOI7jRGRZTkuS1G+aZlFKp62trXTevHlDhw8fftXRo0c/ywuSKYoyzF1Utm3Pi0QijmmaGcXoOE6lLMuOqqpjlmXNBRBUVdXkxbEA4PHHH999/Pjx51RWVn6OnRPkAzAhxDEMo5QQAk3TROEAqCBvFP5/CFRQDuu6fqewIB9HPoLDB6+iV4jVdb1Z1/Um5Cp3b6BZBLQz8sHmMqiw1wqfNWSLRj25Y8cOd8eOHYeQrVIMAF/k19V1nfvYPw7qbutn/3cC+ChoZ/soaLAlkB2IxilhMaI+nU6/FABqa2t/Jlp1+Hs9ffr0C9PpdIY4BgIBp6urq7yysvJz6XR6Kf/esiyts7Pz6J49e35w8ODBd4r3s21b4cG7rD1mPheV4zihQCDQm0gktKGhoTYAWL58+TfY8gZhAKioqBgGgGXLlv0vO2fCekKWZUFRlKu2bXPrSSV7vgrHccKhUChjuWtoaPhFMpmMhcNhY2Bg4C52fuZ3TCaT+y5fvlzOLVeqqo5GIhFLVdWDtm1HQqFQJsODu0QGBwe1FStWHNE0zb106dKy/v7+h0dGRipd1xV/DwcAfyc8HmcpKOEVcQJUPoZAFfwwaGFI7n7pQlamvYOFOGvzupK47IsyLMbgiBOBGCgxDyNrwelANujSi3cD+AYmic8RAogBWldnPbIBpTyQ+bm6rm8CHQw/Bxr8+UHQgMwIQEtfuGyVeI5AIOA6jlNy5513zgWAcDhsAcDJkyf/BQC6u7vXjY2NqQCuKIpi80QMXmTPcRwtmUwu7O7urhkbG1O3bdtWI1yep56/VvguL+l2Peuzbdq06QOyLCOdTueML5qm9a1bt+7hQCDguq6r8NIMsixfFOO1FEVJAkAsFus+duzYczzP/P/E/8PhsM2yn8LC+Z2lpaUmAASDwR5Zlk3RghsMBp1YLDZy+fLlnZIkDbJzeKxHjFkqvYSvjLW1il1HAmg/lGU5s+6bQHC4BacS9H2KEDMJg6BxMOVMV4sW932glpkYKOkfBO0nGzAeVaAW9szEhV3vHtByCxyj7Lrc2m6yP66HhwC8BNQCw8casV9pyJX5IHJT4QfZc/N2bGPP0AFq9YkC4MVJ+wGU8DHKNE158eLFmSzUjo6Ob5umKQFAIpFoiUajtuM4CiEktWzZsgOxWOz+cDicXrFixYOFAo1nE8GJyrKcIoT0mqYJbwXauXPnjjU3N79d/G50dPTB3t7eEgAoLy/vMwyDAIAkSQnXdZW2trbYsWPHXhGNRkcNwwgL96pQFMVSFGXItu1K13UDqqqm8xGrvr6++2tqaga7urqWaprmAEB/f3/p6OhopaqqrjggMPwncpX2IIC/BbAO1MVzl+f4FMaDK+53gdVJ0HX9vjx1ZV6s6/on2PePA/gZcl0IHwQTbqaoy0GFlQtvUOioPeyzhmzcjUhqeDufQu4MhJcKV0AVPCc4ewCcB7UWAVnilVHyXMmEQiEXoAqeC/rY2NjLAEp8PdkXIQBYtmzZH23bzrzTVatWPcQ+vk9RlEGAprUahqEYhlEmWm7q6uoelSQJhmHEuNUDmNBFFZIkyWaprxHWVr29vd3lbeAxMzxGQAh6HId4PB5wXReKovTbth1ix1cCQH9//6dt2w7KspwJ5j127Njz+vr6wqqqps+fP78MAIaHh5fzvjA0NLQMAFRV5aXaSTAYtFzXrbRtOyJJksnuAdu2M+5SSZKSq1at+qlt2zhy5Mg9fX19IcuyMtWay8vLX9Ha2no3eycHQRX5YQDrmUwSNrBHAdwNOvNbCyojfwtqCgdo0G8+grMagizlcSXxviUq6JjQD/i5PFWWZzDx61xA4XTZUkxQNFAAXzkcoFbJryObWlsFOuB8A8Dv2P/cSuOA9gX+vITHlnAEAgHbcZwS0zTbABoDoygKamtrfwoAAwMDAdM0Ydv2ZkVRLNd1KxobG3/Q19f3CraUh2pZVmDZsmW7CSG4cuXKY1wmuDX62LFj/87v55VJYXFLsX5OKhKJfGLNmjX/7P0hZFk2y8vLX71ixYrfyLKc5hYc27YXSJKUEI5LaZqGQCDQnecaYgA4QqGQ2d7e7lqWpQB0mR7XdUuj0egw+406xGBn27ZDNTU157q6ukorKiq+YFkWj7fjSSU8fieHTPL4pbGxsbesX7/+G2KcjiRJLrdO8XWwkH1vawG0ITc1WpQnTnDmYLwurwTtExKobAyCkpGveI57Kai7KY1cEvosAK9HlqgMAPgIgAHWV/IRnD42Ie3h37FVx/nzpDHegpOP4HB8B9Qa282255FdribB7h2Mx+NyIpFQKysrH+UnjoyMzFMUxWEEEpqmGbZtK47jREOh0PH29nY3GAwmFEXpKhQUPqsIjiRJ6fb2dpOVz8+pi9Lb2xs+fvx4jilLUZQrVVVVfbW1tcdEtxYhxGS+vvdYloVkMhlKp9MZRu+6brmiKKYsywOJRGI5S21M8+A6dm0AwPnz592urq7SRCIhcZfKokWLnh4bGwsYhkHOnz/vLdS2HlRgOR5Hdo2Q94AK035Qlw5ALR2ZlXcZEeGDwf+ACuPzQM2dnOwc1XU9DjqovB1Zi9F7kWtu7BQGjccBLAAlGvz6Ihnis3yR4GQ6rHCdk6BpgryTXGTby6CdnZOicxCsNaCyagFo+OAHP3hvS0vL3VwJRyKRFAAoiuK2t7e7zc3Nb3r66adfDACyLOdYuHgpeEVRekZHRxt4BkdJScn7A4EAotHoHE5SQqGQaRiGrGlaTrGusrKyj4dCIVuWZYuvKA4AhJC0UIAvA9u2w5IkJRVFgWEYIdYujbUnBCATGG9ZFq8OnDODbGtre2ZNTc0QW0G5QpZlEEKGOMHhwcPHjx+/K5lMziWE5BQ0dF0XrFIxAKC3t7c8nU5vZ5k2AQBIpVJcDiRZlk3HcSrS6fQ8Hs9j2zaGh4c/wK8RDAZPRyKR34r30TQtM1vkwddM+TwBGmdzHDTmpRHUkrMLNP7qt6AKby2oUj+MbMbVKLIyF0ZWrgYwcU0m3qdFq2cQtI9BuOYcUFP5VeSm9SZAY3fyWWkWQVgnagIEkCVac0FjLSKsgm0EufVSygD8HLTAYBi5BGfcWneappmu68YMw9gM0HIJpaWlKUJITuZiV1fXf5imqXR1dX3oySeffPm5c+eWBYNB27ZtLZlMxsrKyj6zcOHCC52dnSu4fnQcRw4Gg+7ixYsfE+7vjbeIArnZo0wHu7IsjyuoyfcFg8EjjuOojuNAVVVIktQhSZJoJZRCoZClKIo4UIKVRVglfsfdWYZhcOu76zhOqaZpw6zNqpj84TiOFovF9kajUevUqVNvSyQSa1igKu+PeQkOj605cODAPx46dOjvLcuS169f/wVZlqGqqsMJDj+f/TZ9oPo5hWzmEJA77nKCswRZ9z7PNqtk/4+AWkIGQK0xXxfOvwBKGl4A4ChYf9B1/Z3Irj01B5TYJNi1/k7X9feCEhwL1EXF5bSHEfpu0AkERxVrp4rcgoP5XFT8vfUCeD/7fxB0CZ6ryPZfC9RaW2Ka5hpZll1JkjJxgIlEIlBXV/d1VVXdkZGR5UNDQyHTNAOWZUUkSeoHAFVVRyzLymTEejGbCE6YzwIURcEdd9zxdk3Tdm7btm1VQ0PDzwBaKdN13aM8Gt5xnNJIJDJQUlKyr6enJ1OfgxMcRVGOAXRdlkQiofEZi+M45YqiGLZtx86ePbvywIED9xuGodq2nUnF5NaaO++8M5PlkEqlFAAIh8MnU6mUNGfOnNHFixePm+kgN6i4A9laCVdAhWQUWSF6AnRtHg4V2QXMLKaAeY2Do2x/PeiM8a9BO+Bltl90BQDZzrIQ2TTe0+x7C3RRQE7q+GBUyIIjPg8AvEDX9V7kLkAYRHYwuCg8N0BltR8AfvnLXz586NCh/zRNM9DY2Pjw0NBQjuK9fPnyR3igo+Mp184Vmeu6IdM0AwsXLuwEAEVRBhVFcRzHqeAB5oFAIGkYBkzTLF2wYEGm40mSNOK6LnFdVxZnnoSQtOu6altb218SQlwuL8PDw7UdHR3rA4GAPTIywhcT5C5QvsyHAgCWZfHqwIGWlpZM1eHBwcEPdnV1lRiGsd0wjHts24ZlWTVicCRvh2maQUmSRjZt2vQR8dm7u7sz8STBYNA6efLkd9hq7Nx61Mt+iwGWEVYuSVJ64cKFp9nz4ejRoy8Rfoe0JEkXxXt4U805BFflftCKwXzZBT6LTLC/JrDCZkx2t4OSDD4RiCFLWMIoriaTlwSd8exfw647BKp8Ock5hWwGSwa6rodBYxREl464P6Lr+qd1Xf8ku5YBGlf3GdBBaxGom0qMvxsB7a9J0PWyAIHgsPinMJCNNVNVNe04TjSRSPwFv4imaclUKlWraRoWLlzYA9BJliRJjjiZCofDSdu21dHRUU3TtP0lJSW7qqqqOhOJxDPj8TixbVuqrKzsHR0dzbhxvRYc7uoyTVPhQec8Jo0Q8m3v78KJFyEk6TiO5jgO1q9f/45Tp059mss9QJdf0DQtLca5AEA0Gh0ZGxt7nueaAADDoJxOkiTXtu2oJEnmli1b/uH8+fPP5QS+qalJTiaT8yRJSpSVlQ3U1tb+EACJRqMWdy1zi6rrutG2trbKZcuWnWPxZWXe+8qyPMRcxbamaf3i+aB6+nWgshdDNnMIAIiu6wd1Xf8MqHx0IRuQ6yBrreYEZwx08hkBDeJdIVzrJQAOC2EAFUwnfx7UvX8UVM9/GMALkV1A+pOsjdyCUwFabHYpKKFPIVsQ8E2g8lsBKqeiTvUSnCHkhhn0smfkE81GZAtq8uKEJYlE4h8tyyKmaWYswOl0mkQika/LsuyOjo5Ga2tr9xJCHMuygrIsXwVo2r9lWYXcyNdOcAghMiHkQ9d6nWuFbdthy7Ji8XicqKrqqqr6+/b2dre3t/fhY8eOvYAdJj3++ONHn3zyye8bhrHdcZwSWZYTwWDwf8Vr8Zm467rzqqqqhlatWvXv6XSaCLObElmWDbZSLwCgp6enHACGh4cfYFVcAQCpVCqzEGNVVVU/AMiy3AkA0Wi0S5ZlG5SBF0IHssXRoqAz3I1gQiYMHHeCmtY3ghIF8TzxfFHZD4AKKM8aKkNuvRH++R+Ec/qQa5bks1vRgsMVdz7zPk9/fxFoB34m+34BqL+YB51FkDtTAFjHKSsrw+rVq0EIcYLB4KNz5swZALJVhrkPn32Xk/4qzNQCiUQiUl5ezmeoCUVRHBbDorLrmLIsY2hoaE5NTc3HotGoBYBbTohlWbJhGGs4CZEkKe04jjo6OspXF98ej8fJwMBArK6u7sPBYNAUMgQCa9eu/XEikahkxyIcDjumaZYBQGdnZ9uePXv+c2Bg4BtNTU1fdxzHAmgWiaqqe8LhsB0MBv9kWRYnShmlMzY2FpIkaRg02y2DuXPnZjLiksmkMjg4GHAcB5ZlSZs3b35vZ2fnXzU1NX2xp6enHoDkOE6567paaen/396Zh8d51ff+e95t3lm025b3yLsjeXcSZ+EGQbgthbS5t7Qhi3PZoVAubUPpknKvqtv2BsolhCVpSwkhYavd0JbCJS1QMtyAlZDFNnHiLbEVx6t2ybO/y7l/nPObeWc0Go02W1LO53n0SDPzzjvv6D3L9/y2U/f4ddddd1tpmjBjLKPr+kkUU1bgBDgFICLFS7CI31YUgiS/joKoeAwiAyVYDoHcOFFUtuCEMdpsD4iYtvegYMl5G0S/0iAmCWqDQxDteVtnZ+e1gbZMK+MNwfbd2dm5rLOz8yYIt+onICyuH5fX8BSE220QYrK4AwWBdBTC/Tsiz0efn4/BAcQibvny5RcikYgHAKZppn3fj1D8CAD09/fXJxKJ1ZZl+bZt5y0ga9euvYPaLwCEQqFEOp0Oc87BGDttGEZ/NputO3jw4Puz2eztnudpkUjk/OnTp/MlEwIp0PQ4n9ZLCzoSuF1dXWlN07BgwYJkNBr15XEN7e3tjDGWcF03JDNKv9ja2rrbsqyTANDS0tLd29u7FAAntzCJp1AolHrllVdovEAkEvFCodAQALS2tv40Eon4jLG8wAmHww+sX7+eAnWRTCYPnjlzZoHrukstyxrRdX04l8vVWZbl9Pb2btu1a9fHXNfNu0KTyeRnu7u7W2RF76JUZM450zRtEAB0XfcWLFjw6VAoxE+ePLljx44dH+KcL4eINbFRKOBIMAgh/yGIMTco2hkKLtIFEOLmLIRAulI+9w46UUdHx4GAFXElRLAw9SVAFIk9EJgnSIxwFFxeOYj29ySEtf8gimOBHoCYbygmKLifVHAu6IGINzokHzvy2KDA+T4KfVuH6Nc12Wx2+ZIlSy4ELcAAkMlkDjHGeCKR0Ovq6r7p+74uF3AkcPpc1w1mgBUxHRYcA0DHuEfNPPzMmTObc7ncrXKrhhoACJo+TdN8CQCWLVv2HOccruvW6Lqe1HW9NxhjASDHOTc8z2uyLCtnGMZHgcJmdVLgZCleAijUZdi/f/9H+vv7/8V1XWYYBkZGRiigCtFolCZ+aswUkV4prT1opq2Rj39Q8jwgGucwhNn/Rgj1TKsi+h0UOCkI18BSCPMnIDobvX4m8PcOFETLCESjJhFRaoo2IQb07RCBokHz/t9CrDhaIbeDgEihBMSqHfJ9QxCrmlIcAFnTNBEKhSAtKGkyU1OBKMh2bVnWKIHj+35I13V4nleTTCZ127afBoQ7Rdd1z/f9OrLgaJrmmqbpDw0NWdls9k22bdMK9KLnecxxnNDLL798FwlfxliGc65TtosMfvz9XC6nGYZxzDTNLCCCQwGEDx069Bvnz5+vJzEsBVAMAEZGRgwAOHz48HsPHjz4gSNHjryZrhNAnWVZnq7rQ7RlQ7BejXSHDj/zzDMOUHCX1tbW5rNgampqggXZNMuyHmltbd09ODj4+3LCGcxkMts8zzN1XU/s27dvT2k6vaZpaV3XTwBAOBymSWwzKnMKBWFAAuc8RD9IQwyIJ2nQlr9fAbBcvsdCYYuSKxAQL2XEdBglbh4UUse/ikIa7k/lsddCtDFarScgxMbzEK6joJh/FcISQ5uBAsK6+QP5/hchJqtP0PeQE8zPICaCFyFijA7L4zUUMlb+H/1ffvjDH24D8haccCQSea21tfV3AZF27ft+JCg8Wlpank8mk1Fd171g0T2ZpZT//2Sz2VgikbB834ccM88PDw/H5LH/4boua2xsvK8ka7DIbfqLX/ziaXkuzbIsEv95i6bsp6nW1tbfAYCzZ89ukhWuE47jhHRdz7sxAbwfAPr6+la0tLT8WzabtUOh0GvRaNRraWk5CADRaPRYc3MzWaMRDocd0zRTALBw4cI3bd269Q7DMHzP86KMMUe6wx73PE+//vrr30mxOKFQaL9pmkOu6zan0+ma4eHhcF9fX2z//v2fz2QytAlolL6LrOhdZAl2HIcxxvrl/8u1bfuRlStXHsjlcvorr7zywNmzZy/K+xtDIb6LoDHpUfn76cBrQYHTBDG+9kIsXB+GCE3Ii4+SNv8CCnFuZCkvneNJ4CRQHIPDACQCgil4vVT+4ZR8f738bA2iP9Li4xb52d+BCH9YDyF4ggLnZECQkcDZMTIyctXAwMBC13WvDF6saZq/SeO653mLfN/XHMcxdV0/DwC6rvckk8mWsQq8ViVwGGNfHesHIkDustPc3PyGrVu33mFZ1l5d1/1AOmx+guOyZP6xY8eufuGFF76VzWZbNE1LMMZ6AWH6DYfDvuM4y2SUf5NhGOlnnnnG0XUdV1xxRf6cmqalScEvXrx4mAZ4ADh06NBveJ7HIpGIm8lk8uYz0zR7ACASifwNIEyxTzzxBOTAR1DDHAFGBU5eCdFhulFSnVIel4FYtb8JQsCMJXBOQAQzA6KRdcq/yYLzMYiBnUyhO1CIFaBaC3QeslDR97QgVgQHIVYaQfP+RyBSFINQ5/Yh3G03yet/CqNF3CCALxqGAdd14XmexhhLBTIaKOhRA4BIJOKQyfiGG26o27Zt2zd837dCoRBPp9PLQqGQzxg7CYiASRmIWe/7vhEKhSBXgTkAePXVV2/2ZRVjxtiI67rwfV9bv379fRTYzBjLyCh/ExBihDE2XF9fnw2FQnuz2awNANIVlt+BPBQK+fJ3JpVKFRXWW7x4cdHeVpqmcd/36+QE1kfxBb6slhx4b1580yTV3Nx8fXNz80X5v8kLU2lm79m3b9+e7u5uvm/fvj2cc+PEiRM3ZbPZGMXzlLPgxOPxiwCwfv36h+R3eBKVqYHw7W9FwXJItWZS8vXSwHtAWPyoDMF9EDEF1Ba/J4/5UKfcjDUw+A6geMXZj9E7GpsQIuuHEIuEFvl8InDst1BoyysgRMg5AH/dKTZEZBCr9V4I0zvV1QGKqzdfkOekYoZtEPETkOc/2NHR4QNAOp0O79u3D4ColiszMTO2bX8DAAzDuOh5XoQHqmeHQqHu4eFhizHGpRUP0mqSTiQSejQa9RYsWJAcGRmJuq6L2trarBwzz2cyGZok1suEC9227fw4w0uqdJNbyPM8mKaZAwDHcZYHiur5hmE4hmGMxGIxb8OGDV+Q24YkHMcxgpsiHzhwwHvjG9+obd68+c5kMnlzW1vb7oGBgQ9v2bLlzkgk8jwAWJZ13vf9UDQa9a677rrbQqFQUtf1BFCI99J13XddN2/N1zRtaHh42Hz++ee/DRmTpWla0jTNPsdxFvq+z5YuXfoaANTU1GRowXDs2LHvnjx58n10br+kinQmk9Fc122T39ONx+M8Go0+b5omrr/++ueXLl36MoRw8OW9DtYToywoDYVwAgSeo/95E0Qbpvf+JsQ4a0OIoNMoXkDmUKgrQy710kDtocCxQYEDFO+HVbpZ8s0QfWkQwBtkDKeNYpeuI4U8h1g8/CNEHw0KnKAlVocQVn/x3ve+9+W3vOUt91qWtS/4oTLTlP7+wdDQkDkwMBCCDKsIh8M/HBoaap5qmvgd8kLPlPk5XeF9l4xgQKOu6x6JmUBUe17gAEAymdQSicRCTdMuaprWAwCLFi0a2Lp16x2hUOiw7/uG53kNFCxnGAZ6enq+u3DhwoTjODWe59mMsQEAaG5u/qdt27bdsWnTpu/Q+WUAnXvmzJl8HIlpmucAQNf1ge3btz84ODhYemNOQ/hL34DiVefn5e9hCKGRQPlS/kFf5CEAi+XASwKnBkKYpFDIUAHEKhIQE08YwhT5zwAGOzs7F0A0RFptBAXOCyj4U8miYwHI0Yo1KNDk3/ld3yXk16+FjOAPvO9UybE5AK+SwPF9nzHGksGUTaBQbyMUCqVTqVR9e3s7Gx4efuzgwYN3ZrPZRaZpuolEYkEul9Oy2eybo9GoL1exru/79Zxz0zRNT9M0x7bttKZpaG1t3W0YhgMA8XjckVlURiQSeYwi+KUFx6BiYu3t7cxxnO11dXW98XicZzIZExApv8FNMqnODGPMS6fTJllKNE2D67rRxYsXF1kKM5nMm2Vhs4FsNqvLmIlSgTMIAG984xu1xsbGtLxubllWEgBqampeqqmpcS1LhECVZiHYtn1h5cqV+xljHk2UpdAKd8OGDb84efLke+T1jaq2W8ITEAPqcRQsOAQN9KUC5+/lcwtRENBHINpgRL6egihr8BjEoE+DbxKFIn+AEDjlPpdcq/sgFhJA8SDvBtryCojYnH0QLtY/hhgjARkHgUKphNLvMyw/axlkNktHR8dz8lpfDfaX1157bYFhGBwAMpkMO3v27Bs8z7O6u7tTgMi4y2QySymOCwBqamq+CAixXFtb+yi1bYqNyWQy+tq1a9/X1tb25wBg23ZaVp3OC+nz588/sHDhwpEjR478bUNDQ75yeNCCU7pi1jTNBQAZ83IrAJim6WualrMsa+/mzZvvrKmpuVuK/ovZbFYPChygMIaTyKbfkGOEYRivpVIpKq+x1zTNrGEYIyXX4WcymcYzZ86slt97CAAaGhqGw+HwCXlMwjCM85lMZkkmkzHD4XA3ACSTyRDV7enr66sZHh62AKC+vp5duHDhXSghFAr9U/C719XVfeCuu+46tGvXrghjbCNEOyTxEGwDZHUcRqGdEkELzjoIizxZj26BiKFpghAMv47iBaSDQkyjXfIbANDR0eFAuIDrNJgj5QAAIABJREFUIBYY5KICiq3xpVvOvA1CEA0C+CyEq+lq+d64PCbvXpLt+DDEwmQxCsIqKPZ1iDnvC7quezt27Pi/pfvhyXGJBHP+vclk8oPt7e3Mtu1H29radk81TfwFAP/OOf8fpT8QK6mJFruaUUoETjC9uyhQrLe3t8F13UbGWB8ARCKR/q6urj2yYJshV8okcPzTp0/f0NfXFx0YGLjh7Nmzq1zX3SBfG9y3b9+eurq636Nzc84RDoeHa2tr841X07Rh+Xugtrb2o5s2bSq9MUxac/ahOPXuaxANay0qC5wgiyAaVnClHEOhIBQ1lhxEYyfTfRjCl/sqREe8Vf4dDByOQnSA4wDeKZ8P7jdSqv7zdHR0lL5Gga91GB2/UU7gOGNZcIB8CrUGiJVVX19fQy6XuzUUCh2Uz6VM03Sz2azZ2NiYGBgYuHvLli1k+XM457W+7xskcEzTTEajUa+rq2tPcJd6wzCQSqU0xlh+hUQWnGCxr0wms17TtLSMDfOj0ajHGON+YLNP27ZTgMhsymQyGrmUmpubB+WeU0VZXJqmDem67riuuy2VSum5XO5W13WLUogdx9kG5F1v+diLxsbGn1iWxXVdT4VCoZxhGL78vxX1YV3XE7quX5TFDMvudEyT5uLFi69ta2vbDQC5XG5Lpf3AAsJ1BQoFLCnWqqzAkW3mWYjdk6l9JVGIwVmKwqTxAMSgT25UKoVPlBM4FgrVVp8KfsXA39cH3AEkTul6T0JkgTkQcTWNKA4qzbd5+f0vQIiuYHDmRZRYLNetW+dt3rz5b03T5AAwODhonz17dqcsbIdsNrv0zJkzK7PZbD7Y2TTNp+Rr9tGjR79CbVv+L1BXV5cJhUJ7dV3vB4oqFuddP2fOnGkbGRmJrVmz5kuNjY3P0PNBC47v+xvk5wEAwuFwv23bfP369V+kMU1aGbPx4mw6MMYu5nI5FuxPlbAs61kA0DSte2hoyKY2r2lahiw1dKymab7v+3pLS8vz0lo0KK/d0HWdClYamqb1dnd3r0yn0xp9LxlnmXf3bdy48acAcMUVV3zj9OnTpW0GruteLb8nLXz4ypUruxljbQC+hGLxUW68jqC8wKF2tRHAvShkA1JmYROEteRAiYU/h4LAof5QWjcKEJZ0F4WMrXIWnOMl12VCCBYKgH5BXnsUGHNj4OchrFU3oSDSgp9hyO8zJK83FcxKpWB6skCTJbmpqSl98uTJ9+RyuVtL21Yp1Qqcr1U41kHBxTEr0DTNpTS/QNBYPgWXMAyDh8PhA/F43DNNEyRmGGNZz/P0ZDK5Qdf1EXmsn0gkDECIl3Xr1v3Atu1/lZ9HxaIoG4ny9hPZbNaSMRdgjFFDSFS6MbLRBhvNQYh7kET1AudX5DleBfA+iAa9BaIhpVEQOC9DdKSzEGbIhRDZHvUQAZIPQKwkqINTnEQGosaBieLqmhUFTglDKFidajFa4MRLHucAuGNZcGi/HV7YcqO3vr4+LQdcEwByudxC0zRzyWRSj0ajQ7RKlKvYXCqVeoPnebppmg5jLGea5oht23kLC10IbUaoaVr+nsvsEJ3M2Y7jrB8cHLz67Nmza3O53K0bN278I1mwjbmuu7impsaT150GgFWrVj0v3yf+kZY1ks1mw5ZlFW2hkM1mt+i67jDG/p5zjlQq9Vg2my1q25ZlfQdlqK+v371z587bY7HYdzKZTCgUClGabZGJV9f1pOd5Md/3dcZY2Q0yyYJDbfmaa665+8SJE78z3n5gEAKnHYUxhQQNDYLlsiKo5gyZ1ZMQ4ngxRL0mIib7D2X6pSADeOXrQxhb4ORQbGFsCLxnKwrugCsgYkZIkJyS135Ofm4LigVOqUVqCCLmLGjtSqB4o9t7GWOrb7755i/v3LnzdkBY9DZt2nSnZVl7d+3a9dFz586tqa+vTwRTsuPxeDYWi7nDw8PWmjVr7qO2TWLUsqxcPB7nFy5ceFA+TgKA53nbASAajbqZTEZbv379w/39/XcvWLDg5ubm5iF5jAUIMZxIJH6ntrY2t27duh8DQCQSObp9+/bbyUoDCIFDoiKIpmkjvu+jWoEjC/e56XT6Js/zUFdXl7Esa28sFjt45syZHcH2pmmal8vlbNu2j8jvPQAAmUwmRBaoTCZzjWEYL5KlNBwO7wfyYo3R383NzW/SNA22bf+g3HUdPXr0fgBgjAVr3JA4eTdGVwAGhNeDCKO8wHlf4LkDEPFaaXm+i/KY0h3CgYLbCagscJIQfS+YRUXPEw+hUFGZ4i9rUAggPg7R7k9DzCEXMbqcQhxi2wkDhVInwblhJWSauLzeNO1uD4j5GSi4xmkcWrt27UcqWW2CVCVwOOcPcM7/ZYzXPM75rBI40tUQAwDHcfJFnlzXXahpGiKRiK/rOuQqYhAQad2GYQwDQuBcvHix6cSJE2uTyeRauULggCgq19/f3xAKhQ5B+kY1TesDis38jDEYhnExkUholGEA2Xkq7FTLyv0tB+yjEANnFJUFzgmIFeLHIQbg34LoSE9D+GXJRUUD/gWIBngOQnHT3imvoBB3812ICaYHYoV6EwqdExDWpqosOCXQxACUFzj3y9+k+iMIWHBc12W5XO5NVBHVMAzOOa9zXdeSj7NM7iVFdWIGBwcbdF3PyLowRZYRx3HCL7744n/OZrMxwzAynueFDcMYtG07ARQq88q0UbqX+YEmIHBqAGDfvn3Pnjt3rmHFihW/tCxrbzgcvr+trW23YRiu53kLY7FYAgAymUwtAITD4ZcAYOXKlecsy4Lv+1YqlTJoOwdieHh4m6ZpzlNPPZW1LAt1dXWLGWPu6tWrj1HGChUrpEujP0iMhMPhL2/evPnO5ubm/wcUAugJTdNGPM8Lyw0UhwFg6dKlRRYGFtimQl7//TJAebyBJwVh+W0peZ7cOmPtr3Y9AL+jo8ODcPFsgRDiHwocR23lbRADsglhURmEaOsWRKB7kKDAITH5l5CBrxCD81kAm6UVJwXg0yjsx5OCaMc9ECJlCcZ2UQFiJWxC1IMiLqJY4PwZgLfrun6wq6trDyAEfFdX1x4ZPPvg+vXrv20YhlNaXLKpqcnavn37/f39/XfTc3SvNE3zAJE6Dog6MQBg2/Y3ZVwLuZretXTp0lvj8Ti/4oor/jQUCvFcLrcIAH7605/6hw4d+lgymbQokFnX9Vzpgs0wDGeMsgEX5bVUa8HZ29raujsWi/0uANTW1vbE43He2Nj4js2bN98ZbG+yoKZJ43o8HvcAIJlMmr7vh5YuXTrY3d39Dk3T0suWLeuR156Q18uptpZpmn48HueyIOKG0msCgNbW1t2AGDcCViQSOO+BEOT0PP1fbg6cogaF+l75rwARqE6i6kGIeJbr5fmofRdtiicJuqioIveZ0uB7OZ/kIFxMy1EYrxPBYwKxoc9CLJY/ioKAIgtqP4Tb7EaUlFOQn0MWQOoD+UU+xDxDafQ0L+lkFSSBE7DgUG2jBsuy9laz4/u8qYMTRNM095lnnrn32muvfVeJwGmIRqPuli1b7li0aNGgPJYKBnmUFcUYy9C2Cz09PStyudyttMOpDGLD8ePHP+667rXBcwDAjh077pfHgfzD9fX1vQBAQaoVqOTqWwhhlaE6OGMNDmcBvBWiU/RDNJyDEIMqBRkHXVTUAA9CCJ06iEyPYODbixBK/FdRXLCKOpmPgtgxUb3AoUj9JMq4qGQHuQgxkaTl8Y5hGHAcB47j4PDhw1+ge6zrut/f33//+fPnSTQ5NGB5ntcAAIlEwnBdl3z6RUUAc7mcDQCDg4PhpqameF9fX4vv+xZjzG1vb2dLlix5gGIayu1XQwKnNHOrtrb2u/F4nJO40DSNu67bZBhGZseOHff19/fXyvcPAEBTU9PXd+7ceZtlWQOO48AwjKKMsnPnzi2kicmyLG9kZKTD8zy7oaFhz6ZNm94rv0t7oNLsqGula6mvr3+kpqbGI7cHoWnaRc/zwq7rajSwrFu3rigds9R1NZ65OMAxiKrcpavLsWJwANF+X0ShbR2AcKvUQrRXgoJB6yDifc5BWGKGIfoFg9gxOYiFQrulgM6foJCO+zxE3ZpHUdjD5xiK2y+V0ieREgxkLu0P5O5tCkw+wdpWKBfDJrcQyC+SwuHwj1zXDZUKnO7ubv7cc8/9AYkYSQYoCByCgmrp3pH1MyhUw+Hw361evfrnuq6nbrzxxisAIBaLZRcvXtwbCoV+CYhFYcl3hK7rZQUOxXRVK3Do2rq6uiiG0Qk+H2xvmqZ56XSakQuOcF0XQ0NDm+rr659qa2vbHQqF9tq2Tf2famaBtgYwTdOT5+PB2ixBZHwQent7F2SzWeo/1Ia75L37uXy8XP4ma/xFCAtG6WauZC2kdvEOyDo3sk3Q/6zcJpo5AKYs8rcQwko6alfwwHWehGjHdM3Ly2QiQh53FcT4T6KcShgky7XVALQIIrcutb9aCLF3HAULTiocDn/xqquuug0QXhOgMH7F4/Hs2rVrXzp27NhfV2ElBjBPBQ7k93rxxRcfymazFilCx3FqTdP0urq69ti2PSKfW0cZNKT6GWMZx3H0pqam9LZt226XaYJFN76trW13Npv9KgAEqy9alnWPfC5fdr++vv7p2tpa13Gc4IZm5ShrwZEcgyh3vwJiMDwJlE2NDab69UOk6R2D6FAURBwUOLRb96sQHS7V0dHhorhIXy6g6KmBBt0WIUzMgrO95HEC4p6Vm9jeDrFaTyAQg5PL5cAYQ1tb2+7GxsYjtm37jDF+/PjxX6W0a8/zaqg2juu6+SyIwcFByoYLBf33Fy9eDMv3wbbtf29ra9tdX1//yODg4KJcLndrNBrtpJiGcgIHQEoWfCyquxKsUwKIgd113XrDMFI1NTV/uGjRoj6g4GP2fb9ZZoRQ+nteWEjhzEOhUB8gKrgeOHDgA5lMpkbX9cGnnnrqkV27dt11+PDhr9EgQNamcrExoVDo2+T2KLnGIc/zbBnnNAKMtjwGU4InSC/EAEmuIjovna/cqj8NIcCDAZFhiHYXDDQlcXsDxKAchnCxZmX7XYFiSFxTcDxZ5KLy+O0oXnXTfmsOCoKE4tiGUYiX+IfAe0q33aD28EkUJp8+APZYe8ctWbJkkDHGS9wx5xzHMUmkVILuVdDNCgC5XC5ofcgvwoLCQVqMjnLOzUwmcxsg4oEikchZKsMRjJ0gdF3PaZo2qtgnBf4GY8MmAg9s2lkKBfySVT3IuXPnGlzXXRBwSWfk+WxAZGGWChxd17njOCtkYPOoCXzlypWnTdMMCjVqP/S9/xhi0XkeYgzbCrF9wj2Q7tbAPb8AsYg9CFn4r4JwKLeViwfR/j4nHycxOpOVyKJgPTouH38Ro8XQLZCFZGV/oDF6GYQLalTF6hJoWwbKKtQ6OztZYD4hF1UYQCpQNgCyRlzRAm3ZsmWbqrQSiw+r5qC5BrkoFi9efNhxHI1K+edyuRj90yha+9ixY78rM2gc13UXyJTKbC6Xg2EYHnUG2nuEJot9+/btOXDggAcA2Wz2DTRIdHV15Tu0rusDgOjQMgvnVaD8RCPJVNgcMwvht18NYcX5IUS6eGmDDDa4AYg01HMQjejdELUJ0ihMCuQO6IZYZdCqJihSgsqeJtsPoNBxqAoxUJ3AoffR/4o6TbmJ7WcQ6ZGDCAicVCoFy7Kwb9++PQsWLPiUZVm+ZVlOU1PT4IoVK8g94AZqKNTQnlWrVq3aBwCnTp3aGZwwFi9enHcFua67RbpyHqRg8OCKkTpd8F46jrN5ZGTECpYGAADK0iPkRFVL24OsWLHikzU1Na5hGC/Qx8sU1wwAnDhx4hZ53a9YlsWz2Syj2AZK1e3r6wuTJdG27W8GB4FFixZ1WZY1Ks4GGNvqIgVOyHVdRoGa8lovUBD0FAXOUhRcoKUCp5zQJTeQE3i8DMBAYAJwULDgZCCyPQYgXKo0Kf6p/D0I4UbqhJgYStvtFbLNH4ToNwDyVkU6lqwEIRQEDsX8vQPCrUDfN8gFef2fQKEvfAqi8mzZzTvXr1/ftHPnzttL3DHncrmcXm57kDKMsuCsWbPmSCqVCgXbRelCjpAZgmYqlXoTPSezBccUpbLSdblq5onSa5kIuVyuZqwxlOJhgovOXbt2fZTcHSywjQVZnWi7E8/z8vFvALjMTmQvvfTSjcuXLz/b1tb2AAA0NjZmamtr3fb2drZq1aqVW7ZsuTMUCtF90YGi8h4HIBZpfwsxfh+Ur70I4aKNoHDPtYCgWQCUXcASkQquJ2J/BYGUheh/FFh/rbzOUjH0PYjxl56/ALG4vTb4fStA8TtUG+3TKG7jIxAFEYNbmgAAOOe89D5PwEoMYP4KHBMAXnvttbZsNsscxzFN00Q6nY6ReZN8x1deeeU9MmDtPKU4MsbSnPP8akCeEwAQ3GQNALZu3fro8ePH/0fp5OG6br4DdXd33ylXAK+Ypll2ooFoXAyFm8+AogYeHECyENac/4oyOygH3nMWhUCxUxAFmAYgBiUSQrS5IFlgaDK7CNH4EhBxPHRd34NoqHtlx3kPChlYQGF1OyaBDkcFq+gzRw2SJUo/H2ScTqdBK6dQKLS3ra1tdyQSGXYcJxKNRl/dtGnT93p6ejYEBE6strY2AQiXEQBs3LjxweCEsWrVquUbNmx4Sp7zCWDsDlVfX58FgIBpGqFQaK9lWX5J0CE0TStyMTHG/O7u7lXnz59fkc1mb7Vt+8ubNm3aHQ6H92zfvv1LJ0+efJdshxkA2LBhwxcBwDTNobVr11Jge7mVcT4WLHjNCxYs+BXp8qpq1SPPP5DJZCKO4yCbzebjeVavXr1kx44dH5afVza7qgp6IQLbS9PPxxM49Rid0hp0RfSgYMEJQVgnD0C0L7K2/Ej+9iFEyPcgVtJBgfNWAHejsF0ElbcnyJ1VI7/LYhQETgTIr3bpfKXf55sQFqa9gb5AlY7Lbt45hjvmdDab1XzfNyjjZCzKTQjLly9vpdph9Fzp+BYgnc1ma3RdP9fU1JQCgHA4fNj3/WYAcF231DIGy7L6PM+zy01SgIiPrJRxV44lS5YMDg4ONoxZ96Rgwcn3Odu2H2xtbX1U/k0Wa9TW1n4nHA77mUymaH+rhoaGbCKRsGVoAgOA3t7eJeT2WrNmzT2ACMwvc1+C+54VuRpLxEYKwoL5Igr3PDgffwcFd1U57DFey4+94+yTloMUOIFrGyWGylz38xDWJ6K0VlkpQYFTrjZakPz32bJly7ccxzEDRVTH+ZjyzEuB4ziOCQCLFi26oGkaNm/efOfq1av3ua5rUC0TWh2Hw+FvxuNxvnz58o0UsEYTS9CEKgXPqBVOfX39u8uZzHzfz0849HokEvnUVVddNdZE8zjkviLy8VdR3MBpkPwJpAou0yDvhEjLo/f8LPA8xSFQUBcgzOJ/BxGAfK98jlxP/w6x/cN/ggjYPAiUbfCPALgLhbZUbZDxdgC/Lf+mibJSmf+LCFhwPM+DYRgeUBj8LcsaGR4eDhmGMdzU1HTLlVde+WEasB3HidD91HX9FADU1NT8ZXDgj8fjPBKJHATEjvKVLn716tUPUHYcYRjGec/ztOHh4aI9ioI1RoBCai6ZwYODZG1t7ccoQ4CsjOFw+J/l+7RIJPI9+fcogUOp4aVMdNUjr7m/v7/fln/ng3Jl7MfX5TWMZ54ei14I12mpBYe+01guqjqMFjhZKeg/ALGavKmzs/N2FFaEtH9bFiga9K2ACAkGGQPCOhociEv/1yTiD0JYgMhFZcsfWphQn40FV9tj1YiqsNouC2NsyPd9pNPpKLllq6CovZe2i7EsOK7rtvT09DTkcrmN9fX1pwHAMIx+y7L+AgBM0zxe+p7GxsbPnj59+i1jiZGBgYFotbEUxPr165tKRVmQgMDJl2+Q/foJANB1PX8vI5HIZ7Zt23ZHJBJ5hgQiYwxbtmwJb9++nUITAADbtm273TTNh+Rbv1Ihi8co81w56DpOBO65GWgn/xOi4Gk5MUDfrdxr+bG3gvUHKLbgVI281l+iUN6jnKssCF2rM0YbD46z+e/T0NCwOxhAPoH2XUS1N2NOQQHCvu9b4XDY7+rq2rN9+/abEonE9fX19TmgsAJmjPUA+VXFHgC4/vrryZxbdPNN00Rp7EXwfYTcCgAAInV1dS5jLLiCKjqWkDc9WNH4jyBWenTTadB/FiJDqlzj/jaEr5NeexEiLfHjEA1yLcTK+dcg6jQsghBDB+Xv/ZCBj2WupywdHR28s7PzOYgdkqmUfjUC5yCAD0IIuwkLHAB5gUPI8uvQdX0gHo/z9vb2Rz3P+zIgMpWGhoZo40IKJi9yHQGFDSfHm7xramr+cMeOHb8IDnKMsR7HcTA0NFTU6TVNOzf6DMDmzZtHDZLB9rR161Zqh6/J62a+7zcAgOu69QCwZs2aY93d3es9z0MoFPo2po98jFWZgTwFANls9qb29vajExFOEqrQ+iKEC7XovBjbgpOPweno6PA6OzuBQlXkh+T7HoUobfCyfEwWntK2RUGaQYHjyHOXtv3SWBETMi6ts7PzJQihvhrC8tOFwg7k9H1uko/H7U8TQYpNf3Bw0Ja1cqpZ5la8V2NZcEKh0LONjY1vNQyjnwpZAjD37duXZIwhlUq9ob29nQXbgsx+Ktd+AADhcNidiFURKD/eBiHraS6X2xVsmxSTE1wY0Lna29v3XnPNNU91dXX9Q2Cs3iOPBwB0dXXtue66694pYyvfRnEiZRjPZUPQdZAA+AwKqeUHxhl/zwFoHkMM5yDaK6Vtj3WOrLzWCQkcCcVMAuMInI6ODkf2042dnZ3Hy1zzv0HMW7cHXyu9B5O14MxLgZPL5TQASCaTsVAo5AAA7TeVSqVqW1paWCwWyxiGUZTmGyAFjBY4tm07w8PD4/q7TdPknuex/v7+u1tbW5+aaCcGyg6yNOinO4q3dqj0noMQAZIHIVa4NoT15q9Q8AXT8Qc6OzuPQMTo3IoKg0gZVkGsBnZCtKlxO42cHCiDiwROuYmNIBdVXuCQu5EwDIPS9nsBEXXPGMPChQtTAPy1a9f+6PTp02/O5XK/WldX58rVY6k4PQ+MH19SbqCVdTfAGCvNXCqaXINxXJU+g66BLECO4zQcO3bsswA+Qxl6y5cv31hTU/PVAwcOvNswjNKy7JPG9/1Gy7K4LNlfRDwe56Zp4siRI/e3tbX1YWJtBQB+LH8fgRA4ViD9Ghhb4ACjxfNPIdtyZ2fnNyA2wuyFiBEgC065c5JLtpwFpwh57uBTQTcsVfZOQaT0dqCwaFgpj9mDsc3yU2Lx4sUnu7u718iqwFMuuEoLuFKxIrem8TjnNi0OKUh/+fLlF86cObOtsbGxqD+NJ0Y8z9MnIY4r4rpuDACOHDnyldbW1gx9Po0J5fo1XSdj7B+A0d+dCIVCe3ft2jWmYJMYgLCejGONIyvvCtn2/xjF24FUotw+fYQjr+G3xzkXtfXJChxiPAsOIAT+30OESRTNXbJvvVz2XQEma8GZly6qNWvW/MwwDCQSCcuyrCwA9PX1fZIxhv7+/lhTU9N9mqaly0XFA4DrutuBQmErALj66qvv8X2fWZbFbdseFfwUhGJDgkXkpuFrZUp+j0uJSTAD0RhXA/jJGJ2vFcKdNVFBRnEOC1AcRzQeNNiQtWA8C04TAJfMyeRuJHRd7wFGB/X29fWFs9lsqK6u7v62trbdUniWNTGTaXsK7hfEYjHXtm2/ubl5BBhdRI8EznhompYxTRPxeDy7ZcuWvX19fctaW1tvBYCLFy+20kAcDocfk2+ZbNDvKGzb3tPW1vb5WCzmlXMj3HDDDVq1xbZK6ejoILGhQVg8aJPJ8bKogNEi5BS1Zfn7OAqFJ7MoFA0MpqQHLTIkcCZS3iAohkjgxAAcLelzdEy5leu0EIvFjgCFwpPjMd5KeMOGDU+Gw2Fees8ZY0lZpTusaVp6165dt3d3d78zl8vdumbNmiWl9WiqIZvNTnsFfKopVdq/yVo73sKFcz6qv9L/rEpX7xMQi7HxxsAnIWqNXQsZ6zUBF+UvgDFdUNTmnh7nXNQHJyNwlgX+bhrHFQaI/0ml2JtXgcoutUDF7QkxLy04ixYtujEUCj184MCBd5mmmQaE2GhpadGampru6+/vv7u+vv7bFANRimVZXwPwv0OhUD6AMRKJfGrTpk0nHMdZffTo0f9VbvVPyPNWa6qslrwFZ5Lvz0AMxGtQXGU1j+wQE12Nkwo/B6HsE6h+tUoTGaVZNo91IEQdlD8B0EUCx/M8I7jaMgzjHAAkk8m3tre3fy44EHmep+m6fv7JJ598XD5V9nuSO2kqAse27eyVV175/sOHD399x44d95cO/MGtJSrBGEuFQiEPABoaGm6LRqO3SrP/R06dOnUDtUHf9xfK1PmJWt7GRLr47t68eXNZC+R4q/MqsSGCbcniQXumlbPgUFspdReVVlkehNhLimJwKDMtuOp8HIXMwHEtOEE6Ozt1FIshWjhEMTpllr7HMGaI2tra/wXg7ROYACoet2jRojfW19ffWnrPGWPJnp6eaE9Pz/WbNm36V9u297S2tvJAwbUJtQVy449lLZks6XQ6DIy2jpIFZ7zYulgsNsptNkHrwdcgXP0Vx0A5Zq5Doe1PhO9CFMkr54KiOW28xc5UBE5wQ92lY1xHnirCHZ6HqGk15nlUDE6AeDzOr7vuuicAvMs0zfyNloWv/gAAduzYkTQMo2wdBqpbEsyiCvhr2aZNm05UWq3IYNZyhZimQqVU6mrIQNQDCUG4lKY1HgDCLbASog5PVQNWwPT/NERtiNJ02iBfguhY+ZoTvb29tatWrcpP6rFY7M+WLl36wdOnT7+prq6uaLJ3HEfTNG3cjWEp3gXFE+KE0HXdkRaQ4ASQp4qCjwDEpGJZlgsUC4r29vb2urq6/CRk2/YjV199dXoy1pRzh2nVAAAPvklEQVRKTJOIqUQMyGccobOzc0wXVUdHhy/bSunCIVLiDhiCyLYKQRZRk+8Lbkb6PyGyVLZClJ6vWuCgJF4HBQtOOYFD5yu7Wel08POf//wXMgYmv8HrVATDWPc8KPhd122aattYvnz56TNnziyfTlEOFJJBSv8P8Xg8WU0cRzgczpQpmVD151cbuzjRY0sYK4MWkJWGAwUBx2LSAqejo8OVfeobEKUYpup+PQCxKeeY51EWnBKoJgjnXCvX6RljiVIXBxGPxz3GGMrVl6imY4913ilCwmYqFpxlEGbRmYgHIIEzmeujSWvxWL5rGgw6Oztpp2eYpsmDk7q0OizM5XKjVqAybX9U8a9SSATlcrlfa29v//ZkJgvDMHKV2km1LirGWJIxxssM1kXnvgRCZCa4HaL2S3DVtgHCIrMJYw/8wTHrXohdvP8+cPwghMurtK5GUOCUpqvqEFaYagTOvRjtoqpBZQvOjAkcQOwY/+qrr7586tSp1VUIhklNFEGBY9v2kUrHVkNLS8vKpUuXjuqnU2XDhg2fPHLkyF+N9X8IbhhaDsuyRo1fk7UezBTjCKOK3y/AVGJwCHuseNCJMJ7QW7JkyYBlWcnJiPfZdeemEcZYPwCcO3duZbkYArkLNasUS8M5r6aA1igMw6jWlz8RpsOCswAzFw/QB5GiPhmBY0Hsi/JejO+7pjR/ZDKZsgGw5fzkMqB83O8dj8e9a6655sOHDx9+ZKIprAAQiUT8aDR6cpx2Va3ASafTaWsy1zEH2IPisgiAGORG7WlTQjDl+s/KnGMI4wicktokFCsTRXUC57/Lc9OxyyEEzmqMFjhkAZ60NbAa4mK/qLW7du0at9bRZLNRgjWPqHrxVJhM6YJqiEQin6HCnOVez2QyV1Xqm7Zt95S+PlnrwWUiBIybIg4U+sbGKo4di/D4h0ydlpaWjwwNDS2ZzDg47y04a9as+XG5xm4YxulkMhmutOKpskJouc/OAlM3F5cwHRYcAEhVEeE/GVyIjK2y8T3jYEIUU6sUiBb8HNxwww1/t3///vdPt4kbEHvvtLa2Dk5mdbl169Y7XnrppW80NDSMeV3VCpxIJPLZrVu3vjbdq9zZQLlVW5Um+1WonErbB2FJrGTBKYWKnlUjcDQUZwoegGiz21EicALusckuSqpmAla8yVpwplXgzBSV/g+bNm16vLu7+zej0WjZvrlr1673HT58+O8WLlxY9Hq1AdyzBNoDbbyyBNQ3HoKoVDwZS8zCGZpLihiv3EAl5rMFpxcAotHo4+VEhm3bD27ZsqVi5P9kBU5DQ8O/yd13p23l3SH2hwImb1KkQZZqckw3P4cIbOsf78AyLAMq7rsSxAGAG2+88d6JZG74vl9pi4wiprK6pJ2PK11XtQJnpla5c5hXIMasSiI4gkJlYRrEjwI4WWGlmoOYGKrtW3kXlWyvtN1JyxjHXzGFVfKsgDGWD+bWNK00sHtO0NTU9PZKmX+2bT9c7vXZ5qIaB4bqEj0oRjS4DcNEiENYLWdiLin+oCmMg/PWgkM7M3uet7CcJaWaFY/v+5P6/9TV1X1wx44dZS1H08BkJzsSOJ/DzMTgvAKRBTNRC9MHIEp/P4LqVhEOAJim6YxXRwYAdu7c+b+fe+65e3zfn9Yso7Gopl1VK3AUo/gERK2ZSqvTAwCegdgxfCNEhsYdAP6xwvtyEHVJVkEEcJbjZgDfl3+zjo6OYAbmkwBuQ2FjwSCPA/hriMKD0x3YPxkmO37krTZztf2O1zcrBFjPtQVGTxULxXqgEOA/Cd6MyWWAXVLmrcChomvHjx//RFtb20FMYmJjjLmTcTPNcNDnVAXOz2fIpPiK/D1RgfMQRHXmajuKU/K7IrFY7JMA7lm2bNn5s2fPzgpXz1jl8BXj8i8QLtAx24p0C/0CQuCQWNmPyu7Pn0EURnthjNcB4AcVXqP9jcqVFng7ZtdEMFkXVT5QOpPJXD3d6d2zmTnmogKqs6LXjX/I2EwhA+ySMm8FDiCyC8pl1FTDNddc8wdHjhz5zKVY9U+QqQqccVOlJwlVbZ1Qx5lER5mQqy4ej/NrrrnmD48ePfqptra2WXEvS6ocK6pkAm1lIHB8Ne97AkLgrOjs7Hx5rCy+kmrGQUjcj0rNnW0TwWSDjCmzFABOnjx5SywWmxV9aaapqalxa2pqBueYoEtWERtTf8mu5jIyp5yLE2UqvrtwOPz5yVZqnWGik/TnUzzCTAkcWqHO9CAwIQsOAEQikftm071UFpwZZ6JxYE8BOAvhJp1MTEEdRL+a8XiEy8327du/MJmqxXOVtra2d4+MjIy5e/ks5DaIWLDx2mI9UFW21ZxmXgucqTBLAzy3QxRWmsxAuhpi4F8/rVckCawWamfi/AFI2FxZbeecbfdyrsYwzCEGJnj8AQhX0q9jcq6kg1N47yXFMIzhaoPty6FpmjOb+tJMEwqFvjWbFkdVsBdjFwEM8gkIUT+vRfm8dlHNQ0oLlE2EAwDeMsn3ToSamTy53EU6DmEefwdmkfm/WpSLasY5BlS14SGAqbuRZpsbaix27dp115EjRx5uamqatHuJMVZpQ9x5x1wrojmBtvjPAE5gDojyqaAEzhxiKgPpJRyEGy9BbYQ5EcE/FsqCM+M4EMHI49UCmTSXov7HdGPb9jdbW1udqVgjcrnc+jkWj6Iow1wR5VNFCRzFdPIoRDrtjE0swNzvnJ4nMozVRDFjHMTk63tU4noA/xci5mbOBdlO1Rqxbt26X3Z3d/+XsQrlKRSzDSVwFNPJuzGHLSuXis2bN3/p2LFjH56FGXrzghkUwE9BWA83QMQ6vK5YunTptgULFkz7/lEKxUzBLnc8AGPszyGKvdFO0vdwzivVnKD3Pcs5v2omr02hmAna29sZlS9QFhyFQqGYGWaLwElwzv/PBN+nBI5CoVAoFIqyqDRxhUKhUCgU847ZInA+yhj7JWPsq4yxhrEOYox9kDH2LGPsWQD2Jbw+hUKhUCgUc4hL4qJijP0YYoffUv4MInCvD6IC7l8AWMI5f++MX5RCoVAoFIp5y2WPwQnCGGsB8H3O+abLfCkKhUKhUCjmMJfdRcUYWxJ4+F8BHLpc16JQKBQKhWJ+MBvq4Pw1Y2wbhIuqG8CHLu/lKBQKhUKhmOvMKhfVVGGMHQKQudzXoRjFAog4K8XsQt2X2Ym6L7MTdV9mJ32c87eWe2E2WHCmk4yqjTP7UDWLZifqvsxO1H2Znaj7Mve47DE4CoVCoVAoFNONEjgKhUKhUCjmHfNN4Hz5cl+AoizqvsxO1H2Znaj7MjtR92WOMa+CjBUKhUKhUCiA+WfBUSgUCoVCoVACR6FQKBQKxfxjXggcxthbGWNHGWMvM8b+5HJfz+sJxtgKxtgTjLHDjLEXGWO/J59vZIz9iDF2XP5ukM8zxtgX5L36JWNsx+X9BvMbxpjOGNvPGPu+fLyKMfa0vC97GGOWfD4kH78sX2+5nNc932GM1TPGHmOMHZF95zrVZy4/jLE/kOPYIcbYtxljtuozc5c5L3AYYzqABwD8GoBWALczxlov71W9rnABfJxzfiWAawH8rvz//wmA/+CcrwPwH/IxIO7TOvnzQQB/c+kv+XXF7wE4HHj8aQCfk/dlEMD75PPvAzDIOV8L4HPyOMXM8XkA/8Y53whgK8Q9Un3mMsIYWwbgYwCukvsh6gBug+ozc5Y5L3AAXAPgZc75Cc55DsA/ALjlMl/T6wbO+TnO+fPy74sQA/UyiHvwiDzsEQD/Rf59C4BHueApAPUl+5EppgnG2HIAbwfwFfmYAXgzgMfkIaX3he7XYwBukscrphnGWC2AGwE8BACc8xznfAiqz8wGDABhxpgBIALgHFSfmbPMB4GzDMBrgcen5XOKS4w00W4H8DSAZs75OUCIIACL5GHqfl067gfwRwB8+bgJwBDn3JWPg//7/H2Rrw/L4xXTz2oAvQAelu7DrzDGolB95rLCOT8D4P8AOAUhbIYBPAfVZ+Ys80HglFPMKvf9EsMYiwH4DoDf55yPVDq0zHPqfk0zjLGbAfRwzp8LPl3mUF7Fa4rpxQCwA8DfcM63A0ii4I4qh7o3lwAZ83QLgFUAlgKIQrgHS1F9Zo4wHwTOaQArAo+XAzh7ma7ldQljzIQQN9/knP+TfPoCmdHl7x75vLpfl4YbAPwGY6wbwm37ZgiLTr00vwPF//v8fZGv1wEYuJQX/DriNIDTnPOn5ePHIASP6jOXl7cAOMk57+WcOwD+CcD1UH1mzjIfBM4zANbJSHcLIijsXy/zNb1ukD7nhwAc5pzfF3jpXwG8S/79LgDfDTz/32RmyLUAhsksr5g+OOd/yjlfzjlvgegTP+Gc3wngCQC/JQ8rvS90v35LHq9WozMA5/w8gNcYYxvkUzcBeAmqz1xuTgG4ljEWkeMa3RfVZ+Yo86KSMWPsbRCrUx3AVznnf3WZL+l1A2PsDQCeBPACCrEe90DE4ewFsBJi4PhtzvmAHDi+BOCtAFIA3sM5f/aSX/jrCMZYO4A/5JzfzBhbDWHRaQSwH8BuznmWMWYD+DpEDNUAgNs45ycu1zXPdxhj2yCCvy0AJwC8B2LBqfrMZYQx1gngnRDZofsBvB8i1kb1mTnIvBA4CoVCoVAoFEHmg4tKoVAoFAqFogglcBQKhUKhUMw7lMBRKBQKhUIx71ACR6FQKBQKxbxDCRyFQqFQKBTzDiVwFArFrIYxtpIxlpAb6yoUCkVVKIGjUChmHYyxbsbYWwCAc36Kcx7jnHuX+7oUCsXcQQkchUKhUCgU8w4lcBQKxayCMfZ1iGq+35OuqT9ijHHaD4gxFmeM/SVjbJ98/XuMsSbG2DcZYyOMsWfkzvZ0vo2MsR8xxgYYY0cZY7denm+mUCguJUrgKBSKWQXn/C6IrQp+nXMeg9i+oJTbANwFUUZ/DYAuAA9DlNM/DKADABhjUQA/AvAtAIsA3A7gQcZY2wx/DYVCcZlRAkehUMxFHuacv8I5HwbwOIBXOOc/5py7AP4RYn8gALgZQDfn/GHOucs5fx5i5/vfKn9ahUIxXzDGP0ShUChmHRcCf6fLPI7Jv68AsIsxNhR43YDYJFGhUMxjlMBRKBSzkenaBfg1AD/lnP/naTqfQqGYIygXlUKhmI1cALB6Gs7zfQDrGWN3McZM+XM1Y+zKaTi3QqGYxSiBo1AoZiP3AvikdC1NOl6Gc34RwK9ABCWfBXAewKcBhKbjIhUKxeyFcT5dlmCFQqFQKBSK2YGy4CgUCoVCoZh3KIGjUCgUCoVi3qEEjkKhUCgUinmHEjgKhUKhUCjmHUrgKBQKhUKhmHcogaNQKBQKhWLeoQSOQqFQKBSKeYcSOAqFQqFQKOYd/x9xVNR0r10MNAAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -679,7 +720,7 @@ "T, N = data.shape\n", "# print data_mask[:100, 0]\n", "dataframe = pp.DataFrame(data, mask=data_mask)\n", - "tp.plot_timeseries(dataframe, figsize=(8,3), use_mask=True, grey_masked_samples='data')\n" + "tp.plot_timeseries(dataframe, figsize=(8,3), use_mask=True, grey_masked_samples='data'); plt.show()\n" ] }, { @@ -689,14 +730,15 @@ "outputs": [], "source": [ "# Setup analysis\n", - "def run_and_plot(cond_ind_test, fig_ax):\n", + "def run_and_plot(cond_ind_test, fig_ax, aspect=1):\n", " pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test)\n", - " results = pcmci.run_pcmci(tau_max=2,pc_alpha=0.2, )\n", + " results = pcmci.run_pcmci(tau_max=2, pc_alpha=0.2, )\n", " link_matrix = pcmci.return_significant_links(pq_matrix=results['p_matrix'],\n", " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", " tp.plot_graph(fig_ax = fig_ax, val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix, var_names=var_names,\n", - " )" + " node_aspect=aspect, node_size=0.02\n", + " ); plt.show()" ] }, { @@ -706,19 +748,31 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM0AAACUCAYAAAAwPa1WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAALcUlEQVR4nO3de4xU5RnH8e/DXmCXLlDlUi9clKJdgkILMWLwQq1aleKlptVUJdaGoAa1rW1t1dZoahs1GksjXlqLtY14qRdYLTaIlyAgoixQRUABuWi4VGGR286cefrHGdZldtmdl51hZvD3SSYz855z3vPMMj/OOe+8s2vujohkr1OhCxApNQqNSCCFRiSQQiMSSKERCaTQiAQqL/D+Nd4txcxaa9SRRiSQQiMSSKERCaTQiARSaEQCKTQigRQakUAKjUgghUYkkEIjEkihEQmk0IgEUmhEAik0IoEUGpFACo1IIIVGJJBCIxJIoREJpNCIBFJoRAIpNCKBFBqRQAqNSCCFRiSQQiMSSKERCaTQiARSaEQCKTQigRQakUAKjUgghUYkkEIjEkihEQmk0IgEUmhEAik0IoEK/SfRW/DGnbBlPWzdAMlGKK+E7n2gxxFYZVWhy5MS44ldsG0DbN8MUQLKKqBrT6jpg1V02a8+iyY03rARXz4bVi2AxI6WK1RW4wOGY8ecjHXrfeALlJLi2zfjaxbAJ0sguavlCuVV+GFDsH4jsK49g/o2d89RmfvF3R1WzMYX1UFid/tbVHTGho6BQaMws/xXKCXF3WHtAnzFKxBl8X4q64wNGg19R7T2fmr1DVbQ0Li7e/00WPpK+Ma1o7FhYxUcaeLu+PKZ8NG88I37j8SOOT3z/dTqm6uwAwErZu9fYCDebsXs3NYjpW3tgv0LDMBHc+Pts1Cwa5rUnH+MYv2SrNdfuXErdzw3n607Gnnq+nMB4lO6rx2raxyJr2FWZPcf8PZdjVwzqY7K8jJOHTqAH317aNzHilfg0KPavcYp3JHm0zXXZV7DTJ65mGv+Nqvp+S1PzuHy+18C4Oje3fnL+DP27iOxG9fRRiC+6G92DTN5+nyumTS96fktU2Zy+Z3/AuCZ2e/x/ZMH89BPz2P63GVfdBLtxte83e6+ChIaXzqrP9u3fC+zfdzJtdS9s4ot23dT985KXqxfzYM/Ob3tzlYtiIep5UvLE7viUbJmxp0xjLp5y9jy+U7q5i3jxfnLefC6sQCs39xA317dASjrlHHZ8smSuL82FOT0zDd8cCJRY+fM9urOFVw88lhufnIOMxat5qVfX0BVZTslNu6ALR9D74H5KleK3bYNLYaVq7tUcvHo47h5ysvMeGsFL/1hHFWdKwA4omc31m1qYNjAw0hlDoQld8K2jXBIv33urjCnZ7u21e5r0RWnDWbyzMXcc9mpDOzTo6n9f9t2ctVfX6b+o0388fm39t6oYUPeSpUSsH1zq81XnPktJk+fzz0Tzmbg4Yc0tV84ajDPzH6Pq/80nTEnHttywx2b2txdYQYCUlHXfS26/Zk36dWtimQqtVf7oTVVTL5yH6dqicacliclJkq02nz7P1+lV/euJKO930tdu1TyyA0X7Lu/ZOv97VGYI02nsu2tNd/zwjvsSkRMnXgOk2bUZ99fRWWuKpNSVFbRoumep99gVyLJ1Jt+wKTn5ob1V96yv+YKE5ouNUszm2a9u5Ypr7/HlAlnctrgI2nY2Uj96rYPk0269cl1hVJKMoaIZ9WvZMp/FjLlhgs5behRNOzYTf2Hn2TfX3WvNhcXJDTW5+vzKK9sunJbs7mB8Q/P5Ilrz6GmKj5qTDxrGPfNWNh+Z5XV0OPwvNUqJaCmD5THk3nXbNzC+Huf54mbf0hNdTzWNPH8kdz3bJZHm/IqqGn7c7+CTaNJ1d3xFA0bL+pwR8eeQqfhF+agIillqaUzYO1b7a/Ynr4n0Kn2rD3PimwazSH97qOixahzmIrO2KBRualHSpr1GwFlHXw/lXXG+g1vd7WChabTSZfOtqFjOtSHDR2jKTQCgHXtGc9W7kgfg0Zn9TWBwk7YHDQKavfzhdaOjrcX2aPvCOh/4v5t239kvH0W9H0aOagc9N+nAZp27g0b48mXqxbEU2MyVVbDUSOwQaN0Sibtir+5+Xb6m5utzE0sr4LDjsP6DW/rlKy4Q9PU0LgznkvWsCH+pL+iMv4cpsfh+h0BEiz+HQEb46kxyUT8wWV1L6jpnc3vCCiN0IgUkSIbchYpUQqNSCCFRiSQQiMSSKERCaTQiARSaEQCKTQigRQakUAKjUgghUYkkEIjEkihEQmk0IgEUmhEAik0IoEUGpFACo1IIIVGJJBCIxJIoREJpNCIBFJoRAIpNCKBFBqRQAqNSCCFRiSQQiMSSKERCaTQiARSaEQCKTQigRQakUAKjUgghUYkkEIjEqi8Q1vv3OR4ElIReASpJO4RmW1N981vnsRbtKXi+yiCVCruI0plPE4vi6L4lkxCIhnfJ5N4s8d7tSdTTbdU5Hjk8fM998kUqaSn7yNSiSSpRJIoff/F472XRYmIZDIiSqSIkhHJRLTXfZSIiKIUUZQiAW3ekun73xb2jwdLOzoWGsmXVv+qsBQHnZ6JBFJoRAIpNCKBFBqRQAqNSCCFRiSQQiMSyLwDH6SZ2Xh3fyiH9ey3YqmlWOqQ/OnokWZ8TqrIjWKppVjqkDzR6ZlIIIVGJFBHQ1NM5+7FUkux1CF50qGBAJEvI52eiQTKKjRm9l0zW2ZmH5jZja0s72xmT6SXv2lmA3JdaDZ1NFvvIjNzMxuRjzqyqcXM+pnZK2a20MwWm9k5+apFDjB3b/MGlAEfAkcDlcAiYHDGOlcDD6QfXww80V6/obds6kivVwO8DswDRuS6joCfyUPAVenHg4HV+ahFtwN/y+ZIcwLwgbuvdPdGYCpwXsY65wGPph8/DZxuZrn+IlU2dQDcDtwJ7Mrx/kNrcaBb+nF34OM81iMHUDahOQJY2+z5unRbq+u4exLYChyaiwJD6jCzbwJ93b0ux/sOrgW4FbjUzNYBLwIT81yTHCDZhKa1I0bmkFs263RUm/sws07AvcDPc7zf4FrSLgGmuPuRwDnAY+kapcRl84+4Dujb7PmRtDzVaFrHzMqJT0c+zUWBAXXUAEOAV81sNXAiMC1PgwHZ/EyuBJ4EcPe5QBegZx5qkQMsm9C8BQwys6PMrJL4Qn9axjrTgHHpxxcBszx9BZxDbdbh7lvdvae7D3D3AcQDAWPdfUGO62i3lrQ1wOkAZlZLHJpNeahFDrRsRguITy+WE48Y3ZRuu434TQnxG+Ip4ANgPnB0PkYt2qsjY91XydPoWZY/k8HAG8Qja/XAmYUe9dEtNzfNCBAJpAtTkUAKjUiggyI0Zna+mQ3ej+3czB5r9rzczDaZWV2ztrPNbIGZLTWz983s7nT7rWZ2Q25egZSSgyI0wPnEF96htgNDzKwq/fwMYP2ehWY2BPgzcKm71xIPaa/sYK1S4oo2NGb2nJm9bWbvmtn4dNvnzZZfZGZTzOwkYCxwl5nVm9lAMxtmZvPSEyWfNbOvtrGrfwPnph9fAjzebNkvgd+7+/sQz3Zw9/tz+Tql9BRtaIAfu/twYARwrZm1Oi3H3ecQf0byC3cf5u4fAn8HfuXuxwNLgN+1sZ+pwMVm1gU4Hniz2bIhwNsdfylyMCnm0FxrZouIP6TsCwzKZiMz6w70cPfX0k2PAqfsa313XwwMID7KvNiRguXLoShDY2anAd8BRrr7UGAh8QeozT9U6hLYZ9/06Vu9mU3IWDwNuJu9T80A3gWGh+xHDn5FGRriuWufufsOM/sG8TwygA1mVpue+HhBs/W3Ec89w923Ap+Z2cnpZZcBr7n72vTp2zB3fyBjf48At7n7koz2u4DfmNkxEE8KNbOf5exVSkkq1j/qNAOYYGaLgWXEp2gANwJ1xNPy/wt8Jd0+FXjYzK4lnvs2DnjAzKqJR7uuaGtn7r4OuK+V9sVmdj3weLovB17o4GuTEqdpNCKBivX0TKRoKTQigRQakUAKjUgghUYkkEIjEkihEQmk0IgE+j+dv/j0slNEngAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAACUCAYAAADxuuf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAP+ElEQVR4nO3de5hU9X3H8fd3ZnZmF4TlJncUpdGAGBCMjXmqkkRMQloVa6umGjU2PEQebZKa1jYmzRPTG6bkMZqgaFNomgqaeoNYsHh9VJQIrHhFdF0EgrDIZbns7sw58+0f5wiz617mcn7LYfm+nmeec+bMmd/vN3POZ87tNzOiqhhj3Egc6QYY05tZwIxxyAJmjEMWMGMcsoAZ45AFzBiHUke4frtGYOJMKi3AtmDGOGQBM8YhC5gxDlnAjHHIAmaMQxYwYxyygBnjkAXMGIcsYMY4ZAEzxiELmDEOWcCMccgCZoxDFjBjHLKAGeOQBcwYhyxgxjhkATPGIQuYMQ5ZwIxxyAJmjEMWMGMcsoAZ45AFzBiHLGDGOGQBM8YhC5gxDlnAjHHIAmaMQxYwYxyygBnj0JH+f7CKaN6HXZvRDzZCYz14rZBMweATkeGnwJCxSLLqSDfTOKB+DvZsQT+sh6ZtkPcglYGBJyKDxkL/4Ygc+e2HqB7R/8Arq3LN+2j9aqhbCnk/eHPz/uEZJAGpNKjCxOnIKeciqXRUbTZHkHpZdNMqaFgFJMDP0mY1kiQkkpCsQk6dDsMnIlL2/+hV/Ad8R13AtKkRfWo+tO4HL9v9E5JVkEoj530DGTK2jCaauNBdDWjdA+GHaq77JySrINMfmfpVpGZAOVUeWwHT7RvRZ+4Ng1Viu5NV8IdXkBg7pbTnmVjIb1kLb60I9lZKIsEH7JSvIgNGl1rtsfMXsrqjHn16QXCcVc6epZ+Dl+4j37A28rYZt4JwPV5GuAAUvFZ0zX+hTdsib1t3joqA6cG96DMLgpBUIgyZ7v59NA0zzumereGWq/Jlr2t+jWYPRtOwIh0dAXt+UXHHW8Xwc+iz9wRnIE2sqe+hdUvK3HJ1wMuirz0STVlFin3A9IO3YdcW0Hx0hbYeQOt/F115xgnd/HJ4ljCqAn3Y1YDu7bk9mFgHTFXRNQ9G+yZDsDWsezS4lmJiSb1WePfZyg8L2st76Fsroi2zC7EOGDvfgwO73JSd9+D9V9yUbSq37dVo91oK7duO7tvupux2Yh0wbVgDnqOtjJcNLlabWNKtdZWf2Oi0cB/94HU3ZbcT24CpKmyqo8zOHsVprEdzre7KN2XR7EHYt8NhBflgC9kD4tsXcf/Oio696nfs5Z8eXs3eg1ke+NZXOp4pmYIPG2D4qWXXYxzYvSno7uSXfqb3QEuWOXcsI51Kct6ksfzF5yd1PGP2ANp6AMn0rbCxXYvtFoymHcGb3IX5K9cz5z+ePHT/+/e/wNd+ERzAnjy0lntnTe+6Dt+DvQ4/KU1Z9MDOLk9uzF+6mjl3LD10//sLV/K1uf8DwIPPvcGfnjOBBd++iKWrNnReSSIFB3ZG1uZOq3FeQ7matnd7Bunqc8azbO177DnQyrK19TxW18Ddf/mF4uvIe+juLRU21ERu7za6OjS4evpklr24gT37m1n24gYeW/02d//VhQBs3dnEmONrAUgmuujplM/3SMBiu4uoe7e37SHfgT6ZKi4/+1Ruuf8Flr/SwIq/m0lNusSX1GRbsNhp3t3lw32q01z+udO5ZeETLP/dRlb889XUZIKvJY0a0p8tjU1MHjeCfFf9bPM5tHlP5Z0NuxHfLViRx1/XTpvA/JXrmXfVeYwbdrjH9If7mvnmvz9B3aZG/uWRLi4q27Ww+Cmi58a1F0xh/tLVzJv9ZcaNHHRo+iV/NIEHn3uD63+2lD/+TDfH1lFfX+1AbLdgxXZkvvXBlzi+fw1evu01k8H9aph/XRG7i+V/V8g40/0yufXXT3N8bV88v+1y71ud5pc3zYysnkrFdwtWVd3tLPN+u5aWnM/iG2Zwx/K68uqxL2LGT7Lrz/15v3melpzH4u/9OXc8vKr8enpg2cc2YFI7PDjT04knX9/MwmffYOHsC5g2YTRNzVnqGhpLr6h2RAWtNE70HdLpQ0/W1bPw8XUsvOkSpk06iaaDrdS9W8bXUJJVSJ/BFTSyOLENGP2HdfpJ9v7OJmbds5IlN86gX03wKXTDFydz+/J1pdWRrEIGjqy0pSZi0n9E8NX/dt7fsYdZP32EJbdcRr8+GQBuuPhsbn+ojK2YJKCv+4DF9hvNenAP+uiPo/uqQkdS1ci0byBDx7mrw5RMGzei6x8C32EvG0ki076DdH0o0nu/0Sx9BkD1cW4rUR8Gn+i2DlO6gSe6/WAF6DOwu3BFIrYBA+CkT3e4qxCZkeORbg6oTc+TVBoGnuCugkQKRk52V35hVT1SS5nkxCmQcNTEVAY56Sw3ZZuKyahJkHR3lk+Gj3dWdqF4B2zACBgyFifXKzJ9YdSE6Ms10Rg2IfglsKhJAoaMK/dn3EoW64AByJSZ3V4XKVkqjUy9JBa//Go6Jolk8MOhUYdMEsgp50dbZhdiv4bJwJEw+vToQiYJqB0Oo06LpjzjzvDToHoAke3BJFIwchLSZ1D380Yk9gEDkLMug8xxRPJGp9LIOV+v5OeUTQ8RSSBnXBbNVkwEqvsjp15QeVklODoCVpVBPj8HqjJUFLJkGpk2K7gEYI4K0mcgMvnPuuzV030hElzznHplj581ju2F5g5n3teIPvFzaNnX7VdZ2pBEcNbwc7ORIXbd62ikuzah6xaH334oYbWRZLDlOvMqpKa21GqPrd+mh+D3GvS5RcHfFRXzVZNUGvoNRc69Duk7sJw2mpjQAx+idfdDy97iln0iBYPHIadfhKQy5VR57AXs0BMb30PXPgS7t0KiCryWww+mMsEW7rhByBkXBxeU7ZirV1BV2LEBfXsltDYFW6jC73UlM8GvUdWOQj75xaBfY/mO3YAdKiB7EHbUo7s2Q6452BUcMAKGfgKp6RdFG01Macs+2N2A7m8MtmipaqR2JAw8odwtVnsWMGMc6r2dfY3pDSxgxjhkATPGIQuYMQ5ZwIxxyAJmjEMWMGMcsoAZ45AFzBiHLGDGOGQBM8YhC5gxDlnAjHHIAmaMQxYwYxyygBnjkAXMGIcsYMY4ZAEzxiELmDEOWcCMccgCZoxDFjBjHLKAGeOQBcwYhyxgxjhkATPGIQuYMQ5ZwIxxyAJmjEOV/WFtc6OiXvBnd+pD3kPVp/20Q8PCm3rox6blg6HvQz4flOHn242Hj/l+cPM8yHnB0PPQgvE20738oVveV9TX4P5HQy9P3tNw6JPPeeRzHn44PDze9jE/5+N5Pn4uj+/5eDm/zdDP+fh+Ht/Pk4Mub144/IGjv5Sq/vRskpkaUukakunqgvGacDxDqioZ3NJJUlWJj41n0klq0kn6pJOkU0lqqoLxmoJbdSpJdSpBJpUgk0wcGq9OJcgkk6RTQlVCSCUKhwTDZHA/4efAzyF+FvGykPeDcT8LXjBdsy1oa0swzLagrc0F4y34ra34LVm8lnDYnG17vyWL1+LhNXvkwqHX4uFn/Y+ma67Vp9nP0+xreAvGW/L5Q/d/nm/o9G+OevYfoU2xXP0dp/0fWw+zXURjHLKAGeOQBcwYhyxgxjhkATPGIQuYMQ5ZwIxxSVXLvgGzKnl+lLe4tCUu7TiS7Y9LGXFoS6VbsFkVPj9KcWlLXNpRrijaH5cyoiqn7DJsF9EYhyxgxjhUacAWRNKKaMSlLXFpR7miaH9cyoiqnLLLkPAgzhjjgO0iGuNQUQETkS+JyAYReUdEbu7g8YyILAkff0lExkbd0GLaUTDfpSKiInKmi3YU0xYROUFEnhKRdSKyXkRmuGpLJURkkIj8n4hsDIcDO5lvroi8LiJvisjPRERKLSOct7+IbBWRO8P7Fa9bUa0XTpZpEdcAksC7wMlAGngFmNBunuuBu8Lxy4ElDq7PdNuOcL5+wLPAi8CZUbejhPdkAfDNcHwC0OCiLRG8lrnAzeH4zcC/djDPZ4Hnw9edBFYB00opo2De24H/Bu6MYt2Kar1wtUyL2YKdBbyjqvWqmgUWAxe1m+ciYFE4/hvgC4WfcBEpph0AtxIs8JaI6y+1LQr0D8drgd87bE8lCpfdIuDiDuZRoJpgxcsAVcD2EstARKYCw4DHw0lRrFtRrRdOlmkxARsFbC64vyWc1uE8quoBe4HBRZRdim7bISJnAGNUdVnEdZfcFuCHwJUisgV4DLjBcZvKNUxVtwGEw6HtZ1DVVcBTwLbwtkJV3yylDBFJAP8GfLdgchTrVlTrhZNlWkzAOtoStT/1WMw8leqyjnAB/hT464jrLbktoSuAhao6GpgB/CpsY48TkZUi8loHt44+6Tt6/h8A1xB8Ym8Fvi0i9aWUQbCr95iqFq7EUaxbUa0XTpZpMb/JsQUYU3B/NB/fNH40zxYRSRFsPncVUXYpumtHP2Ai8HS4BzEceFRELlTVl3u4LQDXAV+CYAsgItXAEGBHxG3plqqe39ljIrJdREao6jYRGUHH7ZsJ3K6qt4bP+QHQoqpzSyjjbOAcEbkeOI5gd7M/wS7jR8pZt6JaL9ws0yIOglNAPXAShw/+Tms3zxzaHoje7+BgvNt2tJv/adyd5CjmPflf4JpwfHy4sMRFeyp8LbfR9gTF3A7muQxYGb7uKuAJ4E9KKaNdedcQnOSoeN2Kar1wtUyLXQgzgLcJzrJ8L5z2I+DCcLwaeAB4B1gNnOxoZeiyHcW8kT3VFoKzTM+HC6oOuMB1WMp8HYPDwGwMh4PC6WcC94bjSeBu4E3gDWBeqWW0m/8a4M6o1q2o1gsXy9R6chjjkPXkMMYhC5gxDvWKgInIxSIyoYznqYj8quB+SkQaRWRZwbQvi8jLYReht0TkJ+H0H4rITdG8gmPPsfLe94qAEfQcKDlgwAFgoojUhPenE1znAUBEJhKc7bpSVccTnO6tr7CtJnBMvPexDZiIPCwia8IOprPCafsLHr9URBaKyGeBC4HbRKRORMaJyGQReTHskPlQV51PCU69fiUcvwK4r+CxvwH+UVXfgqAngar+IsrXeYzr9e99bAMGfF1VpxKc6r1RRDrseqWqLwCPAt9V1cmq+i7wn8DfquqngFeBf+iinsXA5eFFw08BLxU8NhFYU/lLMZ3o9e99nAN2o4i8QtD7eQzwiWKeJCK1wABVfSactAg4t7P5VXU9MJbgE/SxShpsSnMsvPexDJiITAPOB85W1UnAOoILjoUX7apLLHNMuAtZJyKz2z38KPAT2u6iALwOTC2lHlOyXv3exzJgBP3NdqvqQRH5JPCZcPp2ERkfdrCcWTD/PoI+Z6jqXmC3iJwTPnYV8Iyqbg53ISer6l3t6vsl8CNVfbXd9NuAvxeRUyDoOCoi34nsVRro5e99XP+AbzkwW0TWAxsIdhMh6Oe2jOBrBa8RdBqFYF/+HhG5EbgUuBq4S0T6EJx5urarylR1C8EXAdtPXy8i3wLuC8tS4LcVvjZToLe/99ZVyhiH4rqLaEyvYAEzxiELmDEOWcCMccgCZoxDFjBjHLKAGeOQBcwYh/4f2x+N5/hw2ToAAAAASUVORK5CYII=\n", "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" - }, + } + ], + "source": [ + "# Causal graph of whole year yields no link because effects average out\n", + "fig = plt.figure(figsize=(3,2)); ax=fig.add_subplot(111)\n", + "run_and_plot(ParCorr(mask_type=None), (fig, ax), aspect=20.)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAACUCAYAAADxuuf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAASTUlEQVR4nO3de3hcdZ3H8fd37pMmbUnv9H6hJeVWaGkR8bKI+wirgC7Ps/isF2R9WBVFF9ddRGC964KLDysgIo/CghdWH+tCqbJqtbogbaGUFtskTdrSpk2TtKW5zvWc3/5xTsNkkrQzmfk10/T7ep7znDPn8ju/mTmfzDm/85uMGGNQStkRGO0KKDWWacCUskgDppRFGjClLNKAKWWRBkwpi0KjvH+9R6AqmZRagH6CKWWRBkwpizRgSlmkAVPKIg2YUhZpwJSySAOmlEUaMKUs0oApZZEGTCmLNGBKWaQBU8oiDZhSFmnAlLJIA6aURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFIWacCUskgDppRFGjClLNKAKWWRBkwpizRgSlmkAVPKIg2YUhZpwJSySAOmlEUaMKUs0oApZZEGTCmLNGBKWaQBU8oiDZhSFmnAlLIoNNoVyGecNCQPQ/IouFkIhCA2EWKTkGBktKunTjEmk4Tug9DTAdkMhMJQPQVqpiPhmPX9V0zATPIo5sgOeL0Z3NTgFQJRzBkLkdo6JDbx5FdQnVJMTwdm74tw4BXIJAevEI5jZpyHzL0YqZ5irR5ijLFWeAGMMQYOb8e0vQRu5sRbBMLItBUwqQ4RsV9DdUoxxsDejZiGdeAM8Yc6XzCKLLkc5qwc6ngq+QAb1YAZY4w5uBEOvVr8xpPPQ6ZfrCFT/YwxmPrfwJ7ni9943qXI2e/MP55KPrhGt5Hj8PaRhQvg0DZve6WO2btxZOECb7u9G8tbH0bxGszdt/4yul4reP1dLR18/fvP0Nmd4Gf3fhzAO62snqnXZMq75mpYV9C6vck0Nz+wlkgowNvOn8ff/9X5XhkN62DSgrJek43eJ1ii49P511zfffL33PzVJ/of3/md1Xzo9kcAWDBrCo986YaBZbgZr2FEnfbMa5sGXHN995lN3PzAM/2P73xsHR+6ZzUAv3huB397WR0Pf/pqnn6h8Y1CnJTXMFJGoxIw07FtLune9+TP//DVl7Jm/Ssc7epjzfpXWPunrXzvrg8dv7DXm72mfXXaMpkktG4dMO/D71jGmg2NHO1JsmZDI2s37eR7t7wbgP2Hupg9eQIAwUDeZdaBrV55ZTIqp4imt/USTDaaP78qHuX6K1dyx3dW8+v/28azD99KPHaCe19uCpJHYNz0vNlJUq37SR1oIRCLM/6ilWV9DqqCdB/sb4p3HZfulqN0Nh/indOn8IVHf8ezm5t49msfJB4NAzBz8nhaDnWxbOF03PxGvkwCutugdm5ZqjY612DZRN1wiz7y3ss455o7WX3fJ1k4e2r//MNHe7jjO6vZUr+Xbz6ylts+ehVu1iHTlSDbu4lMb4jk/n2kDuwjdaCFzKF28F+8mTd9xv5zUqPGdLfT197N0V2H6NxzBDftAHDtnDO5Zu2fWH3X9SycUdu//vveXMenHvwVazc18u5ViwcX2NNxigfMuOOGW/SVh55myhk1ZB2nf17iwBHc3e3cueIcbluygGx3gvpvP42TKODUUAKMX76qLNVWlSV18ABHn/8DR9c9Q/rw64OWP/RqE7XxKFnHHTB/XCzCD269ZviCnQLuxxZodAImgd6hZt/72LMk0xl++q1/5EsPPsX7rlgOQOSMajrXbibV3ln0rqqW1BEaP6G0+qqKYFyHvp31dL20ge7NG0jt3zfsuo/V7ybtutxzyQXc94s/8743D3vSNFgwXIbaekYnYKH4oKa/dRt28Ogvn+O5J26nZlyMz/Y+yZb6vSw7ew7BeIR511/G7ifWkz7SU9SuqhYsxrguEtB+zaciJ9FHz9bNXqi2bMLp7jrhNhvaDvPL3S08ccWbGBcOcW99E1uaD7Js4fQTbgt4fRXLZFR6cpiObXNN++Z63GwMYG/rYS6/8R6efuAW6hacCcCj//Mc6zc18MOv3ti/Xaarj92PryfT2VfU/kITz6DmghXUXHgx1eddSLBq2DNUVQHSHW10bd5I9+YN9G7fislmC962tTfBjes28MBbV7BgQjWBSJDf9HbycmcXP7z12hMXEI4jb/v0sY7Ap25XKbfx5z8j1XldsduljvSw5/H1ZHtH2JQaDDJuyTnULFtBzYUric6crd2tRplxXRK7dtL10gt0b95Icu/u0goUqJ45kYkLJlMzeyKBYBFnL3NXEVh6ZU5JJVZl1ALm9eT4U0EdfPMk2zvZ86M/FtbIcQLh2slULa7zh6XE5y5AQhXzJYMxyRhD5lA7fU0N9GzbTPfLm8geHdxIUazYpGomLqhlwrxJhOIjuI4KRpFLP5rbk+PUDRiAOfQXY1pfGNG2idbX2fOT53GT5bspCCDhCPGFZzFu8VKqzjqbqrPqCE3QrlilcPp6STQ30tfcSF9TA4mmBrKdpQcKIDprLuOXr2Lim99O1G3DbP/ViMuSpVcicwe0OJ/iASuxN32ip4Y937wLt2/IRsmyiUw/sz9sVYuXEps9BwkEre7zVGWyWZL7XqOvqZ5EcwN9TQ2kDrT035MsWTBIdd151CxfxfiLVhGZ+kbDRSX2pj/lvw/W19zI7m/cgds7sHWxanEdBAL0Ne4A1x2msJEJxONULVzinVLOX0Rk2gwi06YTiAzqnDKm5Z7qJZoa6GtuILG7GZMu4HtYRQiOq6bmwoupuWgVNRcsP24jlX4fbKD+nRfyjWaG+UZzYncTu7/+BZye7v558+/4BtXnXIDT0023f57fveXFgpp5RypUO4no1Bl+4AYOoeoaa/u1yenrJd3RRrr9IJmOdm+6o42MP3YTxbXoFioyYybjl1/C+ItWUrV4KRIs7ozB9HRg9r0I+7d63Z/yheNw5vnInBXH6z0/dgLWP8NJe30LU0e9O+rBMEQnQqz2uP+TI/HaLnZ/7Xac7i6C1TXUPfTjQW+KcR0Su3bS/fKLdL+8kcSeXWDK++k2nMC4aqK5ofODGK6dRCAWJxiPI5HoSW/RdJIJMu0HSfeHZ2CQ8s8MrAkEvNbdi1YxfvlKojNmlaVY739ytHndn44dT9VToGZaIf+TY+wFrBTJfXvY9dXPU7PsYmZ//NYTru/09ZFobqB35w76GnfQt7Pe+vXccUmAQCxGIB4nGIsTyB2GmBeMxyEQwE2lMOkUbjqFm/LGJpX3eJhlJjNK30QIBIjNmU/VoiVU+bdNKvBTXgOWL9myl2zXUaqXnl98ZVyX1IEW+hq39wcudWD47jiqcOHJU6latIT4wiXeeP5CAlH7/9WpRBow27I93fTtrO8PXaK5ETdV3lsDY00gXkV84WLv02nhEuKLFhOeWHviDSuPBuxkM45Dcu8e+nbuILFrJ+m2VlLtrWSPHB7tqg2yp6uXR7Y3c/msaVw+a5qVfUgwRHT2XC9Mi5YQX7SE6IxZY6XvpwasUrjpFOn2NtIHD5BubyXV1kr62NDRBjlfvzmZNrUdpjuTHXnAAgHCk6cSmTyVyJRphKdOIzLFG8JTphE+o3Ys3xMsOWDaJ6hMApEosVlziM2aM2iZcRwyhzu8T7vc4LUfxOntwU0mcJOJojq1lo0ECE+a3B+YyJSpRKZM758O104uuolcvUE/wSqIm83gJhL9gXNypt1EAjc1eJ5xXQLRGIFolEA0ikSiBCIRApEY7T293PujH5PMZPn8J29m3vz53vJolEAkikS9dcfwJ1Cp9BRRKYtO8X88qtQYpwFTyiINmFIWacCUskgDppRFGjClLNKAKWWRBkwpizRgSlmkAVPKIg2YUhZpwJSySAOmlEUaMKUs0oApZZEGTCmLNGBKWaQBU8oiDZhSFmnAlLJIA6aURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFIWacCUskgDppRFpf0+WKLDYLLgOmAccLMY45A/r3+cO5gsZtA81xs7DriuV4bj5k37yxzHG7JZyGS9cTaLyZkeMD/r9g+uYzCO8R4fG2dd3Kzxxw5uJoubyeL44zemBy5zMg7ZrIOTcXGyDtmMM2DsZBwcx8VxXDJw3CHrj++y9Is3sYs/RjAaJxSJE4zEcqbj/nSUUDjoDZEgoXBg0HQ0EiQeCVIVCRIJBYmHvel4zhALBYmFAkRDAaLBQP90LBQgGgwSCQnhgBAK5I7xxkHvccDJgJNBnDSSTYPreNNOGrLefJNOYlJJb5xOYlKJnOkkTiqFk0yTTfrjRHrg42SabDJLNpEl44+zySxO2jk232RSDgnHJeEYf/Cmk67b//gBd8+wv8KiP8BXmUr+2Zxh6M9FnWR6iqiURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFI2GWNGPAA3lbJ9OYdKqUul1GM0618pZVRCXUr9BLupxO3LqVLqUin1GKly1L9SyihXOSMuQ08RlbJIA6aURaUG7OGy1KI8KqUulVKPkSpH/SuljHKVM+IyxL+IU0pZoKeISllUUMBE5F0i0iAiTSJy2xDLoyLypL98g4jMK3dFC6lHznrXiYgRkRU26lFIXURkjoj8XkReFpGtInKVrbqUQkRqReQ3IrLTH58xzHp3i8hfRGSHiPyniEixZfjrjheR/SJyv/+45GOrXMeFlfe0gHsAQaAZWABEgFeApXnrfAJ4yJ++HnjSwv2ZE9bDX68G+CPwArCi3PUo4jV5GPi4P70U2GOjLmV4LncDt/nTtwH/PsQ6lwLP+c87CPwZeHsxZeSsex/wY+D+chxb5ToubL2nhXyCrQSajDG7jDFp4KfANXnrXAM85k//HHhH7l+4MimkHgBfwXvDk2Xef7F1McB4f3oCcMBifUqR+949Blw7xDoGiOEdeFEgDLQVWQYishyYBvyvP6scx1a5jgsr72khAZsJ7Mt53OLPG3IdY0wW6AQmFVB2MU5YDxG5EJhtjFlT5n0XXRfgi8AHRKQFWAt8ynKdRmqaMaYVwB9PzV/BGPNn4PdAqz88a4zZUUwZIhIA/gP4XM7schxb5TourLynhQRsqE+i/KbHQtYp1XH34b+B3wY+W+b9Fl0X3/uBR40xs4CrgMf9Op50IvJbEXl1iGGov/RDbb8IuAHvL/Z+4J9EZFcxZeCd6q01xuQexOU4tsp1XFh5Twv5nxwtwOycx7MY/NF4bJ0WEQnhfXweKaDsYpyoHjXAucAf/DOI6cBTInK1MebFk1wXgH8A3gXeJ4CIxIDJQHuZ63JCxpgrhlsmIm0iMsMY0yoiMxi6fu8F7jPGfMXf5i4gaYy5u4gy3gS8RUQ+AVTjnW6OxztlPGYkx1a5jgs772kBF8EhYBcwnzcu/s7JW+dmBl6I/reFi/ET1iNv/T9gr5GjkNfkV8AN/nSd/2aJjfqU+FzuYWADxd1DrPN3wG/95x0Gfge8p5gy8sq7Aa+Ro+Rjq1zHha33tNA34SqgEa+V5Qv+vC8DV/vTMeBnQBOwEVhg6WA4bj0KeSFPVl3wWpme89+oLcBf2w7LCJ/HJD8wO/1xrT9/BfCIPx0EvgfsALYD9xZbRt76NwD3l+vYKtdxYeM91Z4cSlmkPTmUskgDppRFYyJgInKtiCwdwXZGRB7PeRwSkQ4RWZMz70oRedHvIlQvIt/y539RRP65PM/g9HO6vPZjImB4PQeKDhjQC5wrInH/8Tvx7vMAICLn4rV2fcAYU4fX3LurxLoqz2nx2ldswETklyLykt/B9CZ/Xk/O8utE5FERuRS4GrhHRLaIyEIRWSYiL/gdMlcfr/MpXtPr3/jT7wd+krPsX4CvGWPqwetJYIx5sJzP8zQ35l/7ig0YcKMxZjleU+8tIjJk1ytjzPPAU8DnjDHLjDHNwH8B/2qMOR/YBvzbcfbzU+B6/6bh+cCGnGXnAi+V/lTUMMb8a1/JAbtFRF7B6/08GzirkI1EZAIw0Riz3p/1GPDW4dY3xmwF5uH9BV1bSoVVcU6H174iAyYibweuAN5kjLkAeBnvhmPuTbtYkWXO9k8ht4jIx/IWPwV8i4GnKAB/AZYXsx9VtDH92ldkwPD6m71ujOkTkbOBS/z5bSJS53ewfG/O+t14fc4wxnQCr4vIW/xlHwTWG2P2+aeQy4wxD+Xt7wfAl40x2/Lm3wPcLiKLwes4KiK3lu1ZKhjjr32l/gDfr4GPichWoAHvNBG8fm5r8L5W8Cpep1HwzuW/LyK3ANcBHwYeEpEqvJanjxxvZ8aYFrwvAubP3yoinwF+4pdlgGdKfG4qx1h/7bWrlFIWVeopolJjggZMKYs0YEpZpAFTyiINmFIWacCUskgDppRFGjClLPp/fV+NiSsrUXUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAACUCAYAAADxuuf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAUhklEQVR4nO2de3gW1Z3HP7/3kvdNQrgEQS5GQdQKpUhBrXXt2l2tVbdF7bZbWeutfeq29am71bbL0tp6aX22au1atVrrtlK7VdrdWhWp11K3orCKRVDuYIBACBAISd7kvczM2T9mCEkIyXuZAy/w+zzPPOfMmTO/85uZ8505c+bMjBhjUBTFDpFD7YCiHMmowBTFIiowRbGICkxRLKICUxSLqMAUxSKxQ1y+PiNQyhkp1YBewRTFIiowRbGICkxRLKICUxSLqMAUxSIqMEWxiApMUSyiAlMUi6jAFMUiKjBFsYgKTFEsogJTFIuowBTFIiowRbGICkxRLKICUxSLqMAUxSIqMEWxiApMUSyiAlMUi6jAFMUiKjBFsYgKTFEsogJTFIuowBTFIiowRbGICkxRLKICUxSLqMAUxSIqMEWxiApMUSxyqP8PVhLGeNC5E9O+FVJN4OUgEoXKEcigsVA1Aokc1puoHADjZmF3A2bnemhtBM+BWAJqT0CGj4fBoxE59NcPMeaQ/gOvqMKN8TC71kLTG2A88FzA65ZDYK+wRp6GDH+/Cu0IwTgZzHuvw3sLQSLgZOlRjSJRkChE48ipH4cxk0sRWsk/4DvsBGYyezDvPQdOGowz8AoSg0gUGXcBUjWyCBeVcsE0v4d5a65/QvVyA68QjUNyMHLGlUjl0GKKPLoEZtobMRtfzG/n9kaicNxHiAydUPi6yiHH27wEVvzBbwoWhEAsgZx+BTKsrtBij55fyJrUNkz9C8WJC8C40PBnvJb14TqmWMfbvARWPleEuAAMOGnMG7/E7Nkaum8DcVgIzORSvrjyaRL2a8iFhlcxnbvCcUyxjmlpgBXPgVvkiXUvbg7zxmOYbEc4juXJ4SGwTQuKPHv1ZczBbHzR74FUyhrj5jBLnii+1dIbJ4tZ9mQ4tvKk7AVm2rdCZzNFdjj2jZvG7F4bnj3FCmbjG+BmQjToQnM9pmVLeDYHoKwFZozBbH299KZhbzwHtr2BCeuqqISOcTKw/pXSm4a98XKYlX8I12Y/lLXA6NgOuXY7to0Le+rt2FZKZ8sy8Cw149uaMK3b7NjuRVkLzLSsC+/eqzeeo83EMsY0/CW8e6/eeC6m8V07tntRtgIzxsCe9+wW0rENE3YTRCkZk01BW5PFAjzYusye/W6U7/ihbFswBKo4NjTs4I6fPcuetk5+e8+X+84kUejcDoPGFl2OYoFdG/2hbm7hxz+VznL9A/OpiEU4d8o4rvibKX1nzLZjMu1IYlCJzvZP2V7ByLSA9P8g/cG5C7j+e7/qmr/5vie5avYjAJx43AgeufWa/sswHqT3lOqpEjKmfQe42QMuf/DZN7j+gWe75m+e80euusvvfv/dwpX8/TkTefifZ/DMojUHLiQSg9TO0Hw+YDHWSyiWzJ4Br2BXzzibea+8TUtrB/NeeZv5f17GT79zVf5lGBeTtr+TlQLZ00h/j2WuPm8q8xavoaU9zbzFa5j/xlp+esMnANiys5W6Y4YAEI30c4L2PGi3f+zLtoloMi30HCG/P1WVCS6/6Ey+fd+TPPfqcp5/+EYqkxWFFZTRK1jZMcBIm6pknMvPncy357zMc0vW8fz3r6QyEQdg7DGDadjZytQJo/D6G2fr5TAdu0sfbDgA5XsFy7P38NrLzuHBuQu455uXM6Fu32j55pZ2vnz7YyxdtYl/f2R+P+UUf5+nWCKPe69rL/ggDz77JvdcdyETRtd2pX/qrybyu4Ur+cr98/jEh04ZoJwDN0PDomyvYPly+0PPMGJYDU6vgzJ86CAevPnKgQ0McJ+nHALyOCS3//oVRgypwnF7tnKqkxX8/MZLwiuoRMr3ChYduKl3z5znSWdzPHH3P3Hff71cXDly2J9jjjwi8X4X3/O710jnHJ74t89w31OLiy8nVuDtRDFFWC+hSCQxFCMRv6evD/64eCWP/n4hC381m5rqJDel5rJ01Samnnp8YQUlh4XgrVIKxhgyWzfTtmQxrW8tJrNxPfHKKKPPGkfViJ7d6H9c+h6PvriUhT/8AjVVCW7qyLB0/TamThhVWKHROFI9PMSt6JuyFRiJof5zqj4EtqmxmetumcMzD9xATXUSgK9ecT73/uolfvG9z+dfhkSRytoDLvayWdz2NtxUG06bH7rt3aZUO057GyLCoCnTGPbRCxBtcuaFcRxSq9+l9a3FtC1ZTLapscdyNw2bX1nHyZdNIRL1G1qbtu/huh8/zTO3/CM1VQkAvnrJh7j3qUX84sZLC3NAIlB9TCjb0m8x5fpGs8mlMKt/648ZtEUkjoy7AKned/Zz2trYcNs3yWzZBAXum1Ezr2XEjM+E7OSRgXEcOuvXkVqxnPYVy+hYvQIv3Tngeid/6jQqBiXCd0iiyHlfR+KV/eYqtZiyvYJJvBoTS0IuZa8Q40HliB5JG+/6LpmGjUWZa3l1gQoswDgOHRvWklq5nNSK5XSsfhcvky7IRnxQBbHK/u/HiqaqdiBxhULZCgyAoSfBjuUM9DysaGrqkEi0R1J6y+aizcWG2W/TH4g1a9awePFi6uvrGT9+PFdcccVBba56To7ODWtJrVhOauVy/wpVoKC6kxw5lDFnjO1qHoZKJAbHTQ3fbh+UtcBk6ImYne+E+q5lF5EYMuzk/ZIrRh5Lun5DEQYFL5th++/nUnXKJKomnEwkkSzdzzx4/PHHufHGGzn33HM56aSTmDVrFtOmTWPSpElWysu17CazuZ705nrSm4KwYRMmW8LLkRKh6pSJDJ52JjXTz6KCXfDus9aeVckoO/umN+UtsGQtpmokpBoHzlwo0Uqo2f8rQ+Nu+i5rZ12Pmyr0PTRDx6p36Fj1TmA/SuW4CSRPOJHEqDFUjBrjh8eOJlIR7j3F6tWrOf/885k2bRozZszgpZdeorW1tWS7XjpNumFjTyFtrsdtDWf0S6SqmkGTpzJ4+lnUTD2d2OAhXcuMNwaz+sXwBSYROOYkpOrg9B6XtcAAZPRZmPVPh9vZITFkzFl9NqHix4zg1J88xqYf/4C2JYuKL8N16Vy/hs71+w84jQ8fQcWxo0mMHktFILrEqLHER4wkkkgW3LSbOXMms2fP5o477mD69Ol5reOl0+RaduHsbg7CXeR27w2byTXvILt9W8EdPf0RqR5E9amTGTTpA1RPnELyhHH7NdH3IpEovO8CzLvPhPtWs0SQUz8Wnr0BKH+BVdZiBp8ArRtDEpn4z776uHrtJVKR4ISbbmbHU7+hae6cEMrsSa55B7nmHaRW9PFOUiRCtLKKSPUgopVVRKuqiVRVE62qIlpZTaS6mmhVNdHKKgA8x2G46/DQ1ZczY+WKLjM7n3uKrauWYlwH4zh42QxOy26cFl9IXqf9rytFqwdRPfED/jTpAySPP7Cg+mTMZNjw52BQbghCj8Rg7NSD8vxrL2UvMAAZew6moymcHsVIDDnhvAGvEiLCyEs/S2JsHQ0P3H3AG/b48BE47a2YTEgfZ/E83FQ7bqqdQs/b2Z37XlJsWfgnmlcf3Ifo0UGDqZ44mepJvqiSdeOQSPGdFCIRmD4T8+pDpTcVRfyv/E78eGl2CuTwEFg0DuMvwqx7qrTXyCWGjPs4Eq/Oe5UhZ5xNxa0/ZOPdt5LbuX2/5bnmHZx48w+IJJOk1qygY/UKUmtW4OxqLt7PInA906M153j2nm9KNEZibB3JunEkjw+muvHEaoeH3nMpVbUw7bOlfb5NBGJJ5Myr/Lp0ECnbB819Zs60YjbMB6eTwrruxX+oPP5CpGrEwNn7wGndw8YffY+OVft/y2HsF2+g9m8v3OenMeR2bqezfj3Zpkay27aS2baV7Lat5Jp3FFV+f6zb08Y/vPAakWiMl19+mdmzZ7No0SI+M34Ms6aV1lsWH3HsPiHV+VNi9FgkdnDPzWZXPebNXwf3YwVUG4lC5WDkzKuL+T790fVtegDjZvwPkaa25XdPJjFIDEFOOB+pKO31cM/JsfXnP2H3gue72Y/wvv94hIqR+Y2F87IZsk3byGzbQnbbVrJNjWQat5BtasRp3YPJFd4Ueua9Lbx2TB233XZbV9r69ev51he/wP9cdE7fK0WjxIfWEhs6jPiw4cSG1hIfVktsWBAOraXi2NFd93rlgEk1Y956Ajpb8uv4iMT8HsPTLkNiRfXcHn0C61ox1YRpXAzpZv8s1b35EIn74quoQUZ9CGqOC63pYoyh5dUFNL/wDBKNMfJTM6mZMi0U2+CL2OvowO1I4aba8TqDeEcqSG/H7ejwOylEkFiM7W0pvvafv6S5rd1/+0YEkQjXfvIirrz4IiQWQ2IxYjVDAgENJzqopqT7o0OFMQaaVmFWvQCZVv/Yd78/iyV88Q09Dpl4ITJkTCnFHb0C6zLgZiC1DdOxM/gBXwxJ1kL16IMyFEY5dJh0K+yq97/h4eQgnkCGjIVhxyPxUB7yq8AUxSJHz++LFOVwRAWmKBZRgSmKRVRgimIRFZiiWEQFpigWUYEpikVUYIpiERWYolhEBaYoFlGBKYpFVGCKYhEVmKJYRAWmKBZRgSmKRVRgimIRFZiiWEQFpigWUYEpikVUYIpiERWYolhEBaYoFlGBKYpFVGCKYhEVmKJYRAWmKBZRgSmKRVRgimIRFZiiWEQFpigWKe0/oJ07DMYBz/V/eOc5GOPSO60r7D4ZB7NfmueHrgue59twvV7xYJnr+pPjQM7xQ8fBdIv3SHe8rslzDcY1/vze0PHwHBOELl7Owcs5uEG4L95zmZtzcRwXN+fhOi5Ozu0RujkX1/VwXY8c9Ds5QfgdS7+USp7xJaKJSmIVlUQrkt3ilUE8QSwe9aeKKLF4ZL94oiJKZUWUqoooFbEolXE/XtltSsaiJGMRErEIiWikK56MRUhEo1TEhHhEiEW6h/hh1J+PuDlwc4ibRZwseK4fd7Pg+Okmm8Zk0n6YTWMynd3iadxMBjedxUkHYWe253w6i5N2cDodckHopB3crLs33eQyLp2uR6drgsmPpz2va/4Br/6Avzk6LH6CfhQS7p/E96H/YzvIaBNRUSyiAlMUi6jAFMUiKjBFsYgKTFEsogJTFIuowBTFJsaYoifgulLWD3MqF1/KxY9D6X+52CgHX0q9gl1X4vphUi6+lIsfxRKG/+ViIyw7RdvQJqKiWEQFpigWKVVgD4fiRTiUiy/l4kexhOF/udgIy07RNiS4iVMUxQLaRFQUi+QlMBG5UERWi8g6EZnVx/KEiMwNli8WkXFhO5qPH93yfVpEjIicbsOPfHwRkeNFZIGI/EVElonIxbZ8KQURqRWRF0VkbRAOO0C+O0XkXRFZKSI/FhEp1EaQd7CIbBGR+4P5kutWWPXCyjHN4xlAFFgPnAhUAG8Dk3rl+QrwUBC/HJhr4fnMgH4E+WqA/wUWAaeH7UcB++Rh4MtBfBJQb8OXELblTmBWEJ8F/KCPPGcDC4PtjgKvAx8txEa3vPcCvwbuD6NuhVUvbB3TfK5gZwLrjDEbjDFZ4Angkl55LgHmBPH/Bs7rfoYLiXz8ALgd/4CnQy6/UF8MMDiIDwG2WvSnFLofuznApX3kMUASv+IlgDjQVKANRGQ6cCzwQpAURt0Kq15YOab5CGwssLnbfEOQ1mceY4wD7AGG52G7EAb0Q0Q+CNQZY+aFXHbBvgC3AJ8TkQZgPvBVyz4Vy7HGmEaAIBzZO4Mx5nVgAdAYTM8bY1YWYkNEIsAPgW90Sw6jboVVL6wc03wE1teVqHfXYz55SqXfMoID+CPgppDLLdiXgJnAo8aY44CLgccCHw86IvKSiLzTx9TXmb6v9U8CrsE/Y28BviYiGwqxgd/Um2+M6V6Jw6hbYdULK8c0n29yNAB13eaPY/9L4948DSISw7987srDdiEM5EcNMBn4U9CCGAU8LSIzjDFvHmRfAL4AXAj+FUBEksAxwPaQfRkQY8z5B1omIk0iMtoY0ygio+nbv8uAe40xtwfrfAdIG2PuLMDGh4GPiMhXgEH4zc3B+E3GvRRTt8KqF3aOaR43wTFgAzCefTd/7++V53p63oj+xsLN+IB+9Mr/J+x1cuSzT/4AXBPEJwYHS2z4U+K23EXPDoo7+8jzWeClYLvjwMvAJwux0cveNfidHCXXrbDqha1jmu9BuBhYg9/L8q0g7TZgRhBPAr8F1gH/B5xoqTL060c+O/Jg+YLfy7QwOFBLgQtsi6XI7RgeCGZtENYG6acDjwTxKPBTYCWwArinUBu98l8D3B9W3QqrXtg4pjqSQ1EsoiM5FMUiKjBFscgRITARuVREJhWxnhGRx7rNx0Rkh4jM65Z2kYi8GQwRWiUidwfpt4jI18PZgqOPo2XfHxECwx85ULDAgBQwWUQqg/mP4T/nAUBEJuP3dn3OGDMRv7t3Q4m+Kj5Hxb4vW4GJyO9FZEkwwPS6IK292/JPi8ijInI2MAO4S0SWisgEEZkqIouCAZlP9jf4FL/r9e+C+Ezg8W7Lvgl83xizCvyRBMaYn4S5nUc5R/y+L1uBAZ83xkzH7+q9QUT6HHpljHkNeBr4hjFmqjFmPfBL4F+NMVOA5cB3+ynnCeDy4KHhFGBxt2WTgSWlb4pyAI74fV/OArtBRN7GH/1cB5ycz0oiMgQYaox5JUiaA/z1gfIbY5YB4/DPoPNLcVgpjKNh35elwETko8D5wIeNMacBf8F/4Nj9oV2yQJt1QRNyqYh8qdfip4G76dlEAXgXmF5IOUrBHNH7viwFhj/ebLcxpkNETgXOCtKbRGRiMMDysm752/DHnGGM2QPsFpGPBMuuBF4xxmwOmpBTjTEP9Srv58BtxpjlvdLvAmaLyCngDxwVkRtD20oFjvB9X64/4HsO+JKILANW4zcTwR/nNg//tYJ38AeNgt+W/5mI3AB8GrgaeEhEqvB7nq7trzBjTAP+i4C905eJyL8Ajwe2DPBsidumdONI3/c6VEpRLFKuTURFOSJQgSmKRVRgimIRFZiiWEQFpigWUYEpikVUYIpiERWYoljk/wF1Hc4mLIXgwAAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -727,10 +781,22 @@ "needs_background": "light" }, "output_type": "display_data" - }, + } + ], + "source": [ + "# Causal graph of winter half only gives positive link\n", + "fig = plt.figure(figsize=(3,2)); ax=fig.add_subplot(111)\n", + "run_and_plot(ParCorr(mask_type='y'), (fig, ax), aspect=20.)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAACUCAYAAADxuuf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAASk0lEQVR4nO3de3hcdZ3H8fd3ZpKZSdtM0yQtSZPeaIE2bSkWlUu7uio8ioqgPCvusgLrs6zAiqKri6vifR8E1xVEQXQBb3hB113oVgQVEWotQilt02taKU2aNk3aTG4zkzlnfvvHOQm5tZlJ5tdMwvf1PPOcM+fyO7+Z8/tkzuU3GTHGoJSyIzDRFVBqKtOAKWWRBkwpizRgSlmkAVPKIg2YUhaFJnj7eo9AFTIZbwH6CaaURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFIWacCUskgDppRFGjClLNKAKWWRBkwpizRgSlmkAVPKIg2YUhZpwJSySAOmlEUaMKUs0oApZZEGTCmLNGBKWaQBU8oiDZhSFmnAlLJIA6aURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFIWacCUskgDppRFGjClLNKAKWWRBkwpizRgSlmkAVPKotBEV2Ao46SgpxUSxyDjQCAE0VlQUoGEwhNdPTXJGCcJHS1em3LTECyCkgoonY2EIta3XzABM4njmCNboW03uKnhCwTDmPIzkTkrkWjZqa+gmlRMdyvm4GY4vB2c5PAFQlHMaXVI7WuQaRXW6iHGGGuFZ8EYY6BlK+bgRsikR18jUITUng+zVyIi9muoJhVjDDQ+j2l4auQ/1EMFw8jiN0DN6pHa07gb2IQGzBhjzMENcPiF3Fc+7Ryk9kINmepnjMHs/R28vCn3lee9HlnypqHtadyNa2IvcrRsHVu4wFuvZWt+66Mmt8bnxxYu8NZrfD6/9WECz8Ey+x5fw/H9WS+/v6mVf3/gceJdCR6+7QMA3mFl6Tw9J1PeOVfDU1kt253o5cZvPEJxKMgbzl7I3715lVdGw1Mwa0Fez8km7hOsu+XDQ8+57vnF09x4+8/6n3/m3nW8/7PfB2DR3Aq+++m/HVxGJo05ss16VVXhMwc3DzrnuufRTdx41//2P//MA0/w/tseBuC/n6nnPWvruO+jl/Poxl2vFOKmMI1jPKI6gQkJmGnePJ/ezncOnX7121/Puqe3097Zw7pntrN+Qz3f/uSVJy+sbZd3aV+9ahkn6V0tHODqi87h0Y27ae9KsO5Pu1i/aTffvvkyAJpaO6itjAEQDAw5zWre7pWXJxNyiGg6m84j4wy7qVUSKebKi1fz6XvW8djGnfz6GzcQjRSfvDDXv29WOnfQ5GTa5eW2Hg60dVNSHOLCJfYuxaoJ1tHSfyk+lRE2HJ/JY60VFC17C5+8/wme+PMefv2Va4mGiwCYW1FKY2sHqxZXkxl6kc9JQGcLlM3LS9Um5hyst2fpiWZd+87zqHvvl/nlHf/I6TWV/dPb4t18+p51bNnTyG0PPs4t11xMyhWOpkK07D9MY8bwUms3L7X1cKC1m8PxJH1v3afeccLNqSnAdB9lW+d0fnW0gt+2zaLT9Zp16apLuO+uD/DLz1/F6dXl/cu/e00dH7r7UdZv2s07zjtreIHdbZM8YGSmnWjOF//rMSrLpuO4mf5pO+IRnm0rZ9GlH+ayi0PsTBVxyZMh2tN91T/uP4YLCKxZUjniPDW5HTzWwxP1h1m/uZ3GzmXD5jc9+UMi00sHtSWAadFi7v/4e05csJvF/dgsTVDAAt0jTf3aj35HsjfNT758LZ//znre/ddnA1BT0stt9VU0dOXetWVlzUzKpo1ymKkmBTdj2N4U5+k9R3lmbysvtY7YjABo3vAwGaeXhX9zK1/9xbd499q67DcULMpDbT0TE7Dikp30DJ70u+f28OC6TWz47s3MmBbhY19PsmVPI6vOqKG0KMPXV7/MDX+ez8s9ufVHXFpdSsYYAnpDelLqTjls2t/GM3ta+eO+Vtp7Rv90ie9/gaObH6fuujsJhktoesJhS8MhVi2uzm6j08pHXyZLE9KTwzRvnm+aNu0i40QAXj58jDdd/w0e/do/sXThaQA8uG4TT23eywO3XtW/3pFkiOufnc/hZG6fSOXTizn/9HIuWFzB6xaWMz1SMF0w1Qia2xM8s7eVZ/YeZfOB46Td7Ntoqr2Fnfd/jDOv+hLR2fOZEXSobvg5HNzMA5+4YvQCQlFkzfV9HYEnb1epzNYfPkzyeBaveLDGniKuf3YBbb1jC0kwIJxdO5MLFpdz4eIKFlRM0+5WEyxjDDsPdfQf+jW0dI2rvCCG82a287bKVi4sayccyKGN176WwJkX9T2bxAHzenI8nVUH3yH2dYa58bl5dKTH/0k0e0aYFbUzWVkTY0VNjDPmzCAU1K/J2WSM4XA8Sf2hDjbtb+OPDa20dfWOu9wzp/Xw1oqjXFTRxqwiJ/cCgmHkdVcP7MkxeQMGYI68aMyBP4xp3Z3xCDdtXkR3Or/1D4cCLK0qZUVtjBVzYyyvmcksvUgyLl1Jhx2H4uw41EH9oTj1TR0c6x5/oAAWVU5j7ZJKLl5+GotSuzC7Hx9zWXLmxUjtuYMmjbd+k7o3/Y7Acj7y4y10pcbw1yoHNWVRVtTEWFEzkxU1MRZVTh/eA0AB4LgZ9h3tor6pg/qmOPWHOjjQ2k2+WlkwILxmfhlrllSwdkkl1WXR/nmF2Jt+0n8fbOehDm56aDOdycEhW1ETIyjCtsY4bp5fY0lxkLq5MVbWxDizqpSasijVM6NEioJ53U6hG3ioV98Up74pzu7DnaSczOgr56A0EuKCxRWsOaOS8xad/CKVfh9ssP6Ne99o3gZtu074jWbKz0LmrBjWe35Xcwc3PfQCHYlXAvrNq17D6gWz6Eik+4/zN+5ry+oy71hVzghTUxZlblmUuWUlg8Zj0fzdWzmVupIOzfEEh9oTNLcnh413p1wr2503q4S1Z1SyZkkFK2pjhAK5nReb7lav427zdq/701ChKFQtR2rOOVnv+akTsP4Jff+TI3kMXAeCIYiM/j859h7p5EM/2kx7T5rSaBHrb147bKe4GcPO5g42NrSyoaGVPYc7yZyilz8jEqKmrMQPXNQPXwmVM8KUFAeZFg4RDgVO+RXNnl6HQ+1JmtsTfnj6xr3h0CMDW4IirKyNseaMStYuqWBe+Qk7++TEOEmvb2F32yv/k2NaOczI6n9yTL2Ajce+li7++YfPc/7iCm69dPQ7990ph/qmONub4mxtjLO9MW79fO5kAgLR4iAlxSFKBgwHTQt749HiINOKgwRESDouqXSGZNol6WRIpV1vvG9aOkPKcf3pg5fL9+FctoIinD5nOnXVpZxdO5PzF1cU4qe8Bmyovxzt4lh3L6sXzMp53YwxHGjtZmtjnG2N7WxrjHOgrWf0FdWoTotFqJsbY1l1KXXVMc6qmjEZzlk1YLbFE2nqm+JsPegFbsehDhJpO+cdU8W0cJClVTHq5pZSNzdGXXUp5dMn5b/c04Cdak4mw76WLrY1xtnV3EHT8QSNxxMc7Sy8L30mWhs59IeHKDvrQmYtu9DKNkIBYdFs71Cvbm6Murkx5peXTJW+nxqwQpFMuzS3Jzh4PEHT8Z7+4DUd9666uafqasoQHX95ESfRNeaABUWYE4tQFYtQNTNC9cwoVbEoVTMjVMWiVMwIT+V7guN+YdrrNU8iRUEWVk5nYeX0YfOcTIaWeIrGvuC1J2g81kNze4KOpENPr0ui18mpU2u+BARml/YFKEpVzA+RP15ZGs75Erl6hQbsFAgFAlSXRQf1OhhJ2s3Qk/IC5z0GjKccEmmXnpRLd69Dwp+fyUCkOEikKEAkFCRSFCRcFCAcCtITb+XhnTtw0imuf9PlLFq4gHAoQLjIWy7iLzeFP4EmnB4iKnVik/wfjyo1xWnAlLJIA6aURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFIWacCUskgDppRFGjClLNKAKWWRBkwpizRgSlmkAVPKIg2YUhZpwJSySAOmlEUaMKUs0oApZZEGTCmLNGBKWaQBU8oiDZhSFmnAlLJIA6aURRowpSzSgCll0fh+vihx1GAcyLhgXMg4GOMydFr/cODDOJhh0zLe0HUhk/HKcDNDxv15rus9HAfSjjd0HMyA8UHTnUz/I+MajGu8531DJ0PGMf7QJZN2yKQdXH/4yvjgeW7axXFc3HQG13Fx0u6goZt2cd0MrpshDSd9OP7wVku/eBN57QcJhqOEiqMEiyMDxqP+eJhQUdB7FAcJFQWGjYf7f5Q9SHEoSLQo2P9D7X2PSChIJBTwfiopGOgfj4QChINBikNCUUAIBQYOvV/LLAp6zwNuGtw04vYiTi9kXG/c7QXHm256k5hU0hv2JjGpxIDxJG4qhZvsxUn6w0Tv4OfJXpykg5NwSPtDJ+ng9rp900065ZJwMyRc4z+88WQm0//8m5mXTvgrLPr7YIXJ1g926c9FnWJ6iKiURRowpSzSgCllkQZMKYs0YEpZpAFTyiINmFI2GWPG/ACuG8/6+XwUSl0KpR4TWf9CKaMQ6jLeT7Drxrl+PhVKXQqlHmOVj/oXShn5KmfMZegholIWacCUsmi8AbsvL7XIj0KpS6HUY6zyUf9CKSNf5Yy5DPFP4pRSFugholIWZRUwEXmriOwWkQYRuWWE+WER+ak/f5OILMh3RbOpx4DlrhARIyLn2qhHNnURkXki8qSIvCAiW0XkElt1GQ8RmSUiT4jIXn9YdoLlbheRehHZKSJ3iYjkWoa/bKmINInI3f7zcbetfLULK/s0i3sAQWAfsAgoBl4Elg1Z5gbgXn/8SuCnFu7PjFoPf7kZwB+APwHn5rseObwn9wHX++PLgJds1CUPr+V24BZ//BbgKyMscwGwwX/dQWAj8MZcyhiw7J3AQ8Dd+Whb+WoXtvZpNp9grwMajDH7jTG9wE+Adw1Z5l3A9/zxnwNvHvgXLk+yqQfAF/F2eDLP28+1LgYo9cdjwCGL9RmPgfvue8BlIyxjgAhewwsDRcCRHMtARFYDc4DH/Un5aFv5ahdW9mk2AZsLHBzwvNGfNuIyxhgHiAPlWZSdi1HrISLnALXGmHV53nbOdQE+B1wlIo3AeuBDlus0VnOMMc0A/nD20AWMMRuBJ4Fm//FrY8zOXMoQkQDwH8DHB0zOR9vKV7uwsk+zCdhIn0RDLz1ms8x4nXQb/g78T+Bjed5uznXxvQ940BhTA1wC/MCv4yknIr8Rke0jPEb6Sz/S+ouBa/D+YjcBN4vI/lzKwDvUW2+MGdiI89G28tUurOzTbP4nRyNQO+B5DcM/GvuWaRSREN7H57Esys7FaPWYASwHfu8fQZwGPCIilxpjnjvFdQH4APBW8D4BRCQCVAAtea7LqIwxbznRPBE5IiJVxphmEali5PpdDtxpjPmiv86tQNIYc3sOZZwPrBWRG4DpeIebpXiHjH3G0rby1S7s7NMsToJDwH5gIa+c/NUNWeZGBp+I/szCyfio9Riy/O+xd5Ejm/fkV8A1/vhSf2eJjfqM87XcweALFLePsMx7gd/4r7sI+C3wzlzKGFLeNXgXOcbdtvLVLmzt02x3wiXAHryrLJ/yp30BuNQfjwAPAw3As8AiS43hpPXI5o08VXXBu8q0wd9RW4CLbYdljK+j3A/MXn84y59+LvBdfzwIfBvYCewAvpZrGUOWvwa4O19tK1/twsY+1Z4cSlmkPTmUskgDppRFUyJgInKZiCwbw3pGRH4w4HlIRI6KyLoB094mIs/5XYR2ichX/emfE5F/yc8rePV5tbz3UyJgeD0Hcg4Y0A0sF5Go//wivPs8AIjIcryrXVcZY5biXe7dP866Ks+r4r0v2ICJyP+IyPN+B9Pr/GldA+ZfISIPisgFwKXAHSKyRUROF5FVIvInv0PmL0/W+RTv0uvb/fH3AT8eMO8TwJeNMbvA60lgjPlWPl/nq9yUf+8LNmDAPxhjVuNd6r1JREbsemWM+SPwCPBxY8wqY8w+4PvAvxpjVgLbgM+eZDs/Aa70bxquBDYNmLcceH78L0WdwJR/7ws5YDeJyIt4vZ9rgSXZrCQiMWCmMeYpf9L3gL860fLGmK3AAry/oOvHU2GVm1fDe1+QARORNwJvAc43xpwNvIB3w3HgTbtIjmXW+oeQW0Tkg0NmPwJ8lcGHKAD1wOpctqNyNqXf+4IMGF5/s+PGmB4ROQs4z59+RESW+h0sLx+wfCdenzOMMXHguIis9ef9PfCUMeagfwi5yhhz75Dt3Q98wRizbcj0O4B/E5EzwOs4KiIfzdurVDDF3/tC/QG+x4APishWYDfeYSJ4/dzW4X2tYDtep1HwjuW/IyI3AVcAVwP3ikgJ3pWna0+2MWNMI94XAYdO3yoiHwF+7JdlgP8b52tTA0z19167SillUaEeIio1JWjAlLJIA6aURRowpSzSgCllkQZMKYs0YEpZpAFTyqL/B0p5d68AZfDdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAACUCAYAAADxuuf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAUVklEQVR4nO2de5QdRZ3HP7/7mHvnlclMJg9CEhLyAAJCHrgqC8IKsi6RIIoKAgJ6Diuw6IqLxiyiB5SDoNmDuBtEVwLuGgIIClnkLRoIiQJ5kJBk8iBkJu+Qec/cR/et/aM7w8xkHvfRlVyS3+ecPl1dXV316676dlVXVXeLMQZFUewQOtwGKMqRjApMUSyiAlMUi6jAFMUiKjBFsYgKTFEsEjnM6esYgVLMSKERaA2mKBZRgSmKRVRgimIRFZiiWEQFpigWUYEpikVUYIpiERWYolhEBaYoFlGBKYpFVGCKYhEVmKJYRAWmKBZRgSmKRVRgimIRFZiiWEQFpigWUYEpikVUYIpiERWYolhEBaYoFlGBKYpFVGCKYhEVmKJYRAWmKBZRgSmKRVRgimIRFZiiWEQFpigWUYEpikVUYIpikcP9f7CCMCYD7XswLfXQuhPcFIQiUD4SqRoLFaOQ0Af6FJV+MG4amhsw7231896BSAyqxyE146FyJCKHv/4QYw7rP/DyStyYDGbvOmhYChkXjAsm0y2EQCjqRT/6dGTUNBXaEYJxUphty2HrMhABN02PYiRhCIUhHEUmnwujTkYk7//oFfwDvg+cwEyiCbP+D+B0QMYZ/IBQBEIRZMqFSMWofGxUigSz/13M6se8m2o2eR+OQqwSmX4ZUlqVT5JHl8BMSwOmbjFk0rmnFIrA+HMJ1U7J/VjlsJPZvgI2PJ+dsHogEClBpl+KVB2ba7JHzy9kTesOTN1T+YkLvIzZ+iKZfXXBGqZYxxPXC3mIC8CAk8S88VtMy67AbRuMD4TATKrNF1c+F7gbvshMx75gDFOsY5q3+zVXnjfWA2TSmBULMamOYAzLkg+GwDY9U7i4DpBxMHWLvR5IpagxroNZ9Vhwee+kMGsXBxNXlhS9wExLPXTs7dVLWCBOwuuFVIoa0/CGN/QSWIQuNG7FNO8ILs5BKGqBGWMw7/4luDvYATJpaFiKCTpeJTCMk4QtS/xu+ADJOJi654ONcwCKWmC07YRkq524My7s32QnbqVwdq0BWz3crXswrXvsxN2LohaYea+u8Ifb/sikMfu0mVismO2r7eW9cTG737YTdy+KVmDGGNi/0W4irTsxQbbxlUAwqQ5os1jDmIxXQx4Cinf+ULK5oGevLdv3cccDz9Hc1smjd36170ChMLTtgqpxeaejWKBpm5c3rpvzoe2dKW6490lKImHOPm0Cl587re+AqXZMqh0pKS/Q2IEp2hqMzkYYZLLm/N8t4Ya7Huna/t59i/ny9x8C4Phja/nVLV8aOI2MC4nGgk1VgsW0vzdg58b8p5Zzw8/+0LX9vQee58t3PgrA46+s5XNnncz9N13MU6+t7z+RUATa3wvM5n6TsZ5CviQaB63Brpr1ERYvWUNTaweLX1nD06+u5RffvTT7NIyLad9boKFK4LTsZKBZdFd9cjqLl22gqa2TxcvW8/TyDfzim58BYPu+FsYO9+YdhkMDzHTKZKDd/oSDom0imkTjoGNfZfESLj1/JrfMX8wzr63j2XuvpzRekltCiaYCrFSs0Dlwq6IsXsKl/3Aqt/z6eZ75Wx3P/vgaSmNRAI6tHULDvhamTRpNZqBeyEwa09lU+GTDQSjeGizL8Y9rLvwo83/3CvO++Vkmjhne5f9eczvX3bmIlXUN3Lnguf4j0LGw4iMz+LPXNf84k/lPLWfedbOYOHpYl/9nzzyZx5es5fp7/sCnP3riwJEEPcbWB0Vbg2U7kfn2/36G4dUVOG7P2m5YVTnz53wxi2Rs38MUG9z+Py8xfGj5QfleXlrCr2/+3GGy6mCKtwYLD97Um/e/L5FIpXn4R9dw76KX80tHX8QsPkLRAXfPe/QVEimHh2+5lHufWJp/OpFY/sdmSdEKTEprvLdT++Gl1+tYsHg5C269gnNmTqalPcHKuobcEyodNngYxSrGGN7Z185DS7dy7YK/8ak/j+Oq1SezpvXgLvSXVmxmwXNvsODbl3DOacfT0pFk5aY85haGo0hZTQDWD0zx3r5Lq/sdC9m2az/X/mghT837ZyrL4wDc+MVzuOfhl3ng1iuyT0MiSFltv7uTjktLp0NLZ5rmzjQtB5ZEusu/JZFGRPjIhBounDa6kNfTjyocN8Oq+iaWbNzHK3V7aWjs7LZXaEmXc8vGSSyatppYyOus2LaniWvnPcFTP/wylWVe7XPjxWdwz+NLeeDbl+RoQQjK7d9ci/aNZpNqw6x6yJsBbYtQCXLCp5HK9990be5Ic91vXuedfe05T4W74ROTuPKM8cHaeITguBnW72rlzXcbefPdRlbXN9GRGjxvH5++klExC7NtJIx8/BtIND5gqEKTKdoaTEoqMNFSSLVZTCUD5T2/0/GtRSvYsrc9r9ieWbNLBebjuBnW7WxhxbtNvPluI6vqm+hM53azPCaWpCZqqaevrHowcQVC0QoMgGEnws43AUsvR1Ydh4R6Pudt3Zf/G6/DK+w/NPdHXV0dy5cvZ+vWrUyYMIHLL7/8kDZX026GdTtaWLHtQA3VnLOgujNlSJo54zZSErLQwgqF4ZhTg4+3D4paYDJsCmb3Sm/UPWhCUaT2pIO8Rw+NU7c791pTgGTa5cFX3+FDY4YydfQQ4tH+O2mCZOHChdx0002cffbZTJo0iTlz5jBjxgymTp1qJb332pJs3tPG5r1t3npPO1v2tpF08s+nkMCHxgzlzMm1nDVlOOPS78D6NWDlCUGQkYOMkQVEcQusbBimfBS0bifPTyj2T7QUho4/yPvuL0zjyl8uoyWR2wC0AVbUN7Gi3psZEg4JJ4yqZPLISsbWlDKmuoyxNWUcW10auPA2bNjAeeedx4wZM5g9ezYvvPACLS0tBcfbmXLZckBEXWJqo7EjmGZbRSzChyfUcNaUWs6YVMvQsveHZkzmJMzGF4MfDJYQDDseKR0abLz9UNQCA5DjzsKsfSTYzo5QBBn38T6bUCOr4jz5jbP43hNvsaQu/7lqbsbw9o4W3t5xcEEfOSTWJbixNWWMqSllbE0Zo6rilEbDOTftLrvsMubOncsdd9zBzJkzszqmM+Wyry3Jvtakt25Lsq811eW3uyXB9sbOQG9rlfEI08YNZcZx1cw4rppJIyr7nS8ooTBMPhez/o/BikxCyORPBBffIBS/wMpqMdXHQ+OWYEQmIW/sq4/a6wDxaJi7Pn8aD766lfte3lx4mr3Y3ZJkd0uSN949eM5dWITyWJiKeJSKWJjyWISKeISKWITyWITKeNR3e7Vg2jU4mTgXfeunvLXpC13xPPLXbbzaXI3jZnBcQ9Jxea8t1SWm9qTF3lmfIfEI04+rZvo4T1ATR1QMPAG3N6Omwtal/qz3AKQeisAxHzok418HKHqBAciET2DadkKqnYIvdCiCTL5g0FpCRLj6zAlMGF7OD36/tt8H9lFD4jR1pkikg3lOdI2hJeHk3EQF2NWc6HI/u3YXlS2HriABVJVGe9RQE0dUECqgo0UkBKd9HrP8V4XXYiLeV36nfLKweHLkgyGwcAmceDFm7aKDv0WeCwc+oV1SkfUhZ58wgvuvLuXmR1b1KMAH2NWSYP6VMyktCbOqvonVDc2srm9ib2syPxvzxGTcHp+iM3m8rJgtkZAwvraciSMqmDiigkn+MrwyFnjPpZRVw6mXYFY9mv/EbBGIxJGZX0LCh7bIF+1Ac5+BE02Y9U9AuiPHz7gJhEuQE2bn/X36xvYU331sNSvrD3695buzTuKi6e8PVhtj2NWcoG53Kw37O6nf30FDYwf1+zvY3RK88Dp2b2Xt/OuIhEO8+OKLzJ07l2XLllEzcxbjZ91QUNzHVMV7CGniiArG1ZQRCR/aWXamcRtm5SO532AlDPEhnrjiOX+f/uj6Nj2AcRKYTc9C247sf/4Qr0Ymz0JilfnY2EXazXD3H9fz5Mr3576FBB67/u8ZXV2aVRyJtMuOJk909fs7egiwqSOdV1f33pXPc1JiLbfddluX3+bNm7nqxu9w6r/c3+cx4ZBQW1HCsIoYwytjDKuIUVtRQm1FjNrKGLUVMY6tLqU8VjyNHNOx3/sQaaI5uyZjKOL1GJ58IZLfxN6jT2BdB7buxGxb4n2UVMI9v0AUino1XGwIMu5Mb0A5oKaLMYZn1uzisdfriYRCfOXMCXxkYnBz2tJuhraEQ1vSeX+ddGj33a2JNO1Jh/akiwhEwyE6mvby8E/n0t68v+s8QyHh/Euu5PyLv0Q0JETDIYaWRz0BVcSoKosW9Hx0uDDGwN46rws/2erlffcPF4VLvBtv1bHIlPOQIccUktzRK7CuCJwEtO7AtO/xf8AXRcqGwZAxSLQsCBuVIsUkW6FxG6Ztr1ejRWJI1WgYOjbfGqs3KjBFscjR8/siRfkgogJTFIuowBTFIiowRbGICkxRLKICUxSLqMAUxSIqMEWxiApMUSyiAlMUi6jAFMUiKjBFsYgKTFEsogJTFIuowBTFIiowRbGICkxRLKICUxSLqMAUxSIqMEWxiApMUSyiAlMUi6jAFMUiKjBFsYgKTFEsogJTFIuowBTFIiowRbGICkxRLKICUxSLFPb7ws69BuNAxgXjQsbBGJfefl3r7otxMAf5Zby160Im48XhZnq5/X2u6y2OA2nHWzsOppu7h7+T6VoyrsG4xts+sHYyZBzjr10yaYdM2sH11++7e+5z0y6O4+KmM7iOi5N2e6zdtIvrZnDdDGkYcHH89a2WfikV//DXCMdKiZSUEi6Jd3OX+u4YkWjYW0rCRKKhg9yxkjClJWHKSsKURMKURj13abclHgkTj4SIRULEwqEudzwSIhYOUxIRoiEhEuq+9v79HA172yE3DW4acVOIk4KM67ndFDiev0klMMmEt04lMMnObu4EbjKJm0jhJPx1Z6rndiKFk3BwOh3S/tpJOLgp94C/SSddOt0Mna7xF8+dyGS6tv8zs7Xf3xwVz/9Ble7Y+vWk/o/tEKNNREWxiApMUSyiAlMUi6jAFMUiKjBFsYgKTFEsogJTFJsYY/JegGsLOT7IpVhsKRY7Dqf9xRJHMdhSaA12bYHHB0mx2FIsduRLEPYXSxxBxZN3HNpEVBSLqMAUxSKFCuz+QKwIhmKxpVjsyJcg7C+WOIKKJ+84xH+IUxTFAtpEVBSLZCUwEfmUiGwQkU0iMqeP/TERWeTvXy4i44M2NBs7uoW7RESMiJxuw45sbBGRcSLyJxFZISKrReQCW7YUgojUiMjzIrLRX1f3E+4uEVkrIutE5GciIrnG4YcdIiLbReTn/nbBZSuocmElT7MYAwgDm4HjgRJgFTC1V5jrgft896XAIgvjM4Pa4YerBP4CLANOD9qOHK7J/cB1vnsqsNWGLQGcy13AHN89B/hxH2HOAF71zzsMvAack0sc3cLeA/wW+HkQZSuocmErT7Opwf4O2GSM2WKMSQEPAxf1CnMR8KDvfgw4t/sdLiCysQPgdrwMTwScfq62GGCI764Cdli0pxC6592DwGf6CGOAOF7BiwFRYHeOcSAiM4GRwHO+VxBlK6hyYSVPsxHYsUB9t+0G36/PMMYYB2gGhmURdy4MaoeITAfGGmMWB5x2zrYAPwCuEJEG4GngRss25ctIY8xOAH89oncAY8xrwJ+Anf7yrDFmXS5xiEgI+ClwczfvIMpWUOXCSp5mI7C+aqLeXY/ZhCmUAdPwM/A/gG8FnG7OtvhcBiwwxowBLgB+49t4yBGRF0RkTR9LX3f6vo6fBFyNd8feDnxTRLbkEgdeU+9pY0z3QhxE2QqqXFjJ02y+ydEAjO22PYaDq8YDYRpEJIJXfe7PIu5cGMyOSuAU4GW/BTEKeFJEZhtjXj/EtgB8FfgUeDWAiMSBWmBPwLYMijHmvP72ichuETnGGLNTRI6hb/suBu4xxtzuH3MrkDDG3JVDHB8DzhKR64EKvObmELwm4wHyKVtBlQs7eZrFQ3AE2AJM4P2Hv5N7hbmBng+ij1h4GB/Ujl7hX8ZeJ0c21+SPwNW++yQ/s8SGPQWey9307KC4q48wXwRe8M87CrwIXJhLHL3iuxqvk6PgshVUubCVp9lmwgVAHV4vy7/7frcBs313HHgU2AT8FTjeUmEY0I5sLuShsgWvl+lVP6NWAufbFkue5zHMF8xGf13j+58O/Mp3h4FfAOuAt4F5ucbRK/zVwM+DKltBlQsbeaozORTFIjqTQ1EsogJTFIscEQITkc+IyNQ8jjMi8ptu2xER2Ssii7v5/ZOIvO5PEVovIj/x/X8gIv8WzBkcfRwt1/6IEBjezIGcBQa0A6eISKm//Um8cR4AROQUvN6uK4wxJ+F1924p0FbF46i49kUrMBH5vYi84U8wvdb3a+u2/xIRWSAiZwCzgbtFZKWITBSRaSKyzJ+Q+cRAk0/xul5n+e7LgIXd9n0b+JExZj14MwmMMf8V5Hke5Rzx175oBQZ8xRgzE6+r9+si0ufUK2PMUuBJ4GZjzDRjzGbgIeA7xphTgbeA7w+QzsPApf6g4anA8m77TgHeKPxUlH444q99MQvs6yKyCm/281hgcjYHiUgVMNQY82ff60Hg4/2FN8asBsbj3UGfLsRgJTeOhmtflAITkXOA84CPGWNOA1bgDTh2H7SL5xjnWL8JuVJEvtZr95PAT+jZRAFYC8zMJR0lZ47oa1+UAsObb9ZojOkQkROBj/r+u0XkJH+C5cXdwrfizTnDGNMMNIrIWf6+K4E/G2Pq/SbkNGPMfb3S+zVwmzHmrV7+dwNzRWQKeBNHReSmwM5SgSP82hfrD/ieAb4mIquBDXjNRPDmuS3Ge61gDd6kUfDa8r8Uka8DlwBXAfeJSBlez9M1AyVmjGnAexGwt/9qEflXYKEflwH+r8BzU7pxpF97nSqlKBYp1iaiohwRqMAUxSIqMEWxiApMUSyiAlMUi6jAFMUiKjBFsYgKTFEs8v9uwdx5NxspCAAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -742,72 +808,43 @@ } ], "source": [ - "# Causal graph of whole year yields no link because effects average out\n", - "fig = plt.figure(figsize=(3,2)); ax=fig.add_subplot(111)\n", - "run_and_plot(ParCorr(mask_type=None), (fig, ax))\n", - "\n", - "# # Causal graph of winter half only gives positive link\n", - "fig = plt.figure(figsize=(3,2)); ax=fig.add_subplot(111)\n", - "run_and_plot(ParCorr(mask_type='y'), (fig, ax))\n", - "\n", "# Causal graph of summer half only gives negative link\n", "fig = plt.figure(figsize=(3,2)); ax=fig.add_subplot(111)\n", "dataframe.mask = (dataframe.mask == False)\n", - "run_and_plot(ParCorr(mask_type='y'), (fig, ax))\n" + "run_and_plot(ParCorr(mask_type='y'), (fig, ax), aspect=20.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note, however, that the failure to detect the link on the whole sample occurs only for partial correlatiol because the positive and negative dependencies cancel out. Using CMIknn recovers the link (but gets a false positive for this realization):" + "Note, however, that the failure to detect the link on the whole sample occurs only for partial correlation because the positive and negative dependencies cancel out. Using CMIknn recovers the link (but gets a false positive for this realization):" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAACUCAYAAADxuuf6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQMUlEQVR4nO2deZAc1X3HP7/unj0kLQKDbTlB2IBJBYGxEuT4SJyiHOIiHLJJBDHm9AHmKHAwh3GgMCWgjIXAHAJxmSDAGBsbExCgyOJMbHDKLi5j7ICJC4RBwbK0klY7R3f/8sfrnZ2dnZVmdvppZ1e/T21Xv379+vWv+71vv6N/vSOqimEYfggm2gDDmMqYwAzDIyYww/CICcwwPGICMwyPmMAMwyPRBJ/f3hEYnYy0m4G1YIbhEROYYXjEBGYYHjGBGYZHTGCG4RETmGF4xARmGB4xgRmGR0xghuERE5hheMQEZhgeMYEZhkdMYIbhEROYYXjEBGYYHjGBGYZHTGCG4RETmGF4xARmGB4xgRmGR0xghuERE5hheMQEZhgeMYEZhkdMYIbhEROYYXjEBGYYHjGBGYZHTGCG4RETmGF4xARmGB4xgRmGR0xghuERE5hheMQEZhgeMYEZhkdMYIbhEROYYXgkmmgDRqEpJCVIYxeWAIIIwm4XNowWUE0gLrs6RQoEri5FXYiE3s/fOQJLylDeBPEmQBskCCCaDl0zIOza1tYZkwxNSlDqh/JGnLDqCdCuPuieiYTd3uwQ1UaVeZuhqLqbUF5PY2HVI9C1I3T1gYhv+4xJhqo6YRXX0lhY9QTQuzN0zURG16e2K9jECkxVKa2DysbWjy30QfdOJjKjiqpC8Q9QWt/6wd07Qs8u9SJru3JN7KCmvHF84gJ3XHmcxxpTk1L/+MQF7rhSf772MJFjsME//A3x5qaTv/q/r3Hp4iX0b9jID+5Y6iLL6yHqsTGZ4cZcxbVNpR0Y2MxpZ19EoavAAX/9YY4+cr7bUVyLFnpzHZNNXAuWlr5cP+ZaessdnHrmBdXtCxYu5tgTzwRgj91349vXLarLRN3EiGGU+qkdcy399l2cetZF1e0LLvkWx33pbADufWAl/zT/IG6++lIeWPFITSZp7q3YxAis3P9e0uSw+ujjP7uAB1Y8wvr1/Sx/+BEeXPkoN13zjS3nFQ+46Xxju0U1GTVcOP6ow1m+4lHW929g+YrHeGjl49x41SUArP79W8zedRYAYVA3VV/e6PLLiYnpIsalj4COaoenTevlqAXzOX/hYh5e9Tg/vu9Oent7tpJZ9t4s6h0Rq6pomqBpCiKEUSHPKzA6ibjMUOulgNJFYcYOHLngCM6/+EpWrHqSlT+6rVqXdv2TWax+Yw1zPzCHNK1/OKcuv0IveTAxAtNk77F2ff7YI9h73oH8+903s+ce763Gr127jvMvvpxnnnuRb1xxHV8767SsgxmgcQVNAzRNSYdEVdOqRT353CyjM9G4hBKRSg+pDDskHH/cMXxw3oe57ztL2XP33arp//GwT3L6uQt5cOXjHHrQJ0ZnmJQmucDQ6WPtWXjZNbxzl52J4+FmOiVk5s6zuPaqK4EAJaCEUO3hVlJgcMyzBaG1XlMRTROSSoUkVgh3GrX/0ssWubqUxCPip0+fxq3XXbaFnPMbckzQJIcMNIq94tqbKZZKfH/ZEq5eeutwahJSCqR0k1JACWnWdAlDJDAXq6mAqpLGMXFpkPLABsoDG0nKRRq9rrrq2iWUSiXuXHYb19xwe4tnyq++TEwLJuFL9VGPPvFT/u3Oe3hq1b309c1gw8aLefb5F5m73z4IUGCACtMzcTVPEESoaqO39MYkwImq4pYkhiYcIx574kluv/M7PLFqJX19fZy7cTPPvvAr5n5gTnMnnfTT9FH30yDFoc3XXn+DL57+Ve65/Xr6+mYA8OVTPsdV19e2YkqBAVptvpNKifLABiqDm0kqZSbYNcxoAk1TknKJ8uZNlDf1Exc3k8aVpsT12uuvc8rpZ3DX7bfR19cHmnL6yV/g6qXLmjx7AFF+71UnzlVq4I17SOMFrR6mBJSZTjvPBgkjgigiCAtIEFjrNsEMzfgOtVQ6amav5QwRyoRpEaHcmr9T10xk2ruGtiaxL6Lz5PjP5hx8R5ISUGlTZFVECMLIiS4MkSA0wXlGVUGVNInd0mTrtDVEYwItEmgRGUe9ggD6dq315JjEAgMobVDK68Z1aEpIhRk5G+SQMHSiC4ZEZ5Mk7aCqaBKTJgmaunUeggKQICCICgRRF1LZCMW3x59ZzzuRnh1HZN+2fZPZmz6N+qgMNpyQzBWRYFh0YWTdyi1QfcGfJFVBtd3lq8N18QuEUYTUeGJ0ojf9pP8eLE1iKpsHRh0rQQgCmuTn9jIi/6EuZRg5AW6Hoqvt6mmSkKaxp/stbswcFQiiwhbvs30PNpLhk1e/aB5rpnDsL5obiazQO50gKqCaksZxS9O840YkE5rrVo5YJum/O3AtUupaJU0hTVFNszh/PqAiwbCgwtbHxc180czWv2ieQgKrxozvf3KkSUJlcFMmIKFrxg6jCmXkbFWMpn5at8ZIA9GFSCCAVD8c3datYFVAQ+IZJaBtVz8kDKuiCuqdcMdJm/+TYwoKrA2GRBaEEYXeMb2xhk9eM/h23Zx4q8dsE0QyoTnhSRbnwpkYBaSm/F05avan2Z11XTgX1KGEI/dPIBKE1bFtEEWd2MqbwOpxM1QpwTi856tP85oZL5/doO2K6uuQkCCIxtXtmwBMYL5RTZ3YhkTXKa1ch1M7CRQEk/ZVhwlsWzNqGlqHPo+Z2Et5+eVX+OYVVzL/0EOYf+gho/bfePMtrP3jOuI45sLzv5bruYe7eiESTKnXGG1fROf8X8RJgoggYQRhNMLtuHayYOhDT02HZ918s9de7+fYoz9Lf3/jT96/dOIXKZfLnHnOua1nLsMzobWzohIENeNFoxEmsJxwwguBEBg5/nPvi4Zn5kbM1GnqZcKhXC4ThiFh6B4DxWKRry+8hHPP+koj4+sEFJqAcsIEtg0QEZBwhNdBI0bMBFbDOvwFQDU8FI8Li7DmrTXc98ByBgeL/OW8D/HDH97LkUcewezZsxERjjj6OPaZM4fH/uspTjpxHyby1cD2hI3BpihvvfUWs2bNmmgzJjs2yWEYHpnk/9nXMKY4JjDD8IgJzDA8YgIzDI+YwAzDIyYww/CICcwwPGICMwyPmMAMwyMmMMPwiAnMMDxiAjMMj5jADMMjJjDD8IgJzDA8YgIzDI+YwAzDIyYww/CICcwwPGICMwyPmMAMwyMmMMPwiAnMMDxiAjMMj5jADMMjJjDD8IgJzDA8YgIzDI+09/NFg28rGkOagCaQxu5X3eviquvaRWN0VFzq1kkCaerySNK6cLYvSdwSx1CJ3TqO0ZrwiPg4rS5pomiibntoHaeksWbrhLQSk1Zikmw9HB65L6kkxHFCUklJ4oS4koxYJ5WEJElJkpQKbHGJs/WFnn6Qo+dDJxN29xJ19RJ29dSEe7NwN1EhdEtXSFQIRoW7u0J6u0KmdYV0RSG9BRfurVl6opCeKKA7CugOg2q4JwroDkO6IqEQCFFQu8atQ7cdJBVIKkhSRuIypIkLJ2WIXbyWi2ip6NblIloarAkXSUolkmKZuJitB8sjt4tl4mJMPBhTydZxMSYpJ0PxWiklDCYpg4lmiwsX07S6fV36uzF/JMJ+H6wz8fWDXfZrNtsY6yIahkdMYIbhEROYYXjEBGYYHjGBGYZHTGCG4RETmGH4RFXHvQAntXN8nkun2NIpdkyk/Z2SRyfY0m4LdlKbx+dJp9jSKXaMlzzs75Q88spn3HlYF9EwPGICMwyPtCuwm3KxIh86xZZOsWO85GF/p+SRVz7jzkOyQZxhGB6wLqJheKQpgYnIQSLyGxF5RUTOa7C/W0S+l+3/mYi8L29Dm7GjJt0CEVERmefDjmZsEZHdROQxEXlGRJ4XkYN92dIOIvIOEfmxiLycrXcaI90iEXlRRF4SkWtERFrNI0u7g4i8ISJLsu2261Ze9cJLmTbxDiAEfgvsAXQBzwFz6tKcCtyQhT8DfM/D+5mt2pGl6wOeBJ4G5uVtRwv35CbglCw8B/idD1tyuJZFwHlZ+Dzgmw3SfAz4SXbdIfAUcEAredSkvRq4C1iSR93Kq174KtNmWrC/Al5R1VdVtQzcDXyqLs2ngGVZ+AfA39U+4XKiGTsALsYVeDHn87dqiwI7ZOGZwO892tMOtWW3DPh0gzQK9OAqXjdQANa0mAcisj/wbmBlFpVH3cqrXngp02YE9qfA6zXbq7O4hmlUNQb6gZ2byLsVtmqHiPwFMFtVl+d87pZtAS4CjhGR1cBDwOmebRov71bVNwGy9bvqE6jqU8BjwJvZ8h+q+lIreYhIAFwBnFMTnUfdyqteeCnTZgTWqCWqn3psJk27bPEcWQF+Czgr5/O2bEvGUcBtqrorcDBwR2bjNkdEVonILxssjZ70jY5/P3AC7on9BnCmiLzaSh64rt5DqlpbifOoW3nVCy9l2sz/5FgNzK7Z3pXRTeNQmtUiEuGazz82kXcrbM2OPmBf4PGsBzELuF9E5qvqz7exLQBfAA4C1wKISA+wC/B/OduyVVT1wLH2icgaEXmPqr4pIu+hsX2HA1er6sXZMRcCRVVd1EIeHwU+LiKnAjNw3c0dcF3GIcZTt/KqF37KtIlBcAS8CuzO8OBvn7o0pzFyIPp9D4PxrdpRl/5x/E1yNHNPHgZOyMJ7Z4UlPuxp81ouZ+QExaIGaf4ZWJVddwF4BDislTzq8jsBN8nRdt3Kq174KtNmC+Fg4H9wsyznZ3ELgflZuAe4B3gF+G9gD0+VYYt2NHMjt5UtuFmmn2QF9SzwSd9iGed17JwJ5uVs/Y4sfh5wSxYOgRuBl4BfAVe2mkdd+hOAJXnVrbzqhY8yNU8Ow/CIeXIYhkdMYIbhkSkhMBH5tIjMGcdxKiJ31GxHIvK2iCyvifsHEfl55iL0axFZnMVfJCJn53MF2x/by72fEgLDeQ60LDBgANhXRHqz7b/HvecBQET2xc12HaOqe+Ome19t01bDsV3c+44VmIjcJyK/yBxMT8riNtXsXyAit4nIx4D5wOUi8qyI7Ckic0Xk6cwh80dbcj7FTb0ekoWPAr5bs+9c4FJV/TU4TwJVvT7P69zOmfL3vmMFBnxeVffHTfWeISINXa9U9afA/cA5qjpXVX8L3A58VVX3A14Avr6F89wNfCZ7abgf8LOaffsCv2j/UowxmPL3vpMFdoaIPIfzfp4N7NXMQSIyE9hRVZ/IopYBfztWelV9Hngf7gn6UDsGG62xPdz7jhSYiBwAHAh8VFU/CDyDe+FY+9Kup8U8Z2ddyGdF5OS63fcDixnZRQF4Edi/lfMYLTOl731HCgznb7ZOVTeLyJ8DH8ni14jI3pmD5eE16TfifM5Q1X5gnYh8PNt3LPCEqr6edSHnquoNdee7FVioqi/UxV8O/KuI/Bk4x1ER+UpuV2nAFL/3nfoDfCuAk0XkeeA3uG4iOD+35bjPCn6JcxoF15e/WUTOABYAxwM3iMg03MzT57Z0MlVdjfsQsD7+eRH5F+C7WV4KPNjmtRk1TPV7b65ShuGRTu0iGsaUwARmGB4xgRmGR0xghuERE5hheMQEZhgeMYEZhkdMYIbhkf8Hzivtp57rCJ0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
                          " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "pcmci = PCMCI(dataframe=dataframe, cond_ind_test=CMIknn(mask_type=None))\n", - "results = pcmci.run_pcmci(tau_max=2,pc_alpha=0.05)\n", - "link_matrix = pcmci.return_significant_links(pq_matrix=results['p_matrix'],\n", - " val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n", - "fig = plt.figure(figsize=(3,2)); ax=fig.add_subplot(111)\n", - "tp.plot_graph(fig_ax = (fig, ax), val_matrix=results['val_matrix'],\n", - " link_matrix=link_matrix, var_names=var_names)" + "# pcmci = PCMCI(dataframe=dataframe, cond_ind_test=CMIknn(mask_type=None))\n", + "# results = pcmci.run_pcmci(tau_max=2,pc_alpha=0.05)\n", + "# link_matrix = pcmci.return_significant_links(pq_matrix=results['p_matrix'],\n", + "# val_matrix=results['val_matrix'], alpha_level=0.01)['link_matrix']\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# tp.plot_graph(val_matrix=results['val_matrix'],\n", + "# node_aspect=5,\n", + "# node_size=0.02,\n", + "# figsize=(4,3),\n", + "# link_matrix=link_matrix, var_names=var_names)" + ] }, { "cell_type": "code", diff --git a/tutorials/tigramite_tutorial_pcmci_fullci.ipynb b/tutorials/tigramite_tutorial_pcmci_fullci.ipynb index 9f5fbbe3..7f7d4de5 100644 --- a/tutorials/tigramite_tutorial_pcmci_fullci.ipynb +++ b/tutorials/tigramite_tutorial_pcmci_fullci.ipynb @@ -6,13 +6,15 @@ "source": [ "# Causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI method and create high-quality plots of the results.\n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", "PCMCI is described here:\n", "J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, \n", "Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019) \n", "https://advances.sciencemag.org/content/5/11/eaau4996\n", "\n", + "For further versions of PCMCI (e.g., PCMCI+, LPCMCI, etc.), see the corresponding tutorials.\n", + "\n", "This tutorial compares PCMCI with FullCI. See the following paper for theoretical background:\n", "Runge, Jakob. 2018. “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation.” Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (7): 075310.\n", "\n", @@ -160,18 +162,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAD+CAYAAAB4MAFXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZwbZf3A8c+TZI/eN63Qi9LWFsIl6MJSApFDZDgUuQc5fngAKgQFVPCniD8ELEjgh4gCKmIAuVRskPMXCBAIV6EMFChXSwu9D7ptd7NJ5vfHzLbb7XY3k8xsks33/XrllWYyzzPfTTfz3eeZZ55HmaaJEEIIUS6+cgcghBCitkkiEkIIUVaSiIQQQpSVJCIhhBBlJYlICCFEWQXKHYAQ/UnLv+6alHlz7n75tatmmrnsIOUPbPANHzW/fre9Xxh87KkLyx2fEJVIyfBtIUq39sYrZrW//3Ykt2LpUWZba0PX91VDY6tv9Ng59VNn3jD8/J8/W44YhahUkoiEKEH7+28H1t3221+3f7TgAjJt9b0WqG/I1O08/YZhZ194ad0uM7J9EKIQFU8SkRBFav/4w7q10ctj2Y8WnOC0bGDn6fcNP/cnp0oyEkIGKwhRtHU3X3VlMUkIIPvhuyesu+23v3Y7JiGqkSQiIYqw9sYrZrV/tOCCUupo/2jBBWtvvGKWWzEJUa0kEQlRhMx78wu7JgQsaxzJvZMO44XRu7NkwBjyKLuStvrMe/NLSmZC9AdyjUgIh1r+ddeklr/f9k53o+Pu+GApb6/byFV7TwHgmjcXMTc/EN95t23epy7XzviNy5iwYSkTMqvaX59+0JlGa+MTiUhoed/9FEJUDrmPSAiHMm/O3a+7JARwwsQxHPj4a/wkk+XFVet5YukazvrmN5nTaZ92fx0fDhnPh0PGA9TRSgwgHE0uA1LAM/bjtUQkJIMZRL8niUgIh/JrV83s/NoEWv0NNOQyDAz4+dr40Vz91iISS9dyz6xdeWjojoVWPRb4uv0AaAlHk8+zJTGlE5HQJpd+DCEqhiQiIRwyc9lBnV+3+hvYWDeQVn8DQ9o3cPLkHTjo8df4836fZ/LgRj4ZsEOxhxoMHGY/ANrD0eTLbElMzyUioTXFVi5EpZBEJIRDyh/Y0PHvjC/AxsAAAPI+P+vqh3Dd2+8wqiFAzjTJo/h04Gi3Dl0H7G8/LgHMcDRpsCUxPZOIhJa4dTAh+ookIiEc8g0fNR8gp3y01A0CpTa/d8fbH7LB9DH7C7vxxwUfsM8u02j31XkVigJ2tx/nAYSjyQ+xktLTwBwZACGqgSQiIRyq323vF1qNV1o/M+sbTbXlDoj00pX84/3F/H63IEMHN7IuC89tUD3U5Imd7cfpQD4cTT4DPAA8KK0lUalk+LYQDhm65g8EfIuz2fy4jm2fbtjEWU+8wDWfn8GEQCP1g+t4YuNa0svXUPedm1nTMLScIXd4ASspPZCIhD4sdzBCdJBEJIRDhq5dg3WNZrNce471n7SQb88DEGgMMHT8EFQ+x5IBY1g0eEc+HjSORYPGsWTgDl521xXqVbYkpXfKHYyobZKIhHDA0LXTgDs7b8tlcny2ZD1mbst3yRfwMWriIIZl1tO1cy6Hj6UDRvHKjEMeumfwXm8AewBNQNHD60r0JnZSAt5IREJyUhB9ShKREAUydO0rwL+xRq8BkG3Lsn5JC2a+y/dIwc47KQJ0//3qOvt2OJpUwDTgwE6PKV78HL14jy1J6WVJSqIvSCISogCGru0HPAkM7NiWbcuxfsn6bZOQbcqO4O86m6OD9YjC0eSObJ2YdodtGlheWoiVkG5PREJv9eFxRY2RRCRELwxd2w1IAiM7tnXXHdfVxLHQYLed3FihNRxNDgcOAGZhJaYvAgVNvOqCBPA74F8y7ZBwmyQiIXpg6Nok4Dlgp45thSQhgB12Hv3g6Imj5/lGjJpfv+ve6cHHnrrQzdjC0eQArGTU0WJqBoa4eYxuLAb+ANyaiISWeXwsUSMkEQmxHYau7YB1c+j0jm25dqs7Lp8t6HtzcSidutar+LoKR5MBrEEPxwHfACZ5eLh24D6sVtLzci1JlEISkRDdMHRtKFZ31Bc6tllJqIV8Nl9oNbeH0qlveRFfb+zBD/tgJaRvYA2E8MpcrIR0dyIS2ujhcUQ/JYlIiC4MXWsEHgbCHdvy2TyfLV7vJAkBPBdKp8q+AqudlIJsSUpBjw61BvgT8PtEJPS+R8cQ/ZAkIiE6MXQtgNXl9LWObflsns+WrN98s6oDK0Pp1Bg343NDOJqczpaktI8HhzCBR4CbgEcSkZDjD07UFklEQtgMXVPArcDZHdvy2TzrP1lPLlP0uXRMKJ1a6UZ8XghHkzuz5ZrS/h4c4gPg98BtiUhorQf1i35AEpEQNkPXrgZ+3PE6n8uzfkkLuUyulGpnhdKp50oOrg+Eo8mdsBblOwEIuVz9WuAa4H8TkdCG3nYWtUUSkRCAoWsXAbM7XudzedZ/0kKuraQkBHB2KJ36U6mV9LVwNDkTa2mJM3B3SPgy4Ergj4lIqM3FekUVk0Qkap6ha2dhXWQHwMybfLZkvRtJCGB2KJ26pPfdKlM4mhwCnAZ8D9jNxaoXAZcDd8oNskISkahphq4dCzwI+ABM02T9Jy1kN7l2bvx3KJ06xq3KysUeeXcQVkL6OuB3qep3gJ8D98ughtoliUjULEPXDgHiQANYSWjDso1kWjJuHmZBKJ2a3vtu1cO+lvQd4LvAWJeqfe3TF/9z8zt3X30A8E/TNP/pUr2iCkgiEjXJ0LWvAX+n01xtG1dupHWt65ctcsDAUDrlanarBOFosh5rxN33sOa/K9lK4zlj+atP3r3s1Sd+7UZ9ojpIIhI1x74mdBt2dxxA69pWNq7c5NUhdw2lU/O9qrwShKPJPbEGN5xGpxnKnVrz3lyym1oYs/uBjwGXJSKhl92KUVQuSUSiphi69kPgus7b2tZn2LDM0xHFx4XSqX94eYBKYc8QfibwAxyup9T22SoWPn4n+fY2Jh9+Bo0jx4F1/e6/ZRmK/k0SkagJ9s2qVwI/7bzdpXuFenNZKJ2qqa6mcDRZB5yFNRBhp152740J/BW4JBEJLS81NlF5JBGJfs/QNT/WpJzf3d4+ufYc7RuzZDe1074xu93F7or0YCid+oabFVYLe6mKc7H+ABhdYnVrgB8Bf5HZvvsXSUSiXzN0rR64Ezix0DKmaS7fsGzjuZmWzAxAB3YtMYwloXRqfIl1VDX7fqQIcBEwtMTqngTOSURC75UcmKgIkohEv2Xo2iCsawyHOyi2EDgsGIsvAEg2Nd9Gp7nnSjA+lE4tcaGeqhaOJkcBl2BdQxpQQlWtWDfE/jYRCbW7EJooI1/vuwhRfQxdGwk8gbMk9BZwQEcSsoW3t7NDX3KpnqqWiIRWJSKhHwNTgZuxFtgrRiNwNfBSOJrc1634RHlIi0j0O4au7Qg8irN1d14EjgzG4qs6NiSbmiditZAK9RzW0t313bx3TSid+omDumqCPfv3L4BvUvwfxnkgCvxcJlStTtIiEv2KoWtTsRKCkyT0BHBI5yRkO8hBHZ8ABwIjgK8CvwWMTu83OairZiQioQ8TkdCZwO7AA0VW4wN+CBjhaPIrbsUm+o60iES/YejanlgtISfTzjwA6MFYfJspFZJNzbcD/1VgPXeF0im9mzo+BxyKtdbP90LplHzhemB3s/0PUEpCiQEXJiKhFe5EJbwmiUj0C4auzQLmAMMcFLsNOCcYi3d7E1Gyqfl9Cr8p8zuhdOpWB8cWPQhHk4cDtwA7F1nFKuBC4G8y1LvySdecqHqGrp0OPI6zJHQN8J0ektBEnM0MkHCwr+hFIhJ6DKu77lqsa0BOjcK6CfbRcDTpaIYH0fekRSSqlqFrDcD1WDdMOnFJMBaf3dMOyabm04E7CqxvCTBBut28EY4m98Fawn3vIqvYBPwEa3VY+T+qQNIiElXJ0LXxwNM4S0J54Fu9JSHbwQ7qfUqSkHcSkdArWMPfL8FKKk4NAG4A7g9Hk05azaKPSCISVcfQtTDwKs5GomWAE4Kx+O0F7u+k7qcc7CuKkIiEsolIaDbWaMgniqzmOODlcDS5l3uRCTdIIhJVw9A1ZejaxVgnojEOim4AtGAs/mAhOyebmgcCMxzU/5SDfUUJEpHQB1g3KZ+BNSDBqanA8+FostDRkKIPyDUiURUMXRsK/Bnrr1onVmHdqPpioQWSTc1fAtIF7r4U2FG65vpeOJocg3WNcJth8wX6C/C9RCS00bWgRFGkRSQqnqFrM7ESg9MktBgIOUlCNiddN69KEiqPRCS0IhEJnQYcAXxURBVnAi+Eo8l+tZR7NZJEJCqaoWsnYE2/46SrDKzh1PsEY/FiFlRzMjrrtSLqFy5KREId0zn9FudDvXfHum50guuBiYJJ15yoSIauBbAmtfxREcV/A1wWjMWzxRw72dT8PLBfgbufGEqn7ivmOMJ99swMtwN7FFH8RuDiRCSUcTcq0RtJRKLiGLo2Fvg7zuZ6A1gPnBWMxYuds4xkU7Mf+AwYWGCR6aF0akHvu4m+Yi/GdwPw7SKKp4ETE5HQInejEj2RrjlRUQxd2x9raLbTJDQf+FIpScg2jcKTUAvwfonHEy5LREKbEpHQd7BG1jm976gJmBuOJo9wPzKxPdIiEhXB7oq7CLgCqHNY/F7g7GAs3lJqHMmm5pOBuwvc/blQOjWr1GMK74Sjyd2B+wGnAxJM4Erg8kQk1O00UMI90iISZWfPmp0GrsJZEsphTf9/shtJyOZkxJwMVKhwiUjoDWBfrD9WnFDAz4DHwtGkk9ncRREkEYmyMXStwdC1XwEvA19wWHwZ8OVgLH59MBZ3s1kvI+b6mUQktB44GWt5cqcrwn4Za4j3NNcDE5tJ15woC0PXmoA/AbsWUTyFNV3PJ27GlGxqVlgJrtBZG/YNpVOvuBmD8FY4mmzCah1NdFh0BXBkIhJ62f2ohLSIRJ8ydG2goWvXYSWTYpLQ/wJht5OQbRyFJ6Ec8KYHMQgPJSKhNFbr+z8Oi44BngpHk4e5H5WQRCT6jKFrBwPzsK7rOP3d24i1kur5wVjcq/s8nFwfmh9Kp1o9ikN4KBEJrQKOwroG5OQG2EFAPBxNnuJJYDVMEpHwnKFrQw1duwVrtoNdiqjiPWC/YCx+l7uRbcPJ9aG5nkUhPJeIhPKJSOhK4DBguYOidcBd4Wgy4k1ktUkSkfCUoWtHYnVhfbfIKu4CvhiMxd9wL6rtkhFzNSYRCf0f1h8gzzgsen04mrw6HE0qD8KqOZKIhCcMXRtl6NpfgTgwvogqlgDHBGNxPRiLr3U3uu2SRFSDEpHQJ1ij4wpZMLGzHwN/DkeTTu97E13IqDnhOkPXjgd+B+xQyP6vLF/NayvX8MG6Fi75wkyGNdTfClwcjMXXeRpoJ8mm5iFYU/sUalQonVrtVTyiPMLR5DnAzVj3ERXqYaxpgTZ4E1X/J4lIuMbQtT2wJir9ajHlb3jtnTWThw76wWXPvx5zN7LeOVyDaFEonZrkZTyifMLR5DewuoTrHRR7ATjKHgghHJKuOVEyQ9cmG7p2J1Z3VTFJyLzljQWP3PfeoovKkYRsTroPX/csClF2iUjoAaxVYJ20kPcDng1Hk07vTxJIIhIlMHRtjKFrUeAd4DScdWd0ePuC5Cv//bs3Fqh1mfahSqlytTR2crCvTHTazyUioaeBENYKvIWaAaTC0WTQm6j6L0lEwjFD1wYbuvbfWCfkC3DWhdEhB/wa2PvJj5deaZrmEaZpRk3TXOhmrA44SURLPItCVIxEJPQ60Aw4WeZjJ+CZcDQpk+E6IIlIFMzQtTpD187Duq/nCmBIkVW9hjUk+7JgLF4pN4U66Zpb7FkUoqIkIqEPgQOAlxwUGw48Ho4mj/Ymqv5HEpHolaFrPkPXTsJa8+d3QLGzEWew7mb/UjAWr7QbQqVFJLqViIRWYA3vftRBsUbggXA0eZQ3UfUvkohEjwxdOxTrr8F7KG5WhA4vAHsHY/Erg7G40xmQ+4IkIrFdiUioBTgGcDKYpg4rGckie72QRCS6ZejaFwxdewx4HOdLNHS2DrgQmBWMxd9yJTiX2bNuO0lEXky4KipcIhLKAKcDv3VQrB74ZziaPLSnncLR5NnhaNLJFFP9itxHJLZi6NpuWN1nJ5dYVRvWTNlXBWPxir7xM9nUPBxYU+Duq0Lp1Ggv4xGVLxxNXoSzmRg2YS0j8VQ3dV2IldwuT0RCv3QnwuoSKHcAovwMXfMDGnA+cEiJ1eWBO4BfBGPxj0uNrY9It5xwJBEJXRuOJpdjranlL6DIAGBOOJo8IhEJPQtgz1N3OfBze5+jgZpMRNIiqmGGrg0D/gv4PjDFhSr/BVwWjMWrap2eZFPz4RR+Ifo/oXTqSC/jEdUjHE1+FbgfGFhgkRasGb9fxGoFXdDl/Z3sue9qirSIapCha5/HWjb5TKw1Vkr1LPDjYCyecqGucpAWkShKIhL6j52M/kNhyWgw1h89TwJf7+Z9DbjVvQirgySiGmHomg9r2pILALdG8RjAT4F4MBav5qa1JCJRtEQklLTvGYpjDdvuzVC6T0JgLdhXc4lIRs31c/YsCN8D3sL6q82NJLQIqzW1VzAWn1PlSQgkEYkS2esaHYs1SKcUh4ajyWJmKqlq0iLqpwxdm4J17edsrL/A3LAauBK4uYJmRHCDk0QksyqIbiUiocfC0eRxwD+x7iEqxkCgCecL9VU1SUT9iN39FsYa/XY0xU1C2p1NWBdWZ/flGkF9SFpEwhWJSOjhcDR5PPAAxZ9fD0ESkagmdvLZHzgROAH4nIvVr8cannpNMBb/1MV6K42TeeYkEYkeJSKhh8LR5MnA3ylsaHdXh2AN664ZMnzbY4auDQjG4ptcrtOH1XzvSD5O/qIvxAKsm1H/EozF17tcd0VJNjXXU3i/fhswIJROyZdG9CocTf4IuLaIollghD2tUE2QFpFHDF3ruFkN4Bcu1deElXhOACaUWmc3HgNuAB4JxuJ5D+qvRE4mcF0iSUgUwl6T6KIiiweAA7EGF9UESUQeMHStHmsI5ulAsoR6FPBFtrR8vFj9cSPWTAj/G4zF53tQf6Vzch/Vcs+iEP1GOJr8ElYSGVlCNYcgiUgUy9C14VgXKr9sb2oydK2x0FFmdvLZhy3JZ7IXcQIfATcBtwdj8bUeHaMaOBnd1J9GCgoPhKPJg4F/Y924WopSp9qqKpKIXGTo2mRgDrBbp80NWOvZP9VDuQBWy+cYrATkxnQ725MAbgT+HYzFcx4ep1o4uWcj41kUourZaw/dj/WdL9Ve4WhydCISWulCXRVPEpFLDF07DGvNnu6a4wfRKRHZrZ6pWHNOHYY15HqYh+G1An8DbgzG4m94eJxqJIlIuGUw1vf8MNyZLCAM3OdCPRVPEhHQ+uj9k7LvztvPXLdmppnLDVJ+/wY1bMT8wPQ9Xmj8yvELeyprJ5WLgavY/i/fwYau3YTV3O5IPpPc/Bm2YzHWiqq3BmPxVX1wvGokiUi4IhEJ3QPcE44mxwEnAacB+5ZQ5SEbH773xfb5r+1nrlvd6dw0cn7dzL1eGHjkiT2em6pJTQ/f3nD77Fm5he9G8qtWHEWmddvmdH1jq2/k6Dn+yZ+/YdDZFz/b9W1D1wYDt2N1p/Wk40N26wbTnizF6h64F3iuhka/FSXZ1HwY1mjBQvw9lE6Vuk6TqCHhaHIG8G3gLGCEk7Ijchtb/jj/xjraujk3NTS2+keOmROYMuOGIef8dJtzU7WpyUSUXbggsOmum3+d+/j9C2jP9P4XcV19xj9x6g0DTjn30sCkaVkAQ9emAv8Agh6HW4jlbEk+z8q1n8Ilm5o1rOt6hbgzlE6d7mU8on8KR5MDsP5gPQfrmnFBbpl3HaPae7iVr64+E5g87YbB3/zBpYGdp2dLDrRMai4R5T5ZWLfxtmtiuY8/OMFpWf+EXe4bcEbk1LcvjRyOtXb9cPcjLNgKrNF59wJJST7FSTY1fx14sMDdbw+lU9/yMh7R/9lLgn8Xq+uux9sHfvj+vey/9q1e6/RPmnrfkLMvOrVak1HNJaL1V134m9wH8y8upqxpwtqG4c9uWLv+APqmm62rVWxJPk8HY/Gq/KWrJMmm5pOwBpkU4vehdOo8L+MRtSMcTQ7FSkbnsp2eFW3Z85y5uLA1GwNTd509/Bc3XeJehH2npgYrbLh99qzcx+93XRGxIHkTVmd8tG5aP8vtuHqxGusv9nuBp4KxeHsfH7+/k8EKoiwSkdBnwM3haPL3x/g/OWf1ytU3PT9spi/n2zI93buDCp8GMbvwvQvW33LVQ9V4zaimElHuo3cKuybURSYPq9t8ZM0+awStwbr+dC/wf5J8PCWJSJRVIhIy11xyxpdzn37sO61uKPEdmnhizL5s8jfwwcAdyagA9WYBnR/tmfrsB29fgLViclWpmUTU+uj9k/KrVx7ddfs7a1o48dFXmXvSgfiUIm+aHP/IK5w49XOcNHUnWrKKde0Kj3vickAaeNx+vCjJp884SUTyfyJct/HheyflVq84GmBU+2ecvuRxvrH0GR4fvQ+/evoFDvrwFRry1q/e8k0Z2vN5Fpx4YLd15VavOGrjw/dOqrah3TWTiLLvztuvuyHanx8xmGnDB/HIohUcOWkHrnhpAVOHDeKEqTuxqs1Ha96zBPQuWxLPU/10nZ9qIC0iUVbt81/br+sQ7UG5Vr627Dm0mX5agrMYkW1hYcsmjn5sLr9tmrn9ytpaG7Nvv96EJKLKZK5bs93/vfOCk7jZWEg2nye9bA3/PPKLrGrzkfEmCZ0HxIOx+CIvKheOSSISZWWuW73dc1OdmWNEtoXVbe2c9OTr/Cg4iSMmjO6xvvzaVT1kqsrkxjQUVcHM5bY7TPLL40fzyYZWrnhpAX8+ZC8a/D7GNOQZ25hjWF2eep/JlntSSzZPklBFkUQkyqqncxPApmwOPTGPYyftwBnTe196rLf6KlHNtIiU37+hp/e/NHY4e4waytgBDbTloMEPdQrqfCZD6kxyJrTlFK05aMsrcsUPXDgIeK7YwsJ1kohEWfV0bsrlTb79zJtMHTqQn+5V2FzIvZ3rKlHNtIjUsBE9rrXzzpoWdh81BKVgTcbH8lYfm7LWvUMAfgUDAyYjG0zGNeYZM23K+Vg3pd0LOJkh9+AifwThDUlEoqzUsJHbPTdd8uK7tJsm1+/3+YLr8w0fVXXritVMIgpM3+MF6hu3u57M22tbmDnCWkKk3meSyStWZfwsa/WxIavofN+vamhsHbb/QQ8FY/E/BmPxk7BW+dwT+CEQB3pa4vcAQ9ecrIEjvCWj5kRZ1c3c6wUatj03zZ73Ia+vXs/tB+5GwFfgqbqhsTUwY8+02zF6rWa65hq/cvzCzLOPzMkvXXx81/cWt2xiWH0dg+usj6PeBxvtCXOypmJNRrEOk0EB61E/csyczrNy2xOLzrMf19uJZl+sxfGagf3ZMuHhQPu95736WYUjTpJLo2dRiJo18MgTF7Y9FZ+T+/TjzeemRS2b+M28j5g4qJGjHpu7ed+pQwdy24G7dVsPgH/kmDnVNnQbaigRAfgnf/6G/Krlx3S9qXX84AG8dlJo8+t6v7nN6SmPYn1WsT4Lvo9X7JjXNQ14pLs53ux7gJ63Hxi65gOmsyUpTUYSUaVwMmzeyzWjRA0LTJlxQ27lss3npomDB7DitLCzSurqM4EpM27wIj6vyVxz3TBN+GSTD7P3m1g/Av4A/CkYiy93KUTRh5JNzedhrdlUiN+E0qkfexmPqF1rf/n932Tfe6uoeTChuueaq5lrRB0GnHrepf4JU3pc9VApq3uuAJOxFsRbbOjaXYauHWgvlCeqx1oH+0qLSHhm8OnnX+qfuEtRK7L6J029b/Dp51/qdkx9peYSUWDStOyAMy481T9l5mzq6rc7CqrB76ilWAecAiSBeYauXWDo2g4lhir6hnTNiYoQ2Hl6dsi3Lj41MHXXHs9NW6mrzwSm7Ta7mpeAgBrsmuvMWqF1wQX5VcuPItO61YXoTA6Wt/m3V7QQOeBR4G/Av4Kx+MZSKhPeSDY1zwKeKXD3R0Lp1Fe9jEcIgPW3XDUr++G7F+RWLTuKttZtB8nICq39T+uj90/KvvtGk7lu9UzyuUH4/BvMwcPeWfTS3D8CQ1w4RAtwTDAWT7hQl3CBUmo6cOm+Q4e9et2MXQu9wPt8KJ1q9jIuITrb+PC9k7Jvv96UX7tqppnLDVJ+/wbf8FHzAzP2TFfj6LjtkUTUA0PX/gUc40JVPw3G4le7UI9wkVLq4OkDB+1ya3CP2wosMj+UTu3qaVBC1KCau0bk0P+VWN4EzpUkVLlWt7c76TKVa0RCeKCm7iMqwpMllM0Cpwdj8bvdCka4Ryk1Djh+ZXtmwNK2tvy4hoZC/iiTRCSEB6RF1LM3gWLvD/qGJKHKZZrmUtM0v2+a5tnjGho+K7DYoGRTs0zPJITLJBH1IBiLmxTfPXecPaOCqHxOhnAP9SwKIWqUnCh7V2wiOgO4RZJRVZB7iYQoIzlJ9q6UAQvfBm6U2RYqnpPZFYZ7FoUQNUoSUe8+AEoZr/894FpJRhVNWkRClJEkol7Y14keK7GaHwJXSjKqWE4SkbSIhHCZJKLCxLez/X0HdfwU+LkLsQj3ycSnQpSRJKLCPAm0ddn2ONaqrD9yUM/lhq79TFpGFcdJi2i0Z1EIUaMkERUgGIu3AJ3niXsQODoYi28IxuK/BZxMv/4rrFVc5bOvHCsd7LuLZ1EIUaPkZFi4Ofbzn4GTgrH45hZSMBa/Cvilg7ouAP5m6Fp9r3uKvuCki3WaZ1EIUaMkERUuDlwPfCsYi3e37scvASdzyp0C/NvQtcFuBCdKssDBvpKIhHCZzL7tIvvaz3XAhQ6KvQRowVh8hTdRid4km5obgI0U9oeZCQwMpVOt3kYlRO2QFpGL7KHePwJ+56DYF4FnDV2b5E1UojehdKoNWFTg7gqY4mE4QtQcSUQus5PR+cAfHBSbDqQMXQt6E5UowHsO9p3qWRRC1CBJRB4IxuJ54Fzg1w6K7Qg8Y+jaLEs+CiYAABRTSURBVG+iEr2Q60RClIkkIo8EY3EzGItfhjVCrlDDgccNXTvao7DE9kmLSIgykUTksWAsfiNwKtBeYJFG4B+Grp3lXVSiG9IiEqJMJBH1AXuBvKOADQUW8QN/MnTtxzILQ59x0iKSRCSEiyQR9ZFgLP4Y8GWc3cV/NXCdzMLQJz7AGppdiAnJpuZGL4MRopbICa4PBWPxF4FZOFtW4kLgrzILg7dkCLcQ5SOJqI8FY/F3gAMAw0ExHXjK0LXx3kQlbE6uE8mABSFcIomoDIKx+BIgBDzroNj+wFxD1w7zJiqBXCcSoiwkEZVJMBZfAxwO/NtBsdHAo4au/VyuG3lCWkRClIGczMooGItvAo4D/uSgmMKaYPVhQ9dkbRx3SYtIiDKQRFRm9kze38LZzN0AXwFeNXStyf2oapbcSyREGcjs2xXE0LUI1lITTrRjTbR6kz3PnSiSPSR7I1arsxBjQumUk+H4QohuSIuoggRj8SjWOkWbHBSrA24E7jJ0bYgngdUIe2kHJ0Pr9/cqFiFqiSSiChOMxe8BmnDWTQRwMvCioWu7uR9VTXnJwb7NnkUhRA2RRFSBgrH4G8C+wP0Oi87ASka6+1HVjOcd7CuJSAgXSCKqUMFY/DPgRKyZFbpbmnx7BgJ/M3TtZkPXGjwJrn9LOdj3i8mm5jrPIhGiRkgiqmD2UhJR4CBgicPi52Kt/DrZ9cD6t7lAW4H7DgD29DAWIWqCJKIqEIzFU8AXgCccFt0XmGfo2rlyA2xhQulUBrlOJESfkpNTlQjG4suBI4BfOSw6BLgZSBq6NtP1wPonuU4kRB+SRFRFgrF4LhiL/xw4EljtsPgBwGv29EAyk3fPnFwnkiHcQpRIElEVCsbi/8HqqnPShQRQjzU90KuGrskJdPuctIgmJpuaZVZ0IUogiahKBWPxhcCBwO+KKL4b8JyhazfKTbDbCqVTy7AWyiuUJHUhSiCJqIoFY/G2YCz+feBUCl+GvIMCfgC8aeia5npw1c9J95xcJxKiBJKI+oFgLH438CVgfhHFJwBzDF2729C1HdyNrKpJIhKij0gi6ieCsfhbWMO1fwPkiqjiZGC+oWtnGLpW6KSf/ZmTRLR3sql5gGeRCNHPSSLqR4Kx+MZgLP5j4IvAq0VUMRL4C/CYoWtT3IytChlAS4H71gH7eBiLEP2aJKJ+KBiLz8WaOPVinM3k3eFQwDB07ZJanSYolE7lgLSDItI9J0SRJBH1U8FYPBuMxa8FdgeeLKKKAcA1wLuGrp1l6FrA1QCrg1wnEqIPSCLq54Kx+PvAYcBZwJoiqpiItZS5YejaCTU2VZCTRDQr2dTs9ywSIfoxWaG1hhi6NhaIYg1MKNarwGXAo/19RdhkU/MInM1gEQqlU894FY8Q/VUt/XVb84Kx+LJgLH4KcDSwuMhqvgD8B3ja0LVZrgVXgULp1BrgLQdFjvUqFiH6M0lENSgYi88BdgVuAopt1RwIPGPoWtzQtb1dC67yOLm+dmyyqVmGvgvhkHTN1Th7zrnbsBJTKe4F/jsYi79belSVI9nUfAjOlt/YLZROOWlFCVHzpEVU44Kx+PNY3W2/ANpLqOpE4C1D124zdG2CK8FVhiSw1sH+0j0nhEPSIhKbGbo2FbgCOKXEqjJYayBdZa+jVNWSTc0xrPn8CpEOpVP7eRmPEP2NJCKxDUPX9gT+BzgK4L2163nu0xUsWr+R7+8xnRGNBS9ntBG4E/hdMBZ/w5tovZdsaj4R+LuDIjuG0qlPvYpHiP5GuubENoKx+OvBWPxorMX0np46fAijGhtY2dpGwOfoWvxA4LtYy5U/Zd+HVOdFzB57BGfdlkd7FYgQ/ZG0iESP7AlQDwN+nVyyfJ9xgxqZPnxoKVV+AvwB+GMwFl/qRox9IdnU/AjwlQJ3fziUTsnSGkIUSBKR6JVS6ghgj2nDhxx688H7Th43cMA0F6ptB+7HWtgvVek3xyabms/Fuu5ViDZgdCidKnTSVCFqmnTNiV6ZpvmIaZq/eXfNZ4ePGzhgJnAmsLDEauuwBkU8i7V0+dmGrg0ssU4vPeRg3wYKbz0JUfOkRSSKYs/K/W3gZ8BYl6pdgzWv3e/tOfIqSrKp+SWsNZ8KcWconTrdy3iE6C8kEYmSGLo2CDgfuAQY7lK1JtY0QjdhzWmXd6nekiSbmn8G/KrA3VcDY0PpVNbDkIToFyQRCVcYujYCuAgrKQ12seqFwH3AA8CL5UxKyabm3YF5DoqEQ+nUU95EI0T/IYlIuMrQtSHAN4HvAzNdrn4JVkJ6AHguGIsXsyR60ex55N4Hdi6wSDSUTl3oYUhC9AuSiIQn7GHfYeB7wNdwf2DMMuAfWEnpqWAs3iddYMmm5uuBSIG7fwjsEkqn5EsmRA8kEQnPGbo2EevG1m8DYzw4xGrgn1hJ6clgLN7mwTEASDY1HwwkHBTZM5ROOenOE6LmSCISfcYeaXcCVrddk0eH+Qz4N9Y9So8GY/FNblaebGoOYLXGRhZY5OpQOvVTN2MQor+RRCTKwtC1fbG67U7Buu/GCxuAh7GS0mPBWNzJLNrblWxq/ivWdbBCLAEmhdKpPr2eJUQ1kUQkysrQtdHAfwHnAZM8PJSJNeLtmY5HMBYvamLSZFPzN7CSW0E+t8eU/5l40nG3NRx6XKk3AQvRL0kiEhXB0DU/cCRWt93hfXTY9+mUmID3CplqKNnUPBire66gmSBGjKxn0oxRrb4Ro+f4J027YcAZFz1bStBC9DeSiETFMXRtF+AbwPHAF/vw0EuxphzqSEzztjdEPNnUfCdwWiGV+nyw257D8fsV1NVn/BN2uaHxhHMu9U+cKje7CoEkIlHhDF2bBByHlZiaAUfrUJToMyDFlsT0UjAWbwVINjUfCjxeaEUTJg9k1Ogtl8J843e5b4B+/qmSjISQRCSqiKFrOwJfx0pKB9H3k/a2Aa8Ar5umaWxYtnF2ZkNmIAV8hQYNDjBtxpCttvl3njF70EXXXeJJpEJUEUlEoioZujYGOBar++4QIFCuWHLtOXKZHLk26znbliPfvu1MRDN3H0pDg3/Lhrr6TN3eBxwi14xErZNEJKqePc/dMVgtpcPxbjh4Qdo3ZVm/ZP1W23x+mLTzYIYN33qBWt/Y8fcP/vkfTujL+ISoNLIekah6wVh8TTAWvyMYix8D7ACcijXLgqs3s/Ykb5o03/cYALlMjgUbNnDQi8+z0pdh4uSBTJ45mKZ/JWlp3/qSUH7NyqPannjQy2HrQlS8snVnCOGFYCz+GXA3cLehawOwZnA40H40A4O8OK5PKUzANE3I5Xm8ZSXjBjYwcnwDI0c38Oc3F/HVyWMZXNflK5dpbcwteKMJucdI1DBJRKLfsqf3ecp+YOhaANiLLYnpQGC0W8cbEPCzKZdj5A4B5r34GUdPGUdLuzX6+463PuZ/w7t3Wy7/2Wq3ZykXoqpIIhI1w56h+2X7cb09Q/jn2ZKUQpQwu8OgugAb23M89+kyjpv6OTI5k/WZLK+vWEedT7H76KHdF8znPWmlCVEtJBGJmmXPovC2/bgVwNC1CWzdYtqt0PoGBwJsaM9y1zuLiX31C9zz7hJaMln+/OYiztpt4vYL+nwbSvgxhKh6koiE6CQYi38M3GU/MHRtFHAAMAvYG9gDa0DENgbVBXh5+Sp2HNzIuEGNDK4LsHRjG09+vJKrZu263WP6ho6c7/bPIUQ1kUQkRA+Csfgq4CH7AcDS6C/3UQvmptpb2+vb85DJQXsOBtcFuOPtD7n+IKsRNaQuwO/nfcRRO49lQMDf/QHqG1v903ZP98GPIkTFkuHbQjg0LvKLVwaNHfvQ0EYYNRA+NwQmDIMdBgYAk4PHjwJgcH2A99Zu6LFbzjdi9ByZlVvUOrmhVYgibLrj2lntc597kvZMfdGVyMwKQgDSIhKiKAPOuOhZ//gpN5RSh3/8FFkSQggkEQlRtMYTz73UN37KfcWU9Y3f5b7GE8+91O2YhKhGkoiEKJJ/4tTsAP2CU/07z5hNXX2moEJ19Rn/lJmzZQkIIbaQa0RCuGDTHdfOyi1674L86hVHkWlt3GaH+kZZoVWI7ZBEJISL2p54cFJuwRtN+c9WzySfH4TPt8E3dOR8/7Td0zI6TojuSSISQghRVnKNSAghRFmVNrNC60oT0wQzB5hg5rFe5+3XOTBNzM2v80B+u/ttXUeOrerOd3k2c9aU+5336/G5o97OD3tbvvNrIG/Hlbdfd95v8/ZOz7nclud8l9d2ObPrtlzOKp+zP4/Oz3kT047JzFkfMbm8HaLZ6X3s903o2M8us1VZe38zl8c0Tcys9dnls1Ysefv1lu1WLPlsHtPMY2a7L2fmTfK5nP1s7ZPL5e3XVlz5XJ58p/fz9vu5Lq+7ls9Zvymbn81O/3bybAJZ+zkPXG6aqqTf+T7UsM+3TeXz4wvUo/x+/IF6rNd11nOd9XrL9vqttvsC9fh8Cp/fh8+nUD6F3++zngM+lI8trztvVwp/YOv96wM+/PZzYPNr35btfuu5wX7t71KmYx+fUtT5FX6lqPMpfD77WSnq/D78Cur8PnwK6nw+/D7ruaOcUuBXCp/9rBRb/XvLe1g/R8f7PoXCfjZNVD5rfd/yOZSZB/u1yvW03TpHdJQ1s+2Qz2G2ZyCfx8x2eW7PWO937Ld5f+s5n23HzOXJt2cxc3lymXbMfJ58Jms95zr9O5Mln8+T77RPfnNZk1x7jnzOJJ+xnnPtOWt7JlfQ+3nTJJM3yW1+psvzlu3tZnf7Wf++xfyoqO+XtIiEEEKUlSQiIYQQZSWJSAghRFlJIhJCCFFWkoiEEEKUlSQiIYQQZSWJSAghRFlJIhJCCFFWkoiEEEKUlSQiIYQQZSWJSAghRFlJIhJCCFFWkoiEEEKUlSQiIYQQZSWJSAghRFlJIhJCCFFWJS0VrpT6jmmaf3Qxnqonn8m25DMpjnxu3pDP1TvFfraltoi+U2L5/kg+k23JZ1Ic+dy8IZ+rd4r6bKVrTgghRFlJIhJCCFFWpSYi6Wfdlnwm25LPpDjyuXlDPlfvFPXZljRYQQghhCiVdM0JIYQoK0lEQgghyqqgRKSUOkIp9Y5S6j2l1E+6eb9BKfV3+/20Umqy24FWmt4+k077Ha+UMpVS+/ZlfOVQwO/JRKVUQik1Vyk1Tyl1ZDnirFRKqZFKqceVUgvs5xE97DtUKbVEKXVTX8ZYTeS85R23z3+9JiKllB/4HfBVYFfgFKXUrl12OxtYY5rmVOB64Jre6q1mBX4mKKWGAOcD6b6NsO8V+Jn8DLjXNM29gZOBm/s2yor3E+BJ0zSnAU/ar7fnV8DTfRJVFZLzlne8OP8V0iL6EvCeaZofmKaZAe4Bju2yz7HAHfa/7wcOUUqpAuquVoV8JmCdLH4DtPZlcGVSyGdiAkPtfw8DPunD+KpB5+/RHcDXuttJKbUPMBZ4rI/iqkZy3vKO6+e/QhLRTsDHnV4vtrd1u49pmllgHTCqgLqrVa+fiVJqb2CCaZpz+jKwMirk9+Ry4DSl1GLgYeAHfRNa1RhrmuanAPbzDl13UEr5gOuAi/s4tmoj5y3vuH7+CxSwT3d/IXQd813IPv1Jjz+vfbK4HjizrwKqAIX8DpwC/MU0zeuUUvsDdyqlgqZp5r0PrzIopZ4AxnXz1mUFVnEe8LBpmh/LH+89kvOWd1w//xWSiBYDEzq9Hs+2XSod+yxWSgWwul1WFxpEFertMxkCBIGn7JPFOOAhpdQxpmm+3GdR9q1Cfk/OBo4AME3zeaVUIzAaWN4nEVYA0zQP3d57SqllSqnPmab5qVLqc3T/uewPHKiUOg8YDNQrpVpM0+zpelItkvOWd1w//xXSNfcSME0ptbNSqh7rIvNDXfZ5CDjD/vfxwP+Z/ftO2R4/E9M015mmOdo0zcmmaU4GXgD6cxKCwn5PFgGHACilZgKNwIo+jbKydf4enQH8q+sOpmnqpmlOtH+vLgL+KkmoW3Le8o7r579eE5Hdd/p94FFgPtaopzeVUlcopY6xd7sdGKWUeg/4IT2P9ql6BX4mNaXAz+RHwLeVUq8DdwNnyhd/K1cDhymlFgCH2a9RSu2rlLqtrJFVGTlveceL859M8SOEEKKsZGYFIYQQZSWJSAghRFlJIupjSqmvdXcXcgHlTKXUnZ1eB5RSK5RSczpt+6pS6mWl1Hyl1NtKqWvt7ZcrpS5y5ycQorLJd6X6SCLqe1/DmhbDqQ1AUCk1wH59GLCk402lVBC4CTjNNM2ZWMMnPygxViGqkXxXqowkIhcopf6plHpFKfWmUuo79raWTu8fr5T6i1KqGTgGmK2Uek0ptYtSai+l1AvKmgT0H6qHiS6B/wCa/e9TsEaedbgEuNI0zbfBGtlimqbM5SZqlXxXqogkInf8l2ma+wD7AucrpbqdJsQ0zRTWePuLTdPcyzTN94G/Aj82TXMP4A3gFz0c5x7gZPtG0D3YejLBIPBK6T+KEP2CfFeqiCQid5xv3xvzAtYdx9MKKaSUGgYMN02zYxblO4DQ9vY3TXMeMBnrL7yHSwlYiP5MvivVRRJRiZRSBwOHAvubprknMBdrxoDON2g1Oqxzgt1195pS6pwubz8EXMvWXQ0AbwL7ODmOEP2cfFeqhCSi0g3DWtNko1JqBrCfvX2ZUmqmPQHg1zvtvx5rLiZM01wHrFFKHWi/903gadM0P7a77vYyTfOWLsf7E3CFaZpvdNk+G7hUKTUdrIkHlVI/dO2nFKL6yHelShQy6ano2SPAOUqpecA7WN1zYE0XMgdrunQDa4JKsPqub1VKnY81v9UZwC1KqYFYI3fO6ulgpmkuBm7oZvs8pVQEuNuuywTiJf5sQlQt+a5UD5niRwghRFlJ15wQQoiykkQkhBCirCQRCSGEKCtJREIIIcpKEpEQQoiykkQkhBCirCQRCSGEKKv/BwMCWQ1ASOqUAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAD+CAYAAAB4MAFXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZxT1f3/8deZhZ1xBFQQRLQiRYPVok4dNTIolpK6Ym01Umst1kpt081va2t/ftuvbdW2TtsvLl/qirFqi3sUF4hGHZ2qRSEKFndRtKKsssyS+/vj3GEyITNkZpLcSfJ+Ph7zyOTcZT6EST5zzz3nc4zjOIiIiHilzOsARESktCkRiYiIp5SIRETEU0pEIiLiKSUiERHxlBKRiIh4SolIREQ8pUQkIiKeUiISERFPKRGJiIinlIhERMRTSkQiIuIpJSIREfGUEpGIiHiqwusARIrJ6pm1uwNTgH2AVmAp8NSoBQ2bvYxLpC8zWo9IpPdWz6ydAPwROBbYBgwCEsAWoD9wLfDrUQsaPvEsSJE+SolIpJdWz6w9A/grNuGUd7LbVmATcOyoBQ1L8xWbSCHQPSKRXlg9s/YCbBIaROdJCGAAMBx4evXM2kPzEZtIodAVkUgPrZ5ZexjwBDCwm4d+BIwftaBhffajEik8uiIS6YHVM2sHAP/AXul011DgmuxGJFK4lIhEeuYUYBhgenDsAODU1TNr98xuSCKFSYlIpGfOBob04vhWbDITKXlKRCLdtHpm7SDsXKHeGASc0/toRAqfEpFI903HzhXawc1vfMDPlryx/fnlL7/Dhc+t7Ow8k1bPrN0t++GJFBYlIpHumwZUpdvwlbG78cgHa1nf1MKjq9fy2AdrueLz+3Z2nq3AkbkKUqRQqMSPSPeN6GzDoIpyTh4zgt+98g7RD9Zx+1EHMLC80+lFZcAuOYlQpIAoEYl0X9qroTZfG7c7xzz6Ijd+YQLjhnQ+uvv54Qf0u3fMlNmv18fGAnFgGfBGNORPZDdckb5NiUik+7Z0tfGq5e8yvH8FrV1MFl9fOZirJp7VzzFlR9Kxe25zXX3sFWxSiic9fhAN+TX7XIqSEpFI963tbMO1K99nW8LhusP35/fL32XG6OFp9yt3EvRLNLOtvH/qpkHAoe5Xsvfq6mNPAW1fy6Ihf2uP/wUifYhK/Ih00+qZtecDvwcGJ7c/9Z/1XLL0Te4/ZhJDKsuZtuglrpq8H77qwWnP8+6gPbZcceA54Y8HVI8GJgFjuhHGRqCB9sT0z2jIr6UmpCApEYl00+qZtSOBt7DVtgFYtXkbp8VeZn7tZxlfNQiAO97+D898tIH6Q/fr7FTvjFrQsHfbk7r62K7Agdik5HMfJwHVGYTVArxAe2J6Ohryf9TNf5qIJ5SIRHpg9czaF4HP9eIUTcCVoxY0/KKrnerqYwYYC9QCR7lfk8istNCrtCemp4DXdZ9J+iIlIpEeWD2z9vvAb+l+5e02nwK1PVmbqK4+Vg0cQXtiOpzMiq9+CDwK3AU8rK486SuUiER64NWvTZsCPFbutJYPatna3cqnCeBl4HOjFjT0+g1YVx/rD3ye9sR0FLYga1c2Aw9hk9ID0ZB/Q2/jEOkpJSKRbooHAwdi1yEaDlDVtJHKREt3TrEZmDxqQcOKHIRHXX2sDJhAx8TUaXkHbDfhY9ikdG805F+Ti7hEOqNEJNIN8WBgX+z9llEAOE6ietv6beU4mXbRbQa+N2pBw/U5CjGtuvrYnkAdcCrwJTrvUkxgk+xdwN3RkP+9/EQopUyJSCRD8WBgNDYJjXObWnGc04dvW3cKdkmH9OO0220BfjBqQcN1uYty5+rqY4OALwIzgRPoulLEs9ikdFc05H89D+FJCVIiEslAPBjYDYgBn3WbHGCWLxwJr55Za4BzgSuwk8SH0D6qrRV7FfQecN6oBQ1P5jXwnairj/UDpmKT0sl0UUcPeAmblO6Mhvw56VaU0qREJLIT8WCgGlgMHJLU/B1fOHJt8n7uOkUnAjOwCasFeAY7KGBRNgYm5FJdfawCW25oJrYLb3QXu0eBudh7St26QSaSSolIpAvxYGAw8DAd68Fd5AtHrvQopLxwBzwcik1KM4HPdLLre8B1wLxoyP9BnsKTIqNEJNKJeDAwCLgHu/5Qm8t84cgvAGI1tQb4NrAHcLm/sWFr/qPMPXdSrQ+bkL6GHZGXqhlYgL1KeloTZ6U7lIhE0ogHA1XAA8DRSc1/Ab7vC0ccNwlFgWPcbW/5Gxv2yXOYeecmpanAHOAk0i+uuRSbkG6Lhvyb8hieFCglIpEU8WBgBPa+TnIF7BuBb/nCkQRArKb2x0Bq99wQf2PDp/mJ0nt19bG9sFeEs4Hd0+yyAbgJuDoa8r+ax9CkwCgRiSSJBwN7YsvgHJDUfA3w3aQkdAq2Gyq1oMJof2PD+3kJtA9xR97NxF4ldbb0+WPYq6QHNLhBUikRibjiwcA+2A/M5CoElwM/84UjDkCspvZw4HHSTwj9rL+xoaT/8q+rjx0MXAAEsWsrpXoXm9ivjob86/MZm/RdSkQiQDwYmIhNQnsmNV/sC0d+2/YkVlM7DmgkfTcUwGH+xobncxZkAXELs34Dm5TGp9nlE+B3wFwVX5V0NxpFSko8GPg8drJqchL6bkoSqgYepPMkBDA0NxEWnmjIvy4a8tdj51N9EbgPWz6ozTDsBODX6upj3xk6Zv8xxpjrjTErjDHNxpjXjTG7eRC6eECJSEpaPBg4Cjv6ra2iQAI42xeOzG3bxx0hdwcwcSenG5KTIAtYNORPREP+R6Ih/0nYLs8rsaWO2owCrt7tc8e8eNJJJ33zxRdfnLBx48aKqVOn7kvv1nuSAqJEJCUrHgx8EXiE9lprTcBpvnDklpRdDwWOz+CUuiLqQjTkfzsa8l+EnRw7Fzv3CIABw/cc/vzzzzNt2jRisRjGdHNhDSloSkRSkuLBwKnA/bQPOtgCnOALR+5Os/u6DE+rRJSBaMi/Ohryfxc7MfZmILH7wXWMOuNXbBsycvt+o4865ZDOziHFRYlISk48GDgb+DtQ6TZtAKb5wpFH0u3vb2xYCXwTuzzC4i5Ora65boiG/G9GQ/5vAJNMWdmCIaP3o2JA+0C74b6jrqirjy2qq499wbMgJS+UiKSkxIOB72InWbb97q8BpvjCkae7Os7f2HCjv7FhCnaJ784sz0aMpSYa8r8SDflPAw5r2bIpdVG+qcAzdfWxe+vqY5M8CE/yoMLrAETyIR4MGOBnwGVJze9hr4QySiCxmtpywJ/SfBm2Ft1CbHFU6QFjTCVQA6zHHTjywXMLqRgwmKq9J4Ktan5CXX3sNuCX0ZD/Dc+ClazTPCIpevFgoB/wJ+D8pOY3gGN94chbmZ4nVlM7GUieJxT3Nzbor/QsMMYcP3HixIfPOOMMzjjjDBobG1myZAlX33z7tpqf39Y/ZfetwKXAH1SloTjoikiKWjwYGAn8g46lZ17BXgl1txzPlJTnj/c8Mkmxaf369SxZsoQlS5YAsGXLFrasee8l4Crg18B+7r4DsJNhv1pXHzs3GvIv8SRiyRpdEUnRigcDNdgVRZMnqj4NnOwLR1LvRexUrKb2ASCQ1HSav7FhQe+iFABjx2sfAYxM2fS04zgf1tXHKrGVGn4LDE/a3gr8Abg0GvJvQQqSEpEUpXgw8E1sTbN+Sc3XACFfONLU3fPFamorgI9pn3MEsJu/saHbCU16rq4+thtQD5yZsuk1YHY05H8870FJrykRSVFx7wfVA99Jam4CLvCFI9f39LyxmtpDgeeSmpb5GxsO6un5pHfq6mMB7B8We6Vs+ivwk2jIn+ncL+kDNHxbioZ7P2gRHZPQ+8AxvUlCrrqU59Fenk96IRryR4ADgf8Fkv+a/hbwSl197BRPApMeUSKSohAPBg7Hjmg7Kqm5AZjsC0eezcKPmJLy/PEsnFN6IRryb4yG/Bdi/8+Th+CPAu6qq4/9o64+lnrPSfogdc1JwevkftC12GW9u30/KJV7f+gT2kv4OMAIf2PDJ709t2RHXX2sP3Axdq5YZdKmdcCPgRuiIb8+7PooJSIpWO79oKuwa960aQLm+MKRv2br57iL4TUmNb3kb2w4OFvnl+ypq4/5sPeJalI2LQbOi4b8r+c/KtkZdc1JQYoHA3tg7wclJ6HV2PtBWUtCrikpz3V/qI+Khvxx7Jyx79OxHNNUYFldfez8uvqYSnv3MUpEUnDc+0EvkLv7QalSByo8noOfIVkSDflboyH/nwEfHcsuDcR24d5UVx9Lt4y5eERdc1Iw4sFAGXAhcDmQXPYla/eDUsVqaiux94faKms7wHB/Y8PabP8syT736ieILfE0LGnTUmBmNOR/zZPApAMlIikI8WBgP+AG4Oik5mbs/aB5ufq5aerLLfE3Nnw+Vz9PcqOuPjYWu/TH4UnN64GvR0P++7yJStqoa076tHgwUBYPBi4EXqJjEmqbH5SzJOQ6MOV5Lrr+JMeiIf872Mrp1yQ17wLcW1cf+01dfUx1Nz2kRCR9VjwY2Bc72unPQHKf/i2AzxeOPJOHMA5Ief5KHn6m5EA05N8WDfkvAL6OXZG3zc+Ah+vqY7t7E5koEUmf414FzcH24x+TtOkD4ERfOHK2LxzJ1z2aiSnPtfhdgYuG/POBL2Dr07WZCryg1WC9oUQkfUo8GBgHPIYt3TI4adOtwIG+cOT+PIeUmoh0RVQEoiH/UuAw4N6k5jFArK4+NkdDvPNLgxWkT3BXUP02cCXtI9QAPgS+7QtH7k17YA7FamoHYOeitP3Bth7Y1d/YoDdNkairj5UBF2FX2k3+w/xW4PxoyN/V0vCSJUpE4rl4MLA3cD1wbMqmvwEX+sKRj/MfFcRqaidhuwfbPOtvbDjCi1gkt+rqY8dif992S2qOA6dGQ/6V3kRVOtQ1J56JBwMmHgych33DJyehj4CZvnDkTK+SkEvdciUiGvIvAj5Px1GRPuD5uvrYyd5EVTqUiCSrjHWhMeY5Y4xjjGkyxtxijEleJZV4MDAWO+v9Ojp2xd0BHOALR+7KY9idSR0xp4EKRSwa8q/CDo6Zm9RcBdxdVx/7iTdRlQZ1zUlWGWN8Y8aMWXbLLbcwatQoAG688UauuOKKOPD5ZWfO6Af8CNsvnzwYYQ3wHV848o+8B92JWE3tHcDpSU1f9jc2RLyKR/Knrj4WBOZhywK1uRz4map4Z5+uiCTbEs3NzcyZM4eJEyduPfzww5k9ezaTJ0/2/eSQif8DrAT+m45J6B/YEXF9Jgm5NIeoREVD/jC2gvc7Sc3/BVxXVx8r9yaq4qVEJNm2/MMPPzxr+fLldUDVxo0bX3n77bcZNmwY46oGX4RdtKzNh8BXfeHIV3zhyH+8CTc9dw2i/ZOatgBvexSOeCAa8i/DVvJekdQ8G/hbXX2sX/qjpCeUiCSrHCsMxPYYOODvM2bMOGDYsGE8+cTjHLLbrm27bcZeFY33hSN3ehZs1/ah40J7r/obGxJeBSPecO8bHU3HeoNfAe6vq48NTn+UdJcSkWTdC1+bvveU0bsvHz/50JMuv/xyTjzxRH59mI+h/SoT2H73/XzhyKW+cGSj17F2QQMVBIBoyL8GW3kheR2q44FH6+pjw9IfJd2hRCRZEw8GqpeeOeOK3/9r+evbxn5m/2uvvZYTTjiBoZ9uYFNz8wsfb912iC8cOc8Xjqz2OtYMaOi2bBcN+TcCM+hYieEI4Im6+tio9EdJppSIpNfiwUC/eDAQAl5fuW7jT/7ZWlH+0EMP8cADD3Dcccdx5MzTuW3ttslT7lq0t9exdoNqzEkH0ZB/K3AacFNSsw94uq4+9hlPgioSSkTSY+6E1NOxH9JXAcMSjkNTUxO//OUvef/99xk0aBCDBg2ioqICCuv3LfWDZUXavaSkREP+FuBc7O97m32Ap+rqY5O8iarwaR6RdFs8GCgHvowtn1+TvM1xnHVzl6289+blbyzb2ppoSdq0BrjTcZzmPIbaY7Ga2hXAhKSmEf7GBi+rPEgf4hZFvRj4n6TmdUAgGvI3eBNV4VIikozFg4GhwDnA99jxiqEZWzH7Mo/L8mRFrKb2P7TXHXOASn9jQ6uHIUkfVFcf+w62EkNbte7N2Pp0D3sXVeFRIpKdcpdmuBD4FrbkSao7gIt94cgb+YwrV2I1tQabWNsmLn7ib2wY7mFI0ofV1cfOwC7W2LbKazNwVjTkv9PdPgxYFw35Nfy/E0pEkpa7LEMt8APgFHa8v9MC3A5c5QtH/pXn8HIqVlNbDSQvvLfS39iwf2f7i9TVx2ZgK4S0lQRygFnAaOB32MK+tdGQf5M3EfZtWqddOogHA/2wI4N+AByaZpePgWuBq33hyPv5jC2PUq9+PvEkCikY0ZD/wbr62PHAA8Au2K66m4E33e8nYZcov9qzIPswJSIBIB4MDAfOA74L7Jlml1eAeiDsC0c25zM2D6ROUiz4e16Se9GQ/6m6+tgUYBH2d6gc2Ddpl7NRIkpLiajExYOBicD3sX+tDUyzy0JsAnrEF46USj9u6hWREpFk6l0gBgSASjp2aR9eVx87IBrya3J0CiWiEhQPBqqAk4CzsKVKUm3B3nz9sy8cKcU3jRKR9NQFQFcL6Z2NreItSZSISoQ79PoE7Po604H+aXZbjR2CfV0xDMHuhdSuOd0jkkztbFnxb9TVxy6OhvyaCpBEiagT62ZPL8euHNpUPW/hFq/j6Yl4MDAY20XwVWydrAGd7PoCdqb4333hSFOewuvLdEUkPRIN+W+vq49tAy4FDkqzy+7AmcD8dMevmTXV0L5i8aYR8xeXRHe4ElGSdbOnlwEzsTfsD8f275avmz39fWyxw99Wz1vYp0eKxYOBQcCXsMnny6S/7wPwAfB34G/AsyV0/ycTSkTSY9GQ/+66+tg92B6IS9hx9GmIlES0ZtbUQ4GfAseSlIjWzJq6CPjdiPmLn6eIaR6Ra93s6fsC9wNjaf9FSNYEtAK/Ai6vnrewz7xw8WBgALa77XTgRDqufprsI+xchzuAp3zhiLoH0ojV1N4GnJHUNM3f2PCYV/FI4XJLAR2Prb7QVo3khmjIfy7AmllTB2GHec/A/tFoUk7hYO/ZPgR8fcT8xUU5YlWJCFg3e/phwKPYBLSzZYA/Be4Gzq6et9CzmdJu8jkOe+VzEjC0k10/BhYAdwJP+MKRlk72E1espnYh8MWkpsn+xoaimrQr+eUmpFOwc4xuiob8zppZU0cAT2CLpnbWc9FmC3ZO0jEj5i9ek9NgPVDyXXPrZk8fjU1Cu2R4yGDgVOB98jj6JR4MDMFWOvC7XzV0XEE02VrgLmzyifrCkYIoNNqHqGtOsioa8jvY9yQAa2ZNrcBOjRiPHea9MwPdfReumTW1ZsT8xUXVm1HSiWjd7OkGe49kUDcPHQRcuG729Hur5y3MSaXdeDCwK3AU7YlnMl1fra0H7sF2uy3SoINeUSKSXPsv4LNkloTaVLrH/BS4LBdBeaWkExH2yuYQuvfL0GYg9objThfEigcDnwV+gb3qutAXjryVZp89gKNpTzwHsWN/car12Ptad2InnG7rRvzSueR7hA62O1YkK9bMmjoK+Dk7745LZzDw8zWzpt44Yv7iPj1wqjtKPRGdS/qBCZkauW729InV8xamXb3TnTh6CXaUTNtr/ToQigcDe9GedI6h49o3nVmDnbUdw/YtL9OAg5xIvve3sz8GRLrrFOwfOD3lYCfNFk25oJJNROtmTx8E1PXyNOXAV7Aj6bZzK1cHgSuBkSnHTIkHA++Rvp5bqvexCact8azQMOvcMsbseutBBzt79h9Audmeg8qwIyZFsuEcun87INkg9xxKREXgeOyQ7A6TPF9du4nTH/4XS756NGXGkHAcTlv4AqfvN4qvjR+deo7+2FLv2xNRPBiYBswD9u7k536ui5jeoD3pxIA3lXjywxjzLeCXVVVVe1287hNGrl/PlRMOaNtcgRKRZIE7Ui7tkuIXNixn2dr2VSL+s6WJ5kSClacfnW73SWtmTR1RLCPoSjkRfY00Q54n7DqE8dWDWfjOR8zYe3d+9dxK9ttlcLok1GbMutnTx1bPW/iOe5/nYTLvzllOe+J50heOrOrBv0Oy4/sPPvjgXvvvvz8DBw7koHHjkrftbEi/SKZmYBfO26HE1l9qJ27//u1NWzjhkSX8sWZi6m5tmt1z3ZKDGPOulBPRvnSSMC7w7c3V8bdpSSRo/HAt9wUO6+o827CLX72DXb10Z0loOfBjoLHE67n1Nf869dRTfYMHD2bp0qWp25SIJFvGsJNBCp9sa+ari17iR769mb7XiM52G+ieqyikrrpZSjqbAMrUMSN4/9Ot/Oq5ldx47MFUlu30ZaoC8IUjK4HfYu/tdDZ3ZyIwREmoz/nG1q1bx3WyrZT/YJPs2pUu/rDZ0tJKMLqUk/benbP377QXBvcc1dkOziul/Abr8srl8D2qOWh4FSMHpStS3fm5fOHIxcDF8WCgEns/6Mikrz2BD4HGngYtueE4jmOM6WyYtq6IJFs6/dxpTTjMfvJl9qsaxM8O3rez3TI6V6Ep5US0sauNr67dRLDrv0iSbUhtcKsZPO9+/ckdSbc7sMEXjhRkNe8SVsrvE8mutdjpATt0s1z0z3/T7Dhc9YVMZnKQANZlOTbPlPIb7B12rIq73Yp1m5i4a0ZTjPphK1l3yR399mHG0UleGWNqSCrZtLGlhd++8RrfGD2GUf0H6IpIsmU1sJmU+YtXLn2Tlz7ZyD3TDqZi57cCcM+x08+dQlHK94jupJOrolWbtrBLv0qGVGaUp9dUz1v4RlYjEy/8+KKLLjrlxhtvZNiwYYTvvJPq447l4TUfgbrmJHseIqWSyzubtnDF0rdYu62ZLz+yhCmR55gSeY5vPflyV+epBB7MZaD5VMpXRA/SSdHQMUMG8uJX/Zmcoxm4NZtBiWdeu+2227jvvvu2N6xZs4bzq6qhtN8nkkUj5i9evWbW1H+TNJdo7JCBfHRWt+fW/3vE/MWrsxqch0r2iqh63sKNQG8LljZhr6yk8F28atWq8StWrDjgh+WVz/+ssj/XjB7LtBG7ga6IJLtuwi7r0FNb3HMUjZJNRK4b6F1By/XAS1mKRTzkWK85jrN8wuAhm8YNHMTu/bePmNQVkWTTP7JwjgVZOEefUeqJ6G/ASnpWvmUzcE5fWqlVsiZ18UBdEUnWjJi/+B3siq09WW11MzB3xPzFb2c3Km+VdCKqnrewFTiN7l8mbwbC1fMWPpL9qKQPSP3DRIlIsu0X2JG73VkxuQV41z22qJR0IgKonrfwdexS25+SWWn2zdj6cHMA4sHA0Hgw8L14MNBZkVMpPKnrOg32JAopWiPmL94GTMMO585kHbFt7r7HuccWlZJPRADV8xYuxi7DvZrO7xm1AluB64AvV89b2FbCZwXwJ+DNeDBwfTwYyHgWrPRZqfMzRnkShRS1EfMXr8JWX2mk63vVnwL/BD7nHlN0lIhc1fMWLgX2AS7CFiZtAjZhu+02AHcDh1TPW/hDt0uvTVtVQgN8E3gjHgxcEw8GxuUrdsm61GGxSkSSEyPmL14LTMGuFv009srnU/drm9t2KnCMu29RMo6je+3prJs9fSiwB/aXYVVngxLiwcC9wIlpNrVglxL/hS8cKZolfUtBrKb228C1SU2/8Tc2/NyreKR0rJk1tR/tVbVXjZi/uMnLePJFw1I74c4z6rIenetS0ieiCuwqioe4X1I4dEUknnATT8lValHXXO+9COywgE2SoinVXkKUiETySImol9xipjd3svlN7PBwKSypiWhPT6IQKRFKRNkRJv2k2H2AX8aDgYwWNZI+40M6DuXXFZFIDikRZYEvHPmQjpVw70/6/kTg/ngwkNGaEuI9f2NDM7AmqWm3WE1tZWf7i0jvKBFlzw+AJ4E7gNOB/0vaNg14NB4MDPMiMOmR1JGOe3gShUgJ0PDtHIkHA2XAH4BQcjPwRQ3n7vtiNbUPAdOTmg73NzY851U8IsVMV0Q54gtHEsAPgUuSm4Gn4sHAZ7yJSrpBI+dE8kSJKId84YjjC0f+B1uXru3Scx9sMprU+ZHSBygRieSJElEe+MKRq4GzaK+0OxKIxYOBWu+ikp3QEG6RPFEiyhNfOHIbcDK2cCrYia6PxoOBL3oXlXRBV0QieaJElEe+cCQCHI8togowCDu0+3TvopJOKBGJ5IkSUZ75wpEnsdV2/+M2VQK3x4OB8zwLStJJHdm4jydRiJQADd/2SDwYGA88CiQvqPcz4HK3bJB4KFZTW469ch3kNrUAQ/yNDUW3KJmI13RF5BFfOLISOAq79lGb3wKXx4MB401U0sbf2NAKLEtqqgAmehSOSFFTIvKQLxxZBfiB5ImSPwGuV326PiG1qvpBnkQhUuSUiDzmC0fWAMcCi5Oaz8EO797Lm6jE9VLK8895EoVIkVMi6gN84chGIIBdjrzN4cC/4sHAcd5EJeiKSCQvlIj6CF84shX4CvDftFdhGAE8HA8GLnZr10l+pSaiz8VqanX/TiTLNGquD4oHA1/CrnG0a1Lz/cDXfeHIOm+iKk2xmtq36DiycZS/seEDj8IRKUr6K7sP8oUjDwGTgX8lNZ8AvBAPBnSfIr9S7xOpe04ky5SI+ihfOPImcCRwfVLzvsCz8WDg695EVZJ26J7zJAqRIqZE1If5wpGtvnDkW8C3gLaJlAOAm+PBwDUa4p0XuiISyTElogLgC0eux14dvZXUfD7wZDwYGOtJUKVDV0QiOaZEVCB84cgL2PtGDyU1H4Yd4n28N1GVhNeBzUnPJ8Zqavt5FYxIMVIiKiC+cOQT4MvApbQP8R4OLIwHA7/QEO/sc0v9xJOaVOpHJMv0wVVgfOFIwheO/DcwA/jEbTbAr7EJaZxXsRUx3ScSySElogLlC0cWYrvqXkhqnga8HA8GQvFgoNybyIqS7hOJ5JASUQHzhSNvYSt4X5fUPAi4Cng6Hgz4vIirCKVeEU32JAqRIqXKCkXCrUn3f3RcwK0Zu7TEb3zhiNbR6aFYTe1QbDdohdvUBOzqb2zY3PlRIpIpXREVCV848hgwCfgjkOFb+NoAABGrSURBVHCbK4FfAkviwUCtV7EVOn9jw0bgn0lN/bDD6UUkC5SIiogvHPnUF478CPgCHe9rTASeigcDf4kHA0O9ia7gPZby/FhPohApQkpERcgXjjwHHAr8AtuNBHZk3XexgxlmeBVbAVuU8lyJSCRLdI+oyMWDgc8C87CDGpLdBoR84chH+Y+q8LiTWNdiB4OAncc1wt/Y8EnnR4lIJnRFVOR84cgK4BjgAmBj0qYzgeXxYOCseDDQYY0dY8xkY8xvjDF3GmNuMsaca4wp6WoC/saGJiCW1GSAKd5EI1JcdEVUQtylx6/GVmdI9hDwQ184ssIYU1leXt50ySWXMGHCBDZv3sxtt93GokWLHgZmOI6T2OHEJSJWU/tj4Mqkpmv8jQ0XeBWPSLHQFVEJ8YUj7wInAmcAyV1yX8LeO7rhnsDRe5eVlW1+9dVXueyyywiHw1x//fVMmjTpi2ikmAYsiOSArohKVDwYGI4d6p26tlHT3a+/+8Bvnn958NbWxEDAf/fdd3PDDTdw//33n+Y4zoL8R9s3xGpqy4APsUu4txnrb2x416OQRIqCElGJiwcDU4DfATXJ7YfesZAr/ngVo0ePZvPmzZx77rk0NzePcBznY08C7SNiNbV3Al9JajrH39hwk0fhiBQFdc2VOF848jhwBHASSVWmd+3fj7vuuot77rmHyZMnM2HCBLDzk0qduudEskxXRLJdPBgob3Wcrz7y9uo/VA/oN7LcGK5ZtpIZ538XgOhfr3no6imHnewLR5p2cqqiFaup/QzwWlLTB8Ce/sYGvZFEeqhi57tIqfCFI63GmH+PHDly5MCBA3nzzTcZOXIk06dP5/LLL2faXiO/BLwaDwYuBW71hSOtHofshTeAt4G93ecjsZUrXvEsIpECp645SVU5ZMgQrrvuOl5++WXuuusubr31Vl5c/CjHjx0FMA64CVgWDwZOTZ2DVOzcKx91z4lkkbrmpANjTDnwA+xco/HAqoEV5c/cOf3IpnFVQ74DDEk55AXgV0CkVK6QYjW1Z2ArU7S5z9/YcJJX8YgUOiUiyVg8GNgN+CkwB+ifsvkt4Frgel84sibPoeVVrKZ2D+y9oTYbsOV+mj0KSaSgKRFJt7kVGi4BvgmkrgS7DbgDmOsLR/6ZemyxiNXUvkTHJcOn+RsbUrvsRCQDSkTSY/FgYDzwI+AsYHCaXZ4H/he4wxeObM1nbLkWq6n9Nba6eZtr/Y0N3/EqHpFCpkQkvRYPBnYBzsYWVp2QZpePgeuBa33hyJv5jC1XYjW1hwD/Smr6EBjtb2woiftkItmkRCRZ446gOxZ7D+lEdhyV6QARYC7wiC8cKdgCqrGaWgO8Tsel2f3+xoYnPQpJpGApEUlOxIOBscC3gdnAbml2eQ24BrjRF46szWds2RKrqb0S+HFS05/8jQ0hr+IRKVRKRJJT8WCgP3Aa9irpiDS7bAHuBP4OPOYLR7blMbxeidXUfgF4JqnpXWBvVVkQ6R4lIsmbeDBwCDYhnQkMTLPLRuAB4C7gIV848mkew+s2txr3O8DopObD/Y0Nz3kUkkhBUiKSvIsHA7sC52AHN3ymk922AguxSel+XziyLk/hdUuspvbPwIVtzwcOLL99woFVbwM+oAl4Fnikam7kRY9CFOnzlIjEM/FgoAyYCswETgH26GTXFmARNind4wtH/pOfCHcuVlN7DPB42/Ndqitb9tlviKF9ftU2bPwvAhdUzY0szXuQIn2cEpH0CfFgoBx7D+lUbGIa28muCeApbFK6y1111jMvB6ZUbNrY8ua2bYkxAHuNG8TwEalFJwA7YnALMKtqbuSufMYo0tcpEUmf4w4D/zztSSnd3KQ2z+FeKQGv+sKRvP5Cb5gTuKa11Zm1YV3z4Mp+hsFDKjCmyzqwm4GvV82NlOxKtyKplIikT3OT0kTak9LBXez+EfZq6SngSeBFXziSs/pvG+YETgXmA4O6eeinwIFVcyNvZz8qkcKjRCQFJR4M7Iu9nzST9MPBk23GDhZoS07P+sKRjdmIY8OcwHDshNZdenB4C/B81dzIzuIXKQlKRFKw4sHAnsDJ2KulI4EBOzkkgR000JaYnvaFI+/35GdvmBP4DnAl6WvsZWIzMLlqbmRFD48XKRpKRFIU4sFAP+x9paOAo7GJaXgGh75Be2J6CliRyX2mDXMCjcDhPQ7Yjqa7rGpu5Ne9OIdIUVAikqLkDg2fgE1MbV/7ZnDoOiAOLEt+TC5D5HbLvceOazJ112tVcyPje3kOkYKnRCQlw+3KOxKblI4EDmHHwqydeQ83KQ3px5BdB3KWMe2r1SYch3HXP8o73zoegKVrNnD0nU/xwpl+9qsewqbmFg697QmeP/MYhlRWtB22FTto4Y3s/AtFClPFzncRKQ7u/aC/u1/Eg4GhQA3tV0xH0PkIuNHu1/RNTdDqwG5Jd4fKjMEBHMfBGMONL7/DqMH92dDUAsDf//0+Xxq3R3ISAlt5YTK2e1CkZCkRSclyR9A95n4RDwYqgPHApKQvH7ZLr8PkoNY0C1gMqihnc0srDvDM6k/48j4j2dRslye6+ZV3+UvdpNRDyoGh2fsXiRQmJSIRly8caQGWu193trXHg4HBwIHYpDRpYCVf2WVAh0KnAAztV8Gm5lYefPNDTt1vFE2tDhubWnjpo/VUlhkmjahKPaSM9MVfRUqKEpHITrhVwP/pfrFhTmAsdsh4B0P7VbCpqYVbV6wiPP3z3P7v99jU1MKNL7/DOQemrVjUih3GLVLSMr1RKyLtPk7XOLRfBU+89zF7Dh7AyMEDGFJZwQebt7Ho3TWcst+odIckgA05jVSkACgRiXRfFLt2UgdDKyuY+9KbfNO9+hlaWcEty9/ly/vswcCK8tTdwQ7/fibdBpFSokQk0n0RoF9q4y79K0g4DlPG2Hm0Q/pV8Nq6TzvrlgNYWTW3Z5UdRIqJ5hGJ9MCGOYEoMKUXp9gCXFI1N/KH7EQkUrh0RSTSMzcDm3pxvAG0FIQISkQiPfUPej7irQlYVDU38lb2whEpXEpEIj1QNTeyCfgqPUtGW4BzshuRSOFSIhLpoaq5kceBy+leMtoMnFw1N/JRToISKUAarCDSSxvmBL4H/BZbJaGzdcKbsVdCgaq5kafyFZtIIdAVkUgvVc2N/BmYCvwLe8WTfIW0EVtl++/YSttKQiIpdEUkkiUb5gQM8FmgDls8tQWbnKJVcyMfeBmbSF+mRCQiIp5S15yIiHhKiUhERDylRCQiIp5SIhIREU8pEYmIiKeUiERExFO9Wyp86xoHxwGnFXDASWCfJ9znreA4ONufJ4BEp/t1PEcrHc6dSHl0WnFS9+vyse28yV9uWyL5OZBw40q4z5P3296e9Nja2v6YSHnuHuektrW22uNb3dcj+THh4LgxOa32JaY14YboJG3H3e5A237uMR2Odfd3WhM4joPTYl+7RIuNJeE+b2+3sSRaEjhOAqcl/XFOwiHR2uo+2n1aWxPucxtXojVBIml7wt3emvI89fhW+5uy/dFJ+r47jw52Mo/jtl3qOJ1VPuhz+k+e7Ziycsoq+mHKyymv6Id9XmkfK+3z9vZ+HdrLKvpRVmYoKy+jrMxgygzl5WX2saIMU0b78+R2Yyiv6Lh/v4oyyt3Hiu3Py9rby+1jf/d5ecoxbfuUGUNluaHcGCrLDGVl7qMxVJaXUW6gsryMMgOVZWWUl9nHtuOMgXJjKHMfjaHD9+3bsP+Otu1lBoP76DiYRIt9vyVaMU4C3Oemtat2+xnRdqzT0gyJVpzmJkgkcFpSHpub7Pa2/bbvbx8TLc04rQkSzS04rQlam5pxEgkSTS32sTXp+6YWEokEiaR9EtuPdWhtbiXR6pBoso+tza22vak1o+0Jx6Ep4dC6/ZGUx/b2Zifdfvb7a523evT+0hWRiIh4SolIREQ8pUQkIiKeUiISERFPKRGJiIinlIhERMRTSkQiIuIpJSIREfGUEpGIiHhKiUhERDylRCQiIp5SIhIREU8pEYmIiKeUiERExFNKRCIi4iklIhER8ZRxHKfnBxtznuM4/5fFeAqeXpMd6TXpGb1uuaHXNXd6+tr29orovF4eX4z0muxIr0nP6HXLDb2uudOj11ZdcyIi4iklIhER8VRvE5H6WXek12RHek16Rq9bbuh1zZ0evba9GqwgIiLSW+qaExERT2WUiIwx040xrxpjXjPG/DTN9v7GmDvc7Y3GmHHZDrSv2dlrkrTfacYYxxhzaD7j80IGvydjjTFRY8wSY8xSY8wML+Lsq4wxw4wxjxpjVrqPu3axb5Ux5j1jzP/mM8ZCos+t3Mn2599OE5ExphyYC3wJOAA4wxhzQMpu5wJrHcfZD7gKuHxn5y1kGb4mGGOGAt8DGvMbYf5l+Jr8ArjTcZxDgK8BV+c3yj7vp8Aix3HGA4vc5535NfBEXqIqQPrcyp1cfP5lckV0OPCa4zhvOI7TBNwOnJSyz0nAze73/wCONcaYDM5dqDJ5TcB+WFwBbM1ncB7J5DVxgCr3+12A9/MYXyFIfh/dDJycbidjzGRgD+CRPMVViPS5lTtZ//zLJBGNBt5Ner7KbUu7j+M4LcB6YHgG5y5UO31NjDGHAHs5jvNAPgPzUCa/J5cCZxljVgEPAhfmJ7SCsYfjOKsB3MfdU3cwxpQBfwB+kufYCo0+t3In659/FRnsk+4vhNShdpnsU0y6/Pe6HxZXAd/IV0B9QCa/A2cANzmO8wdjzBHAfGOMz3GcRO7D6xuMMY8BI9Ns+nmGp7gAeNBxnHf1x3uX9LmVO1n//MskEa0C9kp6PoYdu1Ta9llljKnAdrt8kmkQBWhnr8lQwAc87n5YjATuM8ac6DjO83mLMr8y+T05F5gO4DjOM8aYAcAI4D95ibAPcBznuM62GWM+NMaMchxntTFmFOlflyOAo40xFwBDgH7GmE2O43R1P6kU6XMrd7L++ZdJ19xzwHhjzD7GmH7Ym8z3pexzH3C2+/1pwGKnuCcodfmaOI6z3nGcEY7jjHMcZxzwLFDMSQgy+z15BzgWwBgzERgAfJTXKPu25PfR2cC9qTs4jhN0HGes+3v1Y+AWJaG09LmVO1n//NtpInL7Tr8LPAwsx456etkY8ytjzInubtcDw40xrwE/pOvRPgUvw9ekpGT4mvwImG2MeQn4G/ANvfE7+B0wzRizEpjmPscYc6gx5q+eRlZg9LmVO7n4/FNlBRER8ZQqK4iIiKeUiERExFNKRHlmjDk53SzkDI5zjDHzk55XGGM+MsY8kNT2JWPM88aY5caYFcaY37vtlxpjfpydf4FI36b3SuFRIsq/k7FlMbrrU8BnjBnoPp8GvNe20RjjA/4XOMtxnInY4ZNv9DJWkUKk90qBUSLKAmPMPcaYF4wxLxtjznPbNiVtP80Yc5MxphY4EbjSGPOiMeYzxpiDjTHPGlsE9G7TRaFL4CEg4H5/BnbkWZuLgMscx1kBdmSL4ziq5SalSu+VAqJElB3fdBxnMnAo8D1jTNoyIY7jNGDH2//EcZyDHcd5HbgF+C/HcQ4ClgH/r4ufczvwNXci6EF0LCboA17o/T9FpCjovVJAlIiy43vu3JhnsTOOx2dykDFmF6DacZy2Kso3A/7O9nccZykwDvsX3oO9CVikmOm9UliUiHrJGDMFOA44wnGczwFLsBUDkidoDejmOfdyu+5eNMacn7L5PuD3dOxqAHgZmNydnyNS5PReKRBKRL23C3ZNk83GmM8CX3DbPzTGTHQLAJ6StP9GbC0mHMdZD6w1xhztbpsFPOE4zrtu193BjuNcm/LzbgB+5TjOspT2K4GLjTH7gy08aIz5Ydb+lSKFR++VApFJ0VPp2kLgfGPMUuBVbPcc2HIhD2DLpcexBSrB9l3PM8Z8D1vf6mzgWmPMIOzInXO6+mGO46wC/pSmfakxJgT8zT2XA0R6+W8TKVh6rxQOlfgRERFPqWtOREQ8pUQkIiKeUiISERFPKRGJiIinlIhERMRTSkQiIuIpJSIREfGUEpGIiHjq/wPaCxJT6SijRQAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -183,7 +174,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAD+CAYAAAB4MAFXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxbVd348c9JZuu+08LQhW6kLAUFbIdpSGR7BEsNgoJ9QFEiERQxCqKozxgU8QGfJ1ZZHAzi8oDIogELP3YSpsO07HsDhS60oVBK92mnmST398e9bafTmcnNJHeyfd+v17zSJOecfCed3G/OueeeozRNQwghhCgUW6EDEEIIUdkkEQkhhCgoSURCCCEKShKREEKIgpJEJIQQoqCqCh2AEOVk5+K7JyfeemVuesumWaRTQ7DZ220jRy+vOeLYpYPnn7+m0PEJUYyUTN8WInfbbr5uXueqt7+X2vjRfHZ31B5QoLauwz7moMXVUx2Lhn/7J0sKEKIQRUsSkRA56Fz1dtX2Oxb9KrlmxRUkEjUZK9TUJKqnzFw09KLvXlN92OHJAQhRiKIniUiIfkquW1297aZf3Jlc8+6Xsq1bNWXGvcMuuWqhJCMhZLKCEP227bYbrutPEgJIrl7xpe13LPpVvmMSohRJIhKiH7bdfN285JoVV+TSRnLNiiu23XzdvHzFJESpkkQkRD90royZOycEbKkeyosjZ7KxZgT7DYQnEjWdK2M5JTMhyoFM3xYiSzsX3z059cmGs3p67s8rPmD51nb++/gZAFz/2ipeTg6Cb/0QgMHJXUzatYFJOz9i0s4PmdixZUHi7vCRp53veXPgfgMhiotMVhAiS1tu+NF5iZfb7u7puZ3JFI0PPU/kjONZ9vFW/vv11Xz9q1fw4JTTMzW7GngNeBZoAV6I+F2JvAYuRJGSHpEQWUpv2TSrt+cGV9k5e/JBXP/aKp5cv5l73UcTHnawmWanGD8LjPsd7mB0GfAMemJqi/hdO3KLXIjiJIlIiGylU0N6ejg1ejS29na+MnUC8x5+gb84j2TKsEHEB43rz6vUAS7jByDlDkZfRk9KLcCSiN/1cX8aFqLYSCISIls2e3v3h9LDh5M+6CDS6TT/s+RNxtRWk0prpFF8UDcmH69qB443fvwA7mB0OfsSU0vE75IlhERJkkQkRJZsI0cv73o/XVdHasIEAJqXvsGuqmoWuY/nppfe4vjpM+i0VVsVyizj5xIAdzC6Fj0pPWP8xCJ+l5wEFkVPEpEQWao54tilibde7mB3R51WVUXq0EPBZqN1ZZx/vBTjD7OPYfTI4WxXNlp2DOgVEhOBhcYPwHvuYPQ+4H70yQ+SlERRkllzQvTDJz+48N7k+rXnpiZNQhs0iPiWHZx7x4PccMQR1GtVDJkwgmj7Rv65rh37N28pdLgA76MnpPvRJz6kCxyPEHtJIhKiH7be9Mt57WuWR7WhQ20AnTt3s/751SR3dQJQN7yOSaOTKKDdXsfaQQexZvB41gyewNpB43l/8EHsstcVKvz1wD/Rk1JLxO+S9e5EQUkiEqIf4gHf1cCvARLbO1j/wmpSu/cdz6urFVPr7b3W14DVDmfz1cNPexiYDZwAOIFRVsbdg4+BMHpSeirid3UO8OsLIYlIiGzFA775wIOASmzv4IPnVpHuTO1XRimYMcmOUqrHNnpafdsdjNqAI9AT0p6fQy36NXqyGf33ug94POJ37R7A1xYVTBKREFmIB3yfAZ4EhvaWhPaYPsmO3dYtEWWxH5E7GFXAZPYlpZOAw3P/LUzZDvwbvaf0cMTv6hig1xUVSBKRECbFA74j0KdHj05s7+CD51eRTvSchAAmH2KnrsZIRHnaodUdjB4EzGNfcvoU1i9evBH4I/CHiN/1vsWvJSqQJCIhTIgHfJOBVqA+saOD9c+tItVHEgI46LCxD4w7bPzLtpFjltfMOmbZ4Pnn5/2CU3cwOgxoYF9imgscuFV5fqSBB4Cb0c8nycFD5IUkIiEyiAd849F7QjMSO3YbScjURLOfONtaB3TzO3cwOgQ4AzgHmA8MteillqMnpL9G/K7tFr2GqBCSiIToQzzgGwFEgGMTO3az/vlV+82Oy+DPzrbWr1sWXAbuYLQOOB09KS0ARlrwMtuBvwI3R/yu5ZkKC9ETSURC9CIe8A0GHgGciXajJ2Q+CQE862xrbbQmuuy4g9Ea4GT0pHQ2kJcF8Lp5ErgJWCzXJolsSCISogfxgK8a+Bfw+c723XyQfRIC+NjZ1npQ/qPLjTsYrUKfgXcO8EVgQp5f4n3gVuB2WSFcmCGJSIhu4gGfDX246T9zSEJ7jHa2tW7OX3T55Q5G7eiTHc5FT0z5vG5pN/AP4KaI3/V8HtsVZUYSkRBdxAM+BfwO+E7nzgQfPLeSVEdOo0xznG2tz+UnOmsZF9SegJ6QLgBM7ehn0rPATyN+19N5bFOUCUlEQnQRD/h+DjSldieJL1tJcmfOu3Vf4GxrvTP3yAaWOxitRj+X9G30Ybx8eRz4ifSQRFeSiIQwxAO+7wKL0skUHzy3isS2vCwmcK2zrbUpHw0VijsYnY2ekC4ABuep2X8CP4v4XW/lqT1RwiQRCQHEA74LgL+lU2k+fGE1HZt35qvpvzvbWhdmLlb83MHoSOAi9KQ0PQ9NpoG/AT+P+F2r89CeKFGSiETFiwd8ZwH/0tKa/aNX3mfnhrxen/mis631+Hw2WGjGuaTTge8AZwI9r+xqXifwB+C6iN/1UY5tiRIkiUhUtHjAdxLwKFC38+PtbHzrg717CuXJdmCEs621LD9o7mB0KnApcDE5bmGxc8P7u97+x40rdm/ZcEPHpg9L7rya6D9JRKJixQO+E4AngOF7HtM0jc72BDs3bmfHB1s2JLZ1jARqcnypKc621ryvM1dM3MHoYOAr6L2kY/vbzpZ3X6azfVv7uGNcvwR+F/G78jZGKoqX1av2ClGU4gHfacDTdElCAEopaobWMnLK2KcOPXH6ZPQVCBYAn+TwcsflULckRPyunRG/63bg00AjcDf6OaCsKZttCHA98J47GL3MWBVClDHpEYmKEw/4zke/YLW6lyLPA6fUNzVvB2hpaByFvhVCf7+4Xedsa/1pP+uWLHcwOgu4Fv1i2YwS2z5hzeN/I92ZYPLpX6Vu9N4FH1YBTcBdEb+r7yXPRUmSRCQqSjzguxxYRO8n2JcDJ9U3NW/c80BLQ+PZ6NON++v/Odtaz8yhfklzB6PHAb9Cn+CQi2WAN+J3vZF7VKKYSCISFcFYMeFaoK+eyWrAWd/UvK7rgy0NjTcDl5l4mcuAYegzyeYBduPxDcCEcp2wYJY7GHWjJ6SGHJrpBH6NPsNOtjIvE3KOSJS9eMBnR58e3FcSeh1o7J6EDKeaeJnd6Ns+3OBsa3Wjn1s6F/gTkAIOySroMhTxuyLo548WoL/f/VEN/Ax4xR2MFsXK5iJ30iMSZS0e8NUBd6EvV9ObJcBZ9U3NW7o/0dLQOAkwM+PtSWdba48Jq6WhUQFVzrbWvM4LL2XGtUjno/dSp+XQ1C3AjyN+17a8BCYKQnpEomwZm9o9Qt9J6EHg9J6SkMFMbwj0aeA9cra1apKE9hfxu9IRv+suYBbwLeCDfjZ1GfCmOxidn7fgxICTRCTKUjzgmwBEAVcfxf4EnFPf1LyrjzI5JyLRu4jf1Rnxu5rRlwy6CtjUj2YOBf7tDkbvdgej4/MaoBgQMjQnyk484JsGPAZM7aPYr4Fr6puae/0AtDQ02oAPgXEZXnIzMM7Z1ipTi3PkDkZHAN83fob2o4nNRt2/RPwuObiVCElEoqzEA75PoQ/H9bUzqr++qfm3mdpqaWicDbxq4mXvd7a1mrpWRpjjDkYPAv4HfcXv/ngSuCTid63MX1TCKjI0J8pGPOBzow/H9ZaEksB/mklChhNNlpNhuTyL+F0bIn7XhcDnMDdZpLtTgDfcwegPjK3RRRGTRCTKQjzg+yL64qXDeimyE31m3F1ZNGt21WxJRBaJ+F2PAkcBvwWyHb4ZBPwGWOoORvu9/p2wngzNiZJmXKh6KfB7ev9i9Qnw+fqm5mXZtN3S0PgKcEyGYh8Ch1T6xaoDwR2MzgFC6IkpWyngauB/5dxR8ZEekShZ8YBvCPAX4GZ6/1teC8zrRxIaBBxpoujzkoQGRsTvWoa+gOxPgWz3cLej947uMyZEiCIiiUiUpHjA50Bfe+zCPoq9BZxY39Qc68dLzAbMnFt4oR9ti36K+F2JiN91HXpPtaUfTXwReMHY/lwUCUlEouQYq2c/T989ljZ6WDcuC2bPD0kiKoCI3xUD3OjDstluqTsd/bzR1/Idl+gfOUckSkY84KsF/pfMC5A+DHypvqm535uqtTQ03gFcZKLoBGdbq2xvXUDuYLQefXj2C/2o/kfguxG/qyO/UYlsSI9IlIR4wDcFfU24TEnoN4AnlyRkMNMjWidJqPAiflccfRmnLwHZ/n98E2h1B6OH5T0wYZr0iETRiwd8Z6FvZDeyj2JbgYvqm5rDub5eS0PjYPThnkxf1MLOtta+1rETA8wdjI4CbgQuzrLqFuCrEb/r3/mPSmQiiUgUrXjAVwVcB/wwQ9GXgXPrm5rzchV9S0PjiUCriaI/dba1XpeP1xT55Q5GPegzKodnKtvN9cB/RfyuZP6jEr2RoTlRlOIB38Hoy7RkSkLN6DPj8rmUi0xUKHERvyuMPtXbzBJNXf0YeEwWTx1YkohE0YkHfCcDrwAn9VFsJ3BhfVPzt+qbmvN9otlsInoxz68r8ijid72LvhvsHVlW/SzwsjsYnZf/qERPZGhOFI14wGcDrgEC9P0laTn6UNxbVsTR0tD4Fvo+OX1Z42xrnWLF64v8cwejF6PPrKvNoloKvUcelNUYrCU9IlEU4gHfWOAh4Bf0/Xd5F/AZC5PQUMBhoqgMy5WQiN91O3rvKJshXDv6CuD3uoPRIZYEJgBJRKIIxAO++egTDj7XR7EE+sWLF9Q3Ne+wMJxPAcpEOUlEJSbid72Mft7owSyrngM84Q5Gx+Q/KgGSiEQBxQO+g+MB3z3Av9F32ezNKvQJCX/oayO7PJHzQ2Us4ndtQb/m6EdAOouqc4EWdzA60ZLAKpycIxIDzjgXdAn6LqmZFqB8APh6fVPzZssDA1oaGu8EFpooOsbZ1tqfba1FkXAHo27gbiCbGXJrgf+I+F3LLQmqQkmPSAyoeMB3JPpilbfSdxJKAVcBZw9UEjKY6RGtlCRU+iJ+VwR9KDabxVMnAkuMLSlEnkiPSAyIeMA3CPgJ+iyk6gzFPwDOq29qXmJ5YF0YExXMLKB5j7Ot9Tyr4xEDw9jB9VfoX3zM2gl80di4T+RIekTCcsZ1Qa+hJ6JMSSgEHD3QSchgdr0xmahQRiJ+VzLid/0Q/dzRNpPVBgOL3cGomWFckYEkImGZeMA3Nh7w/QV9hYTpGYq/Dbjqm5q/Wd/UXKhhr0kmy8n5gTJkrMYwF/08kBlVwJ3uYPS71kVVGSQRibyLB3wqHvB9DYgBX+3+/LI167l5ySt8719Ps3lnRwL4OXBMfVPzMwMcandmE9EaS6MQBWNMQmgkuy8bi9zB6HXuYNTMtH/RAzlHJPIqHvDNAP4AnJyp7M8faVs9oq7mm795+oUnrI8ss5aGxuvRp/VmMtLZ1rrV6nhE4RjXDC1G7yGZFQIulQVTsyeJSORFPOCrQT/Z+zMyL6Oy+ZqHltx35wvLn0mm0/9nfXTmmJy6vc3Z1pppyrkoA8ZqCvcCZ2RRLQx8RTbay44MzYmcGMNwZwEvAb8kcxK6y/m7f1z11+ffmpTStLFKqcnWR2mamaE5GZarEBG/qx1919dsvix5gEfcwah8WcmC9IhEv8QDPgWcDlwLfMZElVXApfVNzUU73bWloXENmZPRQ8621vkDEY8oDu5g1Ia+2d73s6j2KvC5iN/1oTVRlRfpEYmsGdOxW4BHyJyEUsANwFFFnoSqgHoTRd+3OhZRXCJ+Vxq4Erg6i2rHoG9BPsWKmMpNVaEDEKUjHvDNQ18d222yynPAJfVNzdluTlYIB6OvtpyJJKIKZGwDcYM7GP0YfVKCmS/xU4Gn3MHoSRG/a52lAZY46RGJjOIB35x4wPcoei/IbaLKduBy9IVKSyEJAZg9VyWJqIJF/K470C98NTsZ4TD0ZHSwdVGVPklEolfxgO/T8YBvMbAU/XxQJin03TCPqG9qvqm+qTllaYD5ZfYaIklEFS7idz2I/nkwO4V/BvCkOxg9qLcC7mB0tDsYPTcf8ZUiSUTiAPGA7+h4wPdP9K0OPm+iigbcCcyqb2r+Rn1TcykOQ0giEqZF/K4WwAmsN1llFvB4T3saGb2lKPoSWBVJZs2JveIB3yz0VQ6+nEW1e4GfW7Vj6kBpaWi8BX3jvb6kgVpnW6tcsCgAMCYjPIbe6zHjReBUY18k3MHoYcDjwDTj+UMjflc8z2EWPUlEgnjANx1oQr+Y02wvOQw01Tc1v2ZZYAOopaFxMZl7f2udba1me06iQhhDbo+hz5QzY89Q9yT0JNT1/JEv4nfdlt8Ii5/MmqtQ8YDPjr41tw/9AGw2AT2EnoDKbYdSMwlGhuXEASJ+1wZ3MHoa8DRwpIkqc4En0BcCHt3tuc8DFZeIpEdUYeIB3yHAxYAX8+dFQP/m9l/1Tc1LLQmswFoaGreQebfYvzvbWmXZf9EjdzA6Af1cz8wcmtkJjKm0JYKkR1QBjK25T0Pv/SzA3PUye0SBn9U3NWezi2VJaWloHEHmJATSIxJ9iPhdH7qD0ZOBZ9CvIeqPweirfz+Zt8BKgMyaK2PxgG98POD7MfAu+ioIZ2M+CT0LnAJ8tpyTkEFmzIm8MCYanExufysZV64vN9IjKjNG7+ez6L2fs8n+//h59BW0H6tvaq6UcVuzFxtKIhIZRfyuNV16Rof0o4lTqLCp3JKIykQ84BsHXARcQubdULtLA/9G30fo0QpKQHsMMlluo6VRiLIR8bveM5JRFBifZfUT3MHoiIjfVTF7XkkiKmHGCtgnofd+zgFqsmxiHfBH4Pb6puaKu3ahC7OJaJelUYhyswJ9WveFWdazoV8suzjvERUpSUQlxph2PQd9n5SzMX8h3R4a8DDQDPy/+qZmuTgT6kyWq6iZTKL/3MFoFfriqNkmoT1ORhKRKCbxgG8I+qy3BcB8YFw/mlkP3A6E6puaZXO3/ZntEUkiEhm5g9E64O/om+T1V0VNWJBEVKTiAd/B6ElnAXAq5r+1d/cY+rmfxfVNzZ15Cq/cmH1vZWhO9MkdjA5DX3Uk10RyjDsYHRfxuz7OQ1hFTxJRnsQDPpXLSX7jfM+R6IlnAfrwW39tAP4E/LG+qXllDu1UChmaE/lyJeb368rEjb6WY9mTRATsfvz+yckVr8/Vtm6apaVTQ5TN3q5GjF5eNePopbWnndPnMJaRQK5AP/jflc3rxgO+amAe+5JPfy+C2+Mp9N7PA/VNzYkc26okMjQn8iLidzW5g9FbgfPRzw99OofmTt718D3PdcZenZvesmkW6dQQbPZ228jRy6sdxywddOaXy2aIvaKX+Nn559/MS61Z8b30po/nk+ioPaBATV2HbdTYxfYpMxcNvujKJd2fjgd8g9FP+l8A3Frf1HxZpteMB3wj0Rc8/AJwJjAyx1/jPeB+9HM/K3JsqyK1NDTeAFyVoVgaqHK2tVbuB0ZkzR2MHgF8DfgGMDabuqNT7Tv++PbN1ezu4dhUW9dhGz1ucdXUwxcN8/34gGNTqanIRJR6/92qXXff8qvUupVX0JnIPOW5uiZhnzht0aDzLr3GPml6EiAe8E0B/gl8yij1cn1T8wHffoy13Zxdfo4GVA7ha+ir9z4IPADEKvC6n7xqaWj8PfCdDMV2OttahwxEPKL8uIPRWvRLLC5DX8LHlNveCDKmc3vvBaprElVTZiwacuF3rqmaMrNkZ8BWXCJKrX+/euefbrgzvW7ll7Kta5s47d7BF1yx8MM7bnQB/wC6bnKVQl+vrJ79E0+uw22gnyR/HD3xPFTf1PxRHtoUhpaGxj+iLwLbl03OttYDNjUTIlvuYHQ2+t5XFwBD+yr7g1X3cuKW5RnbtE+efu/Qi3+wsFSTUcUloh03fP+G1KpYpmGYHmlAZ/1hTydSSRc9r9O3FXOLZ5rxEfpqBw8CT9Y3Ne/MU7uim5aGxr+hHxT6Ene2tR46EPGIyuAORoej/91dChzVU5n5G5by9fhjptqrmn7EjSP+6/c/zF+EA6eiJivs/PNv5qXWrbyiP3U1ZaNjxChSqeRn+yiWaxJ6Ez3xPAg8V9/UnM6xPWGOmckKMlFB5FXE79oG3OIORm89q+qDb23auOWmZcMPtyVt+9YlfnuI+e8+yTXvXrG9+foHS/GcUUUlotTqd8ydE+per7qGjpFj0Ox5f7tSQAtG8qlvan4v3y8gTDEzfVsSkbBExO/SNl990cnp9Wttn1QPY/G4OTw+9jh22WtZNehgEspOjZbK3FBnoia58u0rAElExWr34/dPTm/eeFb3x9/evIMvPfwCryx0YVOKtKZxzkPP8+UZ9Zx/eD2dQ4aRGDoCVC7zC/azAj35PIW+xM6mfDUs+s1MIpKLWYUldj18z+T0po/PAhjTuZ2vffAE537UwmNjjuPaSBsnrX6JurR+LfqGXQkS6TTvnndSj22lN308f9fD90wutandFZOIkiten9vTFO3DRw1l5sghPLJmA2dOGc+1y95h+sihnDdrIh0jxpCq7e+CBoA+5fdV9MTTAiypb2r+MJcGhSVkaE4UTGfs1bndp2gPSe3m7A3PMv9IOztmz2NUsp0123cx/7GX+P3cWb03trujrjP22hxJREVK27qp1/+9y2ZP4ZbXVtOZ1lj24WYeWDCHjpFjSdccOH3fhDfRZ7e1AM/WNzVv62fIYuBIj0gUTHpL78emai3FqGQ7m3Z38uWnXuUHR0/hjIl9LzWZ3vpJH5mqOFVOIkqner0G5OSJ4/hpW4xrl73NQwvmUGNTVG/agGavIlk7iGRdHenqWrPDcw/VNzVX1KZWZUB6RKJw+jg2AexKplj41Kt4Jh/ERTPrM7eX6ru9YlQxiUjZ7O19Pf+Z8aOYPXY44wfXkUgramwaKpWkZud2anZuR1OKZG0dqdpBJGvrwNbrjttz8x+9sJhMVhCF08exKZXW8La8yYwRg/nxsSYvSbT3fawrRj1dC1OW1IjRfV4V9vbmHRw9dhhKwZZUFRuTVXSkFXsus1KaRnXHLuq2bmLIhg8YNHT4j4Cr0S807XqQOj4e8FVMgi8TZi6m6/WbhxC5sI3s/dh01XNvk0ynCc51mG9vxJjMV8AWmYpJRFUzjl5KTV2v32qXb97BrNHDAKhRaTo1G5tT1XycrGZn2kbX635VTV3HkNlz765var6hvqn5dGAU+rLvvwJeB0pujLbC9bGGyl7DLI9CVKRqxzFLqT3w2HTDq6t49ZPt3H7SUVTZTB6qa+s6qh2zl+U7RqtVzDf32tPOWZNofXRx+qN153Z/bt2OXYyoqWJotf521Ng0dhnT9lMotqaq2IbGYFuawbYUNaPGLu66Knd9U3MH8LTxI+eHSo+ZCSWSiIQlBp355TUd0YcXp9ev3Xtsen/HLm54bRWThtQx/9GX9padNnwwt5/U4yIMANhGj1tcajPmoIISEYB9ysxF6U0bFnS/qPXQoYN49T/de+/XqAMXNNBQtKfttKft2D7afEjc6zkDeNQRCsvqB6XPTI9ouOVRiIpVNfXwRYmNH+09Nk0aOoiNF2a5t151TaJq6uGLrIjPahUzNAcw+KIrl9gPnZrxP8oO2Po4bZDu7DwReBhYEfN6rox5PaPzF6UoABmaEwU1zPfjJVWTp+eURKomTy/ZLSEqKhEBDDr/smtsh07tc9dDpaBamVoMdipwIxCPeT13xLyeE2JeT96WYBADRobmRMEN+erl19gnTevXjqz2ydPvHfLVy6/Jd0wDpeISkX3S9OTgC7+30H6Y40aqa3rdxbSn4bk+1AEXAc8Brxu9pINzi1QMIFNDcy0NjfIlQ1imasrM5FDvlQurph/R57FpP9U1iaoZR95YyltAQAVuA9GVsUPrFcYOrftdS5JIKz5JVefSfBp4FPieIxR+J5eGRP4ppWYC1wDhZ+aeeCzQZKLaEGdbq2zHISy3vfn6ealV71yR+mTDfHZ3HHidW5nt0FpRkxW6M7b/XrL78fsnJ1e8PkfbunmWlk4NUTZ7e92QYe/w2ht/wtzFjj2xAW8D7+YtYJE3mqa9o5T6M/pW7WZ6RKBPWJBEJCxnJJclux6+Z3Jn7LU56a2fzCKVGoLd3m4bMWZ5tWP2slKcHdebiu4RZRLzeiKAq5/VfwJc7wiF5Q0uUkopNzDymbknjgNuM1FlprOtdYW1UQlReSq6R2RChOwTkQZc6giFm/MfjsgXpdQE4Fxg0NLNm1+eO2qUmWoyYUEIC1TcZIUsPdqPOtdKEip+mqZ9qGnadzRNu3juqFGrTFaTa4mEsIAkor49D2zNss73Yl7Pp60IRljG7FYd0iMSwgKSiPrgCIWTwBNZVhsBPBbzeo60ICRhDbOTFSQRCWEBSUSZ9Wd4bgzwRMzrmZHvYIQlspk1J4TIM0lEmT3Wz3oTgCdjXs/kfAYjLCFDc0IUkCSiDByh8Br064G622Gi+kT0npGsslDcZGhOiAKSRGRO9+G5x4HJPTzek+noyajvjeZFIe0GzCyPIkNzQlhAEpE5XYfn7gHOcoTCm4AvAs+YqH8E+gQGSUZFyNnWqmFueE56tkJYQBKRORGgE7gVWOgIhXcDOELhncB8wMyOiMcCLTGvZ6JVQYqcrDNRZprlUQhRgSQRmeAIhduB84BvO0LhVLfntgNnAK+YaOpwoDXm9ZjfgF4MlPdMlJFEJIQFZK25PDGG3aLALBPFNwJnOELhF6yNSpjV0tB4I3CliaJjnG2tm6yOR4hKIj2iPHGEwh8DpwIrTRQfCzwd83o+a21UIgtmekQgvSIh8k4SUR45QuEPgFOAtSaKDwUeiXk9Z1sblTBJEpEQBSKJKM8cofBqwAmY2S6gBrgv5vV8w9KghFmFPmoAABTISURBVBlmE9F0S6MQogJJIrKAcRHsPMxNYLABt8e8HjPnJ4R13sfctUTSIxIizyQRWcQRCm8A3Ji7zgjgxpjX8+uY16Osi0r0xtnWmgTM7HgpiUiIPJNEZCFHKLwV+Bzwb5NVrgZui3k9duuiEn0ws627JCIh8kwSkcUcofAu4BzgbyareIF/xLyeWuuiEr0wc57okJaGxkGWRyJEBZFENAAcoXAncBHwW5NVzgEWx7yeoZYFJXpidsLCVEujEKLCSCIaII5QOA18H/iZySqnom8jMca6qEQ3MoVbiAKQRDSAHKGw5giFfwlcBphZ0uIzwLOy2+uAkUQkRAFIIioARyh8K7AQc9OFZwLLYl7PedZGJTC3KgZIIhIiryQRFYgjFL4bOAvYZaL4EODumNfz25jXU21tZJXL2da6E1hvoqgkIiHySBJRATlC4UfQzwVtMVnlCvQ16mRfHOvIKtxCDDBJRAXmCIWfBVzAhyarNAIvx7yek6yLqqKZSURTWhoaqyyPRIgKIYmoCDhC4dfQE4zZcxTjgadiXs8PZCWGvDOTiKoxt92HEMIESURFwhEKrwQagKdNVrEDvwHuiXk9wywLrPK8Y7Jcg6VRCFFBJBEVEWN9utOB/86i2rnAczGvR76h58dzJstJIhIiTyQRFRlHKJx0hMI/As4Gtpmthp6MvmRdZBVjNbDBRLm5FschRMWQrcKLWMzrmQncDxyVRbUgcLWxrJDoh5aGxjDwBRNFZdtwIfJAekRFzBEKv4P+zfuuLKr50ZcGkine/ddmstwcS6MQokJIIipyjlC4HbgAuBxzKzGAvkPsSzGv51TLAitvZhORnCcSIg9kaK6ExLyeE4F7gUOyqPYn4EpHKLzZmqjKT0tD4xBgK/rMxL484WxrPW0AQhKirEmPqIQYF79+GohkUe0bwFsxr+dsS4IqQ8621nbgVRNF57Q0NMomhkLkSBJRiXGEwh8BpwE3ZlFtAvDPmNdzb8zrmWBNZGXHzPDcMOTCViFyJomoBBlTvH+IvoHe9iyqnoveO/qarMiQkZwnEmKASCIqYY5Q+J/ACcBbWVQbBfwZeCTm9UyxIKxysdRkOUlEQuRIElGJc4TCb6NPI/57llVPB96IeT2Xx7weOc9xoJXAxybKSSISIkcya66MxLyec4Cb0RdFzUYbcLEjFF6e/6hKV0tD4wPAAhNF5cJWIXIgPaIy4giF7weOQB96y0YD8ErM6/mpbLy3H7PDc3JhqxA5kERUZhyh8CZHKPx14D+ANVlUrQF+AbwQ83qOtyS40mN2woKsOydEDiQRlSlHKPwY+hp1vwOyGX+dDSyLeT3/G/N6RlsSXOl4HkiZKCfniYTIgZwjqgDGigy3o6/SnY2t6FtS/M5YaqjitDQ0vgR8KkOxbcBoZ1urmaQlhOhGekQVwFiR4Vj0oTez69UBjAB+Bbwb83ourdDzR2bOEw0HPmN1IEKUK0lEFcIRCu92hML/BRwHvJhl9QnALcDymNezMOb1VNLfjdnzRGa2jRBC9KCSDigCcITCr6GfXL8K6Miy+jTgTvSVvc+skNUZoibLmZnmLYTogZwjqmAxr2c6EAJc/WyiBfixIxRuzV9UxaelofEV4BgTRWc621pXWB2PEOVGekQVzBEKvwucDPgwvy15V05gSczreTDm9Ryd1+CKywMmy0mvSIh+kB6RACDm9RwC/Az4Jpn34emJhj5s1+QIhVfmM7ZCa2loPA54wUxRZ1vrSVbHI0S5kUQk9hPzemYA1wLnA6zYvI3WdRtYva2dK45zMKquNlMTnUAz8Etjy4qS19LQqIC1QH2GomlgvLOtdaP1UQlRPmRoTuzHEQqvcITCX0HfgO+RGaOGM2ZQLRt3dVBlM/XnUg18B1gZ83r+EPN6jrIy3oHgbGvVgAdNFLUBn7c4HCHKjvSIRJ9iXo8buD7y/odzDxk6mJmjh/enmQjwe+BBRyiczXVMRaOlofE/gEdMFP2ns631HKvjEaKcSCISfVJKfQ6YPX3UsJP/+B8Nh00YMmhmDs2tBW4FQo5Q2MwWC0WjpaGxFn1biGEZirYDY51trdlOjReiYkkiEqYZ+xZdgH4OaVIOTe0G7gZ+7wiFs724tmBaGhrvAb5koujnnW2tD1sdjxDlQhKRyFrM66kFvgX8BBiXY3NL0Yft7nOEwolcY7NSS0PjBcDfTBS9zdnW6rM6HiHKhSQi0W8xr2cY4EdfpWFojs19hD7brtkRCn+Qa2xWaGloHA1sIPP09vXAoc621rT1UQlR+iQRiZzFvJ5xwI+Bb6Pva5SLJHA/ei/pWUcoXFR/oC0NjU8DbhNF5zjbWp+zOBwhyoJM3xY5c4TCHztC4e8DU4AA8GEOzVUB5wFL0Ne0uzLm9RyWe5R5I6ssCJFn0iMSeRfzemqAc4DLyd+mcS8C9wH3O0Lhgq3n1tLQOA1410TR151trbOtjkeIciCJSFgq5vUch36B61eAjMsymPQqelK6zxEKx/LUpmktDY1vAEeaKDrV2da6yup4hCh1kojEgDDOI3mBS4GJeWz6TYykBLw5EOeUWhoarwOuMVHU72xr/a3V8QhR6iQRiQEV83qq0M+fXI65k/7ZeJt9SelVq5JSS0PjHMzt3Pqcs611jhUxCFFOJBGJgjG2jvg2cCEwOM/Nv4c+++4+4IV8JqWWhkYbEEffuTaTWc621gEfPhSilEgiEgUX83pGAV9HT0pTLXiJtejr3bUYP2/nmphaGhpvQ98yo08jDhm1ZMaZc26yTzt6aY3bsyaX1xSiXEkiEkUj5vXYgDOAr6GvYp3vXtIeH7MvKT2DPoyXyqaBlobGk4EnM5WrrrFx5HGjULV1HWrk2MX2iTMW1S30L+lX1EKUKUlEoijFvJ7BwOeAc4GzyH3lhr5sB55FT0otwPOOULjPRUuN4bnVmJh4Me2I4QwfaVznW12TsNVPXVR79iXX2A+dVpIrkQuRb5KIRNGLeT11wOnoSekLQL/2osjCbuA59vWannWEwgdspb5knvN6LZX+UabGRo2rZcqM/RftttVPvbf2y99ZKMlICElEosQYC66egp6UPMCoAXjZNPAKelJqA14H3hk1fvyt7zz1hjdTZZsNjjphNHb7/guZ2CYffuPg797wQysCFqKUSCISJSvm9VQDn0VPSmcDYwfw5RPVdqp3bt2tdu/oJNmRJLk7iZbs+fM0afpQxhxUt/+D1TWJqtknniLnjESlk0QkyoJxfdJJ6Enpi8D4QsSRTqbp2NpB+4ft+z0+fFQ102aNOKC8Oqj+viFX32JmjyMhypYseirKgiMUTjpC4accofBlQD3gAoLAS+hDa5ZKaxqf+dtD2KpsKJtiRXs7Jy19lo32BJOmD2XclMHMbH6MHYn9TwlpWzbOT0TCk62OT4hiVlXoAITIN2Mq9jPGDzGvZzhwIuA0fuaQ+3YV+7EphaaBpmlonWke37GRCUNqGTN5MGMOquNPr63mzGnjGVrT7SOX2F2Xeu+NOcg1RqKCSSISZc+Y8faI8bNnFt4J6EN5TvQkNazXBkwaVG1nVzLFqIOrefXZbSyYfvDeHtBfXn+fm04/psd62rbNs3J9bSFKmSQiUXGMa4T2TM3ec37pGPSktCc5ZT3xYWh1Ne2dSZ5Zt55zDj+EREpjW6KTVzdspcqmOHrcgeeIAEinhvTzVxGiLEgiEhXPEQon0fc7ehH4bczrUcDh7EtKTiDjeZyh1VW0d3Zy51tr+fuCE/j78rXsSCT502ur+cbsPqrb7O29PylE+ZNEJEQ3xjp0MePnNoCY1zMR+BRwdFVd7edJdDQk0wBqb70hNVW88OFG6ofVMWFoHcNqqviwfTdPrN7Ar11H9fp6avio5Rb+OkIUPUlEQpjgCIXXoi+e+mAiEv6/xKN3xbTdu+s60xqdKehMwfCaKu54/T1+e6q+MevQ6ipufmklZ00/mEHV9p4brqntsE87atmA/SJCFCGZvi1ElmrcnjVq5NjFSkGNHYbUwMhBMG5INUqBe5J+emloTRXvbm7n630My6mRYxfLqtyi0skFrUL0Q8ddwXnJ1559ks5E/6eBy8oKQgDSIxKiX+oW+pfYDjlsUS5t2A45TLaEEAJJREL0W+0XfdfYDjns3v7UtdVPvbf2i75r8h2TEKVIEpEQ/WQ/dFqy9rzLF9omH34j1TUJU5WqaxK2KY4bZQsIIfaRc0RC5EHHXcF5qXXvXqFt/ng+id11BxSoqZUdWoXohSQiIfIoEQlPTr33xhxt2+ZZpFNDsNnb1fBRy+3Tjloms+OE6JkkIiGEEAUl54iEEEIUVG4rK3Rs1PS171OABloa/X7auJ8CTUPbez8NpHstt38bKfZrO93tVkuhdS/X5+2edrv+GI+lu94H0kZcaeN+13J7H+9ym0rtu013u2/U07o/lkrp9VPG+9H1Nq2hGTFpKf0tJpU2QtS6PI/xvAZ7yhl19qtrlNdSaX2bgqT+3qWTeixp4/6+x/VY0sk0mpZGS/ZcT0trpFMp41Yvk0qljft6XOlUmnSX59PG86lu97vXT+l/KXtvtS7/zuZWA5LGbRr4uabtW5OnyNUe901N2ezYqmpQdjv2qhr0+9X6bbV+f9/jNfs9bquqwWZT2Ow2bDaFsinsdn2/JHuVDWVj3/2ujyuFvWr/8jVVNuzGbdXe+7Z9j9v121rjvr1bnT1lbEpRbVfYlaLaprDZjFulqLbbsCuottuwKai22bDb9Ns99ZQCu1LYjFul2O/f+55D/z32PG9TKIxbTUOlk/rnLZ1CaWkw7qtUX4/rx4g9dbVkJ6RTaJ0JSKfRkt1uOxP683vK7S2v36aTnWipNOnOJFoqTSrRiZZOk04k9dtUl38nkqTTadJdyqT31tVIdaZIpzTSCf021ZnSH0+kTD2f1jQSaY3U3lu63e57vFPrqZz+7z9oq/v1+ZIekRBCiIKSRCSEEKKgJBEJIYQoKElEQgghCkoSkRBCiIKSRCSEEKKgJBEJIYQoKElEQgghCkoSkRBCiIKSRCSEEKKgJBEJIYQoKElEQgghCkoSkRBCiIKSRCSEEKKgJBEJIYQoKElEQgghCiqnrcKVUpdomnZbHuMpefKeHEjek/6R980a8r5ap7/vba49oktyrF+O5D05kLwn/SPvmzXkfbVOv95bGZoTQghRUJKIhBBCFFSuiUjGWQ8k78mB5D3pH3nfrCHvq3X69d7mNFlBCCGEyJUMzQkhhCgoSURCCCEKylQiUkp9Tin1tlLqXaXUj3p4vlYp9Q/j+WVKqSn5DrTYZHpPupQ7VymlKaWOH8j4CsHE38kkpdTTSqmXlVKvKaXOLEScxUopNVop9bhSaoVxO6qPssOVUnGl1E0DGWMpkeOWdfJ9/MuYiJRSduBm4AzgCOArSqkjuhW7GNisadp0IAj8d6Z2S5nJ9wSl1DDgu8CygY1w4Jl8T34K3KNp2qeA84FbBjbKovcj4ElN02YATxr3e/MLIDogUZUgOW5Zx4rjn5ke0WeAdzVNW6lpWgK4G/hCtzJfAP5i/Ps+4BSllDLRdqky856AfrC4AegYyOAKxMx7ogHDjX+PAD4YwPhKQdfP0V8AT0+FlFLHAeOBxwYorlIkxy3r5P34ZyYR1QNru9xfZzzWYxlN05LAVmCMibZLVcb3RCn1KWCipmmLBzKwAjLzd/Jz4AKl1DrgYeDygQmtZIzXNG09gHF7UPcCSikb8D/AVQMcW6mR45Z18n78qzJRpqdvCN3nfJspU076/H2Ng0UQuGigAioCZv4GvgL8WdO0/1FKNQB/U0odpWla2vrwioNS6glgQg9P/cRkE5cBD2uatla+vPdJjlvWyfvxz0wiWgdM7HL/UA4cUtlTZp1Sqgp92GWT2SBKUKb3ZBhwFBAxDhYTgAeVUgs0TXthwKIcWGb+Ti4GPgegaVqbUqoOGAtsGJAIi4Cmaaf29pxS6iOl1MGapq1XSh1Mz+9LA+BUSl0GDAVqlFI7NE3r63xSJZLjlnXyfvwzMzT3PDBDKXWYUqoG/STzg93KPAh8zfj3ucBTWnlfKdvne6Jp2lZN08ZqmjZF07QpwFKgnJMQmPs7eR84BUApNQuoAz4e0CiLW9fP0deAB7oX0DTtPzVNm2T8XV0J/FWSUI/kuGWdvB//MiYiY+z0O8CjwHL0WU9vKqWuVUotMIrdDoxRSr0LfJ++Z/uUPJPvSUUx+Z78APimUupV4O/ARfLB38+vgdOUUiuA04z7KKWOV0qFChpZiZHjlnWsOP7JEj9CCCEKSlZWEEIIUVCSiIQQQhSUJCILKaU8PV1xbKJeSin1SpefKRnKr1ZKjTX+vaPL4zOVUg8by3AsV0rdo5Qar5RyK6Uq5fomUebk81L6zEzfFv3nARYDb2VZb5emacfm8sLG1OiHgO9rmvZv47HPAuNyaVeIIiSflxInPaIsKaXCSqkXlVJvKqUuMR7r+q3qXKXUn5VSJwILgBuNb2nTlFLHKqWWKn3Bz3+pPha17OF1L1JdFrhUSi1WSrn7qLIQaNvzoQLQNO1pTdPeyOLXFaIkyeeltEgiyt43NE07Djge+K5SqsclQTRNexZ9bv1VmqYdq2nae8Bfgas1TZsNvA409fIag7oMM/yrn3EeBbzYz7pClBL5vJQ4GZrL3neVUmcb/54IzDBTSSk1AhipadqeFZP/AtzbS/GchxqEqCDyeSlx0iPKgtG1PxVo0DTtGOBl9NUBul6MVZdlmxO7fJv7Vh9Fk+z//5Xpdd4EjssmFiHKiHxeSogkouyMQN+/ZKdSygHMNR7/SCk1y1js7+wu5bejr7uEpmlbgc1KKafx3IVAVNO0tcbQ3bGapv2hj9deDRyrlLIppSaiL8Xel7uAE5VSn9/zgNI3szra5O8qRClbjXxeSoYkouw8AlQppV5D32tjqfH4j9Bnxz0FrO9S/m7gKqXvSDoNfV2rG436xwLXZvHarcAq9HNLvwFe6quwpmm7gPnA5Urf8fMt9NVwK2aBUVHR5PNSQmSJHyGEEAUlPSIhhBAFJYlICCFEQUkiEkIIUVCSiIQQQhSUJCIhhBAFJYlICCFEQUkiEkIIUVD/HwH0DHcqLSLBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAD+CAYAAAB4MAFXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXhcVf3H8ffJ1oWUAC2lEIplKUzLLiCEECZQAaloh0Wk+rOABGNRkbGigkuMqIhY4wKU4LBVscoiKUJZCzOENLIKpUCQrYWGlkBbCl1omsz9/XFummk6SbPMzJ3l83qePDP33HNvv5lm5jvn3rMYx3EQERHxSp7XAYiISG5TIhIREU8pEYmIiKeUiERExFNKRCIi4iklIhER8ZQSkYiIeEqJSEREPKVEJCIinlIiEhERTykRiYiIp5SIRETEU0pEIiLiKSUiERHxVIHXAYhkk7bp/rFAJbA30AksBp4YOy+ywcu4RNKZ0XpEIkPXNt1/APB7YAqwCRgJRIGNwDDgeuCKsfMiqz0LUiRNKRGJDFHbdP90IIRNOPm9VPsEWAdMGTsvsjhVsYlkAt0jEhmCtun+i7BJaCS9JyGA4cBooKltuv/IVMQmkinUIhIZpLbp/qOACDBigIe+D0wcOy+yNvFRiWQetYhEBqFtun84cCe2pTNQo4A5iY1IJHMpEYkMzunALoAZxLHDgTPapvv3SGxIIplJiUhkcM4FiodwfCc2mYnkPCUikQFqm+4fiR0rNBQjgfOHHo1I5lMiEhm4z2HHCm3jltfe5YfPvLZl+8rFb/Gt5pbeznNw23T/rokPTySzKBGJDNxJwI7xdpy992481LqKte0dPNS6ikfeXc3vjprY23k+AcqTFaRIptAUPyIDN6a3HSML8jn9U2O5cvFbLFyxhjsqD2ZEQa/Di/KAkqREKJJBlIhEBi5ua6jL9H3GcdyCZ7i14kAmjOp9iNGrxeML79rDf87zdZEdgBeBJeGgf02CYxVJe0pEIgO3sa+ds5csY/SwQjqjvQ8W35RXyG/2/79h6wtGfA57zwmAyrpIK25Sinl8JRz09/lvimQyJSKRgeu11TKnZTmbolH+cuwkrl6yjM+Pj38Vryi6maLoZmc9I3qOQyp1fz4XUxatrIu8CDzR9RMO+pcP7VcQSR+a4kdkgNqm+78J/A7YIba88b01/Pi5N1jw2cMoLixgygPP8sejD+CgneMPN/qwYIcNNZMuuG7FiDHjgIOBSUBRP8NYRkxiAl4OB/3RQf5KIp5SIhIZoLbp/nHAUuxs2wAsX/8Jpz+6mNuOP4j9S0YC8I83V7KobS1/OuaA3k719th5kU91bVTWRQqAicBB2MTU9bgv25/B4UOgCZuUGoFnwkF/3C7mIulGiUhkENqm+58HDh3CKdqBq8fOi/xkexUr6yKjgGOA49yfY7ADYvuyCXia7hbTInWEkHSlRCQyCG3T/d8FrmTgM293WQ8cO5i1iSrrIoXA4XQnpuOA/gyMXQI8DNwFNOtSnqQLJSKRQWib7h/nFBa+QUfHSDPw91AUeAk4dOy8yJDfgJV1EYO9pBebmHodRetaCdwN/AuIhIP+zUONQ2SwlIhEBqG1tvpcHOdms359tGD58r4WxItnA3DE2HmRXuf+GarKushu2FkbuhLTp+l94b7VwD3YpPRwOOj/JFlxicSjRCQyQK211WcCtwN5eatXL85va9uP7d+z6bIBuHjsvMiNSQswjko7aPZ47IzfAXq/lLcOuA+blBaEg/51qYlQcpkSkcgAtNZWnwL8GygE/lTw5pvfN+3tN2E/4Hfo82A7EDY4dl6kPslh9qmyLpKPbSWd4f7s2UvVTcCD2HtK/1ZnB0kWJSKRfmqtra7AfjCPAG4Gqkpr6qNt0/0GuAD4LXaQeDHd3a07sa2gVuAbY+dFGlMeeB/c+0tHYRPSmcB+vVTtAB7DJqW7w0F/W2oilFygRCTSD6211UcCj2KX+b4DmF5aU98ZW8ddp+iLwFTAh/3wbgbuBxYmomNCMrlJ6SC6k9LBvVTdjF0m/Vpst/C0/r0k/SkRiWxHa231gUAEGI1NKoHSmvp2b6NKvsq6yES6L999ppdqL2AT0t/DQf/6VMUm2UWJSKQPrbXV+2JnKtgdeBw4tbSmfgNAY1l5AfAQtuXw64rmpjrPAk2yyrrIeGwnh+lAWZwqa7GXK68LB/2vxdkv0islIpFetNZWT8IOAC0FngGmlNbUfwTQWFZusL3LTnWrR4HCiuamrB8kWlkXOQz4FvBV4g/ofQjbSrovHPR3xtkvshUlIpE4WmurP43tmDAGeA44ubSmflXX/say8iDw+x6HlVQ0N32Uuii9VVkX2Rk4D7iI+J0clgHXAzeGg/73UxiaZBglIpEe3N5x92IXwHsCOK20pn5t1/7GsvLTsb3HtlnCoaK56d2UBZomKusiedjl078NfJ5tX5dN2HFX14SD/qdSHJ5kACUikRittdWfww7mHAE8AJzZdU8IoLGs/DNAmPiXpHwVzU2vpiLOdFVZF9kb+Ca2O/voOFWewV62u03TCkkXJSIRV2tt9VnA37GDVe8EvhrbO66xrHwC8CQwtpdTHFXR3PRMsuPMBJV1keHA2dhW0lFxqrwJ/Az4h+4jiRKRCNBaW/114C9AHnAT8I3YcUJu54SngCP7OM0JFc1N4WTGmYkq6yJHYTs3nEPMGk6uJcBPnvjRqY2d7RtrsPPj7Qe8C5zgOM57KQ1WPJHndQAiXmutrb4EuBH7fvgDcGHPwarYy0x9JSGwg12lh3DQ/3Q46D8PO5XQ5dhJVrscBDTsdfKMZ0466aSLFy1adMQHH3xQcsopp0wifktKspASkeSs1tpq01pbXQN0jf+pBb5XWlO/TRfsiuamD7CX68BO1xOPElEfwkH/B+Gg/0pgH+AK7JpMAIwYU7p3S0sL06dP5/HHH6egoMCzOCX19L8tOam1ttoAs4GgW/S90pr67Q1IPRvYCTubQJd2oMh9vnqbI2Qb4aB/LfCzyrrINcBlwEVjDiovGlYyhjfvrafrdsEuk47ey8s4JXXUIpKc01pbnY+9HxTEDkSt6kcSoqK5yQF2AcbHFP8Fe58jhJ2LTvopHPS3hYP+IDDR5OWHdvzU5M7CkTtu2b/HsdOuqayLzK2si+zjXZSSCmoRSU5pra0uAv4GfAk7eedXS2vq7xjAKU7osX11RXPTtxMVXy4KB/1vAxdW1kV+177uw0foXpbCAF8DplfWRf4CXBEO+ld4FackjxKR5IzW2uqR2Ps8pwKfAGeU1tTfP8DTVMY8f6uiuWlZgsLLacaYPOwcdh93lb3/QpiiHXdh1HhfATATOK+yLvJn4Kpw0K/LoFlEl+YkJ7TWVo/BDlA9Ffthd8pAk5DbhTu2RRROWIBy7L777nvzZZddNsnn83H22WdzTvkkXrr5p7HLlo8AfgC8WlkX+Yq7bIVkASUiyXqttdWHY0f0VwCrgBNLa+ofH8SpJgJ7xGw/loDwxNq0ceNGli1bxq9+9SsefPBB3nnnHTZ9+P7r2C8P/42pOwa4Dbi3si6iDg1ZQANaJau11lb/H7ZDwXDgZexaQoNapqCxrPwbQOwy33tVNDe9M/QoxRhjsJc99+ix6wnHcZa589mdie3pGNtZZB2259114aA/62c+z1ZKRJKVWmurC7FLd1/iFt0FnF9aU/9x70f1rbGsfB52dgCANyqam3pbVluSpLIuMgr4FXbqoNhLc4uAqnDQ/4ongcmQKBFJ1mmtrR6Lne3ZDzjY0fxXldbUD/qP3b0/9C4wzi0KVTQ3XTjUWGVwKusix2K7zE+KKW4HfontzJD1K+hmE90jkqzSWlt9JPAsNgmtAaaW1tT/ZihJyHUA3UkI1FHBU+GgfxFwOPALbDd8sAOLfwE8W1kXOdqr2GTglIgka7TWVp+HXT9oT+BF4KjSmvoHEnT6nuOHwgk6rwxSOOjfFA76a4BPYyek7XIQ0FxZF6mrrIvs4E10MhBKRJLxWmuri1prq68BbsbO7vwPoKy0pv6NBP4zlTHPX6tobuptvjlJsXDQvwQ4FjtTRtfaUQZ7f3BJZV3kZK9ik/7RPSLJaK211eOAO4DjsNP1/AD4fQIuxW3h3h9aSfc6RDdUNDdVJ+r8kjiVdZEJ2J6NPZPPrcCscNC/qucx4j21iCRjtdZWH4O9H3QcdnzQKaU19bMTmYRck9l6MTyNH0pT4aB/KfA54Fy2noT2XODlyrrIaV7EJX1TIpKM1FpbXQVEsONOngeOLK2pfyRJ/1xlj+1Ikv4dSYBw0O+Eg/652C8Q/4zZNRb4d2Vd5JeVdZF8b6KTeHRpTjJKa231COz6QV2Xxm7Drqa6ofejhqaxrPxO7GBKgJaK5qZJfdWX9FJZF/kCMAcojSl+GPhKOOj/wJuoJJZaRJIxWmury7BTvVQDndib0V9LZhJyxa4UqtZQhgkH/f8GDgMeiik+CdvNW6vApgG1iCTtua2gK4DvYXtDLQPOLa2pT3pSaCwrHwV8FFM0s6K56fpk/7uSeO7luJ8DP4kpbgcuBm4IB/36MPSIWkSS1lprq4/F3gOahU1Cc4CDU5GEXL4e2y+n6N+VBAsH/Z3hoP+nwGnAh25xEXA9cHNlXWSkZ8HlOLWIJC25awddgR0b0tUK+nppTX1KV0FtLCufge3622VsRXPT+6mMQRLPXfX1Luwluy4vAGeGg/5Ejj+TflCLSNJOa211ObYV1HUp7jpsK8iLpbgnxzz/QEkoO4SD/jexg2BviSk+FHvfSF28U0wtIkkbbivol9hOCAZYim0FeTZup7Gs/B7gC+7m4xXNTX6vYpHEcxfXuxD4M/YyXZdfATXhoL/Tk8ByjFpEkhZaa6uPw7aCui7FdbWCvB48GttVW/eHsow75ugG7KDot2N2/Ri4v7IuMsabyHKLWkTiKbcV9Cvgu9gE9BZwQRokIBrLykdgF17r+sL23Yrmpj95GJIkkZt0bmPr6YHeAc4KB/1PxT9KEkEtIkkoY8xOxphfG2OeN8a0G2OeNsZUuStwbqW1troCe4O461LcNcAh6ZCEXPuz9XtELaIs5g5unYrtJNNlPNBYWReZ7k1UuUEtIkkoY0ztaaed9rPLL7+ckpISVq5cyaxZs3j++ecvdRzndwCttdW7YMdzdK2y+Sa2FRT2LPA4GsvKzwHmxRSVVjQ3vetVPJI6lXWRzwN/A3ZyixzgW+Ggf453UWUvtYgk0QpWr17NWWedxYEHHsgf//hHbrvtNoDvtNZWD2+trf4+8AbwHbZuBYW9C7lXsT3m1gIrvApEUisc9N8HHEF3K9gA11XWRX7sdnCQBFKLSBLKGLMHcB4wH2DnnXde8sYbbzB2zOhNS3924XvAXm7Vp4FZpTX1jd5Eun095pj7T0VzU5mX8UjqVdZFdgEWALErvtYB3w8H/VFvoso+ahFJQjmO867jOL8G3gMafvnLXzJnzhxOPmDCMGwSehP4MnB0Oichl3rM5bhw0L8a+CwQO7N7ELixsi5S4E1U2UeJSBLOGLPL8IL8/1x++eX7jRs3jitqf85PTj56DbZn3KTSmvrbk7BmUEI1lpUXYjsrdFEiylHhoH8ddlqgu2KKzwPuqKyLDPckqCyjRCQJdc2ZJx48fqfi1799SXDfsrIyzjnnHE7Yd8+mH9zz+ImlNfV/Kq2pb/c6xn7aD4j9xqtElMPCQf8m4BzgxpjiALCgsi4yypuosocSkSREa231zq211Vf/7/01/z3pjLN3vvTSS/nnP//JtGnT2OHAI8qb335voTEmkxYj67nm0CueRCFpIxz0d2BnYbg6pvgE4FENfB0aJSIZErcn3CxsT7jvb+rozG9ra+Paa69ln332YfLkyUyePBljzAhsz6NMsVfM881sPepecpQ7E8MPgB/FFB+JHWs03qOwMp56zcmgtNZW5wHTsbMifMotfmbh/96+8ty/PzAR6HntfJHjOA+nMsahaCwrv4LudWtWVDQ37eFlPJJ+Kusi38AuIdH1Bett4KRw0P8/76LKTEpEMiCttdWjgPOx44D2c4vfAi4D7iitqc+KLq2NZeVzgG+6m0sqmpsO9jIeSU+VdZGzsQNfC92i94HPhYP+57yLKvOo+6H0S2tt9T7YmRAuAHZ0i9uwLaLrM6gTQn+Njnm+yrMoJK2Fg/7bK+sia4F/ASOBXYHHKusiXwgH/Y97G13mUItIetVaW20AP7bb9TS6L0E8D/wB+EdpTf0mj8JLqsay8oXAie7mXRXNTWd5GY+kt8q6SBl24GvXlECfAF8EHsW+f9aj5ch7pRaRbKO1tno49v7Pd7GLhYGda+tubAJqTPdxQAmgFpH0Wzjob66sixwPPASMw94jbcCuc/RDt9pm4CZvIkxvSkSyRWtt9e7ATOy9kV3d4o+AEHBNaU39W17F5gElIhmQcND/YmVdpBwIY2ftHglcHFPlmygRxaVLc0JrbfUR2KUYvkz3TdfXgT8Bt5TW1H/sVWxeaSwr3wCMcDe/X9HcNNvLeCRzVNZFjgbuB3aOs/vAcNCvwdE9qEWUo1prqwuwI8MvAcpjdj0C/BFYkC094Aaqsax8JN1JCNQikoGZS/wkBHAu3ZfqxKVElEPc5OMHzgbOALpGg38C/BX4U2lN/RKPwksno3tsKxFJv7hLRIzto8qMyrrI5eGgvzNVMWUCJaJerJ05NR8oBtpL5izY6HU8g+Umn+PpTj67xuxeDswBbiitqf/Ag/DSVc9EpNdG+iUc9DuVdZGp2IGuh8SpMg44C/hnvONXzZhisJ87AOtGz12YE/dOdI8oxtqZU/Ow6898G/gMdgqkfOBd7Po6V5bMWZD2K3S21lbnY5PPl7C/T+w3tBXAHe7Poly9/NaXxrLyKWw97f8BFc1NGi0v/VZZF8nDztj9U+wUQLFeCAf9h8UWrJox5UjstEFTiElEwELgN6PnLnwmuRF7S4nItXbm1H2Af2PnGCuOU6Ud6AR+AVxVMmdBWr1wbvI5DtvyORPYLWb3SuBO4HagScmnb41l5Wez9TfWMRXNTbo8JwPmXqo7GTvswecWPxYO+k8EWDVjykjgVmAq9r5kz/kYHWAjtvPDjNFzF25IRdyppkQErJ059SjgYWwC2t4M0eux42nOLZmzwNMPdDf5lNOdfMbF7F6JXT+lK/nomnQ/NZaVzwSuczcdoLCiuUmvnwyam5DOAA4HfhkO+j9ZNWPKGCAC7M3WnWPi2YidSss/eu7CrLtUnPOJaO3MqaXAS0DJAA7bAFxTMmdBynu/tNZW74xt+ZyMTT67x+xuo7vl84SSz+A0lpX/BLjC3Vxd0dzU856RyJCsmjGlAPgP9j5S4Xaqd9kMLAaOHj13YVa9t3O6s8LamVMNMA878GwgRgLfWTtz6vySOQsWJT6ybu4g0wr353jgYLZuvrfR3fJpVPJJiNjEk3XfPiUt/BB7qa6/SQi3rg97L+lXyQjKKzmdiOhuKg/kj6HLCGyX530TFYw7t9sEupPO8cDEHtUc4AXgcewUIo+X1tR3JCoGAbb+YrLesygkK62aMWV34Mds/3JcPDsAP141Y8rNo+cuTPuOU/2V64noAuJ3TOivcWtnTp1UMmfBoFbvdBOPj+6kczywZ49qHcAz2MTzOPZ+z4eDD1n6IbZVmUmrykpmOB37hXKwHOxg9Ou2VzFT5GwiWjtz6kjsMr9DkY/tIv2L2EI3wXwV2/y+tbSm/ndueTFwIFCGTToVdA8q7fIJ0Ex34nmytKZe38pTwBgzDDjo0r333aNil13YqbAQlIgk8c5n4LcDYo10z5E1iShnOyusnTk1gO02uWNs+atr1vGlBc/w/Ff85BlD1HE4876nOXtiKdMPKI13qtdL5izYcvmstbb6MOAauqfNeRY7cPRgYJ84x38EPEF34nk2C9f2SXvGmO8XFBRcPXnyZMaMGcPri5r522GHA7RUNDdN8jo+yQ5uT7nlwLCe+76z6GVeXL1uy3bbxnbao1Fe//Lx8U61CdgzW3rQ5WyLCDgHGNWz8ICdi9l/px14YFkbUyfsxi+e/B/77VTcWxIC2HPtzKl7lcxZ8HZrbfUj2AFpsY5wf7osxSanrsTzojoYpIUzb7/9doqLiykrK2NsyZZOlGoRSSJNxfZ+2yYR/fnYyVueL/t4I6c99Bx/PqbX70Cb3XPNTUKMKZfLiWgfth08BsBFh0zgusVL2Rx1eHLlGu75wmf6Os8moLS1tno52yahzcBr2Gl0ngVeKq2p/2jooUsSNJxxxhn7FhYW7rp69erYciUiSaQ92U4nhdWbNnP2oy8w6+AJnDp+196qjWDb+8kZK8/rADy0TWuoy4njd+Xd9Z/wiydf5eaTDqMwf7sv047ubAXTgNuAJuxYo0JgMhAuralvVhJKX47jXEX8N7YSkSTSzvTxN7Wxo5OvPPoCgU+N5bz9e70Kg3uOnfqqkElyuUUUtzXU5TO77cwhY3Zk3A7D+32u0pr6e4B7YMtko4cCwzWjdUZTIpJE6vVzpzPqUNX4EhNLRnLZYfFuJ/f/XJkmlxNRn4u9vbpmHV/19fmNJNY2LR13bM+zg4hL0osSkSTSGiBKnKtRlz71Kh3RKHXH+LY9altRIGuGceTypbm3+9r5ypp1TNql16t3sYqw87pJBjPGTMFeUgXgk2iUmUsW8+LHH21zU1lkCFZgL9tv5bcvvMULqz7mxuMPoiCvXx/LG8iiz51cTkS300uraPm6jZQUFVBc2K8G4wclcxa8mdDIxAszrrjiiiOfeeYZRo4cyXP//S9TZ87kkQ8+GMp4D5Ge7qfHTC5vr9vIbxe/xZpNmzntweeovPcpKu99igse7/OKfiGwIJmBplIujyMaBbxPnG6UA7AZ+F3JnAWXJyYq8Yox5vy8vLybjOm+7O44Dj/bZ7/1Na+9OpTZN0S2smrGlMXYcYVD8eLouQvjLbyXkXK2RVQyZ8HHwFAnLG3HtqwkwzmOc3M0Gi3o7OwsfOCIo3708JGfYeFRR3PimDFau0kS7Rbssg6DtdE9R9bI2UTkuomhTWq5FjsBqWQBx3E6HcfpGJaXt7nAGPJt60idFSTR7kzAOe5KwDnSRq4nonnYAaeDmdlgA3B+uq3UKgmhSU8laUbPXfg2cC1xOi30wwbg2tFzFy5LbFTeyulEVDJnQSdwFgNvJm8AbiuZs+ChxEclaUCJSJLtJ9ieuwNZwqUDeMc9NqvkdCICKJmz4A3sjAjr6d/U7Buwc8R9C6ClKjClpSpwbUtV4FPJi1JSLPaLSUFjWXm/RjWL9NfouQs3ASdhu3Nv6schm9y6n3WPzSo5n4gASuYseBQ4Fvsf3ds9o07sEg31wGklcxZsbqkK5AMPAhcBb7ZUBa5pqQr0exSspK2e4zPGeRKFZLXRcxcux86+8iR936teDzwFHOoek3WUiFwlcxYsBvYGfgC8gu0Rtw777fgj4G7g8JI5C77nXtIDO7q5qxWVh20lvdlSFZjTUhWYkMLwJbGUiCQlRs9duAaoxK4W3YRt+ax3fza5ZWcAfrduVsrZcUTb444z2g37x7C8t04JLVWBW4EZcXZ1AJf6Qg1/SF6UkgyNZeV7AK0xRWdUNDfd7VU8kjtWzZhSRPfku8tHz12YE2uT5fJcc31yxxn1OR+d6w/ET0QFwGXufsksbdiWbtfo1t09jEVyiJt4cm6mFl2aG7rngcVxylcCV6Q4FkmAiuamDuysG12UiESSSIloiHyhBge75HiXru6Y44D9WqoCWTNVe45ZEfNc94hEkkiJKDFuozsBLaJ7HMp3gSuVjDJSbCJSi0gkiZSIEsAXangPuADblXsW8DW6e9P9ELi2pSqg1zqzxPacUyISSSL1mkuSlqrAecCNdCf7ecC5vlDDZs+Ckn5rLCv/NbazCcC7Fc1NGh8mkiT6lp4kvlDDLcDZ2PFIANOBhpaqgNa3yQyxl+Z2aywr11Q/IkmiRJREvlDDXcBpdI+ango82FIV2Mm7qKSfYhNRPjDGq0BEsp0SUZL5Qg0PA5/FrlUPcBwQbqkK7OZdVNIPPWdX0H0ikSRRIkoBX6jhP8DxdH/LPhR4QtMApbUVPbbVhVskSZSIUsQXalgClNM9ano/bDKa7F1U0ge1iERSRIkohXyhhrewl+ZedItKgcaWqsBR3kUl8VQ0N61n6ymelIhEkkSJKMV8oYYVgB9odot2AR5tqQqc6F1U0ovYiU8neBWESLZTIvKAL9SwBrso1oNuUTFwf0tVIOBdVBLHyzHPD/EsCpEsp0TkEV+oYT3wReB2t6gIuMsdCCvpIXYy24Mby8r1fhFJAr2xPOQLNbQDXwFucIvygJtbqgI/0vx0aSE2EY0E9vEqEJFspkTkMV+ooRP4JvCbmOIrgTtbqgI7ehOVuF7osa3LcyJJoESUBnyhBscXargMO2Fq1C0+A3i6pSpwoHeR5byl2OXiuygRiSSBElEa8YUafg+cAnzgFu0PPNVSFTjHu6hyV0VzU5TurvagRCSSFEpEacYXangE+DTwlFs0EpjXUhX4Y0tVoMi7yHJW7H0iJSKRJFAiSkO+UMM72CmB5sQUXww81lIV2MObqHJWbCLat7GsfJRnkYhkKSWiNOULNWzyhRouAmYAG93iY4HnWqoCfu8iyzmLe2wf5EkUIllMiSjN+UINfwXKgDfcot2AhS1Vge+ri3dKvNhjW5fnRBJMiSgD+EINLwBHAv92i/KBq4E71MU7uSqam9Zie891USISSTAlogzhCzV8CASAH9PdxftMbK86dfFOLnVYEEkiJaIM4gs1RH2hhl+zdRfvA4AnW6oCX/Yusqy3VSJqLCvXJVGRBFIiykBuF+8jgKfdoh2Af7RUBUJahjwpYhPRjsBeXgUiko2UiDKUL9TwNlABXB9TfAHwcktV4HRvospaPXvOHepJFCJZSokog7ldvGcCXwM+dIt3B/7VUhW4s6UqoOWtE+N1urvQg22NikiCKBFlAV+o4W/AJODOmOIzgVdaqgJfVzfvoalobuoEnokpOsGrWESykRJRlvCFGlb6Qg1fwk6WusIt3gm4EXi4pSqgJQyGZmHM82May8qLPSS85pkAABGuSURBVItEJMsoEWUZX6jhbmAyEIopngIsaakKfK+lKpDvTWQZLzYRFWLvz4lIAigRZSFfqOFDX6jhQuBEumdkGAHMBppbqgIHexZc5noKWB+zPcWrQESyjRJRFvOFGh7DDsC8mu5BsEdh56u7oqUqMMyz4DJMRXNTOxCJKVIiEkkQ4ziO1zFICrRUBY7E3i+KnRngFaDKF2pYFFvXGDMVOB27NPZHwKPAXxzH+SRF4aalxrLy72FblV12rWhu+qC3+iLSP0pEOaSlKlAIXAr8DOhqDTnAdcDPfaGGD4wxOxcXF6++6qqrmDhxImvXruWmm27i/vvvfwCY6uTwH0xjWfmhwPMxRV+uaG663at4RLKFElEOaqkKHIDtzHBcTPHHwOyrnlwSunPpe28ec8wxRS+99BLjx4/nX//6FyeccAKvvfba4Y7jPB//rNmvsaw8D3gPGOMW3VDR3FTtYUgiWUH3iHKQL9TwKuAHLsImIIBRwM9/ePRBz1966L71jy5c+MCKFSvCTz31FG+99RZjxowB2NmjkNOCu3T4ozFFuk8kkgBqEeW4lqrAbsBlwEygCGB9+2aOvyvM9ddfz957782zzz7LJZdcAjBC94nKLwRuiCnau6K5aalH4YhkBbWIcpwv1PCeL9RwCbA/cBMQLSrIZ1QeXH311cyePZtTTjkFn88HdoG+XLewx7ZaRSJDpEQkAPhCDct8oYYL3vlo/WH1z//v2dpjD+FHnyrhf42Pcf/993PSSSdRtseu03N9uqCK5qY32XqhPCUikSFSIpKtnHzHI3s+8FHHEdet3MCFjz5H4Z4TmDp1Kk8//TRfO3CfC4HHW6oCx233RNkttlV0otYnEhmaAq8DkLQTLSoq4qc//Sl77bUXK1eu5Ac/+AGb33qN46YeC7anXWNLVeB+4Me+UMN/vQ3XEwuxS24A7AYcCCzxLhyRzKbOCrIVY0w+8A3gVGAPoM3AI498+aRlexSP/BnbLpX9T+CXvlBDznwQN5aV7wasjCkKVjQ3/cGreEQynRKR9FtLVSAP+DJwBbBvj90R4FqgwRdq2Jzq2FKtsax8MdA1Z999Fc1Np3kZj0gmUyKSAXNnaDgfqMG2mmK9i+3efIMv1LCi57HZorGs/PdA0N38BDvdzzoPQxLJWEpEMmgtVYERwP8B32Lb5bM7gLuwraQnfKGGrPpDaywr9wPhmKIvVTQ33dlLdRHpgxKRDJnbpftY4NvAWWzbCWYxNiHd5gs1rCcLNJaV52MXINzVLfpHRXPTdA9DEslYSkSSUC1VgXHAhUA1UNpj91rgFuA6X6jhfykOLeEay8pvwP6uAOuwl+dyeuYJkcFQIpKkcO8jTcNetquMU+UhbCvpPl+ooTOFoSVMY1n5KcADMUVfqGhuutereEQylRKRJF1LVeBAbEKaAezQY/cy7Ezgd/pCDS2pjm0oGsvKi7Czce/kFt1S0dx0vochiWQkJSJJmZaqwI7YZPQtwBenyivYDg53AS9kQgeHxrLyW7G/E8AaYLeK5qas774ukkhKRJJybueGE7EJaRrxp5p6E/iX+/OkL9QQjVPHc41l5dOAhq7tMeOG/3D8PsW7AAcB7cB/gIeKZ8/P2XWcRLZHiUg81VIV2B0IAGdi7yXlx6n2LnA3tqXU6As1dKQswO1oLCsfAbyPe8mxdMIOn4zdY0Qh3b/HJmxX9ueBi4pnz1/sSaAiaUyJSNJGS1VgDPAFbFI6CXd9pB4+AOZjk9KjvlDDptRFuK11s6blvf36x+FVbZsq8vMNBxyyE8NGxMulOMBG4GvFs+f/K7VRiqQ3JSJJS+79pM9jk9KpwMg41T4C/o29fPeAL9SwIXURWutmTZsDfK19U+cOBQV55OVvdyLuDcCM4tnz70p+dCKZQYlI0l5LVWAkcApwBrbFVBKnWjvwNPCE+7PIF2pYncy41s2adgbwV+Inyb6sBw4snj1/WeKjEsk8SkSSUVqqAkXYjg5nYu8tjemj+kt0J6YngGWJ6om3bta00cAbxE+K29MBPFM8e75WvBVBiUgyWEtVoAC7PtIZwAnYnmp9Wc7WiWnJYAfTrps1bSZwNduOi+qvDcARxbPnZ9TYKZFkUCKSrNFSFdgFKMMmp+OAzxC/w0OXj4BFdCemp3yhho39+bfWzZr2pHv+wdoE/Kp49vwrhnAOkaygRCRZq6UqMBw4ku7EVE73LAjxbMZ2s16MXXH1ReBFX6ihLbaSe1muFRg2xBBfL549f+IQzyGS8ZSIJGe4C/tNpjsxHQd8qh+Hvo9NSkuAF3ce4eyxQxGXAsVdFaKOw17X3c/yb00FYHHbWsr/FuG5809k4s7FrGvv4NM3P8pz559IcdGWyck/wXZaeDNRv6NIJuo5Xb9I1nJnZ1ji/lwP0FIVGM/WielAth1Uuyu2g8SJAGs2GqKOw6iY9lCeMTgOOI6DMYabFi9l9x2G8/EmO/b29pblTN13t9gkBLan3xHYWSREcpYSkeQ0X6jhHWCe+0NLVWAYdh68g7GdHw52f8bHHrc5TheHkYX5bOjoxHFgUetqvrDfONa120R064tvc83JPdcOJB8YlcjfRyQTKRGJxHBnanjB/dmipSpQgpuYRg1zLiku4oCex44qKmRdewf3vbGSMw/Yg/ZOh4/aN/NC21oK8gwH77pNT+88YESSfhWRjKFEJNIPvlDDWqAJaFo3a9pJsG0i2rGogI/bO/jrkneY98WjmPfKO6xr7+CmxUv5+iFxb0V1Yrtxi+S0eLMei0jfVsUrHDWsgMff+YDSUcMZVzycUUUFrFy/iUeWtnHG/j0XqwUgiu1CLpLTlIhEBu4x4OOehaOKCvjzs29wwSETACguLODWJcv4wn67M6Iw7kSow4DmZAYqkgmUiEQG7j7iDJTdcVghjgOVe9lZh4qLCnh9zXrOj39ZDuC14tnz301emCKZQeOIRAZh3axpj2HXTxqsjcBPi2fPn52YiEQyl1pEIoNzK7BuCMcb7JpKIjlPiUhkcO5k8D3e2oGFxbPnL01cOCKZS4lIZBCKZ89fB3yZwSWjjcD5iY1IJHMpEYkMUvHs+WHgKgaWjDYAgeLZ899PSlAiGUidFUSGaN2saRcDV2JnSehtrfDN2JbQ54tnz38iVbGJZAK1iESGqHj2/D9hJ0R9DtviiW0hfYydZfsO7EzbSkIiPahFJJIg62ZNM9gJU08AJmKXBH8OeKx49vyVXsYmks6UiERExFO6NCciIp5SIhIREU8pEYmIiKeUiERExFNKRCIi4iklIhER8dTQlgr/5AMHxwGnE3DAiWK3o+52JzgOzpbtKBDttd7W5+hkq3NHezw6nTg96/X52HXe2B+3LBq7DUTduKLudmy9LeUxj52d3Y/RHtvucU7Pss5Oe3yn+3rEPkYdHDcmp9O+xHRG3RCdmP24+x3oquces9Wxbn2nM4rjODgd9rWLdthYou52d7mNJdoRxXGiOB3xj3OiDtHOTvfR1unsjLrbNq5oZ5RozP6ou7+zx3bP4zvtX8qWRyfm+UAeHexgHsct+7nj9DbzQdoZdsSFjsnLJ6+gCJOfT35BEXa70D4W2u3u8qKtyvMKisjLM+Tl55GXZzB5hvz8PPtYkIfJo3s7ttwY8gu2rl9UkEe++1iwZTuvuzzfPg5zt/N7HNNVJ88YCvMN+cZQmGfIy3MfjaEwP498A4X5eeQZKMzLIz/PPnYdZwzkG0Oe+2gMWz3v3of9Pbr25xkM7qPjYKId9v0W7cQ4UXC3TWdf5fYzoutYp2MzRDtxNrdDNIrT0eNxc7vd31VvS337GO3YjNMZJbq5A6czSmf7ZpxolGh7h33sjHne3kE0GiUaUye65ViHzs2dRDsdou32sXNzpy1v7+zX/qjj0B516NzySI/H7vLNTrx69vn1ztJBvb/UIhIREU8pEYmIiKeUiERExFNKRCIi4iklIhER8ZQSkYiIeEqJSEREPKVEJCIinlIiEhERTykRiYiIp5SIRETEU0pEIiLiKSUiERHxlBKRiIh4SolIREQ8pUQkIiKeMo7jDP5gY77hOM4NCYwn4+k12ZZek8HR65Ycel2TZ7Cv7VBbRN8Y4vHZSK/JtvSaDI5et+TQ65o8g3ptdWlOREQ8pUQkIiKeGmoi0nXWbek12ZZek8HR65Ycel2TZ1Cv7ZA6K4iIiAyVLs2JiIin+pWIjDGfM8a8aox53Rjzozj7hxlj/unuf9IYMyHRgaab7b0mMfXOMsY4xpgjUxmfF/rxd7KXMeYxY8x/jTGLjTFTvYgzXRljdjHGPGyMec193LmPujsaY1qNMdekMsZMos+t5En05992E5ExJh+4FjgVmAxMN8ZM7lHtAmCN4zj7AXXAVds7bybr52uCMWYUcDHwZGojTL1+viY/AW53HOdw4BzgutRGmfZ+BCx0HGcisNDd7s0VQCQlUWUgfW4lTzI+//rTIvoM8LrjOG86jtMO/AOY1qPONOBW9/mdwBRjjOnHuTNVf14TsB8WvwU+SWVwHunPa+IAO7rPS4B3UxhfJoh9H90KBOJVMsYcAewGPJSiuDKRPreSJ+Gff/1JRKXAOzHby92yuHUcx+kA1gKj+3HuTLXd18QYczgw3nGce1MZmIf683fyc+D/jDHLgQXAd1ITWsbYzXGcFQDu49ieFYwxecBs4NIUx5Zp9LmVPAn//CvoR5143xB6drXrT51s0ufv635Y1AHnpSqgNNCfv4HpwC2O48w2xpQBfzXGHOQ4TjT54aUHY8wjwLg4u37cz1NcBCxwHOcdfXnvkz63kifhn3/9SUTLgfEx23uy7SWVrjrLjTEF2Msuq/sbRAba3msyCjgICLsfFuOAe4wxX3Qc55mURZla/fk7uQD4HIDjOM3GmOHAGKAtJRGmAcdxPtvbPmPMe8aY3R3HWWGM2Z34r0sZUGGMuQgoBoqMMescx+nrflIu0udW8iT8868/l+aeBiYaY/Y2xhRhbzLf06POPcC57vOzgEed7B6g1Odr4jjOWsdxxjiOM8FxnAnAf4BsTkLQv7+Tt4EpAMaYScBw4P2URpneYt9H5wLze1ZwHOerjuPs5f5dfR+YqyQUlz63kifhn3/bTUTutdNvAw8Cr2B7Pb1kjPmFMeaLbrUbgdHGmNeB79F3b5+M18/XJKf08zWZBVxojHkBmAecpzf+Vn4DnGSMeQ04yd3GGHOkMSbkaWQZRp9byZOMzz/NrCAiIp7SzAoiIuIpJSIREfGUElESGWMC8UYc9+O4TmPM8zE/E7ZTf6kxZoz7fF1M+f7GmAXuNByvGGNuN8bsZoypNMbkyvgmyXJ6v2S+/nTflsELAPcCLw/wuI2O4xw2lH/Y7Rp9H/A9x3H+7ZadAOw6lPOKpCG9XzKcWkQDZIxpMMY8a4x5yRjzDbcs9lvVWcaYW4wxxwJfBK52v6Xta4w5zBjzH2Mn/Lzb9DGpZZx/9zwTM8GlMeZeY0xlH4d8BWjuelMBOI7zmOM4Swbw64pkJL1fMosS0cB93XGcI4AjgYuNMXGnBHEcZxG2b/2ljuMc5jjOG8Bc4IeO4xwCvAjU9PJvjIi5zHD3IOM8CHh2kMeKZBK9XzKcLs0N3MXGmNPd5+OBif05yBhTAuzkOE7XjMm3Anf0Un3IlxpEcojeLxlOLaIBcJv2nwXKHMc5FPgvdnaA2MFYwwd4zvEx3+a+2UfVDrb+/9rev/MScMRAYhHJInq/ZBAlooEpwa5fssEY4wOOccvfM8ZMcif7Oz2m/sfYeZdwHGctsMYYU+Hu+xoQcRznHffS3WGO41zfx7+9FDjMGJNnjBmPnYq9L38HjjXGfL6rwNjFrA7u5+8qksmWovdLxlAiGpgHgAJjzGLsWhv/cct/hO0d9yiwIqb+P4BLjV2RdF/svFZXu8cfBvxiAP92E/AW9t7S74Dn+qrsOM5G4DTgO8au+PkydjbcnJlgVHKa3i8ZRFP8iIiIp9QiEhERTykRiYiIp5SIRETEU0pEIiLiKSUiERHxlBKRiIh4SolIREQ8pUQkIiKe+n8Eoht5xrcgbwAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -202,7 +193,6 @@ "tp.plot_graph(val_matrix=ave_val_matrices['PCMCI'],\n", " link_matrix=link_matrix, var_names=var_names,\n", " link_width=sig_links['PCMCI'],\n", - " arrow_linewidth=70.,\n", " vmin_edges=-vminmax,\n", " vmax_edges=vminmax,\n", "\n", @@ -213,10 +203,9 @@ " link_width=sig_links['FullCI'], \n", " link_colorbar_label='FullCI',\n", " node_colorbar_label='auto-FullCI',\n", - " arrow_linewidth=70.,\n", " vmin_edges=-vminmax,\n", " vmax_edges=vminmax,\n", - ")" + "); plt.show()" ] }, { @@ -287,18 +276,7 @@ "outputs": [ { "data": { - "text/plain": [ - "(
                          ,\n", - " )" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEFCAYAAAA19ErLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5wURd6Hn+qeHHZmAxmWnAWzogT1UA8FDJg99URMZ+RMJ4in3ql4ZhQTJ4ZTX3MWVMyKgiiKICIgcYnLhpmd2Z7YXe8fNQubFxDUO/v5fJoZplN170x9u36phJQSGxsbGxub3Yn2azfAxsbGxuZ/H1tsbGxsbGx2O7bY2NjY2NjsdmyxsbGxsbHZ7dhiY2NjY2Oz27HFxsbGxsZmt2OLjY2NjY3NbscWGxsbGxub3Y4tNjY2NjY2ux1bbGxsbGxsdju22NjY2NjY7HZssbGxsbGx2e3YYmNjY2Njs9uxxcbGxsbGZrdji42Nza9IZNrEPpFpE/N+7XbY2OxuHL92A2xsfuecCvwpMm3iieHzb/2upY1T773cObt80SAZregrLdMvNL1ahAqWOHoOmOs+4oQ1v0B7bWx2CmFPnmbzeyQybaIOhIECID/3WvNeA0wg28xrFsgAW4CNQGn4/FuzO9GOl4ExQBK4BHgsfP6tDX6UxhN3DjHXLB9vVWwZRTrpbnAglyep5Re9pXfpNcV39lWzd7QdNja7G1tsbP5rEEL0B/4I9ASul1KW1VvvAab73c5X19131WKgd83y3dpNve+a+UXvY/ftkz1h/34eILSLmydRwrMJJT71XzcAy4AttcUkMm3istz11PAkcFH4/FsNAHPtT47Ecw/eaq5beTmZtKvFVjhdab1T9yneU/4yUS/uscPiZ2Ozu7DFxua/CiHEn4ATgbMrH5ngAvqiBKXPxBfeP3pQj455mhBtR+3du4E/cvbSNUQTKUbu1esXbnUdKoEfc8sy4FZA1Nvme+Ck4OgLVxiP3f6MtW7lSTt6Eq1T9xd9Z1x+ui04Nr8VbLGx+a8gMm2iAHoAQ5/49NvT9urcrk+f9kUd3Q4dIQTLNpXzzOcLMdJpLCm56/QRJNIZvC7n1mP8RsRme4lricx78sfFx+/sAfSufe4IXHP3NbuyUTY2O4stNja/SXI+lQHAMGAoMOT971e0Xbx+C6u2VDJh9FAe+uAr/jZqSKOCsm/X9jw7ZxF/HXEQAJujce6c+TnJTJarRw6huHBXW9F2A1LCho1QWtpg6LNdOF1p5z5Dhts+HJvfArbY2PxmiEyb2BnlLD8CGAw0GxK8ORqnTSjQ6LpoIolL1+sI0e7kp83l3P32HEbu1avRkdOjH8+nsjpB1rSYcMywum01kjw3dxEbKuMcOaA7g3sV11kvyyuYNuMzVldVM7ZfMSfN/JoFpx+CJgSVyTT7Pvcpf+hYxI2DetMx4K2zr9am40vBG6ftsBnOxmZXY4c+2/yqRKZN7AGckFv235F9mxIagJDXU+f/lmllpWkJaVm6tCykJcGyqHkvzdyrZW3bSah/xNb3gBBb1wkhEJqG0HU6+32csk8fqlJpLNNUn4tt45FzD92XdNbkmudmNWyrz8Oexe34csXXeJwNf5IvrdjIkGEHsOyDebTv1o1uRSt4fXM1R3Vty21zv6HI66Y4z4dTa5g2Z1WWjUq993JnOyza5tfGFhubX5zItIn92CYwe+6q40pLYmWzWBmzwStS7vbveioaJ5VMU72+jLRp4tB1HE4HQtdIS8m/3p/H5X/YDytrkrQsfLVGXYN6dKRv+yJe/uoH9ixui0Ti1HUA5v5UQllVNT9WVFGeMTlzv348OX8JKd3JN+Vx3r7gRKrTGR78chHXDB6AZmZzi4mezXgyyxYOssXG5tfGNqPZ/CJEpk0cCJyEEpi+P/d4VtbETGUw0xmsTBYrk0WaVss77iyajvD5Eb4gwutH+AIIbwAcToTDQWm0inuee5VkOsOVZ53Gm5/M5tjDhtKhdSsAzpr0T3p3Kaa4bRvOHDWC66ZO444J4wFYtnotMz6eTUUkyuEHH8iWyko6t2/H/gP6bT29NLNMmDKNm/98EtdcfxNfrN5I2jS5Z/Qw5q7dRGncYFS/ruzXsU0jbdek5guUaf68LVowtEkPFWxwtGq31tml1ypHflEESABVwFpgvdsftCPYbHY5ttjYNEn289c7W6sWD5LxSF8s04+mV4tAeInWtf9cx+BjW3xSjkyb6AFOBi4CDvw5bbEyWcxUhmwqjZnKILPmzzncNjQdkZePFi5ECxUiQoUIl0s552vMYFKCZSKNaqxEHGnklkQ1ZFJgmkjTBDMLpglISuMGrQO+Jk9bns7QpUfHRtdtjsZpHfBhpjPqWh0etHZdCBz0B9Ib1rLihSe4+9Nv6N+mkDP37fPzrt/hjGq+wGY9XFjh6tIr7u67t+UoaFUjNluANcDqWq8lbn8w8/NOavN7xBYbmwakX75viNywYryMbBlFJtUwW93pTopQ0VuiQ48prhMuaxDpFJk2sRtwIXAOULgzbajpaM1kTlysnR+1CH8QrbANIpQTFE8tJ7qZxaqqxIpWICPlWFUVkE7t9Lm2F2fQiyd/W/yDlBIzlSabSCNdfhztOuPq2BUtkIcVryK9bhUikIdW3JvEh69y/N3TuW74/uzTofXuaN4K4BMtL/8b30HD1/r2GeIGOgNdgI6AG4gBXwJzgW/c/mBydzTE5n8HW2xstmJtWOHIzHj0Vrlx9eVktyNb3eFKi3ZdpzhHjptY9dZ0CRyFGsWMoGGiYouYqTQZI0XWSO6cSczpQitqh96qPVphG8j5PGR1DKt8M1a0HCtSDqnEjh97F+MuyMPhcZFNprGkhtamGHfnnmh5YczKMtIlq8isW4VVHQNAK2qL98iTMDeuxVzxPX2vuIWFzzyMWPAFMpPe3c1dC3xSa1nResK9IVRAxyBgH8ADLEeJz5fASrc/aHcuNluxxcYGAKu0xJl56d5n5KbVOxQmKzWdbNuui0xNz0M9/W7/vlIq05iRJJtI7ZDAiGAYvX0XtNYdEG4VeSYzaayyjVhbNmKVb1ZmreaJAyW5ZT1QDaSBVO619vvGPmtpfRbwo2qwbVuczkJvn4H7O4t7dnUUtOpgJROkVy+rTi1fbJmRcj+qRttWG5xzwIG4+uyN8fazyHiUis79GH3NTfw4fw7xz98jtXTRdt+3XcQG4FO2ic+PrSfcCyrpdlBu6Y7yBX0OvOb2B3/6pRtp89vCFhsbAFL/nnC7LFl29fZub+lOMsFCpD9vm29jO5BSYibTZI0U2URShSC3hKahte6I3rErWr4yG8lYBHPDKszN65saqRhsE5ISYF39951unh7d7ob/TNLRsu7AkcBwwIsaAcwCvnaFikyAipixJ3ABMJyFX1jMer6PftjxyGg55oevYPmCSNPEdfARJJd8i6O4B5YlSS1tsVj0bmV5WaTin+/Piw1oWzjr6kP3nQp83+nm6VaqOuYDht173/1XlJaWdikpWbfuqScf/yuwsGbUI4QYAIxE1Ye7TUq5vP7xhRCXAd2klON/wcuy2cXYYmND+uX7hliL53zQkunMkoK0w4uVV4Dw+erkkbSElcmSjifIVidaFBjhDaB16ILevosatZgmZul6zPWrkJVbQFVIblZIgEinm6f/al/udLTMCRwCHI/qSFcA7wIfuUJFW0WuImb4gFOA81AjrUeAN1wLPz/Jyst/Wr73kmD5QqTDBXn56OECRNfeWEsXQqIax6jTyW4ooXrjOjLrVwECzesDaSF/Ad9TDXPWbKQqmeaPvTsDVACfAR8DrxTf8lhM07RrB+zRv9WXX3weAQYC3wKvAnPd/qAlhBgLrJBSflr7uEKI04EFwPm22Px3Y+fZ2CDX/1THR2NJSfs73mLTNaMB+G5ThEH//pAvJ5xFr04dMJJpDrh2KvNuuoCAp2l9klKSTaTIxBOYyWb8CroDvVMP9M69EC43MhHHXLeK9JfvQyoZBb7JLfNzr8s73Tx9N8Y57xzpaJkbVf1gDNAeZWK63xUq+rH+thUxYw/UKOZIVKd7ZkHQtwIgZiSOlXsPOUv8330PyeULLwKgsA1icwmi/z4Ijw+5cS2YWYSm49zrIDyfTCTbrjsyWo5lVKOFCwkf8yeMhV+T+nEBKgt12/l35EFhh++DaRboQhyra9qxwD1rrztnDvD8/lOes9z+4ITWrVv7Slat6J27Tzc98tADyUOGDS15d+aM/wghHKiH4JqItyFAa2BvIUQrKeWW3dZwm92KLTa/c7Kfv95ZRstG1/5MEwKJREqJEILp36yiXdBDdUo9Kb80bzEjBvZsUmgs0yITN8jEE036YbTCtujd+qLlt4JsBrNkBem5sypJJWsEZX5uWfVbFJYa0tEyPyow4jjUXDjvAze5QkUNQsNzo5gTgfNRfp1HgCsLgr40QMxIaMANqM71WN+RJ5jG5pJWZtI4iYrN4HBCJgO6Y5s/KpXAWvEDjp4D8GwoocagaEXKqXz5CfIOPxZv7wFE3noWstt8WJLcoK+mPILYeQEqjRvMXLKaZDZL/7aFzFiyitH9utI+T1V4eHjOooNMaR10yl69WDVx7OAePj1TOnn86Z1unn69EOJgn893/0knjNHmfvnlF+Mvv2zZBx98+GTuPiKlvAhACNHFFpr/bmwz2u+c9NO3nmItm/9c/c+73jOT7y8+Egkc8tjHDO1cxDF7dOHggw7kD7c+zpQzj2ZAp7oJhNlkmkw8QdZoJArW7cXRpTd6x26g6ViRsri5Ztm3VumGz4TTuVAvbP1d/piz1mlefwrIuvLb/ma/mOloWRgYBRyLCgN+G3jNFSraWH/bipjRPrftaJQ57U1gWkHQV8c3ETMSIWA6MCvo806r+TwSqWqnv/DAJOv7L8/V+uzlsjaV4NhvGNm3nwfAMWQE0jLRuvcn/dS9VLfrJs1EdR3V8O03BE+fPYm88gSWUd38xSnxkQg2CyHa7tCNydFcjlEqa5LIZAl73RZq5Pc88Eqnm6dvSVXHHJ/Nnn3W0CFDxqDMofe7/cHFO9MGm98e9sjmd46MRxpk80vdQZ7bQSydZcayjZzYrwNp06LaMFiwrhyHrm8VGiklWSNJusrAytSL/vL4cPQcgKNTD1PoekoY0QpdZ7OrQ4dKfcCeSTHscIA9gD4ok4pEdd6OdOWmmqPUdJy1xad2Z5pBjRIMlK+gvJGlAih35bfd6VyQdLTMixKXk3MfvQn8xRUqqjOBW0XMEKgSPKNRIiOBt4BJwMKCoK+BiMaMRB/gQeC6oM87p9ax3OiOYPj8CRcbT9z5LMU9pmKafa01y7cOKc01y9F7DUC07iD17v3e9GiOF6qTxlNIufUeGV/PxoxWkn/qBUReewqzopkBggSQDwhNuwyVV3NIraXr9tyr5pJZ3Q4dt0MHNRvqYbnlgZJJ4z4Enu8Nr7r/eNRjqerYQOCyVHWsPfAY8IbbH9xFmbw2vwb2yOZ3TurBK++Qm1ZfVfN/6fJg9RvMsJsf5dGbruWCSy7l+TH78n+LSmgf8DDb25WDhg7l9COGkdmwmuTKZWRKVm11Rs/bHOErQ0ssKYtkb73+ujltwqH7HF16zwwHGnayP5d05SaBemByo0KMC1BJpPWXms9rJ6gKlEO+HNiMypCvWda58tum09EygQrjPRsV1v0a8LwrVFRZux0VMcON6jRHo6LNlqLEaEZB0NdgtFObmJE4FvgLcE7Q591Q77gDCoK+RQCpqopWwFGkU/tmZ728QK5ZXiwt0y9cnqTztAuPxhP4CLdnlTsYfnDtpPOmYmYvrn8uR9uOhEedSvTdV8iUrGyuWauA64Dniyc/vtWEWTJpXCfUlA814rM7JgbKAu+hRjyvtZ5wr45KDh6JGkFOd/uD5bvhvDa7GVtsfuckH/7bjVY2c4PVbSBW14HI1sWIDT9xzF+uZMxhg/lw/kKeHdGbae98Sqxdb6bN+py5/76TQNtinB26oHl9WJZFtroay8wiNUeZGcifffUVf+11zvkXpHr36VvzmFuOys/Y2MRrZau8XS9ITZETKj9KhNqixKRm6YHQuoAoArkZKWeDXEBOjFKauzyjuXsB+6GmQtgDFXn1JvBBQdDXYtZoPf/M+KDPWyd0rCJm9ALWFgR9SYBUVcW5wIvAze68gkvrXEuk9C2pOS9HiKfcwfDBayeMzUdoK5BWfv3z6qF8wsefRfVXn5Fc/E1LzfwGuLZ48uPvNbayZNK4dqi5hmrEp39LB9xB0qgIvuf1Vu3eKjz3b4eg/F1LgMluf7CipQOUTBonAPFb9vv9XrDF5ndKtDoxADiNTHqciG5pra1cgLZqEaJkKbQp5pTXF/LjD4u55+47OOzgg/m/V1/nX/fczxFHHMGN55yBVb4ZR34+jkAQzeVCc3vRgmF0h4Nnn39RJpPJirPOOusDCa8DrxjS4UdFaLUH2jXyWpBrWgVKfJoSportESUhxEjgAinlMY2sex6YA3wppZwDkI6W+YDjfly2/M+P/+fpwvc++HDduvUbJqxfs7LSEtrhQsqhwF4C2U0gHUJaMQFRkOsEcrZQUzkvBla58ts2a+5pyj9TQ0XMaANQEPRtrvksVVVxBfAQ8A93XkGdfKh0pHQy8ILUXQ8CJ7iD4Q1rJ4y9AHi40Xvj9hA+/izSa1dS/cX7zTW1hs+BycDM4smPN3nvSyaNa4WKHjsMZRbtsD0H305SwEzg/4ou+2dM8wevRAUR3O/2B5sU95JJ44YDh3S6efrfd2FbbHYCW2x+R0SrE92BU4HTUImFzzkqNnysP3H9G2RSHqk7kEPGYPU5gL+cOoY5JeUseuFRzM578Nas9zjtrLOZN/8bevbqpVwC0S1oy79CFHZA//odtPXLk2fPj925aOlPp58w5njnGaed1rpLl2K3lEgLEbMQS03EZybiAxDfAyW1fRhbqgyBEp2mBKk9DUWpgSCNHnFE4by5cwqllEMby80QQkwBIrquv22UbwI4R0InifgwKVzfTp5827Efffj+6PsffKS6Z69eFion5OvcsqAg6DNqjpWu3JSPeqLfI/faFeWPKGObAC0G1rry21oxI1EMPA5cH/R5v6jftoqY4QGKC4K+ZTWfpaoqOqBGUFuAAndewcu190lHSkcBXaXuCgMb3cHwo2snjNVz7d2r0S+DppM34gQAqt55GaztcocsBG4DXiye/Hiz5RlKJo3TgINRPq6TUKPHXcVmENNDJ5233t2j30nAU8CTjfl0SiaNewNl3jyl083TX9iFbbDZQWyx+R8nWp3ogPrBn4Z60nwBeBb4KuT3SoDUfZe9aOmOE+XIC7DKN6K9/W+0g4+Bzv2QKxeSGfgHcDhVYmEqCT4/2sfPkx18AmRSOGc8hOzQA6vX/ptlUcfLgFfCAV82FY/qwL7A4VIyAhgkBE4pMUxE1EQIE22DRKxBdaRltV5rv99Su4PPiVI+TYyUbrr+uv3zQiHPu2/PCN508+TlewwcuNrr9UV0TUsClpDS6SLbd/z4y/aecu+9lVEjnfYGggmU72YdsODuO++ofPKx6dGSkrV1OvbGqIgZOhAAgqjZRYOaNDtp0uoLspdAdgFaS6H50BwF0jS/l0KUWGibEaJ+BeVClMmxBumUmX5ZHCs0rL1NtIUIkUCZmOJAtZCW6bUSf0rp3uccWMencFwDxJMzn+lnLv/+WZlOQSZN3RgLhf/g4biKuxN59T/I1HbHT6wEbgeeLJ78eIs7lUwap6PMbaegpphotb0nagELId72D/njWt/BR/QWmn4v8FZNdYKSSeO6o+q1CVTpnCGdbp7eou3QZvdgi83/KNHqxMHAlSiH7ivAc8CnIb+3ztNfIpl0Ei172MqkxzLvbaEv+BB67o08+lysD5+H/UeQ1Z04MgbZ/A4IAcI0kclq9FenkD5+PNKXh3PO61mnQz86efCYfqiordeB6eGAL15zrlQ86keZWY4ADic3cZqUrJDwZRbt+wxapfKVUITqlGre+1CdhoFyIjsAPbc4aKQnHX/pxW3uue+BsmuvubLw+hv+sSrg82ZcZNvcdtvktlVxI9GqXQfj3AsvMiZcfWWrO+6ZshTY8Obrr1lvv/Vm3ob16/znXXjR7NHHHFsKuICQEHjrnyOHher4q1DVkBu8OjT2B852mMkrHGa6A7A3cABKoNYAc9PCtTGrOT4K5+XV6cBTVRXj3XkF96aqKqa68wouAaiIGS6UzykA+P1m/BFD897iEtZjSmyEGwikv/r4XNKJgThcjZcVymTQ80K4O3am+uMZZEs3IONV21usdCNwP/B48eTHN7W0MUDJpHEO4FCU8Ixh20j1ZyLWuPvvszxwyCj0UP7f3f7gnJJJ4+4FLq+10Tpg/043T9+uttrsWmyx+R8iWp3QUeVRrkT9iO8G/hPyexvtORLJ5ABgumnJn8RHz6b0L2ecLdv3wDz1b8h1y9E3rlSlaSo2oXftT9oVAJcHfeV3mPseiTbnDfR5M0kfczFW5/5SImYCozWBjupIxqGczPeHA74N9c+fikfbAH8A/ogKEy5EdWCvoyK/PnIHQnVKD+QSI3XAzC1ZwGospBggHS0Tr781c+Sxo44+DXCaiGcSwrMeIdoD7WOxWKdoNFrYoUNHSa7jBtxSiZcuVTXjYG4dQITmfUrlrfJ8dZzRMSNxLsqPMS7o89YRklygQicL7Y8Cax+hAhRMlOlujkR8i+4cg/LxTHbnFVzR6HVGSi8F1kjdNRp40R0MzwJYO2FsMSo6ztPYfjhdCH8QZ9c++A8ajvHDtyoR1+2pO5+PECqBtKoSWbkFq2ILMhYlp/EmMCPXxpktmdhqKJk0zomK3jsF9b0Nbc9+LZBxduy62rPXQRtib/3fvmz7u9UwFzis083T7SkRfmFssfkfIFqdCKDCQ8ejysHfBcwI+b2NRuAkkkkHcLWU8uSsJZ+zJP8RlunV1ix+h/bde+rfz0b74GnY70iy/Q5G+/RFtIOPIVO2CfwhhMsNZgazy0Ccj01A8/heSv7phpUScY2EFQKG5Ad9myJxQ6DMJ5einvzvDgd8jZYoTsWjDtSo53hUNn4xEEV1Yq8Bb7sDoXhj+9anIma4hbT6umRmrI51lIUWSwvHQkvoMZSJaiWqynONaMSaEqva5Mx3YZr3KRWifDaVwAanRicgmbF4InfOGmHaKkoVMcMPtCsI+n4CSFducqNGfYOk0I5BSjfIOIj1AnkfsKh+0ms6UtoFuE7qrhnAYe5geOsT/doJY29ERb41RibXXl0vaEX4uDOJf/YuqeWN5FK6PWh5BYj8Vmj5RYhgOCdIQs0LFClDRisqZNJ4QUbK7+s0acqSlu5pDSWTxtWU+jkFNTIObu++O8F/gLN/zdp5v0dssfkvJlqdaAdchhpBvA/cHfJ7v25un0Qy2ReYLqWcmzblQpQ4nYCUFW6ZPlor3+CVT93cHU1zyf4HkT30dBzTrkQcezHmwtlY3feCXvui/+cmzD9dh7RklTcTL3S2Kc5G4saJUvKkBFPAGflB3xs1543Ejd7AX1GO4geA95vKvUnFowJlZqoRnj1Q0UjvoYTnjWrpLEN17r2A3qjy9i4hLa9LZvbQscIWYkZGOB8yhb5ye8RkV7GlyhCaoMip8YglWZ+xmEdDYSpCdfIRlBD/SCMjpSDJ0wVMQVq3YJlLBXIAMAAoRf3N33Plt90AkI6UzpKa8wSEmAvs4Q6GJcDaCWN9wHe5e1SffwL/B9wCjNF8fsJjzib543cYXzeYF69pdAciVICW3wqtoBUirwDhC2zQwoVLtcK2Pwlf4AfgJ+AHYHVB0NdkKHLJpHEe1JxIp6Cc+/7tb8h2c1Wnm6fftRuOa9MEttj8FxKtTvhRprJLUJE4U0J+79rm9kkkkzpq5PNn07L+lrU4CmVimIOUT3vJTAe6AYeJWf/ZV+a3ucvcXLKXtc/hLsfLd8OYy7DeeYLsmCvQjIglomXf0777LLOg/VUSpoX83gtAiYqUvCBVZNa/NcFFtUUlEjdaoSZYG4oSjqfDAV+k2bbHov0sxHkWYrRU86RIidgIfGMhXpWIuV4rkdCRl+eu4V5UdeVf5csdMxJh1N/l0aDP+3pT222pMoQGB1tqFNToSMlFtmcaR9RDOpzE9QU5IdKlWe2SqXYOafYRyCCwQCDaAw9Ih/s64HJ3MLy1AOjaCWMHoyox13bcbAJ6Fk9+PJ7bZhBwOw7H0PCo0zDjVcQ+eEOZ0X4OQkMUtF7k6NrnW8fAQZu1Nh3dQhViy6DEZwGwuCanqDYlk8b5gKNRI/edmpSvCSxgVKebp79df4Ux84XOmSULBsloRV9pmn6h69UiVLDE2Xevub6jT25xOnSbxrHF5r+IaHVCA85APYV+BFwX8ntLWtovkUz2BB6TUn6XNmUFyjF9DzArHPDJVCwyCZUsd4A7GN4EkIpFrkxb9BKVm/Ocs19ewx9OO0O++cijqdOuu0LLpu7A4z9RwN5S8rGlZmo8LuT3vg8QiRseKbkLuEjCDzmzWp2s+0jccKHMJWeiIs7+Dcy1JDrQD5UwOQDl/M+gwoi/9pKp0AQjUSOe4UipY5nrQW4CrnGHij7e+Tv884kZiU7Ak8CEoM/7ZXPbVsSM3qjEzUZ9aqmqiq7AQAkfAv+I4ZlGY6Y7KdtpWB1cMp3vlKZXQkYKrTKN8+2McHyNEBuADcmHbzxPVpZdVBNL4Rx81CeuQ0YdVlhr1Ld2wlgBHIoQE4KHHn2EXtCKyOtP1yniuQtYC7yBNzDTd9YVFVphmz6ohxNPrfULgO8Kgr6ttXVKJo3rhvqejkONDH8uEWDfTjdPXwkQe3jykOyqpePN8tJRpJINp0N3e5J6Qau3HN36TAleOGEHhn02YIvNfw3R6sQwlMPfAK5oyVwGkEgmNeBiKeWFGVO+L1Xn9FE44HuoZptULHIC8AQw1B0ML8h91h44JK27rwdOd1nptcCb7kBocLQ68TLwlib4N9BNgFdKvrOUWWe/kN9bWnPsnFntCQlSwPH5QV+dDMJcyHBfVNXkmlyMn1Al92ejnnYbnZsgHS3rJZUfojea7kRoA1HmqJdQNkWW3u8AACAASURBVPlP3IHQL5o1HjMS3YFHgfOCPm+zM1NWxIxOgFEQ9DVZeiVXNeA5lC8j7s4raDSTvwYjUqbrWLOSwn2Xi+wUaVk/CGRviRBZ4YikpG5ZVZX7YFkuzKyhtWpfiRCrUVn6Naa7GjPelsTki/cOHjbyMUdR24GVrzwB5m4pTZZFBZF8AXyBw/lF4Jp7dVR+0F4oH5hARfZ9B3xtPHTDBllVcQKqzM+Qn3n+bzxdeg1zri+5Ibvmp8vJbMd06E5X2tGl55TAmZdOdHTttUtV+H8ZW2x+40SrEz2Af6EcxtcAr9bkxzRHIpnsKqV83LSkw5QsJdd5hwO+eTXbpGKRQSi7/5nuYPjVWp+PzQrHN5amzwA6uax0PtvE5hKgvyboBzwX9HkfihuJiVLyT0ud4w+1w6sjcaOblLwsVfvvAT5AdRBBVBTTElTy4feaQKJGO2egkjb/DcypbYZLR8v2AP6Gejz/lytUtBggFY/2yu13JqqAZAnwNPCUOxDabkf1zpIrpvkQcFbQ1/xosyJmFAK+gqCv2e1qhTzfA1zrzitocTa0dKT0MeBGqbveQj1ARNOVmwpRgn6MZcTbxma/P9iUjNWPPus7Ac9IVXOslG0jpvaokYMORN0Zo0BLGW2qFszzyapKTcajyHhURaMZcRrL3/mZrEVVLZiDEpil/ivuTAqPdyBqVN4lt92yzDefbk5/+MqhmOYZ7GRQgS5Z6Vq7qtsO79e5x4vBcVedbgvO9mGLzW+UaHXCjXpyH4cSmwdCfm+LnU0imRRSyotNyXWWJedLuBH1dLgmHPBtteGnYpEDUNMS3+AOhqfUPkYqFvlrWndngT2CPu8FqXi0gG1i0x94RRNMBw4J+rwj40bCCXxtSfIlPB7ye2+ArVFWg1F5FSNRMzT+IGBUftC3qrnriMSN7qjZK/cD3nCbySU61rmovJV/uUJFDaYPBkjFo1runGehklnzUGL2H+A5dyC0y+dEiRmJPVGjzj8Ffd5mczgqYoYX6FS7QkBjpKoqvMCfUXPeTHXnFTQorNkY6UjpGKCt1F1dgXnuYPjFOusrNwUSi7+91tt/765AvoWYY+j+M6XQTioM+urML52LvgsC7QMyMVFms/2i33+XIJs5AH/QJQIhhC8AQoN0EhnLiVCDpQqM2M/1/URRIdxqEWKpc/AIw7XfoZ3x+ntjZj3misXdMt9+doS1YXUuiXX7cZZtwVG9XcGOdXD06HdH+Iap1+zwjr9DbLH5lRBC9AImAq9JKV+rvS5anRgw7uw/f9yhY8e178+aNXnx4u+3q8xGdSLRw7LkmxKElFwg4VNUxvaccMC3vma7VCyyPyqy6yZ3MHxP7WOkYhE3cG5adx8DTA36vG/WExsBbBJwihC8DRQGfV4jbiT2k1J+aUl+siRfSWUPr0Y9oX5aEPRFKmPGMRKeE5AQguPCAd9nLV1TMlreH3jEQmuT0ZyrpNCeBV5tKagAIBWPelHRTGeinuwl6in+UWCGOxD62XahmJHYH7gVOC3o85Y1t21u+oGBBfU69UbbXlVxFCpE2w/s484reHR72pOOlAaAp6TumgKMdQfDf4bGa8WlKzd5gCMn333fjZak/8aNGz6ceudtl7ry2241AdZ8TzVNey1RsXkIUFj26J2XZMs2nwCciwr0AJcHEQghAnmIYBjhz0MEQxAIsX2iVIWMR3dWlFLAFhEIOfSOXdtq7bsgnC5kNoO1cQ3WupXI6qrmj6BpOCoqENkMWiqFlq1f2KEJnK60+4BDhts+nJaxxeZXRAhxKBCuEZtcUuYVwJWjjhoxZ/Znn30Dcr6UcmZzx4nGDV0oH8rxQogbgz7vlJwD/iTgzXDAt/WXlopF9kOZzv7hDobvrn+sVCwy3ELEs7rrXaBD0Oetri02uXY+D7whkLdYkkcsiQcoFHCAprEXku8Q4riQ37u+/vEjcaOTlHyEihq7XghuCwd8DTr9dLSsDfB3VHLqDa5Q0bJI3MhDBQYcjwoaeAl4KxzYVsqmKVLxaGtUXbizUWHVa1CFKqfv7GgnZiSGoOapOTXo87YofhUxYwDKD9WiLylVVTEemIIq9f+4O6+gwb1sinSk9DWJOBvdOQ/o68nLH4i6303Viuvcf48BU08/7dQDrvzLOe8IZU6bjao8sdhd0O4QIJyKbHkdmIryoVzsChXJtRPG9kJFiv2Z7al/5vIoQaoRoUBOkIKNiFLOVCerq5CxSO412rQoaaLubKMOJ1q7zugduyH8eSAl1pb1mKuXIqsqqY8WCGFZFs+88xHLNpdx+wG9Abh1wUrWVSd5cHC/Ri9Jb9fppfzbnzypxWv/nWOLza9IbbH56psFvbp17/6ow+FIA2NrosyEEA9IKZs0oUTjxilCcKcmxI+6Jk72ejyVkbjhQU0//Hw44Nv6iJaKRfZFCc0t7mD4zsaOl4pFxqc11yqEuCDo8x4NUFtsKmJGNyG4TcAeUpISglJLckZB0LclbiT8wCIpKbdUXbNjQ35vg0fESNxwSMnTEk4R8KEQnBEOqHlf0tGyAEpwBwH/dIWK5tTfP3eMVrlrHIVK1HwOeK/29TZ6fSqH5wDgYlQeB6i5Ux4A5rkDoe36QcSMxOGoUPLTgj5vrKXtK2JGD2BTQdDXoq0mVVUhgMtz/poH3XkFF21Pm2pIR0ovAjZJ3XUKcI8nL/8PqMCS43NtXgKkZL0f/5Chw558feY7Az796IMTRw7dvxNqVNx36iOPLn1k+hPzli7/6T/paJmG8qVFgKtqwsvXThjrAI5GiPOAkbUnb9spXO46glRHlPx5CH+wjiiZKxZjLWxQ17QuQqC17oDeuTciVADZLOa6FZhrl28tz+Ms7o4ZbsMBYy/m01H782VplMnfrWLmH/fBqyZ9a4jbk/SNObuPHRbdPLbY/ErkptydBHhfe/OtH+d//fXfhwwddueBgwb9M+T3WkKIS1FP9Ukp5b/q7x+JG/0ETNU10UcTXOLzel/Jfe5EPcE/Gw74tjouU7HIPijn/K3uYPiOptqV89f0AxYEfd4HKmKGpiEP17CmZ9HfBFYKwSJNiIc0wcUon0LnoE8FLcRVJ/yeJXlUQmXI723Snl0ZM/4i4S4BSYG8zGslfEK1fQrwxvbmyUTiRieUcByBmvjrNeDjcKBh3kada41HW6FMQReiKhbMRz25P+8OhJosDhYzEiNz+/0p6PO2OKqqiBkdgVTtMN5m21VV0Rs1EvkauMSdV9BU9n+jpCOlxagggY+AXu5g+HoAIcS9UsrxQojbgJuklAkhhIttARfxF197Y8sXsz+747q/37hvYdC3ceAe/TsJwcMd2rfvd8vfr/u+f78+00DMQtMfB1a6w63eRVV37gf8VUpZsXbC2Hxn936XCN1x1fj7Hgn0LszTehSGOaRb3RkH0qbJA18spCqV5obDD1QfCgEOJ8Lh4JsNZcwv2czqyipuHnMkuhBgWSAtpGVREavm0hffZeKYEfQv8CvBsCyklGo7y6LZ4AWHE61DN/TingiPF5moRsaiaJWbuXnKw1RnTT7cUM6Lw/eiUyjI+sKudN7SqKsQ194HnZJ3xS12VelmsMXmVyRanchHlZvv+OQTj//1sosvatGHEYkbrYEbNMFhDk0sEUJc4PV4ynLrdFR15xfCgW0hwzmheR/4lzsYbiBctbbrImHv+YuXPnL7bbd9HK+O97nznilfdenc+WsP2bO9wdCBuXYLVFHDwzTBt8BBQZ93Yc1x4kbiceAEU/IS8FrI732j0RMCFVXVezowZzlltrUp9G9NoY8MBQPNzm7Zwv3phfLTHAYkgXeAmY3VZtt63ao69SjUaOcIVCTcdOAhdyBUJ5AhZiROQAUenFV/wrPGyM1NoxcEmz5/g/ZUVVyIytU5EfjJnVfQ6OiuOdKR0nel5jwLIWa4g+H9aq8TQrSVUjYayCCECC344cdDOnbs9E/g6MLgNl9funJTW+BPKP/XQoQ+QArxCbrzoX4D977+ivGXf37uOWenyBVPldDmyqv/dnrY5y3s2751+cj9BvplNhusXxB04gOPcuvF56r/WBbSzEA2i8xmmPb6O8xbsoyHLz0H3eFQoxlNkDUl97/+Nq3z89mzZzcG9ugKmgaahhCaEi2t1khE1xFOFzhc4HIhnG7I/V+4cp9rGrrLRWLxt/x0+3Uc/OY8njpkACM6FfHBXicwv9ehHLx4JoMXv4OoJ2KOrr1uDP/j4Zt29O/0e8Lxazfg90q0OtETNTf9G8BJl118UbPmn5xp7FIBhzp10UsIcZ3X43mh1nqBerp/uZ7QHIGaVuD25oSmIma0d6H9I40e6L/HAE0IsfLjjz5y7zOg/xXJWERHhRUDEPJ7ZbQ68RHqifYDVKTZwlqHuxI4WoPWFlwcrU4sCvm9DaLP0tGyQQH4u4RHq4V3iBBioBAsjMSNC8MBX4ul/RsjHPAtQ9WGuysSN8KoIp+3ReJGG1QRxreA+eHANr9JLlDgdeD1VDzaG1Xh4ALgqlQ8OhNlYns3rblGovxgZwR9Dc2D9amIGQWApyDo21HzisedV5BIVVUcgColszPME1amm9Rd6VQs0sEdDG8VjaaEJrcumopHZyWlWSgRnyVi0amaQAOKcHo9uY2+B9kWKdsg5cTpjz12waiRR31y7jlnU7plS8LldH0TDodKBZQ/8NDDVxqJ5OALLjh/xvF/Gf/St7de/UyxWX0QKrBgEJCXWfsT8fdexZKSjGnhrmWuOqONG32jm01ffobX6cDrVF3W3LWbSKzZyEcLqihdvIDugwbs5G1SaAWt8B14GM5e/fG0a8+di1ZT5HaSlZLl7Qcyv9ehAHzR/2g253di5JdP4clsG/xK09wdJXX+p7BHNr8C0erEH1CdyLUhv/eJ5rbNicjxwAlOTRRqmkgAF3o9ns31tjkZ9QS/1X+QikUuAu4ELnYHw4/XPm4uMmoAahTQAdjoIRPKas6oEMIf9HmvzUUwrU3GIuupFSCQu4ZxwDBN8AVwZtDnrZNcFzcSJwPPS8kllsqdOSbkVxWP09GyVqiZH7Mo5//mipjhBB4W0FMIhqLm3Lk0HGg66XFHyI36DkSNYPZD5eHMAD4IB3zR+tun4tEA6in+YmCAhVibFY4tGtYwvz+wPaazINCmprjm9pKqqgigRqdPAHe58wou25H9a0hHSg8AjpO6qxoodQfD/956DhWlV4zKV6lZak+fkATWZKQIZdDGOZCnu4S1yB0INTBLdmjf7s/dunaZOvyQYVWjjx4x76/XXrdlyY/LbtlSVrYGoMYc7PP5zC1l5a0uveSSsfdPnXqiz+uZtXbCWP3ox9/4Z6WROvHvhx+wIux1D9gSNzoc00+lvLy5ZBXrq6pZU1nFDcMP4LaP53PjEQfWOf+LC5fTr00B/dsU7sDdEThat8PdZ08cnbrhKGyN5nJjptOYySRTpz/G3E8/5dxCnVvm/cgf75tByuWrc4T8WCnHf/5viqqUbtsjm5axxeYXJlqduACVP3NyyO9tNlwyEje6ANdpgohDEyOFELcCz3g9HllvuzEoH0UFQCoWcaASKE8DxriD4U9rtq2IGV1znxejRiNvFAR961KxiAcYm9bdZ//lggteeObpp3RUHbIbkrFImoZi0w34RMDBQrAaaB30ebcKQ9xICJTvZJApuRgY7TSTYx3SPBc1OpjkChXVKedSETM04HYBWSG4EDXh1fnhgO/N7bm3O0IkbnRGjcgOQ+XiLAY+AT6ruY+gAgqyQr9IIm5wyGwroaLY7gAea8qvk5tts2tB0LfDyaSpqopjgUVAT8Drzit4rYVdGh4jHhVIWYyZfgXd9TZwMkLUjmhMoBInV+eWNe5AqFEBLY8Zh6L8WKMKg77VjW2Tjpb5gZlI6/VF3y9uNaB/30GoKZwfdeW3rRP29cqrr44ZMeKoO1E5Xlf7vJ6tD0dCiNbfXHaqVujzDEI9EPTOLb0Ad2ncoHWgbqe/vehFbfAMPAC9qC1aQSs0hwvN4cCsLCOxYC6pVUsJjPoTX5SUcvWVV/Dee++Rr0v6Dj2CQy+9hTbd+jQ4pjOT4rgvHqXr5h9tn812YIvNL0S0OuFAjTIOB0Y3ZlaqIefkvwzo7NJFKyFEHnC+1+NpLJR4NDAvHFDz1adikRAquqoYGO0OhldUxIwi1MhnT5QD/bmCeh1HKhY50kJLZnXnK0DboM+7LbigXuhzrWtaBpyoCf4D3BH0eZ+pvT5uJDqgCi2+YlnmFk1ax7ms9H3AQ65QUaM5LrkR1z+BFZrgFJQZ7Elg/Pbk1uwMkbihoRzch6DMO/mo5MFPNEGlEOJvwIkuK90DmIDypWxBJXI+5A6EtoaW50rw9C8I+hayE9SqGnAvqmpAS0EORaiq2HugqjprKK94Cdn04QjtDjT9YVSgwE792MtjxlBUdYRjCoO+lY1tk46W5aHK3kzByr6IGkGehxK1+1z5bbcmFBuJZBA10+cfgXE+r+ej5s6fm+K6GCU8fWq9dkJNsJdXfx8tvxWevQ7E0a4zmj+ItExIp3Dkhchu3kBqyQJSPy1GppLordsTOOUvrF3yPaPPPpeXXn2NnsWdsKTFuXc8wU/fzeOPl93caNt0M8MxXz+T3vPg/XvZ0WjNY4vNL0C0OhFCmYUkcFrI720ywywSNwYBF+ma+NahifNQAvV4/dFMbtsRwPfhgG8dQCoW6Q68CazNoJ2dxnEYaqbOCpTfZmFTpfZzIc8RhDgy6POeXmdd02JzJ1CpCXxA1/r7AcSrq8frVuYeYZnvp3TvRoR4LeRXkXNNkROca4FVmiCI6tQjwLnhgO/d5vbdFeTMkr0EnCoEF1qSH4BlqKrJ8z1khICrUVUKqlFP/lNy0x7siSoguVM/rFRVxWWoCL87apvQcma9fihR6QvUFIosQxUpXQSsrJ2omo6UHgN0l7rraOB8dzDcbNWG5iiPGYOBacCxhU2YBtPRsgKU4NziChW9BpCu3LQn6sGpIHdds1z5bS0AI5E8ApVg+zowwef1VO9M2zZ/NDOkFbYe5gqFx+ge7yCJyJPpVDIbKYs4NN3nKGzV1qwsK08tXbQ6sfDLDTJhADh0KYc6e+/V0XvMmWTmf0pm6ULyzrmS5PIfcPoDgOTZEii3nFQkmnbRCWlJKbTTbh/d//mdaf/vBVtsdjPR6kRH1A9wFnBV/WmZa8g5s68DKly66CGEKAbGeT2eRqcOiMSN4cDKcECVfUnFIsMkvJJFm51GLwGRQQUffLpdSYQq5Hk0cF/Q561jumlGbA4BbtcEf0X5P1rVjIjS0TIBnCLh/KzuLpKaI2BJ9pGqXtn1Ib/325baVBEzLgMMTfA+8BjK5DUNuKq2b2p3UKuo5qmmJUtRociDURWuewII5EYXZieBHAZIKXlFwHWeYGinnnBTVRV5qBlOQYjuCE2w7am9GmXq+x74sTH/SX3SkVIX8LbUnF8hxFfuYHingi5qKI8ZB6HuyfGFTZTbyfnj3gWuc4WKtpbvT1duao0KujiUXLFUV37baiORDKEeJoYCY31ez+fNtSESNwqBvZBybw1rqCbNbkJKC+R6KbSPNSHW6IJDUTOAfpU717v1zYRxI+GWVZHnQB6Xee5hrIXz8N75NDJaQaayElfAh8hmMFYs4+tUgA/dXVu6PRZwzu2j+z/Z0oa/V2yx2Y3khOYjYGrI753S2Da1nPuHOzTxoa6JSah53R9pbDST22cosDkc8C1LxKJOC/GghTjbRHxhod0LzCwI+loMy60hFYt0txCHZ3XXDaicmTqPcc2IjQM1J8pATbAQOD7o836Wjpb1Rvk15gJ3pZ3+LqiCig+YkltRHcBpIX/zdcQAKmLGOCCgCe5HVfm9HTVSuxxVtmaXf4Fz0wQ8hQp8aLRYZs701gPYRyAH69Ia7cDqgECTMMdEuzuL/m444Gv2aT0VjzpRo6GDkNah6iFBdp749xtfmP74k3nRaLQbufyVnbmWdKT0Vin0BJrudQfDE3fmGLUpjxkHosL1xxQGt9Xaq3POaFk71MPVOa5Q0Vd11lVucqG+72eivhNTXflt1xqJ5EhURYfngevTppUFuqKmHtgLGICUXk2awiGzKSGt9QL5mRDiHXTnIFQC6jBU9eiXgPfcgVCjv4G4keiMlK8KpCv77INfZD55+zzXpTfh7LcXiUf+hbbfUByZBFr7YhJvv4zouw8/fbOAN/odS9rpbeyQtfnL7aP7P9zynfz9YYvNbiJanegAfAzcF/J7729sm0jcaIvyT3zs0sVgIURf1GhmpRBiKPWS5XL7DALi++2950FCiOu/nj/foyOzGvJUXzD0KYAQIowy8XQAZkopP2muralY5Ly05uqLEMmgz9ugQ2pKbHLX+TTwkSY4FCk3urNGDNU5XOUKFW0128SNxMTctQ4yJXFUAMNxNRFqzVERM05FjSwma4JuKLPVCJQT+tJwoHE/ws4QMxJtUNUIWpwmoFb7egKbfCIjJEwUKkk0z0KsyaCvlIgkakro5RrWZgdWnobsJFTdswyq052DZR6WO/ff3XkFVwAIIa4HnpFS7tQ1piOlXSXche7yu4PhP+7MMepTHjP2QxU2PbEw6Puh0fNGy/oBLwKHuUJFpQ3WV24SEoagphIPZjX3t1nd5RdqorSwVNMOfIuUS11WCl1mAwLSwFdSc36Lpg1H+c4OQgV2vAR85A6Emq3AGTcSI5DyaSGt2brMnuIoKzXjC+d95h5+7KDMuy+T1XR0hw4bS3AOOQJj6j9wXH4L2WmTKUtavDDsIuK+/JZu0V9vH93/3pY2+r1hi81uICc0NSOa+xrbJhI3jgWOcuriLU2IyagSIFO9Hk8dk1ftzqYyZvQDhkjkQB3ZY8LVVw6/545/PQBMcAfDiXr7DQYuBe6WUs6jGZKxyJUZ3X0VMDjo8zbo1FoQm1OA0x0y+6luZW7UpHUh8H/1s/9rKkPn/rufKRmOioo7e3umTKiIGaOBAzXB9ZrAa0lOQRXAzAfu0wSPCCF2rNTvNjKoatIaai6dy4M+7+Lt2TFXhmZLQXBb+HQutPgCVIWIoFS+nk0SfBKhm4i0ieYG4UBNs7AWWOWy0gMkrBawOq25XivICxwlpRRSymcaO/f2koqUvormHIgQPXY2SKA+5TFjH5RJ9NTCRoIhInFDeMzEWQJ5UULz3oAQrVA11zqiQq1rJsVbrVnZcpeZHCCwioBbTVcwLKT1kLCy3worM1PAx1J3LUWIESiBqanv9xLwqTsQarHEf9xICKScBIzXpHmHLxC8DdQoVpfWUpE00tUTz/Hq5090OYwqMjOex3PWJRh3TkS/6AbMWS/Bkm+J+At57tDLqPIXtHTK624f3f/W7bubvw9ssdnF1BKaBxoznUXiRgD4B7DUpYs+Qoj9UKOZBjZwIcTpgCivqp4Rj8cu8ni8Q50OfYaXzDEC+u5z4EHzFv+w5ITctj4ppVFv/zBwqpSyyWF9KhbxWmj3ZnVnt6DPe0Sj2zQjNlXx6nyJ2OA2jY8zDu8IhNY66PM2KMsSMxI6KhJvJiqH5A1LciIQ1ASzUaXsA6g5VGqz9QsqpSyW0EHVUxMxKaWQcASSYUC5ELwshGi8nkjzuHLnPxk1Q2T9qD9Z7301EJNSeoGNQogtQAwpyx0yGxLI/YQyAQlU5zoclVN0O3CvOxDaalrL5f8UA11cVvpskD3SwjXnoQcfOODll17sM+yQQ7ecfOqpm/r06RtFmSw35l6jKIGM11tigFE7aTUdKT1OCu0ONMdwdzDc7PTh9YnEDQfq7xJg298oCASkpJ+EywR8IgRVQBvAmdvVAipcVqqnkDKd0j0P59q+HjXdRR1TbTpSGkTKk4DTQbaVQptmOgOHCuS+QmaXCRV59g7wMvDFjlTsjhsJJ1I+AQzVZfZkbyBvLkDMSDgFcoGO7CtgcGrJwr2lEb/Y3bFT3+obLhG+a2/HuHMi2qDhEAxjff1JUtf1t5b0H/7sawX73kbOd9cMtwDX3z66v93JYovNLiVanWiPEpqHQ37vPfXXR+LGgcBFDk28qWviepRf4B6vx9PghyOEOCm/oOCvY044MX36GWcuffiBBzqeedpJbx05/A+3AG/vud+Bzy9dtuxK4Gkp5b+FEFOklJfn9u2Dqo5cBLwtpfygqTanYpEjMprzBim0+4I+b6N5Aql4tOD5F16c/edx5/1Up0R9tKyHhAfuefix/2fvvMOkqLL3/7nVobqqu6Z7ZmBEsoJxlGRCBBXjqoAJc15EDJgVs6ur4goqqJhzDoggsOoqZkXFHDCDAUFAZuie7q6a6lD398etGXuGSRh+33X1fZ550K7qqupU555z3vO+A+69956VC955tzNqtZlE3ZRKUUTRhXdABZ0xUvKphLOAeZpgOpAtpVy3BD/D6VdhmVeUvK/9UNTcISjW35kNwp4dQVrNBN0AzLdMo82JfT9omkVPbi4EbgCZCMjiDqi+S1Qi0p7QaqXQfiYwSGlqeAOElFsIZEoibiuKwK0IsdQyjRyAW1ero8pv3fSyijX05JIZW0epKq/r/1vGmkGg4S+KytIAJFJqkaI9PK/pC4tacDkqCLYGQdPgWuTnoLbGv1IS8JRw6vMaXFDezFk1l1oVQDEkHwrHOz3QZFtyZYMFRA//mM/IoJ5CegdTLJwOsrvUgp94Ab0vQpuGEFeYRqSD2v8KGduxkPI/IMs06W1vxqzG3lfatqcEkeOAOwwzekoq60zSZPGlUDF3fu7Oa64PHzJuqnP75EdEorIoDj15X612xRhrw01fBpgwZ2EXVHZV3c4lTJ40svovvxv+Cja/GUoCza3xqNFEut9fHU4AAuGAsPx+zBgjElmj3u0bjh2CmnZ/G3g4iHfEsm8X7bte715bACfoVmINimVbeldtoT6dujivhU5EiF7Ntb7SqvS13h233bZv3Iqe8djjQYgAyQAAIABJREFUTyyZPmPGa0jJJ++/s821U6ZuttU2g18bd9LJzrhjx2x5+513LkLV2i8pi5oZFEngByllY/26QRkatcLdoSgJoqTsO8RQ89+jA4BeFZbZqFztN+yPRmUPIVQJ66aW7AuaI207ZwCmZRotD1OUwM2kwgUpRgeQA4Qgigqg84C39Fi8xRuhH8zimixuLaQ8B9gJWOUJ7Q2JWIwQCK+4jsBbX4rAF1Jor6Co1l8ByxtETn8N3ORPjyM0R49XHvFrj9UcNWk7jOqjlQNHV1pNSRG51KpylLfSkUjvA9SiYDBKqWCODOpZYBSqRNYLFZweJ+8sFnCqhB28oBGRgbCOEEeZRuTjjlxXJmuvC7whkJ9JoY2ImT8zQdO2MyKA96CAOgGbRsxoOpV1ntVl7l4BG+ux+EVuJvUesJ0eizuprPMycGk8arzQcIwJcxZ2QvlCDWjnUsZMGll9V0eu+X8ZfwWb3wD+HM3rwD3xqNFEut93nLxYE7wQCminoVb+VxmRSJMVfG3arkZ5goRRq/MFUXLlBbSbNbx9NDXYeJFuJVbwG8LO1D1T1EI/oMoTG6B+7A2aeXngm5F77Tlk2JBth11x5b++3XfUiCtvv+mGk4xI5Nl4lx4f5/P5eDJjf3TGaad8NGXq9ZcLwVaWaewvhBiP6tEMLg028LMyNHBCzDRuSWWdSv99OTQeNTqUkdSm7cOBRIVlTit93KfG/gulyvw+cHypFXZz+MKae6AIAWv8GHxLgr6oAcRNPIkBvKIJZuux+C9iiLmZ1ACUXM/fUMH5XLxiD2DbXEA/A6H1Rk3Nb4jKZBqwmp+D0Jcd8dBpPGeqZnuk97Ce6Nyt/b3XHjVqNupE4BgUceDb0u255E+7A3eDvAV4TgbCixBiH1SAWQc1a/M48HFzm4fc6uVxCaeAOMgLGd2kFpqEEJNNI9JqFpzNZreQiOdA3onQJsRKPtu07fQUyPcCyAoBe0XM6NP+YvHKiMzlgOl6LP5ss2BzCmqAdGI8ajT2RyfMWViOMuTbhtbhAkMnjax+p419/ufxV7D5lfDpv3OAz+JR44yGx31K8zHA5uGAcIUQO6OymcZmqj9tvi/qRrYQuK/CMmvddDIEnODBpRLxdQA5RrcSv2giHRpLP71QwaQvqp8QBITmFcZ5WnAyKlh+BXzXvJTlZlIVSDlnx112y7787FNe380GfL/kh6Wnon5gCYCBg7Z4cPDgwY9eNXnyTmVRcxBKkieF0l87WErZJGvK2M5dqBvNpjHT+CGVdTZGrY73j0eNNbTKWkJt2j4WoMIy13CxTGbsIajS2uao2ZwLEzGziZNm2na2Qc027V9K93YzKR1V6tsJiPjvy3+yMpgDUVthmWs6b/0CuJnUjijL763xvEUg5+llFce3tn/adspRn2FDIEr4mySqj/Ol//e1ZRpNCCNuOqlRzKdA9tUTVb/pgqUUvrzNzcDxVjHzHqqcuw7wrUSsgxDj0YIrEMJCyRnN0GPxFhltzZFbvbxMIs5DaGO9QLhWBsL7mKaxxnOzmcxRUmjTgPGxqNlk7kVl6/LVILKXgBciZvQwgFTWOQYp3Qj5fwD99FjcbRZsuqPYdUfGo0aTvuCEOQstlMDr9m1c/hJgi0kjq39zW/I/Cv4KNr8SqawzBfXDH9UwsJnM2J2AyzXBZ6GAdgRq4PEKIxLJQaMP/VEoVs0TwNMVlinddFKg9LquliDyBGaEKV6wNgyitO10QjlRDkQ1pyWqOf098DXqxvmNZRr5dDZ7oCa9y6Ixa6O2junW1fZGyrcF8lpgsp7o3MnfdCFKwPGfhx1+xB3Hn3TS9/379fs70MkyjRohRG9gn+aZDUDGdipQUjYLgL1jpiFTWWcblDvn/h2hRAPUpu3xQLLCMh9ovs0vX45HETIkKpu4LhEznbTtrIeyEdjPMo2km0lFUEF/Z3/f54B5DcOTtWm7D/CbBZoG+JnTvnjefQhhIMRNwEV6LN7hrMUv03Xh5yDUF2gQEVuByp7eDeft55DFuXqi6lfP27SGXHJloEDgkKLQrtSQrwSFvBYtOAy1sAhRLNSD/FKPdxr7S8/hrl5hSS1wl5BylBcI3Y8IjDNiVhHAzmSmeEI7Btg7FjXXoPynbedqDW8vDToL2CRiRn8CSGWdh0Iyf3sAeaoei+8DUBps/H3mo8RzG7UGG2yzjbLEU+MfeO1YlEVFI95/6hGcuiSeV2DooeNfAHafNLK64D83ATyI+q7NkFI2mekSQmyLKjn2BU6WUrbLuvtvxl/BphXIZe/2knU/DCaX3QTpRRFalnD0M1HW/U3RdYvvAFJZZyzK+XDbBgmaZMbeHTgwFBCrNCF2BcYakci70Cg5fzwqCNxbYZmNQpRuOjkYNYcySMIl9YSSCPFQaz0H/wbTC1UvHoCql4NyrXzf/1vaVr0/k828JiTPRGOxVnsVudSqLSVMQQuU6VZ5/9b2u+6GG4ce/fe/PyTAE4Kxlmk819q+jee3nQNQMjoHxXxyQirr7A6MQZXUOvTjqk3bZwHfVVjm9Ja2+/YCF6PoyD8CEzXBARryhJAsVKMymAKK7fRC81mN3yvQNMCtqw0CL6MFnvSv00YZmt2rx+Ltqj+0hbTtdEGpHmwhvMJ+wYLbIx8yb0CId4F3LbNjZcv2kEuu7I5SPwhIoX0ptdAAqYgDeQHXCsFjeiz+bS61KogqO90Rjnf6VfIuTqZuE+EV/i28YlwK7fhiQD9aCm0gQuwaa4G6nradUSCnBZFdBBwTMaMPQqMd+1MRmXsVWKHH4rdDi8HmBBQh4ORSun6D4+7Zsz/5D6pCMLD0vMV8nnm3TWT3k/4BJYQBX/NwKuo7eUNLPVchxCko5YpDpJS/6rvwf42/gk0zeF89M5TsytNw60bgFfQ1dtCC9YStufXdtnslH+12HjA0HjUW+34zlwjIhQJiNyHEi8AlRiTi1qbt3qjp9yBwS4VlfgXgKp+YUSj/l/4o7aiJjggPBt5sUB9O204QJT44EFUWahhj/g4VVD6wTGOt+gdp2+mmecXPQXaPxqw1yla+3Mx4YAcptAlogftboj6XIpV13hWQFoJnLNP4V3vXUKoMjSqn1fjHOQQlTTOuIzM4ALVp+0LggwrLnNvaPsmMvRHIyQEhRgpZTAbwXtDU1PpLrTX3/Tma2grL/EX9mY7ArasdA/TWyyoucjOp7ig/ngOBN4Dxeiz+3m9ynnTyMLzCGAm35EPROmALVEYESpXhXf9vWUdICbnkSgEMBbaVCI9AyESIUShq+AwpmZkldAwqWzyg0jJXAuRSqypRg5iHhuOdfnF5GMB26oUs5K4FTpFawNWKue3NsvI1eiNp2+kN8s0gcqVQxn97RcyoBPAz6pERmdsJOECPxZdCi8EmhsoS94xHfx74LbV3H3PT7A3Ku/Z+UwsEKgAKOZdX77+eQSMPI17VlbzrENKNAyeNrJ5e8vwK1KL1EiDUvOQslNX2TCllkzLwHw1/BRsfMrMiKL95aSL2T6fiFcJt7euFy7D77I2e/PzhcKe+R6awugFXBDWxIqCJnVF+M2/Wpu0BqEb1KuDmCqtRmdlEldHOQJU7rgNu061EMpmxBwnopWmiChVgGgb/vkAFlo87YkXcHtK2c2HAK+xqxqwdmm/LpVbFUTfh94BrZCCUoJU5m1Kkss6ZwIGa4HvLNA7oyHWUKkPHTOOYkmOdAnSJR9dUNGgJvnjnFaiSZBPHUzeTslAqxEPzIrithPeLkk1BDEbJqkxIxMwPWzjmJsCy0oHN3wNuXe1zwJF6WUVjluFmUjuj6NgboT6LC/VY/FdlVm46uQlSXi+8fG04UXVQ6Ta//DoIFYC6+g+vRpU5X7XMn/toueRKU8JoEP3QAnGEthVCrEKRTGbqsXiTFXpN2t4XlbUfXmmZHwDkUqsGoKj/O4TjnX4Z0SKdFBKOKmihkxCaK2TRDOadHkjvMYE8L1zepc5/bWHg1QDe95oig1RHzGijfl0q61wspPeeTuESPRZvdDVtHmz8facAP8SjxjXQ1N4dVa49YO9zpyzbcMiu9wPazMtPprJnH+LrdKf/7qN5/vYr2XnseVlg8ORRm2VRi4p1URm+BHpJKR/xj30QagarL3CalLJVq/I/Av4KNoC0a0Lyq2cexP6p3Ruk1MLYffch/NMHhFZ/Sb5q4MvOOlutCAdETyHEfCnlhfUFOQQ4GNX0v7PCUqKRbjq5DsqM60QU9feaggg84WnB/sAwKeUGEso1IZ5GrWo/b2/u5JfApzR/FSzmHjas+Hml23KpVYNQK+sLwvFO86Htoc5S+E3UTwTUlkWN9Tt6PRnbGYe6oe4WKym/pbLOZUBtSzNLLcH3w7kRmBoV+R9Q5IvtUDMhc3Mi1BMhqi3TONcncOyPYq6tj5JfuSgRM5eUGMt9XWGZvzqwtwW3rnYd4D69rGINKRk3kwqjNOD+gfKgORe4+5eW1vxM+jNRzL0HnBFOVLVpVZ1WfbXBqOwlLooFLeDl1tGQZWjBrgjxHSrAPKnH4m02vmvS9uYow8DLKi3zMYBcatVhKI20vVqznGjjtXSRcHpBC++CEJ8AYzUhCkh5svAKl2h5eznIGwTc7urxSSA3DCJ3EHB+xIw2UfVIZZ2ndJl7TEBfPRa/sPEcLQebvsD0eNRoUiprQMMIwoQ5C89F9QibILN6FbHyTqB6p1tPGlmdLHluFbDqj14uaw1/BRvA+/jRSWR+PLu9/STg9N4Drb4Wfflb5Dr1w4t2QZSt+xOByIH1BbkOqsn8AvBohWXm/R/4cJTr48ESXi+K4POe0ExUgzAHvCOlfN2TDEnEzEd+x5cKQNp2xiLlPmEvN1e3EjdDY9nsBBQL67hwvFNjyt7RYAOQyjqvCdhOCCo7WtrL2I6GmlHqCWwWM42sfywB3AS8Ho8aaxAAmsPNpIQnGeYhbg4gXxeCB4DX9FjcS9tOf9Tqer/SAJ7M2GFUL+cfQFRKpkqlcvBmhWW2WFr7LeHW1Z4NlOllFRe1uk8m1Q1lNXEw8BZwkh6Lv/uLzpdOvkoxP00gNwwnqi5rd/9UjQB5IjBaCm0DTwR/8LTASolYiRA1wGuozKddQkNN2q5ECW2+CVxcaZleLrVqCuCE4506TFpw08m9PcSAohY6BCGmAxeXUpttp35DpLxHFN24VnBDhWAkpmmBhUKIGDA0YkYbA1sq65QDt0ZkzgOu02PxNxrP00Kw8Z8zD7g8HjVeau0aJ8xZKFDstf3beClzgb0njaz+nwwuzaG1v8v/NryvnhmK/dOpHdk313kACI3wyvep77ETXsWGBIo2/Ph+ea7ePhNF9R0TJfdglNwgN52cKmFZUWiP57Vg/5wWnpkP6As8LfAxQkyxTONkyzTOtEzjYU/SHzVr8LvCLylcEJDFh1CZV4Px1f2oqfTRpYHmF+AeqRrcLa78WkLMNDzgOFQ54Z8Nj/v9mvHAiFTW2bO157uZ1DpuJnUmcJsm6FtE7GkTMrIy9K4faMpRjdgxzTPFRMzMJWLmDUAfKbkOOF3ATE1wot+H+93g1tUKFHtsDaHKUuix+FI9Fj8ERWSwgLfdTOoWN5NKtPW8VvAeWtAGdswlVzaXBlLXlUlpbnr1rm6q5j/AckRgPwKh24UW2NS0ygbHotFRVtQ8FrgctVg6O207N6ZtZ1Ladkb57/caqLTMGlQZywKeq1G9zAnA4FxqVVs3ZXVd6WTCTScvKIpAvBgIj0WIa2OmcVGsWX/JNCJfIsSwYkCflwtbfQJeYbVWcHYW+foppYHGxy5I+QKqhNimhmAJJqN6LK3Cl6g5BmjLrXUEahH6p8CfPrPx3r93OvWrR7e2vVj02Prv19K1SxUPz34W/bvnyK27LYGQDqnv8ESYcPILgl7u8Vzfvf8hESdJIQ6QaHEpWAziLYm4HyHeaK3X4ts/V7U1fPhbIW07xwN7hIvuLGCG8Ao9Ub2Bi8PxTq+29Jy1zGzKgRUC/lkWbX8ivxSlytAx02iUpk9lnQhqlTgxHjXe8K8piLpx7Yli4D2gx+KNkve1aXt94DwhODGoiUeAqyzTaPX9rU3bJtBHwGohuAzVU1uOurHcmoj99uU0t652R6Af8J1eVtGhhYZvSXAKqplcB4zVY/Gn2nxS6fPTySOB3qKYqwc+DSeq5vrHDQBDkfJwZHEUkiVo2k0I7TE9Fs905Nhp24mhqLrbo9iRWRQ769XmWW5N2t4Npfw9LebZTwhVDTggHO/U4syNm04OB7bIa+GvEeJWYEzMNFolg6RtZ13gLZDXB5FXIuV3Wi77pkAWgXPD5V1+BEhlnTtCsvCfAN4oPRZvoq7QRmajofqMw9sbQp4wZ+FGqCC2hpuoj+XAhpNGVv+u/kz/DfhTBxu57N1ecskbX7TIOvMx5eGXeOeLpawmwRO3Xk4xsR7kMlCfIrz6cwIiQKFyY4qxrhDQi6iexUNCypsMq6zdH6nfOzggETN/d//ytO1EUEN/e4eL7jDhFRajekhHh+OdWh30W5tgA5DKOp8KSJVFjW3X5vp8Zei3URn3FrGSQctU1ikDZgRkcWqI4rZAJYpC+3QbTLKtAoKpQnBvWdS8rbXz1qbtMqBrRYk/SzJjbwycDxyKYmpdg5K/+c1uCm5d7TSUDcUCvaxirQQy3UyqF8rIbBeUsOnpHZnNcdPJamCiKOaOlXArQf0mYDRS7opXXA1yAXCx/uuyWwDSSppoCEoPrwI12DgHWGiZhqxJ23FUeXC9iOfeGKJ4DjA0HO/0syV5OmmgvqPv5wN6GWrwd5/SxUgL542g2G4zQnj9JAyUaI8hxAmi4F6vFZwdBMwuisAtuVDs6YjMvQ+8r8fiTUrYrQUbgFTWmQD0jkeNE9t7HybMWbg3inXZGiZNGll9TnvH+aPjT11Gk3U/DG4r0PywMslT8z/lyIP3BSBfsRFFKdDcNAGzksL6e+CutxsEdMLL3iKy/I0x0Zg1wIxZkzoSaHzsgtLWwq2rFW5dbdAvr/weOBZ4R89nP0B6w1FzEfu0FWh+IWZJtWJfK/jB5VjULEOjeKGbScUiMrd/WOaWe2jX5QjM0WPxE/RYfHZrgQYgFBCdhSBb8NYQBW1EreojVFU0MwJLxMzPEzHzSBQbbDaqZPRtMmNfmMzY8bV9bc3h1tV2Qq3810XdhNcKeiz+HbAbqt80GljoZlKtlhpLsBgYKIP6vxDazniFMyjmQhRzVwpZHKrHO534WwQaAMs0spZpPGeZxoWWaZx4+qmnvLH90O3uuGnatKfStjM5HBBbhwNiPDCpXtMvv+2e+83Dxxw3y7fVwE0ntwROB+6cfP1NGxx15BEPDhk8+AEr2rJLKDTOn90OfBHE+xg4VMCxpmlcCuwug/qBRT2elQhTSO95pOeg+qxrazc+AxicyjrtKT8zaWT1kygiSms4fcKchRuu5fn/cPhTZzbeRw9dQnblP1rbfsD5d3PukbuQtl0mzfqUGdMfRwQCiKKLVr8akcuAlwMtCFoIaVQsJhRbgqIrB4HQw49Or3j51dfK1uvdq3j2GadlNE0LooQigxJCj86Yad5xx53BeU/P9Wgqr59DaSr90r8UqrxUA9RKRCYfCD8mPO+QkOcegdAqhPT2a+470xLWNrOpyzo9pZoB6huPGos68pxSZGznauDkgFc4VMMb6j/8GPBmvQh3RzHHxpbOOjRH2nbWR8nUjMwX5dGoWZkmQ4S1absLoFdYZrs2zn6p8xzg7yhm2PXA1IZZqLWFW1d7IUoDb0+9rKJFc70OH6tplnPviH32mzbv+RfGA7OklLN8dYTdUEFpMFJWIb3T8ArVQmUeO4YTVb87GQJ+nkmpy9rPo6btt0fNlny8ZOmyne+YNnXvV16b//D8l19YACzVrcSsjO1s98knnzx56CEHP//N4sVfAJOklC0u5tK2MwHYL4A3QlPU/VkRM3pKw3bbqQ+jqMpji17xEVHMDQ95hc5CFjdpoEo3oJ3MJoDqyewajxoHNd/eHBPmLDRQ/Zterezy1KSR1Xu1d5w/Mv7cwebDByZjrzqrpW1zX1/I0/M/48azR/PSe19z9Yz3mDFjJkIWEYV6RH0twstDw1+xAGblf7z4+o+gptHzQOHcCy+ufvW116tDobA9d9bjD8Si0VzDdleEhodl/uk+G2929uLPP/mn/3gBFYz0Dv6FW3gsAsRRpaZKoEJCd6SMCqQA4SFEGlUvrqUkKJX8dw1q+O07hOYixOyOBhuAVNbJAPd1pMxQCjeTCkg4QKLdJoVYqcniwEgs3qR0lco22jYf21LASduOgSrXHGuZxrcAtWn7n8BzDTM4tWl7PaC+wuq4FQFAMmN3R2VdY1Gf1TTg2kTM7LDmlVtXawDX6GUVJ7p1teP1sopp7T6pvWMq2ZuxqHJf3aWXX3FLbW1t7Lprr+mJan4/B8yg4NYgtH8jvfOECna3ADeGE1Uf/Npr6AhKByCFEGGgWJe1JbA1sCdeceQ1kyf1O+2sCddt0Gf9C7/59ruNUezAQ2Km8aIQYhAwQEq5hopy2nZGoNiL24TwzkPpslVHzOgapU/bqd+i6Ml/axRTgYL7luble/jPfTxc3kVC28EGwM9q7gTOiEeNdkU2J8xZuB8qI2oNIyaNrP53e8f5oyLY/i7/wxBaq/7w8z/6hjmvfcLTb3xKfa5AnZPn6ONO4tY774JwAiKdCNgrCdjLCdq1BOzlCLfyjVCPLe8pPc6U66fNABBC7Nepa0+Joq4WV6ezg4GHI5b1w7Iff1ytl1WsdQbQUaRtxxSy+G2oUP8ZcCpC2wJkw026Aj8o3XzbHYMefmz6ga/M+88nKC+cHkAV0svfefd9fL1o0dcCfpp42aXPojKX74Dvq7r37l+XTg8DvgGuk1JKAe9KOCCVdcYnYubx/jmCUsoWM0k3kypDrRQ3E/BkQQT2R4hnPRE4HCXs2Ih41FiSyjqHA/enss5xzYUR8U3KGgKNj0uAW2rT9reoZu0Pv2RYMxEzfwBOSWbsiSgvnlP8/78FuLqDPjqHo4LlbwY9FpduJvUwavFx0Y47bP/PH39cvgTF8jtMFNyBqMxnoRSB99GCb4etRDGXXHkZcC0q6/ld4Q9AjgYMIcT7wAHAo5ZpLHHTyQWjDz709EKh8OW6XbrospAfte9++x0npRQIMbHPer0zP61cOQHl8nlt82Onbacald2NCOH1RrEY92op0ACYRuTdVNZ5KSi9rb2QsbuHcWLQrasGnsitXn5muLxLR224G+ZpWjQebIaZwPMoRYWWMHXCnIXzJo2sdlvZ/ofGnzuz+fzJg1j9TatzLYX4eshoV5776EemTbuRWdMfRtYugqINXpGi2YVitAsyGAGvgPAKH8tg5AFUD+aDRMz0/JXcNiil5QuAY3YcPnzOzNlz+yRi5lNCiJ1QMx4PSClv/z1ep51O3aXJ4t806fUPxzv95KaTp+hWoslgmxBiIGq4cZiUspHW6a/CN/t68TcPHDvuhCUDB/R3p0y+ahWqHNAT6DHvhReDz857PhsIBFb/8+IL3wyFQt8WRWCLvAgN1PBOCnu5RyLxyiBK/2lc6XndTKo3qu9goAYWGyf5mytDN39d/hDp/UBjwEnbzp7AnpZpjG++v9+fuQc4pMIyO9pTaxPJjN0ZpQQxHpWRPgxcn4iZLXrzuHW1GnC7XlYxxu/NnaiXVdz4S8/v059Hot6nDYC5M5988sXrbrhxQt8+fba74NyzU+v16P6UQD4AzAsnqqSbTt4CPKpbiRcBcsmV1wMPhRNVb/7S6/glaBiA9EkL+wMP6lZiUS61KuHUu+8kc7K8rLyiXsAcTVAvhAigeivPNpjOAaRtpxK1iLsghDcLpbTxXsSMHt7W+VMZ+z8R8j2LWvgYhLgHWKDlMtdpXuFiYIEMRkYjxJC2Mpt41PgqlXVmoZx529UDnDBnYTXwIWs60jbg3Ekjq69q7zh/RPypg43PRvscr7DGPEW+clPy3YcRqK/lpfnvMmXazTxx302EQgakFiMLLlo+g5ZcjIyUU7B6Fdx1tngdoW2NunGuQq1i5gHPJWKqLyCE6LI6nR0KPFFq3ft7IJdaJSRc6IngecVAaJtYNPoxgJtOnqxbiSZ9AiHE+aj5mH1RMwSfAa6UUpb2bIQQ50kprxRCGFJKx62rDaCa3D1PP/uc0Rv07WsdfcRhXiisDxOh8PqeCISLdp19xtnnpE8YN/bVfptttgD4BKEZwK4I8SNwe3OJE2hZGbr5Pr4N9wPAOE2QRA0N7tWcZl6rmE/dULO544DTKyzzN/vyJzN2BWoo9kSU3MtrKBmiWYmY+TO7qq52BBDWyyqecOtqy1E9mwfX5lxuJlUJ7I0KMD1QBIYZKEaVBMglV3aTcBJacE+E1h8h7gZO0WPxjJtOXgws0q3Eg/6+XYDbwomqUS2e8HeCL9s0FqWmMaNB3TxjO12R8p2Al//JlsHtEeJqVEZzQjggNkY19PMohtebKAHV+ZZpXFhvZy9BBf5GReeWkMo6BlI+HyH/gR6Ln2g79QZK7mg0Uo4Luqm4FOJ2pNxPL+/SYhBJZZ0+qGx+I5Q6wuB41Gg3K5kwZ+FUlDJES8iiqNBtqjv8EfGnZqOJrlt8R9hag6ufr6wm332Y2gfYYZt+PPLIQ7iRzvD9S2B1R0S7IOwaCp37ISPlhNPfPZmwYjuiylI7oRgxfVBN6m+TGfvLZMa+aXU6ewjwzf+HQBMC7vBEYOtCIDyjIdD4WOMmK6Wc6FsBvC+lfB9VdooAvPTKK6EJ513QXQhxIeAIIdbF/7HoZRXFSLyybyReOezm2+4wz5hw7rkV6/b46oX5C24qauEPPbTaTQds+eFXXy9a8ODDj1ogDkaIx5ByBtI7DK+4J17xcreu9nS3rnY3t662WwMbL6ZmM05GrdxblBKKR42lqLLUrVJyH3BGC4HRz01AAAAgAElEQVSmC1BeYZmfVljmZyjXyON+8ZvbAhIxszYRM69A3RQPRv22pgOLkxn7HN/UDVQfoWGmpguqb9Yu/MHVcW4m9RxqEdMT1Tvqp8fiF+ix+Ht6LC5zyZXxXHLlqcCuAv6BFhiIEMf71/SOm0n1A5bxs/4Z4UTVcuDTXHLlTr/uXeg43HRyV1RQuC9SVl6IlJVPFUKctnzlT52AZxHi6oCX/9SSzl6dyqLH7bjd4NQ1k696NVeU3XNFeQpKHbvHN99889HVkyZtVr3Jxuufc86EvVB09VPbCjQ+qjW8MMr+A9OIOKYROQM4DCFueGTuvMMumXh15m97j562+JP37sutXt5kTkYIMbqqInFg9cYbTo5Hjc9Qge8if1uVEGKqEKLFwc+pB24dXPDEXdkvXmuRABdFeRz9z+FPndmAryBQ+/XzDeKbUgTIr7sNhc6bAxBwU4jscrJlG6AVHZAS68tH8HruhNTLCHz3PEDOXX+P271w2XxgeqkRl7/i3QlV090FVaoqoOYrZqFWvkt/y9eUS60ygfslYmYuZF4NDLPMn/sabjo5XrcSbTalS22mm7PRhBBxINeaMKAQoktd1t4YuNeTzEXKmgj5DCr4Pg7MwysawMYomnPp33ooJt1C4BMJC4qB8KESbTOEaFSGbo66rHOuVLTpPeNRo5Ea6w93ZhtEUEse/wfwbIVlvsHvhGTG3goVLA8GCposPhOShc+MsvILANy62uHACr2souVBxkyqK4qePhqIoWr+M0qHVxuQS67UUTpjEeDecKIq3exY1aisry9S3gHkdStxesnzK1HeKnuEE1W/203BTSe7oCwkXtKtxOsAQllx7GRZVv77H5buGQwG58ZM45JcalUV8Mp6m2x+z7Ifl7+USJTv+PX3P6yHotWfHw6IzYFjd9tl52tXr1596mOPPda9T58+tR7sYZlmmz2XVMYeE6J4aQBvQz0Wb7I4sZ36KHCVVsyNHb7r7o8ec+iBTx19+CHjgMvC5V1e8K+5HDinZ89e5nfffXtKKuuEgfmoku57bXk5CSEm9Nl6+DYbbbfbftXDR7Z2idWTRlZ3yFTuj4I/fbCBNbXRCuUbkOu5E+ElL+N13hxtxXtk1x1KMLWYfMXGhGs+xfjxdbzO/fEqNkJkfpgZ7rn1fmnb6YWqPaeBhy3TaNIXSGbsfVDlqV1R5aodULXbBajAMzMRM9e4kawNfL/3h4Cr3VB0e6CXZRpHN2z3DdpOai/YlGJtqc8AadvZACkXarJwX4HgATr5IZFYfA2PkTXOVVcbBTZBBZ7+wNZSKRFHQPwokHehSidv6WUVP/nn2hiY7EmOR5XUji968kv/GN81CKGWwndJvQ24cG0ZaWuLZMbuAowLefkJeRE0EeIF4PqIVx8V8IxeVtFIn3YzqZ6o79BoFIFnBirAtEggySVXav7+vYAH/CylRbiZlImS7RmLlD8gxOalg6C55Mp/AO82qAr8lnDTSQ2VgUaBO3Ur0cQzKGM75n333vs2gs+umTz50MWLFxellMX35r9y3BWTrjnziSdnP4rv+vria/P79e/f/5aAYNOiZO/ymPns/ffe+69oNHrq7nvuuYuHGIbKMD8BHrNMYw05oFTGfiBMoZsRKxve2jXffOMNP6IFg0cdfcz099+af+WATTe4IBQKucB54fIuNsD66/e5evHiRWcJIUx/EPg2YEgiZnbFDzZCiCDqXtu4CJ0wZ2HgmesvWrbriRdXBYKhlk5/56SR1ceuzXv8346/gg2+vcCieQ81qD67vXahGOuGsfA+ChvuS+Cb53B77kxeSkLOKuorNsZaPJug8xPFdQa84nUesBFCu06PlV0JjQ3Lg1GB5DHLNJYnM3ZXoGciZjY2Yf3SyghUaWV3VK/nc9QKdhbwdiLW8b5CLrWqK6phfo4bimZR2dOAUoMsN51MACN0K9GusGXjc9Yy2LiZ1LoSzvLQzgD65UXwVuCyeNR4uqPnbHK8utpQQQtdIuB8zSs8L5C9ULLriyQsyAf0QQGvcEZAFufVB4xOUsqHJVwtJU9XWD/3S5rDN7ObChxbYZm51vb7LeDW1faUMLZei3yOKkFuFZSFmgKBK8Oi+HIAuRMqiymgAswT/uBmq/DLXtsAT4QTVV90+FrSybHAzQixBDhYj8Xf8o9XhnKO3S2cqPrNyrxuOrk5anH1oG4l1giaifLyXY488qhpX375hXzt1VeHZrPZY4BHpZRLfIHYObPmzJ110BHHxIAbNq2ufuTNBW8PLXjy7BdeeOHsef95JljMuRsOH77j1YccelijinnadjZHlV+rUFnHLMtUJod1meyiMIXLIrH4PS1dsxDigO2GbHvHosXfTJ45a9amT/37qd369O0z7pCRu9nAhCE7/+2Td9//cGmPHj27L1ny/amo2Z8zU1nn8pqaGvr06uGhguPFwGbAN1LKN/1jHwn0qOi+/sZjbprdGokhB/SaNLK6Q2XWPwL+CjY+GvxspFNzqrPJYeFA3Xfo379AfsP9CH41m3zPncnGelL2xUNk++6Dh0Z82UvXar2GnpOTeg/gBYR4B6EdpEctDxrnPQ4EOhc9aSdi5k2tnT+ZsaOowbt9UT2KBKpxOgt1A3i5NddOgFxq1QaoVdU4NxT9GhVoHrBMo4lMi5tObgx0163EvI6+Nx0NNm4m1dDLkcANOS38GbCDJ+mHsnreu6PnbI7mytChgmMAW+e18AWaLMYCstgb0CV85CEW5TV9M00WT7csq83XWZu2+wOHVVjmhLb2+7Vw62onAtfrZRXLkxlbBCkeqMniNUKIbhIhPcRHHmKqh/ZgIta22nQuubIf6jvyQjhRtdZlQD/L+BIhVqNcXs8HrtFjcS+XXHk28F04UfWr5ZNKCAA/AE+0ZG+eUcaADwMecGjMNIqlJVyAXGpVD5Tv0LZfLv1pQ6usbE5FRcW+lmnMr8tkRVDwjoSN6z3uAnFZg0lbA3xVgW1Rvy1DSjkHKZ/QKXRuXkJrcv0lczZz5s49eOedd5kEzNBy2as1Lz8RWFofij2w2abVi5Ys+d6UUq5OZR0dZQ9ydDxqfARNS9LNMWHOwn+j9P1awsRJI6svKNk3COw8aWT12qod/Ffgr2DTDPUrvjy+YPW4Obzk5Xyw9vNQQ7Aprrs16fJqzGWv5EXQeNNeZ6uhEvFkpWXuC+CmkxHgaRBVCLYpFS9MZuzeQrC/ptLpVy3TmN/WNSQzdgg1Wb0vKuvphgo8DwD3J2Jmk3KU70FzNXBEON5padp2xgJHAjtYSlG5Eb6g4U+6lfiko+9Je8GmeZDRY/FlAGnb+RQ4y5O8iJrJGRSPrklh7igytrMh8BFwY8w0zkzbzo7AEZZpjHHrarU8gd0DeBtqyE0lDM1r4U0DXuGHAN4c1FDji3pZxRr6YbVp+xAgXGGZ9/7Sa2sLbl1tFTABLXAPqjy2D/ATnvdTXgteUSCwG2rGaHPgJ9TnfE8iZjZxscwlV8ZRfamvgdm/prfippOfA/0Q4l8oSZingaNEwc2ipO93CyeqfrGXkptO7o4qg96uW4kWTd/8BcQdwDrAvrESOnNz5FKrjpewQy4UHQacYJnGHIB6O3sYcLeUbGl7YkvU7NOjwLWVLZRP07ajC1m8yUPbVwgxEbjHMo0W5XmaD3XaTn0ClQlvCxwdrE92k3CSJ4ITjUSnUh+mrVCzYTvEo0ars3wAE+YsHI4SIW0Jq1GLKwv1uY8D3Ekjq/u0dcz/Vvyp2WgtoWD1iAPIztU7Ur7eQTIU+5Fo1RQRCM0NyPyPTtehcyN9d9xeIB4AdqlJ28cA6FaiXrcSw4HZSPmNm06VaoMNiEfNa1DDhoG07ZzjS7G3+P4nYmY+ETOfT8TM8agv2zAUa2bcZ599+sm551+wZPC227523gUXbpxLrRoOTERZAyzt3bv32aP32/cG4LjmgUYIsfmo/UYfV7lu93OFEO1qOrUHN5Na182k/oUabLxej8XPawg0PpYB3eJRw8Hvpfya88VM40vgUuC0tO1sj2LMnVabtiNZEanOidCLRln5dXpZxbhIWUW1Jr3ueS20rCACvVDaVKvcuto33Lraf7p1tcPcutoQQIVlPgxsXpu2N/o119ccbiYl3ExqIPAEQhuB+vy/B3bRY/FdQc6PxayFiZg5BXVjHoRa5R8JfJjM2O8lM/YpyXS2Uy658gDgaOCWcKLqyd+giZ8ETD0WPwOVJW0DfCCD+taoMl6bMyqtwU0n13XTyQuAtG4lJrURaARK9Xl9YHRbgQbADZqzpND2DhRzD5UEms4oevlEIxr9qNIy70L192xgQU3aPrkmbTdx3bVMwxVSDkTKm1FB9cy07dyQtp1hfgbUKkwjkjSNyNHA2cD0QiSxFSJwlCYLp+dWL78gt3p5ECAeNd4G7gVu9z2Z2sJLKCvullCOYk5+j7Le6IZS+fhD4q/MphkytjMH6B8zjZ4A9Y7zLjBM5J2eeQLTXBHqB6wTEFRKyeeeSv+HV1o/ZxtuJjUKKe8BJjgi/AJgNbcdTtvOpsBeKOrrdMs06tu7Nt9fZcSN0244b/5rrw289ZabZKUVXZnTwhOk0KYnYmZ92nYe3XfvUb3mPffc4JaO4aaT46Plnexisfi1lPKVjrwnzTMbP5M5BcUMv75ZgCl9jfcBiyzTuDSVdXqjBu/6xKPGLx6obFCGluqH9/d8US4A4hVWy+KMPkvoTuDlSNF5FkXOaGAG6qgf+3Me4lWH8BkIMebX9G982ZitUBnMXki5BOkV0AKHN1dlbk2qxjd02ws4Wkhvr4As4InAi54I3AA83V6ZrUPXmU4+AVyoW4lP/evujiKWDEXKyynmhgnYPZyoWuO9EEJUo3qMGwAXSSlX+SWzY1C9hnt0K9HmNWZs51KURcQuMb+P0hrStmMBLwmv+FK4WL8bMDgc75Stt7MPosqAgyJmtMl8S03aTqC07EagJvwfqbRMz82kehfQXiyI4EnxqPGUf3wD1dsZBnwM3G+Zxuq25Gpsp74SZc3Rv+h5F+i5ujhKIfyUcHmXL/wgcw/wUYOFdGuYMGfhwahFRkfw7KSR1Wu4uv4R8FdmUwI/rd8ONZDXHF9oeC7QGVgvETNXCcHJmlp9zKhJ21bDjnosPlsNd4p/6DJ/tyFza1AYLdP41DKNyaiZiXFp2zmxNdOpBiRiZn0iZj5+wbnnbLHlgM3vWPzF5wtX1xeXeoj7gOXJjP2MlHLwKy+/3Ci/LoQwS49x9ZTrNi4Wi2UdDTSl8DOZK1Elsxv0WPzc1gKNj6X48xzxqPGt/1r/vrbnLUXMNPJSyZVUIuVwgNYCjX/eHMqbZrP6gHFEfcC4Sy+rOBjVNN4B9VmP0pBvmLi7RaS7wK2rPdQvfXUIbialuZnUdm4mNQU1hDoBJQI5GOl9ABzXEfl/IUS1EOKMcit63bFHHPKuWci8qBedEwoidLYnAuvcc9ddTx40ev9MMmPfnszYByQz9japrLNzKuvsdtnEK09Yf/0+zw/faadb5y94+4BU1hmRyjojU1lnVCrr7J3KOvvsvscedwwYOGhOKuvsXyBg5ETwkFTWOWjm7Lkn7bHP/pMGDd4uM2P23Gc9oV0ktWAXD+2iVNbpnMo6RukKXUq5EFgBdOnWtWvBTScPQg20PqJbids7EGgOBA4B9uhAoAmjepbzpRY4C5Ux/LPezu7pH+PY5oEGoNIyk5WWeR7wN2BH4K2atP03KRnjoX3iXz8Almk4lmncZ5nGWNTi4/y07Uz1EK2yc0wjUmMakUOBizUhbi1EEn2l0E4EJudWLz/FyKVAZfIHpLLOLm29RtQ4QEfLy39lNv8LyCj2ykfAiTHTuBl+zmwihmHX19XekEUfjxAHVlrmdN+LZo4nqZZq1X5IZclUel0mOzAkC/dryDwwSrcSrUrJp22nDMVgiwFPNNP1aoQQ4m97j9hrrFPvbPz2O+/tsjqZPPWV1994ZPN+/Q4DTv/3nDmBqVOucYZsN3T64UceecbWgwaeL6U803/ukO7duj3ww9Kl1wPPSyk/bukczeFmUhuhAsUDtJHJtPCaTgZ2t0xjBEAq6wxEMe02iEeNDq/OhRAboprYs+qy9r+llM8KdbPYVwjRP2Ya7dLF/ZvlOajgd3o8ajQhW/iyPMOKaOdoeL2EKu986F/vE8BCvayi8bP1zcaGoTKYXVHB5XHgGT0Wz/rH7I6Soznfv4YAqj/RFSm7h2R+VF4Lv4uqyZcBZVOuubrfyy8+X33/PXcnrcqqJEIzAU2qH2r4zNNPW+eaKVNDKGmcLLAI+OrVV16uv/GGG6oty3L/NXny2506dc6hemgS8CZeftkmg7cdsvzmG6cNmP7EzOc0WRwCIuUJ7UN/H3H/vfdutHTpD53OO+/8gJDe0FCxXrgB40M0TUPN75SWhNyZM2bE11+vt9Z/4KAvEGKFfz1plPPoctRn1PDvT/GoUcyojP5FVEbT5vfPLzM/gGJ1HmqZRjGXWhWUMF8G9B5o2vRSRee2UJO2NwY50aSwuytCrwDHJWJmW7/HWMArLCyKwPMIsQB40DKNFnXW6rLO1kFNnAP0Qcqjg25qB2AoMM4Jx6MoiZ09/QVXIybMWaijGIgn+vt3BNdPGlndIWfh/zb8FWxKkLGdE1DKr/0afgilwcatq92hntDMggjcVmmZ5wIkM3ZPKVnowRfA3ZWW2ahzlczY+xii+G+kfADpDQRO161Em6qu/kpub9ScwBfAU6VWxrnUqrGouvSJ4Xgnr4HpkradKVLKmCd5GNVI3M913XxNTc30rl27TknEzA+gYwOdDXAzKQNVLusJbKXH4lt35Hklr2V/4ALLNAY1PJbKOs8C98ajxlpJtDSoBacy2S0l1AWEmIYqeSwDdog160+1hlTWOQZVQvt7S9IitWlbA24Py/w1IYpbom4Gu6Pq5rMQ4jsQ/RFiOGre53EJz7oiHEMFssY/TRZHe2jLEaISFUyKqBvvMiG9tCaLsaIWWoBy3KwLePlosJjb7qzzL6pZtuKnF3fdffcPDcOoOfqIwxtfmxBi6up0dgKwYzKZPDCRSIxEZWkrgVlTr73mo6uunJirr6+/m5LZDiHETSjjvH2B0d98+dm+63bpUqFbiX/52wf62y6RUnpuJrUZXnEeyDK04Cg9Fm9k9e20447HrLtul4Pf/+BD78BDDr3w9DPPslHzM1H/dVahgmqXkn87ASENekr4UsIHNA1Gpf/WaAKJymD7obTuGj+r+kxqhvCKe8igvk5rQpstwc2kRnqSv7sitEVRkkKpfNxb2Yoga0MZLaeFq1ElMolieDbRvUtlnb4hTSxCLRanADcG6lPPCeSVwHlOOB5BOb7uEI8a9oQ5C6OoxdOx/nu1Njh50sjqX60S/n+Bv4JNCTK2czfq5lLecPNqFmyCebSvXBH+utIyG1Vekxn7JCmZ5MG3wDGVlrkgmbE3AWQiZn7uZtMCKS9GevujdJwuaK/UAI3DinugdKBm6vnsHqh+wAnheCevZL8tURIom1mmsdq/pq4o2uk4lHbZfGBaROaqIlbiurbO62ZSGuqHsxPKt+UH1nKo07+uwajZhi4AQohhg7fd9siqqqr9n5/3fN9MJt2kJCCEGI3KKHQp5WWl2wKBwI7bDhlyeG1t7f5vvf1OhWUaMmM7O6O05060ouYglOrAZ1LKNqmhqawzAiVXc3g8umYZpzZtr4MySzsuKvJhKeVICWdKSX8ptLBE5DyhLZUIBwgjBChLhmUNf0J69QFZ2LKgha/wH0vHoz9ru7l1tVsCQb2s4s1ccmUE+PvFl03sPXnqDTWe562PEmc9Dbi0QalBCLEPijl2EyqLmuQHniHPPP30uI8+/GCvFStWJE448aT000/9+8NCoTD39DPPuqHU0loIMVVKeVr1ppvOfO+t+Ut0K3GKEKIPSlrnPuBtKeXrAG462Yli/ksCoTKEOAMp70f1ZZYBj+lWosOzOD4hYLqUrPSUHEvzYFT6byeUSriJ+l5/hsrgvg7hlWuCZ0TeeV/AyeF4pzaZnaVwM6nZwOX1InxxwZNjUDf7w1GZ1o2lfVd//yY9m7TtxIHDgIH+c6ZbppFPZZ2+DVYXtlO/LmoEYV1RzI8P5LOnAW87oTIHIfYE9rvihcV5lLLEFNa+lfG3v6jP/wPI2M58IBAzjW0aHisNNgDZuuRb9YT6IkSnhpJZMmNrwKtSgqd8ZHYICIYlYmYTK1g3mz4K6R2NlPXAcW2V1UqRth0jWKifKpD984HIJQjxbAPTLK3mFN4G/mWZxqPNn+vTqPdB6VBtH5TFdEEErgNu9eXym8DNpIaifoSPoSyXZUfnbFq47p6oAKw3SPikso646ILzl27er995Y/9+TBOqcYMECFAvpbyk4fFjjxu3yexZM6/s1LnzsOU/Lp9XW1vTaFbVoAzdZ/317lq5YkUN8K6U8qn2ri2VdYagmG2Hx6PGCv+xSmAjpNwc5JHAJgIRlYrd9CUqk/kqIIuVmiwO0vC2B1zxc6ntJb2sIg/g1tVeC0zUyypaptUqQc6PhVfogq+lF05UNdm3rfkMIYQOmFLKRraXX9YdBOy3dOnSA7t169YXZfT2tH99cxMxtYq/89abdzz80EPG61aiTWsBN7lyFxDXEgxvjpTzgb10K9Fu/6k5MrZzJkrpYMf2mGdp2xkvJadK9b0tQw3w9gW5gYB9JOSR/KDJYidPBG5DiK9RdPBFwIrSoN74OhQB4klgy3oRnhOPqtJuTdoOoioJJ6HKhNOAJysts9AaQcBnre2MmqFb6ElebJipAbCdeoFiFE5CymsDbsoRsH19KPa5FIGNgYPjUaMwYc7Cv6Fo2k1019pBn0kjqztqf/Bfhb+CTQkytrMKeDpmGkc0PNY82GTqUlcV0CYURWC9Ssv8tmE/P5P5wJPcKaFag2PLLbO5zwpuNj0GKXdCel2Aa3Qr0e6NMZdadQzKUXGcG4puhioDOSiK6pHAcGCE1YIqcimS6eyAIMXrCyI4CFWDfxL143rJIL8+cCaqNHVHqd3yrwg2YZRraE/LNJYACCEOPfyII7eddvMtmyZi5h5AUUrZpH/SoCzduarK/GLRtz2B1LgxR18VDAbjjzz8cAI1lf0GUExn7TiqKf82MMqKmtOklCe1dk0+O60PSql3GKo8sgwpywBPQ4YFMiaQC3JS8yRcUmFFW6Sm+tTpHVHZ8L4oL5nZwOtAT72s4qLWrsNN1RyPLEYFfB5OVP0uhln+d3I//28QKkN+A5inSe+tMIVLIlZiSKvXqKSNRlDMX4jQFhAIjgPeAfZrSaW7NWRsZwcU022blqwiSpG2nZNQ2dvwhu9MA0oVnV2p5cNFZ2ZRhF4vakEbFZD6oLIjG2V/3RCEFuoyt4eAFXosPi2VdeY2BJtS1KTtalTQGQ48GCV/oFAzcy1qAPrXO0BKTheCb4GbLdNofF9sp747ao4o7g+Cjs8FjO+LgbBADX16E+Ys3ATV0+nR1vviIw+Yk0ZW/+L5p/9L/BVsfGSUxMwq4OKYaTSWcJoHm2Rdul8A78OcCO1ZaZlN5FeSGfsi4LSi5H3ghUrLnNjSudxs+mSk7Iv0wqim6oW6lWiR+pxLrToKNeA5tlnpLIZqLF6MEjZ8rL1g46aTXYFtN9isvxaJRC5e8O77IZAbhfB+FMjXBPI400qcgJLN+UlKeQP88mDjX+cKYJRlGm8JIQ4AxgSDwWfffu+D044+8vAnPvzgg2uklA2B6GxUM9hc8P6H1+83asTVHy78/NhQQFSiGsV7lEXNq6WUpwkhzsKXNMnYzgG33HzzY3Nmz57+yisvvyulvAoglXXKUf2tLf2/TVFU9UXAF0j5XYBiHw/tiABFO4icgSpPvanH4l5t2o6g6vpjKyyzTWq6b7UwBHVjH4NaJc9C0V9f1MsqGj+7XHLlICm0S4X0jmmezfxe8G2t90aRGXZEyqhO3nNFeDZq4PU54OsGeSQ3nRyEmmyfK4q5b4GZMhC+FCEanGj30WPxdt0pM7bTDaX9d3jMNF5sa9+06pmehQo035duq7ez1SifmmMiZlRZI6RWbYb6fIaU2punso6JKsf2BTZAys0EHCjhW4T4DEXZPhdFAFnaPBOqUXYUR5nkr7IJzgJxHfBWZSuWFKmss74ATwiOQy3ibrN80oqf5RwLXI5XnBrIpfsXtXDXfCDyGUIcH48acsKchX2Al1F0/rbwxaSR1Ru3s89/Lf4KNj4yqr/wBnBQzDQapTqaB5uatP3/2DvvMCmqrP9/bnVP13R193QzM5IkiATBiCCoiDkhihHTYkQxYEBxzWvOYsIE5ohhMWBYzGJYRTEnYM1ZHCZUdVVXdfVM1/39cauxJ4K677u++/P7PP0MVOrqCvfcc873fE9Ml82+T/SImqpEq2ZnYX3EJ1Lyr0C1GrioJmV0OGv1c/YpQIqg+B5qtnaSnsq0SjwWrPoDUbOsKbF0bavZv+16CVRY52qUN7IlKtH8UEpJ87f/Ttsccf5FF69/8WUz7EgksqVjNnwmYYcC0e4SMRoVG790x+22mb/ozTfPlFKeCL/b2HwCnJIy4q2ug5Xzjv3qyy+3H77eOq0kbBptVwBD3n5rkb/jtltbUsqmsF7nmpQRf7e0XXmIyXE9ISVPAJsFqsJ7bVQ1fg5VMPd2+FlcKQsJfmk2NhB4MkD8o0D0aIR4JZ2Iz2pzPusBe1anjPNW5ff62cb1UYP0C6h8wKTwPO5CynuFLG4P/Ci16Or/jnbQvwXhc7pxpSw8khexz1EtmTXgW00Gb0UpFgQ8riEfLEnMFMy63YBNZFS/ERU2XAc4TE+m7+vsexzl2S4A5iUVzb9T2K53BMoAbJ0y4q004fJuLoLyFhtR3TdXDFoFq/5eYG4sXfsYncB3rB2Bv+RF7AhU+Gs66p0ZDvRBkT/eDz8fAEvSiSDRNxkAACAASURBVHhz3rbedYmeJRFHoDym2ah6nVaejpXzkkAqnYj/FJYvHIFSL78nZcRfA3C9/BrA7UgZjRTsFwPEQc1R4xkptKmhwRmEMji96QQ93OVfHPH5I/eKqm5Lomut/0blDnt1qZ33R8OfdTa/oFQ93mnNBkBNyigECDtCMLztukzSKAA3CcF4TclVXN5gu+t2dBw9kbocKKKpGC5wum+bZ/m2GQUoWPUHoF6MjgyNQD34b6SM+O0pI/5Wyohfgcqz7GG73sm2623WQUV0z/sf/Pu622+37bi1hgze5/wLLsoaqczemVRyE5T39HVTY+Nda6+z7peL3nnvR9Nx411esVVDkY6fszsGrLnmJlbOG1Ra0KgK8dYBvtphm62+Dg3NWMAqNzRWzkuZjjvEynnTrZw3pyj5KFAsp4RQzLHLgQ3TifiodCJ+VKUszKuUhZGVsvAY6oUeQiiQqCfTp8aTVa8gxCSgu5XzbrRy3goZ3uqU8RFQbLTddve7LcI+PNOAmXpV9Vt6VfU0oPcDcx+6fOL+Bxzx2JNPLpEiMklq0TSKuvwfQSZpFDJJ41UB9ZmksSlQE5HF4ytky48CuUmB6P6+qLjfE7F3TMe9zHTcHdxo8iWgn2jxV0OFHx8B5viOdXFYyNoRZqDYZVd0dT626x0OnA5s09bQhDgGJWZ5dLmhCXEucE7Bqu9qLJsC3BKyDxuBl9OJ+InpRHxr1LNwKOq5GIAiZnxg5bx3mkW0f0SIYVFNXC3UMdYC3m+w3RkNtjuiQU2MCIuUEwApI96UMuKXoZ6Dobbr3Wq73h5F5b1vhxAPFvWqo2UkNjfWktsjUizca+U87fIJ63yOmlh2qkDe/6fFA4vffHZOy0eLHsg/fu/S7NlT5uZun7GqlOn/OP70bEI4rncB8DcgmTR+0TNq69kANGadD2IUC8mq9KjyY5iO2ws1U5oE7FWU7I8yCtu0FQcE8HO2QDFzfiQozkT1IzmAoPi0QG4ATG5raGBFuOFwYLOOlAfKhAc3QYU8nksZ8SW+bf4VGIkQj1WmMpuE4ahLKWM8JZPJj/f7y6RgzJjN1t1z4sTlwFVRig9UENz3Gz2bD4CzU0a83czTynlnAEPTifhBjbY7GMhXp36pfbBdT5OSZ6QarNZChcKGowzYe/zisXyYTsTzjusdibreO1YEhQ8Iab4oZtM8VIhscambZUewct5E1OBzcDqhNLMabVdHhWsmd6Ui7WcbdwMq9arqFUSNglkXAQ6/6PIrV39o3uNfvvvGa7Xh8Qeh+sfcCbxaXsPzvwXfNpegrs8EVN7rCT2Vkabj9kPlBUtKC7WAFDL4VC/mU/lI/EIEr1XSsotQ3S3vBg4vz/M5rrc/auAe3VXhpu16k1GGf+uUEf+q7fq8m+uPYhmeXmkkrmu7HqBg1d8MvBRL17bzsnzH6oES8RyuJ9PSynm7Aj3TidYCtW1h5byqCtn8VjPR2SjFhA1QhIx3JfiBZA1U2Otp4NGIYFkm2b64OKwV2hnYFfWs3h0RYnXgDhkUA63Z7SdFpKklom9alUz4587/ZO2WQmFRIRJLtD3WuA8fZsQ3bXRXK2KFSL9BM+P7HXVGtP/gP3Qu509jE8JxvVnAgUkjnixf3pGxabDdR3VZ2ChZlWmV1DMddwJKbymB6qXxj6LkeVTCc/ualNGuriM0ONcCH+uJ1E2+1TAJoV0OXIkQ17Sll9quNxqVhN60o5ezLWzXqxAy2DUii8cgZUIKcYKRrFrxxHbGeDIddwiqEv4gkF6EIFskMiKTNFbWAbHt978HnJ8y4o+2XWflvKSU8nMJU6TkueqUkbdyXhSVZ9kaZbS7o+jNb6Be1g/SidadOEvIO1afFlGxAOgTlc2LxS+9YFZZfj88r+Go8ORx6UT8Y4BG290EGFudMq4IKchbo1oCz5RSSj/bqKMM3eSS4SiYdUNQVe636d16DAIyUsp5oQd0KaqYc38UbfpO4G69qrpVruJ/Cr5troMKcR1OaGTK1wshNgfGCCHWvu+Bv988bvz4YcDG0aB5HMjVjzn+RDF4yJDCmgP6L9tzws59gPebieyTSia/cFxvXVQYcZukEe+0h5HteoeiPJOtU0a8HcMq7+YEikmXBsZWGokOVc9DVej5wIhYurZVSYHvWKcALXoyfRWAlfOmAHXpRPvJT7tr1IaNZuW8OGrCMxbYTEo5FGiUEJWSnlKd68PACx2962EpwEGoUoJbIkIcIIPgNFH0fxJBsVeANjq49qwZP5vO3nM2PYpcZWuS2v4LZzOg/vMOzzXSd+Dc+EHT/vJHNjh/htF+QQYlTrgq+E4iKv1sY4/SgpD+LDNJQ2aShoOqbzk6IliOehFuLrnd5dATKYlyuTfybfMcgZyELA5GCB943LfNNUrb2q5XiwqVHbYqhsZ3LBELCrtWyJbxGvJwgZwZiMj6tutNt13vENv1qjuj1maSxqeZpHE4Kq9xXxGtN/CN6biXmI6bWcXrBCoh3+53N9purBjI/sD1mhAnRDRxnJXz5qNm2CcAOQGOgD7pRHxSOhG/Lp2IL2xraHzH6u871nTfsV4TMDciWx4BtBYt9rKeTF/8aw0NQDoRfx/YF5hh5bzdAKpTxhtATeiB5VCMpwS/vEPHAjfoVdWyYNZpBbPuMJS45fl6tx4thB6EEKJ/aIy+1auqp6JqoM5EySR94Wcbnwvlcv4dIcx28G1zHd82T0Pd10Y9lXm8I+l/KeWrUsrLpJSf77/v3j9lksatmaQxJRb4/SqCwj+++frLx99+662XLTv3Y4FIFhgRJfjcdHLfSylfD6R8piWQ3UzHTXd0HrbrHYyinm/TkaEJMQlFCz+8M0MDEEvXfoeakBzc6req8N6BKM+rhNVQytq/GulE3Esn4q+mE/FL0on4LkKIIUKIQzUhbtIEb0UE20UEt2mCHxtt9+UG2z20XMYqZcTfSBnxqaiaplOLUq4mhdiLinheRmJZrVj4LKio2LvWqeMvC2/C8FtLCPa0Om/oW/zui729+2d1SEj6o+BPzyaE43pPAX2TRrxVjqUTz+Y0TQZnGhSm6VXVtwOYjrs58HEmaZTXPdwNjJKSDQO4CVhckzI67C/uW/VDQSwgEj1NT6bvAvBtczBK7G9us1ZxpxTafGBRyoh3SqldcTzH6o8KC74APKgn09K3zT2BN/RU5sewwduuKG2374B/pIyOPQbfsaolPJWn4iWUooCHEje8PpM0OqWFAtiu9xZwWcqIPwRg5TwtkHKcUIPrekKItVFJ0ZmoQWFpOhGXtutdBLyWMuLtqOG+Yw1C1WzsiaKDPoRqNvYtgON6p6OKMjdNGvFFK7tWnSHsTXIdqj3CxcVAJsL/H1adMgIhxJ6AmbcaPgFO16uqTyiYdauhcgx3xzLdO62H8LONx+hV1Te0WbY6auZ7CMqjuxW4Xq+q/t2J4NCTaRUu821zqZ7KdMpuEkL8BTVGzBFCxAhp6gWzrj/Ki9tZ79bjuiY7d2yMlgkCeU8govEioimQpFFCp6A08j4pfTRBX+AwIcQ25e3KyxEqOi8Brq80Eueu7PeFLaRfQnk3eQDfsbYGjtST6f1K21k572zgqVCZuUt0JcTZFqXCTivn9ZZSbo56PjcHukmljPAsMFsT4t0S+81WTL3jAITZ0Evo+kGabKH5iTkEC1/g+279mbPp0RQjUWrtZRzxUpepL6iIFSpGjt02MfnkjrQd/+P407P5Bb/Gs/ECRAWqmn/F/uWGJsSJQI0QnIliqOzcYLu7tz1YwarvJWAWyE0Q2ng/Z08A0FOZz1Dx3tUiQcvHSKmjwg6dwnesqO9Y01EP8cl6Mv1AmxyFAEgZ8YaUEb8jZcSvQum6HRx6PDuGhaKtIKAlkzROReUaHkIZm09Nxz3MdNx225cgJYGU9Ldy3vGm4z4ppfxKwFFCiJ+FEGeiErTTgOHpRHxJaGjWQBEFVlDLfcca5jvW33zHegeVP3GAPfRkeqyeTF9TMjQhriCsFwoZUb8JYUL5SJTe1z0RTQTAfdfPvOZyIcSpqGZ3H6DCjZcVzLqxKGNxcVeGpjPoVdU/6FXVlwBDUfmmQcBnfrbxYT/buEUYfvtVaOPJXNaZJ9MWIU39IGA1IUR/1CSjN0As0/2bQ46cau+x3wGPA99mkoY0klWPF0XFbCCIyWZZSfPmqJDTwajcVDOwh1AG9JxA0qcYyBdMx33adNwrTcedbDruxqazwhO4BjVIX7IqvzOWrq1DseSOLFt8FOpZKYfkf3DcSyfiP2aSxoOZpLFPJmn0QnlSFwGDBCyQUubC1hGnBhI9ZcRPA64Nvvt84+IHb9DiuFTsdhDRScfQp+kbxn84F4DVG1dhvtFciBW//vQPq5v2p2cTwnG9JcAXSaN1sVe5ZyOE2Bk4sj6bewq4ISHzFwmY5WmVwfgddzh+4euvrS2lbGVMTMfdHzVjH1GU/IxqlHRgTcp4D6Bg1adRcd5jY+napX7O1oEHgOv0ROpFANv1dhYyuCUaNH8m4AY9lemwi6LvWKNR4ZzZejLdTsbDt809gLf0VKbTwjpbxdu3AaIoiZs3Y0GhG22oz6bjroXyHiYCS++5+67Z0449JiKlHDz5sMMvv2rmtaNQntNeIBefcdppdY8+8nDVkk8/3zydaK1jVlNbu9HYzTd/se7nn+98Y+HCs7I5dxZSXhiTzRF+aTb2M8rIzdOT6XZki7ZwlITPm8A5SSN+4cq2XxmsnLc9yqgcVgzkdOCK6pTxvZ9tHI6U44QsmsD3sUz3J1fleB15Np1sNwB1Tw9DFSpeCzygV1V3WvcjhFhnxPDhhxkJY8zF55973ehRo+4rNzBCiErgtjtvu2WLgycf3rfNvpuj6oXWBk6UUjaGy3tKKZcJIW4BPolGo0tzy3+YBhwVy3T/xnG9bYC7NVkcH5HFO1GGcg89mX6hdGzb9Y6UUp4VqgOkwu9YJ/z0L22nIZdXCFZrlswPEG+jqMnfhH+/zSQ7rnkqWPXdUOULI2WkYg2UYRtTPtmyct6ZwAvpRPyNjo5Rjt/i2axsuwbbHSJgqhDsLlR5RIFi8WP5yK1jxJeLK8TorRGD1iHauy/CXM6UiXvx2o8mkaCFeMGlzvMpBJKvDtq24y+IVeYrdz1g6B+RFv2nsQnhuN5PwItJIz6pfHnJ2MQNYy1Uodjm9dncR8CthswP0WBvT6v8CHiyWypxtZTyhPL9S8rQqBnOmKJkbZQx2S4VuE2oAfSCWLr2zdI+fs42UCSAKQURBfUC7RYr+u+hGD79gGl6KtMI4DtWGiXsVw9cU84KKodvm7sDb3dlbEooY7SNQspEhWw+oFmLjUwZ8VYvnum4o1DJ7m3uueuu5Y88PLfijrvu+bFbdfV89RvkNcB9xYCraqraXx8AIcTaI0aOvHrkyI2GTp9+wmV9+vSdXCFbdNTg8hDwuJ5MN6zsnNvCcb0ZqBn5KilDrwxWzhsMzJJS3hZItq6QLUfGZPMcZPFLAbfFMt1XmkcrYVWNTdn2SZSXcDzKC78JmKVXVa+gyvq2GUGFyobsO+nAzGNPPDkMOERK2UpoUghxGvDRXbfdctNBkw/v09H3CSHOAuZIKb9ss/wCVM+ad/ymn78ALi1UJI9EiPeA/ZNG/BXfsVIoavSWwEEFLfYgKi91ELBDR4rmoUczDORIXXBZAD83S9GEMkJtxSrrUManZIBW/I0X3YmAS6RiA+B2PZl+unzHkAH5UjrRdbdc6NrYlCuRSynntTU2QgiBon5/L6W8pqPjN9huLbCdZjdNR4hRQo+D78H3XyESSbQ+A4i25PEunIbv+9Q1NDD+yTeZsdk6jO/fuX5ndP2N900ee+7vbuv970an4Y//DxFFufqdYSdUUnjDu++8o36f/fZnWVPT9wN7duuPlB9nUu34/wBkkoY0HXcqKl59fE3KuLrBdk9BykckfCfghnJDA6AnUq6fs6dIuA0pMwhxfsqIv6kK+znTt81NgId827x52kknb/jTsmU7L1685NHPv/jiCtlm9iCE2AeYKqXcilBKvmxdBjUArA7Ml1K+XFoXqhG8Drwe5mz2Ag4KG02ZISV5dSHEBCllBvj4wIMP7ta9R4/V/vWvpZ/0Xr3vc6t1795gVMZ8IcSydCre9rwMKaXrO5bI22ZKwkdvvvfRVs8++9wVUw49eDrwwKr0gFkJzkHldW5xXG+VlaE7QzoR/8zKebsIIa7QkD0Jivchg4KA82OZ7oW2A1Db/UteAbAkbzW0XdfpvQDQq6od4AY/2zgLVUs0DTjVzzbOBW5FaINRrK0n9FRm3rzHnyD0xPsJIT4DfCmlFEIMReXpdnruhRcTB00+HCFEvER9D8/lL8CXUsovy3M1AFLKs8Jtbohluh9TMOsWaUFhXhDR70wa8VcA9GTa9h1rZxTD7v5I0HJ0UYsmgbEpI96hV5pJGjawKO/mDgSaIjAikVBtncN6r76oSVb/8FP694hwXQWAp8WpDPIEkuJDjz+5+a0331L5+D/mvwk0grQErCtgnVGjRt02fIMNftp87GY/7T1xz++EejeigC7UixZH1d3M8x1LD/9vhH/jeduML3jp5ViTaU70HcvXAd8ptKAIMcVLLrrA2GjkCH/hG29W+I51bGl5+DcAmpMCF8gFvp0Kvv0cAolMVyN6rU4knaFZCHw7h+Zm8dw8E59+m79uOLBLQwMgrcZhXW7wH8J/nbHpLAxQtr588C1HAYgJIUr1DztKKVcMdlLKi4UQVwJ88P57NV9/9SUDBw2uWuOA/b7UZcEQIrk7sKEQYl8pZStBzEzS+NZ03NOAy03HnZcK3Pl5UXFKTlQOlkJ7vqaD36EnUl/lcjkvStBfSlpVteupzBu+bR4FzNlmqy2rpp9y6oIffvgxj4pFt2LtSCn/LoQo178qb4JlCiHeCa9Xq9lb+XU89eSTzjvv7LPygeQuVIht4lFHHH7DmmsONFdfvc+SAw488K/dqpI6sMF6628w7sbZNw8+7ugjn6lKV31wwIEHRXcaP14L6cIbCiH2nXzIwQ+vNWTIbb5j/QyMW/DSy99dfe11P6NFPrvw4kurC6Lipo7EFH8tkkbcdVRl+vOoWP6sleyyUqQT8XzBrDu+oMVuKWoVkzyhbxgW8yKl/FQIcSfK8+gIy1Dho0jbFV3di3KEsjdPAU/52cbtUIyuZ5DBB6hc1ZdCiHEoaf6BKIN7bridJ6VcCpwqhNhq+2232V0I0QvlMZVaDZRyNU+HuZq9UWKRJUmh41Dhn28BChXJj6It3t+0wN0vnAyp80ymC04ud4gmg+ERgi20oDBTwPLybdoi7+bGoMgVO5e3DghJKJ/SpuA6VCfvJWENCYMlYjCC/mjaru+9+64s5l1t2FqD9Eqat0AZEa0FDYFk9KiRpNOZof369SNY8Uqov1LVprVECGItaKOAAogCUJCQBywg3+S48YasI3wiP+Tz+WQ0GvWj0Wi07uefKz/8ZMmAb77/MfjX0qWVR0w9NhePxyOo8TYm1P2PAhUgo6Jbjyoy3aGiAgEIJEF4PiIo4haa2e+Zd9h9zV4cOqxfp9dvBYrFdjU6fwT81xkbKeWrwKthGCBDm852HQy+JRSWL1+eQCVmn+pgPai8wVNuzu15yuln0KNHT9mMXBKX/ngp5VGowsHOMAsl+niThFcrZfMTtlZRBdzWYLuH1KSMtvU0pyG01SOy5XZNhU5mgiIAAMejBontd5uwS81uE3a58uLLZqSvv3HWdkKIBXQgbln6+S+9/ErljrvsWn49XhNCfIJSMVhUtvxV4NWa2tpLNhm71QEFokNRch4LgLmPPPzwsoLve4lE4v0DDzqQpqy9jlTX+zZg3pixY2cu/uSTg6prakUQyK0d2zoyirSAifl8/oKmJvMDVH/1M8btsqu72TbbV0jJs1INtHui8li/G0kj/kKoDH2Z43pPrEwIcmUomHW1wLEVsthcFJGjgMetnHdaOhFvd75deQXA4pJ3V9q+s3tRjlAcczNgM4T2FbAVMkiicjqXA1fmrYbrUSG2bPh915R7LuF3veTbpnPwYVNcwmcrXD4XRc0t/YZ7y+nxJb08AMf1kghxXaBFTogWC5egqMpAKKcktLlFoS3RgsJdQhmzqO9Yx3VUVJt3czoqx3JfpZF4ClZQl6tRHkZHn/4oI1InoA7kcqAZhP3000+nv/722zeff2HBwN49e12z+267vtO3z+o/RBKZQyQsvOjyq94DatZfZ9hlH36y5FZU4W8CxaDTAT1KcHwR7V4QkfLlgP7111+nH3ro4T6FQqFi403HBHMffLDHvvvt/93AQYNytT162TfedMu7ixd/Envw/vu76/HEkiA0YOr8Vvxbfb5aPJovF29JVTViwFqIbt0R0QiCFkQyweSXP2FwJsmZGw3u6JFoj0gkt/KN/vfxX5mz6YyyWbb+mlLuoPTCO6639KabZjt/nT59Lqpg73bgEcs034zFYq2ozxuNHv3Uk08/Ny5WUbGmJugeD/I7APfoVdVfd3VepuMOiwQtH0Zly4vxdPWOYd3NjagB9qSS0F+oEHAisHlMttShRChvQQbLUGGaWXoyvTA8/62EEBuvt+462z728Nz4pIMP/eT1hW9cVCZuuQ1qdntvPtu0rO+ag/eoW758crhuKCr5Xgs8JaV8AcDKeX2BfW+9+eYpQhMVhx12+NzAz42bsPueI/756qutjJimaTfUW851byx8Xdt87GZLUEyqrQD9qy+/jD/zzDNnTTnyqLhA5isovhBB3gQ8pyfTrZK8oWSJFkg+RRmsddKJ9uoIvwWO0qtaQqgMnVyJYGlbCFVBvuOANfqPnffgnPfXWmvoSwgxSq+qvrLRdmdcdP65myx48cXVY7HY1m++sfBk1PT9fEKvoOxelLyCfN5qcCrTNUOklNPCdR3eixJ826xAGeH+KJ2w19uyyvxsYxRFyjgZpbhwDXCtXlXdYThyZdTnlcFxvSuBTNKIH1Yw6y4B3oxlus+zXa8aVdz8MXB0yogXfcc6CjXhmg0coyfTAawwKH2k0C4FdkMGc4TSIRuAaiCYQrFEv+rk83V5TiXsWXOlKDavC3TXM6uly5UyTMc9Bng7kzQ2QxmO76SUbRlrpWOtMkFgxpVXbXLySdNXSjoowcp5GWBLkBNoLkwQnttd02NohTxFP09FKoGG5OijjuXbxR8z95Sp8M9Va2PzR83Z/NcZm5KyMKGMBO1f+BWDr5TyFiHETCnlNMf1PgR+ShrxHYUQ56Je1J2emj//nK222mpEyEY7COi7xVZbb/nI409uo8HuQvCPeJDvDRyhV1Wf09W5Faz60QHizrxW2QMhhmWSRl2D7UZQ8uvv16SMS2wl83EpsEVJJ8p3singbZDPo+jMHdfD2Gb6088+u2rI4MER4BQ9lalrs36Xq6+97ufTzjyrXY1B+PBPRIlHVp579llLbp49a4DruvP22nOPFwcNXPOxy2ZcuUXpOmqadtzqffoM1HW9edG7H5waJv+n+Y6l33HXPYe89/77UxAM3GnnCZFttt3uywDRA9UY6y7g5EzSWKF2HLYieAbVQrpg5by5wHvpRPzfVqTmuN5E1Ix9v2QHfX+6QsGsE8dOP3n2M8+/uP7gQYMm/GPew1ehlAJaGm23Grhgq7Fj+r76+kIDODqdULUjXfWj8bONx1Smax7ubP2K7WyzGlVgWgnM01OZlRfzKor0tqjnfD2U5zJTr6pu5eX/HmPj/NKwb72kEW8smHVx4B8tkdiJxYg+J1z3t3Ilct+xSh76P1Ht19cD1pMq1ySA94Va19aYrFLuLmRjXqIn09sWrPoqlHe4bixd21K6F1bOm456trpUoA6P929lo1k5byBwOMjxQDyCFBpBjQiC+uLbrw4oVveIyr4DqfjhM6K9+3DhRZfx5L338Mzdt2KYdbS8+PjKL8KfbLT/HLp64cvXO6r4MJc04luVr/Nc9x+0L+r8G3BCRHBIJmk8CRAmbqfpVdUdNoYqWPWrA/cU0fb1I5UvAp9kksZ+4fF04AkBSysiYiKqqnopgO9YfVGz5AUI7QBgVz2R6lru3jY3QtUnzAVuLUne+La5C/Cxnsp8DWDlvEpUHc8kVL3Lw8CcdCLeNjZe/e133z09eNi6owEabbcvKuTwZXXKKPiOFX/l1X/uu8XmY7dD1R69iGKRvVzQYk8Bfy8G8k5U3uBEIBDwpBDcLYR4BWXg/JQRvz08r/4oaZrh6US887LpX4GwU+SjqJzIsKQRXyV2W8Gsi6H6/Dymd+sx4O/33bP92kOHPrDuiFFvlsgYjbY7dZORG2711nvv/xXVpfGudCJ+f1fH7YqNFobKxqDYgBbwoJ7KdKov1sV3CJSXeTZKAug64OpSQ7ffamwc16tADeSXlhtuL9u0s5DB3OZI5dkxWuajjMn64d/1UJ6KAyRRRIlrJHyMiFyLEPW0UXT+1b/XsZ4CLtKT6X8CFKz6m4CnYunaFeFtK+ediNLSe6GTw5Qf73cZG9v1tEAyHpgMcm0BRY0gF0H201Sh60PNaJ8W0SbT0ryj/OdTEb13b7Q+A/js1mtZ74wZ9EvGyfTrj2yqR/o+gzMJbt+2c01YrWefh6rOv2XvlZ3vfwL/9UWdK5s5lq3PoVz2Vdm3G4qZVt7P41FUv5B2KFj1ceAO4Kh4uno5So9q71BLjZqU4VdoXAUc1VyUV6aM+FLfsYTvWAegajtO1JPpu1He1vWhnlqn0FOZt4FxqDDBfN8211/xk0Czct7WVs67FTW73BIlBrpeOhE/p62hKaFf377Njbbbp9F21wKaEqL5+4Ro3s13rAeB97bYfOwI1EC7tp5MH60n0y/oyXSJnSMySaM5kzTOQNHHH5GwTyC5NJDydJTke9p2vZ1s16tKJ+LfADeE5/VvQRg6Oya8Jleuyj6hGsDfhm+y+Rd6E6W5TgAAIABJREFUtx679OzR46BBa64ZrDti1O4oTwOA3t1rlkWikS1W65Yeg6Ier2/lvJvDviqrDN82e/m2ORV1PYqo5nq3/BZDA6BXVUu9qnqBXlW9NbALqpXA13628bI9d99tk0kHH9orJG60g1C4QgjRjqq+aNGic84955xYKmFsFovF1vIdaw3PyZ4pteiDCOEcP/XIy2ded8MHjz72+IUodt3L/NKevAolRLo2MBYR2RilItGRovMqw3esMYBWMjQhZtO6yBM6kU/6d8B2vVg2522azXkXWjnv6UDKJQJ5ZpRiXKfYTadoVyD/LmBMnugpeaJbF9HuBpZEPnz94Mq110Xr1Zf8DRfQ56uPaJoyjg+P3ZtFryzglT3G8Opem3VpaKiIFSJrDOmy5ft/Ev91BIHfgR9QCrergoyAfCZplBuj51EP99zyDQtWvUANwlfE0rWfAmSSxpum414L3Gg67ssRTQwRQtwV0eReLQHnN9m5zw3BOOAFPZk+rnQsPZGa7+fsEajK6C6ZVXoqUwSu823zYQkzPNtsLqKlAxFZH1W3MwcV8umK7g2ALyN9YhQrKygWYyIYifKahqE032YSNhvrZPeAsklNJmn8BBxoOu7NwA1ITg+kfF7CLRFN9AIm2q6XEpCTsL2V87ZPJ+LPrewcVwVJI/6D43onAzc5rndf0og/29m2BbNuXdQAfeHipf8q+NlGDZXH+xtQVZ5wz3veI422awIDw+t5upXzxgH/CMkDb3b0HbAiF7Mzijm2DLhLT2X+7Qlevar6FWB7P9s4Bjjr/rvvOPbFl14uLlm6tDPm3DEo73ST8oVOzh06etSoqW+/8fozm43ZdK+bbrxhX6nyTIFAPiW0yAOFQuGvz7/w/NfPvbDg1k5adN/pO1Yg4U5kMAm0kyoTyd8b9jkPdW9WIJaufa9g1XcrWPVrxtK1pXqhVs/j74HteilgEykZBqwbSPqCrBXwUwVBoCFrFHGBp4Ej8kR/QpUQzEXlpK4HDqgsWN1YZ4NFFHzbu/ikFPlfouSRIesRfPs5NHfZSVtt23fgzD+qVA38aWzK8R3Q3XE9PWnE2ym2tkE3VDhgBfSq6sDPNn7mZxvX0quqy8UfTwfeiqVr2w5sZ6GYb7NRoY5D0wljfs7O1vhE7vRkZN9MKtnRYHgxcL+fsz/SE6kuHywr5/VH0/8CrK3JYkuFbOmBDGZUJjMdSrWXI2xiNkAjqKmkuKkQDIgRPI8qUL0YeKcrqf4ydCgPkkkar2Zz7mbAu4FkLPBhMZCHZZLG7aCKSqUkD9ySzXnXCIFE3aN3gG9X1pW0C9yKChve5LjeuuXtJEoomHU7ofJLl8Uy3UvfMwW4V6+qdssZZCVUp4wXG213n0bbnVtTlVgP2MAwjJ/ffu+DE1l99a+Bc0uEByHEPoMGrnnyx++9E0MNfvP1VKYrJuO/DXpV9evATn62cbQQ4qWzzzjtJj/buOGHH3189eixW34npSwKIapR3Sy7x+Pxkd9/9fl3kUh0TLfqbqOFiI4RMvCnHTu1qn+/vo88++JL/Q/su8bIQnPz3r17dH8d4I7Z1z8IPDJ4/ZEHoyYk7SC16D3I4CRksD6yuInvWDeGnvCvhu9YWwC+nkx3ZNRvRt2708P/F/kN417YKmAQsCHQS0okUCuhF8g1BRSjBC2a+reNMtSH6YnUT6GHewgqHBsFrgJuSyfijm8u3xkpH0WItwTa1pHanvcWv/9yRRgssvaGFBe/1/Z02iHSd+Dc+P5Hn/Frf9f/Jv7rw2i/AqU+KitrzQrQX3bc5OhO1EMFQMGq3x3FHmo3uIfK0GcD+wdSzo4FhVd8x7oyKmSFhDFFtGsabHdI2/30RCpAvTzn+zm7XVc/K+elrZx3pJXzXkEpFTjAjqlkcpSA4wWs5dvmvLLQWis02q6wbGe0TssZBs2z4qJ4m1DCid+gmo2dpifTb6+ioQGV/LU6WiGEmBJS1IejrueLpuPeYDpuMjQm1wNfS/UbrkXlCYYDx9qud7ztetNs15tou96ADhrFdYiwsHMKKqRzQfm6glknCmbdEUBzLNP9zpKhCQUyh+lV1c+v5PCXAaeUFJNd1/1k7bUGn4GSzZmfdXJb+bZ5SD7b1G/Y0KEWcJ2eyswMNfD+V1GZrvn2/r8/5J906hlPLV6ydK3nXnjxs7dee+V2P9u0Qd42x+Vts+rj99858PxzzhrfrVu3i4474cQdAhH5l0R80qNX7+1T1av986459289YqNRg0cM3+D21Xv2WNGHSO/WY2rPAWst2XuP3TYKqeIdYRJCGwacIhQB4p6Q1v9bcB6KDNERHgT2Klj1JY285Sg1j05hu55uu96GEqoLomKq7XrHA8dIyaBAkgsk/SRyN5DrVlDsq1PcsIKiHkE+ImCYnkhtoydSN+aJFkLhz29Q4byzgUHpRHxmOhF3fKv+LILmecCDQgZjYz37FeIHn/CXyJrDZlARKxDT0Qat3bWxqYgVIgPXnvFHby8Af3o25Si9LH1RGlQdIqQrD0GxbVpBr6pe7mcbk362MS5kMBglvrl7eX/0EmzX6xnRxFnFQL4hZDBZwmAB5+rJ9Be6+p5DgEcbbHe3mpTRKvGoJ1JZP2dPBWb7OXs3PZGSVs4rhde2QBmZyR2wYzxU2MsHzvdtswU4W09lfvRsq3eAOKISuaMGuhDMQ+WKFodtocf8CgNTjh6oUELb359EhY+2zySNQNf1K0dvvHHLuJ3GTzn6mGPHm447OZM0Flg573jgmSbTeqj/6r1OoEz+IzQwvVHJ7wm264GKx/+I8oC+6sgDShrxTx3XOw+40HG9B5JGfFHBrNOBvwIPxzLdV0jbhEn2c/hlZtwpqlPGV42229xou4NqqhKjgS/z2aavfl723RrpTLeX0Y1L8yK2ECFOazLN8Xoq8x8bHKSUy3zbrEOxNzepiOn1gwcNnAAchJR1wAODBg487rhjpr5RmcrY519wQd9ARF4Fxv34c933KEP9KXDgd999l+qoFqdg1j0A3FEw6/aIZbqv+K2hovM1wEWVyfQM37G+QTEyI75jTepMbqkj+I61DWDpyfQ7Ha2PpWtzBav+aVQU4UHUs7FFab3telWoxmjrACWDVEARGMyYbL4xTywGHALyFA3ZGCWoErChUBT0+wOYVCCaTifiXwBYOW8NVN7tMNRE40DgmVKhsu9YBkHLgxQLOwKXCOQ5sereEiDaf3BL6rSrTsndPuNx0t0uk1bTpnL5T+0nUrHKvFZd+2RkjSF/6NBZOf40Nr+gVOzXt8utVHw6CXTWJ+VBVIHnrsA+sXRtu2Br2Kf8WaS8vZLmbi1oU/NEv8kkE1+UtqlJGYsabPcw4LEG2929JmW0mv3qidTSfM5+vQXt1nzOWxvlPcwCpqYT8c4GsXqgVk9lFgKH+La5k4TnPNvMAI0RuF8IDtaT6S5bY/9K9EAVw7bFVGBWKpSQKRQK9j9fffX1H77//p0jj546WtO0F03HnQWcIoR45OILL3gEVWO0IocQGpIfws8K2K5XMkC7lHk8y1AG6ItwvyuAfYBb81b9eE15OzNjme6t6MGo5fP0qupV1Wa7ZubVV86prq7utuP22y177fWFQ08+/YyqTxYvuSKfz59n5byJTzz22MJly36uFUJM6azG438SvmOtgZTjUIa6HmgePHjQs8CJBMEykKcDk5B8ATwrpSw4rnc2cJdUA/EbqIH77JQRD6SUHeaYYpnu7xfMuvtROb6Ty1aVFJ0vBdCT6b/7jhUA9wP3+461/6oYnLBG5zxCmf4ucBNwne16LwkYLGFH2/Uc1MTERil335FqEz73nOYKn+j1AjkyQtASQQ4Sqqj5DmAvPZGyAKyc1x2oD5vunYwqIXgM2KptKwPfsdYiaHmMFn8AME2v7t1h7jUx+eR/Fqz6pbK5sDi6/sbPSatxGMVigkgkJ9LVS6JD1nvzj0hv7gr/9dTnVYWjGpMtB/6WNOIXlZa37WfTYLvboHrEDK9JGR+0PU7Bqo9JxBcgd9fTte1mW7brpYGnhQw+qpAtceBKj4qhwD3AyEzS+LB8+wbb3Rj1cO9ek1JtZ62ctxZwFMjxEWQM+EsykWjTL7Y9fNvsDUxAiGQg2Veqycb8CPJrlLrBfcAdIbngl/2UZ9NK9XlVYLuegWL59UwZ8Z/LlpfqarZNtdErE0Lsqet69rOvvhluGMYFkUhk2Qfvv3/W3XfecdNLLy2458svvugB7CelXFlere259ELpaA0sW9xXBMWTIkHzG0UtunMymWrVIsLPNg5F1dOcsrLj+7apoQzhJnmi22gED8QI7tNTmaAt/d7Ked2FDOaH/YkuTCfiK8/+/g74jpVAsQ7HoXTVBiLl20DP0LN5V0+mV9zz0JvbBaVIEC1q0fsDEd1fCjEdJdl/UsqIz1nV739q3ty7rp99i5j/zHO5BS++8MomG288B9is0kiUCpOPAMbnbfMuVPL8PuCQLkgnpd+1A3CEnkxPLC2zXS+Byq0MRoVKAWSs2T2hJRK7oSiiz0uVP9uro2NaOU8TyInAaUIG60aReU3wNCoHM19PpJw22wsUdf8AlMd0J3BlRzU3vmPtR1C8kJZ8DwHTY9W9O51oFKx6DeWF7R9L1660Juj/Av40NmUIlZ//mTTiKxJ0bY1No+3OkCrckqhJGe0SxQWr/koJyxGao1dVX1++LpxxPxUJWn7QCD4ScI6eTOfLlKG7A5tmkkarwb7BdkcDd2iCmzUhdkMZidnAw5W0DEGRDfYNu362g+9Yg4G9pJR7SugeoN0rEQ8kU6mPV2yjWFFTUGyZGXoq83TZ/r/V2KyBCklWpIx4sWz5QYCRMuKzS8uEEFuhOlsOQCkEH3r2uee/eeJJJ12CkmdZ8Nlnn9ZuOmqjO1paWq7+NefRGXyzbseiFju5GNW3QOmH/TKQSCkqiv5uLZHYiVJoS1JGe4MQqiyPQfVtkagZ/6IcsQRwWXXKmNrpd2cbj8hrlQ5CTAb+GnYH/bfBd6zVUKGjvVAElGUoVtQzwItI2R/4m57KdFqT4WcboxKmtkT0q7SgpS7QIlEpIhOUKOyqo2DWVVx7402LZsy8znr/3XcHduvW7dFKI3F8+TYlVQ/fsUqdNa8BpncUurVdL46Ugypk89wWEX1ECu0n1PUHVZLwBfAZ8FMpjFqw6icBI2Pp2ulWznsynWjdSsTNOWsWERdLxA4asjJCMF+TwYYgRunJqrbeLmH78j1RpQmDUHnZ69OJeDsv3nesSuAqgmAtWrx1BNwQq+59QdvtWl0zq35j1L1arW2r6/+r+NPYlMFxvSeBdZJGfEBpWQfG5mEJG9WkjP5t9w8JAVvH0rXT/GzjbOAkvao6B2C73jCkfCoqW77RkDfoyXQrOQnTcfuiuiienUkaKwZTK+f1A46QUh5QlFQJOLg6ZTxRvq+fs88DPtETqRXH9B1rGMqd30NKskXESy1oz+m0jKxMZa7t7Br4tpkGTkXVQZytpzIf/g5jszHwRMqIdy9bJoDngF076wwKIITYAthICDHk9UVvfTt06LC/oQaUWZmk8VchxIMoCvebUsqVenVtUTDrJgJeIZZagGq09iOwQhk6n208PxCRN4qRWAuqNigGSKTUNFnspyk9sibgOSm0F41ka0PfaLvTgQXVYd+itvCzjROAD/OReB5FflgMXPJ7vBzfsbqjDMzeKAPzLspTeAL4V/nA7dvmDsAEPZXpMgRlu94VSLlbJGhOabKYFkqG5nS9qnqlvVvKUTDrus97cv7ifgMGtbz/wYfrHn3MMQ3lCuXlElJ5xzpRwFUB4sYWreI5oA8q5FVSLfciQUutRrBJsxbbs6133OH3W/WVqLqyDbxoYm46Ed/Fz9l9iogpAWKyhB4acmEEebWAp/VEKt9RUaeV83qj6uSmhOdzFbAgnYi3i3IA+I61JnA/MniGZm9foUokji3laLo43yuBnrF07aSutvu/hD9zNq3xDrCz43o1HVWYhx5IX6Bdb5SCVT8AlYeYEC66Mfz/DNv1xiLlIxWyeamAKR3lRDJJ47syZejHhRBrAUejdKJuFkKsi5RrSbinwXY/r0kZSwCEEDtrmjbCtZrG+o71E7A9qrh02V8OOqS49F+fvZ9zc199/dVXFwD4trlhVxdAT2Us4AzfNvvxC4ngKsRvqoPrKF+zHardc6eGBkBK+YoQoq+UcvNNR210apOdexTVI+Uk03Ed1Ey9G7/MaFcZBbNuMvB5LNP9lRhQpgx9FHCjn23cSoBppNLzYYXXtxWqCr5FwgPNWiwbiqH2Ao4pyw1JQEQ1KAZcY7veZSim3U/A8jIP7yegdzoRX2jlvP1QjKynrZx30apUt5cQGpg9UQZmS9QzPBc4XE+mv+5i156oa9gpbNfbCjgOIZ4rRmL7Rlq8big1i4/DydQFq5LLEkKMGzly5IQN1l+v5vTpwz++ftasaz/94sv5tutlAHHBeeeu17dvv62Pmzat6uJLLn0XLeZFg+a/a8ipFUHhu2Ytdnm5QfEdK4byIv+yKoYGIJauzRes+sck4miBXDOXcz4J0AYC32rIKyqQs/REqkNDb+U8DaV2XsrFLkDliZ5MJ+ItVs4b1NF+vmPtAVyEDE4Qzd4FqEnN8atgaHSUEvc+q/Lb/q/gT8+mDI7r7YpK7O2QNFQhYbln02S76waKgXJNTcpYQbUMH44ngCNj6doV2lV+tvH65oi+UCBv0GTwrIY8uCvpC9NxV0OJRdYCc4UQs4C3yuX2G2x3BEqYc2LPblX6dtttux1S7jPv4bnVIGJSynN9Ih8V0SxgWU1VQgDnSClPBPBt81g9lbm+/bd3DN82S0WcQ4G19VTGWckuKxCKa+6XMuLblS2bBxzRWV+Ttgh7snwLfLbk089Fz169ngXGohS2D+uWSpwvpTx2VY5VMOsEqg/My7FM91Yeh+N6twF7i6BlTDRoPgnEGQixLWHBImqA+XhVWiqX0Gi70wT8EI2IZSij1J2w3EDIoEoLigOKkYrSjDiQkqKE8UBCwLVC8CUqtGcDTiaVHBcEwda9e/eq/2zxx/WRSGRvVJ7gbWDupptvmXvv/Q+qAF1K2WWYxrfNk4EmPZW5taP1tusNR3mOzwJ7pIx4YCuZmmSkWBityeJZwAYS7b6WSOw5VPfPJGoC22ZmIqNR5CnAVzT7Cz///NMeawzbYDrQUB5ebXV+Kvl/A2qA31dPpueWrTsTMPRk+syufuOK7XP2IGCilMGkYsCwlkiFj5KH+mtVwuhUBTzvWB/4VMxBiMNRAqq3Aze3zcdYOW9wSQ8vPD8DRYMfSlA8WLTkb0X1whkXq+69UnHZglW/H6oL7pBYuvZ39WD6I+FPz6Y1Sgn9kahQT1tsgZLbeKXN8suBG8sNDUCzVtEUKTbfhqadF09WddpL3cp5awLThRDbSCnvR9EmX0on4u1k5pOi+X1fape2oL1y0vQTRbGl5Yc5DzxQMe3k004//+yzdo4bRlDUtLeqU4YMi/PORs1GfxP0VOYd3zb3QwkkPubb5nxg9ipWubeiPYctp+tWxdB01JNl2JBB55mOu6WUcvHll16ys+M4X26+xZazuz6SQsGsi6KYQnNjme7tQkBCFs+UaHsgxMsSca0QYkvgGT2VWb4qx+8EsyTcmDLih7ddESo0TzGMqlkAtutFhMAQ8HggGSnhVCn5SMAzQhAXMuh5y0037fbuu++sX1tbkwmk/Aa0dwOhnSeF1gSI2++6JzX9xBO2i8ViLbbrdWmAo4hxUmif2q5X2WZVSZdtVxRV/nlgaui5NQN2MRJzinBOpFhYR5PFYyqK+fHA+S1a7PZkMtnOO8i7ufNQY82ulenq+rUGrnk9BXtsLNP9kc7OT0+mpe9YJZXsOb5jmXoy/ZzvWENQXuDGXf0+P2eXwsh7SVitBe3roojkoxSWCikXSaFdU5Vo324iTPhvDBwdQ6yHCkueDzy0KirkvmONQpEo7gGmiZb8pahau81WxdCEmALc8t9kaACQUv75CT92zhV2zv3JzrkPlZZ5rvuO57qGlJKGbO7G+myuuT6bS5TW++byib65/Kry42RzrrAd50bXtkzPangobzWs1tH3mY47wnTc+03Hfdt03P1Nx41KKWmyc2c12bnGJjvXQ0pJ3jYjedvcPG+bM/O2uTRvm3+3s9mT67PO5/XZ3ISevXrd2ZDN6ZWVlVfUL/vx5byTrQo91kWoZPu+pe/MZ5uO/bXXJW+b1XnbfC2fbdLy2aZ98tmmF/LZplPy2aZkV/tlc+612Zx7ddn/b8vm3KG/5d4APcuu29AmO1ffZOfebbJzLU127vQmO6d1tq/f9HOl3/TzOX7Tz73KroPIZ5vWzmebjspnm07IZ5uOztnWHDvnSjvn7vtbzrGjT0M2d2hDNrd1h9fVauj0XpiOK0w7d5Bp5z7I2dlX8rZZyNvmwrxtnjh8g/WnoMI6MSDSwbU6faX3NNt0bz7bNKrN/Upmc+6cbM59N5tz37Nz7l4rPY7VEMlbDZPzVsMPeavhtbzVsF75ei/nrOvlnIKXcyaV3Y+Y3/TzfL/p57VX4dmL5W3zmbxtOnnb3Dhvmy/mbbPd9cw7WZF3suvnnez5eSf7Sd7Jfu052SuzjnOh6eQWmI470XRc4ZvLJ9pZ6xXTcce1ud5J03GPNB33PdNxbdNxb/Rsc3HeNuMrO0fTcQfnbbMib5vn5m3zrbxtriulxG/4YRe/4Qfbb/hhlZ9531w+yDeXF3xzeY9/1zP4R/n8qSBQhlCs8TVga8f1WnVTNB23RqpizndqUkYOoGDVh5LhnFbazna9Ck0WX9BksFsgtPWE8lJWiBlaOU9YOW97K+c9h/KI7gBGpRPx+8vqYy4D+YNA3u871o2o5PFRwEsFqW2WkxV/KxB5DMQhwGUf/+vz26tThp/P569IJpPnEtYvSClHSykvkq07hxZ824zxG6CnMoGeyvwdlRf6Apjn2+Zpvm2mOtmlO2HOJqQeZ0pq1r8Wsow6nE7ElwohrkIl9a9Eyec8Yzpuz7b7Fcy6NKo+Z6aMxAq+be7j2+Y0VEO6PigtsmuQwbNa0LIcFZ67znG9jhqo/hbcAxwYyv+sEnzHWrNSFi6opPlineaeRTQjT8VTW22/0xWVqUzs/Q8+HImqDTkeVSsDgBDiZCHEaXTVDvMX9KAsZ2O73nqocJwFnCuUh/Poyg6iV1UX9arq21H9cxYCi/xs4ww/25jMu7kISh7oeRSdGYBYpnsBmAzcUDDrOtNmU8dPpguonNRHqJKDJj2ZXgDg52zh5+yRfs6+BFX39jBQIeHgPJGjfKLDA7SfQeyYTsQfCsPRj2myOBApBwBYOW89K+fdgHqWjkaxPHunE/GpQnXlXCkisjgQeBXVmnozPZn+uND4Y38Uq+6oWHXvX/PMHw48HkvXdlSb9n8af4bR2mM+sJdoqpvg3X+3zq5TeskHZ16kDRlRWxy1w0ghgwfBKLFbZgOHlwo3nVyuW0QGb0shzKKIDEwljDyAn22M5LNN/fxI5RiUPtIXwGnpRLxVHY7vWBXANnGYWESkC0TWKaD9MyLl8DzR1VHxfqM6rLcBPm2w3fGows/zpJSPAMv8nL2vn7O31BOplzv4fctQyeFvf+sFClsWPOzbZknp+lHfNheg5FfKFYrLw2jH0oFsz+/ADCHEImCOlHIn1Iv9gem4B2aSxrMAvlU/GMRZaNEPEOIQoAF4QU9lfiw/kJ9tNIDzhJIUyaCM+5WUSQ/9VlSnjJZG230eZaA7Ff70HSuOGlQPAzZHdYs9RsD8VDLRbOW8DZ5+/oVLUeHd49KJeHMHXTRn/IpTW3FvbNc7FDVBmSZUseYi4JzkKibfAfSqagf4q59tvBv1Xiym2PIMkei6wDptFZ1jme7LCmbdqcCcglm3TyzTvdOwrJ5M53zHOhTVKXZT38nujhBjUbRuD1UDMxH4KE90OKrQ8yNgz3Qi3koqKZaubW7JNj0vZPEwK+dNQtHWH0TVH73xa9qR+46lSTgugpgKHKon068DFBp/jIXHfDhW3XuV65FCSZ1DUW25/+vwp7FpA23RMw3B6B2RHy18qLj47Uhkyz0Jvv/8BJnpDtEKInOvOTS3/Pua6IF/jYhE1cxYuvYbANexR0SQzxZF5HkptEmlxKeV8xJC062IbHkX9QDuV5K1APAdS0cNRBNRsfKXgYeKUkyTiBtaiExpViysj6pTRrtkak3K+LrBdrdDGZzuNSljNoq6PM/P2TvriVRb1tdPqGT1bzY2JYRG51HfNuehWHgP+7b5KnCtnsqYhGy0sNBuFG1UeX8P0ol48/9j77zjnSiz//8+M0nmZpLchHClIxYUCyr6ta8V7NjF3nsX0V17YS1r791V1q4o9oadtStWBEUQRUXAK4Qkk0zupMzz++OZe70VLrq7v+935bxe88qFeWYyk2Se85xzPufzyRVLRwLPi8jayveHoVe2E/NO4YWIKn8iSq2BERqLyJfNmj7tLWhgvBL4q1WfLlpQ7C4z9FLYo2h2hw7n8gq59dAO5gB0U/HdwIFWPNmGey8Zi36eK5ZGoqlPJuaKpYuUUp0tJrprkbJphcpu6Q40ueQWCTv6dcEt7YJe1HRDqaujWfXpKV4+s5lCzkDVLqPqT9UcqrGOF5Dq9WE523gV8HCPVPL+bC6/GVow7QYV5AMBvKJj/v3ucY/d/Y97S++//c9eoB5BcT0iI61Y4ksRGThg4MCT1lp77d322++AmbvtscfxyXb1mABRtjlwEEZkD0P5ttLPyW7JWPe0jVqbV8gtD4xT8FMNY8toPN4a2XcZGhBwSudHd2kHosEg/xKW8/9ttiyNFlhtzqyQe+MZV/oTH3yUebNhpaFt0miq/8pQq2J8MyUiDf1G+VM/2LV631Vb1ObMCpUK+WOAN6oSulGJsX/CjtY3Wi5BAAAgAElEQVRyxVJDrlgaC3yixKgzVe0fdbXSNclYdJZXyEW9Qm4Pr5B7EI393wm4r0mZ6xVV+KqiCn9XwewNnCRCkyEc3ZmjabaeCfsXYDtgt4WOO7bgm3l0U9xZnQyfS6vUy7/CrERKWYnUM8E1fAyM95zsWJTqg06j7Q888DuYmjuY52Tr63wvbaja56L81+uo7FVH5SLgWoUaWVOyS8mMHmrV95jalaMJ7ATgJas+3ZoO6C6007+joDncfpelE3YVmJLRSEK8Qq6HV8idhMiZaOBFDF2QH2LFk1e0dzTNloxF/WQsei96YbJnrlh6NFcsrb601+M52VDAHvEhuui/ceBoBF0Mv2BppbNbmwpZilBkK8zIZFCfANO8fOZML58Jtx8bSfWaBNxyw1WXnxIOhZrQn4XhFZ2QV3SGe0XnVpT65egjjxiY7tFjGpoFIQdqBMqfnSuWemQL7slTv/p61WjUvurQgw98rLWjCdJkVwCz0Yu2KmLsqETy0WpxwtI6mkBn6mB0g+w1ZYlcEm/laMqZubuiC/x7R9L9lii61nJcbkEY3Zx9yX8dMCCwZZEN4M//IeyNv+lBf+53upt6xmew5e4QSwKgrCh+v5WQ2V8i0RjGsD9RfeQmE+X/xSs6+6pUrx6+mMclYvZDuWJpxUB6dgQ6nbBeMhYtevmmAaDu9Aq5Ahpl9RJwu6tCUxXSgM6R92iVIgMgW3CPBSZmC+7DqbjdJeFez4RdWOi4u6JXxre7vnGCbfjHekWnlxVLtEZ//YyOOP7lFsCCn/ec7AsKRob8Sg9BHVwxIkMR2XmJJ+jCAuXKVdF0MM05fgf4AGRXJcabnlh+MhZ90cg2zq+KmSyb0QOBt7MFd/dU3O6UQ8rLZzYDerZXzIzbUT/ovZmCnnxP+63X3srGGfh3eIWcg+6h+ALFJFCnWonUUk14yVh0ETA66O8YmyuWSsBf26/mu7KKET7O9KvLA0ck7OgDrXbtjuY+61QWYCnsIGA4IuvW1aenefnMOHRkd7CXzxxv1affaj04kur10n5771W379577X/0SWNmbrXVls94nre+aZrfhkzzWVALgRGvT5p0mhVPvuoVciMLrvumZSfeRalfELkiFbcfRiPHxuaKpYHoSPFANG3NM+g07sTmptl8oThf6RRwlw3O7S1gZbgdqAKbW/HkwqZiaZXm/eXM3BSah+3kSLpfV9yJXdnBaPmDB5Y08P+qLYtsgKZHb760xdEAzAyYQ1ZZGwwDf9iWqD6DMKd/TGjHA6m++CAqYmEcdwl+fXp5Xn7kcR+ZliuWHkbnj98D1qlT5XvrVHl3r5B7EsN4GSSG7z9fVKEtiyp8c1GF5yvESifsmemEPSOdsH9sf21B/eF+4K5swW0PU21jPRN2BV1nyPnIBF9xDe2im4Bp+N+6yLASKVUxrU+qRhhfjBkhv7JypOZd6DnZAUs61nOyMc/Jbug52cM9J3uK52RPQacjVgKeDSj5b7ASqXFWIjUtEY+V0RPLBcV8di9gYzvZ82h0SjINfJQtuFt0eJ98pi+6SH1p+32gmaHRFDajC25pw9/2SbSshIfHpDK+jtp+StEHPVFtBOoxlN8xv9RNS8ai3yRj0YPQE+AtuWLp8lyx1KOr8Y5bijlu6S7gVEG90trRFLRey1/5nVFNk1vsRTOjsx2bBmDVp/+JloZ4AJjo5TPjvHymAcArOpZXdHZ+5Knnjr/iupt2F9Tp66+33ttrrrPunfFUeh9QfYCb6xKpwcC6pmke0ySRwWP+crZroNaxqLyfitvfmaZ5z+577rnqY088+RGaImkbdN2tdzIW3TcZiz7Tjp3hPYWxX3fuSURGDhw44AN0y8MEK57c14onFwJsutGG+4pIsxbRpeh6333BcWuJyFkicreIrNLpyWmJas4DLo4kG/5XywT8HvvDRzZND123mT/3u9Ft/vPHGeA6rHnmNSQSdyJWHebFt/D2Q3dR++h1lF2PedSF1Bp/Qj1/H2qzXQ+h3LQukbqzLFX+UHRK5Em05vqzNcXVTYQaBRWOUr7EUP5zqfrE0miYnAZ8hYYxn7+4gT0Ttg+csdBxx7jKPN+mVvCKzgArlujWqvdfaL0RydUkvBpK7RrxyyngGs/JVtA6NZ+go5W1+FVfRKG5raYBj3dXDjkZi37rOM71VSN8U9W0Vo4Aqbj9WbbgboB2/q9lC+7Jqbh9O0CQzrkcGGPVp7tMT6Inq32Buwpuaf14J/xoXVlQi9sfGINmnbijinFuGXP/dNxuBobMQ6c0f1f9LACa7JYrlrYFHs0VSy8DN6fi9vpop7vGCxNfenizzTe/CZgU8iunC2zd7jR7oaPF31ujuh4NQrm89X9a9ekycLmXz4xHf//feU52KmIMQeTTfffeewJwmFRK2wN/KhYKFzY52UHoWt8YpVQtVyzV0M/AKzNmzPgfA/8wgbGO4+xQE3M1dMTxAPBIMhZtAwJpbwp51Rdj+3JuQX0k2dDl7+zQI44aft3VV57zwYeTe6EXCW2eo3c/+HB8Km43lDNzN0QX99dtZghQSn0BfCEih6PrpF0984cG1/5QF/v/K+wP72xqP84cTaXcFgrs+zDtAwhHeOGBe4gtvxJGXRRjzgx8y8Y87GyqU95BxVKw7f4Y775gGNn51dBG244B+ijFMxWMWysYM4NmajedsH8C8PKZy6JUjkJ3GHfLUnF7YbbgngLcny24j7Vnhu7Meibs6xY67s+uMs6P4l+GDtP/kzYQmItSq0T8chFNsPk2Otq4FI2IewK4rT06bGmtnG1c24J8KZx4FbgKnTIhFbcbswV3G7SGz23ZgjsMOCWqI5brrfp0B4LF1ha3o5WCZkH4EE24eMmSrsUr5BrQMPWTgOba2b1WPFm0gIzjHpJx3HQ6YWfQzmaD33bXHS0Zi76SK5ZeQ1PXvJAtuPcL3HzMUUdM7NOnzzjg6IQdfd5zvMNoBXsOYP5jgVN+Z1QzEtgPzejchpXbKzpxYCfM8CiU2hSlZqJqQ1D+TGC0VZ8OSGET95azjdF53319LkptishhTRKJNRVL16ChyAcAa7306mvne0qNClMthqitayh1sB1PPNztixX5uCZmY0hVt6edlDtopBnQsMKgQfe88uprz70w8aXqI48+thxaksFTSqkgiswahiHo9NmVVs/+P7bCNiAi2wJJpVT7RnCgBYF2LnDBf3NUA3/wNFp50lODVHbBLp3unPIOACpqI4UsdY3fo5YbgIzYm8r8Oag+K2HmFhCuNhHeYmdQap2Kk3+wqMKjXML3VDBfSidiM4MUWYveilWfngwkAvr6pbHx6KLkXdmCay5pMEDPhP0QyClNytg15xT2WMr365Z5TtbwnGw/z8lu4jnZ/T0ne7LnZE8SVTsG5UcN5S9E92B8CtxsJVJ/tRKpEej6y8/AA56TPdtzsr+pr6WcbVwL2CKS6nULeoLfIVcs7dq8PxW3y6m4fTy6h+JIlPrcR36y6tNL1toF4nb0Y3SEc37B7boY7xVya3iF3J1oEb7h6CLxalY8easVT7aG9d6BhliDvv8OvUG/xwIQQTOUd5WHH35o4frrb9iw8uBVhibs6PPBsPacdXujJ9HXf+v7NrnFBLouc1OzdMCWW2y+3tA113zzlptufB+tF3Uw8DwiK1uJ5Hq9B6548RHHHF8Ze8nfPvXymbMDVgUiqV63Ny5YuMo2O+y04ogddj5m1jffvIKOCkLo/qIJQHmvPXa/OZlKPy7wgYl/g1fIrbAUl/yNL0aZX7kMW8wr5NZBL4yif73w/KHPvzjxcOBTpdSnaKfcnM5uSMXtPw3s32/kfQ+N7/3K6/+8klbqryKyaTAeEVmri+s4Ag3S6L6j/D9qf+jIpjbri40pe1anO7+fjngldtt5Z0TgyKOP4dATR+NXK5iRCKgaVKvU3nyWWm4hFBaFQt9/3ZQ+8rwlpsdWXn2tSTvvtOMDd949bppSaoxSarErbIBU3FbZgnsCOsV0CtAtmv2eCfuVvFM4oIrcv9BxYz0T9gOgi+7d4fkKaPT7AQnPyR6IjkzgVwJMhV4lz0anYDJWIqXKmsTR84VjLTvegU/NSqQc4GbPyd4K7AiM85zsz8ANViI1rTv3Vs42DkUTZN4MkIxF87li6QDg6Vyx9FHrVEoqbt/uOI5Xw7jZM6wzvYL7Tipud5fWfyy6B+bvBbe0RXP/ScDfNQKd5hyBVkjdxIonuzxvOmHPyDjuoIzj1qXr003NE+y/0hy3FDaEcx595JHjLr34ohlbbbX1nOnTpz8+ZLXVLgIm1WkHNwXaRDXH/p6oBg33VSj/aq/oHAbs9fKLL2z+xJNPTXn3vffeAbazYok26apsLnediNwyaPnlx48975zDgN28fOZQDFOF6uxBffr2NQYMGHBkLB7z0XLtz6CbHl9Lxe0t0WCGPYLtA+A5r5Db1Ionl5h+Tcaifq7gLlKwSTm3IBRJNlQD3Z8L0YuFE9HOMw+gAkZq4HqlVAvKzFv408do572b1bN/jVbRr1LqXbQ8RqdWzi3ohW5IPvy/PaqBPzgRp3vdaWP9ObO60i5nXqGJvvE6fnE9dn1tFlddfimbD0jDgnngLEIME8IRCEUgHMYYtNpH0m+FaegOboWWX27q4nXgiaeettXIHba/d6cdtp+zmHFNrf8uiXUYIlcBQ1Nxuw0X2+KsVHAedJUxCPggRuUr0eqWVaAn2oGYdM6grNAP3OnoPH+2O07KcUuzgS8TdnSn7l6j52SHotl0+6IjgBe7gi2Xs41roif4myKpXm2uJ1csnYUuEG+XjAWOIZ/pD1zSJNYlSuRxNOBgz1TcfrU711ZwS82ieSeG/fJtaJj3WHTUditwqxVPdisdmHHcTYGh6YR9p5fPnGzVp/9lza6OW1oTXaCegyY8/RkgVywth3aK64b8Sp2Jf1pdIvVJwS0dBBwet6Mjfut7NhULI4FnQX0imsvuZXT08WJdvH59IKWUekpEIkBNKVUDEE3eeSlwY1Nu4S+Lcrk7UsnkPjUxVVXCFiKzFs39vvGsc841mqpq06efejKsAtE8EbkcvcjZAziiyclGgXfRnfy7thaD68pyxdL1kWppJRP/KmWGE+h+q3uAG6x4stKZxEC741eJeovOBaxIut/+7feLyOYENTN03anNonLH7bedMXSNNbyrr7/xz0qpl9odm0I3d/YHXvidPVX/K+wPHdngLx4J1Deuo+XlbItdtt2aT7/6mq1GnIhaqYw0FaDsocoeyiuBV0IpFRZkNnpyrgEmKEO/tmwRIHrR3y5fcZ21hsZ32mH7oegHNIz+PiLB33VopxUN/q4D6uqUF1WKEMgXTfmmL0QXdXPAIpAskAUcRJq1PwAwYEYMtXoJY6hLeJsolScMnZr7FM3+2+XDGejZHGfFk4u6GtPaHN2bMghdu+i2WYnUVOBYz8k2oNNQp3tO9gk0pYzTPK6cbVwD7UxubO9oArsK7Qz+Alzh5TMJdMH6pGQilssW3M3RDaAvZAvuYam4vcTCbNyOvl4ouuMEdZWCI0Q7q6uB7buzkm5t6YT9bsZxj8w47l2/GYrWzhwdoZyGFvY7A7ivdV9TMhb9BTg7VyyllMinHpHrvWLpdgMuFOHwpX0/r+j0BfZQMApkS2C26FX9S1YsUQIQkT7onqAVRGQjdPPyYcDUYP/41VZfPec1Nb19yTU3RT7+aHLDI+MfyYtS9d99NeXz3UftM/H7H360t9x8s60XLlw4Gf29PgKglDorOMcKSqlZAF4hty9ab+dqNDBjSfZxzQglDFX5O5rVY+clyDK0sVDVHYQGgQztbL9S6i3gLRE5Hw3Zb3E25dyC4WsPXXOFBx959Eb0vND+2KyIfIx2Vt3u1/nfbH9sZ2MYXVJkFCtVfAWJSIhCtcarb77NGRdeTJNhIVYYkTBG089IdiGG8iGRQpbrtzwif0HnYH8GGkEWoDvDFwZb5tgTT17thYkTew9dc81XNv/Tn1ZdfbXV/oZICP2jCwVblV+jmpbIRqCprMxBPvKyif9qhOon6NXPAFADgA2B3ihloPPwc5o3ERpt/IcLKmyVJHyBQh7qmbAX/Bs+2fWCz+ClJQ3szKxEagFwmedkr0ajpMZ7TvYn4B5q5YxoR3JDF46GZCxayxVLBwOTcwV3cp3utzjPqk/nAFJx28kW3J3RlPEPZgtu31Tcvqar6wnSZduEYE0g6mPEDPwV6pbSybSzl9GR2e82xy0NBu5FI/nWT9jRDhD6ZqvzvRxQqYm5I3CnD2kUQ3LF0odLEm7zis5AdDpxFLA68CzIfCCDyIaWHW/zWwqodFrYp0XE2HiTTcgVS3sAuy5yipsC5gnHHTPn888+nTt8xIiVQqiYSXXY6kNWPffrLz47ATgNvzZ6l732mfr+pFc6cPC1Sm9hxZMveoXcGOAGr5CbbsWTd3R5L4WcGUZW9cXYA185aEfT7TRPrliK1tXKxwIPR9L9ukydi8gBwLdKqW+bIzsv+0sIuO3iC847+4prrr9GRG4BXhARWynVwvihlHpHRKahQRcdGOD/r9kf2tlIfY+vutrXWPQ44JnJAFQNk70OPJjhW24Bs7+EUhHVfyWqvQeheq8Afg2Z/z2ycOEz9F/p9DoqFXSdo2/w2vz3+kDfO269ufnfq6L8PHADehUzD93hPw/trOYB86x4sg3ljAWzswX3khrGmBKh1VNxu6MUraZh6Ykmm9Sb8qeDXBrHW1BTEm0i8kkhn3suTO159GpzulWf7i4N+uLsYODb38sYYCVSFfRK9hHPyQ5BqdMwwlsrGBcIl3WZtkrGoj/lCu4BwLNVMfeNJZJtGjtTcbucLbiHoD/jq7MFtx/wl1Tcbi3SJegIaiywhsA1FQnfjMj9vq4ztSY4XVp7El13m+7lM4ZVn17qrnHHLYXQDAjnBdd4ezfExJYHfjANKQMbK8Xuvk4FTswVS08BdyVjvwrbeUVnRbTD3wsdgT+FLoK/ocQYgoawH1ZnxzpdtAQ0MUPPOevM0/92xZVrn3DiSaM9z5sjIs9EIpFRwPu33n7nn1Fq3WOPODRuHnPECXX16V+UUsd4+cxTwF0Y5p4ff/b5u+FweONyttGNpHotjm/sJrQjvMUr5GZZ8WSHNKlXyK0L3GKgPq1gfBiBELXKKkAHUcOuLFR1NwO1K3oB0qmJyN7oVNhEERmEBmKMR0OkS/GGvtVKtXohv0LfL0PrLSEiq6GbbBvQPHn/5+0PXbMpT3pqUPmlh6ZT9hbbLKkMA3X+fSAGtUIO4+k7NIwvUoeK1aPW2xrVe3kwjJpSmMDPIkwEnhCRd5OxaIcHMZjIEkBf/NrliPEKIjZtnVTza4W2jmiugsYK5mgFMyxqx9KJU+rMvKJzJfASterQMsbnFUJ3mtS+tag6ogXSDDSD7lQ0C/D7GGaVpZCFdtzSLGBiwo6e2J3x3bFytnF5YF9lhK5FjO3QDi2K7k14xkqkvPbHePnMaWUjspov5rrA5l3pkWQL7hi0vO/DwOFRKmV01DEWPZlcC9xoxZO5gNLlCXThd/XOFF27axnHvaROeV+ZqA/b0eUs0RzdaHo7Olo+PmG3FfTqyjwnuxuwecW0pgN7xO3oSIBcsRRCRyxHCerzCLWCwEh01PwEugbzlhVLVAECRud30Kmhkc1Em4EezOro+t7WwFaPT3gsftsttxRWWXXVd1dbbbUbxl5w/rpKqfHZghsDbjjs4IMarZCxomVZlXvvf2BrEblBKTUawMtn0ueNveild957f9guO+34t9NOPn5lgScjqV6Pd3mPmtD2RbQu1f9Y8eS3wf/3R6f6hgBjrHjyg1yx9EJdtThRIBxJNlzT7jxd1my8zLynBLUoku7X7RSkiPTxsr8k0anrrSPJhg/a729NrPrfZn9oZwNQvOKEx1TjT6OWNE6ddCX0Xh712Zv4SpD532N8MBFWCtK11coz/uHnj1dKHY4WWasppeswIswSkUnoh/Nt4JvW7LJePrMcmgjyhM7e2yvkEnQSKSkY6iPbGai5okXdarRySJ28zgXxELkbv/Z34J0CkSya4qYJODGumnx+bbbcAA1RTgfbxWg53s+t+nSHyR0gkPqdBYxJ2NH7lvS5dsfK2cae6BX8pZFUr18jDw2X3h/dRPs1Wq7hUyuRUl4+szfQq8mM3ooumFeBI7pi9c0W3P1A3WegvohQ80QXda9FF4vbMAcX3FI/dJPtU3E7euhvva+M4w4W5R9mU/7Cqk93K0py3FIP9Ap4ZzRo49GliSA9J3uhgllV0zoTOD5uR98G8IrOGsAoBXv5SL8qRhF4U8E5yU7ULJvc4mjgUqVYo4xRRyvnAiTRxfo3gm1y6xRdj3S67+wff9oXjfo6qU6VN0BD03ew4slqZ5Oul8+MAm5DqTdRtZDAfUtwOD3QUVcGXSs6BR1ZXAyMb06Z5YqlG02/8nTEL58fSTZs1e4cnTqbcmbuEAVfCKweSfebRTetnFsQRbOLvBFJNnSnpvRfZX94Z9P00HWbVae8+1qHxs52pjbYBhr6wcY7oB64EpXugxq4Cuazd4FIWQ4+81y1/JAZwCRf4QM7KqX2Q6dbfKVwERYJrCgiWbTjad4+rquV9gI8qz7dpXphZ5YtuNehH6I1olQUHVN3nb2GUWoh8AsiU5Viroc5pIoMjeBfEBH/A3SkVATwnGwf4CWUfzfa+ayLBiK8H2xvW/Xpn6CFrv42YKOEHW2WPP7NVs42xtAF70sDHZROzXOya6PTE0NRahoorPr0qQC5YslGO/m7krHorZ0eX8htqLTC4tpVjPkKtkrEE13yWwXcaXcA2/8eZuiM495pq6ZpdfXpGxY3LlDKPAQNdBgPXJCwo0tdM/Kc7JNVCT2qxDg/RG1/CdQs0VHiBDRw4sMmQgrtOI5DL2JuRyO9MPE3M+HVGkypYfRDM0C8j3YsrwMfdBVF5oqlFdFQ9ReA2+pUeVV05LSVFU8uVsHVy2d6A3foptDaZ6Jrgtd2VbvzCrn10ZN7Ad1EfUN7xxEwaa8SrRYPBUZEkg2ZVsd36my8zNz7QeqsdN+9WQor5xbcgabt2bxZluSPZH94ZwPg3njGlf73X/9lSeOUCBx0BgxcBW47B5XoQW3rvQnN+HhcYtRxRwaIoK3Q6bEPEnZ0Xq5YigLbK6WORa/kKgomC3wU5GU3BWyUmhz2y4mqEbpGiflCMhZdYu8NQJCKmAq8mIrbnUZG7c0r5FdFqetAfYPI+wSOqKpkLQ/zTxF8Jyx+DA17nosGOKyGLkLrCEmpJs3qrAYDm6AjqzfKprUFyJqIxBNLQe/SmZWzjWF0d/U1kVQvZ0njAbx8ZnXgBpA8Is3EhhObDKs/erW9TzIWbSE0DajiL0NDaK/zMCf6GI+iI73tU3G70zx+wCX2Ohp1t1bcjnboJeqOZRx37zpV3tquT3X53QVw5lvRSMXjE3a0u/1BbcwrOoJf+7ZqhPOC6meiFqEdzATgUyuW6DAZBGmxTdF0/OuDskKoHgKFCnIzyOvAu63rPF1ZrljaEY2YOyEZi84MIva3gGOtePKDxR8d3IOuRR6EUjeh/G9BTRY4MZLq1aZPxSvktkY7GBfYEjjMiifv7eSabODhaLU4DZgWSTY82OocHZxNOTO3Qem2gfWsdL9u9YMBlHMLDgBuAdaNJBtmd/e4/yZb5mzQ8gLe+JseakPG2YWpaAyOvwyainDnBcjgtZ8t73t6CJH70gn7EWhZhW6AjiS+blanzBVLllJqL3T6Yx20eNV9IvIysDLKHx5W1ZEVCccR+YpfI5+PgK9bKXm2sWzB3Q7NLrBlKm6/1dmY9uYVnUfwa1OtRKoNBctCx+2BTqvlI9TOiohfj06rXYNeyXcWKSmU+llBpWqEVgr51ZCgfkDLDbwOMgmRH9t10i/WytlGQSts/j2S6rXYFW/LPWlyzSuBY636tBtEZAei0yjzaxjfVCR0HCIb1alyHk1SOga9sj7Hiid/AMgW3BXQq+YUMDwVtzudVApuaRW0SNetcTv6m5ihM44biajKa2FqW1j16TYPY6ADdAEaLnw+cFc3AABtzCs6BrARMAql9lbKb6gaEUz87Q3U260dTOBY+qOBLK23FDol9aagVgN2UnA/yCXJWHSJtabgvKeiI+JjkrFoU1CzHA+8bsWTty/NPQF4+cwA4EGUvwrKnyawRyTVq+AVcquifwMWGgb+JXqRNArY2IonO1A95YqlJ61q6UYD/7hIsmHflvfo3NmcpuAAK91v/e5eazm3YAj6GT4okmx4emnv9b/FljmbwGpzZoW8J+74mz/3u45cae1M9V0Bjr4IFjV+HbHttYrRHqBXxyZwRlqzLwPguKXV0AXJecDk5vz6Is3gfI7ojuiewNcicl/YL083VG0bz4y+iS5C/wntmATNHvAZmrLjc+DzZCyaBcgW3HvRk8qwVNxeIqLMKzrb4PtjrERyZPt9C7WE8YnoazskLpU5LAYg4BVycaBvRULHotRmBso0Ve1jdMpgRaBHcP1VYA4ic2ipIXWsL1nxZKGcbRwNPBtJ9fp2SfcC4OUzPdEcaKd0xnnmOdnlgT19OFYhAw1UVeBLRE614skOsNJswe2FbuLsg3Y4X3T2vgW3dBa6MXGTuB39TfBUJ59/RFDXxuv1dQSLld2C+3kdOCNhR3/p7vm8omOifzej0FDlBcAE/NoPNTGP9o3QnLgd3T9XLPWho2PphZ6gP2q1fZ6MRUsBo/NXwI2eMp5H11l6ohcnLyRj0Q69WrliKYJOm80GLmuumXmF3Gno3/VhSwM5bnOfmn3hQpT/Z5T/A0b4LQxjPeBsK55sgd17hZyNZhiwgA3a1+ByxdJJKDUnWnOvBIY2p7jaO5tyZq4AX/pijqvr0btbqqjl3AIbnWJ8JZJsOP233Od/iy1zNu2s6aHrNqvN+bgyMjcAACAASURBVGa0WvTLzp2i1CJWk6QanlN7nvCZ6r/yxcD1iWBVm3HcUegJ+qR0wm6DDnJ0UXkDdBPmP5uVPIPjhgM3GkIYSIVUzRXUB1UjfEEyFp2RK5ZMtC7HMPQD2rz1A74HPldKzQCOAe4XkVOaO+e7Mq/oGCh/CkptayVSnYp1LdRiX/cI6h821VF1icWj0Ry39BzaqbyWsKPXtrxXPmME1757sClEPgeZjUiU9pGSX4sgMh8xZrMYwIMVTxaC8yfRE9qfrfp0l9rtXiG3rYJrKspc2cD/wcSfKbp/6Wm0fEGbSShbcJcDXkWv9kek4naHGlTBLYXRPRAmsFTM0C2fWz6/CagTE/XJgxy3tBLayawAnJCwo92NVEPodNEo9Gc8h6AGY8US3+SKpeXCfvkS3wjv6yNTlT5/fzTct7Vj+TQZ6zwl2OQWH0JrMa1XZ8fKALliqQHN77UDOrq+u1mQLNh3L7pW9mTLtRZyW6DBF1t0B0G52Psu5CyUfz2+fzSq5gI7WKle73YybtXg/l4BRrV2cLliaSXgrGi1aAIPR5INrwbHtHc2myl4vhKyV4/XL5k8tpxbIGhGgiHAFn/EOk1rW+ZsurDypKcG1WZN3UjlF62OX4thmEWp7/GVufLQDyJb7f49gOOWTkFPDKc3T64Zx10JnV9/FrgtnbDbTPqOW6pHTwo+8HrCjpaC4wQ9SYwVmBlR5cE1I9xHidFIkFdPxqJftj5XQEHS7HiGKaW2QPdRuCLyGW2joC/a59W9Qv5ylGqyEsmxXX0OCx23HtQ/TNQWNYzBPRN2rrNxgTO9CtgMLcr1GoCI7I5GKbXI/Xr5zIroGsmevu9bu++9X9MPP/745lfTvz63nG3cU4FLyPrm0QmPrzP+0cd2yTvOSuedc9bXW26+eXvHZKBRS/XAe4jMonPHNLDVtV1Swby7JuYrwPg637sbHUXsjHaUzwFPB42lZAtuA3qCWh7YNhW3P2l/7wW39D9oh3Nh3I4ukRm6vXn5jFQw3/fN8HtBE+CVwA0JO1pZ7HFFJ4KuA45CI/K+UfBMFeOLGkYSPcmtiY5YBoX8iusbIfGRscBk4JNkLNrp99neAkbnZ9GMzu+13x8siHZCO54iWvvlAODUZOzXGpNXyPVDR4w7W/Fkt5Fc7S2QcDgCjTJ7Et//B8r/B6q2LsjpVmq5Dqk5r5AbhWZ4Pt2KJ69tvS9XLL1SVy3eIhqSPDoY397Z3KcQsdJ9u8WgXs4tuBQN6tgkkmz4T0t8/K+zZc7md5rjlq5C54b3S9jR8QAZxzWD/9sSOD6d6KgU6bilCHoSrgPeTgT9GhnHDQGHoNSf6yiXqxK+UBnmZmjEkMevBd0p7WG82YLbPFkOAq4RkbUJHBE67/4dGpY8C/hGlP9LhOq5nkTWS8aiXdZTmpxcuoLxYRmzBBzeM2F/1Mn9nILu+XgAWC5h696igGJ9OBoRdHkzL1azDVp+4Ll/Oe3U5E9z5+029tyzQsBHiHGpVZ+eEhy/EzpaPF0p1YYLznMWpVHqTsR4FBGhYy1pAHoFH0Gj575ER4LzfMQpEzrBQN0eofoAMC9gXdgZ7Xyi6F6Np0oSaUI7nJXQDqfD/Rfc0pXohrxhcTvaZbNwJ59bFDhFapWxVQm9aBpyTPNn15l5RadOaQaFQ9C1qF9qyLwahihkBXS0kkdDwaej014fAZ+EVG26EuOmeMy+qLvXBy2Mzl8CT9TZsdFLGp8rlg5BN5rORzvh+5Kx6BSvkIugHc3lVjz5/OLO0ZUFTuZwtJN5BrjGiid/AfDyGROl/oryzwIexjAPaV8H8wq5a4Njt7LiyRagSK5YulqU/1hdrXR3JNkwNBjb4mzKmbk9gLlVI7K3nWp4bknXWc4tOAmt8rpZJNnw5ZLG/xFsmbP5neZoVNKD6Nz49gk7Oql5X8Zxh6ERKOOAcemE3eHDDvLzf0LXNeYk7OinwbFRUf6ZEaqneoTPFZHbDEOGoVexo9DNl82O5+Nmx5MtuAPRtZ2xqbh9LbQUaAegEWWD0Z3gKwODI6qyRkVChkLmAbPuGXe3d+ftt/d/98PJFxE4pTpVBni2/wor548+7vihyy8/6KV99j/ghJ4JuyUt8OXXM14dtece+f3233/4Beed1yzd3GIich0apdcEjFZK1UQkjWbZzS3X0HPzLya/90SpXC337dN7DzSc9n7gwbpkz35Af6VUi1xxIIB2K3CtVZ9uM7kHTX2noIvrb6OL6znagRt8ZLUyoR3CVOeZqBQ6FaYjIqUa0QuBfkBEwTcVzGE1JI0Y26fidhv0VMEt2Wgm5flACzN0VxYgFw9C9328E6o2zSoRSaTrf53Mc8VSPTAE1FomakcDtZGB6ucj4iNSQ74H+RLtVL5utf3cfiFSLBR6KDF+QWRA3I4uVeNgk1u8GU3Fv2adHesSdRf8zk5D92gdh14crYduwF3TVDXLxJ8cjdcvde1icU6mw9jcwm1Q/lPAD4ixiZXsmWt1njAwCb0IWbcZbp0rloYDG0erxZHAqEiyYV47Z3OCgsOarB77JWPRxdYRy7kFe6N7vraLJBs6pPT+qLbM2fwLzHFLFnoVvB6wWcKOTm3el3HcOn7tWj42nbC7zPU6bmkgOgqpAW8m7GjBzS8a4SOXlyXiAkelE/bM4KEeyq89EnF0f8QE4AOl1HFoMsKhqbi92Aejycleh2GGPULj77/3nq3nz5+/1rSpU9e65/4H8miHlEapXIRq6IBDDp9rGEbjvgccKCO23a6XwFjTkHcEwiKc+/Zbb/3w2muvjrr6yivXaD6/iGyFBi6siIYxvwjspZRq4e865y+nbfHd7O9HPzLhiX2AK5VSp3v5TP/7Hnzo7G+/m73XjJkz3eFbbXn9UYcfdrtVn654+YyJ1o7/u1WfbgMD9gq5jdGoOQs4xYonF9sDkyuWtgAeBYbXqfJstDNqGyEp1RdYVel7WA6dbsuKlh+egcg8YK6PpHwxzwX+GlLVawGnffHbcUuiFNsH309Jo7oomn5lm4oyholhfKsJLNVAA7WciaoYKEPBfB95v4bxjEI+AmYlY9FOG2s7s2KxeCFwdCwWW6I0d2trcot/QsOTd6qzYxO7Gpcrlix03WwWcEV7Z9dUyB3sY4yuYH6DZnseDzy9JMh0OyfzLHB1V06mzXH5TB+U/wZKDUCMbaxkz5bFQcAk8CkaSbidFU/WAiDDU9FqcSrwYSTZMKGds3nFF+NDL5I8f3H10HJuwdbo7ML+kWTDM0u6zj+SLXM2/yILOuffREcomyTsaJscbcZxt0JzYV0NPNRZlNPqXGE0C0Fs9113WaFUcHZdddUhlatvunWgYRjjgBvSCbuZpn3UKquuuvGaQ4cOu+e+BxqABqXUE+h+n5+B7VLxrt/Lc7KHIMbhiOxQp1ecLrqecirw1Q9z50dTifi6Yaq3eRK5F1j5yMMP3e6ucfd4TtEdFI/ZpoCISOn72d+pJyZMaBrz57+84XleY61Wa7Rtex4wv1QqNa4/bO39KtXqyz/Pn9+SQilnG5NoWYFLrR69I4CtlGphlw76KjZCTzjND/JywC1Wffr9lnGFXJJAGwTd+HiFFU92azLOFUv7odGEmyZj0U7BEs2WLbj1KP9lE7VOiNqbhtYyqQI/K2hSYmwiqN5opt4Q4CjwFOIrpA6khwJTIaIQN+jZmCOoLKrWR4lRjoiyRVO+vAM8JPCsFUsskXE70LKvb7XF0dGalEPRB02/OtX0K9ego2IJXltvFfT3XwRchVRUyHoG+MSoNh0YSTZ0OskGtcN7gTuSsWgHaK9XyK2FpgLawoonM4HC5d7oGuU8tMN9s/UkHqTcDkenJp9DO5luQeBbzpHPmLqOow5EjLMRuao5reYVciPQZKiXW/HkucF9jLeqpWcM/PUjyYYxzc5GysUwsKBiWjvGkj1f6+r9yrkF66DngNMjyYa7luZa/wi2zNn8C81xSwPQHcslYJuEHW2jLZ9x3CR6RZ4Ajksn7CU+PMNHjDgkn8/vsv66w1a/aOyFx4cS6VFozqej0gl7uoj0QDfcNSmlxuaKpcHoyOEgdPTzuoj8DfhnZ306npMdisiRiPGhFdOyuiJyvVLq1EAz5K+BVsizdYnUC+iI4UdgXDgcvmbewmwJOL7x5/lnjLvzjlsmvvjizDPPOefFL6dNG7L22uuEdhw50gR6jz75pMGhUCi68uDBHHvscQUzFPoZpX4J+17vimFNQ6SAnuS63ny/ElHeWaLhtjWQh2pi3GsKW6LRTTMUnFKWyCx+nUyl3d9d/d/x6CL7sWiJh/p2W6L5b6VUGtg8+PccAcvATxnKtwQFGPgiXk3JFyIsEPAFtbpAb8GfaqDmAfWiHVU/IIpSNYWq8zFdU9SbKPURqDxK+ShlgooCPUXTBrV3KM1WQddr8ui0YRGo+WIkq6a1R6haesnQEGQ/2FS7v0NADLCBmELWQWR5lP+l6LpXa2XfGrCwhtFUMa01w375KVPVvkAvcALGc35WRshA5C00xLkDuCL4vR4UfJ5fotSzFpWVRS9AfpOTaW9ebsGRKP9WxHwdkf2a2b+9Qu48dF1lWyuefC1XLB0hyg/V1UpHRZING7ZyNjsDF5WsHrslY9FOm3zLuQUboNF410SSDX/7Pdf732rLnM2/2AK691fRD+aIhN2x6S3juHuhc/XnpxN2l/xOra1Pnz4HXHfNVadtttXw68KROhWpi56FLsZfm07YVRE5Wyl1WetjsgX3ajSn2LSAdfYZdKrt9WauKs/JhoAxGOZWVizRpuemmaMq0LNp02cjIhZg54tu2VfqhapPf0PooxTpdMIud8ZvFSCWGtC9K70jVfegqhGZ4huhCnqS63pTKhZSleV9MWu+mGGUHwupqmGiZXuqYlDDBBF+hyl0lDKPXyftTrdAxOskNBjjhEB7JI9SzusvTzz98ccfP3fEVlt+t99++4oSo7eCpwzlXxBNJL/J/Dyv934HHvzYxhttuOK5Z/2lJ0p9j1JZUP0//ezz9LU33hwats7a5SMOPSTfI5UCkTAQR8S45/4H3JkzZ5W+/+EH74F7xr0A/NCcxsssWvTz0HXW2ymzaFEUmKGUegSg4JauM/zqnqaqbWQlUt2q1zS5xbXQjZyH1tmxDno/5dwCs8mM7qeQ4yN+0/Wm8iNo59kb3avTW+nX1YCCaCf3LTrN1vw6C5gfSTb4TYVcwkfO9jGO8pGiQt5H5BHg5WQs+rv1XLzsL8NAvYYYTYixq1Wf/tgr5Ez0s7oqsE6TRMLAldFKYX3TnXVZNbbyFaHclEdq0UHDkdB8QubpkdTAqe3PHaTOngbGRpIN17bfv8y0LXM2/wYLai+vogkJt03Y0Q4NgRnH7QvchUZJnZxO2J3S07SueVx9+d9umvXtt+MGrjj4rBNPPjntK/a7+K9jN3zqiSce+/bbWa5S6oLWx2YLbgTdxf+liJzGr1okQ9GrxgnAK3W+dzyGuSpwsxVLdOiW78zZtLrXnYGVlVIDaoodfIULHNkzYXd4KFtbOdu4D/BdJNVr8uLGQUvz3nXAw1Z9+l2vkAsrnV4ZCzyrfP9zQe0LNCrkzrJhvYlI82q9efXe+rWr/2tmdP4Z3em+2IcjW3CTaD6w/sBmqbg9M/hMln/1lVfeK5VKfXcbueOEkF/9GmEjYD2Q1K133Gmsu/ba7qtvvNF4/tln3CkwE/hJIdtfftPts5575ulDP5o8+T10/aqlIO8VcnUENaV1N9j4kk8nv/8k7XjwPp/yxYAbb74lttMO2/+y1557fKPg56qER4b8cklERtMWEp7rrKGyK0bn1pYrlsaggQDHd1U78gq5sUB/qVWOQUdkKwVbM0BlJaVh6UmQKPAFqGcFPq9IOF81wuuh0Ywuul7zXDIW7ZaAX6fXk22sB95HjJUQ4zirPn2PV8gNQAM73gw50692oytMsJp+aTBK88xacjXMBR/ip9dHirMxywubCNnPUdfjBqPvRm8DlHMLdkMzj58cSTaM+63X9kewZc7m32SOW+qNpjxZHtgh0Ul3edBbcwyavubUdMJ+of2Y9vbog/eN3G2XnbcG/lIORaO+r47z4VSBq0xDbm7PAJwtuBuiU3t7pOL2MwBB5/juaMeznqmqX4FMDInqVxdLHN/+PZfgbG5DU9k8Blxdrqlv0AX6x4CrWiPWmq2cbdwE6Lc41t6W985nIvwKBvjYK+Q2Cs5fh1YPnRSMEzRH22j0SvU24AGrPr1UTYO5YimGdiAvJGPRsUsany24vVDqbUHFIqp8N8ieglr1jTcmeU6hYO+6y87ZslcumuFwKmSGXv9sypTHt99p580HDx5sV8rl9Sa9+tI31Vqtrj6RmI5SSsGDrkSO6FkfvxMNFrkP/ZxWQAuQoRF8TymlPm0vuAXw3luTovsfdOgFX0+b8mxVzL0VMjLsV8wgndUakVdHoJlEG/kKWQuRvVBqF0F9TDunFMhuJ4FzunLIXiE3Gtge2N2KJzv8BgIgxxhgFZS6Db/6vmjH0+yMVg/+XugjX1eNsNTEXB7EReR5NLjgpyV9P+2tnG0MKZgAsj1ijEPkVAxjN5DHjNz0ag0zhGER8puoRftgZr/Crx+C5KdhVoPuADHLWKkbqsm1v0SjTQ+JJBu6laH4I9syZ/NvtIAO/gV0JLFzwo7+s7NxGcddBc2qOxsYk07Yi2Xz9fKZ4WhRr3Ot+rQKoqSnDWG6ITwmIl+11jfJFtxrgX2ANVNxuz1VR4Mo/0AD/4iamGsAT4FMQE+2DnTtbALY9kvAoeiO9T4JO/rLQo3AuwDd5Hd6z4TdUlQNdGn2iKR6LZblOLjPKFoM63oM80c0LcwRLAEA4OUzA9E1mFFokbKbrPp0t5vqgs73Sej+kCtb7yvnFhho+HgLxYuClXyMPr4YAjJx5syvZ1919bV7iWmmzznvgvDFfx37wvvvv3/Sd99919InJCIroB3+TcCVTflFd6DUrv986+3d3nzn3dW/+uqrwjFHHvHYHXfd7f38c+M777z33ovBcTejI7CZwbHXNmu/BDLMR6CdyNdKqQcLbul1w69NNlVVWYnUWW0+Jx0p9aEV+k7B6iDHgJopui7TF91zNB+YW8GsV0g5THWCdJCv0E7JK+SOQMOdd2rNK+YVciF+BZ9k0dHqa4ujqynnFiyHZi1YB1hHwTo1CfWsiamUGGVR6gNBTVAizyTi8S6lzdubl208GfgbYn4Zyn8xvxZZblcV7YuR+YRyfDARv4wfimK481FmHWZhJtKqRcyP9sdPDK4ixs6RZMNvUqT9o9kyZ/NvNsctxdH53E2BvRJ2tNPoJYhyDkBDPM9Jt5qgOzMvn9kJWN+qT18UHG+hI4AG0+BSQ6RfMPSjmpa9XSwztOdkxyjD7FPB8HyMYWg03CRgQkhV3wrhP9SJs1kLjRj6HDgpYUc3aL1/oeMOQU+IGeD0RK2QRTe7Xtxal6aL+4sHx16GYQ5BRzPTgeOteLJL6v9254iiiThPQTM+X27Vp2d359gg+vsnyr8vWivNQFMNrY9efc8EPqqJ+UvNjGyrFBsD02uwqYBv4f9DhId9eLsmoVfm/vTTyv3691+jM2bo5tqXUmpREJ2dVJS6SYLaxqbyyZQvvhix9lprDUIj8BS6MXda81ZX3yPcleBWQdcP3wzVvPtE6/y00cxpz+5QKhZAF7kTwOZ1dqwGLfDjPh6hPwMDIlRfk84JWW10TctGp5F/RDuhLJqEcxvgn8BVVjw5vTvfQ2cWoO6GKFivJqEdfDE2Uhh9gJzgf2Ao/zFT1Z6ykj0XD6vONg4T5b+jULaZnUottSbgU5EwoVoZEZBKCSkvxCzptYpC8OMro6J9MLNTEDN8lbH88DN+6738kWyZs/kPmOOW6tBppR3QFPFdwiIzjptC9+X4aABBl3QiXj6zJzDYqk9f2er4Y9GIqn3CpsxCI9f6+EqtoxQX0wUztOdkT0KMDxHZy4olzgwaCkei2YJHCMpXYpyOTl9kgvs6C017ciRaBvq89ucNSD33QqmLQqr6Y0hV94+lei5WPiHgOrsJuALDHIOGyY4B/vFbSBuDvpx90Ki9j4HLrPp0p8qW5dyCBjTzw9Y+Mtwz61YKqdo/w375DnQn/o9eyF4fTV//PyZ+0UDVBCZUlEyrIteDvA+MTMVtL2CGngLc1h1maC+fOcWqT9+Ycdzb0wn7uDb7nKyB7vVZM9iGoqH2PrrYPpXACVmJVK7gli4HVLjmDQd2tRKpNrxx7dkdSsXCAWhSzWF1dqw9NdKf0QX/MxeTOtsVHX2ejkbJrYX+Da2KRqdVgnPECCIlOhX4a/k7293vu5xbYNTE3NAX82AfGY7IAFGqJMqfbKra4wb+S5FkQ5u0mz/vg838wrzX/NTQiArXI03zUbHlqYnJTTdcy733P4SIMHRwX8b97Rjq6urwk2voSCf7BVIr6ZRavP+I5hrOMuvaljmb/5AFvTO3AEejRbpOTthdN+VlHHcDNCzzaeCudMLuVF7Ay2cOBHpa9ekbWx37JzT4YEw6YU8M3j/k++o5BUMN4SgReaP1+3tOdhjQA8M8x4oltm39HsWCMwB4tSqhz9B5+MnABIG9RdgFnULbPWFHu3zgmrK/jHGN6CpKjE2B03om7Ne7uJ8G4DrEeAKRa9H0ModZ8eTsrs7dXQsIQfdESwt8BVwqyv8ZHcVtjXYyNfTq+w3grVIo1kP/W50XQtUp5CwFA038nIG6T3Rz4uRmqv5swR2BTp0+C+ybitu1gls6E90DtERmaC+fGQ3cWJS6s4EH0gn7h8WNhxZE4cr86oTWVJBUyNaCmiCaE+5E9Gf5vZVItdEGEpE9hw0bxnvvvP134MY6O/bX1vtzxdJp6OjljMU4mq3QkfVO6AjwSHSK7gbg0dZ1m6CHpg+dqM+2e212SotzSPOARZ05pYLjrKvgcERGAH1F+cpQtc9MVXtW4FUz89GFUnFGAdRiK+HHBoIYzJnfyIjtduSzd9/AtgwOPPgAdthxVw4+8ACkVsLITWuTUiOcmGCsuMNSCan9EW2Zs/kPm+OWjkI7nc+AUQk7+mNXYwOOteOB/YCL0gm70254L585AghZ9ek7Wx3bHx1NjU8n7BsAsgW3J3qSHWca8hq6Z8YB3o/UvDIwOkClXW/FEi39BK1rNoEY3HbAAQK7Ky2Pu4aCIclY5/dSzjbuBiyKpHq9udBxV0NHLQuAP/dM2C2rTS+f0WSeYixC5Ag0v9b1Vjy5VBoui7NybkFY6Z6Ok9HcYmXgedHIvDcjyYZfG0qLjviwWQ3j0hqyuUDFRL1k4l8k8FFnYmMA2YK7J/qz/wdwdMiQEJojLAT8z+KYob18ZmtgUVHqqsAW6YTdqbLokqzgljZBqZvDfvlRdArrLTRMexA66pAnnno68eprrxvTv54hD95/n/Tp26cXfm0LgblWIqWgBXU2APjzYhzNhmjKptfQTvsNdIT00W+VDwjO2+yUlqQ+G0cjCLt0SArmeYRXFvyDQbYWpXobtaaeZiUnZmk+RnkhtfpVUZE0P835ni22343JbzxHsk6x92EncMLJf2bbrbfAXPAe4rfjRxWzSXquuZqkh3TgQFxmv9oyZ/P/wRy3tCGaXsYC9k3Y0TcWNz4AAFyDRgD9OZ2wOxA9evnMiUDeqk/f3+q4uuB93k0n7EsBsgV3X3R/zv+k4vYUxy0l0FLPEdOv7irCqwYMsmKJq1vO3QlAwHFL+ytFPfAnFbAdoHm5JgBPJGO6obWcbVwXWDOS6vVA87FBam0UOnK7C7gxrpqGAJcixmBEysDBVjy5WPh0d62cW5BCy3Pvik4rvgM8r2ASYmyAdmrzgPMwwzOAjX04wsfY20diAl8r1AM+cjLI8Z11ybe3bME9Mri3K1Jx+6yCW1oP7XDGLo4ZOuB8O7YodbcAt6QT3VNfbW8Ft3QJUAvXvFWAW6xE6p0O7+VkLWCgEmMfkEtQtXGiHeJygPjIIAW+gXpM9OJgYbvNA45B5Gw09cstwITfKxuwtBY4peYG2cU5pgRBpKRqnqm87Ia+GUWFoigJIUph+h5G1eGW6y/jgusfImpF2GaLDbn/hnORigO+R6edXLG++xr9N3v0P3G//1dtmbP5/2SOW+oFPIKeqM8Erm0PW25vGcfdEk2r8jEwNp2wF7be7+UzpwM/WPXpx1odE0FThXwFnG/oJ+UZ9Ipx41TcbskHNDnZPWoSCsv/a++8w9yorj78nhmVlVba5ra2MW40gwnNoZgaCCVAKKGGQEwKJfT+UQMhCT0QEnpJqKGDMT0GjE1otsH0YtwN7tYWaaWVVprz/XFnvfI2r7HXNua+zzPPSKMZ6Wp2Nb+5957zO8J5BXGvwETHfRHycpW0FZt/YSLOHgPu85T7MBY5zfVUZol6L4Ty6VhJRa92J1CXJtMx4DJUjwhLvimADhAzdHZle+GyK0OubskQjLgchHEceAkztPVuqLznclFL2VSdi3pnq+oFiBPLS6BJxXGBhxH5a7MTRF1DZmvMBPqo8tLICiOQalPpCzBzOydVxKJ3pdKZazGRWJ06Q2frE2eHy6puSiTTNwCXV8WjXa5w2kwqnZmC6h+CXu5BYFg4XtHuMGxjuqEMM8+znKNzXUPmDFSHhDV3vR+S3BOTK9MDExm2A2Z7EBMgsggTJZelrSglgBr/tSzGjDXbztLU3KNaGfx5ziGYfKcY5sanqBaV+i4RGnCgXNAeblNqNyk0DsdxQQLgBlGC4DjULl3Er48+hEf+fjYV8ShHnnkjh+27I8cevFvHjQhXXuEM/OmfOt7BEljbDfihEo9GFiXTmX0w4nEDsH0ynfl9PBpJdnRMVTw6PpFM7wIcBYxNJNMPYu5+cwDhsqq/ZesTl2brEweGy6qe94/JJZLpozD5Gjd4ynmO8AeMZfyZGJsXAATGabZXlwAAIABJREFUBjT/S8Sd4Wp+Uk4CcWD/nARjAc2XJdOZYFGNlf4YO5QdgF+Wl0aaMDb8Y+saMqegumugkL02GygdkG3I/JSWmjzLhud6xKOpbH1ikSdOKIfbM4szA5XX28vNWRF+SPIOGHfi/TERUGOAk0LlPdu4OPjFxvYADldxDvHEzRRUCo4WagNeToCbBP4eLqta1pby0siHdQ2Zg4AxdQ2ZX5WXRjqNGMTU0BkC3FqbSk8POPInjHHq3al0pjNn6CXZ+kQvpORVYC//e3SZVDrTH+jrf48PwvGKvIjsiomI3Bw4W1WbgzSuArwlS5deMqA0dgPwTW0qXQCGIHJ2SaxCRaSporz8twfs/7M+9951xyBgGkZEzwN+F46Vt5hcJmtLaBGlHv7jXpjifyWY3nxHSzCbrBVM1N0y1IhYibZY6RTb5hCBJjGJn42YObc8Jmgi5H9mCCQEBBFKQIIES3oR9AvyennwsniaBc9h3LjXGLhBb3pVlQFw6D478M6UqZ2LDV5pJy9asGKzVolHI3ng/GQ6Mxkzxv1pMp05MR7t+K7ZL8b2SCKZfhoz6TshkUxfDYzxzT3/ClyZrU9kw2VVY/1j8olk+jhMYMItnnK6I1wI3FCbSo9udoYOxytS2WRtKcZd4IB4NHIfMCObqqtSEw32k2Q6E8BcQBZhLoRTW3vAlZdGCrnaRUOBY5tMQbOdMD2eV+saMnXAk6j3ZFhzfxZxfuaI/LsE7/yUukOAq5cm0xcAF/WIR6d0dv78SohbYcKbD8LcYT8L3BAq79m2NLQpNraX35aDFGbnceoVCSDyPsI/PJw3A/l8HLgImJytT1wGjGk2cCwvjUysa8j8Ani6riFzQnlp5LmO2lcRi2ptKn06Ji/nqbynOwYcOQFT6vlkTImE9ngFMy/2FOZmZGXdg/cHXhYT/fgSgKq+CbwpIpdhahslfEfnU4D9B2w48HjgycOOOOI8jDnoWSWai2VTuQMbk7VHff31tE2uvu76qZh5LsGYWJ5eLDQA4XhFIy1zJiuNH8K/DcZBPYgRjQIwB5ghMLsk6ERpNVSmyw+ZVfjHLaWDeZzg4kmjNN/wf+pGjH1EsAyN9EPdEIP69WLiR1+TzmSJlIR4/Z1PGDF86Apa7qx07/OHhh1GW8OIyCbAxZgM8NHN25PpzFDg7tNPPeUnsXh80n9ffuW6qVO/erLVsRWYoln9gRdVdXwima7CWPcPAy6qikc/8vM1rgVeCpdVLZsPSiTTDsYGPgyc5AjjMHeDy5yhs8naExF5EXFuDJfGj4S2czbJdOY4zJ3q9pg7ypuASfFopBEgV7toB4xDwLJSwLCs3smPRb3jAxROcFAnj/tYQdzrMHXuFWBpMr0r5iI7B7i0R3z5Mgm5uiWDMDlJR2IuIA8Dz4bKe7bJY8k2JEswF+7DgQMUPivgfO0hAxHZElNr6PbWggngVxS9BnNnfk5xOYO6hsw2wAvAOeWlkUdbH1tMbSpdiXFxCAA7BBy5FtM73TzWQYBItj5xVris6u+JZPpWjJ1Rl4MkUunMs8DDwUL2XODgZj80vwqoqOrDf/nzlbGzzjxzUiAQmBwpjZ0JXP7TvffZuKYmMezZpx6/IhQIHF5WVjYUc+PxRFmP3otzudwhjcnaBzBCc0U4Vr7CImIrIpFM98T0uIYCURGirsjigENaRHqz/JxLOUZEltB5hFp9pKSkdWkHB/MbGQQQbFywi1vz6YUarKCpbGPUDRNMz8PJp3Aa5vCnfzzO4y++TSDgsvWwQdz915MJh4IdfxE7Z7NCbM9mDaOqU0XkPszd1zLi0cj0ZDqz19y5c5/bfvsdfnrlX/58VzKd0Xg08lTRsbW+4eNIjLM0vqfauYlkejDw50QynUZKrizVxguBy7L1ib7hsqr/+Pt6iWT6VMyw3QOqnCxizBYxtdIBXkN1W4RotiFZEi6NN7bzNXbFDL/81l8+AkYm05kSUS/mOsE98oGSc0KtDiovjWg2WdsH+I3CuCYJXuWJszdm3idQ15B5Engy4Mj/8p7uiqmY+fTSZHpCUJtuLdGmPTEi42L8qPYJlfds4wicbUhGMQEBhwP7KrzvIZMLOGMQORAz/Hc38GyzQLZHuKxqJnBUtj4xErg9W5/4HLg0XFY1v7w0MqWuIbMX8EpdQyZeXhq5u6P3qYhFa2pT6QOB94CnPdUjHJEDgNtS6cxBsfbn6grZ+kQAKfkAc6f/fkfvX0zK5HTt7nj5cwC3SGiOwNyovCwiA4877th7vp03r/fADTc8uzFZ6+Vwy6ZPn77l6KeeDJTFYptvPWKH2s8/nrJFOFauIhIFLgwGg9tMnDT5+O1/POLqrgpNprHRwcz39AP6eZ5uWlDdVaGXQHnQkajjIAJZEVmCEYuov56FScZtFpI2ItIRfiXcbTBDeWCG5r4AXhQIFUI9Ni/03FHVCUgwOR3HyyP5Bpyc6RBfccaRXHHGkV35KBONFun13op3/GFjezZrAd9cs0JVR4tICCgUl0tOpjMb/PrYY9984KGHBtXX140uKyv/Q7youqLfwzlaVdvUWU8k0yMweSSLgWtKtXFvzA/uuuahIN+t4BqgUmCOCOcAwypi0YUA2WTtWTiuAFPDpfEX2unZvIKpyDgZqIpHjStvrnaRAH9scktu89zglrRM0iZFvfeDXtOVmAnySxG5tjks1u/xbEFLFdI48JSo91yokOnXROD8Jgls5uK9HdDC2aXllR+1/t7ZhmSc5iRUM1T2jgev5nHLEDkSM/RzH/BgPBpZ6SEeP0fnl5he5H+Av4XLqjJ1DZnBmGz5W8tLI506/tam0rv5+z7sCs+JyFPAL2PRtj2jbH1iWyDWICVTgROr4l0r5ZxKZ/YFLgoWsvdgAgMuab1PY7phywXz539QXd3nHlFvQB5nGw9nQZD87wU+LIlXtKkr1K9v372OPurIO197/fWFH3/y6c/TmUwtpsfXD+h7/nnnHfTSSy/t++lnn71MS0+kDPA81bpPPv0s+ptRvx485vkXXu7Xt3qsY4ZX5wHzopHI5Ri3gW9V9YnW7e0KflTldhihApNAOqW4xHYqnSnHJDyfBSSDqVlJt37adhrth5OZhxQ6vO/oHJtn0yVsz2YN4/tXHQ5ERGQKJjv+McyPDRE5HagSkTuAuVf88Y/33vj3mz9PpjPn9unZ491MJnMw5k7xpfbevyoenQwcnkimtwOub5CS2rDm3g7g3ZitT1wQLqtqqopHNZFMXwg8pCZU5xtMQt5Ry95IdQwiF2CGipaRTGeqMeGjBwHjmoXG5/fAQ6XxssWYeQkA0qnkEFGd5OEM9sS5yHPcd4Fw2Azh4Q+ffeovV6Traw8QvEtE9RRPAk2I+4KDc34eZ+u8BB5rTKafBG6OOYUmTEDA4ZiEzPEKzzbhPu8LzMWYfJffABNXFO3XGeGyKg94OFufeAYjtO9n6xN/LYFHGt3IbpjAiDhwZUf5KBWx6ITaVPpE4N8F5cuA8Azwj1Q6MzYWjSxttfsU4IyqeHRCIpmuXommHoD5m/0MY0a6jGyqrofCwYh7Y3V1nwzqLc3hTvFw6hA5rqS03Ms0NjrpTKYC6JdpbBwJ9EV1g+nTpx2PSNK76OKBDzz08CTM3665JzL/+htumDZx4sSBmKqn87N5z/OU3YHYtK+n1u3707361dfXBzYZOuTvqlrbqs0LaQke6BK+0e3WmF4uGBeESfFopM3cScrUmToTIzSfYuapxkig9AKN9NnKSc0MCN/xX0PcHCWVK/T5s9iezVqnvbovxZx2+ulbXH3tdZdiEjs/wdxZP9/VC2cimd4KuFBUo2FyTS7623BZVb3/WhgTyvuqI1yJ7wydTdbuCSzFcW8A9kW9CvyeTTKdORLT8zgTuCEejTwAkKtdNBLoGarovdxkdjZVtyuqz2IuKDuH4xWJZDpThskyb764COotCuUzm4lxWPAwxqTPZAKlAzARXIcBA1X1v6j29WCnABoIir4mwoNNuAt8gTkSk89yHzCms2GyVcFPQP0Lpl7LKY1u5BvMxP4bdJIACVCbSl+N6X3+PuDI34BnY9HIqHY+o3ne5jLg3s5KigOkjDHqNFQPDnq5Z4DhiPwYM5S4DxBRcVMg2+I4l3vQt+BxWMDhIxHpg/m7epjgDzP/oZoQr3AE6OTd9vzpFzNnzKhdvHjxve31yKt69Lh72qy5E4HSefO+XdqvX/9nq+LRejF/l8GYhM9/Yco4LHOybkZEbgIuaL09mc70xFjfFIUzsxj40A+y6eh8DMdEzP0S839+XSwaeSubrK3CJEu/Eqz54Egal57f2XntlJIe1huti1ix+Z6QTGd2wUya74IZx74oHo1M6OrxiWR6OKpXOnhbOfD7srL4OH97JTBO4EsRdgU2j2guA5yI424APIF6M2kRm1sxdixPAn3i0Uh9rnZRD+A3oYrexYmgDqr/h0nc/A8ix7eXTZ6rWzJE4SSQwz1xP/Ic92XPCczFDHvNAz4Lab4KOMSDYz1k2wJO2lNCCjM8ZZCAuA5LHJG7gIe+yzDZdyVbnxgB3AU8k3VCt6m4ozGGoSeXl0badSGuTaUdzPnbzxH+5ohcCuwbi0aWc4jI1icOBaY0SEklMKIqHm0zL5RpbHTxh7M81e1V9SoH/UzQbcABIQuSxThF1ICOABmv8HqTxzEBh8sdkU+AeZGSkuXC7rOpur6Y6L47S+IV9RgLmpcxTtpHAI8trW+YB+x/5223HnDzTTfulstlb0skEreIyM3NbtTNiMgVwN8xva6Zqvquv/3XmJydsvqG9O3Apiwf3rwE+LRVL7pdfMHdDTgfY/z5EPC35rymbLJ2X0z49+3heEWjNtYEdOGk/5CtW/lhsHDFE9JnxDFSUtmh4FlasGLzPcK39P8ZZnJ+K8wP/+J4NNJpiHAxtfWp7UAf9XCmIXIl8C4mQudFgbgIz1XEon/IJmvPxXE/BzZFvQdoEZtXMJPVG8WjkSNztYsc4DLgmlBF7yyY4RpUHwFGgp4cjlc+VNyGXN2SAHAgJvy3HOPo/HiovOeyzPNsQ7KfB78Bc1esMFGRtzzkG0Q2V+UwIOipZhV6eUoGkzt0Tg8zlLjGyNYnwsCfgD085NScW3IVJolxVEeFxWpT6VJMvfpqV5glxqV7y2Zn6Exjo0shP1i8/CgvEJ6Y9zg76Mp4lo/OimF+wE2gYU+1P1Bw1ZsLTFYncDUi8yIlJcnGdIPgOzo3qezuIU8AV5WXLu/V1uwEvfmwzdKT3337547jnB+OlbcZst3/wJ8PeeiRx36CCXR5sbWrRWc9dhGprm9IL8FEhw1g+byaWZhw+i6XCwBImTmbYzH/UwMxQ4j/iEUj8wGyydoyzPDZ/8LxiuU8/LSxJqCLplxFtvZMtNA6rqWdL2Dq2UjvbS62QtN1rNh8D/HDOI/ClJYeipnz+WM82n599NZk6xPBAnJ7jmClJ04Mk/A5E3hIYJAIu0c0F5ZUTZm6gfPd/z0yoTDyyGOdd558OLvzMSO1tHwg4pwej0ZG52oXnQiMDVX0ngmQTdXtgAnpbkJ1z3BZ5TJ3Zd9R+RRMRNkbwJ2h8p7LhDLbkNwQM1x2OMYpeIzC0024TYgcjKmFsgQjdu9iQqNRpVJVt/Bgf08ZDixyhFsckZvLSyNrzDolW5/YEbhT4dGsU/IjRPoDh5aXtszH+D2R3pieyPCCp/8UkXoHqkWYIyIJTBZ8AVgk+VyZBkLj8gXd0XW4VWCheIUKtLCFmKTUasy5fKVJgucick2wkL0cODQcr5jf/LmN6YZfYyLwtsmqcwIwqbw00qbcs4jsPXyLzUf9bL999zn/nLMP6NVvwHKVVBPJ9ECMmWkW47vXeq5pOZLpTAUmTL4nLdVQwSRefgl8sypzaal0ZmuMwPwKU/rhduCR4nIO2WTtHpgSEbeH4xVtwuOb8ea/twvZmjNpSh+IFkra7CBum0qdlq5jxeZ7jO8k/VuMbUxfzMTwLcDYeMfZ6cCyypbne5DOSImHucDPB/YWL5+Njbl2Ev02+bn23zQgr96Dt98p8PFreH02Ir/5bkSeu+FpHXHgq9pv47mhit7PZ1N1ApyB6nWgb6K6X7isKg/LrGPOwdjZ3wn8O1Tesx4g25AcSovAbAiMVhjdhBvA3GUfhLHPfwp4Oh6NLJdz458HwQwlbaJKP0/1ME/ZF4g7wtcC9yDyr+bSCN1BprExAPRGvcFSyJ+vMDwvgRoP2Tjg8L5jIghL8UUEf2LdU40WPD0Z+MgR2QrYMxaNvNH8vtn6xDmIMyeLe2IArXRFyzAmruOBV8Kx8umwLNJqtlto2tLBGx2OV2zX/B6N6YbemLDfm7PqzAMGl5dG2kSpAWRTdUcBF+28+563v//BB1+r6ut+9OJOmCHc2cAzVUUuD0nz2Rtj/gatqcU4DixZFVEpJpXORDBzc3/AFFZ7FCMyk4vDyLPJ2qi/z0fheMWrXX1/TXw1UDOLdyDfOMw4AzgNBEq+kEiv96zZ5nfHis16QDKdiWIqI56KmUidhjFFvC8ejbSO/FmObH3iGGDTHIErm3D3lWzDAxqK9ghOfYuSxBy88j44U9/BG3kE3oKZaLwH5LOE3noM3WLXgrNo9o2F/U+/Rh33HmBvVG8Il1X+CSBXt2QEZux8CMYW54lQec98tiG5KS1hzr2Bpz14JY9bisjPMUOFH2MEZnQ8Gulylc1iEsn0CDWOCjs7EHKET0TkdeA9EZqjllL4pZHbi2RaJiKduw43i8hCmifWvUJEvPxBedypBXG3BI7pyN6mNpW+ELjagRmOUAho001irHd+jGoedFYT7vgm3JLKeOlV7b1HKp05HBgVLGQfBbYIxysubn6tMd3wCLBlVuUMkJMw9kLL3Yz4NwvnPPfCi8eddMqpoxOJmurS0tJL5sxftDuwlSPMdIRvRaS9CNZ6TK9i8eoSlA6+46aYXswozLm+A3ggFo3UFO/n1/05EvP3+Vc4XtHpb8CyZrBisx7h3+HvihGdX2Ds8x8Gbo1HI21yU5rJ1id2R/UY98V/9mTe1F+kDr0Mr+cA3CVzCaQWE1gwFYZsS76pCa/3IMJj70R6boB8Oh7iPSgcfF4D4Wgd6v1K1BuPqXlzPuYCfJ2K+xpuoDiPpkzhqQLOlx7SH5F9McNmb2CCD56NRyPLkjVTptppNWZ4aWVIAwuyBfUwk9tnffrJxyVvvP5a5ZT33190yaWX3T1s2GYfitAfc2dejbHiafb2CmOis2qAxWLu6qeJyCyKstYjJSXtWpX41UavLeDs3OSE+iNySnlpZFkeSTZVVwH8WGHnHO4fPKSXi+CIjg1o/i/A++FYeTpbnzi7QUr+DvyzKh49rb3PSqUz/wbeCxayuwB3huMVbwI0phsOBMYUlMPyOKcCh5SXRlJ+QT9j369a5WrhRKCyIO4NiDR5nm6usKUI/3NMiP4CYFGRN94awf/bH4Lpwe+MiWS7A5jQXjKsP2Q2Eng8HK9ot0CeZe1gxWY9JZnO9ANOxOQWVAP/oyUceHHr/fMv3XGX13vgCc6H/0Ubakn+6gacdA2B5BIKPTY0A+35RiQUoWTC/Ugygcaq8Pb6LdQuRD4Zdxu7H/MuxkPtC4UbCIShRWACHowt4NYobIpJbJ2NmX+ZCtSLGYapgjYu7inMnWyHJqVFOECZQCVCH3zHYjFJijFPqfjPI4/Ex4we7dx+113ZyvLygIgsBt53hOdF5AvaERG/99jXX+JFn9fRD6j5O6jj5X+MeqfnJRhz8D538Rp8J+UGTN7HlALO1DzyD5BSV4gj0jx8SKCQHZV3QvfnPf7oOlwpIi6mNxUHIv7nPIzqWQEvf3XeCZyAiAcaddE7VXk3jzNA4CYRFvptawQWOFqocbVwm5g5u/MbNDgUE2n2dlU8+kYXzvdqJ2WGh/fFzMMcjGnbg8C/Y9HIwvaOySZrN8MMx45vHQBgWTewYrOe49t2HIoZu94Nc3Ecj7lDfCYejXzrvXjbLvr1e6+pasgb8XNkyVwKmRTpA86h5JtPSGaynPzHa/nsazNdcvsfz2HnQVXIlnsi0yYjS+agm41UwpEntbTqYRx3Z+BwhbyHTCnghIAfI1KKuZDPBmYKzMDcMTcvC4FEe27ImcbGIG1rlrReRzATz60LaRWv5xc8zfziF4eefPIpp+2++0/23FlgsSsERWQosFSM+L0kwhvAJ7Eu5upkU3UOJhJqy6Jlc8BV1WmqOqTJCQ0F3haR0/y6PcvwPB2m8JRAkyN8hcjRgLqF3I4gtVkCI0R413VkKkaAU0CjmJyle4OF7AnAeeF4xREAjemGW1U5IIdMAflbeenylVSzqbqewGjgiQYNPgQcjzHhfHxlvNhWB37I8kiMwByJEcNHMD3zjzqw9CGbrO2NGVabATz9XUoUWNYMVmx+QPjZ/4dghth+gnGQeDfw1dvRwOQxP3LqTYfHGzoC7TmATO+NKVRvxBkn/JaRO4zguJNOw5v2Pil1iQ3eAhrqCFLghYfvZfzkj9lg+LZNp511zkIct1YRYzEvMv+eu+6qvemmG0s/++LLfQRmFV84WolIR0LSLCLtlQheto6UlKww8kxE9sNMKg8FLl9S35DA3BGfBITF9HAqRGR/gSW+u8IsEVLATFSnOFqY5+L1wISMD8bMSQ3H9MpmYXorn/jL58XFxDL1Nb/IO8H7FZmlyM7lsWh9cftqU+nfAP9yBByRU2PRyG3Z+kQIOKFBSsYBe7Su3plKZ64AwsFCNgxMDMcrHvUdnd/MqTyhyCvlpZF/FR+TTdUNBZ5W5ao0wXJMJv59VfHoCnNZViepdGZzjMAcA1Ri8o8exgyTdRj+nE3WRjAi4wEP+G7TlnUYKzY/UJLpTBXwcwr5X6G6N4EgsmQu7pxPcOd9iaTr8LbZj4WxDdhtjz35/PmHcVCk71BwXCjk8NINNFX259U3xvPmhPHEYjHOPvvc2cFwaAIw2hU+FpEeQN+99977jLFjx77F8kJSQouIdNgT6YqIrA6WJtODQI8FfiWwwEEXiXGH/pFAzsFrErQgIllF0kCdoJNFvRcddFI4Vt5meLI9MvU1PfNO8E1F+ot6+8Xj8beLX69Npe8BjneFrIhsFotG5mbrE+c0SMlNtDNvk0pn3kH1oqCXuxPYRt2gB0zJK0sLOO+Vl0bOLd4/m6rbXpX7srgPFXCagAeq4tF2h6dWN34PZhgmyvBIjCfeCxiBeWFFvUi/BMZRGGG6PxyvWNLZ/pZ1B+uN9gMlHo0kgPsLz1zfqHM+37uw4ZYUhmxDftgu5LfdHwp5nMWzmffWy/SSDH/4/W/4aEGSbfbYh+uuu46SeC8k1gs3Xc9+Ww5mv+EDeeaNd5nw5oS+O++8y0HBYGA3NxiYjhmWmec6joOJMHuFlp7IGrmLzqbqXEyvoydmXqjddUzoC4RVWVJAsk04Q/OwgaiOdWCih9NXHDkUU3nySeBZV+iNuHsX4MCmdGYmJsDh846GfQAiZZVLgGHJZPKfnrgTUsn6m4Kav6DZKBU4HfhxQdnCRe9OpTM/C8LMUm0c3CAlJJJp8WsXNbs8Dw94uSjwTjhekW5MN1zpKdUFZAawnJVKNlX3c0+5vpHAfxUZXRWPfr6aTnOHpEwNpJ0x8y8HARsAr2Hq+TzVOpqsPbLJ2mbboibM5H+XhN2y7mB7Nj9wCg9dcgULZ17e/FwBrexHof9meP0346PnH2HXS25nwqk/ZYeBPTn9qyjxqp5cdtllSLoOJ5NkwhvjmDRpIrNnzeKik0aNPvXWR9OXXPbH3OZb/mhTgZo7bv3nrGuvuWanjYYOffat8a8/TktBrNbr5sdgej0Rf+nK4+bnMVpEpAozPFTACMQSjKdW8br48YJwrHy5O+ulxj9uf4w9/0bAY47wmSOyCybwIYlfhdSBBhH2x9ytNwLjgNdj7YRUN1OfSu2tOKNdLcwOaNMeJWVViwBqU+khwMcCpY7wy1Ch8RnMUJoHjK+KRz8DSKUzI4Ebg4Xsl8DD6gYXqPJBDvkKZOfy0khd82c1Juv+kMc5twnnH4rc0p3zMinjf7cvRlwOwPwNnscUghtbnHTZGdlk7Q4Yk9W5mDmZdh0ZLOs+Vmx+4BQeuOh6Fs8+r6PXF9Rn2PmfY5l+yUEAvN5jJ2549AWeevoZaGwAEQiGzdAagCoLFizIVFdXpwXNqNJUQEtUJQo0uXiLXbyFjpAWExXl+otT9BjMxTrTamlvW+vtDbSIRyIcK18p25POWGoKfR2FsUVpAp5xhOmOyEiM8BRoEZ4vRdgDU+6gFGOl81isKKS7mbpUuhcwzsEbGPDyh0XKKv4LUJtKHwQ86wgpR2RQMJ8ZlUvWfay59NGl7z/1DZ5Xmttq/x95FdUaiMQ2ViewmYr7VhMySGFkeWl0GpieXUH5Zx5nLw/nyIp4aYdh8KtCKp0ZhBGWgzBzgtMx4jIGeLezOZhissnaAKYXNARjqjrBTvx//7HDaD90nM7L2VaXRdigIspXi+rZtHcZbz7zCJv3HYhk6pEF0/B6DYZAEGf+DGTxbIhXvVQ9eNsngD6K9EPo6/rzNKraz1O3ZwF3mCqI0OAI8wS+FpFvaX/eZlGsE2ffNUmPeHQJJln21qXJ9BDgEE85z1ONAg8IfOYIW4vIfzwIozwJPC4wyRE2B85MGfuWMcCrzRff8lh0cV1DZmtP5facExyjybobXS1cUlFWNaY2lf63p/xGmtLPOh88myupW3R1doMfhVhsEtm1kMed8zEikpdgeFJuo522AM5qFprGZF3vPM6rHixwYMuyeGmu7Tf7bvjW/T8pWgYAb/nf7/SYb5/kV6e9l1bVaZsRkVOAHhXl5bEFc2fNwIjzmHC84qnW+1q+v9iezQ+cwjPXH8WMKZ2WNf7w2xpOemIiuUKBwVUx7j1qR8p79oIh26JlPWDBTDSOFcWrAAATlklEQVQSp9B/GN7gbVI4rosprPa2v7wTi0YW+5PDFUA/Ve3vqUloVGUzoESErCMEBXqISLM3VbPlfUcBBM3JlWtNlJYm030wd/OHYkKfXxSY4ggbi8hhmO/8FKbHM1mEA4G9MfNZ98eKSlLXpdLHAncHNP9+QPP7NqlIwWO+BsOxyLi7cGKVZGO9iUx+EgUaj/grwcQcnC/fpGmP3+HVzNfIB6NvcHb55cXpkqp9PeTfgl4Vi5f9fVW/Z8pEMxaLyxBM3Z1x/vK/WDRS396xxQUDi7dnk7U9gAOSyWTvfQ446IB3Jow71Gb8r59YsfmB401+YaC+/eSXNGXbGg92AXUD6EYjoNdAZN7XOYZut0XjRjuGMDkTIzGeWpthLHTeLlo+Lx5WSSTTJRjvrb0xRbGSAlNF+NaVduvRF0e0gZluarGL6bhG/cLuFKWlyXQZZo7nEExZ4nECEx2hn4gc6rf7aYzwzBLhOKA/MBZ4LhaN5OpS6S2Aca4WNPz2wx94iW/2yxx4IU4+R8mHz9EULiP0xesQDJPd/1yC6Rq0KUtT1UBKnrwUyWfJ7nPGDK/34GAA3S8SL1/pIAD/xmBDYHuM4edPMH/Hj2kRlwmxFdghNVMsNq//96W+222zzb4lJSWVQOKlV/776qFHHHUO8A9Vtd5j6ylWbCwU/n3eEyTmHb4q76Ei6FZ7v6Xb7vcxsBS4P1RZPQ0glc70AHakRYC2x8xvvIsRng8wF7HZzVFciWS6B8YfbEeM+AQxZpLv+svckCtgeg0dJXl2JEod9ZSKH6+yKPnBBXthejy7Y1yOP3CEqMBuIjIYk1T5tAOuCAdgjCsfLCjznYbEpxqKbFAy8QnypVXktjoANzEXt34hzrSJSDhKYYs9cesXkRu0HaHx/8JZPIPsnn/ATScITn3rpsBB557TlbamjOPECH/5sb+uAj7DJAGPA8a3U1F0hYhIdVk8/pfBgwdtcuN1175x0z/+uXF5WdlVDz3y6Cf+68/6nzNTVdvU7LGsH1ixsdDsIEC+acW1PDoiEMzJxjvs5ex/yv9yNQv6YoxBN8J3KwhVVi8Lc/ZDYX9ES89na0zBrDRGdD7x1x9jMvjrE8m0g7mz3tFfNsREgk3EDOV8BixoDgkuxr9LL2d5AepImJrtX5pFqTNBau4prdAvbKlxTh6O6bn9FDME9ZFA1hE28d0LngPGOrCBk03uEnj7kZ8VemwYbNpiL0JzPyJXvRkaLmXmpPGMOvEP4AYgEGbWnDlcetqJnLnTBuR2OIrwJy/jTH0LcYM5GTpiL2ev3y/nHJBKZ3rRIizN4lINfIUZ/pzkrz+MRb9biYZssjaGuanYAjM3vBR4PhyvSKyoOq1l/cSKjQWAwn8uv475X3/38rh9N77ePeZPy+V05GoWNFdNPAwTMfZwqLK63UgoP19kGEaEipfemKz8ZeKDGZKbkTMGmz/GFJIbjrlgKqbOzacYAfqsKh7tUk5GkSh1padULEqL6VyQmntKy0RpaTId/vc9dx/x1BOPn3/cqONLjjrmV1mBRSL0FBgQWDwjdc/tt2yYaMiRz6T4vxvvxEFRN4gUmiikapkzdy6/Pe0cZs+Zw4R/Xc+A7fci/MY9OIlvOO+piWxQ3Zto/42+PO7yv9+NEepN/XVvTKTY5KLlg47mW7qCnwezM8YNAkxU4HvA5+F4xWqLCLR8f7FiYwFAF84MeK/c9R8Wz1758ri9Bz3h7HPCMdJncIfDTrmaBZUYS5KtMRe3R0KV1Su8uKXSmT4Yj7Fm8dkSYzVTjnFjnuEv04EZqjrTUxoLSiVGvIZj8m48jGjNwVjQfIPJ3ZhXFY+uVO6GL0pldCxExdtai9JygvTPf9xcOn3a9OyNN9/8at5jqMJ2qLeXk1wyREQk64a56KzT+MdfLsOr6AfhCOop6U8ncO/z4/hkxrdM//orxv/3JZwZk9DSKrS8Dzf+62E8T+nfo1yPPv53r+IEpmB6Ll8CX3QlkbIjssnaSoxL9jaY4Un1z+c7xQXbLJZirNhYlqELZwa81+67isWzzuzSkFogmKP34JudPUdd3JnQFOP3drYFjgaimEJgL4Yqq79dmbam0plKzFDUUH9dvGzo7zbbXxap6iIgp4AqIYWoKpVqhCiEyflZSIsQFS/fVsWjKz2cVCRKHQrS2LFjh6TTDT0PPviQcC6Xw3VddUWTWr+kLNOY5crrb+LEU05lw4GDyTQ2UhqNIk0Znnn6aWbNW8Qdd9zOXnvswS1/vRRZMpdQZilO3UKkbhGSWsK5j7/N5Scfd0zVEf/3SFfbnU3WBv1zOATj/RZutUsNRtw/DMcr1qiXmuX7ixUbSxu8F2/bRRfOPJPkkgPbjVILhhuJ93he+gy52dn/lO9s5+4Lz9aY6K1+mCz/l4H3QpXV33ly3reoH0CL8PQuWvoUPe6FSSJt9MWoBpOs6WhRoqkqQUxAQyMgauYg8v7zJv9xE5AX87jgbyt+XBDBwQhbWKBkzuzZZX/+85Ub53K50OVX/Knhmaef7nHkUUe5G264YRjgqCOOYNhmmzJw4EBGHX88F1x4Iddcez3h95/BXTKLpvql9Dr5n0y67WI+mDGPwT3L2GGTAeAVePC1iXyzuIb6TI6rL/2/R7xNRj6HyV9pL+qw+SJQXLJ5DqbHOMuaXFpWB1ZsLB3iTX5hoM79YgcaaobheaU4TgOllV/IgGHvOSMOWO0hqrmaBT0wFic7Yi58E4GXQ5XV3eKDlUpnHIyhY7EAxTE9rg4XNUmccYw1juO3tfiHpK2eC6BqhCfnL02qRqDUXNzT06dNaxoydKP5wW8/28H59rOdyaVx8k0QKkHKe7GgIU91zyrk/Wdxs2nGfDSb28Z/wUsXHMGC2hTV5VHj5NC8uAHwPOgx4I7CzsdciplHydpsfMvawIqNZZ0kV7PAxUQz7YcZ6lqEmeuZAswPVVavl/+4uZoF5fL5+JvI1P+GeE9AILkYWTQD6hYtV1XumHvHsc/m/Tl+p006f9Neg65wD7/sT93ZbotlRVi7Gss6SaiyugC84y/kahb0xsz1jAL65moWgAl9/ggjQNNDldVtjCVF5ADgJFU9qJ3XfocZSkup6i3d9FXaxR9CHISJpNsKU4YaoJ4eG9TJ5DHw9XtIB4VA07k8r345j9uP2XnFHxYt/2K1NNpiWQWs2Fi+F4Qqqxdh5nNebt6Wq1lQhrlQ/wwY6l/Ac5iQ508OPurYynA4HM1mszM6eNtXgXMxJpndQq5mQYiW4nDDMRFyIcww22xMgMQtocrqZcmS3uyPBmqm/mTQDl0doqEAi67/1YobEAg1Sr9N31ulL2GxrAas2Fi+t/ih02/6CwC5mgVhTCLh8Fhp6THH/+ro8LgJ/9t49KMP9tpl5I6JWGlpwXGcRmBBNjF/AfD0FiNG/jxXs6AndNCNaJ8gpldUXbT0ocW1elmTMFFuCzDDgA+GKqs7NcN0tt53duGLCc9Tu2CVXB0AiFU972y9r7WAsax17JyNZb1HRP6uqmeJyDXAn7KJ+Xzx1dQNfn3CKedVlJfF+vTuHXzo3js+Xsm3LdAiIs3L4lBl9QrdBLqC99o9u+j0ya9RWAVXhw4cBCyWtYEVG8sPhu+bTUrh6auuY+H07+7q0Gfo9e4vLr5gxTtaLN2Ps7YbYLGsKb5PQgPg7HrMxfQY8MR3Orjnhk84ux5z8WpuksXynbFiY7Gso0ivQXnnJ8cfQ5+h1+MGu1b0zA3mqN7oemePUcdIr0HrRNE5iwXsMJrF8r3Ae+2eXXTxrDNJLj2QfK5tlFog1Eis6nnpPfhmO0djWRexYmOxfI/wPnxloM77agfSdcPwCqU4bgPR8i+k36bv2agzy7qMFRuLxWKxdDt2zsZisVgs3Y4VG4vFYrF0O1ZsLBaLxdLtWLGxWCwWS7ezat5ojUsUVdACoKCeqdqhnv+8AKrosuce4HW43/LvUWC59/ZarbWAtt6v03Xz+xYv/jav+DmmBghq1sry+y3bXrQuFFrWXqvn/nHaeluhYI4v+OejeO0p6rdJC+YUU/D8JmrR6/ivKzTv5x+z3LH+/lrwUFU0b86dlzdt8fznLdtNW7y8h6qH5ts/Tj3FKxT8tdmnUPD856ZdXsHDK3rd818vtHre+viC+U9ZttaixyuzVkyxGPW3XaFa7NK/ThPe7gQVx8UJhBDXxQ2EMM+DZh00z1u2h5bb7gRCOI7guA6OI4gjuK5j1gEHcWh5XrxdBDew/P6hgIPrrwPLnjst212zDvvP3VbHNO/jiBB0BVeEoCM4jr8WIeg6uAJB18ERCDoOrmPWzceJgCuC469FWO5xy2uY79H8uiMI/loV8fLm9+YVEPXAfy6Fzraba0TzsZpvAq+ANuXA89B8q3VTzrzevN+y/c3ayzehBQ+vKY8WPAq5JtTz8HJ5sy4UPc7l8TwPr2gfb9mxSqGpgFdQvJxZF5oKZnuu0KXXPVVynlJYtqbVumV7k7a3n3l8h87q8PdlezYWi8Vi6Xas2FgsFoul27FiY7FYLJZux4qNxWKxWLodKzYWi8Vi6Xas2FgsFoul27FiY7FYLJZux4qNxWKxWLodKzYWi8Vi6Xas2FgsFoul27FiY7FYLJZux4qNxWKxWLodKzYWi8Vi6Xas2FgsFoul27FiY7FYLJZux4qNxWKxWLodUdXvfrDIiap612psz/cee07aYs/J2sOe+7bYc9I+3X1eVrVnc+JqacX6hT0nbbHnZO1hz31b7Dlpn249L3YYzWKxWCzdjhUbi8VisXQ7qyo2dtyzLfactMWek7WHPfdtseekfbr1vKxSgIDFYrFYLF3BDqNZLBaLpdvpktiIyH4i8pWITBORC9t5PSwij/mvvycig1Z3Q9c1VnROivY7XERUREasyfatDbrwf7KhiIwTkSki8rGI7L822rk+IyJVIjJWRL7215Wd7FsmIt+KyC1rso1rCnvdasvavG6tUGxExAVuBX4GbA78UkQ2b7Xb74AaVd0IuAm4dnU1cF2ki+cEEYkDZwDvrdkWrnm6eE4uBR5X1W2Ao4Hb1mwrfxBcCLymqhsDr/nPO+LPwPg10qo1jL1utWVtX7e60rPZHpimqjNUNQc8Chzcap+Dgfv9x08Ce4mIrL5mrnN05ZyA+TFfBzSuycatJbpyThQo8x+XA/PWYPt+KBT/Fu8HDmlvJxHZDugD/HcNtWtNY69bbVmr162uiE1/YG7R82/8be3uo6p5oA7osToauI6ywnMiItsAA1T1+TXZsLVIV/5PrgCOFZFvgBeB09dM035Q9FHV+QD+unfrHUTEAf4GnL+G27YmsdettqzV61agC/u0p/StQ9i6ss/6RKff1/8x3wQcv6YatA7Qlf+BXwL3qerfRGQn4EERGa6qXvc3b/1BRF4Fqtt56ZIuvsUpwIuqOnc9vpG31622rNXrVlfE5htgQNHzDWg7/NG8zzciEsAMkSRWSwvXTVZ0TuLAcOAN/8dcDYwRkYNUdfIaa+WapSv/J78D9gNQ1XdEpAToCSxaIy1cT1DVn3b0mogsFJG+qjpfRPrS/rndCdhVRE4BYkBIRFKq2tn8zvcNe91qy1q9bnVlGG0SsLGIDBaREGZid0yrfcYAo/zHhwOv6/qdwNPpOVHVOlXtqaqDVHUQ8C6wPgsNdO3/ZA6wF4CIDANKgMVrtJXrP8W/xVHAs613UNVfqeqG/v/mecAD65nQgL1utcdavW6tUGz8sczTgFeALzDRRJ+JyJUicpC/271ADxGZBpxD5xEw33u6eE5+UHTxnJwLnCAiHwGPAMev5z/utcE1wN4i8jWwt/8cERkhIves1ZatQex1qy1r+7plHQQsFovF0u1YBwGLxWKxdDtWbCwWi8XS7VixWcOIyCHtZe124TgVkQeLngdEZLGIPF+07WciMllEvhCRL0XkBn/7FSJy3ur5BhbLuo39raybWLFZ8xyCsYpYWRqA4SIS8Z/vDXzb/KKIDAduAY5V1WGYEMYZq9hWi+X7iP2trINYsVkNiMhoEXlfRD4TkRP9bami1w8XkftEZCRwEHC9iHwoIkNFZGsReVeMMeUz0olxIvAScID/+JeYiK5mLgD+qqpfgok8UVXrPWb5oWJ/K+sYVmxWD79V1e2AEcAZItKu5YWqvo2Jaz9fVbdW1enAA8D/qeqPgE+Ayzv5nEeBo/1kyB+xvFHecOD9Vf8qFst6gf2trGNYsVk9nOHnjryLydDduCsHiUg5UKGqzc679wO7dbS/qn4MDMLcqb24Kg22WNZn7G9l3cOKzSoiInsAPwV2UtWtgCmYzPjiBKaSlXzPAf4w24cicnKrl8cAN7D8sADAZ8B2K/M5Fst6jv2trENYsVl1yjE1MdIishmwo799oYgM883tDi3aP4nxIEJV64AaEdnVf+04YLyqzvWH2bZW1Ttafd6/gCtV9ZNW268HLhaRTcCY6onIOavtW1os3z/sb2UdoitGnJbOeRk4WUQ+Br7CDKWBsb54HmPp/SnG8BDMWPLdInIGxo9pFHCHiEQxETG/6ezDVPUb4OZ2tn8sImcBj/jvpcALq/jdLJbvLfa3sm5h7WosFovF0u3YYTSLxWKxdDtWbCwWi8XS7VixsVgsFku3Y8XGYrFYLN2OFRuLxWKxdDtWbCwWi8XS7VixsVgsFku3Y8XGYrFYLN3O/wOAd6i8Rc4kcgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOyde5xM5f/A38+Z2Z3L7uyMte523Unu5BKicssioqJyCSUUJaVCKgmRIopcUigUXRS5booUuV9zDctaezOzMzu3nZnn98eZ1WLXpb76fvt13q/XeS1znvOc55wzcz7P87kKKSUaGhoaGho3E+W/PQANDQ0Njf//aMJGQ0NDQ+OmowkbDQ0NDY2bjiZsNDQ0NDRuOpqw0dDQ0NC46WjCRkNDQ0PjpqMJGw0NDQ2Nm44mbDQ0NDQ0bjqasNHQ0NDQuOlowkZDQ0ND46ajCRsNDQ0NjZuOJmw0NDQ0NG46mrDR0NDQ0LjpaMJGQ0NDQ+Omo/9vD0BDQ+PqOAYlFgFaAlXCHx0DfrTOXJX53xuVhsaNIbR6Nhoa/5s4BiVWBCYBnQAvYArv8gBG4DvgeevMVUf/OyPU0Lh+NGGj8Y9BCBEBSCll4L89lpuNY1DiA8BHQCSFayACgB94zDpz1eK/aWgaGn8KzWaj8T+PEGKQEOKMXq/363S6XCHEbiFEm+s89jEhxHkhRLIQouNV2pmEEK8LIX4Mt/9NCFH1P3cV149jUOJgVEFj5uqqbn24zVzHoMRn/oahaWj8aTRho/FPYMy6devKbN++nf3797Ny5co6FotlrRCi+tUOEkJUjYqKmrNnz57ib7/9dlmg81Wat2nQoMHo9evX35GSklK8Z8+e1VDtJH8rjkGJLYC3UIXI9WIG3nAMSrz75oxKQ+OvozkIaPwT2NGpU6cOXq/3BFBx/vz59O/fn6lTp3YEDhV0gBBCAZaMHz+effv2ER0dfXGfffbICFT7R2Te1rFeVfOOlBSGDBnC0KFDMRqN3FW9QlX77JH1AQdgBxy2AeNvmgrPMSgxAljMH7aZG8EMLHYMSkywzlzl+8+OTEPjr6MJG41/Ap28Xu9bwLORkZHYbDbOnj0L4MzfyD57pADigDJtalYa4LGVqmexWFi3bh3NmjWj623Vu9pnj+wSbnMJC57oyvbfU5i25heCwSAAnRvc8hzw3GXncBMWPPwhhNKB48BRVE+xY7YB47MuP4d99shHgDuBsbYB45MLuM7+gPX6b8sVRAEDgOl/oQ8NjZuCJmw0/ueRUkohRKevv/6aZs2asX37dr788kueS2zqsM8e+RhQF6gT3iynM+xsOnaWtWvn06VLFzp16gRAWnZOrJQSIUQIcKMa1/2AXwiR27BiGb/FGFmMsDCyu73HgBzAhioEYlBXEGag9NXGbJ89Mouw4OEPIfQYqmruAfvskU8Bn9gGjM/vofMiqsD4s0SF+9CEjcb/HJo3msb/PPbZI23tJy+csuvkuYcDEuP777/P2bNnSdu8igndr/ATsA/88JvQrYkPxIZCIT777DPuu+8+6tWrxzPPPEOu0z7p8OShI20DxgcLOpcQ4r0ZM2YM3r17N3Pnzh0gpZyTt88QoU+INkR2EELUMxsiIkZ0aPZtz2Z1PEApoHJ4qxL+G+Xx5/LVjkNsOnyabI+PyiVi6d+yfii+qDXPVroDuM82YHyyY1BieeDQyWy3cfHhs/x2wYVEUiPWwmM1ylHUFHnN+3Qy282sfScDXx1PXZTq9k2SUhamYtQDzwNl8n3sBWZIKU9e80QaGn8CbWWjUSjeMd1igJJALnDKOHZ56O84r332yEigCdAmJGXrIQtWNq5WMk70a1mfb3cdZtOmTbRu3ZrVi87lNBrzgSfT5ZGtalT8YHb/e2fYBow/v/SJCZ88c3vrhxs3bsyYMWOoUKECxYoV47777mPGjBm9izwx4V6emJAD9JBSHss7rxDiPqBe3v8jFCWxRsmiyasf67Jt1s/7YhR9xO/tu3SlTp067Nixg1GffenvHF/ylbzDL24CIi1RxVtMWTS1XK36Lbr3HUJsbCxbt26l8djpStILvbildBxAA2AtUB3oCIQGJe2lducHeeiuu1AUhe+//57GH83DqFPY+8idKEIQkpJuK3/lwSpleKiaKi8CoRD3ffsrnR59TN+piefROXPmGICHC7nFTatXrz5+8ODBFz/YvHkzS5cu1QHD/hPPUEPjcjRho3EJ3jHdjMBgYCBQDvABuvC+H4FXjWOXb/1PnjNsa6kBtAFao6qaogDO2Z2sP3ae5557jg07dhB/e2ueffZZBg4cyLYTZ3d06NChRadOnRg4cGDNz7buPx/ucsrUqVNDQARQoU+fPo2aNWvGjBkz0AlxfvzEiXX27NnDhR0/PZ88uv9eoMTulPQqxYsX79G7d2/q1atHiRIlsNlsXT6YPq2LlJJ7a1Rg7v5T1KlTh7i4OO688070R3YPQLWRXIoEf3YOpaJM1KhRgyVLlpCSksKYMWN4Y/x43l4yjw/6dkRKGfQ73ebk0f1X6i1F6irBgFnodJw5c4Zx48ahKApTp04lGAyStHQRq0+lkVi+BGO3HqGyLfqioAF4b89JKjVqyoABAzhy5Ahz5sy5mpOBKT4+nipVqjBx4kQAUlJSADL+2pPU0CgcTdhoXMQ7plsz4CtUb6g820F+/U07oIV3TLfVQC/j2OXuP3su++yRBuAeoBuqkCl5WZODwLpQSG7Kyspatm3bNqpXr47D4SAxMZHDhw+vAA7Wrl27xd69eykTE5WaPLp/S6DE6VH9SgKngRKf7TnKzM2bOXr0KINurxVcd+R0nYYNGzJv3jzeaFzjoqCIizIRCARIT09n9uzZFwehV1SNV+mYaPrVSGDZ9CnUaJ1Io0aNLh2tTg/6CITBhIiOQbFYefQ+A8s3b+aRZg1JKWVlxowZTJo0iYXvTMaVkQPBgI5gMAFICEQaAXijU0vmbTtAqj2L/ecyWb16NeXLl6dqyWLMPpKKyxDFlnQnyx64E68AJRTieKadSfvP8O23s3j99dfp3r37dT2D8+fPs2/fPjIzMwF+Bt65vqenoXHjaDYbDQC8Y7r1AD7k+txuPcBJoIVx7PLrng3bZ4/UoXpjPYQqZGz5dqcC64D1wHrbgPEpeTuEEMVQBV2lstZo5b6alZzDW9RXHvp09aDyTe8sv3z5crYO7kbRqCuHHgyF+P74Gdz+AHdXjqfJjKXc1/0hdq75lm/73YuINKCLr4xStAQ/HzriPZ5y3h+UeILgC0q8t9WueaHBrdXdgATke59+VjrZG6jeqFEjVn22+Mzc118+BAKCgaAMBnKl1+OV2RecoQvpTum0e5ChUEqO39zhnfl9Jr4ztcjRo0c5tOXHU7NfGnaOUMgKMgaEJffgjhjpUFOd9Vj0HU0feIS6detSunRpevTowdut6vH6+m34g0E+65lICYv54vV1/HAFT4x6lVWrVqHT6ejfvz9TxoxM/3bOe0mR5Spn6GKK+FBVfABy9py55b79bnW3t99+m6ysLOLj4xkyZAj2Cxe2rF/z3eCdu3YdaHpHyxLh53NESpl7tecatgHdimoDygR2Syn91zgmEtWxI+8cJ6/W/rJjSwGxwHEppfd6j9P476IJGw28Y7o1B9ZwY4GEfmAfcLtx7PJCX0ZhFVkjVAHTnUtXMHtQ40q+BQ7m98xKHt3fBtTKt9UMbxcF1PFMB8v3HqV5hTI0LV+qoNNLYY7O0lWq6VZii3mFPsL15cbN+p/27Df1f6j7bzVq1jwv9JFpIdeFDcHfD28peX8/z7UuWgjRr2/fvvMaNWrEoEGDPpBSDrxGeyvw/fDhw+u1bNmSrl27+gOBQAUpZUr+dvZBiQekELdKRceAdbs4HGmjbNmyjBw5kjlz5mA9vIMLPj81SxblkfrVIbziWrr7CF87YMCAAfTt04d7EhPp378/Xbt2ZWbXu+hQvQLAGWAv6vPa+96WPVlv/bh7WTAYzATSa9So0WDjxo2ULFmSTh06LF29Zs19MVZrpNVqJUKvP7Xz163LARewAdhqiLL48l1fcUVRTlerVs1Qrlw5UlNT2bNnT7qUsouUcksh9+QRRVEW1a5dm7i4OPbu3UtaWtpSoI+U8qoxQkKIOy0Wy/dly5bl0KFDe6WUda7+xDT+V9DUaP9yvGO6mYEvuTFBA6p6rTowEnjt8p322SOrA4+gCpmK+XYdRxUwi20Dxh9MHt3fEO6np3N0//yCpey1BlCpqDU4IrHl0Yi6zbJ1RUtcwGC6IAxGlzCYnMIc7RJmi0vodJnA98BJW7Q59MRdHXiioM4aNLvmBYdzsxXN95FFCBGF6gbdG3VW/17eSkAIEQOsGzp0aL02bdrQuXNnAoFAD+CcEKItcFd0VNT2zLMnrboqtUKho/v48fR5ulYoThFjBMuPHmTs2LE899xzjO+/imSnm5DHQ0trBNVjLUhF4eCpZB4aNIJmzZqxc/duYmJiiI2NZdasWcx4ZRTHMhzoFFG2Z/1bytpMhkSAh+tWw2Y0BO+oUCYnKlJ/7LZ3l9QJBAL62NhYvlqxokFSUlJkyZIliYqKoly5coohyjLcl+O0oa4uX/PlOPNUq6GnhzyVsuWXrYaRI0dy/Phxateujd/vL9apU6dlQoh4KWVBXn/9Fy5cSGRkJCkpKcyePZthw4Z1//rrr38DXr3K/Y8SQmyYP38+HTt2xGg03nLNh6bxP4O2svmX4x3TbSQwihsXNnm4gXLGscszwnaYbsAgoHm+NqnAkqA/d4U7NcsI3MYfK5YqhB0QrsFpdPoDkY1b+ZQyFbxKTJFzSpFi6UIfkYVqZ0qzRZtv6pdZCLEzPj6+Xvfu3albty4vvfQSaWlpHp/Pt6V3796tdu7cyf79+9tLKVeH2384cODAvgMHDqR79+643W4CgQBxsUV2HDt+otao0aMjx40bJ/du29Kq+MyXe+cGAn3KL/he1GlwG1u3biU6OpqpU6eSmprKorfGc+hCDo8++iin1q1geYeGAHx9/ByPb9iDP6ReeocOHS6ubCIUxdu6XTuj1+vlduHyDLy9lglgfNKv/OxWSE5Oxul00qtXL55//nka16tD68rxvhW/nTIULVqUbdu2Ua5cuWQpZUJB98OX44w4c+bs/Z263DfR7XYbjSaj//DhI2VPnz5Ns2bNSE5OrlCQekwI8b7RaBzk9Xp/ABxt27a996WXXuKuu+76SUrZ/MozXTxuWs+ePYcmJCQwZswYjEajX0pp+KvPVePvQRM2/2K8Y7pFos7Go6/V9ir4QhGGuf4S5V1AP6BY+HOXDIW+8TvdR/2OnKKowqc2f9gOCuMCqrpnf0T9FjkRNRualdjiqcJo9gFB4FtbtPnIXxjvn0YIkbtq1apLtAFPP/00R48eZdOmTQwbNozt27e3kVKuD7f/6Z133mlarVq1i+3PnDnD4MGD041GY7EjR45Qrlw5f25ubvSFJzvdE/D7F5WavyHm448/pmbNmrjdbjZs2MC4ceN4tEoJFhxPZ86cOSx46RmWJt52xfjWn05nUoZCu3bteP3115cB7tmzZ/fetGkTixYuHHpqVL+vgFo9F695sVyzu+948sknMRqN7N+/n1deeYX+VUvQs/4tpGS76PzZD2zbto0mNavLrUN7fI3qor02fty84wXclxJmszmlSpUqSu3atXnqqado1qwZZ0/9/p7Val0BrDNEWWS+9jqgmJQyVQjxVq9evYZ36tSJBx98cLWUsn0h975ZiRIlNn/66ae0b9+e7OxsTdj8w9DUaP9u7gD+UuyMBIO/WPwgX25A2f57CmcyHZnFDZEp9eNs0YqqQisMH6rH2T5gn65anfPGu7tWFDFF3EKIPIG0Hdhoizb/LfE918HziYmJ7S777HRERMSA48ePs3379tP9+vTa6HdkdAeav/3m+Ix5c2YfO3n69FmXKyfPHiSB83Xr1n107NixWCwxC4+ePN05lONE/1pfw4LWtfl09LMcueAiKkJP7bgYfurSiA/2n2LYsGGMHz+e12qWK3BwTUvFUuX330JfffnliVKlSs08d+7chwaDgcWLFyNhUfy4eReA5B/fEHs5sfDlhQsXNhAQbTUaUh+uV/XXnvVvkUAtnVAaoRrgCT+LLuGN5NH9T6A6cqwFkuLHzbMDJUuUKKE899xz3HrrraxcuZJAIEDDJk2HHzl0oCMwzZfjBDWTwqywmjFVCDGsSpUqw19++WUSExMB3i/ouoQQRuDradOm8cILLxAIBFyoE6RIIcRtUsrtN/4oNf5utJXNvxjvmG7vAU+QT40VkpLSk78ldYSa4mVPqp0mc5LYO7gNVYpacPkD1H5/LXsHtyU6Uo8EvknxhR6a/53SsGFDypQpw4EDB4hyZTHvgdb5PcROAJuAzcIcvTVq8OsNhF4fxx/BkGeBZbZo8z8uiaRer/8sxmK5a+K41zY/2vPhZGAFsCHSGlfgjysmJqacoiir9Hp9xLT3Zg5tn9hhTYROKKEFU35mz5YGFJCNffWpNEZv+Y2GJWy8f1ct/pDHlyCVviNSdbWalAJejzKbFFSBP0FKOfd6r8dmMpQyWoukbNu2jQa3VvPtfOZhAUTaPT5ygyGKRV98piFgayAUWtfxwxVlDqVlmUE8tG3bNp5++mm2bNnSGjVRao6U0uHLcdYE+gL6wUOGVvx+4w8dv/32W/r27cu2bdsmSylHhD3bSgOpeR5tQog2TZs2XTtz5kw++OADFEXhnXfe4emnn2bWrFnZoVCoiJTyf2VColEI2srm301nLrOXKEIgkYRziDFv5++UshjJ9qnJjpfuT6Zj1VJER6pfHQF8veOwmDRpEmXKlOHo0aO8+uqrfPzxxwz8bNHhz3t3GANstrw43Qv0QTWwtwMW26LNZ//Ga/2P4ndkFAWeBSzuzNRkoHmkNe5wYe2znG6BmjEg4eTZ1BBwZ6zFnA7gdHsqAeOJKfIKsJwC3M/vKVece8oVv9awPOze0o9bb3saRXE6Tv++2v7+a+MSJsy/bvdgIURL4CVjOB1oRo6XihM+WtG2asKpTWczn42IiBBDb6tCv4Y1AJRNv5+9vd/S9bc3iC/Og7Wr+pfvPyZDoZBQVG+5MXFxcS08Hk9ACFFfSrkPGC6E6FmuXLmhK1euZMCAAWzbtg2ghhDiAWB4fHx847Nnzx4TQtwSdjDIOXPmDO+99x4A4b4JBAKgrhQ1/gFoK5t/Md4x3XxcGrQJQIV3VrH/ybZIoOWHG7mjXBz3VS9Dy/LFaDY3iZkd61O75B8hMlN/OcHL3++nnDXqlICD0hbXfsOGDVSpUuV8WuaFqeo5pCsy6Fmql8FQ+JwG1JeqOd9fY3gzhf/qUV1uM8NbBmqmZQ+qGs4HBCKLlLwpX+I8dZ4M/0j8jowawOOoKw878HakNc5+tT6ynO4aQDXUl+LOWIv5VP79TrfnYVTX8GctZlPIMShxKXAv6vXfCD5gtXXmqi5+R4aS8+umqe7dvzwVzEwTqAGuXwNbUIM3TydMmF/gPRNCfP3KK6/ce8cdd9CsWTM2bNjAJ598wuLFi9Oeeuqp4jVr1mTEM0MX7x/ecy3Q9t3Nu+9112gS1bZtW1JSUqhXrx4nT55k6OP9KWuN8o6d9aFx3rx5/Ljmu56Zbu8n4XP8uG7dujsqVarEwYMHATWDwahRI7MyMjJjPR4PsbGxuN1ui5TSFX4OHVFXPIoQ4n2Px4PRaASoL6XcdYP3SuO/gLay+ZfiHdNNj5rO5QpiDHqc/gArj5zj/lvL4A+GyPblsvucnQidcomgAXimSUV6db9vbVzXAfufG/1au8NHj3PmzBlKly5lMgWcRYUqHKJQVzZB1FxrPtTkj558Wzqqd5s7vC8AWFBXQ8WAqqjZl40DhgxrsWLl6sZGoyH33ckTvru3Q/vzFOB8sGZ9UtzAp4cnZjud5lAopCAhOjrKMXXS+De6de60BjgHuPILLCFED1SX7loAFSuUPz9i2NM/9+vTKwl4PtIad9UgxyynuxJqBmoJHIy1mL+4vI3T7RGoRdJ2W8ym/FU2Hw9FGm5X/L7SXJ+XHkAopOgzaXbPUwCR1rhQ6oYVTSJKJwhdhWr4fz+cAAwJbwApp1/q+zMwJ2HC/DWX9bX//fffv3f+/PkXP3A4HAAx9erVY/bs2WR7/V/Hj5u3FPjoXb2uYe6Pu35OSkrSFS9enDfffBO9y86HD7Si0/xvjCVLlmTNmjX88HiXD5JH928NfCxgf8+ePe8wGP6w7QcCATIzs1w1atSI/fLLLzGbzUdycnJccFHYfwMXJwCDqlatWgvYpgmafw7ayuZfStgTzUsBL+jm877noy4N6ff1ryx9oAmf7kumdLSRLcmZNC4bS886fxioQ4qOUM07CJSuvPOd9TuUebNn1V2/fj2PPPIIO3fufPxGbAXXixCiYVxc3LaNGzcyZ84cpk2b9qqU8opYn3DbFwYOHDjx2Wefxe9Xg9rHjh1Leuq5t1d/9dnvQHEu88arUqfhgClvvxNVvXp1IiIi+O233+jduzcOh6OOlHLv5efIcrojgYaopQkUVPvU3lhLwa7YTrenFDAVeNliNl3iWZfldFcWbz4plczzSUAJ1BXg1fABGaEK1duFBr0+CBhS1GKWp1/qOxCYqUTHEFmuMt7f9kKwwLpvVRImzD+W/wMhRBkunYjmAB/UrVu36+7du9OBkvltJGE7S3UgtlbJohe+6NOxrCJoW2/a0iEJlSorzaIFo1o1vNhZSMpT+1Mzv/7+2Jkvpvy482T4YwmUL1my5A8APR9+6JVxY18rC2wxRFk+umx8EairnLNSyptWzE7jP4smbP7FeMd0y6WA1W3iok10rV6GDSfSWPxAE2ZvP4HLH+CD7SfYPagNBmssoVubqlHsoSDKgc1Mz7Iem7ro88qrV69m+PDhnE4+s+6Hn7dN1+sv6T4AnEeNu0krFmO+4ReFEMIAnF6wYEHx6Ohodu/ezdixY68qbEaMGDHR5/Mxbdq0vI+zgBZSygNCiCYmk+mBW2+p1tZms4o7mjY99d4Hs40+f+7d2dnZLiB61qxZnDp1ipPHDv/80Qfv/SxBSEQxiYiRCGdARGwOKvovisREp11r/E63pzOqzWqIxWy6JOAxy+kuAzhjLeZsx6BEGybzUjzu5qhqxcsnBRLwYLZsxe283zpzVVam0x0L3FXUYl4OcPqlvsuAbigKxmq1yU05RdBx4fIhVUuYMP+aruRCCDOq+/oOKWXmtdqHj4lvFF/i9o97tC0RFRnRE1VdeDk/Ax8Dn8WPm3dBCFEP9b20E8CX42wF9AB2ATPzu1Br/LPQ1Gj/Mhw5nmKobqx1DJBN2MU1P5bICN795RhT29cN/1/PjG3H6dSyKRHNOxNyZ6PbuRYRUt+V3x1NzX3n++OVV69ezYsvvsiGDRuIjY0tU71iQj273T42r9/0bHcE6kqiFFAnPdt9te+fC1UopQL2YjEXVwkjO3fuXPzcuXM4nc6LxuJrUa9ePXr16sW2bds4fPjwDpvNenr/9l/6mc3meS+++CKVK1fG4XDw8ccf10jPyFwCjAOGKoqCwWAgMzOTs+lZR136mB9RvbD2xlrMp/wXUuP0Mng/QV7wX3CBurKRErwhdJs9OtNphBILCJ1CfyQZQcly4K4spxtUIaKgqgt1gDPL6RZMWoZB+g/4d/y0QhzedT+HdtYi12cT6uQwWyRU3q6rVvsTfZv7HQaLLQugqMWclel07810uu8sajFvRC3W1oRQqIz30G4iy1VCmKIIpJ5Rb4qiO0goeF1xKlJKN6q783UjpUwG8iqSTk8e3b860Cu85WWIuD28TUse3X/F6VH9PkZNnQSAIcqyAdjgy3HeDnzgy3EeBt7WhM4/D21l8y/AkeMpBbRCfZmlAz8APsObPRcBD3LZrHnAiu1sSc5k3+C2hBKq881pFw+Ne5edT95D9dgrEw30/mJboMPz4/SJiYkcOqTW68rNzSWxffvghcyMZQJpF/C9EKw1RFuvmFoXRHq2OxpVjVQKKAIwZ9bM8pMnjHv3m2++oW3btgwfPhxFUViwcOHybbv3Pw+cLxZjviQTtRBiRNeuXd+sWbMmwWCQvn37MnbsWOyZ6fueH/b02A5dH1zSvn173cGDB0lISGDOnDncfvvt2O32szNnzizTqlUrDh8+TKtWrZg05Z3pvR/te5pLY5PEZf9Wf1BSKjqZW1kng3Egc6Xe0IRg7iFFhtJCKDtzFcMWhAiG2+tR7VJ53nkSCBml794gSulc9DsBA7k+KyCIMOQCijHk6ejXGU+EUPbnv2aplobIFZAaOHm4WuDw7sdCWWmEzp1Gb7WhmKLwnzz6R3MhZiPlywkT5qdfz7P5qySP7p+XkLUPasaJy79UacAnwMfx4+btyb/Dl+OsDTyJ6vQwwRBl0Vye/yFowub/KY4cTwzQFtUekQpssEaZLjFse8d064aa6Tkm/+chnZ5QvdZIfSTK2aPokgss+HiRt3eecU/44aA5MvJSx7asrKwfMrNzWoEsF0HoHh2yQXg8gRDicC7KPon4DTgRa7l2fI0Q4utZs2bd++uvv7J+/XqGDh2KoiiMHTuWqrdUf/Gb1et2cJnb8JJPFpWZMO61xxrUq+fRKaLcqeQz8YsXL6Z58+b2I7+fXjx/3tzKCz6aXz03168/dPBgyY0bNzJ69GicLtfGPbt336nX65k2bRp2u51Ro0bNllIWmFqtMJxuT3HUYMUnLGZTpv9CqgG1Zs9dgC6skjMryA+BrXmOCr7srIqoWZRvN8TETiqob7897V2pi/wQyDZYbCfy78t0ujsC24tazKmnXx38sWIr2luUiEcYTSgxRTJ0RlNcbvo5dQ0GIBSfrnjpdfoqtX4URvMeYFOsxXzNxKR/leTR/S1AV1TBc1cBTfaiqtk+iR83L69eEb4c5y3ACGC1Icry2c0ep8ZfRxM2/49w5Hh0/FEbxgmstUaZnIW195w60pT9P25k65oIQYhgyYqEytdEBAMou5NQcq8rPCMoER99XrXru/Xq1x8qkaHFn3zy1sTxb2QCFwoKtvO5HAagsZS0kFBKIkxBVfgcBlHoTK6wCxoAACAASURBVLVaxXITRowYcWte+pe8vxMmTGDZ8uUpep3Ob46Kcqxel7SmbHx8HKGQ/rNPPmr57cpVRVq0aHnmt6PHc37cmNRw7dq11KlTJ6tqtVt+PnLkcO1gIBD/xhtvUKFCBVJTUxk8eDDlK1T8pkyZMuu2//pr47Zt2zzSp08funXrtkJK2fl6bgqA0+2ph1r5sp/FbCrQPpXldFc1B5zJCvIB1JT7ApBSKOWQoRHoIrtdRdhMlDAOXWQbg8X25eX7M53uXsCynPFPGoD9/FEGurOuaImEyLLlxnn2bbcSynfLdTq7rlLNZYZ2DxxTLEUCqKsske+vHTWDQHJhDhB/luTR/csBPVEFT5XLdgdR1WsfAyvix83zAvhynN1Q3aInGaIsV58VFUBGr7urogr/5qgrrJOo2a2T4hYm5fy5K9EoCE3Y/D8gvIrphOrKvNYaZUq5WnuP1xsF3BsKhe5RhOgdPLQ1KFNP6ZS0U+hO7LnaoQV253l8yhxpK74l1mJeane5jcArqLagD23R5mtW9fS5HNGoqXMaha8hC/gO+M0Qbb34BTUaje1DodCTOp1OHxEZWfvpoUNL5a1sYqzWrLcmT45dtGgRjW5rMHXcmJEmAe7oYqWbDhkypPGZM6qd4tlnn+Wbb77hjTfeWKwoykO//vorjRs3pkWLFlSqVIlhw4aRmJhIu3btOHfuHDabjRdeeIFXX32VsynnFn61as3nlw1fosb/pKKq8Txw0RGgOTDCYjYV+CPLcrrjgcxYi/mKInQ+R+YAQoGGIA1C7V9BTd+zJLJIyQCA355WCnhM6iL3FyJsIlDtIwtyxj9ZA9XV+igwLGHCfF/awneL6ouX+ijn56Q20ue93HbjBeYBUxImzP8935iLok5oyqAKnxB/qBIDqLE8O2Itfz7FUPLo/gJojCp0enBp3SNQBd4cYHr8uHnJvhyn4tzw1fJgxvlKIZ/n3lKDXj55rXNk9Lq7CjANVZ0n+UOVF0K1F4KagXp63MIkzePtP4AmbP7BOHI8FYC7UQ3931qjTNdUe3i83jtCoVCx3BClgNK6oL+B7v1hdyie7D+T9dkHfO4dsfBkSPIAsBR4NdZilnaXW6Bmf64N/AQsut6szD6XIw64R0qqBxHWXJRQCHE236onp2mj24pHR5lfEUKwffv2ocC7u3fvpm3btkyf8uYLXTp1nBxpjZNCiK9at27d+Y477gDgp59+Yt26dceklIMqVqy4rm/fvrz88sspqC+2N6dOnVr/2LFjbNmyhfvvvx+n08m6devYvn37T0AbKeUl9zg9262g2ltKhjdjhEIHQJcbUmND8uEn7PSggBSCYKzFfEXxOV92VnGgPlA7b1Xjv5AqgKaoKic96gvyBxB3S73hE+CUwWI7d3lfmU63CeheKq7IsVy/vz2qkEgGFkopj/gdGSL33JknHauWNgukp3YjHHvl8Pr4dPcRXP5ced7pPvDrmbQtJy9kHwA+KKzmzOvjJxrPn08dmJGe3tJuvxB95113HxswcPBx1EDcL2It5iu82IQQjYEOqHYmB7Aa+C4vkDZ5dH8j6sqlD9CefLFHW06eC32x/9ih37Oy1yx+5J6nInW6SMVivWB7aPBkfdESEwtzIsjodXci8Blq4OzVYplygJ1Ap7iFSY6rtNO4DjRh8w/EkeO5DTVo8Hfge2tUwTPn/Hi83uJSyrb+oKwKJKAGyX1hizZL74JxL3Js12j+KAV9TUJFSshQ2z5+oHmgXK0dQNmQZDTqDPHFWMsfqWjsLncbVEPwOeANW/SVLs9ZTrceVXDWDX8UviZ50kzALQRNUF8MO4E1RostAHRrdWfLSu9NnVK+3u13PPrAAw+wYMGCz6WUD+b1G643cy9QI9znQeALoGPlypWX+Xw+AoEA586do0yZMnz33XcMHTqUjRs3vof6snGFz/nd9eTfcro9E4DtFrNp+eX70rPdBlSnhwqoL9cCsw8Y8bf0EvFNFP4OORjGAdn5vPGAi8KnLYiJm7b8vHf33v01z6akfBplNr/9+ptvXdI2Lq7YIKs15v3u3buTm5vL7t272bx5M16vdzRq3rSQ35HR3vvb3lz7VwvvAQbO2ro/aquIoWXLlmRnZ3Pu3Dl++uknmlojP5qY2GxYwoT5V4xdCDGvdu3a/Zo3b05cXBxjx47NkFIWy3K6i6AKySLhphJg/bq1Zx/v22fx0KFDqVSpEllZWcyfP5/9+/e/K6V8+vL+k0f3L45aI2nwiUxH5Q4LVzNixAg+//xznqleIrtt1XIxACLS+FvRgaN2K1GWaYYoyy/5+8jodXdn1HpK11ORFtQJ1e9Aw7iFSa5rNdYoHE3Y/I0IIRJRfyz1UGdV468W9CiEsAErUYuPRep0Op3JbA60adtuzBfLPi8wQ+7leLxeEQyFHgyGuEeqM8f1tmjzt3n7fU57VeBOObl/NWAg11fXJhh4YISkUm29lGy2RJnuALC73IqUPCVV1cScWIv5u/wH2V3u8sBwKdFL1SvOxR+5rUKoXnI7CrMF+FwOAdRFyvaEgq1B6oHVAiYabMUeBW4B3pZSpl7rAsKFzd6vW7fuI1OnTqVYsWI4HA7mzJnD/PnzdwG3X6tqZH6cbo8O1dliusVsKjQLcZbTbQRKxVrMvxfWxpud9UgAsVtAohvDVtSsCQVexv5ftzS7J7HDiK5du/LDDz/w7uTxS+5NvCcN1caxOLJIyV+FEG/07t175JYtW7BarTRp0gS9Xs+mTZvYuXPnZqCdlNLtd2TcDkSkTnx+/xNfJC1r8nC/u7766itSUlKoX78+oVCI8/t2sqJPRy9qDaGPgXUJE+YHw/d042uvvdYyEAjw0ksvYTabvVLKAl/qWU63+OjDue0nvjFuZbt27Th8+DCVK1dmypQp1KpVi8zMzLJSygJz501MbKaf8P32I6+/OblCx44defHFF7kzkE6nW/PX6GNT3DNvrFZMUTbgRUOUJRRWne3iBiZVeY8EWBm3MOn+GzxOIx+asPkbEUI4586dG92wYUMOHz7Mgw8+uElK2eIq7ds0b9587UcffYTXqxrrly1bxquvvjpHSjngWudzud11g5JRUrITSAKybNHmiz6vPqe9NGqp5qkGi016x3R7CpiEqkopLAYmB0gLtun9WKh+26khVYXXJr8Kz+5y3x6SjED9Yb+OKsB6oureJeqLMKQIKqOmrnnLFm0+c63r8TsyrKjxLwowXeoiclBtVWVRVwlfGKKtx67SxSWEA0RfQFXPVEI1Dq8D3pJSXpeLNoDT7bGh2jeetJhNhQq6LNWGkhBrMV9REyYPX3ZWJGqC1ARgmiEmtlB7QTh1y/qxY8fePXjwYHr16kWZhHJjx0+asgMpdeaQ526FUPkN32+0DRvxUvlz59Min3ryyeLZ2dlIKXnmmWcYOXIkX3zxxXAp5dsAfkdGdaCywVbstldffXXM+PHjWbduHQ6Hg5IlS/LYve355tFO+YdxDlgELKjw5kcJIUlfRVHud7lcVxU2+a7hYaA/6jO9c/v27Tz22GMMGPTktO4PPXwG1Q70bazFfCzfMUOaN2/+7qOPPorRaOTrr78uSNgA/BY3bHyiYjSPBeY4B3Z+DWhBAVm1r4McoEPcwqQf/sSxGmjC5m9FCHG6devW8QaDgREjRtCyZcurCptba9ToVqZ06WW9evWiT58++Xd1lVJeYRDOw+FyxyD4AEm6VDMTNweO2KLNFx0HfE57MdQf+SSDxXZRPeQ9uPUJuXZhV5F17k7AC4qgQSs9OzZICHlCtVp8GGzWZaGldLl9LrdHCUnek6ozQI88dV6W010WeBRV125GVVvMLkhnb3e5DagurCWBM6iC5xIXbb8jwwxMDP/3pUhr3BVeQj6Xowiqqq4yarzK54Zo6zVXOH8Vp9tTAxgN9LGYTf7C2mU53QpQNdZi/u1q/fmys+5DtVsMKcwLLQ8hRK+6desueOGFFzCbzcyaNYvvvvuug5Ry1eVt/RdS75z78aJnXxk3sZVQFLPX66VHjx7Ur1+fd6ZOW7t5244ZeW11Mhj72KO9+tWpW6/F6dOnWbt2LbGxscydO5cH2raSPw7sVlgBvJO5wdCaqlMWPXEDwqa4zWY7P2LECKpUqcLZs2d55plnAIxSSl9YQHdBVTvy0+ZNsQ927fLSmjVr6NKlC9OnT7+asAF4NH7cvI9zdv88yTNl1JP8+Yq0oNZeqhO3MEl7af4JtAwCfy93r1+//r7GjRtf9SXiyPEIoGv7xA519+7eRUJCAn379uXAgQNs27btMGrswRXYXW6DgMkIYhV4Iqi6P7cDfrFFmy/q2H1Oe3FUQTM5v6ABEPHVXLkDJn8SMbHnfUATHn7hWVG2SgdZp8XrvrjyHoT4URE0BfZFm00hZ457vJRMC8H6LKc7L/L7HDBJEbwhJT2lWsHzB1RPpUsI1695PTz+isBbdpc7AlhrCrq/EzABNUv0qEhrXKFG2nCw6FwAn8tRFujhczlKAIeBLw3R1v+4gdfp9iSi3t+HC/M4y8ctqLVdroUZVaV4VQ8oIURJvV6/4O233+bhhx/mgw8+uGqnhthSPwBdixYtaq5dqxZVqlShR48evPDCC4hQYEOxGPNFZ4b0bLfYf+Bg1KrvVrcISekIBYORsbGxJoCzTo8vsv1Dq0KpybeHnI5SIJE5TsjJRuY4yysh/8U4pAidEnn6pb7PoQrPA4Vkmvb5/f7cn376KSI9PZ1+/fpRrFgx0tPTKwKHYi3mXOCiB+C9ifesfPPNN5kxYwZerzeviBpPfrmR28qW2FYqJioKNW+aFVVNuw7AM2VUWa7fTlMYlbj+56hxGZqw+RuRUh4TQmy6WhtHjucW1OC2r95+a7Kjfv36o7du3UpcXBzvvvsuP/30U7Xhw4fPR1UHABB+Ob8gBDV1gjejzeZddpdbj6piWpO/IJnPaS+BWsBqskE1spNvXyOpxmPcYhy73A0khd2SV4u4MjMRoiTQKBSS1iynexjh8gSK4KgiUBDipDXKdHmA3UK7y/1jSDI/y+n+KtZifrewa7dFm08AT/sdGRFBlMVBlHG5IuIXqejetEWbr1tYGKKtZ1ATXeJzOW4BBvtcDiuwDVhliLZed32XwnC6PQMBi8VsusKQfTlZTvctwG83EJcyANW192pMHzFiBJ9++impqanp/FGO+zUhRJKU8uI1htVtUxo2bDjEZrNhtVopU6YMJpMJs9mM40JWv9dGv3j3C8OGHlYUZXGxIiV/OXr06LcREXrHuRNHDTUaNNIBswECwYBSqmW7GSaTacekF4aXuS9WZwk57XcKsyVeKVoST+4fXylFKIovodrkCJ0y+fOfd7rOdL4nrWP9WknVixdZE8pK+77c6Gl2oIXb7W67cuXK6JUrV06qXbt29fbt27NgwYJOQog2qNnAF+a7nnb9+vWjadOmDBkyJPqWW26hQYMGuFwu5oeKHX/jhTd3oRr1P83z9MvodbeC6vF2rZLk10JB/U1pwuZPoKnR/maEEE0aN27886RJky5RozlyPAbUqorJ1ijThnDbGFRbQCqQERUV9WpKSgqlS5cmJyfHdsGZ4wKeFnCrXmGdoijLTEZj0O5yx6Cqzr7L727sc9pLAb2BtwwWW5DL8Dntj/h1hixgh8VsSgPwuRwdc2TESuAeoLYQ1EeSpQjeskartgeXmi7/7aAkEnjfGmU6cHnfdpdbCUlmATGK4BFbtPmK8/sdGTrUGJ0SwNhIa9zZsCB9FtWGkQa8aYs237CwCDsXNER96eiB9cAPhmjrDceDON2eccABi9m0+Fpts5zuysCp8Az96mPMzjKj3ueqhpjYiVdrK4SQWVlZfP7554RCIdq3b8/BgwcZNWoUu3btegw14ekhKeVxIcSj9evXnz9r1ix69+7NiRMnCIVCtGzZklGjRtG9e3d0Oh1paWnP7P91c7BShQq31G58R2ddRGTZvPRDtWrVYu7cuTRq1MgZGRlpHDJkSMSUKVMyc9yeO2UodEf2pzP2jZj54dPLDp2632AwkJqaSrFixcjNzeXeqvHs9euoUaMG8sRBpvXrgTBHs2LHPvvEb5Ns2dnZOBwOSpUqxffff0/v3r05cPDg8ebNmlVKS0tj165dvaSUi8LX/W1MTEyHvPswd+5cVq5cyaeffkpubm49KeXusBPGI6gu6UIe2K6X7736Amr+uSuYf+Qsh+wuJjVSg4TH7z7BmRwv7ze7taDmu+MWJtW71rPUuBJtZfM3IoSoiGpXyKO0EKL7wEGDo774YvnojPT09FAo9Hi+CUBV1NnUQcDh9XoJBAJERETw87btA4HYCIVjiqK8ajIazwDYXe5SQHVbtPkSvX3YGaAnhQiafBSzmE1pWU53MaCXgq4mcCuwIdZiftOR4+klBF8KwQPAcYBos0m63J4JCjwTglccOZ7+l2cusEWbQ8CALKf7kZDkpwtO90NFwh5ZfkeGAryEqpefGGmNO5HvuFzgzfC1lQEmhO08m4Al1xu7Ew4O3QZs87kcetTAxAk+lyMVWGSItl4zL5jT7VFQVxwfWsymn67VPsvpLg+cvR5BE6YjahbkItdqCBzv0KFDpbz/1KxZkw0bNnD69GmAue3atWPjxo0+IUQsULdly5bce++95OTkULFiRdLS0qhatSrp6enYbDbS09Np1qzZ1FsbNF0lpexw5NjxltOnTy+bkpLCu+9eshi1hEIhOnXqxJQpUxSzybjf7fEesvYcev+vUz4s8txzz5GYmMiuXbtYu3Yty5Yt471pU3m4dx+aNGnCyqm7kCknkUDgzO+2cuXKMWXKFKKjo8nJyWHixIm4Th713hprsfbt25elS5fSrFqlHqlbNxcTcSXTUtIy5xw9fnwhQO+Huj958ODBO5KTk6lQsdLQzdt2HASItZjzAlIByPhg3NMUUrsJoHvFkty+Yiuj6uayNc3BurOZrGpXv7DmtTJ63S00u82No61s/kaEEJt69OjRvEGDBnTp0oV33nlHfUEkJ/8+8IknKng8HmbNmjVGSvl6uP27jzzyyBC9Xo/D4eDhhx9Gr9fzxBMD00+c/H2YTlFSgSST0Sjhos2jhC3a/HP+8/qc9gqoQu7ty200eXid9kq5KA8G0NeRalxJFrAgSuS2NURbL7pKO3I8twJmRdDEYjbNyN+Hy+3pGpKEpCrUHrRGmQo8V5bTXRFYhJRzo6QnVoRdliOtcQev917aXe7WqIZjCawCVl+v4MmPz+UogzoLjkW1LfyQP2tBHmFBswh40WI2nb5Wv+HsAPZYi7nQdEFXjCU762FUz7ophpjYq00IEEJYUWOHACYtWbKk2bx58yAU+nB9UlK/CxcukJCQQHZ2diyqrWEScNeePXtwu92YTCZcLhe9evWiatWqeL1exo4dS8uWLbdJKRsLIVoDzwOtlixZoqtfvz5FihTh/PnzjB07lrNnzxJlNm1Y8cWy7whnEliw6JNa09+b2THb6fQFwzWbIyIict05LttLo0bHTZ8+nYmPdk9vWbNqLBKdy+tl8tKvSNq5l+Mp56lSphRtbqvDkPsSqd1/GEs+/5z77ruPYwvfI9r0h7lFKIoPRfH9uPdgcMKiz80xFktw5mujzhUrWSqIPiKA6u2IQMigDIVCXn9xOev1Ukquv1A12ms7j5ETCJGUksnnrepSwVKoeScIWOIWJt30vHH/39CEzd+IEOLH7t273xEb+0dW/6SkJA4fPszSpUuZMWMGmzZt6iGlXBpu/2KdOnUmdOzYEbPZzL59+1i+fHnu+AkTXn/yySenm4zGi0Z/u8tdE1Bs0eZLnAd8Tnsj1EDJOQaL7ZKHHfaQehgoE0GgblDo1+kUkWQxm05ePN7l6HiZsBFAL0UQAlZazKZLXIRdbs+bQclnwOPWKNPAgu6D35EhJDwdRBnqR78TnX6QLdr8pzIO211uBTVoMy+JYw4wI7/n3fXgczl0qCqslqjebIsM0dZMuChoFgIvXaegKQ14Yi3m63afhovCppwhJnbCjRwnhOgPTCoWFyd7PfLQwg0bf3xm0KBBDBw4cK2Usl2+dqOA0RaLxejz+QiFQmfMZlOEO8cdO/y55yKOHDmCMTLi6/lzZ/+Yd0zPPn1bLfviy8Tw8VJKKYQQMq5orPPbZUuG161dc17+Kqduj1egupLHAkvMJmMgb3yogbE9T7/U1wDUBG4DGoT/1iKfpuWZb35k/bFkXmnViAdqX54m7frR3XYnka3vx79mKYZvFhXa7qgjh6bfbGNhy1rcEx93tS69QELcwqS/JUP2/yc0YfM3IoSoANzTouWdVa1Wq+Xbb1bslFKmA5OeeOKJ8h988IEbsOZVHxRCKP0fHzDmQlbWndu2bj3SuHGj0GOPPfbZPffck5S/X7vLXQvItUVf6lbrc9o7Afr8ebOynG4d6ky+NOos7bNYi/mUz2nv6dcZIixm0/xL+rhM2AA4cjy9FcF3wF0W86UOAS415mRUULIWuM0aZbrkxel3ZKg1VmCeSzH/AowHSiqCZbZo88obu6NXErZXDUGtmwPhrMEFZS0oDJ/LEY96j6wSVuWKiMcR4lWL2XTiWsdmOd3FARlruTHh6cvOKoKax+x3Q0zs5Wlurgu/Pc38y687lrTvcn+rUChkHvfaKyOeGjwoiKqKDQFKMBiUZ86eNURHRQWKFi16AvjBFFOks9VqnePxeLKTNm1p27Rh/ULz2fkdGXpUu9+nhAItUFeXAWBiZJGSFwW82+O1ocZw/Wo2GXdea+ynX+obibqqqwCUv2yrgPp9/RMGfgVdgzsI/roRc0rh84QnNh/gx3MXmNy4Gh0TihXaDjUuLFbLJnDjaMLmb8SR44lA/aHusEaZdud9Hva66QB8JKXcDWB3uYsDTwPrDXrFifqDW2EyGi+Jare73LcC2KLNF1VQPqddoHqc/Waw2LbkEzClUNVOS2It5tP52usk9M7VGZwWs2lZ/v4LETb3ALsUQTeL2XRFJgOX29MWsAUlRQCHNcq0xO/I6IWaWWBRpDXu+/zts5zuwUBpRRCBGmfzH5s12l3uRqjJHHWownWhLdp8XXXrPa5sfUDo1uhk8IQOuQv42BBtLTQTcDhJZUSsxXzD8T2+7KweqJkiJhhiYq/5o/S5HArqiqAp6opAzcwc8HfNuOA4luPx/FIuIWE9cNwQbb2qSg5ACBEHZGdk5zQAlKIWc6E2Kb8jIy/B56JIa5w/XDZhFKpH3I+oyUIlgNvjbYqq7ltsNhn/9As6vBoqgxoYHJNvs172/xhU+4zQxcaZDBVvKRE8dzqGXdsq6fy+Au027x88zbZ0B49XK8ube39nRdtC7TUQrj8UtzBJq6Nzg2jC5m/CkeOxoQqa+VdL+x9OYDkAiI7UiXnhFDc7TUbjFcGAdpe7GhBpizbvy/vM57RHAE9LWOEmsilqsGQQVcAkX95H+JjEXKEvKRXdUovZdMnLtBBhYwI6KYK4goQNgMvteR14PxQKTtaH/DF6GXo/0hq3urDrznK670MVOCVRMxMv/DM2mKsR9mzrh+rwIFG9/GbYos1XvASdqofdPGCyxWw65HM5KqMmg/QAH14eMJrldMcAMbGWa2dCuBwhRPm2rVtNPJ+Wduuevft2o76wP5ZS5vpcjkjUwnc1uHRmHwL2oNqYLjog+O1pj0uh2AzWuMk3Oo48Mp3uWkDpohbzmsLa+B0Zkai2uYWR1rg/zn8htR1qBgQ38HpkkZIOt8eb52l52mwyJhXY4V/Eb08TQDMgQQJBobs1KHRVEbqQPHsyQv68rn3uxlWmS8opAJtSLzDy16N8d099oiP03LXyV969/RZqxRbouAZwOm5hUrmbcQ3/39GEzd9AODtzG2CeNcoUFEJUQi1sVhI1RcoXUkqH3eWuD9wPzDfolXjUHE4rTUZjSAhRFFW/nQAcveDMOQPE5J+le532eD/K2wF0B0/+fjLU6+HuGQcPHCiKuvTfCnwvC3jgYZfnCIvZ9NEV+woQNuFr6qMIsoGtFvOVJQ3czmybIgM/IEMf+vRRDYFnrFGmKzIc5yfL6b4duFPAJiF4EHjXFm2+7vQzN4rd5U7g0nxw64BVOkWA6nU21WI2XVIFM5yRuj/qDHqRIdp6KMvpjgLiYi3mUzc6BiFEVGRkpGvAgAE0bdoUn8/HokWLOH3q1OHtv/z0ocFg8KMGxO65Hjdtvz1NkYhvDLZiHa7V9mpkqk4cdYEvixYSH+R3ZBhQV8wLIq1xl6gp/RdSLaiZFWKAryOLlFzt9niro9rWlptNxvNXdHiD+O1p9YFbJOgCQn97QEQYpaJ4dIRKKnBCR2iLgJ+lz/uQiDS87V06l9wf/nDSPJPjpcu6XXx6V22qWtV0aYuPn+On83ZmNK1e0CkDwNS4hUnP/9Wx/xvRhM1NJpyhuWJesKMQ4tHixYvP79ixI/Hx8ezfv5+vvvoqe/Fnn3/cpm27Xwx65QdUddP3JqMxJXzMAxaL5bMGDRpQqVIlvvjiC14fP6HDkwOfWAWQ5XQ3VAgNFhATRDwba4k6JYQ42rlz58q1atXC7/ezcuVKDhw48Bnw0OXZiz1Ox7MBXeQvFrPpigj/Hg8+MHnp58sqo3qnvRi2MeHI8Ty4fu3a3QkJ8c0aNqg/XwgRierx1rhihfLNbqtXzzBz9uwXI01RJYKShcASoHvYBToWcF+erj98LeWBp4BXFMFg1B/4jMtT2Pwfe+8dHkXVv/+/zu5m+2Y3hRCqFKUYwICIIEVFiiCRqoJ0GyIWUMSGigKWiIggIAiIIiCK0qWoiCBFEKmhSVNUIKRsnS3Jzvn9MZsYIKGoz/f3PB+9r2svyOyZOTO7s/M+73bffzdiHmUn4BYhuFlKdgEH0KQRzgv2h/0eC9BHSq6OIrYYhPyktCq20hArve4AXL1z1257py7dRj700EMsXboUl8vFpIQH/gAAIABJREFU7Nmz6dq1Kzt27Ggnpfzycq8l7M5egC5uhCk+4bKNX0nkavmndsC8pDL0aSKeHAtamPJDozP5/N4pjZ36TrTCi1yJeCVqdnZC87YXWS3mS34ARdzZNSU0VdFVVoW+SVToFVVnyBNIg4HoL3rkQaF5nt+VDHeG/R59aPmCvQUrP6lzrmdzOfBZnH5LOHBr6gdrLlr2/i/Ox7/G5j+IWG6joKhJE0AI8e6zzz47SK/Xc/DgQXr37s2pU6cYMmTIN16fbwLgs5jNZ+U0hBDjhg0b9kTjxo1p3bo17dq1IxwpaLp52/aWIC1xRCsbUWebHK7NJfbJfemllxL37duH0+lk5MiRdO7cmR07dnSQUhaHs8I+tz6KblJUHzfkXMoVIUQDp9O5a/r06cyaNYvVq1ffJ6WcKYQYqdPpBhqNxhpxcXH4fL4XgdB11133+h133EHNmjUZPnw4x44dq+8LKF2AuVFJqKCg4JVyCc7qCQkJNyqKEgyHwzcU5ahKIk/TYHkFeFUnSAQeQnvob/17vpmy4VOCk9H6aLa7/UpFtGq9iiWGFKI1hK5VJYC80iYKa6M9TLegkYEWr/JjzaRN0ZpsxTnH2GN2uEi/psGX8fHx1vUbvnsceGXatGk3b9++nenTpw+RUl4Su3dJhN3ZN4LoYnKVG3a5+56LXJ9iB+5AMzilsmDHuOvuogyDUzwu/1Qq8DRgiuqNM2WctQnwpdVi/qm08X6Pu75APiW15kxUofOqwvA7Qhw2Urhdj6wQG3oa+L6s3JRfCTojH026X92w6kVi9DaXi58q1mdRiwdAyu0I0SkzI+0/zrv3fw3/Gpv/EDyBYC9gn9NmOUv6UgjRDXjLlZCw8vbOXWqu+mJFmz179lC1alVfvttd2WI2e889lhCiKfCWEKL+1q1bbffccw9Dn3gys2e322frkV2AaSaHK++cfe5CS+I6gBsmTpxoOHDgAFOmTHlUSjmpaFzI576tQMRVcdht756zvwE4OH369Brp6enMnDmTadOmDQbe0+l0hbt27SIlJYXt27fTsWPHVbd36qgLRQrblStXjmeffZbevXuzc+fORr6Asg9NIfKxm2+6aYLDbntk9erV3HvvvcyZM6e/lPLDojl9StAQO99kKWU1VTJECPYLyJVa979LwLdCiKKHXpFc8V9BkdokaJVVO4CfY9uCaLIMv8S2eaKqLATaq5IWQIpOkBs7xjEThQd1yO5ontuPaEZFoilslslWEPbmvQuMNjuT0hITE1f/8MMPtG3bliNHjjSVUl5U6bTUY7rPrPirobQi5PoUI5rRXZTkKJ02KOLJsaOFgD80OpMv6D5E8k/FoRUUVIjqTXuielNhoUQg5VV6tbCqQI1JAIjfC3VxYxHimIUCHZp6Z1GV4UHOUXItDX4lGI+UY3RqgVAe7t4RVS2VrfNiOFIhLfhZyweLmm+OAu0zM9L+YyHe/4v4l0HgPwBPINgP2Oi0Wc6jks/3BRYB5aPRqLlCuSTRvXt3tm/fTjgcPliaoQHI9QbygG8a1U+7kpgWR4HfnadHNgZeO7d/BkBKuUAIMapv3751rrjiCurWrcvYsWNB67wvhoquBTrdpHP3B55o27ZtjVAoxJYtZ+lPqVLKQzfeeGOt9PR0hg8fTuNGDRv2u7vnPT3u7rceePCRRx6pDPDU089cIzWp58iOHTtW7sva22758uUsWqRVYg9+aMitPiVYjj8MRhQtsZwjhDiuFwwqiMq+wMZEh3Wc269UkPAEUq4rqcnzd8CnBMej9dFsjP2tR8vlJKLlyW4E4vU6YdF6TYgK2KWTapIOtT5wTRRRsRARlYiA0IxjnooYjRAbnLYLyiS7zM6kq2w22+pFixbxwgsvcOTIkQV/1tDEEA27s80mV8pf5oFLclgjuT7lQ6Bnrk/5JslhPU8R1OhM9kc8OZ+hGaVSG1rcfsUCdCIu/npAj5RKXFTpblALqunRnRJCrNTJ6HijK+VXgLDfY42jsCWa2qsKbDXZneeFesuCXwnWE1LtrVcLtpkdrjmKqi4GlnL5zM/Rmiezjgk1Olnq9O+gVQ1uGrEsq0NmRtr2yzzWPxb/Gpu/GZ5AcADwrdNmOU8cK1aG2yUcDs24qUXz59PS0ga8+OKL3HrrrQAvlRwbo1Z/EK2086SAr37++Xg7IBlgw8ZNuwcNeWQlF4FOp8NgMOByuYo6wK8ASoauXOcm+IUQdex2+2vPP/88HTt25JVXXinajscfqJifl/fGW+PfvGn3rl29AaKSaLvOPep4Az2Cda66Ui1xHAHM69end+D7LVuOjx07lszMTHr00DSopk6ZvGrK5Hc+5MIYl+dTHsnzKdFEh3UrMNztVzLcfuVNYHKMvPMvwacE3wAWl6SgcVgtUTTWbB+aVwNA0OepCgzWCfLQfj+7gRdLhs5ixzQINdpejzpaSvGqJ6Cc5g8PqsgjkyIalWu/+qaSxWL5ZunSpcydO5ePPvroCBof3J+H0L2FjL4GDP1Lx4khlrOZl+tTOuf6lKykEvoyscbaBPTWukKqNSJezyeFurgT/BE2LPIew8CX5sLABB3ypth7W4AlyMIMKcXdqs4wPuRzfxbzXhXOyb9cKvwB5XadjLbQy+hCk8O1FSB5ztqv8xfMWGUoX+n28MKZBjx5FzsMaN+TH7jt9c4Njo9YlnUamIdW5r1uxLKsjMyMtHWXe37/RPxrbP4mxDrrB6DJNB8v+Z7brxjRuL8Omgy6N7pkdJ9pMBi6zps3j+7du/Pzzz8/K6VcLoQo37xFy979B95Tq/sddx4D3tMJ8oHbLDKyqXxKSnG32dz5H//20bz5CCEaAHWBTVLK4tJmIcSVwAMffPBBPaB7bm7uLUOGDOGRRx5pDywB8AWUFL0mflYMnxLUJyQkzBg9ejSvv/46fv8fVcFSyqmzZ81KuL9vz2MN6lyVsnuXFiH0eDxuh9UyHuD333+/C80T4LVXX9n56itjfYsXLXrohhtuqJKUlMSqVauKjU2t2rX7CyE+upjccqLDOinPpwyNGZztLrt1mduvfAU8FONJm+SyXzotzDnX+xqw0mG1rC/t/ZhOTl/ALCVxEgr0ghdNdmeZ2jUADqulEE1ldUXY70lDRvujFRzMKSpVdvsVQyA/+9O+/QfcsHTpUr7//nuWL19OxYoVa3q93t/emzVrz5139cyRklPAidhrI/BTaeXaZ0GnX080OuLyPg0NsWIJO1pv1/Vo36cNkHoBUtIn36eEhOAMMaOJFm78SQrdRwY17DJGC4xGZ3KxSxxxZ6ejlW9XROuDmWt0pchYTqsOWsjxA6KRSkSjg0D8LGT0PmNC6kV7hErCrwTNSPmIXi2w65CvmByuYpYNn6J0MXfqWV8LEcvC8MxxF3v+FaCJ8rVJnrP2OEBmRtpnI5ZltUPzkOKBZSOWZd2SmZH2H88n/q/jX2NTBtTNEwSadDNASNdsaJmx4ZihGQh87bRZzqoAcvuVLmgy0K+ZDLoWvXv3fu5MdnbXhQsX0rNnT/bt2wfwSq3atdtXr1GjqsNuqz7iiWE8cO/AqlLKPLdf6TD9nQlJL4955XQgEIgvcehdQojRVqv1+bZt27JkyZK9aJQfCCHKW63WA4BeUZQsIURaeno6P/30E0CuTwlagJuEVIdHhX69TwmWXEWrwVDoyvT0dFq2bMkrr7xCpUqVCIVCKIrC7FkzBr83beqJPXuzfrr5Zo0hxmg0GmPz1uJsZt36Qoh9wLMTJ05kxowZdOvWjerVq6MoChs3bmzdrXuPZ4CxF/s+Eh3WCXk+5fE8n6ImOqw7XHZrEHgzRs75nNuv7EfrzVFj59IYeDf2Hb4ppXz/3GP6lOCYrL17Nze7vkn72NirgOMdO9y6Y877s7batNCXB5gZkHF6IOlCcs5lwWR3ZgEjwn7PNWjkn7uAeS67s/DAjl/iXC6XKRqN0qhRI2bNmgXA7NmzeeDeez/q2bPXBATNpZSNgcpSUxZN8gQUI6BKSTYavU5JrwmEEaOQiT6P+/Oo3njuOUsosxtfxx+r+RNo5KXzgUDJvqdcn3I9kvgkh7WUajkrEU9O64g7uz1/SB/sMbpS5kIxNVCzsN9TlH85YLI7S4oBTg5689sIlW/C+aezBPJxY0LqRbnI/EqwupDqEL1asNvscJ3VZ+RTgul65I1CiHuABwu++/JbKl7xOr//bOR8megoECHOuI6CyD3Jc9aeVQyQmZH27YhlWTcD36AZnJUjlmXdmJmRtpd/USb+LRA4B+rmCU2B4Wj9AEXa715gHfCmrtnQ88oePYHgQOArp81S7FnEGghHAWtMBt0xoCXwldViGff222/3ycjIIBDQogNSSho0aCCBvCNHjiS1bduWo0eP1vN4vfUMROt2uC3Dnlqh4hPPP/88TqeTQCDAzp076dWrV6BWrVq2ZcuWUbt27V+llFUAhBC1q1atemD58uVEo1FsNhtbtmxh0KBBzJ3/8ett2rb9Fdikjxbcb3XEDz73eoQQI4HBseu3TZw4kaysrCKBruCYMWMsM2fOpFy5cowaNYpevXr5VVX9ymKxdKlRowYzZ84kMzOTH3/8kT179nwO1H/88cevstu1QqAuXbpw/PhxXnnlFdq2v/XLp5559gmnzbLn3PMoDXk+5UlgdaLjbA44t1+5Hi1fsCDBYdshhDjz3nvv2ex2Oz179vxeStm05HifEnwZ2Bxvs9Zu27btW2PHjsVmsxEMBhkxYgRr166dIKUcFpszCbCW1RR7uQj7PdcCvZDyZzVaWNeaUC7EH6SaRfACT0opj5d1nFhBxXVo3ocxtrlIdnt1XDRcUxeNdDK6Ui4qIf5nkKspst4ELEzSmJaJuLMrAq3RjFllhG6K0ZnsCfs9NrSKPEvs/Laa7M4L9toowZAgWthHX6jcjVR3CxhpTEgttQTeH1Bu0MloX72MzjI5XNtKvudTgkkCOciAzDZbbTMAPIFgbVlQ0EMsnmkp+HpZfXS6xnFtu8UXfPn5CVR1pf7R0dm6qxttdNos35V1fiOWZbUA1sSu6STQMjMjrUzJ7386/jU2MaibJ7jQYrE3ot085678JFp10mbgTl2zoXkAnkDwbrRigGKPxu1XmgKdBYwxGnRtgVyL2bwBQAjRJS4u7h2dTpdUWFhoiEajRWGCdampqe0nT55Mr5499+WcOb1Mp9MdMyCnm+MTagHLgSpoK04bmov/c//+/euZTCYWLvxs0vETJ/YDtoKCAtG18+23b960qQlgLCgoAFgLPCel3ALgU4Jd4qLhcmaH64IiXS1bNF9VpeoV7X/77TfWr19/LzDz8OHDNGvWjMzMTNq0acPq1asZM2YMVapUoW/fvsX7/vLLL4wZM2YzWt6gQ2xzlxkzZqR/++23zJkz54fy5cu3Onjk2DTguZLG+kLI8ykjgBWJDutZujmx3EHPPnf3fNRqNl/fp08fypcvT9OmTbdKKa8vGudTgo8IqZrjZKH+/gcfar57b1anU6dOcfr06WijRo30q1atIjU1NaSqqj3XG0gC9ImlJMX/KsLe/Mkgq6HTTwOWXWqfzsXgU4JGoINQo130asSlCsPPqj7ud7T80lexEN/fglyfEifUaG+LDCfoUc+glSF/ZXSlyLDPnYoafQad/luE8KPlX5TLnUMJhsoTLRyoLwikC+QBNGaC4vBaIBB4UEj1Sr2MPmtyuM4Kb2qFHvJRA7KcgJFmq00F8ASCbxhlwRwdssBkd+4P+z0PA5OAR0x25zueQLAi0MFps8zkAhixLOtWtJBaHFqDdovMjLTfLvca/wn419gA6uYJ1dC6tMsDposMjwBngBt9DQbVAw4XiYXFYt2PAmdMBt1uNGbb5RazxgmV51M6o1XWHEVTEiz+8IUQCUaj8QCQMvK5Zyc8Mmz4Jy6H7SypAChezd4MXPPW+PG1M197daCUsuCrb755ol69+nMc1rOpcIQQJiBSkjnApwR1SDnQqEb8JodrQakX6ckRwAt7svY1ua7FTUdiDZgLUlNTt/fv3593332X2rVrF4//6aefyM/Pp0OHDmzYsAG/378E7cEzR0pZvDoUQjxXvXr1MT6fj5ycnFZSyg2eQFAHfALc47RZSq3IOxd5PuVZYFGiw3qWaqIQ4rrk5OStn3zyCc8++ywTJkygadOmW0M+d1OgSxRdJylEqkFGJwMrzQ6XE41G6EvAbzKZfsnJySEpKYnPliyrcUPzFv7LJdW8FIS9eQKtw/4wOn0u0BGNBqdUye8/NYfP3Q4pNwi14O2w0TEIaIS2mCoKn0sgB1h47n1zMUTc2XqgK9rCLODT2fIQ6Oyi8CRaDkYCp4kW7hXIDKMzed5fvR4lGLpFRAuu1RUE6gg4WKg3ZUpd3DsCucNqd8wobR+fErzXgJosYL7ZaituzvUEghPNMrIWWGKyO2UstDcZGFLUr+MJBHsDqy/GfDFiWdYdaE3LOjQVz1aZGWkX3OefiH+8sVE3T4gH9qCR/OkvdTepN51WatzWz5Fc9SsAt1+pDAwVMMNo0F0DHLSYzTtjVWUPo3kjKxMd1vNKJWMKml19fn/BvE8/X9LvnvvSXXbrmhg/Vzp/hCVAC0F8B/zgsFqkEMKKZkwuebXqU4LtDdFIOR3yi3P7cwAinpyKwNvAS1IfV62IribGEjAN7bOaghY6AGD9xs0jWjVv1vDmm2+u/s0333wrZXG10VmIVahd88nChW07dOi4xW61bIBipdKPgbucNssFk+9FyPMpI4FPEx3WgyXO7+icOXMqTZ48mXA4zNSpU7k9IyNw9KcDo9HH7VB1hq4Oq6W00GECsP7111+vZ7FYePrpp787cerM7ZcrE3CpCHvz7kFbtBwxxSfui7EKDEQTkJtosjuz//IcPncVIFlEI12AmUZXynlMCD4lmIpmNIpybQLYBnxzbpMvQMSd3Qwtt1UILJYGU5hY/0tUinIF6JyF6CaVbACNeHKqAGkX4sa7VCjBkB3oSYFiBfGYTi34WCfVkSVlDkpcWycdqkkPJrPVVmzsPIGgEXjVLCPflcwVhf2eDJPduUwIYQYSDh09npySkpLqtFkuyOIghHC1eXDkE9XSbxjpSq2M0Om2A60zM9JKXTjFfrPOEpvCUsoLlsbF7u1aaMb9qJQy90Lj/xvxr7HZPGEBmh6K+WJjz0EYWKVrNrSL26/cAVQx6sUWIUQqsCxYoCYAg9B+lJMTHdbzbrywz90QLeZ9ElgU0ZukqsoxQpAthCj6YrKANQ5r6UJkl4uYAbvHGA0HTA7Xx+e+H/HkdEHTdRlidCZHy+JGOxeeQHBK504dp3+7bl19YMXFfjwxKekJwHN2q8UfO4YLTeu+Z1nCa+ciz6e8iOYl/iSEuK9Dhw7v3X333Tz++OM0aNCAzMxM2rZtS/0G12QtXb7cDbSKP6fnJSZEtnbYsGGNbrnlFrp27Up6w0aNtn6/5ZLYof8Mwt68F4DDwPySLM9hv8eFJpHgA6aa7M5Su/YvaQ6N/TtDRCMrgbeNrpSHLrZP7P4oyXggUKOnjIWKEFoRwjZpMP3CH/kXFa17/zQUN4DeAWxMcliPFx034slpBAijM/kv96WEfJ7uUaHvh07/tSHiyxJS7QVsMiakzipxHU1AuuKQrYDnzVZb8WfsCQSHCKnuNFEYZ7I71xVtf+zhIc9PnDylW1xcXHpSUhKnT5/em53nnpLsip9a2nnE7pv5NputQ506dThz5gx+VU+n4W9Qvkad9UDbzIy0yDn7VDWZTPsSEhKKixIURcHr9Q6SUk4vY55eer1+3lVXXYXNZuPQoUP4fL4ZwENSyv8ojdPfiX+0sVE3T0gHNqH9aP4MgoHqGeNUe4WtRoPOCWwOFqhxaNQducC7iQ7rWaWbYZ9bjxYyqRlFdyqqM1RACD2AqsqqwDtOu/XQn72mi8GnBFsAZ4zRcMOSxiYWNhsN/Gp0JhezCVyqsfEGgu0k1HHaLBMvNrYIfiVYARhit1pGFm3zBIJXoFHV9L10gxN42UzhqQED7+lsNFvaDRgwAID4+Hjq1KnDggULeOyxxwoSEhL3WW3W5E4Zt49+681x0wCEEA7gy4cffvj6jIwMbr/9dlRVnV5QUPCelPKHS72Wy0HYm9cJLXxVwxSfWGp4KcYyPYg/KHD+1A817HPfbnK4lkbc2W8BzxtdKZdM8x9xZzcB6qpCF1+gMycJnbgCLVTkEcgxNpu9TO8r16e0BqJJDuu3xcfz5LQH9hudyRcVoCvjWmwq4rGozhCH0I3VaV7yXUCOIeQuQGOW/jJscm4Bro9DvQL40Gy1nVWI4AkE3zbLyBrgy5Il7FWrVtkyfPiT13fp0oXKlStjs9nYuXdfv9TU1FVOm+W8UKoQokOLFi2+mDFjBlu3bqV27docPHiQR4Y/zb1TV6CPixuXmZH25Dn7tGvbtu3qDz74gL17teK1FStW8Pbbb0+VUpa6GBBCzB83blzPatWqoSgKLVu2ZPDgwaxateppKeXrf+az/P8D/3RjsxKNaFD3Jw8ho8b4TYVpd+8KFqhz0ajgj5VzOX5VVfXmkgN73nnHvhkzZ7YCUVEV4iBCdwattHSRw2opmDZjZuvJkyZeuWf37vJohQgzpJTu86f8a/ApwXscVsussM/dy+RwzQeIeHKcaOGxTKMz+Syhq0s1Nj4laFcl48pS5ywLfiV4B+CzWy3FIRZPIFgDeBnodyGDE/Z7WgCtpESG0Fd5asRT86e/O2UYMV2Thg0bXjd16lSaNm2KIz5+520dO6ZXrVqVL1auXLVh05b9wMcJDluLO++8883p06fzzDPPoCha/nrhwoWFgUAgSUp5STmky0HYm/e8KT5xdNib18sUnzj/gmP9npvQaHTmmOzOy/YKShgbBzDK6Ep54kLjI+5sI3CHBIHQedHH6dA8nFNoFWRRnxJ0orE9F/GMRRd9/vma/n37JBNjJZdSbsr1KTXRQmyfJjk0ItWIJ+duYInJVc4AtEELDRWxkn9XGit57Dqazf/0swFfrV0n582buzk2LAqsCmjn0x5Yqg95mkshhqIzvIfBlGe22hafeyxPIDjBLCPrTHbnWe9d3+S6BQcOHrrT6/XidrtJTU2lRs2atk3fb+vntFnePfc4QoiGDofjx0AggKqqC3Q63V0HDhyge/fuNLznBcrXrAvQITMjbVWJfdq1bdt2de/evSlaFKEVbgyUUpYqMieE6Im2ADsNVOncuXOl++67j4yMjFVSyg6l7fPfiH9sn426eYIVLdFepqGJRlWa3DOeiuWcLBt3f2lDhHRWbQI0N+qFzh7LBaiqmjNy5Mgkg0H7eP1+P3PmzPGoQt/aYbOed0Pdcddd9b5Yvvzr1q1bk9GpE5s2bWLdunUSePNvuNRi+JRgQ85mDyDiybkZrRm1v9GZ/KdDNg6rxe8JBKUnEHQ6bZZS+bNKg91q+dSvBN/wK8Hv7TGJaafNctQTCL4IfOgJBM8yOGG/5yo0Di7QwjevACg+Rbya+caYVzPfeDTRYf1VCFHzt99+Ozxp0iSqVKmy58SJE1uaNGmSvn37dvbu2fMVWgjvrj59+3U+fuwoo0ePxmq1YrVqTCY6nU7Hn1+ElImwN68x2sMFLoHXzWR3rgv7PRuAvmG/pwfwdpGWTiz/VQ1NeiIJ2CilPLfXQwIYXSm+iDvbEnFnG4yulPPyexF3dkMJDRDiCoRhLzqdChw02Z0Hzx3rsFo8aDk7AKxW651CiN3NmzenZs2aLFu2TDa45pqau3ftOpLrU35Do7lZl6SVji9Aa5J9pmPHjrWKWMm/+OILDh48OFcI0a9kk2/Y59YBA/cePJz42LDH7+vSpYuub9++gwBOnTrFmjVrFlgt5p5KMDRVStk1Yoq/VS+jHfWFoY9F2Hc8EvZ9Y0xILb4fPYFgHJqlOq9ZdO2aVR/ZE5KHoBXwOAD2ZWVJINsTCFZ22ixnaRVJKXcIIa5CM8TJer3+LqPRiM/nQwjxC5rh/WDEsqxrziXuvPbaa5k2bRr79u1j+vTpDYLBYMkcztlfoJQfCyGSExISJiUlJXHbbbexceNGKMFs8b+Af6yxQUu6h7lA9dnET9ZTp1p5vIGy6aV0Z/YGVXvlD3TOKx72KcEWSNkWSBo6dCgPPKC1N4RCIU6fPn2sNEMDUKNGzVuqVatGkexAXFwc69atK1O96S+gYcyrcQK+iCfnKUA1OpP7/x0HF5AlNU/x08vc9VU0hoXijnenzXKkyOCE/J4hAu7nj/LS184NKyU6rDJWMPBKnk+ZKKU80r1Hj2fR6VqdOHHiYWD2sWPHmD9/PsB0l90aBebFO53fXFW7ztQzObnOzZs2bf3pp0NF4ZLd/wnPEugQ82r0XCKJaKw6anbY73EAj4f9nhPAbCCzQoUKT1x33XUkJycza9asX9HK40vCF/a5400OlxfIBJ5F8xqJuLOFhB4I3fUI/W/oDYeBlZdbnBAMBpsOHz6cJk2a0KpVK3788Ufx5IgRg3xKMM+oFwL4OhKVdXJ9ypVJzuRvIp6cz41G46TmzZuzf/9+nE4nX331FZ06deq9a9euD9F6Vwj73HWBGwt0Rs+3332Xl5SUpHv55ZeZPHkyAOFwGGL9RVaLWfqUYKKAMUKI2dE42yhD2LMTeCOSf+o0MNaYkKoC3XWoR9HCk2fBYDAgpcwpkS8twnY0YbbzKjellIeFEKlCiG/Hjx/P4sWLOX78+OZuVWs+gtYmkQLMGbEsq31mRpoKhI4ePcrIkSPJy8ujb9++LF68mPbt209HK7woC/X79OlD586dqVSpEpMmTQKt4fh/Bv/YMJq6ecL7aMqLpXZS/5rtZuDoeTzTvy1vfbyuLM8GQBbaK68pqN6+ukCu1Ul1nSU+4ePff/+dKlWqEGujiQDNSnOT3X7lhu0/bDvQ5uabXgFaPPPMM2lGo5GXXnrpJSmUl03iAAAgAElEQVTlqL/lYgGfEqwFlHdYLRvC3vw7kdHbBcwwOpPXXWi/Sw2jxeYYpEpCTpvlg8s9P78S7AhY7FbLZ7F5BXBHFHF9IfoWcRS2slxCsjzPpwjgNZ3gQ71OPOGwWu4BEELchBb6+VhK+XVsrA1ITXRYj8Rob+4FKqMZo+OXew0XQ9ibVxm41RSfOCPszWsJ/GyKT7zs/EXY77kO6JuUWqn5uHHjGul0Ovr06YPNZgtKKc8imQz73OWAK4vkJyLu7GlSGEaDOgwwIHQb0Om/+DP9L0UQQjRHq16s+8MPP1gHDBjA3r17G0gp98QKDtoB6VLKeFVSQZWMvqVF086/nzx1V/aZMxFirOT79+9n6tSpj4a8+e8AfSWcLNSbqgHfOGxWtXr16kfmzJlDixYtiqb+GbhFSnnEpwS7Anvi0FidVaGPoBFmzjOE3NWBJ4FVQaPzBpOMrDfbnZ+X8rkWVaN53G53fGpqKqFQyOr2KynZ2dkVDh086L/t1nZneY5CiBQhxKbRo0fXrF69Ov369QtFo9E0KeXRR+dtGmEwmV83GE0AT2dmpL0uhIhDa484CeTqdLovTp8+ratduzZ5eXkpaCH00LnVpUKIdDSm7KtatWp1zVtvvcW11157UEpZ589+b/+v8U/2bOpQNmUHwyYs4rUhGfiUiz7fhMH/azkpo9cCIZPDVQh8bDAY2Lp1KwkJCUybNs04bty4OZvWfX3rtY0aSrTPPa4QXUU9unItGtUPhjy5s5rd2BpineTXNb62Ztibdxvaat7AH0SGkUv91xSfWPKGvRGYEfHkXAviUQEdjc7kvzsfEQDyPYFglUtt0CyC3Wr5wq8Exyp+3149ale0MvTFVnv8J55A8MoIxhkRLaR2wdVRosMqPQHlWeBAVJUNirZLKdehsUAAkOdTnEBCosN6BMBlt4aBKW6/YgPud/uVFDQNnX2Xcx0XwQC02DtAJVN84oYLjC0TJrtzW9jv2dG/b5/3Xxk7Nvn3kyer9unTp/SxDteZsM/dNOz3pKFGGwEuZOG7IHqYXOX+MiM0gJRyI9BYCLEdrZenGLHy6dWxFz4lmCBUOXrdxi2Oq2tfVadXr16uqlWrkpaWxquvvsqwRx/JBe6PCv1nqs7QB5hrt1py0AwHDRo0YO/eveTk5PDCCy9csX79+sd9SnAecDoONRe4y2y1jQVQgqFtQO9Cs+uA1WK+J5J/qrsuGmknZGGpBTifL1pc/u5+A6ZxNiv01No1q3+al5f3YVxcXKKiKK9JKZ8BEELYga9ffPHFmrVr16Znz55Eo9H9wCAhxA6z2TwWoZOdRowX1a9tMWbEsqx1aIuZJ9D6ujzx8fE6k8lUlCt8w2q19g+Hw6eFEHWllPmxed5FywevAApyc3OviYV7L7VV478C/2RjE1/WG8s3ZpGS4ODaOlVY9+PFJSuk0ZGIVO8GRNibR1JS0m9Vq1ataDKZzgApW7ZsYcOGDVfP/+TT+65t1PB7oFBCoSp0jYyycCPa91CgKH9Ytt9+/z0HLb9SGHvp0EIGpnP+tZWx3RQL1aCiq2oAoZOFH0lwIsR+iegZaywELX7tRlPjzAPyY//60V3W/bxfQJzUcmEXY3M+C2G/p60BClR0UySivdkeX2wonTbLYU8gOBr4wBMI9r+YwdEJ8Z4q5S2qZHSeT3ky8RxZ4zyfkgroEh3ney8uuzUATHD7FTPQx+1XBgKLXXbrX1JnDHvzLEDYFJ94NofZn4TJ7iycPPXdvo8P3Xdl7bQG54mPxfp2mgLJqNG2SPVngTyEpqr5rvFvMjSlIebN9yuhOwTa/TUt9gB9ONenxPv9/rY2m80VHx+P3W7H4XDw6++/Vy1fpVr0+qZN5/+4ffubZ86cKWqOzD916lRhjRo1DDk5OTRv3pxRo0aRkZHx0DX10q45duzYzheeH1nujh497qvX4BoArBZzAJipBEPpSjD0oDQ5P5GqepCCYPlI/qkpwHBjQmqxRzf+7Ynte/Xq1aNDhw5YrVZmzZrFhg0b+k+dOrXNLbfckvjiiy/SoUOHdmghX4C27dq1qzdy5Eg+/fRT3n//fYCGb775ZsNdu3btHj16tMHtdvP1/h3+6te2sAMfG0zmr55+cniFSpUq9fN6vdx22228/vrrhEKh1UCT77//ngEDBpTfvn37lWj9TgA9Fi1alHTkyJHHhBBkZGTw8ssvA1yU9f2/Cf9kYxNX1hubdh9j2Xd7Wbl5H6FIId5AiL6jPmLOqNJXjyLiwxSfOB2Kk7a/A78Eg8FdQohF69at65KWlsY7U6cF3pk67QqADZu2nKhXv/47Jkd8KLafDu0hD8Dvv58Mmp1JJy/GiHwx+JSgQMpBpkIlHVhgdCYvLVmJBhAzSi407ZYENBbpRMCOGm0QC//AHzmGCPArMSZiU3xiEQX8fiG4Q0qkJxCMc9osF+wBCPs9JmAIWun5OrPdOcqvBFupGsfZWcbKabMc8gSCY4DZnkBwQFkGx6cEnwfed9qsv+T5lCloPHfFpIx5PuVK4ExiGSJgRXDZrSFghtuv6IHObr8yHo1lYlkR2edl4hHgksvCLxVX1kk7rtdrC4K4uLi4sN9zB1p1V5TCSIFAuqTQ/Wpylcss2ifizl4ZcWd3M7pSzgsl/R3wer00bdp0+G23/aHdtnLlSjZt2uQB3gNIjrclAncdOHDgzs2bN92RnZ1dfsiQIWRmZj6UlpZWpVnTpqxZvbqo8AHAHQwGuweDwX3A0Y0bNx7o1KnTVcOGDaNWrVrNfT5f848++oiXR48pBPqUrGqzWS27HA6HpUOHjvMsVnPNDz/48POpE8ZNGtj37vGR/FNHgTeMCamyfPny2d9++y379+9n/PjxAOTn5wNUqF+/PnPnzqV+g2tKhj1PbNu2TTZu3PishcOxY8cArqpbty5Dhw4loV6LF9CKfao1veOBahMnTqRx48ZYrVamTZvG0aNHjwJbzWZz+0gkws6dOyNASY/6s0GDBj1w7bXXoqoqmZmZnD59ejF/GL3/CfyTczbnufylYd2Ph3lz3jcXytkgYa++2dAixuUmKSkp36uqSk5ODldccQXr1q2jW7du7NixY1WLFi1uBcjOPjPu4MEDT8b2MQghdlkslquffPJJjEYjY8eOJRQKHVJVtd5fadwK+LwPGNRIJwGDjM7kkwDnGpsLobScTdibZ0ZjEagSexU3qEWFvqWQ6vaoMFSJkwWL0VQuT5QM6YX9nsZopaoRYMq5eiV+JfgCMNtutZyXz/AEgrXQYtfnGRyfEuwFWB3WP/is8nzKzWg0REti53rk3N6nS0GMiqgVkIHWaDsvFnq7KMLePB3wrCk+cUyJbT1N8YnnNdVeLvbt3lG5QaPrTni9XuLj4yMBd+4EooWFyOhhAduMrpS9ReXPJfeLuLNnGF0p9/3V+UHTP0JbZVf74YcfyMjIoEePHjRp0oTPPvsMgD179nDkyJG7pZTzhRApVqv1t2g0anDGx584k5NTZdq0aWzbto2PP/6YJUuW0KxZM6xWq+rxB54D3OWTk9xGo3G+x+MB2F2pUqUGfr+frl27kpWVRaVKlZg8eTLNmzfn+PHjDaSUe0qc3/hatWoNu+2220hISGDLli18+eWXvxQUFFwXzjtZFY27760CEVfRnpB8CC2MNqVZs2ZN09PT2blzJ6qq8uOPPzLyxVGtHhs6THHaLNtjx65CTGMK+Kh69epXN2zYkC+//JL09HQ2bNiwXUrZeMSyrPHAMCC656tFLVdNfN4BNKxQocJrXbp0IRAIsGTJEqpWrcqePXu+klqhUcnP+Ao0+isJHJBS/mUdp//X+NtLO/+H8LdxF0VtqWG3Xxnt9itjXnzp5TtSU1NZuXIlWVlZLFy4kOeff54dO3ZsAH7p0aMH11xzDYcOHSxJN5GQkJBw9dq1a+nQoQO33HILa9euJSkpqRZ/ULRfNsKenHv0amFXAZ1LGBonGpnnn4YpPjFkik88YopPXGeKT5xjik98t+gV1Rs3WOITxkeF/pCEbLQ+ioFhb97gsC9/btiXvwRVvRM1ugI1+k4ZwliZwHC/Ejzv/nTaLIfQ8h4feQLB4hifTwk2AtJLGhqARIf1G7SHQftEh/XQnzE0AC67Vbrs1m9ddutwNJnnl9x+ZZjbr5RZsloCDwDF51UifHnZCPs9Iuz31Av7PV0G9OubWS/92uNF70WjUaPNlTTsuRdf0mMwpUuDqaiazhP73ktiacSd3fvPnsc5uPnOO++stmfPHipWrMjAgQMB2LdvH8uXL2fx4sUcOXJEQeO/A0gsV66cYfv27az44osqBw8exGazMWPGDF5//fUiRVmklNJhtbwGLOzStWvPTp06cejQIX744YcG33zzDenp6cyePTs7Pz//l8WLF7N3715q1KgBmmZOSVw/ePBgwuEwO3fu5LnnnuOxxx6r2qhRow8Lza4daKXYbQ2y8N5w3snDUsodgLFJkybk5ORQqVIl7rrrLlq0aMGLI59LA2p6AkFz7BxPSCl3xPapM23aNO666y6mT5/Ohg0bstCKI0BrmHYD+vptug6XUq4B9jZs2LCouIM2bdoUhSDPq5STUv4spVwhpfzif9HQwD/bs3kYeJ3Ll4g9F0FgpK7Z0PEA323+vtbwx4e+fezo0cbZ2dnJSUlJJx3x8SsKCwqH//rric0LFy6s27dvX4LBYCUp5e9QHHqbiCahXBI/olFSXNaXFGMDeDMqDNZCg2mYw2op1gIJ+9zdgJUmh+ui+iBwedVooFWkOayWaZ5AsBpwpVlGtqJxwwlgpsnuPBX25iWgFWjU5myaoDBwCNhfYLDUABrbrec30wF4AsEKwDtAb53AhNb30edcPq88n1IdrUT0IWBWosP6+3kH+5Nw+5WqwD1oOa/ZLnvpEgRFTZwl/i4HNDDFJ359KfPE8i/N+COklGWyO38SQnwwduzYfp07dyY+Ph6Px8PcuXN57bXXJoV87qfRtG/2I+VOIGpyuM7K7UTc2e8D9xpdKX8pVCuEqAusQusr8QP2Rx55hCFDhlBYWEggEOCee+4hKyvr3pA3f20oHL61Rq26N+Tl5/e2Wq26YDCI0+nMa9iwYWLPnj0ZPHgwgUAAi8VSIKUs0kqqBnwghGhlNpsJBoOy8XXXrc/au7fFCy+8oL/iiisIhULcf//9RKNRl5TSU+L8hgIPPDRkiJgyefKSVq1aPfXyyy/Ttm3bLW6P9wNgs9Vi3hX25g0Q0cjNwEJTYoUAGoNDRaDB8OHD45OSknjmmWfGuf3Ks0APp80y/5zPYSxwe4sWLeqNGjWKNm3arJVS3lL0/ohlWU+iLaQAbnjj9nqJHTt2XN61a1fuv784crIByCh5/v9X8E82NtXQGFovlxPtXARD1drda61wdalhKbdfqYimZVOvX++7M1avXlW3WrVq737/w49DS4pR/V2IeHKswAdRYZhYaDDFO6yWFSXfD/vcd5scrktm4P0TxuZuYLlRjSQUoJ8QR/RbYHKROuUF59KS6Feh5YwSVKFvJ6S6SyB/QvMmDpdIsOMJBB1ouZ0CnaCvw2opDmvl+RQTWsPjsUSHNRIriR4PPJnosP5tFPsAbr+SCPRBC9OtBVYX5XXC3rzuaGSbxc20YW9eW2CHKT6xTO861lPTAu3+LAS2mOzOsyhTunXOGLb6q69fCIXCcaqqetE6+t1AfynlN7HjtEPK24HlJofrLCLMiDu7FnC30ZUy6q99AmdDCHGryWRaGQ6HfYCjd+/ePPTQQ3S67bYTJ385NtjkcBXfkx1vu835+BNPDO2ckTFqzZo1dOrUCa/XW2RsqFat+sRjx44+VjT+TF7+/cuXLftyYP9+x48cPdL42kbXbrrhhhviqlevrs3RqRPHjx9vLqXcVPKcwn5PrdxA5IVKqSkVx44de3NcXBwjRoyYLaUcqARDLYGrdNGwx2x3fhbJPzUQaG5LqVKtW7dut9SqVYubb76ZQYMGcfjw4dullMs8geBVQLLTZjmLmV0I0bJFixbryzA2ZrTFVBVgw7jO9V/v0KHD8lmzZpGXl8epU6cYNmwYu3btGiGlPEv87f8C/rEFArpmQ4+rmyecRmPZ/SvIjzqr/+BTggPQwkYrS66uXXbr72jNYAs+nDtvPbADLV8x1u1XImhqfxtd9r/+AIx4clLRaNL7FBpM/dBILf+fQqcWqjrkG8DWKLqXo0Kvu1ihQBFM8YlBtO763QB+JTgTeMtQGHpHIBsCrUuEoE6bYVtIb/4GRDdVUgmt85s8n5IIOIvYoOGsps8xwNN/1/UCuOzWPGBiLK/TGnjV7VdOAx9ZIM0Un/jZObskoXHnnYWw31MRTQxNoHkI60x253keaExiueHHH8xcZ3SlvHWhczPZnWvCPvd24L2w31Nosju/KnrP6Eo5FHFnJ0fc2U6jK+XvXEnvDIfDA9DCZrWWLVu2c9KkSeS73S5zfEIemse1zRdQ1n/y6cL+V9assa9169ZUr16dpUuXIoTAbDazfv16brrppkd79e6j27xpo+/V117P7pSRsXhg/37HRz73rN7lcj2pqmqHlStXmuPi4kbXqFGjYdeuXdmxc+f9aJyHxXD7/C3btevQqHv37nXbtGlD69atQYtsYLWYNyjB0A9S6F9VgqEca0Lq+5H8UwvqXV1nfzAYJOZ5UblyZQ4fPnwlgNNm+ckTCNb2BIKJTpvlgqSzRcjMSAuNWJb1AvA+0PKme5787LtP36Vq1apEIhE6d+7M559/zpVXXjlSCDHuciMa/+34xxqbGF5FqxI5Vxb2UhEoqN7hsFEW1jXZHLNjdO0DfEowgKYRUrwKjwmqbXXZrR5gbmybCa1M+MVY1dMPwJqL6suXgognpw7wPHBXOM7WGNhaGkU8f8gH/60I+z1tgGY6+KVQZ1zlsFoWmQBPIHgvWgf2ZcNutRT4leCUQoO5v91qGQ8UPyjD3rzUqNB10kv1doMa+SSiM80J+Lzzo5L1CMPJ0uSbEx3WQJ5PmZ3nUx5NdFj/9sqwmKf6NfC1269U0KuFoyIYkoN+pRWwoYQnK0zxiTLWuJoGXBnbfhJNRK3U7yjizr4aLdS6z+hKOU/muiyYHK7csM/9PpAc9ntGAa+XMGJPolH3DLq8q70gJl999dXdDh48OFtVVQYPHszWrVtBW9UvGz58eNKkSZMK8/LyRiQmJs48fepU0urVq71169aNB9Dr9Zw8eZJOnTohpYxs+m7Dw61ateKF50cebNex00IAm8326vi3JtxpMpnu9Pl8OJ1ObrzxRp5//nl0Ot1BnxJ8Bi2ZPq9754xTbq/v2Zo1qtd45plnaN++PYFAoLOU8kAsBHgd8GPI5/46iiFPCYYG93/g0e937t7bs2qVKt23fb+5+6FDh6o9/vjjrFu3rq0QYjeQarVa1/yenXObJxD86ELl+DFJgY5AYa0b2n7c+em3HgfqN+zY64Gj2ze8cOsjoyso7pxxc57oefC9994zJCQkxOfl5SWjSVD8n8E/3djMAl7gLxgbzK7RqNFXwz7PtQ6H80XgfZ8SdAD9fEowCnwcVSWAJWZoihGrZloFrHL7FV1eXl6TLZs3vXL61OmkhMSEgy1b3fhezSuqXFQhcs+2zTe5PZ77b7+j54O//HZSBa5xWC3Tyhiui2m31AcUICsmjPanEPZ77kLLvXxrsjtHa8qIDCwx5LgnEKzutFnOe/hfDLFcVoW2bdu1+3HHjx1yc3J+BZ6RUp6KGCyn0Qx1O7M9UQ15/dOkzvCJnsKKNhk6EfaGBFq12xYgq4jGP9FhPZDnU67I8yldEx3WRWVO/hcQa/ZLXrl0UeEHH3/ad+q099oBr7v9ys8Cdb4ZaoX9ni6x4VlFhJAxBmqrlPKsxUZMavlWYL/RlTI7NtbK2SHgkJTyQiwAwmR3fhz2e6p4vb5xW776+tPbu3b/VkoZjLizj0Tc2Q2NrpTzJBVi11IDre/qt0tcbcfffffddO3aFSklu3fv5t577wWYYLFY5jz11FNMnDhRv2njxrk977rTK6X0CiHKFRQUWAC9TqfL3bJlC16vF6Bvenr6gi5duvDRRx/9DFzh9ge6qxJXSkoKU6ZMweVyEQwGmT17NqtWrToATHRYLYpPKzDpZ7M7hhpN5hqjRo2iffv25ObmAiwRQowGHuzbt2+5efPmeXw+X//kCs49vfv0ObRixfL85ORky9IVK38Bqo4ZM4ZffvkFoHLFihW/qlevHmvWrPkMrXS/HbBaCPEamtdWhNZCiFPAssaNG98XCoXYu+nL+9HKvydu/mTa1aGTR1+edm8b4kyW/q1atTJEIhHy8/ODlOL5/q/jH5uzKYK6eUJLtO7my5UZCAKddM2Grg373FbgcxACnS7DZHNEAHxKMA64U1VlAyEYF28rW/FRCHG1ECKrdu3aVKhQgePHj+P3+3+fM+/jJdc3bXoUrXv4QMk8jxCikcvp/FQJBmtUrlyZ3377zffl12sfSW/YcJXDajlP310Iob+yZs2NJ0+duj49PR1FUdi9e3coGo32klKex44LZZQ++z064D60kuJFJrvzLAoPnxJ8wGG1TAfwBIICGOi0WWZxmRBCNK1UqdLme++9l7S0ND788ENWrFgxREo5xacEn0PT+dkWYwNITnRYj3gCwZeAPU6bZWHYm2dCYx1OQwtNBdHCK4cCwnw/sL00Mbu/AiHEB2azuV/NmjUJhUIcO3bMVy45+aGfjxzKURFVo4gWqGpioS5uNLA1wWETaHLEt1ut1spCCDUQCAyQUs6JuLMNaLmgHKMrZXmJOVpbLJZVZrO5uFdMURTC4XCLWDf/eSgqfxZCXB8XF7fFbreTlJh4cO/O7WmiMKwCs4yulIEl5nACc0wmU8ZVV13FmTNnOH369I9oPSz7S5sjNk+bqdPfu3n4U8+kR6PR69C63Leh9TrpW7ZsubpZs2a88847HwYCgVI5+YQQL5dLTrorGAzNS61QoXafPn16LVu2jO3bt3cPBvxLpWT00d9Orr1/4IBB27Z+X6uwsLAO8BMap9qrUsqzuN2SkpIOz549u2bt2rWJSaRz+PBhunTp8ovZbK56+vRpkpOToyeOHu5RvnLVxUIIq9lsDmzYsAGz2YzBYGDv3r0MGjSIW25qeaBAFXX69etHt27dVkspb/UEgjcCx11265crVqy4qkaNGhiNRoLBICNGjOCLL74Ivvvuu5Yff/yRhV989eq9U5Y+A6hrprys65Beg4EDBxYXUjz22GNs3rx5tJTyhbI+4/9ZSCn/8a/oprcGRze9FYhuekteyqtg67RAfu7pYznewFMljxPy5r8Q8ubvDvm9dYu25fsC5fN9gWu8ASXDG1D6ewNKo9LOARjYrVs3+fnnn8tJkybJ7du3yzfffFMC6/N9gaR8X6Bfvi/wSr4v8GK+L9Ai3xfQt7ih2bLhw4fL48ePS5/PJ9PT0+Xrb7wxrKzrBGpUrlxZHjp0SM6YMUMuXrxYbt26VdrtdglULm2fkM/dqcT/DSGf+/GQz/18yOeuVNY83oDyQMm/3X6lq9uvJF3u9wLcXKdOHTlo0CC5YMEC+eijj0rgMW9AucYbUEZJKcn1BirlegPlz5lvqNuv3HfetXhyrSFPbpuQJ3dwyJP7kNfjXuz35Jf6ffzZFyB37twpFyxYINesWSO3bdsmXS6XrF8v7eqiMUFP7t35vkC3fF/g1SXLV7xRuXJleeDAAZmbmysnTZokgXfC+ac7hfNP9w/nnzaUMsfwJ554Qh49elSuX79erl+/Xnbr1k0Cg8s6r5A3PwPNE3LPnz9fer1eqdPpAiGfe1LI574inH+6Szj/dK8Sc2S0atVKHjp0SC5YsEDu3LlTTpkyRQohDgHnnVPIm18n5M2/P+TNr1XWORiNxhoJCQmn9Hr90bLut6JX2H1GH/TkPtWnX7/X0Kj1lwEiGPA/HAz4q0spyfEGRI43cEuON9AjxxtwlnH/mtu3bTMlMSnJjcbOfCbOaHTbbDZfzSuvPNi6dWv50ksvSeCDkM+dUeL6R6CRvkpApqamHkhISLg1ISHhvczMTNmsWTMJFH9ebr/S22AwPB2b4zRa0/MZtBByZPXq1dJiscg6LTvUfXLp3rwnl+6V/d76RFa6upEsmgM4htbzo/s778n/ltc/3rMpgrp5Qg/gAzSql7LCi4VAxHfVHTukOaG5KjWW46QS5bRhn7s5MAvEcJPDucztV9q67NZiWdkYzX99tKqhZUV5lVhz2GK0nErEYrHckJOTg91uR0qplzEmgRiNyi1x0fAj096bUf7Zkc+nh8NhtmzZwoMPPsiePXsaFRYWlqow6XK54gsKCrIjkYipsLDwI+DmJUuWVJo7dy6ffPJJbynleVVqYb+nE/AFMBiNVWCiye68YDK5qPy56G9PIBgH3H25BJ1CE5V7FOiWmZnZ4tdff+X7rVvf/vLrtSlRVfZWJbWAXxMd1vN6dTyB4ECgnNNmyYwdqyJaviMHjYpfBr358QXoPzBS+JXQfuzuYDC4PiG1cgWgAdrD+RCwVkpZZn+OEKKcTqdrfsvNN1XduXvPoEAgUN1us/6efSan+vz583UrVqzgo48+GiilnO0JBIUpGuw7Y+4nG+bOmXNLJBJO379v3wMGgyGuZ8+eNGjQgOXLlu7+dOFn41WdobTEs+iS0anLtY0aDvz/2Hvv8CaOrm38HsnqkiXjbmwwNgZCMy0BDKGFYjA9dEINpgRCCDWUEGqAUEMPNXQIEELHJJTQe+/ENAewsWVJu9qVZFs63x+SHOHYkDzP9355nt/vPdc1ly95z8yemZ2d2TPnnPsAwNy57iwUIaGhNxYvXTa/abPEQo9fpOR8t2GjRmVLlijRqWbNmhg4cCACAgJsRjPX3Q/OTgR23y/PVsfhp1kExmjON7PKLvp2wWyr1YrQsLAzrzIyEu9kAnkAACAASURBVB4+fIjExETElC5df8u27VcACEqXQw03BM4jhc5wrKgx8mRm7Q/gJ20hWndB4kVbaYkrr4XM6bgq1wedBAC7KMQDiFeqNa+hSxh5UQp3bhwtgJRA3R82T4fVkgjghJ3Jp+k1quG+9SIjI6uZzeZTeXl5fqvWrBnaoXXSc6VWv/e1wXYje5Ag2gwAOrVv167CsWNHP1Eo5Kkvf7tzWSaTfS4PCMuwCDYVgE4A1he03zDGtstksg65ublTiWji6L23E+C2P6oAzwe/yzllTtv4r942Lv/N9P93m00+SWoP2+E6u+AK3B4qrQHYXYCKgipKWNYtgYEpcw1xl+XmB71IGSACmCVheOIktDPy4upAndoOAAqd4bSDN1cB6IzIW1qDyab43kenVl0FcJUXbUFw23UA4EciSmOMfazT6a5GRUWhUaNGOHHiBIgog3wgawxatd2TYndN34GDd9Rvkvh+m5YtNsEd0Q+lUllkoG5G2hP5rydP9WqW1Go/ADlj7EZgYKD3DPtPC7bHgN0EQA0Ay715VLzkeRGrwG3gfgXgHBH9CXNLr1HlWgRbnkWwqQxatQpu5IZAuL/+zlMBhFsveRb4+Z6Noi4AxMXFdTl+7FiPOvUaxAJ4UBD3zCOXFsC9L8aNDyhbrtwPH/fu9R1jbGdSUpL+xo0bePbsWQsAB1X+AZyNF/vkwW9EMZ36SweXbUhs3e67uLi4TnXq1IFKpcLFixdx6dKly4yxxlQg5YA3/iU4OOi7+Pgq76g1GiQkJAAA9uzZE1uhQgWULl0aN27cwJChn0VaBFtrAPhh508Nhn82dF39+vVRtlpVhIeF4dChQ3kZGRl+AJDrpDwnkxKIjhu0ar5g/44fO1qmerWqaNGiBSIjI3H27Fns2LEjpNOH7Y8RUaE5Tr75enrMo9TUTnNmz0abNm0wcOBAOJ1Op16r3gVgl8Nq6QKJVKfMs1ZRGEKmTJ08ae+0KZMP6vX6NJ1OF5r56tUDqVQKm82GmjVrBYPoXSmcTXOZ1M8J6QkwprULtlYFbsvB/ZWfLgHaMoY9f3WjAVBLo9UtzLE42uZYstQumcoJd1bO8QX5A92BuilGXvQD0NTodns/FKhT2wCo7UyeC/eH4mv0+++/X2GM+QOgNm3blc8j1yhetFUCsFKndmfm9Hn3TAC+277zxzacxXwnLy9vg0wmcwD4NseUflEfEPa9RbDt9shYEBmiU25urpyIHADwTasKZ0bvvd0Z7o9LCWMMTOr374Zg/MfT/242PiTGDygNQKm+/l0YgPedJT4YSMVKN2e6yG1+L86PzyuesEGIbPAy0O0t9pHZKiolwFcuoLORF9cHehY+T8BkVZG3HFVRzjoHn9NYoTO85mGkcyPZrvMYMdvzok3boEFDrd1uw4gRI1CxYkXMnj0bAAIZY4yIyBusCeCQXB90WA6genylX7Ozs43wbDYrVq8ZbLaK9wBsMGjVBZ0L4uu/X/c43MgRh0aMGFH81atXOHr06HN4UHm95LBausIdeHlTodWvKjhWjLFYxtjJsmXLhleoUAHPnz/H+fPnMxljSZxQqJ16z4zp077QaDQTa9SogeDgYPz222+4du3aQ8ZYIv3FqOiTJ06E7t2zZ5fFYjFQ0Wr50Ro1arx7/OgRHD96BIGBgR3btGmD2bNnY/jw4Vi7dm24l7GYTm3O5sXt2bw4qJh/sWXnL1zEZ599BrlcDrvdjtWrV2PRokXVnz//fbfFKi4DQFK43gEgA6ROFyT3RdFmWLZsGXbt2oWcHHeW4UOHDmHr1q24e/cuHjx4gBs3bmxe9O2CRwDww/bt7fv06YOaNWvi8uXL6N27N/r37+/Xo0cPNGnSBEeP/HIW7uOXz8xWUQvgNNyxO94Uxo6zZ8/iwYMHyMvLw6hRo1ClSpWwcePGzQHQsZBnJVerVOOWLV+OCRMmwOFwuOCeA1rGWEkieupxHrgOcm5zWIwbFfrAR0R0mzEWynHc4QULFmDXrl149uzZ2RGDB7yUUU55AHMUOkOhmpTHVqcDEMaA/gTwLkINi1CoL4oAt9t6moQhGkBtnVq1wXNtP4A2cMdMLVKqNUUexQS646cOGHlRDqCxibeGysFsYKiM17HG8snnQ+emw2rZnsPkBwD050VbMQDHdGrVay7ULuBqQEDAIQBd84BnapVycI4pvX2OKX2NChhsk+t/tQi2NnqNarfPPQjugOV8+qZVhb2j997+HO7UDIA7783/t+mfPsf7Tyq8II7kBXGu97dNFONsojjNJopSIoJgyV6VxQnv+9Yx8UL1bE7on8UJbQv8v66JF9R2zjzQzpnu2DlTpbfd/8y5843efe+9w8WLFz+tVqvp999/p/DwcAJQqlhAQFjW74+/d5gza/jW4QRRFhYW9vjcuXNUpUoVAlDVxAshz16kjzp38fKS9KzspiZekBAR7Jypc6lS0ToApwcOHEg///wzKZVKApDfpp03t7Lz5sl23lzJ87tlYbIC6N21a1c6fPgwTZkyhQ4dOkQ7d+4kxthjo9kysLA6SS1bbevatSstXbqUvvrqKzpz5gzNmTOHABwsakwAhAPY+s0339DQoUPp008/JZVKRVev3yhULk8dY0ZGBq1cuZJGjBhBkZGRdOjQIVq5ciX16dOHAPT15TdbRWbkhH7ZvDBkzNhxY6Kios4FBgbdVSgU2a1ataJdu3ZRXOnSN2yW7G/tFuNCu8WYbLcYo3zu99vDhw9JrVb7nr/fBEA1a9akyMhIgju+Sg7Ab8rECRMZY3xEePi5ti1bbJZIJGQ2m8nf359mzZpFABZ7227dtq3sZabxfRMvTDXxwgwTL3zYsVPnknDHC3UEMCgyMpKePXtGcAPAMrhBZpmPfIkJCQl04cIFateuHXXu3JlsNhu1a9eOADyHe+PxIyLYzVnBdvOrq3beXA/uBfDB5MmTaevWrSSTyXJ2bd/2hZ0zxf+Nd6oaL4gN38Rjtopas1WsbLaKH5ut4jyzVWzlU1oInHmKyFsG/9332c6bO2Rx1qrZvPCdkRM+zuKEP9maCvC38v3NCWIzThDHe2ytzCNrvq1JEG3lBdE2SBBtIY7slzpH9st1juyXSWarGGu2ik3+ioyj9txaNGrPrYej9tyK+59Y0/6Tyv9qNq+TBK+nYnYB2KxUqZwAwED3GbnehxtSAgBg0Kovm61iXUbgjbxYO1CnPmu2in4A/AxatQhgucPKXQO51jl48xaFzlBoZDBjrAdjbCkRHQoICHiRm5ubQESQSqVgjK1hEkmD4rHlOIfDMcKzgIAxFlQ5Pn5nenq6waep2QE6zUKpVDokMDCwBBh77/5vjz4wW8UMSW6u+Pjxk93JyckJXbp0QYsWLWC3240APtmza+eBZk0aVwBwWKHV/5Wz4/vbt293btmy5T6AvVKpdNSzZ88kERER0adOnjQ0bNRIqlOrXrNzGAIM838+fLjMli1b7AC0y5Ytq3j9+nWMHDmyRhFjYlCpVE/i4+PlxYsXh0wmw7Zt25CTkwO1Wt3EKtpOadWqwrJpSpxOZz4EyI8//ogRI0bg008/BQC0aduuivdIy0tSCbvudFGX0WPHj5014+vgGjVqjChbtix69OiBJUuW4LfU1N1K/4AvAcDBZasBNHZw2a0BkEwm0wHAyZMnwXEcVq9ejY0bN5aoW7cuevXqhdKlS2PgwIFVHj58aGKMyV69ytwoZD4fKZVKDysCQuuVK1euq9lshs1mg0KhANwus2MAkJ+f38ziocFGl8v1rokXngGoxiSS5UFBwe+VKVv26q2bN0zBwcHefCg2ACl+fn5NnE7nScZYfXJPFpfJZML+/ftRuXJl+Pn5QSKRoFKlSti1a1eERCJ5IZFIQhhjk4hoisP8altG+stmIcHBW/oPGBBRsWJFdO7cGRqN5mG7jp2VcLvLv3WCWEVbBIB3tGrVpjfx6TUqKy/arAByderX7SqCIOgh8WvucuVJLa8f0+UH9wK4q9eoXsvN5LBaVAAcgTrNVYtgy3ASpQBo6bHvnA7UqV87Ei6MdGpVCoAUXrTFABjnCWXId5dXq5R3RJv9HoAP85QGJ4DefnZzf1WOpalN5r/GItjq6jWqU2+6xzetKnzq+9vcv3kJuCFyHADuGFYc/JdTtf/H0T+92/0nFV4Q5/v+tolirE0U872I7BajgrOYDhesZ+IFmYkXvvZ4xsSYeKGhiReYL4/dypWyc+ajds601c6ZQgu2AeC7adOm0fr16+nbb7+ly5cv04IFCygwMDCtRFSk/fbt217Npbq3Tp26dSc1adKEdu7cSdnZ2XTkyBGaPXs2AUiPioqi9PR0ApDpkTEi5dDBfXFxcUREdPjwYdq5cyft3LmTWrZsSQ0b1F9Y2JgUpdl4ZNbB/dLXDw4OpvT0dNJoNHTm3PkenCAGF1Zn5Ogx34aFhVH9+vVp3rx5tHDhQgJwuTDe9h06xoeGhtKKFSteKwqFgr4YOy6OF8SZRcjlyMjIoHbt2tFHH31EkydPJsZY3vLly6lPnz6k1emMAPwL9FMmcObGJo7/oVLFCgfbtGlDM2bMoDNnzlBSUhIB+LbQ8bEYpTqd7k758uXJz8+PypUrR/fu3aOYmBiqU6cONW/enK5cuUI1atSgrl270pIlS6hOrZpnPHK2LVasGF27do0aN25Mffv2pdu3b9PKlSspKiqKAKSlpKRQq1atCEAbn/6dWbp0Kc2cOZO+/vprSk1Npa5du1JUiRKb3a80kVwuJwBKD79fXOnYcWXi4pYBmKZQKIjjOK8GNjsxMZGOHj1KAI4TERymDPbN9MnHmjdvTrm5ubRu3TpauXIlrVy5ksqXL08A3i9sLAq8SypeEIfwHo3gTYUTxFKcIPYq7JpNsI6zCdZAhzmznMOcWdX3mtkqMrNVDDNbxYZmq9jGpyQJPDdA5C1KD99cs9Uth8eDrU4WJ3zo+ZsvX0HNphA55RarOIkTxAmcIFbxvSaItuKCaPtEEG2lHdkvoxzZL7dYzcY+ZqtY9W39NyUnFjMlJ84xJSdmmpITRVNyotmUnGgxJSc6TMmJZ0zJiW/UDP9byv9qNq/TGz/XFP7FHLmc+U8GeINWnWu2ihulDLWchCAiWAMKGK4VGt1jh8C3AdE6kGumgzcfU+gMvl41BydPntw/Pj4e/v7+mDt3LtJfvry5c8vGzM49+0QKgoC7d+/aHj56XIkXbXcAoEWLJNU3s2biyZMn+Y148rL7x8fHY/369YAbqwsGrfpFMX/dT2lpafXLlCmj9ZUtMzMTZrP5wN8aKQBExDPGasjl8uNbtmzBuHHjIAjC2oqVKj2G+wjmT3FFR375JSMuLg7dunVDlSpVsGLFCgB4DZE42/31War/wEEvf9yx3bRp06aAe/fuISMjw96zZ08lEWHmjK8rjZ8w4RQv2Lq43Hl1vDDvUKvV2Z07dw47ceIE7t27hyNHjmDevHnShIQExMTE4OHDh8XKla+wKyam1PxJX04I7tyxgxlAnpThzMOHj9Z179Wn1BejRh7bvXt3+0qVKtXcunUr9u/f/xFjzAXgAtzHfmYAUPgXc/I8361f756jho/+Yvj9+/efb9y4UdqxY0esXLkS2dnZGD/ebdOOiYnBtm3bcOf+/dWMsVYBAQG7Dh48iClTpuDy5cvgOA59+/YFAK/TRmRISAiOHj0KuNElvHR6xowZtatXrw4AWLp0KV69erX/8xEjH+zbsxu7du2CSqV6mGE0kec55Tl483wAdZX+AUdzc3M//uCDD8LgPuqzVKhQAdu2bQPctiGQVK4LDQ17dfHiRd8UzACA58+fA25tokjyeJ71BbBKWziKRT7xoq0UgHo69Z89Fe2i0BjAVaVaYwQ0xhxLVpccS9Y1uT6IAMDj9ZXuKX+0abUqCBiUy2RNcty2o1gArS2CLctPwm7qNarTAGDkxXAA7Y286ARwTPsWLG6dWpVjEWyr/NWq33nR1p4XbS3h9lbcrlOrngNYKtrszfKUhhC4nD1lOfwYSa6zpkXAAr1Gda+wNs39m7cFsAFu+7nXScA35q82gL3m/s1PAuhoWHHw30Js/0fpn97t/pMKL4jzfH8X1GyICJzFlGK3GFWF1TfxwoBsTuiW5T4fLtRX3m7l/OxWboOdMw23c6bVds6k8F6DG4G6FoAmX4z4PMmWnbEhNCQk0t/fn8qUKUMAhnCCKOUEsSMniKs5QWwK96JexqeUBtA3Li6ODAYDAfhDM+NM3T4bMjj80L49izZvWDeyd5++9X/cvWfu2YuXFpp4IaGgNkb0Vs2mmkwmoz179tCoUaMIbpRqXWa2qey3ixZ9BKB4AX4GIKTRB433Alij0WgoKyuLdDodefpRccGiJWWMnFDKw/9upUqV6LfffqMxY8bQmDFjyGaz0ZdffklqtZq2/LDj44MpP+97kPq4QoH71ALQHsDlhIQEatiwITVs2JD27t1L33zzDRUvXpwAUK1atbwxRqE+dU+qVCqSSCR3/fz8KCkpiU6ePElBQUGkUqmobt26BOCiD3+gWq12SKVSAnBMKpXSwYMHqVevXuTvr7stl8vp1KlTVKNGDapRowZJJZIcAO/p9Xo6d+4cdenSxathZMGNk1fbI38phUKRW6dOHQKwqJBxLOvpY3sA73j+3yImJoaio6Opa/ePvvDEZE038cIoEy+8Z+NMbTx8AZ57aAF85x0PAI6w0NDfevX4aOH4L8awkz8fWNeofr2Wcrm89rLFCxd8M2P6RLiRnWvDfZR80af8BEDreY+684IY/rb3jRPEaE4Qexd2zSZYDTbB+qXv/xzmzECHObPp29q18+Zmdt6cH3djtrrtsGarGFSIFtTSxAvlsjihKcdxM7I4ocqb2va12Xj6UNFj1xnBCaKCiCCINn9BtPUXRNu7juyX9W3Z6UctFsuf4rlMyYmfezQZ+gvFZkpOfGhKTgz5p9fJf7X8b5yNh6yiTQ1gvFatynettNtssQAUSpUq35PFyFmnaZBjUvoXm1uwDbNVlADY4CQMBtA8UKcuFAnaIfAMwHdwudYA9AmAjQqd4bD3eo4l6324YxeGyPVBxBirCHe0/lEiIl60NYbb1ZiHxyUYwBGdWuVNWSABUB+AkYhuAB43ZqJVYOwhgLm+KMxmqygD0BLuReQx3InBLJ56haI+M8ZKymSyWz/88IP20qVL3hwkdwBcNBgMaRqNZoIoijCZTB8Q0VFPnS8lEskUtVp9Tufvn2O32eo9evQI4eHhyMnJuRQXF1fj8ePHfE5OTrjZKtpPHD8+u2/vnp83afJHHqlVq1ZhyJAh2Lx5MxhjiIqKglqjST11+kycVq0ixli4VCq953Q6zXAvgkmzZs1SLliwABMmTMCFCxewfv36xUTUKTU1NaRp06ao8V7ND7Zu3uSVkf/111+1gBujS6/Xo3fv3jAajZDJZDh48CBKly79OxFFAYBMJitfsmTJ2ykpKXj8+DGio6Nx+vRp9OvXj3+nbJl9Wdmmrtu3b8ewYcMQHFjs4JSvJmQ1S2qTlty//7hx48Z5IVAAAC1atEBaWlppIkr1yFINbo/AXfQXIIU8z70FgFxy2yi8zzcAQD0/cnbNY9JU/LGx3QjQaZZ06tRp4PDhw6HT6ZCWloZhw4bh3r17yQ5TxvcA1ssNId08c6E1gAoq/4CoMWPGDGrfvn3+vYcOHYpz58415QXRCcCsVauuvElWXrRFA2ioU6sKxXizi8IkAHOVas1rrt85lqy2AFLk+qBCx8Pjrt9RodV7c+fAItjm6jWqEYXxe2LAygCIlZLzvTxIficg2EX4DW6t5UqgzymFRbCFALDoNarXbCm8e/0YDLd2sk6nVj0TbfaaAOJZru0n5szZ6GJ+u9SGwGVAvkazCX8vxUkO3In7ahpWHPyXEyr+Y/RP73b/KYUXxDheEF+LwC5Ms8nihH6ixTirsDZMvFDTxAsVTbwwOIsTwgt6qPkWu5Vjdiu31m7lytg50xA7Z5pt50wShzmzocOc+U1R9ThBrMAJYvMC/2OcIDbhBLEHJ4jtOEF8Tauy8+Ymdt48xc6ZPn3bOJh4IdbECxM8X8QV3+CN9km/fv3IbrfnR7GfOHGCypYtSwDurl+/nnr37k0Akn3q/Lhs2TLau3cvbdmyhR48eEBDhgwhjUZzhDEmvnr1iiIiImjr9h39zFaxu8UqbpRKpQlwp4nuBkA0mUxer6+h1apVo+vXr5NGo3nCC2I3zz0S3n33Xbpy5Qpt3LiRrly5Qjt27CCpVGqDe3N+AaBpSEgI7du3jwDcyzRZlputYjtP/WGMsdzAwEAyGAykUCjIo7XQRx995EUxyLftZb14NlSjUR+SSqUUHh5OcrmcZDLZ+e8WzZ+m02rPh4eH52s2AD67deXioMkTJ0xRKpVW/OG55i3XAMj/p+a4nTO18jzjYBMvdDRx1mlt2rRJrV+/PoWEhBAA6tGjB505c4YA3CAiOEwZdRymjNE+c6lK40aNri9btow6duxIKpWKVCoVSaVSYe68+Q14QWzxNjk4QYzhBLEvV4Q9xyZYW9sEa/3CrjnMmTKHOfPDIvvIm+sURLfwajZvHR+PzcZsFQ1mq9jYxAv9snlhRjYvTDNyQgcjJ0g9dqKootrwvIv9OEGcyAliRUG0yQXR1lMQbU1spowFNlPGGlNyYqApOZH/ixpNwSKYkhMn/k/Nkf/J8r+ajYesoq0hAI1Wrcr/ii9Us+HFpgrKqSaD66DCv9h13zbMVrGRQas+araKPQFccxKsAMoE6tSv5RHxkkfDWQ9gPFxOOYgWg5zZCn1Qt8L4edEWCKB1UV+DHh5/uFMXSyQuZ5YfnAlwg2T+8nfSQXsQqXsyuBIJkvEGrfq1M2fGWB2lUnlEpVIpXrs/z5vz8vL8T548KWnRogV4ni9FRE88dTowxrbHxMRArVbj8ePHKB4ZebVz127b165a+fXSpUvRqlWrmwDiOUFcAWCwTq3K8bnnAYPB0NxisVwnorXJyckL5HI5lixZMpe3CjlSyrv78MF9Z72GjafL5PLoqKgovHz5Eunp6XcBfExEZz3thKpUqt/kcrnWYrF485MMBBAJ4EuDVg0ALWrUqLFvx44dMJlMOHnyJCZNmgSe55GbmxtGRBkOLlsL4FOFf7EZjDE5gODfbl6pHhVZXKkICLVERkYeqly5MubMmYMVK1bg8uXLePL40fVnab9XAQAHlx0OIAnuM/o7AI755uv5v00O3txKoTPsdfBmBuBDAP6t23e4dP3W7W6zZs/JFASh8pxZM3sePXoU5cqVy0rPyi5t0KotOeZX0wFskhtC7gCAXq9fN2vWrJ7Pnz/HuXPncOnSJTidzhVP036/EKD3X/0mGXjRVhFAZZ1aVWhOJbsohADoo1RrZhXVRo4lqz6Ah3J90J8S4Tmslo4KrX677//epNkUqNtKUQBBwFNf6iJ6H26UAgkAGQP2MMYuFNRwfIkXbZ3gPu48JmUsE8AHyBElrqyMMXlzvwhCXs6/GsgpAChpWHHwvwqs879ys/Gg45aBO6r3Mf2FTngQhAMA5BERV/C6VbT1BHBDq1blJ7nq169f4sULFxJu3Lz5G4BtROQw8mI5EFXTwlFS4V9shpd3xeo1jaZNmVw67dkznUQiuXfu4uXGp06eHNez78cxAIICdepfC5PLIfASAJvhzJ0Dcg0Gkz4CYxoA43wDQevUrav/uF/yuE8GDdzqsNu9/b1DRDl/atNqkQEY7QJTP39lTP3ll19Cdv248+Ce7VvLF7XZMMYS4AbXrAV3nMZdADNS79+JWrZ6XYP09Jflzpw6feHRo9Sf4TnOY4xNAlDPpxkCsArA9Ojo6FJPnjxJgRsC6JDZKirv3b1b55OB/bs/evSoUo7DEVCsWKDJ4bDPzczMPKbVam8zxiQ8z8/7oHETa3yV+Kh5c+YMJp/jI59naAHwSXR09MIXL17g54P7e7/33rsZeUzWEox96j1Og9uFNAOFoBV7gCaVRJRv7LYItmpwY2INMGjVOrlc/gCANCcn50nFihXLbNmyBdWrV0dOTs47AJSv0p609ffXTVf4F8vNMb/Swp1e+IjcEPKAMdapevXq25KSkmA2u72zs7KycODAgadmszmWCsDfOLjsCnDnwrEtWrr851Fjx5eAOyV4EAAF3Haa6wBO/MX5roI7bxID8AsR8Q7e3BZuO40fgF0KncHi4Q0F8CFjbOaGDRt0N2/exA8/bD945cbNYwD8QQSl09bcLlUNAWPXAnSahSNGjEiOjIyESqVC8+bN0bFjR1y8eLG/y+VaWZRMvGirCSBMp/4j4NGX7KLA4I4fmqZUa4o8NvQEN3eW64O2euRXAIjatmlDaJvWrbIVWv1rQKG+m40HFsr3AymLPM4evpuNZ/wqw+28coF80CNMVrECEaowhrIAiAF3GGMcgEsGrdoG9ztkA3CWiFy8aGsGN1TSVYkztw/zk7fPO7QNroMFgQb+MtkBzDKsODjpX23gn6D/qs3GA0OyUalUtilXrhyMRiPS0tLuAehORIWeEXsm4moASXq93pCXl+cUBKE9Ee3x5bOKtnEAvtOqVUZPveJ+fn6/y2QyaLVamEwmY15eXsksTiAAQ7VkZwBmKfyLuRhj/eRy+UqNRgM/vz8c/IjoVVZWVkQWJ1QFIAnUqS8UJqPDkhUMsKuQyuIVWn+jgzfHAJgEYINCZ/iZMcb0ekNGdHTJYG+dnJwc3L179zARNXutLaulO4DYT4cNX7ly9ZqtMpmsXlxcHLKysjDss6EHhwwbvgnAPp1a5Zs2VymTyWxt2rTBzz//jCpVqkCj0eDatWvIzMzkatas6V+zZk0QEX755RekpqYeEwShtUKh4Pfs+WMYnz59iv79+99gjOVFRUVVq1q1KjiOw+/Pnx+7eOXauLCgYpVr1ar13aRJkxAUFIQnI//CNAAAIABJREFUT57gyy+/xNWrV1dGRUUl169fP7+tu3fv4vLly2OJaKZP3xiAeACl8vKcNGnKVPWqtd8fN5lMLzzP8D0A8Vq1qsgF721kEWwKACseP3q0tWrliiHzFy1+1P7DjpVKRoROmzBhQsD06dMRHh6OgIAAZGcbH7x48bJsjvlVHbgzjK6TG0K8WHcqAJ/L5fKJ77zzTv7iZrVakZqauoqIkgu7f3h4WGuLhdtdpUoVBAYG4t69e+A4DklJSbh48SJu3bp1CG436D99ZPgSY2xb7dq1OzHGcO3atTXZ6c9PAqgI4AuFzpDnw9dJo9FsIyJ89dVXCA0NRd++fcnlciUQ0Tkvn2gx1mVEQx1+6hvNmzXpcP3q1fiIiAjwPI/GjRujc+fOaNOmzVkiSihMHl60NQIg1alVPxd2HQDsotAVwG9Ktebim/oGADmWrHcAKBSG4LsALpUqVaqi0Wh0cRz3bsG1wCLY5uk1quGMsWHBwcHz/f3986+9ePECNpstmoieejcbxtgMmUz2RaVKlaBWq3Hq1KlT5NZsvO2V1GtUTwHAyIsquDPx6p25uTGVy5f7uFSp6LisrCwYjcYR2dnZ83zGoJbr2tle7NWLPq7D2xXIe+MjfBs9MKw4WPbfaeD/Of3T53h/pwD44L333qP79+/T5s2b6cKFC7Rx40aSSCTPASiKqFOrYsWKlJqaSkajkb766isCMKkgHy+Ic70xAXB/DaaUKVOGxo4dS7m5uV5vsLJEhCxOmGy3GEvZLcYeRISQkNDtoaGhdOXKFTp16hQdOXKEjhw5QhqNho4c/7WRp07dLE74E4qAw5ypdJgzf7RbjCq7ldtpt3I67zU7Zxpk50zLTWZLRwAkiiJt3LiRNm7cSPPnzycA9/J5eXMtO2+e6o38B/BBQkICPXnyhJ4+fUqjR4+mpk0ab+YEUcIJYhtOED/iBLE7J4j+ADQqlYpKlChBU6dOpSVLltCcOXMoNTWVOnToQPXq1aM+ffrQgAED6NGjR9SwYUMaPOTTPSqVip48eUIREREUERFBISEhFBtb+rhMJqOzZ8/SgQMHvHaR/UZOUNSuU2dgZGQkhYaGEmOMkpKS6OHDhySRSMzt2rWjs2fP5nudNWrUiABMtPNmmZ03N7Dz5nZ23tzWzptj3jRHeEEcwwti6X93rrVr/+GBuLi4fFSAFi1aULly5ejw4cN0/fp1evnyJQFId5gykh2mjKKQvEuWKFGCMjMzacOGDbRhwwYaN24cAUh5wxz/Kjk5mVatWkUzZ86k69ev07hx4yguLo5SU1OpadOmr9nBimijbVxcHKWlpdHOnTspumTJc3bOxLw2mwK8awICAmjq1Km0ZcsWkkql1KJFCwLwK4CecLvOLwUgcZgyRjlMGXUAHGzUqBF99dVX1KBBA6pXrx4dP36cQkNDM0y88KWJF7qaeKGKiRdURAROEFtygpjwJpltgjXKJliH/51n5DBndgEwtW3btuRwOKhr164EoFtBPq/NBsCqlStX0tmzZ2nXrl20a9cuqly5MgGo53mHWnn4fjt27BgdPXqUHj16RHCfnvi2V6IweeRy+ad16tQhk8lE06dPp6bNEo+aeKGbx+utgdkqljYlJ24ryh7TrUxxqlhMl19CVHIyKGRF2W7spuTEiP9Xa+//jfKPC/C3hAUq6nQ6r8F2u1Qqdd6+fZuqV69OAGoWUSdMpVLZlEoljR079o2bjU+d7iVKlKB33nmHduzYQbdu3Sq42UwiItgtxrFEhAEDBw0HYL1y5QqFhob6GnynmnhhiokX1J56TbI4IX8hdJgzpQ5z5g6HOVNHRLBbOaXdyv1ot3LKfLl4vqFgNu4HQM+fP/dt2wqgpZ03G+y8eYqdN7cr2G+pVJoFgKZMmZK/2fjy+G487dp/uEahUKyB24PLqNfrqVWrVrRnzx6C+yjqJAB+/PjxNHnyZFKr1fNUKhU9ffqUateuTdHR0SSVSi0KhbIqgOU6nS6rcePGtG/fPtJqdceMnBAF93l3awBnAVyKioqip0+fkkwms7Vr144WL16c37/QkJBrF86c/MjOm5PsvLnYX50jvCDKeUFcyAtuiKF/Y65N7d69O127do1u375NBw8epKCgIJJIJBQQEEAvX74klUplcZgyijToezebs2fP5vdLrVZnAShy4YVbczvtGaPfY2Nj6eHDhwTA9fnnn3uDdue/oX4AY4z2799PgwcPpp07dxLcQK8oYrM5+Pnnn9OzZ8+oa9eu1KFDB2+6AieA+xs2bKDo6GiCx73aYcrYBIAfMmQI1alTh5o1a0aXLl2iTz75hFq2aH7BynM6Ey+8Y+KFD028MNbMCztMvPCdiRcmmXihr4kXapt4weArg02wMptgnWETrH/LOaJe3ToNAgIC6MiRI7Rly5a/vNl4NlNvWQOPU4bPZjMLgDEiIuIvbzYAopVKJR09epSmTZtG06dPJ7lcPiuLE+plcUKbLE7ols0Ly7MHJJn/iiPAtc71KEKjoE1NqxXFw5uSE3v/T6+5/zfLf1VQJxHdYoyVhTuIS8cYa61QKORWqxUoAHTnUyedMRYMYByAsW+7B2MsVCKRbPz9999x8OBB9OvXDwcOFBnvmG3lLPEzZ8/Z/93yZX0BVJg2bRqMRiO2bt2Ka9eulbHy/Cdane4zADMCdeqfjbzY2siLNp1LfAG3PeNTuT6IBwCFRmd3CHwPAJsdAt8lh/mFQiIN1egCWwJwGQwG/Pjjj8jMzMTixYs1SoV8MNxHI5MVWv1rNgBPv0MATEEhSLkA4ElbvRsA1m3YsBlA62rx8eVzc3OKRUZGomfPnti3bx8AOFq3bl03JiYGjRs3xoABA9C5a1f71s2b8ejRI/Tu3Rvvvfcerl+/7t+nT5+fAJQbNny4/ezp058BgNXKi8V06jQiAmPM0KxZs1pjx45FTIw7cZTL5bIBUHbo0AENGzbEgwcPMGrUqPj3Et5XEtH+tz0zX9KqVTlW0bYCwBD8AXL4r9CKTZs2ldyyZUtdpVIZqVKr77f/sMOty+fPjXz89OnvAGCz2WxyQ8hbz0JiYmLw008/4dmzZ5g3b17gkydPasGdxO1PRETXGWPzQkNDd0RHR6NLly7Yu3cvIiIiWJs2bTBs2DB8PnRIgIPL7gRgt8K/WP68d/DmuhUrVJhZv0EDHDp0CE+fFgoAXZCep6WlYfXq1ShTpgwAIC/Pfcrm5+dXJiEhAZmZmYDb1R4ARioU8o45OTno1asX7HY7Jk+ejH379qFJ4w+m+cE10w+uL3Mk8nsAegMYq1OrHnrCAkoCeAfAx2arqIcniNqPoYqLcN8F1sZuFZ/BHaSbbtCqi3SWYIzJAKxZs2YNJk6cmA9NVBQ5rBapXC73A4DPPvsMH374IVJSUrBnz54P9vy4o57DaskFUMVhtTA7b7504uSptN79+i8CAI1GrXZYLW3g3oDz5GDFHNacl97fubm5Tn9//2Xjxo3DwoULUbp0aQQEBEAikTAtyz2p0OrJYbUEC8+f72Og/m97INn2HHQ4dAkjq8aiRcki8TlVcNsk/2vov2qzAQAiesAYCwJwbPr06fIjR47g/v37VwDceEMdK2Psr0bezi9btiwSExOxZ88eZGe/llKkLoD7Pr9XSeBaYtCqBwKwzpo1Cy9evEB0dDT279+P1q1bd4qKCNtq4oXrXk+1QJ16j5EXO7vAEiWgr+X6oNeQmRUaneAQ+I8J2AyiY2BsKQAwxsROnTqp7927hxo1auDw4cOoXr16olJnGEFF5FohIhdj7C8Z5XRqlYsxJlcqlTW7du2KJk2aICYmBjdv3oRCoVDqdDoUK1YMGo0GOp0Oa1ev/g3A/oYNGwYDuCWVSntfvnxZkpCQUKJ4VImearXGv4hb3Tp+/DiuXbuGxo0b49tvv0W1atX8f/31V8TGxkIURfTt2xc7d+5EfHz8FLgdDv4WadWqW1bR9oFVtFXSqlU338bvWbjKwJ2vJ42InhBRGtzHSF4E48nkcpYzv3z2Y7VadX3rlgSQQYWkVoDbVRtdu3bF06dP0aRJExw/fhwVKlSYyxj7nogKy1cDAMWrVKmC7t27o1KlSpg+fTokEgmUSiXkcjnmL1x8fsbUyacA9HFw2VKAWcCYrF3HLozj+ToRERGYMGECYmJikJqaCgDtGGPxds5U2L0m79ix49GOHTsa6PX6JrGxsbh79y4AbA4PD/9o4sSJEARhCREZAUBuCHlZLb7y8Q0bNjRZsWIFGGOoVKkSxowZg5kzZ3YBMIiAGYxcz4hJNngi6xGg05SH233dF4Hjqk2wXgaQbie2Ge6A0SgAVQGEejYoLxFArxggSkDOJk2atJJKpaVsNhsuXrzoSk5OlgBAuXJlh5tevfRXq/M3KsbgVwlAn8qVKkZs2LABoihCo9Fg9uzZCAoKKjFwyKfd71y/+g2Al3AjNTgWLFoc6L2xzWa3AzgP93opdYFFSUCv4M5C6tcsqVW7MmXKVC1VqhS++OILjBw5EgBgt9tHXbl6LaNa1So8gGpqg/6p3eXKhRuQtVCy5TnRJeUy2saEo887JYpig+fehjcx/KdRkblP/lOJMRYI4Ndx48bFlS5dGkOGDPGqzi7GmNzjgvp32lN5knR5qVN6ejqGDRsGo9GIFi1aQK/Xo3nz5jAYDKsYY4O3bdkcyRhjCv9iTrgfOgCM2rZtmzE5ORk7duzAwoUL0bFjRwBIMGjVBwDU8XzNQesSq9mZ/BkvUT9DIZTD/Kx5kNyTwVlRp1aRh1ofOHCg05xZM6ZevHDhxZEjR+AxqFdjjEV4PIreTG51H4wxCWMsxuPV5/1f+8DAwG0bN27EsWPH0K1bN+fAgQOxfPlyOJ1O/4MHDz1dsmTJg3nz5mH06NGA+zjsJdxn+sucTuf11NRUBAUFITc3t+PmTRtb3rlzBybTHwtcSEhIjeLFI+bWSai9rmOH9lM2bdpEGo0GoaGh0m7dPzq/e9+BAUTkv3r1apQqVQoajSbck2/kX6HFAJKtou2N84ExlsAYyylbtuytOnXqnAgLC3vMGDvi+aAB4IZFUeXyp2WuvLw8uTbMp3poiRIlnkil0geeZ/Da6kBEmTzPtzt69Gjr1NTU8suXL3/07NkzxMfHA0BFxlhJ3/t45GEAfkhJSZnXs2fPXR988AFWrlyJjIwMTJ8+HRMmTACA1u9/0LTk5OkzY1+8SHcBpAW5DNeuX28slUqRkpKCkSNHolWrVti8eTOGDBkCANMmTplakTFW1xP86ZUxDYAtOjq6Cc/zSEpKQs2aNQHgalpa2vxNmzYdBLDRV0YTJxjfffddLF68GOvWrUPTpk2xcOFCAKieI5Hbcpks1Y/youWuHI1PtbkDBw4cO2PGjDHe4u/vv/Xp06eDAaxQIZdTIfeFCrkvfcoLb1EiN12BPLUMzmISUOCJEyeS5s6di9TUVPTo0UNSpkwZNGzYEESoPm/Jdw2v3HlY5hVvL2GDrJgLTGKDjCZOmbZXoVSub9IscbTNbv9+zJgx+PDDD5GVZaxkgwxOMNggYzbImCPP+dpHmg0ypw0yZ+8Bn0RPmjo99hVvJxtkLhtkrlt37jafNGkSrFYrpk2bhubNm6NBgwZISkrC2ImTG9kgU9kge2aXyPWQvxYp8Bo5XYS+R64hzqDF+BpxRfL5Tpe/wvSfQv9Vmo3Hw+fw6NGjy9euXRvt27dHbm7uTQB9GGMX5XL5Zg9fe9/jF8bYEAAdfJpqyxgzAYhSKBQj8vLyMh4/fryzUoXyAHDd5XJVW7FiBWJjYwEACoUCpUqVgkKhgFQqXTxy2FAAiDRbxfEKYPsXo0Z8CmAeAL/Tp08jLy8PoaGhXnwrb3KXbwF8nmPJymPAr04mTQHQ08iLmwJ1+XlKwIs2KYBBxCSzGLnqOwR+mFLrf1Aqle4JCw3l+yYPOGmxWELKlCmD77//HtWqVhn39FnaBqfTCcZYOyL6ydNnBuAbuOMpAABnz51vyBibDKBMZGRkl8zMTNHzZW5TqVQb4+Pj0aNHD3i0GKlEInGftfr5KQYP/qTk1KlTXRUqVEB6ejo0Gk1CbGxscFhYGJ48efJF7dq1Ubt2bQwYMABZWVlRycnJwenp6Th16hQAtDDo9U+dLhd79913o7KysvDLkWMYNmwYbDYbnj9/nrd+3fc1ly9bFs8YG127dm1wHAdRFDm4AzH/NmnVKqdVtC0E8DncZ/BFUYP+/fujWbNmyMzMRL169bBy5cpG8+bNWwSga475lQRAPwKuf//9Guvw0WMfaTSaEgAgk8lQtWpVmEymKADP1Wo1GGNfENEszzOoJ5FItrlcrksAUpVKZUzJkiW9x1KfhoWFdRBFkRhjNYnI64E1RSKRjHG5XAcAJDLGwBiDy+VC6dKlkZWVhcBixco/evzkzNFfT2DGN7O3EVEXB5fNYmJKrT53/kL+uLZo0QK7d+/GsWPHAKDl7r37W8bGxiI1NbUvgLUeGTuUKlVqXrly5dC2bVv06NEDeXl5OH78eCcAlrp16za9ceNGc8ZYFBH9bhVthrS0Z03Cw8Owc+dOWCwWDBo0CAsXLkRycrIBwCAwtpwRHACmO6yWHxRa/WUAmu7du2P9+vV4+dKtzBORUyn345grr5+n70YAz+DWIl4ptPoij9EcDsfgBQsWlFYqlVCr1ZBKpd73E9OmTO6wfOkSidlszujZq3f5uQu+LQHg557du30nimL83bt3tTzPl27frh1MJhP89XoXgHgXWAUAkqmTJ7178/r1JB/P0uIV3yl7tlr16tcvnj/fXq1W4+qVKzt27PrpRwDO4KDg3OnTpyMw0K0MRUREQKvV4smTJzBbLNfhxj6z4s5lP+Q4RhfVpxGnbyPXRfj2/QpvmK755II72+9/D/3TRqO/UwC0qF+/PjmdTtqyZQutXbuW1q5dS1WrViUA16dPn+7NJz7Vp06Av78/rV27li5fvkxXr16ltWvXUkBAAAF4fvnyZapduzatXrN2Cy+IDG4f/E8BLJTJZI+0Wi3dvHnT6yBAQUFBZLFYCIDVxAv1iQgtmjU7ERkZSfv27aMpU6bQhg0b6P79+96o7PxcMaLZuEAwZ8/x/s7iBHkWJ/TJ4gQpUb7BfggniAFeHjtvGTF/zjdHk5KS6NixY7Rq1Sq6cuUKbdiwgSQSycvgoKCd8+fP92KTjfXpd1RoaCilpKRQamoqPXjwgFJSUrw4ZJl37tyhSpUq0WefD+9+7MSpHnq9nrwGzvXr19PGjRspNTWVmjdvTlWrVqXZs2dT27Zt6cCBAxQYGEgA9pQtW5aWL19Ou3btogULFlBcXBzBHSdh37FjBzVu3JiWLl1KN2/epA8++IAA5CQmJtL3339PO3bsoGnTplFYWBiVKVs2Y8aMGXT79m26fPky3bx5k+rVq0cApv27c4YXxGReEN97w5yqBjcEyAUAt6Ojo+np06cE4LnDlBHpMGUMdpgyVHaL8WsA2ydOnEhHjx4lh8NBKSkp1KtXL2KMUXJyMq1Zs4YArPdpe2j//v3p4MGDtHr1arp79643X801AHt37txJnTt3Jrhd9711flm7di1t3bqVvv/+e7p//z4NGjSIGjduTCdOnPDiui1u0aIF7d+/nwAc8akrAfClv7/uRpkyZejGjRveXDovAKxauHChFwFhtE+ddZ988gnFxsbS3r17afLkyTR27Fiv8fz5gwcPvHO/smc8BwHI6t69O1WsWJHCw8OpVq1adPLkSdIbDOmcIErtvNnfzptr2nlzLztv3mPnzfOKR0T8dvLkSSpXrhxJJBICQAP691/2b6wFFUOCg79o1LDBUgAXvv/+e6+DwH4AWc+ePaOYmBgCEOfjIJB77NgxWrJkCa1bt44eP37sRVL/yP2u5TsIHFi8eDHdvn2bHA4HXb16lfr160cATMOGDfMilS/3kUULN0xQKwBrR44cSdOnTycAF569SO9qtooLzFbxW7OVT+EPbbebBrX+k8H/i2qlqUqQP6X1bvxXkQSspuTEfv/0mvy3ntk/LcDfnGBVAgICXNWrVyff4gGcNO3atcsLgd7Up45SJpNlF6wjl8tzZDIZXbt2jfz8/OjBw9/+5MFUq1atgYwxW4UKFUipVOaGh4dTgwYNaPny5eTn55di4oWaRIQ5M6aPl0gkzvj4eGrfvj3Vr1/fC/G+1tuWw5zZ3WHO/MTEC1+YeCEffj+LE7RZnNAzmxcYJ4iDfKH5PTAz0y6dO7PZz0+aFR0dTQkJCV74+VsAqgO4cejQIYqIiKCfdvyw286ZYjz9Vvn5+b0IDw8n3yKRSEw6nY5Onz5NCoXCcvzk6VgPfy8AF5VKJVWvXp2qVKlCarWa/KRSYejQoRQcHEwe+8/VatWr9wgKCt7YrVs3Cg4OJgCXoiIjf5gxfdp3As/Nl0qluV9//bV3wbIDIJlc/gQADRkyxOtNeADA/FmzZ4+YMHHilwDuyGQyUqlU5AmQGwdPQq9/p/CCyHhBXMALYqHgqZ6+N/GCnY4fP57WrVtHer3/bYcpoyMRwW4xfmS3GKsBGB8QEPDaeGo0GgJA77zzjncebgdg8M5XiUTiiIuLo1q1alFoaCiFhoTcA1AHgLNdu3besfBNH/Cxn58fVapUiWrUqEEGg4FkMpl3Pv0Gd577b6ZMmeJ1gx5QSH/KejcbxpirS6cOywDcT0lJ8cpY2oe3D2OMDhw4QKVLl6ZJkyZ5N5snQUFB3g3tAQApL4iJvCDGAfgMQG5SUhItWLCATp48SXXq1KHq1aqdsvPmgXbe3M3Om6vaebPaM4+HBgUF3v/ll1/o/PnzlJqaShs3biSlUpkHoFA34r9S7Ly5q92NhjA6NDTU+yHVOjAwkE6cOEGMsTQAfj6bzaaQkBBq2LAh1apVy+vWPgWeeEOfzWakVColPz+//OLZIC0bNmzwrjGJBeUxW0XJyNFjRiqVyhy5XJ63eOnyExarMN9q5RcJVn6pzcrttls54neufm3juN6lHgGgElrVa67P7WLC3gbMWfKfXpP/1vr9TwvwtwV2GxFrFChRAC7Xr1+fANzzTh6fOsUKqVPO39/fqxVN4AXxS14QX3OxtYli7N07d+I9i3olqVRqKVeuHIWGhtKIUaMHelGS7RYjy36Z9hXcUcId4I4Ez9dOHObMFg5z5jgigokXVCZemOaLsJzFCYHZvPAd50HKtfNmrZ03T7fz5uZEBLuVkwgW0/YSUVHlPQtVjLePAK5UqlSJABywcyapnTNNtXOm+XbOJIdbS4tQKpUR361c1ez8ubNLN2/7Idnf399ZsmRJghvCpeD46gC86+mzfsyoEWM8X4ujL12/GWXkhFgjJyjlcvk4f39/0ul0admvXra38+ZSPm18Ghsbe2vc+AmTPfE8H3GCWBnACaVSSWXLlfutWLHAzxljg75dtPiwTz15cHCw2mwVC1tAVXB7Nw1AATTptxVeECN5QfzqDXNqcMuWLWnv3r304MEDatmyJanV6geeZxtltxiH+fAGA4hYvnJ1okKhyAZAo0ePpv3799O+ffuob9++xBi7Aw8CMtxH1eUBJACIFLJfdQHwvFevXrRo0SIaP348AfjZ276dM0mePrzfefmSRV8OHfxJX8/9AgGofWQYHhgYSIyxlygES813swFw024xRsSUir4TGBhICoVidQHehQMGDKDRo0cTAKPPZkMymcziQcVuxVuF4lardZSdN/e28+ZBHT9s/0NcXBy1bNmStm3b5s24eqyoMa4SX/mYXC53AbgrlUpp27Zt9PnnnxOAIp/Lm4qdN5e18+bqPv0oeepIyscAygYGBnq1mp5Er2OjedaPxp73KKBAm618+PzgRtLwFimADSVKlCC5XH7H+/6ZraKf2SoOMVvFRWaruNlsFedkGY2jzKbsZaKVG263coneUAaL1VrO+uj+WdOg1ty/iIvmWx7/02vx3y3/VQgCbyLGWCTcSMeHiehPeVSKqPMe3BvVbl4QuwG4qVWrrnqvF8RGY4wpqr/7bp/WbdpFDv3ss18MWvVxL6+Dy04GcEjhXyzN9x45lqwEAG3k+qAx3v+ZreJ7AEoZtOptAMCLtt55LrrtIkRoWa4Cbjylmb7IzA6BNwBYqNDoehbogwFAFbghNUQAcPDmYABfu4DHORLFPbg1jCtKl6OmQmf4gTEWCzcMygV6ywRwWC0tBZJdBqCSI0+UMaoOtzdN7hfjJ9xZsHDxUyrEG44Xbf11atUKn99VGtR7f6ZBr2/mdbEFgJ9++gnp6ekViCgff84DG+On16jyERcYY983aNCgl8FgwE8//bSXiF7LtPk2soq27gBeaNWqYwWvMcbCAHwtl8tL6vX6Rnfv3kXx4sXhcDg0929c/bpzj14jr167nudxTnkPQBiAdK1Ot00UBN2oUaOwY8cO+Pn5YcuWLZg8eTJ2797dl4jW/mk8uewuSn3g8kmTJulzc3PRtGlT1K9f/6SdM/WAe/4CwG4vlExR5JE5mwpBEmDs/7D33eFRVH3b99k22TLZzSZAErr0YlBAelOQSAsgSFExVkBAAelFqgioVGnSAyIKiFIeIHSk9y5IC72kbGZ22s5uds/3x2xCytL0fb/38fG5r2svyO6ZM2fq75xfuW9Ss3z58kfXrFmDuLi4i9AmDoaXGzde4HCEY9TwYUcrVayQxIQ70wghR48cOVKTEAKfz4fixYuDUooJEyZgx/bth54rXcpVokSJ9CnTphlNOswmwMkw1lHEZDK9OHzEyHpr1qzmrl29Ov7BgwdgWVaB5kqqA2AfpXRPrjHV/7RPr1cnTvjC3rrt6zFlypbt/NJLL6FHjx6LKKUf5j+GJ0EV+a6MzZ6HesnLp1cD4GEchczQMrX2UEppNoPAU/QZkhst1zHoAVQ8dOw4rVix0uvQWNJ1AP3NAMroEPDqgNvQMlaPMlY2AACShU4AAAAgAElEQVS8pFQF8CqA6/TLPr8h7e4d5KXMeVZ4AUxzzN889C/08f8df6sEgceBUnobGmX3s2xzBJqvHqKs3IA26zn5mPZqhiBfgFZQeS3fzwsBjAQwPvsLL59eGcA7JntUz9wNHTbLEU6UG3CiXFSvI40B7LXAl+YH+chD9efsrG088oGxspwqCbNVSRjPWNnPc42JA7A7+29eUhjomOoANhsCvigmoLYhwBKGddxQBbV2cJurAK4+6fy4BLlIGFAlDD6bnkCFxkm2nbHZVQCYNuNbTJvx7ZO6AQCwFvOpE8ePpy1btgw8z+PiRY3XkxCC5St+eEuQlSMANrEWs89uNZ/gJaU7LylH7VYzJYQ0L1myZOL8+fPx4MED/Prrr86n2mle/ABgiigrx22WhxLChJD+hJDhsdHRh6KjCwcuXroCg8EAQghKlihxvHajlyu63e7WhJBOFovleL169eBwOLB//37cu3cPQ4cOxcyZMyHL8nYA/o0bN8bHxcVh3bp1pR4zlvfGjBnzRu3atbs2b94cMTHRhQGUzSem91hQSkPKGhNCJrMsO9jhcMBgMCAiIqKiLMuSqqo/erzeToKkoE6jly/zqXdfU92ucJZlDzVq1KimTqclqI0cORKqqmLx4sXw+Xy169StS3bu3oP27V9vt2PHjv0AoNfrl1aqVKnR+HFjEQgEkJiYiPPnz6NQVJQvk+M2DB482Pzll18KAMKDY7KEhYXt2r5zt3Gm3Qmn04nRY8YgKSkJyFtK8FRQRb4BgkJvuWGyR5328ulvUEpX5/vpL8+oeUmJ40R5DDRJAANA1zHwLyGAFVq9zSHGyl7Jt022NtF5ANPNaibogPFD1JULtgdOH3oVj0mBfgL8+Gs1ZP8n+I8xNv8DuAmtevtJKEYA6rDlTVtmwp1UdbvcqtsVwYQ7M718eiy0uEO3R/QzC8CPlNLhDPVVAPC2ntCPFaqrnCHIDSNZy978GzBW9rAqCRVUSXiHsbJ5Xky8pDwPrVZEBbDbbjWLQcG/+arA9VIFLhHAofx95kemIOkM8LfSAUXDQN16Ag+Anxib/akfWEFTanwkfv31V+zYsQMAYDZbxrROaOvzB+hzOoLXBVkxAAAB9BToRgj5BUDyzJkzMW7cOPTo0eNph5EHNouZirIyEcBQaNclG82+/fbbKIPB0FqWZTRt2hRTp06F0Wg8dPvOneqpqamoXLlymQcPHrxUu3ZtJCQkYPXq1ahXrx7eeOMNJCQkoE6dOvjxxx+bbdq0CZ07d8Ybb7yBWXPnNeAlJc5uNReo//K4M3Wz5sy9tPoXjY/y3r37qQzr2PGnDqwg6kycOBFxcXFIT0/HunXrMHPmTKxZs6Z969atkZmZiZ07d1Lo9BdAae20OzfsPM+vvH3n3vyades3u3Llygiv1wufzzcaQGK/fv2eO336NHbu3JkOAIKsFI+MjCzVpUsXtGrVCoQQnD9/Hl27dkW5Ms+tvXwt5d1evXrhyy+/zH0PGPR6vXHmzJmIiYmBx+PBmjVrkJSUdBcab+FTQxV5A4BYxmbf94gm97x8emwoRuinhSArOgBNAxRloLFymwCk6uEfYQCNCwCxei3tfxdjZfMwLwdrsl4FUAXAIbvVPC1n7F73h0CgQeDy2Y+gxd/+jLGRAcx1zN9874kt/83wX2PzELehUcw/CcWJpkgZCrMBDPby6d8CmAmNmTbkS1qvI20CAf8KAw1MAjCXsdnHAgADnM0Q5BcyBLlpJGvJ8wIihJQDUKl9u7YNmjVtmvbWex8ehOZ60QM4Z7eafw620wNoC803HQXgarmyZb48e+LYDFXgSgP4nGEdOa4vVeRNforXKEiMCaB60K1hrOZOCIqnPevMkEXolGUCALNnzwYA7Nq1CwMGDBgTwVorZgqSKUDRHZQudtgsJwVZ0VOKUXXq1ttcuVJFHDhwAJcvX37GYeSFzWJOE2XliCgrrW0W80Yvl6rr1rWzMHjwYNSoUQNmsxnTpk3DrVu39s/9dsaNL7/6ps7x48fx4MGDSwBW7dq1q/muXbtiAEQUKlSo4oULFzBu3DjIsowHDx5g48aN+Oqrr3DmzJmNt27eTAAwgpeUdwAMCQuojQAUhTbTHTpw6PA7tWvXHv2osQZT1+sHt8mGB5qbOCQjcnCbTX369ImB9mwrAFwAMg0GQ50SJUoUmjRpEjZt+FUGQEDId4zNMdtOKWsPD3/zh6TF8tvvfZjs9/v9ADZardaxf/zxB86ePfsHgIOCrFQHUD49Pb3zsGHDdo4ePdqs1+sRHh4Ot9uNlJQUXYsWLTBu3DgAmJs9Lkqpu0GDBrPj4+M/8Pv9YWazGUajEV06dbq4eMG8kJWmj0FLaMklj8J+aHHT/KubR0KQlRIA6uuhq85LSjloz819gF43wj9Kr7F0EAAlVej2U+hcFqtZzt0HLylhANpDEzncbreac8QQVZHXIUsdD+AeExHTmpm+Blz3Fr2gcc49i3haFoA70Dwofzv8x8Rs/icgyspUm+Whb/cRejaL9AQ9HTZLSKU8lc8YAtCXCPC2yR5VoKo8OOvvpg/4VD3oCwr0qYBuvcNmyePWyhDk8gAqRLKWbMrzMAC3+vfvH3Xr1i2YTKa7c+YvSATIbrvVnJV7W0LI5Bo1agzu2rUroqOjcerUKcyePRsTxo0Z2qtH99UAPgdwiILc9oMUA5DlB9kRzrLXCxzPI5Q6HwdBVsoAKM1azNvzj6tQoUKD09LSYDKZsHDhQty6dQsjRoxYAuAmIeSlmJjY8jGxsXJ6Wuqg27dvi0WKFNn/ww8/oFmzZqhRowa++eYbNGzYEG0SEpKuXL5cRlYU362bNx8EAgEKTRNmwpPiUKKsTNJneRbpA74WAOYxEUWs0OJeDIAUyZXapm3HzmfP/X5hi9lsRkpKSidK6WpCyItRUVEnatSogapVq6JIkSIYPHiwGhYWxqxbtw4bNmzArFmzJGhG4lzFChWmOCOd1YcNH8k2atx4ZrjNuiQYs1kDoFPt2rVXfPXVV2jcuPEJAAmU0ju5ztWL0dHRJxo1eqjgcPXqVRw/fnwspXRMqOMihIyvWLHiyIYNG8JqteLYsWO4eOHCveRNG6Z+0P3jihcuXOioer3TKKVjQ22vul1OAF0B8Fu2blvVq9+AE/fv3YsKBAJd3ZJsBaCwFvOOoFtMWrhwIc6cOYMiRYqgQ4cOqFGjBjIyMlKKxsaETxw3uk23D3ocBACPLIWvWr3666nTpnf/8ccf4ff7sW7dOixdsmTx2ZPH7gIY9TQTGlXkHQDqMzb7YymMvHx6PIBDJnsUDzyUGAiuml+GlnRBEZz8UIpbFKhKaCCBErKHgf8Q0VzqgJZwdCxX/CWH8Tn4dzQ0IwMAv9it5jzuTVXkiyBLHYWA/1+MMyaPkeS6t5gI4FM8ncHxQps41HbM3xyyGPzfHf9d2Tw7dI8yNBpocYCkmOyRoQyNAZR2N1JfIQJcZWz2YYoo6wF8wYnySIfNkrPaiGQtlzIEWc4Q5M4AVhUuUuSrhg0aRPXs2RN79uzBsKFD94bB/xpjZbfn3w+AEnXq1MH+/fuRkpKCTz75BLNmzcLELyd069WzxyU/xXaAvqADfVUPujCMdYQUd/sLKAQgVJLGrMpVqtxd++s6JtJhv52UlLRiyJAhANC4RYsWz/Xo0QNOpxPnz5/H+PHjk4sWK7b33cREWK1WLF++HFFRUahYsSImTpyIYcOGJQwePDgiWI0PABg4cCCmzZgpCrJyF8BW1mIOWfRm8ElrA0T/rV9namEOd9BgkH0XAKhuVx0At7ft2JlMNI2fMEppdlJBRKFChdC8eXO8+OKL2LNnD/R6PfPLL7/g9u3b2L17N6pWrWrNyMg45bDbD/gDgXr16tVHm9atdnKiTHhJWWgC2aHX69c899xzbcuWLQur1YqqVatWv3379m1CSD0aFHgDUKRatWoYOnQofvnlFwCaPAEe8WJSRZ5ER0fXaNKkCRiGgSRJmDZtGpYvXx5To3a9WI87szeA1QzrSA61PQAw4U4XgNmq2xXdPD5+zOWLLdYGoJtEdfp3AGxnLeYrAEAplQkh499+++0m0IoLG5coUQKNGzfG2rVrh1w7f2oNgB+9XOppk6OwDKDfnTt3xp4+fbpepUqVygwYMMDsdDpx+cqVBwB+ATBOFfmnMTivAVj1hDYAsCMA3XuCrLihrforCrLSFVqsYw9rMT8AciSeRwL0ZQMCvxvgvwDobgG4xVjZ3Y/bAS8pNaBJC9wDsDiUiJoq8nWRpbZBIGsZ44w9nP93x/zNw7juLa5C84JkZ7+FggjN6LVwzN+c/hTH/2+J/xqbvHhsrIETZfK4Nl4+vTcBdlBCKqtul4EJd+asOARZsZCAf4gBfgcBpjE2+3UAcNgsfk6UFwHojlyuBwAw6MhdSqm6ZcuWH7J8vi69e/fG1KlTtRmkyyUASFEl4VXGyubXCEmaPXu2kxDyY4N69UpOnjx59IYNG5DJcbESNZwEiOBkLSsAQBW4d1SBWwRgMcM6CgRd/yQKATge4vsdF37/vVykw36XEBLbtm1bnD9/HgB8t2/fxqBBg+ByudC9e3csXLgQb3TqVGbu3LlYvVrziFSrVg2DBg3C/PnzAcDTpEkTLF26NCfZIDMzU+nS6Y0lbklWADQTZMUe3G/2NTtl8gqFdEB4ltH6DYDOAHIUrDSeMbRhwp0jACDXiz8bZy9cuNB/wIABpXQ6Xd/jx4/jq6++AsdxsFgsGDFC4zvdsmULkpKSnuvYsSOef/55AJDtVvNiXlJ+9OqYpUWKFKnTvXt3FCtWDJcvX8aIESMwZ84c7N27tyQ0tuccnDp1CuPH5+SLHADwTc54RZ6BNlMvAyDQqePrq2fOmiNBcweXuHXrVmyfPn0wc+bMSnj0BKAAfAbzAwA3dX7fGR38Sbos708EuBqMASJ4bkYRQm43b968aLFixVC8eHHs3bsXAM6YHIWpl0t9D8AijyR+D0L2DRs+4u6w4SOeJ4QMBPB1dj+MzX4iqFP0WIOjinwZACn5WQUEjY6oYfD4tOtstMKQ5SlkyPJ8bw6PUHhJqRGg+NFuNVMA4CWlPUDbEVDWiMC/dFriyy4A9Rgr+8hsNF5SDACa85JigeZKn5HdZ76xmgG0g88TRqh/pymEocmGY/7mhVyvhK36Si8s8J892hCaqyz7GM0AbkCLMa51zN/8v6bi+v8D/zU2eXFPlJVYm8UcMrhIKRoDCBk48PLprwCwm+xRs1W3azc01uHpACDISpQ+kDVFh8BpAozJ/0A5bJYrnCg35ES5isNmOc9LCougBO2J48f2vdmp44wlS5bg888/R7lyDzmTGCs7W5WE5aok7GGsrBfQXkAegfMCmHf/wQND1Reqtxo0aDC2bNkCh91xyclar+feN8M6lqkCtxzAx6rAvQdgJsM6Hklq+pSIAhBqBlbu119/hd1ujzUYDDh9+jS6d+8OAAvdbvfXLMsiIyPDu3XrVlP79u0hiWJG7dq1m33cu0+fC7//HvfLz2saXL9+HSkpKRnQVCtjBEFARkYG7ty5AwB9KaXZKcN5XBaCrBCDTx6QpTeFBfTMFWhZRG8IsuKApvh6yQi0JsAkhAAhpLvRaPwuSI90g2EYREVFISwsDL1799rrcmXefbF6jaonTxw/By1WUqRkyZItJkyYAADTAMBuNcuq2/XWp598krRu/Ya6586eOc9xXDZBbBqAzfn326pVK5w9exYXL17E8OHD6/E8300V+TvQam9UALsZm30LAMz4djZmzppTsXbt2h0rV66Mzp07Y9asWYDGWFAID5mbn4SWFMj0641FWIv5DdXtKgegv+p2nQOwjQl3Zt+/Ec2aNUPx4sWRlpaWzRZtAACTo7Cs8umzSZZnImOPaviI/QAAGJv9uCryADBWFfnR+Z8PQVYi9NB97NcZjnll5bl8m/sA7GMted1XXl4yA2gKYCMAGaCRvCRPIEBZPQJnjaA/ANjDWNkcD0RwDAXAS4oTGu0TA+C43WrOPwnJgSryzwOoBK90kwDRJmdsKM9DHlgmLi4JYJg8qNsZaElK0dCu7am/80omP/5rbPLiGLSahNDGRssyKcAi7OXTY6DFaN4HACbcmam6XWbV7bL5dKZSBgS+JqCjw2z2kEqdQSwFMJsT5T2EEA7ARrvV7GvapPFnLVu2LCFJEg4fPqyWK1cuOz//Q0LIDx7R/Qko/U4V+Z+hLcO9APbvO37G2bZ1y0UJbRJqNmvWDM2bN8eMKV//pAocYVhHnoc5+PecoDb9IFXgPgUwkWEdT0yPfgSMrMVcoP6jx8cf76lfv35pBKvGAeyDNmurX6xYMURHR2PcuHGmChUqIDExEQAu79i+/QKA3sdLP9dszapVq7t06SIDGAvg9dTUVPTo0QOFCxeGXq9Hy5Yt5xNCTlJKj+Xer5dLJYy2cvzZzEamZH8vysoGAF9SoJ/Br37gJ3pLQG9q6ZXzxN91AK4ZjcaqQ4YMQfPmzZ/PyMh4vmrVqpg7dy4yMzOPAmhMKaUuQS4GoK2TtcwmhDSdMmVKFIADlNKdOec63Onr16v7hp6f9H0bwITg1yPtVnP+WqX0Y8eOoVKlSuB5Ht26dcP69evxQrVqY0VRLBUZXfRRLyHG6XSiRIkSsNlsYBgG0IqaC0OLaT0WgqxYAbwOYCZrMZ8OjvkygKmq2xUHYKDqdm0Ns0deB9B18ODBDQF0nDZtWqkPP/wQX3/9dTtCSMBgMOj4TFe8PkuZ4+VSe5kchec8Zp8EOpNbR/2SjgZWC5K8GuShA0FH/TEEdBFrMV94VB/5YbJHKSqfbhFFsSeI7g0ALxsRGK8H3ZYdf3kSeEmpDO2ZzwTwg91qlnhJCUnFrIq8HkA7ACnEK50DUMfkjF38lMOtbrJHzTDN3wyE9gj8Z+D/uqr03+kjSLJDkOQxwmcJJuGzhHrC9MH9pVMH1grDuzQSPkswpbulI+luqVPubXIJoOWhuvHwGUaZd22UBX6VR+AeKeTFiTIJ1tx0zBSk1zIFqV/u3wGsXrVqFT137hw9fPgwvXbtGk1NTaXjxo2jMdHRp19p0mRZ9w8/2HzjyqX3MtySOcMtlTp47ER5nU63oWPHjvTw4cPZFCXviK60Vz3uzKgnnYcgE8EYjzvzO4878+1nPY9uSe4e4juTW5JnB49Jj1wsDwA6GAwGX2RkJH3++efpF198QdetW0cB/J67j6Dw1tRMQepDCBlGCHFBYze49c0339BJkyZRADPzXJ/MBzY180F/NfOB9RHXvK4gisM8fEYBlUiPOzNWcWe+Lbu5AUsXL/4xLCyML1SoEC1Xrhw1m820ZMmSxzb8a1NPtyR3cUtyK7ckx2S4pWEZbinkvnLdG11yXf+SnCgv5kQ5D5vDxXOn7e+/m/jtzq1bPr9w9tTbADz379+nUVFRFFrRbwsEBc1ynUcW2sy4L4AFFSpUoJcuXaIAUjzuzISnuG5F3JK8zC3Jj1WAXPTdnHfNZrNPp9Nx0PSQuKSkJNqrVy8K4GhsbCwtXrw4rV+//mS3JBdWuLTFEp854cXq1TeZzWbXgAED6IQJE2hYWBhXqXLlPZluoatbkmsHedVqBsUAsylk9B6B6/KkseecW9FtVUR3glsUf+AFca/b7Z7PiXJNTpTfeeK2AteGE2UdJ8otOFHuy4lyc06Udfme15IhtivtEbi3PAJnVTPuFFMz7vR92vGqXFqUyqU98zP2d/z8d2WTG593MaFx+7rQfLheUrQ0oytXjaEvNn4tcHCzTj+l90qD4PoNU9bl3uo7AJ+a7FG5U4l1AZ1hLgIBRRfIGheUIsgDXlLM0GZNJgD77VbzPgDgRNnOifJLDpslmwV4z1tvvdUxu+junXfeQd26dTF+/Hj4fL4KL9WqFXf85Cms+PEnR+9P++0PZ22X6tasPqFt27atx48fj3bt2sFgMCAyMjIpKqbYdi7t/iQAj63pCKZFj1EFzgTgB1Xg6gAY8aSq9lwIFdcaieBMnhZkHLiclZU1JCMj43hGRkbhc+fOrVIUBXq9vhIhpAu0uMR+SukyXlIqUUqvfvHlxP7fzpg+5P79++sBfHzs2LHRrVu3BrQZPADAy6WWgeZKmW5yFA4ZCzBmKSezdMbJPoP5XQicDto1KRT8+QEBVoSxdpr43nt49/33icfjiU5LSwsHcOf69es5GkmCrIQDqKEnuBGgWCrIys/5zkWOvoqe6GsEkxhSdASpAD4IUDTjRXmZHv5zRgSU/gMHN9q7b3/HxUuT0gHcjYuLY/R6PTIzMymAuQ0bNnz5zJkzyGZjDvb9L5vN1lAUxd8BhGWzREO7nx8LQVbqQtORWcuGcCMHsygtAAodOn4qolq1aobvvvvOfvXq1YRSpUrh3r17WLJkCcqVK+99++23QClF8tat5QHE+YzWAa5bV765fOlSi7179yI6Ohp6vR7x8fH2du3aNYoIZ9+llAZXnOZjQXfWGFXkx0Azqo9LdYYqCdEAmlCA8UHXNABCATLBbjOf9/Lprys6wznkYj8PBV5SYgzQNQdQCsBWu9VcwKVZYL9arKkFAJGx2Vd4XXedAN6GxrZeAEHdJD+lNPfKqh2AlaHa/6fhv8YmCHFA26YAfsGeX7I5xcLo4WRk0QBwZJuZADAIrq4AOooD2na0TVmX7OXThwBYmbuATBX50gGQaX7ovrOFh29W3a5x0EgzAQC8pBSFRnPhgXZT589aWwVgHCfK58zwBTwC97vLldnJ6/MivlWb0rdu3Zpst9tRoWLFvWlpaabExMTaixcvxoSJk+Z+1q/vCGiEmlVr166N+/fvY968eQAAt9uNtm3bVoPm638qMKzDq4r8UmhuoC9VgQsAGM6wjlBCYY9E8EVVONRLLIivXn311fiLFy9CVVV069YNJ06cgN/vvwZgwZw5c2z9+/fvTghZxYny94qifDj685EtWrRo0fbgwYPzCxcujP79+2POnDmAFsuBl0utAaC0yVF4/iP2CdXtIgCW6gO+pX6im0uBZQTYxrCOkLENqi0f7gU/ecBqrAS7AMAlyIzPT086WUuB6nhBVoiO+o1+IAVASVBaXYdAnIEGSgNQvcRQww9DVFpGpm7QoEFo3759lCiKUZGRkejWrRuej4vb8sfFi3UWLVqE1q1bY/yECV0EWbkJACaT6cW1a9fCbrdXJoTAaDTi/fffR+s2bY77ib6+ICthuYaSW8uqPrSYUTEAmcHMLaBg5b0MIL12nTqbFi1c2L5OnToNixcvjvT0dHhV9ZaiKO9evnxpbLVq1dC7d2/cuXNnWbjVcg1AhMlkGlq8WNG29erVy3P/+Xy+K8jltg7qF7mu/XFhS2xszEQAWxmb3Z17G1USCDTFz5qHjxyxr9uw0fRCzVqFWrRsFWU06r7JV0irmLMkohisBQooeUkxQjMWJZs2btT87Nkzjbxe7z0A24MrxQL45qvJhb4YN3aQ0Wisr9fry/j9/os+n6+xmnHHDKAXgK9Mztg8bjpCSF8APQ0GQ8WgFMg2AP1ULu0KALPJHiWF3Nl/Gv6vl1b/Dh/hs4QuwmcJsvBZAn3KjyytWzRJ5dJ65+5HEbg3JIFf5RalctnfefiMuh4+o11wKd+RE+V6nCiTR43FI3BOSeDf5AVhmUfgWnoEzkEpRYZbipowaXJ1lg3fxDDMDgAv6XQ635o1a7LZmC0e0d3cI7p7Q5udb4dGY5P709vjzuz8LOfGI3Ctc/7vzozwuDNnBYk+2Udt45byEmm6Jbm3W5JrPqo9gOQePXrQ5ORkunPnTjpt2jQaHR1NAfS22+30xo0b1GAwSACMlFJcTrlRTafT0fnz59PffvuNrl+/PpsA8wqAcDXzQQM180EBVt7gMdTyuDPf8rgz3/LwGT96+Iy6lFIIklxNkOQ+/1P3VIZbGvvIc8pndAkSSfbyCFwfj8DVyHYbUUrBibJxweIlK6IKFcoICwujdrudQlsZfQmgVC425j8A5LhooZGUumw2WzajcQaAfgBIKDeaW5Kj3ZL8iVuSY4LHX/dZjhGa264igCgh/X51D58xuHz58hcLFy5M7XY7LV26dM4nPDyc6vX6V1x3Un48uGtrGWgTOgaALthXWwCXLBYLLV26NCWEnJd51ySPwPWmlMIjug0e0d3II7oTPaI78ZefVzcD8FtERARt0KBBtrzFFQDVc49R5dIsKpfWIjcZJyfKlYLkmR9zolwKQJuyZcvS27dv08TERArg41DHy4myLjo6ZmqHDh3o/v376f3792lcXBwFUEPNuDNYzbhjC3GOYiMjI+mBAwfo2bNn6eXLl+msWbOoTqd7cObogZ4ql1bkf+u99u/2+ccXdYoD2lYHsBfPVskLEKKA0pdtU9YdVkVeR4FJfujDAjr9cNZiFgGAlxQ9gKZGv+cjn44ZbLdZUkJ1pYp8aWhFhYAWjDygwBhPKUxUS1oAgAwna8kjbU0IWWw0GhOaNY+ftWnjhjEAoErCLAAjGSsbssZEFbjODOv46WkPM1RRpypwNmhBejOAyQzryCN2L8hKD9Zi/i7X3/NYizkPP1y+4ygJoDc0bRkDNN627wAUqlu37sayZcti+fLlkyilw7K3GTh4yKS5s2eVlmU5tnDhwsbGTV722Vi207xvJsQBUEyOwr8Fx1oVWhyDIEhIyrCOC6rb9RaAm0y4M4cWSJSV/gCSbRbzEwPpT4JLkF8BYHCyltyV5GEA2iEQeA063Q8AdjI2e9aj+uAlpSjHcV+kpaWdeenFatMppZQQ4mQY5orRaIwQRbENpbRAwS0hxA4gQCnNYXFQBS6BYR3rs/8WZCUeGlnlqqCfr7st1zX7M/BI4nMeWRrWtkPHMrVq13n5vffey5alxrx587Bp06aeauaDBdDcRv1MjsI5K0RCyKaFCxe2aNy4MZ577jkYjUxAyz8AACAASURBVEZcuXi+RGxMTG8AdhDdfgAHGCt7DQA+7tV7ypXLlz6bNm0aDhw4gCpVquDGjRvo1q3bzUAgUJZSmlML5+XTX1cM1ibQeBAjoNWs7LRbzX5CiIMQkrlhwwZkZWVhy5YtmDdvXi9KaZ4yBABwi1KVd97qOuTCxT+6eb1erFy5Er1790aX9m0G9u3VPdnkjD2XfxtCSCGWZVOLFCmCK1eu3DEYDEV/++03TJgwARXKlF44Zca3H/2Vc/53wj/ajSYOaKuHRmthflLbAqDUDGC1J+3OK9TMTvJDn0x1uoWsxUx5STEBaA5t5rZTD3pSH/C8DVimAUH6Cu3FWjzY23UAv0rUqAt+FwvgDAHe1xFsddgsIdUqKaXvA0CGIFfNEOT4SNaSDGAgNJK+P0ci9hRgWIcIYIAqcAYAI1SBiwWwgGEdx/K3FWSlHYBHFhICAKX0BoACCoaEkNiDBw9uPnjwIEU+P/jno8eM+Hz0mJ4A5titZsqJcrTe712chcBpvU53ThW4bL373xnWkYegVXW7GgBAbkMTxLcApomy8pnNYn5M4e6T4WQtO12C/DmArarIl4VWkOgFsA6gYGz2rY/vAbBbzXfsVvN7DoejCSfKS3hJWUEp3UYIKaaqahil1BVqO/ow/bsABFlhofH17WQt5mQAEDXD88TxPA4eWdKDkI/CrLaex46fGFKrdp2XFy1ahKlTp2Y32QTgV5OjcMDLpb4Jreizl8lROLv250SfPn1aeDweyLLGBBMR4awDovsKNPA6aMDF2OzXeElJANA2tmjR88uSliIuLk6llK7U6/WJly5dIuXLly9x8eLFCgDOBXnK6ut1pkagtAoIGWu3mjPyDX1qz549sXXr1hxl3lBQRf5lA0jpu3fvdb906dJiALMopVUAwGazhocyNIAmDU4IaS4IggDgaFZW1oG7d+/Wslqt+GnN2mNTnpLI9j8Buic3+Y9GV2gB5T+r5R3hv3xuVBYxnLPZrAsCFFZeUl6Hxt+00241/2y3mjOZcGcaAKPqznxdFfn2ABKgyd7+IlFjskSNLokaS0AzMjecrOW6k7XcIARToblBHotI1nIOwOUMQX49WDdwQZWEOn/ymJ4aDOvIYljHWAA9AdRVBe47j8B1wEMpbAB4jbWYf/kz/VNK71JKW1JKW1FK83BohQVUagz4MvU06ytV4N4yZ8kjjfBv8+oYj0JMWQzr+IFhHd8zrCMPj53qdhUD0JAJdxZgCLdZzFnQDM4Tz/mToIq8wYQsnSy4p0EjSJ3L2OzzGZv9wbP2Zbead9ut5ncBFOUlZREnyjWzDQ0hJJoQ0p4Q0oUQUvFx/QiyUgcab9gC1mK+CACiVhRZ1GYxh1x1PwM+ArA4zGL1y7LsA4AOHTpgyZIl+Oijj2AwGBohyAJtchT2Q3v25qlcqlOVhCoe0X3pzMnjPXQ6XU7KfEShImsZK+tibPaFWdAl8KK8EYDFbjV/8PmI4VNlWS5JKXUAmGQ0GgnDMHC73eiWmGjlJaU7tFo3yRTwfqaj/svIlTwSPHevlixZ8r3XX389ux4pGzkciarIx6oi/zaASz5i3H7k6FEPpXQ3cnH/DRox5rF0TpTSbdCkrmc3a9asVvny5bFu3TrcuXv3Tz0Xf1f8o1c2AEZBk3T9s7DRn+c0DFRr1I+XlI7Qivk22K3arFgVeSe04KsBRPc7aKARY7MPvn7nfoTJZAoPo3IJAIqTtdwI1bnDZuE5UT7AiXILh83y2OyYSNZyLUhv85YRZAajo4sQmuX5zxrWRyJYp/MtACgC39/gV19RBdXo1ZlOg5Dzf7X/YP1PdWgv7WwWh4AegT0+wih6v7esHoGvGXvhG2EAOFFuyYnyeABfOGyWHBoR1e0yAugPbfUXEjaL+ZIoK4IoKzVsFvMz1zyoIh8LLf6gNxK6TKLGt5w2S4FsKtXtIrmKI58Kdqt5KS8pSQC685LyzksvvhBmt9vfatiwIcxmM/bv3w9CyBIAH9JcGU+CrJj0RN8MwArWYs6vsfMGgDXPepy54ZGlKh6PJysiMioL2os6sGvXLhw+fBh+vx/Dhg1D5cqVbUOHDpkOoJUqCQaPnzQQBWGLxaTflsGnDmsa3/KnGzdvqgjeR9ngJaUegA8B/b4w+FJBcY4QCwMtq+smIaQkIWT/nDlzsHTpUpgY5o9vZ88tAWDZw+QbM/y867BXZ2gLIHetzoSZM2diwYIFqFChAiIjIxETE4PIyMjhRqPxkJiZDgASY7N/DwCeR9TYSLL82LqdIEHqjDp16vSYPn06WrVqhXCW7Z7q8Txtke1/BP6xxkYc0LYoHpLthUSVhdtgMxqg1xEYdAS/vdW4QBtKSDSunYvHc1V/slvNAVXkn1NFbzZhVyaAZIkaLQDss6ZOeuW7+QtP3r13Lzs+cxjAcJqr6C8/HDbLDk6Uh3GifMRhs+R3AeRBJGu5nyHIG33QJRqpf40qCe8zVjZ/Ydn/uLHJjSy96SaA901+tbI+4FumA01SBVWfm2X6cVAFzg4tXZnBQ8MCACcZ1pFXLItLJWF+bzGPwaoD0d3KTjdy2CybOFE+D2AKJ8pTHA9jZRMAjHyKl/x8ANNFWTlvsxTIFiw4Zs0t+go0Wvm7ABZna/5IgnzDJcjlnKwlN/NEJrRCy8dez1AI0qN8x0vK/Bs3rktbt27FiRMnIIoipkyZgjfffPO9ffv27QWwBAAEWakESl/VUf82i4XNQ5siykohAGpufZ9sEEI+hWY046DFunpQSgvMxE8cP2YcNWr04n9t2lSrRIkSUBQF6enpOH78uBeafMD+Hj16fH/kyBGMHj26ieBKm3Hk6PE/WrVt1xfa5AEAkiml0N7JDzPg0jL5+QBOVypftte9u3djCCHjwsPDDxqNRlsgEJAJIX5CiG369OnE5/Nh1KhRrkAg0NRuNd/JP049AgdBA0Pyfc2mpKSgffv2aN++PWrUqIGKFSvi6NGj2LNnz3yL3akEAoGr0ApzPQB0hBATgLeMBkPud8dbhBABmsT0S9CkQ0bk+v3rWrVqfbJo0SIkJCQgIyPDJYoiCCEWGhQ8/CfgH2tsoOlUZOEJinn/6lQPUeZHNyGUBgyHNlU0lC7/nSp6twC4KlHDXoBYg02iAfBO1nJj9Njx7y1atMhRv359UErxxx9/1E5MTNxBCHmRUnrqMcOYAWAIgEdS0mcjkrXwGYL8g0z1b5jhj1clYRljZXMHobNUgTMyrOMvxSQeg0KsxZwmyLgMYK3er24AMEsVOAHAWIZ1SACgClwJ5Cgd5rxgCAA3gM0M6whJo58NL5dqBPAJAeaB6GzQ6htyNH4cNssNTpQ/AzCcE+Xj5oCnDIBFTLjzsf0CgM1iDoiy8g2AQcglhpcfQW6yjtDqcnYwNnsoapLvobFsj8v13UloNS1PpDJ5FOxWM/V6vduaNm3atGbNl856PJ5id+7cKZaYmIh9+/Y1EmQlCUAnAC5TwLseQRdWPrQDUKDKnRBSxOl0zlixYgXi4uKwdu1afPLJJ62hkWbmgSRKw48cPVrrjz/+wPXr1+F0OnH//n106NDBZDabP9br9S1KliyJzMxMiKJ4N6ZEqSYmE/Op0+nElStXcOGCttA4ffp0NjdezmQopnCULcvnSzGZTGlms9lWt25dzJ07F8WKFUPPnj0tGzduxMiRIxEeHo73338flNKbAAYRQgbTfAqmJnvURY8o5hfdG9yvX783od13NWbMmFH2woUL2LhxIwCQjRs3lh4xYkTp06dPxxFCjn7St18JAB9UrVp1ZHx8PGJjY9GtWzdUqVKl//Lly1tERUVV3Lp1K6pXr/4xgBGEkCIAqkZHRw9ITk7G6tWr0a5dOwBw7tmzZ/6xY8coNNHF3Oc+EpqkgQnARUppHuXfvzP+ycamLTR+rL8KC4qV7QqgbIDipgLjEWiusVB0ImkLFy50fPjhh6CUYvbs2Rg0aBBGjhzZDRp/VUg4bBaZE+XNnCh3dNgsT3R5RLIWL4AVmYLkM4ImMcBbuX7eBW0W/tig/f8AhusCWYMBPA/gN2juyp9UgWOgkU1uA7DmaVc8ueHlUlkAHwCYYXIU9psAmZeU07ykNM+tI+KwWbwAxgiC+xuVmJwBopv1tFq8Nov5pigrN0RZaWSzmH/L/Zsq8nZoL3ITgDWPi8M4WQt1CbLbJcgOJ2vJzhBMg8Yf91fxut/v1x0+fAgAkhMT3yl248YNVKla1QzgYwBrWIv5QVChNY+rVpSVKgD+sFkK0OQAgKwoijRkyBBrjRo1UL9+/ZA798hSTZZl74iimFW7dm2D1+uFLMvYvHkz2rZtC5vNhpdeeqlUy5Yt8cknnyAQCKyVZWXwxYt/oFatWrhw4QJq1qyZ01+TJk3Qu3dvMAyDVatWYdeuXZ1mz57dqGnTprYWLVpg1KhRqFmzZk7SQalSpfDpp59iw4YNWLVqFQC8MG7cuBfOnj37C4A9ocbs5dP12QXYlNINADYAQJUqleetWLGiLM/zAPC2Xq//vkyZMrh06RIAePR6w/mfV6+qVK1aNciyjPT0dIwerc39OI4DgArly5fP1lz6nRBSPTw8/HjhwoWRnp6Ofv3yhgEVRQG0yW4OCCEDWZb9ulq1ajCZTDh9+jQIIUnQ3KKPzFr8u+CfbGyKPKkBAUG7nw+BAHgvriTejysVsh3ducaDhq0/1RHMddosftXtIqrbw0B7GWUXiZq6dn5j2OUrV2Pv3bgqtWrXIeHSpUtty5YtCzxF3MhhsxziRHkAJ8oxDpvlqVT6IljrKlkUmmUKUq8AyPxI1pLFsI50VeD+jKxyHqhatX1ZaCnbegRXJzpiqKkIXDeiM5YxUH8LaEWWR4JxnQXB+Ms70Azgy6rATXyWVVbQ0LwLzdDkuFzsVvNpXlLi86tjqm5XTRNwUdGF7QUwnRPlLx02y9OqOC6HJiV90mYxC6rIx0CrRFcA/MjY7CGzBENgFrRsuy+BHFXXv5ycQyn1B+MB3yckJLzcuHFjNGzYEBs3JzMBimrQjPwDaPd6fl6++jaLOWTBK6VUIITEnTlz5v24uLgRodp4ZMkMoH3FCuVGjx09yhfGhJU6//vvhZZ9//1rfr+/jM/nw6FDh5CSkoKRI0fC5XIlAdhSrVq1wevWaQwcRYoUwcSJE3Hr1i0sW7YMJ0+exOeff47PP9dUz3meh16vj6pWrRqOHTsGjuO+BtAA2ooYFy5cyGbVzsHNmzcBTXW34HFBd5sCjRAsvgVyJg4tZ8+YPm/h4iX8ipU/7gdwPiIiAoMGDYKiKNMBPN+mTetKw4cPx/79+6GqKq5evYoFCxakQlN+9QMoQwgZNXLkSEBbDZd77bXX8MUXX+DHH3/E/fv3ceLECRw5cmRjIBD4GQAHjWopN5qNHz8eZrMZPp8PixcvxkcffZS4bdu2E9BkCP7W+CcbG/ZJDbZ1aYAYWxjSZBUJaw6ivJNFg2IhCvAtbDgC/hsAWqluF6C9eL3QmFu92f9fMn/eeQAXEzp0Srh7737bPn36ICEhAR93//Ce6na1yddrbtcSACAMuJZFDNM9btdykve3dGgz1/tMuDNPsFJP0MuMwEKJ6sUMQd4WyVruoWBlOICcQLwdWuwhBpqhfEEVOBYP61SyEQBwDcAv2cYiKE7FBqCvDKAbwzoKrO6CRicJQJIqcKUATFMFTg9gHsM6TocaVza8XKoNmqGZFYp+xm41J/OSkshLygO71fxAdbsKQZMMGM0A4ER5MIBRnChvddgsj4yTZSMoJT2Z0MBkVeQvQXtxz2ds9gIko4+Dk7VkuQSZuATZ4GQt2TPUv1zgFlRkTYqPj+88duxYxMfHIzw8/J2XGzVYzkuKDsBnvKR8oiOGe6zNllNjI8rKC3i02qw2OEqvEUIKMCAAgCoJLEBmAfQIATp/2qf3njBb+A8AVnXp0qVMREQEkpOTUb58eezevXsONEG7u4SQ+IyMDIwbNw6qqmLy5MlISUnBK6+8ggMHDqBu3brQ6/VoFf/q3arVa83fs2f3tkUL5r+xbdu2fqdOnQKAuYSQQdnjKFmyJPr27YuPP/74PjSW9ACAVEpp6FgYIat9OlNrBtgVJM5sEdzmpybNmgfq1qld/PsfVm4ghJD09PSPNm7cGAuNsTsuOTmZrlu3Lq1enVpXDh05Vu/GjRtITk4ufPPmzT3BcxWxf/9+Fdo9shXayhf/+te/MGrUKAAAy7InAoFAX0rptUec9mX9+vUrBO29UebQoUOFExMTsW3btrr4r7H5W+OJ7psYm8buUcjCoE3ZaBy/nxna2EQWISC64dB88OnQAsAqHga4PcGP0qFz19onTp3+Mjk5GX379kXKtWsrNv26djKILgtAVn5G5vzgRPlaFjFUM1PvDwBMwXqfMgB9FUAJ1e0yQbuuOTNnQkikjfprqdBVEQS3YAIKBQ0LkIuzK/ivG1rGztEgXY37GZQ6yyJYxc1azE+kRmdYx3UAfYKrpE9Vgfs4uO9vGdaRx2h6uVQrHmNocmEZgD5uUVrAACOgZZ8B0NyRAIZyopzIiXIfALMdNssj+1JFvpYRaOCHLtNHjJds1oJZZc+AOdAKV2f8hT7yY2qzZs3e/PrrrxEfH4/U1FQA6EkISaeUbkZQ+0YQxa95SfkOmqt2np6ghs1iXvQsOwoPD7eoktAVgJFqiTVbw6zsCgAghBgArGzdunW7gQMHIj4+Ho0aNUJycvIOaLIP2QZ2661btxoCyDKZTI1+//1CYmrqgyLDhg0z16lTx/LCCy+gQYMGmDlz5n7u7rC4zq2aTly0YP6J48eP7wBwHsA7FSs+zO4uWrQoqlatirJly0ZfuXKlL6W0+xMOY0+A6D5VBa4RCIkGsCU/FQ6QQ0uUO5ay/4svJ9b+oFMCmbtwyYtnz1+oZzAY4Ha7AUAKbpOJ4Mo1eE4AAK+++ip++uknnD59GjNmzKgOTeY7pLGhlP5ACHm+RIkSQ2NiYtCxY0esWbMGAC494bj+FvgnG5sCN1luSL4sBCjAmgyQfFnYcSMNQ+tUCNlWV6mmEYTUgZZdthFaUoAVAIXG0GADEDl63Bc1Dh4+0jM5ORlffPEFNm3ahI+7f1Qo5fr1N2JiokUAxlxGIP9LUAcgYAagwtDED2LTg94GIR4AHED2QiNc9ABQGdaR4+NV3S4WOt1SJpC1wEf1ZbzQ1TQiawfR9kGhaYLcBnCJCXf+lcSBytCC5U+t/w4AQcMyHQBUgXsRWkKBH8DXDOu4GTQ07+PJhgZ2q5nyorxIRwPrKdApLETmmcNmSeJEuQmAzzlR/sJhs+QYtiC5YjNoQdqjjM0+FQBEWZksysohm8UcspDySXCylkyXIDtcgkyc7KMN3LPAaDQmLl++HJIk5ah57tu3r97AgQN7Ipc2jolm7WNstnW8pNQFsMJP4eclZVl2in4oGAyGBpFOZ7fsvwkhNSKLxGyxWizw+nwDOY5LAbCHaiSgS1u2bNlx/PjxiI+PhyzLSE5OBrR76i4hJAKa2uT2C5evvnPxwu8zB37W/80LF373qKoqZWVl2ViWhaqqOHLkCDweT0cmoojfHh7Ox8bEjL9z9+6XQXdh46BuEQAtVnL58mV07NgRSUlLazzpfIVRbwkVBisC/nKMPfKpjS0vKeZP+va7tXP9qv4Tp8wYsHr16mzRvDWU0kfF6+STJ0+iR48ecLvd6N27N1auXImEhIRZ0BgtHoXS7dq1Q5MmTVCsWDGcPn0ayFu39rfFP5auRhzQ9nsA2ZkoBZDCSXhzvUa8nEUpOlUsikG1y4dqCv9LTQ/oW79X1UvJeED3G4BjTtZSIPeeEHLj4MGDJdxuN7L91ikpKXhw797+A3t3h9L7CEATvLof/GQyNjvlRNkAzS88IveL8nFQJaEjAC9jZdcrAveODKMRIL9EshZXcDVUHFoqarY0LQVwEURXgWEdT7WyEWSlJ4CqrMXc52naP3a8GuP0UFBaHDTgACFdQrFnh9zW7RqbRQxbsnTGUnareSWQk+UzGJqbEADw3HNljOs3bRaLFi060GGz+FSRbwygJoBtjM2eR0BOlJUIAMNsFnMBpoOnhUuQKwB4yclavlfdrlcBnGHCnc9c5CnISiyAdsVjYxJ8Pl987t/8fj9UVR1MKf0aAFSBCwdQg2Edu4LH8YGfYhu07EY/gNF2qzkTAFRJMECLiZSwRxaa1a9fP7ZmzZooXbo01q5di6SkJHg8noxJkyZFbty4EevWrXsTwOFixYpdvXLlCtavX49797Rw4vr163HmzBnEx8ejRYsW+P7773HgwAEcPXnqyJhRn6d4PZ7ODRo0wO3bt9GkSRMAwPvvvw+fz4eZM2di27ZtcDgc2LRxQ8b544eaMxFFAqVKlTrZv39/NGvWDHfu3MG5c+cwcuRIyLKMhd/Nnff2m13n5r9uAKCKvBVa9ukdDzF1CsuSfmPsUT+HaNeGsdkLKHXyklJy/vTJdUeMnZC0aNFi0507dzB8+PBrlNJalNIMQkhhAL7chcfBFOl3hw8aUPr02XMnt2zb/hPP83A6nfB6vRYEBQYppUqubQi0GOgnACo3b9689ogRI9C4ceOjlNJaT3Nv/Dvjn7yyWQugDUKnhKK0w4qD7zR5mn4EPN/gvp8Y6ukJXqeU1qYUgUxBvk212eWOXDNZumjRIhiND6XGKaWw2awsY7P/kL9jVeQN0G7KaAC1AESoIk/MAAIgaQGQ+arIZ8ceFDw0Sg8Ymz3PbIixsmtUSfgOwHod8C8rfC9JMDXMEOQbkeHOU9D4yHLE0oIB7AqgtFauYLYXwGkm3PmoBAUd8mXY/FkwrMPr5VK/AfAh1Rl/AyHTg7GdrQDWPcrdqLpdowB8b2XDL/OS4uUl5RW71bwTQJdmzZoN7tDhIdP8Tz/9hE6vtx9+8PCh7z0if5oA2xmbfUqofm0Wc6YoKztEWelos5j/VBGkk7X84RLkTsE/dwNoD43l+6kgyIoOWoJCFoC5PM/PRUFOv0DuFxi01ebvACDKSiQAl91qvgmgtyZvTCe4JbmiHoEDBs29s5+xsrtVVZ2QkpLC3rjxMIlNVVVkZGRExsXFZcchzgJwcxzna9mypTHXPnHlyhXwPI+qVavi119/Rbly5XDgwEHx9MlTDXdt395QVpTOqqoiKioKX331FY4ePQqHw4HU1FS1TJkyzMCBA9GhQwc4nZFXKJC4ZkXS2fc//gTr1q3LmahRShEIBABg6dtvdu0NYIoq8pMZm/0+kLNKjYeWoLOWsdmzPJJSzkeMhQif7jTZo55qlTpj2tRC30yeMn/+/AWm9PR0DBs2DNC8CGMIIZciIiJmZmVlBQghTYPsAgDQXafTffXTmrVnr6akPFeqVCmoqgqfz+cBsComJqZ1enp6GiGkNKU0m/V5U7AMYjMAye/3Iygt8reWg87GP9nYbAMQ9sRWTwYD1rEcWoB+BCHEQwiqA6hNKX2bUnyaKcgPCMGxpq++2m3hwoXP59ve98OyJZdVt+s9JtyZp7o7SNKYbUAKgBPlD33Qn3TYLBeCuudFoBmmaqrIhyIWJarIjwMhBwml1WzElyRSQ/EMQW4LYH1kLvdOMNHggiryR7JjNqrbxQCoprpdtQAgKyuLLlyy1L5k2ffXTp85K23ctLn92bNnxwwdPCjErkMMhpCy0NyNv+cmTgQAL5dqAfAhgG/D7E4DgCU6na7Y0EEDK/b7tM+ccM31l8Swjpwqf9XtGglgVVBZEnar+TgvKa2CiothcXFx8Pv9WLlSqw29du0aenz4QVkDAis9MDYHcOVxqdE2izlZlJXxoqzss+WTIX4G7HYJcnNnuHOr6nY99fMnyEp9aIkbv7AWcxqAbFbhJ9HTF4Hm3gW02f1KVRJiATQO0xJA9lJgvArDm1lAPQCxHkmZCqDJqlWrcmbTxYoVs44bO7bWp337vjt16lTjvXv31lNKzwEAy7IVQXQJlAaa6nQ6Y1aWP0un013yer11d+/eXSc5ORkvvPACeJ4b0Kb5y742ly8WK1/5+RIbNmxoBG0lZQJwVlGU/Tqdbvu4ceMYAFixYgUqVazwEXSG5q1bvlZ52YK5Y9p1fmtfrmN7Hpo7/GfGZg+oIj8SwNeqyA+AxkZdAZpEQW6jstKvM34Jv68uCmaDhcS5U8c/ate+Pfvmm29i27Zt2LBhAwC8OGjQoBcvXrz4+zfffIOjR4/q5s2bVwXaJAI6QhpMnz7dHBkZWUuW5VpNmzZF//79QSldCaDtsWPHUL9+/ULXr1+PxsNJ3mv79v0/9s47zKlya/u/ZyeTTNokZIah996RjijNAoLSBEGqih4VERRE4CAIYseCgIpYjoCKgiJFAQUpjogURaRI721gJpNkJztlJnm+P3YGhmEGOJ5z3u97v8N9XbkYkmfX7Oy1n7Xudd8/sXv37vvMZjNt2rTJt01fci37+f86/mvTaACB0d03ADfzr3XV/2J/fWlrVQvVRmdwnXJYLRcKer5gqLKUsg3QUEpqAtlCsFMI4Qe2AnucNks84vc8AvxkTnEXKehXFLwBTUHvip/ksluvWmuJBFWBlO+BHIuUQxHiVyA9JnHmYmhiIrZFERTsmI8BVdEv9rOAt6A/vBBieLly5WampV1sGTly5AjD/vbgPZMnTviqMDOuIIQQQ9PT0z9wu93s3bt3mZSye/5niUDzEDDDXKJUqsFgOF2nTp2kypUrc+7cObZt26aaTKYe3nNnaqLXVqLIeASYb05xX6bY7AuGHqhepVL5wYMGTbFYLMyZM4fz589TrWrV1f369un0/IsvS29AcybO5csuu/Vk4XXkI6CF7OgpzFF2q+Uv/Xg8qjbR7bBOjfg995pT3Fc0zlK1UBX0p/OfHVbLZSmiqyGieruhGJZLaBpHecBAfDO6ysEGs81xGavOFwzVQicyGIB3nTbLLoCwFpwCZj6AlQAAIABJREFUvGqx2TuYTKam8z757NfOXbqU52JT7i5ga0F/ptffnH7TqVOn3vpk3twfz58/fxCYHVa93YH1hQLABQghmqGb5aWgd+6vBIj4PV2Jx7qDPG92pRdJxwaIBHzNgMnAGLPdWaSNtC8Ymm7JC24wOdO+LrTsZWm0oM8jPp0/7+On/j5pgNvtNhT8LDMzMzccDsv169ebevfuTVZWVh0p5V6Ah+4f8o9PPl94X/369TGbzfz55594PJ5FwNT09PQ/FixYwK233npESllDJswEhRBzHA7HQw0aNCA3N5c9e/YQDAZnAk/Kyw0H/9fhvz3YtEZnkP1z9gIXoeU+8vKXsnSlt90O6xYAVQtVRL9BewrfHHzBUAkp5W0SWgImAb8nmDwKgCkWbhcXyhM2h/Oan5q9Aa0i0NNlt14TyykSVEcDa4jH6haUf8lWtfwUza5Uh/VPuJDGuxf9RlIaXZL+Am5q33HwwEGDOzdt2pT8dMsbb7yB2+V88Juvv8xGD+IB9CBaMDddwWQyHf/555+xWCzUq1fvTyllXbg00Jhc6VII0bpx48Y/P/PMMxw4cID69etjsVjo1KmTJxaLlZZS5kb8nr+DKJvwrc9Ctz24sD1fMKQMvW/I4nJly3Tv168fsViM9PR0+vfvz6+//vqYlPKdxLlMBl4GZrvs1r3FncOAFroZqGq3WuZeyzkvDI+q9Qb222S4XnHBJqHOfA96kf17xz8Z2C7UX+LxHijK9jyUMhIxy2671KaiOCTsMR4HagqkQyC3x1HyA0kU3fpip9NWZFMovmBoMHoh/KmExA6RgO9mdAHaIinVVz0mv6c08fgkiKcJ6GdypRckdpRElzk6hU6SaWe2O18rZt/esuQF1wCrTM603ALruCzYhHIyBykytj05tdxpLk+5ZwkhdjZu3Ljy9u3bP5NSDgCI+rI6AXlmV8kt6GlME3BQSnlGCFHb7Xb/abfbOX78eP/ETOcChBBp6LOyXGB/YQHa/834rw42AIHR3Veid9Rf5uR3FeQCP0UnL7gFnWIbdzusF6iPqq47VR+dAr2p8M3CG9BMUldLriHgvBDia+LxaJKMTs9VzMsSN04fupjmkfwfbFHwBrQBwF6X3XpV4chIUFWA2cRj6wprjQFkq1prwJnqsK6Cov1s8iGEeGv69OkjNm7cyKJFOgGtYoUK32as+2F+qVLp+lOglBaQ+cSDeCwWP1ClVp1HHn98RONAIMDgwYMvBJuo95wBGAm8mc86E0KYga/QFXuDQPuDBw9y++23c/jw4VphX/ZdwA9mve5ERPWWBkaj20YcAWYhRImZb787ZdyEZx6KxWJ/AKaePXvWGTt2LK1atdolpbyQ2kyQL54Dlrjs1sKNkBcQ0EITgfl2q+Xo1c55UfCo2iSbDB8oHGxULWRAl5FJRlcAiBS5giKg97/QEf2hIA/4iXisUa7B/C0w2H65CGeR8AVDpdDTW6USgaZtHCUb/Xp822mzFBuIE/09bwK/5JMzACIBX20gzWx3/lTcsteCiN8jiMeHQ3wAcCtGsxHdziMLWJc/844EfL0BYbY7L2NG+oKhp5R43npzPGIxOdMu2EwUFWzCnrNTkt2li5WJSkjSNAR+klKGor6s1kBZUxEEhALL1ANSpJSb/qmD/1+O/+aaTT4Go3P407j2dJoE/PLO+59MFP+f96haS4+qfQaMcjusZxN59XUJK952CWvkXxP2wflSKjMAPKpWRUjZZ9/evWW2bt60p1Rqic5DH370lerVqiet+O77WlabrZMvGAI9rXUA+CPfl0MIUVJRlPPj/j7h7//48MM3zpw5/bMs5glCCOECZtauVatVo4YN7HM/fH95wpvmAlId1k3Zqlbuzm7dP1u14tu09PSSqWfOnM1nl30ipfyk8HpHjhxJ7969+fjjj1m1alXHStVrJgMeYEzCqwaAiN9j7HVPv2fLli3XuGbNmowdO5azZ89iUJRqbrf7+A2NGuTeN3jwnHv69L43EvBJIBZWvZkLvlg49bERT2ysW7euoX79+mRlZXHixAmO7f+zJ7AmP9AAmB2us+iaZvnGacuRkhsaNzzWunXrqVOef/H4Le3b7sjIyNiasMwuU/BYXHZrnjegTQDGegOay2W/aH5WCNOAaQEtNNJutfyVAm5WDOGL+D3VzCnuQ3ChLlMXWOqwWq5JETgSVMuhd8Unoc8i1+Yb50VUbyr693AHBajQBeELhizotY/6XNQJzAR+Mov4OeB5oFey1RLxBUNG4ElfMDQCfcb1utN2MRj6gqFK6L5D4502y4VekkjAlwrUMdud/7KkfkJEdWbEm7UF4ruI5b2Owfi22e685Dsw251fRgK+0ZGAr7nZ7txaaDVvxxXjFOKRK97so57TDaUwFhtYARLU59UAUV9WXaCOyZl2md5coWX+ZSX0/434r5/ZAARGd88v7Dm5SP0tDnnoRckOcurnnwHTHVbLBwAeVTOiN+1tcjusl92UVS3UHL3n5rjDajlU8DMhhNtms52uV6/ehRq11+vFZDKv+OmXzf2cNouaSG1UR3+SSp044e9N5v7jo4eaNWtGiRIl2L17N3v37t0GdJVSXnazEkLMGzx48KC7776be+65J9d3/uyg4lw7hRB5K1euvJCjzszM5L777jskpaxeYMyLzZo1Gx8KhcjLy0NVVR577DHq16/Pp59+ysKFC8dIKV8rML600Wg8s3r1avr3709WVhaPP/44vXr1wmKxsH79eiZMmEA4HK4lpdwfCfiSgJIvvTKt1Ycfz/3queeeo27dumzYsIGxY8dy8sjBqWlpafk3gyAF2HjoT7tVgHlmuzPHlJT0XfMWLW7ftWsXUkqmTJlC+fLlueeee36UUl4u5w14A9ojgMdltxbJGAtooSZAK7vVUhRt/YrwqJqClBNsRPZFjZZtif3d6LBadl5puUhQFejB4QYAv99/5tz58+vrNWx8Wf0lonrbStiZZzD3slstH/qCodS8vLzG4XC4pt1uz//hh9FZZbsL1lsAwlpwILA72WrbXnjdicAyEv33sgt91nMTMMJpsxRMbyWhtxjMK1jv+6tIuJ3eAeQSi61B5n0PYqnZVfIyFmGCjfYG8JLZ7rzk9+ALhmZY8oLrCtZtCs9sIp7To8Mm1ydOu/Wq9PSoL6sC0MvkTPt3Nu3+f4XrMxvA/vrS3YHR3Ruii/LVonitsgB6h/yd9teXnlK1UGdgpKqFqjqslsMJKZLHPKrW16Nqc4Dhbl0UEwCH1bIVQNVClVUt1B79h745kWIrXbFiRfOSJUtYsUJvVN+5cyfvzp4dA271BUMO9NTdBqfNsghg5lvTX3300UepW7cuHo+HSZMm8cknnzT7fvXqpb5g6GMuzoKyhBCdK1euPOjee++lXbt2xGIxQaEaTCEYmjRpQtOmeq9cLBYDKFygfmPbtm3Hv1y8uMNb06fbo9FolwMHDlCmTBmqVKkCkC6EMBboIO85cOBApJTcc889LFiwgMzMTHr16oWqqnz44YeMHTuWr7/66uWI3zPEnOJWgdNTnn9hKTDugQceqAMM2bhxIx06dKB8leq/SClXAEQCPjs686o9eu7+D/RC+B2RgI+S6enl27Zty5tvvgnApk2bePjhh/n4gznnI6p3IPBZYdUCl906++7efebs+P33CYcOHXSiz2iHSym/BbBbLb8FtFDHgBaqbbdemlpKSMl8BrRD1+q6raCDptthjXtUzRqTyi0D+9/bdJnes5LGReWHzcCtUspoJKgmkeh/ATh7NnNP5eo1qgL3KYpSMUH//QwYLaU8m3CorGRE6RxTkrpLiW/Tlm2j7+3bp++xo0ebGwwGYrGYBGYDYwvaR+cjrAUrA+6iAg2A02Y5hi6HI9A15EoB+4DuvmBoSYG0b1/gi3810CSCVmd04sKKfAsHoG3Ee25OxHt+PorhbwVrg2a7U0YCvknAS5GA74lCFtx5ErKivqyOJmfa2oR8TddIwLfCbHfGop7TdikUwzUGGje61t+rVxv7Xw0p5fVX4qWO6ibUUd26qqO6ZaijuoXUUd2CiVdYHdVtozqqWzd1VDdRcBl/UEvyB7UZ/qBWtuD72f5garY/+Em2P3hzcdvzBzWrP6h19Ae1jvXq129ap04duWbNmvyufplesmTO7PfeezHbH6wopcQb0EzegHarN6AN9ga0wUMfeqgvsBZdRflggwYN5I4dO6SiKH96A5rBG9BqeQNanz92//kkIJctWybr1KkjNU2TQCjs935f3L4BMjMzU7Zo0UJWqVJFKgZDeNwzE0dk+YOiwJgvhBA57Tt0OJmcnLyjZcuWsnHjxnLKlCly7Nix0uVySWBtgfED69atK++//355//33y969e8snn3xSdunSRQJy0KBBcv78+VIIsSPsy74l7MvuNXL4sHGKouQCG4GPFEWJbdq0SbZv316i38CRUhJWvSXDqvfJsOrtHFa9oojjaQh8DGwzGo3bmzVr9tvMGW+NC6vefmF/znNhf87KsD/nu7A/5/OwP+e+sOrtv+GH1UNdLpf86quv5MGDB+Vrr70mgQ8uuWaCWpIa1GapQc1YaHtPtGvXTp4+fVredNNNErilwPde0h/UHsxRg8NVX84bwPK5c+fKvXv3yl27dsldu3bJ6tWry7dnvDUiHPAPDgf8/cMBf8UC625Xt25duW3bNrlz50554MABOXr0aFmqVOkj53N8j3oD2iPegHaH5vcOVoPa0MQy/W677Ta5Z88e+fvvv8t9+/bJAQMGSGBB4XMVCgaUUDDwUigYMBZ3fSSux9LegPa5N6DVSfxfeANaV29Am+UNaDMDqn90WPWW+Vd+k2HVa0h8p73CqtdW7LiczGHhnHPfhH3ZjYtYR62w6p1YaN8bedXgiOip3ybG9i2cHT215VRY9croqW0HYvsWjolk7ntC9eVctq7Cr4j3vDXiPf9MxHve9H/7/vX/+ut6Gq0YBEZ3T+JiPv+M/fWlxVKLVS1kAV4BXnVYLZfQZj2qNhrdvXBMARHGyzDp2cl9v1y08PO1a9fy+++/c+TIEV599VW6dLpt3dRX35iKUFzA8vx1JJ4oGw97+G/DMn7c8GDVqlUZNGgQx44d46uvFv+5e/euuvnrFkK8O3To0EdKlizJtGnTUFUVh8OR68/J3peL4SMUQ/7TYAi9se+Qy249lZGRwd69e2nSpAkHDhxgwMCB57b89vvfK1Wusj7VYT0khMhev369+/jx4yQnJ9O0aVNuvPFGhg0bhqZpKIrCSy+9dE5KWSqxH0nojbQuoHSNGjVeWLJkCfXq1cNsNvPTTz8xfvx41qxZ84uUsjVASkrKuHvvvfelHj16cOrUKRo2bMihQ4cYNGhQdiwWqxxWvVH0p0oBfHKtIpmJ8/cA8J3TdvE7i6jeCuh2wslnzp5NbtSs5QN169Y1NmrUiGbNmjFjxlvrt/780/sF1xVHlJNCqW2QsfeAs/UbN7WdPnNmz/LlyzGbzUyaNIm1a9fe6g9q29GL/znAcofVkqf6fQtSnC77smXL7pwyZQq//qpzPFJTUw/Memt6mzt63J0FpCNldYFsIGQ8/atFi+pMmDixn5SScDjsi8Vizt27d9OhQwcef+Shxx958IFjADFh6IpQ9hviuftnzZ5T5Zkpz88Ih8PY7fYTTqezwu7du0lNTZVnjxzo6XDY44lziFSMtyHlJiFj29DtELwmZ9olNwpfMHQXet/OcKfNctl1HQ74WkYxdpJCSUdPPc9x2iyX0dKLQyJddht6mu4Hs93pu8oiRL3nbpMwFpR5KMr8giZ5kYCvO/rMcb7Z7ozG9y/qmJfkmmvM9ToBexyEtFZAaCdQICIRcSmURYqMjVBq9ily21FflhFdieEtkzPtmlh+/824Hmz+TUgQAV4FXnNYLZdInHtUrQy6SN+3bkfRfjRCiIolSpQ4VqtWLU6dOkXXrl0ZM2YMdevW5cDuHW/Y0itMRL9R73M7rL8XWG5c165dX+rRoweNGzfmpZdeYueuXYe2/Lp9tMtuXSqEqF+2bNmdn332Gbfeeqv+NK6qWK1W0tJS1548fOiE2eG8D0DvKKcqUK1F0xuezfHkpNWrVze4cePG6hkZGcaJEycSCocfXvLtqj1A6VIlUm62WCwj6tSpQyQSYd++fUQikQ1Tpkxpp2kav/76K2vWrJkvpRxc+Hh3bv25U8t2ty5ITk4uEQgEWLRoERs3bmT27NmoqjpYSjk/cXwNhRAbq1SpYi9VqhQnTpzA6/UeU4Toe+70CRd6o+MnhXPy14JEwHkQ+NZps1xmOxBRveL16W8N2Lxl6xPOEu6mbdu25euvvz7+2edf1HY67JeYsAWC2pMK8UPRUDCnRp36H44fP77G2rVrGT58ONOmTaPvPX2+GThgwEGF+DZRQIIoGpfzmjdvWWnaa6/V+e233zh06BBr1qyhUcOGOxd+viBDUZS4QPoE8owi4/sE8tjBQ4fP1mvashO6QONhIcTB33//vdSQIUP4/fffW0opt0RUr8hTjG/ZbPYRBa6VGuhEgWr16tVj2bJlVK9eXZNSOmTCRjqsBWsjZVslL/wlus5dOnotMz+9JyOKuROQbI5Hlua/h+46eg44LxVjKkJUNdudPyTOs4kE8zIxfjW6ffplN59IwOdCT4NG0WWDruqUWhBR77lUCfNA2Y+iPGtOcV/QQIwEfL8h5XtJZ1Zb0XuqLFdZXQQ4A9yi1OxziXhm1JeVhG4v/oHJmXb+n9nH/1ZcDzb/RqhayIw+w5nuKIIS61G1fuiF4HFuh7WoAn5PQEWn7G7Ytm1buQcffJCuXboMb9GkUYXuvfu+me0PpqL3L3ybmmJT0WdNjwHl09PTB+zdu5e0tLS8cx7vQoPBkDFh3Nhq+/b++dTMmTPJzc1FCEGDBg34448/aNSoEff2vef4gi8W/gK8JxP21EKIZPQf0v45775d4m+PPjZk3rx5rVetWsWeP/+cn5ebVy3JlKTMeHv2kVKlStb9deu2k15vzu+OlJTo1CmTb+t/7703aZrG66+/TjwebxOPx13ois1HgPGRnMwmQKq5RKkso9G47fPPP+ePP/7gueeeA518UVoWkFxRszPvnzv/U/n4k6MPAKfV7HMlkpKSRiLlTpBfmFPcf9nNMBFwHkK/+RUpwyOEGDxo0KC5bdu2ZcaMt9Zv2vhTCQPyZ6HfjFYCq3MNZgG8lZ6Wuq9Ro0Yzhw8fzsCBA1m5ciXTpk2jTetWS8c+/fQJkEYBFQW4QZokUrmrR+/qDRs1sgOkpaVx3333cdddd9GoQf3ps9+euZiLxIdAoaZaM7D4wQcf7NKnTx86d+58UkpZVUqZGwr4G8WF0t5ms79VYHzPDh06LJ41axaVKlXi3nvvZfny5UgpBUBYC17Q3Eu22opk2PmCoXHAKafNMj//vagvywCUANIlVEIo7YWMF6Q457M8VQm7wkZbK/RZC+gz6XeSZbQkuoKBF1hrtjv/chNj1HtOSJgGohyK4VVzins76LMlw7lfnlby/GO59t66GDqjr6FSs8/ZxPHa0NXE37lWyZvr4HrN5t/98gc1kz+ovekPalWL+jzbH0zK9genZ/uDY7MvrX90VRRFoheGF6WkpMjMzExZtmxZ6XA4VlWsWFE6HA5ZpUrV5tn+oJLtD95VtVq1Lw0GQwxYASyrUKGCPH/+vBRCqAePHrfnqMHJLVq2LO1OTd1ht9vPW622bIPBkF+zkcD2+vXry+eee04C6wrsS6fatWvLTp06yerVq8t+/frJM2fOyHLlyklg6cCBA+Xdd98tu3Tt+pU3EHw+2x8cNWHS5HLJycmhDh06yHnz5sn3339fdujQQdrs9pDb7T792muvyWrVqslPP/lkdsDnme0NaI+klSx5ZP78+XLNmjWyY8eOskOHDrJRo0YyJcX5mTegpXgDmiHsy34g7MvuJKUkrHpNYdX7SFj19g6rXhH2ZYuwL7tl2JfdO+zL7hj2ZRv+yneWqDU84g1opYp431yuXLlhgwYNku+//76sULHi0hw12DNHDa7M8QceCvj97wb93h+C/pz1AW/2DkD++uuv8qabbpI1atSQP/74oxwyZIi02Wxy/tx/jEvUXyoU3M7bs2ZtQLdcfgpY8eijj8oPPvhAGgyG+WHVWyGsepuHVe9dYdXbP/919sTRQVWrVNnWq1cvuXnzZul0OuV9gwf9LTHeFFDVV9VAwFpwO+iNubsAWbNmTXny5ElZokQJCZSRUhIKBkaEgoFKVzhP07wBrXNxn4dVrzmseu8Lq16lqM8j3vPOiPd864j3fLf8V9Dnec7vV3/yqYGvvWrwZW9AK/nv+i1GcjL7hnMyl4e9WYPDvuxSsX0LW8X2LdRi+xbKf/IVje1buDm2b6GIeM9XSNRorP+u/fxveV1no/2b4bBaoqoWehp4WdVC7zsKsZTcDmsu8IRH1ZoBcz2q9o7bYf0FaPj4449z5513tsjMzGzRqlUrpk+fzunTpzOApC+//JIZM2bQqmWLMUkG8TZw8szp09U//fRTJSkp6Y5oNErz5s154oknkFIuqlapQsAb0FZ/t2ZtK5fd2gjgpptvNvyyaVP0nXfeUUwmU7Bd+w6r01LdjRNyMwVTAeFoNErPnj0pW7YsJ06cyFfanQGUve2221i8eDF169YroQhxKoZ8r9WNN/a3WCzJPXr0ICdHb3ru0aMHW7ZsSfZ4PGV69uzJSy+9RAmbaa8tpcR0XzAksrOyxh07dgyPx0P37rpazd69e8n2eKoCXZNikbujIulwXDEm5QYCryiIankYf5a6gvNDGC4augkZL2+Qsd55ql/EhOGwFMpVc/wJ5K8jDrzhC4Z+Q2cdSoAP3p9TNtliuSV/sCc7u+oDg/rXrFih/KGvly5/IxwKnZz7weyXO7Zre9IXipwXQuw4fPgwI0eOBKBmzZo88MAD7N69m0FD7u8/aMj9yehkhwdkIgJkZGS4rFbrcU3TTgE5oVCIpKQkYrGYPdnh+ghdkfs1KeUHcIHptrB79+5N//73v9OpUyeCgcDG3Xv2WCdMevaOjz6eNz7V7XaPGD4s528PDj0GMPPtd6pVqlixV4MG9bclm81ff/X1kqc8Hk9ymTJlyMnJKRnWgqUBT7LVdol9NFxo1JwDzHbaLNuKOokFKM6fFu55yYfJmeZDJ7MQCfiaA5UMsMgYC88C6sUQpXMN5hn+QMABSCHlD0nx3DnJTvdfktg3udK/iHrPbZUy9hFSdEXvJbpa6qwoJAF14wbbIHRVhTYmZ9o/ZaB3HdfTaP8xJDrBJwIZDqvlh6LGeFRNAKOAyjWrVPrM48n+oVKlShaXy8XRo0fxer2rgIeFEMc2b95MmzZt+P6bpXe3btXSFjValnW7s+vEHzdsGF2jRg2SkpI4fPgwmqbNAx6TUgYAvAFtDDDPlaBwCiF6ozcBfu92u3v369dvyPLly3nwbw8/PfLJUe85bRa/EEJBp6zeUr5cuQYnT53aASxDFy48+tJLL1UcP348J06fmeV0Ovc4rJZ3AapWqzbKVaJEp2NHj57yZGfnF0w9pUuXfrZv376s+2HNth07dzXPP34hxK1At0KnJc/lcs07e+zQAOBdFEMWMBTYYbY7r+quGfF7BHo6pjR6AP3pShptBZG4qT4MLHLaLFlRX1aSLbX02WGPPeZu2bIl1apV4/PPP+eLL77g7Nmz+2bNmlVrxYoVZGVnj1695gefQNqG3n9f08xz5zsdOXL44PHjJ2qsXLkyfdq0aezZvdtzNjPT/ccff3DTTTfx3LMTa40c9dR+IYQihIi98cYb/Pzzz5QsWZJx48YxaNAgNmzY8EmzZs0Gjh07lj59+myWUrbKP29NmjRZvXHjRt5888180zSWLl3KkSNHMkaNGnVzbm4uM2fOnCKlnJxY5q3BgwePMJvN5OTk0K5dO1q2bEnbtm3Dh/btecztTu0GcmGhruZoHLKjJD0lkGNS7LYiC/wJWaNBwGcFKMnFjWuPThDZZrY7jxY3VlVVRQpxH4g7QSYBcUM8lmGUufuELlx5oKDUzJUQ9Z4ziEj2Owbfrv5cgwX7FXASqKTU7PP/hQrz/zSuB5v/MFQt9BCQ67BaPi5ujEfV0oBXotHoujJpJX5BL8gek1JmCSGMSUlJ2RUrVkw5dOjQJCnl1Ijf0xVwmFPcnwshTI8Oe+z2Zi1atGnRoqWvUqWK0xzWi3pVCb2vZ4CJhV0phRCtgWcGDejveO+92XOiGIPodtl5wI9Om+VkYbkaIcTDQK8XXnr57OMjRjwPtCl8bNmq1h49h78sLcWmAG/VqVWzzanTZ+7y+f1F+sPnI+L3pKIH6WdQDO3QGzM/KmyZcC2I+D3p6P0pEvjOnHLlJ+SoL6u8hKZRxXxHUjx3g0Lca00tPXfw4MElE1LvACxfvpxz586xefNm7r77bj74xz92tG3V8g1FsAP4I1cYSwPDHDZr1U6dOvXfuXMnp0+f7lWmTJnFy5cvp2XLluc8madnmE2m1Hg8TkpaqZF9+vRRateujc/n49tvv2Xfvn1fAeuGDBkyq2bNmkyYMOFjKeX9AEKI9pUrV153yy23XLL/q1ev5vjx494FCxa43nnnHTIyMvpJKb9ILDOyRo0a0++8806cTicHDx7kyy+/JBwOdwsFA7WB+clW2yWafP5AsIxEfJhE3jQD0sHlN2qJPjNsC6wCTqDXls6Z7c6CmmNlgVbo9Y/118IsKwxfMJQEDETKG0A6BdJmjOf+YJSxM+gNvVtNzjRvccvH9y/6Bp09968gAHRQavYpcnZ3HVfG9WDzPwBVC3UCmgMvFQwEheFRtZ5Ad+AZt+Oi8nDCnKkS8KtMsIYifk9PQJhT3IsLLF9eCP5mEKwXQuRrssW9Ae0GoI7Lbr3MMwcgonoHoBjamG2OYXCBPXQTUE5CkqTmAAAgAElEQVSRsRviwjAXvTn0wsWiaqFZ6HWGEwVVrvORrWp2dPbcLkcs0AxYanKlX7GYGvF76gP3IpR3EGIQum3v71da5lqQMIfrhN4QuMqc4g4DRH1ZyUBrLgosngS2h4w2gGHApy67tWxiDAAlS5a0jB07tuX48eP79+/fXyxatGjdqczzY4A7XHbr8/njAlronp8yMuQdnTvZ0BlNsk6dOt+5XC42bdo0XEr5dv5Yq9Wa/tSoJ78+eOigOdmcrLVp3eps/359T97Tf2Bbo8ncdMOGDeTk5NSWUu4DSMw8u6DP3griNPDGAw88UOujjz7S0PW38hWFBdAmcSwO9MCwLBQMVAdKJVttiwuuyBcM1URXTx5SnKNnohFyELonT1Jif0qjN3ga0RukU9Cp3gcTi8XRZ5z5pAfPX2n4TDAnHwEqIWWSIG5NikXXG4h70R+WtpucaacA4vsXmdCJB8Wm0KZ//A0fLlqLEIL6NSvw0UvDSDZfJpeYC7yq1OzzzD+7v9dxPdj8j0HVQvXR00HPOKyWYj1IEpI3L6P/OF64koVwxO/pCwTNKe5vCiyfhK7U/F2SQVQnUZOIxWUz4GuX3XrZzCKieruB6ISiPGW2OS6h9IYDvjsjwnQCvSlSACcFbBKCF9AVCmZfSZE44MsZnieM5pgwfJzqsGZf4VhuBRqgGM6h37jm/yuMpCK34cs2A0NBlgd+FfoT8aZELeESJKSBhgHzk8lzSOgYQ2kOxCW87bDbG6JLxrwtpTyVsJlu6LJbZ+SvI6CFpgEv2q2WHCGEBZ01qABvyIuqCgCE/Z57NZFc2e2wvpT/XorDUTk1NXX8wP79bM+MH1eQvSjQhScXA/sKKh8MffDBRw8dPNBzw4YfR0spryh9E9aCduDpZKttUqFjvxEYAjxSnABsJOBT0APNV2a7M1DgfTe6aoIANprtzsxCyxm4aAhYGnBTvCZhBD0gnUE3BCz2d+MLhtLQg08qUioC6VbieXuSZK5BCR5XDYFDz1GMUeKpTA9t753IrhVvYkk20XfkG9zRrgn39Wpf1PCDSs0+NYr64DqujOsEgf8AEjeWFugWryZgkZRyl6qFXkYnDrzrsF5scEsUfAdxsYk0u179Bq4FC79cQPnyb7sd1owitmEFzK1aNB/i8/sf+nPvvjXAfCml16Nq84GeuTG5y+2w7le1kFERGOKS5/1B7X0hxM+FZlgrQJYGxgGXKNwKwGmz7AB2APiCoQrA23HJAXQKtgOdrnwZot5zLUzwR0Qx/wTckq1qLmB1qsN6Sboj4vcMAlESRTEBP5ntzsuK1H8VUV+WE/1p3py4o62ViGMI0Vnq1/9lqbVIUBXJ0ECCPxflH1GUoyC2I8Tf84VUE7OMC4rCLrt1vTegOb0B7T6X3fpx4u2X0c/pWKlTuYuUvIf8bkqpFHzPr6pH0WtIlyGiekt5vd5+36xc9eyJEycc1atVU7vfdeeZWW++XldBZgHlI6r3BOArytVUCFFh9jvvPLN5y5bpH/3johi0LxjqDrRy2iwPFxhrQLcMdwN/hFVvAL2RdrHZ7gwkNMiaAJXRZzHLintQSLyfmXjtKO58wIXGznxDwAYJQ8AiA1Oy/nC2gkQaLyxMImYw9Y5hapGkmGoZrmKUmBeLEwpHSTIa0MJRyqaXKG5otfj+RUKp2ef6U/o/ieszm38zhI79rVq1qt6kSROysrL44osvvpRS9oELxIFR6E1w/3BYLVII0b569errevfufWE927ZtY82aNc9n+4Pn0RsXJ7gd1qwC25ndsWPHhzt16oTFYmHLli0sWLAgOxaLNZFSHgfw6LWTkNth3QzgDWi1gZsNitjDRdOrTQ6rJZZIpd1otjkeK3g8RVkMqFpoJvCMlPSVeiOfAz0fn+G0WU4ARL3nqgBNTK70C1Lr2apmQO+vsAPfpTqsasTvGYNQ0hFiE/D1v6qhFfVlKeg3vvKJt3zALyZnWqjw2IjfY0PX2wohDD+gKDcB5SQY8lBsEhGUiGNSZzH9w2mzXKYhVhjegDYYUF1269cAAS3UBUi2Wy2Lr7RcxO8plYvSPypMu9wO6+qrbUcIcYuiKGuaNWtGpUqV2Lt3L7t27dq5ft265S2bNFqIzmBrhv7d5N+gJcCGjIwSPfv0u79x48Zs3749FAqFykgpfb5gaChQwmmzFBRPHSWEeL1atWq43W62bNnyW1j1vgl8w8V6jRH4zWx3Hrnafv8nkAh2TikpE4cqIMpKPbgYJBiTfPtvUBTRXwSOCqUYh+UZc1fwzPQFWMwmbmvTiE9eH1HkOPQUnUup2edqDqnXUQjXZzb/fgghRLXRo0cTCAQoXbo0X3zxxYXpe2JGMU3VQm0T/z4PpNSpU4fbbruNDz/8ECCfPhx2O6wzPKpmRrcxsKAHHR/gcLvd/Pjjj4TDYcaMGUPFihVTX3zxxaeAEQBuh3W9R9UaeVTtDrfDutJlt+71BrS2sbg877Jb9ycCX2tVCxkUodRW4EgkqNYy2xxXM7eSQCchWJKSkMJPFHBv9gVDHYjHTCaUStEk26SCWe9UhzUGrMpWNSNSdlb9vseThLJPCPGy2e68rIP/WhH1ZZVGr4kZ0GsC203OtKsXcQ1JRiCOlOWR8Zfj8diRPMWkIkQesNBx8dgygEd9wdBHTpvlirIkLrt1njegPe4NaB1ddutau9WyIqCFXghooY12q6VYUUdzijsTvyczqh/HVYMNcNeUKVOoUaMGf/75J2PHjuWbb75pcP/99+ceOnx4Avqs4TIfIiGEwWAw7Jo+fTo9e/akSZMmljatW/34xIgR9s6db8/scPNNP0fUyGvogURUKF9+wJz338fpdFKzZk3KlytXZ/qMmbV+2bzlpnA47I9Gc1/6Yd26azL4EkK0RU/HHpIJB85ixlVAr/cpFSpWdDZo0LBq4xuanBr99Ng/uUhTz58FxiFJXPwbDb1RNBeIgIwazM5+cUtpoQBK4DCFkeMLsOyHrRz64W1cDiv3jHyDT5b+yMDubYvavTz0htDrweafxPVg82+GlDIuhHimd+/e3du3b99i3LhxRY5zWC0/qlpoN/Bsz169Tufl5nLgwAE+++xCDX8DugkVboc1AozxqJoVPegY6jdo+NqXX37pR09lVXE4HKUHDBhA9WpVbyq4HbfDusOjah6PqvVOSOV8ALzgDWgTXXarbrAFhNVIVgxDKynEZFULvQNkFlX4V7VQC3RF5ZIFPVcSReS1ie7tEWGj/UtgYMKH5xT6rCcXwC7DdhDDpBBLgiSdRIpWAVVbmeqwXjb7KA5RX1YpdIoz6KmTlSZnWrHac/mIBNWK6OQHI+CLw/o8JakVkCtkPDspFk4Wesd4Vn492Wmz5PqCoXeBYb5g6AOnrfiaG4DLbp3pDWgTvAHN77Jbt6Gn054LaKGrWUlLQHpUTXE7rFej1+6cPHkysVhsHfDH7NmzR+7evZvnn3++1lWWG96mTZvawWCQqlWr0qVLF5o3b97Q6/Uy9KGHq54+ffpbKeUL+YNPnDwZ7tKly2ibzWbasWMHebGY5asly55p1KgRe/bsoVrlSq0jqncLF5lpFPobgCXLlpdKTU0d0K9fPxYuXEjG2jUftmjezJcYbIojKucv06pVy+Zly5ZLL1PmotXQjOlvyKED+r5TrlzZSOFtSP0hwwrCCti42DsFIGSSzYIxqcBbl2LNzzupXD6dkm79mbDn7S3ZtH1/ccHGyPVA85dwPdj8ByClfFHoaaEr9oU4rJZsVQuNqlq12sz9+/bStWtX9uzZQyAQYPjw4e22bNnyJLqGEwBuh1UDRnlUzb5h46YXe/fodmOKw96wRYsWtG7dmjFjxlDCVWJLxO8ZZU5xv1FguRMeVcvzqNo9bod1oTegzUEvps7KH5PscO2OqN7GCMN5q9WSoWqhsqoWullBqRvVQj5gm8NqCaGTDyag5+yLwlABHzntVpWLdZ7yQG9fMGQ0yLyyRiHuFIi/JTtcfyYD2frMrXO23ne0MlUPrpch6ssyo/dp2NBz/ktNzrQr3pQT/i+N0T1gQGdhLYoKYyl0Da67gNUOa75UjS2fft074vfo7o8pblkg4PzNFwwtctqKn6Uk8CJ6UA+47Na9AS20BBiILsdfHOJCykVSiAFXGYeU8kMhxBdSyoAQ4vFq1apx4sQJTCZTsTMvIUQ1i8UyferUqXTp0oV69erRqVMnvv/+eypXrszmzZtp3Ljx80KI+VLK45GAr35Y9W47cPDgkNY3t19w8uRJqlatyoQJE7Db7fz22288/fTTv8z79LMxV9rXhKzOiblz53LHHXewadMmfvl915F6zW/MT7upwKpEwzO//LL5p4yMjPTVq1df6CESQsgsNfhTmaTkwjd6ga6jls9uy7IkJ1/y0JG3f82ouL3Sy0rgSJFeVRXLprF5xwG0UARLsom1m3bSrH614g5HQResvY5/EteDzf9lOKwW+fpr0963Wq2PVqxYUTEYDFqHDh2sCxcupEqVKk8LIV6UhQprboc1AIzYsmXz23Xr1Gm4d+9e2rRpQ/PmzZk9e7YJ+C7i9zwHPJuvfOt2WM94VG2DR9X6AgsVgd8b0Bq57NbCRdqsSFAt7bA5TgOnIwGfM6rPfpontN/KoweaywJp1HuuB7DO5Eq/pLaRUFVeEFFzxkjEjRFhno4QzcPBUGPgp1SH9QSwNFtPE3bJVrU8YFWqw5ob9WXlF58rod9U1l9NYTcSVE3otYSy6I+zvwPzo8LoQq8Z9UenCX9SFBXdnOLOBhYm+nT6RPyeTOBHZ4o76guG3gYG+4KhLU6b5c/i9sFlt0pvQJsETPMGtDdcduuGgBaaFNBCFe2FhFoLYKWVSIcgyeWL+fwSJAJNv1KlSs2YM2cODz30EGlpqbOKGiuEECaTacHUqVOZPn06wWAwKzc3N+2pp54iGAwuAFrcfvvt1Zo3b071KpX/Fgn4fgN2me3OxYpQBgLUrl2b/fv3R3v06HFyxIgRVcuXv/puelQtqXWbNvNLpqaWPHPmDIcP62ksz/nMs5YkJf97FEDnUFjX3ExLS3MDfPrppxw6dMFj8P4WzZt/fi3nBUDVQjXRRURJslfONAUOhynGGLFloxrc3akVzXqOxWg00LhOZR7qe2txq957nRzw13CdIPAfghDilvbt268ZN24cnTt3Xo1eiHYAfdBvmgullOHEWCtwN7DswOHDt9esVu2L7OxsUblyZfx+fyv0PP4BKeV3BdZfBb3h0VaiRIlb0tLSRi5fvpzatWsfklJWj/g9pUgwocwp7gvSGh5VS0f3qf9C0enLU1x2fSYRUb1tAD+KYaDZ5hgLlxIEVC1kR2+49KBLruTjD3NUrQWYTa70yzzmIwGfDSnfQ8oD5pQSU/LfT9R5bkIvZoOentuRF5dWRcb7GohVNcvc3wVsMznTjl7pfEeCqitxXPbE+c0w2xynEmrct6MzqbzA9w6r5Z9qEI34PWXQZ1R/mFPcuxP7fheQ47RZLjvegkg01b4GTDYqIogu1PpEcVbSEb9nQFAklwLedV8lrSiE6JOWlrbwu+++Y+LEiezft/fHg4cOd0B/+q4DnJVSngdITk6uUKJEieO//fYbM2fOBGDUqFHMnTuXqVOnYjQa2b59Oy1btiQrK6t2NBrdlyi891m8ZOmOvz362N6jR4+SlpbmAZ4bMWLE9PLly/P000+/poVCE9Bv7KWB9Fg8npYXpxHAd6tWlnjkoQfvX7p0KZ07d2bdunUMGzYMoSgdMjIyNliSk4tiym3KyMho5XK5MBqNLF26lAkTJnhisVjt/OMpDFULVUK/jvLTdwfzZ6tazimXOXvbSRGP2q50Pq8BUeB5pWafqf/iev4rcX1m8x+AEOJdRVEeMRgMCCFQFOU2KWVASrm4bdu2A1RVZfv27Sb0+gnA5MqVK485fvw4NapWpXv37ng8HiKRiAbMHDhwYPOVK1cihKgopcxXOP6mWrVqdQ8dOkROTg4DBw7kwIED1KxVy+pRtecQyVNsMjwOeCXi97xgTnFnAbgd1nMeVVsD3CslM4XgcRKUXLPDtTGiegcA9tjr/RWgHs171ImkV7pd+Xnh8/R7/kF02ZrBDqvlFQBVCwkRz2uXpyS1ixmTf4hooZvQba+PA0RUbwuQzyDlnIL9QHChzrMOdPVlIeNNDfG8aUnIJIk4GBHG13NFUkegNqp2PLVQHSNRf7kZPWfvBVabbQ41QXxoH9VCt6K7oa5xWC3F9vhcDeYU9xlgQcTvaRzxe/oBy50p7uW+YOhGXzDUw2mzLCluWZfdGvYGtPHAy3lxOc6oiHnoKtPvXWGTs9Epz9OLGyCEaJ+amrpw1apVPPfcc6xYsQK3210Gnbpeu0aNGvecPn06LoSoIKU8/dOPGzq373gLTz755IV1RKNRfvnlF6LRKEuXLuWZZ57hzJkz2VLKfeGgagLx0PCRTypLli5dVGC7LpvNdiFtdsMNN1QDOkZj8RLxOKlSp8GfBeanptgAdn/44YdMnjyZUCh0Ht22gF+3bZtstVhuLdxvlMCxHj16tMrOzsZms7F48WKGDh3qnjNnzlD01gEF/QEsiYvB5YTDemngD2ihikA3zO4QyLXoKdN/Bbno1/91/AVcDzb/Gdy+fPlyypUrB8Bvv/3GmDFjLKtXr+41ZMgQNmzYkB9s8pHSq1cvHnzwQaSUnDlzhrvvvpsaNWrM2bNnz4gXXniBtWvXwqVpgAovvPACDRo0QErJvn37GDZsGCdOnHgUvVbyTlAkn0iSeU+ZyJsa8XvmmVPcewHcDmuWR9VWSbhdwFFvQLvRZbf+DIDnjEnZvrI8+k1DirDfIMvVslCu9qPmhZNPS4c7EL39sQtBwxxVBVDf5Eq/MGNRtVBlNai1M8i83iAaxIXhZWkwfmcu4kQl0mTNLXp6LgxMMjnTNF8wVN6gzwaTpJTJMcnAbDV42ibiOUJQDz09dgJYaLY5clUtJIBmUS1UF52GvaE4TbqCEEK8D9yPHrDy8ZGUcmjhseYU9+8Rv2cXcGfE7/E4U9w/+oKhmr5g6AHgY6et6NmKy25VvQFtMvBSXlyONiqiY0AL1bQXQcAAIjYZjgVF8mXt64XQ/7nnnqNKlSqMGTOGMWPGANRo167dpFgsduirr75iyJAhyvbt28uHtaCxfr16rol/H/fYmXPnW1WqUrX5+LFj03v06OH+5ptvWLZsGYsWLWLPnj0YjUbz6dOnB8yd+3G/rVu3bfvhhx9aPPXUUw1uu+02nE4nGRkZytixY8vl74QpOdkcyo2nLln81Ymh9w02oAeaHxKpX7fL5arTu3dvUlJSGDZsWMkaNWrw6quvMnz48HZ79+69TwiRC2yRUhZMST6fnZ39IbAmGAyOX7hw4QstWrSgUuXKN6la6Gb073ebw2opUgwzoIWao8+YjwGz7VZLXm5yGWHQjndEr/f9VZzhcmv067hGXE+j/QcghHgc3ZSrIDKBDitXrjR2796daDRaUkqZlRhfHz290gGdArUNeAfYWLly5X0TJ07klVdfPbntt+0PoD+lSyFED3RPjbbolM8fgWlSyhX5G/SoWi102fqDVhmWAjaaU9wbC3xeFmiuCJoCrzjee/BO4CP0G68ZII4C9W6G3RkkehQC6EKInQyjP8uMes89CHxqcqVfSPlEAr7KSDkeGfcB46JGixOoy8Wn0FhSrnZKQTZL/H+ryZlWpCdNJKia4tA5htJBSlx5UiTF4XvgC5NBxNAbNqskhv/qsFp2X/nbuRRCCO+JEyecPp8uIhAIBGjVqpVPSum60nIRv6cC+qxqfdhgiaITJz5w2izFpr68Aa0i8KQiGKcI8Tp6Ou2SJ/uI32MG7gyK5KrA68Wx0oQQQ61W65ykpKRLGkFjsdgpKWW57777jltvvTVw7OiRWQ6Hoy3wfUwqp2PQN0lhRKrbPVlK2WfJkiV89913TJ9+YRIVvbF1q5V+NdDdYrGwdevWb61Wa9ekpCSklGiaRl5eHiNGjCCRRgO9JnaiU6dOdyV04JpJKX8VQiQZDIbDVatWvVDc+fLLL5k8eTKrVq0iEokwcOBA5s2blyWlLAnQuHFjy969e7PtdrslEAhkSilLLVq0iNWrVzNr1qxnCjLlCiKgz2bvRL8WtgI/260WGVG9ZmAIMr4t6ewPs9F7j4pTLLgSgsA9Ss0+K6468jqKxPVg8z8IIcQ89OL6U1LKN69hfAl0SfZyBoOhY45fLQXcCnzhsFo2Xet2PapWHxihyFg5E7mLrSnuDwt8VgcYaVDPd7IufSVd0bzXYiqVC3hjXYaPpUz1n02u9At9OZGArysy3hcpV5hT3JcUdBNaZB3jYIspppS4YtyPEPkXYB7602pegfqLLbGtH806YQF/MOSKSzlS6sKOCvClIsQHxcmqCCFaos9caudvA10u5lzi8+Dp06etZcuWLbjYK1LKojnrhRDxezoAKVHFtDouDEOBL5w2y2XGePnwBrQ6wCCD4DMhxG12q+Wy6yDi9wwMiuStAm5MTlI2o9dCCn4vAuDokSPm3Ly8cgaDwabIGH/u3b/G7Uqp1q3n3fNSUlKM1atVfXHVihVHEOLniFTOAO8DfZ02S0wIcWubNm1Wz5s3D027WMIaP34833zzzYkpU6ZUyMvLY+rUqS8DL3y9/NsbDEZjo769eszcsmULSUlJCCGIRqN069aNI0eORDdv3mwaPnw4W7du7SClXJ84v1YuNtguWrx4ccNJkyaxa9eue0uUKLHg4MGDpKWlRX2BYEdAbNu61drtzq7fbdq0CYPBgMFgYM2aNTzxxBNabm5uTSnlqYLnKqCF8uugduBbu9VygVEQUb03obuDzjU7XPH4/kUN0X9P12qcdmFVQAZw+3VywF/H9WDzvwyJfPU96DnrNcB3jmKKzYXhUTWXkPF3BLJ6HOVZd4ptJYDv1NGfpDO9jfHAJixrP7zaavIRiwvlhCLj9Q2jPwtGAj4zUo5ExhsAL+cX0gGivqx09BlYBFhTVDd/KKhWk4gBQJKEQBzlV4QIAXvRZ1nt0NOIAWCdw2rJ8QVDIhaXd6PPMCKK4AchxDqn7WJ6RQhx4sUXXyzfsmVL8vLy+Pbbb5k5c+ZxKWUjKaVXCCEzMzN55ZVX8Pl8fPXVV3i93pFSyhmF97E4RPweB9BVwp8Rg+UG4Ben7VIfowvHGQ5bc2PxLkBrgyLsAnYJIY4WHCNyI+2l0bQuGpNdTEblNSDTknwZ5ZdIwGfPE8a/G+K52wQ0R4hVwOZkh6sEkOb1ZEfMZnOHiFTmAZ8C/fLPjRDCCSwHKgLJRqMxGZB5eXmHgNSvv/668kMPPcSU518c06//gExgp9th/V0I8RG6CGgMPZVpBPZZLJa2S5YsoXPnzmellBWllJeId6paqErXOzo/unXLlv42m+10y1atvxXIyQ0aNODll1+eI6UsKI8zFV1HML/R5htgnJRyN0BAT5k2Qe+zCgOL7FbLBQmkiOpNR6/PbDU7XJekveL7Fw1Bzxpca8DJRU8NNlJq9rmm5tXrKBrXg83/UiRqFB3R6xqHgfkO65W72/MR9nvScjF8nIvxPNFQtm3x1Idzm3ezm3/5CkUrVqW9yFUBH+c9/O7rSPkkMh4GxplT3LkAUV9WXfT02Tkgw+RMu3CxJfpfbkCXgpHAcWCj2ebISxxb/cTn5dD7Grajz0xAl/rZV1AANFvVUoC7BTQUguOKEMeAtS67NaN9+/b19+zZg81m45NPPuGtt95i4cKFD0kpPxBCnJ80aVLakSNHqFevHv369aNp06ZkZ2fXkVIWGTAKIxQOG4F0Yrk3AzfkYRRCkG1QRFHUaA04G82Lt5dwxKiIO4DR9gL1h4jfUxGoFhTJLd0O68sX3te1wlqi2zcABHJFUtWkeHQrkGN2uI5e+GK0oAF4PirFsxLxOTDQaSuahRcJ+O4EDpvtzj0ABoNhlsFgeKx2nbob1v/08x3XwIozKoqySwhRKyUlpd+xk6dOcGmqSgBHHVZLQSXzpkaj8Yd4PK7E4/G6UsqTRaxXFKT9B7RQafQgYgF+JZEqu3AcqldBT2cGzA7X0uL2N75/0SB0EoaFK6fUQuhq1bfnW0Jfx1/H9WDz/wFULVQdXcgzDsx1WC1Hr7ZMwmRsgvw/7Z15eBRF+vg/b8/kmEkmk4RDzgQQ5FhEEATxwIsVgWVBxUVAdJX1QFwXBVlWZb2+uK6KqKi4P5dVUFEQcEEFUTxRQAFFlksOFYEQkJCEJJNkku76/VE9IeQiSMJZn+eZp6arq7ura6br7ap6j09ePbO4fvOrlHi8UT+sIGpXRWvWB9j8Sw6Z+QfWZQO+mIJWo1+YS4z/g5iE5Gnugn8PtNbRhuhg3XWue/uUOnXqNJ43d/ZpXTp3jscNSw2sj4kLqBytOdQd7bhUAeuA1RV5lM4J5ddHT4+UQymVXeTgA1oJtHh/wXuF/5jwSJ8tW7b4C/Lzu06ePJkNGzbwwgsv3K2UmiQit6F9z60CRr388stnffnll0ydOnVEXig0kwPeiQOUN0GPWLEXowVqOnbxXssOX1Ek3hTbivo5GOertNPLyg09JPCZx5Ju8X7fP0rvK9y/b2hIooNROEVRova41ykAvo6JD+4DyA3lB4FLouxCYgKJB2nEFYTyRirFwjDWP9Hem8tp47mem68FPouJD+503SINBuzx946b8/zkZysUTjmh/Hpox5wHrldQYOXm5krdunVDwDfVGW2LiBdQkTAIFZGrVdf7oF86dgPvxlegul6Yk3Uxer3mzZhA4iGNLp1Nb3VGawS2Qf/nSivf5KKnaJ8FHrbOuMYYcdYARticROTozmcY2t7ge2BOwO+rNFCVPXGIHz1KiFVAUavzKD6tBVYom5jVCxDn4D5g4YY0hr+zgdTU1JK87du3M7pb4/fvnPb+lWiDyRj0KEUvXL8AACAASURBVGY3QJMmTW7YvXv3i/Xq1Ytt0qQJq1ev3lNUVNR4f14oCa0xVAdt3W8B20V33GXfiqFiXyPl8pR+Wz0NsFAqxlY0bN/mjIvHjRsX17ZtWwoKChg4cCAPPfTQH3tdcUWoT+/ef00IBve2atVq82efftpv8uTJqZ9//jnp6ekvvDV79hu4lum+2NhqjRojFO7f19gWz+Bi8Sol1qSKNNWyckNRwCSPsNFCbfKqYkVkesexeyjxvB7Ce3lyIO6xsscC5IbyBwCfRNmFl5QWNgWhvA5Ax0Jl9QAeDsaVNyItzM32oQXN7DwVpdDrHgXArCiPKPSINKIkUbady40saxJ3muwc9CgujF6LKTfyASjMyWqFfrlZEhNIrPpNqQzOprfEvcYV6GnaWLSG40LgXeuMayq06TH8Oozq80mEK1ieA8gJ5bcBRroC6CtgQcDvKyhzyGXohzlWgOjNS4nevBQ7LomCc68hKzefO+99gPXb0hARerdpyMCBAxk+fDjffacdD8yaNQtlZZ6Pci5HrA+jg3XzC/NymhXm5QwBPB6P59YpU6bEdurUiQ4dOpCcnFx/09YfZqC9Mf8k2iX988DW+CoCy1WFO41VjwOjEPctVSJ/8PpPPfXUOY0aNeLxxx+nb9++pO1Kv+/7TZsz69Wr13no0KFs3Lix14MPPsgFF1zAXXfdRe8+fWcWO+rLX9uhxiQk7wSeDO3P6mdb3hdzcnPvCsTH54Fr5AqdfJDsIMvCyjMI5CIba4Q/PrAXoHD/vu9F2UEkqqrrJ0TZhQ3RLxYAFITyooFBhUoKgNcigsadmmwCpIhyEi2sbsXi+dxWjLOEAkv4RLSyxrnuqdYH/L61v+befy25ofzG6GiaMWiNsucq8yVXmJPlQ4/CtsUEEqu90Fgad7F/ufsx1DJmZHOS43YyXdFTEVFowbM44Pfl2ROHTEOPhCqct/7jG8voft75DBsymOLMPfzr+WfZnnoeSUlJTJigNVB/164xLw4+P1T3lonziQt+ZCN1HKymCvYh0uTv4+/v8MykSZ2VUuzdu5dmzZqRm5uboJSq0l1/fkGBoMNjRwRIApV5UtSL1ZHoj3t8sbElvtVER/wMo99Y7xw2bNigSy+9lAmPPvpZ127d75739pxVffv2JSUlhbS0NObPn89VV18997kXpmxyrw967v4ztGAEKvFTfzBFouw8r7KTUappMZ6bPNgfWSLr0Gq0q2PigxkAWbmhDsC1XkvC8X7fg5ETRLwJeCxesUQibRCxB7KA31pOUb5jRX1OSaYzyFYSVkixJbxTqj4KSItywlEC7fOUF9dx5RvVcPpZa+SG8n1oAdMQbcfybnz5l6ISCnOyEoCr0MomM0sHjjMc3xhhcwpRyvK6JxAXO33MLVZeZp2Kyu4vKOLsiQvZfG8/RAQ7oT7PfV/A1nwPI0aMYNu2bXz99ddMnDiR958cZ58z7C8eG7bb4p2LXotJB74K+H1Z7prN3r179yY3a9aMV155pX2fvn0D6IiNkbg6FZHFAQeLuRW5NqkKEWmQmJi4q0uXLnzzzTfUr1+f559/npkzZ/LSS//++y/ZOZ9+8tHiNv/+14spHy3+MDcYDGY+98KLxb379i1GC7AvgnG+bbnaTc8f3Poq9CL/9Hi/L8d16VIP7R4mIpxQ4HUQjyOeLCVWvlIolP1HQYURzxulVL4BlOOoi4COliVL0W/1eOyiy53dP+y00jddHbV5aWspzG0k+nnd6SQ1XmI3bjddOl7x+5hA4l8ACkJ55xYrLrKxgsE4371l26MwN7trWFmdi/CEgXeSA/5KVbRrE3ea7Fy0zUsBepqsyhAThTlZdYDfo512zqkoIJzh+MYIm1MYe+KQIiqZSl29M5PbZn9Nu9OCrEnL5OwmyZzTNJmn1+bg9XopLCxk3Lhx+Hw+pvx9NB/8d9Zyp0XntZZlvV3ROYMJCa/t2rUr0KxZM+bNn9+9e/fuPwAZvtjYGg39XBoRqZeQkLDniSeeoG3btmRlZfHuu+/y0ksv7VBKdYoY1WbkhOqhOz8PuvNb4rWkEDgfpZoJBC2cbC/2PgEc8DnivZgDMe13irKf9ccnHLLz3p+bd7mlnH5eVfTP2ITkg9YhsnJDYwUu8FgyzDftjiLHnzjVCmX1Ry9ge8qcykaP2OYCtxbd8KxyFA8VYTUIxvmGlS5YmJstxUr+WITV1MF6LzngX3WYTVklIhKLDnXRHq0qPFcpVW6Ny3Uf09u27ej77v3b/heef76+UioAbADmKKXKeQQozMlqAPRG++Obb4TMiYsRNqco9sQhUeipiAqn0FZuz+D8yR/y+ciedEuty13/XYUvykPLugHOapxEbmExA177mp9//pmmjRry49pv92zfX1A/KSl5QrPUlPvLnk9EMiIjm+pMo9UUItIHGAScjl4n+hp4zg1tnOx+6uCOShxFdBFWO4XEgFJe1EaPqI1FeP0O0gw9StsFfBaxWcnV2nGD0WsNFjAv3l+5R+jsvPxGlrLHeZ2ixb6EpBJfW1m5oYbAaqso/yPvvu2/i1o+02vt3+Or7DwuBU5c0o7iK8cXhC3vLrD6RuIGAeTnZCcVYf3DxlqSFIh7/bAarxqISILX69115pln+jt06MCmTZtYtmzZeKXU/7maZBdyQHNwB7AoEOd/vFWrVnf26dOHxMREli5dyuLFizcqpS5QSmUAFOZkpaJV+/fEBBLfq+l6G44+RkHg1KXKt4wmQT9Ngn66pdYF4KoOTRn+5nK2Z+fTs1UD8ouKad++Pbt376ZOrIfuPS72eeITycjIGPO/DRs7x8TEFHlQS1549undTzw16WZKTTH5/f5Fl1x80cT3352/DK19ZleQ2jHxQcdVz41xP7EVfC+dF3HdUqLBVpCTBTC7zO2dhx4VZKDfmNcA+2Pigw6AD+aADmNdDN1QJd6EV9SJ923MzstvBFyVnZcfjV5/+TgY53sGSqaIrnY1xRTwZnwZVfRgnC8tOy//7iJL/uLkZN/rVfbkmITknMR4/67wm+ObF3W9Zo/TsHVcUZeriPn4xap+JoBY5+x+p4vHK9G2/YMvEFciaLJzcoeC5zwbuSs5EFdb6rspzZs39z/yyCP4fD5Wr14NIj1yQ/m3444SgcVlFvovGDVqFOvXr2fDhg1MmDCBNm3atJk8efK9hTlZn6O14HbGBBJfrqU6G44BRticonhGzyi2Jw4pppIYHw0SfDRJ9PP9nv20rp/Ax5t3U+QoXpn+KrGxsRQXF9OtWzduvfVWru2UyuOfbAjk5f1I/fr1Y/bu2bMgNTU11nbotPmn7T0GDrym8eDBgwkGgyxcuJAPP/yw+8yZM0fbWI9aONmiF9w96P9jSequhyj0CKzATSPf95fNj4kP1uiUnBvGeimAG9itTUZOaIC7exvwtdcSH3Bpdl5+IlpIfhmM880GyNVrZENyQ/nXuvumR0JDB+N8xcDE7NxQT4V1v9q/b6bAam9m2jOy7A2rqMtVRK2YU616WivniYPYnjULCxnyD/bl5EV7UBMF9XVCIDCy5lqkPMu++nrHkGuv/XLIkCFthg0bVqdFixasXLFiQ7zf90IVh701cuRIPzAdqJuZmXn3Pffcw9y5c64AHokJJB6WZbHhxMAIm1ObfWiblAp5ZkBnrp+xjLBt0zw5njsvOIMbbriB1q1bIyJs2bKFP3VJoXeHpoXv7bFi5s6di1Lq2/bt2k6OnOM//37pGr/fP2vOnAMdZzgcpmOnTv9zLK/P0YZ4pR1Cq1LpXrRywG43zfi16tFHSp2AX6HXFjYAZOSEGgK/K3aUhTYC/HDEzTdJq1ZnDI6Li0u97vobfgoGg2uA14NxPpUbyvcCN+aG8uuiR1VTAnF+Byj+Tfv2O++55557rzz3zDVeGGrt3+M71IhmW0YuP2fmcnrdBBoB1pJpHuB3ORtXjPQ2btPHi3OzPxBMc32Tnc3B06UbK4sLcyhcAdoJrWhitW/ffv+atWsHBeL8VwKTAYqKiqr8jZRSjxXmZD2RkZFx7TnnXXhDz549WbFiBTt3pi01gubkxQibU5t30U4qrYp2dmycxFejeh2UN+L8M9i8NwdHKU4f3Ib4mCiW/7SX9PR0Ro0axai77p7vTqEAZOfkhb5s2rhRQkZGRolAeXjCP4Ij/3znjWFbnedm2cAC4NOIGq7bqdXhgOrzWUBdN78sEf9VpT85ldlo1AR1Av5dwDyAjJxQfPcuZ8/+8Yetfdq2bYuIcN/fxr2WlRv6CrguOy/fQq/zTA/G+QpzQ/mxT0+a9JTH4xnRtWtXUlJSeGriRB7Zs7PXx3/uGd04qWov+Ot3ZdL9qQ/o1KkT69d8zpYHBpDgiwaIjv5qZn+uHj8oJj4YUdOeffbZZ/f2+w+4Alu2bNkeEWlcSSyZcrhrUpeh3eQ4aC/PLx2u4Hc9MA8AvFlZWVZqqzbXXnnlla0vuugiLrnkEoDHD+d8hhMLI2xObeagLccTqntAbJSHMxse7H2/a6smGa9PveXtHTt3bb7u2muejXY7+dxQfhLQffvOtGZu0UK0Wu+6eL+vRIlgX04oGq3W+uQ+PV0Fei3k1eSA/3/A/6qqU64OVx2JFNkabQ2ekBs6aJkict5sDhZKu+MriYtSXeoE/LmbN33fa9OmTWRnZxMKhRg48Jqzix3VCh2OYaXXkjrAlZF1nsf+8aj10EMP0aJFCzZs2MCYMWNYsGBB/J9nTmXubeVDEn+/O5shUz/RsYt2ZyPeaPr168fOnTvZm1cQETYebyizB6/eXcCIEjvH1OnTp7NixQoK3LDLK1asqGPbtpcDvuZKt6WgbV46As3c7D3Aoni/b9/htIuI1GnXtu2ga66+svHY0Xev93g8RcDbsQlJCpg1YMCAPmPHjuXyyy8nPz+/n1Jq8+Gc33BiYbTRTmHsiUNi0VNph9J4qoow8Lxn9Iy7w5npv0G/uTrA/4tOanCQPy5XO6kLWkU2QjGwCS2ASsrv0441bwBauFkKSAP+kxzwH1anV+r6gvZx1qDU5zS0anFZFAcMRSOfjMrCOYvIWyLSv2vXrlGPP/44F1100RKlVI8MHYa7CwfWxrItYd31QwaPX7jgvT83aNhwrVLqG+U4169Zs4YzUhvzy5PXVXoPkz5ay3sZflatWsW8efMYPnw4i27sTIu6Je8L+4EhnhFT33PrtW7t2rXtevTowb59Jc12s1Lq37mh/Ci0cD7LbZcIabgxag41OnRtqN4G+o8cOZIWLVowevRo6tap81MwGNzbrHnzLhs2bCAtLa2rUmqFe8ykfv36jXrwwQfp1asXe/fujZyu0ng1hhMfM7I5hfGMnlFgTxzyNDCKXy9wbGAiQHRSg3XAunBmuhe4JZyZHkRb3U+NTmpQ5FqGf+F+AHA7vFbAZbmh/GTcEUi0R/LRasqvxPt9OQD7ckLNgDv25YRKD62+AWYnB/yVWp1HcDvO/e6nSj9abjCuyDReQ/Q6RV1XYJVGgMKcvNCs+++7b/HyZUsPWmypow0nSwJuZeSEEh1F11def+PjHdu3L2nStOn+B++/d8J3337Dtm3bqBMXW2mdNu/J5oGFa3n44YdZsmRJSSTYMgSAgUBEXTga4K233iI7O5tp06axYuXKcXv2ZkT7/f4wOoTDO/F+3/6q2qMy3n17TpOrBg3u/8033xAdHY1lWfTq1Yv+/fs327p1a4Ppr77KmDFjSEtLKz16vuyOO+4gEAjw6aefArBx40YGDhw4EDDC5iTFCBvDP4Hb+XXCJh940TN6xkEBraKTGhSjY4YQzkyvC/zFFUC7gNeikxqUzPXH+31FwHr3U4LrxqQN0N+14CfaI6CnpdYC34dtVYj2FP2AOxVXGkELleXA0uSA/7A6U3c9Yo/7qTIUsDtiOy0cLrwskpeSktokN5Q/pmydYjwS8Yqw8/RmKelntDy9N9B58eLF3Hjjjfzl0t9UeA2lFNe/8hkTJkzgqaeewuc5IPNmf/MTYy/voMuBqIT6Z+eH8vsDjRo2bOi55ZZb2Lp1Ky1atODVV1/lT3/60+mn1aubpZSacTht4lrxRxxWAtDzskt/KSoqmt6+ffsB6LUzhRZw62NiYs7Nz89n+fLlGWgV6Aiv9OrVaxQ6OF6kDyoCXjmc+hhOLMw0mgF74pDeaFuUw4lgWIzu+Dt6Rs845KgCIJyZ3hRt/GihY/C8FZ3U4LD+gLmh/AS0R+I2HNBik82bN+f9vt/v+mVlZvps254TCoVecUdAF6I1p+Ij55g08clWH7y/oNXu9N0B27b3hYvC8xzHefSXPXsqdKlfXUTk3G7dui0rPY3m5rcCnJy80A/o9bEGQIM7Rt5+1cIFC+5ctGgR48aNIzlKMb13Y2xHsW5XJg2DfuoH9DvAtoxcLpzyBUuXLqVt27bccsstjB8/nmnTpvHYY4+xYMIdOI6idUoDfE7hzvAlN58DpAfi/Geip8qWAg+NHTt2eGJiIvfee+8TSqmxZe+hMCerMdqbQtkXUUHbJS2JCSQe8vcWEY9lWeu9Xu8Z4XB4kFJq1q9tV8PJgRnZGPCMnrHQnjhkDHo6rDojnEL0ekbP6goagOikBttxNY7CmemtgbHhzHTQndhr0UkNqjMVFhmtHOSp98ILzn+9b58+1/Tp04dbb7314txQfnT0gbf/ErcwGzZsiH920sS7Jk+eTMuWLcnOzm700ksvtV+3fsP1e7NzZ1uWBYcweC1FGD26K7jrzjtaJyQkXFpqXyev1/ueWNayhg0bPuI4Dmd16HD7im+/+wAI/G3smK4L3nvvzvfff5/x48ezaNEiOrdoxIOxYdanZbI+o4AdO3aw9j8P07BOIrHZuezfv4AhQ4aQkJBAWloa4XCYH3/8kcLCQrrf/ght2rQhNiedpQ8MdaLswou2b98R7ff7JzuOLY0bNV6/Y+fOdh07dmTp0qX0+m3PRoU5WYPcey2t4bcL7RbmoEibh4tSyhaRduFw2KuUKjz0EYaTHTOyMZRgTxzSF3gD/RJSmdDJQ6+T9PeMnlEjYXLDmen10COeyPTMdvSop1qquSJyWdOmTRe//PLLnHPOOQSDwRylVIUadsFgMGjbdvqZZ54Zu379elJSUli4cCGXXXYZd48ZM2Ho0Ou2V+ea7nPjRS/8x5zR8vS7n3zyyfpnnXUWqamprF27lkceeYQvvvii6IEHHoj65ZdfyMjMXP/kxElrgIIr+/fr9odrrmn7hz/8ge+/L4kQwAUXXECzOgHmf/IlQ4cO5V9XpNLF9eLw3Y4M7nhjKR2aJDPvu5/5bMVqrrjiCkZ0qsszX6WxcuVK2rdsxu4nhq71jJh6poicnpqaumXBggWsXbuWFi1asG/fPgYMGEB+fn4LpdSP1blXg6EmMMLGcBD2xCGJwN+Am9Bz6mH0FIoPrYJ8P/C+Z/SMWvvjhDPTmwNXor0JCNqQ8r3opAblNMFEJF5EMufOnet9+OGH+fTTT6sUNu4xZwOPoKcNL/7qq68YOXIkK1eu7KGUWlLZcVUhIi/ExcWNcEdGABQUFFBUVKQWLFggN910E+np6Wcrpb51y//J5/P9y+v1HmQ31MhvsTPPZsGCBQzsezk//t8gYqK0D85QuJhm981k88PXMGb2V8xak8ZpPg/39T6L+fuT6dixIz8uep3/XN9jiWfE1B5uJMzFgUDgotTUVPbu3cvu3bt/UkrdrJRa/Gvu02D4tRhhY6gUe+KQZkAj9OLtes/oGXnHoh7hzPQOwOXuZiQU827g7Zjkho9ef/31f05JSeHJJ59k9+7d1RE2wfj4+Kxp06bRvHlzFi9ezNixYwFiKvI8XF1EJMDBlvqFwMctW7Y8b8uWLe8U7ts1BB0VsjnAL3szogoKCtS2n7d/1nz1mxcHfVH3h4ttX9sJ7+CLCzDhty25/twKo18DkFNQhD/aw9urt3HXexvJzs7m27/2CZ9eL+EBz4ipJdE9RSQZHb11L5CmzENvOAYYYWM4IQlnpjeeM++dW+/+29/Hz5w5k549e+LxeCLCBuA/SqnhFR0rIlEej2drampq05YtW/Lss89y9dVXs27dup5KqY+OsF4xwMXAbwArY98+76LFHzfo2+vytGAwYT+wGNhaVjHCnjL8DLRtiy89O0RGXiG/aZRU7etuTM8iEBtF48S4PKCbZ8TUdUdyHwZDTWOEjeGERUSu7tu37+xnnnmGvLw8LMuiXbt2rFmzhk6dOtHn8p4f7svMDNx0/XVf3zD02p8BlZmZ5R311/vOb9qk0Y46yckZTzw9edj4vz/QbPPmzaxbs/qFRfNmv4F27lmAXvwPA6nAGWjP1ZG4MgcFP0OPaBR6FPgFsKa0ind1sKcMT0Pb9BwJvwCneUZMNQ+24bjCCBvDCYuINEIbTLYGYmNjY0uPbLa0b9++ZZ8+fXj88cc/UEr1co/5XevWrd9JSkpi69attGrViunTpzNo0CBapDS+47Wp/1qNVlSIfKKBn4HvgczDFSCHgz1l+GjgIfRa2a8hBEzwjJj6aM3VymCoGYzqs+GERSmVhvbhhYjE2LZdMGPGDNBrE4+dddZZ/27RogVof2gRipRSjBgxgpSUFNLT07nttttYtWrVB6tWrXpx1tx5x8SrtMvzaOWMXytsCoGna646BkPNYUY2hpMGERmONuJ8F+g5ZsyYW2fNmsXPP//cXSm13C1jAcPQC/UN0dNOHwDTjkQ5oKawpwzvA7zF4RnYgh7VDPWMmPrfmq+VwXDkGGFjOCkRkcvQU1KfKKXGH+v6HA72lOHjgXFUX+DkAU97RkwtF47bYDheMMLGYDgOsacMvx14Ar1uVGG8IbRCQj7wN8+Iqc8erboZDL8GI2wMhuMUe8rws9FrMF3QYRsiazl5aAH0LTDKM2LqimNTQ4Oh+hhhYzAc59hThrcALkE7II14VPjEM2LqlmNaMYPhMDDCxmAwGAy1TmVzwQaDwWAw1BhG2BgMBoOh1jHCxmAwGAy1jhE2BoPBYKh1jLAxGAwGQ61jhI3BYDAYap0jc8RZsFehFCgbUKAc9LbjbtugFKpk2wGcSssdfA6bg87tlEmVrUPzli5XZRo5b+mPm+eU3gYct16Ou126XEl+qdS2D6ROmW33OFU2z7b18bbbHqVTR6HcOilbNzG241ZRldqPu19BpJx7zEHHuuWV7aCUQhXrtnOKdV0cd/tAvq6LU+yglIMqrvg45Sgc23ZTXca2HXdb18uxHZxS+x13v11mu+zxtv6nlKSq1PfDSRVQ7KYO8KBSpYObHdfEdL5ZieXB8kYjHg8ebzR6O0qnUXr7QH70QfmWNxrLEiyPhWUJYgkej6VTr4VYHNgunS+Cx3tw+WivhcdNvSXb1oF8j05j3G1PmWMiZSwRojyCR4QoS7AsNxUhymPhEYjyWFgCUZaFx9Jp5DgR8IhguakIB30/sA99H5H9liC4qVKIU6yfN8dGlAPutthV5es+InKsKi4Cx0YVhcFxUMVl0qKw3h8pV1Jep05xEcp2cIqKUbaDHS5COQ5OuFindqnv4WIcx8EpVcYpOVZhF9k4tsIJ69QusnV+2K7Wfkcpwo7CLkkpkx7IL1IVldPfX1Q/Vfp8mZGNwWAwGGodI2wMBoPBUOsYYWMwGAyGWscIG4PBYDDUOkbYGAwGg6HWMcLGYDAYDLWOETYGg8FgqHWMsDEYDAZDrWOEjcFgMBhqHSNsDAaDwVDrGGFjMBgMhlrHCBuDwWAw1DpG2BgMBoOh1jHCxmAwGAy1jhE2BoPBYKh1jLAxGAwGQ60jSqlff7DILUqp/1eD9TnhMW1SHtMmxw7T9uUxbVIxtd0uRzqyuaVGanFyYdqkPKZNjh2m7ctj2qRiarVdzDSawWAwGGodI2wMBoPBUOscqbAx857lMW1SHtMmxw7T9uUxbVIxtdouR6QgYDAYDAZDdTDTaAaDwWCodaolbETkChH5XkS2iMi4CvbHiMhMd/9XItKspit6vHGoNilVbqCIKBHpcjTrdyyoxv8kRUQ+EZFvRWSNiPQ5FvU8mRGRZBH5UEQ2u2lSFWUTRGSniDx3NOt4tDD9VnmOZb91SGEjIh7geaA30A4YLCLtyhQbDmQqpVoCk4B/1lQFj0eq2SaISAC4E/jq6Nbw6FPNNrkfmKWU6gRcC7xwdGt5SjAO+Egp1Qr4yN2ujEeAz45KrY4ypt8qz7Hut6ozsukKbFFK/aCUCgNvAv3LlOkPTHO/zwYuExGpuWoed1SnTUA/zI8DBUezcseI6rSJAhLc70Eg7SjW71Sh9LM4DRhQUSER6QycBnxwlOp1tDH9VnmOab9VHWHTGNheanuHm1dhGaVUMZAN1KmJCh6nHLJNRKQT0FQp9e7RrNgxpDr/kweB60RkB7AA+PPRqdopxWlKqV0Ablq/bAERsYCJwD1HuW5HE9NvleeY9lveapSpSNKXVWGrTpmTiSrv132YJwF/PFoVOg6ozn9gMPCKUmqiiHQHXhWR9kopp/ard/IgIouBBhXsuq+ap7gdWKCU2n4Sv8ibfqs8x7Tfqo6w2QE0LbXdhPLTH5EyO0TEi54i2VcjNTw+OVSbBID2wKfuw9wAmC8iv1dKrTxqtTy6VOd/Mhy4AkAptUxEYoG6wJ6jUsOTBKVUz8r2ichuEWmolNolIg2puG27AxeKyO1APBAtIrlKqarWd040TL9VnmPab1VnGm0F0EpEmotINHphd36ZMvOBG9zvA4GP1cltwFNlmyilspVSdZVSzZRSzYDlwMksaKB6/5OfgcsARKQtEAv8clRrefJT+lm8AZhXtoBSaqhSKsX9b44Bpp9kggZMv1URx7TfOqSwcecy7wAWARvQ2kTrRORhEfm9W2wqUEdEtgB3U7UGzAlPNdvklKKabTIauFlEvgPeAP54kj/cx4LHgN+KyGbgt+42ItJFRP59TGt2FDH9VnmOtboXEgAAAnxJREFUdb9lPAgYDAaDodYxHgQMBoPBUOsYYWMwGAyGWscIm6OMiAyoyGq3GscpEXm11LZXRH4RkXdL5fUWkZUiskFENorIk27+gyIypmbuwGA4vjHPyvGJETZHnwFoVxGHSx7QXkR87vZvgZ2RnSLSHngOuE4p1RatwvjDEdbVYDgRMc/KcYgRNjWAiPxXRFaJyDoRucXNyy21f6CIvCIi5wG/B54QkdUicrqIdBSR5aIdU74tVThOBBYCfd3vg9EaXRHGAhOUUhtBa54opYzvMcOpinlWjjOMsKkZblJKdQa6AHeKSIUuL5RSS9F67fcopToqpbYC04G/KqU6AP8DHqjiOm8C17rGkB042FFee2DVkd+KwXBSYJ6V4wwjbGqGO13bkeVoC91W1TlIRIJAolIq4nl3GtCjsvJKqTVAM/Sb2oIjqbDBcDJjnpXjDyNsjhARuRjoCXRXSp0FfIu2jC9twBR7mOds6k6zrRaR28rsng88ycHTAgDrgM6Hcx2D4STHPCvHEUbYHDlBdEyMkIi0Ac5183eLSFvXud2VpcrnoH0QoZTKBjJF5EJ33zDgM6XUdnearaNS6sUy1/sP8LBS6n9l8p8A7hWRM0A71RORu2vsLg2GEw/zrBxHVMcRp6Fq3gduE5E1wPfoqTTQri/eRbv0Xot2eAh6LvklEbkT7Y/pBuBFEfGjNWJurOpiSqkdwDMV5K8RkVHAG+65FPDeEd6bwXDCYp6V4wvjrsZgMBgMtY6ZRjMYDAZDrWOEjcFgMBhqHSNsDAaDwVDrGGFjMBgMhlrHCBuDwWAw1DpG2BgMBoOh1jHCxmAwGAy1jhE2BoPBYKh1/j9a49FA2oMHaQAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -310,7 +288,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEECAYAAAD+qJluAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXgUVdaH31vVXb2l051O0jQQdmVTwV3cRUBQERnFccRlZsRdZxDFdXDGUcZdEfVzG3F3HBVcERFFXEFxQ1kUZA9LSEKSTu9L1f3+uB0IIWyOOjrW+zz3qaRru1Xp1K/OueecK6SU2NjY2NjY/Jho/+0O2NjY2Nj872OLjY2NjY3Nj44tNjY2NjY2Pzq22NjY2NjY/OjYYmNjY2Nj86Nji42NjY2NzY+OLTY2NjY2Nj86ttjY2NjY2Pzo2GJjY2NjY/OjY4uNjY2Njc2Pji02NjY2NjY/OrbY2NjY2Nj86NhiY2NjY2Pzo2OLjY2NjY3Nj47jv90BGxubncf6dGonWbmon0w09MKyfGhaQviC34gOvT/WDhi66r/dPxubbSHs+WxsbH7+mNP+7zBZteJSYrVDyWVcW23gdKXxl04Vka4T9eMu/vC/0EUbm+1ii42NDVAzYYwGeABvs+YrLPNAHIgVlnEgXT5mwo/+zyM3rHCYMx+7iepVo8lnjR3u4DCyhDtP1Af84VrRpkv+x+6fjc3OYouNzS8SIcQewGBgd+A6KWVti/XPeQ3HZ8fuuVvlA2cMaQS6NLUvVlX1mLFoeXjVxkbvZcccmN09HHKjhGZXMNksPM1FqB5YASwHlhWWK8vHTMjuysFrJowJlJ15edJ8/b5nqFl1yi72DcKdX9AHnzfSFhybnwu22Nj8YhFCnC4Ep7x44Yg7Dt2tYnegKwVBueKFmX3L/F7fgJ6d2b9z21b3f3buQjqXBji4W8WP3VUJVLKlADUtvykfMyHecoeaCWM+c/uMtZ7G1cO+91nb7X67Y+QNV37v/W1sfkBssbH5RVEzYUwboF+hHfzmwuX9OpQUu7qWB3E5dIQQW2x/9ZRZ3HJyf5LZHF7DuenzdxevYnHVRs4/ct9tncoCkkAKFbXpB3bsxtp1JLAY+LzQvkCJ0GoAtxXHLeOIbe+/bRxGVnQ/cIA9hmPzc8CORrP52VIzYYwB9KWZuKAsF975ZiUL19eysraBK4cczO1vfszYY/rhMdRXesJbc8nkTfZoVybzlrXumhdnMfF3x8wEVjz03heOu2d+enKvSOmsRDY3+7JBBy1ACUsSSBSW2ZZjMoX++FDCU9Rs2fzncKGP3VCWVvsdXKYAehba6S1XprUiTOnAZ0UR7OKLYT5ryKrlowFbbGz+69iWjc3PipoJY9oBw4DhwJGAeyd2s9Y2xBa3D/oXoqyCFc3aqvBldwN4pZT1LXesHDdKB4qBQLMWbPF7ACUkOuoFzdHs55ZLB0pA0kAaQU7oulPTNZdw6F6haUVCEwGhiSBClAohnOwEusxRZNWzeEM9wya9z+Krh6JpAsuSHP/Iu4zctzNn7t9l6x2drrR2yIiedli0zX8bW2xs/uvUTBjTAyUuw1EWzI6oBeYAHxeWn5WPmRBrvkHluFEeoB3Ksmhatm/xexnKIvlJWb4xyn2zv2Jw904M6d0FoetoDg3NoSMcOo/N/pr6RJq8ZXHVkIM376jpJGvXMvihafQMF/Onw7rz5pL1JLJ5Jg7fb4tzNP1XC0B03fdU/aQrnv/JLtDGphVssbH5ySmEGe+PEpffoFxI28IEvmJLcVme3tgoUILRHehRWO4OdESJSegH6awQCF8xwu0Bh4FwOtXS4QTnlkvhNGB7S8dmr/WHn8wl2tjI8YMGbn1Kh042neKq68cz4fprwTTVmE15e3Kfv8d9EybwwJz5nH1gb2YtrWTymLNxl5SiB0PogRBasBS9pAy9KICQJggticNZj7K2UjRZXVv+XgesKrTVheU6Ixg2f5D7aPOrxxYbm21iLXi7k6z6rh+pxl5Ypg9NT+Ap/kZEdv9Y23PgLrllaiaMEcAhwEjgRLY/lrEWeBl4JRdPLTQzuY4oMWlqPVDCsqvhylvjNNCKQ4hACVpxqNnPJUokpMSKNyLTSchnkbncTi9lPgvNlpibo5DnrFpPYzrL4B6dyJomuhDomobQNGSRm5umzeHsw/ahItKGbKCc8OGD0Dw+UksWEHvzJY5+cDL1qQzTzxlOG7+39WvTNBxeD3ogVC1CbRY421Q0GhWdY3pp2BJCNIV7Ny3LgU4t7mkeWMOWArQKWAjMM4Lh1H98/21+NdgBAjZbYb3/xGFy4+pLSdQNJZ/dKltdVi1Jm9/NnipKO03Ujvj9dgefayaMCQBnABcAe25n00XSkm/k05nlZirrBw4A/ol6AH5/nAZaWVu0YClacQlaIIQoDqH5/CAEMpvBaqxHNtZhRevJVy5FLqxLWY0NUXKZBqABiKJyaPKFZrayVD+73E7N4/PhdJVoLk8JnqIAmuanKUFUWu7qhkbXtFVfi3Qmy55dOzP1i285oVcn2hUXIbw+zn1uJr16dGeu0YY+vz2PMZdfya17H0ROOllYk2DavGU4dJ0T9+i6baEBsCzy8QT5eCLM2sqj0/M/a1rTACwA5jdbftFm7M1JoLRwzzu2WPYGhqBECSCfbaj+CphbaJ8Ai41g2PqP/l42/7PYlo3NJuTG1Q7r4+dvom7NaMzcjsN8dWeW0g4TtYNOuVaUdtwiebBmwph9UQIzEvWg3fp8llxo5fLL8+kMMm/1RFkr3w8h0ErK0crboYfboZW3RysuQeayWLXrpRVriMpkbIOMRVdZ0bolVt2GxVjWOtSDt0lQokC0w/hJueaHjiVTAuWWawe03cay6eeW9y0JrGvW1jdfCitfN+edGfsdceC++yLEYDS9q0ynEmZjvd9MJsmt/o51a9YS7tod+g1BbqjE/PZLfjPuJq6/6Dz2ql8OuV3KF90WJkp0mrsrl3YYP2mLB0S2odoH9AEOAg4stG6F1Y3Ap2wWn0+MYLjqh+iczS8fW2xsAJAN653W+48/Q92aXc9WD1W8oB16+sjaJycYwKkokTmwtU2tvLnBzORMM5OLIOX3qzquO9AjHdHbdUQrb49e3i6Pw5GViVi9Fa1bbUU3fmuuX/25uWrxl1jWaqCqw/hJW2XStxCR7QlJayKSYEvx2EpICsuY3+vZ9E+WrV0jUFbCYJSlcISEajR9PbqzHM3RDst831r4Qf+cJ+gQsY1YDifZLvvh/fAZ0gPOIae76NWpPfMXLqIon8b84l2yKxaD04UZrUOmfzDv1kaU8DSJz6cdxk9qbLlRtqG6DGWJNheg0sLqLyi4RIH5RjBsP3B+pdhiYwOA+fodt1Gz4orvta8JSdP/eS6R6YYKG94CaUnMTA4zk0Wau+5lEb5i9IquODr3aNA77JYXhisps+l55HIf4fa8p4fC8wI+T6Zp+4KIlLK11dFyuT0R2a6Q+L2eGDtJtnZNCBiIEphjJJQAn6E7U+jO3dD09sA0S/J2CkdEIvZyLZrV2fn1W/vGjzwbhIb/zXsxjzydTGknlm+o46QTh/H1nPfRrDwOM4PZ2EBqzlt4jxqGcBrE33mZfPV6pGlh5fJfSUv6UXk//wkSZf28A7wFvNdh/KTEVtfbUC0K5zoCFcY+GDUWtOLu+x5Y8OiTT2eXrVg5O5/PT5D2A+hXgy02NmqMZtWXM3fKddaMXE6QTuvk8q0bKFbexExnMTO5Vte3itDQytuZji49Nzi69kprZREDIdYIh/Nt4fLMErBMCAJsX0gibC0icbZtfWwSlF0RkW3RzHo5CTgOOEDCAoT4Et0w0J0HIkQEmColLyZxpCRiBCoy7DHgU8f6JZdmi9vcZaz8As+HT0OHPcgMuZjcygVomo7RWIXlC4G/FGPjKui0J4kPppGrXIrnwKMxdu9D+ssPycz/xAR+Ex478bXKcaOKCv3as9D2KrQ23/NSc8BslPC8DXzWYfykraLXsg3VXpTYDp/+1syTPpw9J+ByuZJXX37pZKfT+RIwwwiGk9+zDza/EGyxscF86YYXiG4YsTPbSgnZLKRSOpbUW1lfsGLSO23FZLWS8m+dfQ9OOHbvE9SKS4qFw7EKTa8W6uHrFmILS6RlEmSMHQgIP5CIbPcilMD0BUYAJwMdJUxD0xfhcJWj6ceiLJpXgckpqX9pop2Gcjm9AzxT6vdGq6MJAVwF/Nm95KPPve89NtRyGORG3oRYMIvGPsdSvPoLqKlEFoXI9zgYV2MV2sqvkbsfSOPLjyIzaZxde+E9+BjyG9aQ/GAaMpN6FBgTHjtxKzdY5bhRFWxZpWE/YOtpDHZMA5utnrc6jJ+0bKv71FCtA4fcOfG+sXv07nXAkEED2qJCr6cA/wd8bLva/jexxeZXjrXg7U5y3uuLm0edWZak/JJJbLz/HADmra5l/789z5fXn0Y7XxmJvMkhNz/B7Gt+T5FLGRBW3tzkKttmVRVNS2v+kg1a246Nzt77eRwV3YLCW1SMEE7B5vJfhfJmMbY/FtJkiWxVxPKnoiAwB6DEZQRQLmEqmmMBTnd7hBiGmqLgZWCKJZmZxHkocCaQRVkxn5T6vRKgOprwAU8AvYBTytPVS8zpD/0rd+CJp5hFpfDZNFJ7H0ugdilm7VpkUQiz4144q5ejL/8Ca//jyVWvJ/nRdAC0QAjfUcPA4STx9hSsaN1q4Ozw2Ikzt3ddleNGGcDebBaffkDn73GLlqHGal4E5nQYP8kSQhyFGtvp4vN5/1K3ZkXbwr0bBVQA81Ci86wRDG/lorP55WKLza8c8+0HTmXNgn+3/Dx00SNs/L9RCCG4+Mn3eO3LlTx30bH0KKvgyTnzmb+2mttHDMDK5cmnsli5FuPvQkNv10k6KroKPdIBvV1nRDAEaHmQeaBGwFKQCwVyvZCyRkhZDVQKaa12mOk6oyTyswujzdau0VAP4BEoN1mxhFfQHUtwuDsixImo0jUvAlPSUp+TRzscOB4VNvwh8HSp37tF6ZzqaKIrMA31gB4RDvhSAOnoxj/nhOM210u3aLF9T3A6a1bhdjkxG+uQRSGk042WiaP7SxDzZyGPvZD421PIr698HGm1xeEc7DvyBPRwexLvvIS5YQ3AJOCa8NiJNTt73ZXjRrUtXPdA4Fh2XXw2sFl4ZnUYP2mLELpsQ7UDOAG4qHCOKEqMHzCC4SW7eC6bnyG22PzKMV+79Xo2rv5b0+8SgeUP0/mcW/n2ltOREg4dP4Uje7TjN/t3Y6923Rly55PccVJ/egb9WPnNLnq9PILRoavp7Ngt4azokhRurzQ1p8sSDq/AymhWvk63cg0aMsvmnJXmTaLcN01N29StzTRZQBaQadYSqCz4OlQUVctWB9R/HwErWDD7AH9AiYxTwsvozhU4XN0KFkwO5QqakpCObyXiWKB/4RCzgNdL/d7q1o5fHU0MAp4F7gsHfNdvOm+0ds+s7n5JCu1fjnnT50Z7D3wtOOeZnJ6OGXlPEFkUQttYSb7DnjhLyqU2e/Ir5r5D2+Ar7hf1hu8UT9x4JXAuQtzlOfBon9G9L8mPppNbvgiUy2sc8FB47MRdmvOmctwogQpTH1Jo/dm5GnZNRIHXUcIzvWWQQbahugdwIep+B1BuufuBqUYwbM/P8wvFFptfOeYrN91O/dqxoJ7oVnFb4kdewEH9DmbaE/fx1tMPUlO1jmzeZP/OYcqPGMnlN9zM638bQ74xilkUROvYHTrsjuYQaJpWp7l89ZoaxK82JbNNS86UqijmeqAqEvD9x4kh2foqjS2FyYcKYy5t0Zp/FmSzgOXZLEwb2JwdvwpYZZREGrO1a8KoSsx/BDpLeAHdWIrD6IkQJ6CCDiZLyZQEjhiIoahxm2rUw/TdUr83va1rKIzPXI96sJ4aDvhmbbq+aG2RKfQZed0VQoi+iZx1NnBaKFv3rTZ/1ueZ8i4nSMNb5lwy+6P0EWed7s4nJuF0L6OxdrJwGoszDo8n4Sg6ORLwzay+Y3RX4HFX7/0Od+9/FOmv5pD5anbTqb4CLgmPnfi9K0MX6tAdzmbx6bULu6eBGcALwIsdxk/aFChQyOk5DbgY5dZbA9wOPGQEw5lWjmXzM8YWm185uRn/d4spHFfl2vQgH+mB9AQgn2XggAE8+MD9XHTxxTx/2W947uXXadOjLx8sr2P/rp0588ILmfbO+7z/wYd07tSB884/HxxuTKGZJkK3JLz60hQef+SfvPj69JanrWXH4zE/iChti2x9lRM1YN8UIq0y5aXsjJT7ImVHkAEJGxHaGnQHaHp3EPUS8ZKJNjMtHE4Qh6Gi3xYArwFfNY3BbI/qaMJb2L4MGBgO+Da5tLLRWiHh0azDOwAhfuf3emZXRRMfAk+HrNgRRklkZDSRugjoEPB5rokmUqt0K3eiU+bvdBWHBuRqVg+V8Eqjo7g2rzkPiQR8y6rvGK0BFzg7db/Ne/hxvtzKxSRnvwnWJkPvaeDK8NiJ6//Te1s5blQnNucRDWTni53GgOdQ7rM5TQmlhVDqfsClwG9RLwTXA0/Ztdt+Odhi8yukLpb0ovzjI5HyeMyc7qj+DseGxTg2LCHb82iO+9PfGXrib/jwvXd45tF/8uhjj9MYi/PPRx/j09kf4F/6PjOXVDFrYSVFfj+X/flinFjoTldSatpGC21BFu2zgQMHHfj627Om0nqIcum2ewlsFqVtBgigROk/fsvN1q7pg7JgTpcQR9M/RTd8Uuj9waqXUq6xpNSBgCYtr0AKAUmQy4Sa9GxhoS02SiLbtGYAqqOJXsB0YCZwfjjg2yI2PButPTeru0+Rmr7Y7/X8qSqa6AwsdslsD5/MXGOURM5vITbPAC+5zdTFwCmu4lBtrmb1sxbi0HpnSRwhDokEfA0A1XeMLnd06Paw95DBw82GWpKzXkFmN6coAX8H7gmPnbgL8erbpnLcKCdqrGcwKgx8753cdTHwOPBkh/GT1jV9mG2o7gv8AzUG9g3KFfiSHcH288cWm18JdbGkA/WWORJVaVkDXtYzsbd9M26/X2RTbllUSurg35MsasM5pwzj2xWV3HHHHRxzyH48++Kr3HLrbQw8dig3X/8XhOFB1K7EPfsJXp67mGCkI4cMHGxq7XvHNIcrYxnu1WiOojFXXNXlrjtu32AKfX0e7XNL6LNRiYGLc5YUKKtge+VfdlaUtilIp500vP2cjz7onslkegBjpJR1sCnZ8vQzzr3or/vt07e4on37xSefPCKJ5thHCtFgIqpyaKstxHwQnwOfAaubLJdsfVVT5ek9gT0KrScqx6epYGVTW2KURLLV0cTvgTuBK8IB32MtLyQbre1rCv3ved3VFyH6+L2eWFU0cS3QL2TFHgRKjZLIUy3E5kKgu9tMrQfWuYpDT+dqVoeBbzKaMS/u8FvAcZFmotYw9bETXXsc8Cym6Um8PQUrHm3ejW+A64CXwmMn/qBBGpXjRvVCReOdiYo+2xEW8CbK2nm1w/hJGYBsQ/WhwE2oxNFPgWuNYPjtH7KvNj8sttj8D1MXSwpUmOnpqDIyJah/3H8Br4T83gRA/qUbX7DCu41I7jWUjGnh//wFznv4DeZ88RXzH74W+h7HqzPe4bSRp/PZe2/Tbe+D8My8m/eS5Xz81SIqv3iPfwzfj5tnfPP1K1+tGb74k1m7ASe/9e4Hp954573egUcdPu+6a66eK3VHL6CTiVabF3oyj6NGCpFDjX3UtGjVhWVtTiX0RNi+ILVFuaS2yW03jU+NOOXUmh67dUm5rHTIaeVKpdCz1/3jVt3j8Tr69OmTGHLccV+aaFPyaK8BK1pzia1vSAjUOFFxs+bf9LOUAQ3ZUUN2AVkhoI2EEokoQmhOKWW1hDqJSCCEiRJ+AVLXkF0lmksqsYyrz9kN2Cik5ZaI9QgRFWosSpcwVxMYhi76Z/PWFCfmwRkck4CE20zv55TZ85K691NTONajrIBqoL5t0GelV38bwrI+wuHokXj7RWHWbuVBW4SyIp7f1SCCHVE5bpQGHIUSnRGoyel2RB3qu/sY8GWbsTeDsphuQgVwvIMSnU9+yL7a/DDYYvM/SF0s6Ub9E1+GetP+EHgGmBzye2ubb5tMpTvLXObFtNT2sZJRit9/gHzXg8n1Ohotuh4hNHB50XQHzm/fAWmR7nYYSAvP9NuQewwk26YnjvnTc9PnrRgx/Nq7X206dq5qmQ4cxuZER6eEV3C4FuJwlSDEkagH5kd59I/TwliLEOWoEOGmVsrWiZytfmmlqrXmKTQv4JWFn5996skShybdf/jtSS4zk9SF043DcGNqOlmpkZOCKy+/jJvvmACbi3ImUIEEoKwVL0pQdFTCaSPK9dTYSmv+uUcTnIyUPXVpjneSd+lYPQWyj4ASCcslYp4mxME53b1OCi2QystLC9dZhqpL1jcgEzdGhe8qwOvUxBlARc6SzwE+j0NMzJjW/xnSPDeN/iQIL1L6nDJ3nES48ppDA9FYOGZJoX8bkLLaaWW765id80sXYK5bIUQqDk0tnUQglwI3A0/9UO615lSOG+VDzW10Fsr63pmaeV+jROeZNmNv3oj6jt2ImoLiJeBSIxhe/UP31eb7Y4vN/xB1sWQpKrLpT6g37weBB0N+78qW2yZTaQGca0l5VzJnSb2xqjIwa2KvXJd+ZPYZjkDiXDgD3eVDWDnMLgfg+PZdZD6DrF9Luv8lOJe8j2v+65jt9yS394kNOZf/H8Fi/x2t9S1XtawpP6UpAdIPvCKF9jquIhMhjkNNqDYb9bB41wiU/ccPtmztmuANt9710Oy5c38zZOAAbdiwE8WTz02uP/HkU5Z06rZ7o0SUPnDP3d3i8bjP7XHrfxozNo16IDvZRha92JR+Sh07GFPS1Bv371B5KSeEA74NW/RPRdX1AHGNhJ5SiL5CWl8KdR/mNAhvRwvtNyEZHwzcbZREzgVo7kYr/H4v8I3bTPUGnncVh94HyNWs7gwsNNFuaDBKzgUulZLXUaLZBmiDlBGXzP5eSOu4XLSu0YxFA3iKwFMELq+qKp2KQyaZQnd8Qlm7qTiMxaicoBVtg77tjlHtCpXjRrVHuXp/j3JL7ogcMBWYFDjhtBnuHn3OQlljPuAa4H572oOfB7bY/A9QF0t2BcYAZ6NCeScAj4T83lZLtCRT6Q7AI6Ylj0rkrSRwmUdnmRavfcH0lYWFEBgfPYGxfgH5/hegLfuE/D7DcHw2BTIJ8BaTL+lIptsheN65F4emvWAe9ofb8prj6azmmmcJxx9C2wn5zVUt2yrzHnhNwou4/VGEdjxwJGqs42VguhEo26ls8vUNiWKgh8vKDnfJ7JkOmetgopPSXGZOOGukEPOWLvmucrfu3ZeiJmlbV1iubxv0bXG/qqIJg9bddy3deOW0wmZNIifhu6bz0EKQisiEHVjH5hzeXgjxkCsTfQUlvP0ahecSB6bwyuyywj53A3NTRuA8thSbQcBlbjN1D9DfVRy6ctPJa1ZfCtyY0L3D07rnCeD4SMD3Vcv+ZmvXnAE8ajY2vBp7eZIbyzpeAjhdSnh8xUh/CErCcdlut6WUtJFoWieUBbis0JY2+3lZ26Av2vI8O0Mhl2dvlLUzEgjvxG5LgInFx5z0qqfPATegAj5mA+cYwfA336cfNj8cttj8gqmLJQ8ArkA9tL9G5SC8EPJ7W7UICtbM74GJOUuuT+WtoEMTDzs1cbSUsgopjxTIoL7+G80z+3FNajrm0GvRPnyc/OFn45xxN7KsM3gDiO8+InXcNdJ0eFIOjUhRcTCWra8qsRDPZDR32BLab0uK/ct3dA0F4dmbzcJTAUyTMBlX0Ro0fQjKL1+Fsnhe2yg9DShLoQfKTdgD6IG0ejtl3ueRGZdD5nVTOBvzmvONnOackJXa522Dvh8lIbAgSm0oiI9Q/W2Dmpk0I6G+sG4rUdKw8JIjrblwCJFLm3IJzcK/gUuQ8oZimThAwCIN2VbAvhaaw9IcVQ4rewmwNGUEnMBazcr3MmRumqs4tGmKh1zNah310K3d6AzdgxAPAodEAr6tBmmytWuORN3nObHXnvyHuXHDZai/TWskJbxApMtk67hR1WhaN9TcNrsVlt1QEzQuR4nPElRez1fAyrZB3049fAoRbYNQwjOcHddtqwceDpx4xjz37nvchAriuBG4zQiGs4VjdmutdpvNj4ctNr9ACpbMbaiHwHTgDuCd0HbyO5KpdFvgYWBwKm9Oy1kc4dJFtSbEFCnlo8DzqKxw07vsw7P05Z+cJd3+YVbPowzx9RvkjxiF85W/I3scCdlETqTjb+W7HzE1U777RAmTg0XekaAitCRcmtVcoy30qwOB4q1K4WyLgvD0RonOCGA3CW9mdM/ctKPIjWCQROxpItxCBQ98KWCVgVXmkrmDdSvTHmnl0PTXEdo1rpI2i7/XDf6e1DQmewIHSCkXoAaynwBuDQfUQ7WZKLUF2glkZz+ZCxIY37gc+rGpvFwm1RjNVm/xPitFQribfHj1BlbOQV7XrXxCw3JLxLKcw1tqwQseK9vPRFziC5R827R/rmb1Xqi5Zc7aaJSGUC8dR0UCvq2qLWdr1/REJaU2AkMbHr89iHJJnca2x1OWosZQngiPnbi26cP1DQkfarqBbqiXgr6ol4s2KMv1q2ZtQdugb7uT8VSOGxVEfTfOQiWSbg8TTX8xMPTUnLv7Xr8rnG/Uhjuu+arQ30s6jJ/0asudch++0slaubCfjDVsmg5d+IPfaJ33+Nh52Im7NB26zWZssfkFURdLFgN/QSW3fQ6MCfm92428KVgzpwH3WZa1JmVK05L0dOriBl2IiVLKNCqR7gRAE0KcF/B5HgfIRDfeJ2K1QdYtjJu9B5xhzHrwdnPvYb20bGy8Feo4yCiJTIglkg+akpHAhcEi7zNN583WVx2QE87n8sIxw9ScF25PCJtY35BwoLLP9wf2R8rDgO66zJtOK+vRpDlfl9bzDsOYLzT9HCzraKTpw8xnQKaBWwTcY5RV/GCzh+0MNY1JDyqcfLmUMo8qw3J1OOD717b2yUZrBfCohHuyTt/fgZl+r2ciQFU04UQ9jK8HdtOkOdUnM4gz4hoAACAASURBVL+Lad55FKwnXdBNCOHPWxKkRMfCKSSaEDjNNCYaaeGM59ErEWIdsK4oH+tmWNm+UUdgtKk5hqDGNU6JBHxbz0lTu6YcVaG6AhhglFUsqb5j9G4o0TmLbU8p3xSq/CjwWnjsxFZzoNY3JDyoMZm+bBagPVDRcvPYUoTWt2YFVY4b1RUVCHMuynrZJsJwf+0/emjQ3XvvisRHb7+V+OTdwSgx3b/D+EnfAWQn33OYtW7ZpbKhZii5zNbWk9OVFoGyqVr73SYaI/78vSsu/FqxxeYXQF0sqaOq4o5HRUFdBTy3owd4MpUOAw9IKYflLflZ1pJdTUktcHgk4KsDaIgn/w78FfhWCLEGOCbgUzNLZhKxr4CRlu50A1M9bnfbTGPdOcDrwsyeY5REbownU8VSym9NiRs4LFjkXdR0/mx9VTAv9Ml5YQSAQcWBQEPTuvUNCR0VObR/s9Yb9cb5WbO2KOTI58mlj0WIy9Ach4Jwk89EsfJSQBqhf4Tu6IAQK4EngRk/RHDBzlDTmDwcJQAvSSkPQUX9ndG89ExrZKO11wHfZJw+HTXedqjf69kiG74qmpgL3B2yYgAJoyTyStO6aCJ1kZSyU9qU97LZfbe7SxfX5/L5N3xkB5mSrI5VYiEcOeEgK3WK8zFMTSfu2CKpv4FWxpKEtGoC+cY/CWRHU+gDvKVtvwGovmN0Bapu2dlAl+1c5kaUxTwNmBUeO3G7426FkPJObClAfVFh0fNRltlHwOy2wc0VFwputhGF+3jA9s4hXJ4G4XQGrfimmRYWGO07HRrUU+Os9StHk8/ueE4nh5HV2nWZ6Dx+1LVau252rbadxBabnzl1seQA1IB/V1T46V0hv3eHb+7JVHqElPIhU2JZUm7ImDIhYTVwZiSgooca4smzURWA3xAqDHmvgM+zHCCTiHUE3gO6WrpzXzaLzW7A/sLMBoEXjZJIdTyZGmpJ+S9Lsh7YL1jk3VT2P1tfJSy0KzLCGJ1DuzGHHkblV+yNSnxsLiwL2gZVNYBMPCpQ86o0udTaIOVUcuk6YeaOB3xYZj3S7CLgA2CyNLyL0Z3HosJnZwFPAV8agbIf/Ete05iMoMZmPiwv9i6rjiaOQb3NDw8HfJ9tb99stPZkYM+M03cf6i1+iN/rWdh8m6poohz14G8bsmK3AKONksim+9oyGq3Z5+8Bf3GbqTuAAa7iUCJVv6ELcKpADkcS1qx855TmejWlextQlavrUIU0w2wR1wBIid+Mo0mLmKOo0RL65iAHKddTtdIrVi3qQ83ag0g2GiRiCLNVnc+gvk9vFNqS8NiJO/V3KQR97IV6ITkUNRaWQAlPU1ucv+PPFNaNYXPi8g5xGo7K4mxtByF2vG1zRNsuLxjDLxxpC87OYYvNz5S6WLIdqtLtMFTZjnEhv3fddncCkql0qZTyEUtyogXrLSn/mjHl2RTcbpGAzwRoiCf/gHo4TgaGCCGuD/g8dzUdJ5OIXQDs6fL5L0ml0/uxWWwE8BdhZp8CjjJKIk8AxJOpZ01L7i3hS+D0VF46UA+H/kB/pDxQE9KtIWfm0W8GPmvpn8/EoxoqCbUpLycIvIK0XiaTaC9gLMqy+wfwb6OsIp+rWtYO9WAZgcrp+VjCixi+anTHcahxqMnAM0agbC3/ITWNyaZS+CngzfJir6yOJk5AzcEyNBzwfb29/bPR2r1RbtCzM07fo8Aqv9fzt5bbVUUTpwOjQ1bsYOApoyQysvn67YjN5UAbt5nKAnNdxaEtxiSy9VWlWOZzIA5BiPmm0N6PC8/pptBPReXzbAp0aFoKaXX05+MnCqS30eGPSqGV01KUmpNJQTJWaI2QjCGa/ayW8RUin52GEp5Z4bETd3qmzmYW0KHNWgT4mIL45J+6vZYNlecD57ATtdl8hoUnt9W8cjtE69D9dtd5N1+54y1tbLH5GVIXS56CypFZAZwf8ns/35n94snU76Xkfgs0Adcn89ZzKBfGY8AdkcJAdUM8eRZKwJ4GSoQQbYCDA77NbpxMIjYVuM/l809vLjYAmca661zFoRuz9VV/NUoiNwBEE8m2UvKtlDKdt6jNSyKoAdlZhfZxSMZcWc31niatlU6ZO9UoiWQy8aiOelg0zQ/jQUVDTcHMzRK59KmoSKJoYTnFKKtotfhirmpZGBWtNAIlcp9LIV7D8GXR9MGAWbjmF3c2lLqJmsakQFlkEWBqebEKK6+OJk5BRQEOCQd83277CJCN1rYBHgJOzzh9h6DCmPf1ez1bjWtURRNPA8tCVmwGsJ9RErmn+frtiM3uwKtuM3U28Ad3oPRO4FrgZSnlywC5mtXFwEIJr/356r9lfEW+Ezxeb+e/XHn5gzpyEjDPKIlIIcReqBpkux928EH3znx18sOAz0QbEHUGNJqFfz/79JP95n3xee+1a9a0u3vivYmy0lAFDsOHpoyLy/98CT169mL3Hj3oP2Bg4YakIdEIqbi17LslDeeOvdr97/vvnh5uVzGXsnaf4vJWAutaG1NqyfqGRACVx9UkPn2Bb2U286n87J0ia94HA0nGO23zAJpGsEM7nJEK5NytCsduG4eR1fc4eIA9hrNjbLH5LyCE6E6LBwBAXSwZAO4bfclFp2ua9taUF56fGI/Hp+3oeLFkqp2UvAH0EYJXBfwunrN6oHJUxkUCvqebtm2IJ89AjWv8C5gqhHgK2C/g82x6I88kYl6Ui6uDy+dPtyI251qSaXnLuiaOe1WhEkA/AXUOjba6IC1heMjv+6hlX7P1VSKtuR7TYKBTE+8ixKDCqhdR88G85yoK5LK1a45BRdwVF+7V80ZZxU4n5+WqlpWirMIRKLfaAqnpb+P0ONH0o4D3gfuNQNkOJ+aqaUzuiUrOfLe82FvZ9Hl1NHEmahD/mHDAt90w2my01oWas+bSjNO3ETXwfZbf65ndctuqaEJDTXswLGTFTgAeNUoiS5tvsy2xKaz7FimHu630s8C+7kDpkUCw+XctV7N6KPDqex99fMyg35w68PAjj+r+8ssv9fPK9Ceashpmov4mH7tCbf8ALMvUVC5AlYSRwNFGWUV9y3MLIa4DnpFSLq9atsQhFszpj5Uf/tfHnvttsLi4tM8evcWA/v3B6wdvMXj9NOZMnn7yCZKJBOdeeDGBYHDLg5r5NNLagOZYiaY15UZtNcYUCfg2uRnXNyScKME5FDhUSnkI0Y2lcsUit1y1GFm5VFlgzdCKg4RGXghP3wSJnU8PEmXtJ7tH33PKTu/wK8UWm/8ShelxNz0A6mLJo1ChsrnD+h3w/jeLFq0APpdSblNsoomUJuAWCZdqgnoNRvi8ng+qookBhWP9MRLwvdW0fUM8ORI1jvEccKkQYgHwcMDnGdf8uJlE7HjgfJfPPwygSWwa0mZPYIiOdbqOPDIntbUa1jxT6E8AH/kNLQFMt6TMWJI9gAOCRd46gEw8agBHox7+w02JbkocTpm7VwjtOldxyATI1q7pixKZ/VGWzANGWcV/VNU5V7UsCAwtnHuIhCU4jK9xuDsgRBLlrpxmBMq2sJhqGpNtKQhVebH3y+brqqOJ84DLgUHhgG+7ZVEKkWf3A08ZgbLZsWTqTsDwez1/am37qmhif9QcL+UhK/YvoyRyasttdiA2twEb3GaqL3CXO1AapPBdE0IYgCmlNHM1q59FFRHdzwh3unx9Q3xtIhH/W7HXc2xAJncDRrzy+huHvz59xpKH751woVESWV2IUnsXVbdtkFFWscn3JIQYiXqmPNP8PJvu2R2jSwZMePbZmWNOW5/I5ob4DGcE4OWvlrI6lmL2srX8buDhnDjgKGRBiDa3YpVYqm1nGEbKOLAWIbYSIvOTt13WV7MfE526Izr1QFR0g2gdctVi5OrFyHUrweXBaNeBf3/+NQvnfMDEY/cB4PpZC6mMJpk0fBuxB05X2nH0qT3tsOjts63wRZufiLpY0pVMJG52ud2X6rr+CHDZooUL4wBCiP9DucG2IppI9Qf+JSCiCx4UQlzu9biTBaF5DBgaCfjmNW3fEE/+DiU0LwBnCSEeQQ0Mj2/l8MejSoCwviHRWReciir8uBR420Q86xe5+brM/g24yghG3mzaMZ5Mna8JMd+S8t8gn0rHow8JNf4yDBVqOgUYpgs+zkptH4nzny4ztUd249rrkfJS4BTgXuBUo6yigR8AZ6RbA8p99nSuaplfwHHksyPIZ/eXQluP0/0XNMdt2YaaxxBiUlR4U4X+bgSeLi/eMuqvOpoYDZwH9A8HfDscR0MVwPyoIDQHoNyFfbaz/bHAjJAVa4eaMGxXeRU1rnX/goWLfoeK5vIIIb5E3d/ngEpg9C1337fim8XfTQU+bhssema/Aw48depb77xRJ/yD2gaLHtF1rdfQIYPr58z97LmDD9y/Ed3xBKZ5PMgZwLRs7ZohRllFXAhxCiokeroQolOL8yCE+BPqOzQrPHbirZoQE6tu//PjwHHD++52OLBfJpks6x/2IFYuROgO0J2gO1QTAokEpxvcHlVGx+0Ftw/p9oHbBx5fEZ6iHriLerQUJVm7DqK1yK9rkV/PBgSE2yvhOegYtHAF5DLkq9cyPJvl9ide4O/9s8yu3Mj0pVXM+sNR277buYzbWrnoIGyx2S62ZfNfQAgRAcaFw+G2U998q/erL71U0XuPPf582m9HPFZY3/SPmZZS3tp832gi1Q54TMDhuqBOCHGG1+N+F6AqmjgI9TA/IRLwbXoTb4gnT0WF5L4IjBRCHI1KBj0y4PN80Pz4tdG45tbk2rgpnpOI/kCxJvjY49COSeSstm2DakKz1sZtADLxqDcvHPdZUpwssXwassGJ9UihX5+5igJbfOEaG+p2c1i513Urt7tQrq2zjLKKn6SAYq5qmRc1wdcICSegGynL6dYlYrmAS9zBsq1ymKqjiatRtc6OCQd8rU7z3JxstPZ8wG8Eyu6IJVMGKuruar/Xs02LtSqa+Aj4Z8iKuYClRklkZsttdmDZ6MBa3cof7JS5J1zFoSOa1gkhIlLKqk33oGb1maiIxL2NcKdlgHd9Q/wYVOTjMZGAb5P7Lltf1QWVDHoiUi7AMgdIWJJy+s+xNGcRKiG1DCj7ZtGizr1693aj3KDNkQDLly1zd+3WbVNJIymlIJs2iDf4ZSJaQiJWRioWkdm0H9MEKVVCq9CUdVP4WWha4bPCOqEhNQ2cBjjdCKcBTgMpdHA4C81QS6exRaG7wv3BXLecW88+mUTWZMayKqaOPIxIOIw3v+0YBtGu2/XuC2/7+zY3sLEtm/8GUsqqulhyKioH4YP6+voRp/12xMJm6+9tuU80kXIDVwMX6oJyTYiHgCu8HnccoCqa2BMVdfW7JqFpiCcFKoLrVpTQnC6EcKMGqR9sEppuu+2+b/uKDhcaLuOQCfc9UNamvLxIImqAM4AFAw/rd88xgwcbd9155/nN+laVaaxrK2BFpqF6Lxyupsz/43SZXy2FM47UXs4jj8ijvxEs8n7a/HqytWsM4EI3XCfhq7TD97kh8x4d8+ZsfdWfjJJI3Q90u7eJM9ItCbxY05h8RUhrqMNMH+bJxCo0IYbicL2Trd9Qj7QeQYhbjJJIujqauLJwjUeHC3lK2yMbrf0N0NUIlF1V+OgKYP4OhKaEzRF5t6Os1F0i4POY0UTqTVNzHOo0c7lMY125qzhUA+q712Lzp1F/539mq1cdHnOXNQAz8pbsAHxU25i4XxPCAspwFAcBgZTzBbKNJs2cQB6uS+tjKa0HpNC+Q80ttLxX797TCj/HWssHC+29Vys990HZllMXVd8xOoIaL9sXlYdVUWjtAdeOXpW3t14KoSwibzFaWQSj0+44Ix0xi/2c1bcz+zz4Fs//th/53Q/gnz1OYciSF+lRu6D1g1mmbwdd+dVji81PTGGOmUtQkUh3Atfcd8/d25zaNppICZTb5SZNUKpBUggx2OtxbxqLqYomuqHKi5wbCfg+BGiIJw3gAVTi3QTgimCR14wmUrcCzqxp3bq+IfFHYNiHn807/OH771v91GOTMm6ZfTrglCmXr+gfTcef++mnj9fX159y1513dm3Wtc9AjJMOVxcs61HUhFuTgb+5iwKL4snUXkLwsbA4T8KTDfHkQcEibxVAtnbNAFSocBY4XcAMU3eJFK7rDDPVaMjczGx91bVGSeSN//B2b5eaxqQOHAMEpNBmBENlr0AZuaplBtnk0VJoZ6I7r0B3XttYt3EtmoEmrQPLSgI7IzRHoGamPB8glkz1RFXk3mcHuw4C5oesWD1gGSWR7zs19quoOYzeQLnlnoRN378gqrZcZ9xlnYW01upW7ixL6HNQ9cvqHZpYaUr5uCm5QCL/oAsxF4iG/N4tgjSytWv3QTDLZWkXAh8jxGOoaLYfZErv8NiJVWzOzdlE9R2jBWr6iYpWWntUVKOr1SaESy9t49HD7YUeCqOVlKOXtsPSHUiHgYbgpm/jlPlcNO7Wjzf3GEkWnVd7j2S/NR9y5Irp6LJFrIqm71J0468R2432E1IXSzqBiajyGueH/N5Ht7d9NKEGeAWU6YK9hPpHvszrcW8KlamKJtqjkuWuiQR8LwA0xJMhlNvqcODiYJH3IYD6ePJwS/JuzpSfSpX5/TrwCvB226AvIYQ4/r13Zt7YJlx+ac89+3wgC1+O16ZO7f/aq69OLS8t6fPXv1x7BDACKQci5UY07V5y6YirpM3olv2PJ1M3AoPzlnwGOMWVaRypy/zNqMH6ccD9zcOYCw/CqzSZ/8prJkehxpQuN0oirVav/r4URGYwysXzZnmxd6uoqiZyVcsccSN4U14zLvbLlKFZuSz57BQhrSeA95yRrRP6stHaPqgIujONQFkulkxpqL/RQ36v5+mW2zenKpp4FNgQsmJzAY9REmm15M323GiFWVn7aIJ3pGU9pCF/Ywp9Lptf9OuBlc1bUbr2LKECMvZwlnfc5MasiiaGocbQjo0EfItohWztmj1QQQNz0fSvEeJY1PfqAaMk0tKS+snJ1q0TqIKtAySUIbQKUsl9JWIfmWgkrzkg3AFDqNsz4a4JzPnkE869ZDQ3/WM85971NJXRzTEqneq/48RF/8Jlbv5M67H/qa4zrnn+J760XxS2ZfMTURdLBlFus/2AgSG/971tbRtNpMpR//j76oKwpiJ7TvB63K83364qmihD1aG6uZnQdEcN7oeBIam8nJVqSAxE1ZA6XROskyraa1rTPCRCiCFAH5/P17tDRUX73Xr2Oh411W4qE4+GL77ooqf/+Mc/unbr0mkxasxhMkL8CWmdjmXeJpBjsvVVPqMk0vLtbjwwQgddWnmRd7iWarn8FAE9jbKKrSoOh/xeWRdL3moJx5/juv/+IjMWAd7N1lddZpREtnm/dpZmIuMHZmxPZJqo90Sawqd7a7nMWjT9KgzvxdIyTyafyeSqlr2IsujecUa6ZbPR2s7A3ykITeEw56Oit55p7RxNVEUTAjWGdBqqPH6r0WpNSCmpiyU7oLLr90TVlTNQE74tBZYjtJUumU4l0c/cXnmjXJp7C+d9IFezeqizvKMEiAR8r1ZFEyYwvSqaOC4S8G3lRzLKKhZma9cMAmZhmRvR9INQAQNTsvVVy4CJRklkp3LFfiiydevKgQFADwkCoTvQnR0R2iBgkenWPsquWd7X7LKXZmTiOLGQluTdmW/z1L+f4723Z+Dwh4g3NhJqrKSyWW3UVSW786+9L+CkBU8QyDSA05XWOve2ZwfdAbZl8xNQF0t2QwmAAIaG/N6lrW1XcJn9AfiTJlipwYlCiH8Bo70e9xaum6poohiVC/HvSMB3J0BDPHk0MFlKWZezuNKUHAr8FvjOoRF1auIoIUTPgM+zxQReTWQSsTOAQTeMH3/XX/9ybdMMm4dJxAKpO7tqZnZPV1FgU55JprFuIJASZjYJdDBKIltV0E01bBwlzOzDSHNV2hWMIbRngkXe23binp0HrC3KN85DVateAlxrlER2uchmTWPSiXKX+dmBJdOc6mhiMPBPYEA44Puu6fNstFYg5SCQ/8CyisilAkJaHinEmxhFnZHWCCMUWQMQS6YqgLnAwX6vZ7vRSlXRRF/ggyIr2dHAnGiURH7ftK4ulgyhBKVJWPZDzRw6FVU3bAHwbcjv3fS6XbB+ervNVGfgPFdxaLuRc80rQzvLOz7bom9DCvdiaGtz4QBka9ccgPpOPgtcgO4AVT5mNOrl5z7gZaMk8oOXd8nWrXOhcmr6AQ4JDehGGqEfUrC0vpQwOY2jykQ7HxiqRWsbDJ8v6HA6MKvXsua9qQy+4X5eevheenZsR6ZdT5594G7em7eIq265h+lLqsnKzVFuvkwjJy18krZuYefZ7AS22PzI1MWSBwOvocq4/Dbkb/1BF02kmrLL0w5BHyFEKXCB1+N+qeW2VdGEB+XD/iAS8F1XCAS4wJLyHtNiTV6SA5KoN+lnvU7Nj6rBdV7A53mitfNn4tGOIGaANFEFMj9AvbG/ZDlc7WiW1Llpn8Y6A7hcmNlbgOuaR6Vla9cEUZbNH03dtcA0fLG8pKkkyhXBIu8r7IC6WPIMIFOUb5yMcj2ei6oRtlUiZGvUNCZDqLdbC3irvNi70/VIqqOJI1CJr8dtrwRNNlp7CFJeA7IEKTuSTVpCWiFgqoTJGX/bcxBiut/ruWdbx2iiKpq4DDiiWKbeyQtH17xm5FEVC0C5FBeghGWhrqaFbtWN1kQ0kWoLfO4yU48K+MRVHHptR33I1ay+ATW21MtZ3nGLKcSroolBqBJHw5pHO25xP2rXHIayth8BLjXKKiRAtr6qI3AxSvSfBR75T4JACq6xPVC5W0EgIxGf4nCHEGJ44TyfAJMtmJrEOBy4ElVlYKoDy2VgDhRYwvzyPbQvZiJ+/1f4di70Ogjrn9eQvXAiji/fIrvHEZDPUifdTP1iGY2OzbEADjPL7ubGq085/qhbt+qkzRbYYvMjUhdLHoL6x3seuGBbk5pFE6mTgOs0wQJdiNNQkWMXeT3u2pbbFsrPv4jytf9ZF/RA8pwl6WMpV839wFNtg8rdEU2kNFRIcRIY3FTRGSATj3Zl86Rl+4AwQV4KvOQqCmwK621ZQaA5mca6v7mKQ3/P1lf9FbgRMw/KHXMXSuAuyXpLq1Gla8blLTkXeAsYGizyzmt5vFbu4cmAL+T3PlkIvb0PNePl1dt6WNU0Jnuo66EeeLu82LvNAIzWqFZJlS8DJ4UDvrk72j4brXWiBuRBSgdm7nlyqY6m0/NH0/C1NRK1Lwol3NOckW5bjD/VxZIeVALrwTlLXiCg0U1OywvH3xDaHGBDa+6v7Y3ZtNhuimbllxsyF3cVh3YYmpurWe1C/d0+c5Z3PLPl+qpo4mhUsMHwyDYKjmZr1xyNehm63CiruG+LdfVVPlT02zkol+w9Rklkp2bRzNat01GW0pGADsyXmuMTdKOp3FF/Nr8kTY1jZAvnugIVEPGUBu86hHW7E7McyFpfffCWeOupYeKMv6gQ6S9mInocgPXv28he+STOaf8kv3d/LKEjI11I1G/kjc+/o6poixkNJHDRXwf1eHBnruPXyk5VRbXZdepiyX6oXJZ/A+e2JjTRRCoYTaSeBM52CBy6MvdHej3u33o97lohxOFCiKuEEE8IIUKFMiaPS0m9lEx9+vHHvh123JBvJPTUNK4HAm2DvqvaBn0LhBBBIcTro/7w++cqKyv3Bc4P+DwyE4/2yMSj12bi0S9QEWRHAg+AmIgQt7mKAg81F5qdYGWmsa4L8DWWNQQlJLejxhuONcoqlhZ5PY2ot+UJDk3UoSLkXmyIJyPbPGqBkN87BaitiyXPN0oiK1DBBTOAmdn6qrOy9VUCVO2ymsbkETWNyd8BvvJi77/Li71vfg+h2RNVm+2MnRQaB8oivcUIlB2LEBfjMA6SnsAgy+X/f/bOO86Jcov732cmmSSTutldDEhTUES9CHa9dgW7ImC5dq+967U3VOy9d68NxQbItSM2BMsV67WiriisEGA3m2ySyWaSmef940nWZQss3vt+3vde/X0++Sxk2jOTmTnPOed3fsenle2xQnkjF0lY3rb055nZ1PI7U625u1NZ6wlU8n1D4DUJeaR7jd9tmxePhJ6Lh81kb/oArQL3ukLfBhV2WyW89QOLKENwSGn5wt06L09Eg28ChwAzkpn85p2XAxh1/d9EMS5vsZsat1thWU0ib9Qk7gM2R13nG+yW5Ct2S3K36m/ZEXZqsWGnFu9mpxZPRJEuvFL33S295g/Sax6GbnyGmjA9C6zlC8fG5TBezmGchNIWvKlynOG6kDmvcB4ycBISkSyjb+hfa/h4Me7U76hfE/nig4h1NkZ+2+FnzyzDU7SQfQahfTePYE0t4+raGNq0gki3AO6ZNGv+Sb25xr9X/EEQ+L+AVNbaAuXRPItinXXR9MrkCzsDN2gwX9fEGJRSwC5mwN+eT5FSzgHmCCEu8XqNmJTcgNJ78gvY5cijjur70QfvNRq62CoWMjtXmrvRWCzXf8CAsVYu+4Bf2ocXc/YEVMveV1EP4Yu+UDRTzGerrXtX1fmwO7yClBMqHs1NKIHPcR1lTABCZuDFnFWYCdwWC5kHpXPWzcCMdM7aIRYy27rstQPiYfPlVNbaIZW1zgw55buBt0B8i6adJeHETEvza160Fo8sfWS49icAdlNqXVamTLwibCDX6gnHQX8JIY7vEw2+vcqNlKG5F3jSiNbNBqhorR2Ty+ef0Z2iT2r6xLzZ511X6J8i3Z90x454y4XdDDs3QMN9HXgd+EdzIGEBw4OyrS/q5fifwhvA3S6ic3Flj/DWD3y3tHzh3cB9peULN/DWD8x1XJ6IBmcnM/m/ANOTmfwBiWiwS1jTqOv/gN3UuAkw1W5q3MSo679oheU1CYmaNLxmtySHoZSwL7Fbktcj3ddRRI4RqNYEb0mPsKYqugAAIABJREFU/y6EtjeqfcAWlW0fBQ72hWMFgOas1T+XtS5DETJaUffj/bpgA5Cv+XDqBNLrIF6TiD1CoZBTlOWxIly7Lj/+6x1ZyG1J/3UMXrj/14FK0FqWQN1AtMUNuP3XQxu5A3sWX3j6dsliqcZTxV2TZs13//BwuscfYbT/MFJZa3PU7H46cHRnQ5PJF0xUdfYIj6CmIu1xKvCEGfB3+TE0TTt4p9Fjhk1+etqutm1vrAnxj6Dfu7mmlJoviEdCg1zXPQNACGFKKa1iLiMkjLTxPJ1KpQbcc8dt+qRLL5lBJZTjC0VXeHkU89l9gBN9wfDu3Z3TysJodlNjX6l73xZOKYjQXjdq+x3Z3T7spsaAoxsbuB7/G5pTvFUrF78pGpHjJUT8dusMoZL3IVT3yG6NhItWL4WI6dL5wEEzpdCiQETH2UDAAqScDXT2IHtzgxsuoi7rifzF5xa/9rttC1ayXQHIAnk0fVek/ADpzgOyElJtnlCdq3vHgdhXwnOadH8xpL21jpsScKERrZsPUEo2rMWvIcyNS5rxcatRs2GNm31NCPGXVdWp9DaMVln3HM0tn2TI0la+SLxXVOSqMjQwzVs/8Izu1klm8luhQsQXJqLByZ2XVwp33wK8wHZGXf8eJxV2anEMxZg8FEiAuEXqvilo2r6o6zQKNSGbCrzuC8faiRDNWWsDVKjsEOB7FNtyii7QgMsF8lQfZRsIOGgXBkPhmwCK2fRaKELE+8BetCy9WbrOX+RjV0Zk2fbb5z6Gd8pVaB4P9hb7IJ2yqy9f9FFp8z02R7H9Rtz5waKzgfZcZQXHTxw97H7+wAr4w9j8B5HKWpuhDM0MlKFZIYSTyRc2A+7W4CdNsI8Q4g3gWDPg79JnZUk6H5l0yYU3ffrJxwdtv+POuXH7HxC49/ZbvjjrnHO26t9/wFfAITXhYB/gUuDxtmz6wfVHjHry6399+jMw4YcFP/d79rl/+N58fdacnxYsuGzhokU9do4s5rMvAA/7guHp3S3vydjYTY0HAXdL3bsYp3y5EExAyo9QSe06VjQabcASRzcGSd3YWy9ZxyFlquCLXiukfDdgZ65H5ZysntSdl7daNQJOFTDAhZvrI+Y3AHZLUkdplR0LXLS6xaDLVB7sFWBun2jwsp7Ws5saBarJWBTduAXpzi6hJcuasa0U2iggpMlyqy7dLXTXnqNJt5pzc0F40bTNQfyMdO5Byi9RQpFZUS72z3kj15U1755RJxsSZfsdKuQMb2JItwyy1TQ29Ui5wOcWD/NHanrtNZWWL9wTRW7Z2ls/8IPu1klm8oNRNTWzgPMT0eAKTDO7qbEvqpfSTOCvVcIAgJ1aHEIZkrVQ3UJflF4zj3SPxC2fiJQJNH02Qr8RId70hWPtE4lmVZO1DSrpvxcwF2VkXqoNm246Z20KPKrhYuAMAqSLtpMZCs8DKGbTRmWbvsAoXzjWVMym3wMe1j6f/ZqzcP6Wbfuc8pRn7vSnPIu+/b6870njbX90CELEURPJXYHr4mHz/Emz5k9E0d074riJo4c90Ntr/XvAH8bmP4RU1toUFRJ5Hjiqo6HJ5AteVBHjaI/AL4QYinK/H+rszSxJ50ei8htjK/t6UgimeDXKTcuW9ltjjcSNwCWxkFmsNBvbCvXAjl+yJBnt2zcxw0XMtPHchhBdFJ07o5jP9kc1nVrLFwyv4BXYTY0hYKjUvbtK3XuRZluTgcj9D08e/NmXX23kOGVz/vcNTW+9/PzTaJoQbjkDfISU7/vqB9yBmjH+U0r5fnWfOasgUGG8hpAZOCmds2oq610UC5nTOo9veaulAduhmnq1AG/pgp2ANTsXxdotyQRwI6pS/AyjJrHKZmnLVG3Lg6j6lMP7RLv2uu+IdGs25JXlp0vCW3SFVkQJZb4GzImHzbasVbgZ8HZUdLabGnWgHuiLpu8L4nCkuwjpfl8ZK1k9uJmGjAQd6zNcJ4t0hyHdDYB/VsgF072JIe3FlqtjbABac/nZmnSbQ+HwuN6sX0Vp+cIpqHDWxt76gd16W8lMPogKn0ZQckkrMC7tpsatUEWtZ6Jp96AS+duhJhfTpde0USoZE1AdaZUXXi5+J5BnVta9GXg264mYwMGoZ2QEytDdUBs234N25YxLgL95cJ7z4B4IJIFN/B1ykcVs+lZUXml7Xzj2bjGbjgPLgP6+cCyZzlk6ql5ph1jInN3WmnrMwndQhen2VeXjBzaPh81PJs2afxlq4tcRh00cPWylRby/J/xhbP4DSGWtdVEv7JeAIzsZmvWB+wU06YJdhRBzgaPNgL/9xbEknQ+g6mFORIWT7gEe9+sMtl1e1wW1Hk3MAc4IUPoclVsZj3pADaoPJ7zlC0XtTL7wKCquPTIaDKw0H1LMZSbhOv2Ebb2M6mo5BCX1Aar17g9SN1zXMC/QC+m1ge1fmfXmo/c9/Gh29rvvf2xZhca2TPMZwMRK984tjZrEFCHEbajZ6itSyhVmxccdf/yO2dbsa3bJnjht6tRrKoWobwL7xELmJ0KIk9bsP2DIoEGDBs54eeYzwJz6iLlC+CeVtfYBwvGw2aVQ0m5J7ozSg5sM3LWyuo5lmfwFqELKMX2iwS6tDCqqBn8CxiDlJjruKJAvOcJzU+fOqVmrsDmKELJR2Az0qHpgZ5p0VMjodJQ22V0pAjMDbpsv4BT2RTGn1kXKjUBujZSDUcZ2KaoT5dS2QHwtKfRoNGT2ythkc7nxEvFAJBSM92b9KkrLF/ZBEUlu89YP7BwuakelIPViVBhsbCIaXIFhZjc1XgxcjhCPIMRj0hNYhBDjUPfxmihvYSrwvi8cWyEiYLck+7iIa4C9i5ovXBZeqyKLc19t2Gyvf0rnrI1QeRzXoPyOhjwdeF/ALr5QtF1Fs5hNj0MpbJznC8eur3y3P3CRLxwbWdnXCsam2Joab+G7VAoxJx42T05lrdNQaiCfApvf+cEiB+XdXNJx6MDOE0cP+6OxGn8Ym38bqaxVgzI0C1AFm2VopxyfDhyqC6QmxHqouPK9VW9mSTq/ZmWdw1Cx7XuAuQGPqAcmlV15nCspeDWODohyc0Wqfz9UPqH6cL7jC0XbX6aZfGEMnRSd7aZGP8qIrFP5DAVMCRLdOxbXuVtI95+oeHeDUdd/hcLJQlvbJkj3JT2fegll4E719xkwUEqGolhORyZ//nHfxYsXX7XBsCHnGjWJdl01IcSdUspTOl+362+88c66urqxBxxw4NCQGWhL56ydpGSyI7lawrLkksW/jFhvnSOklMev5NpPAEQ8bD7beZndkvShQiy7o4pB3+68zrJM/iDUbPTPHYU1U1kriNI1G4PKIX2JlK8FZeFoAS8a0bqXOu+rg6LzeWEz0Kswnp1p8gMnSzikRfqHh2ThmVBN/RHdrptsiIM4HCEOADZzdV9BCmHpbvkDhMigqPDfVT7fd27PkMu2ClfolhTan6PBwCe9GV8VHZWhvfUDu5WsqSKZye+L0r07Ie5k3kW1GlgT+E66cizI3TDMHxFaGPXCnwrM84VjXUKnzVnLj/J2TgS2FtKd53cLS3Tp9BdwO/CEUZMop3OWFyVSez7I630462nIgyQ8LuCojs9HMZteG5WnmQvsUz1uMZu+H0j7wrFzoVtjEyziebMsPGugwn4ayvBvAZwXD5vXT5o1X6Bqyy7seBrAFhNHD1tpc73fA/4wNv8GKlpnL6Mepq3iYTMDkMkXBgEPCijpgu2EEB8BfzUD/h8BlqTz66PUmHdFVcff0zcWXFYJAZwKTHSk9JZcWYpozku6YFdUYrr6cL7nC0W7UHozuXxISPm15tpfGiXrnygDo6HyJQ0oY/I98INR1z9fzGd3Bc71BcM7r+w829JNRwjH/ruQ7hvA0b76AUNRD9laAFLKE4YPG/bYizOmTh+QqN/QqElcKYS4CBUiWiSl7BK7DgQCO912xx33HvSXg19f2tQyx+f3uyEzMFTA4W+9+cYu48fucwZwu5RypVX3qax1CEpZuIt6AbTL4l+N8tbON2oS3wIsy+T/jPJCdugTDTakslYY1cdnd1QR6EvAzHjYzNqZJg1V3/OKEa3rtjAyaxUuAtYPm4FDVjbe7tCcaR1RktpnNRS+EEKcbETrVjoTLiUbokV/za0gt/a1pQdK+AHEG2j61wjNjxDrADWonNkCVM7kE9sXecURnnnRkNmtQevxeMsXVkOfYWAbb/3AHjum2qnFHhvPsY7QrtSQH3gFNwndq9QopAxgWwGQLSA289Wt2a3X3Zy1hqIYZUeh7qHHgXtrw+bnAHZLMo6apO3lCH1KUTf/ghAGyGN9OPdpyI0kXCrgio4tLYrZtA9lIPqg8jTNle+r1+kYXzj2OnQ1NgBWa8v0NuHbD9gwHja/SiliwqeoduMj4mHz+4rBeQzl4VXxLbDVxNHD/iP9mf5b8Yex6QEy1ziIYmZL3NJwpAwiRB7N+w2+6Aci1P9ngFTWuhNVwLh5PGw2VORmjgDO1AVFTYgNgQuAOzJFR/JrQnN9VAz64b6xoJXOWQHgcJDnAmsh5c9Fl0EhzVniETyJMjAf+kLR9oe8kgdYF8XSGQX0czTPxlJ41tSd4qkC+R7KS+nxxVDMZ6cBz/iC4ae7W15JiJ8u4RppmLZmW7GOCd6OMAOBRMvSX04Ujm0D1xg1iR6Pe+ud92z38IP3X2gYRs3Djzyy0UEH7H/XV199dauUclE6Z5227157Tvr4o3kP5vP5+d0Zqs5IZa2jgCXxsNlj83i7JbkFcC3wTV74HykJ7zTgrx5NrIEy+jZK+mVmPGy2h1wqhuYOYKYRrevWoFUUnV8HRoXNwPJVjbczkunceA35YEwUN0YpdKeB84xoXbeyQvBrzsbMLr4K5YVNQBnLRaj7ZarU9M/RPINR3ufGrtDHFn2RIf629B0C+QHKCP3U02/aEaXlCwejFAzO99YPvLPzcju1eC3gIAkeNM+PrvCOlEKcKMARcJdQ9/GXopirEgZeBo6pHrtZiYfujfJiRqNqk+4BHq8Nm11CkumcpQvpTPS49oW6W14ihXY+Ht9NAtlHwDG+ULRLa4ZiNn0HcAKwnS8ce7/D9+ui2nTX+MKxtur+6WRsiq2pXfP4JiPEjfGwklxKZa3LgYkoIdKd4mFTTpo134einP+5w+FfB/aYOHpYt4Xdvwf8YWw6QbbM34ZS7gyc4l5I19dlBaG1oftezPrXWlgW/tOA0fGw+XZFPPN+AVFdsGml5fKRmaLzA6rr47mohOJ1wLS+sWA5nbNqUXHl00FENFzHI93FOVfzaMj7wro7yReKykoYbEOUURkJRFGz7+9QM6tPC/54f4R4HxgbDQZWKUtSzGfXqGy7li8Y7pKrqMjNPARs4nr9E6UvdG131OcV9tmaOh/HXizgXaMm0R42WN5qmagHL4qabX8DfFUfMWXOKlyxaNGivQYMGLBpyAw4AOmcdQXKMO++qhqcKlJZ6wRgfjxs9si6s1uSwsZzfEH4btcEvwihvY0QzwGvxcNdj1NRBrgT1TK6W3md1VF07glN6cxTEtGvPhbZrnLcvVDx/4eBe41oXZecU3cEgUozuF1RhmdvYDkVwwN85Jo144uacR6S5/zF9DeoHjGDUd5vIxUPCDVJ6fJiKC1feDoqTLSBt37gwopkzC4StkdoLroviBD7oHJ9U13JjIz0Hg3sgMrj/AxgNzVujXo5n571xZ/nVymiWlRt2j3A+7U9FLSmc9YwFCEhBhzhdUub6MK9TSA0pHu8LxL/e+dtitn0hMq+z/aFYzd1WnYKsJcvHGsvYu3B2GhteL9z0H6JR4Lbg+q0i3qOhqOKtx8EmDRrfj0qvN6xLcfdE0cPO7m7c/o94A9jU4G0cx4yDVdTyp8OrrGydUt6mFxgKD4nPdMMRvdqLembAA/qgoImxAjgkpzt3OVIDkaFy35G0TLf7BsLytZcbkMJN0rELoCuI9M67pM68t6Wsn6KhlsfK7fORiWmfajCti9RN/VnnePxmXzBQL0ovooGAwf15nyL+ex5QB9fMHxW52WVYrxnUYybI5xQ3Vr0UGezwj5bUxsi3Z1wy8lWPfItyvMCJZXzXn3E7BJGyFmFqjzK/SEzcAu0N327BxXu2D8W6p0KQCprnQm8Ew+bH3f6vhbYV0o52pFsC7wVdbMfC+WF3gpM7uyJ2ZkmEyU8+aARrevRgGWtwomoycQeYTPwmx6mpnTrojLabYlY6MYOxw8A56GMx1lGtG6FwslVsdFKyQY/sAvK8OwLtEpNn1X2R0aWNL+BEBtVpYsqHmw/lAe0CeoFKVAsrg+A2UZd/+Wl5Qt14F0Jaal7ZoDYHN0bROibI0QTyqhN84VjKwjNJjP5I1Eq5ockosF3mrNWyF/K3eZx7aMK3rDraN6fUMWxj9SGzS4STVWkc1Y1D3oF6v64Qkde66V8MGALp3S+cMtHoLyUSUZNogmgmE0PQRnR2cC+vnBshd+pmE0/D7ztC8du7nCsLsYGINuaubuE53iEqKvqHFb0D99FFZIOj4fNJQCTZs0fjmJaRjscbvzE0cO6LTH4X8cfxgaQJctLy/wnKOdXqdzqCB/Z4DCMUjNm8RfaAgM/so36iEewhhDi+5IjT7HK7o4o0cF3gBv6xoKfFXOZWBntNAdxnItYE3A15Lu6W77aa+fKwLYFzT+mqBnrRMrZazTkHOCLzsn67pDJFy4G/gYM70nRuSMqigHfAnv7guF21lDlpXMiSm7mMuAmo66/u7KiziqWt1p9gC1NWTxUuOVyXg9eBnxfH1m13ErOKvwZlRMYETIDC6D9YX8KFVI6LhZa9X4qzLHLUR5ZGpWc3gnIADPKrtwBZQDH94kGpd2SjKLCnNsDF1fbL9uZphpUQvxKI1rXYzJ9dRSde4LdkhzQIoJfSqHtm+hGtcDONA1BhdaagPONaN0yWD3qcynZYAA7SRgv/eGjiprf9drZf3jKbXcCc72JId0a80qNzFao61MvwUVoQ4V0NpeakcHrqzbMm+4Lx35a2RiSmfzWAp7TBT8JFV52AqXsEt0t1YMY4atbs7MCxgpI56whKE+vL3CkECKjSfcuL+WRQlGWd/OFog0VyZvxqN/1aSn0+9C9b6HarG/sC8dW0NOr1Ns0A1v5wrEvOxyvW2OTb033KeL9BSEOjYfN9vBzKmvdgaJST6+NBC9AkQRmXP7at3nUvV2VBmu5Ztzmr7blWj8EvpFSzux8rpXSiCeAXaWU/zN5nj+00QDS31/VG0Mj0ciZQ9CdPP7iYgqBwZQ9kU09MNSR3JcpOu9YZXcG6oHYNu4pnx7zODvlctmv2/CkSuiXu1KGveW2aYG2lnv8belGr50bBwzM6+ZHBc0/wBX6pv66NW8y6vp/2EtDMxxFtzyzN4amgkOALzoZmghKjfdCYFejrv8NKymu1Ja3Wusvb7XGVT7jUWGEmR4hP9BxGuoj5ne9MTQAITPwLiqpen+lDoeKN3MoioRw1Uo27wiBEmJ8ARX+WgQcHg+bJ5Rd6UfN8I+s1tIYNYmMUZM4HzgIOMpuSb5otyzdERWiOW8VhqbqfV37Ww0NgIM4SQotgpqNd4ERrWswonX7oCRsXrUzTSdVqNO9hjcxxPYmhrxqJIYci9DfFtK5r+wNjgCeBhaXkg33lpINu5SSDd4Vjl3Xf4n0+l+Qunep1L3D8Bh7oXnCIBYKxzZFW/ZrUcw1imKu2/u0OWuJ5qy1RXPWusOriRm6IC5hXceV77pSDvC4pREC5gvkVLupsWvIGuXNpHPWSSjv91NglBBiS106N3gpbybUpGlrXyjaAEoGx6hJTAW2lmAj3R9xnRFIeVBnQ1PBlihFiK+6WdYFwUhsmYZciJSd3xcXou63cc2t+Q1R9xATRw+bhSKoVFHzpx333EpoWgQlJroChBBRFOP0/2qX2v8X+N0bG5WjyXfpMtllPSDvHwgIzLZGrNBwXKMGIV3sthbytvNXIB3QnB1jnvKCsMd9sSi1ZbbLTdIpree1c4v9xfS7gWJmsrdceEbA1UZd/4ONuv7Hpbw1U4qa7waEODYRDf7U27FX6NUPoMIDj/Vmm2I+60UZp8uq39lNjRuhaLsxYJRR138FNpTjyqCU0ljeao2vGJZ9K5dkRn3EnF4fMafVR8zZ9RGzCMxA6MO7E1VcBS5AdVM8vPpFLGQWUQ/emHTOOrOnDVNZa2Aqa01Ehf6GoRLly4C34mGztCyTXxdFx53QJxrs0mbAqEn8bNQkDgXxd4T2DG45j1teVSL3AJRKwl2rd5q/wm5J6g76VsDPnQshu4xRseD+jKq3maO7pbV+00GF+NgjmOl6fNFCsM+fUGG2IurlmCwlG/5uJ3/cu5hpOrCYXvYu0k2hefZDNx5AN9bz1fTZQEh3mEA2gAyjiBUX2E2NU+ymxrvspsYDW9OprZtV4vx7VBhuFDBRCJFwJH1dWOxIZqW8NUNQXsgg4K6KZ92OdM4ahFImOAfYWwhxixDiYa8sDfXijBGqNmsnXyjahZRh1CSKePw6uhHHLb8hnOJNdktyh26uyBjgtc6htVXgMWD3VNZqf3/GFYnhhMp/71pn3XVD1WWv3nftNa5Tbq812+vUSwdf9urXNuo+RQhhdtj3rqj38paVsf3P4A8hzlJupTkax3HYbPdj6du3H49Pe4lA8Res8HogdEq2RUnqmE5ei2v24rJec4CUXO6Uy2jSEZqULQI5T0j5sCadVzvnWjrgYuCdRDS4urOZE1AP8oYdWwesAocDn/mCYUUjbWo8CsW2uga4JmPE62m1dubXOLPwaqxh6KJUH+la4d8Zvkj8x2KmSUMyEJWr6hVCZqA1p/Ifj+WswqshU3lpsZCZTees3YF30jmrKRYyJ0N7YnZflDFaBjwSD5vtRYeprHUjcNmyTP4qFGX8b32iwR5nr3amaWM0/VCkXBf1oD9mtyS/A642ahI/dlw3axVqUUoFu4UrpIbfiF1t4VmCCvOtEka0rgBcameaJnvc0nO6LJftTP4aI1rX6z49wCcacn3gWal5DvMmhtwMzCmmm85HOieDOBrBUbhlKVz3E5zSCcItT/MmhrQTKLz1A4ul5QuPETAX6T7srR94RnPWWkO4zl91Wb5Cl+V1/KVsq5DyG4G8XZfOsx07syYz+aNQxvq1lLfmjppSy4FCsbXmAo9UcnZHo4Q0pwBjhRATkPJoH6WFQoWMHwRO7FhD0xHFbHp34HqEuN1Xs8bpVQq83ZI8HTjTqEn8VFl1DCpv12u4QnscuEyT7giUxwW0C8ZOWbo0efCQoetc9/13330ghPgU2N8fjJy9w6EnvQKEP5gxmUJr+qq+Q9e/u7LpNahcFFLKZwCEEAGUMsX/DH7XORuZaxxEduH8bllnFdx831N89MUPpCx49qnJSI9JyXFxXJeAm0PXvYCOcNU7Rwot5QrtOVfz3BSNRFbZpyOpJO1fBjZa1ey2IzL5wgCU639pNKgS66tCMZ81UGGHfXIlucgs5+7VcPcoav6bih6zGq9eBnzZMZnfm5zNCsfJNF2J6/zgq1njkd6eTxU5q/AkIELmikSHyix3tpTcKFVR6hooqZIZ3THJAJpb8xs4kseBt/pEg3/r6Zh2pmlHlKz+sUa0zgLFXEMl2C9EFUxebdQkvgfIWoVHgJ/CZuCy1T2/FY7bknwsJUIgxIJENNhZ6mSlyOSskzxuaVevLA0AzjWida/3Zrtia2oocFWbHrgCKaf7pH2+gAlIdwxuuQkpP95ht71m/fBDw1GLv5r3HsrzSaBo4VPrh43qm2nN7iKlHGsvX/R3YN+sr+ZThLYTSuFgCirf8Fm4mIqh1C52RBEQvq3s52Ojrr+bzOT7oPovDYiWMu/puEeWdP8uJa95JYp9+VchxOfAjUg520dpK6GM0GXApI41NCucYzY9HOVR/RPYwxeOtRskuyW5DcqITZe68QhC+wXo5wvHVmir0VPOBiq5QSlbvTgvhyORAzstq0exLWtRVOi3hBAJKWVy0qz5h6JULar4Ghh56Zj1aqWUvRJI/W/G79uzKWa2XJmhaVy8jJffeJ+z/nYat93/JGU9iF128eISoogQHqTUkDgIN4/m8VzQ5qm9rjfJbIBlqj/Ng8CFfl04igpN9SYvAsVYyOyO9ipQD+m3qErqLqhoiq2BorYmAAIaYzRYXHAYFSxnHxLICDAyEq9b0Jvx9h7iHoR2J5W49WridOCbnFXYO2QqCndFpWFP4DsBVwk4uiZsTl3VjhzJzoCmC3qserczTeNQoYsjjWhde+isIoE/y25Jvo56Wd5rtyQXlzzmW+jezVBFh78ZdktyTSCLEFvxW1oKCEFZN772lkvHA/fYmaYJwDlGtK5HmZzKhktBbuJ3i5cWhXewi7hALxd+RrrXCLjXV7vmuig22qfexJALSsmGC1GsyAkSJiW/+2Lt48++KJ9qzX4njZqhITstA6Vcv4IRGQO8XdtRfFaxtZ4HnrebGsVZF122Z3MqdUkunx9+45WXzR08cMBzLuLwtDe2d8YTuenp+283Zr31zrzHn5n2CEIcJITYAbgLKc/1Uzrnw3kfHX3gIYf9uHjx4s6il+2oaJw9jzJ8B3Y0NABGTWJuxeCcievMQRMLfJGa1enfRDxsylTW+tCV4k/F1lStLxJv7rBseSprnYEyKvenstaIqiGZOHrY45Nmzd8NlTMFVW93qpTy5i4H+R/E79vYuKXhK1t85qW3c93FJ5HNtYKUCKeEKSRSaJSlF03aCGkDAsdjUtL9pwEHp3OWB3VtvZW/3f5bE2hI8Gps0dMY0jnLpWJ4gKKUFIXAB6whJT8BX7RkrTLKQJWqH48gj1IVXgD8LITMaLAPTumCUMm6CPhBwC6d+878J+CL1v5SzDTFfsu2ITOwLGcVzpRS3pPKWiUUo0ygZsy7CcFmwLR0zloaC5lzetrYQQ1iAAAgAElEQVTPskx+G+AsYAshxI6prLV7PGyuEKa0M00noggIJxrRum7JEBWj8ybwZlt62a6upj/nKeXn6m55CGZgpdItq8ApLuI+lEfVLTmgNzCidcmKwTwEmG1nms4xonVvdFynmE1HUXU3ExBia6TUccvv6jiypPs31aTc1h/vV/UOd0dR1UcJIUbtvc++3z3wyGNxj8cTQtHw/R6/iafc5nrLbSUhS596pbO5t7BcePsM6jGkaNT1l3fc9+CLlQT4hC022fiyc04/eRsNeWdNqSVS0v3po447se6Hhh+F185+X/ZHr0WpXhzkp3TFwkWLTnzokUefXLJkSY+GoZhNe1Ckhz7AFr5wrNtIgVGTKAHXF1tb+iPdfeyW5EPAuVWqdC/xiYO2Pap+7rxOy55A/R67obywjstPr3xfW/n/5ZNmzX9q4uhh3ap7/y/h921spAz2tOjFWe9SX1fDJiOG8fZ7n6LJEkLTcAWAQMhypeGJBrjglhDozY7u/RAlD9P23ty50WuuumKrMbvt9t2pp5/ZALhSFWOWpZTmfffec9JnH3/8kZXPFR+b8vRMlOyFQ9UoCQyUYfKKXw1VSCjV2/dQVcquEHhRL4LqR8ngK4bYNijaZ13ZdTVfqfBoWfdT8gSGIsQPVs5Koaif1b/VfzehCv1+9urC1MRq5vulu6SYad7YF61dLR2uVNYyAFcoY3yJK9k7HjY7soj+mc5Z41GdPv8SC5nvdN7Hskw+QeWB7xMNJoEnU1nr9FTWWhoPm59Ump7dAHxvROvO7e3YSkZ4V+BB3S0/A9xktyRbgSuNmsQXq3OOdksyDAxMa6HqBOGn1dleCLHuRiNHHrbf+Am/XHrxRRjROgk8bmea3gTubWtZNm7guht4tvnz1uEnJz8aBTZDSfw/fPU1Vz/ruvKuF195ddzSZcuP/+aHBfcXfbEx/kpbaynl1c1ZK7LLDtuOfv3tOWdNvOiC8aVSyfB4PO8B9+27x275d+fOOfChBx+4217ywyfAeIRcB8RrpWRDtWHgP7yJIc3djV1K+YQQIn3xlddG7nrosWlffP2to2vaXbprf+Ir5WfbpdJRHlm+umRb0w474qjzpk6ZfDZwwfU33vzCI49NnofK32wvVe+izrgZRXXfyxeOfduLCzkIod+EW1qIauJ2J/DIytQvOuBjhDhOSv5VbE3190Xi7dTtiudzAirMfVYqaz0dD5ufAEwcPax50qz5F6BkqkD1cLoR9Uz/T+P3nbNZ/tlllHLdxsovuOZeHp/6Gh6PTlvRpjVnsfdee/HwfXej4yClRLht6E4rmpNDIMEbuqzJt+5VqBd+AHA33nD4Fi2pVHDB4qXT6yO/NlJLZvLTgXf6xkJ3A3esTHCyI1ZH0bmKYj7rl6XiL6LcFpBCv7zNF30DNbOKV/529+96oD/K2IFin/0LlfRf2Onvz8CyWOjX8yu2JI9F867ri9ae05sxVgovj0cRHp7xanwihPgM2CNkBrp4MOmctTlKjPSQjjH1SmhyJvByn2iwPZdVqcG50iNLj/hl6Urg/s4ewMrQnaKz3ZLcEkXuKAJXGDWJz1ayi3ZUktRfpLSwBtyZiAbX6+04qrjq2utuKZfLAy69+KIJ1e+K2XQfpBx7w823XLrtn7da4+WZs76bdOnEs4E3RMnaBOXdfCp13/4bb7nNP7/+9tsP0zkL4M6yK/dG9YXZBxU2LAEzP5o3b/amm202pTZs9ijDU1q+sB4p54P8ENeJogpDZ6NqcGZ4E0OWAgghdkO1BRhy4smn3N7Skpp20y23xU3TPF4I8eptt9zyxGOPPLTp+Wec7D9w/wneCy67MnjTDdd7cZ0Z2IVDfHVrWkKIW6WUXZq5FbPpY1Ev8C4KAT2hmE0vAI7yhWNv2y3JEEqUdRPgNMsb+YYecjYAqay1DvCdR5Z39lGe4IvEu7SE7qwMXRXpnTRrvoYq9uzYVnvHiaOHvd2bcf+34vdtbJq/OpBiy1M9LXe0IK43ymtzP+bOux/giWefUwEdV+J1CwihoSHxyDJSukihvQvaJB33rYqrTiXuHJNSzhBCGICzJJ3bB7jwgH333n7O7LeuoBeCk7CCovN20WCgV7LldlOjLjX9dVxnKwFjjLr+7Z6AEGIDVL5iHeASKeUKYQQhxNNr9u//1amnnuY5+ZRTTi278hpgIDBoyZLFa998441D1157bePEk08B9cJdRMUI3XzDdYMzqaZBL7/62ifzPv388FjILHTadx3wxBFH/fWem2+7YxfABO6Lh81/VtfJWYUzUIy7kSGzq2FN56zNUPmOQ2Mh822AZZn8mZVz2r1zb5pCJrVRSXimG9Le0x+tW/XMt4JVKTrbLcnNUNTtMIrZ95JRk+i+ULIl6UF1txyf0sIHA8clokr6ZHVQNTbnn37yaa2t2QmmGdjP4/Gs19j4y8x9xk+IpNPpRUPWWuuAfzw75Z1iwVoar4nNAl404v3k3bffOv3Z6c8tnfrCK68BO+qCo1xJSKqw6/OVz5u1PRAvukNHZWicUiu/9qepVtdXe/IsTuesccC9Cxb8+MFaa619tBBiFHAScF00GHjfbmrcsq3kvJcvSRGK1Vhu2X7B7xYLQoURXgBe6liDVsymt0N5+Y8Df+0NjbkSWkwDdVVBTgC7JTkCuF3ChwVP+ByE6MnYaKj+SscHZdtWwD2+SPzbTuvoKIbdllSUoavLJs2avymqILgaMvga2Gji6GE9tsP4b8fvO4zmi36AnWlDuv7Oixw9guuto6QHcDxBkA7ggtTwUqLsMcEtYZRSOLiU9ZArNGML3XVmSigXWpb99H3Dgg+GrL1WoOHHBZkqBXL0rru/hKJajp0z+60nUa72GFS9TI/I5Ash4D7g3tUwNFEJTyPlNnh8Y4xY/QohJynlV0KIkSjGUHd1JclfGhv1Hxt+aNA10RYyA+0PS2ydoTx4/32DYzU1B5148ikvoWolBlExRn87+9yokHKN5pbMBGB8Omf9WDnXr1pbW7/dbfc9xo/ceOPYn0ZstC9waTxsLuzm+HeghE4vrnxWQCxkzkvnrLHAjHTOOsx2ZBMqT7NZZ0NjZ5pG63CMDeMszRzv732hKKi4/Bc9tQ4wahLzgHF2S3JtVBX5pXZLcjLwkFGT6JwTGwdMM2oSkky+2qNmtTDp0ks2/uTzL/b2+/2JHxcs+PiW2+9s2H7bbW6bMG6/54YM36D81dffcN6Zp27TnGoZbnj09NmTrjnwzttvfcXSAntNf/jRgx96dPKe4/bf3/vVl18ctcGGf5rrSiZrgr0kDK0JmSttR70SPI7KUzyI7t3WWz/wduD2UrIhgaKnT5CIW7LpVBrdF9Dc8rlrrz1kGor2+wNwQDQYsAGkP1zr80npc8ttVrk8qqibVxV0c0Ndlk+IlrNDgPvspsY2YKo0zAaENg2YB5ywGvUyGwK/dDQ0AEZN4l92S3In4Gh/OY8r9K2hq7GJh003lbU+QenLXQXcUWxNHeSLxGWHdZxU1joG5dlcnspaz8Ur/Xcmjh720aRZ8+/nV6LJ+pXr92gvx/9fh9+1ZwMgl338LOXChBW+Q6Ns9APNoKib2MKLZjfhEQLdtSj4+uOVJXAKlD1RhCxhONnP27y1OwKjhHR306Wzmy6d4bosewSy7Artp+8aFnzYd+j6AYloSESDvQovVZHJF25BJcvXjwYDq0zq202NA4FXpNAEvuBHvlD08J7WFULsiQqJfQ8UZaebYvDgwU9/8+2325mBwBAppdVhu8HAWCnlrUIID+p+KgE8/8wTxgOPTH7pyCMOT+6859iHly9bNrKuvs9wYPs5c95Z6905czwNP3wvh66zTvP5F140l1+7H34FzK8UdJKzCn9C0Vi3CpmBf3U3/nTO2kRK+Y+yS1Gqepp20Uw70yRQ0kFroyjC5VTWGg3UxMPmM6u6jr9F0bmSkzkCOBI1q7/DqEn8UKFTTwUOMmoSpWQmfx1gJqLBU3vem0KlD8t4KlTkktB/cNF+8cnSkf5ITZ8q48lOLa4FTpBg5T2RH7K5/PbFtsKu/WsjGzpoji287xqUm3TcxoLwnVsbVtc5ky9MB16OBgMP9uYcu0MHZegLvPUD7+i4LJ2z9kLKvwvpLPYVUi2ux7ed4/FnvHbuAd2xH/AmhjQAFHOZ7Wc8/8JrM/7xfHL9ddYOnnPaSc/5+ww8NpnJ74+S7blr8Bq1DWYgMHzrLTbbdNqUR7cB4UHKA4V0XumNgnXlep6A6mezR3fL0zlLR7plfzk/U0O2Aid1JhBUarlGxcPmzk9OfuTs6268eb/P//XFDVLKGZ3WuwwVonubijI0wKRZ82tRJIhqTdsPwPD/Ve/md68ggDd0G2grzOYELiDRSssxcNDdNlwMAvZSBIKI9Q0OAtcTIlRchMfJu0VPfISAbwVsjNAmRaPREUXdb1qe0OYF3bzCEZ7U2kOGjhdS7hdx82fm0s3fZzKZO5pb8zs1q2ZdPSKTL2wBnAac2EtDMxwlmDgXXyiC0LrNSwkhdhNCnIuK0y9HMWf8HZZfJISY1K9fv+/K5TIoAcTqMhP4K7C9EOJPKEO4SXX5vgceenM2mw3d/+BDxVK2xXv8scccICEi4Zxttt3Of8FFF/WzLOvGoeus83Dl2Dui5F8+B/LpnPVtOmc9W3blbq6Uz0opH8pZhW5lWmIh8+Oyy2yPKj7NtV8Hpdp8G1AyonV/q6onx8PmLGCNVNbaaGXXsaLo/AAqfNbr1gFGTSJr1CTuRMXkXwPutFuSz6OYSB9UQ6z82n2zWxSz6XWL2fSFxWz6E5TBq0f1OxrsCM80KbRffOGYK6VMZtPNNVbLsjtLwvtszhPZJ+eNXS+FNj0UDm9VW9/nHwXhG21QnhiWBWnI8jM6slA1NBVcAlyUyRd6LAVYFbz1A38CLgKuKS1fOBAgnbOi6Zz1MDAZIc6WmuewYmiNlrIRPt5XSP1Nd+wNgK9LyYZP7aZFdyPlS9J1v5vx/AvPvPDKzBlSyqPtpsadE9HgsygvYtTHX8+/fO2h62y05oCB6+EN+ND0CUI66wFP202NV9pNjev3YrgjUDnIniE02rzha1Dexiy7JblPpzU+ATZOZS0xbt99bjr7jNOtUSM3qu26I65B1d7sgKoTAhRZAHV/VjEUJZ30P4nfvWcDIJd/fj2lbLunIYWHsjEAvfgT5dBwSmULGw+Rtp8oeyLobhu620Y2MARHDxJwWj8oeGJHoQoAD0HFcm8B7qkyqZKZvAF8LOCGAKV+unTGadL5k0D6y8Iry8LznSP0Wai20e8BjbVhU66uorPd1LgFqkj0dumPOAgx0BcMH9eb61AtPuv8faGtbZO2trYX4zU160spu6WTdrdtoWX59QXdDBqUt5gy9bnzj/vrkSstPKxUjvcDNqh8RqDIEFWKeiMqZv9B5fN9LGTKZZn8GOAOr8aRQohngKNMx/oUpSR8d3eqzRXCwLXAdZ3Ybu2oKDrvDez5WxWdq7Bbkhug8kutqHDo4yktPB2YnogGH4D2Jl7ro7yXCaiW39UWAZ9VQ0TNWcvQBZdLGOm6stHr2qMF7oCS5kMK7SNU19e3gHdrw2ZuhXFkmraW8ACIpb5o7U4dl2XyhcnAvGgw0G3tVm9QVYYGUnl/7a0I8XdUb5pThRBHoWbxE6PBQPt9VEo2RKTHd7z0Ba/Edb2ikPlWIJ/Z7YDDWw45YMLO+++3z4ZffjN/5Fa77NEKkMzktgkKZ9qtN93U5/Szzjo/Eole135+TY3roUKv66NyIk8Zdf0XdR5nMZueC9ztC8emdHcenYs67ZZkLSqsWwTOMGoSmVTWGoaqdRsaD5sN223z5/0njNvv1OOP+ev2HcNp0EUZev1qS/FJs+bXoPKc4cqq84ENJo4e9u8oU/x/iT+MDZX2Aunvp1TFOB09itQC6KUkpdD6uMUmip4oXruZgJOi4FuTQHEJ4GKZQ+YX9cg6Bs7LBu7YPMbaKKNzKEo36u/ArbYrJwAjE9HgChRHq2X5n4CTNNw9BKxREh6tLDxeR3iaEOJzTeAXMNKV7C3hvU6z0RVgNzWOQb2YLpCB6Gsot32ULxheraK1zlhdBYFU1hoMnKO75Y0dzfOXoGw7AJVAXUXBYfdI56yYUCGp66R6YDdCMeZSUspPSy6b6oKJuiYmA4OQ8lVD2gs80jnMiNb90NN+K905L0Ulb1d4uP8Tis4dYbck1wWOQ81yjwEOSotgX4G8OKK7H6GMy3gU9b1qYL7KYegoY7tph89GQkqfh3JBd0qNJc37iqN5X0b1gFml51vMNA0C5glVeHiBEa2zATL5whAUi2xYNBjI/9ZzbWv6ZXNNOu/b3lCx7PGfCjQKIU4EbogGA+92GU8usxYqkZ6lXNztyiuvPKIl3Tqu0FZY//Lzz1r46NPPrbnXrru8uv7Qwft5E0PkkYcf9ubQIWvv+MVX33x42wMPB1HU8QsS0WA7Bb2is7YpyvD0QxnfqUZd/+aKUc8Af/aFY93S1ntSELBbkvujyCDn5DyRt1Akg2NqI8F3gItHbTRio0mXXjJtr/0mdJHASWWt21Ge6fR42Bxf/X7SrPlXojzCKg6ZOHpYt0bwvxl/GJsKOvazKXv7GMK10JxWSqH10axFZAODkHYr8dJCXKFT9CYcv2y9WUSHXNhSFGMlPOnB/dGDu2kwHM2mslZ/1I11vJQyXJLYumD/+kjwxZ7GYLck15BK7+swYISL3lTWjbVKeHJSiDDq5v8G5f5/Xv3Uhs2ldlPjAShp/WNkIPo0KuzyuC8Y7tKxcHXRW2NTNTIomvSNoXLrwUZN4upia2oQMNoXif/mfABAzirchVINHiNhqJRyi7LLZUIQ8GiiD+BByqUCt02iRVGtqe/tSMnuZszrAmM7MoUqis7PA7PC5m+f5XeE3ZK8A7jRqEn8XMymBVJukZbet0KU8Qi3jJQzpRBX54Xf4lejshmKCh5AyQjNAz4ynLaMR5bHOrrRGIrEVrsNdbE1JZDynwL5BMrIHW5ElYpEJl+4F/g5Ggxc81vOM52zdgQeMuyc9DhtNW3++EtS078Ebq4SAFYYSy7TF2VoPMA2vlC03QspJRsCwK4/NS4+e9CgwX/GLS2WXvNbvP6dkPJiX6TmqmQmr6Oel0tRLT0mVpu0VVHparsDKtRrSk1/G4//XoQI+cKxbgkRK5OrsVuSCZR3uiinhzdCiLnxsHkBVK6tosif7ovEV/D0K5Obr4ABwPh42JwO7bmbn1A1N6C8pQ0mjh7Wm3qf/xr8kbOpQBihsqjf6FzprxsjtYCjyWK7B6HhoEkHhI4UWpumG1Ol1zw17V/nS2GEyvFwcCowwkGrtdF/ac1mR8bDZmM8bJ4HDChLZmpQ0oV4IZW15qay1tgKLXIFGDWJpb6axP2+msS2EjHQ0b0lj1taFnSybaFy6z98TuFypJyCoksegQqXJVtbUq0SprR5zFeyvrjHkVwoJR5+m1zMaiOVtQanstZdKENzQzxsnhIPmz+B0hjzReI/A4MqD+K/gwuA9XRNHB4Lmd+XXAwJSVcy0Ova/Qyn+JKOM1uizUOINpQiczqds55K56yj0zlrYOcdxsPmd8BXqaw1tsPX/7aic0fYLcn+EnzS41+zmE3fLOEnF/GABF+b8EzO4ZuZF74t8vjmAd8g5V1IORzlmR6CejklwqX0EeFSWvjctiW2N/S0o/u6Y/CtEr5IXCIERrTuNuBMYKqdaarOtK8ETsvkC6ulAJHOWcF0zroDZaRvsL3mjVJomr+tJRQNBq7twdDUolSdg8AuHQ0NgDcxpOBNDJmxzqbbbgNMkbrhx+PbiVJbUVip40vJhltqC8ktawvJx1De37+A95OZ/C3JTL6uuh+jrr9j1PV/w6jrfwJwIkIfCdISxdy5dlNjv9U5TwCjJpEExgIfmU5uuO6W2nOVlfDZecCtxdbUCs94RRm6yj67K5W1YtCeu+lIqFgP1Rr7fwp/GJtOKBOyEaKZYN9h+OIHAUhv6CmB/AhPcG4qsP7Bos8m+weja9wDhKtJ5tpw8BuJGAB8WUL7OJ3NHQtgu1KXMMpVOYiDUAWfzwHfpLLWCamsZXY3jqIROcTRfQNsb3ArAYMFPG3I0p/DTvbUcLl1abjcepjmloKmnb7H51hamyf4TEn3xwXyNgFXWlLbLufqjc1Za05z1nqkOWtd0py1Dq70F6lvVjmLfwvdGJmTq0amgjS/Mm3eQc0ufzNCZqAV1dztllQ2vzGKsHBYjMKGXln+uwfnwnA4cmAsHNw/FjL7oiT5c6i2A9cCP6dz1vx0zroznbPGpnNWFCAeNl8C1ktlrYEdFJ2P+XcUnZuzlkhl8/2y2dbTXKG/L3XjYAfxYhH9cAtv/zzeDUEIidgUIWwptAeAg3xOYf+Qk3027GRrw+XWfLjcOi9cSi8Ol9JHVM79ZiPe7ylWV9GhKwrF1pRpROs+QlXdH2Bnmu4MlPNNKGmgs3u7o3TO2galfjwCOEAIsbPQ9JSQ7u4CuU9p+cLdO29TzGXCqMnSmsCuvlD0+5UdQxrmVBBxysVvhVuOChWKDAIzgMbaQvLG2kLyY90tbYCS2/kimclfkszkQx33Y9T1z+MxliK0FyrHv9BuanzUbmocYzc19vp9WOmb80ibbk4xXHtTuyV5nd2S9AH4IvGfUCHKLhpuFcmkKSi9whs6LLoFFXavold51v8m/BFG6wQ7tfgCYJQR73dAZWZSBnbICf+aUsrxRYev1qwJToT2JPP1wBXxDrHyTDZ7UxntTA35VNEVPwDhRDR4ZodttkU9zHujZGHuBu6Kh81qF8YBqCKviZ0Vne2WZN9rb7rtirfnzN3/1elPlZDSgxD7GrVrzgY4/thjP2lOpawlS5d99PwrMz8HhqBov0M++/STde+7+67YRiNH8ZdDD81Go7EGFPWyAfixw78X1YZ/FQDtHEbrEC4TKCPTrZCn3ZIcC3xn1CS+rng1V/oi8Yu6W3d1kM1bTxYduZ0r5dUx2mwUieDM7kQo0zmrDngJ1VRtCrAzata4LUod4UNglpS8JWFfj0ZcCLFgVYrOFWMdR70s+1X+rglyHR25qQd3bR3XkFKC6xTb9MAHEvEvVAL427IrpYTnEtFgtLv92y3JIDAeKU8C2QfEfQhxm1GTaIPV69TZHYqtqSeBi32ReAO0U8SPA44oC88ZJd33D2CjaDDQY74vnbMCKE/oeJQx7yuUR3lllQBQWr7wDhTbcUNv/cAsQDGX8aNe9FsAo32h6Hvd7b99rNn0xsBsnNLPlIvrCdjcqOv/CUAp2eBB/ZYTUDVMOvBcWXjfzPjiOyHEHqg82QOJaLBU2d/jwFe+cOwaaG8ceDBK5Xse8LDljzezEgWBKlJZ6ySk/FvIyd6KCuedYNQkPq1c44uBb3yR+LRO23RRhgaYNGv+k/zKRisDAyeOHraE/xH8YWw6wU4tfhV43oj3+z/snXl4E+Xa/z/PTDJptiZNSymlgDuiqID7hrigCO6CIu67qEdxF1QOroDbUVHcF9wVPO4roiiK+4LigooilFJKmyZNMmkmyTy/P54JpKUtcDzv+57393Jf11xpJzOTmcnk+T73fX/v7z29Hdj8IqX8LJNnXs8y/+o4uaNIfAUwvsCfB0gkWo7OSu2ZPEKTsEtlqX8tjbBowtwa1ZujUAMzA7hd18StKFrs7iF/29m1EGKg11uy5fCh+1/39MP3laDp7zg/qB+k0L/B5Tl02CGHDpn7wYcTpJQXtdt3G6/Pd0FNTY327KwXP+yzySY9UWBUWHqhvN08KkfQAKzUBFmPLoakc/JOFJ23FUVT/hZYVR70ddhozGqu3xUIGmVV7wJkWqJjgO88pZGFHW2/vrYqnjpTwHSfyL7vkrlZwIOOPliHFkuafpRmVxQ4LRzwWc5AuScKeIaiciOtgJBwjZR8K9X/RUCyeql2FocmLvM6stlNXurIoIS6PNqcPOLZklxqtFDtCZYUn1N9PLUfcF9VyL9VR+dsRetKUXT3ZSDmSSFOlnC4RFvw3IuvffPgI4+cceTRo6InnXbG7ajvTEOBv9h3z93O7tW7d+3W/bZZMWHipO8L64u38ZAbnUf7Joe22FlnAykX+W4ecufmNGO5FNpyKy8nASlnMStDflsIsfcOAwYcu8kmm55w8223/1pZWTnPUYS4IeT3/lJ8HdlVSwt5ihfd3XpfmEnGBUq37mjgEE8gNLuz7w0gk4htjmJnrgD2EZnkI6hndWejoqbNc5etX6yjFAsKZAufjfa+6Q5UZnRvNUJcDTxfpmXfBp7yBMOPtbnnilSwC3CqBE/GHTzF1lxDwkF/V2BzOCpH4wvkWrZAqbjPBiZL3ZCo3/QUT2nkh3b7HY8qhF0MbBcJ+tLXzV40BEVkKNhVE4f2Le7y+b/aNoJNkVnROjeKtryLEan+sRhsPKWRD5oS5mdWXjbZkkN6lvlXJ++iCXMnVHFXGxWAlfHkdJfgVISQwDHlwY7JAdGEWYkqPDxPQLkQSCk5TcKMYgADMNzuqy8458yRcz+av3kw4D9s7kfzP/nkvbdyAwfsMAKhP9nUtCp33kWX1Z1x8onnjzh69PtCCF9xISaAEGIQMEBK+Ujx+iYlgtkH5Ql1LywCBuiCfXOSZtSgFKFtS9smVL1Ig/O6CkhpMu9y29nqjF4yD0ghZcaLdVhaeB7AGbzavabLg123Z2iIpyIgf/SJfBTdXS6hr2WTZM1AqqOkb0JAadFSpqkwVLmt+uB4nfWF7Spcgn62RAIuIUBKkJCRsBxVcLe8sAjkKg+53jpyd2CIUHI2s4CXC1XpVnP95iia7N+ccy/FASpbzcKHaWpwCq4+TymDhrS21LAjGeFJSaH5KSSOpUwAOQ3pmzfvw3CsOWodctgR8yViBUKo4jCQ559z5iC3y50bMGjHVSefdvpSZ06pBT8AACAASURBVP3q9wGpYw8AEnm0Rc46DRWW8oMM6chddV2PWHl7EQiP856PNaDlvfmmGzKjRh+X2XSzzX937ksKxfJqAOqdZ6Hel0v0M+zs/SD3lN7QTqi2GKd6AqHHuvquM4lYdxT7UAf28ATDK6zG2ipU8fFFRkVNp4STbP1iDUWwGAkcLaEyq3kSGb0k5XW73ALOLykNv9rZ/q1NdZGcXtLkyqU/1JAvAzOMipq1xEWd3/4XQCQS9DVbzfU6ilm2J3Cy1A0TFVI72VMaiRXtJ1Ae98HAzZGg74rrZi8SKM93S2ezJcDm/78QBTaCTZFZ0bqdUb2/uxmRatkB2EzI23JY1ubUnmX+xcX7RhPm6cD3kaDvcwAnQfm9h/zebo2XM+hbAtNAXNmZJxBLmjXAjxKyUhJB1dfcDzwTCfqSVmOtCxUK2rJ8060/TSSSY4UQU4BrW5Mtk4CAP1S267Ch+y8/bPiwgSeMHlW3/4gjox+8/eqRRllVxtGgGorqcXO7lLJTWrBzTUHgCgH9DZfYw+/1VgI0KV2oCAqMKikCJuf/boAPKQOGnelt6SUmaqDyu2UukEPXZVHO4ZP5H/PFZ5+y6OefuX7yVDMSiVisma1rL/3zBdefS5ZoViYjLrviCk1DClvouHXBggULmHbXXewwYCBjTjiR0lCHUak0qr6hRUBQgM9WDKjGwnqXxt5ALmfzIHCIgOcEbC0Eh6IGjlVI+ZoLe7mL/FZC5Tk+AWZlpXjblC4/azyenkC1S+aOyKE3IkS5c29M1KBcZ6t7FNHUQNQCtLhtq7REZvbOCddbac37SWE9kKoM+dsMOJOnTL3T4zEGnn/Kcd+3ZjJ76Zr2udvtfgF4zyirsgCEEPdIKc/r6IY4XmZ3T2mkw8Z7VrxRszTjXYnYxGNntjdCFclY0hwkpZwBuB964H65ZMmSr/5+w+TJzncbQAFSyHkGqoqeiSoh7b4aePy6rWWlaEhL/RMcMGr3uhKoD2lZgZrl90FRlFd7TFZj7XXAqcCWRkXNOvXbsvWLBcpzHSkRJ0pvuCZntbbmhPZSXnNPiETK1woDr2ajSTnEl2nOowg5oEg38wtKBdGE2QOoQ3knqz12q7l+X5QK9aVSN5ajimZP9JRGiiepfVBeXwlKqPPr62YvupS2uZxhE4f2fXtd1/i/wTaCTZFZ0bpTgJONSPW+AB2AzTZSyjczeS7pWeZv07zLmancCNwaCfqi9fHUFEBWhfzjM4mYJ494rhXXfhJ+AnFMedC3Vu1GQdFZSjnIlhyI8nYOAJJI+bTPivXRkFXA/oVZlhCiqjXZUoWarW/v8QfjoFhgdSvq9xdCnNejqvsuqB/JfUZZ1VoFbu3NYcqdhuq7cbPXreXYgDqbNve0uX6CUVa1OhSQaYkGJVyQEiV3s2a27Af8e+6y0yWmaVYdOGzYx1Nvvf1TnNn4dwsWeK++4tLjm5qa9h99/ImybvnyKZNvufUTTdDtl59+fOSiceM+SyRalkx/4KEnt9m2fyHkUxioE+3BPZY0CwKfB4cDvj/aKzo7odFLI0HfVZlELJiV4rQ82jk2Ysu8FDqQk7BKqoRuADXbr8MBEqBOk/mcIbMDW7WSG5z1DZUh/+o8WH08NRkorQr5z7OidT6UploceNiIVHcpVyKEqNp1t92fdblcZR9/NO8wTdOOeeTeu347btTRewH7jf/79dnPvvjqt68XLPjBNNMdasBlWqJDgOGe0kinLRbiqbQfKf808unarGa8bwv9bGDRlJtu/PXWW24uy+dyrwMvro+IbKa5oR8u90IpaUhK9wgbUZistAEl9SqrgHINNAkfSMQXqHDTb8DiYDbeomP/BtxgVNSsV5faNeexUkM3MrI18YSw84cK7Iqc5l4m0R5y2dYdnqrNWqBj6rPVWFuBAp09UDmnJ5OeSKHR4YhI0NcGFKzm+u6oMNpnUnN/iRAHAOOKCz7bK0Pf/emyMtTzUlBbf27i0L7/X6gKbASbIrOidVOBoBGpPhc6BBshpfzdyvNmdZm/I0nxIDDRsuWtqHxG/6qQvwlUdbiEWzLox+XQvCBOKQ/6XinsG0+lD0J5VW0UnaMJc3OkPKskl7xASLuk1R1cIIV2D/BsJOhLZFIJHVVNf5PHH+yw46PTFfIslFTG5yhK73tOY7D213AgSoH3SeCFSNAnN7Sos91ntwEbgExL9Epguqc0sppUIYQYgxq0l6Noxy9KKfNO4nq0hKP3PvCQ4ZZlPb3g229el1K+CGuUobfeaqtTli+v3aZ9aLAziyXN41BJ7aN0TTwqpRzfmpM/An0FcoBQ4ZetJPglZAX8LuFzEL9rgu6aYAehwjRZIcQbqHYHr4cDvkL7gYeAiUZZVYdNserjqUeAJZF8/AMUqN9lRKrXOxlcTBAoVm9w9NcGoXIWB6EG6ReAN4yyqtUEikxLdCtgoqc0csI67tN1AnmJkW81cpp7nq25Twj5vRvU6CuTjLuAd5ByZ5FJeISUA93dev/Q4baJmAf4p5QMzSLOSUtXHUrGZfOi155C2q26zIdzwvUQQvyMA0TAksqQv1MxUaeTZxPg9wTDZnrlnwNtoV2jKS3DElvoC4S070ZoL6X9lY10VGejWGuHomjpXyeN8PkIbWIk6Fvr2XPCauOBfaTmmoXQNgXGFwCnnTL0lZGgb+p1sxfNRD1/oCZOlROH9jXbH/t/m20EmyKzonWvALONSPU0WBtsABpbUrfmJUO6h/w7dXSMaMLsn5fyjrzkk6qQ/5ri95zK5duzaPtl0PuAeAS40qUJAyVg+EbI720DYk5B2gwJA9Lu0n/Ymms0BW8Hni4R+RZdsIXHHzxyndfXXG+gcgXno8Jg9wBPGGVVLdGEuQ1KWflrYFqkSKngvwBsegAjPaWRaQBCiFEoIHwLlQgeBkyc+/br+Z0GDZx80hlnB12+YJmUsnTms8/sAnwppRwIEAgEdhx77rkvfvnllw1z339/9LpCgw3xVBhFhe6rCYbpglF5m1YbaQtIakhdRwaF4Ns8WrOE68tLA591dKxY0gwCw1H3dASqMHG2Zuc+MfLp6pKy7ud3dh71seSbHmlZftn6pBGpnrk+97LY1oeN5gDPNijgGY6ios8GZkvN/QdCvOwpjezX0b5Ot9krUeGfnEDe7c2ndwOeNEIVXSqUt7dMMn4TcCVSDtdaW8ahQm17ubv1bkN+cYBmFgokj/YEO86pNMRTmm7nNi+x059khfsjSy/5mTVgtIlznQXw+RUll7OgMuRfmUnE+gJfeYLhNpTo+nhKlORSR2t2/iq3bW2ryZyeDvTQ3JmWm41s6hZ31eYddvG0Gmt3z2nuV4BFLjs7xqio6bD2yWqu3we4Qwr9XTS9xVMaWa0zGE2Y26I8mzyw/d2fLtsBRWgp2MiJQ/u+cN3sRT2A6MShfTtVEflPto1gU2RWtO5XYKwRqS6wp9YCm6aEubct5axupf7uHR2jPp6q0uAnXXBieQdqAQ7g3JtHbJnGVQYiqwsWCiEOBLYtFtp0gOZRlMDlvkZFTQM43g6cIZBnlgi7vFVq30nEPajcznpJwljN9QOA82a+9OqoN+d8YAVKS3+bcM2kw3r3qFzrR/XvBhuATEv0WuBGT2lk9SxUCFGFArzIrKefeH/ex/P/Vh6JnHv2JeNbgNf6bdb77mg0GgBsKeWkwn4dKUM3xFMC1e5gR9ZU5G/n7LIIWKQhW12aOANwuWS+1S3sgkzMHE8wbEUTphvl/VwRKaKCd2QOu20oiq48GtAR4m3U9/dqQcUawIrW7RbTgi8J5JXdwqWPre+9LLZ/hfrseLgHOOfZX2ruGmFnLwbeLfbAYkmzHyosWwX83fHc5mgyv4cn33o9Kjx5UUHYtCvLJOOHOce61hMITcquWlrIU7RRhs4kYgZqgB0OjPQEwy93eMDi62msHYv6fjYrhJWd770ba8BnS1T9zwDA48Je6hX5vgnpHouKPvxSGfK3Ab36eKq7K29d7jI8F7vTsYQ7n/YBc4V6Nl4sNIMrWDRh/lOzs62+bCKKqqO726ioWavVt9VcXwnMkAjQXHM8ofJbi44xCUcZ+uEvl49I5+xVqBAzKKWQNCrvFJw4tG+HOd//dNsINo5Z0boSlMva24hUL4dOwUaXUiYkbNGt1L9WOKE+nvoHEDc0kUMN/ovbb5NJxDTgUQmBFEYeGCXgbgkXFNhYDtA8jKJi7mtU1LR5wDOphFdK5ucQ8yyp9aPI2wEeiAR9X3V1vdGEWQJcOPPZZ4bPfvNVf98tNu874dJxT7vd7qlGWdXvxdv+VbABJrcP2WVaotsAO3pKI0+02T7eWAZMBX7ZZOv+T3/78+J6VCL+lspQ2zxZwRriKVHiErfbkhFWXj6PAphBqBnul0XLdyEt6weOkjAyp7l316Q9D2k/bOG6FCHmAZeGA2uAxQH24ZGgb9ran9zh9e4q4fC0u/QDFKX9KBQx4Gkh7adKsi37CFge1UonI8QxVSH/J+tz3Pb2V+tsrOZ6TWruBcLOzkA9OxEb5mdc/r5S6EOB94CjwgEl5BlPpa8EBnpzqdEo1YGDgOOMUEWHIqYAmWR8cxTJ5VNghCcQygNkVy29EJXf3MbdrffSTCLmRjWUOwQ4xhMMdxgOXusaGmsNlLTLLKOiZp3tvRviqTKvyJ3vQp6ekO73UBp7m6G8nwUo8FkAfGfoIgXkcracaOdzw4x865YlebNFk3YfoajYhWZwy6MJcxrQJxL0HWY11nZH5Vq3RMlHvVvc9sBqrteAKyWciuZ62BOqmAIQTZge4Gsp5Tbfr0xO/nBJ7GigDS0+mE+tuqDxhen4wz+JXtt8qu004i9r9v132kawccyK1vVHPUQhI1ItoWOwAVjVkvoGeLJbqb9N+9n6eKoS9cBuY2giiZp1XR8J+uLtPy+TiLkkPGOjHZDB9a2tZmI/AGcEM9EVKErs7iigWUuJOZNKPARYHn/wXFjj7aAS+5WocFiBybba23GIDMegBAqnRYK+OQA9qrqPuWzc3waff/YZI1BijFOMsqqF8JfB5kpgakf5oUxL9CbgGk9pJA9gxRsPQiXurzJCFT8CNMRTpzrnO7zQEK1BNR0rFqbcETB1QTfgg7zkH8DXlSF/3LnXvVnTC6Y38FJWc2clYmuEGBH0eWUsafpQXkgEODYcWKMEHU2Y5wLvOtI2XV2r+PKbb9/ab/jhqzIZa5aU8iVHpeBYzc6dp9vZ7U85a2xM110fHHb0qOH7DT1wm6qQv8uwX2f2V8EGINMS/dxTGtklnkoLKe0zgVuQuIy8ucQl8/Wo7pezgW/SRkgAnwHXhfzel6x448EoBYeTCt9Vm2Mn4z7U76kMGOQJhFbThouVoW3Dfzia/ixKE/BYTzD8QvtjdWVWY+2JqHbQmxsVNevMJTl9bEZ4guFDARriKTcqrDoABT4DUJ5QUiggekTCy7byLI4UMj/KmzN/9uTSXoG9g4Av0p5wNKeX9ImU+gueM1ZjrR/1W9wXlTN7vrguyGquHyzhOYT+nCfcbRxAfSy55+uLGj9a3tJxlKx/83ccvszBYbenlWD5a6L7Zndqw89dr2aK/9O2Ua5mjfUElhWApiuzJZ8IlSBsbycDz1aF/DEn7HI9cE00Ya7VEdUTDOcywvge8HuxloHcDliBlAszesm7UtFt9+sEaE5HhYRWF21Ggr7FjhhgL5TgYBMKbOqjCfOZaMI8NJow90LNyPwoIcA5QoghQogr6lc2DL5k/DVXoWZkHwEvW831L1nN9bvw160zbZVngNFWvLHMijfeg/LijikCmiDqHs4CJjTEUy82xFPLUIPeqSgW0J1A/8qQfwuPSxvucWn7+dzanyEtW5FJxC7PJGKfo9QDeqFUD/pYumeqFNqxCDG20DogHPCZqOrtucAnTiipYA8AZzmtgLuy43YaOODZTMZaXf/hs2Kmz4oFSnLJO7N6Sb9cLv9DTa9e+0kp3YbG9FjSPDKWNI31vpP/RpNALGkOk1J+A2IaiBkIUeELdytIK/2OAv9PvVb8bSOb+gYpHzDj0a2MUMWbKGXzGVa8sY2Ol1O4OR2lVzayGGgAnFzN6RIOwM59hAKa4zYUaBx7GpWbWauTaydWiaoDUv+E/NnKkH9hZcj/ZGXIf1llyD8UFT7cR1ffdh4Yo8HdGhyB0Oen3cGVzd5K2VzSrcl0+fMin91GSLt/tn7xF9n6xVdk6xdvYVTUpIyKmmmoiVIOeNZqrL3IaqwNAhhlVR8C2yPzB2aaV36YaV6pV4UDH+/dO/RY0OiwbRPdWovEHLKZEqJ1I+Wvn83JPzPpZrnyj//4rssbPRvHrGjdGOAcI1I9uLCuM89meXNqlEfnISFEVXnQlwaVYETlAg6vCvl/KmzreByjI0FfGwpqPJXuB3yLlOeWSGuUs++4bC73vKWXHCkRbyHEqeVBX5umXZlUYhAqBr6nxx/sUojR+eyTUayZzVAV8c+hajvmtpfVb3M/mutdqAFnvEQkbcO3hW6lKjryULoyq7n+CpTa8VqfZcUbhUS8DDIrYJIRqvi+IZ7yo6il+6LCUBGUgvVnqFDYV5Uhf4fJ2kwi1jenuR8DttXtbINQM8pZwJeFXjBFis7vBH3eDkNjsaR5OGqwPCsc8L0OEE2Y2wM7R4K+hzu5Th9OZbwn0mMwEM40Lf81ZZpnmGb6np5bbfdb0fH1cRdeaN1+xx1vaEIMBRLOvo+GA761Yv0d2V/xbOKptAAONPKtz2U0TwOK2HByOOCbV9hGCLEVqlXGS1LKl6zm+giwS8blmwBsdtetU+0/ly6LNTQ2rnr+iRkR4DYj3O1JgEwyfiYKoM/xBEL3d3QOmUTMJbLpb8nntpWG70xPqPxfVgS3GmuPQOV7+hoVNb93tW0mEbsbSHiC4S7vW0fU54Z4qhwVbdgL2FMqvcOVAsIadNezya+8+bTQZL6/cMJ7wAvuqs1/ctQJhqCiD38C04yKmhVWc70mEU8Dewjk7uLtB6Yt3+3kI2ctsTCzbWs5j/3jKbZIdOIIV24yUzvwzDGi+6b/sV0+N3o2a6xAiVwfWyLVA7N/0bp9gIZioAHlcQAfRxNmoSiMeGp1B8i5CPEIKq6/PdnWd9z51n08OXMPhEgBPzQVqRFnUokIKrZ9+rqAxrHfUfHor1HeznRUfP5doDaaMO+MJszdoh2IchplVTmjrOpJYDs0/Xkt2xoEPrGa6w9yWE7rax2CkxVv7A/MlMjPsuiLY3iPaYinPkLd13HOfh6gT2XIf1hlyH9jZcj/djHQZBIxkUnE+mcSsUmZRGwh8LJuZ+dJhJnTjOs9wfAVnmD4i3Z96QuKztM7O+FwwPcyKidxRyxpXqHr+ojyUv8NQMRpHbHahBDPCSHGPfnszDuA2z2RHpWaJkbtNGjAFXPnfXxYRZ++dTV9t88Ubf+3sqD/6uqaGtuyGQf0ACaiAPbbWNL8JpY0L3Q03f6tFk+lRTyVPlCqzqenoWqEZgPbFwMNgJTyF4pUw42yqqhRVvWWrbkPtDV3y/mXXXX6xRecd/yyZcs1ZP4rYJrVvPL3TKzhKaScjpQvkM8+0NF5ZBIxF/CEdJX0A7lcs1JD/uKlvYxic01aj20rUQoXG2yVIX9TZcj/WmXIf2VlyL+3gB4CThcwx4as5Q5sGS/ptnlzSXfZYpSFLc19jISvsvWLfxC5zCSRyzSJXOYElDc2yWqsnUY+18tT1n00Qtwt87nfsNJHVn3+FEf0q6SknYNTbS7v/OQaloyy5zz2Hy1tsxFs1lgEpZ21PlZnS5ahZMYLdiYKQNY+cNA3FyCaMIc4q85BMUvOCfm90hMMm2SSj2Hn9sXl+ac/Uvl5edB3LKofzsNNCfPxaCJVBjwOzPD4g++s6wSdPi3Pomatx0SCvlmRoO8SVM5iH5Ra7vGo5PviaMK8KZowt2t/HKOsyrY9gbm2J9CEGhRvBOZYzfU7r+scimw1OCXjzZFEvPmpFO6HYpRUteC9yEYcBbIVpRNXVRnyj0Axia6vDPnbenYKYAZmErEbUbPHZ1DAdCzQryQYvhwhzkCIfyTNdBvG4IYoOocDvoXAbvM//ujoyVNvvsIwjD9RMisXtAPn+qrulb1LS4PVRlnVvEzTcpFeVdv68ezXTznw8FGTbdt+Qkq5upBWSjlNSnntBRdfagFaOOBrDgd894YDvl2A/qiJwHigNpY0H44lze034D53aAWQAWZKKXcDwsBuAvlrOOA7r0AC6MqEEIYQQg/5va3AGenW1vsH7rHvmV8v+O4Uo6zqDISolEL7Ct04HGgk11oi7NyXVnP9B1Zz/XSruf48q7l+SKZ5ZSWq0PEYhDhJKPAf05Ey9Pqak4CfAJxgNdb2X8fmpaji2b9slSF/pjLkn69r4mWXJlICygTsjhDjcrrnl6SnvHdzSXdPzFNRk3IFT80K16cSFolcZozIZR5Ayn8AV1iNtXfriz5drL3/uC4PPAvdF6T78q8YtlU3NGeuVt66Cl8+3fUJrVpyof3G9L3+Hdf2X2EbwWaNbQjYNOZtmoHhTQlTr1fu9f605ca3PXjQNwPYq1nlTaYCV4f83j8ArMbaAwTcA2IkununTCJ2GUB50PccagCKSFiSlaIbarDv1KIJ0xNNmNcAlwDnR4K+R4v11SJBnx0J+j6MBH1jUbPq4agczd+A76IJc2E0YV4VTZibtTmwEBhlVe+g8ir3AU9ZzfUznQ6UnZoEEReB3RviyatWxZMLTNwrWnFvmcX1KojLgR4eYQ8NCaupMuT/vDLkzzXEU3uhkrT3wmqA2SWTiN2Mqp94GMUcPMwTDG/nCYav9QTDPxQ8mIDP+xrwNgociu024KGgz9thQWF7Cwd8TUccesgrv/32m9h22/4nnzD6mH2W/vnnG/l8/pjV1yflhX/+tCA49sJLm6xo3f6o4tmrjEj1Iuf9tXJua25N299fOOD7IRzwXYbKL52ISlwviCXNuU5up+NgfifWDmS2llLORj0XfwDbCUVh7tAcGvpI4FAhRB+UKGg1QMjvnX/wgQfIg0cM3x04EEDq7jy62w+4sfMfCc11hFFWtSOKYTYDSEs4HM31LVKOIZ/9WeRad5UuYzsJ/5TwgCPa+a/aHFS+7fp1bGfz7x/38oBeGfLLypD/5+4h//3dQ/4Du4f8YYSosTXX1Izb35DwlOuxku6bxz3l56dd/o9ztj2PXCZFPjvH9pVOpccWbt59GDnwIDx2K708FkM2iwBQY9au+yxyWUOu/P3Cf/O1/dtsY87GMSta9zjwkxGpXt2hsIucjQ48VOISmwGTsrbcAdiiKuTvtIgPIJowXQIWCUFMCLFLyO/NW421g1AaUOcaFTVPZRKxcuf/uzzB8EMArcnE0BziyYwUXhBPAZe17y3vHH8wyju4KxL0vbch1x9NmF5UYeJxzqsHpTbwjKGLn3RNPFbMRrOa692oQswJKOmOa42yqhUADfFUD9QgcxhS7gcsNETeq2PPyaJPiIRK15qiZVqiE4Hb4tKTVp8r/x7ScjHWSMfX48TAPcFwl3F5gKSZrkTJuJ8a8HlfSZjpA1FaVTsGfd4NLorbfY8957z5zuwtdt1p0AdvvPPuH2VlkWmRoK9xwPbb3bfFZptuGykLr7j7tikz17dAsz6eagF2qQr5f+5qu1jS3BG4EJU/Ww7cDTzsKC50mLOJp9I6Stb/eOBDKeVrKOAdAJwRDvjeAsi0RD/zlEZ2XZ/zLVYpcD4jgGJenhTye+dnkvGJqP4tR4h8dnNUfmK0EaowATKJmBflaR8CnCZyrS+jch7bIuUA8tnTEFoc3bUA9b392W5pXFe+0Gqs3Q3lqe9qVNR83tE2mUTsVeA1TzDcYS6pYF116mxvjvLzU+Wl/kEU5bnab+fkdXcDxgopDxbIEKC58xlcrS26e/kPaJoOVhq6b4b0Bjj9sknM//JrXOkWfHmT+kQrVs5m1fVHtz+8MrenVewxcuv/RFr0RrBxzIrWvQy8Y0SqV3dn7AJsxGMP3T/nn88/Y+2+x17dJ0y6ztA0bUxVyN9lcjeeSo+WUj5hS54GTg9kon1Q9NCpRkXN7as/NxHrifrRHIumL0fRRI9I2nojiru/KXBKedD3IUA0YZaj+oqsBKZEgr51ihN2ZdGEGUKFCI8DDhACzaOLXGtOXgu8BnxX8Jas5nq/hHF5tHEZYfyQxRVYtGhRzVVXXBrfdLPNXnjgtpt2FEJbhhBXG6GKegAhxIMomvdPUsq3nXvdExiZku4qGzEmIHK6EPyBSvL/0xMMb3BXyqSZPgm4SSpvbB5wQtDn/ZfqWgBiSXNwXV3d0z16VE+TEAzkWq5BytdALgamGZHqLhuAFVt9PBUHdq8K+deiDXfy2VWovjFjUbmWr4CfwwFfofMj8VQ6iKLbDgZekVI+iwLracCrwIVlQf92qPzQNkt//bl/ry367lj8OR19N51ZPJU+ALjLI63LhDr+VE8gNB7Aijcej/LyjpKaK4ciZewGjO6ojia7aulw4DWJOBiXO4kS4CwsvVF5NoHKqy5lbTCqM8qqclZj7cuAz6io6bDTZSYRexl42xMMd5qzgw0Gm0OAmZGgzyuEGAKEOwKb9lYfT20CjNBaE2OF7toW3Y1A4sq1Qi6LWxdoGmSW/YY+fyYrly9jyPR3ufuonTh025rOD7zZoGP1Iy99fl2f/99t//F0uf9Gy7Oe7nXPMr/0+wO5hd99993+Bww9z7btX6rLgusCmnLgLiHEFKScIaR9k4SjhZIuv714W08wvDyTiB0PPIuUTQhxrccf/MoDNCXMoSjtstebEuYjwEKhQhnXRIK+LmfJ62tOXdAMYEY0YVZqKmF/MYpeegNQ29SSetOW/Cm1YDVwMFLWu8l5AtLss8tWPW8eNmTvinBZeD+B/BqZv8gIVxV7E/UoWX3dKegbgtBGSmmPZapK0gAAIABJREFUyYPbK/K3CsF0TzC8QRpcHdgTqNn9G8DrfwVoAMIB34dUV+8EPIkkYOHqZ2BlgcuNSPWGArxN55Twjj67Hrg2ljSnoPIcNwCDnVbXzwL9hRA9UCHGu6SUlah81h7AKeGA0uGTUs4D5gkhrmmKRgf0WvujVn836zqnkN/7bjxpfplDf8ZNfh5K2gYAI1TxlBVvbJQwGykNhOgNDPMEw+93dCx3t95vZFctfUYgbydnDXJ36/1x+20cYkqEtiA0yPm7p9Vcr6PpBnZ+e6up7h007UcUOBWWKLonCLLcaq4PSN3IILRy55helPpyCVBSAr4sOjr28Ewi1t9Z73FOpXiGLkoQW+XR3JlEbPydt926aVO0yZtJxIqp84XtRdH/dplGDkiL5Qt+EX8s2NbWDbKVm5Dr2Y9caRV5oeFJrsT/3oM0p1oZ8dBcrjqgf9dAA5Bq7tf1Bv8z9n8ebIQQRwD7Xnz+2E1vmDh+3jp3cGzUccevGHfuWZff88BDx7712iupM04+cV273I564G8IZKKevHAdZuneqCefvrKjjT3B8LxMIr4EaW+N5PHC+vKgzwbubkqYP6PEMk+Saga5aH3PfUMsEvQ1pFtbXwBOzdv2IOCiue+/d9x3335zxi+LFokbJk/JRiKReULTZkmM1115azBS3Dhwh/6lr7759kPAimn3PWhcOmFiTkqZB2htab4B2H/k6DG3oX7oC4BZKenOecgPCJSG17dmoksL+LwyYaano9pwr7PCfH0sHPDVJ+PRgyXa6zlXyeE5vEPDQf9aQCOE2BbFaNsSuEZK2YauffqJY3xL/vj9pB8XLnxJSrneIOjI3jzh6LIdiupX/yjwh5TydlRvlZGofNdsYNtwwNeGZemE4H7vt3XfjBDCAPKF70ZKeY2zzT0okO7SPGTNDO4gcFsgEGhDu5Wa6xek7IbMVyHFGE+ovEOgKbJxqBDalXTQUtkJoxWAo00zwkwipgMRpOz++OMznv3si692Fbqu3XXbLbWapu2Akn7xgtz+2ednDvht8e/jsllLv/bqCVGQeVTRpglkkDItoNV2BdDz1rbIrBen35JQtV2FpRXI5DWPNytc4qv5c5ufePLJ/XK5nGfPnQf9MGTwXi2oMbbNIpWisxuED6FF7G59BopQd6ThRzc86G4PLs1GaALpD5PJZjnskQ8YuUNvztp9i3V9JWDb/nVv9N9v/+fBBqd5VyKZFLl8fr2L615+YWb38ZeO+/uIQw+vnDjpWq0pYbrKO9HPchSdTwQGe9NNEvinLnN/pPXgnVmX9+SIGizaWCaVuAgh/KhQxp2o8ElB1uJyAT2lKuw8ABUmOa0pYZ5f3oE8zl+xhnhqU00wWiiSwgLgnX323e+Sffbd7+29d93xpkU//5TeY8+99tCkfY9bZqdnNE/dwp9/++c1N0zdunfPHict/v2P5Iynnum580473ptJxLYFRt4x7e4j/vhjSZ2UcgEw1hMMNzWo/j/X+sjen2mJdveURlZ2fWbrtoSZNlAJ4wcF3JU00wMCPu9fCjFa0bruBlwGYlVa+C+3hWtmLGneBkwNB3yrCyOklD8IIQagWhavpWXVrbLSXvTTTyE6oYZ3ZvFU2g0cLYQ4A8Wq2lFK6UdJpFyP6mWfAy4IB3xr1a44oqcnAW/9+ttvBirx/xywzHn/b6gJwDrDlplkfBcBZ7nIP5UTrknxVPqNkN+bA8gkYtsBbyNEFilGCOQUK9643AhVdNoC2t2t96rsqqXjgEeyq5bOKlaGdjzgGpTQ5iaowstizzAPNCFE429//PlSWbh0wtfffr/qxptvPfOGyVOzRcd5fuedd/72lDPPKQVap9z6j0mOx+R1Fg/gkeCTQhye1/TXXPnsj876gnfjKfo/LKTsgSa0PXbd2fvxnDdfkQghNT1gC71GCi2I0EqlECEQYYQIgyhDKSvkgUZKsrowk+Q1C+kLgeFDEwKkDfkso5/5kq27lXLdsPUkJmpaav02/O+1jTkbx26fcv17uqb9fuHlV51RWNdZzgZgeXNqhq7xGTDQrYka4L7yoG8t8UAnkboQeN2bbjofJUOzPUqGJhlNmCOBfCToWx3HzqQSpwGXAvtg5xOofMP9KYwvUDO+NgSApoQZRrHUTkH1W7+lvEi1eUOtIZ7aBpWvOQLwCfi0xK0NS2ftqkqnj3uhJUAmtuoj4CoJaVOU/CSFth9qRl+KtBu9edNuWLkiXFVVnUdzzUGI51AJ2li7z5wCEBKZG4DLPKWRv/+r51+whJm+GthaqMLW+cDsgM+7ltckhNgbJ48BXCSljLZ7/xjg3EzT8muBfUB8ihC7GmVV137346IpZ512yul7DR7c1NzcfNzDDz7wTbt9R6AS832Bk6Xzg6uPpxqAA3uEA2dIKbsklgDEU+kyFL1+VxRRohzoWSAIOIWo96NIBGEUc+x+4OZwwNdhODLTEv28JFR+WBeMuU4tk4y7UUW2OjCoVRhPAN+E/N4pmURsT1Rurw44yBMM11rxxmpUPczFRqhirQiCI1DbEym3FLnMnVKIELrxgNPlFtTvcBmqe+USYKUnGO60g6XVWDvrwcee6H3+ZROuRLEt81LKfCYRewZV5HubEGK8lHJyR/t3lLMx061+FIOzB+r+9gCq87YcmLXlAR5d/Oyw+CyUenmds6xo/5rJ2S4JhwrkSA25s6aJEg2JkBLbbCFvZSgpMTjvkitZtnQpL11yLMaitSKLHdvGnM1/pjkJvV2HDd2/6vbJ13XIYGlvy5tTLlTM/UxUCKsHKo/SkVLt9agf5HgUq2gYqn96EiAS9M2KJswzoglzv0jQ914mlRiJaiu7j8cfXAWQTsRG5tAWCORsiTixvbJzedAXA85rSpiPoWjJJzQlzHPLN4CR1hBP9UQBzPGoGd7TKAbUjwGPPgjYrwhoRhmGcfrJJ4xhwfffD99hu+3Ge0IVSz1AJhF7WsJhEs4Sgp2kpmnhHpsYWZmzXXlraFYzrKwwGlIJc37EYdQ1KE25k4HtPKWRZKYl+nOmJbqjpzTSpZhoV5Yw01uj6pkGBHzefNJMnwF8mjTTzxeUoQtWnMdADdRtwCbTtHzmAYcePRaoRGhTUTmSYwAefuiBu4QmDvpuwYLGO6bd/WosaZ4cDvjmCCGGoSYVg1F5lCNQM+E0wC2Tb/S98uIL56LCXp1aPJXeEtUSIoyqyr8l5PdKR0GAWNIsQ3m+hzjbPYPKPR6LyrGdE0uaD6M8r7W8lX8FaBy7GOVZ7+kJhKzWVPpvwNepREuLS9UyLQAOKbTINkIVdVa88VDglUy8cRKaK4mi9ZcVHXM5QvwCnCZymbkil2kpVoZeXxNCDNl9l52i227d96hpt9zU+LfLJhR7b/bJp5+533MzZ7lRz3kxiKwGELcmqrO2xKWJf5jpVi/Kk7JoCxp1wB+2lDHgAAkHC1ju85a08WSduqytUc/CWQK5syao0MXqXuZZ6n+zc80NWkb3EMDC6L0NN1x/PV8v+J53770JV8t6pi/dnlbRq1+HLTH+p22jZ+OYFa27F2gyItWrZ75dsNEqgdt0je1Qno2G0mfavziMFU+ld0XNqA/3ppuyKGbVvkZFzVoDTDRhXuoWdtoQ8nLgAI8/+KuzfnNgqov8Vx7yZwO7eYLhTgeIJtWM6VxUAvlV4JLyoK/DkFRDPBVCCVQej/oxPIeSTfm6IHoJbYU4rXijDxWyGQRMMUIVCzKJWBkqfzASxTh6FzX7fkvkWs80dd/7tnDtp8nckZ58Zk8p0DNaSV4K/Uvgw5wtNwd+rwz5L3PuuwBuBi4v7mq4vpYw0xpKTPS+oM/7VGF90kxfh+r5vlugXVFnwVOTUj5VnMewonVe4JqtBu7WZ8mfS4+3mutv+uW3xe/233nP1UAeTZjHz3l39vKJV40/4aNPPhtimuZzwWDw7+GAL+e07a5HgdOJUsrFAPXx1ArgkKqQfy1AjafSXhQ4HQ7UAvcUarKKtjlXSrkPSjrla5S0Tpvma87s/GhU4r4vKlw7ORzwLYENoz4Xm6Pm/D3wmCcQWt1/KZlM3GajXWzI7Byhzt1GeYv9USEwkNKPtMcgxK0I7WlPMNxhbVt21dILgJuAbd3dem8wjddqrBUSFiG02a/O/XT28OHDS4AeWi5zhhSaJXV3MwpcuqPyL228Dynliqwtp2uCs12a9gawsj2IFMzRHJwHeCNBX6ujhTgQFUIdDAwBGdIF6IKUrvJHJvC6RD7bnGFTd+OSiwMLXuvp6j8YKvuwZP5s+h52Kn2qKghFyiHZjMhZbNWtlGdO3LPzC49Uz9JPvXXUht6v/w77P+/ZFFkTKjSxPtZNE2wKPFKlBuV8U8J8EDWTvgwgnkobqJDZTG+66VeUzPqZHQENgE/k52eleMtCjAkGAr86s6EzUYPJ2NJgcFUmEUsBMzOJ2P6eYLjDboTlSu9sWlPCfAEVv/+5KWFOAB4oD/ryDfGUBzXgHo9SEngDpU79Xvu+Hm1MSmHFG69Egcz9UnM9ChyeScSmOOveQikoHOMJhlfnRazmeunLm78bZVXfAXe0xGMut50d78unLs4Jd1mrKDkdiOgCO5ow9wM+RJR8UCIzb+vIY1FexIbaOSi9safbrb8RJdtzIYqwAbTNYzgFjKOA56xoXQ64bI/9h3/859Jle+62y07Xffj2a/7tdtnrcCnle86+m2qa1uuAoQde9Osvv1wweM/dnzvhxJOuH3ve+XvFkuYYKeWVznabFICmcEcpYj86emUDUaHQClTnz5ND/rVrgmJJsxT1/e3oXOuMcMC3FiiHA7488Hwsac5CDf4TgV9jSfNxYLJ3A9hwBXNENu9FtW9YXeOTScQudsPFWcEKS7h7GzJ7kVAD6o+ogsvlhaJbK954J1K+grS/R00KOrJ7gDHAvdlVS0e4u/VefX1mujVAO0+k6FX97a/oLixT17Lps4YffPCmqPDiCqBFSPs3qeqO6oCGjkDEAerptmSRz1uyrorKQkL+ymjC3BOln+YXyLwmaHQJkppi+DULwT+BWXFLfpm1OQ31PT4QSdRebu92+JN4g0J88zabZFaRXrYI/Y1pyMMvQXt6IsJeh+yZy22J7pvduY5z/R+zjZ6NY1a0biww3IhUr1Zz7sKz2UcTzBSCnatC/j8BmhJmFWqGuVl50NcaT6WvAca5sund3DnzdWCmUVFzVUefnUkldgBel5JjTakfjvIuLgfeAR4v1LQ4ce3HUEKC64zzO+d1kJTyHsCyJT+iwOtz5zNerQz5u2w3a8UbI1LTJ9uukpM0K3Usmqsa5cH0R8XlZwHvdQZ+VnP934BHjbKqZLv1YeB6U3hOzqN/JHTXayjw2wc128SQ2QYL14sIMQf4MNKJh1ZsCTPdC6eRWtDnXStslDTTe6LUBbYP+LwdFocKIaoyTcurUcWk1xuR6owjTDoTONkT6eFrH36KJsxdgT7lpf65hx9xZONjTzx5DqrA71LgufZgUB9P1QJHe13ab6hBdR+UvtfjIb93GZ1YLGkegKq1SgLvhQO+9XoOnH0FcMizzzx9+zdff715Tc9q8+yx5+1YWV7WhskohBDALUCtlPKO4vc+/uD9c599/vl7Vqyof+6pGY++gPKIh6FyXi9vO2DHGQcfcugNv/6yKP7Wm2/u0dm5WPHG7qjamyuMUMVcWA0iq4FD5DID9Nb4pbbh/9Q2/BZrPJE0HeRB2r2udKUaS1Egc5JRUTMTIJOIPQws8QTDXSoNdFVnE02YEZQq+97OshNq4t4qkH/oAtMl8AroJwQrUROHWcC8xlbZDUXK6IXKqX3UPR8dLTX9Uey8rr3/hIv6xWRHX4vrrXuhrDty0wHob3dZg6qsx5a36GOu/bewLv8rbKNns8aWo9oMrNOESviaBaABKA/66psS5ofAqHgq/SVwNVKe7c6Z96Bmd9d0dKxMKrEVKtx1akkg+LGZMHuhBrWjI0Hf98XbeoJh6fTj+CiTiJ3qCYbXYrEVW0M81R9Vye0WAkMTHAY8IoS4vDzo61SqBMCKN1YC4yRsKdHSgIbmug+Vl5oMfOAJhtdXYbYjoc9YQzw1BSlHl8pkTy3HXsC5SVdpFEUX3ieLfpCb/OgsrrMBooruPQ+VmP4aWFhcwOooOk8HpnQENAABn/fjpJl+DLg/aaYPDDgtBoot07R8D9SAd01Ry4kLUKDZIqVc696Vl/qNY48bc7bb7T7s5ZdevCAc8E2PJc33UZODkZtvscVbvy9efIKUcohT4W8YmrgGWPHVl1++vP+QwcNQzEg6mgDGkmYAFVo8AQVgLiFEB2UynZsDeK+ed87ZrdvvsMMZ5QcPP0J3uX6MJc3ngBvCAV+hwPQ81OC4G6zuojkQ2HenQQOvCZWWLp547XU2KnR8KmomfyVw8+Lff9dmPPrIziMOOXRsPJU+IuT3vmSmW4O090CMQA+kXavnWl9Jp5IxqblKUSCyJpTl8qyQuvGGZqX2kZrrKOny/IjyRNbvufPWRK3G2udQTM6CsoPNetQQFUxKwtGEeZBz/YVlS+ftJgG/gPxewpYlGj9rgp1Qoc8XUEW4n5T4/PnaaHJrFGtUA6bVRAILs6uWlkiYLjX9HKRcIqQ8TLQmr8ntdvQobfGXaKuWkN9uX8Syn9Y+sfZWuclMbf9TJqzvdf1P2EawWWO1FOLK6zAhGIwa9NrbvaiQVB6YW9IaHYD6ce1hVNSsxZzJpBK9UOGncSlb/yKVMB9CVW/vDEyKJsyrI0FfGxqjJxhOZxKxo1CA870nGP6y+H2nsdhJKPfcQHkwQ7qV+v9oSph9UYPxz00J82pgRnm7NgNWvLGnVO1pd0DoHoQoR4iPUDPpXp5guEsByw20CQhxpyaZigrJfBPItVxglFW9BPwCPNjaEv0bUn6TFe4tULP/IajwIkAumjB/RAHP17pGWEA3IUSX1eEoj+MHFCnhscJKK1onULUevxYrSVjN9ZsC2xtlVbfTiUkp50UT5gnJZPKR1199JQxEwwHfT7GkuSdw6VfffjdpxLCDfomn0tei8hh61pZ3RoK+2fsPGVyK8qK60QFNOpY0B6PyLX+iFJqXFAgC/4rl8/nZwOwH773n16vGX3n/pOuuP8Ltdi+MJc1Zb7z++h2GYWy9Xf/+u1lWZuCq5UvDlmXlKioqPgf6I4T9wMOPnPj9woXDJTyVzeV6W9ncRG8wvAy4OGWmq4EekyZNSuTz+ZkpM50WSsG8PTPrV4T2ga0b92m51inAqZ5QxZz255pNWh7gG1dr/BR3t94n/AuXey/wqdVYu7VRUfMzKrxa2n4jJ2zdhyJQ0QRIJVgLqqbmO+BjIZitQUwXslqHAVnJAFuS0QRzUSSNL0p8fhugNprcndbkWFTe7saaSKAWILtq6eYSZqK5BiLzrwopj3NX9kmlR11zN1b6APeTV/ql7jbosQXiy1c7vzqX26Jy0zu1/U6e8J/cXgA2gk2xLQe6WdE6jxGpXhdteEc6LhL8EOgjpSwrycQnCTUD3cWoqEm03zCTSlSiwmTXpWy9BTXoXRUJ+n4AiCbMG4EbOgGcPzOJ2OnA45lEbFDcdmdQA/FYVELyWdSM89viRH950LeoKWEegAqDTQHGNSXMy8qDvrcz8aZ9gJtAbInQLIeiPAv4TLqMgcCQfxFoAiigamMN8VRv4Ehga6OsKgtcZzXXvww8ZjXXjwQuMMqqogIeMMj/PRgMTXDuEdGEWYrqqjjIWXYCThKg5WwkyIXRhPk1Kiz1NfBNJOhrXn1CPm9L0kyPBR5Pmuk3Az7vSita50PlNJ4yItWrPUqnje9UVJ6nSysv9e97znnnNza1pFYXS8aSphtYKqX8but+/faRUmaBE1Kp1Bd+vwphOp7SaUKICArsJgI43UNvQmnQjQemF9fy/KtWYGAeO/Lo0HOzXnj0gfvu5bVXX31x8OC9zzls+LCPoo2rvp4794N/Tr3llrjuDf560kkjz3rtlVe212RuVEsqvdjlNt7q169f6cKFP+Q//2ZBfY/qngcddNBBPwIrzj7rzMpltbWZJX/8Mf+qiX9/Jye5DCl3C/m9nSotW/HWb4FXrXijNEIVbRiU7m69M9lVS08HPs6uWvqUu1vvNzfwcj9HPQdno5oNLpewazRhboMClUHO6wDWMONiKN03UHm+ZzSBVxMM0ZHbaTBYCPqj2nfMytv8IsFT4lMEl9poUqM1eShq0vcVcEFNJLCa6p9dtfQoCY+iuXxI+3Ih5a3ubr1lurW1BKHdh8c/Stt0YCbv8U3BjO8hWhrXzq39L+zUuTFn45gVrdNQs5e+RqT6D+g4Z1MfT4WlZIWEUHXY3yZPEU+le9lS/ipt+7eAFdsEGG5U1HzY/rMyqUQYeE9KnjalXo0ajG+IBH1tjudonl0NrAU4AOmW2OMZqXW30HuhfiD3ArMqQ/51aJFDU8I0NGlPshEX69iaIbOtuhBPIcTDwFfFPWD+Ylvo8UZZ1Vq1DK+/M+eZv181fquvvvzi+mIdKau53gAmnHrO3y5tbGx65p333p/VGm8ygISnNDK3sJ0QYguU13aQlDLWkjKfBMyczTesGUS2Q3l3oJSOv3aWb4CFbo2bhRCa0dp8MUoNebIRqW7T0sBqrr8YWGaUVXUpsOmQDE4PBALvvfjK672m3HRD6Q03TS7pt802GeCVPj17tLS0tFx1+plnNd1y2+07j7vwwvIpt99xUFXIP08IsSmKrdYDeF5KOT+WNHdHSQY1oORm2nTN2tDmaWa6VaCS1CqUZee30vLWTVLTF9XWLg/X9OolbTSPFKIqZ0sPoGmC31pNc360qbFxk5oeJwExJM+CHA98KeDIktIy0RV9Op5KX4+igB8Z8ns7r4uJN3ZDhZOvMjrycFYtnYYiOWzr7tZ7rclbRxZVzMxeJdnEBbqdPSdlhJ9yCTnEhb1ZK+4COaMO9TwUL0s0gQbkBNypC3pryAEOKehH1CRsFrCwxOeX0YT5PBAzs/b5qIjCYSjizRM1kcDqMG921VIDmCphHJqrGWkfZVTUzC28n25tvQ6o8ZaUnAZgNdY+SD4r9fkvvEuquR+27UfTUvjLfhK9+n32nyi22ZVtBJsis6J1vwFnG5HqOdAp2BwrJVN6hP2bFu/rsIlexc73ykv6l2STE3zlVVPbf0YmlQgAb+ak+CEjtWrgpkjQ92ln59QR4DTEUzsBY0Ee6kZ6BfKMcKj0uXVdn0Mw6I+Ux4I8FSmD/4+9845uo8ze/+cdSaNuybLjOIlJ6JDQOwQWEspSQg+9hA6hLHXpsPTel7KUpfcWOoTQdukBAoQOgQCOCY6LLFnSSBpp5v7+eKXEPYHd3zlfFu45c5xoRtP1Pu+997nPdeHDgvL/7Cq1E6iHgLProqFeXZr+22BTCfXNXm+NVQ9q/vEH/0CihSuusPytO2y79Q4rLL/sFwftv+/ueMzTgLP9NYmiUiqGrm8KA9d256z10eyytaOh4ELATmYsEx2yqnpA1RlsqLJJwaTsU479c9EIPoRSX6Nnq3OAnyPl7tWBI83axqmLu85K8e52wHauKyvNnv3R02uttfb1sXCwn1eXylqr/vzzzx80Nja+o5TaPR4JdfRYF0AX7h6N9nCuq7DK+h7vKGApn6HOYBGIDMTO0n9FhiFuSYlbBLIgXcp1RrnewAUo1TO53mY7LmhW3AWAYVKeZYhsrZD70KHH+4DDerIOh7gvHjQRYGYsHDx/qG3tdEc9GnDO6gs4lfYDnwNP+oaNPrb6eaVV90h0HqW6rFj5uxxgIkLYTlH0BtvEY37up7ymhbkP2uPtRTopWDnlCFsLHFUWtYNPCR6l5ZSAxwOhcL8ESmd37nVXsIuOpNAToKebEpFez6zU3jwaeERgAzzeL0HtZiZGLBRhzRcKqwHPAWsEA4Euu6PFQEdb9jLrm4YUAv2t2B9htN72EXpQ6jezqpoIO4jwwwCr9kRk60Ax9WXRG5qZN2tWDPXZoJjLNIrwnC2qvaxz5nsP5LH0tEQ01JnMWBeKyKVt6dyXaFVfE/gHqONDRnkicF4xk5rmj8b7xfsrALMWsBsieyFuGKQN1KUK+UcwVl8OAp0Za2l0yObrzox1DXB5XZ/i0f+iHQXc3fzjD3kq4oZ9Nbq+mfPt4XZXq7ntLnu8efD++340/6eWi0eMavoLumBwa3SidcP6+vod0B0a9+sJNAAVT/HjynIHLJztrgiM9TmFnVBs5HqDYxC1H7pwT5tIrqw8TsEIvkrGuphFIDQHaEtEQ1JRWd4eTSV30IPF0QLO6musdfpAQAO6MVuhofEjF1o98FEqax0Xj4SmpbLWumhvJgusa3qMn4EVrHyhH5AYinUQ6ir3Mkt/RtaXiPuu4ZZXQtwaoEvpmq+3/dG4XexOrgScHQoF+zX8q7y3t6ey1kMG7qWGyDEOylZwgIGcoeDSPt1PB7VYOOikc/l9H3vkkc+vveaqdT779NPXgOukzyx3oUpDqn0H4Dk73fEXM1b/XuWZKQL14YCd+bvXLV7enUrGyp5ABA0oy1MpzqzYT5Vn9Cb6mc9BqTkgxwTK1rriMQ4HPgtjv1i9hoKVM4CNHOFIYGsF9UqTUHCEfcPhcF8KPQAtyewI4NiAV62Obmx4XFMi0u++lNqbJwH3CETw+J5FGSebtcMXiubmCwUPukzixGAgUA33roP+bSyhbMD/ffsDbHrbh2iwGdBa0zkPsI30acpVVXQ27cwsBV6EbYFPOjPWynUVJeZiLrOiCC8UxGhzUQ8noqEhmWRVq0jHTAX2MBSdrvAXdE1M9aV+uphJ7YXOIV0EUMykDLSs/mREJoPYiJsD3lZwmRmr/7TvceqioR+AfToz1nroAf3wzox1DvDP0MKIw39ubelcCDjs6isum4TORQSVUh9RqW1hkUbXtVQS6S++/OqUx5965rFbbvj718UAUYBrAAAgAElEQVR0xxsi8khlcDryzbff2RB4dkkVnROaEPGlnZy/AfCsHag9UMF0E+bajpyCHrxWCLjWsSVlplFGA5rmOqy6DwX5VNbKA2kRPhPdDqIFrVW2DDoZ3JzMWCsloqFetOJKOKtGQbcrJE1D3eSIXJ/KWrcCcUMxz6OUXyk1E53M7kvp/QJ4WYS5AhEPnBAKBhbOoouZVAIdbhqN9vwe8EfjA+nlNVbOc1ALUsojMl6g5KIMB6+LUn8GZvh1LmKJLBYOpp58Ytq5m2424apcNvfd99/PNdDgTDJjBYARnd25ls033SSbNUJ7G+K+F5Di86nuzJeu8tRU7mm0YEYJ2GCW8/uUDf9MlPoArZjwDRpgvhts8mYXkzcCn2HnGjDDfoH6gpVbRYTdXa22UKfgI0NxCTCt4Kp5QNlF9fLyW5LZak+agyof/d1Q6hAUM5t65EcBSu3NXrR3eBrwAx7zbgzjATPe0Fed/S/o5/t4j8/2AJ4165v+Tyf9f4n9ATa97UN0+GAwWx/ooL/EyNWecrFouKWVgbVrahPpTj0bPh/Yo5jLbOAITxXFaBbU4X0pzT1NKbWKaZrbrbjy2D/f//BjocYRIxrQfPxVDKXcbbea+M7XX355eyaTeaOHWvBxwIf/vPkm56133t2+UCis+dfjj/121XFjvwb5WumK/jvMWH2XUupY4BAROb7PcU00Syve0Z2bgFYEuBw4tlh2bzE9v7j+ryoJ39emAK+c/9djPjv/r8ecjQ4BRaY99cxnu+60Q5OdamsCKHYteBhg/U23OOjHeT/V77jdtocizp7gmVHsWnBMsWvBt5tts8M3o0YM39lnZ/e37cyG6CLCLHqQzgIFM97QawCoMM6ORTfKm2ECWSt/BPCp6VEPRELBN+yu1kZgRigeOx+0LpmI7FW5JwERfnb1XpdB5yP+TNVDA5QCERyg3J3LpxQ4SmEovU0QyHkVSmBFkA/RVFwvkBXhfhQ3oim+gxIy0rn8GGCpUDDgFDOperTiQBNaaudpfzT+w2Iez3B0/6PBTeQylFpbibSbuFvnlbeAJkt8kMpaDwBnVtUIelqlgj6KBugRwIi7738wquC19dZb/wjD6938544u0+vxjPB4vfHq9zbcaCOA7VxltBXwtwWkuHoB/wuuMh5Dg8k3KLo8rvN+tNj5sm/Y6HMXc40Lzaxv+rzY0fImqLMEiqK8X7tCHPjSgEuV4qFAKLyweLPQpytqSzIbRedjtgJmAmc2JSLtlTBeHTq3ttBK7c0j0USdPwFPidf/Gkp9YsYberFH84XCMuhC8PWDgYAueu1o8aPHof+TSgC/1v7I2fQwOzl/GPoHGDcTI7v75mxa07mLXGG8CFNG1YbngVZ0Vq7zgr+Yyio4wKxvegKgM2P5gC9M3BuU4pySqLcFtXdfXbOe1pbOLQUc+eB990x98P77ChdfduWRq66++jMNsfDCxGo0Gr15m+0mrTnrgw9O//LjD95Av8y7AXsj4gW5/aJLL1tv7Eor5SfvvOP1wHNmrN6BhZIsHwOH9wWbqimlrq2uq1zDocBFhiLsChvVRUMfAtiptqpeVFWYsJHelFJBJAisgZ6lI6C6CZ0QpPigiTOPRaCQQdeY9JrF7b7fgVuIiHrs/rtfbmtv94ZCITccCk9CcTji/vOok04/6Pprr77Y65beQ4fVglTAq/I30PPSEFGIuxlKfYsyelWFO4Z3PVHeDTxO4VjEPbzoDV0shm88mmRQUDDTo/hBKTWMPiEtERmJrvq3gJToaymWXalXUBBwRIiKVlNOgP5ABHyGAiiKBomi0usN0XIwP1XuT88lB2Q9yEQP7koG7qdvvPlW6Ygjjxo9vHHEky+89MrLC6+3/9+F/w5KcT+B7oLyP9N/GwkEKE81kIOBbAHvhS6GVO5pFFhB6dqaGDBfNDkl1GN9z/sOwBuv/9t55+23svOam33nXXBB9yUXXfT9Pvvt//Zaa6/zNfDzkYcfOuqpJ6Yd6LruXbZt3wJgpzvWR3cm3daM1S9sk1Bqb94PHSJbq6cy9EBWsHImWhl9MuXiHlIqRpQZLLrKeF4pz9HBcPjngb5XLeosOXJw0ZG1K9d6P/BSUyKy8PeYzFj1QDuwViIa+rhyfrujNQprgFPF65+LUmLGG3ppJ+YLBYUufZgWDAQWVm3aHS3VfkUrmfVN/zMD9B9g08fs5PxmYF8zMfKNAcDmY8dlPjBpVG1Y0rl8BJHP/MVUyBD3AbO+qdcAns5k73BQUwy40EWdV1UC6Gtt6dxq6NnNFmjJl9uGxyNromXe5wDFaoy7mEn5HNSOh0496pY7br6xnM1kvoxGIjMQJ4LyHPTIY4/9eMbfznthXkvL+UopL/oZVwU0b0KHHHZBA1RORBYqCNipNlW31HI3dc777gYWAUijo4zlv/iu+eArrrzKM3HixOb9d9/lSS9OM9r1/xkdjmkFunt6EnZX68rAOLO2cVrlOncEjmuIhbdY3HOosrvQP8YnqITZRGReMd15zoyXZhxz4eVXRefO/eGU9o6Ovw+5M8BOzjfRifd7zMTILyvhrHjlOke6rrMmImcabikkqGxl1PWgCCjNUswAGURSKDVfUD9UQOtzUZ5vUKo9FAz0YltV8kMXJKKhM3p8Zir4kyNyjyMkfIa6El3MGEaDZARYUelwblr0jDkARBQS9eBGFGKAwsHAreDEm2+8TjqdZtL2O7Ak5pOS/r7qW98o+CnjRRAUeTyIVtXJ03tykAGiSudNPMC7ovMk6R7btbPoHelMRENuhTDw/OeffTZr/AbrLbYI0U53bIUuiN7WjNXnAErtzQrN9ooDm/iGje7lARasXADtbe6GZoaFXeF9B77wFtK7GL5AG8q40h+N3z7QMVuS2QCwR8Q07i6U3bvLLmdV62P6WjJjjUWHNpuihY4cGhz3Rf9up4gvkAR2MOMNV/X9br5QmIJ+xycGA4veHbuj5SVghlnfdMXi7s9vyf4Io/W3D9FFlb2KNlvTuaVEqAU+HFW7MDZ7ga+Uq1Pifk2PuptiLqPKwt9djMkCzQ7qtbo+QNOm+5FvCpyK/sFeBRwxPB7ZDP2yLocurjz3qCMOv6SYSW0C7HbBxZfs3tbe0RoJBl7LliRxzHEnLHXPP28eAdzz5x12mpnL5R4NBgMvK6VWQ0vKfI+Wb0FEjrJTbd4xK6+2xo9ffbrultvvfKqdaptRPaepx564QTwWG3vR5Vf9cOYpJ72Gbsi2AH9ktXHjxu00r7n52PbOzgPznuAR6GT4hXXR0FAdSvvmBU5Ch2EWayLyKIuqvlFK3Vel2Nre4LQttt7upD9vsfmNCvmL3dX6jlnb+D4szIlUJfYrTCx3tGH4dnV9ofkYntvK+cJIEakXKLg63OWA0eFxiz+6Hv8qSqmzUOod0TmSjmAPELFTbX50CKq6/9XQ3qWyi92gvYM24JsIfJM1wh8lM9a6iWjog1TW8hqKE4C/ITwhsH4iGhpQWSKVtYLAaUrkUAN5yqTcoaBVYJqFmTIUfwGWRrgJiEx//rlN0ul0zaTtd3iHRT1yBvorAF7ck0BNc7UKAID4cFbw4ZwLxAXlBe4WjFOAbGKQXk0V9twxwFlKh5OOjEdCg9Z9VAgDe6+y6qoz07n8G7FwcMi6GTNW/5Kd7kgAj9rpjp3NWL3tGzZaSu3NU9HstKOA6wtWLowmakxGkzZM4EVHuLiM6gL1eiwc/NrOd7WL6xyJoUb2PVZLMrsCmuXYRCV/EvAad8YjoaG00RoAwoXO1dATxSZ04fQp4guADqX3q8nLFwoNaCWOvkCzLPp92neo+/JbtD88mz5mJ+cfD/zZTIzcrqdn0yX+lUXYzhWeGlUbviOdy2/gKRff9pWyloLVzPqmHwCKuYzXFjXDFTXWQDawMdZAJwg3qYuGpE2TDHZGv4Ae9OA7ra8IZjGTCgJbfzd37n7LLbvspsBMRB5HnFalZ2s1HcmulzsL7oajmpY6PxHVPUuKmdTBiEzBLR36ymv/WnfLiRPq6R3eKqMr0efsf8gR3Q8//kSv+o2BrEp9DgWDe6NzOu+hPbHD0YWpF1TDa73uZVfrXsB7Zm3j3Apd+x5g1Z5hwSW1CojUishIFx4yXOcLAxdEvEa5sI14zAWuNyAoVY8O6+iEuuskjVJuZccbesg1PLYrrIDOtXSjJxQvxcLBeXZX6zjgZNusmYdS2wIbRULBX5yctVNtCh1SWxFYQWBUWXn/7BHnQ0d5J4syPErcM/Pi+bKsPC83xsLRgfZTaSu8i4MaZuNdDzBR6uh4JPQ+9K6zqfRQOQsdRjxfRBZbf1HsTj4HHOSvSbRVGItTgWvRE4z3UWpvYBl/JLZETexSWWs4mliyH1rt4JSelO6+ls7lV0d7JxNi4eBi30E73XEUWtdvPzNW7wLY7fNOBrnADcZexfBOqGz6AvBYSdT7LmpD4JtYOLiwdYjd0bK0eMzvMbxP+2OJnVqSWS/697Q7muRxa1MiMmcobbSeluzOTgWujBaTYfQ7d5Bv2OgXK+/BhcC1Zryhve/38oXCg8AnwUCgV1mA3dFyMbC8Wd+0x+LuyW/N/gCbPmYn568EfOxZ8N0a8uMnazvj937Q+Oylh1KjN1jb9ZhJf7H7JDVszAfKLX/qL6aXUbCbWd/0NEA2m004wiwDkl4l44ORaLFTy2C8JSJXuEIDenb/HTr5/q+eFf7FTCqCnp3tBmwOvFEBmO+VpvuuiqZCPmDG6lvtVJvHRa1SMAIXmq79rRenQwCUcSDwbyXuzcC3Zrxh0OrtJbF8obDO/Pnzn19+ueUepceAVhEf/StaueBVNOgs+mF3tR4P3GbWNuba0rkHgVcaYuFe3SOrIMJQNSJ6qQNSrogjEDTgccOxlxfDO12J22qUcscBKVD7+WuHd6RzecNTLmzqcUun277wTygjiA53vAjMioUXtRiwu1pr0LUj+9v+WAGd17otEgoOKk+zpJbKWh4RbgH2UciNASd/q4E72kGtnlahq+NinW8gJSAtqK8wvMuh1Eh0e+Qn/dF4viKguSNaxXsGcKZSak9+QVFnXyt2J2cC41FGCN0nZy90HuRClPocuNEfiZ38K653Inpm34D22u8YTPUgnctXcxMTYuHgYhu22OmOcwUaxRt4G6UmI7K1Uej2AQvcQM2xKPVCUQwDmIQm8rwSCw+gfde14DMxvHUdjv9WYCy6tufRngWYSwI2pfbm9Qre8Iuu8tSGSt0PA0f5ho1OAtiptoOAL814Q78aunyhsH3lutcLBhYpTtsdLT506Hx/s77p5b7f+63bH2DTx5xXb9/EGbvZdGPWUybzv/I5e12G8fLNJDc+BM+COdS+/0ChsOG+cz2Ny66sxL3ZXz/qaIB0Jru+oKb7lEz3KtnPH466AG3pXK2CK5Riiis8AlzREAsvDD0VM6katNu/G9p9fhWRaYizQGngWRr4FJFnQXzompkqDdcBvhH4OGeE90Op6Ylo6L1iJrU0uqZiA7/WrPqPbHFFnZ0ZqwHdTOtodNz+/KDXeNdTSJ/vBGIPl11Zo1B2rw/7jGt6JNirYFIHdDG4em/1352OyCh6KDoXu5NBdI3NaUVlxnxO/mpD3F1sb/A9UEWvU4jZ3tDFKOPtWDg4IDGjwpi7G7jMrG38HJZMGXpJLJW1lgPuEqFR4K1ENHRgdV2rDqNmQNapNcoNiEwCieM6bQqpyiVl0LVfH5vxhkxFvuZ0dK3Vv4DmeCT0a8HmfZRxCDpUuRS6PffdxWz6GrT23DL+SKzfjHwJr9tET0LORoelp8YjAzMw07n84WiJngmxcLBtoG0KVq4O2AmR3ZRb2lpQJTy+R4HHDKtrnhL3XUEdmg/VZ9Bhwmer7al7WksyGwJ2iCr77IAhqyTL3g1H1MUGbDQ2FNiU2pt9aObm2ZavRkSpF+Ox2PbV9XaqbV1gbTPecGvf/eYLhRq0xtpuwUCgFzPN7miZgvZQVx5IS/G3bn/kbCom7T963bfuv5iOecepSMKUYUuj5ms6vBOqxSik8RSzuKHagBqx/DiVaRfP7OfzstGe3nSgfqpCXexX7uXBSPRCWKj9dTywj8BDCt71GOrZumio2mxsRzTAbADMQOR+xLlZwXa6wp9WkE70iwmaPPAp8KQZb+j3o8xlrAuAY5MZK56IxmcUM6mr0HU3U/6b96niiSTo4XkEvcYIIOyKvFZ2ZS1HeKvouK7p8ecVbFl2JeE11LdKKRc9eD7PIiBJ9k2sD2Q9FJ0vcYV56Vx+RTzBjQxxllfivi2GZ7ZtRN40S7lXzVLuSoW8A0yMRRYbsjsVeK4KNLBkytBDWSprGWhv71LgDqU4XYTdkxlr5USl7qrWKI1IuV4rqNwzgPtQ6gx/tLbXudqpthq04sHBdqotUim27Cwp7yklj/9MUFumsta/gRcH6mczmBW7k1W67kx0i+X1/dH4Z8VsegQ6nHbdrwUagHgkZAMXp7LWQ2il449SWeta4Nx4JNSr0DUWDt5aaRb3UjqXnxgLB5MABSs3HE1kmQxMBLpR6kkxfDupcuEA5ZbfNGP1T6XFUD47+7AS9waz2L16MDH8h577b0lmPegowe5oosUzPsUhKOPdhGRGaJLZklupvXlldDh4PWCGY/jWQamFLZjtVFu4cqzTBtnFJcCjAwCNFw3O5/8vAg384dkAIF3zfe4rt91P57zdAWTEirhrbIPx4vU4e11G6fM3KMZH4p87E7X6Vnj9QYzp16EKGfLbnNRC7cgan+KwQCT6SB9m2c3ATQ2xcGdXJruli7ovTGl2pUXBC4g8iVs2FEwBGYMuaPwC7Up/DHxixhsGrEIfzJIZ6wCgEMZ+CvgKmOSPxoekh8JCEKlj4FDWOLTXNR8NNEmG6CdSciVXdmUKIqcIzHSFVYC1GmLhoRKtg1o6lw8rDQoHVBhPoNk+7wAzA05+CjDDX5P4qlKsuSOobVHqdeCvZm3jgLkXu6t1S2Brs7axX7goa+WjVFpDRELBu5b0XFNZa2l0G+hlgIOqs+JkxvIDp4exX0TL2vzc5Xr3AXVzYyx835Lu3061RYA1y8r7FxdjZcfw1gGWR5zzTLf4oBlvGHKgKmZSYURuB9kTZTwAHOGPxrMAxWz6OrTXtIw/Ehs03/JLrBIC3AXduhp0jdOTfcExncufBrKXidyvFJPQ5JkONBPxMeBfgZBuS26nO/zAUyXle6XsMecbTun1QDH1IvChb9jo/SqFl2uj+wSNQod4H2tKRJKVe2AgUqRUeMZfN2LXQc67l2dTam820J775Wjv6eSMv+4xlGoF1k5EQx8B2Km2M4DbzXhDv1xXvlDYGC0mu0YwEOjVR8ruaDkQ7S2N+18q5Oxpf4AN4Dx58eUsmLtwwBGPD3en01EzbsDd4TSsn76lbJiEO+bgWWkj1EfPo376nPyWx+LxmZhf/+uOrjV2vQsd4lgRzSy7K2aUYiyiGY+z8OYNcd8KuIVOpQdvDzohez/wkhlvWKyA5pJYMmPtCIwIY5cFtne9gcMYOicygv4g0hNAwuhw1VigMxQMLNFLU+hacF7WE1ke2L1SEX8Z8HxddNAYvgfNwlu1siyPrp9xlQ41HijwXM98CyzUsLuccmGa0k28rqzkaO6sXNeeZm1jr/bDdlfraLSe2t4V1el+lrXyk4B7gbGRUHDIRHllUD0U/ezvB06uzuKLmZQXmFxGHWzAvQbygD8ad1vTufuB2Y2x8OVD7XsgqxIEROQMJe4BgrpI4SZN137ZI85cNPnhk57gU8yk1gHuRWQ5kFkoY+OqZEsxmx6FziVe5Y/EBmzy959YKmtF0e/QcWg6+1/ikdD3BSs3Bt1eYbeyqPEulHzInUrxIPBGINS/e2w6l18Zcf/kdwrHGMgUM1Y/u9TevJHAW1kVvM8ygkG0wsGDTYnIgGSJYnfyG8p2o3LLtWZ9U79j9ASb/XfbqXHF5Ze7sK29Y/lLzzljVsOw+n19w0Z/ndQK6tOXaRqxf3d391LjVl5p6Y/eeX2mGW+4u7ofpdSawEnBYHD2nG+/PTSRSBwdDAR6yWFVvJqvgHPN+qYlnnj81ux3H0ZzX/3nJnTM6yUfr5wStM2FUWMBKMdGoFKtqJU3QZI/QaaD/KQz8Hc1I1/+i8y4Px+knNJm4vGdEVWldw3FzuiY/3K47quI06oL5Up1eSO0u4vnfA/uBDM+7Fdrj1n5QjUU0g84Al5jpOPKigUxR5lSqkHcDVDGD/QGkA/6/D85GIhUcjblYCDwi2a7BlKsVGlP8SiWRishWJ0Z63pDMd3QaseroUHMj25s9R06XPgQ8F0sHHQyVv5u4LpoKPj0QMfx1yScYlfrqxi+s3BL21UanlkVNtzpwLt2V+vOZm3jFwB2V2sAPdOeOhjQAERCweeyVn46Wp5oz8G2S2WtJrS21ThgcjwSegmgmEnF0WHMBPBEEd+ewBGJRWA7H/3MfrVVPIS7UlnrfsFzSNETPBORl/1uodsjziQ71WYIdGN4VwZ1KEp9A/IXYNk++manAzYaLP/rFo+EMsBJqax1N8idwNeZbG6BV9GkFPOAxz3IKQ5qJxtjXYSZfScV6Vy+EV2g+XUsEr7NTudfFeGJ1mT3g2VPYq24k/kwIvmtok5+xcUrQ6vXUMbh6DD224NtZdrZfafde/v+gGffw45+dZ0JW09tbWufU1m9OjCnu7t7usfjOW31VVdZE+399DQb6Npmm212FJGZfYGmYvuj868PDn3Ov2373YONtP9wHE7J7Pu5av6UFQ67hEjsClAefB5496XncBZ8R2niVHzfz8IK1yFr7kzw2zeUx2rLscy6JyAyBtdprpQzdCrU0sCzoE4Jxof9ZGWsEy1PcFMgWzfA+fQAkcV5IrVAJ/09kfeBnz2Gmu84Ei/iOTHg2LFANL7YQsr/ptldrZ4SRgRY0/Soy5VStSLytMCqrnC2K1zhirxmKG40lLohFg4OqCCcsfJbo0UJDxtoPYCdnL+uglXF8N0i3sBWaMYWZm2jABfbXa2fAy/ZXa1TzdrGZ9AD6uVmbeOS0HqPB77IWvkdI33AruLNTEED1+PAnvFIKF3MpFYA9kYXQt7rj8ZbQaNpMmN5kxkrkoiGquKZGy3BOQxor7z8Uv3knXc6EV2ndbaI3JzKWvei1PFFT/DSLSZs1uVRMv38s8/ab+KETVdAnLdw3VdBbYxS7eFQaCMrn7+qkEntib6/l/kjseTQR/11VrByKwOTAwa7ibCmAx1lod4RvkeYEo+E3wSwc/m30eA+rdLps1hRVN8aXcN0f6bohDLF7D4Q2M6vnLlxw97TQW1kOiUvuvbmInS4bnBT6g0Mzz447MgAYBPKd2xkBesxpHwY8MZmk3Z9+p33Z/0sInOqorGd3bnVgE9EpMtOtf04bu0NvWa8QZRSoWqxtIh8kS8UbnvvvfdmrLvOOo+0tvaWo6sw0M4Gzh7Iw/pfst812LizXxxDNjlgybWa/yUYBs8+/RTBeB1xsbDx4I7bEie1gPKw5Qgkf8QTDKBW3wpVzK2KY38vyvhOwRso43Hgo2pNgJUvGOV8YVjAo14rOHKYR3GTlS/8RH8giaNBpG8+5L0+n3UtLpwVApKZXLON5303k941FI1N+y/ctoVWGQTq0Yy5nkuN8kZCZdddz1C0KKXGAp8qpR6Mh4MpgM6MtQFwrCs86orM6MxY1wK9il8zVj6CJgXs21fRuWp2cv46aL2qS/2xOil2J88rdic/9tckFpIozNrGp+yu1u+AJ+yu1gOBV8zaxiUS7oyEgm1ZK38C8I+slf93JKSbgKWyViOaMrwusG9Q7OeBCcWMvSXwLXD5IBL896AB6ib0c1yiVuQD2RZbbtWBllf6E5UOn/FIKAdclMrkbl1hheU/GjNm6RM8gWDaVcZWwZqEbp2R7jzjw48+apqy716nfDv3e4W494IqoNQ1v/Zc+lrByul2FjrBvxuwClq94jGlONgLH5dF1aNrc15PZa2rlx3d9F5XV9fGhmHM7Uh1BwzDeDidyx8JbFN25K182a0WTnrR7ckPGVYbK9rpjkMM5FYxQ1OUbR0BPFdqb37QN2z0UM94FsrwixYtXZjML7U316KT+EcAOIbv8sjw0bMcxzkYmK6UGsMi0djVgCeXGTPm4rXXWmO1777//iOllActvnkSQCQSWeeoo49+4sXp02cvWLBg+gDncRDa+3no19zn35L9rnM2zgt/35PmTwZ9yMv97QnevPlcYmM3QNU1YfvCuE6JoFPAYyiMchEKWUj+BKlWZKnVrnSaVv2KgT2RODrh+bMjkrUdGe/3qGsMpb6jt2eyWBD5pZbPpHYu4bmpjLF1IhoeVAS0r6VzeQOo8yi2NhTXl1wuogImPTbrQDOaqsuPsXAwXexq3SmtIjeh1KYNsfBAqsMAdGaskWjm1lS02sB1wP110VA+Y+WvAYxoKDhgl0w7OX9tYBt00zOde+hOhtHKC6f6axK9RTi7WrdCJ2hfBw4xaxstlsCymgn3AvB92ZWj0DUpNwDPG+Ke5Ke8NbASmo78yuLk95OaOXie7cpGwD2Nsd69kZbE+hR1TqKHtFGhu2sZdL5qUxd13x777r/+vQ88ZC5obb18eGPj7UG3cOG2O+5ivvbv138MBoN7PvnYI+tstsn4F5RbnoX2xl4GPuorYro4qwDMWiwCmBXRnka12djngVC43z5TWWt74LYXnnuudM7fznp1zjffzDn19DMuP+2MM18VaMzZ7vto3bkXgRebEpHuvvuw0x1XA+1mrP6SUnvz/ZXzWMs3bPSAXXeLmZQHkQwlK6hEVlLizkGHSq8FhgvcbwXr92UA6rNSqrGzO9eOluTZK+JkNwL+ZsYbbKWUHwiJSBdAvlA4Ht3KfJeq0ObCc+5oGYbO1Rxo1jcN0fv5f8N+32Dz+AXn0vHjOYOtX/7Mh9dSCpYAACAASURBVKkN+VEKphx1PIcecSSIi+u4CArx+sDwIk4Z3DJ4fFnxmGnRMTSbinjiB++9J08/9WRk7nffhi65/MqZS40e3S26rXFcwSMTNhk/eeWxY+eut/4G3xxy2OFfobW4ij3+Vv9dQHs9CxKDJNkHsmImpVz4t433BwfjDY+hPkF7JD2XOirKxSwSZhSg01A4HsUhJZcJVMBkccfs7kreUVDmmIZ4ZInCd51aan4fdAJ5FPCsz2CiUmqVaKh/Xxg7OX8tdB3SQqBZeL3dybWAdf01iYW9Wuyu1mWBK9DNvy5GEwm2N2sbh5TZr1rWyi8tIp+5wgcCYxE5Okgphu5b/4A/Gu8rGz+oJTPWGsBY25X30MWbgcZY/0F4KEvn8kfdcvM/Njv1ryfNYpG00fHzvvtm3rBhwy4D0hO32mbGOzNnzgPmfT/vp/dOPvGER267406/V8oLPOIcGayp/XCnHXf45JEH7lsKWNofiaXtVFsIzaRcE/0ezAJeHYy8UgEY3c5CA8wyaCZltdnYEt2XVNaqE5EbgN3vvffeObW1CbXFNtu9EfQZyytoVkodtJhOnx60t3O7sq030ff1hqGUoYvdXW9SLq6onNI/FbIWeuLyHTA1F6x/jSGKOpMZayXgq4CT39OLkzfjDf3AoqLo/CZa0fknpdSf0O/dOOCEYvu8q4CYWd+0Kyzq6SMiE5bknv3W7PcNNo+ddwWd8/462Pr5qRwj42HauvNsdccsLr76OsaP3xglDsp1wCmjnBKqXIRyAczwD2502FtKz8JcNJPKADzXXnPV8tOff37pex548L1hwxpEwIee8cyZeujBDfF4rbvtpEnpCRM3L6DX+dB1AX60zpPJIol6QcutVAUP8woKKOyKaKQF5JRapPBviDPMJ+X185gvAR6leEwp1YH2TDqAzsHyJr+mU2dHqvtzV3nOb4iFF9tBtKdVFBe2UPC46GudBlxb16ObqZ2cvyaanXZRX6CpWrE7eSTwpr8m8and1VqLLtw82Kxt7ACwu1qPQQPbtmZt42LlUlJZa7KCuwxEvFI6z9AFGvf4o/HFfncgS2asi21XLkA/q/rGWLhzcd/paX3bQhczqZE//PjjPUuPGbMFmg33F380Xm3ERXXG3ZXJDTfEecXFUEpxv5/y8QrO90diF/Q9hp1qM9AU4s3R7+J84DnXDC9AD5qTK8tS6FxhFWAG9WT7Wksy6wcm/vMfN/7lhWefXl0h/hVWXLH2rL+d89Xw4cP3VUp9hc6HtQBHDaQIsPB80x01wEvAVGVb49De3aDK0MXurutxyruqcqFRIQ6a1nyRb9jo/OIUBJIZazfgzrCTvVHB6X29wIqi84vAY8FAoFdxp1Lq7FuuvWLOgfvudSua6tzSY91C1fX/Nftd52xQxpBdMkfGwwAMqwkxaYtN+XDWLDYavwmOGGClMdM/4cklIViDG4rj+iM1AjuIfkk7K0sS6DruhJM+9nq982a++8788Rtv8m1tPN5leDzvuMJfb7v9jrOUUsWtNp+w/xZbbPEImhKtWOTNLFxEpCwQRqjtIVnfIDAcYYToWe5IwEBkAfpH2uJgfCt4lvHgtJXxvCbChoicl4iGliiU9EusLZ1rBGMpoF+758VZXTQkGSu/EfC07cjf0CKP0zsz1vfAnYFybrZP12BcOBjQVOwW4NJiuuNKBTcCJ1WBBsCsbbzB7mptA16zu1p3MWsbPxhoJ6msVQdcj8ifvTj3K6W2dw3fcsFw+Khfem197E3TUGvZrnShn9cvApuqVXTN9gJuXHrMGAfYzR+NP953OxGpeshdxe5ka94I7Kpwny/g9QCxfNZqiEdCvYqFK7TpD4APClbOi1veRbnu/apsryuKKMozG2Vcg1LTAqHwYvXYqtaSzNajJWU2r3z02qsvTX/I9Hlk3rx5X//zjjuvHD58+M3AByJyLrCXUuoJ4Op0Ln/iYIBjxuq77XTH3sBj4gtup0r5l4F/ltqb+ylDl9qbN1Qe387i8Y0EENjMHDZ6UAHRAWwNj5SbFbw2SLhxf/TksJc8k1Jqn3A41Hzgvnudk8lkz6tfduzPv5cJ/+8bbEKxfv3Eq5YrlnBFiAZMMr4Yr73zKieftqXO1bguxVAt3cEEuA7eQppA65f4F3xzVmT85H90ZqwQPfI111515eZz5363akd7+6jtd9q59bKLLz7wnPMvMIKhUBlwLrzg/EtbWlq+X2fd9X8qu2LQO4fTWqfbGy+xVaTtG9AKtNVllIMxVyGHgxwCygccnMxYb6MHlM8ry3eDKfwuqSmRqR6c9xOx2IDx8qEsY+XHopOza9ZFQx3ASZWOoZMROabgCV1dgKdQansy1gt1g5yrvybhFtOdFyLyhsDR/trGOX23MWsbH7G7WtuBp+yu1oPM2sYZPdenstYOiNzqxf3Zi3OXgptLhv8GYGbWyt8SCQWHUrxenL0I/A3ds2YpNN37l5lIDB062qHy9wh/ND4kw67YnWwEFgQpeYGVXLi0iA9gdiprPQpcGY+EmgEKVs6Hrt6fDOyC4a0TgzeAM3DLLxjlwipoz2cP2849bcYbvh7omC3JrIEmCGyDJlR0oFXDj2hKRArpXH78M889PwrYKR4J7bTauJXHdmVyO6MH7L8DO4nIEUqp69CaYoPWAZmx+rl2uuN4lHpElHGoEvdDKsrQAKX25hGVfRyE62TwBgoCeaWM5VlUMLx4E5ngc0tZKszHnlZRdL4Y2LynonOlbcaU3XbawZnz3VxnzU228KDHiGp32s2BtZRSh4lIv3bdv3X7XYfR3NkvjpEPnvqKst2v2dPc9m52u1lT4suuy44HHcOJJ52Ir1zA2/IJpdFrI8rAySSxQvXg8YGIoxTtBvKpYNyuFC83JSL9ZqxKqUYRaa2A0hi0fMu96NltX2LBCLSnNGjFfuXvEoFSMZN6SOB1C/MFdJ3AMej80nAqbZjRScvP0Ay4d/1epQylnljSMFpbKjs3IPa5NbWJe5Zk+6plrLyBTt7fFA0Fe/V9t5PzlwOmZLyxe1BqCrqToR993+6qi4b6hUrsrtZzRBndGF7DX5MYtH7E7mpdEz1Yn2HWNt6fylpxRP7uwZ3swX3RQE4J9AiXZa38eWgVgF+lDF21ZMY6yXZlPPB+Yyx86ZJ+r5hJmSXlfQRkkk+cJFqX7oHFERMAit3JbYA/YXhGokFqGX8klkllrThwNMjRCj7zKboNxeZoMshr6BDZk4FQuB+YVSRadkSTJDpFmNYuoRg6TLwBOiT8OXpgnlVtPpbO5cNoIHs/HgkNr2y7DHCmiHQCpLLWUmhFhj+h+xHtpJR6LhYOXjjUddrpjoOBLbCtmUoP/OuwSEYmDNwjyjhd/JFvsa2XlLiuWd+0S/X7Q4XRkhmrxiPlLo84p0Vitf16zlQUnWcHA4F+z9TuaFkBndOa4B+21Lxq24zfg/2uwQbAefisR0m17ra47bLr743dtDrBDx7F07g8dLfhKgN75c3B8CDdbc3Z2JhZousBQiBlBa0GskAwPlGKf6FnTt83JSK9bnpnxhqPpsSuUTdAD/XOjBVkaEXkKig5DA1IP4ewI4ZmVq3kj8bzSZ0jOQQdYrkfzTZbBQ1EG1SW2kqr43+ghTBnAt8P1AyuLZ1bRYn7clRyKwZqG39R0WrGyh+FDq9sH+2hR2Yn5w9HU0lPNxMjnco9MdCD2UHoAeszNNPswbpoqMvuaj0AGGHWNl5a7E7uCIi/JjEo48fual0GmO4oz+tlT2CygXQAB4ajNf1qMLJW3o/WeLs9Egr+6iLIZMYaWXLlBgGnMRZeohbAxUxqM+CmMsZYVxkfmVLesmduZrHf706eBnRieG4C/uaPxC4pWLkg+r2dLMKODoTLgq30PT0jFgkPqUBckYdZEZho4G4WVOVlPYilkJnANdHa+n4Alc7l1wOWBabFwsFBC2thYT3T4ej6qI+BmFLqIeDixeRwrkSkS5XyB6K9+wBaWeFE37DRHwAUM6m3cUqzVLl4MFBv1jflK8ccHGy6czuaYk+zDX80EQ31Ik5UFJ0vQJMCel2X3dESQNf0vGLWN/1iRe3fuv3uwcZ99Z+byNxZrwxU2NnX7JGrkt1wP2IvXY0MXw6nfgy+D5+mtNxGTmGN7VMYHkNEbrTK8o0rbI2e7UUrwPMl8KNCFZUih1bDfROY3ZSIlDsz1nWA1EVDvzo52AOUBgOkkUAjSBhoB/U5i4AoiA7n/APNyGmti4aKyYylfIbaHsU9JUfuBjZEh05SaNB5F/g3MDMRDZXa0rnzfVIaXxuPb/lLzj1j5Zeih6Jz9XM7Ob8GPaM93UyMHJDA0JmxYuhZ60HAOkrct023mCsbvp3jNTUOQLE7eTLwtL8mMWCoJ53Jxjy4z3nd0ngR901BTQjF6wdlP2Wt/Hj0TP0/UoZu787d4wibNMbCyw61XTGTakCz6aYAHxaV72VRhvtLWwwUu5MPo4wfRanjUZ4jUWorNNnCSyWhDTxTcJWF7k1zHNrzvQF4OB4JFSrgshw6xDYePYh/jaZ+v1uV6rdTbaPRUjRxtGfzbN4XFTRrbXYsHPxFocNU1loWPaFYG/3O/kspdfRgYGW3N2+K1/8MTqlGiQua1nyib9jonm09LkBkBWXndgEmm/VNz1aONSjYdKfTT4pSS8Vqatbp+XkPRefJwUBgVr/z6Wi5CU3J3tSsbxoSYP8X7XcPNtBfG20oy62+PaWRq2rAiQ2ntPo2eOd/cVt23T2PRXsIp6GT9ne4IjfmSrI8sBvITqDiaNbLm6DeMSCvFMujQ1ffB7zqIIEDh9WEX/r/da0A+UxqInCthXkUvQFpaTSYlCrX4KLBKOdRrOEI11LpXoluX9wEjFOwGbq24F+OsEFQii+UPIEDB2uD3dcqis7PANOjoeAN1c/t5Hw/usDufDMxMrVE+0p3beeiriwrXw2ajncPcHdECnPQ2mzn+WsSvTyuXKb7r8DZZYzPlTgHB5z8teiWxgcPJWeTtfI3oENHv1gZumod3bnJZeFRoK4xFu7noRQzKQOtuXYpGhDOBG4qGP4j+IX9bApWroZy8WMMTwOoAIbHRodwHwOeC4TC/TzRilexsYicCmxSdmkuufKjK8xGg8s7TYnIYkkmdqptFVcZ+zjKN87r2rcrZLoZb/jFIciKovZx6PeiE/hKKbVLLBxcWHtTam9eFv2sdxPoxhfMUi48okT2B8b6ho1eqGhdzKQ2BJ6lmH1fwTyzvunwynEGBZtsuqvDVubliZremnb5QuFGwAoGAv3GErujZU90Ie9aZn1Tc9/1vwf7A2yotBf4910PVFWfh9xWGXRPOBIj303k3XuRkeOeKmw+tYhS90VDwWeSGcsE9kCHfVZHU3evytjuh+iZ4G4gu4JKgLigXgceUzDb52GSz1DHFMvykugivbfQyfsf+obe/hOrMJg+Bg71R+Pv91xXCatNBfKiq6QbPYqJHkNdZTtyDv29psbKV7tExOsKozwKD0pVe7G8DjwLfFIXDQ1IGMhY+b3Q8iKbREO6lsJOzjfQA8p1ZmLkYhtrwUJxzeuB/TPemhxaR+sgdJX4XESeC1CqdzAOqampkXwmvbaLus3RIakTgVvikZDYXa0+dJ6gAdh1sOLPijL058A5kVDwziU5x76WzFge25V2YPfGWLiXblYxk1oT7WluiH4WJ/qj8fnQn/o8mBWsXC06N7MbIlvjlLzKMAxBXYDhuSwQCvcL27Yks7XoHMc66JCqF/jBo/gk4FWrKqUOQHvmNwIvD9Ycraelc/k1gTHBUubpyvVsiQ77Pj4YsWAoS2Wtceh7MgZoU0pNDFnt3WgwPg49gfsHcJ6YoVUQOYdSfriCj3zDRu9X3U8xk/IArZQKdyq3vD8wyqxvcgcDm0w6ta6g3i8bvoVKzwD5QmETdPO5NQdQdF4B/Tvet+o5/R7tD7CpWM9+NosLqbn+KOk/n4g32/52rLZus2y4QdD6Rh7g3Ggo6FQG7c3RTaS2QQPHVcDTGdtVwKYgewG7gKoHEVBv+z2q1WswpujILiKshw4ZLI2mQneiQeJj4IumROQXs72qVsykpqL7mBw80PqklpPZGbgk6DNWYOjmaQFghOPK+QZunRdpdgxvFC1XMgZdk+KgwzHzgbksyiWlPIqTRUvXvA20RkupIrqJ1CNmYuQSDUR2V+sINN35ULO2sReFtzNjVTugTkZkB6DgUdKikKVcjE+VUgfFI6G5ffZnoFWh10AXfw5Ik++hDD0uEgr+qmTvgnTuY4EnGmPh8wCKmVQU3bv+WPS9OtofjfdiPQ0FNgUrV49+dpPRg3oOeBq3/BkihyqlfMBy/kjMbUlmY+h3bF308/KiQ6Sz0APkF02JSC8PJJW1fJX9H4OebNwE3B2PhAb0PtO5/J+BTCwc7CUfY6fagpVzrCoNPGHGG5aYeVlpJncdIgcrpYr+YqrocctxNNPtZN+w0QvZpna641TEHadKhf2BSb5ho1+oritmUvcgbpeyrWOBjcz6pncHAxsr1flQwQhsgVLDq4XV+UIhgJ5YHR0MBF7tdY0dLUF0K4wZZn3TKUt6bf+L9gfY9DH31X9uIu0/Hke2c/uBWGp4zQKRxLOFVbZ+MrfU2tcDf22Ihe8AyOiB5wDgxGgouLBQK5mxVkUzhvZFeyzXAHcloiHrx86sB2QTAw51YStQw/0eBdBWdORK4PExdZG5sLA+YQ10dfcq6ELPIjqR+zE6/7NEQoqVAe1bYOXBEszJjFULnOY1+MTnMa4cio3WpjtPzg271i0+nDt7ilxW9rN5RYdqRzTofAB8q7S3VxYdthoBjPA5haCrvK2O4f2OIcgOddGQzg10tdahZ5VHmbWNPw1xzQEXji2JcUwZY6Qoo4juEjqtsrxRFw31bBet0BOEdYBJZm3jgL2Fslb+AcAbCQV/Vd/41nTuQgXbxo3S+ug8ycVoVYdLgEsH0ljrCzYFK9fIomZjE4A0us7pMeCVQChs59PJM5VhnGeLmtFd9rShWWLdaC/lA+DzpkTkF9HsU1lrNbTS8S7o3jM3VrtyVuSO9gJmxsLBIQs97VTbqmgAKwOPmPGGxebBKj1mJpc8/mtsX3iUUoZ4nOJlkVhtPwC20x0G8ARlWym3vCawSlUZuphJ7QWcqopZBw0KZwwENnaqzVNS3tlFI/BJIhrap7rvfKFwATAyGAgc0uuYHS0K7SGvBEz4PeZpetofYDOIubNfHCM/f7MBVmosrhvGMHKE4l+qESvONNbY+keAtnRuU3TMe3JDLPwiQMbKj0IPUE9FQ8FekuHJjDUCPRs8Ep0P+QdwQyIaWgCQTXeFLMfYpSjGRL/X2L/kilnWAYqPqFRnj6mL9JrptySzATTwrFlZatEKA3NZ5AUNGIYrZlI3AnP80fi1g92HZMZShuICj1LHlFypHSwP05bObQhcG3czz5i1jRcBKKVWRDeEelJEnqzsz4cuytz1mCOPOGSVVVf11dTEXt53/yl/B16OlFJ7CKrrrMuv75zx4gtTHMdZ5oADD/7i4MMOL9CfjacQWWDg1rsYb6DUHAZoKR3BLgK7u6htbLybilJtfrf4b5DHLRWoRSexd0GrPTyFrlh/tS4asiuAczmalbfdQICTtfLD0ASQQyKh4FOD3cvBrDWd2xLkibhR/k7pycRz6JDZN4N9R4ONjPMr+QYNMH9CA/YTIvJYyuYrR1gO/U6sAQRqPaXNPYbRkHHU9kXXeOU/8Yz7WoU6fQC6pqUTeAQQpdRdSyJvVLUKjXoPFsnePGPGG3oN0hWQ2RUt0bMq8HPZMG8qmtH9UGp54Pp4JHRCv32nOxKIvEKpMEwh03zDRh8LUOmc24ZtXavE3dqsb1p9ILApptq2yxvBB1zlOSERDd0JkC8UVkM/rzWCgUCvSZvd0XIemqI/3qxvGnQS9HuxP8DmP7S2dG4vdPhms4ZY+GNYmPA+Ch2eODkaCvbyNpIZK4zOJZyA1gG7D7g6EQ19AVDsTsZt8axbVN4Hio48X3bZGN1IDLQXUxU2/GJMXX8QqRTRLcMiAFoaDUBltFjmt8B3MY/j9Sm5QylWHqpGI18orOO6Mr3oyB3ApYloqJ8n1JbOXQM0x91MqAo2AEqpCUC8CjZVy1j5yBmnn9b89ddfv775Fls5h089ci2PW2o0xPmo5AlcBTybiIZspdREdJOwfjU72VRnrUecB2zDf3fZ8Nn0Z96NMHCX8uIGyhgFF6MGDdyvIDI/iL1pCe99ZeWZjVZPropI7ooO/T0DPK7EfSniZP8GbIyWt+mXSM9a+f3RSfxxVWXoJbFiJrWGK1ydFt/mEVX+xqdkqj8af22w7SvNxiaXhWNALePBbXOEDwsO8wsOXnQol8r1fA3MBj4ZZjoFRLLAv/zR+KQlPb9faj06cx6DngS9iSZpvFBpF73EZqfa1kYz5QrAQ6pUaEF7P+eg86Gt6Ht+a0ViJoDujnsAmmK8WTzSu+jXTnesh8idlPLjFGxcVYYuZlKv45bfVqXCqUDCCiS66QM2hVT7bZYROhSllkpEQy35QsFTOc4VwUDgsV7H6WiZim51sLFZ37TEunn/y/YH2PwXrC2dOxkNHBs2xMILmSYZK78yOhRyUzQU7Mcwq1T674zO62yI9pJuAGYkoiGnqzu7i4u63ouzeapkBNCU0cno4kvQg0kVeGYPBDw9rSWZ9aFzKMtXl1pveW/LMT4pijEfHeL7tsfS1pSISL5QWOerr756YfxGG7108qmne48/6a93JaKhhTHvtnTOuPnG6zv/ccPf/x975x3eVnn98c9779WVtWXZMU7iDJIQSMJIWWFvStkbCmWX1dIySiktZRVo2aWUvSmUHXZIw94Q9gwrkEVIHMdDsizJutK95/fHe5XIjuMkdNEf/j7PfaTH2tfS+33POd/zPTdPWn/i+o9MmbrEfLOabCpzQETE9R2dVSwcOlkpdU132zd3tXZ07hVqGN6NNuRMPvXktKfP/v3vsuPGTzj+0Ycf6lGEdjqag+hF7EK7tvH93p+1mE0PA37motJFrMNBlQQuFp121IQkMjRIaesigRxKrYZeqBf6RxGtyBsFpBD52JSyExAnbIhsGapt6FGfqHKGnhMNh47v7//gv78mdCf7YcDcDs8Km0pNHRSPHNnrf2ZELLawDA43FDuYSg33RPIlT3W6kM2X5Gb09+BzYNby0mDFbHpzlHoF2DMYTfQ5hO5fgUyusCHQmIiEpviL/+5oJ4CN0N/TO9FNnCu98Dgdi+KIdxEi+yDeaoi3SGm12fWBQcOXMQhNd+UPRadVO4BJyWh4do/ny7SegFf+pSo7Hr4zdDGbPh2RzZST+xGwb74m9Q+qyMZJtzSUlHVT0ahZIxULj4cljs5bA/tUOzo7rfP3QXvx7WjXN01nAMAA2fxL4NcrrkZ/8bZoSESWLETZfCGAVsjEgTNj4VCfyqZ23dj5K3RdYwHaU+lW0Sqig8MUjzfg/WA8JXPbusaz1ARxPf8pZuGn2oC3VkQ8FRSz6YOAfReXrAPRfTajWUpGqwEqYKjaaNDY5k8XX37dZ5/OyF5/480thmI0cEFdPJLx04kXtM/6+IQDDj3y8g8//uSHoJ0S0IX+ELrgvT9wX2cuPwS4u2lw47WdnZ3RsWNGxz5646X2YN3Q1UTkpPZsXt1+6y37X3nF5dcefcxx0QnrrDN/m223uxa4KxULL/LVYrcC19i1jdN7fR4LOEYg2k0ggVKnoHeYl/Te5QIUO9sT6J3yb7tUDeiCd+8IaQ1gPCJN6IgHIItS36DdFr4AFiooWQaXinBUWXisrg/fuWI2nQBOR29OukW4qKNsPoqhrjWUqi25cifQaCnGBk1G2gbDTUPVeiItnvCkwO0BQz1fFONnrIL0uZhNTwZ2Qal4MJr4t8y4z+QKuwCtiUjozd63pbvyDej6zWFo2fwdwN8r1jh9obR4nkLX+M4FJgq0oMy7Ma0c2kT2b3ayoc96Y7orPxbdwFkLHJSMhpf4xTmZVoXIg7jODspz/xwYNPzcYja9NjCdYtf7Cl7N16TOoCfZHJkzwkeLMt5OxcIn9XZ0XvLcrfO3RqfVDrTrm55YhdP3/x4DZPMvQksmZ6ILpFFgl4ZEpEdRN5svTELXL86PhUN9mj7CkrrOEejJicNFy4ZjiHwWpXgTMD8YTy0xlJzb1rUGS4lnQ//P89Ck8yDw+oi66HKlqcVsOogmqo2DsWSfeeV8obAh8MQJJ57yJztojz7rvD99053Prx4OBTdVhrkIGFrI5wtnnnZyw1HHHv/8Wuuu/zY6xVE5FgHZYXWx1Tpz+Xa00um0WDg0zWlfUIdefH8brBva0Nu+w0857u2fk60QedL2iiFLSpfU1K7WQ6FVzKY3BA4sYbxUVtZ5/p8PT0bDHy7v8wMUO9ub0HW0M3vPwOmNdGenaXnOjZ6yflRSgcUoNQGt3prnXw5VMFJEsr6zdweQFSiaIvWW8oYaYJWEud2umuGiFgFfGwbrGopxIYNZtsEYv97VI3KtngWzIulzef4MhZ6fF/TsSExCyc8Rb7rZufAAdG1K9ToMdKq1gFavdVtNE1ZqccjkCiY6Gn05EQnNWdH9fdnyoWjBzFdo4nkwGQ13whKS2Q1NMuuja1GXANcFBg3PATjplkFo4qoB/m4nG5YxAk135YPoxtut0PXRXyajWgDiZFpjiLxPqXuYQn7g1cQ/AeZS6n5VeeXh+ZrUVlSRTTHd8secGf01sE8oYEwFpgEPVjs6O63z10VL/U+x65u+lRT+/zMGyOZfiJZMLoL+EjrAng2JSI9icjZfiKCVRouBi2L9+Gq1azuW7YFjZ86cudcVl11ibLzJJm8ec8ThJ9qUC8CMysKolLoJmDFp083b73t82iA08VTGDS9AK60mA6+MqIsuM3q2mE1fCHQHY8k/9PVeqpQ0BQAAIABJREFUCt3dGyxYsGDqmNGjH6BXlNLWmZvoidy65urDP958k42tT2Z+NeWF6e8+h44QKsdq+APXQpZax1Aqnit5z4DkEhQ2zVIzxcPoQI9LyPlHV+/LsEW9JeV7yirQhFI16FTFNRGcxcCJAnO7CQxHqTPQ3fZ/Wtk6QbGzfT1gh2A8dfn89i4LiPlHvK/LOIU9A3hrdRB6RiljiGGoIYZisNJWKi5Im1OWZwT5osaQMbZiZxT1rqgZZWXMABUHGQwMB0IimK4QCBh0G/COB6+KyLum63QGSl0SKOUtQ9yUfy6tciA8SZSRDDhdT/bzsfJA0QvVbi7ByCEq13GzUcpNR5NK9eH5l8r//0bQi3g1VNX1yqKhPGUGS6HaUYHu9FTDK8/F31xYTRP6dVSHJY2T26CJZxdEppueM8t2urYxkPXQzcOXANdWSKY3/Pk7h6Cj8ofsZMN7ve+T7spfiN7QfAjskoyGF+jHLl4b5GVK3V8o2MyriV+N5zaqUmFXV1m1xWC8C9gmXO56o4x5e7cZ2hlYLRQwDgCOospo02mdvwH6t3+ZXd908Yo++/cRA2TzL4ZPOI+gd5W7NCQiyxSLs/nCzujI5fRYOLSMG3FvtGfzq915x9/+XFtb++Ndd98DJTLVxHvKpnxvKF67WCl1Pprg3hGRqQBz27qa0IXu/YAt0ItFCzr6mgy8OKIuWgIoZtMj0Tuy0cFYchl5Zl/zbCpmoi2Z3CjgaUtxr+11D40m645Y3ufwHZ2fAn6Q6Xbz9WTPLRB4LEdNGh0RRpZ/KbEE3TsWseZ1E/jGVDRYBmsGlIwwkK6Cpz4LmMZowCyW5RVXWCkJeBVUULmDDQgVxPwCPSsoy9K5Qctc1pM7ViHbCmxbk9KigbZsfrCCIxSc5yF5IGoihkLmCepKF3V3xGQkIvsh3v64peG4pbn33nd/1z2PTZvw4N9u+MD0yl+LUhFRRkyUGTrw8KNHbrLJpmqDjSd5kzbbYj5KLQSiCjy/8ba3JLzHwlzsyryJyGjEWyMYT63qeVkuMrnCKEQ2DWXmTTPEbWDpxmI19P+ux/lFO1PMQUczX1lNE9IApcXzQoI60jUDv3MNu6ls2qJEZotS16OM+5PR8ArHFzjpFhP9fZ+Itk96utr6P92V3wN4AF2L2zcZDT8N4HS0/ArxLlauc6pXE5+FyF+Ukxtl2MHzuozIOSGzfK/llrycF1jfVdaMmoDxc7RUfLtQTc0XsCR19hhwjl3ftFxl5/cdA2Tzb0BLJleDln4OBXZqSERae98nmy/UoyXSrwE3xlZgd6KU2uaAHx+01bU33nx8d6Hwlm3bO5uG0aqQhwR1cSoe+VopdY2InND7sXPbuqp7MLZFp0zaqerDaLTLDwG3BmPJh3o/vr/haS2Z3C+B0Ukve33RqPlpybC7gMtTsXDvqK7i6HxNLBy6x2lfcBTwhZ0askJbd6ej2UbXsP5m1zY+C1DMpocDJ7iot7oJHIduXmxFp15uT/VhaLoyKHa2HwK0BOOpZazjl/PeLkRPqtzFrm0s+h3p+7nK/KuH0aA85/2yJx8LxlqeMseLMsIKD9Mr5w1xZyqvPPnEX/7y44emTKvZY78Dbrzsir+ebBkqk4otrTH41vrpVCr19Bdzvp4LDFZ6Zz1S9NCy3h54QXSEscDEK4SUu0vZo61bBX5BFTH1Zfq6ssjkChsAgxKR0LSVfUx5/gybpQKV0YIaimFOQhmTgLBfh7nbE64pRAc3otTeaAFN5bv6MDCjP3GBk27xG6bZES1Hv78inU535ceg/fdS6EjnsrCbB897C7c0wQwGjypj3alKecMwDdVlxomaRSiX6ZQQUavkiGEvEtQTNTXhnwE4rfN3A+4BfmnXN92+Kufw+4YBsvk3oSWTC6CVN2sDOzQkIst0l/sS6UPRDgO/joVDfdqyVBfaH//Hk1+/8PxzPw0GgwedetrpmyFy7I3XXzfqyy9nfjnrq6/enPzIY8f0dqKtxty2rkFoEUKlu9wCMibyTsT0kp2uufmIumiPetMKyGYacHnSy44D7uyy4iZa6PBsKhZeYr+SzRdOQNvy7xbs7tgGaLJTQ+5c3vuswOloDqHFAFfbtY2v+gKAYwG7m8DTolOIKRGOES33PgmtILsZuCYVC89Z0Wv0RrGz/WTgtWA8tUyhu4/3p4AbRaROed5bIL9EZLCIN0cMqx6kVVl2QsxAEiPwmod6vOgxz0ONQisQN7n8kotry+Xy18898/Rqv/n9mc9uvNHGs6+9+qqTLrnwjz1+nEqpq0XkF9B/zaZN9zKtBgwJUTrbgG2LwvyyCrxMT2KqkFKPvqTel3W9Ng6+4iyciIReWoXTugSlxfPWQQskfoJuTH4NkStwcm8rZCRapNIIvl4/EI2UauKNnmFvjJ44+jCafKb3Z5XjpFvGo3t2FgN32MmGbCZXSIrIS2hZ9qPAoWGvEMZzv1FeycIOKfFclFsiF0gSMbrxXCFPDTGrRFkFCNLtKGVd6WSzH6FrQYfY9U2rPCjw+4YBsvk3whcN3Izuz9i+IRH5uq/7ZfOFEWjF1JtomXS/aqFX3nj7snHjx28C/MgfQb0NIqcC26KUi/4h3gM8nYqFl9u1PLetqxat9tkXZCdQNkgXqCnoiGfaiLpobnlk46cM5wBNSS97ul3bWCnK057N74Z2BL4mYCoD39E52N0RAH5sp4b8kRXA6WiOokf7XmzXNr5dzKY3AvYXuLlb2Tv75+wG4MxkVBOsbxO0KdrqZS+0HPniVNVY6RWh2NmugN8BU4Px1DKy6vL8GSa6K3wDgVFYwYlimLuIEbDFCn6EGZyDaW4qkHJRYiDnG3BTTTiyzGbCH4O9OrDJCccfe9nV191gn3fO2anTfvu7lnA4PB2YvutOO6w1d/bs9KJFi2Z4nncTrJw3WrErEwIWIPIi4r0XjKd61OSqSGlF4ytq0CKPBUqnodKiv6s9iKk3KVXDb8TcCb0R2QFdJ5oMXBEYNLzf/015/ow6dF/NumWrZnjZjo53rZq1RJlxRKahjEdQ6rlkNNzntFMn3TIEvakDuLMQiC0SkavQqew5Uav0hSo7u7glD2UaeMqCYo5CsJaIUaToGmAYWJaFTREDD7dUxi2WSqB2teuH/luNc/+/YIBs/s1oyeQMtDnkrmjC6dO2w49y9kQ3pF0YCy8rH63AX6AuQSt1dqvzI5lcZ3qtEtbOnjK2Q0dLGfQP+h7g5YqXU1+Y29YVj5nuP/KuEXBR66AXmAIw1TbVO/GgcVIkFGqsfkxLJrc7cFTSyx4KHGvXNv65+vZ2PfLgBENxuKG4qaaYvh0tMz7dTg3pl1CdjuYkOqI5R6yaWeid8FcFAm+g1G3oFOURyWh4uWm49my+CW2lcgJ6HML5qVh4pXbjPuGchchkM9tcREchq+MX1AX1lRepGyOmfZxSargI85XnDMawDLGCz+APGytjnAWMA3ZckTN0cya3E3DlA3fdeezBhx62Pfr/twmwDlp+ncefqKogqRRlTzgVvdAv6xDRlTkUuAPPvQZ4OhhPrbK7ASwhpQZ/mFqTJ3TQNzFVSGlppCSyOOB2jw54zg+VuCMMkaxCbgKuCgwaPufbvB/QKblSILq5G6g5yDPsjT0zMFqJl1Ge+7oodZeY9rRkNNwjQnfSLTE06QwC7sxb0XUVTAYxQ8pBlR0814VACJwCZSOAYRgUVJAaSwgYgiUOrlPGK5WxQkEMy76UYOJ77Xm2shggm/8A/D6ci9CuAfs3JCIvLu++2Xwhik6ZhYFzYuFQn30EPuFchU4Z7V1xVC52tqeA4TmC81BqX+AgtOJnIbqYfA/wdl+2M8Vs+kBgr2bHOgZtXLkfmiQrxd7H8OedjKiLplsyueuBt5NetgWY11dzZTZf+LGInFZ25dmgmx8ekNLxKxoX4HQ016MjwtPFqkkBewpc3q3s/dAkezvw22R05WoOvjfbicDJ6PHL5wPP9HUOfMnwSGBbgSYvVLudUSo8psrdDwNz3MTQGtHuEL9TUCeoMoYByngK8aYoJ3esgjvs2sYrYNWcoZszuUHoxTphG+rUVCx8buW2tmw+iDasnOAfu6GVbEm0YGFG7yNC6d77H3hg0M233tbw9NTHx/YWByilfopeeLtE5Opet22JjkzHA6eku/KrA9FEJLTc725bNm/hR0qGV1rX8sr7gGwrGGFPGQXPsNoFZaFUyP+cy1gL0TNSWunhe+muvIHnrmd45UNEGT8SwxypvPJCwyu/o8S9SzCmxFKDtHIs3RIEDlNKbaos4yd5amxPFLZyoOxiistfr72B2+74OxgG48avzXXX30B9xMPtdkAEq8ZGGQaAg2Fvjx1b+ZHS31MMkM1/EC2Z3NHoAU5nAFc1JCLLPfnZfGFtdLH7EeCuvgQE/rTKG9EFzwPr/JRZsbPdRjd7fhCMp5z2bH4IWqp8ENrj60vgXuCeikUOQDGbjvu3NQVjSQdgbltXyDbVzxWcX3SlhJb+loBnakwmucJW9XTtA1xg1zb2eI/ZfKEO7W+1k93dsXu3Gcm6RmAI2g+uT4dkp6O5EbhBUKdhBfcC5hcIvIJSt6B390cmo+Hl2rn0h/ZsPo6Ocn6FVkSdD0yNZ2YPRwsnhvl3nQ28aDVN+LrY2W4CFwjqHyjjRJDdgCAoD8N4EWXcCkypCetGXqejeRBaCHGhXdt4B6yaM3RzJjcPOMw21NrAvalYeBlxCSxNo5U9+QM6pTeh5yGjP/zgA/XFZ582vzn99fglV/z1InQv0Fz/mF8fjwxBj8L4RESu7+t1lFJnXXjxpR/87IQTMv0RDUBp8TwbnZY9GvghWoE2He2e/XBg0PAyLCGlBvpP3Q1Bb7h6Rkp9G7Nme0d2fo/Npsor7wtqZ1FqNcMtzTbc4gzTde4LONmpZv3ge7yyu48n4Bg1lEQ7/bTOm8UOO+/K26+/RE00zqFHHM0uO2zN4QfuizKUJhpVpQRXxmSCtSs1afX7jAGy+Q+jJZObhG/0CBzXkIgst5jvK7iOQKfEzo6FQ8t4LLVpy5s70D/sQyuuxX4aaF3g6+odbXs2PwrdyX0QWrzwIZp4Jqdi4ZnFbHoacHkwllySh67UbFpy5ZHofPt+CvaxTeJFV1wTmeNiXAo8MqIuusTtOZsv3AF8Gezu+AJot1NDnvKbNE9AS4hvTsWWdvX7o5mvFCNwJYa5s8Bfu5W9A9ol+17g18noyu92l4fCojnDPWVeiDL2QKTTkPJkq5T/c6BpfA+JbXc+l8BzT8LzjgGvCRQoYzbKuBrDuKmvYWP+5xiBlt/+wq5tnAIr7wzdnMndBiy0DXUTsGUqFl7GEw5WXLPpzmbOuPDSy85b1LJ4+uvTp6991rnnvTRpk03jNaHQMMMwhqGFIQuAuaefekrk4suvmNba2rqgvr7+S3xSqo9Hdt96m21Xf3TKE68mIqEXlveeS4vnjUcPDjwM7VbdiR4xfktg0PBlJlauLKpIqT9CGoyOvFvoh5AU5BVsqPB2AXZGJByQUsKUkjJNAEVRbFzDZuH8eeyww/a8/vKLxBNJDvrJIZxw1KHsuO3WBCI1PYnGP91Y4bWwQiuUaH+fMUA2/wW0ZHKroTX/UWDvhkSk3y+pHyGch87hXxzrZfTo/yjv828/uq6qNlPsbB8D5IPx1DLFaX/0QYV4RgFfGHhfW3hZB+vAVEw3RPYlEFiU7vq9wPiS69ke6oe6SREPbREyOWobbbapzrC708crZG07NeSGXq89Fr0DfjQVC7/qdDRvKHAGZnA6SmUKBKag1I3oCO2nyWi4v+bFFaI8f8aa6NRgAu1K/I/OxOoL/PdwOlo2/euwKe8isjfinYDIRIUogTzCI+BlFZwdjKdalv9KGk5H83h0T9FBdm3jyyvrDN2cye0HnN2YiKzbns2fnYqFz+vrfisim2JX5kWgiOfOH7feBjWzZs8+WCl1EfCH1s6c8+EHHzSd+PPjf19XV5cYPGRI6MRfndp2x223bnLBhReXgRGPPvxQ7I7bby1vsdXW6Z132e29tcaNm+eftzagXYmXs8uFiZZX2kmJu55CUJpgbwEeDAwavsLpnf8q+BuulYmUlpCSoSRs4W0o6ElSgsL0SiivjGcFufnaqzj7/AsJhWrYcbut+fst16EMBUr1RTZgBA7Ejt//H/nA/6MYIJv/Enxp9OVom48DGhKR51bwELL5wobohfFF4IZYeOns9TY9IfRhtDrsF9VphWJn+0jA6YtwYImCawKwq54iysZAJ6gngSm2qb4xDfX3arJpyeSeA85OetkNHDHubJPweugazz74slUTb0ac7oUdhH46oi62jAeW/7p7GVL+se0Wk6ZpfSpK3dCt7A2Av6KlqacsbyhXfyjPn2GhVYBboA02PweerDQSViOXyw0tC5e7wr4GYtmUxQQl8AnwRwX3B2PJcrGzPYRWwF2wMs2RTkfzJuga1852beNHXfnCIWgDyeU6QzdncnE08Y2xDXUIcFmF9KvRH9kUuzJJoBWRUxHvCGCDYDzlVRpx+3pdpVQCcESkANDRld8KGOsJLejaUD0idQpvrBKZAAwWlCFKiV6F9amkipB6XW9HuzcXV+Govr9T+U779UrLlHKN7ZVGKWQMus6WxHd4EL2Ri4KqNAaHREf/AVEqoCflEtUWCkpbKSgDD0W6o52jDz+E++68mWQywf4HH8V+++zOIQf1E5Qq81yCfTtwDEBjgGz+y2jJ5A5Hj9f9A3B5QyLS74hdX7W2Gzpt8TfgkUo9x5+YOQVdJzmtD8IpBeOpFc7VKGTT7xaxHvQwJuBHA0pRFuEPwBNlTz5FpyeG9JY8z23rMiIBdY9T9saGpHt0lpqYaKeTt1g6k2eJIq/Y0fwzMazdHRXMlZUxV6EmKMVE4JhkNLxKI3TL82ck0PLacWhfq1eBV62mCcvIv7vzucFUGl1FtkHckogESpiUMUTBg4L6RSoWXlz9uGJnewTt1nxeMJ7qU7xRDaejeRe0kGMzJ5hoYSWcoZszuWeBybahPgKC1f1KFayAbA4A7sPz9gDZPxhPHbai99nruX8A1CYioecASovnNaI3RUejz62LNpu8BZjaWVMPum6YAur8o/f1WrRaLVh1uaKjJ0RcwOg7tOhxHxddVyz7l/pQquz/LW8g9abymvDXPw+FeGDi8djDD/Lc889y6w1/BeCOu+5j+ptvc+2Vly7/pCnzUoLJAVVaP7D+22/g+46GRORvLZncx+g02B4tmdxPGxKR5Q7N8onl8Wy+8A/0j/+BbL5waSwceqMuFu5uy+b3RHs0/QE4u/K4YDw1p9jZPqLY2d4UjKfm9/3sGgY8GKIcDMaSB7dn85apOALFX1zhYOACU9Ei0G0ie3qoHvLSVMjcCNgwVs5cB0zrJBRh6WiEi4GL57Z1vQ/yYEp1j7XNwBBlmGd4yhyphGsF5opwPbrIvkKU588Io23sx6HTiNOAB/oykezO54ahI699EdkCkU7EzSswBDoMuDaIe2MZMyFa9TazPZu/ALgq5av9gvFUrtjZfjbwh2Jn+8XBeGpR79ephl3bONXpaB4LPGwXM9s5wcRxwMdd+cI90fByC+5T0CrAG9H9PsuQzQqwK/AFyNpocgOWVZiJSG912gHxePw38xY0/yacX/xJKc8J6KbILdOZjDrwqOPzw4YMmRKPx8696sZbl9Ri6vRFi398a/iWM+sCW4iOSNcAugX1taDmCeobUeorV4xZJRVo8cmjQiplwK2LL190A0ui6TUChneF50lTGRMEAlLCpgwijGwazBtvvUM+nycUCvHs8y+x4foTV/T2v7Ubw/cFA5HNdwQtmVwYOP/TT2b87Oorr3jmoQfuX+B53pki0qcaqYKsltaeBjQBF8TCoVltWnX1DHr41wW9IpzhgNcf4fh263cFY8n1oGfNpj2bH+WJXKlgLaVTFy5KvYBO7b1mGVxjlQu3WW6x2U4NuavynHPbuhS6L2hfkP2DSsZYCvKe+twylBs0VaOhOKY2FnmoPZsfBByHTr3cUlnoK/BTZNujmzcLwONW04RP6APd+dzqVFyxRTYBacHzFoGMVNpY803gSmByRYFXQXs2vy1aSZUAfgM8WJFL+ym184Erg/FUn826FfguA9ejawaHOsHEiWiRxLrRcGiZkc/NmdxY9NCzOttQpwHn9ZZpLy+yKXZlDLQrwN/x3B8A+wXjqR7Njkqps4C7RKTH6OVsZ3r7Hx/448seuePGDNryRfnP9eB7H348ZdIOux6ALrpftbx03KrAn8q5MZpYtkDz1odo6/5XgJnV/mbfBv7MqPWALRHZEt34nFLieaaUDRsXw/cVVcpDKTAtg3MvuJj7Jj+CZVn8YL11uPm6vxAMLhtsLcFAzWaFGCCb7xhaMrlN7rz9tsmPPfJQ+Jcn/2qX/fbcbaU63/1x1L9HN/5d4miZ8mPonotf1FWpvoqd7cMAlrdIFrNpBcwEdgzGkrN7CwRaMrkngQvjXtcOeTP6NkrtiJ7lMwHEVeJ9Lcq8HU1Ab1Tb5xTTLUPAeMbBeDTj2asL7OfJkumSX7DUUv/9mG2sju5N+swq5e4J51s2QktqQe/2X19OBLMGS6OpDRD5GvFmId4wpYUQi9HTUW8PxpL9jh/wF6tD0bWa2cCvUrHwm/55DKAJ5+ZgPPVlf8/jz+CZBjznBBMXoVN8z0XDoTP6un9zJvcFcIptqCjwfioW7jEOvB+ymQRMR2QvxPtVMJ7auvp2pdTB6N/9XUop+6v3Xq8fNnTI3q5hHQlq/d+ccaa6/IJzFgGTv5w157Exo0Y+Gxg03K16fAo4WUTOZhXh97fsiJaZb+L/+Q00sbxqJxv6jRJXBn4jcYXAtkRkM5SKIZKxpBwwccUQ7xlTUURHbShDV20MQ2GYxrd52QE12kpggGy+g2jJ5Gquv+aqv2259Ta7T1h7nQuBixoSkeXazlTD7885FWj1RK4pe1yILpweUN0k5xOOCsZTfQ6vKmbTfwbmBmPJK6vJxhc2NCvxmhKSO61Sr8nmC+PEk2eMcuEDx6j5CqU2RzvwltDRw4uWlNK2lH8ucFzRDB2OrgedkCl6H7B0Jk8lXzEbmBwtZd4KqdLm5UBkQ+W5T9pO50XBIWP7qsGMZynBrIvIV4j3AeLVA5v7Sf4n0PY3U3tHMSuCL9n+NTqKfBT4XSoWnuf34ZwL3BeMpz7u7zmcjuYU8DpwhhNMfOafl82i4dAHve/brMds19iG+h1weCoWvrL69n7I5jzgFDz3GGCNYDx1fuU2pdT+wE+HDG589W/X/kWefuGlI4874tDVhzYNU6KMjrvuvvul35xzwcjObPbaUql8o1LqShE5yX/s6ujFeTBwv4i8tjLnzUm32GiCOQDthPA08CTwhp1s+KdTT37D7mbAlv6xISIBYJaJm7ekPMwU1zWQB4HnQW2IUscAecNUiw3DW8dzBdM0qnQOq4iBPpuVwgDZfMeglPoROm89+vqbb5u89377V6qSxzYkIis0hqwgmy+MB34lIp1lD0v0D3G3ulh4iUDAJ5xyMJ5a2PvxxWx6a+DcYCy5bS+ymQRclvSyJwCj7drGh/1+oJctp+sr0yv9yU4N+QygPZtPoneYWynxDhJUEzrt5qEbC88FpqRi4SXKrLltXWOUuAeG3dxRhnijysqi2wzPF2VMDppqVsBgsFLqLRN5NGiyDksJZhzwGeK9hOeG0b5x9cDHaIK5KxhL/it2zkPRAoED0A26F0WkO4du1J0WjKeWOxgPwK/fPAfs6QQTe6DrK5tEe/nhNWdy2/vve4RtqLN6S6D7IZu3gXl4bgdwXTCeetsfRrYuul9rF/R3QS1obl7cOHjoE6VA+Kugk72wOoKBpWMk+vocSg+N2wldVzmrOt3rpFvssett+PSeu+1Ss/MPd0xut/WWj6Jd0N+ppMWUUpOAK0Rks/7OVzX8GU9roNOxW/ifY22ghMhbBt78gJQSlpQ3Unrkhj/HSbX5E1sPQQ8KvBSRvyuD3xlKzjQsw+xPc7ACDDgIrCQGyOY7Dj+S+A26UDwNOLMhEVmmuXN5yOYLawKneiKjyh5j0YSzJHVU7Gwfi7bU7yEJ9t2V5wPjvUDN6iwlm98A8aSXbQdutmsbO7P5wgmG6xxilXJ/DaaG3NPjeTo7gog3GfFU3gynQe0p8DxaobQxWqQyE3jPcEtf205nvVnOf2N65Tu/CY0oUino690rQGvQpDVoqqGWkpil1IcKeQqv7CgdKf0APTHzbvRi/U4wlvyXf8nbs/n10fWcscCxEel+Au1M8GYwnnq5v8c6Hc3bA7d4yti2bMeeAG6NhkOXVd+nOZOz0RLoLWxDbQPcmYqFl6jf+iKbYldmMNqP7Gg89yTl5C5UmhB2wpejo1WEjwL3dwcTb3mmfQBweyLSv29bX1BK/QRN9kcUOxblge3QJLz+Xgf+xJv79fx3P/9i5i3lcnl6r8cNRxPfeBE5ua/nbtf2PBPQ/8/KsR667pUBXkfktYCUirY4ayut0OxCN0xPBl5HGVugI9Hd0GnLS4HH8cp16Oj/MTsc2gspn7aqn33ph7EGvNFWEgNk8z+ClkyuMmbgp+ju7HMbEpF+VWXVyOYLY0TkL56wjcDPa6NLO9OLne0TgU+C8VSP1FIxm74XuNcL1HzNUrKZAlyZ9LJb2LWN52TzheGI94Zd7LwvmBrcY+Eodravicj9nsgbRSv8I3T96JhkNDwf/Py6525qucXDRBnre0agVpQxBKUMdOTzHsh7piKnRCaWPHYpeqRKvjjcVFIImsoN4EWCyhND8RSaYB4LxpLLFN7/1fCVTYege4IeAU6JSPfBwJcrmofjdDQfBxzjBKKnYZiPA+tFw6EeJq3Nmdxk4B3bUA8CG6Ri4SVE3ptsSovnmZ4d+QOm9Xu6uz7FtMYZ5SLoHf7L6I2GGf0bAAAgAElEQVTKNGBGYNBwyeQKCl8+n4iEVipF2xc2+MHEw87+3W+23HqLzTeuqQk+axjG/egUWSWCuVpEfqGUCotI3v/bz9HS5r2As9s6c++hiaSaWMajx2ovBN6rHIa4n4S8wppKk9zu6D6eSp3vLd+wbE/0Bm0SmlgvtRP1r/rnfU90lPdnu7Yxh1e2KHXdjbirngZT5gMEogdjWP2ayg5AY4Bs/sfgT8Y8D73jvwZdz+nTWr0vdHTld1Zwn1K8Zyh1Uiwcet+3ttkQeLsyahqgmE2fAIz2AjV3AVOyRbcJaI56uV0svNWLwcQDiEwJlLpqDK+8m50aslQI0Nl+BOKd7ijrc9ewt0XvJG+pDL4qz58xEjgQveg8YjVN+BCgPZsPg6xn6MVkJ4GxAgEtjJKcQhYZImHXk8aihziiUCgVMCko1AeOK5cKPDGiLtpDwfbvhO89dxN6wTw6It2DgUwwnlpmEF01nI7mK4Ehjh1vRqnxwA7VztDNmdyRwNGNicjm7dn8WalYeEn9JZMr/BzxxoULbe+iI5cfena4FmVA2WlTyNvKLV0NvBAYNHwZ6/9MrnAA8GwiElrp70419t1rjxMaV2s4qmXx4iE/P/boc3bcbe/RruueW2kKVUr9Hv2//Rrt3n1JW2fudPTwtLHAxJ8ecdiRt9x+h0IPUwMd4b5PFbmkYuFFTrolSk9j2G+oEpLYyQZxMq2D0eR5LNoM9A7gcjtR/5l/rmvR38HnKwP4lsArW5Ryf0LKJ6Hn66wIDsq6kkDkjAGiWXkMkM3/KFoyufWAP6Fz15cAf2lIRFaq4NqmrfenmYoOQ7FAKXWv6TpTTXHHB+OpJTPcS4vn7uRZNdcaC957pjxys58w69W7uoZM2i5B7iGMwLnFYGIvs1T4k+l2/yiYGvI5QDGbDiDe1eK5mxfNUFyUMRM4KhkNzy3Pn2Gg0yebop0O7rOaJnQBdOdzFlrRth+62bIBeBXxXhLPDQpqVw+1lofyXFRGUBFQtogUBNo8IeAJgxRiiOCUPKZ5epF7akRddLn+c/8q+FHOEWgftwdC0v2coRsZr6sm8Go4Hc0W8JjAe6Vg4lB6OUM362h2PtBoK34WK7bdg3ZF2LxkhXYTZQy2SzmAvMDzUhPfHpFbQCbQh+S5gkyusB2wIBFZ1muvPzjpFgOdkjoJLUu/AnjdTjZIpb7jq/eGoWsrawBr5PP5NQuFwhp1dXUj0NFKCR3lvld1fJCqErA46Za4/1r7oYnmK5YSzAyfYAy0su14dJQ0Hz3f6DY7Ub+kPud0NO/kn7fL7drGPp0b9B2zWyDuSYi7G7rxtDe6UcYUlHXlQI1m1TFANv/jaMnktgIuRBfIbwGua0hEZvX/KGjL5mPoom0mYPCMUmpnRN61POep4KzngmQWnCzdmd3KGxwZND57gvLae+PNfh3XjhDyimWVbZ7aPWHvLS3XOb+mtuEKgGJnRxPi3emJNBTN0HCUOh24PpqebaE92Maimwxfs5omSHc+Z6Pz/PuhF4taRF5A5DXEDfn1hrXRdiX/QOfjHw/Gkhl/URsLrIW/qInIOGC8UqoWQETwwBPhG+BNU/GkUmoGegfd2teIgX8W7dn8MPR4hLUCUrrUxq0D/hiMp/rcAfs77rdc077NtUKn4jtDlxbPCwIbdASS99a43S2mkjUstxQ38ADKJSv0jWcEmoNO5xnAq14osQXwDCI7It7ZwXhqq75eL5MrrA2kKlM2lVJ7oRfs2cCV0mtBUEodYJrmL/KtC+5Dj6J+SeCqnBktUUUoVcdodHTg+c85s49jbrUB65JzkW6pDPPbDy1x/wTfdcJONiwhRifTWoee+3S8/3pT0H1MT9qJ+iUOHE5HcwxdR3unYoi6UigXRuCVJiHeOHSNKIcyPsUIvDEgb/72GHAQ+B9HQyLyUksmtwW6gP4L4JOWTO4Z4GrgqeXZ39TFwtm2bH534JqSx2Ege9sG63rd2TuLsWFjAh3zTcMtobqaIVIPQCk2mGDXIlTXN1ZpyPp7BNJzJfDN24Nl/M6Wo0I/EvEuLmPWly37c2CPaHp2K7p5MYWOYu7ozudqgN3K+dx+6IUlqgnGuwfxQkpHN9uh+4WeQCu/pgZjyR4Oyyntbv2pf/RAezYfcT1ZzxV+bCj2VrrhdZjAvhXNkYhk2rP5WeiawEJ082Jz1fWFQHMqFl4lQ8lULPx1ezb/I+Dokgpc7or5WA3O5cXO9jOD8dQyLtF2bWOH09F8gFkuPu4p83NQL5QWL25FpzWDQbdI2bBWs93CK45V015Tzl8NvFWyo0cAwwKJ4c8BFLsyuwKtiJdCN/Qug0yusBqwZiISerDqzzn0uY6c9tvfWe3ZfB1a3jxYibdGJp3e99RTT90wb4SSHkY3Su0N/AydIhO0Q3SFRF6ouj67L0+33nDSLZUx5fuh/+/vownmZDvZsKSG5WRaKxNYj0eLENrRqcub7UR9j34xP2I8FB1hXWPXNvbbGL0MrNBcGCCVfzUGIpv/Z2jJ5Aajx90ej15IrgFub0hE+jSz9E0NTwM5KjZz2hxr0Uc7ufGhlAethQTCGK6DEhevYS1y3UXirR9Dthl3zPYE3r0T5RZxx+/xqZsYniwZdtIzrDMi6bmTFd6h6N3tHeXUyAw6fbYvsDsiQZDpfid/o9INfgF0Lv5JNMlMQ7wCmqga/aMGXbxhJS5Bq5aaC56RzYt1sKHUYZ7IGE8IKkXZVGqmqfjaUOSUUnX+awxGOwtUkKUXAVVdT6MVUJUjV3W9iK5P3ILImBDOGwZyilHsWuC/zjr4o46BSaKMsRgGjh3HcnILTLf4FPBalxnpKBrBm1BqkG2o31XqNr0FAsWujO7b8dySBzcXVM0X/ueoHLUKdhHtURdDD00bXDkemvzA6vWDBiU22XQzwzRNTMNwtVsY847+6VHqpltvf4qlxLwQLSGelYqFV1mI4aRblvrSaaeCN9EE85CdbOixyDuZ1kZ0VHykf66eRkcxj9uJ+h7CBt+p4UfoDcsddm1jn64SA/jvYIBs/p/Cl0zvjY52NkB3zP8deK0hEXF73z8/89WHumvH7B2a8yLBxZ8gkUFIIUN52Ma4QybimQGc7iLxhW9QGroB1pxXMNtmUl5rd7zIIBxUc8AtHW07nRsDLV5N/EEvnNoavaDsioiBeB8jXgGRNZWuyTjApyBforv6TfRC3OBfF/QOtrLAV2ovshKXCkjccvsdG9x97/3rPDttyhxAeYJRwqx3UdHLLr000V0smqlUnffT4372livcXca4O2YbBfyJkywloMZe1wejHYYrU0x7w0Wky/+MQSCmEM+QsqdEAiCVd1kG1e4pY7GCOpRCDCvhCY8BJRFRHuxrwCtKqQZ0rQN0+jCpz4vUKS2kyCJEl2NUKWjirBytwMJ7777LeO6ZpyNffvVl8KKLL73m1huvO/zcM04fM3r1Ebcp+GuwdrXN0aO8/y4iNy3ns64QTrplqS+djlBeRRPMw3ayoYc5rJNpjfn3/QnalqgZrcC8yU7Uz+zz+Tua1/Xv/9QyAoABfCcwQDbfA/higuPRP2BBy3QfBF5oSERK3gcPbUHzJ8+6dtTOrbUnZnYhoVnPosIpJBCmbcjWHHfiKXzyyQyUUlx3xcVskViMt+YulAMhrIUfYHV3uiSHXVZuWPNTlLE3IjuBgOfORiQKNClEoVM2Xeid8Xvoom7vqGHx8mocqwKl1A/Q9jRbVvo5ip3tFlAvMKSItc/i1rad/njB+Wtcfvmfg5aSGkOBCK0Cb5pKJluKF4A5yyvyt2fzhuk6cctzxiqRiSDroGW7awBD0Tb8eMqgZAbLBihEFgKzPGWkQXX5Ta4gYppS3lkM0xOMVtFuA3i68bFoKNXhn6cudL0qAEw18SaaeHu6os438bZ0VOAPVBGLodgOeDYZDS/XKNNJt2wKXPT5zC9nrrnGmN/ayYZVSz31/Zwj0eSyHzot+AKaYB7pbU3jZFptdI3uJ+j0asm/713Ai3aifpkNEoDT0TwE7aP3JXC3XdvY5/0G8N/HANl8j9CSyZloVc6+aOKJAI9Fv35lTHD+m5srcRFlkh+1PW5sMOEv/oFhwBHXPM/Gm2/FEfvtjgcUmr8kNmYjxC0TaP8KI9/O1Le/5Kb7n+DB++4pIVIAiSgdnbhXX3dDevLDj3S/8NQ/TgGe7t1A+u+CUuoMNLntDZyMru8UK0Vw3+fr7NvuvOue3ffY84eeMMZxvbgnbBlQUmcpEVt5bZaSgoEsUshXeG6H8splPDfsG5GOQtcGzKqXzqANJT/yLz8EPs7W1OeAX5jiXmLgvVBSgb2rfeMAnI7mNQVeLAWiUQxz12g49GJzJrc3cIFtqF2BrVKx8B3VabRiV+ZJIITnvoyWrz+85I3kClsBbYlIaAZ9wEm3rA5chC7qn24nG5brOL4ycNIt1b5066LrR5OBR+1kQw91nK8m2wxNMAeg585MRRPMFDtRv9wUndPRHEFvoDzgBru28T82rG0A3w4DZPM9RUsmp4CNlFc6Ujm54yQQVoGOr7DTcwhk5lGON1EYuTWlT59hkwNP4f03XsKsiWIqQSkTnDxYNm5Ngvc//Jg5c2bx+quvctlFfyor1OfoXewDKPVaMJYsKaX+srxu8X83Kq9dmVRZ1QvyJvBoPBad2/rVjJcE1Vi0wjt7ytzEExniuFLrYA32lGEphBpKhHAJGIJSSoACnvu18srvIt77SqunPgS+DgwavtwfVns2v4Yp7kMGXmMJa69UPPJq9e1OR/MBgrqiZMfyKLVuV8mz0Gmv8bahDk7FwudXyKZGnD8AaUT+gHj7A5sG46kiQCZXGAc0JiKh53u/ByfdkkQbt24G/N5ONrzwbc+vk26p9qVbE113mww8bicbemwsnEyr6b/mHsD+6LrWi2iCmWwn6vudEeR0NCfQxf96NMksY7U0gO8mBtRo31M0JCICvOm9fffqsviL493wIJzUGnQ3rEPXqB9iOFmszgV8kYb6WIATj/oxH8xp4wcbb8ZlF/6RaKIWlMLySjz72P2EjRIfvD2dl1977ZPxEzd6KRwOT7Ys65VYOPQfTWv4PmA22q5+ENDgtMx9q7R43snvv/x0aPyaY68qLZ5X+XsdevJpDEAh1JR1q5KgsM1gxlPS7Arpbk91dxMYVVB2Cg8Qeccy5KmE6XYFLHsD4McCr6F32q3oiKpPpGLhme3Z/EQRdZ5N+YWOzq7rRRmnVYrtdm3j/cWO5i2scv6gshU+qzEROaM5k/sHenx3b6wPBEHSwFtVRFMPrJOIhJaxvXfSLXuh6zB/Rkcz/Q7s6+PxFa+1SopsJDoiuRB4wk429FDdOZnWKFrKvAe6dyaFdnu+DrjHTtT3aQbb4zk6mkejP78D/N2ubexz6uwAvrsYiGy+5/BeveFcOheeU/03MQKUYkMoJYbz4fQX2PrYP/LyZUcxaa0mTrz/U2KpRs496yxQBirbjCrlwXM59fzLufz8sz458rTzzD//+fK2cCxZr5D8rTfdmLvqmuuGH7TvXu+cedrJM9B1I0EvzNWXvf8WAMKreITomdLqDQctRmipuqy+vgjdcDonMGh4DqA9m18d2FdEYmWPtm5XKsXuUf5zfgDyUNIsz64xZAK6b6Ud3Rv0j2A81WdRGyDd2TXRwn2ijFn0lLF7KhaeAeB0NNsCb7lWzVqeGZzUVfJGARcFFH9USr1g6pTasBpxWoEL8dw7gL8F46mXM7mCjd7931rteeZHM38FDOCXdrJhhZNGqx6r0EKTSgTTiO5vmQxM6+3g7GRah6LtZPZAF/ldtJLsMeAJO1G/wnk4vrpsSzRRzQbuGUiX/e9igGy+5/Beue5Ssot+vbzbm9u72OxXNzPrdp0Be7ElwiV3PcWjD9wDnguFNJTy2s7MsMAK5RYubpPBjauFAFNQuFYQzwygRDBcB8Mt+VPfVwkOWo2W7+eovr2dvsmks78UV3/wXQI2AXYUEa/s0dztyij04jvWv9snwOSQ4b4cN9zVlWJndKroeeC2YDy1TO0k3dllWbgPeagdy8o6OhUL3wXgdDQPF/ioHIjML3jGRmVhfsAtnG4X2yeabnGkmME6KxCMEwgHQBVRxrrBeMrL5AqHAg8kIksHsznplh+iazN/tJMND/Z+D33BdwyYxFKCSaLJYjLwlJ1sWPr8Oj02Ee0qvQdaENCCHuD3GPCMnahfKaJwOpptdA1nHHpi61N2bePAQvU/joE02vcdyujX4qYxFWXYoASfz29lzaZ6nn/+WcYPq9NEU8pDTRwidUiuFZWZjzKsRxuHr/3zQKI+U1o8z1aIZZW7FeVuVbIjtSU7uj3K2ApIgnylPPfFgJN91/BcFy1XNqouHXwSCQwa/l/3oPIdB14HXm/P5q2AyRYBUzWKyN2u0Fooy2B0g+LZBc+k4JkzgckGctEgq9SgFBcUO9vrgDuBeytNnsl4tAzske3MnBqQ0k3tnbnNUeqUVG3jvGJH82FWqXB/GO/PxVy6QxWz15mlTtNwi0gwBqnRqM5vUN2ZstnxxX354Vu/SGzYUxWi8X3FLkFLtXde0YAyfzRzRUSyLzpSfATdyPmsnWxwQBf3nUzruuhGzG3R/TJJNNk+CvwSeLO6o39FcDqaVwMORkvKH7BrG/++so8dwHcfA5HN9xze23cfyOIv7u3vPu9/1cyxVz6GU3ZZvbGWW0/Zk0TjSCSSQuwoRncGauJIogmJDy2hlIXuB3kNvTi/Bsy0E/VLvmzZfEGh5cE7onfPCt3c9zTweSy86pb3/y34Ec/6wA5AjetJV6EsCdH1iR/4d5sDTA4q77mkWV5HKQ5Aq9VuAV6tSKuznZ0bKeSxEmazKGPPWjoXlHLZj92a2jWZ8wKdw7YluvgDTLcbCaUwGsZBdiHW3BcR18GLDilbbuEKtcYOZ5RcY1P0zJ0rgTuXN2LZSbf09qVTwMPoCOZFO9lQ8jv4x6GJZVtgG3RdbDY6anseeN5O1H/T+/n7nX3T0dx4zAknX/r+Rx9t9NZLz16JJpl/WnY9gO8eBsjmew6Z/doImfn8Z7ilvowHV/x4FFI3CgnXobpaHDV04rpuvKkR3bi3KVp5VI+2gp/OUgJ6007UL4mqsvlCAD3fZke0oqkLTT7TgU/+00KDfwbt2fxYdDop4XpS6nalxhN2Qn8+gPkgD8YM97Ow4W2kFOuhferuCMZTzdnOzqjCe66MObam+a0PAgvf3ao84QBct0yOIHZuIXZ3K8SHYCRHQLYZ6/NHKNePx2r9BJSJN2r7zyU2ZC6oo+1kwzLjv/0JmtW+dEWWDBvjFZRhon3pNkYT0bboRtf59CSXOStzTnrMvmlfGPJfczV0jezRYGrw6f8tteIA/jMYIJsB4L109QPkWvf7Z55DABm87gveiM1eRDcT3mvXNn7j74hHo0mnQkDr+A/5EE0+b/nXP630VmTzhSg6778JuknSRO+ipwNvxMKhxf/M+/1PwZ/suTvQ4ImEHFeiJY/1WToMrtlAHk+Y5bStZJJSdKCjnaluru3tcqh+orXoPQLp2Xhjd6W7q42yYVNTaMGMNaKCUYwF7+CVClid8yAQwR22OUb7TFQpe6m5/qFLBns56ZYaNJlXfOk60c29D4NKo9SG6HO+IXpcQhBtIfQSSwnmq+oIdWXhdDQPPu+iS8/cYOJ6bLLxhp+EamoeTA4dtUQk8N+Uxg/gP4MBshkAFQcBvPLKzPLoG4bl0Dh+e2O9fV5xOpqT6Fk1Q4F3gCfs2sYlNRffjmRjlhLQ+uhdrgt8wdJGyEpT5LxiIAK60L4pmoDq0bvxd9FOBDNi4dB/pFn028KfPrkZMMkTSbkeIx1PRnjChugaVWtAec/HTdcISGkd45u3Rnmlbqs0fAu8fDvBYgel1Bq8/+U8fn7ET1CGBQizZ8/inGP24qQj9sGrH4c572VUsRMMy5HGdXdxG9ZLoAlmN7RQ4jlQ84AUSm2ETvWF0QX9t4C3K8fKqMb6gv8d2BRY78prbxj36utvRJ5/6ZV8Zzb7G3SDbXW/017AKcC1InLftzy9A/iOY4BsBgCA9/rNl5Ce/+3H4yabLjU2PbrHeFxfuro+OqXkAJPt2sav+nq4k2ldjaXmlJXLCejddSdLiecj4HNgdskMtniGtR56Fz4BXaBW6NTMx+i60SexcGgZt+XvAtqz+RSwnSeyoSeMf+aZZyZ8+MEHI2d+8ZlxznnnlUZEJBAMBFDp2bjJUfzstLNYa61xjFpjLDtssyWRoI1b6mb02PFMvf0yXnzzIxZ8+T47bzKOLbfeHkmNhmijhzI70CQTAIahlA10UEUqaJKZ/y2jFoWWgW+O3hAI2qT0deCD6o0GQGX2zbc+cQP4n8SAGm0AAKjx/9fe/QdZVd53HH9/z91dFpdlXRBZUHRRMZEAkkFNZEwnDeKgMqIOnapNqqnVOjZqRkNrbWdq7UzbhGQMbdJxWtvxx1QTSRNDKA2NkmamjT8iUlTEThCJUFwMsiwC7t7dc7794zm7e/f3XXbPvbvL5zVz5zk/nnPvs8/ec773nPOc57nqAX99QyMfNg1/eNypDett/lUP9F6cNlfdCmxNuxdZnW9u+l1CtzHPVtU3dDWdTQe7OkBB9/j5loMVhFEcO3tHXghdTYmtMm6Lidt+RdoDMfCGw2636HBHVDXZLboEsy+ml+QM2E/oEn9fwev9ct0PmlZ7yiG6BwRjxRXLz7li+eWr/mTNfXe2Nb9/7ofTF9CCMXl6LadYOw2nn86xo0expAPiPLS1smXzJs6Z28iChYs4ko944fW3mfSJVXjjkvAhHW0RuehtLNpOCNJvEer/nREElpmE/8sSunvI3k3oCeDdoZopK9CcnHRmI128ZX+Fv7nprzjSdE9Rl9SiijxTZ62z+Vc+YHWzi26anG9umk9oIlxBGIFxc1V9Q9HDE6edNp5N+DU9N00LX3Vp1hZCK7ADHi4RHXOLYsdybtEkt6jWLZrqWJL2lHyYMIzxvl6vptpTJpek6fXkyZO/cMt1y37j77501e9/VD2TePr5WM1pkJtEZQSRJ3z5vq/wt1//Ksdb2/jymvtZvGgRd95+K8R5DjftYf0zT3PH1Uug7TAW52H6ub8dLVzdpyeBgeSbm6rpWa+1vbI0EYLLq1X1DUdG7Y+XCU3BRvpItn//Mlr230Nry8p+W6nlKluprttI3ex10YXXj2h43Hxz03mEZrHTCePBPE+49HLCX8x8y8F6ug+UjYQhC/p7dQVUD63fPgA+AnPAHAMjcqzzmZ9WMNzIpcPmtBF6J+4AYvAOgxgnTufTlMTCtOE+yWAyeDXdvR7UAFPXf//Zuif+5anKK5Z9jlUrr+Zff7iB31p1NWc2zIAk5tv//CQftByjJn+QP/r8Mu7560f57k9+wbbNT3P4g/f50eYtHGxuYcXSC/ncxfMJnTAYnNr4TDLtvE3p59TQ84qG9TPdSmiMsRvYrYAio0HBRgbk7/z8bD+051O0Hr0AT2qw6BjVU3batMaXbO7SUR/JML3UtoxwD8YI92eeq6pvGPV7Lmkruamk/acVvOoJDzIWdn/Tp1sc7w4SnePudHaxQ0HauZw0gMUObWB5jDbH8kAHZu2OHQOOgLVER/ZeHLX8amlT034a6mvAclBdh+UmgSfYgdeI4jYe+/dXeHrLdn788B9CrgqSDrCo5wugZsaj8RmffpAQzI9V1Tf0GHRMpBQUbGRMSu8NLCQ8KDmF0Jx6O7Ctqr6h6D69xpt8c9OkqGnbOvLH/oDKdFy29uPYsSYsf7RH3hsfeoorLj6fL1550eBvWtvwYLTk5r/IqMgiRVEDARmT0stonU2gyTc3TSE0ErgpbVZrhEtbOwj3Dobsan6wJ9nLId/cNINwFreQcKYEkPeaGYejQ7tCkBlg2+OteZ7buotH7r1+6A+qqtk5KgUWGQGd2ci4lXbY+AnCcyKz0sVOeFZnB6H12ZHC+z+FT7K7e0sJymiEJtlnEJ7IP4fueyO/JpytvVFV39DVm4Lvfflsf+e/3iI5sV4deogqW23uZR+3OZeM+mVPkeFQsJEJJd/clCOcucwnBKC63nnWfvNb5885c/aeG1Zf/wrdQ1IfgmF1RV1JuMfTkL5mEoKK0/OmuxOeaXmPEAB3V9U3DNk5ZfLyP67n+KER9eoAwCnTvhddctvwm7OLjDJdRpMJJR2D/q301YOZrQAWmVnbXXfctv6G1dfnCIFiPqE13HDEhOeCmggPkD5Hr7OoEamdtY7WI9eMuFeH2lnrRqU8IiOkMxuRMSp59cmvcWT/iffqMHX22qigbzSRcorKXQAR6Z/NW/4AU05ff0IbT5m53uYt79Org0i5KNiIjFFW29BhH7vyJqbOXktUkS9qo6giz9Qz1trHVtxktQ1lH3BOpJMuo4mMA8nOjZfxYdM9tB5Z2W8rtaiylerajdTOWhddsHJEvTqIZEHBRmQc8b0vn+2H3/0U+WPdvTpU1ey0U896Sc2bZSxTsBERkczpno2IiGROwUZERDKnYCMiIplTsBERkcyNrLua1oOOezpGlIMnhPkknY/BHe+aT4BkwHw93yOmx3snvVKP8d75Bk0737fwlS5LCueBJC1Xks4X5utaXpDGcXea9JpPt/Pey+I4bB+n9VGYJo6nZfI4VDFxkhbRC9aTrnfozJdu02PbNL/HCe6Od4S6SzpCWZJ0vnt5KEvSkeCe4B39b+eJk8RxmoY8cZyk86FcSZyQFKxP0vVxr/ne28fhm9KVesH0cFInjGzWOdjMg+4DdaQ85kxacptblCOqqMJyOXIVVYT5ypBWhvnu5VU9lkcVVUSREeUiosiwyMjlopBWRFhE93zhcjNyFT3zV1VE5NK0oms+6l6eC+mkdD7Xa5vOPJEZlTkjZ0ZlZERRmppRmYvIGVTmIiKDyigiF4W0c9wdkdoAAAZ+SURBVDszyJkRpakZPaa71xH+js71kWGkqXsYWtsTSGLMkzAWkCdYPNjycIzo3NY72iGJ8fY8JAne0Sttz4f1nfm68oc06WjH44SkvQOPE+J8O54kJPmOkMYF0/kOkiQhKciTdG3rxO0xSewk+ZDG7XFYno+LWp+4k0+cuCulV9q9vN37yxemH/E9A+5fOrMREZHMKdiIiEjmFGxERCRzCjYiIpI5BRsREcmcgo2IiGROwUZERDKnYCMiIplTsBERkcwp2IiISOYUbEREJHMKNiIikjkFGxERyZyCjYiIZE7BRkREMqdgIyIimTN3P/GNzW53938YxfKMe6qTvlQn5aO670t10r+s62WkZza3j0opJhbVSV+qk/JR3felOulfpvWiy2giIpI5BRsREcncSIONrnv2pTrpS3VSPqr7vlQn/cu0XkbUQEBERKQYuowmIiKZKyrYmNkKM/tfM9tlZvf3s36SmX03Xf+SmTWOdkHHmqHqpCDfajNzM7uolOUrhyK+J2eZ2U/NbJuZvWZmV5WjnBOZmU0zs5+Y2S/TtH6QvFPN7P/M7FulLGOp6LjVVzmPW0MGGzPLAd8GrgTmAzea2fxe2W4Fmt39POBh4KujVcCxqMg6wcxqgbuBl0pbwtIrsk7+DHjG3T8J3AD8fWlLeVK4H3je3ecBz6fzA/lL4GclKVWJ6bjVV7mPW8Wc2VwC7HL33e6eB74DrOqVZxXweDr9PWCZmdnoFXPMKaZOIOzMXwNaS1m4MimmThyYmk7XAftLWL6TReG++DhwbX+ZzGwJMBP4jxKVq9R03OqrrMetYoLNGcDegvl96bJ+87h7B9ACTB+NAo5RQ9aJmX0SmOPuG0tZsDIq5nvyIPB5M9sHbALuKk3RTioz3f09gDQ9vXcGM4uAbwBrSly2UtJxq6+yHrcqisjTX6Tv3YStmDwTyaB/b7ozPwzcUqoCjQHFfAduBB5z92+Y2aXAk2a2wN2T7Is3cZjZc0BDP6v+tMi3uBPY5O57J/APeR23+irrcauYYLMPmFMwfyZ9L3905tlnZhWESySHRqWEY9NQdVILLAD+M92ZG4ANZnaNu79SslKWVjHfk1uBFQDu/oKZVQOnAe+XpIQThLtfPtA6MztgZrPc/T0zm0X/dXsp8BkzuxOYAlSZ2VF3H+z+znij41ZfZT1uFXMZ7RfAPDOba2ZVhBu7G3rl2QDcnE6vBrb4xH6AZ9A6cfcWdz/N3RvdvRF4EZjIgQaK+568CywDMLMLgGrg1yUt5cRXuC/eDPywdwZ3/x13Pyv9bn4FeGKCBRrQcas/ZT1uDRls0muZXwI2AzsJrYl2mNlDZnZNmu2fgOlmtgu4l8FbwIx7RdbJSaXIOrkPuM3MtgNPA7dM8J27HP4GWG5mvwSWp/OY2UVm9mhZS1ZCOm71Ve7jlnoQEBGRzKkHARERyZyCjYiIZE7BJkNmdm1/T+gWsV1sZv9T8GocIv8eMzstnT5asPx8M9uUdk2x08yeMbOZZvZZMztZnv+RCU77y/hQTNNnOXHXAhuBN4e53UfuvngkH5w2K/434F53/1G67DeBGSN5X5ExSPvLOKAzm2Eys2fNbKuZ7TCz29Nlhb+OVpvZY2a2FLgGWJv+2jrXzBab2YsWOqH8gQ3SSWI/n3uLFXSYaGYbzeyzg2xyE/BC544D4O4/dfc3hvHnioxL2l/GHgWb4fs9d18CXATcbWb9dm/h7j8ntGFf4+6L3f1t4Angj919EfA68OcDfMbkgksCPzjBci4Atp7gtiLjifaXcUCX0YbvbjO7Lp2eA8wrZiMzqwNOdffOXnYfB9YPkH3ElwVETiLaX8YBndkMQ3oafjlwqbtfCGwjPAVf+LBS9TDfc07Br7I7BsnaQc//11CfswNYMpyyiEwg2l/GGAWb4akjjH9x3Mw+Dnw6XX7AzC5IO7K7riD/h4T+hnD3FqDZzD6TrvsC8DN335teZlvs7o8M8tl7gMVmFpnZHEJ34YN5ClhqZld3LrAwcNLCIv9WkfFsD9pfxhQFm+H5MVBhZq8Rxnx4MV1+P6HV2RbgvYL83wHWWBiZ8lxCP0xr0+0XAw8N47P/G3iHcK/n68Crg2V294+AlcBdFkZtfJPQm6s6vZSTgfaXMUbd1YiISOZ0ZiMiIplTsBERkcwp2IiISOYUbEREJHMKNiIikjkFGxERyZyCjYiIZE7BRkREMvf/D1uiuPCdH4sAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3gU1f6H37M1u5tkN5WEJhDpRaoIKl06ilhBQBAUhWtBsaDBBqhX8VLsIBCpFkClXKSJiCC99w4JsCQhyWazm2yb8/tjNhAgFAv+7r3O+zzzLMyemTkzO5nPnG87QkqJhoaGhobG9UT3/90BDQ0NDY3/fTSx0dDQ0NC47mhio6GhoaFx3dHERkNDQ0PjuqOJjYaGhobGdUcTGw0NDQ2N644mNhoaGhoa1x1NbDQ0NDQ0rjua2GhoaGhoXHc0sdHQ0NDQuO5oYqOhoaGhcd3RxEZDQ0ND47qjiY2GhoaGxnVHExsNDQ0NjeuO4f+7AxoaGlcmOKZnDNASqBpedQj42TBs9tn/v15paPw2hDafjYbGfybBMT2rAO8C3YAiwBL+qhCIABYDzxuGzT74/9NDDY1rRxMbDY3/QIJjet4HpAEmLm+BCAJ+YKBh2OzZf1HXNDR+F5rPRuM/HiFEMyHEKiGEDC+7hRC9r7LNc0KIQ0KIkyWWz67QPlII8a4Q4mj4GNlCiLeFEJbLbXO9CI7pORhVaKxc2dRtCLf5PDim5zN/Qdc0NH432shG4z8eIcTsN99888F77rkHIQRZWVk88sgjHD58+B4p5bzLbLN/2bJl1cqWLUvxPV6/fn2CwaBZSukvpf2jrVq1mjhmzBgsFguhUIjU1FTmz5+fJqXsf51P8RzBMT1bAD9w3mR2rXiBboZhs3/883ulofHH0cRG4z8eIcSbMTExI3JzcwFCTz31lL5Zs2b07NlzrpTy3stss3/fvn3VmjRpgtvtLl69ELhTlnLTCyEG1KxZ8/Ps7GyysrJyq1WrFrN+/XoSExMJBAJWKWXhdTvBMMExPY3AMaDs79xFJlDRMGy270/rlIbGn4QWjabx38Drubm5x4HXgAo6nY6cnBxQ/RWXwwxw7733kp2dzY8//kiT8nFHvh7Uo3fW2KFlAQfq/W8EDAdHPW756KfNa+5oVzc7LtKi3PbezLullFgsFjYM7/tJ1tihZ4C8Upbc8Gd2wtCxwT94ngMA+x/Y3gY8BnzwB/uhofGno4mNxn88UkpFCHHbG2+8UaFv374oikLz5s0BtgFkjR0aDdQLL9WB5AoxUYkLFy4kMTGRZs2aMXbsWJo1a/bUxqOntjWpXPYwkAMEUJ3sRXZrRMHLnW89dTLPre807suHX331VebMmYPdwLFyjqjTqOJ0Q/iz5BKD6sQPZI0dehQ4WMqSnjB0bOgaTvUlVMH4vdjC+9DERuM/Ds2MpvFfgRDiXmC2EMLw1FNP0aZNG154rH/O6hf75gOVgCxgO7AXOPlI2sI6m46dTrGZTRuPnc1rO37CB7WPHTvGmDFjXpZSvn2ZY0QBy4YMGdK0W7du3HXXXfh8vtpSyj2X61fW2KEC1b9SHjUPpni5EajqLvLdsC39TGhbeuZZRUpnn1vqLIm1WdYBLcLbDEkYOjYrOKZnJWBvSFEiVh3O5JejWRQFFeom27mnbgVMBv1lr01WQREL95ziQFY+OiGCvx7PfnL1kayJUkrlN15mDY3rhiY2GpcllDYkGkhCHQEc1/f76C99eGWNHWoFbhvx3arnTua5699Vv5r9UGau4at9p/XLli2jUd3auXGR1o3pOfnlgooyTUr5LoAQQgdMANzAGuDJUaNGtS8qKmLUqFFTUMUpChgupVwR3sYG/DBo0KDb7r//frp27UphYeE0YIqUctXv6b8QopzJZMpo0qQJdevWZfPmzdwSJdeP6HpbFFAz3CwA3BsTct4A/POBab9YjxkT6dSpEzabjZUrV3J86zqKgiEODu+GTidQFEmXz3+iV8NK9GlcmTrvLuKm1p1o0KABgUCARYsWsX79+qVAVyll4Pdefw2NPxPNjKZxAaG0IRHAYOBxVLORD9CHv/sZeF3f76P11+PYWWOHGoDGQFugHdAcyPpm817H4KHDbAt27EBvSWLSpDf55ptvyC/y77XYY9ovXb6cNm3aPIeaAAmQUq5cuSF9+vRh+/btpKSkMGDAAFq1agVg6dGjR5uGDRuSmpr6MLACQK8Tfbt2u/O2MWPG8Nprr9GnTx+Avl999VXfZY/dPapGYmzBbz2ftzs1r/S1s5Cnn36aMmXKEBcXx9a5M11FZ/Onm2Mih4HwA/lSUbwSugmBdXNGDsPfTmXdunXk5eXx3nvvMXbsWNYsnMuivafoVrscqT/soFpiNH0aVwagwB+kYsWKrF27lsjISGbNmkWfPn3ar127thtQarSehsZfjSY2GucIpQ25FfgO1SxU7DswlWjSAWgRShvyA9BH3+8j7x89ZtbYodWB9qgC0xqQwI/AHFTBO5DjKdq+bdu2us2bNycUCjFu3DgWL158GphctWrV5mfPngXVN1JMbl5eHm63m7Zt25KVlUWzZs2I8XtWtKhSrnzDhg05duwYjzSp1Tw9dcAOIPGN9rckfnfyJC+//DIAZrMZACEEsdaI1MuegBBgNCEMRjBFIKyRiCg7Ols0vW5uxy/vjmfYk0N4+LHHAahdvVp7XVKF9gFfETIYgGAQKeVyp88m9YToUedGPn3zFR6sn8L+rDzeeustevTowcGf/s0naw/hDyqsPZrFssfbnOvCx/c0YeoPX5Lr8bH4eDaNGzemSZMmrF27tvIf/X00NP4sNDOaBgChtCEPAlO4tvyOQtQQ3Rb6fh9l/9ZjZY0dWgV4MLxUB34BlqOOMjZf7EwXQkQDdwJ1gRCqX2ZOjMX8ZINmt/7z5MmT9K0cu6BPo5oBIBEocyArN2nVkZNRp/M9xFojaHZDMo3KJ9Lvy6WktOnE1KlT2fjk/dsSylfMMdRqZCq0J9pmLVpsz8svCClCBEOSgAKBGjVr5fTs2ev05c9GKkARUhYhpVcqobMEA5nSX3RauvOzQcpW9/X8x9333veooihs3LDh+9lTJm8h4EuSgUAsoUA0iDj505c1ZGZGtCIFiiLIKwxwZ9oiUseMY+vWrQQ3rmT5wXT8oRBf9+5EcrQFnQ70QqLTSVp+PJ/m3e6lSpUqNGzYkL59+zLhvbcn3X1n1+K+C1QhL/53STycj65LR629lmVyJP6hh4MQojioohgF2COlvJZgCY3/MbSRjQahtCG3AZO59kRCC5AC/BBKG9JM3++jq/oFssYOTQbuB3oCjVDFZQzwfcLQsa4rbXvilUcCwB7Uihd1gF7AW1kFheUnbdhFixsc9G5Yox2QgZprsrNaQsyKakkJWYbKNULG+rdW1MUlxQpzRHBQvY62tGlfVBr/4UfHK/fukwGcAX6MgI0vN2vhvlwf/gi79u7LuDv87x9X/rTFGBs/GdUXVrzUEZ0eqmNaPgldnhN3UYB+X/xEp559KFOmDBM/+Zhdz3XFE/BSNymWKvEmFEUhJAUhRRAI6dAJPTk5OdjtdsqUKUP58uVZ//mH5ZsfWLMG2AHsrTBqctHFffPnZQrUKgTFkXUVgQeABH9eZnEzCZwEDqMK0YmrCZEQIsJoNB6qWbNmXPE6r9fLoUOHvgD6/c5LqfFfjDay+ZsTShtiBY4D8b9jcy/wrr7fR2+U9mXW2KGxwD2oAtMCWAvMBuYkDB2bdXH79NQBetQorjqoo5jizxs5X1opCOwHdgE7DdXrZ0W06V5V2OOihRDGcJvimzoUPrelwC67zXJdEjPd3kIBxHKhgCShPsBl/4f7tqhVs2ZLRVHYt3//iqlfTPtm2dIlgfHjxlUum1QmY+Lnnz+LzlBNd2w7gW/H0OXzVdTtcA8PPPAAXbp0Yckjt9KsUjyNx/5AxxrJ9GlUmeqJ0eeOv9vpIsfr53C2lzk7TlDh9k7cfPPNLPvwXeX9bi2Kr1sI2IcqPDtQI/d2AKcqjJp8xYeAPy9TB5RDfcG4EXW0IlBHuJuBDSZHYk7JbYQQyUlJSaf27NnD4sWLATh48CCvv/76Killq999sTX+a9HE5m9OKG3Iy8ArqG+3vwcvcEOxOS1r7FAdqm9nENAZ2IkqMF8lDB2bDpCeOkCgPrwuFpWaqNWMizlGWFSAXfobqh2x3vf4rcJoqoMqKAL1jXsWcNBus/ypkVdub6GVSwUkkXDARAkkcBZwllw6dWhfsOaXX9YATUeMGIGiKIwePZq42Jg9NqvV0LBxk2pr1qzh6xlpX97cqOGd+kXjLQ+PnSUiG91B37596dy5Mx6PB4A3OtTltSU7eeCBB9i0fBH7XuoKQLbHR7UxSzEYTUSECsn0BJg0aRKHDh3in++8/e7R4f2ncz4H6abwZ8kKBWe5VID2VBg1+arC7M/LtKKOUm9GFVtQf49fy1SudiYiwnJy0aJFNGrUqHiT00DP3xvdp/HfjSY2f2NCaUNMqA+byD+wGx/wr5xc01jgEVSRsaGa5dISho49kJ46wAo0BW4DbgeaoL71F5NFWFCKP/WVqh+w9XyyBapgFY9YClCFZb3dZvldYdhub6EBVTAuFpGIUpp7uUhAgOwoq+WaKgUIIcomJiaeXLFiBQaDarEOBoO0atWKs2fPsm/fPrp168aH4/61tGWL29uz6yf/jR17mmYtWEJ8fDyhkOraWLduHa899ySZ3iD79u3jtgZ1SH+1OwDHcgq4feomFi5cSEREBHq9nl9++YUnn3ySoqKialLKS6YfSE8dEM+lAlSbcNUFVN/KTtQR4VLgl9JMcKXhz8ssDzTfvXffrZ17PPDUzp07Wb16NRkZGYwbN44jR44Ml1K+cy370vjfQhObvzGhtCFtUUNjo6/WFiCkKGw9nk0gdP45XyE2knhr9FlvoSEK+BX41Ofy/CSDoZtRheX2oKI0OpztMngCAWolxu6LMBrWor5B7wJ2Rg//MAv1odeP8+VagqgBA9/abZYr1voKm7EcXCogsRc1leH9ZnKhgJyJsv45JjZ/doYR1WRYPRQKyZuat+5z5PiJG6SUQYvFYhFCGBwOe5bP56/26aef0rt3nwPHT5/+wSqUWwxpz9303uKN5i82HcUfVM7ZAo06QaXYSJKbtsNms+E4uJrRnW9ST0hK3li6i+mbjnIiTw0ONOjED0FFpkopN19rv9NTBxiAapwXoNuAZqijuEJgFarwLEH1/1zNZ+OIjIzMad68uTh69CitW7cmNTWV2rVr43a7y0gpM6+0vcb/HprY/I0JpQ35CHUkcs4spCiShH9M5uzHAwHYdiKbxq99zZ63ezF19V7m7c/nxIkT1K9fH71ez65du9jxag+fJWB5N+ANJKIKTK3w7oIvLvol66sdh5KrVq2K2Wxmx44d3+YVePsAT3N+5klQAwAm222Wc7Z/t7fQwrWZsUCtUXbxKCQvymq57je4PzsjCjV8uzgB9mdTfPl9vgJXRdR8oQjABSw1R9qzGjRqFHXs6NEj+S5X/Isvv/LOcy+89HJIkWZH2pDvdQFfO0qZ+mP1kUy6p/2C1aBj23OdiLOZL24CIGVipU2y85Dmpvjyf7ROG+mpA6JRw9E7hM8vJfxVBudHPcsrjJpc6oyhQog7UX+r/cC3y5cvrzZ69Gh6dO04+7FH+m0GZpkciVeI9NP4X0ITm78xobQhGai+kwuIHfw5Zz8agBCCIdNWsWDrMeY91Yn3F2/FflNrTp48SY8ePQAYPXo0s3s19pUT0WbUENpfgdWo4czrK46ekr59+/aYQCCATqfj7h49crfv2rMI+F5AgRAkAcmoPqOLb8ZCLhWQrGs1Y11P/NkZyagPYBuqeW+pjIg6A9QHbkH1J50AVpgj7YVn3V6BGuVVD1Dc+flplcsnH5VShjJdngRgkvHEzpVRS8a/zWWiAkOKgk4IhLg4cvkcXln15vt95eq9WrT556OKO+8TYGPisPF/OB8KID11QEr4nIvzoqJQf7NNnBefXyuMmhwQQtwihFgppdwCHDSZTA/v2bOH7t27s2vXrsa+3DMnUaMKk4GfgcUmR+L/+++qcf3QxOZvTChtiI8LkzYBqDA0jX3vPISUcOuoubSsXpa7G6cwceUuNp+V2O12tm7dCsCwTg14696m+ONqzA61G1heCN0kICAlSRLZsHfPnt0WLVzgqFmzJjNmzODOO+/M2rdn98dIJU9IpUBIxaOTIZ9AFofgRqA+bCNQfTVuVL9S8ZKLKmq+8FJkikm67nkb/uwMgRrAcBtqysBpYJmMiPIDLTk/StsKbDBH2kNhgekc3kYC38ZFWTeW3G+my9MU6AJ8l2i3bQmO6fkVak5RaT6kK+EDfjAMm90981/PrjXXbtwsmHmS0JkMD5CSOGz8md9z3pcjPXWAEdUP1x515NMEVWALgB+fW7DaG9notgfvv/9+MjIyaNasGcuXL+eZZ57ZC9STUgbhXOj17ajXqQCYbXIkHv4z+6rxn4EmNn9TQmlDDKgl+i95Ta49fBYrXurOgq1HOZNfiD8YonGlRD5asZMTAQtTp04lOzubhQsXsuy7r9j0+n1EPDAqT1odDpSQW0qZCzKoU0JOo+LbuWLlKsvzI97sO2PGDLp26ew8unvrB+FjF6GOXkou3hKfQVR/Unx4iUH16VhRRdIEmH0+v/7Z4an1fli24saMk6ccBoMh1LZVi8Mf/evdDRXKlyuehqA4eq0IyDl89NiJpq3ueNzj8ZZRFKXYLOcBnpBSLgPwZ2foUf0W9cLf7wVWy4ioSNSHbDyq2WyVOdJ+oPj6nXV7WwAdw8dcERdlvWRCs0yXR6AGVMQJISYlRFtzAQKTn3METZY9lK9ZRr99qU4XvNIsCuETs0Qr8uY7i4Im6+3Wm1pvyRzztAM4aKxUPUpYbCH//m39E58d+/VVd/QHSE8dEIs62ukAdNiXmVP+zqkLqVilCvHx8Rw7dozTp05tkNBXSrm/tH348zIdqGHyVVBDqudoo53/HTSx+ZsSjkQrohSxueXNOUx/rB0PT1rB3Cc7MmPtAco6rLy1YDN+SwyKouBwOPjkk0+YNm0adn8uL4x+L1tExjpCIaaE4B9l7LZzYchCiNq1atXaNWPGDBo2bLhNStngzzwXIUSrmjVrrvz888+JiYlBCMGECRP45JNPfgFaFE+W5s91Fldojn/2pdSeW3ftfSctLQ2/X32gz5kzh3VrVh/4fva0EyBtgB/EBoRIk8YIP0LXgov8LwBn3d4IVOFIRh31rAPmx0VZS/3jynR5YoAXgPWJdtt3Jb/zubI/8Cu6Gpgt7Qzrvw0aNy+4WuK1T7Z8KESlela/MGS4jfaKSXabzBzzdAdgvL5M+Q3GcpX7+PZsXiaLvE8lDhu/73dc4t9EOLS9RlEg2HFPZk73QEi5uZw9MqJctC1XCPEl8AWw4UpBBv68zKaoScB7gOkmR+LVVVfjPxqtgsDfFH2/j/yhtCEhSrkHoi0mVu49SflYG8kOG1ERRk67vBT4ArzSvgItG9djzuEiRo8ezaBBg/j4tWdx5nkjso45DSk3Vu1hMBp1Tpfn3H7nLVxsT33hOQBiYmNjnC5PW877YHKS7LY/+sYTKigooFevXhw/fjwvLi7OsXPnThYvXnzbsWPHagghDqCWxmmOOho5CRxo27Yt69ato2/fvud29OSggcuQyrsJKbVdDRvUfykUDHa2WCIerF+3bsHQJx/fGutw+CQIBd2j3twshxTCYxCG7SFheC82OvLo1Tqa6fI0Bh4CPky02y4wF/ld2c8E9GYXRsOD+LzP6Lcva4JqYrJw6UuBlIhCGRW3SQT9g4FXDTKYCfQGpicOG78kc8zTNeP6PC+zPx85OaJe05n+w3t2Zo55egIwMnHY+Lzfe7GvRlhE9gJ7q8LY9NQBZuAOoC/qBHFPAPvSUwdMA6ZXGDU54+J9mByJ64H1/rzMesBof17mMWCKyZF43WdM1bg+aCObvxk5bm8lIBUoss99vieXhgdz7weL2XMqlwm9b6dd7QrMXLufUQu3kB8QFPn8tG5Slz1799Hj4UFUrlyZbz54S1l/PEdXpkwZKlasmPPveV99L2Al8LXZkdANeLFWrVqNZ8yYQePGjYsqVLxh78efT1nUsHETS/j4JR+kAdQSMhcHBjiT7DZPaeckhNCjPsD3AbuEEIe3bduW9PDDD7Nt27amQPW6detOGzhwIImJiRw+fJgJEyaQmJjIBx98wJQpU9i7dy+bN2/eO3nip+/0evCByOSKlV5t3bpNmQ4dOmAymViyZAnLl684++PqNVPKlitXCMyLCubvQA2wuA81As8gQUrQS3S+ALq1Xsx7pNDpAHRwLwKrIpnJRXXKLARuRYgaAWH4NahQPPpItRz4ZYEx6+hDhvRd1ZVQKFqp3VIYti12CSl/CiVXm6jrPPghc3RsH4BA1om2fmFMcRujTyTZbT+UvEa5cz7WGctXmRhIP9wjcPxAEDWRd0risPF/aZ2y9NQBMaiBEg+jBlJI1BD3L4BvK4yaXOpv7M/LrA70R703Pjc5Eq9LaSGN64cmNn8DctzeqkA31KS9Y6gJewfsc5+fhmqquOCtecDkH1lz4DR73ulFqGIDvtubQ88nXwJg165d7Nq1i5iYGJKTk+natSt92t2srNiTofvggw/ocffdZ7fv2vWtHmkzoFRvdnur6oOHDLE1adKE6tWrs2XLFsaOHcu33377hJTy04v76nR5TEAZLg15TuLCKgcCyKeEGGWeOZPdrEHdN++7774Offv2pV27dqellJWAXg0aNJgaHx+P0+nkrrvuomPHjrRt25bRo0eTnZ1Njx49WLVqFW+//faO/UdPfHVDcuKIV199NWLx4sX4/X4mTJjAuHHjcGZmT5/+9dxFJfpR7Asq+X+PXoZEBIHGepRqEmkKYKxvIJSuR0lXEGs8mJcpQh8ApJVAJQOhBwIGy+HCoPy6xH5eiZbeIg/mr0MSnVkvXtIbDHeFFOXLgMKvRp1or1cC0V6p/1AtPw2WkPeuIl1EuhS6XKB4pOVHzS06E+0+1TR4ZHdv38aVbYDdwNOJw8avvvpd9OeTnjqgOqro9EGdSK4A+AZVeFZXGDX5ksRdf15mZWAgqinzI5MjsVRx0vjPQxOb/1Fy3N4yQA/UkcNBYEFslPUCE0Qobcg9qJWeL0jqVAxm/HU7I01WDKd2Y0jfhgAGTv6Rr7ec4MYbb8TtduM8mcH4h27lTEHQ60y8yer3+/n888/f9p06uAA1BFg0bNOl7YmTp3vo9edTY7xeL9PS0la17dztZ4TYDSyOi7Lm/5bzc6oO9kjCQuTxFJTtekfbF6umVGnw2muv0b59e954659L7n2w52lXXq5u3Duj6/20cmWloqIi3AUFjt27d1O+fHnZ/e4eWRZbZN68b76qdurUKcqVK8eiFav6Derft0n68WMVpWSS1+vp/Pjjjz9er149Bg8ePElK+di19jPT5bkdNcT3+US7rcCf67SiRl61R42204FoEtCZFqLTv2aLii4Mn19tID5Wcbc3xSS9AuDyFNZHNUO9YLdZCl2ewociQoVm4LQ5OnYxQCDrhBV48awpbjewJsluO3k6z2NGzU9KBMoYlUBdva/gdt+2NWUodDfGErVO3lBrLmWrpKPWUDuNWnTzTLLjD5s4r0q4Jl5rVDPbPagvFUeB6cC0CqMmXxKd5s/LrAg8hRp2/dUfrVCtcf3RxOZ/iBzVUd0DdSbKTODb2ChrqQl3AN6czIdF9tEphi3f6XRF+QSTahK4oSEi6MO08wd0/kvnC3N5fRzNdmMzGagUH4XRoA89PWP1pn8fKWianp5OMBiMk1KeS8wMOA9XPXjkaEdFUUw+nz9n5pzvVi7+8ees7RvWtpNwl4QEBVEmiOFAQBgOI8SVbkiB+pauQ/U1qY5/v190ad+uR3JSmTqjR4+mQ4cOJCYlZT0y4NEjNVJuiHpx+Ms35OW59OXKlYvo2bMnDRs2ZNy4cSxcuND/xJNPb4y22wOjX3+1ldPppFq1aixY+uOYlKpVjwDOL6Z8rhvx4vOzli9fbnr//feZP3/+ECnlx1f7LbLyvTFSyntQI+j+lWi3lWqu8ruyP/PrTfMNQV8znQwlh88NrzCXi5C+YTq43xSTlArg8hTWAEx2m2VH+P89hAwtMSv+j83RsQ+fu+ZZJ26RUD7HFBcHTE+y2y7Js/FnZ1QEnsifN3mNkp/zGuqkdd9Ls+Udpc+IU0BlVCEvOTUBqKHoh4FjyQ7bFSs7/B7SUwdEAfeijnhahlf/gjra+abCqMkXVAj352W2RDVjTjY5Erf+1uMVjrinGmri7W2oIncM1az3o2XkXG3U9Ceiic3/AOFRzEOob8rfxEZZj1ypvbewKEFKOTikyMcMel1Z6TojZe5JYcg8hOHo+kvD066ARBR6Or7w05hPpy4Y9cbr30opnZdrG3AeTkB1FDtQI+FWGJNSjvtd2SZUU8rtnA9P/pfJHn9BiOxZt1dIKU0BhQTUbPYkgHdHj6yzasXS1F9++YX33nuP06fVpPTFixejExy6q/vdNx44cIDt27dTp04dOnToQI0aNbj77ru59957cbvd9OrVC6vVSvfu3fefynW3B5J+WLSw7hMD+o0bN25cZFFREW+/80/X6g2b50dFR4fC/XRRim9Jp/pvKgM5iXbbZWfK9LuyUxWhWx4wWG6MslpmlPzuTJ77hRjpaYj6ADyLGpRwxG+0LYyOtG0BcHkK44AmEaHCc36bc9c668RzQaH/xmV03Al8llQiOvDc8bMz7MBwGQxOcM0YWxvVj9MSWAa8BaxKHDb+ggfE6TyPPXxulThfS62YEOoUBHv/DCFKTx1QGfW+6Iv6excB36IKz/IKoyaHAPx5mQbUaMAbgHEmR+IlFcUvpnDEPVWB8UArVDEtNtEqqOY8gNeBDywj52rh138Cmtj8F5Pj9t6E6ovJAmbHXsUU5S0sEkBPRcqK3qCSbBDUNAmqGX78MNGYc+Ja57IpiQ/4JnTXiLlBoX+2SGedixATYi8T8luSgPOwBWiD+oCQwHpgqzEpRfksXnIAACAASURBVPpd2ZHAC1JSJYgu0od+rw/9DhDF/pHTqCVQnMkOmxRCtLvxxhuXdezY8YJjLFiwgOPHj+d+9tlnMePGjWPv3r0jUc0u36enp3PzzTdz++23k5OTg8/nY926dcFAINBCSvmrEKKCEGLT+PHjEyMiIhg0aBBSyvpSyu1wzowXxYU+pdoCakp1NBNEFR8ZXrIoIUhRFDXUIbMDBmuEEGJKyaoITpenClA9VnHfVmxC8+c6RUgY+gkZ6qJDFoT3uazQGK2LUIrKAGvN0bG/nru+WSfMwKs5xpi3pNA9DHyaZLdd6gNRa7kNB741xZffmTnm6VvPFhS+OmHlpvbfbt3vO+P2moFTwGfA21LKUitrCyFqA2lGozHJYDSahRAiIsKS//6ED8d36Nz1MKqfML00s5wQ4gbgSyAO+FpKecHMqOFQ6ltRRzv3o5p9TwIfAZ9VGDU5B8CflxkLPIMaRDDR5Egsta+FI+7pDHyNGsZeWumjYjzAFqCbZeTcK865pHF1NLH5LyNHzUq/AzWSZweqL+aqEUXewqIUKeWjfkVWCimyskEnvhZCjLXbLIp3/XdjlOjEp83bFxh0RdfmOlGMETJYt3MhgcI6lkZdj/pznbEK4qsiveWYIgypsVHWa85YDzgP64LC0CKgM3YOCUOsInSZfp15D0LnA3kohqKGOkFLVKHZAnxkssf7AXw5zs6BQKD3x5OmlN24dfvJ1WvW7DxzJrPY/HEK+GetWrVS9Ho9hw4dorCwkLZt2zJt2jQqVqxIKBTKefrpp2OnT59OTk5OHSnlbgAhxLr333+/aUpKCo899hiKouDz+XC73c9LKceU7H9WvtcAdJFSHkWtnrwr0W7bWfy90+XRoz5Ik4AkM8FmBkJNfcLsUUAokuKLLlAFvCywNErxtHTrbO8TLhZqMehuIGxG8+c69SdPn75n5/4jL+7cvs1Tr06tym1bthhsMOgXmWKSFIBA1ol6wE1nTXELgPsb1Kw2zXn6VBvUSgigVjtY6ctKBxgMHDDFl18mhBjasWPHf40ePZpQKMTPP//Mp59+yvGjR1YFQkpvKeUlocpCiOcHDhz47rPPPnuuWvXIkSP5+uuvnziVWzALdRqJihdtdjw3J2dX7ZSKP7z66qvN77rrLho1auSSUjou3n8x6akDLEB34DHUUUkhkAaMqzBq8gEAf15mHdQpxaeZHIkbSm5fOOKeu1CnvLjWlysfqv+oiWXk3EvtyhrXjCY2fyFCiK6o+R71UU0Qr0spZ16hfRwwH/WP1Gg0Go3R0Xa69+jx2ucTP/vwWo7pLSwyKop8MQRdg4rMC0m5IDHa9lHx93kF3gbAdCFEbcOJLcGI9bOuJfcq5G9wdzBU9VazlPK7KJv1blDfviX80y/MtQN68z9jo6w/l7bx6TyPBXUOlLKcj+byoIrn8fgi542o5hwjqglpqTEpJQ/A58q+FSmHo4RqACGEmIXB9E9zVEypJfCFEB2AcY8//niNRx99FJPJxNGjR3n99dfZsmXLW0KIlzMyMqhbty45OTllpZSnw9sVLFmyxGYyna/m89NPP/HGG298KaXsWbwuK9/bECgjpVyBGpq7MNFuO3m5C+d3ZVcHHvEZbe8BbaKslgsy+50uTwQwzKz49hgJtS3QWXcQFikdlEGgUyS5C7//tszggY90qlu3LtWqVWPVqlW8+9bID++9q0uCAJ9QH5LTRNBfH1h01hTnaXpTneUVK5Sv26RJE6SUrFixgp07dy4Guksp/f7sjHsBizmhQly9evXGpqenU1BQQNu2balbty5nzpxhzpw5dKhWftSnD3V8LXHY+HMjJSHEC88///w/A4EA48aNK17tBZoXjwYvugcEUHFAn17PZjlPPfXiiy9yxx13EBcX50nPdiUlO2xXfbCnpw5oAAxFrTpgABYAY1HD0e9IGPzKBp01Mhb4zORIzAybzrai1rP7LRQBiywj5977G7fTKIEmNn8RQiUwefJkfYMGDdixYwcPP/zwMill+yts061NmzbzP/30U3w+1QQ+c+ZM3nnnnQlSyqevdky3p7Cjok69vKkwqCwGDibZVXs/QF6BNwU1wU4RQtwQsWLCDkPOiVdQH/KXEx0PkBms2PBuf9Oe74Yk24BXHZHWczZ6f66zQ0Do3/DpLDMRug99IRmLOhIrnj6gENiQ7Lj8Q7mYgPNwvER0xhjRRApdGSAC5A4UZbwwmg3AS6hmqyJgtMkef/zifQghqqDmFjVHNcHsRX0b3lmtWrWt/fv3Z/jw4d9JKe8usc2zqDXKSuIHRkkpf87K98aH97dNSulCTab8ItF++Yek35WdBIwI6oz/COlNg4CJUdYL5+VxujxJQPNYxV0fGGmKSTpnCioZIKDT6Z7r16/fmB49elCnTh0GDRrE7a1aTx84+MmTQAJSGizSV91AKF4nlTi/MK6rWqNW48cHDUo4deoUJpOJ559/nkcffZQVK1b0k1J+AeDPzrj9eHpGixqNb81TFEV07dr1g7vvvpvVq1dTv359Wrduza1Nb2bXqwNOWIyGqUBa4rDxx4rFpkaNGixdupSNGzdy5MiRfwMPSClLvSZCiHImkynjhx9+oH///mzfvp2YmBj3yRx3b84LQgBVII5cLjIuPXVAWWAI6r0cgzoSqQwsjBs4bKjBEbcYGBd6/4l7Uad/uKSq9jXgAbpYRs7VJn77nWhi8xcRFpsz7du3T4iKiuLRRx+lQ4cOVxSbRo2b9C+bnDSlW7duDBo0qORXXaWUiy63Xb6nsKKE74EsRcruvpB8APgpyW47l+GeV+CtADwPLBFC+Ow2y3KAUNqQqjIy/gNRkN0aKFJMVhGq29Gs37k4CLoiEipPlDVbzTCVr7m7wFsopJTDQ5KzjkjrZ3D+jVVI5fYIAsOCwlgYRPe+hGXJDts12719Ba4Y1DpbMSghI4Eih1BCJwj5c4T65iqBjcCWEn6eV1FHS1nA6yZ7/BWPJ4SIBRajmri6SimvqZRLVr63NRBMiLauznR5Kob7OeVyEWcA4f5NAAb6jLZOwK4oq+USYXS6PA8CS2IV97Bif00xJcVGCFELNTQ4Zf78+fYPP/yQLh3azXnq2efvu3ifvqz06lLonps686v6X86dd2N+vtu4e+8+03PPPmuKjIxky/adOz+aNLl47psigxIIWJSilH9N+mLVq8NfeqtWrVr62rVr88033wR37dpluP/++3np5iqfdqhdpTNQAVg5cPq/883V6nevX78+oVCI3r17M2LECGbNmjVWSvlsKddeAItff/31DocOHWLevHmcOnUKh8MBYJBShgBO53lMqJaAlBKbnwI2JjsujLJLTx1gA0ahhodHhVdvKDPs7bah5bM7sf3nNH7/jLSg+p1usoycqz00fwdauZq/CCmlFEK0WLJkyX0tW7Z880ptc9xeI/Bo67Zt6+zfs5tKlSrRt29fdu3axZYtW3ai3vSX4PIURqNOhhajgzs9QeUMagLc10l2W3Zxu7wCb0VUoXlLCNHfbrO8Vfydvt9HB30e93TDNy/1AG4J3vH0u0TFNwqWq/OlTm9YCXwllEAfYHek1SLzPd7PpeTl7HzPewGFLagmseNS6L5xOGJn+HKdT/mF+aWAzngI2Hal8/YVuCqj5ltEALkE/b+KoK8jatTXRFNChXOmsoDzsA610vDjAedhhBqOm2pMSvH7XdllgXf8ruxo1ECCd4p9PBf9JjmolYuviax8bwqqT2ZlQrTVnenyNABuTLTbJl1pO78r2wh8CDzmM9qSAUNpQhPGEau4iytaXxYp5R6gkRBiAdAVICIiwl5aW3NChf2BrBPrB/a6d+zgZ54b37Vr1ztub9GSjh078sQTT5AYH/tRkt32GYDT5bEEdcYy67ZubTzl048/f+GFF/TNmzfnnnvuoVy5coaYmBhOnDhBza/mOJTyFeZx5nikSD9Q4zki246Y8hUHzxzJOXDqzMnvv/++7syZM5k1a9adwCViA9xWs2bNDq1bt2bixIkkJyej0+lITk7m9OnTv6AWQCXZYfMDG8ILAKfzPOWAO8Lm2GI/1/oKoyafTE8dsB3IQ3X8W4HGZ8YMl/Ei726u3U9zOVKAGqgjY43fiCY2fyFSyn1CiCtma+e4vU1QHaCT3n/3nyduueWWJ7Zu3UrZsmV55plnWLRoUd0RI0ZMQn2bBsDlKbQBk4BaekiNtFkWOl2eaFQn6pSSeRZ5Bd5KqH/8w4QQLwPvljy+z+M2A359v4+8wI8UFU0D1mC1v47fWwg8GERnO5vn6YH6x6uY9WKfUScCBh37HJHWC3IdzDFJE0Suc55QlAXuvMCMKEfM++eOVeASqHPYN0Y1bRwDZokitwHVDt8WmG6KL39JvoMxKUVBjWBbDxBwHr4R6BNwHjYJyAFeNial5Ppd2fWBz8Lh1T8Dk0z2+N80pXRWvjcGNRrqWEK0dT5AplrfTSbabd9caVu/K1sHfAI85TPaAqimuUsqJ1zE06ijoD+TqcAoIYTJ4XCQmJiIxWLBZrNRv27tbv5c521AKBammmOTtwHDn332WXurVq248847sVqtzJkzh6eeeoqCgoLMJnVrRT897IWXXkp91SKTKiXPmLOsaygqrlOdVu30FfNdKdO/X4TFYiExPr5Sn54PHlu5+hdrStVqO776bsFEwHlL81vrGPU6vF4vkydPxmAwYLFYmDRpEl27dq1/pRMJm1/PmWBP53kigKan8zwtDMMm+IAngbXBMU+dBXTxIk9Bncbht0T1l4YONfpTE5vfgWZG+4sRQrRq2bLlypdffvkCM1qO2xsF/AM4AMyLjbLKsJlnCpAOuOx2+ysZGRnExcXh9/uteQVeCYwD6ulhsU4n3rNaIoqcLk8y6kNtcpLddi6kNq/AWxnVofq8EKIL4LTbLGtL9s/ncXcAtphtUVkAhUVFA/OKQlNRHfqVbSLQJqQoTgPKJ1Ex8ef+4Au8hcOCiswEljgiL41E8+c6hV8Yp0lEgkmvG48QlcJfbQY2mSPtij87w4IaQGEAvjTFl/9d9a8CzsPxnM/n8QE/GpNSjvld2Z1Q85F0wEyTPf6ypkiArHxvNGruT15CtHUNnJsa4D5gf6Lddonj+4JzdmULVNF4x2SPP+n2FvYA1kZZLaXmIjldnkpAzVjF3cIUkzT84u8vTuoEEEIsmD9/ftcPP/yQ9m1azfzHE4NGRtjjClFNT9uklCeK24585YWGCXFxDz3x3EvpQJv777+/23333cd99933PTDKZDIl79+6vvqYCR/1ysn3NPj444/p378/y5YtY9GiRaSlpZGWluYaN26cfd68efz888/dpJQLw/34+cknn7w9PT0dKSXDhg1j5cqVLJs26fQvhzOSN23aRNOmTTk065NfzGVvOJUpIryDX3ylWX5+fmRICemOHTmSXGxGe6hvv3+PmfDh91w0dXeS/dpyd07neWyoI6MEoJlpx8pd1mVTx3DetHYBEzcfYXemi/Gd1GLkr6/cTbrLy+TuTUprvs0ycu6fWrX874I2svkLEUKkcKHTuYIQ4u5hL75UefbMGUPPOJ3pwWCwvzz/BlAN1Sm9HfB6vV4URcFgMLB7/4F/ARX0cESnE49aLRG7AZwuTw3UkcLEktWU8wq8VVDfmIeFRayK3WYpLeEw3myLyjqd5ykD3G7Si5tRk9w2JDtsv/ryc2wQmCKQj6COpoqZpBf0CUl65BV4pzoiredMXr4CVyxGS3sj/BpUZB1/SI43yaIe5pikXQD+7Ayzv8j9AKrZ4ytTfPnc33+VwZiUko0a3krAeTgCaBtwHu4s1IS9sdJk3YreOMDvyv4StdLCcJM9/tzoKSvfa0XNAcpPiLaeE6RMtZJ1f+CHRLst/Rq6Mhr4JCw0KYD3ckIT5rZIpXAzF06XXSpCiETU5MviuXZ4fvgrD27YtKmaTqer1KVLl4RFixZlCSGSpJSKEMJkMBhWmM1mR6TNurfA4y1fo0YNMjMzsVpttaKiIjdWqVKFyrUbzAC+uvXWWxsMHTqUpUuXsnDhQmbPnk1aWhqAfeLEieTk5IBquiwm9+DBg7RsqSb9v/vuuyxcuPCElHJgpUqVlgYCAaxGfa752I6TuuM7myZBpXl3NVCAXYX+wMZqr+/vP3z4cJ1Brzs1Zsz7T6LWx0tGvZeTgKRw3Tw4X9Egh1KSaoXgbJLdthzgdJ7nG+uyqYNRg15KpXe9itz08TLeaO1nbfpZfjjkZGW/VpdrXrdwxD1C89v8drSRzV+IEGJDz549mzRu3JhOnToxfvx4li1bRmZm1tHBg5+onJmZSVpa2gtSyvfC7Sf26dPnUUVRcLvdPPzwwwQCAYa//HLejh27xut04gSQZrVEKABOl+dmICnJbptf8rh5Bd5awKPAi0KIAKoT9U27zXLuTfF0nscAsrlJcJ9fil9RE+PWOCL0vS0REZ8Xt/Pl59QG4kTIX9MUk/RZyeMUeAtbSSkJSWpGEPhBqA9sM+rsmkvNkfazADn5nrIGGZhnChUu1SmhfagRRF+Z4stncx0p4edpGF51RJojD6LTpwJWBWa6hTWIGtn2U0L0+eTUsNAMAqYn2m1XTUbyu7JfAlaZ7PG/ur2FemBglNXy2ZW2cbo8j8cq7vLAGyWj0Iq5KEDgrtatW383YcIE4uLi8Hg8HD9+nK5dugT1BoPB6XTicDhCoVDILKUMCSGiIyMjXevWraOgoICoqCgyMjLo06cPMbFxC+rUrtWtV69e3HPPPYtRqzI/ALTp2bNnzwkTJuB0ntfI/v37c+bMmaPbdu+bFl6lczqd+k8+nFDzwIEDZYQQsmrVqpnPPPf87imTJlb74d8L7zebzdSpd9OCd957fwsgZaHHiiu7nCzIK0+Rp9yvGzeX377/QETzm+pQt2pKEIMxVxhMuZjMOZgicjFbc4XFlospwovR7MNgDKL69iKlOmKJDP87khJBAIrERtBfwfLd+AjjsZ2XNaO9smInHn+IpYedLOx1G1ViIy/XNAREWUbO1aY6+I1oYvMXIoTY2Lt378Z2+3k/7pIlSzh06BDfffcdb7/9NuvXr+8upfw+3P7NRo0ajejSpQsWi4Xt27fz7bff+qdMTfuie/fub1gtEefMWE6Xpx0QSLLbLgjNzCvwtkM1Bb3piLSGXJ7C3sAuu82y7XSex4iaGFcGCNr0SsisY4PZFnXOeV1YVDSwpNgA+PJzHhUhfxCYaYpJUpMrC1w6oFFQ6J8XMrQjhD7aROhVc6T9kvwXf3aGXsL9QZ3pGR1KkV7wgCkm6Upv/NeFgPNwCtBKQUQUGSMrGPR6h0FIu1D9ASNM9vhCgEw1KbNYaK5q2vO7sgcDh032+CUAbm/hg8CSKKvlsiO2cEWCQbGK+4bSTGhwidgko9YMq4JarcAAUL5cOVf1GjXsrVu3JjU1dZaU8qHi7YUQbwPPRUZGGouKitAbDAf+8eRTyzdt2ti4a+fON8+fP5+GjZt89+obI3cArP55leORvr17u1yu6FAodM4KEmmzBRbMmb28WdMm3wj4ojiJtDSEEHbUYBQ/8FbxdNClkTnm6Zjw+VRBdcaX/KzIhSHLQdTAkbzwZ8nFhzr6UZSHhvfEGuXQnT1F1NSXLndo9me7afDpMr6+/xa6Vit72XaoLyIVLSPnXrUkjsaFaGLzFyKEqAq079SlS4OoqOjoud98vToUCjmB8YMHD07++OOPM4FkKaUSbm8Y+tywD3NyclptWLdu8+23324dMHDgNzc3aTyr5H6dLk9HICvJbttccn1egbcfEOGItH4K4PIUVpJSdi8Myj2o9uwg8FOyw3YGwOdx9zbboi6o0XUFsZkp4QGMFidqToMENgWEcQ9CPBpU5DKgvCPSuqR4O392hg64CzVcdl6BOfYkUj4TEfK0NaD82xSTdNUCl38mWflePWr15WCUN3OrntAdQIzU6aMwWZsgdAEJn7uwVANmXuOIpjfgN9njvwZwewtrAYlRVstPV9rO6fJUM8lA+0hZdMYUk1Rq0EFpPpuLvo9cumj+lwMGDLyjyOczTZqS9my3u7pHcr4ki1QURXfmjNMUG2WrZLVYDoX0pk8THFEPRUdH/9MfCJzetvdg96oVkjeUtn8Af3aGFbVm2FvoDS1QR0AB4DVTTNLlIuz+MJljnjai3jfFU4M7wp/2Uv4frqaNUFLqJdL4jrqWpVPMpmOlBnEC0O/bDaw8msX4zvXpXqPclboSAGK1agK/HU1s/kJy3F4LMAxYGRtl/aV4fbiyQHtgkpRyJ4DLU5iCWihwllEnClDLfXxktURckDsSHtG4kuy2jcXr8gq8OtR6V9sckdZF4VyF1gYdQ4IKs4CVxQJTjM/jjgTamW1RF0xTfLHY+ApcsSihVBBOlGAtDKY3zZH2Cwp/FngLmwKRQUWGAJe1KGcbajRQCjDfFF/+ghktc9zeXsZQUU2z9NcDhphiki4ph/JnkpXv1aFW+hXA8oToC8v9hP08bRSoXGR29DeLkEuHWIMQb5rs8Zd9M/e7su8Eypjs8ZMA3N5CI9Avymq5Ymg0gNPl6edQ3LV08KIpJqnUP8qSYpPj9hpQE2WLKy0IQApokJ+bXb4woExLTExcAeyPjbKWWiMskHXiDeA9Y0LFAiFEPJB7Oq+gBUCS3bbysueZnWEDXgNGmeLL54enTRiF6ltZDky93Dn8lfhzTt0AtFNWftNIbvt5AGAqrd34dQf5Nf0sg5ukMOrnvSzt2+JKu5WAwTJy7m+KaNTQxOYvI8ftTUKNBHv3SmX/XZ5CHfAeEG0QjBRCDASWWC0Ray5u63R5WqKazs5FlOUVeC3AaEXKWb4QcagjGL9ZL8rrdWKR3WbZf/F+AHwe9z3AYrMt6oJEucKiooG6oO9HVP+LCchByuVI5S4R8gtTTNLnpe2vwFs4GJitBHyPG4OFEXoZmmmKL3/gCtfnDqSMiwy570A1Y732Zz+wsvK9AjWc2ggsS4i2Xt6k4/LogEeFDM1xFGWlSJ3xLozm9kAWUuljik2+4Df0u7JbAI1N9vh/Fa9zewv7AvOirJarvgU78wqeiJUFFUwxSS+XXB9+QemAGgiQgGouy0L1HWwClsdGna/e4PIUtjGFih63RMfcf7VjBrJOxABDjAkVR13QF3Xq6rIX+/4uON/sjChgBPCmKb78ufPz5zrvQo0odAPDTTFJl73X/0z8OacE6j1auXidhFMYLF65c01rmX/2RTb8YCZ4YbrVT0czGbZ0Byv7tSTKbOSWSSv4rFsjbkq6bHm2E5aRc2+4bifyP4wmNn8BOW5vbdRw2bdio6x+IUQN1NDcRNTSGnOklPkuT+EdqFVrXzPqRF1Ux+dnVkuETwhRBjUypzyw73ReQQAwlvTR5Lo9NUKSd4MKyxbO/0689vKLplMnT7rr1q1XpnadOjd+OXvW+6XVqQLwedx9zLao6XDO/9IYaKToDLfqlOAMYKU50n7uoebLz3lMhPxuYKEpJukSP0ZhbmYciMm6kG9CYUTsjcBMR6T1ivOD5Li99YFmkcH8XagjszdNMUnrruUaX4mwyBQHK/yYEG0ttY5aMeHw5keBuYl224WiknWiCQbTWBAmAkUzhBKcIS32ikB3kz3+9eJ2bm9hQ8AUZbVctf9Ol0cYZWCyXohTis4Y4sIpo32o86ts0utEVa5gRgNweQr1BiXwo0EGW5mjY69efTvrRHtAGBMqLim53unyVEcNpphZMqqxJP7sjGjUaQnevDgXyp/rjEWdpsABfGWKSfr2an35LYTF5RbUEX9x/36WRutpVD9kNKqZeI0MBgYIg/F15ed5sO58tHu6y0uH6T8z78Hm1IhX5w+cvv04q49nMfHOxqUdNgiMs4yc+/yfeS5/FzSxuc7kuL3tUKvsfhjOnXkiOTn5427dulGuXDl27NjBd999l7dk+Y9rGzdp8qtBME8I8RAw3WqJ2AcghOjrcDi+aNy4MVWqVOHrr79WPp3yxQMP3H3nHIDTeZ4aesGTAhJCkqFJDttJIcTWXr161Y+MPB9VM3HixGwpZcLFffR53NWQMglkJOo8JcWlYDYrBvOAkmY0IcSTQKuqN954w/ETJ05WKFe2wuGjx96VUn5Z3MafndEJqBKIsG+UOkOZoCJ/yM7OHtKsSaOZ2dnZxTecT0p5iUjluL3lgH5CKu/YQgWjUWcaHWyKSfrNc4qE82Saoz60VyVEWy+ZROxiwkIzAPg+0W67rBPY78o2I+X7SKU5Ein8BR+j5vMcdXsLLcCDUVbL1NK2DVeIuBO4CZCKlIl6GWwqdcYHgEOXm6Lhaj6bYgrc7ikGGZgWER3709XOFyCQdSIV+MiYUPGCAAany1MWtTrB5KTLTf6WneFAfTF4wxRf/tJJ2nKdAuiHOjo7A7xsikn6XZOS+XNO1UCd5Kw4qmyTKbbsVp87ryxqEIwBdUT1kznKkX/W7dUD3UGpb9699mHFX1RBv/obdEVXvQ0uhxvoaBk5d+1VW2pcgiY215Gc/2PvvcOjqrr2/8+emmmZZEggQOggSBEEBFRAWgQFUcECCigICupjQ8BKEx8bgijFhiJYECw0QYpYaIoISBGRKoQkpEyfM332748ziSEkgD7v93rf56f3dZ0Lcs4+e/Y5c+asvfa61718ylAg5LCZywK+Qoh3n3rqqTtjsRiHDh1i+PDhHDt2jPHjx28oLnGuRlU5fr+Uzpw8Z/a4cePua9GiBddeey1XXnkl6RmZbZetXtcYSDVo6KIRfJxus6wpd87vx48frztr1ixiMfU9/dprrzmllNVK24T9nmrA1SB6g/wO1Xs5I55SPmYjhNDr9frwRx99VEYhPXXqFA8//DCJROKBcNHJT1AFKdcZMrJ/BvArwZF3DBu6f/UXX2ywWCxllNRQKEQgEBhc3kiVu29GVAbTPGvMmwbMABYa0rM+wjGSVQAAIABJREFUvZD7XuRVLkHN0fADW8tTmM+FpKEZgarcfN4SCRFPcTXUXJrfkPIK4rETRJVDsRT75dqw/w2NjG/zWWqCKv7YjT/YVFHgS2CHw2aWBW7/qHTpb2CssIRWERdqbDz+wKX6RPRpc2ragPNdA0C06IQVGKfPrDup4rECT8CO+p3Oz7JbKvUII8W5DmA8MNmQkV2l1xhxFdQBpqIux040pGedVe75jPbOvCzUWJ8GdQJ0BPhG6s2gejSlOUZ5wGajLS0KUKI+P7ehaugt14nEldLrHE1qRmvNjrXov3qfv4JtdboFttfpevlj17SummnwD6rEP8bm/wGSNWceBn5w2MxnxFqEELcAz9eqXXvDwJtuvnLZZ58237x5My1btvQVnC5sajal5FfsTwjRGXheCNF2z549pgEDBvDAoxPuu23woB80QgwHnkuzmk9VOOf348eP123SpAnRaFl8+JqQz30IVX/MgGrYNiA0vY0W2xkMt1JUMDZGg8EQOnr0KD179gQgEomoeR5ez5bdWza+CXxgyMgumwX7laDu2WnT3jn464Ghs2fP5rff1LDNkiVLmDdv3ktSyvEAkeJcQTJvAqghoX5MYxiqkbHftTLhB3E5UBfkCv7QDdOgJmoiQRcX2noAGpko1HC211QFNEBCAiGNqY0hETmsJe5HpeoqqDlCJ1CldFyA35CRHYt4ilNQZWhGGuwZasVIT/GAGGJ8VOg1CSn3aBLxmgBCxr/Xx8PTTZnZleZmON3uxVYZmnA+NteFGhuAgM+7yWJL7XKB94Bo0YnOQHV9Zt2zEn0LPAEjqsbeB1l2i7uy8yPFuRmo5JdJhozsc2b6R1wFBuB51CXhVw3pWZuhbGnsmuR+iZpwu8rgqBUP+9w6VK+mlCq2F9hrtKWVvcBKfEoqamVPG7BYK7AKEoONxEeF0ezm580ddN98aP+Lno3/vbb37yy01roEuG5iTtPN5z3jH5yBfxQE/oeRNDQTgFUOm3lfxeNuv/IJ0CmRSJizs6rvvvXWW5vv2LEDn8+3uzJDA5Dn8h8HlrVt3qQZSTHB6tXSszRC9AQeTLNWWjzNBPDjjz+i1Wp5++23WbRo0Tt5eXl316pVa1Fp/CUc8OUAVTKPKkOpikFhYSE+n49Ro0bx/PPPFRoysheCajh+3Lmr+ndbv7/+dGFRlxO5ec3RGfj888+5//77Aahdq2b+Zx+8a4sU505BpeSybNUax6q162sVl5RE0uz2n16Y+vS41DoXXSsRPzpSrVMjrgIbMB/YYkjPmgVQ5FWao+ZghFCXyv7S7KnQExgGvGV3VDuVvAYDqsx9NdSlxW6otFtzpDjXgtD0QSZWxoRuZtDtvgSkBrRaIaU2Je77WQjRESF+JRF/nFhYI2BwtOBIWYKrPquRE9TCakZk6v8D2nDM5/frbVZrpUy0itBn1t0cLToxLlp0IkufWfeMnKcsuyVc4Am8Dowo8ARWZ1VSr8eQkV0cKc6dAUyMFOc+bcjIrpKtlczNeiTiKtAgE49FnHkvo6pk/AisNzhqrQYI+9w2oG/y3xiwxWhL+6ZifyU+pT5qBc8YsEgr8AHDdcTTtMiWYXSLEJpHDV++3QO1PtSfVX6OAyda5/3Qc/1FN84A1k9df/DWiTlNqyRQ/IOz8Y9n8z+IpKF5HFjusJn3VzzuCQSvAe6PRiNP9u7ZY6per7/u3XffpVevXuTl5eVIKTeUts13B4yodOhSfS9drXTrE3v37m0xYMAAbrrl1v7/nvbMysrGEfZ7Ulq0aXfC7/dnnj59murVq7N+/XrGjRvHunXrbpNSflTWthwxoDKU92zq1ck2FhQWhbZt28bBgwdp27YtGzduZPLkydSpXXPf1nWrPgU4cux4StuuOQ81aNDAeMkll/D999/Ttm1bnnzySb7//nv27NnDggUL4pFI5HIp5Y8AQoi5DRs2HHP11VdjtVr57rvv2L59+/dArxJvYADws8Nm3gMQchXcFEX/SFxol0Q1hmWZqebjf+6bOhOFnsAQ4LvqdsuJ87X1eTwdpGBODN0GhEgAh4APHDZz1KcERwLv2cymaKQ414hGNxB4GJkoQSa2AgIpTUjZGKQJiEU0xqgQoqZeRh8GdhoysquMTf0Zzybodd8XFxqH1Zb6zAXeBqJFJ1JQGWZP6TPrnvViSCaeDgZ2ZtktlZZjiBTnNgauN2Rkv1zZcYCIM682cC2qVxkGPkZobgauk7AfrfEAQpwRf6nYR4n6W7sKdYnyOLCkms0ccvuVriDbpRBLiaPpHEP7pt1qXg4Q9rlFYtPnS9m2qg8XXkBNRjr1D8U7D/Ci0T4y+/uTH6HWUHoGuGdiTtP5F9jP3x7/GJv/ISQNzROoIppnqMImVZnnA7ti4dCHQ4cO+bjw9OnLFy1aRP/+/Tl8+PBDUspZQojaLVq2Gnj7HcPT7xx59wFgnRBEgCFGDR82a9zwyFdffVV9wIABHDp0qKmU8jchRDug6Z3Dhu59fc5rrYC0GJrst995V/PQgw+ukFJuFULMmzJlyuhoNMq0adMmSymnAIQDvgygo9FiK6PoJGvSt0f9IZsSWv2lmnh0F0nvo37LdsOKSpwNrrrqKjZt2sTOnTsZPXo0W7duDQLVpZR+IcTlbdq02Tp9+nQsFguzZ89m165dNG3aFI/Hw8iRI9HpdNxxxx2/KIrSAkAIcXjRokWNdu3ahcvlYty4cTz77LN88MEHk6SUU50+5Y6EpFCqy2ZxjYxvtCUCU4DGqASCv6SnVugJ3AZsrW63HK/ie81AZaZZhExU18l446jQ9XWkWs5YEvMpwe5Avs1sOuslHPEU90At7rUJmGWwZ0iAaMERo2Kwf50S8awQQlsPjQYQhQhR/kcZBrYC24Kmag25QGMT9jrNMaFbYbGl9rqA21CGaNGJS4Hm+sy6VVaQLfAErkMVxqw0+TNSnNsdyDRkZJdVIY048zoApQKW+cBKg6OWDPvcAmiV3CAeqYFMXJ4sGfF0RdmeEpUKfitqguc3wOZqNrN0+5V0YLiGxC8G4rdG0aUlhOZ+u8VU5oWFfe6HZCK+RU6/eyCqMvT5PJwo4A6Oe8+I0KQCpxw2czbA1PUHRwBvAqMm5jStlAjyD87EP8amCsi8zaUxBICQqNW5yhvl9CkaVEOz1GEzn5HH4gkE/4U6+xqt14gBY0aP7rFnz8+DPvzwQwYMGMCvv6rvprr16n0RDIaadurYofG3336L1+utme/2nwZGL3hjruGZKZOfVxQlZe/evSSNDdnZ2XM9Hs+9PXr0YPOmTcdO/X60XUgYonv2/PzMtVfnPJBIJDSKovxqNpubbdiwgenTp/PZZ58NDxed/BToJTXa20jEfxXq8kMp4qjlmTcaMrL95T2bxe++kTXuqSlbc3r3adC4cWNefvll5s2bx5IlS9izZw+HDh16HXgANR70OdBywoQJNfV6PdOmTfu62cUXL8vpldNg3ry5DzmdTqpXr84nny+7uG+f3r8KIV4CBgLvAdkDBgwYefvttzNw4MAVhZ7Aa4BWA22FYLnDZv6ldLARV4EVNXaSh5rXUenyjRDiWlQqrrF0X526dYOLFi+97arLO5QZCKdPSUGVpslAZT05gbesCaU10Ntgz3i6Yt8+JegAcmxm08dVPSMAEU9xH1TDtcFgz5gH4HK71qSnpV8TLThSvtyCQJ2tfy11RpF8ftonhKYmoNXIRCl5IYKqmv2dIePseJDida+Kao0P2S2mw+caV0VEi048ACzXZ9atcmkvmeOVmmW3VOpdR4pz7wRiaDSlHsROg6PWjwBhn1uPGn8p1YXZA+wrH3+JuAqao1ZX9QGP+HSpDlQjI4CPq9nMJwDcfkWgqlJUTyG6RyImRtHtlUI8ZreYyvoL+9w5QLbRlvYuQPDpgTehPjcmzvZy4kAkUb3eD5rC3wcHxy/qAbwNPO2wmcs8tqnrD45ELRdx08Scpsv4B+fEP8amAmTe5k6ogc7u/FHG2Is6i3pZ1Op8RsA/6dE8CSxx2MxlSYtJb+Z9YIleI/ahJrotsJhNz86dO/fm3r17Ewyq74dQKMRll10WklJy8uTJlE6dOnHq1KlGp93+W3Ua6t8y8EZtraysuyZMmIDNZkNRFH788UeG33lnuHmLFsb333+f1q1bH5ZSNvEEgk/27XP1NwX5+Zu/+OILIpEIJpOJpUuX8sLzz3t3b/5qbq2aWS4J35GS2sxoTV1wrvsRDIVGav3F84HrJ/77xV7L16y/z+FwcPToUTp16sS8efNo27YtrVu35ssvv4zp9XqklJFYLHY10GXChAnPHTlyhE8++cQDfNzm0kvr5J48ec3Ro0dJT0/n2MlTI20228o0q7kQQAiRAmyYOXPmlS6Xi4+XLl2+6fsdN2emqlnwTp8yCtjksJnP8CAiroJLUbPaPzWkZ521LCiEWPzyyy/f2qdPH0qf+UGDBrFv374OJd5AHqoR0KO+wN9w2MxlcYuIp7gf0Mxgz5he2T3yKcF7gLcqlniuChFP8Q3AMKTc7kffwpGWNrRim2jBkdJCcmVxHsVWqzrlPJtIca4RNdfkctSXZilLMAKsSuhND4R15m/tFtN7FzKuss8uOqFDXSZ6Up9Zt8prKvAEGqAu9S7MsqueXsSZVxd1iQwSiUtRc3BOhX3u1OT1WFEnN5uNtrRzlgUv8SlCm4j2NSTC0wSURDWGgan2tDKCQrII4GBgRQrRNnE0o2NoX7ZbzWfEUsI+d33gbqMt7Yly+wbLaCRbzhxTBNyYsDk6xHLuSNdtWHhC4y1ZKYZPSVEyGuQ7Ui3TAJw+pSZquY/rHLY/koGnrj84AZgCXDMxp+mfin3+3fCPsUlC5m1OAz4kuXzE2YWWJBAEtgG3iFqdnQBOn/Io8EX5pTNPIHgdcLeAu3UacRuq9PmHZlOKFELcpNXpXtZqNI5EIqGLqbxkCWypX79+n2effZaRI0fuPJ53+rBWo/nFpIm//M78+cOenjx1UiAQsCOlPxqLGVBfKAX33HNPC0VR+Gr9+umH9+9KRUprNKgc7XfL7X23bt/RCtDF43GAT4DxUspjAOGArz+wxWixnTPDO+j3jteGvADLjZl1GjZv3nz1E088QVZWFidOnGDWrFllMSFg7bx583r/+uuvzJo16xHAOGHChOe+/PJLBg4cSGpqKn6/nxtvvJEFCxbw0ksvLXf5AjcC9yQkn+UVFLTP6dp5YrduV3V84IEH6NGjB6FQqJGU8gw5HKdPuQdV8ucsRYKIq+AO1OJzkw3pWWUJrEKIjxcvXnzLnDlz2LRJrV9nt9u9W7f/9GZWzZonUQ3MWSyqiKf4dsBcKkFTET4leA3wq81sOlbZ8XMh7Dr9WUgYGphE/BmDPaOycg8ARAuOpANXx3QpF4OQulhwkT6r0dGq2keKc1OA66VGOyEu9Ac0iWiBRsb9wE5gjSEj+6yqpWd9ZtGJZkBnfWbdShUiSlHgCRhFIj7KJpU0HYkiVA9zlcFRS4Y9zvrEQq+gT1mO0JQAXxttaedlCZao3uXNqMSMLcDXtpg3G7XQX15Uo388qjUNBiJaEh/rSLwSR3NRXGhvtltMZ/Qf9rlNwMvAw0ZbWrjc/lHABqMt7RiA26+8j1rr6IM0q3lI2Ou0htEtjQndDaXPhdOn3AI0ddjMZ8TBpq4/+CIwGug+MafpGfqE/+AP/GNsAJm3uT7wLar6sfHcrYmgyoVc5bK17YkauP4ByqRm5gCn9BqxFdVwzTGbUgrz3QGBOgNtDOSiCmCWz6WpbjAY9iYSiepz33hryU03DTxh1iSOobKsNhqt9uNQxpLqA7SbMef1i6a+MONmrVYb2rXpq2nVG15sTU21PVV+sEIIPRArVyOHcMAngDuMFtuCKi+yOFcHDEnoUy7XRENjDBnZCaEGbUeizlCrAyGr1donMzOTDu0u/eHjTz5L3bBhw8UjRozgxIkTHYCeEyZMeG7//v1s27aNyy67jJSUFPbu3YvH4zk5cvS91z0ybkJ1QBMOBq6tX7tmw+uvv77fhAkT6N27N263u6+UcnVl43P6lNGoUi1nLRFFXAUaVGptTWCMIT3LL4RYsnjx4pt//vln9u3bx9atWykpKZmOaoArz5BX1ZuLDPaMSoUxfUqwJtDRZjb96SWUiKtAE0fzikdj+cpBsDaqVtuTBntGlVUgPYFgM5GIW0yB0xmoSsiQLD6XrFx6BsJe58wE4pmINqWvKVjyAaoXVCo7VIp81EJ1Z8W8okUn7ga+0WfWPduoO/N0qLksJsDn1KS6EJCuieWh5sAAnCKi/CJk4l/ARENG9jlfNiU+pRlqJUwNsLSazXyWQfV7nNfrErGpArlRag0TEhrthgSaLVar9Syl7GQ86HlgttGWdrLCsTFGW9q80r/dfqU2KlOtf2kaQcDrfjcsDB85bOZ1pe2cPuU9YJbDZt5Zum/q+oMCdZmtP9BlYk7TSskTf3f87Y2NzNucisrZr80f6rjnQyIh9IU+c5N70+yOzwE8gWBz4BUB03Qa0Q3YbjalfJksWXsNKvd/W800y6GKnbn9SgOBfCQSDtWJR0K7DJbU6hZN4ikR8rlRDVRvVE9LoBq7jcC2pAFIAaJuv/I08HLFmV1lSNKdDxgttkoFLyPFuTVRs77fjVsz+lVUfS4PIUQDINVfnD/WmlGza/fu3et9/fXXG1ETKvtPmDABs9nMpEmTAHaZTGZD8+YXtzh27BgvTH/5XyOH3zkbwGAwvHHNNdfcPXHiRHr37k1JSQnJPiZIKStVg3b6lPuA1Q6buVKvwu8uqSXRfJEQGn+Pnj0dvXr2bG6xWEhLS+PGG2+kf//+7N69u9LE0oin+Algh8Gesa6SrvEpQYEa23nDZjb96R9RxFVwv0+Y3FGh+z7Lbjkc8RTrgOmoigmjDfaMs5JBKrLRknGetqiyMgL4HVXFIAQQ9jq7A41CWpMLWFfZsxEpzs1GpQ2n8Yc3vwVYJ1Tx8WeBp/WZdWMAEWdeN6AZ6nO4ROrNYdTs/ZoxKaqHpMYeQzxfw24NlfuMi4Fehozs1yp+fjI3ZiBq/OYgsLJaJR5mUvNvBHA0zWpeo7hLhmg0Yg6J2BKNTNxdmY5e2Of+F7DLaEvbXGG/GbjFaEtbUOEzxqZZ/4jJhLzOXiH0t6el2oaX7nP6FAewGOjvsP0hezR1/UEdsAQ15nblxJymF1Jc72+Ff4xN3uaPUWckKedrWwFh4EtRq/MNnkBwHHCRTrBBCFEPmOMJx42oa9dRYE3NtDPl6QN+ryaBGCkRtwhw6oh/mIiEvw0L3RxLXDlSbg1vB7CqfKJkRXgCwRuAErvFtOm8g1a9mjuNFlulDJpIcW5XoCkw35CRnaisxECl/bqLFtRp0vy5ouLiy4BtaWlphzdv3ozVakUIgc/no1evXhQUFIR2796dMmzYMEaPufe1ocOGjbOaTWEhxNEdO3Y0SE9PL4tl7dy5k2HDhm2WUlaZnOj0Kf8CVjhs5t+TfxtRmUYO1KTMN6wxb6N3Fn348uw337lo//79bwEd77777h5dunRh6NChH0spB5Vdv1rK+XngM4M944eqPtenBG8AfrCZTZXmRp0PEVfBi06N7RDwTnkpmIinOAOYjfrinVzKXIPzU5+jBUfqo3qdKYBbanRfyxTblJDW9CBwg91iOsuonjUuNbm2W7IfkDINyECj2Zykem+WevMJqoi/FHgCKaiJlRuz7JYj5frtAxgNGdnLk7TlLsnND3xazWauUunb7Ve6o7LVFqRZzV6vP/C4nnh/geyviQabo1ag/QZ4rdTohH3u64A0oy3trPhd2Oe+FthvtKWdQYCoaGwAvF7vN3a7vTsqOaEncHFWVlbKOws/+OmanB73lG87df3BFOALoNb8R26//8S+n54kme+WRD5wp5TynKUqkqVI5qISF96UUi44V/v/Fvytkzpl3uY2qG77nzU0oC63Xe31uhaiTdmm14hC4LAnHN8C3IQa1F1cM81SFkwM+z0mCb2jaK6XaOqIePQnYzSwSajfQ7uQxjTUkIhONSalXi4EnkCwBnCR3WJ68QJPuQK16NYZSNaaGQEcNWRkn1cS/yzIxAcnDx+4wWjPeOG347m2rpdftr1ly5YdUKnKEtVr/Dk1NbV1YWEhe/bsOdmiZcspqDpkc4EP27dvPwbVSJQijjpbrBIOm/k1p095yOlTJOoyaASY67CphAOAQo8sXvvdtjwNsvDtObO6zl/4frS4uBiTyQTlvvuIp1iD+qJ/xWDPqFKh2qcE6wPh/8DQ3ASsBJpX1Bwz2DOKgUERT/EVwLKIp/hDgz3jnCy3UuizGh0H3gU1ziMSsatlPNbSrOQNCZkzrJ4ABrvFdM54TXKp62vg64gz70qgFYl4N6TsJBFWoDcRxYnQTDY6ss6avSclbd4q8AT6FngCjbLslnXJfr8MFedN8LhdV6I1eoDvgH9Xq0IHDsDtVzKAO4DNaVbzq55A0OHzB5boicU10MNotQfB/i3wbcRV0Bf4NOIqWCl1KTuBS4y2tGer6Lqu0ZZW6fJsJTj26NixY5Z+8smccePG0apVK958800+WbI40rFTp87lS4VMzGkamrr+4A3ARketugsH9OpS65Zb/hDfHj9+PJs3b34HWFXVhwkhtMCKZ555plmjRo247bbbUoEFFzjW/9P4Wxsb4DnOH6M5F1JSgrktY6lNmgaj8cciCVoC6W2bX/RxQX5ee2BMZkZG+ltvzPP0ysmpKePRHppEXKOX8d0aNcnvKLDYmFkn/NjTkx56/713f889cWIUKu31fSnlOatXegJBgUo1vuDEPaCx0WI7g1GX1La6B1hkyMj+U7VkkorKHdBYhUUGexZ5lZ/SHY7A3oNHOlXM5hdCmBVFOXLDDTdkAQ927XxliV8JHvQrwU5SyqdQqa64/Uot1LjUu2nWql9GTp/SE3W2KVGf5VkOmzmvkqaDl336ybVPPfWU+eNlq6hbvyHTpk1j/PjxoC4ZqcKaKo11gsGeUVhJHwD4lKAG6H2+Es/nQQdDetZ4PIHmVTUw2DO2AtdHPMUjI57iz4BJ6CwXpAYAoM9q5AI+DnudVwOLDCFP35gu5dWoL+9nVKLAj5XFeSLOvBRgmAQtGp0TrcGHlCtFJNBHIIYYqtVUIsW51ZCJ4ZHiXDtAIpGI3HbX6N8+X7WmOqq3cxRYnu/21y/wBEbrBB4hREMM9lxrxJUqYoG3DRnZp5NK5m1RaebfSykPQRmdeQDqxOPVNKs56gkEB2pl/FYd8f2NmzWfdepU3g2ok5HVUkq/IT3rC+CLsOv0aGLhz0CexfD7K4ihndq5c+eFS5YuZcOGDeh0OmrVqsXrr7++5qUZr0xy+pQbHTZzWYmFiTlNfVPXH7xBb0w5XL9+fd544w0++0zlfoRCoRhwVrJ3BTzQrVu3Zh06dCA7OxvOrE76X42/rbGReZvNqEsBVX6Z8Xicy64ZRe2sDFYurNRxEAmjozWgMeo0E6qZTX0AnCXFhzt06NCobdu2uFwuXntttuvqbp03CpkYq5GJzRUDpQ0bN5708fsLJw++9Vbq1KnD/v37WbBgwUtCiMuklDvOcRmDgc/sFtM5JfNLEQ742qDKgpQhUpzbHtXbmW7IyD7vy6zIq1yEql1Vdg+AHZl2iyfsVgamEvrJmOqoNMFSSqkIIerHYjFj6VKC1Wz6yq8EH/Irwb1WsykAkGY157n9ypfAcLdfOcPgOH3KxajCkAKVAv1EuWNjnT7lg/K05UJPoCewDxCnT5+mX79++Hw+7rjjDo4dPfKbK/fIlRFXQT4aXS/g3spiJRVwEyqz7y8h4iq4AtiZzMavaIxNQBvUmIgXWCGlfDviKX4XeCElFmgS1qT8u7J+hRC9UNlbuys+M/qsRmHgs1AgaK3X5OJPO7VrMzohE09azObIlR3afX3fXXfMlwZTGwntEZq6aAz70GjiqC/G/cbUdBkt8m1EJsYALxsysktQ40sApKQYn6hfv8HiMWPGkJqays8//8zXX39TuHvH9nfaX9bBG5dUl1K+l2W3/B4pdhmBqUaDIZ6env54u3btyMzM5KOPPjoJ1HX7lYaoTLTP0qzmQ55AUO8JBF/Wy6hei1yfYkt7G/g6JyfnKr/fz7Zt215ElYdSmWc6Y2ukbC3i4fERV8EDqAm/ztKxhn1uC3DhqtNCHO/arfupFhc3e2rZsmVXtGvX7loAn88XRp3kvYCasFuGiTlNT71+789f0bNj3/r169O+fXt27txJNBp9AzWuVsVHicZms3nGpEmTePTRR1m4cOEFD/O/AX9bY4PKyglzDs9m1ttLubhJPby+qp9NvZLrD+ss+zSSSMjte5NEokksFmv02GOP4fV6qV27Njk5OTtNjqybKju/wBPQ2u1pPbp2vhK/38+yZcu488476dKlC0OGDJmOun5+FjyBYF0g024xVSqgWQVaGy2296Bsbf42wGPIyH61ssZFXsWRohPNirxK+Sz0I5mp5o2V9i7j20F7M2pmdeVNpAzzh5BmKd5CZbnNKt1RzuDc6fQpy1A9OCPJzHKHzVxZ/scM4FGnT1ngsJmLCj2BloCmut2yB2j61ltvDUCtFqqg6nAtM1tT6yATi0jEilGN7oZK+gXApwSbAUU2s+k/KQh2Q9KrqYPKSgTUF41erz/UunVrWrRowfbt2zlw4MBgYHFS6PNRn8/XwZgITYt4QssM9oy55c7tV6dOnZVXX301H3zwQVAIUU1KWZrkWRT2OmsaUx35785/e4fP73dF0Oo7dLwcn8/HC7PfGng8r/CRF56Z+AtojiJ502h3nDX71mfWzY8WnTgeLTpxuT6z7rbyx8LhSO0OHTqg0WjIz89nwoQJdOrUqfq0px67duPKT1cAXzr16a0LPIFmWRnZayPFuTNq16r549OTJqPX6xk4cCAfffSry5sLAAAgAElEQVRRptuvjECN4byYZjVLTyDYGSkHG4mWCPjBaLV/AYxo3779VQsXLmT16tVs27YtE8qYZ9OAZ42p6X5gYjLhd27EVXAaeMyQnhUHOgJVxuIqwmEzS6dP2fX5ko+qp9ir7aI0h0g99p3Tp/R3+pTeDtsf5c8B8g//cuT48eM0btyYwYMHs2DBAgYNGnTftm3b9qMmk54BIYQG+GDatGnMmDEDr7csrPOfrLz8n8Lf2dgMRGWIVYrcvEJWf7WNJx4Yxsw3q14y1xC1aWNKQ3SWK+IafWFEa5hYIyvrhwEDBvTo0qXLZRMnTjzfOG5xu1yvzZo1ywZ8CuTv27dv/t69e+EPCukZSFKsxwDn7bwU4YCvCXAYIFKcawXuBT43ZGQfAijyKgZU5pueP2bcLq3g18xUc5Uv4PIQIOXZ+UnnhdVsCviV4I9+JdjDajZthLJk2RygvYBrJQxz2MyVqiaXIvlimA6MK/IElgGXVrdbFgFIKU9SzpgBRDzFrYFhCE1XVObVIxFXwRhguiE964wXqk8J6oAuF1LiuSpEXAUNUKuQArRA9bhK0aJLly48+OCDZGdnM3/+fA4cOFCt/PkJjc4b0ugeNcUCzSKe4uXAg8a0TLcQYuWcOXPo2bMnn332mSkUCplQc8JAjXndBrz88IMPGFq0aKEfOnQoa9eupXbt2uzYsYNLL7204ay5b+RE8g+7gJxowZGrUGNf3+izGpVRy/WZdT+NFp2YEi06sUefWTeQDPRf9v7iJaEZL7246+jRIylul8ty6NChui+++CKTJ08OoD6j/R1R12UJhN1X4h8Z1lger1E9891xj44d7nJ76gwcOBCtVqsDVqVZzYWeQFDnCQSnIuXvKURDwDKj1b5TCFFbr9fPf/7553nhhRdo1apV+dszFlhstKWVGXBDepYfGBZxFbRGjed8ji4lhT8pPAv4EoiTl7ZpfW0lx54CVjh9ynaHzVzeo185a9arPVp171un8Pih4Pr167MmTZpEnz59SpULKuL6jh07dqhbty5r166lSZMmaDQaDAZDQyHEfCnlXX9yzP/n8Hc2Ns04x4vx4Umv8sJT9+Lzn1eOXOiU4wXR1BafJzS6l9KslmN5p04hhOiKmruDwWDQJ+MQetR7rgP00YRsqhVYd/68Zy/wYCgU0nds1/ap3r2v5rvvviOzevVCt1+5Ndk+geoRRFCX/34G2rn9Sum+yv4NlypCJyS9/AnNLwaX80690HUK6iwrEkJbD69SWuI2jFr75YyltGAo1PaC7mYppDwa9jqbGlMdlZafrgpWs2mrXwne5/YpvydUooIW+NhhM7/n9iu1BQxy+5UF54rhgGpwCj2BVwR8ohUMrKpdxFN8FdDdYM8YW273yxFXwUzgqYir4BHgXUN6VmkgeRAq5fU/wWhUoVZQlarLz4a/26ii+YwZM7LO1YnBnrEk4in+HJjTtfMVHZu3vIT169fToUOHypr/DNwb9rnbHPllz1U9r7nOO2P69MDR48emeL2+h6+44oqmV1xxBcuXL2+jz2r0GUlCRrTgiAHoFi04cnWyn53AdqnVz0oI7Uten3Ic9Tv6sc+1fScMGXTLhMsuu2zapZdeSv/+/Zk1axbA3uSS8fLkhijOra6RiRc3rF5lk7HQAXvtRnUA4vF4LGlorgV662TsVR2JscDzRqv9hBBCAG8/8cQTzJ8/H632jyyFsM99M/C70Zb2Y6X3S03uvSHiKhhKPHqvkPEfk9dzodg2Z/7CtlqttvwNbplkjV2anp5u69jp8q1frlndUkpZSvhIkzKxSqs3HG7Vvd8bJ/Ztwm63A6QKIV5A1YlbKqUsnbzUadCgAXXr1mXz5s2kpKRQv359li5dyvXXX9/9T4z1/yz+zsYmtaoDq9ZvITMjnXaXNOWbrbvO25HUGNJD6I8AA92qcZIvvTyz4YplamCweo0aGagJnjFUKnRMSomUXGHQihWANhgMRju0bfNgw4YNuz/wwAP06tWLVq0umYoqwhhDjS0ZUGnJAeAAqottBoxSUkOqiX56/jBqeqdP0WiQmaCJmuKhTgKpiRhTd2uhebmkohCqBpjV7Vecyf+7ALdR96fikwdEIuqXWkNPVOruBcPpU/oDDQS8CtzosJnLWFNpVvMpt19ZB9zh9ivvncvgJAugDQeGCCEeRSWBnIGIp/huwFC+jHMpktpqU5MVJsdEXAVL4xr9AXSmNTaL+UJr5JyFiKvAAoTKa7eVL7cspXQBPYUQM1FLg58TBntGVAixtG7duqOemjiZPn368OSTT5YdT+qPdUFoahKPtiIRHli7RrVfDu7cmhY0pg9Ns5oP2my2pq1bt2bPnj2glicvgz6rUQRYB6zzlZwWUmiGSKEZD0Kjj4fctlDxL4bMuuVZVTqTyUR6ejpWq5W0tDSAM6rCJg3GTYCrdZs2jnr16tdLJBL89ttv6HQ6neIq+g6daW6KiL+IqjX4eIotLQbcDwxMTU3ttnv3bpYvX86QIUNKux2+8ovVJTcNuu28pZqlLuVDpDQRj98acRWMBUZXVtK8Inp07fz7kcOHdvTq1UvTrFkzFEXhhhtuGLpmzZoB4XD41AsvvHDRSy+9xEszXnkQdSkX4Ll77rmn8Z49e4gddTJz5kyWLl0K8HtmZub4OXPmcMstt7RCXUIGWLV48eLrFi9enAakNGnSpOWyZcu4/vrroVx87L8Zf2djo6/qwJYde1m5bgtrNn5PKBzB6wsw9F9TWfRaFatWiSjRBLvL7ZG/HDhQFpc4XVBQfPxk7uf9ru5lLCw8fZMj3aH7etv2zGoOx+poAl0sFtNd1fnKf9WtW/f6uXPn0rdvX5q3bPXK4s+WF0UTXFSuX6HTcEcswXzUJcDSCoZh1BjEwszUM2MZ4YBPIBN3i5DPDHxtyMguP06gLGEuPbk5gOalf0fjicvDqqIu/LG8FgBOlttcSQPwAypVNR72OvXGVMc5CQdOn2JG1aGzAOscNvOjfiV4Kery2Rfl2yYNzgbOb3AGAqsz7Rav06cscvqUkQ6b+W2AZOLky6g5NN+ea2zJfI25PiX4jiYefdEY8T4ciXivBqYl1/7/LB5DFQItxZ9ebiwPIUSKEGLF7NmzefjhhzGlpCgkVYy7dr7yHeBDYqGwkAm71OhcRkfNMgHRJ8ZPQK/Xf//RRx8xY8YMjh07tlJKecasKikZ0wVoi8GmQX2+bqlmM8eiBUfqodHOjBYcaQoUvLnww83Aiu+++y7/u+++a/zuu++O279/P2+//XZ3IURD1IqaPwHm2rVrzxk79g9nspojneeffx5AaBKxwYaQ+6GNW7dP3vHj9u+PHv9dB4zt3r3707fddht2u529e/eyceNGOnbsSOfOnbn77ru5efDt1eWg2y7ktrVCiD2G9Kw3I66CNOCNiKvgMDCpsqTQUvy8e5cuLS1N07ZtWw4cUAUe2rZty9q1ay1CiIt69OjBuHHj6NGrV78kQeU0IKWUjBo1inA4zIwZM1i78duwVm9Y0qBBg4E2mw1UaR9QGx9Ffe4RQtR2Op25r7/+OsCPVSU1/9dBnWH//bbEqU0/JU5tkufbNi59Vfbtefn52u0t37cQ4lVAdu3aVW7YsEECUqvVhurWq7fuyiuvlG3btpU5fa6ZVegJmJIz8fs6dOggf/nlF9moUSOJ+lKXwKry/br9yv1uv9Lgz1xnyFNyZ6go99/hopNpf+U+KcHgyIr7XL6A1eULXOzyBa52+QJ3uXyBR0s3r8f9scvjm+D3uBYkjzdz+QLG8ueXeANXlngDL5R4A5NLvIHUiv37AsooX0CpXtl4XL5AtssXuMPlC4iKx067/V1Ou/3tK3xWpxJvoF/YXXRx2F30Zthd9Kfugzeg3OkNKCYpJWFn/mVhZ/7HYWf+a2FnfsqF9hF25mvDzvwXSv/Od/s1+W7/qMraAjNnzJgh7733Xgncl9xXC7j1juHDb3T7lUuS+9pecskl8tSpU3LhwoVy4cKFMhgMyo8//lg6HA45+Ynxs3t17/oYUCvkKZkf8pSUJnBfotPp5KeffiqffPJJiaqekS6lpNgbaFjsDdxT7A08VuwNPFzsDbQr9gY0lY0zUvi7LVL4+6RI/uG0urVr7bTb7dJiMTv1Ot3Jbt26yX379knghE6n8/Tv318CJ6bPfGVCmzZt5Pbt22VOTo7MycmRrVu3lmPGjJGANBqNrtsHD9peq1Yt2alTJ9n58o4/Dezfb1Pnzp3lFVdcIVu0aCFfe+01uWjRItmkSRO5YsWK0t/Lcxf0W/C6RoS8LkOF7+aKsDN/VdiZf4XLFxhb1bkPPjx2oU6ne7ZG9cxvjEajrF+/vuzYsaOsWbOmHDFihATeLvEGmpd4Ax+XeAMCdZn0cdQcmTfTatR+4skVu9ytuvdbfM0118i2bdtK4OaqPg+VaToVuPSv/G7/L27/6wP439oSpzat/Z8yNvG8778PuIomB50Fd4ed+f20Wu2hlStXyj179pRtffr0kYDyxhtvlD6cD5R7sBY999xzZ7TfvXu3pGy5TeL2K63dfmXYn7nGUFFuv5Cz4I1w0cmzXswXulVmbM61hZ35I1y+gAh6Ssa5vP5LXL5AP5cv8IDTGxhf4g2sLPEGvinxBma7fIGOLt/ZhkZKiS+g6HwBZYIvoFQ67qTBGVHe4Jx2+5ucdvv7Vdbe63bP8LtLZofdRX/qPngDSkdvQGlbyTXWCTvzF4Wd+e+FnfmZF3BPxoad+XVK/853++vlu/19yrdBXRL9AZDljI0ElgI/9OvXT9psNrlg4aKrQl7XpZu//mqM1WqNXXLJJbJ0KykpkV26dJF6vV7abDbZr18/CfwQ8pS8EPKU1ABSdTqda8mSJXLKlCllkxqrzeb5ZNmK6cXewC3F3oDjQu9PpPD3rpHC3/sDB5cuXSp37dolf/rpJ7lz507ZsWNH2aRh/cXVqlWTxcXFUqfTRW6+dVC/Nm3ayNWrV0u73S4B2bBhQ3n48GG5b98++eSTT0q9Xh+6/fbb5QcffCBRCTMZGdUcL9atk30y1Wb1dezYUW7ZskWmp6fLV199VaLGXio1iGf9Hryu0VV8PyLszP+34jz9fdiZr6+sTYk30LPEG2gHvPLII4/IhQsXytzcXOlwOCRqOY0ayXZjS7yBOyvrY8q6Xx978L31p7U6/XuozLkLGvf/X7b/9QH8b22JU5vuT5zaFLgQg3OeTYmd2vRIsTewstgbmFbi8U26a8TwNdUcjtz0NPsJe2rq73qd7gDwFRBes2aNNBqNErXQmPolqO7zjuQss/z2nJQSt18xuv3Kv93+yl++Fbdw0UlduOjkfSFX0ZSQ33vBM/DKtr9gbO6SUhLylGSFPCU3l3gD6SXewHPJLdvlCwiXL1Dd5Qt0dfkCd5f3ily+wBiXL9Dd5QvU9PoDzXwBZWBVn+PyBTJdvsBoly+gO+32p512+4efNRZ3kSbsLnou7C7qV+IN3FfiDVTqLVW2eQOK1RtQhp7nWq1hZ/7rYWf+R2Fnfvsq2oiwM396+X35bn+HfLe/dfl9QItGjRrJffv2yWPHjpW9gA0GgwTkqVOnZM2aNeW6tV8+H/K6moe8LoGaDNn6maceuyvFaAzs2bNHpqWlSeCWNm3ayF27dsnU1NS8kKfkrpCnpBvQpUOHDjIvL0/u379f7tu3T+7bt08OHDhQAn/qey7dIoW/j29Uv97dwHGDwVD6bBcJIcb26dX9sX79+sknnnhCNmvS6Mv6dbI7tWnTRh45ckRu3bpVHjt2TA4aNEiixiSlwWAIASdfe+012b59e6nVam9K3ptJ1113nZw3b57ctm2bvPzyy6XRaAxbzGav1WK56ULHGvK67jnXcY/HMy3szF8RdubfWvFYiTeQVeINDAWuEEJsMRgM0d27d8tmzZpJ4OJy7bTJSVXdin1MWferecq6X/OmrPt1wn/ym/xv3f622mhJpecD/DWpmvIIBox1booYMo85bOYDSTpoY1RCQDUhEzp9IoJeRguv6nPdfdu3/3hJVo3q0/ILTl8wbdkTCI4FPrJbTJVlx5+BSHGuDXhA6oyr0KfUMlpsa/7ylXFmWegLQcRVMAJ4169LbWiQkXkRYdgEvFA+4F8V3H7FisoSvBioIaC9VOnaR1FjBgfSrH/UEnH7FRswLBKXAphX/UyNsWzU+jaTDfaMU+XqDj3nsJnPG3MpX+L5Aq5ZhxqTaQnsBl4qjetEXAW3A4cM6VllVS0LPIF+wE9ZdkuZ3I0QwgCsR1VmDgFajUZjdKSn59pSU+tPnTqVe0aP3nn85Knhmel2tZ6NKifTDthsrFb7VmAYKqFk05gxY2b6fD4Uv2/DBwvmO2JoCo+fLtnW7crLhzhLStKllKnJzxVSyuPAtVLKP1VkDcpKST8FPG2oXs+IqrcYdPuVDu/Of3vY008+MTISiRgeHjPyyuH33Pt0h05X9IpFo8FoLHa8Tp06l2zfvp3GjRsz/I6hjV54ekKzzr2vu+ng4aPDA4HAgWMFxa/o9fqtNdOsXerXrz+3SZMmDBkyhEAgwL333rs1XHTyZlTlCz1QCMytqnxC2OfWAXca1aTQSlGqjRZxFdyHmt82ypCe5YYyKv6jDpv5JQCr1Xpoy5YtjQcNGsSvv/7aXEpZptbt9CkNUYkCAyrmg01df3A0Kmml4cScpn+puux/K/62xgZA5m0+DtQ7X7vzIM9la/sY6vrsTGBh+booSePTXEp5ZULSSyvYZZCRDG0iVqQlnivUwOmvVQUoPYHg5UC23WKqVOa+PCLFuZmoRcBmSJN9CDDfaLH9R1/wnzU2PrdrREyj7yqF5iezDH0toIYx1fHVX/lsvyoNMz6WkPNR1XQvRqXbClRiwo5IXDbXa7hECDErzWr2AkQ8xf1Rk/eeKi9k6VRLCt9f+sIoRbJ0QktU+ZN93oDSFSi2mU2VSosIIWxAE8AjpTxS/ljEVXA5KnsqRrJOvSE96wymVIEnMBx4P8t+pvxM2Oeuh5pYqgE8wDcpqek2vV7/M5B5Xf/rb3vnvYX7TWFXCqpR2m5w1Pq+9Pzks3bR5Kef/Ne7b781Ggh9u/X7sU3r1T6qJ/6mgLsM9owzEnI9geBQ4OPzaaadC9GiE+2BxvrMuouTE4DhwL40q3mjEMJ24NDh7jVr1spZtXLFzCGDB3W7tlf37W+/8kKrJh27vb5167bU2267jf37998CNL9n+LC2sVjskfmLPjwmpUw8++L0m44eOdLzVO7JTc2bNLx57utv3uB0OrFarbFEIlFG8okU59ZCNTxGYBewpLxSR9jnbgzUM9rSqnwWywtxJhNC3wZ+MKRnzQRw+pRxpc+OEOLn3bt3X1KZsUm2vRswOmzmM5Sup64/qEed5C6ZmNP0Cf5G+Lsbm3tQ2UkVy8JeKAIRfeYimVLjTQXDz6gsriGoxdLmO2x/UGULPIEBwDdZdouzxKdUAzoiZXOdjNXRyniGIJGrkYmvtSTWl86KPYGgGXjMbjGd1wuKFOfWQ5X5eEWa7G2BsNFiu2BBz6pwocbG6VP6Ad2Qcq817osZ0rM+AAh7nfcZUx1z/urn+5VgPaCL1Wx6v3RfUjsrOyHl1VLSRasRB4DLkHKVMRFuoSHxk9GeUWlOTHLW2dVhMy8o3SeEeLNRo0aj4vE4Lpf73yfz8vbZzKaPKp6b1PJaZTKZ2l900UXk5eVRVFTUR0q5tmLbiKsgBVUUszbwEfB66YSiwBMYlWW3vJXMer8U9bmRwAlgm1Gl+5b/XAOgCbiKrtHIeEeNjK8yOGptLvEpuuT5nVCZaBL4DdiSkWoJAGEpZTzsdQqkfEsg81Grzz5YaoQ9gaAV6Gu3nLuk9fkQLTrxUMhgK45rjXZUTTvFEwg2QKVxf223mJYJIR5p1qzZy4WFhbhcLvr168fcuXNp0qQJWZkZv17Vo2ezbdu28ciYkQvueWjc8OS1f9W+ffsee/bsIR6PM2LECO666y46dep0SEp5UWVjiRTndgRuTN6Ptw0Z2UfCPndfYPe5qoNWpvoccRVcj6puMdavS72+MmNz+PDh5tFotKKxEajxticqFvmbuv7gINSqn40m5jT9S2Ku/434O1OfQf3CJ/IfGBu/sdZm0Mw0E3nVZEv7DHjM6VMaAOOdPiUIvBVJyCigzbJbnADVbOYSYHVyo8SnaIGW2kTsWq2MDfMW5Gl2/7xHqVYzO96gYcOzikKVhxDCOPz2QTdc0rJFh6eeee7fJYUFCaCV0WKbX0V7DdCAM6m3uVLKC9JXK4/kD+oO1JflVw6b+VGAiMs3vFyzfWGvs40x1bFbCNE52b41qmTMBuAVKaWfSpAc63V169UbXnj69OOhUCgPVS153mm3Pxd1+WR4NatZBj0ljpjQrdl76OjW+8bcOzagBJ5KJBKJkuJiZ0lJyQkp5WNSyjyHzXzU6VNqO31KjsNmXi+EuLp+/fqjtm3bxhdffMErr7zSnaqVGa7o3bt3+7lz56LX63nuueeYN29eo8oaGtKzQhFXQZ4hPWtwxFXQB/gg4ipQJGKyTmO+OOxz3476MtwNfGC0pVU56/vk/Xcat2rRvL+U0qXobIcldMSnXInqPe0C3qlmMweS98yManjMgFkIEZJS+sNeJ4bUak9HPMXtgC8jnuKHDfaMX+wWk98TCAY9gWCm3WIqqmoM54Lbr9QkpZrRFHZ110R8IxVzps4TCD6L6p09ZLeU1fsxNGvWjPfeew+LxcLhw4e57rrrCIVCU4+fzL196f33s2vXLgw6rSFSePwNkYiv0mg0tr59+/Lmm2+i0WjYs2cPt956Kw0bNz6rNk7Zvc/I/gH4IVKcqwXuiRTn1kNnrE88ulYt23PhMKRnLY+4Cr4AXkuJB5plZTX86vTp019SLocoFov9IoQYK6UszbEpVbN4AHjL6VOuL19KGjVxdgLwNKqSx98Cf2vPBkDmbe6CmsltOl/bCggC/UStzhtLfIpFIJ8yEFf0JJ432tKiAE6fUgMYGUvIDlrBo9VSzy6cVhHJJZ1N9erV6+R2u5n96isbru/fvyCm0R9JCO0pVOLAvmo2s18I8ZBGo5nZqlUrzGYze/fupXnziz9ds3LFvY7qWZUqFycTAW/S6/9IMzp27NihRCLRTEp5lt5YZZ6NUzWOD6JScj8sX7UQIOIqGG5IzyqrlxP2Ou9NsVf7PDU1NW/KlCl06tQJv9/PW2+9xZIlSzYB3eUfmdflx9qufv36O6ZPn079+vU5ffo0M2bM4Kuvvlp02u1fBmytbrcURDzF3VFLRYy/5c6750Yj4VGjRo0q62fBggVYbakrZs97fR1qeYW9CcnNW7dsPnrdNb23L1++nJ9++okGDRowduzYz0pKSipVHhBC1NNoNLsTiUTazJkz+e2335g3b959spI8iIiroBuQZUjPWhz2udOA7khZjUTspqDU1jATeQVYWNnyaXI5rHZOt66vnjzxex9FUUwajYYbB960etbsOe8nJJ9Us5nPiiUJIdqlpKRstlgsZXFIRVEIBoN9Q56SAcZUx0iAiKdYi1rW4aTBnjEtKX90h91iqrTGUVVw+xUNap0XI7DIEixuFtOmjI0YbS7gGbvF5K4wvup6vX5aVlaNG/Py8kPxePxX4D1guclk8s6bN48777zzINA8XHTyYeKxb1dv3DR21utvdty9e4/RFwiE4vH4Po1GM+eU0ytQK7GuzrJbqlTpLkXY43xMRJVU1GXYLwwZ2d9Vcj1neTbl4XO7HnnphX/fe+REXqPHH3+c1NRUAoEAP/30E/+6//59Lre7VcVznD5lMNDAYTOfIaA6df3Ba1ArgzabmNP0SMXz/v+Iv7tng6jVeZPM2zwWNUvXfIGnKWFd+uuKqYF0AMlZ5eMlvsDtCcRcfO6njba0AofNfLrAE1gK/KQToneylPEXwNeOqut4PNyrV69Oq1at4l//+hdD7xi+NOzMX2iMR65KIOolhPbaiND3LvEpis1mm7Jy5UoKCwvx+Xz07NmTG2+8cWC1GjU/lVKetQyURKu1a9dy9OhRolH1fXXLLbc0jkQiOlSZmyrh9Cl61NiUFZjtsJlPXOD9Khg+bEjDL9d/xfbt25k8eTI1atRg7dq1/Pbbb112797dmaS0TwX4/H4/kyZN4siRI7Rq1Yo1a9bQsGHDoT9u/2FF35weBRFP8cOAz2DPeARg+bLP99x3330cO3aMuXNVG1BcXIzb7X599rzXNwOdgas1As0bc+c8O2LECLZs2UJubi4NGjTA6XRWmVEupfxdCOFAjc09eK4LljAMXcq6pAfjAdYZU9MDwNsut3+UWUY8wKKwq4CoMGwIa1MilFPTLjz+W6OjRw7f+P3331OtWjXWrVvHgw8+mHhtztz96dYqSQutBw8enDJ58mSOHVMFAd555x0WLlzYpnyjpLDnPRFPcd+Ip/gLEwwN6iy/eALBlnaLaV9lHVeE2680A64HFqdZzb97AsErFXPmrcaQq8isFL2lz6zrrnhOyOd2o5If2v1/7L13dFPXtj08t3qxLFuu2MIUUwym19BLMKFDCMSYEkJCqCFA6AQSAqGX0HvoNaEEAqEHCJ3QDMQJMabZxrKtcqSjI+nIkvb3x5EcAzaQe3/vu3kvd42xh4elfYr2KWvvteaaUx6kLbx3CCHE6XQefv/996sCGEwp9bmNWcuoRPZN+46drnZL6ZdSYMjQAmgLAYFXBk7DzyZl9AkAHQxWLgzAD4HIQbEmEllk4fo5AOA2ZnVzG7PmQCiG/loWrn/hXIuzArH8UGTpePfaDZtn7PnuO7W7oMAC4Z1RMPqTjy28zSyTB+uef4Z2AdhqZh01dRpV0bD2UQhgjqkQVHH/z9s/3tkAAIlpuoo+PZ8PYZYlQ8nj4oHwQh6oiEzc6WAd75lZRwWdRnUfAMI06u0mlrvpA1noZa0LVT74YNEAACAASURBVBrtDQDNo7Xq9UDhiqADgAVm1vErgJ1FySUJIZXVavW8yZMnY9euP1MOstBoF/w8Wm6LQSShnvrw2HvFlorK69ixYxkAF5VKZVhycnLl4cOHY+Wq1WP8eaE0CGiu7LDnEFi9e/eG1WoN/DuWUlqiozGzDhGAcQDCAMzRaVQlP9TF2/7lixcNVesiZ+zcudMMYIfVaj149erVhpUqVcKtW7f0xW1EKf2DENLYaDTOA+C9detWC4fDAYVCgc/Hf3oz6czJlQA2yEMibkBIrFeHgAIEpRQqlQrp6elwOp3fATgVEqRyAzgC4AghpFtoaGj8yJEjMX36dDRp0iQgRd1fqVROdDqdL2gJ+elWygAoF6gkD5g//1IHQAK87hYg4ksAvlMEh8YBaCGRSAc2bd7cvG3XtyaJTN7WJtL8ASCHUkgltKC7xOMKJ6A8KL0jhi9YptZed7vdbN26dTWtWrVCSkoKYmL1MW6v7608QQfnhclK9x7v1geArVu3YsqUKQCAiMjIP9Zt2sLxVFzOauXeLdKdAEpKQHcoUHDM53GfoCJpaJ6VOxMY/iJ9nRDYmO0A3BIR2gPI8vqwQCYRhVg552IAN7Vq5ScFjnwxgK8K8p9MkUbEFd5zvN0qBTAfwNdFHY3/WlEAnZ75TB5UA16PDW7ODIRCGh1vhZADCfC2NQ9zGt4UTpTcNSsiWxqsnBrAgWit+qVKmLJw/fcAvncbs5QAPnUbs4IB3IY89GWbAcDD3v3ek348bEio22JIAjAaAmItm7eZ1QBW8zbzQHmwrjBC4A+njQKw3cw6ugTAQ58nVabTT9ybD2DP9BP3FgJ4/HlS5Zee9/92+6+z8RuJabqHPj1/wwfMEwkhGZcPEqVXHiUW87l2ETwKp0h7RemzfkhimqYDgE6j2mJmHePNrGNJ4CYK06jTTKxjkBtY6rTanwJkc+AYfsjtDwB+MLOOagCmmFmHA8CmsGB1DoBds2fPxty5c9G5c+diz1MWGu1zG7MqAfj29z/uT/l67szqgz/oX/7NTt2n6XQ6mM1m3Lh+7SqE5HRVCEzOepPgMGiwVhsJACtXroTFYsHWrVtx5cqVJoSQr+lzMVUz6yAiIkjhAlis06j+JV11ebCO8jYz77Ka5ii0YU4AEytXrtywQYMGGDJkCCDM8Eqygvj4+KZLlixBxYoVMXfuXOTl5SHzj1/HAPhUpg13AVhctWrVkY0bN8a9e/fAcRwqVKiAKVOmoGHDhhg4cGDPEydOpAGYVmS/3zRq1Aipqano2rUrfD4fFi5ciE6dOiHfaDp4/NRPpznOcatV69b7QoJUPCFESQhJK1WqVNmaNWvi8uXLUCqVeLN1q8ouG9PHB6jdVJRXAJFURn013SK5ZMyIER9HRETUSEpKQkhICC5fvowGtWs+Onbm3PHIiIjD8L/AC4jUHuRjdWL4OhOgKohIum7F4q7R0dGaxMREnD17FikpKXianfVUJhYdK0kWet+eb9UDBgwY0qpVKyxduhQ3btzAtm3bYj56/72T/aym6sHB2pJUT7e7rcYZPp+3gJcoTVq1spDl289woQQQJCZoRggaen04SQGICbZ4vD65l2IvAF+elUuGLAxin+ephBas4a3cbgC5AM0NFmEcIVgmD9I+LOEcCo1nmboAukIs+Zh48InbmBUpC9cXhsr8vG0nAZwsMGQQAlozzJVblQJSl1g1OZfx3qNE/F20Vm337y8UAtffMyYL1zsBzAQEXSdZAfuh22gJB7BUFq5/IXGv06gKzAIoA7LQ6BNui+EsgI1ui+GiPDR6BW8zTwawlLeZR8iDdbTIdkYz61gG4f4rmoN1QNAt2gtBuG8R/g/bf51NEStQlFcBEItcD6IBNPMo42ZBrEj0iBU3CZ+bbFeUP2TxISP22c0WQkj2FcZkwzQqzmDlhkhAdypEdLCJdUwIew5vr9Oo7gL4zMw6wgG8/+FHg9vd++3XWlqtFseOHfN27tw5wJP5DiFkE6XU7degGQrgnCxcf4dSCkLIlQVLV34UGxtbsU+fPmjatCm+nvPVQ43HRmSh0b9AqE8pNJvV2mfixImhjx8/Rnx8PPbu3YsuXbp0b9u+4wYT60jzd8uD4KiixAT3vRSfv0y+9zVt89btO78E8LFerw/es2cP+vbtC4vFspJS+rIX0MSsrCwMGzYMNWrUwOLFi7Fnzx7IQyLWFAE1VOzQoQM8Hg+io6Px448/4tixY8jJyXnYuHHjcuvXr0fVqlX741lno/jmm2+wdq0gvePxeHDmzBmwLIsrly/Vf69P7/o8z2PUmLFrRowcxXy3/4Bu8vixZXfs2AGfz4eLFy9iw4YNePzkyQdDRo1tPn/xkquEwKz0Oit5RJKxIhG5tnXzxrNbtmzBo0ePYDAYsHXrVixYsKDs0IED4s6dOX0RANzmpzIIkN2nMl1MAOkUK5VKs06cOIGaNWsiMjLydceYv3XrFubOnQuHw4ERI0agcePGQYMGDVqK54g2nzeZNnyq22psJ/Hy8x02voUqOMQGAJFaNWXsDikEmYKbIUGq8VbO2QNCOHKiVq0sdgLizn/yvsRX4OCkwQVqkfcLFxVlun2iurBydYt0C4BUrBB0ih5pRQXVICDJpso1IdTN29dBWEEUK/EsjY4PgCxuAQAxZJRWeJ3t3CLZ12y+1esRSbeoZFIPgJfmS2Xh+msOu+OwxGVeAmC0v4zgqCxcX7x2EwBZaLQbQB+3xdDXbTHsJcB7VCxbAeFd8AywR6dRHfJr3zTWaVSByVUIhGhBGP4PKXKWaP/pqtK/U+NN2dV5U3bzwP8uq6mjy2o67rKaYo02TpTL2Jdkme1Nnt/OZONiTDZuUNHPchj7uzmMXcvarEkWG7vdaOP0Lzs2gD+uXr1KJ0yYQD/44AP6008/0c2bN9PExEQKoF9sTKloQ/qdCXx+Zrki2xCxWDyndu3a9Ndff6UVK1akAD7hzTmqnIzfks+f+PFjc1bG85Xqb0BQFqwH4LspU6YEqEu+opTCaOOSjTZutdHG9TPauE42zrHJaOPGltBGGW1cH6ONa2O0cTWMNi7KaOPEvDnnhWp+SimqJCRcj4mJoampqbRVq1ZUpVJRCDUZOghaM+sh1CQFzjUMwOO5c+fSKVOm0JCQEPr999/Tjh070goVK26BgCZcCCE0+T0EiWdTjRo16KxZsyiAk8HBwdRsNlOpVOq0sJy2yL5zc3JyivLQ0VGjRlGxWOytV7/Bk2+++YYOHjyYjhj16RWjld2Um5f3Y5UqVW0ikYgOHTqUfv311/S9996jW7dupSKRyAfgoEwmuzh80IffFznGLEKICUKOZ23btm3p8ePHqVKpNAE4GxUZcbe0PjadEHIaQPvANQVw7IsvvqADBgygFouFSqVSum3bNvpmq5aZDkv+N7w5RwsBiSd+7toGQyhk7QWgV1BQELXZbFQkErntptwVLqtJ+apngLNaSnNWyy2eyW9EKYWfbmioheUUjN3xBmN3LGHsjqRX7ced95i48x7PctksPVwsk/Kyvn4GiDomxjaGsVr35TJsr1zGnuxvb9tMuRM4Y06jv/o8u3IytPbczImcyXDKnpe1wZXzoNrL+j/PjcbnZ3bj8zPn8fmZw/j8TJH/WR9b7LvDnBPCm3O+5805PVxWU2OX1fQCS4DJxgWbbNxxk41TBz778vjvs788/jv98vjvi//T77//6fbflc2zVhPAviL/5wOYIQ/WZcsBGG3cKQghtgtFN9JpVE/NrOO2mXV01GlUhw1WLhgAjdaqrQBOuFjmPg/xNBPLHQ7TqPcXd+BQnU66cuVKBAcHIygoCFKpFHK5HH7U2GYX7yZxiXUZt9u9zv9iAYAJiYmJE3bs2IF33nkH6enpANBUriv1q1gsnqfT6eI8noILhozf1gJgv5w17wwhZAullINQqV+3bNmyuHv3Lpo1bxFjZh2LCfC9TqMaEjiA0+WK1qiUxdbZ+Os8IgBEQUAG1QIQ7ibSBizr0OHPmSu9dfNGsCE3t86lS5ewa9cuuFwu1KxZEw8fPtwQrNXe1MfG1o6Pj8f5CxdKm1jHagB4q337jmajMW7Pnj3IyclB06ZNUbduXQwbNgxSqbTjqFGjdJcvX0Zi9Zq+q1cuB2mC1I2fPHkCvV6PzZs3Iz4+/s2JEyfixx9/RKmYmKc+SrcbbZyNUnjlcrkOAK5fvw6WZbFq1SosW7YMOp1u8rVfro6Inz8PY8eOxYolX38bRDxXoJBe+u23NLVIJHoKP1T+u+++w44dOzB48GDy5ptvdqaUomfPno+XrxGGi1I6mRDyGYRZ67569erh/Pnz0Ol0uu3btzcPjOO1a9cqjB07loeQT+pdo0aNttWrV8fChQuxaNGfkZWfz19Ai6T2iiYN6x2UyWTNpBKJZ/igD99dsfab7/1dUiBAy38EIA0PD4fL5QKllBOJRLn+a/SguGsZMFVwSKbV7pgm8nqHO6yWzyCWTySEPIJQ9X5Dq1a+FBgRMGlEHOWtxlPwecbIteHFiY4VWqRWzfAsQyFMLnpog4MLowB5Vk7uFKnSFD7ntDzGHgdSiNgPPARPAaRFFgMOkEeXt8qBOTzLGBxEdspDxIML8rP1El/BH2Lq/RnAJWl0fIlsEkVyO5UBzHIbszxEGvy8yqzQV2Aa6Oa2GD4lXndHKpLu523mwfJg3ZpAH51GZTOzjtkQxvIT/8eTIaA6DwCAd2HvOP//PIA08ZgdxR7vf6P919k8ayqZLqZEtTRCyCkxoX2K+06nUV02s453zKyjBoRq9EKdeoUm5CFhmfEFoKNNLFcZIKvDNKpCBIyVc8auXrNuV3LPdwJJ6Z6VKlVqkpqaCrPFkhkZGRF55sxZeUpKSkhqampZCHozkEqlo/ft2weO4zBjxgwAwK1bt3rOmDGjamxsbNyVK1dQqlSpSrLQ6C1ui0FTJaHSgPj4+Irr1q1Dampqrfj4eJQqVQqffvopZsyac0WnURU+GK9jYULtQI6/FZrbYhsg8xRsKgrrbdOiWfWyZct+/vPPPyMmJgYDBgilODt37sSZM2dik999FzzPg7EwjwDcBkCjwkK7m41GjBgxAlFRUXj8+DE6d+4Mg8FgkUik1nfeeUd3+vRp/PZb2i+PHj4o07ZtW1gsFpQqVQqDBw8GIQRXrlzB4sWLMX7ylPUeH36SilCBiEgGgDdat25d4d69e0hISMAPP/yAx48fI7lXyltfTJ0iHjZsGCwWy+aUfv0LobCUUhshZDL8ip9Op3MdgHoWi6X25s2bsWLFCigUCjVjd0hDggqhyQTA+jZt2nTp1asXmjRpgsjISMjlcnTqJOTE/ajAXwgh4RKJZNuSJUvQr1+/wGoFBQUF4DgOq1ev1s+fP7/34hWrs3fu3EmOHj0qlUql/d0WQ3cAKK2PrTJy1OhyhJDhPM+jR48emDp1KiilB0Qi0U0Iq9mXOhs/nFnjEisdcq/zF7nXtcctViwBIZ8WqZd5pfF2awTE0q7Ead1ckP+koTQirkQpZp5lakEoSJ4i14Q8E26O1Kp5APfcRmaJwsdHysL1BwPf5Vk5EYQXc708K6crspkbQpV+eqRW7QEgCw0NzQQwxWDlRKC0ldzrbC7zurpTQ8YDIrBRnEBQqWLPTxauvwdgotuYJZd7nPt5o20+Ab6TheuvvtA3NHqR22IoT3wFyykRXedt5mR5sK6wYFanUZ32h9Pa6DSqk58nVabehb1HA5jsvY1vIUxk3BDuG4V3Ye/rAD4Tj9lx+iXD/b/D/tNLq79T403Zz9C+u6ymBi6rqVnRzwyMfe/L9mG02j/NYewfFvedy2ZROm2WkUabfZzRxjWnlIKxO4ifZLOQ+hzAsMjISKrVaum0iWO3qNVqevXqVapQKPg/Hj4eY7JxES67TanX63+Lj4+nlSpVKmx6vZ4CyOzcuTOdO3cuBbCryH4VhJCHFSpUoElJSbRWrVoB8sMSqc7/KhEnpRS8Oacnb855htEZwsMzMTwsbJdCochv164dLVWqFIUADb0yY8YMqlarKYDSPJMfxjP5y3If3+8mEonSdDodlclkNCwsjC5evJh27tyZisViOn/+fBoUFJR5/PS5DvO/XjLhzaS22+LKlPklJiaGNmnShELIBawH0A9AYQjNwnLNtu/c9W3lSpW65GY+6pFQufKFOXPm0HHjxtHQUN0vVRITd0HIjb0QdgIwLBBGA3AZQmL3TGRkJH3y5AmVSqUGC8uNs7DcpKd5xiYA1rVo0YLevn2bxsbG0jZt39oWHx9Pr1+/Tlu1akXLly9PITiASgDe6dKlC7179y5dsmQJXbVqFeV5ni5atIiKxWJav359qtFoKAB68eJFGh4eTgEk+Mdc3OGtpN1RUVG0Y8eOtGvXrrRMmTIUAoox1GU16V1W04yXXTcLyyX6z70mY3dsY+yOxS4mvyzP5J/gmfyqr3v9XSwjc7HMShfLBPvDaTPceY9VJTwTNV02y2yXzfJKBmQ+P/MLPj9T/qp+uYxdlsvYa+Qy9h65jD3ZZmXW+kNyrXIZe1igXw5jL53D2Pvlm0zDXTkPhtvMxr3unPv93Dn3o0rat8nG9TdZ7RF8fmYff4jt/eJY1f0ErHNdZsNRl9XU9rl9KP3htBDPgpRungUprGdBitOzIIWW0OyeBSlHPAtSgv6n34H/k+0/fgJ/p/Y6zibHYt9ttHElxr5zGHtPo9U+zWR7UW+FUgqXzSJ22SwDLTa2h9HGDbew3EDG7nghljxx9CeNr505Pi0yIrx0cHAwrVSpEgXwscnGxZls3AQbyx55mJndPTg4uAoE9c5AiwfwQcWKFQMMwFWK7vfmnTTt/oOHNk36bOqSWjWqt3yUdqsvb855jzfnxBd3vv+is6nCm3OalvR9fPnyaUeOHKGtWrWiAFpDUG88D2DGo9/vfMIz+TN5Jl9CKcWmbTunKFWqPnK5XB8eHr5u8ODBdOXKlTQ0NPRRqZiYu1t37Nojl8vT/PmfKwAyevXqRY8cOUIB/KpWq2nTpk0pgDP+8S979cqVjSqVyiMSiahYLD4nlUrpzz//TLt3704rVqxIy5QpE2DznfjMwyI4FjbgbMRiMa1YsSKtUqUKDTgbAAZKKSwsJ6pZq/ampk2b0rt379K4uDgKgCpVKnOZMmXo999/T5ctW0Zv374dcFypABpFRETQFi1a0BYtWtB27dpRlmVp8+bNKYDMXr1791y0eGkbkUhkadGiBQWw44UHGigLoEuXju0nnji4d4/TmL2JN+dsdJlzersY4+pi+ovVavWg6jVqXAkLC7tfsVKlx4eOHFvE2B0Sxu7oz9gdap7JF/NM/maeye/n36YegO0QgCQOCGG7BpRSuFiGuFhmlotlKgSO4c57HO7OezypmGehpstmmfM6joZSCj4/U8/nZw79q/ejy2YZRClFLmOPymXsSUXyQcm5jL27gbHXyGHsXYw2+458s7kln3O/hzvn/jB3zv1B7pz7Vdw59wufZZON62iycVWKnFNtv9OZxudnvuBQeXNOW5c553eXJf8ZBnOTjZtislhd3PdLXC9xMkWb07MgJd2zIOW1mcv/bu0fzyBQ1Nzmpx/JdDEBmVbwNnMDAHJ5sO5c4LNsCzdHISEXwjSqH57f3mDlJABSZCJyEMBHOo2qWDlXf01GPx5igwfiIRSYGqZRFZI+uo1Z1QA0B7BKFq6nhJBqEPIiP1FKKc+xrSmF0UHFYQDeggCh3RWo9/HTvLQAYKKU3gb+ZK2FoMA5rSgLs18CuQkEWWkTgOOy0OgC4K8Tcfr3JwPwriw0elvRz/0FkRtEIlHrw4cPa+bNm4fTp0+nAVgul8s/T0hIiL53794Tp9NZJs/KSTi7/aPa1RJmuZxOWUxs7N2srKzyS5csCc/OzsZXX301k1I6xe5wKjRqlfPq1atwuVyFea6+ffsiLS1tRe3atYdv2LABLVu2fJqb+Wi8l4jFX0yfoTh65Mia/fv3IzMzE2XLlsXRo0cxefJk9OzZE+Hh4QgODsakSZMWU0pH+89dJpFI+Js3b0Kr1UImkyE/Px/du3fHgwcPEBYWhmvXriEuLs5IKY0AgBCt9v7RY8fi9Xo9GEaImqalpSE5OZkXiUTyAQMGYNu2bUhPT0erVq2QkZFR1T9UUQCUarX6x4yMDERHRwNAGGN3RAKQ+ZmvawH4gVL6Slljt8UgBtCNEsksQj2XIBCO7gNwZOSUGcNOHDu2bNKkSahWrRqWLl2KHTt2jKKULrFyThmA97RqZUDpdAIAtTwkYtC8efOi2rdvD5FIhCtXrmDEiBHgOC7RxTJNAWTIg7TPEF4W5D/pCMAhjYg7DQA8y9SAgHCb/Hzo7KW/xZg1CsB2Wbj+tal1eJYZJNeErC3uuzwrJ4OQv0wQEXT2UtwEEEmBDEK9aaGufAURJnEAcJtVRXlARDKdRvUMA4GfbX0cBJj4Klm4vjBc6bYYgihwEUR0RB4SOQEALBbGRCUynYizQLP9lYrWhbsC8CuAhuIxO17JRv53s//mbPzmNj8NBvA6GvMcpbSk6q8OAA7rNCqrmXXsMrOOYTqN6gUqE7kmhLJ2bruY+g7I4P6Ig6yhiXXUBbBNw5urAagnC9cXbkcpvQvgLgDwHFsFgFQRpLnt5yQ5bWYdIQCSzaxjMIC7Jhu3R6dRFcZ4zayjCwTNnKU6jeoFCKg/t3IewHm3xRAOoKf/BXUKyr/GJeXfn9vvcJ63lq1ateo6c+ZMVKlSBcuXL8fvv/9etW/fPgvFYony8uXLUKlU+jwr1xuALDs7K0xESMjt27eRmpraQK/Xw+PxYMKECYAQfkOQSumqXqPG0jfeeOPjkJAQkdvtht1uN7dp3Wp7+XJlQ/Wl47B06VJYrdZv3GL5HgB9F8yfvwVAl4SEhI7h4eEwmUwICwtDcnIyrl+/jgkTJmDs2LGYOHlKUUmHAo/Hc6h69eqdnv9RItEzqFXSqEG9bkvnz67lLnB7GzVq5MNzsFalUukqX768XK1Wg+d5Z05OjlKn0yEjI0NLKb0M4DdCCOE47nh0dHQLCCsYs5VzRgIApTQNQsHu614PL4C9vM3cThYc/ZHbYpD6IBpYIJJe7tyxQ9SPhw5hz5498Hq9AZi1CAC0aqXbyjkvWjlnS61aeUamDZ/rthq7l4qOUp05cwZTpkyBx+PB+vXrMW7cOHz37bdfADj9vKMBAGlE3OGC/CefF+Q/ue5TBJeHAGaY9Fccjd/W4iVQ6L9qkVq1G0KO8DZjd5QOD1ItyrNyYQRoQIm4rkUZXRGAj1J6PcSV51DylvZekbxMgSEnFMBJaXQ8BwCycD0L4HO3MUsEYITbmBUHwSnekIVG2wHU4C25e3lL7knxlonJ8rK1Ve6G70B++ZVk7kVNBsHxTYKg4vm/yv7rbP600gCyXqPfAx+F1MQ6SocVKXI0CMnKkABlhk6jyjKzjp/MrKO/TqPa/PxOfEQ0yAcyUkK9nYLg3m+HTEmod46XSMzKsOg5xR2Y51gdgPpytWZL0c91AthgDQCYWUd1CCSgUggqhs0BnNBpVCNeZxBkodFGADvcFoMIwFvE7WjidjIHZaHFc629xIpbMt89f/68r23btoUvX2FlTTz16tXD6tWrQSn9IVKr3pFn5T7Iz8ubbbFYGtapU6dTuXLlYDKZYDAYciilg/0OGABwOzV1pNXGPvr9bqpbrVDwFStWYAD8rAgObavT6frabDY3hIK5FAA7qVCf04kQIs3NzW0bERFxaNeuXWjbti1at26N4cOHIy8v7+q4iZPMZtYRqdOo8qhwop0BgBBy/sSJE010Oh3mzZuHjIwMVK5cGUqlEh06dAhLT0/f36Bl26vt27evVLlyZSxevPgbSulAAHi7R88d+YaclKCgIJw5cwbjx49XhoaG4s6dO7RBg4a/FxkXCmHV+v/UGLuDQBrcGUAbAOdq1Ws4z8owLTPS/5hisViqAcCIIR/1clsMBQA2a0Oj06ycs5qVc4Zp1UqTTBu+r2GD+sE1q1ebULFcmTZLVqwaeuXKlc/q1KmD0NCQBAiw65JsMSWiRQCy8a85GsjC9Q63MSvDbcyqIQvXF1vc+u9apFZtgp9pAgDyrJwEhLS2KqPeA6AQAXE8kaqC3EyfAkOGBEJk4bg0Ot4gC9f7ACzx18S97zZm9QFwRBauPykPjXqHZ/LG+Fq/f1p+fA3k9y+XdAovMxWA8d6FvVeIx+ww/T/5wf8/2T/a2RBClBDgoNi0elm923fT7i9avorQEmKLhJDq5eMraFonvdXA7XLW27JpwzkApyilRggP78mi/XUa1e9m1qE2s44eOo2qEJ1m5ZzVADi1QaoMnnU/BDAoqMD2E3yeXLssNM/BOnoD2FW0EJTnWAmEB3n1y36TTqO6Y2Yd9yDIznaCAN+ON7OOUjqN6rXpzGWh0T4AR5xOpx5edwP/iucHWWi0yT8Wcgj1Oj0hULhkAlgKYRb+wvjlWbm4kz9faLR108alPq9XkVCxXN0Cl4s9d+HizFOnz4jT0tKOX79+HQA+z7NyCQDS3+7U3ksp7UwI0d69ezcOAAMgm/oJQ3mWKQehbkgkJ7ifWLNODRAyS64SUFOU0m2EkFMArDbOUQ3AXY1KWRRt6AGwcunSpZg4cSJ8Pp956tSpuqFDhyIvLy+kZmLCttRff/8EAs1KUUvr1KlTE5VSaWOs1uD33nsP8fHxmDZtGvR6PWw2G9LT0+s1bNgQZrMZKILWU6pUbofDgV69esHr9eLhw4do1KgRypQtu2L33n2fMHaHDcDukKDXv1ZFjRASDYFDLA7C5OkgpdQMAFSQFzgJIIMQMlyrVhpCNWoZAN5qsz2GgKLE8jXrb0+bPOFOUJB6lttiUCsA4hHLR/AW61ICHNh/4IdNbqtxz7d79/8cGhpae9SoUejbty9+++23OfIgQjCXbQAAIABJREFUbYlxeZ8iuAU8vJu4bFdlEXF/2dEUsW8BTNcEBWXZOa5olMFJKX2pwKBfi6gKBNHEdErpK8fZj2g7DuB4UJBG99nnny+6c+du22YtWiq693w3W0S9GTIvP1qW+4SR0AITgHME+F0aHb8RKORiWwjgsmTz+LUQns1/R7RRDGAEni1S/tvbPzZnQwiRisXijLi4uNKBz3iex9OnTwtnoUVzNoSQIKVSmd+1a9fCm8RkMuHEiRM/5DD2rgD6R2vVm4o7lpl1NAeg1mlUR/xx8GkAPgtASXlTtg5EtAFiWX+5NsxqYh1xEBzLwTCN6ncA4Dn2QwDfytWal4b6/KG0yhDyMjb/Z3oISfhSEDRT9uo0qhe4v4qzQM7Gr0bZEcIL66BcV2pmkyZNhk2YMAHlypXDgwcPMGXKFNy5c2c8pXS+y5L7kU0U9BBC/gEAnpQK005u0bx5u5CQP0Nzx48f5zmOC4FAQllAKX2cZ+UGRvr55IoazzIiCMqUlSCsnB4BuCLXhHgBwO5wVgVQOUilfKaWiXU41QB6aFTKZ1aYhJBQrVZrzs7Oht/RoVatWsjIyMCAAQOQmpo6qWzZctp+7w9wTP9i6owi2zXs0qFdjV2b10tVEfrypUuXHpOXl4fExESo1WqkpaXBZDKZx44dq1u+fDlcLlc0pTQXAB7m5A8uHxPJA5hSunTpeJnsz2jjw4cPH/x84VLdxGrVAtfqAoDTIUGqgPZMAgBZSXQ1hJB2Go3mSPv27REfH4+MjAzs37/f07J16+7f7tk3ROZzV3WLZNVCggQ5Av82g6pVq7aGUop+/frBYDBg27ZtMBqNb1NKA/U7sNntFUQ+z/syrysSgHT77j2lPhk36a0jR45g9erV2Lt37xGXy9WxpIkazzJ9ASjkmpD1BflPJgJYL42IMxbX93Vs+mcTUhYsW7U1IiIiwLQBq9UKk8n0AaX0GfbqQM6GEDJMoVCsSExMhEKhwK+//gqGYb4BMIRS6nkV6zMhJEWj0eyoU6cOypcvj/379/savNGowuZd3yUCCCdAGUKpUerjo8U+T7jM68wQU+8VABel0fFetzGrBbJ+6yc+tbEnhALcf8f+EI/ZUfnV3f4+9k9e2YSEhoaWvnXrFs6cOQMASE9Px9ixY6uU0D8oODhY8fXXX2P58uUAAIVCAQgzlCYQch7Fmk6j+tnMOtqbWUdzsYjUBbAi4GjcxiwlAYZSQlIgEn/As8zGME3IExPrmA+gq4l1NFcTbz4hOPMyR2NmHS0AdAew+fl6GZ1GlQVgsb9fGQApZtYRDeAxgH2v43hkodEeAAfcFoMUQOfYmJiWEokk4GDQtWtX7N+/H1UTE6fmmG3ZKpGsJoCDkVr1SQBwW42lS8fG1J0/fz7OnTsHlhV+yvHjx6VXzp2p06Bpi4sAkGflWgAoTL7yLCOHAHaIAOADcEOuCdle3DkGqZRpdoezod3hjAlSPSOhnQJgSzGb2FiWvRsbG1st8MHx48cxceJE3L17FyKRaHaPHu9gzswZzqHDP95ZKjz0PiFEIZPJzv6WniFXRegRHByMSpUqYejQoShdujQ4jkPbtm0xZswY3YIFC34H8GXA0QCAUqXyUUo3EULGHD58GNnZ2eB5oW6vV69e5Zs2ashTStf7BeIaA/iMsTuMAHaTPwsaS7KG/fv3R1xcHFJTU/H2228jOTlZMmbs2G0Aqorhm1bU0fgtvH79+rh790+yZ4/HAwDlCCHvAfgAgiDbEMbuuOoUy2+EBKni1Wr1mcOHD2Pjxo3Yvn07lsyfk/B25/ab3RaDBwIP2QEAl2Wh0W6eZT4GkCvXhAQAI0sBTCzIf/KFNCLuX5rtfjFrHv/222+LFy1ahNu3Bd974MABbNiwobgXcOAY7efOnYuQkBDwPI+kpCQMGjTowxMnTtyF//l4hTUaOnQoatWqhTZt2uDixYui40ePyKO16kMAYLByckpIY16sMEMMhVOiLiPxFSRJaEF/GA1OkZfkKNzOFj6ZIljkflE+6sNdl3Hr6Z8UbgbWBbfHh/wZxSpelPEu7B0jHrPjlVLxfxv7T8Ph/lMNQER4eDhNTU0tSlligJ82hNJnoc8AoqOioujNmzcL+yuUSgZA1RzG/v7rHNNk48abbVwhBJTPz5Ty+ZmT+fzMIEopXDaL1GWzfOyyWRSBPnbW1tpssy8z2riGJewzzGTjFptsXJ+/OgYmG1fWZOM+Ndm4uSYbN8xk46Kf71MS9DlIre4mk8lYsVhcsHPnTiqVSqnT6aRisZgCkAYoa3gmX8cz+XN5Jn88gOvXrl0L1NcEWn+X1TSSUopcxi7OZewDXDaLzmWzdHfZLH1cNksPl83y2nBPlnOIWc4xkeUchFIKG+dobuMc1V9yH4ghcFSFALi8du1aWqVKFQqgW2hoKDUYDJQQwuVbbONNNo4ACFIqlfTs2bM0LS2Npqam0l69elEIIbmrADI7dOgQgF6feP54OYz9I/9x79y+fZuGhYUVHYtxxZ2jheUiLCz3sYXlFltYrkTqFwgw8qflypc/MmLkqJMSieSZa+KymtYXs81XGo2GJicn0wMHDtAtW7bQ5ORkKpVKbQAytm3bRsuVK0cBVPXXhA0B8MexY8fokSNHaHJyMk1OTqbNmjWjSW+2/p1n8glvzongzTlDXOactS4m/7rLkneUN+ds4M05K3hzztu8OUftznvc0J33uMT6rtd4fru//fbbdPny5UXH7xKAys/3ddksgTHvAwFocxGAISUlhe7atYsC2OMf5zGvOGYzAFckEgmfmppKK1euXFjnVFzLYezqHMaelMPYU3IY+8d2w5M/3Dn3qfv01ldCndMndaaxWiXdP6BZSX1Yz4KU13rv/F3aP3llAwCIiYnBli1bkJ2djeXLl0dlZ2cnwJ8YLM4qVqyIO3fuIC8vD9OnT9em38+YCYF+4qVm5ZxKsYgEe3003cw6EoJ48x8QUDVrZOF6OwDINSEFPMusBzCQZ5m1EIkjJARh6iD1CBPraGViHSMhqDKyQGHIrAyAsc8pAb6W6TSqR/AzzfrVRXv7Bd8eQVjx5D6/TZ6VKwegYUZ2rgjA+2Wiw8fNmjWr4fjx47Fz5054vd6fKaUFbotB4bYaZ0Oow5gi04YXQJDMxpEjR2C327Ft2zasWbNm4rUbN1Pq1ak9UAZJVRnx/QagIYCjck1IiWwOJVmQSum1O5zfAujFOpxHAOg1KuULQlkBo4JoGwMAhJCFgwYNGg2BtFLWsGFDzJw5E40aN7ksFosPUWAAb3q6c/qc+ffe7taVmi1MPIS8yBkATyIjI7+IiopCz549cerUKUAglyzJZACwbNkyWCwWbNu2DZcuXWpGCFlInxOxCwlS5QNYztgdVQC0ZOyOKf7jfld0peKHRm+nlDLv9e39RqNGjXDv3j34fL5sCM6wOBNLpVJUqFABV68KBfEVKlQAIUQjFos1b7zxBvLy8gAgT6tWUivn3KtSqWYcP34cCoUCFSpUCIwjzv189gGAwxBJulGRZB2E3MRwuSbkMgC4LQYNBMTmfCqRKeD1JLrNOd1BiBPCqjUfwqr2CgBLccJyz1vz5s2xZcsW3L59GytXrnzD4XBEArhXXF9K6XZCSPno6OjpUVFR6NatG06dOoWYmBgTzzKNJBAn8CzzLgQxuKLvRi8Aj8tm8QKYX6Fq9bWB6zfzy2k1eJaRQbjPHRDgyQ4AzmhtCAfgRGAnrO3pITz45QHu/PTSJaqJ49Fx/Rl81qYaOicWq74BCBDrmFeNz9/J/snOhnc6nXTIkCHkwYMHaNGiBS5cuIBq1aotIoRsp5Q+j75irVYrn5CQIM/KykLjxo2xd+9e1KxZs1uZSN3oQCjkJTYSwBKdRpVvtnHDPETcU0K9G2Xh+mcQJXJNiItnmQ0AhoFSFwhZAwBhGtVpE+u4AmCAiXU4iVBY90LI7F81nUb1EM86nj5m1hElESGWtXJG/Cks9wjAnkit2uMHWKyrXbs23nrrLbRr1w6rlyw86mbyZwOkCoBkmTa86MDk9unTp/r9+/cRFxeHvXv3Ijc3N2HxshUjtmxc73CDXAwJDilJ9O21TaNW2b+Y9mXlqtUSG968fmPc7FmvRsn6a5MuA+hKKc0nhFQ9evTog6NHj3qUSmUKIWhFvAXxPuD85xPHtpk5/2sPnlV3ndS1a1d07twZ5cqVCwi3FXtTEEIiATinTJmCJ0+eoFy5cvj222/xzjvvdL569erbECjni9uOArigVStvM3ZHaQCDGbtDBkBKCNFQSk+vW7NaNXfO7EaegoImffr0wVtvvQVK6VZKKeVtxcoQZfh8PsyePRuUUpQrVw7BwcFwu90Zer0+furUqeA4bjkVQDDQqpX5wz8eMS3999+G/3j0aLrb7dZAoE/6BQIc3UWBE/D57kAkWinXhKT5z700BDBJZQgv7/Ojhw36ZO60zyYBmEIlMhGEPFUrAFMAhLgtBkBYsQRezjwAEwUeDP3oQ/3JMz9j9OjRsFqtGDRoEHbv3o3+/fvv5Flm6nO/sQnPMh4AqJZYtf2bbZKQlJQEvV6PGTNmIKZUtBiAzQuSLRUmmjyAArkmhPrzhGJ/kwAQFxQUFNao2VjWCSGUHgrhGZH5/yp4tpCRigCATK5Qia4dKvD3KdacBR502XAWPWrGYVCjCiV1A/5ckf+vsX+ss6ECz1XK3r175QB+e/jgwQ8dOnSIeuONN3Dy5Mna8IuVFenPEULezsrKynxgMPcsH63rmpqaWrNmzZo4ceJEAoSXcLFm5ZwtAfwa0HgPclt4TqpVuUTiZwidCk0kdoNSGajPJg/6U5ueCCJWwRSoSAWKkxKP+e+Yx0efALgGoDQBSosJ6hBCZACMEMIQXkKIAsD+lJSU0CFDhqBdu3ZIrJpwu27t2nHnLpy/n57xkKxYs15359e0QrRP+XJlxzVt3KjjT8d+zHwnOaXnxo0bOzVv3hyjR492rNyw+W4wCv6tpCkhJATAXq1W2/rE8WPYsX0b0tPTu8yZPetdSum1ErZRA9gBoEtMTAw4jgMhpCul9CAENgYAgNv81OUlkvIuqcauL1WqvU6nWxsc/OfpGgwGrFu37sC6desi6tev33jDhg2oXr16J0LIWAis1vmUUt8XkyfUDQ4OXiuXy3Hw4MGbAAbdunVrTOXKlXt169YNV69ebYASnM1z510AIJxSKvXvOxFAo/Fjx/T77LPPNBKJ8Gj37dsXCxcu7EEImb1o3py4T8dPbEgpLcpTtothGBeA82Kx+OG7776L06dPA0B4VlbWVzt37gyHwCRdaBZjXrWr165V6dGjR5UKFSpgw4YNyMrKmkYpfcyzjAY+3++Arzbx+YqKgR3/8MMPE+rVqwev14vDhw/j65VrB7+X3GN4YpXK78lCozcDyOJZ5hCEejcd/sy1EAAElEoAqgGllWZOmxoqmTHrXPnyZZ1lYkuV6dHvw8oMw8DpdMaa8562tNpYSXRkJK9SKSkVScoRn4cB4P58wpi7cxctVezcsT2sRs1acatXr0ZSUlJj4nFNp5IgSjwuEYrURRFPYW6FPPcXAJBreGonHpcZwmpIBWECIoEAjAkHoKKACiBqr0QSTOt1FYlvHYHI86JWodfnQ8rWi0iICMb0djVecQe8eC5/d/vHOhtCSG1CyDJK6U0Af9g5LlKv18NisQCCoNHz/dsFBQX9aLfb0bRejacREREx1atXR0ZGBoYM+7jEmYqVcwYDaKFVK78EALcxKxnATSoSbwAw2cw6FgSE1wCA51gxgEEgZBUo9DzLvCXXhBwzs45GEDi+FoZpVBl+xuV+JtbBAfju39WbybNyYggJ6TgIIY0LkVr1z06XSxlgEPBr77QF0Ktb93eaedx80yVLlmDYsGGoX78+ANRo0qZdZZ/Pxzdv3jz4SWZWQ96SOw5imfNpjiHIkJu3Ysu27apvNm46JxKJ3vh0zFicO3cO+tJxDgpRBiEozdvMofJg3QtCV69pjZo3b9565cqVuHTpEhISEvD06dNyKSkpBwgh5WjxaqT16tWr12Xfvn2QyWRYsmQJZs+eXQ2CPjzc5qciCKvSa2L4HvkgGtH2rbfONW3SGK1atUJ2djaWLl2K7OxsQHjRGJxOZ4CtWyoWi3/X6XTl8/PzTxJC+ojF4sEnT57EBx98gPz8/KoQWJrrlylTBg8ePACKufees9ZWztkbguP/AgKKryeAz6d+NrkXAM3o0aMDonQB8EEkgDX7Dh5KioqKSiKE1PHf9wCwWavVdrdara5PP/0UgwYNgtPpxJUrVxhK6fMrBPB2a1mz2Vy5ZcuWqF27Nrp164bjx48jKytLw7NMLIApEImmEp/PAuCA22qcINOG3wEgoZRix44dUKlUWLRoEXw+X4Plm3YMWrFwroK3miIhEhshgAsuADDKNSEl3tOKkPAPCCE9KaXHQrRaW1RUVGVKKdxuty+mQqIqLCysh9VqzfV4PBVcVnM/wLM9JLb81oKCgroR4WEXCCEuh8MRJ5PJoA3WaAEMFFNPMwgrFBkAqZ9Zg8IfRjt5+mxo7w8GdbFabUGB89i8fddPmmDtxblzZt8H4AGIB4TYAGKkRJQthAiJC4Tkw+ft5mvQRUJ8XohuHHrhN3287xoKvD6s6dngFbcAAOEZfS0567+L/WOdDYC6vXv3jujWrVvbzMzMtk2bNsXVq1dx48aNRxCKIZ83fbt27TBz5kwYjcaYmJgYfPXVV3jw4MHZL2fOepme7Cj4kS5uY1YnADmycP0NHQAz65gDYJKZdczSaVQ+nmMJgIEAdviRZ7+5WCbGwnIbAHJRp1ENC+zUz7i80cQ6ygMYZ2Idh4tS3ryO+VlzG0PI+/gAXIzUqs+V1F+nURkhrAJwYP++/Z07d8b27dvRpEmTwj6XL1+Wq1Qq+a5duxATExMMsdQJL6+9nXrDHRQUpLp06RIeP37cLDY2Fjdv3sTatWu9O/bsNwEIVJ1/Aj+r8r9gT69fv05r1qxJfT7fNkJI77S0NEm1atVibt++XQ3FX9f0O3fuOMqWLauaOvXZd6vb/LQsgGQAy0BECwCM0GlU3j/+uJfWtEnjhHnz5hXKd//www/IzMxsSwhBmzZt8NlnnwHAlcjIyB537txBeHh4PQCrxowZg++/FxDFZ8+eld+8efPjcuXKIS4uDpMmTQL8VPNFzco51RCohmIAXNKqlYsZu0MC4D0IBYXzQ4JUdPnSJRoAcLvd2LdvH3w+H6RSKTQaTTDLso3mzp2LsWPHIjc3t+j9WvbDDz/EoUOHFIHQsN9euA94u1UEYNzdX9NG/JGe/vm3336bVL9+/VAA+OjDDypDcHqfyjUhTp5lyoDSXaC+b3ib+ae5M7/6btPWba1NZpMmLy8/4dChQ6LExEQsWrQoY9XcLxdAyO8sKiol/QprOW/evNDw8PBedrsd7dq1w4QJE+D1er8D0Oz69etISkqKSk9PLw1CPLLQaJvT6ex46tQp8W+//fauRCJBmzZtMGrUKBhy89bLQqO/cNgdYzxSxVIIzjna3zTwr7BWbdzWrlOnzkGTJk1CaGgoDhw4gF9++QUDBw6UzVnw9UCVUvEChYyVc1YBoKc+XyilUMmtBh/uX3lBKG368Tu4kWXBqaGtIRG/lo6aE8ALOdW/tf2nEQr/qQagplgsprVr16Zt27YNCI+lAagV6PMcGq00gHNisThAcEnLxccfBxButHEdjDbuBaZYxu7owNgdb1JKwedntuTzMzs838fPADvJZmOJy24b6LLbwop819lk45ZwNsuHLpulRCZao40j/nP4xGjjdC/73bmMXZTL2JvkMvY+uYw9JZexl31Z/+fRaDyTT3gmf9Smdau2Qbjhi6KBqFardXXp0oVOmTKFKpTKrYVjkf0gtnpi1csikYhGRUVRmUxGAVz9aMjQD3IZe40iY97OZTUl/qvXdefu3QOOHDteAUC8TCajjx8/pmXKlKFRUVElCmdBCIHM+uKLL+ikSZMogMm8KTuJN2W/RykFb84Z1Ce5x2gIDNLnAKT36tWLHjt2jK5bt44mJCTQ4OBg2rx5c9qsWTMaGhpKITjlLypWrEjr1q1LARji4+PpwYMHably5WhcXByNj4+nSUlJtHbt2lQsFrsgAEY2+LfdEavXn+jQsdOVLEPel4zdoWbsjgTG7qhhYbm6FpYba2Gfvecg5DtoXl4evXHjBn3w4AGdMGEClUgkLplMRk+fPk0JIRYA8iLbfCgSiejRo0dp2bJl6bx58+jIkSMpgFHPj5OLZT52sUzdItuePXPmDH3jjTfo3t07T7mE+/QDf3vLZbPI/PfLGp7J7w4gdfTo0XTFihX08OHDASReHUop3HmPK7jzHg/5C89vf7VaTRs3bkxbt25No6KiaOnY2GsAqoaGhtLz589TQkgOAKnTZvmIczjDoqKi9+h0OtqqVSvatGlTqtVqaWJi4k9Z2U97cw5nMsNyWziH8x3O4WzKOZwVOIcz6LljJgJ4RAjxQViBeQBwAD4u8sxXYOyOthaW62a2cVMtNvtGG2s/ytrthzi7/baTs1PXzZPPIMvuT+5MAdCyoWpaMyaksPWsGfcqYs4y/+n36F9p/9iVDaU0lRCivHnzZg0Aus1rltc3msxzP500tbhQCyilmQCaVUqoIt2ye++M0qX1qWKxeE+0Vl1gYh1HISCtCms5rJwzDEAtrVo5y23MqgcgUhauf0EDXqdROc0st9YnsOh+KldrTGbWoYEw0zuj06hG8qybABjKs8w3ck3IC0lnfwjtRxPrkAPoa2IdbgA7/aufwAqmIQSiTQrgUqRWfeH5/bzM3FZjQJK6PIBVvZJ7re6V3GsrBMErCuCaXBOSTghpc/bs2aNHjhwR9+3/vvrTceMPduzU5XbtOnX2nbn0SxOvOevNu7/+VmH1hk1bl32zjQMwIFKrvk0IaQJ/jmTY4I/6rlyz7jCAI5TSV4YKCCF1AFRr0bIl+8PhH43BapWTEPLL0qVLsXv3bjx9+vRSvsncBH5+ueeNUsoTQgqve+f2bzUAcEami9nithjKfbN5W/1zl64OXLZsGapXr47c3FwsXLgQ/fv3R0JCAtavX49du3Zh+fLlByCsYv8AUCo6Ovpa165dUa1aNezevTsqPj4eo0aNAgAcPXoUVatWRUZGxvsQyBXTAMweMGDAgDZt2hSe27x586CPjpxMKeUYu0MJ4F0AP4UEvUjySik9TQi5HRcXV8Plcj0ICQkpf/HiRZw/f15+69Yte6dOnYKioqLG5+TkFL2H6g8fPhxHjx7Fo0ePTP7rCQBfE0J+oJRmAABvt1YFpWEAqvn1ZxAbGxMd2MmwkaOnG97tdbaESzTYbTXOiSlVSpWamgqGYdCkSRNUq1YNZ8+ebQDghjQi7n5B/pPmBflPEqURca9coVNKNyf36nXCarU2i4yIiB40eIiza5vmSXt+PNFm5MiR6N+/P3r27Pn9xk2b36Zedz0ADx88fDht9OhRX2zcsCHGn+S/xzBMYY0ZY3foVUpFifkySumvAMqaWcc4nUZVyCph5Zz1GLujGxVg1zFiIFhCECkS4TEBThCCwwqV2mq02psr3Ow38st7oyCsmAAAZXVB8CxIedVPft4M4jE7Hv/Vjf6T9o91NgBABY6sqwDgNj+lEJbNT162zelL13QAssQiSKK16gIACNOofCbWwZpYR0gRUbSRAOa4jVkJAGrIwvUbStqnWuRrx/vIEs4n7sqxDheEGdS4ADOzHxWzEcAAnmXWlBTLDhNyP9+YhILNEUYbl+MTJhQBB3Ppdcem0CiF22r8EEBVCnwHkcQAwXHxAH6Wa0Lyn+1OTxJCDkZHR7+dl/P0bVNeLtontdYZTMxtAN3FOr2oVtMY58bGjSe5aIHFQ6RbCSFldTrd+Y4dOwIAWIcLLVq06HP27Nk1AIbgJUYIqa7Vaq936dIFP/74I0KDNQ0IIZfmzp1bSqFQYNiwYazP50sRi8VVzv58rnnLFs1vUErtL9vnxSu/3JXpYi5OnTCW9O/Ta+rwT8f/WKdOnYGnT5/G9OnTUbNmTfzwww+oWLEizpw58/nIkSOnr1q1Crt3766z98DBX5s3bkQBBOt0Ong8HgQFBaFy5cpwuVxo1qwZIiMjERoaip49e+K7774bRSmtbeWc1bt17tSsfv36+OWXXwLQaTx69AgAshi7IwkCz933IUGqYoXIiFD1OdnlcmX5J1N7z5492z0xMREXLlyY9cnHw7ozrKPNr7//ER2r128ICVJlA2g+ePBgmM1mdO3aNSw+Ph48z/9/7L13eBRV3z5+n5nd2Z7dbHohgEBo0osU6UgRCTV0pBcVVAwgUqQKAooKKCAi0hXpvfcOofciEEJI283uzu5sn/P7Y3ZDCKH4vO/vfb/v43Nf1165Mnv2zJn6OedT7hu5ubm4fOnSwo7t25kSihWzzJg2JZFhmJ8AbFHoDJ7vv52tUSoUk4P7Hv7xJ+2sDucRg1bdGEB1AIdpgaQMhSFi83ezZoTabPzxidOmq71eb3L//v1x+PDht/GUgmkpBaYLDvsCMLJwSM9jCIrm2cPSpb8JkBJlTgDIYhy5t7u0aozeZnM1s9lsvHfv3sE//viDunmXQaFS7gOARQsXYtHChX/L3VwQAfZ05NmFZFDUBFCMgubICHQsgZ8heEAItgI4olRrPACQbrbXhcveGcA9/ZpxtRmv61+iIioAD4A/Xtnq/zH8o41NIaRBCo6/1NgAaEoIcgBcKbR9G6RZ5yqrw9kZwA6V0xQGoDkXHj//RZ25HXxXACd8YCyQ4jv3jDr16MLtAn7wrZD84s+tkILItjpUkIxBLiHQMgQGQsj6MCm1+W/BY83tCZbrQ0G2g2HPQ0q13KnQGZyv+GmdJUuWQBAElC9fHlu2bAk16tRrg+M284LeyagbE+oKhaCiAAAgAElEQVQfrqbuRstWrMz+4bs5GDt2LJYulZhGAgwDL0y8AABCiAzAplmzZqFTp064fv06UlNT106fPr1YXFwcevfuDVEUHwD4TKdRn9NoNMvUarUYyDbbXqCfsWq1qk/wf5PZ3J4QYq1Tu2bH+T8vqcOybLvU1NS9Fy5ceKdWrVo4cOAAsrOzkZCQgIwnTwYkJCTAarUiJyfn0XutWl41Go2RZrN55/Xr18ddv369bXR0dB0AuHHjBqpXrw69Xg+WZWEwGBAVFRVrdThnALh56OCB012SO1dzOBzgeR5paWkwGEK/yeMdbQEcIoSsesU5qRkREbGNUgpCCIoVK4aWLVti8eLFANDw3PmLNQkhNWvXqHbpcVZOG4tdMOp0uvP169cvH2SunjJlCp48eYL169fD5XI1r1S5MtZt3ASX25208OfFWwGgebOmbx86fOQox3FgWRZKpRLTpkwesWrlyuoqlarBoEGDmLlz5z5BoA5Ep9MZNRrNse9/XMg8fPgQSqUSrVq1wrVr11CnTh2t4HR1BQBoI0F87r9YF5/iV4fOB3AHgF2tUr5W8ovHgcMAJlJKJ71O+9eFWfIY1CRATwKEUaAkKF3LMTAxgJUQuAAcAHBJqdbkjzXdbG8NoBmA8/FGbQoAeHpOS/LfPnWNPbHuTbzi/n4J/PjX45r/a/iPsXmKNEgzshfSzgRQhgBp0XrNMxTvYTq118QL3jy78AZDSHGV03QIQF8AL+Racjv4jgAuOES2GqRAfW8AVQsTdwah0Bkeu3nLPTdvaaDQGfIDuNlWBwmMvQKkOMqeSL3GBgAmaSbW0cQLrQCsCNOpXzqrd1tzDYExRwDkHBj2KKg4628y9C7o2aPHh+EREdHBYHhBGHVqa7bVoQXYtloqeK1Z6WMA4N69e5g1axYAIDQ0NOPw/j2PX7GflObNm7/hdrtx+/ZtAEC9evVKjB49Glu2bAkG7yvNmDGj0oULF65OmjSJ5OXlsdOnT68OYDsgEVeGhYV9tWDBAlSsWBGiKKJatWoVBw4cOOvy1ev86dOn0adPH+P58+dNkydPxvHjx9GoUSNQSnHv3j3Mnj27+HvvvYeePXsCwHGtVlvv4sWLKFasWMPMXHOfUJ1GD4ksFIcPH94MVqZIu/9Xq86dO2Px4sWIL1aspV6juhg4njpWqxVJSUno2rUrYmNjkZSUNDI2KqKz4HCcC3CjvQyamJgYLF26FCqVCk6nExMnTsT58+ePA3iYnJyMe/fu4fjx41RFPXso8O6Tx+kkMzNz05OM9N8bNG5W7/bt2x/n5OTA5XJ9AWDEuHHjIs+ePYtFi39JX/jzYrh5S/n6detM4BRKTJo0CQAwc+ZM3L9/Hz179qwfFxfHfPLJJ1i0aJEmYEToxk2b9F27dGGWLl2KqKgo+P1+7N27F3PmzBHdbvdnapWygFS1Et4cazfGnq2XRyQ8J4fxMnDh8dSTm375v8oIHaByqgugBgHeIFJs5iZL6DKW4B0/hZ9jwAPYoVRrHhX+fbrZ3hPS87g/3qgdCQDenDRCCTMVhFRm7qV2guQ6/VeMjQBgAZuy+r+6Ovofx3+MTQCcMdbhMWeoX90SSkJQmF8qiK0AVsk9/MANW7ZP6jX4I4vf718OKYh4BMBaSqkPANwOvp1fxD0X2CEAjoaFaEYBGAKgeJnExJjw8Ij3T544fgHAEkpp/mpLoTOkunnLe27e8sbKDdvcBw/sH3318qWKGY8f23Nyso8B+IVSmp8+G4jnrDfxghZSqnQOgA3hIRoFJFefPjoqateDW9feBuhbAHECZIpCb7wGSEScSo3WAMmFUwVSMdlSSukLV0pu85OZm7btcI6bMqMwWzIAINvqiAFgjdRrnIAGH48cs7N69epT69evj6tXryIjIwNjx46Nnb/w59aVa9aJEgmbA2kycArADaNO7SGElNVqtV9PmDABbdq0wZ49ewAAly5dEitVqvRMOs+jR48AoFiFChUwbNgwfDRsWC4AeMwZ7JM7VweWeLOGZeLEic8UyHk8Hh8hROdyuXDx4kUBwMEvv/yyW+XKlbFmzRq0a9cuvxhz7NixsNls3wM4U6VKFSxfvhxut3sXgAbVa9TIr8zr26+/duykyZ5KiaXtbdq00QLY/Cgt7WKB3R4dO3ZsD41Gc0mhUJTr1q1bxLRp09CtW7c+KFB7E3CXxQKoBindej+VmJ1PXr58+bsaNWq0hiQIdgNSCvd0mUx2plixYhg3bhz27druA1CWAAs1upCfwojMEBYT3+/nX5a4Phw65KhMJhMHDBiYsXHjhsiLFy/CZDI9sPH2RKed70wIk9iwSfON02bMbHL8+HF5cEyiKMLv9ztq166t/+qrr+B2u+epVco/AKB5s2Ywm83hTZs2nQhAoVAowLIsenfvemLx0mUFDE0+/gAwxZuTdk0ekfCqVXRhbAYwFpJGzSth5gUNJLbr6gRobeaFGAKoQHCdAAcUhG4lBA0gvStLOP04TEFOhqjVz2j2pJvtMkgJHlEA1scbtfn8fd6cNC0lzEoQ5iYXFpuEXl/Bu+CDT8UKDX9kLu6WF1Vz8wL4IMkzjH/dH/y/hP8Ym78JApQEMLOo72QM6ewT6VmHxTTs/aHDh48ePRrlypWD3W7H6tWrhxw/fjx5/NgvOk4YN7aHSyTwgxkC4AujTm0FUL1EiRILBg8enN9ffFxs2z///DMCQH7Ks1QPI3dy8I8b/8XoKhUrVKjRv19faLVaHD16tN2KFStSCCHVKKXPkGsGVjQLTBI7wIjExMSGJUuWTKpatSpWr1r5EUAHKPThz5Xa2+12lmXZv1q2bKmvVq0a7t+/j9WrVxcD0O8lp6lkVnbOywgCWwMoyMxLr169SiMiIojP50NcXBxWr16NFi1a1JiV+WhDTHT01w6iLAagFoB2Zl6Qx8TGDmjYoAF69eoFu93u2bZtGwcADodj340bN1IgpXIHkQNg35QpUyrfv3//1NczZ8mdlpwSLNDLaAyd7Xa75964cSOfF2TL2lUfbt6+848/N245EnDFjQMQU7FiRaxZswbJycnIzc3FyJEjMW7cuMzEsmUvaXU6XcbjxzH37t3DqVOnAGDS2TNnyqjVmnxi19+W/npx6Cef3RdFuvDevXs9AZwjhORLWuh0IU/atkva2Klz8vHOHdr7UlNTf+3evTsgpeIWxNaIiIg21atXh9frxYEDBzYA6EQpdQP4DMBnbt6iBtAJAEeB5KYtWt3v1atXqYoVKy6v27DpA7/E3t1ZcLrASam2Gd27d+e7dO0WCyDrwf2/ruzZs/tJ79691QR4n6PeKgDuK3SGcc2bN2MIIQsyMjKCLjqYTCZMmzYtZ926dbzeYGAmTJy0tNCYzzVo0EDx448/Qi6X49dff8X5s2f+8lhzf+D04Z8UbCiPSKDenLR5kNLgi3zWXgQuPN7vyU1P9+SmF+fC4/MD6IFYS3EAlSEZl+DE0gHgKiG4T4C/GIItHKiGEFSBdL+dAzA3GH8ReOEdSPcTACDdbI8LjFMEMDfeqH1mxeHNSatCCfM9GHYJZ4zJV6719fuuGAA5AC9zbqscr4YHElNDczZl9fMsnv8H8B9j83dBwEXrNdbCm60OZ0kAeo3bIqT5OQ/Lsp6MjAxuz549iI6Oxu+//47mzZu3j4qKmu4QGQYgfxWsmwGgiY+PR8OGDTFzpvR8paeno2mz5uXMvEB8Ii0BiV1aBHBIxYifuV2uKw0bNsSuXbuQl5eHr776CkajMXrOnDkpkCRqn4Gbt5TWArWWLV/+Js/zSVOnTkVUVBRmzpxpUejDi5QMNJvNMqVSqe/QoQMIIahSpQpWr16tLaptAVTasHnrjedOHSFsnXr1k8skJkau+G2pnD4tspzXs2dPkpycDJ1Oh6NHj6JVq1aIj49H43dane7RtctPM2Z/+yuldF2gH4NMJhvvcrnw+eefIzQ0lPvggw+wYsUKjBo1qkWX7j1bjUgZuRbAI2Og2JUQ0uL06dN1ARySua1lKJF9C6AzZ4ylgZf0dQDw5GU2AHA+qUvPGwAG2Wy2aADXS5cuvXvXrl0YN24cZDIZEhISMGPGDADIqF6tWkuz2YyMx48/KVW6zICJU6bWr1GjZt/qVSsPL1O6NBcVFQWWZVGlSpWUZm/XyRNFf87UqVMTFy5c2OXx48ebANyx2IXarIxda83LC/9wyOA+JUuWxPjx47F3714AuFToVDbfunUrzGYzdDodUlNTSwtOV3uI/nhC/ZWkk814KJGdAsPYAWDf3n2rGNH7SJSrJgDIVauUL6pn+cViF+LeKFl88o3r17YRKo5hQScAWKvQGZ5JMLFYLBgxYkTwXweAgZTSw1aHkwEwxOpwLtFrVMFrfP7o0aO3K1euHD916lQ1AOw/dPgagDsvMDjZ3py0m96ctIbyiIQXctsVBTer3iwT3VPNvHARQHEOTFVI8diHgXO5z6hTCwG5jyYENIQFLeGniOMIagA4CGBXwfhLAYQBuJlutjeHVOCcBWBcvFH7DPecNyeNABhKCdsIrGwKFxp1sFA/WQC+ZK4dzoXktpZBMj5FwQ7gJoDWbMrqf1mW4X8b/zE2z+Kl9A+ZVocCFM/FLgIP12Cl03SCADlhUTGJoih2XLZs2VBIKY6NLly4gFKlSsHpE2sB5IOi5JkB4PHjx9izZ0+w8vv8iXMXloqUrgUwH8CqSP3TB6BihfJrv//+u9p5eZb5AKrMmzdvbJ8+fTBnzpxyQL7+S20ApSCKLCDWNufluT/6NKXbmjVrMH78eCxevBhanU5XWHk0iISEBLfD4RgzaNCgtklJSfV79er1ypPYZ/BHSYeOHk8OkjQCqEAIeQDgT1NO9kgHbwOkcx0kMI0lhODjjz+GyWTCDz/8gAkTJmDixImIi4n57ujJ05WioqKGFKh8F/x+v9doNMoPHz6MpUuXYsCAAVi3bh0yMjIQFhZ2G0ArAAlmXgAAarI57gC4pPZa32aoqPIoNF/7oXmHk0SxAAABzZ7uCmNMCYPBsKRq1apwuVw4derUkZiYGBw8eBDNmzdHMDV5+vTpuHHjRlzbtm2xdu1afDFuQrfPv/hiCYBBBq06ITo6OmXkyJEAgOjoaIwcORKDBg0KFUUx9P3338d3332Hlq1bE4td+ATAFUtenr9evXpISUmB2+3G3r17sXDhQtemTZsvCU5XV5YgFoCsevXqB5o2a1arYoUK4XPmzIFeHxLC+FyxRAqo/1hUtqLbZk4CsE+tUr6yEFAFbw4Ah5dilwhmhxfMr5SQM4pC7cLCwnD06FHk5ORgzpw5mmPHjvUHcFivUYlWh3MZgL5Wh3OxXqOilFITgLKEkGkAxgX74PThGz3WXPICg7PZm5M2yZuTdkEekfCcvIaZFzgAJSDxrVVCcLUiUwqs1yuT+V1nfKzyFznEgXJ4fgmeF6vDmWhzCPVY0KoskEkIzAA2eSnhlGr1dy86L+lmO8OxpIPHT2sDOBRv1D6XyAMA3py0GABTKSO7Dla2jDNEPmNonC5XcwB7VUrlbXy4EL7v39+OuHI/k7SrDSG5yoLvGBUkAzkWwAY2ZfV/RXDufx3/MTbPwukxZ6g5Y2yRbMOUogktmo9soNxjP0YADRcefwq8cO9u2uO6JeOim8+YMUMZHx8Pi8WCPXv24PDhI11Gp3xWJCMiALz11ls4efIkNBoNRowYUb1lk4ZNHzzO7MkQjIa0pM+PFx09dnykm7f0b/Ve0onDR4/N6tatG/bs2YMa1avxbt7SAwCF6HcQ0EqQbuIpsSUTR3Xr1k1548YNXLkiJdTZpdSvOiZe6ADgj7BCbM+U0pmEkJuQVlZFwmPJVkNyUZS5dOVqi99++0351ltvwWAw4MqVK5g1a1bxNWvWDO/evbuUiaXTNvRYsjMBoEK5spnnzp0rMXv2bBw+fBjr169Hv379IJfLLILTGRKsfB82ZGBPjyW7qjsvC6vXbd4978cfQy9fvVZ/6dKloJTi8uXLGDqg3w8f9k4Og9/uhZQWCwowIkg8RPF9P2QyHyvj4XUBQHHe6rotgjkuEva4Guhx5869CQzD5J44cQLZ2dlwOp1o3bq19+jRoxvPnDnToVmzZrhw4QKePHkCjUbjkMlkYRaLBVu2bMGsOT9s8ov0V6NOTSmlDwghY3v37l0RABQKhVyr1aoqVKjImUy5LX/66SeULlPm1h9r130uY8hBQkj411/P/GHFihVNv/322wiv12sXRfGcKIoz27VLegIExNMoVZ44tP/+4l+XXli+as1YAEhLe/RYqTP89KJrE0A1ACte0SaIoaA0Qw5UAvz1nYQtC2CCxS5chBQToQD4Ro0a6W7evIlatWph7dq1qFu37vuEkO8opRf1GpVgdTh3QtJYeinXG6cP3/Aig+Nhlb+wovdrnhcOQKrD0hX42guJofs2JJLb/GfDk2s2yERvX85gvOTmPXYKaHmH0JuAVpMBFpbgHICJSvVTL4XLXjTJeLrZHgrJU8AyBPfjjdoxLzoWb05aJwDNKStfBoaN4QyRzzDIO12ucAChKqUyX9VX7DW9OIAv2GWjr0CKi0ZDKi24+H95JfMc/rerSv9f+rhNjyu7TY/rBv8vyCBAKUVGnn1GutnerOBvLHahvNVm+9id8+iZiusnuXl9GIZ50qJFCzpo0CB67dq1oP5Fs6L2DSBBoVA4OY4TtFpdeqVKlWhOTk6w0l5lsjkYk80x2lSIqeCdZs1iw8LCnowfP57++eefVKFQOL4YPaqs25LziduS87XbktPLbckJKrJWioiIoEePHqUKhYLGxMTQhw8fBqv/P821OeS5NkfPXJvjw1ybI9Sdl6Vz8paZ7rys3p99/NHcpKQkunbtWlo2scxZd15Wf3deVr8Cn27uvKxK7rwsLrlD0kpIPmYKyQVAATyWy+X2DRs2BPVsqhU49vIAThFCKMuydP/+/bRr164UwBSFQkEPHjxIWZa1mh4/WOc2P4myOYQaNofwFgC5TCajdrs9eAynAaiKuK7EbXo80m16nFhwu523KWw222R7nqmPIy97qyMv+wRvMW9t3qzpo5CQEHeTJk3ozp07aflyZe/VqV3r9IIFC6jZbKZnz57N/xBCqE6nuz5w4MCvbHbH4DzeMc8hOLsW8WnlEJxVd+878GbZcuXPlyhR4t6O3Xtn5PGO9/J4B3nZfemy5Sldtrx+gs0yQbBZJrpseREAateqVYsePXqUAjj2qnvbZTX95LKa1K9sZ8uLd9nyjrpsea0KfxdgLpiWxzvegiRo1xQSl9ih5cuX0x49elBIFDqVIWVGEotdqGmxC28XuNbTpk6dSkeNGkUBjDbZHMRkc0SabI66vMX8g8NiOmGyOaaabI4pgc9o3pQ92ZH75COTzRHyd55nV86jcXbe1s/O23bxPP+7w25v6XTY5S9qX1jP5pGJf+uRiZ/9yMSPf2TiFZRSmGyOkUX91pP9UO/JfjjXk/2wt9ucWdKdlzWgcBvB6SSC0zlEcDqZZ+7PnEfD/7ffff8Tn/+sbJ7FdQB9/IsGpgKoibIN26JMndbeYysnecDsovX6JaJAJojV4ZSD0vcVbqsdwKzgdkIIiYyM4hcu/uUyFemDoYMHigkJCfU6deqE6dOntyKEVITkRlqWZbFbATS5cO3WG598NPSbM6dPzbfb+bwrV65k22w2fWxsLB48eNA4LERThRCSnmW2djHzwi4NPLh2/Uaj1PPnJwwYODC6du3a6NSpExbO/W5Tr+5d+zZ7N+nasRMnNQD+ooGnHMBbSUlJSEhIwIEDB8BxHKKjo7Fjxw50aN9+2ogh/atYrFbNxx99cL5W/UaznUThk4PJunnz1u9z5v4oJiUlDQeAW7fvZChCo1ZRKdbxHFYuWbR/7YbNz/jbsq0Orkn9Orv79u3b2GazradPiSBBKb1BCOlBCLnw888/h1y4cAFr1669DeBbn8/X57333kvw+/0fajTa25SKw1mfS6UOCU3Bsz5ugVL6VuGxeMwZekh67d9zxthn0r41Wp3bLjj/BEEjmddzjguNniw4XezmrdvD3u/dO8lsNi0GgBCD0dihUyfm008/pZ9++ukzrtZKld60HDt04CJLiJp4BYOfcBa3yGwODdE+F8S12AWmVu3aXY+cPnuJY8hAg1btt9iFaAD9LHbhskGrzi+CDLhAO0FiP3YDWOVhuDcgyULnQEpU+TvgFCHGl+oDuXlLSQB/Auiv0Bmey+YyaNWpFrtw/pfFPw9XKBTfeb1esyiKpzmOa1S1alX8/PPPANApISFhmc/ng1qj+dAv0lOEoFmuha/XukWzrhqNJl9JU6vTTeiY9F7yhi3blgO452EUP2lEoZpWFOpw+vBPn+5ZDW9O2ji5K1cGXcJLD9IlOMIAvOunqEsVIWHE5wlnWXYMATiF1nDmVScp3WwnkMhRK0CK74yON2oLuiWfc7V7c9IaQlI0nUjlSgeA3pwhsih33LsAdqqUynx3mCc3PQyAqYi2/3b4j7EpAPbPL41isUrvQoqPeIgxXk114TJa7M21ilNrRc2lrce1N/dFYMgvwUyvDxRui4tIAmj5JHwcx9VhGLJ+4vhxePLkCcLCwtCsWbNg4L9lgwYNKjEMAzBsbQC7AByqVrFs/cTExPEMIeMBoG3btpDL5UhPT/cD+LxPnz6NDh48iLXLfhnbq//AkW4wR2vUqdd6xIgRCW3btkVycjI0Gg0+GTWmx4APhs1TqVTLR40aRebMmWPyWLJHAmAXzv2u2IjPx3p+//13DgCCcYjk5GS4PR7m3MXLfStUqIB32rRzUkr7mHhBR4EfO/Xqd1qv11fTarXgOA4GgyHJ4XDYCCGlqUTjUxhFxb7abNq+q31iiXgZpKyap40JKcEwzNmffvopxOl0IhDnGAMpNvO1w+F4G4Co0IedFXjrMNbnXujIfjQwPDzsqsWS7wVhCSGVAVwJGlePOaMsgHdFmfIrUa7W+ZyuREguikhIKdxgqMhB9H3kVeh/8ArOHn6KBhTQNm/RUr/299UAgNOnTp4+dfJEq89HjeRQgH4+JjYWW3buVXtl6mgvEEVEfzEZfKVB/Wfs1rwHBY+RAmoCVhQJu4FS5IkUtcwSY7cdwFYClMzjhYEKeO0saCgkv/2GggwNLoczeL4+w7O0//UJIZcAJFFKX0Rh8tJ4pJu3vAfpZbiyoKEx84IcgLbg59TJk/omTZows2bNCr9//36bihUrYvPmzbh+/Xpenbr1Erp364r79+/j7r2/3gGQSSn2nDt75r3H6enVjx49itjYWPj9fnTv3l3buHHjmmEhmhaU0gDTt/qWx5rr81hzv3/W4OB7AJ8D+LLw2F2CoxSkGF2IjyJEBLlBQSbodRqTJzd9HGW19wPfF2lsCCHs7B/mJ/bu/X5rgEQBWB1v1P72svNFCFG817J5yLpliz9mGCYPQH8qV8oBpKAIMUWnyxUHgFUplYWLxtvh/yAbwL8C8nTS+8+Gf9HAZgA2Qiq0UgCAqAwBrfouyMUdYFw2ICCqBKCzvde8XLnH/r7M7/6FC4/PZxMw80Lizm1bV301dXLNhQsXIjw8HIIgYOXKlZg7d+7dEL3+0sQvv+x07949/Lp06UTB4ZgCAISQ6b179/4iJSUFcrkcDx48wNixY6FRq5alnr/QITU1NaRDhw64c+dODbclR+GGbGSZxLLvzJ03Txcb+1Sw7/Llyxg1apQlPDzccODAAZQvX95iz06P5AyR3sB+uMAxRoaFhd37+eef0alTp1wAkwcNGjSvSpUqGDZs2ApK6fuAVGejUaunb9myJcJgeFqKkpKSgjNnzrSglOYrEQbhycscwIVGLwn+Hyg6fT9Sr1lW1LknhOydM2dO89q1a2PkyJEQRRF2ux3Xr1/fqFQqO8ybNw+DBg3ibQ6hNSi1c35Xc2N0fGh0TMy46Oho7N+/H40aNUJWVhYqVKy4bN269TuI15lIqD9G5LTBTCYbJNnvTAA5apXSx/M8K/c597plmpOEYepQ4DCANXqN6g4hpGmTJk32jx49Gq1bt95NKW31uveSWYp9XTTq1PcD4mZ9qUgtStHpAVDZCXk9JXw3KKCkIHKRMALDMMUoIPeDoRSMj0rZR148q+kSBoCpUOaNjgsWLIh88803ERoaiszMTIwfPx7FipfYPHna9MKZawAAJXW3dRHF1oKnXeqbEgX8b4uAmQHi3WD3AkQs0MYLySDmf/bu3i3v37f3DJZhEqOiopCRkQGdTnfFbDZ39nq9W3bv3l22R48eMJlMFSml1wGg/tsNFDdvXH8QyO7Lh9/vP0cpfYsWUif1WHM7A6jF6cM/D27z5qTVAxDj14RthJSW3BDShPmeh5InFCQEwFm9RpUvfOjJTR8MYBNVaNsrdIafC+4jLDy8RFh4xMa7t29V1el0sNlsAPAdgC+KWrWbeYFZuuSX+SNHfNJMLpcnKpVK2O12L6V00qqli7/u3D5pLIAZnCHymUw/hmHGsyw73ufzFcyx2HPt9JG2pd8oOYgLj/+xqGv274b/rGwA+BcN7AaJbbeg8qJkYE79XnCTAoBCVOk3EqctGwwmPGtoHL0Z0M41KlfsdePGjS6NGjV6j2GYSgql8nFsbFzqjn0Hj3Vu995nMTExGDduHJxO5y8F+l64YsWKYqtXr67PMExEeFhYeuNGDfaEGkIX3Lh5q8+5c+fgFIRMp+lJN1ARCnh29OjRXTd27BcVnYIgOF0ul9vtcavVKk4QhLs1a9bsMGXKFHi93nlBQwMAVEo39hBCHCaT6YdOnTrVhEQg2vjNN9/E7NmzgadcVcHfTG3btm1XjuPk4RGR4X6fz5ebm3MZEidVUSg8g2mGpxICRSHG7Xbj1q1bGDRoEACJTeDu3buNY2NjUatWLWg0Gi8BujEMc8xPOfGtt2q3faNUadSrVw+rV6/GkPLaRjQAACAASURBVCFDsH//fqxevTpH5jSbAVzljLHTCu4kkDXYBkBtq8MJud/dyM/KZ+p1mu12wVkaQA2tWnWHEJICqUAviMaEkCMAOtPnFVyfg1Gn3mjmhY8tduEcJOqgZaEhGjOgAYBNVqtjsIah2wC0A6UMqE9N/GK+kaCA3M0oI0XCXgIhWw1atRgYfzkAXFZWVlbHjh0nFtptFoBR8374vsgsR7fNFWfUqZ/5jZu3lIJUl/MRCCkOgNNoNVtedXxdO3dA1872DYSQUJ7nIwA8eZyVUxFAn/joSOegQYNgMplWBw0NABw/dtT924qVce+0aPnBhfOpv7d9t3Ww8NhHi5jxcvrwdR5rriGghzPTJTiU0ISFEhc/AH5fdbCy/QC+d1OmAiRG9r/0GlVRjBPrIdFI5RuAdLO9NoBOdeq9/XZkWGjV7Vu3IDc3FxERERgxYsSIbdu2MZCoowojbukvi8tPmzYtsU2bNnC5XDAYDPI+ffp8tWvPvmqd2yf1LWxoAMBgMPTfsmWLIjw8HD6flCFdv379Fh6vty8kt+U/Av/4lY1/0cDqkGjjX4c9AADgqv8+fCVrAQ7LLn1kTGszL7AAnScHpRxDRys0OgcAZFsdMgCtCUF7SvF1pF5zhxAyA5JmzbeU0q8BwM1bykCSeSaQRLGOENEngooT3G539bpNW9ZJe/SImzT287nDhg6+BmAXZ4g0A4CZFxoAiDbq1H8G+urSoGnzjLPnUpdCmok2oa/HnDwQwFcAtlJKBwa3O12ugUHxtCBMvBABKcvID0m47Zm6I09eZj8uNDq/qC/b6uij5dj1eKoREgXJjUUAYNLEiZV27Nhej1IQgFKn0+UWBIfDbrfzb7/9dl+WZaFQKtcuW7Gyp06t8gHAqt+WjB42YuSbFovFFxMdFRoRHma8eu3GtVW/LjrfManNQ84Yu9fqcBIAjSFR7weFsPYAOK7yWAcCeMCFRuevzOyCsyeA4zqNev+uXbveKFu2LIxGIx49eoTPPvsMe/bsSaaBWp+XwWIX9CLFJAB3jTp1/qzVzVsIgE4Oke2gYfzrAWwsKk3ZY8kmACqJYJp4GXkVhooZcur9y09YtZdRnAjRaYvS5Xkp3DbzEkWIcUCBcfSFxEIwGxJl/hwAnyi0+n/5hWCxC4zZbO595vTpanHxcV81qFsnp3Abq8MpiQMCK/Ua1XPpzAXhEhzhxOf+ESByKuOOAtjPCHm3CBUnCqrwFSCkFICreo3qwcv68eSmj/NzWqvJJzNCes4vAfi9WJhubOnSpac9fPgQXq/3apUqVd7csWMH4uLicimlEc+N3WLpPWv61JGzv59X2ev1PgLAJCcnx/Xv3x89unc/Y87Ley5m6HS53oiJjt594MCB0m3atEFmpuSBl8lkf9rS7x5SRRV/VRbhvw3+0cbGv2ggCyltsiT+hsSqqNLDU70duAtbH9vfHfMOOOU3CogbWQZLFBodzbY6lADeg6RNvpNliBxA7TCdeguQH/x9C0+DvHfg914ioN0gvcRlkF7kKwCs5wyRL71IZl6oDqCqUaf+1c1bZAB6K3SGwhXc/xKKMjZB5NmFUErRD0CUnCHXWIa4AYDxOBqLnOYQAHj8YkkC+OQscx3PurGeE5oqDEJISQDzExISlKvW/D7i7Xp1nwlau23mUYoQ42wA8ORlGiil872MwuqXq3Lx9HqeALBbr1Hln0NPXmZzAKW50OhnVnB2wUkAjA7RauIopcMLDccKKYPupYSmFrvwHqSZ9lKRor9Rp/7JzVuiIV1XANicJ8rfjdZrFr/q+Av0+SaAOkT0WzjRXZaFGIwZ+gFs4wyRr0yPDRobN2+JhFS3sT7Ir+e2W4cCOKnQ6ot0wf1dWOyCDpJBsQL4zaBVP1PwaHU4ZYHvl+k1qmeon1yCozSk+IoO0sRrJ+N1DgdwitOHb7Q6nGUYn7ulzOdSqsKin5NZKIhAsL+9mrp6sSwb6hBlHWONuvyJV0ASvCUkEs1yMTExJy9evIioqCgbpVQfbOfNSZMD+MQl07xDqNhHFxZZH8A6hmEwatQoFC9eHB9++OE6Smlywf07XS4WwAC1SjU8NTX1zY0bNyIrK0tiDH+jxI59m//sxYXH/6uqtP/n8E93o3WHFCz+W1rejNMK5fHlAKCXZ936UpZQ6ZhSq/sl2+oIgdXxHqQZ9NZIvSY/+8nEOwxO3tKBkVx1IkRfJqGiCkBcYBwUwFkQpgenD39p1lBhGHXq82ZesJt54WOjzjDXzVvuunlLOYXOcPPv9AMAgtNFIGVABVchNQWnq8gZqIJlvABOi5Tmuv20NkQaTai4Tyt6lcoAL5bd6ujzoljNq0Apvc8Lzj4AmurUqmcMjdXhVBDCub28dYOf4a7KGHk1Eewtuei5y3msF7nQ6FNF9enJyywJoBkXGv1F4e+0ahW1C85VNrujqVat+lv3hMUuxAHoCWCHQaveBgB23qoUeOsMFkgFsCB/FSPFsJ4DIUQNqQi3OAAewHFKaZZBq75qsQvXKMP2cjNqBsA+g1b90GPJlv+2cvXQzKzs4sE+bt25k7r6j3VrKaWF3TnUzVvaAGgA4EuFzmAjhCSWTSxTfvnSJW/WrtdgIf6bYNCqeQDfWuzCGwC+tNiFwwbtUy4xvUblszqciwEMtjmE3zhCKwXGJQNwF8BypVpTQB5b87nTalpj522lwci36fSG+d6ctOHenLQS8oiEB4X3n262F4OkvcQA2KGlrh6Uyucp5cSAAlLKlFIHgA2EkDIsyx5asGABpk2bBhRgVffmpNWElM34k1emIkadOhNAkzFjxmDQoEGQy+Vo1KgRUHT9XTIkN9mg1atXw2QyoXjx4khNTUWjRo3eVUQUq04pfZl7+d8K//SVzW0AZf6L3TwwdfuhNiS+LweAbZF6jRsA3LwlAkAjUKqkov9ND5HFKannCKS0ykiAPAAhtwCs4vThryuH+0IE2Gr7AJitgac/gCXBF5zgdGnwrBvrRdQYIqRsseAqpKNapXytWbiJF4hM9A4TCVNcJOyffpFmASgeqde8SFTrpeCllcYQkeIXSHGfeng6MXAD2KTwOcsSv7s6Af2VM8b+BQCevEyJNQH4nQuNLrii4QAsADCw4PbCsAvOjgCua9WqVxpri11gAPQIjGu1inrUkIT0CID9DnDNjDr1M66STKujF4CN0XpN/qyeEKKSyWSWWrVqcWXKlIHFYsHevXvhdDr7U0qXAlLMhlLKAYgAkNAtudOT1HPndlauXDm/70ePHqFiucQ//1j+6x5IE5j7lMgug2AXCDNDoTOsD+yvpl6vP1ujRg2cOHHC7nK5Iimlf5f08rVgsQvNAbwN4EeDVp3jEhwqt9vd3Gq11WQ4rrrFZFo8derUg3+sXfvcpMbqcMYBqAJK01V+YQKAiZw+/Lo3J00GSWBwrDwiQUw321WQjIIRwBMAPxakkHGbMr6GXHVYERL6TJElIaQUwzAXFi9erLNYLBg5cuQDSml1T/ZDL6QVoBWSXLU3KJpGCGkEYAHDMGXatWsnGz16NOrWrXuLUprPyu10uSoAiFAplYcJIcmQVmunAHSfOHFiE7lcjvHjx8+klL6wQPTfDf/YlY1/0cA4SHxJL0SpsX9Ap5SDZQhkDIPTY9s914YSEi3L+etdX8QbKyP1Gr+btyR27dzp8yPHjrfPzMoyAkDZxDKPJo8bc6xNu45+H5FVkkHczOnD82c0hBAGwAZIcZtgxooXwJeU0heKrglOlxzSiycaQIxSxuhEUcz0UazxUvlplohTBKcrqE7pgGQ8HgI4q1YpX4tq1ulyvfZsJEynpp68TAHAaF4W8hZDMA3AChMvkAD79EsRiLEkAGgP6aVRBhLp4TgAhwBM1mtUT2sUzBkMgLaUVfgoIfnuLS40+ownL/M+gA88eZlruNDoPE9eJgEwD8AnLzM0AWwEMMouOO9qAzGiomCxCxUhJRysVlFPAoBBkOJkPyt0Bj8AOHihnJkXiht16oIpyVmQrltBF1JkREQEN3jwYNy4cQN16tTBrFmzULNmzV8JIdsopTkAQAiBXqPab7ELJDwiYmK9evXw1Vdf4cCBAwCAw4cPY8OGDfc4Q+QvAOC2mjqB+jeDIpfAZ/RYsqsqQqOuA9gxd+5cdOnSBcWLF9e6XK4QSPIU/60ghOggkWlWRCBdm2VZD8uyNplMFh5o9p4oiiCETKYBLZpAbKcNgMd6jWoHAHisQlcA2z3W3P5cRMITZ076Kg+R/8Gb7XcBuCAZmKJdilTcAtHfEUC+sSGEFGMY5tSCBQt0TqcTKSkpALB32OD+H4z6cmrSj4uXlvD5/Q8A/EQp9QKghJARAFqUfuON3+PjYqqcPHmyY7FixQAglBCyHkA9lmU38nb7eZVS+Uvg2W4HaRLnl8tk/9h37j/2wCHdyD48fbkXiX2fvYtwrfKF3xNKRc29Y+UQEXfQbRHuADRzy7btvbfv2CGPiooCx3E4depUsb6DB3elgz8s8TjH3AbAwbBnu4mPjY3tcOTIEbhcUi3guXPnkJKS8rHgdNnxvJsv+LL0AciGZERuq1VKOwCYeWGFB2Q4R6lH7nNtVOgMr81h/t8AwoVGi36r4xaAtSxD0gB8bOKFDACbw3RqTyArrDKk1aAqcDzBTwaANQyBDEBtnVr1vCAOAI85gwPwBYBvIKVzfwSpPgoAwIVG53jyMhcB6OHJy7wCIAnAXC40+qV6PkC+O20pJGbr51Z1FrugBNAPlKYr4b1PpL5PK3SGolxRWyC5dAqubrIhuW8fFNiW9uTJk/n9+vWrBmmi0fjw4cOoWrUqjh07VgFSWnY+DFo1XbVixYWkpCQcO3YMn3ySz/JyBMB8N2+RAxgBhrWBkvkAbFyIcbvHkl2nRbMm65QaXURGRgZyc///Y0NxCY4y338354PVa36vvnHjRuTlSeGJFStWcL///nv41atXce2aJJqZmpqKYcOHNwQAq8NZBVLca7teo8pf8XP6cNGUZ+miIr4LOWbbJsoa7OF+ywm137xTHpHw0lUoAU5SiIXJaYePHDkyvEOHDpg/fz7Gjx8PAIO++eYbr8vlurFjx46oyZMnR50+fbqamRfOQTLGH8+aNSvx3r17rSil+OrrWViyZAkAZBgMho6pqalITEwcACDImxYbFRXVc9y4cTh//nzv4sWLY/DgwWjcuDEAXCWElAZwr6iMvH83/JONTTsEclH/i1CjeNW+YJhoiPATiOmcgrvRsWPHylar1UIIMWzYsAE9evRgjh07/j7HkFQ/pbMFpyu/wGzTps1hw4cPQ25uLurUqZPfcWRk5HoA69Qq5d8i4DPq1CKAH8y8I1kEma2QdGv+pxB8aFrLWbKXIaQegBBKaYJI0cfMC4QhuE0IOQlgbuEAMZDvPhuKQinYQRRgBfiKM8b6ADjcNvNht83cSRFizOfh4kKj/QBWePIyv4Lkv79eVH9FQatW5dgFZ7pdcFbTqlX5bAcWu9AAVKylhM9DpBfieoXO8EJyS6NOTc28IJh5QWt8KlyXDWkVmw9KKSWEjFYoFNkNGzbUlipVCnK5HBcuXACkmpsXonXr1jhy5AiuXLmCqVOnNqxfr25/SK7SHxU6ww23zTwdwI8AoAiNEgwGQ9tNmzahVatWCBKrnjy4p6fHkn2CM0QWGet6HbgERzDx5W1I2YZ3583/cWdUVNSIkydPonPnzsGmnuLFi3NXrlxBvXr1gtuyRo/54qHV4ewI4KJeo9oW/CLdbFcAGAYgHJC5KdAigvUsBtCK+EU/gGnenLQv5REJL1yFcuHx1G3J8Xhy0zVceHzwnhP2798flN7Oh8/n8xBCKpcoUQJXr14FgFuQiD6vAbizdu3axOC4R44cidOnT6NcuXJVQ0JCcOHCBcjl8iyVUhm81maz2YxDhw6hVKlSePToEapVqxZUel3h9/vx+PHjSQAm498c/2RjE/WqBoQArX/YBUKAQQ3KYVCDFwglnt9uFuMrPhFZ+UowjPP6jVvfd2jfrtelS5fqiqIImUwGs9mMGrVqJvgpPeunuOL0iTlEEnhy9u7dK9xgMPxoMBjQp08fPHz4EEeOHMnNzs7e/3cNTUEYdZo/7bw1zMw7pgBkqlGnfmUG2OvC6nCqIKkR1sVTckQiY7iqgl0oyRKUYwiJBHAcwHaDVtq3iRdkforWoLQ4gEYmXtgdplMXjld1ALBRp1Y9N9sLGJoPIRma/O8VIcYrbps5zm0z11OEGPPrfzx5mfUhZTX9CWCoJy9zxeusbgBAq1bttAvOFLvgvO4TqRpUHMLBH86C3gWw7DXksYNYASn7akHg/yxIrs/C4ORyufadd95BmTJlkJaWBr/fD7z4ObWeO3cOzZs3h8ViwZAhQ7Bx40a0adNmtBPyYSDEHFi2RwPIIISwAP785ptvMGnSJLhcrhxI7jzUbdLC687L8ngs2UFBJR+AtZwh8qXnyiU4VJDiaW9CchWdAfC9Uq3xAsC9e/fqR0VFISEhAcOHD8etW7ewZ88eG4DwuLg4zJ49G2lpaVi6dGnUwwcPMgDEANiSbrZzkAxMBKT43MJ4ozZfo8ljzX0fwGbKqdsQj7AI0upx3svGCsKkUikrMEhIOlOjkD2pXr50t8vXbpyOKFYy9ofv5mwHkGkwGA6lpKTA4XDMpZRmmXmhC4Aldy6njl605Lcz3/wwlwegNxgME69cuYKZM2fi+vXr+OKLL8CybDFCSClK6T1KqUAIidqwYUOz5PZte23dueeATC7/Ji0tDV6vF2fOnEH37t3Lv3DM/0b4xyYI+BcNvAUg8WVtMiwOxBo0yLY50eqHXfi+Wx00LBPzXDtP7a5WWq6B3i/SjV6RbgHgjosMn7958yZjzZo1ceTIEXTs2BHTpn/dfuhHwzIBqKj0Qj1OAPnxo0djBvXvM/vLL7/EgwcP0LRpU3g8HvTo2dNy+drNsYbQUB+eL5QEJPeaH0A6pFhMmlGnfuYF6OYtRAQGOMHpAeww6tTP6cwA+fESFaSHvTIk6nY9S1DdT3ExsP+gO49C8pFfAXBMr1FZACAQF+lvYXR5kKSpX/qiMvFCaUipp15ILrYsXnC+ASBRp1bteu48mzNCILnLvi5oaJ45Xpu5H4CDihDjA09eZjSAMVxo9KeB8ckhEUWe4EKjizwPhcE7BD1EcT4DP8uC7iPAb39TIhsAYOaFDwD8bAwY1kyrY0i0XrOoYBtCiB4SZUwNAP1WrVpl3L17N5YvXz4EwMlPRnwWN3nqtAy9RsrMC8QDugO4umzJ4ip9Bw5elpeXh/j4eOh0utgBgwYnN2rchNSrUbmhOiS0EyGkQqlSpa4dPHgQS5dKmfEjRozA4sWLMW3aNOTl5UVTSrMAwGPJ5iBlU2khXfddnCHyAQC4BEdEYJwxkO6DfQCuFaX/QgipW65cuRNdu3ZFVlYWOnTogJs3b2Ly5MlITk7Gw4cP0aJFCzRt2hS1a9d2nr58Y3pcTFQDt4+ehmRgXijC57HmVgbwGacP7+vNSesJ4Lo8IuHCi9q7eUsVeF0fKIzRQ705aSF4qvk0Ux6RYLfYhRSDVv1tQAm1K6T44U+UUruZFz436tQzPZbs4Zwhcl7g2NRyufwxAJ3X612jUCjaDxgwQGuz2bBy5cr8xA4A8OSmtwWQpogodo1hmEuEkApJSUno0qULunfv/geltNuLxv3vgn/yyuaV2V+xBsnLFhmiQruqxXH2fm6Rxsaffp33lq7vEgGeJagGwN6ocaObLVu2rKdUKrF8+XIMGzYM27dt7f3R8OG/AbBTStf6KRqwDFlTs1ZNN8/z1VJSUijDsHe+/fbb0VevXlWXKV3aUKp4/DlK6dngvgI1CgpIlDNKSqmRAmVB0QFAiTxe0EG6rqz0l2MJRDkL0eoHU9/MCy6WIcEq88IvByckF89VSL5/C8uQftoX1NkUgepUKpgr/ypDAwBhOvVdAHdNvKAE0M7EC1EsQXE/xcjCbQOGZhiAGS8yNACgCDEuddvMY9zW3O8JMB1SAS0AgAuN9gJY4snLbOHJyyzGhUbveVE/AODgra0YkKEA0igj/12pUb+IMeF1sAJSltqLKHtqchx3yuPx5AA4TQjRGY1GCIIAAIOKFy++6I81q3Hl8qXP9u/bF0wD/0wmk82OjY3J/HzceFOZMmXg8/kgCILXbrcv37JpY/M538wWL50/tzecUfRZtnKVefiHH2D48KclRB6PB5cvXw7qJ+XH9jhDpAfAKkAqMqWEGeC2mZsBUICwp8HKVijVmpepsQZx4ebNm0smT55sBpCxZMmS79LT0zF27Fikpp5fWb1W7cwJX345tEGDBtoqVaqoNv6xin6WMjKZY9EL0r34QnD68Msea+4OjzV3ApEy06Z6c9KuyyMSiiSIBXAVDKv05KR9RiQNnG/kEQnPMS4E4if51CEBlU94LNmVIEltB9sJRCosde/du/ftNm3aNE9OTtYGOBDz739PbnoMgEguPH4rpRSEkDchsRo8Q0/y745/srGxvexLh9sLkVLolBwcbi/23niM8W2qFdmWRpZgRcktl2UXnOveadxgslarMw358KNZe3btarp3796a1apVw85duytWr1zpB6fLqRjywYfbhn8ywuoX6ZCLF84Lb5QqVb5c+fKPSpcu88b8uT/4eZ6HQqHATwsXDbU6nG0gxRwoJPeGB5JrwU0IsRPADIJDkFKWeUizTTcAt1+kIgUTycH3kR/MFQCV/CItB4k+JvjS5iGtjK4adepn0k+drr+lQFvVSrTXIFH9vzbCdGoXgD94wdnN66cXAHxk4gU7gI1hOrX1dQ1NPij9BpQeB9CaC41+bhXChUbv8eRlVvbkZXbiQqOf01px8ZYmfpB+FOShj8g6GrRq0S44P7ULzstateq1XHCFYdSp7QG9+/xRZlodTLReExxf6RYtWrCTJk2KTktLa1e6dGlcuXIFmzdvFgA8HjNmTM0rV67g6NFj0YC0Yq1c6c2kvv36o1q1atF2uz26UqVKGDx4MERRXAKg4+bNm9GsWTPm0cMH9tJlyy9Latc+USGX/XT3zp24KVOmLPd4PIvnz59v3LlzJwRBaPKUDLNQ/IXTsJCE2QYzHoedwNcKfvd7Ho8DAPZxhsi/XnLoFSHFtu4C4Cml4pUrVxiXywWv31/j5o0b111Op1yn08HlcoEhxEIp/QTAb4SQIVaHc/nLmAY4ffhajzV3HOXU3YhHmA8plldksSfjstURZYoKAOHlEcWGvPSCPYvSgeNvHFzVBEEpNY/54ouYnj17/jhs2LBoq9WK3bt3ZwLYDgCe3PQgW8OsAr+hhJD/Npf2/xX8k43NXUgFdEUW2GXZnOi8UMpO9okiutUqhVYV44tqCkEZ6fD7/A6I4uPPP/lQxttsrTp17IgLFy60bdyoIcaMGYOBAwfi7p3b5vbt29erU6cOZs6aFTvskxGrASQvWrgwLjYmpprRYKh25dJFTJ06FQqFApevXPFWqV5znU+kDyBlnFleJ4W4qMNx85Y1cnhCFDrDn2ZeUEN6KP8w6tQPzLwQAslt1tbMC0G3iRfAJaWMsH9jPwSElI7Ua1a+uumz4AVnBQCZRp36KICjJmlM7U02R4SScIkiYYbqDMai3DTxkNwhcgBL3OYn5wnwDSXMZ5TluiCQZBBwOfWCRF8TAyD77bpvHduzZf37LMuu4EKjqZu31BVB2nnBKkTCfh6q0zgADAHQUCaThTRu0qTNvr17+1BKX2dGXxR2mHkhySgxSdyHVLwZTNk+vG3bttTDhw/XiImJQVZWFqxW63lIsYg/EhMTMXbsWAz98KNjAXqjjytWqLA5JSWldkxMjEKpVOLRo0fwer0LAHwfGRk59NatW3j8OD2tRvVq5wDAoFXfbv/u/8feeQc2WX3//3WfrCZNmjQdFCgFWWUJKDhQURmiDD+oiAPBiSLuAeJABRUVFcUNDlRcqKg4AAEFB0tARaUMBRQoUDrSpEme7NzfHzctbWkR/HzX5yfvf6DJ89xn5p57znmf9zlTDzP4uutvvrXficf12NC2bdtTo9HoL8DyVP6lPyr/kkAtGp5Ks6XvT7zb0iFFH07J6gyIekv7kaorMrtyt9W75uEjR44ckJmZOcDj8TBs2DDeeecdLrzwQk444YSOe/fu7XjvPXexYcMGNmzYsPPXX399+eZbbzMD10sptwghLvIFQwud6dbixm6q2Zk9JeornyXNti0iqm+Lle082ZRTsKL6+1jZzhYoxejNGMyvyUQs8zCf28lpCb0EOCBEJ4SwN2vW7NtzzjmnzeDBgxkyZAhSyqEpr8f59fyPR/Q6vud75uz8f7uO7j8d/+SczXnAa0DGvzmUf/fZD5VJi701UOUpL916UvfOx44YMYLCwkK8Xi+fffYZGzZsmA/8Nnny5Ft3797NSy+9NElKObnCr5vun3j30ws++3Ts8OHDycrKYtu2bbz11lvEYrGL9lZ4l7G/GLOxH4lEeTvVhZj7surlbgAifu9lFoerJozj8eujUBP8AcrNqZa7RxsENyQk1QwlP6oa/vcU463u+JUl1/g0R1WuM/2wwgN+PWQCLnfYrHVoxlHPHruEmwNG53wUqw1gWVYq75QyID9ef/313UwmE9OnT18Q8ezdDLxizszbFKny9ADyLRnuT4QQ/du1a7dk3Lhx5OfnU1xczPTp0/FUVDy6Y8uvCamZK2PC0DQhDEtddtuC1PhfDh06tN+wYcNwOBwsX76cF154IRIKhTr+lWxNY/D49evcDtsLJb5gU6BnnjO9thIzQohM1LPeJ6X0pD5b16pVqx6hUHje9t+3bDOQ3Ac8Y3G4Iqn8QgtUaHWnlDIihMi32+3b0tLSzDdfP3bu+Ntuuc2S4d4VCfjaAIMsduezAN6AbvNUlI/KdDp7WEzGMk1QxkHyLwdDyvCcAbSUEqNPu0B9KAAAIABJREFUmrOjGC333Tn+2O+WfTlw4MCBOBwONm7cyKeffhq22+1pp5xyCllZWWzdupXVq1fvlVKeI6WsYWl6A/ppqCZtO4QQP1Xnqho8vq9cAAuAESKq3wI8jiIs3Ir6jT9myimoiPi9pxELHyOS8c/M2fl1DGN1zqb+2B6/PsGeCOj1vRohhMjOzl43dOjQYy+99FIGDRpEMBgMAJ8Bc9LT0z9MS0szVlRUTJRSTqm135XA9eeee+6xqZzNXhRF/ubGekT9/4B/srGp1l4y/5tDRcuHTZ0VEZZBUiVUixYv/PzitatWjvJX+dql29KDXY7u8tv5F41Y0TY/r/fIkSPPmj17NrFYLFuqvuzsrfB2eOC+e8+a8cJz6SiDshOYJ6Ws3/uiUaTyHrnsN0zW+tsYSLYGYgm0Dew3TK2FakU7w92A11RbGy3lAR2LIlYIgEQivm/iXXcVvzTjBbG5qOiyzOYtH8h1pjcaaxdCZKDi5TXYvmPH0dnZOR84bPvDJVHPHjtqophiyWpuAHqaTKbm4ybclXXL7eOMBoMh3L1zh7xWLVs+9Pzzz1NWVsb1143d+cvqbwebM/OqC1mJVHn+BexNc2bZW7duvbR58+bs3LmTXr168fjjj9O6dev43t27JltNxm4JzTjWkeGsKTwRQqy99dZbe65atQqPx8PUqVNZv349TzzxxCuBQODqv3gkDcLj13sClmhSrgSuznOmv/RX+zTNy7PefecdV48aNaqH0WKda7fbP/urfYQQTQB72FdxD3CVJcMtIwHfQ8CjUjM2QxEz0oFyKfkiIkVHlMe3B1harTR9KEhpkPWhRvBUxlwiss0skumJRCIxedpzWR9/9KHzty1bdJQn91nq2McDLtT7vkpK2VDDOSfqPfCmDE6jahRRX7kV+Ixo6EKBfB5VNPuUKadg//vg99qQyVEiqhvM2fl1lB0aMzZVPu+LaTI6y+zKXVv78yFDhhxXVFS0Ztu2bSxfvry6RQFvvPEGc+fOLRo1alTnQYMGcfHFF38gpbygej8hROm7776b065dO5o2bcqPP/7IxIkT+fnnn/tIKb8+6M3+D8Y/1tgAJGaO/galyXRYOlj1sNo34plBKJZTJrAc+MrtsMkdFQEDcCIwWCBbr17+TavXX37JedKpp667fPS121GryOX5brus8OvDgFVZDtvfDdEcEsJ+72VBzPPYb5RyACeKvrqMurmspEkTx8eS8lWUYfLVDuMJIS4SQrycl5dnT03i0V82/XazyWTaDKxoiGothNjas2fPNtV/R6NRdu3atc7j8RxX85lnTzpK+n6KJav56ZqmLe7WrZuhoKCATZs28dtvv61pnp9/e0V5+XdffPEFTz75JDfddBPDzjtvjdfnO0B5N1LlGaOHQp+58/JPB26wWq2GRCJx/N69e2nevDlfff3t6T3bt/geRSZ4w5yZ50+d6wgU6+oNoOeQIUMeHjNmDLfddtuW3377rREe/F+jlndzzV8Zm4jf2zV1XvPDmmUHqlNnoyv8A/av8sySRsvVyOSZSHkTmuEblPjsojTbgSSOlMZbH5S3/JXLbiupv02xJ2ACzkfJLlVjObAk322vMVK+YCgTKftZ4sFsDSmB7WZX7gFe9KHAG9CHAScDK112W6PK29GKPeehGaaJeOQNYIUpp+CA40X83jEiEsg0Z+c/Wu8YBxgbj1/PsSRC09NdWZfUH2fzli23dOva9d5mzZq5a39eWVlJPB6rfPDBhzIXLlzIkiVLrpFS1njtQohlBQUFp2taTR8+SkpKCIfDrQ7S/O4/Hv90Y9MLNeEfcnuBetDDZ902O5lz1EuOVOGfx6+fgpq4NwDz3LVqSHZUBApBDtWgO+ABuRM0uxDK2JkMorWU8sY8l93T0MH+KxDxe3sDeywOV50QQopxMxrY5HbYlgNU+HWDxSBujiTkVyjD5Ky9zzFdOt7xwOTJPY4++mi6deuG3W7nsy8WFx7bo6dVqOZWJlTL2yVuh60SQAghg8Eg77+vtA7Ly8sZP378b1LKQqhraMzuZkkhxLMPP/zwDYWFhWzevJkhQ4bwzjvvMHXq1PKpU6dmf//995SVlXH//fdz5ZVXbflxw8bxwKIsh62OakKkynNPnzMHba7yB+befvvtdOnShRdffJHXXnsNKaViG1WWGFP34CNzZl6NdyaEaC6E+Omjjz7KmT9/Pt98883MH9f//Lndtr/w8HDg8esDgB3RpDytMWOTUme+GdgFvGJxuOLV/WwOxdiE9aAN6E88eh9G8wck462BB9LszoZ6vhwAb0A3oN7jJkkpy/WYbA9ko4xQEpiX77avb2x/XzDUBWjqTLfWTPZRb2khKmcmgAVmV+4he+6pc8pHSRftFEJMrS1dFCvb2RVVf7VBmqy7EOIkEdWrgBdMOQV1lJVTxsYIvGnOzq+qNf4Bxibgq7wP5Hq7012nz08oHB4EbLJZrdVqEDVY8skHPa+56farXO6sM9evXx+TUqan5G4AEEIYUaHP2qiQUh6UtPSfjn+0sQFIzBy9EOjL4YfTYsByw5hX+vr10K2AdNis06u/9Pj1o1EaX8XAnPr1LzsqAk0MyEsk9JBQJRGfGmCHySAejiVl9WSSAD7Md9s38F+EVC+TyywO1+sNfe/x632AVm6H7TU4eIsBIcRtQohpUkp8Ph+5ubmsXPvjaS1btXKzXwbIgaq+TgcS2Rnp1+zZs4da3UV1YLiUckHUs8eImkweNLubJVPHuM5kMj0fi8VWABtatGgx5p577uHVV1/ljjvuYPjw4fTu3Zv777+f/v37U9ihw/gVa37woZ5nEbDcTtSOTF66Zu26M4acN3xIhw4dOOGEE7jqqqs48cQTCYfD7momVqpW6HLga3Nm3h9CiDwhxOpHH320ZZMmTbjiiitKpJQd/UH9fOAzu83aqHrAweDx69dFkzIMvJnnTK+ZiCJ+rwWlnpAJPG1xuGomyr8yNmE9mMv++pcQUi4lEb1RaIZbgLstduc9h3JuxZ5APkrQ1QpITWBMM4rdmhAelOL0QSnJvmBoAFDsTLc2qNiQyu8MRime68A7DTUdawgp4dObUOHcMemh8nyUUd6BMixBgKiv/FakjIlYKNuUUzCp9hgRv/ds4pFKkYjlmbPz59Ya+0Bj4/XMixrSzq0dYg6Fw02BE61paR8fcG3lxScCzSw5LRagOon+XF279E/HEWMzc3QOalLK5tDDaRLwVJ185dDMLietAPDroWNRk8Q9Dpu1pmmUx6+3RHHqJYr9tav+YJVeb9NQUjsnLsWx0WjUtPnXn43PPv3UtFfffLcIlQfqwH6acikwp1pwUAjRgrokB6+U8qCr14jfOwDYYHG4GgzZefx681mvvHTvpHvvDTVpkttv+/btfwL3SikP6HeSSlD7tmzZ4ujUqROJROJ7VBy+CHhcSrm61rhpWRnpoWAwyNKlSykrK+PZZ58lkZSLl367fJY1ETwvpFnnoRmqJ54kUPrZJ/P0s4ee81uO037pSSed9Gzbtm1p3749F198MX6/H7vdTm5uLvPmzWPUqFFbgHcB7bkZM78aOeLi0QDrfy1a9uZrrw7tdfxx2jXXjn0qmUzOW7lyZcYtt9zCmjVrxgKtgd3As1LKZLSy5IJ3P/io5Iprb5j1wAMPtGnbti0jR44kkUicBSz2B3UDqt/8Y/YGlA7+Ch6/PiKWlFUStuU50zelFgH/QoWwZjTUHqIhYxPWg4Xsz7+UAgvSbOl7ASJVnl5Az9T9/NJid/5Wf8xiTyANJd3Umf30+r3AG/luex0pIW9AN6K8nZzUsZZVK0Okzs+BIgl85Uy31mmo1xii3lIHcBGqLuxnsyt31aHsV+X1DEIzPm+KBT8zJmP3mnIKDjhe1Ff+PInYRpGI7TblFNRo7EX8XjtwnogEmtUOpdU3NhFvaeeIMN+c4XRVqyoQCodrpJSsaWl1nnu0vLgjcII5O//1Q7mGfxr+8cYGIDFzdGeUqrCTxqX3qxFH5TX6VFz09KPAPbnO9J8A/HrIgCokXOOwWevUb6Toxhei3OelqJxG7fyH0WwyfRyLx4ccddRR6LrO2cMu+O6eyVM+Bj5pmWXfDlDsCTRFGS/389OnFb78wrMXNmmyX3ln7969VFZW9j9Yn4xU87aRFodrdkPfCyGaZGRklIwbN47u3buzePFinnvuuWellDc1tL2maf4zzjjD3rx5cy6//HKcTidr165lwoQJeDyeU6Sqeake23/mmWfaN23aRM+ePXnhhRfo2bMnLz3/9Cen9u49Nj0zZ2/1thV+3YhaBOSNueqKC7775uu7li5dyvDhw9m6dWsiFosZgDqejaZplX379s20WCyQTC788L13LgoJc9srLh017c8/tp9eWlpKWVkZJ598Mm+//TZdunShsrLy1+uvv/7oRYsWsXXr1l7VBrJFfvPVl19x5QmDBg3iiiuuIBaLEYlE2L1798tSymsCeqg90M1usx52a1+PXxdSyttikp2ZWmwLqbyMxeFa1Ng+ytjINIuQ6aj8hQGl27W4ofxLpMrzBDANzXC7xe4cV+wJ5KDaIdTWgY2iakLW57vthzwZeAN6LsowGlGCoh4hRAtnuvWghbIHQ9Rb2gNFGkgAb5hduQcws2JlO/NQhIF4XDO9ELE4p6EIDQeEI1MMtc+IhtYK5AxTTkGNhxHxe8eKSMABTKumJdc3NiFv+eSQwfaj22H7pOazcPhcYLU1LW1vrUMRLS/OB841Z+cfXDLnH4x/cp1NDQxjXilKzBzdFcWSKURJdDSEAKo+Z4hhzCu78QUHAzeX+oIluc70vQ6bNQFM8OuhoX499ARwZ3UbY7fDpgOvpXIjfYCJHr/+J/CBWxU1ts1v0WLIN998Qzwe59NPP2X600+X3DN5ygJg2I6KQGuU3P7nwLMts+zJRx+cdMf48eMvHDFiBL/9phatr7zyCq3aFt5c7AmchmLbzcl32+uEPSwOVzLi91ZG/N4si8NV0dAtMZlM7NixA7PZTIcOHcjOznY1ev8MBkM8Hsfn83HxxRdTWlrKo48+ymOPPcbo0aNvQemjVeNfhR07XrBhw4anPvroo1lDhw49+bTTTmPqtKfXR4TlYktamuWEE3sVA0uyVKOqEiHEKdnZ2XctWrSICRMmkGY2/Vy+47dbM5q2WiaEOMnj8axYtWoV6enp37Zv3z4ycODAM7Zu3crv27YHgpinI9lbVl5e3qJFC6ZNm4bb7Wbbtm2ce+65tGtf+M0P69Z2v/baa1m0aBHUqqIv3r0no3nz5pSVlfHYY6omb8uWLdxxxx0dAOw2628BPXRCQA8V2G3WQ84/CCGmAFdmZ2cb33733c2nndDzLeA2i8MVr7fdKcDrQJ6maZYU1db3xOOPXXP+sGFP1ql/qYUUO6yLSxN9osLQKhHHF/EEHkAV/c6prTH2d5EKpb0H4A3oI4CTpZR7vAH9aJfd9uvfGdPsyv0B+CEllTMq6i21oGp3tsTKdrqBW1ChvadMOQV7TOqPi7wB/W5vQJ8J3O6y14idYnZmy6ivfDimtM9kLGSKle2815RTUG1QIxKaCNX+YFyKGDHCG9DnuOy23VFvqSEhTCeSEjAFCIXDRwHhBgxNJqpx3uN/57r/KTji2dRCYuZogYp534lS5a1OQBpQ9SVTgc8MY16puWmlvqCGKip8JdeZXjNx+/VQJjAFeMNhszZYUe/x661RrJ7Ewvmfz7ts5Iivk8lk/jXXXEOnTp2Y89573yxZOH+CkeQGS4Y7uKMikItqN90TCF80dJCz90knXhmLxZg+vSZd9AkwWkpZXuwJ5KG8oOxah00CG41CfpVpTAy0OFwNFmAKIc4HLhw9evT53bt3Z+ZLLy/6evnK94HXqj0yIURX4BEhxMBFixaJgQMHkkgkVgHr+/TpM/bee++lb9++JVLKpqntC41G43qDwbA7EomsNhgMF61atcpw99138+WXX36Uk5NzXjKZxGAwjtq0dbsONJ322NTmM1547q5Fixbx8MMP8/HHH+POzNzgqax8R0r5iBDCBDxpMplaPfzg5B0PPfzowMefeKL1jTfeyJKly+45umu3Z1x2W0AI4U49p5MNBoO7sH0707E9ei4becVV6y44d+jLU6ZM4anp00tX/7D+FU3TNgLx22++sefCBfNPtJjNFk2g7di5a0/q/r0opVwEENBDGkpO/jG7zfqXdGEhxBktW7Zc/PXXXzNlyhSkZvzulZkvnlp/u7AezD1z4MBZJ598yuArr7yyWk6G8ePHs3DhwoullHNSRqVJ6p2o35tpc7YheqYwGDwWu/PWvzqvv4OUGOsg4GtnurXCG9AFSlevCyoct8Jlt/1b7KpoZcm5JJOXIZNSyORtppyCBuubvAH9LGAU8LTLbltTZwxf+bHI5EQRC8815RS8AxDxe9sik50NMtrWaDG1CyTMF8alwWUUiVK7IfpENJKIB7Cdi6YNdjts/lA4rAHXWNPS6iiRR8uLrShP63Fzdv4/ThXgcHDE2DSCxMzRJlSiFWCvYcwrjb5Ipb6gCRiHMjhltb/z66HrUEyuySnP5wCkqvYvisfjzYcOPsvRrWvX2zt16sQtt9zybJkvsMUmwws0MFoy3DU6TjsqArYR5w154eQTjr9s+PDhbN++nZUrVzJjxoxINBo9RkrZoNBksSdgRMXn+9m0xEl6UtsEovq8BCoWvxD4o0WWY/To0aNf6t69OzfccMMLFVXBiajk+Xduh22dEOLxsWPHjhs+fDinnnoqK1asYM6cOcycOZMFCxbwzjvvMHv27J1SKTzTunWbER06FL59zz33sHXrVo455hh++uknrrzyyr3JZPKLJ5988oqSkhIee+yxe6SUDwPYbLY3n3rqqZHDhg3j11/3L5j79euXlFIaw1WVoGjnRuC1graF98Xj8evatG07a8333x+0C2KkyjO2osKztHnrdo+iJEmuKK8KVqIYU9Xh1O2Ax5CM9dCQnWKa+QB9NAFZmqBtQvIu+4tqD+gh9PYbr7UfefmVW+bNm4eUkmXLlhFLsu6FZ58+DiCsBzsAA1D5l335LQq63z5u3I1btmzhjTdULW52dnbw07nvfd2psG1CgtSk9JuSkV+MMlZeP+GYsGbeKmRiqRauOiDXduAl1PlXot6DH4F9xvzOB7y3vmCoDare6gtn+oE5q1Qi/2SUSkIU+M5lt+2tv11jiJXtbIpil2UAM6QpLYFSN4ihQmwH3F9fMNQxJXXzMzDDZd8fpo76yq8hEesvErFxppyCnYQr+iYlr2sCF2BPJhEhacIqYmgaESllUggxB7iVtCxfKBy+EPjSmpZWs6CMlhcbUQuNZ8zZ+X9LxuifhCPG5r8Ipb6gEZUwfj3XmV6HfeLXQ7koltWXDpu10YI8j18Xw88756l2bVrf3KlTJ8aPH//CnvLKO4EL7TL8BqpzZaklw11NDrihW7duz5pMJhKJBBMnTmTPnj08/exzRV+uXDe0ZZa9vnRIHaTaVvewOFxfQE34JQ+1Ws2//647emjJ2Nndu3fn3ffnrp3z8WcfAd9ZjSJdCNGxoGlupRDiDatV1Y8mEgkqKyt56aWXCAQC3HvvvQQCgUlSyskAXy5dducZ/fpe37x58/ymTZuye/du9u7d+zOqSdlrCxcu7HbVVVexZ8+eHlLKH1PXeL3D4XguLa1uAzuPx/ODr6zkTqPR2AV4KyTMFexXKX6zduL6oPegynMdsNCS4T5gxZzKGR2Loqprmkw4zMmINS5MDzmdzjpejD+oj0xI9iQkYZS3UcNuFMgMI8kBl4wY0TUnJ6d9Tk4OOTk57Nq1C81oLnrovrs/1uKh9olEskkiKYMSmQDkDbeO79i5a/d22dnZrF69muXLlxOPhjdMvHnMGaPOH7rPmN+50R9vpMpjQWhrEOIYi915WCrV8eIiDUXnPSZ1LdWSRRIgZrbnS4TJHPX/mfo8iSoG/QGoqH9e3oBuRvW4qW6r8AtQVNsYVCNWtrMdSqInArxoyimoE55MhdYuRS0GFtWXx/EFQw4p5TgUSWWyy27z7N+3bCaxkEsI0dZgS+uoadoBhc/1EAH2hjHfIDGdB9xgTUsLAUTLi00oiv6r5uz8/74OdP8f4Yix+S9EqS9YzVCanetMPyAu7tdDQ1E06wccNmtDuRKEENeOGTPmxU6dOvH+3LnLP53/xYJ4PL5x+Xff5g4bevZ7YV9FGirB+1uaM8uG+uH9DOQ1bdr0gzVr1tCqVauybfu8j6MYVtV5nnUts+wHSsz4vSMbCqUJIfKACaNHj74l5dl81u2YY+85vW//s75asuhSpysz/NrstyviiZgr5q/0rPrx1123Xj9m1LRp06xCCMaOHYsQgowMZzOvt3KvXw8NBLZkpNv+mPnMtPNKy8pb3/vgI+8Bu1LChGs6dux43KZNmxZKKQfVPpeidSvH7dtXurffkHOXALz7ztvdzzxzwFWayfJnAsNsTRABhgFzXXbbQQ1sQ4hUeW4APrdkuP882HYVft2sycQZmkxcEhemFQihAyuB3ywGAWqVO626lXSVz9fCmAg/Sjzacd78L8LjJ07q9dZbbzFgwAAeeeQRdu3aRSSk+x9+eIo3KQzfSaPlOyFEpSL4waAz+g1vfVSrYS1atMBgMHD11Vdz55138sEHH0yRUk78i2u6HqF1szj2M6n+K+ALhk4E/M50a1H1Z/HiIiPQDGWc3BzI6qz+25cUhgW6s6Atig4PykgtTw+Vd0ctOoqBGaacgr+sNYt6SwejwodbaxeL+oIhIaW8GJUbfdVlt60GRRgQsfAeZDJPGA0YrY134K2FRBRTOIE5HZhoTUubEi0vTkfRrWeYs/P/22ri/n/DEWPzX4yUwbkNeDvXeaAEu18PGYFJQInDZn2u9ndCiNuBK8aMGdO5U6dO3HzzzTs0Tfu4c5cuzUv27h0eCoeTffv2O/mTeR+vjlR52jc/qt3NnsrKkVLKBYD71FNPHfDMM8/QvXv3zVLKjgA7KgI57M/zRFBFrEtbZtnDUEOD/rl2t0mhsLtfv35NBw0aRJs2bXj22Wf5/vvv8fv96yZOnNhzyZIl5Be0mjDrpRcy4po53KJpk5Pvv//+swYMGMCECRNIJpMEg0HKyiu2ffP9D/NMmiiIJORmM7FsE4m8IGkbUCtiDYjt3bM7/tm8jxyDzh66PL9FwW+oZHYgVwSuBXaYM/M+SdGDrwHKLA7XR5VKv+1hqWpSFgGfpsgWh41IledGYJ4lw11DTU95elZUrVBTlFhpM41kZjrRk/1YfjZoopmGyAIpjMlItjERtctEbIdZEy0BGZNiftySMadr545zpk+f3v7jjz/mhx9+YMKECZSUlDBt2jTG3XnPN3eNv+30+ueUnZ1zbCgcerhly5bb4/F4m7wmTQY8/vjjDBo0+I/f/tx5V73NgyjKcglQaieyEsRgi8N10JqYw4EvGOoL/OlMtx5M5blRxIuL3CiathUQEkga0o5PmKwnJA3m9XFj2nyEtthltx0SbboaUW9pR5RhCQJvml25ydT59pRSXoZiy33gMoaaJZPJpclI1KpZzNSu4D8YkhBLYNoXx9TeEKhwo2qQppuz8/XDOc9/Oo4Ym/8GpEgDtwAf5zrTG0xo+vVQNxTd9TWHzfqjEMJoNBoj8+bN01q2bIndbqeoqIgbbriBP//8s/TLL7/MfeKJJzitb/9Pr7l27Brgl7ws1wNvv/12d13XkVLSp08frrnmGhYvXlwTuqqNHRWBalXf6iLW7w3IL3LMib4Wh6tGPFMIoWmaFpw2bVqdpd8TTzzB7t27WbNmDZdccgmXXXX1pPHXjNodMGa82rl9200jRlxc2KLF/sLokpISpk6duq4qqM8CZljClS2AgWZ3szpNw1JdGdNRHltLoAXITCfhoREMO8KY/7CIZHOTkAV6UvyYRIsYNZobhGgZTcj1EnQBdqMmCgEtIeX2pKQ6tFF7ld1YAzoJYNfiJ4aSWlECrbakfQg1ie1D6XrtcYVLTZZk+EyM5tOIR74Wav9EzOLcHUtz3S1BJGGdJkQLAWGD4OfMzMyrpk6d2ik/XymHd+vWDV3XeeCBB1ixcmVVeVnZvmQyuQMYKqXUU8/h6tTzWggU9uzZ886ZM2fSo0ePX6SU3WpfRIXK+zUB8kA2sRKfHsI0jgO9DIlSdajWxvMcipK4LxgaAvzgTLcect6lMcTKdhpRIc8zgCVEAt8LZO+kMKTHLBntpdBsAqRIxr8Tyfg71iatDikMGPWWOlHU7iTwutmVG/EFQ9lSyidBmlzGcFfqSuwcDgLJRPL6eChyPXDKETLA4eOIsflvQqkvKICrgA25zvRG+7qnCAQtfvrxx3tPP7X3+hYtWnSu/X1JSUkoFotZ161bR69evXjj7XfPOOPMsxBQdtVlo6YuWbzozC5duiClZOPGjQQCgRdR6rEH/THsqAhU9ysZbBTyxLhkAYhPqvM8QohzgdN69erVedWqVdUhk11ms/mJO++8kwcffHD17nLvk1lCd5oz814RQhyX6XaP7tzl6A5/bN+2c3dxcQUg77t/Usm4O+540xKurABuMbubTf2re5fqqPkcME0a03agunP+ZHG4lnkDugMVbtngstuW1t/X49cNqEmsHapI83N3A8n6xhCp8twGvGvJcO+NFxcJlEfYtf5hgIXJ9CwbcL40WH6QQlwEwoRmqEgIrZeGnCVgYTAhnMBxjzz04ID5n31ygpSIXbt2Npk8aVLzXbt28cwzz2C12Xxvzp7tfOSRR/jhhx96SymXp57Bhvvvv7/z77//jslkYty4cTz33HPMnDnzmVQivOFr8HtPQcrJlozMfvW/q/DrGirUVa2N11DYqxoxYJ9BcExSMtftOFAn7XAQK9vpQnkFR6PadC+uRUWuA7+nTNNkfKhEDBBK3FMEc99hAAAgAElEQVQaYqE/jPFQGSo39GtjOauot9SEIrKYgPdDJkelWcTutmqxO2i8rOFQUAy0JC3rb7dq/yfjiLH5b0apL/gvQOQ60z9pbJsUTXpSpcezomWL/Po06SqLxbKnTZs2aRs3bnxQSnlfhV8/CTBlOWzfnHxK79y+/fuPblnQsnPXbt02t21f+IzbcXhhiIjfWxhMiC7+hOEooA2qPudzYG1uuvHK2nI1QogHga6PPP7kF6NHXzU3Q+pDzJl5r9Uez+PXBwJHGQRfaJroaAlXLgDuRrVzPqgsSbSyJBdFMb9JGtNORrHEZlgcrniK3toGeM1lt/1lCMPj1/NRIURQ6g2VB9s+XlzUQsKZSatrgIgEVmrJuB/Vw+Sn+hNbxO8VEoYi5Vhk0onRMg8hVgAr42gZwMV2m/WF+seo8OuiR9fOjzXJzR0XCAQ47sRer89+bdblGzdu5Pjjj8fv9zeTUu4FEEJ8PWDAgNNOOOEEYrEY33zzDT///PNGXddPklI2+owjfu+nyOQrloy6el6Hi0q/bheCSxOSH1CqAXWav9X6v0C1n6j2lkqzHLaaGqBY2c6eqDqUODDblFNw2HU4KfWCnkjZ2hAPtdUSsRxjLLDdkIhWocLDHxnzO9d5J1KyOCOATKNZDNU0rf/hHrceAkAf0rLW/Zvj/CNxxNj8D6DUFzwexWh6OdfZeJ8Qvx4aBJwFPOywWWtWkUKIlsBRwHIpZRygwq+fCiSyHLaagklflb8wibhUIoIIsQ2Y73bYDomSWZsokMrzDAaOM2m0iyV5GviqOs+TuqZLXEl/BFhmzsw7gOzg8etWAa9LeNEe83YG3je7m5XV3642opUlxwBXSINlCkKMBL6yOFzrvQE9D1VD8aXLbmu0x3xj8Ph1K0oSxQK8W22MU4ntc1HKEQKV81iQyGgqUTU5s6qZf9UIB/35yOQkJIUI8QtCe05EA3EBXWt3/QzooX5A0G6zHuDVCiFsKGmaKPBDZmbmn6effjp7S/at+nzRktertysu3qXdfcf4nJXLl6d7vZX+004/3TP7rXdWFTRv2qgAZiTgMyOTa5HyGEuG+2+vwH3BUCYqD/JxQ9Tm+kiF8ZqivKVcZNJmSkRO0mSyvRTa9pjBslwKLYwyUuXsN0yVf6choDegW4FeQBOSCaMp6u9iigZ2a8lYMHWMJcb8zrsApF5uRuAVQjTKPnvqmRd55fW3EEJwdOeOvPbSs9RnQKI8vcdIyzooOeMIGsYRY/M/hFJfsBWqwPLpXGd6ow2SUpI39wI+YLrjILpbFX69HxDIcthqvKFIlUcDOuqYk1JoZ6BWo3+gwkmNGp6I3zsMWGhxuOqsDoOh0NhyPbELpYllBtYIWJRmFKe6kv4Mc2ZegyKdfj10AbBURIKj45o5M6kZX3Q7bH82dvxoZckQoKs0pv0BpAGvh4RZoCR+zMDbLrutwYr5Q4XHr6ebIv5xhkSojTEWWqORDAHzjPmdDzCWkSqPAO6Q8BJGSx5Sno1M9EZiAKalOZx15ICilSVdgebmzLyF1Z8FlEDrS3abNUgjSGnLXXV6v/7nPP7Ek1/17H70U9XfVfh1C8qz64jKZ1XTkItRPWA2AbtqT9aRgG8oycS1lgz3wL9xiwDwBUPNgW7OdOuCw903VrazEBXCSkcpDKysHSpLhfGyqNsQsLEwXv2GgI16s6m+N70AF1IKYyzQxRjVdUNcL9EsaTkGh+suGmmUuHv3Xk7pN5iNP63AarVywSVXMeis/lw+6uKGNt9KWla7g96EI2gQR4zN/yBKfUEnSsTvg1xneg2jJyU5fj5Klt8F7Lj3/vtXjr9jwlDgbUcDq+NqVPj1s1Bhix9rfx6p8hQCJZYMt8/j19ugamfsKMMz3+2w1enrHvF7HUA/i8M1r/bntVWfU3me4w2C65ISaSFuDWO8u2WWfWvtffx6qBDIt4Qro4DN7G62yOPXzwXygQ/d9Xr2RCtLxkihuTGYI8CHFodrhzegd0AJRM75d6rQ48VFNpSRry7S3FjlPOoX4GJUWGeOu94kFtaDBuAkpOxFIjYUKEWIIgEvWxyuRs8lWllyImAxZ+Z9AxDQQ3bgKrvN+vRfnWeJL3ipSeDMykhvVFurWogznpQbgIKKivKjP3hvzim7du7MPKp168pRl12+3W4xnavJpIwI0wRUe4IDWokLIZqhmHXF9Rv0+YKhdkBzZ7r169S2FhSluTZ163cpZY2XGivbaUJ5amcCvwOvm3IKDurFHgpSxraxhoD1DVQV+w1TmWKi0w1oZ9WivSxa4loaUXbfvXsvJ552Jj+v+YaMDAfnXDCKm667hgH9+zS0uQQMpGUdmTgPE0eMzf8wUsSBEUAw15k+D0AIcWuPHj2evOCCC3C73WzatKm6MLJ3VVAvRK1sH3LYrN6Gxqzw60OAnVkOWx3p+UiVpwAIWzLcNfTXlETOYJTh+RPl8fih4ZqbhloMlPqCI1xJ/9ywNNxaKa1xVB6lApifbhI/WIzaFZZw5TKgl9ndrEbsM6ULdwFqApnjdtjKIpUlk9BMDjTDdxaHa16qAPByVAX7Jw0V/h0MqaT+6SiCgERJ2M815nc+wJv0+HUXynMKm4T8zKRxGtABKTWSCTtIs5DyR5BtgacsGe6/7DcSrSzpC/jNmXlrAQJ66CTAbLepybsxlPiCbTTob9TEr26H7QCVAqir+iyEOFXTtK979OghWrVqxZYtWygqKtq8ZuXyXYUdOrwYFua9KNHXmlbir896teW9d915fXq6zdm2bVs2btyY7Hz00Z1WLl++JTV+NyDNmb5fXkkIMbdr167D0tP3p2vWrVvnicVizaKlO1qhjHYTlEzSYlNOwf948rzCrwtjMpYloL0g2UEimgmkGTAJKY0Gg2wrNcPQNJEQjbGdn35uJvdMehirNY0B/U7n7ddnNryhWqC4SMtq1Fs9goZxxNj8L6HUF+yKYk3NaOKy33z66adPsdvtVFRUcOmll5KZmclFF120TErZ16+HzMBdqJXdlNrtk6tR4dcHAxVZDlsdLyhS5ckF0iwZ7gOEIj1+/SiU4ckAdqQRqzIgf7Q4XDUtCg5ibAzAXHNmXghgR0UgGxhsEIxMyuT2TEIGD+k3tsyy1+njkzquQMqRxmT0BpMm12pCm2JxuPZ6A3ovVCjk9dqV33+FeHFR09R1VE8l3xnzOzco11MbYT2YBwxOSlrGJIVIWWwhHhZKdfg9i8NVBDUhtYnAk5YM919OMqmQ4B/mzLwigIAeuh54y25rXHa/RC1CrjFrQrodByoYwwHGZuq99957R9euXSkqKmLgwIF89dVXfPTh3H3Lly5paslwH/DDFkJMuu222+6//PLLadasGf/6178YMHDQAzfcfOtuVHFkHNjtraw0Tnt8atctmzblr1q54tQ77rgjo1WrVsRiiuB46623snnNt681yckuAuaYcgp2CyE6omjatbGiWgniYBBCtEI9Px14X0qpetJ4S9NQKtAD2d+gTFJXVqf6/zFU6LkURVWPocQ2YxGD5c4Ypu5WLYrNcCA/pbLSy7CLL+e9N1/B5XIyfMSVnH/e2Yy8+IIDtgXCQAFpWf+25/ZPwxFj87+IUl8wHbh2weefrrti5IgBqPqX7A4dOrSdO3cuXbp0qelgCeDXQ2koVpeGMjp1JvIKv94bsGU5bHVk6iNVHieQZclwN1qM5/HrrUAOMiBPSaCtBb4DfrSatDpstFJf8CigqSvp72zOzHu59hh+PdQNKe3msPeMEhzrQPRFJeXXAp+3zFI9eKKVJW4pDHOlZnxPF5YIiumkaYLVLrut0R7ztREvLmoOnI2acEqAz4z5nQ+6qg7rQYHyEs9AdWctQSa/EsnEaUC3BGJHGKMBRClKjXt/UzOVC5sIPGHJcP8lEy5aWXIBsNacmfdHQD236+w265MH26fEFxxj1kQSeMXdQNK8nrEZZTAYZicSiW+BtZmZmbfv2LGDrKysRDQabVDNXQjRTwjxiZQybenSpYaJEyeycuXKU7wBPQDgTLf+nNru5d69e4/u06cPFouF1atXs2DBAhIJNVFfdNFFc5976dWFqPdQALRr1WLSOUOHNqv2gJLJJLNee81fvK/89oNdc3lpqenYrp0fHz58uG3Tpk307XP6H3ffdVd1mDWWROxKCMMvEuFDNNpuqqZWirqGCEDaRPREKbiyMc/mgw8/4YslS3l1hop2zn77PVavWccLTzco4hwHnKRlHSnoPEwcaTHwv4hcZ3oQmDZoyL+GDj33vDaVFeUnDho0iOOPP54JEyaA6hVfA4fNGgbu8+shGzDRr4cSKKMTAchy2L6r8OvdKvz68CyHrabHiiXD7YtUeRKRKk9bS4a7Tn6lGqnk/QsRv9cXxPwh0BsYH4knjw/5dR1Y7HbYyoHjzTL6IfWK4/x6yAL0tES8DgRPtXQ7fMDnqTzPccDNOyoCWSbiMZfB1NugaZekZWRuCgf0wVKSLiGRlHT2+PXVboetQQJFij02AmUo9gEzD6YPBhDWg0bgJOBE1OS4CXhZJGItUSG0a4C5FofrTVIDe/x6HnCtx6/vAz5yO2xxS4Y7GanyPATcGanyvGHJcB+0QZ05M+/9aGXJ5dHKEt2embcvoIeWBfTQQLvNuvAgu/kTUv5oEOJfqLBUo5BSvimE+FhKGRBCXNOmTRt27dpFenp6owoKUsqvhBAOVD+l0wGGDR/eEtjqTLfWVkrObtOmDZs3byYWizFhwgRatWpFcXExQgjmzJlTMGfOnLeklDX1S5Uez6QHH3yQKVOmkEwmSSaThEMhPcthq7MgiXpLrahneDIgxt5xS8+zzz7b9vDDD/Pyyy8zadKkNx95dOr9B7v2w0UiGMxNJmUSgzDUTT0pFLTIZ/Wadei6jtVq5atl39Lz2O6NDaehCn2P4DBxxNj8H0CuM/2T71evLrCn2y5cu3YtLVq0YODAgcyfPz+/oe0dNqsO3OPXQxnAZL8eCqHo0rEsh+3nCr/uq/DrVwGvZTlsSQBLhjsQqfLsjVR52lgy3AfTD6tMJ2qzOFxLgCWhcHh0KJZcAZzj8evZmuBoo5Qtk4h36u13sTlcGQe+MLub1YSLUnps3wPfR7zlE+JwVlnC8pZIiDsNlYHmAl6LJXmxZZY96VHCl1d6FGPp1WrPIl5cdDqqW2kCeNeY3/mgdO6wHrSj1JMLU/usAKaJRKy65cIklNGZZnG4DghJpooXn03V6Yz1+PXdwCfuDHcCeDhS5RkbqfKstmS4/4qG/QYwJlpZ8q49M++ngB66OqCHcuy1OrnWw3cJSTeDoEkj39dBytAMy87Onjlr1izGjh1LQYv8BkNwtfaRopaHkJ2d7ag2NLGynQLo+cHrL/mef+X1zUWbt1BWXtHGZDKZhg4dyo033siqVasIBALHL168eCQwq/74M2bMoFa05JKotzQbmMD+Nhdh4EPgdUtmkx7Z2dnfz5kzh5deegnRuOdyWEhR3U8SMtlPI9nenKSbAQwJJA15Nicc34Pzzz2bY3v1xWg0cky3o7nmqksbG37zEXLA38ORMNr/AQghmqAq1aP9zjjztGVfLbknEAiQkZFBPB5Pk1I2SpUG8OuhLJQIZBUw1WGzxiv8uhuVvH0lq5anEKny2IDmtdsV1EbE77UCAy0O10dQN2dT6gvagME2GTkhakgrRdFw9xgEFea43sSQjO40u5staWBME8nEbGTiz5DRfg9qZSuqIslFUtUVHY+KsX8FfOUwawmRiI43JiIdLaHyFRp8a8zvXFR/3NoI68GmKMZdLipmvyjNlr4l4vdmokQ626MUBd63OFyHJbmSau19HrDa7bCtSt3H84EqS4b7oJ0po5UlBhQDcVbU4oyhdPMeb6yVdIkveK1ZExHg7frKB/XbQgshznG73R8vWrSIhx56iLLSfTsMmtbmuxUrQRnn0tqssWoIIZYtXbr09IkTJ1K04dfTyrZuMO8rKxuyYePmvKM7d/wmNzt7jjm35eODBw++qlu3bvTt25e77rqLtWvXrrjppptOPuqoo7j11lvrdG4VQlTu2rXLVV5ejtls5tVXX+X9OXN8P63+9s0Mh+Nhsyt3b71zsAA73n777SbTp0+nf//+WCwWJk2a9ICU8rA8G49irR2HlCdoJFtpMtnEQGK7Uca/E+qdyhcaGw1GYTpUPbRGEAUeIi3rwX9nkH8qjng2/zfwQmFh4Xm///47Xy1ZxKBBgyguLkYzGKrG3T7+L6VWUgrSE/x6qAnwiF8PlZoNYlo0IWcBV1f49beyHDYvgCXDrUeqPLsjVZ5CS4Z7S/2xLA5XKOL3XpxcOGke0JlOQ9uH7DkfGvZtnEDzk9sCS80ymml3uF8CqPTrbaVM3h8VJmvCZFuLX2+F8iQ2ux22ZKSqsicy8RDJ+IshU8ZWlCr2HJfdtsulhENmA7N3VATSRDJxhiNeNY+otID4yW9x3R1zHjUEOB6/vsmd8tKgJv/SCZV/saIKMj9Ls6WXpgzm4IjfeyXgBT6yOFwN1gMdCtwO2w7gKY9f7+3x67cAb7gz3HMjVZ7TI1WeEZYMd30vrwbmzLxEtLLkFeBqc8Q3I2pxfooqJP3oIId8F2WQX29sAyHEyS6X6+OFCxfy2GOP8cknn9Cm9VHp27b/8QCQ36ZNm0v37dsnhRCtqunNQohs4GVN03pWj+Ow2z8ccfX178+b/8V5hYWFeUVFRR2llC8C8WAwiM/nw2q10rZtW9auXXtM165dq7vC1hS7Rr2lWk52dkW3bt1cHo+H7Oxsli5dyq+//urMKWi7vFoRoR7uOOecc5rs27ePtWvX+vv37+9IfX6fEOJNKWWD4V4Aj19vjiKStEZKg4FEgUEmAiYZ+1Oo9+kHsys3GfWVt0E1NgsaTXwhhDj7IPf8UBAD/i1Vhn8yjng2/wcghFgyefLk/sOGDQNg586dTJgwgUAg+Ojqn37ZB/wKLD2Y+kBt+PVQPkoCfXc8KZ9LSq4AFmY5bMXV20SqPFaghSXDXScvlFw4KS8JkzUlLyJj7QaYkvnHWrRdPyS0Xd/vwpU/U7Y8aZE5K/8nAH9Qv9oc8eZZ3M0eBPD49SzgJJAdDTJ5qiYTRyURjyQ1U6YQimpdn84cLy46A9UOIQ68s9vaMoLK8wwGsgXssRqFyaCx3arxpxA1+Zci4Ms0W7oe8XsNqIr3fqgV6HxgrcXhkqlunl+hvMfqWo0YcJ2UskEjJIRwAvehcgttUTmiMyqqghWotg4VwMfpMlzNwnq2IQZYNaKVJXaUCsLMqMU5CvjSbrMekPcp8QWHA0vNmjjPXS/fUY8g8OyTTz55w+WXX05R0X6n74wzziAcDv+2du3a9jfccAPff/99bynl8ljZzoJx9z4wedP2nZffd999HH300ezYsYMNGzZwySWXeLKystzbtm3D5XLpqPBjS+AYm832bLt27XjjjTc499xzGTduHLfddhuRSKRPpHKfHeU9xx554qnfHnz08S/j8fgaIcTLU6ZMGV1VVcXUqVMnA+tRhbqfSykDqfv73ddff31KOBwmEAjQoUMHNE3j0UcfZfbs2Y9KKe8C8Chl724o7zcdQMikz5KMWAwkYkI962VmV+52UG0EUs+sL6rx3QdmZ3Yk7i8dazQZHqeu5M7hYivQ/kgY7e/hiLH5PwAhRE9Uc7XTUZPhOmAG8LaUUpb6gt1RP56VBxP1rA+/HmqNmlD/jCWpAH7JcthqZqZIlScdyKvO4SQXTroQFYc3oFhkJI1pJFqdguHP5WjxMCh9qG3AmcHTJnQwRXyDNJl8wOxuVkMJjvi9LZHJiSSiEd3o+ATE2VJ5HgkUS2iDNbivxBTXT0j9/bUxv/MBXhao/Es4IS+NJBiUkOQYBAghlmqCyQ4R01CezYnV4wBLLQ5XHaUBIURh27ZtN3/77bd4PIpRvWLFCsaMGbNISnlWQ8cVQlzZp0+fVydPnkxhYSFXXHEFCxYsOE9K+TGAx6+3RXkoH6fLsA8YAzxmyXA36olGK0uygXPiRuuspME8HtVKus4PsMQXzAV6mzXhph4rrT4bzWazvW4ymerEhaqqqrZaLJa2y5Yto3fv3uGdG9Y+ke12ZwO7Jj8+fdtj05+bY7PZarZPJpP4/f7yAQMGZPfr148JEya8D3Rv1qxZ+z179vgBx3XXXceZZ57JsGHDSE9Pp3///vy8/idP0bpVE4BXLZlNCux2+58AgUBgZ0ZGRsHSpUu5//77mT9//hedOnU6KyMjg9WrVz8kpbw3dX9n5Ofnj6mWhBk7dixms5nJkydzSu9Tn331jTerF0YxYH1aIlRqJHEi6r2sRDVO298YzVduQoU6C4HlwDKzM1tGK0usqGZsK81W0zOoBcffSQ4FgQtIyzpsVYUjUDhibP6DUOoLnoyaWBfnOtMPWczQr4c6AFclpWwST/J+lsP2efV3kSqPC3CaVjxzMUomx9bYOLUQS2pGb/iE67Ybk9Eb0tx5NcKEEb/3LBLxy6RMrAibHGZgjctuWw4QLy4ySxgVN6W3jJnsrrjRWowQEpU03gD87HbYPKn8y2AUJToALE6zpW8BqPD6OiSkuEMi+iJICPg0nmRiM7cjCCCEOAPVukEHJksp/xRCFLZv337zzJkz6dOnTlX4B6heNU5gM/CUlPLX1DhDW7RoMc9sNvPII4/wzjvvMG/evBpjAzVFqucCWUYZe9tC4mbgdUuGu9GcULSyJB84LWpxrgBOstusB4TgSnzBsWZNfAEUuh22L6o/byBnk7508cJeDkdGbo7bNXT9uu+nFbZte+rx/Qc/6nK5DKec0OOtN154eoIpp2CPLxgyAUNddttn1K3El8BpTZs2/SQQCOD3+zsBRV988YVo0aIFQgj+/PNPxo4dS9fOHX/fXVLabubMmRx33HEbpZSdU+dxTLt27X785JNPkFJiNBp56623eOihh7ZJKT++++67x9lsNiZOnPiUlPI2gFmz39J+WLumd7fux3R85603L+rUscNpZrOZZV9/882y71ZcY0mGt5pkvAf7jcMfKA+mDtsu6it3ASNTz/BDszN7c6173R9lfGaYM/MShCu6Aqs4tHe8NiKoUoABR7yav48jxuY/DCkFgv6ofMUPwIrDCK/ZpZSPSmgl4MmMdCXRH/96+kgt5J3JYfwIowW9krGjTtWIRyc7MpyTIn6vhpTjSMZOjAnTt3GDJYQqzozEi4vyUXImMWB2/Wp+jz9oNQr+BZwrIQOJPwGbQPwCcr2NWJpQxicLFc763OJw/b6jIpBm1rgeVfQnVq3+fv5FQwdOe/HFF/nyyy+ZM2fOZCnlpGpjM2/ePF588UX++OMPFi5cGD/11FONt9xyC1lZWaxevZrJkyfj9/uPk1KuE0JoKMP+4Jw5c/rOmTPnAGOz//z1TFRo7cd0GT4aWG7JcP9Sf7uae1dZ0gE4KmpxZgDr7DZrHXZgiS94NfC6WROX1w6l1Tc2sbKdrZJm21NEQ/swWU7TYuHngaUZBe0rw+FILvCLlFL6giENxcJ7rzFRzVRRpi6l3CGEuAyVWzsaoG2b1p4B/fq8/uLLs/bccMMNT+zbt4/3339/gpTysdS+RuB5VI+aTNTk/AGqJuz1Dz74oO+NN97IpAenPDT8wouqVRgkSsHil5bNmtgCgcBrQgjtwfvueWX8LTdWe8DrSOVf6tw/FSo7kf0N0942O7P355AqS5qhaO0rzJl5tSndEK64DHiBQ3/XY6g6rm6kZR1UNfwIDo4jxuY/GKW+YE9UDck+VKO2Q+rbUuHXXZrgUYMgIuLhKuuq52/RZOKw+nwkNSOx/ONjpt3r3kj0um4qMnkriWhGyGDfiKbNc9ltm+LFRScAx6J+rPNq18Sk6l9OQfXUEaj8y1ep/ItZwklJxHkJRH4SLZJAbAaho3Il64EtboetJnS35Y+d9nMGD1w//Pxhbc4++2wWL17MizNmzijetXOsEKJd8+bNfxs7diy7du3irLPOwmw2c8EFF9CyZUv27t3LlP/X3pnHR1FkD/z7eq6EkGsSQrgPBblBERFUxGVZQeUSVAS8Fq9VV/xhXNxd1HjseiveiKC46oqKqHgEXUFcDxBBUQFhQQhnQgg5yTWZ6fr9UR0YQhLCkXDV9/OZT013V3e/qZmuN/Xq1Xv/+AdOOuu3lVKXVVxXRN6aNWvWpTUpmwpydOqH3pGqtMCCdF+Mf351dQO5mecpyCn3xQ4CHmvYIHL30vbM/KL2QEuvJW3Clc2u/NxzXKHyvu5QaRO0c0+67WvYCaWWIbLGF+P/vPJ98otKBK0E3o2NiqwxvcNu2XQSsim2bbsty0rxxiVtd9piiNvtfjsUCm1XSnWuWOkf9vk9gbKytl6frxt6zkdGDR960Vf//bJf4+TktJ9XrRntj25QUOleFdk746g0/7KPXPnZLdCmsoboEcpCb2zibkUUyM200OumCoA3vfHJVXdupTuvQJupI6nZpFaCnqf5AxEJh5TLx2CUzXFBVn5RE2A4+t/gnKTYqP2mAnai746NWjXnfBXT5DLEcruz1+Iq3CeTdZXkFJbwv607aRQbVdp86B3zAt6YU5TlfsId2PVyRPGOYejAiT+6m3de7EQ2btGuXbuTZ7w0rXWvXr0ao50BvgG+k1C5Qk8Cn4c2nZWjO5MvfNFxpXvftzgBna6hPWGTval3Te7+xfz/jEtNTWXJkiXExMTw04pVKx599sWvg8FgzoA+PTts3pi+2bbt3yzLemj16tUNhg0bxq+//noF4O3Xr9+MBx54gH79+i1SSvWtuO6BKBtHPg9wpUeVt/AQWh0R459VXd1AbubYoMv3k+2O6NWwQeReOYEy83bd2kCVuzyh0hi3Kk8ArJDlCdqWZ5knWDzL06hledmu/JbARdihM4GrqnJQyC8qGQl8FBsVWaP7PICzJuZJ9Hcz0b+sLy8AACAASURBVBuXtM8/+Q8+Tks4s0/fVh6Ppy069por7HA52tz1M7CxYr5JRDzhyfwCeVlt2ZMtNgf4LHz+ZS+Z8rMboH/bbdCBRd/zxibuszYqkJt5AdqRY4Y3Pnn/cctKd/YEXkS7iHvZE6gVtOnWAp4G7iMiwSziPAwY1+fjgKTYqAzghaz8oghgeFZ+UQKwDUhLiq16RXlCdAPbTkt9V8E0yVnnVkAosQNlie2Q8mI8W5chquroL/lFpXS87lnadujC2rVrI95t3O/0U88d3NwKlo6OKN7hAT6qyCXSo0ePKz0ez9SEhIRIv9/PHwYNLoyLjW2cvnZ1C5QaAOpydNDMEHritxT9b3MUMKqsIGevDrQqV6L0jRsjnn/26bGffvopV199NZdfrkPDx8U0TIzxqEGr1q7xtWzeLG7EsKGlTZo0yb/77rtdwWAQl8sF2hzzp4yMDGbMmAF6crki9P8YdHibCi4WkU1KqWXVfRfOQtQZOYXFbULKusUuyO3sQt1djafav92hsj8FLG9WSf7OYe5AkR9tuvJEuBp08IWKXy3xxkW5A3m3eRq1tIsdM1qD+MSKjvtClPoYOLMaRTMY+HR/iiaQl9UceAQoKhf3rWVWRDTQHR20NcGppgDO6XduPtrLaynwvj96/2kfynK3hwJ5WWcAPZ1dG4DXvHFJVcoV5lHWDz26+MAbm1ile3kgN7MjemT0mTc+ufaT9xEJyyjd2Qs9sh4EnIv2mNuMTsP9kYl/dngxyuY4wlEsswCy8ouaAWMdBbQaWJgUG1XZjDLAcR2NEMCdvRp39mpsTxSBVmeRV1jMzX+5m1W/bUZEmH7bUPp0bMEd0z9jxGVjmTJlCmPGjCFzydxoq+95nwv2uKC/dRbQOVhcNBKIDIVCFz766KOR55xzDh07duSkk06KXvhZ2lKUvRPtobYOuBdYBRQeTMKvDt0SpqakpDBnzhy2bNnt3c1L06YlvzRt2u9F5LThw4c/IiKRP/30U/xLL71EVlYW2zIylNfrven555+XOXPmMHv27ODPv6yIyCkoGjR6zNj4xd9+8/qll15Kx44dufjii2nZsuW4p59++iy0m3aN+KMbbMgpLE4JKMZ5CL1fVlAwNiYmZlf5jk0WOrx/T4GeCmK9dl67oCcqX4n1sCj7DU+jloHS/KJupa7IaK8lkTVEUm6JsnsDH1Y+kF9UchawIjYqcpfjPlwRqr+x84oXZUe7VXCYEl9xUNwfIhJEzz1tRyuUD4CcquK07Q8niOZ5zmetmH+Z6o1Lqt49PD+7YvFsJHrU+1C4mWyvurmZUei0679545OnHKh8AM5k/2LnZahjjLI5TkmKjdoKzADIyi/qCFyflV9UsTblm6TYqHL06CG68rlWeRG+9K+Y9Pj7DDznTN6Y+gTBXbkENixh/vL1fLpyBy/ddjHz5mlHKbcQ4XWpCFwREwgF/Si7OaiQQMIfrxzXMiUlRYVCIVm/XpviT+naY6BSqnb2utrRsW/fvrRr144bbriBpKQkLMsiPz+fRx999C6lVPmyZcto0qQJbdq04cMPP+T9999Xtm3vsCwrqUePHkyePJnzLxy6wB8bU+ijfPyVYy9v+uUXC8jIyOCxxx4DIBAI4Pf7o3IKiyc69w2395egzS9FwC6UXeIJlcW77PKGotQG5fau3LVz+2q3uDYCW2xx/Vzu8r0UcvmKvaHSZlaovE9ppL9/0GYzhcV4hB1BxQWAnVNY3A39r7u7wNCcwuLZoKLcuLqDDAzierOosDg84GUS2ryVkVNYDNq8td15rRdlf9fALv6b6HmSPpU9vA6WQF5WAjpMUBzaSeALb1xSTbHgCORnR6EVTEtgIzDNG5tYrRkskJtZ4X1WAjznjU+u1TyU4chj5mxOIBxPtg7oiXm3f8mz91nBksSq6hYUl3HqzVNZ9/KtiAghXwx5safQvM8I3nr7bf7+97+TmprKG2+8wZhBZ9lDr7zJwg6ViR1cBvI1Ir8A3wIbImLiATZs2LChVd++fcnIyGh2OJWNiNwA3IPTyd5xxx3ExsYyefJkgNwJEybEz5s3jzVr1kxjT5bL4XfeeefwJ554gpEjR5KWlkbz5s0pLi1btWDxD/+1bTv37ykTMt759+sFrVq2jBk25MLfxURHJ54/8PfbT+3RfT0wxRfj31a+Y1OEgvYK6Y5Y3RSSqEQ8CrFsce2wLdeOkHiylVgFLkJjbCylxHobbTbcjcsuPxmRtra41yk9qiCk1EBPSfYad+GWP3jy008Jxp/cONi4m8uduTzPs2vrAhXT/N8ktB/ni/GPqLhOflFJMtA+Niryv1W1VSAv62p0UrrJ3rikGkMA1YZAXtZJ6BGMhz3zLzV6bQXysy10oNez0Mr5fW9sYo0J8gK5mY3QHmaFwGve+OR6z5tjODSMsjmBsdNSy6lmdLv8t0xufOZDOrZsxM/rt3PayU3weVwUJXSiTZs2PPXk40yb/jJvvPEG5dv/x6xZb6/0+FvcIahffNFxWypfT0TS60rZVLrPhMGDB0+JjIxkzpw59wBXLlq06KRrr72WlStXnqOUqpiT+equu+46Oycnh82bN3PeeedRXFzM4088sWnthk0dCgN2JEpdIKjfWahIH+Xp0aokx4VqbIvE4fKdihAJ2CjWEwo8byl7iadRyxrz8JQU5I4IYo0uF89kf3SDveLTBXIzLy73RPVQlvvBBkuelqAvfqarLO8iJxGYy7bclCediifrRyw7GFIQUFGN51tF20db/ScV5ReV+IDBsVGR71e+byAvqytwPzDHG5f0r8rHa0sgL6siivdpzq71HU49Y8uG9I390JlYc4A0pdSqfc7Nzz4Z7QIf8cOPy78/a8D55bZtt0eHvvlAKbXPKCWQm9kMPfLJBmZV62FmOOoxyuYExU5L9aBNHVW6fi793zb6TpzOV4/9kd4dmnPb1DSembuETZs2MX36dMrKyhg7dizLly/noYce4v/+eGl6XJuuaTuydjz1pxtv2CcaQD0qmyT0+g4XMMXr9a578MEHuf32238BugeyNgJEDx1z9aAVq1aP9fl8ERE+n8/n8/oiIyIirhh9ycaxV14doRAXgNsu+8FS9uoCaZBYiqe9jdiILEHn59kOUFaQ0x64BW0+UsA0X4z/m+pkLC3IaRHCeiiA+zMl1r/C50TKcjP/XQ7bXPlbrvZs+rqBZZdFVnedisuh16sMKOx161nA7PC1NE5I/xfQLuN/8cYlHbDZyZl/+R3anVmh8xP94I1LUiLSKiYmJv2SSy6hTZs2ZGVl8eabb7Jjx44/l+XteAUdFaOLc6kNwEe+uEYdIyMjl5522ml07NiRhQsXsm7dukFKqd15mAK5mSeh109lAu8aJXPsY+ZsTlxqfHibJ8bQPDGG3h10loORZ3di+rwfSElJqfDiori4mB07dlBUVMR1KamtO3To8Kes7dtvGDHkgsXR0dFlVjCw7OMPP8ia+PfU0U7eewDi42LnXTn6kldmPPP4IrSbbaiGUtAhSnzoeYsay0DWRh+6Y40Fbh0+9o8/TXvh+cS3X3lx5fALBz3piFAw998zc4DZ6H/iO51XNpDn8TdSoCMElNNgMNDMBblR8GJhwP4B/a/+po07dyUB6eD9oFVCw1sBygpy3MCfywpybkI7Xzzli/EvD2/biBj/5rKCnHEW5fcGlOupnMLie/3RDXYCWFkrbrYi/L+FkjrHY5fj21SlNWyvywEnh7wNv/Zk/NC7wclnhSuaG9DhfG7yxiXt1x0+HGf+5XynHcuABd64pKq8vfyJiYn4/X6WLl1K586dWbx4MZ06dXpmW0aGr2mTJp8Cn3hjE8N/b90GDhzIuHHj6NixI7t27WLdunV+Z53MpeiFoZu98cnPHojMhqMbM7I5gbHTUgPsvb5gL8694xWmTRjCKc0Tuff1hWzdWUj/bq0BeOaD70h54EneeOMNmga3Mi1tmb09a4fVuXNnBpzTt/Mrz08pCETEDp9w28SrysvLT7/22mvp3bs3y5cv58svv+T5Z59ZtnbZN4+h//C4wkpXpX0K3dmVOmV178P3lQH5nkYtd6/tOBzkFBb3RK/xEbQn3SeFAbs12jTUAe26/QmwqFVCw1BZQY4PSEFHeygDHqyc2qG0IGdIEGtEQLxpwAdxy555zrZ8Y8ub9470bFmMZddqnS7oCfN3rP6TrnIWSr4MvOuNS3qtthcI5GWdjB6J1Hr+JXvLBv9l465+fn16em9LLHt9enrb1atXc9FFF7Fu3bqOSqnVlc8RkWbo6MxdZs6cmTRv3jwSYxu+/PiD9y8B3vHGJ9c6Jbjh2MEomxMYOy01E6pP1LX8t0yuf2ougWCINsnxvPx/w4iP1ladJ+csInXWt3gsxYwJFwUmvvadd8qUKVx66aWrAoFAF+X8sERkUERERFpk5B5rUHl5ObZt319UVHR3HX/EOiOnsLgFen0GaEX3dmHAjkKbfvqgR2VfAP9pnRgdm5DgP3vCzTddMuj8ge5uXbpsByb7YvzZAGUFOSeVYz0XLMr9MmbN23cVFJVG/rx+7wXr3domExMVUa08BUWlfL9mS9n8dOvjTt1O9W9I3zjyngcerLHTrmL+5Tfgy+rWvwAE8rNd6AjMfdF/BnLu/edDq16cMfPr0aNH06lTJ3w+H9deey2AN3wx517Xyc109zz7dwtT/jLprHnz5jFr1qwxSqk3a5LXcGxjlM0JjJ2WOh24hqpy5daCguIyvG4X67btLO3/97d8Ho9Hrh57+eP33zO5wmSTDXzd9KRTtu7cmeOrOC/13vuiJ6akjEObgEB3zPOBr6OrSSp2NONkhrwEvRJdAR8VBuw8oP/Yi4c8suqXn7qdddZZuFwuvvrqKwKBwFNZmzd4LctKAOb4YvxvlRXkuFxrP/nMKtx6bo/xU1xRSa13myuDwSBlOzex7KUJVd5/9aYsTrv+OXr16kXz5s3ZunUr33zzTb5t24OUUnutIXHmcH6HdjVWwBLgx/2sf2mGdmmuiPzwPbDIG5sYABCRFn6/f9OoUaPo2rUrHTt25KKLLqK0tDRZKbV993VyMyOA0Tij6ejkVv2nTZs2xiibEwOjbE5g7LTUwehFoDGHdB3Lve3zklOm/2/db1tuTblzdyyvQH52I7R7a3tnVzF6Ad1yb2zi7pXnhcUlbvSIoJezqyIS9FvRDSKrjJN1tOKktB6CDrujEmKipi9fvpzPP/8cpRSXXXYZgwcPJiEp+cY5786e1tBljwUuQtnF7h9nXC4Q0XDQXWzemsHs2bMBPTf24H130TRhz9e0PiOHe68ZyIRRZ/PeVyt4Zv5mxo0bx8aNG+nduzehUIjhw4evU0q1c8LQ/IG951/Sq5LfWb3fij0hgQSd4fQ/3tjE7ZXrO5EWejqftxUwee7cuc2mT5/O3Llzrzm1e9eooRcMPvmO22751ePxlKDNZKXOua/OnDnzSqNsTgyMsjmBsdNSI9C2+f15PNVEAHjOGpw6MZCb2Q4dkVqhAyHm71VRL+Drje7IKkZTpcCv6BQDWRUTyYXFJVHoxFwt2OMxlwW8Ft0gcq/rHs34fL5llmV16tS58+KMjIxm144f3y4yMpJPPv3P/NffnbsWnUl0gwRLb09M/6hpRMn2hr7f/41Nm7fQtKn2qXBZFu/cO5ZhZ3cGIBSyaXHJP1n0/M20So6noKiUcf+YRU5BMZZI6NuVm1x5eXk0bdqUZV9/MbFN61Zb0fMveeGyBfKzfUBndFy68PVW6cBPwLrqVvBXICKjExIS3szNzcW27dUxMTEdlixZwpgxY9i4MX1rx46dmm3dupUNGzbs9jYTkTjgO6D9zJkzcZQNwMtKqfGH2uaGoxOjbE5w7LTUfwK3cfAKpwRoZw1O3Z110vEquhwdxn0X8HZ1K70D+dmR6Mn1LmgzTYViKUBHO1jpjU3MBSgsLmmGziAazR5vul+A96MbRB5WZ4DDhYhUmNbcwFevvvpqz0WLFrFx0+bZr896+1NbKU9RubodOMlblEnj9e/iOu9Odu7cyffff09ubi4vvPACSZLLrHvGICJ89v3/uP/V+Xz17J9232dV+nb6TZxJ9+7d6dOnD2eeeSbDhw9HKWUppVQgPzsRrVS6oM19oEc5q4CfvLGJBxUHrGWL5n/rdUbvfzzwwAMEg0E8Hg9Tp07lqaeeWg7kfPjhh7+bOnUqH3/88aVKqXecNunXs2fPL1999VUiIyMJBoMUFBTQq1evYqXUoWTSNBzFGNdnw8PATRycsikBpoYrGgBndfcbsDu8yFWB3Ew3sAN4P3zNhDc2sQT40XntJpCfHYP24hrpJMjCpxXRDvTE+6oyT1QxenJ7UmFxSXj04XD5lgBLohtEFh/E5ztklFIBEfEB744bN65n27Ztue6661QgEPizP7pBZk5hcYTXpRLsotxJcRlfNQRolhjDiBEjWLNmDV27duXNN99kwIABfP1LOud0a8NbC35i9IDue90nO7+Ixo0bM3LkSLp3786CBQtQSpGXsfkvgfxsmz2pGV70xiYeVHiaQG5mMnq+JwpH2U975smtF1x82ftz5swZblkWtm2HgJnAXSKyLSYmhrS0NIB5YZf6YdmyZYu7dOlS4aXnRo9094p8bTi+MCMbQ8XczWwOLINhEO291MManFqrzsvprIY6m1uAtANdrOfMA3VGK6IKeSvmFdahTW07fHGNoiMjI+9s2LDhuV6vNyE5uUnedTdcv2TM2HGb2TN6CqKDlC4AcuvCOcEZ2cweNWrUkJSUFM4//3zy8/PPV0p9JiKNgCbAqtAXDy13PhffrtjIjrxdnH5Kc254fA6Dx97M6tWrOcW1mQGnt+fsm59n5Vv3k9S4MXgagNtHwa4Spr31Celbt/PSO/NYsWIFl156KStWrDi9pijV4QRyMwXtOHAu+7rEC7pt51cVwt+Zu3EppXbPxVmW9Z3H4zkjEAjcqJR68SCaz3AcYUY2BqzBqWl2WmoK8Di1G+GUoUcYv6+togHwxidnAtMAArmZbYDrnA4uH71KfL+mMMfcs9B5AbsntZsCJ6Enq5POO7ff6EaNk/uNHz+emJgYli9f3uLuyZO75mRsefH2CX9eBGQpyA1aXr9tuccj0rCwuAT2XuxaMV8h7FFQynkJexwZStBzL5nOKxsd86sEmD5ixIghkyZNqlA0REdHPzBy1KgzoqKi7m3WrJllWa7lwciEKFcowKadJVz411eJbdiA3t07sODH9Ux6uBsLFixgS8EO7v7XfykJhJj77UquuygaSnby+iffMv6RdzmtXRNaNo7H7XYTERFBWVkZr730wuBAbmb3MHnDPwdh+yveb0abPQ9o9OO4ugcr7esTCAS8SqnDEujTcGxjRjaG3dhpqRcCb6L/hFSndIqAH4Bh1uDUw5Im1zG1DWfPv+ntwEeHEmxRRO7r2rXrXbm5uRQUFJCSkkL79u25/PLLPynNzboaHbSzUVhZk5Kt8iFRunP2gHgURCISq5Bo51reUMj2xCYmDSotLWXdunXk5urm+vjjj3l5xoz81m3axD7zzDMMHTpk+8b5rwSkNK/Fl4t/4O7Xv+HZZ59lzZo1dO7cmZ9//pnbbrmRUf268NVvhbRv3552ETk8eP1gAO58MQ13m74MGDCA7Oxsunfvznvvvcff/va3X4BTq4o5ZjDUN0bZGPbCTkuNA/4K/BFtmw+gO9VI9GT8ZGCeNTi1zn44TvDFQewZUawHFhyIyU1EotH5Ti4Dmg8cOLD57bffzqBBg/6rlDq3LuSuQgYRka+jo6P7hu8vLy+npKRk7S233NKupKSEpUsWv7502oS2VmlO39zCYs67bRpb8wI0b96cbdu20SzWw7Q7RjLx2Q/5KX0nfr+f11Iu4OyurQFYtHIjF056hahYP36/n02bNlFQUDAfuE4ptaE+PqvBsD+MsjFUi52W2hptnioHVlmDU/efbrcOCORmnoLO2hg+0skFPqnJ3CMij1xzzTV3jBo1ijZt2nDxxRezevXqZ5RSt9a1zGEyWDg5g0YOG+L7a8r/9UvwxzWa+Ne7zv3x55WXbdmyhTdfmdb74uZZ56CjMkcCbM8pJCOnkMbxDUn2RyMiDLpjBhvyFMmRQb58+sa97qOUYtP2PPJ2lQSiIn0PtR/7yD319RkNhtpglI3hmMTJbzKIPW68oEdB/wOWeuOTi0XkGr/f/3JSUhLjx4+nadOmjB079jul1Jl1KJcbnWq6fRWHy4AvvfHJW5wJ9W5AhlIqy174cHu0t1i15ryyQJCf12fQpU0ykb5qQ9oVAb2t/pMOOVeNwXA4McrGcNzgOBucApz67NSXuny1aHHb3qf33Ljy19XJ73+UdtXmzZtp1KhRaVHW5pvYE7Cz3HmFB/asmPQvdY61Qjsf1LQGpGLiPYR2t/71QD3t7IUPb0N7px0KO4DGVv9J5sE2HFUYZWM4LhGR74YMGXLGL7/8gm3b3HjjjXTt2pUhQ4YsVUr1CuRmRqLTErjRo6OIKl4+59hmYC2wqy7zqtgLH74duJealVpNFAP/sPpP+ufhk8pgODwY12fD8YqrVatW3HDDDViWxdKlS7niiitAOz/gjU8uQY9ejiaeQ8t3sMqmDJhy+MQxGA4fZmRjOC4RkbbA9egQLRawBphaVbriowl74cMXAO9wYAtsQY9qxlr9J+2TEtpgOBowysZgOMqwFz58F3AntVc4RcAUq/+kyXUnlcFwaBhlYzAchdgLH74JeBQ9d1RdviGFNgX+1eo/6en6ks1gOBiMsjEYjlLshQ+fhp6DOR29xqhiLqcIrYB+BG6z+k/6/shIaDDUHqNsDIajHHvhw22B89DBRwWd/+cLq/+kdUdUMIPhADDKxmAwGAx1zkHlnjcYDAaD4UAwysZgMBgMdY5RNgaDwWCoc4yyMRgMBkOdY5SNwWAwGOoco2wMBoPBUOccWiDO0myFUqBCgAJlo7dtZzsESqF2b9uAXW29va8RYq9r25VKFUJVrldjWXHd8Jezzw7fBmxHLtvZDq+3e39YGQrtKe1K2855qvK+UEifH3LaI7y0FcqRSYV0ExOyHRFV2HGc4woq6jnn7HWuU1+FbJRSqKBuOzuoZbGd7T37tSx20EYpGxWs+jxlK+xQyCl1nVDIdra1XHbIxg47bjvHQ5W2K58f0r+U3aUKe38gpQKCTmkDqUpVpAI46vH1vE6J5cJyexGXC5fbi9726NKjt/fs9+6133J7sSzBcllYliCW4HJZunRbiMWe7fD9Irjce9f3ui1cTunevW3t2e/Spc/ZdlU6p6KOJYLHJbhE8FiCZTmlCB6XhUvA47KwBDyWhcvSZcV5IuASwXJKEfZ6v+cY+nNUHLcEwSmVQuygft7sEKJscLYlVNN+3UdUnKuC5WCHUOUBsG1UsFJZHtDHK+rtrq9LO1iOCtnY5UFUyCYUKEfZNnYgqMtQ2PtAENu2scPq2LvPVYTKQ9ghhR3QZag8pPcHQrU6bitFwFaEdpdUKvfsL1dV1dPvp6r0ap8vM7IxGAwGQ51jlI3BYDAY6hyjbAwGg8FQ5xhlYzAYDIY6xygbg8FgMNQ5RtkYDAaDoc4xysZgMBgMdY5RNgaDwWCoc4yyMRgMBkOdY5SNwWAwGOoco2wMBoPBUOcYZWMwGAyGOscoG4PBYDDUOUbZGAwGg6HOMcrGYDAYDHWOUTYGg8FgqHNEKXXwJ4tcr5SadhjlOeYxbbIvpk2OHKbt98W0SdXUdbsc6sjm+sMixfGFaZN9MW1y5DBtvy+mTaqmTtvFmNEMBoPBUOcYZWMwGAyGOudQlY2xe+6LaZN9MW1y5DBtvy+mTaqmTtvlkBwEDAaDwWCoDcaMZjAYDIY6p1bKRkQGicgaEVknIndWcdwnIm85x78TkdaHW9Cjjf21SVi9USKiROT0+pTvSFCL30lLEflCRH4UkZ9F5IIjIefxjIj4ReQ/IrLWKeNrqBsjIltF5Nn6lLG+MP3WvhzJfmu/ykZEXMBzwGCgE3C5iHSqVG08kKuUOhl4Enj4cAl4NFLLNkFEooFbge/qV8L6p5ZtMhl4Wyl1KjAaeL5+pTwhuBOYr5RqB8x3tqvjfuDLepGqnjH91r4c6X6rNiObM4B1Sqn1SqkAMAsYVqnOMOBV5/1sYICIyOET86ijNm0C+mF+BCitT+GOELVpEwXEOO9jgW31KN+JQviz+CowvKpKItITaAx8Vk9y1Tem39qXI9pv1UbZNAM2h21vcfZVWUcpFQTygYTDIeBRyn7bREROBVoopT6qT8GOILX5naQC40RkC/AJ8Of6Ee2EorFSKgPAKZMqVxARC3gcuKOeZatPTL+1L0e033LXok5Vmr6yC1tt6hxP1Ph5nYf5SeDq+hLoKKA2v4HLgZlKqcdFpA/wmoh0UUrZdS/e8YOIfA4kV3Ho77W8xE3AJ0qpzcfxH3nTb+3LEe23aqNstgAtwrabs6/5o6LOFhFxo00kOYdFwqOT/bVJNNAFWOg8zMnAXBEZqpRaWm9S1i+1+Z2MBwYBKKUWiUgEkAhk1YuExwlKqd9Xd0xEtotIE6VUhog0oeq27QOcIyI3AQ0Br4jsUkrVNL9zrGH6rX05ov1Wbcxo3wPtRKSNiHjRE7tzK9WZC1zlvB8FLFDH9wKeGttEKZWvlEpUSrVWSrUGFgPHs6KB2v1ONgEDAESkIxAB7KhXKY9/wp/Fq4APKldQSo1VSrV0fpspwL+OM0UDpt+qiiPab+1X2Ti2zFuAT4Ff0d5EK0XkPhEZ6lSbASSIyDpgIjV7wBzz1LJNTihq2Sa3A9eJyE/Am8DVx/nDfSR4CBgoImuBgc42InK6iEw/opLVI6bf2pcj3W+ZCAIGg8FgqHNMBAGDwWAw1DlG2RgMBoOhzjHKpg4RkeFVrdCtxXkhEVke9mq9n/rpIpLovN8Vtr+90zj6awAAAkBJREFUiHzihKb4VUTeFpHGItJfRE6U9T+G4xzzvBwb1Mb12XDwDAc+AlYd4HklSqkeh3Jjx634Y2CiUupDZ995QKNDua7BcBRinpdjADOyOUBE5H0RWSYiK0Xkemdf+L+jUSIyU0T6AkOBR51/WyeJSA8RWSw6COV7UkOQxCrue7WEBUwUkY9EpH8Np4wBFlU8OABKqS+UUisO4OMaDMck5nk5+jDK5sD5o1KqJ3A6cKuIVBneQin1LdqH/Q6lVA+l1G/Av4BJSqluwC/APdXcIzLMJPDeQcrZBVh2kOcaDMcS5nk5BjBmtAPnVhEZ4bxvAbSrzUkiEgvEKaUqouy+CrxTTfVDNgsYDCcQ5nk5BjAjmwPAGYb/HuijlOoO/IheBR++WCniAK/ZIuxf2Y01VA2y9/e1v/usBHoeiCwGw3GEeV6OMoyyOTBi0fkvikWkA3Cms3+7iHR0AtmNCKtfiI43hFIqH8gVkXOcY1cAXyqlNjtmth5Kqak13Dsd6CEiloi0QIcLr4l/A31F5MKKHaITJ3Wt5Wc1GI5l0jHPy1GFUTYHxjzALSI/o3M+LHb234n2OlsAZITVnwXcIToz5UnoOEyPOuf3AO47gHt/A2xAz/U8BvxQU2WlVAlwEfBn0VkbV6GjuZqgl4YTAfO8HGWYcDUGg8FgqHPMyMZgMBgMdY5RNgaDwWCoc4yyMRgMBkOdY5SNwWAwGOoco2wMBoPBUOcYZWMwGAyGOscoG4PBYDDUOUbZGAwGg6HO+X9dnR+fNg2b/AAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -329,7 +307,6 @@ "tp.plot_graph(val_matrix=ave_val_matrices['PCMCI'],\n", " link_matrix=link_matrix, \n", " link_width=sig_links['PCMCI'],\n", - " arrow_linewidth=70.,\n", " vmin_edges=-vminmax,\n", " vmax_edges=vminmax,\n", " var_names = var_names,\n", @@ -341,12 +318,11 @@ " link_width=sig_links['FullCI'], \n", " link_colorbar_label='FullCI',\n", " node_colorbar_label='auto-FullCI',\n", - " arrow_linewidth=70.,\n", " vmin_edges=-vminmax,\n", " vmax_edges=vminmax,\n", " var_names = var_names,\n", "\n", - ")" + "); plt.show()" ] }, { @@ -387,20 +363,6 @@ "print (\"Mean false positives FullCI \", np.mean(sig_links['FullCI'][:,:,1:]\n", " [true_links[:,:,1:]==False]).round(3))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/tutorials/tigramite_tutorial_pcmciplus.ipynb b/tutorials/tigramite_tutorial_pcmciplus.ipynb index 9fc89c9a..2dbbbcc2 100644 --- a/tutorials/tigramite_tutorial_pcmciplus.ipynb +++ b/tutorials/tigramite_tutorial_pcmciplus.ipynb @@ -6,7 +6,7 @@ "source": [ "# Contemporaneous and lagged causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI class and create high-quality plots of the results.\n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", "This tutorial explains the function ``PCMCI.run_pcmciplus``. In contrast to standard ``PCMCI.run_pcmci``, PCMCIplus allows to identify the full, lagged and contemporaneous, causal graph (up to the Markov equivalence class for contemporaneous links) under the standard assumptions of Causal Sufficiency, Faithfulness and the Markov condition. \n", "\n", @@ -106,7 +106,8 @@ " }\n", "\n", "# Specify dynamical noise term distributions, here unit variance Gaussians\n", - "noises = [np.random.randn for j in links.keys()]\n", + "random_state = np.random.RandomState(seed)\n", + "noises = noises = [random_state.randn for j in links.keys()]\n", " \n", "data, nonstationarity_indicator = pp.structural_causal_process(\n", " links=links, T=T, noises=noises, seed=seed)\n", @@ -121,7 +122,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The true graph $\\mathcal{G}$ here has shape ``(N, N, 2+1)`` since the maximum true time lag is ``tau_max=2``. An entry ``true_graph[i,j,tau]=1`` indicates a causal link $X^i_{t-\\tau} \\to X^j_t$ and ``true_graph[i,j,tau]=0`` the absence of a causal link. " + "The true graph $\\mathcal{G}$ here has shape ``(N, N, 2+1)`` since the maximum true time lag is ``tau_max=2``. An entry ``true_graph[i,j,tau]=\"-->\"`` for $\\tau\\geq 0$ indicates a causal link $X^i_{t-\\tau} \\to X^j_t$, ``true_graph[i,j,0]=\"<--\"`` indicates a causal link $X^i_{t} \\leftarrow X^j_t$ (only for $\\tau=0$), and ``true_graph[i,j,tau]=\"\"`` the absence of a causal link. " ] }, { @@ -145,7 +146,7 @@ "\n", "The general idea behind PCMCIplus follows that of the PC algorithm: \n", "\n", - "* **Skeleton discovery phase**: Starting from a completely connected graph first a skeleton of adjacencies $X^i_{t-\\tau} - X^j_t$ is estimated by identifying which pairs of nodes are conditionally independent for any subset of the other nodes. The adjacency between conditionally independent pairs is removed. The lagged adjacencies in that skeleton are then automatically oriented by time-order. For example, an undirected link $X^i_{t-2} - X^j_t$ can only be oriented as $X^i_{t-2} \\to X^j_t$ since causal effects cannot go back in time. \n", + "* **Skeleton discovery phase**: Starting from a completely connected graph first a skeleton of adjacencies $X^i_{t-\\tau} - X^j_t$ is estimated by identifying which pairs of nodes are conditionally independent for certain subset of the other nodes. See the paper for the particular way that conditions are chosen, which is different from the original PC algorithm. The adjacency between conditionally independent pairs is removed. The lagged adjacencies in that skeleton are then automatically oriented by time-order. For example, an undirected link $X^i_{t-2} - X^j_t$ can only be oriented as $X^i_{t-2} \\to X^j_t$ since causal effects cannot go back in time. \n", "\n", "* **Collider orientation phase**: The contemporaneous adjacencies $X^i_{t} - X^j_t$ are then oriented based on the following collider rule. For an unshielded triple $X^k_{t-\\tau} - X^i_t - X^j_t$ with $\\tau\\geq 0$ (for $\\tau>0$ we always have $X^k_{t-\\tau} \\rightarrow X^i_t$) with no adjacency between $X^k_{t-\\tau}$ and $X^j_t$: If $X^i_t$ is *not* part of the conditioning set that makes $X^k_{t-\\tau}$ and $X^j_t$ independent, then orient $X^k_{t-\\tau} - X^i_t - X^j_t$ as $X^k_{t-\\tau} \\rightarrow X^i_t \\leftarrow X^j_t$. This rule is applied to all unshielded triples. There are three options (``contemp_collider_rule={'none', 'majority', 'conservative'}``) to decide whether a middle node $X^i_t$ is *not* part of the separating conditioning set: ``'none'``: In the original PC algorithm the conditions that lead to conditional independence in the skeleton discovery phase are stored (``sepset`` in Tigramite) and then used in the collider phase. Alternatively, all separating conditioning sets are *re-computed* based on the neighbors of $X^k_{t-\\tau}$ and $X^j_t$ and collider motifs are oriented based on the ``'majority'`` or ``'conservative'`` rule as discussed in the paper.\n", "\n", @@ -176,13 +177,13 @@ "\n", "In contrast to PCMCI, the relevant output of PCMCIplus is the array ``graph``. Its entries are interpreted as follows (under the standard assumptions of Causal Sufficiency, Faithfulness and the Markov condition):\n", "\n", - " * ``graph[i,j,tau]=1`` for ``tau > 0`` denotes a directed, lagged causal link $X^i_{t-\\tau} \\to X^j_t$\n", + " * ``graph[i,j,tau]='-->'`` for ``tau > 0`` denotes a directed, lagged causal link $X^i_{t-\\tau} \\to X^j_t$\n", "\n", - " * ``graph[i,j,0]=1`` and ``graph[j,i,0]=0`` denotes a directed, contemporaneous causal link $X^i_{t} \\to X^j_t$\n", + " * ``graph[i,j,0]='-->'`` and ``graph[j,i,0]='<--'`` denotes a directed, contemporaneous causal link $X^i_{t} \\to X^j_t$\n", "\n", - " * ``graph[i,j,0]=1`` and ``graph[j,i,0]=1`` denotes an unoriented, contemporaneous adjacency $X^i_{t} - X^j_t$ indicating that the collider and orientation rules could not be applied (Markov equivalence)\n", + " * ``graph[i,j,0]='o-o'`` and ``graph[j,i,0]='o-o'`` denotes an unoriented, contemporaneous adjacency $X^i_{t} - X^j_t$ indicating that the collider and orientation rules could not be applied (Markov equivalence)\n", " \n", - " * ``graph[i,j,0]=2`` and ``graph[j,i,0]=2`` denotes a conflicting, contemporaneous adjacency between $X^i_{t}$ and $X^j_t$ indicating that the directionality is undecided due to conflicting orientation rules\n", + " * ``graph[i,j,0]='x-x'`` and ``graph[j,i,0]='x-x'`` denotes a conflicting, contemporaneous adjacency between $X^i_{t}$ and $X^j_t$ indicating that the directionality is undecided due to conflicting orientation rules\n", " \n", "An example of a conflict is when an adjacency $X^i_{t} - X^j_t$ is part of two triples and the collider rules applied to one triple suggests $X^i_{t} \\to X^j_t$ while for the other triple it suggests $X^i_{t} \\leftarrow X^j_t$. This can happen due to finite sample effects or violations of the assumptions.\n", "\n", @@ -213,7 +214,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAFgCAYAAABNIolGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9e5RfV3Xn+dn1VJVUepSl0luWbPw2xmBjYyAhxAQ7ZDoOTcgAmZCQpJ2sFdKdnl6rg0P3hECyQl4zyazpTsZJw7A6JMCstBOGhhBw6IQQwBa28fslS7be73dJVaqqPX/sfbi3fvqpqqSqUv0kfT9r7XUfv3vv79x7zz2P79nnHHN3hBBCCCGEEEIIIVqZtrkOgBBCCCGEEEIIIcRkSMAQQgghhBBCCCFEyyMBQwghhBBCCCGEEC2PBAwhhBBCCCGEEEK0PBIwhBBCCCGEEEII0fJIwBBCCCGEEEIIIUTL0zHXAZgMM9sCHAVGgRF3v9XM+oHPAuuBLcBPuPvBuQqjEEIIIYQQQgghZpcLxQPjre5+s7vfmtsfAh5096uAB3NbCCGEEEIIIYQQFykXioDRyD3Ap3L9U8CPzWFYhBBCCCGEEEIIMctcCAKGA39nZt8xs3tz33J33wmQy4FmJ5rZvWa2Me3J8xReIYQQQohLFjPrMLO2XDcz6zUzm+twCSGEuPBp+TEwgDe5+w4zGwC+YmbPTvVEd78fuB/AzDbOVgCFEEIIIS4FzGwpcBWwElgGLCUakq7I/SuABUCbmZ0iypqngGEzewE4RjSgWS73A68Ai4ArgXbgeP7eBQznOQ505vU6gT3Ac8CzuXzO3Y/M7t0LIYSYa1pewHD3HbncY2YPALcBu81spbvvNLOVRCYmhBBCCDGnmFknsBboISrh+4DDwBpgFTBIVNDnUVXa1wNj+dsOokK/FdhJVNZ7gJPACaAX6AMWEkJBJ1HpbycEgSP5n5vdfWyCcFqG8zrg2gzDWmAdsDqvdSr/e0HeiwNDwPMZzr1pW4CvAS/k/sN5bDdwyt1HzWwJIXD05G8lbEvzPw8Df0IIFgvymOG8v778/1NpI4RQci3wI8D/ClxjZkfymR0lyobb8jluy+39wIvufuJMz0UIIURrY+4+12E4I2Y2H2hz96O5/hXgo8CdwH53/7iZfQjod/d/P8m1NtYGARVCCCGEmBJm1kF4GywHLkvrJyrfy2u2ihABdhFihOcxS4hK9HaiAj+fECSOAZuAzflX8wnxoAgJKwnB4AQhePTkdY8QlfSjRIV+jJitzQlhY4Co9H8TeImovPfl/gGi8n9Vnv8M4cWwmRBOXslwjhAeECcIwWWMEDUGvQULj9llZTXxnhYR97kmbW1uL831bwNPEELPy8QzeBk46O6jcxD2DuJdL01bRrzHTmAxVXwowth24ADxvk8QcWsncBA4lFbWd0uwEUJcTExLwDCz5QDuvnvGQjT++lcAD+RmB/AX7v5bZnYZ8DkiMX8FeLe7H5jkWhIwhBBCiIuUrATeBLwJuJGo6I0BLxJeAcWToI+oiL+U+xcRYkQ/UVnsJYSE5URFf0X+tp8QAvbl+oFc7q7ZTsLzYWi273cy0kP1DURZaYAQPfbU7AV3PzR3IZwbzGwh8BZCwFlGeJ7cQAgdC4ln8yIhLJXlJsJz4+A5/mc7EY/WEvGqn3gv16e9iohPe4n4tZd4X8O53ErllXOSEMqW5OXn53VXEnF5cRP7a+CzwLfO9R6EEKJVOGcBw8w+QiSwBgy4+/82g+Gayv/fDfwR4TL5Z+7+8UmOl4AhhBDTIAvh/UTrsxMttMVK6+9iqoL1KaKlcHcrttiKC5OsgN5KVEJvIMohi4HXExW8bwCPEd4NHURFdRXhRXCM8DqAGLNhJdFKfSDtEOHhMEh4URTb5+4js393Yi5JEWwV0a3nSkJYqK+PUHWROZOVLkRrassVhNi1lRC69ud1ngKeBp6dLS+JbGx8HzGD3+uI+PxQzR5z95Oz8d9CtDpmtogQFYvn2uVEGQci/1hEdIUrXfhOEp5p64n8o48o/zxDfM9PEoLnIeCw8o3ZYToCxn909481rp8PshD9PPBDhNvcw8B73f3pCc6RgCGEEBOQLtgrgKuJCuJrc7u4nfcTBfTiutzRYG1UrstOZPKriYLBcaoCwCDhrv1CzTZeiq3BrUpW5PqJ1t1RwpOhWON2fV8Z78CIgt8CIs4cJ+JEYQGwIf/jWM1GifiyMM8vy1XAzUScXEkIFP+Yy9E896HJvDGFOFcyTi8l0sTi6bCoiY0QQkWxbcAOdx+eg2CPI8vP1wK3E2PK3QZcQ4goRdB4kviehggx5qi775qTAAsxRbL8spwovywl8oVBQixsI4SJYutr6x2E59zhPHYL4QUF8S0fJr6FeTUbyeN2EIJ4F+FJdUPaFVT510miwf95crDhmu0mxJJyXCkfnQRG1PBzZqYjYNwK/CjR8vF5d394JgM2yX/fAXzE3e/K7fsA3P23JzhHAoYQ4pIgC9p9acNERr6I8IxYQogR11K5L19JpOVGiA+bgI3Ad4jC917Sdf5cWhPMbB5RES59+BcQBYir0q4lKqbbiYJCN1GQ2A48SvTjfxrYW8/Qs5K9hMr9f0ne6wmqlpKyDtVAh2WwwzbCO+SMLtX5LHuIZ7kgn8/BuS5YmNla4G1ExX6YnOWBapBDGF/gKtZNFLaWEe+9uJ2PEe95hCj8LSTu9TjVs2q09ib7ypgJltc6ltef33ALJ4gC4H6iy8aCPKaTKDAeaVjuIcSKR4Hn52KcAiEuRsyslxAHi6BxHfEtdhNpST/RleZLRCXspbQ9c50OitYi88sBKuG7eGi2E/Gpm8iHuhpsjMivu4n8pzSGzCc8n1bm+nwiryhdAcuyj8in9xNxdG9eo5fKm+Llmm2prR+YrXicz2MBlbByTYMNUHUXK+Wj3lxvZ/wzHCHEjVcI4aQMclzupQzevPF8Cvl5j6WhoZeqHFLeVSmHldmjjpPjN52pq6WZdRPvz4GhZu9numNg3OnuD57zBc79f38cuNvdfz63fwq43d0/2HDcvcC9ubnU3def14CeBbWP/hYiUi8lIkKZguwyImIPEwX8ouQvIj7cLqrIUbcO4gMo/XN3EZWCZ4lKyn7gkAqDc0e++/lUg8KVAeKWEC3dm9P2q7Ag6qQwUESI9USF9LVEAXSYqmWgg8pz4iCRyT1HiAJPE4XTEYC56rufYsS1RKY9THwD64g08Q3EPXVQDSbYR6SRje7/bURa2UNVIOjJvxltMCcKRiNE+ngo/6NeMFpA9SyPE99oG1GQqE8FuZco1B/NfTQs2/Lay4nWmTJ95HaqQRaPUnVxGABeTbQQLSPSiHoaPwQ8mOeWfV21JVQiTt1KHnKAyAO2E3GjLf+nM+/lnPKFbAVbAKApLYW48MlZdb4f+EEi7SrWSyVmNNoWDRx68ZAVyjuILlFFQKiLCSuJOLGByF+OEHl58c4czf3FSl5UKruloWCYyH/GCA+nE4SH5k4ibyzdAEs+WZZHgeMTzbrUipiZnalcn3WD+jPsIJ715cTzhhB8NhBlpT7CO+wWoq73JFHXKzMwOfEeduS+3WfK47M8djnRwPSqXO+kaqjoJrrGrUtzohwxmMd1U72vbuLdlq7GZRatvjzvSB5b6rWlvDOa/7Xe3XeeFsZpChifzofw4dIqZ2YDwAfc/XfO+cKT/++7gbsaBIzb3P2XJzhnzjwwaurUWpr3q1xBvNzDRIvn00QF4zgREUaJgu4glVrZnZc/SLz4U01sJJedRGG4DEi2jqgoFPfdHiKSP572Yv7nyVzfejEIHOk6OebunhnySqL1cgVVS+I64kPtaji9tOJ2UyXY9UR8iCphHSQ+0DJ41kKqKd3mEcJEV/7nIqKiVt5x3Q7mbyVT6CDe6bwMy0GqhL9UlA4TiX9pYfUM0zbiXS4gBLLjRAX2JFVCUrfS/7uLSKSciJN1209kMgubWEmU6na4tl4SMahcy+flOygCXaNY10018Fmj9Te8r8G8530N12u0sbzHkvgearAjVO/+BJWgWMRBgGMzkWlmK9h6In6UuDOf6h2vohpRfzURfxcTmftThMj1EvBd4El3H5xumFqNnIaxh/h2jhAK/rSefc0tfBnxPEcYXzA61uh1YmaLifhYpoJ0KmGixGtvWJZuFnuI91Q8HdYQ+cBSxrcs7SdmSdiS5xxhfEvMtO9dCCHOlRyLZgPjRY1il1PNkFNakYtwXAYmLWOGlPUyNk0RfK1mbXnu3jx2OVV+eBlVpawcv53ovjNU++8hUrS9VBuDckbH26m873oZ75VY1utTNS8iGhCeJrwb6iLC8bSdRL62WcL13JJ1neuIhq1rqWZmcqLsWsqS/VTeH0UEGqESRHYR9YYXiHLIEFWX0VPE9/YK8Iq7Hz6HcBpRjir1jtINeQ9T8HKd9jSqZvZ+4GeIubvfRRQuP+nuD0x03jT/c9pdSPIjhnOYDixbmDYQEWA+1YjlxTV7eYMNUA1m1ziq9SYi4R2cq4Fe8llcT4zefhOR+RSvgFcRBetNRGQtrbmlMreQeOcHOL2Cu5dI1HYAO6c7SFRG9suI51kyvX5Of95LqSoLfcSHe2PeyxiR2C4gPpLtxEc6QnzcW4kPtR7Wogz35n0fa7BB4iMsanRv7qtXgsvgQCdy31CG7wjhWTFpS0UONNSeYevJe+/IcJc4XKaOKyo2+QzWEkrqMUK46CUSti6qhKueiPVSTd+3nWoqwLoty2fTKFKUQki9D3u9T/siqhZs8r/a8tmUcROKSFfWLe/7MOEq90rNXqYak6GwgPg+l1K1SDdacVEbymWz0dtL/C7vv7j0FZGwtPYf43SX9/pyNMOzqvYMFmYYDufvy2v3Uqa/G6QSSnYS3+A24pvaQbjwaoAoIYQQLUNWoi4j8t9SKe7IZRfjywPFFlCVZ+pWROJ2KqF5F1V+eIDIW1fnsUYlbnTV/ruHKAfNpyqbfpcYR28jc9w1LZ/Z5UQjU5lS9xRRhugl6hjFu6E7t1cS910aNjoZP7B2XfT2POa7RKPlTqI8XISlsdp641TNz2iMqosLM+siGnCLp+kC4nvZQghRLT2w73Q9MFYAP0uMhdENPODuH52hsE30vx2ECngnUbl6GHifuz81wTmNAsZ/BD5EtPoOcrpLUt16iESln0gclhMJ5stU6uNxoiKyu8H2EG46F2xraAocryISyCEiQe2h6qt8kng2jRXcASJxLVZU2uLKVPpc76XyGDlIlVgvphrFe23t/3dTZX4HOP2Z7yMysHbifR4gWqifzX0LmKO53sWFTTN3vyx01Fsq6gMPlmUHIY7tIEemJuL5EBHPOwmXW4kRQgghxCyRHnTFg+O1xIDVtxJl1kcIT+hnqAZa3DuTHhvZCLqWGOzxbVRjGS0iysjPEnWbfUTZYCFVo1hXHncytxsbNoYY3+WgsQvClgu5PiJEYboCxl8DfwZ8kagw/ibxUf6iux+bVsBimtZ/RdWK/Gvu/sX87T7gl4lK8j7gP7n7b01yvaZdSLLyUe/H1Wh9RELxMuHSe4oYyE5K5FlQ855YRbw3iMR0WW4XVb6fSKyPEZW84ga4Fdg23XglhBBCCCFEHTPrJ8YPuIXwUC2DLrYxfgaJFxnvpVtwqlm4BohuGq9LW0OUd9vzuCJU/APwZaIL6CF3P3X6ZYUQjUy7C8lpFzS7E/gNd3/zNK/zEaLv8e837L8e+EtipORVwFeBqydrTdcsJEIIIYQQQoipYmZLGT+DxJWcPk4ahNCxmGiI20OIEo8RXh0vU3kbIw9gIaZHx+SHnB3u/qCZPTbT161xD/CZHCl/s5m9SIgZ35zF/xRCCCGEEEJcQrh7Gdftn+c6LEKIoG02Luru+2foUh80s8fN7BM5+jzEADRba8dsy32nYWb3mtlGM9tIjHUhhBBCCCGEEEKIC5BZETCmipl91cyebGL3AH9MuGndTPQV+4NyWpNLNe0H4+73u/utaTfOyk0IIYQQQgghhBBi1pnxLiRng7u/bSrHmdmfAl/IzW3EQKGFNcTIu0IIIYQQQgghhLhImVMPjIkws5W1zXcCT+b654H3mFm3mW0g5nR+6HyHTwghhBBCCCGEEOePOfXAmITfNbObie4hW4BfAHD3p8zsc8DTwAjwSxrNVwghhBBCCCGEuLiZ8WlUhRBCCCGEEEIIIWaalu1CIoQQQgghhBBCCFGQgCGEEEIIIYQQQoiWRwKGEEIIIYQQQgghWh4JGEIIIYQQQgghhGh5JGAIIYQQQgghhBCi5ZGAIYQQQgghhBBCiJZHAoYQQgghhBBCCCFaHgkYQgghhBBCCCGEaHkkYAghhBBCCCGEEKLlkYAhhBBCCCGEEEKIlkcChhBCCCGEEEIIIVoeCRhCCCGEEEIIIYRoeVpawDCztWb2NTN7xsyeMrN/k/v7zewrZvZCLpfMdViFEEIIIYQQQggxe5i7z3UYzoiZrQRWuvsjZtYHfAf4MeBngAPu/nEz+xCwxN1/dQ6DKoQQQgghhBBCiFmkpT0w3H2nuz+S60eBZ4DVwD3Ap/KwTxGihhBCCCGEEEIIIS5SWtoDo46ZrQf+EbgReMXdF9d+O+jup3UjMbN7gXtzc56733gegiqEEEIIIYQQQogZpqU9MApmtgD4K+BX3P3IVM9z9/vd/VZ3vxU4OWsBFEIIIYQQQgghxKzS8gKGmXUS4sWn3f2/5e7dOT5GGSdjz1yFTwghhBBCCCGEELNPSwsYZmbAfwGecff/vfbT54GfzvWfBv7mfIdNCCGEEOJCw4J1ZvZOM/sPZvaWLG9NdM6ybFASQggh5pQZGQPDzDrd/dQMhKfxum8Gvg48AYzl7l8Dvg18FbgBGAF+z91/fZJrbcyuJEIIIYRocbJSvQRYDvQD8wADDgAvu/v+GfyvLmAZ0JPXPlULQw+wMG0pcDVwDXAtsA44ldYHdBLlln8CujL8S4BeYBuwCXiMGMvrvAxClsLDDwF3ALcCtxBlqo3Ac8BdGb5HgJfTtgNrgdcAbybeQQfwNLATOAK0E89me+5/Kpd7pnpvZtaR/3FHXvMxotFqxsuUc42Z9QDvAl5PPLce4rnvAx4EXiKe8wjwiLvvnaOgCiFES3POAoaZXV1WgZ9y9/8wY6Ga/L/bgeeJDHkb8DDwXnd/eoJz5kzAyALQMuByorDTBbwCPNtYAMtjzd3HTruQEOKSI9OExcChUinIQv+twE3ADmA3MJ8oDJ8A9gJPnakSkdd8AzGj0xpgUZ6zB1hAVBaX1Kwb+AfC++1/zGTFUcw++b7XE+98CfGeXyYqisdm4b+WE/Fx81TzMjNbRgzSfUNaWW8HdgH7ibgNET83AP9MeGDuI8SFHwFeDWwmygjP53lXEZXxEeA4kf+eBL4PuK0W3v25fwXxjObndUeIyvVh4CDwAlHxfxbYQlTsO4GjRJnoB4hnPUiILQcz7GsI8eNm4lvdn/YNQvQYIb61eYSH7FPA4+4+nM91LXB9za4DXpX/uzvDvJsQFHYR3/I64H8mKsd/T4gW3wF21NITy+d2LVFOuTzDuo1oQPrnDEtvHjeQz+UUMJThuiHDdAMhjjybx6/N62wk0pkb8h6HiHRtWT7Pb2R4X5v//wxwjKjkb8nfHyEEkgPnS/w5G8ysjRCHfiTtyvzpBPFu1gEPAV8h4uGJtNXA24BVxHvrIZ7DSSIuPwF8mRDFpiwOidYmv7urCIHwH9x90xwHaRwp6l5OpLXbgafnKu7lWIivJdLGF4Bt7j5iZt2EADpApBfzCXHZiW9tGHhTnnsN8a3Nz2MfI/KIg7k9Aow2LE8SafhxIm1fCbwxw/GJMlOmOP9MR8B4AHiAeKFvd/efnMmATfLfdwAfcfe7cvs+AHf/7QnOmRUBw8wWEZnydncfre3vJjKwe4G3EJH/ZaLgNExkZNcTrTEbiYLRUiIT6wU+C/x3ItHYlNPIihnAzNrqhepMpN8C3EmIS0NEovY4UXic0ZYgM7uMKKgZsMvdT5rZPKIyOkS88/0qpIwnn9tlRIYylMtj9e/uQiQLvW8Efpwo3H+REAtWAq8D3kNUPo2onHQQldAXgUeJytdyIgMeJDLW9cTz+av8myJsjBEFptcTlY/PEmnQYaIiMUBUhg6mlcrXGCEY/4sM62bgz4G/IL6ZVUSFa4SIv9tn671kK+aKtLXAW9NeofLYe54QiFtCCE7RfYB4TkZUhre4+3DtGCMqtncQha0+It9YBFxBVOR3E+9qmMhPvk5U9A4TBa7uvNxJonJ4FfCDRBzqBb5JVKSWE4XSa3L7aaoW9J15je4MQx+RXvUS77ozl+V/9hMFyvnElOZvybAezzA8ThQUnyLe0b48dylR2buFEON6gSfzuGJPunvTMa7MrBd4J5FuL85n8rdE5fzyvPer839eyOfVlvezLpffICrnOwiBcCyv3U18f8eAI/X3NFNkeraEiMffT7x3qNK3uqgwltv7qd5VsReJZ7+ciGMriHi2IsO/G/hrd39mpu/hDPdVBKxriTiwjXgftwCHiHc8SMSvQ0SFfLjhGvOJey9Cx1VEJeQmoty0iIjvp4g053kizXyWiF/ziIrK6/K8HcAn83/fnNe5mvgOv5nnfpmI+0uJys9+Ik51E8/zOkJYKPvnESJOaZy6Nv/rAFF2++9EWuTE+xnIe906xefYRsTBDcT3cTeV58Y+Ik7sAr5EeG886e6HpnJtMXeY2WIizXp7WheRBr0V+BqRVh4GPnemtK/JNfuo0twNRD6ymigvXUbE6f60knZvIir4UImW62rX6Se+421E2rmBiPPPUpUNDhDi4hNUedVB4Dl3L2JzPZzdecwS4IeBXyC+ra15/jwiTn+dSLeWEXnUrfn/TxDf8FVE+nY07+cFotwxn0g/nyPKSbcR3+83iHrWs3k/xzIcryVExiVEHtee1lFb9uTv84lvbj+RZrQBP5/3+yUi7/nmbOQV55usj9xFNCIMEOXEbxJ59E1EumfAP5eJNczMZrLOkvnjIqK8scndR047ZhoCxqvd/YlcX+fur0wnsGf53z8O3O3uP5/bPwXc7u4fbDiuPo3qUndffw7/1U6Vib6K+OiuIyL7NWlHiY/9FaKVo5fIOB8B7gf+ppkAkW6dtxMZdR/xUT1IZI7/C9E6tIJIWB4kppHtJiJUOech4qM+RESqHyQqQZ77HgK+RXxYu6dwv2uIhGI/0SJ7IK91Rd7/YiJSLcr9DxIF1KuJStPLwEvNEq+8fkc+m1PEh/+yu7uZvR74CSKhmEc876NEgvNk2hEiQfq+fEalRexwhnOUyBDemufuJwoA6zLcxQW4i0jEXiISyPV5D3+b5/US77W0BD2S4Z2f/zGc4RumGkfmMeL99BMFmWX5X23Eh96b93ZNrh/O8waIBLu0QrURLV+9RIL8LaJgtZf4kLcTraaDtWfaS8SFXqJw93oi8+onCneHGuxwhuVVxHvsIBL9QxmeG4gMr4uo9O4j4thXMhwDGd5lxHfQlc/iIFEA3JTnnCLia38uPY287sF8NkupMtoRIg61E9/ZdVQtjV1EZau0UBZ38keI938Nkbl9svYuB9P6iIS3eEANEnHrOXef0RmK8ht6KxGvlhDPdZT4ri4j0oldxLteS3hB7CXEhicI4fN2Io4+A/y/ROZRKinDRKWqxKFmYTCiMP3DxLsdJDLiTiKePQ48cS4ZTn7DdwAfAP4lEZ92EO+ui4h7y4i4uqXBXibe+9G0U0SF4gfzvEXEd/sKUajZTWSibyK+xRV5H7vSdhCFkweJ7+b7qOJLD+ExcoooJJVW0OJpsi3/4zIi/eoh3lNpZb8+r3eYqBQ/QryfdwL3EfF2X8225/0dJeL5KiItuIYocB0hvo/RvM8BIs3YQ3wjtxF5wD8SwtQB4vs6SlRSR4j330d8A1cTFd8r8nrtRLpE3sth4l1/G/gM8Gjj+878bT3jW88HMvynau+pfEvDNTPiG1yW9zeaz/vLZOu+mfUTrWM35ztZS1VBPJTP9TtE4fJlibank99bJ8CZ8tVLjUzfOtK6iDTiLcS3sJRI87YT5YZ/IuLnzxBx9uvE9/U8kT7fQaQ/b8/t4l22NK8/TKRDxSPkMqqGjiPE97uVqDQ97O4vzdZ9w/daopfmvWwg8os3E9+vE9/hfqqy37eA77r7UNMLnn79ecRz2HWO+UPpirWjSXqzgBDA1wF/5e4HU6jZQOSHpWL7RqJCu48op20l0rclhGdTaYk/AXwa+K/Ee1kBPOTu+5gjMs17B5Gvv50I91Ei7pTGy38C/i7t6Uwr+4CfJNLINcRz+BgR964m8v9SsS7WRQiD1xD5Qx+Rdz6ay/0NdpD4NtrynNuI+LKFqoH1FJHvHCS9HGr3toF4V8VD8zJCAHg18T6OUJUtSxkcovy9OMNcyqAPAX9MiLBriTxrKJ/P9+V19hLv/2HCo7Qu+LcT+d6Qux+f7L3MBhmGNxKV/buJdObbxPN8BvgCkXf3E+WBenn5GFEeOEz1fOper6WecpR4xn2E0LU5/3MV8NmpftdnCPtyqjLV/Fy/CXg/kXY+nOH86QzPZXlfB4g86Rbi/Q0Q5beniLjXRtR/+oh4sSdtVdrmvE47UW85RLzroQzLuwjR6gBZRmwm5k1rDAwzu9PdHzznC5z7/74buKtBwLjN3X95gnPGeWBkIruBSBhuJ1w+R4nC10kigryaKDQ7UWDcQbSOPkpEqi1EhjWUrYKXExnoCPCts5nydZL7XUwUmm8hCpH7qRTP24mC4SLi5f99hm+MyETeULM9RGXoIaKguoZIHEeJyHIbEUlLxj6Q1x3Jc58jErUiGswjWmWvpKqgrCUi6N8QheZtxPNcR1SsfzHPHcnrdxMVkfnA/0MUOoZy/6K8t+JKbPkfX831RTXrJz6ErxGZQjeRye8kEuYDROJ6lEg8yrvaTbg5N3WjNrMl+Ww8n31bXrsrl2PER3gbUcnaR3yYu/P/SuI/mNvPA1trrrudRAViRz0RTlFiHVFBeRuREIzkvqvzeofy3hfkMz1JVFgeJhL9g0SGt7jBFuW5m/KYEeJdLibi1kZcc2YAACAASURBVFP5Tk4RiclAPoMSjr01O5LHlb7eq4n40E8kcENUmabVrBSSSkvXvlx25rsZy+f4bC6fAXY2KRAtIeLVQiJ+rgB+jojvvUS86snn9QSRcA7nfVybz/4xonK6g0isi9C1KK9BnrMnnxtE3Loj7/cZooDVQ2Rg1xBxdBMR74qKvDm311L1cz4A/H/u/jwXEdnSspZ4vnW7nHge9cztYeKb3ULlibaWiOsrief7deJ57gIOTqVgbWbXEIX7UeLdziPicrG1afuJ7/I48S0vIjLqFwkxoY/KU+AmokLw60QGvzRtGREX1hNxpo1IA55Ne76xkJUF3R+k+h4fd/cXJrsvIcTMUwYxbehWw1TSmlYgw7uISHuWE2XDUva7jsi/nifSr61EXrWESFePE0Lj63J/8dbbRKSbHURev48oH2wi8v2xtD5CVLiFEFKO5XnPE2UuiLR/OZHX7ia8EL5FlC1OEGWFE0RDydeoGuuuIMqqpRvXw4TgeZxIe+8lysc78h5fn+F7gqrs8BTRijuj7zLLb9cRAu3NeS+vyfD/DVFfKA0oxYvt2ak0mpjZjcBvEs/3OeLeRxtshLjPh0o3s1aIrym6lkapIlYfBk60QvhmCzMbIOLfWuJ7+BfEN3mKyvNjmCgv9xHlm4VUjSZ1GyHKFAuJ8vxxQthZQ3wDg0RZ+/eIOs4eoqxxnCg7rQO+S3xT7yDquI9kOH6WEAmOEGWq0tC3kyin/td6WSRFxuuIb+hkbf8C4pvfkee+migjDVM1fJyk8g7cmXYFUf4ezv8tXQm7iPjyJaJcPOF3Ml0B49P5MD5cVLp8gR9w99855wtP/r/T7kJiZh8F3kcksI8SCU4HoaJ1Ea16jxKV2xMXWmbWSK1v5k8QEewJIhNbRmQU3yGVw/o9ZkLUPZHCaWbzGiL1UsKD5B4iAevJ/3oG+C/1PmNmtprI2L49kct5hn+xux84y1u/6Mh3soT46A8Dey/UeHk+mGhcmXRVvp34JlYQhYwjVN49g0SCWiq/i6ky5G8T8fpaIlMZJNLDf7gY3AjF6TR2PxNCiFYnywyriYagO4hGptIgVVp3v0tUcJ4kxISVhCB7gqp1f0VeYwOVF0BbHvMYUY78rrsfT4H2KqIRoY0QqF8peaOZla5T35xqt5op3mvxSriByJuvI0SFEaKB8lGiLPoK0XA0lOcZUfafTzQ47GkoCy8lvHx+gPB4WU2UB8qgvI/ltf+p7iErLl2y3tI3mbfs2ZTfrTZphpn9ANGNZSnxbV5NiCWl6971uf0U4ZV8MyEe/AUxfscFXZ+a9iwkZvZ+wjXvTwhFpwf4pLs/MO3Qnfk/Owjh4U6ixf5h4H3u/tQE52gWEiGEEEIIIS4RUpy4nvAivZGqO9uqPGSIaKQYIyp/o4Q48yQhvlxGCDrfIBo7/5Fo9d7vF+FsOeLCJOvGizwHWU8xb6m775jbkM0OHdM5ORXU0l//PuABd//oTARsIjxGnv0goaa2E0rSGcULIYQQQgghxKVFtnCXgYG/RwobnYQX8sm6GJHe5DcSLdiHiK4fEitEy5I9IfbXtoeJ7h0XJdPtQvLXwJ8R/byM6K+1FvjFM40pcBbX/j2i/9Aw4aL1Ac8RlrPLyM8RKum/dvcvT+F68sAQQgghhBBCCCEuUKbdheS0C5rdCfyGu795mtd5O/D36W3xOwDu/qtmdj3wl8SgiauIwfKunmj8hLyeBAwhhBBCCCGEEOICpW3yQ86OnJXknhm4zt/Vpu/5FtFVhbz2Z9x9yN03EyPF3zbd/xNCCCGEEEIIIUTrMuMCBkAZQGQG+VliWhWIkX/rIxZvy32nYWb3mtlGM9tIDNAjhBBCCCGEEEKIC5BpDeI5Xczsq8TUL4182N3/Jo/5MDH90afLaU2Ob9oPxt3vB+6fgaAKIYQQQgghhBBiDplTAcPd3zbR72b208D/BNxZmyd3GzFQaGENF/Eoq0IIIYQQQgghhJilLiQzgZndDfwq8KPuPlj76fPAe8ys28w2AFcBD81FGIUQQgghhBBCCHF+mFMPjEn4v4i5mb8SUzXzLXf/RXd/ysw+BzxNdC35pclmIBFCCCGEEEIIIcSFzYxPoyqEEEIIIYQQQggx07RsFxIhhBBCCCGEEEKIggQMIYQQQgghhBBCtDwSMIQQQgghhBBCCNHySMAQQgghhBBCCCFEyyMBQwghhBBCCCGEEC2PBAwhhBBCCCGEEEK0PBIwhBBCCCGEEEII0fJIwBBCCCGEEEIIIUTLIwFDCCGEEEIIIYQQLY8EDCGEEEIIIYQQQrQ8EjCEEEIIIYQQQgjR8kjAEEIIIYQQQgghRMsjAUMIIYQQQgghhBAtjwQMIYQQQgghhBBCtDwdcx2AiwUzM6AP6AcWAb3A/Jr1At1nOH0MGAJO5nKq60PuPjo7dzTz5DNqr1nHGdYn+q2DSnjzmo01bE9kjceW51+e70lg2N19Np6DuLjIeN3F6XG4Hmc7iO+/G5g3wbILsJq1NWw7VRyt24na+iBwPJeDRDqhuCyEEEK0CGZWygVdaZ215RhwKm24tj6aNgaMKW8Xlyp2qcR9M/tbd797Csd1AIsJIaIfuKy2vuQM6/15zgngAHCEqECUSkRZHyYqII20c3rl5kzrjftGqCre9URupLbeuD1KVIwmMpvCMXWbihjRRiS6oxme0SbrE/1W1sfK62Liyt5E1taw3tXwjDs5XdQ42WR7qvvqmVD9PZX1ck9FVGm2PtnvU1lvlWsYVcW+WPs09nUQ76zZ/ulY4zW7gJ6aFWFyhNPjcT3e1r/TiZYlLpxJlDOqODovwzCvZr25r4imvRnuwZoNEfFuuGF9OMNxGDh4BjsA7AMOq+AkhBBCgJktAFbVbDWwkqgrLCQaNsuyrHczvuxe8uERolzaWbMibJSydDtRHhijKlc3LqeybxA4VrOjk2wfabCj7l7Kr0KcNy5YAcPM7gb+iPiI/8zdPz7J8Rvd/dba9r8EfpzTRYo+ogB/ANify0Y72GT7oLufmsFbnJRs+e1kfOttSew6Jlhvp0r0mplP8nuz40vlbSIxYvRCqfSYWRunC0d1O5t9PYzPgJqt18UVJlmf7PfZvMZM/TdUwlo97oxMcd9ow/mNNtFv52pFdDqRNpjLk62cgaco21uzrgartwDNI8TYJWewfmBZnrMP2Ju2p7b+vTSxYf3QheQxJoQQ4tLGzLoIIaIuTDRb7wR2ANtzuQPYSeR9h4nK/uGG9cHplImzDlDEjLJsb7Jvot96gAVE3WdBk/X6dl/awprNJxpoi6BxjKrRdlrm7iPn+mzExc8FKWCYWTvwPPBDwDbgYeC97v70BOc0Chi3AVdTiRRleaiVKyNCCDHXmNk8YCkhZgzksqzXxY76eh9RuKmLG4cIIahZt5hG75TigXI+bCJvrnGP4iy3yfto5qlzNtYo5tWF4npLXmPL3jDRPU5CkhDikiTrEEuoGi+XEiJFM3FiMbCb8cJEs/VL0isxn+UCKu+SBYzvPn+2Vu9+P8rpnuyDZ1gW75CjZ1iW9ROX4nuaSVI4K969Z9P9/1yGDGgHPuPug6eF40J8j2Z2B/ARd78rt+8DcPffnuCccQKGEEKI80cWdBYyXthYQtUNppkHU92TqYwBMts2lfF06pztdr01bDrW0WRZ7/pU97Kpb5exmCYUOZrsm8ox53reZMeMqNAphKiTnrKLCeF8sm7exdv6MiIfOkI0XBbbwemixHZgnwTf809tbLFGUaP3DPv6GO8hUvcUqe/rZLy4cZhoSDmYy4nWDxFC1QUZH/KZzmf8s+pjfLemZsvGfX2MH55gqt3/z+a4+vq/dfdDjfdzoQ7iuRrYWtveBtzeeJCZ3Qvcm5tLz0O4hBBCNCEz/eJ9IeaQFJMaRY5GoaPZ9lT29Z7jeRMd02FmjaLGEM1b2CZqfRu3z92Hpv80hRAziZl1U3XbWM14z4iBmi0jWt73cXqX74PAJsJD+yDjxQp1Z2xxUrAu49AdmKnrZpegutCxiBDBii0h4tsNte36b31mdoxK3Chdgs6U3wzSfOyRZuOWlMaTZg0TnVTjrk22bFwv9zuf8Gg92mD1bk1H8r62NOyrd3860grdeyYVMMzsD4kWoz8H3uDu/+esh2pyzuSWO36H+/3A/RAeGLMdKCGEEKLVycL7KFGYaXmypbUubpTCXLMWt7JcSXQTbfZbH7AwW6QmEj4aC3rHzrB+lOizrUqREBOQFcjVwFpgXS7rtpqoVO5ivCfEDuBJojvHnrR9EiHF2eDuw1RC1lmT4n8f44WNZl4fA1RjhJTJDtqbrDfuM04fA650Da2PvVYGZd/bsK/Z8nt5VisIDzPFVDwwdrn7x83sV4BW6YKxjUjoCmuIxE0IIYQQFxE5LlVpjZsxsqW37kZ7JhfkIoY0DmZX355vZqWw2ChulNa6xoFtDzfaxVTAFJcOZtZLfCcr0pqtryK6cOwkvKi3Aq8ATwNfzu3twF6NRSdakRSpS3cSMYdMRcB4GMDd/zC7ZLQCDwNXmdkGIrF7D/C+uQ2SEEIIIS4UsvV2iHBBnxbpJVJ31y3CxkLGz+xzOXBzri+q2WLCK6S4+JbR/I8xfmT/0vJWX2+27wTRcve926XqgjPUsNQ4I5c4OVtVfdaJehxu3LeY08WJTsJrYmcui327tr6TaBSVSCeEmBZTGsTTzO509wfPQ3imjJm9A/hDwuXmE+7+W5Mcr0E8hRBCCNGSZJeWUomcz/ipDBcwfjrkYvPPsL+XcEsutBGNVmXa5MZlG6eLGs2EjiHGCytHa+vHzrB/iPFTUZ+2XsSTFIIaB6WF06dvH9dvfJrTUbZz+rTp3U3W6wMHNs62MJXtzib3MdXp6+u/j3L6oLf1wW9HqGZSqi87iK5XdSvCRBfj31tjV6n6vsOMFyl2Ev3iJYAJIc4LUxUwPk102/hwUU7NbAD4gLv/zuwGcWaQgCGEEEIIcTpZia/PVNO4Xl82E1f6muwr+8u4JZ1UA9LV1zuISnmpaI8wvv+3U/UTb+w3XiropYJf+o7XB32F8aJI47pRTdc8NMH6CcZ7xhyv2VS2T9XusZlN9Fv9986aNQ5625X3VJ9RqSxH8x6KDVKJEppeUghxwTClWUjc/SfN7P3A35nZnwDvIpTbT85m4IQQQgghxOySfbtLxfa8kp4nHaSHwdlWpPN8Y/w0w/UKPYwXRBqXo6q8CyHEhUPb5IeAma0gBsrsBe4DnnL3H3X3B6YbADP7iJltN7PH0t5R++0+M3vRzJ4zs7tq++/OfS+a2YemGwYhhBBCCHH+8eCUu5+TkJDnj+U1Trr7cXc/6O673X1r2k533+vuB9z9SB4z5O4a+0MIIS4wpiRgAH8CPA68kZiJpMfM/tzMFsxQOP4Pd7857YsAZnY9MTjnDcDdwH82s/Z0c/xPwA8D1wPvzWOFEEIIIYQQQghxkTLVLiQ/1rDrPjO7E/hb4M0zHqrgHuAzOUr4ZjN7Ebgtf3vR3V8CMLPP5LFPz1I4hBBCCCGEEEIIMcdM1QPjNHJWkntmKBwfNLPHzewTZrYk960m5oQubMt9Z9p/GmZ2r5ltNLONxEjSQgghhBBCCCGEuAA5ZwEDwN33T+U4M/uqmT3ZxO4B/hi4kpgXfSfwB+W0Zn85wf5m4bvf3W9Nu3EqYRVCCCGEEEIIIUTrMaUuJNPF3d82lePM7E+BL+TmNmBt7ec1wI5cP9N+IYQQQgghhBBCXIRMywNjJjCzlbXNdwJP5vrngfeYWbeZbQCuAh4CHgauMrMNZtZFDPT5+fMZZiGEEEIIIYQQQpxfzosHxiT8rpndTHQD2QL8AoC7P2VmnyMG5xwBfinnKcfMPgh8mZjr+xPu/tRcBFwIIYQQQgghhBDnB9P010IIIYQQQgghhGh15rwLiRBCCCGEEEIIIcRkSMAQQgghhBBCCCFEyyMBQwghhBBCCCGEEC2PBAwhhBBCCCGEEEK0PBIwhBBCCCGEEEII0fJIwBBCCCGEEEIIIUTLIwFDCCGEEEIIIYQQLY8EDCGEEEIIIYQQQrQ8EjCEEEIIIYQQQgjR8kjAEEIIIYQQQgghRMsjAUMIIYQQQgghhBAtjwQMIYQQQgghhBBCtDwdcx2AyTCzLcBRYBQYcfdbzawf+CywHtgC/IS7H5yrMAohhBBCCCGEEGJ2uVA8MN7q7je7+625/SHgQXe/Cngwt4UQQgghhBBCCHGRcqEIGI3cA3wq1z8F/NgchkUIIYQQQgghhBCzjLn7XIdhQsxsM3AQcOD/dvf7zeyQuy+uHXPQ3Zc0Ofde4N7cnOfuN56XQAshhBBCXMSYmQErgeVAP7AkbRDYB+wtS3c/MVfhFEIIcXHR8mNgAG9y9x1mNgB8xcyeneqJ7n4/cD+AmW2crQAKIYQQQkyEmfUCq4HrgWuAefnTy8BLwHFguMGGgKPuPmxmHUAvcNzdR/OaRpTlOoETPkOtUmY2D7gJeB0wACzM/2kDluV93ACMAduBA0Rj0yGgJ49ZmrbMzEapCRq53NdkX1keIBquuvJ6xeadYXsecALYA5zK7e5cjuVvBzKse8rzuxAwsx7gcqAdeM7dR+Y4SEIIMae0vIDh7jtyucfMHgBuA3ab2Up332lmK4kMSwghhBBi1jGzdqKSvhJYQXggnCQqy1cCr8r9A4SHwnKizLUTeBp4lvBUaAPeTgxK3kNU2Os2D1hoZmNEBXYQ6DWz43m9bqKifwroMLODVGLCydxft+GG7RFgESE0XEYlOszPcH6HqPTvzuMd+DawA3gG2D2ZaJIiy3waRI3ackOTfYvy2ZzK+zhRs2bbJwlxZyCf01DuGwIsn+1lhPDSb2Z78v7+GXg+n9dzwOaZEoGmSsal64BXA1cDazOsK4l4sRh4JQ9fbWZ7CU+X+cT7K3aUGNh+c9pWQhDaAjzh7mPn436EEGK2aekuJGY2H2hz96O5/hXgo8CdwH53/7iZfQjod/d/P8m1NtYGARVCCCHERYqZtRECgLv7UO4zwpOgP5cQnguLc3s0bST3X0W0fHcRQsGKtJVERfsgIUjsAvYTYkMH4U3xAlHJ30NU/vcQnhRnXejKcHcDQ+7ueW99Gc6h0iJvZl1ExbY/rTvvo25dDdsdwBEqj4h9eS+H5rLCm5V6ZsNTwsw6iXf4GuBNxDtektvDwEbiHR4gBKmjxDs+SeXRcaSJneYBk1431+S1rySErHmEEDWfiGM35PUfI0SUl4l3sJsQInaVd2FmCwmBZz/hsdNOvMMOIh6vJwShDcAaIp5eQ8SHbxJixibgceBJYN/5FmyEEGK6tLqAcQXwQG52AH/h7r9lZpcBXyUS/RHg99z91ye5lgQMIYQQ4gImu1G8FXgLsIqomHUQFbl2olK4gRAaThGt73uJCl9xw99HVErHCMHiQG63UVUGRwkRYjNVV47dREVzJ9EN4dRs3684f6RQdA3hCXElIQi0E2LRSkL8OZH7Fqb11da7CCFjkIh7C/L3TcCjhKfHbiIu9RCCyPPAM+5+YJbvbQ3hwbyOEE1eQ3Rl6iYEk5eJ+P5w2ibFb3EpYGaLiG9iKSEungQOA9sIkXBpzZYTwuAawptrgPiWe3N5ivCu20R0pzucy91EGvCSBMOZ4ZwFDDP7GJFgbweWu/u/m8mATfLf7USi/0NEBHsYeK+7Pz3BORIwhBBihsiWxSsJV+c+otBeWiJL5bCdyPQHiMJ9qRxCZPLPXkh90cX0yLy7rbFilOMtLKlZPxGnOohK4JqavZoQFb5EuMgfIAqNxXviRP6+w91H8z/XEPF0C3BQBUgxG6RnRx8honUSaeKeVu66kR4dl6ddS4gcryO+mW2E2LcbeLHBXlHaLVqFTOeLF9JaqnF7isC4mCpvWUIIDqN53HqiTrmXyD9KfrSG+JbrY/bsIb6LYnuI7/xELnuI7mAbiG5wxVYDryXyoVfStuY1dua1R4FjRHev3TP7hC4+pjMGxiHgsLv/vpl9eKYCNEVuA15095cAzOwzxNSqZxQwhBBCnB3ZIrmMKNhel8tiK4gK4V5CtOghCgqLiEKDESJGGZjvJOExN0q0dN8ArDKzXfl7KSSUPu2bCBfnJ2a7dfJiwcy6GV9I66caKLLQRRTeeonC2VqiNXYpUXg6RSU0tRNi1DOEB8OSvF69q0XjelmWlusVROvWWkKMGMs+/IeoCpUdRHeMMnbDQSJOnSIKhduAv8/lc+6+darPJCtZpYVZiFkjhbkDaRcE7n4EeCLtC2V/iorrqMbiuBK4Gfhx4nseMLMXgX8Evk50u9nUymKNOD9kPtRN5AWngJEmXavaiDzHiHx/jMibFqR1U41lc5DII1bXbFUuXwXcSMTTESLf2EqIbocZ38XrOao8ZjCvf5AoY8ykt9EZ85oUDNcS39batFsz/G1EnnhTehpC3P8LGfbnCPFwByF67HT3kzMY7guK6QgYX3f3h3L9fAsHq4kIWtgG3H6ewyCEEBcVKVhcBbwRuJsYb6idqMA+m/b3ub1luqPhm1mp4C6jGsCvzCpwE/CTwI1mdpTwtPsWVV/0DYQL9AIiLztGVIoXUfUzL90K2qjcOIvtIlpPhvN3y2VZ30e0kpyk6mfe3uQ22qjGEmi0+v4FROGkWCdRaFtHtMwUL5bJrJNqjIP6eAf9RAGwVKCKINA4feUI4RZ7PK/3DPCX+Uzm5zXK4I6j+R/X5fIFqoJfR8OycV8RDv5HnvdyvoM2ovC5uBbGQXlFCNE6ZMXo+TP9njOjXE905Xo38NvAEjN7DHiEGPz1aSK9OEyM46Fv/AIix9TpS7sZ+AHgFkIwWEjkX8cJcXuYyJuW5PEnqeV/OQvR9wQNQkA/SgwKvJjIc4sHwjGi4j5K5OP9ec72BtsIfI5o6Lgg4lcKhk+lNSXLYYuIZ9NLlMmuIQb4vZ0QFFcCK8xskBAzdhD14mK78vxRopyznSkMuDwTZPgXM37Q5sVEHGksz5ykmi3qBCE07XD34Un/Zzr3YmZ3uvuD53yBc//fdwN3ufvP5/ZPAbe5+y83HHcvcG9uLnX39ec1oNMkXbSvIxKKZ4gCZnHBHW44tiQ0R4gPvYxgXh+hGnLE8jKomZiY/BCXEC3OVxEJbinol9HSB6haqHvy1ONEpr2VGAxsD1F4b2ZHGlst8n/7qEavn0+8uzKY3Py0nUTivdndj5/lvS3Ia3iDjdWsh0h42qgypL487mhu10euX0VUyMogZbupKr7PufuxswmjmBrpPrmWaCWr23oi/vQT7+wkoeK/QLzfUsmeVzv/MDHLwN8BXwa2z2XBIL+Fy4mM+zYivvUSFeKniW9ojBAIFhHh30NkhsU7YIyIxyuovqkyQ0QH4+N9uddlRFwu6Wi5Vv1ZlEJXSWPrFf9TtX2lYHaIqLQfzv3tRMHi0dzf28R6GO8xUW/lPdiwfuxCKMQJIS4+cny61xJdUF5HlIt6iPynDfguMVDps0T6XGbEOUGUFcrYMk27pmSrfSdAYxk284keIg9YQKS1B9TNpTlZv1jVYKuJd/ZqIo9sI8p5x4i89h+IssGThGjRTjzry4h8dIR47vvrZdp8N+1UgkYnIVqfzN87aFKvEROTz7WfEDNWUXl0rCXeH8TzXp77jPj29lGVRcryAFXDzq48pnxT64iy5HqiW00ZALo0PJXBojtqx1teb1/t/zqpyjH18k2ZRap8v8uJMlw5793uvu+0+5+mgPFpwvvhw7VRsAeAD7j775zzhSf/3zuAj7j7Xbl9H4C7//YE57TcGBi1gvlNwBVEBCyDRd1IJCbPE6JEaQGDKGRD1YrWRiQgx/P8MvVYcQXuzH0QGQZEhN3SYJsJ96TtVNO3FffjXfXEJcO+NK93AjjV6gXnWiXv6rQrCXGoh6rCMUw831VUo3lDVelbQFR6jjF+HvvniAT+GPHhzicqTOuId3sZ41tf69ZHZBKHicpRaWEdpWotLop0GUyutJ6uJuLK5UQCUJTp4mI2TBUHOolK2xVpC2rhrVu9NfpEhmuUaoCio/n7wrz+fqqR63cSrdalL+Aqqi4HV+f5x/OZvUQ13dsOqsGOynNYTHwLVxBxfyzvoUyvV47rpxKOTlB1Rdib4V6Z520u/+nuh7nAyMLhG6jU+NfmsswqsJvodrGJuM9N5Aj2xLuBeOfXEnHfqSrYQ4TYtrlZRiGEEEKcK2a2guiq9hoi36rPkNNLNbtPP5F378ylE/l7mVWlCBKHiHJDL1VZajT3D+b2IirBuMw0tIlo/X6ytnyx1QYszZkXbyGeRydRD9hDlC0HiLy8i7i/rcR9l0asulCwgigfXkeUFdcT5bIe4vntYHyZ8TmiO9F2YLjVy/ViamSdbYBqRqIy3lR9bJDSsLOCqLOMUSsbEvXEbUS5f4Sq6299uu6TwFZ3PziNsHaS011n+P6pmbg17VlIzOz9wM8AfwK8i/goPunuD0x03jT/s4Oo2N9JfGQPA+9z94lccuZUwMgwX08om8Velz8/QiSqO6gSqZKojtSv0TBdWmmFhxAYRjKStjWqzqlcWw5q1kZE0PUNdgXRn2wl1RzqJ4nK6nJCodtGVBJfTdWCW1y1y9zs9TnayzVGa3aKqFAdy+sOUPWXb2wJHcvfimpXT7QPULUeF/GhXskfIz6CNUTGtYCozD2ftimvc5KoEJeKYEe+iy3ER3toNhPxFFb6qNzoRoiWgyl7VNQ8RcpAd0WR7aRKWEaoKrkvcZ7cyWphbKN6D8uppnorMwYsoip0tBHvZk+Gdz/VsynCxcLcV3eT76XyjFlGxMsdRLwr/3UF8VwaW9LrDFJV/keoZis4RghZe4jn3Z1hO5HhaSfiTRFKDjU8g5KJLCG+9ZP5PHqIONuW4buK+BbX5e9FyPk2lZj2CCGaDRFTKbZUAUwIIYQ4G7LyspzI85YR+fQwkR+/gVj1eAAAIABJREFUkuXcttoxx4gyweHG8QCy3F0qQYfy2CuJ8ZduzOUNRDnx28CDRH3iu8T0srPuvVFrRd+QYbsdeHOG6wmizHaKKBcNECLFHqIhaTjPXZP3WDxq696Ae4hGpWfyei8RZSINZizOiJlZq8eP6XpgrAB+FvhRoiD/gLt/dIbCNtl/vwP4Q6LC8Al3/61Jjh8nYJjZh4Cfo/JiONZkfRfx0e9gfOW4bkPkADU5cM16qqndir0GuItQqh4nEpHHCVe6V1o9ksD3KtkDRELZRwx6s7f2exEySv/1ntp6Y1/0bqpR5ouHwRjj+583Lo/XbJhKMRxK62B8F4uu/L+dhHp4mHCvlovaJU4WGOYxXsCgYXsBlbDSRhV/FxHCwjJCYBki4mEvlbCynhAbNuQ5RYxzIl4eI0SPPuL7OEbVD9CJAsYLhDfUy0RBZT/wqOKvEEIIMXPkWEzfT0zPfAvhFb2YavyOg0S5fWPaI2fbHdbMlue1byHGkxig8tKFyPdfIgSUbwAb3b1x/CIhRDJdAeOvgT8DvkhUMn+TcNH/xen2dTezjwD/iqj0A/yau38xf7uPEB9GgX/t7l+ewvUaBYzFRAJSvBgW1NbL9mrC7Wo51ZgSdSsV5Q6qrhlbCa+Q/WkHiIrIl9x929k/CSHEhUgKJfOpuuZAdLVSoUQIIYRoUdLLo4yrtJQQNW4FXk94IG8nGiIfJzwhh4mGkTVU3p7rqAbBbCMGNv0OMebRTqpx0uQNIcRZMu0uJKdd0OxO4Dfc/c3TvM5HiBbz32/Yfz0xYvpthKfDV4GrJ3P1ms0uJLWBhUY0YJAQQgghhBAXH+lxfDUhatxEdA8vU35upxrb62Wiq+hxYnBSiRRCzBDTmUa1Ke7+YE6jNFvcA3wmRyDenPNQ3wZ8cxb/c0JytF3N6iGEEEIIIcRFSo5F93TaZ+Y4OEJckrRNfsjZ4+77Jz9qSnzQzB43s0+YWZmBYzXhclXYlvtOw8zuNbONZraRajYNIYQQQgghhBBCXGDMioAxVczsq2b2ZBO7B/hjYkTem4m+Yn9QTmtyqaZuWe5+v7vfmnbjrNyEEEIIIYQQQgghZp0Z70JyNrj726ZynJn9KfCF3NxGDBRaWEPMEiKEEEIIIYQQQoiLlDn1wJgIM1tZ23wn8GSufx54j5l1m9kG4CrgofMdPiGEEEIIIYQQQpw/5tQDYxJ+18xuJrqHbAF+AcDdnzKzzxGD54wAv6SZP4QQQgghhBBCiIubGZ9GVQghhBBCCCGEEGKmadkuJEIIIYQQQgghhBAFCRhCCCGEEEIIIYRoeSRgCCGEEEIIIYQQouWRgCGEEEIIIYQQQoiWRwKGEEIIIYQQQgghWh4JGEIIIYQQQgghhGh5JGAIIYQQQgghhBCi5ZGAIYQQQgghhBBCiJZHAoYQQgghhBBCCCFaHgkYQgghhBBCCCGEaHkkYAghhBBCCCGEEKLlkYAhhBBCCCGEEEKIlkcChhBCCCGEEEIIIVqelhAwzGytmX3NzJ4xs6fM7N/k/o+Y2XYzeyztHbVz7jOzF83sOTO7a+5CL4QQQgghhBBCiNnG3H2uw4CZrQRWuvsjZtYHfAf4MeAngGPu/vsNx18P/CVwG7AK+CpwtbuPnt+QCyGEEEKI6WBmBrQDHblsB6x+yATrbbXzOmpWtgFGgbFcjp5h+yRw3N3HZvDWhBBCzDAdkx8y+7j7TmBnrh81s2eA1ROccg/wGXcfAjab2YuEmPHNM51gZn/r7nfPYLCFEEIIIS5KzKwLmA/05nKmrJPmYsUYMMJ4gaGOn2G9HD9Ss9HaEkLkaG+wxn3zgB4zGwSOnsGOTPDbacdlOXVGMLPyzDpry/p6G/HMGu0UMAicUEOfEOJioCUEjDpmth54LfBt4E3AB83s/cBG4N+5+0FC3PhW7bRtNBE8zOxe4N7cXDp7oRZCCCGEmD3MrBPoS1uQNr9hfT7QxfgKbhfQ3cR6CHGip2G9XAfg+AQ22LB9kCiPTXbOMOOFilFgzFvAJThFgvlUz3kiW9+wvbDxmPQsKaLGCcbfczGo3lFXzerbpbx+inh29WVZH6PySKlbF/l+zWyY6j0UOwocSjuYVl8/QDQy7nT3wXN7skIIMXO0lIBhZguAvwJ+xd2PmNkfAx8jlPaPAX8A/Czj3QcLp2V87n4/cH9ee+NshVsIIYQQYiqkZ8NSYBkwkMv6+kD+XirEC3LZQVQ2j6WV9eO15XFCICiV2uE8bqiJnSBb5mvLE+U67j48aw+hRUkPhSNp08bMuqkEjXmc7nnSnocOEe+qLOt2Cjg1Xe+JFFPmUXnU9Kb1AYuBJbXlBuB1uX4ZsBJYaWZDpJjRxLYDLwI71A1HCDGbtIyAkS0LfwV82t3/G4C77679/qfAF3JzG7C2dvoaYMd5CqoQQgghLnHMrA1YRFTw+mvL/ib76ssFwD5gL7Anl2X9O7ncx/juCseAk63gpSCmTnYhGSLe51yHxalEqv1ne34KIItJMaNmq4BbiLL4lcBiM9tMiBmNttXdR6Z9M0KIS5opD+JpZivcfdesBCISxU8BB9z9V2r7V+b4GJjZvwVud/f3mNkNwF9QDeL5IHDVROq0mW1091tnI/xCCCGEuDDJMkgfE4sOzZaLCWFhP+FmP9myrB9SC7W4WElv6iuAVzWxAeBlQszYVLMXgc0zOWaIEOLiZVIBw8z+M9EX7lZgo7v/2owHwuzNwNeBJ6gGbfo14L3AzUT3kC3AL9QEjQ8T3UlGiC4nX5rkPyRgCCGEEBch6aq/+Ay2ZJLf+okZKKYqRJTlQbUmCzF1zKyH6J5SBI0ra7YO2E0IGi8DrzSaxuAQrUzNK68x7+njzIPvNg7EW7qONetW1rh+EjicdogYOPiSEMenImC8i+gPeY27/9F5CdUsIAFDCCH+f/bOOtyS4vjfb627s+xiu7C4W9AFggZ3QggJwSVAkISgwTXYL7gGSQjuGixAcBZCkCABFpZlYQV3CPTvj0/N987OnXvOufeeK7vU+zzznHNGenq6q6urqrvnBEH74i9FzL+QsPiiwmzr3sT3XtQWiOjG9C8i/Khka2r/Bz/E9z0EQWfCzLqh5eFZMKNs+xQFN7IAx2QalmHll2N9Fsutgpbis/IGoncSDSv5HMr0/VE+UFF8Ke5HaKZe/t1E3zbx/XvU/5X1l2X7ens+s6BJX79/FtDIf5bta/SZUvqqHmXY1lR9B0ZK6XozWxSYvx3yEwRBEPzAcUO2G3phc2u3LoXfiYa/aMx/5v+G8bsZZRTDDa1iMKAsSJA3foqGUGs+q53ThcYjSV8jgy37zL+ssPj9KxqMwEk0HZD4MhyWIJhx8dlM431rhI9uDwdG+TaX/17AP/Mvwe1mZtmyrQ/QO0jyWxbomAi8lVL6uM0eLOgwzKwXCi5k25CS72X7BqN3xUylQV7ycvMy0/9jT7Z90pF/VewDBgNoCGgMLHwfBMyK2kzZsUEyKaoGPT5BfXPWn5f18dX2fdeaPrumd2CY2ZoppftaepPOQMzACIIgaF98uvCsvo3IfR+OOssBTWw9UCAhtXL7vuR79teCXXOf2fduuS3R9ChJ2XdoHDDp0sRnrfsqHetGw2yFLBhQ/PeC4r4yg6IWo6Oln602UoIgCJpLznHNv1Q3Gz3PtuFoxsco1D9kszqyGR5v5j6nhB5rHzwon/07TqWtX8m+gUwfiOiGL/dj+r8FLvv9Qf77D3VWnredsuBG/nMAmh1ZNpBR6/cuNB5A+o7p7YevgdVTSlMa5bPGAMYVKEp5aLbe08yGAzuklE5qTsF0FMUAhpmtASxB4W+gUkqfdlAWgyAIOj0VghL579nvnsB7aJpvtr2Hpvp+SMPfFWb/tpB979DRdDegulDbmtVsg/KASfGz1n3Vzs9mKHwbhnUQBEHLyP27SjarI5vhMTr32Y/GgY3893c7cuS9s+AzALKAUX4bRHnAoWzri0b3s39f+rSGLTvvY6YPSnwR/WPnJGdnZYNI2eBRPsjRE3glpfRto+ub8S8k2wHbA+cBW6B1N5eklG5s9VO0AyUBjHWADZGRnf87qIQM7LL/uM6vtZs6o6wTCupP7v/Ue6G2kG29mvje1LHi9HYKv43pR4qLo8dNfc8+yyhr9PlR3i5NfK92vDnnfk/DyHW2fdPJ9v2vuH9mMVDcyOiX2/oXPgeg0ammghJZIKIYmCh+/ziMhyAIgmBGxsz6Uh7YyD6HoIHeN2k8e+MttPzg8xmhP3T7ti8No/D5bTAN74Ao2wagJQbvF7aPKA84lAYjZhZbK2g7ap2BMQL948fGyHi9MaV0dF0yYHYysBFyGF5Hszo+MrPRwEvAK37q4yml3f2aZYBLkQN4B7BPNaVQyxKS3F+pjaRxYGMkMuBnoWGN3ddM/9KgaUy/Ljf7/IKGUTNy37siR7YnDc5wPbfu1HfEr17nf+9bNl2obPu+xu1/ue3b3Pdark1eTn1865v73gfJV5+SfVmdZW8Azv5Xvbnfv/a8kiuzooxkeS2u2a/1e7FdGI3J3guQv6b4vdrx5pybTePvXth6dPJ92TuDsoDGV759Xfj8ErX5L5m+3r9iehmo9PkN00emi8sdst/dkc4qLsHI7ysLUPREL2f+jAZDIv/9U6TbygITEZQIgiAIAsen3WezN0YXPkch574HDb5BfvuIBpswW+5XHLxq6+/5gMUAZOMUXwCZzW54H/k7xSBF9hfREXwI2pxaAxg3ARehYIEBx6J1Y7unlD5rVQY0E+L+lNL/zOwkgJTSgR7AuC2ltGjJNU8C+wCPe57OaO+/UfVgxwCmD2hk06SKb6XtQ+NRdZAz91Ubbv8r3LO1a67rdX5+tkA3pnfK8kq1eH5xy087yhzM7Hu1a7Mtcza/QA5d5nh+ntv/ZeHzK+DrGeUlf0H98JkL+SluWbAw+15p5k3Z8aaO9WD6tYHFl03m1wwWl1/kl2QURzyyAMWXIb9BEARB0D7k/uo5/1LJ7Hf2PoHMtsheNl3s+9vq++fkAhVlU/aDoDNR9V9IAFJKmxZ2HWxmawJ3AWNbk4GU0t25n48DW1Y638xGAgNSSo/578uBTYGKAYx64yOQWWN/rT3vHQRBx+AjC9+hkZJ4X04QBEEQBFVJKX1Nw2zGIAhaQVNr5Kvi/0qySR3zAlqmkg9EzG1m/zKzB81sFd83O1pnljHR9zXCzHY1s3FmNg5FN4MgCIIgCIIgCIIgmAGpaQZGU6SU3q/lPDO7F71TosihKaWb/ZxD0XToK/zYu8BcKaX3/Z0XN5nZIpSv4S9dB5NSugC4oJY8BkEQBEEQBEEQBEHQeWlVAKNWUkprVTpuZr9C/wiyZvZyOJ9q9bV/f9rMXgfmRzMu5shdPgcwqS3yHQRBEARBEARBEARB56DFS0jqhZmtCxwIbJxS+iK3fxZ/YR5mNg8wH/BGSuld4FMzW8FfpLkdcHMHZD0IgiAIgiAIgiAIgnaipn8hadMMmL2G3ribLUd5PKW0u5ltARxNw19tHpFSutWvWZaGv1G9E9g7/tYvCIIgCIIgCIIgCGZeOjyAEQRBEARBEARBEARBUI0OX0ISBEEQBEEQBEEQBEFQjQhgBEEQBEEQBEEQBEHQ6YkARhAEQRAEQRAEQRAEnZ4IYARBEARBEARBEARB0OmJAEYQBEEQBEEQBEEQBJ2eCGAEQRAEQRAEQRAEQdDpiQBGEARBEARBEARBEASdnghgBEEQBEEQBEEQBEHQ6YkARhAEQRAEQRAEQRAEnZ4IYARBEARBEARBEARB0OmJAEYQBEEQBEEQBEEQBJ2eCGAEQRAEQRAEQRAEQdDp6dbRGWgpZvYm8CnwHfC/lNKyHZujIAiCIAiCIAiCIAjaihk2gOGsnlKa1tGZCIIgCIIgCIIgCIKgbYklJEEQBEEQBEEQBEEQdHpm5ABGAu42s6fNbNeyE8xsVzMb59sL7Zy/IAiCIAiCIAiCIAjqhKWUOjoPLcLMZkspTTKz4cA9wN4ppYcqnD8u3pMRBEEQBEEQBEEQBDMmM+wMjJTSJP+cAtwILNexOQqCIAiCIAiCIGg+ZjbQzG4wszU7Oi/BjIuZ9ezoPLQ1M2QAw8z6mln/7DuwDhBLRIIgCIJWYWbdzWwjM1vbzAZ3dH5mJtw438nMTjazQ8yse0fnqR6YWT8zOzGzS37omFlXM9vdzEZ3dF6CoD0xs5XM7AUz26AF1w4E7kZL5K8ysxXMbBMze8vMnnSd2a/umQ5mKsxsHWCymS3Z0XmB/+sPjvcVE3VjhgxgALMC/zazr4APgE9TSnd1cJ5ahZmNNbPtOzofHY2ZjfH3mtxsZkea2fZmtq5vq5lZm8qsmQ0zs9PNbNa2vE9b4M7BDNOmzWwvM9u7DdLtbmZ96p1uZ8DMend0HirRFvJnYl0zW7Cwfxkze8zMdmhF2iPNrJd/72NmBwNvAgcChwETQi/XBzMbCvwD2AR4H1gFeMDM5uzQjNWHvYGdgLvMbICZLW1m+5iZ1XKx66wdaz2/uZhZLzMbb2YPmtkeZlbzP9CZ2Rlmtkozzp8L1fOewP3V6tfMVjSzpbydd/Wy61vDfeYxsyG15qszY2Y9zewPZrZPR+dlZsfMFjCzf5rZmDZIew/gJuBS4BIzW70Z1/YA7gCeArYEtkfL408GdgAORjPNr2pO+w06J67zVzezdeudLvD/gCuB28xscTM7xcxeM7Nt26qPqcIWwO7AP8xsZN1STSnVdQM2BX4GnAQcXe/0/R5dgdeBeYAewL+BhatcM67we05gdI336wusDyxY4ZwhwOwl+TweOLNK+vMDk1EwZo46ldGWwN+Afm1Q/lbHtOZCyn6El9fDwBGe/2OBv6CI9F3Ac8AzwDbAfsBZwIqF9HoCuwC9mijnw1CncAAwrHB8WeS8PAI8BPRoC/lti82f+7/AkSXHetWzzuqU34WAqciRmbNOac4CnOBt6Z/FZwYM6FLh+i2BvwODCvv7V9Mv7VRmmwCfAWu0osxvBf4ALA30rnP+fuY6bPs6pjkCuA34DzAReBV1zOcCU4B9fN/ZwHbA/sAsNaY9l6cxDbgImABcDSyWO2cxl9PRdXymLsCRwAYVzlkWmKdKOkOAfYE1W5GXn7q+rbXM1kLG0VnAIcD8NV43BHgW+GPWLr0cjgEerOH6RYDNW/B8g4Al61V3TdxjgMvRQi6H77ssTQDWq+F6A85Ho66LtlEet0f96MbAo8DpheO9gMWL+hFYwNv0VOAnwLrIQbsfuBkYkzu3D3Cot6cDvX73R/3SmkDXknyN8vPHezue5uX2NDCiwvP0BN5wnVCT/AMjaQN7yNNeCLgG2StDmnntksBLyHn9gMb9z6rAqUDPGtLqg+yoocBGwG+RrdOojFzuBpTs7w3MXeEe8wB70EKbApgduBDZc69SYqs1cd1Q1z1b1HpNSRpzAm8B1/v9+6J+dTyy1QcAKwNHA1s1py79/LeyNgH82PXCT2q8/v95m7LcvsWAPrnf3ZH9ekYTaVSsE+D3wH3Ijl63BeX3M2D1lpR9e26ovxmRlQny39Zpw/vNCoyt8dw+qP//AHgSeJv62kz7IDvWkH3wnbe3nyBf+da8TDUz7d7IXjgO2IsSnV5yjQH/cn10GNLv9wD3Aqd43bRMl7RBRR4CHJp9byNhWRH4e+73wcDBVa4pBjD2RaME1Rr8/sCnaInKXU2cMwR4HnWmc/m+/qijfwB1Ttv5/sXzgu7XvgrsjJyvi5q4x8rI0R+YE8yrKXfUdwHe8eNPAEPrWPa/AT5BDsS8Jcf7ArvVKNhDkGNyJ+pAzvDyKnUy/bk3R8GMs5CxNN6vWdfTe9AVwj1A39y1GyEj7AzUAV4GfARcjoy6v/rxzZHhdavfo+gED0TGxOqF/T283E/0eyzUFrJfoSwP9Gefhjs+qDM+yuX3dqoYb/5sGyIls1Ir8zMSKemtSo51QYGqPZGh8Lc6PP8gpJwvAhZGHfTPcsd/jAz3p/JykTveH7XfG/3aYb5/MW+fH6OOIW9cdEXG5a+BTZuS2dz33sCuKICwZy1tpFA3E5Gum4pGZA5BgeImgzK56xdGOuFgZCj9B/gKdSyNyqOG9EZ7Wg8go/1S5FBs4Z9HAd1rSGcWpMvuoWDoIV3yJuose7jcLAX8ArX9TNcOQh30FcBVwCvZsUJaPXK/eyDd+Dt/loNowgBBbev+rJyRHvozsHGF57oQ+H3J/u5eXk8j43buXJp9kEN3PjDJjzcKVgHdUHD3QxTMmUIz26vf73Av34uQMXUyMLCkrY52Of8b0re/RzMOzgTeBa4DuuXa0aiS+50FXEBjfdoT6eHhhf1royDksSjoMRXptsX8eC8UfDkU6dyfkwuEelke5ddMA/ZpRtl0A1ZHDs2VKIC2NwqirAQsUzj/cODyXLku7Wn81GUsC9gs4NviKHDzqD/fUch+uAL4bXPbYhPP0Ac5Kkt7np7F2xcwGLWR3ZHTdQ8KjL4P/KaQzrGov1vZ6+nfSPes4fJyt6c/ANlI11IIvKHgydNIpvdg+nZ0F9JjBiyDHExDRvIbwA1Ib52RyZhfuy/q09ZGevHIomzlzh2JAktfIMO+a+H4L5A9sB8lsltDWe+J2uDvgdOR/XEW6o8voUJw0OtnMrCtP/dfgIMK59yIgkCPAvPly6Fw3g7At8D3yEb7u+fnFM/fMrlzzcvkY7yfRG19C6QTplJiNyL9Owk5Ifu3oKyW9fo6zr/fDvy6huu6+LnXI7n+AOmtmvUesCjwMgrqGOqznvP62tBl4GvgRdSv3o5kftca0l7cy2zpwv6xSEfuUeX6rN8cXMO9MlvnSaSX1kNO4HmoTzi+rC2gGWIvoyX326B2NTjXRnrmzh1FIbiFZn9McXnduSBLe6NAWbMChC6fryIdf7TX7Z9oeYBqFeAWl+sPkQ92D9J3U4HZWpJuQQ77FvYt6e3hHdRHDqtw/Y/83KvwQRFgQZeRTarcu9GAqtfJP7zcbkd98TRyA275/CD742/Iv6lqnxXuZX7tHajffQT5gdV86HVR/5bp/ZVcBtdFvsZLSEcVbYMhyOb+FzBradqtqcwmMrsP8Ev/vmG90/d0tyTn6AO/BM6qck0xgNHVFcAuFa5ZxIV+LmQQfFBsAMgwfhR18vt6Zfzahfk8ZChnyu10VwBTkUPRHRnGp3hag/x4o9Feb4hPekO80iv1Jt+654Tzj8jInNcF7iSkpIfknnsDZEzejYINjZSm53uhwr49Pe0fIWUzlcaO/B+Az5Eh0zNXRnui6PIWns+VvAFkz749asSjmykL3VDn/zwyUE719C8FHkMG2qZerssWrh2GHJjHkAMzIHcs6yRuwmfWIOPqOaR8JqCgxw5o5PdlFIg5GBlTU5GzOg8wBzVEGMvOQQpzPRTg2oHCLB8/ZzaktMb4/W9BxvMkFKCZH3X2z5AbXW6iPTyA5HQykuNa8r0nkvW1UDDob6itnI+MlR1Rh3g1kt9/e913cdl4GwXv/kpJR4+M47X8mVYu5gm1zYeRY545C6ug0ZBRLouvu5xc4nVaNGJP8LIy5Fx85ddMRfplbtTmrkYjQX28nF9Azuo0CqPRyDB+Ae/wUNt8BDkFDyHHaDFkOL1Ihag4cA5wgX8fi5y705FjsFOV9rG9y8IvSo5dBxzQzDa3nj/vuchw2gnJ/FA/PgLplonIudsIdbRbomDAHqjN3EBDEHEnz+OhuTo8AriyOXnz6/ZF7fNnyEHezeXxa5e1h1xebizKUoW28YjXnyHH7zWk4weWnN8fGVCTyI36eBk84vXeBzlMT3j9vAx8iXTguShgtTpqh3ejdnm5y+L9vm+kp7su8J7XwW3A7lWepwfSj0/RMEo1G9IR7yJDdBTS0Znj+TBqF30KaXVHeu8iNAr9stfpDrl6HIWc41JHDrWpnXK/h3rZ7o7a5bkuU7uhvra33/NhFLw4DLXxqX7OHMA43zfG7/8yBcOekhFtpGMm+/VHocDIlqiN/hf1FdOAH/n5I/13WTC/C2rXG6J+aTLSf6/673WR4fYgChJtRm5gppBWb+S8PZzb7qbgMOXOPwL1iW/5M71UePb5UZ/4ILA1ktn5/VnG5PL/FrCE/+5VSKO73+NnqC2fV0XulvTyexjZiccjnVpqSHu5beNydScasZuHBjtpUT9vVk/3as/Lqajv7e1pTPZ9I/15j8rdY25/5r1QHzYV9Vc1jQiigMI0cjMWULv9HQqunIzaZiNbGAUDJpNzXIAlUHvLbKehSJcMQrbVeyhI8UhWLzkd9RrqGxrNNHQZeB3XV0i2n0GB/axP/sT3rY4CMOcUdMavvdw3RzbxO8BmBXlYpFh2np/lcuWbv2Y5pKsrzi5Bds0jNNi6cyA91Sh463k7D7fVvWwOzOq20KaOw/Wo7xtM43byspfH8JJ8DUD9zSRg2ybyPga1+dLgJLJtGtmnVcqjGxpRvwwFAe9BfefiKFh5YuE5VvB7LJjbdxayh3ZGg1yPuLytjvT1eDyo78/5GtKF8yNdeBnSy8chPXAVkufVcvcYQUkf6cdG+33WQP7ECai9Xu3yeIQ/W9WBcGRH/sllckfPbz9/tl1dNo8BbvDzF0SDsSeggcdaBoEMuBjp9B6+b2WXq5+iPv00FAAs6w8WQe13s5Jjy3o6jWZdIj/lStQ352V1Ra/THdAMtw28flau8hzZUqVbkB7e2uuizP/ohWy4HZEv+QQ+c9fL+BngiAr36udyVdo2/JwhyM44B/gV0nMPIH10BdJR5cHpWhtMczZaMaW1xvS3onEAo9EyDRfccb69WXI8mx48e27fZkhRDwUeB3bLHbuI3KiaC/TVqCFnxtrRyMBcrnCvHdAUw9loMFgvRZGwrrnzfgvcVLh2dmSA90OG//n4iCKKuj2OnJlH/PewQh5PdsFb0s95yu+zhedpMrDip+7yAAAgAElEQVR+7po+yGD4goZRzvWQ8Z/vqH9MLogBDEed+ULI2HrB7/s+MnB2QYbGV0jhHUxOcTQlpDXKhJFTGsj42h0Z9G8Bq7QgzZ7IKfgIKYovkGFiXheHeB3eBGxUuHYh5Ci94XV3IYUIKjK8uubOf50GJ+YuZGT8GzXui5ES+wA56pt7nfwOyffxuTy/6mW/UqF89vE6HIeCDkNyx3dBhmUmx/N6Hd2KFO8Q1O62Q6OxmVO+NVLYB3ldP4i3Hz8+v9/zfaQIF0ZG1uDcvVdHnc/OXl675o6NQW3lEeRsv+Tb/kixL+X5vJjGRtvVLmsn4RF91GbuR/K5IjIMt0ZyO1vu2l7IOM3rht6onb3jdXI5DQbVAcCtuXPnQW3jHmQoZMHQzGHs7vs/xztW4Jgm5HA7FAwYVHIsM4KHAssjWXwKGaVPIyPkIZro1Dxfk5E8z4l02ZHAj3PnLIoMtFORfpxKYelWE2kv4fV6h+flJk/jfKR3dmb6oOHsSJddRoNxM7qF+mB9NDLxOQrMLYKMvtEub9tSMn26QnpDkWF4kT//gv4c55Sc+3Okh1dDBsspLnPvoEBN1uYNOdn3eZ7KDIi5kKO7Ogr83IjaUTEAt5nfZ1ukPzKd3J3pZ54M9fvdTPlMpKVpCMhN9GepNsLSz2XuU2ToLIJm+PwNtdGLgGMrXL8N07edq4DTSs7rggIYr7n8dCscXwDpy0/RaHjegB/mMnga0pFnIQNpYz8+yPe9ThVHAgUmn0X64J/A4RXO/SkKnN1LlenoKGj1KSVLu5BRdyvSndm2k8vi9oVz50RtZxTSLd9TEtSixGhH/ck/XG5WB56tkueVkY59nNqWOHRFttCZLh+lAfUmrjsa9cOTKMxURfr6HG8fh6J+P1vKs3LuvBEu17u5PN1CzkFCuu5ffs79yMlpKsDSBRna+1bJe+ZorJbbN8afo9GyKDRzYmf/vgdwdeF4d6/7Kf6shhyXR6nQVtGMi4lID72Cj2oiW3JVprcHhqB+YVVkK7yGbJJ80GRZP2dPpFfuR8GWB1EbOQA5IO/5/Q6hfADmThQE+AXqsx9AOvtyFDR+0vPdaHk1smFfxQOrSH9NRLbC28hOegzpvFG1yFrJPQahGXcfed2cgmzX2/x5rwJWqJLGHKgv3qWwfz2vx2bbpxXulfVVR/rvUV7nRRu1H7LdnkU6+4/I/pqCbPuNUF/yqsvqhblr+/v5nyCdm81Y3Q64L3feA/gsrZJ8XggcV7LfkI74o9fvi7jfRUP/vTqymbugwarX0ABYkzoW6f2XPE9TUJDrUNRu7kMDs8PRTLAzXf4WyV1/ININ2ayxwci32LBwn11cBldAvtRQ1I++TWVHfj9k52azGXujwOq7yG46wfPZ1ctlCjUsUWziXn1chs9Atud7nt6ryGbNAp0He/lc4fceWUhnhMvQprl9A1H/dCjSD3+liVljuWsGI7vvL8he34AaZgbXpcGUZOYKz0R+yt9w4MA6pd/qJSS5/Qd4IR/oBfgKMo4+p7CcwRvKf2hw8vZAjb/Z053QqNKzQP/C/t5I2eSn+x0OnFuhUW6MDI9dKTdKDCmLL1GHXHT0xnqDu4iGSPdlyGC43gXybcrXUf4YGVFH+DP9yfd3Q9OEVmT6qKFRxyUt7bF545qVFq6fpWE50SNelyeiIMLnyDk/2GXwV0ixzIEckpNRRDpviI/0tnUD6hjORoGF7oX8lr6/Aym/dZDx+BFywhb1+y9ZOLcXUqpTkGF9B2rbjyHj8EKv+yWqPP8cFKb0Vzh3Xpf/c5HCfpfcFFOXn7Goc8kCS7+gvIMcCixesn8Aau+veB3cRaFzr5LHVbxc8rohewfJZiho86ifM8jbzivA3iVpZdPqZkdO4wLIqDnV6/W3yAhvckkS6myf97LaGQUyFkQG5lJlZVO4/iqXgwle5ifQsAxkgOd9P9TZfQis1YZtrQ9y1D4GTqhDenNSpfNsRlrDkDG9a66dTQLWLpx3Mw1LBrdAxk5NHXKd8rmW5+sP3pY+Qn3a9V6uJ1Nl+RJykmqeYoocnoVyv/uiYMF7riMaBd9y5w5EhnA/1Ie9RBPvZ0EB0JObyhvqP0v1kdfXU14mN9Gw/OAWl+tLKuUzl44h3fsiClRVeq9OFzQroKayREHk4lKqLCAxuuT8RVAfcrm31eHIiT8md/+9qXHNM+ofbkY66xlqWCZAEzMD20i2u6HAYC1T7ceU1Sfq757w+nuZQuDFy2xuFDi8x8/bpNhmUB/yRLW25Odmo+w/RX36azSxNAHNSpiK9PcjNDGTGdkC2XtlnqSJZYyFslsc9ce1LO/bBc32uBZYtUIZP4d0zElogGA7l8HTUKClyfdpeBor+n3uRDbQj9Hsr52QvfRjKryPDA3sXIVsk/fxoBAK6ryLnMCqI+w1lEdf1L8fgPrnrWuRw9z1mW2TLdlZnhoHA1qQ11mRPfJ7NJi1XxPnDWP6pSPbMn2QagCyZxYsk3N8RlTudw+k8xdAgYAJSOcWAzfzIHun6jtGkG00HjnXU5Bf9iAKNmczHSsuv8iltZTLQ355eTZD5wWvj9eRP3OQ3+9J1M7f9rYz2vNe6V0k23g6XyHb+Saqt88uKNB9tcvyu0gXL5PL5z9QEOW/wPJ1lBfzcl4Azc6/lgabdEyVa7PZPXOjQdKPUED7HHIBoLbY2i5hKbH7kcK+GhkJjabOtDDtbsjAnpuGl3hWLCiaCGD4sUVcYM6kYWR5Fhq/TMlcKDdBinYqMF8rBKYpJ3MvfETKhXYCrXwRmTeOSmuzZkXK7kTcOUMO7OvIYT2/wrVzoGj0J9T4Mrgf2ubluRsKCh2GIsjZWuu/UeOLnuqcp6HI+PmSkpHk3Hl9KATpkFF9BG0w2wp1mL/NyqnCeYNoRTDM22Cz1gFWSW891wmvoRGbLDixNgr+VItC7+d1kU2fvM3b3ugq1w1CI60tanvIKfwCX/rn+2ZFxvF4fOlKVmbtIJfdkNPVv63vVYe8ruZ1/uNcXXxME9Nm2zFf+6DZYYsjp3ZH36o66HXOx3LU8LI4NLJ5MTJGW9Sn1pifbMZV1jZHoqB+s9ZGIwP8Tpr5wsYa0j0cODX3uwsKPpXOzvJz+qIA5PvIePwrrXxZJTL0T6OCzTAjb16u21N9to2hJahPuV4/EDmip6BA2+hm3HMLl5m7KLxrpOTcTZBTMKVSH4UCh+NQkLnVTnrJs1fVYy5/rZpBQCteKI3smGvRTJBObX+iWd+T0ezgSTRj4KQF95oHOcGN3uXWxs94PJqpegUaWF3U+8hDUfBhMgpYNXpHVIU0R6AZEsXB11loQzsBDT6ORU768Nz+/alh8NrbUHPedTYbWmK8PbBAyfGRyC5uk5cR+z16oeD1a/jM7hquyd4V+QRVXj5ezy2bSVBXzGwEMpY2RiOTN6aUjq7zPdZHU+m7An9OKR1X5fxxKaVl63DfA1BlPY6cvntam2bJPXqhCNvBaH3YwimlFep9nxrzsi4q5+VSSp9UOM9QNPqDdstcUBf8v5k/Til93dF5+SFjZl3RFNhxqS0Uc+V790opfVXYNxhN7T2heCxowP8q7xoUAO+KRrA27dhczVj43w/+EQWCnu7o/HQUZrY8mv24BQ1L1rqhWU+fV7l2QbRUNtpqnXH7ZiW0XHlzNBN387a0d8xsWxRA+lOV8/qjQP6bbZWXoH6Y2XJoOv7hKaXT2/he/YHP2tOeMLPRyAEGzb752My2Q0GA2/3YtJTSt+2Vp7bAzLqmlL7r6Hy0BWY2Lwp8bZlS+qyG8w35+3emlL5p6/z9333bKIBxE1qOcAeKQB2LRmx3r6UwqqR9JJraNtV3HZJSuqOG6+oSwGgvzGwnNAr7Z/RyrPc6MC/W3g5VEATBjIKZLYlmHa6DljPe2sFZmqEwsx7oX0Re7+i8dCQexLwKjVr2QdPyz59ZDeUZETPrklL6vqPzEcy4mFm/1vpCnRkzuwV4LaW0f0fnJZh5aZMARumNzNZEb38e28p0jkQRxVOaed0MFcAIgiAIgiAIgiCYUTCzfsDXM/osi6Bz0629bpRSus/Mnm2v+wVBEARBEARBEATtw8w8uyToPHRpz5ullN6vU1J7mdlzZvZnX6ddipntambjzGwcejFJEARBEARBEARBEAQzIO22hKQ5mNm96K2zRQ5FL8+cBiT05v2RKaUd2zF7QRAEQRAEQRAEQRC0M50ygFEr/rbb21JKi3ZwVoIgCIIgCIIgCIIgaEPadQlJPTCzkbmfmwEvdFRegiAIgiAIgiAIgiBoH9rtJZ515I/+l3UJeBPYrWOzEwRBEARBEARBEARBWzNDLyEJgiAIgiAIgiAIguCHwQy3hCQIgiAIgiAIgiAIgh8eEcAIgiAIgiAIgiAIgqDTEwGMIAiCIAiCIAiCIAg6PRHACIIgCIIgCIIgCIKg0xMBjCAIgiAIgiAIgiAIOj0RwAiCIAiCIAiCIAiCoNMTAYwgCIIgCIIgCIIgCDo9EcAIgiAIgiAIgiAIgqDTEwGMIAiCIAiCIAiCIAg6PRHACIIgCIIgCIIgCIKg0xMBjCAIgiAIgiAIgiAIOj0RwAiCIAiCIAiCIAiCoNPTraMz0FLM7E3gU+A74H8ppWU7NkdBEARBEARBEARBELQVM2wAw1k9pTStozMRBEEQBEEQBEEQBEHbEktIgiAIgiAIgiAIgiDo9MzIAYwE3G1mT5vZrmUnmNmuZjbOtxfaOX9BEARBEMzkmNloM3vIzHp3dF6CIAiCYGZnRg5grJxSWhpYD9jTzFYtnpBSuiCltKy/H+OrtsiEmfUws75tkXYQBEEQBJ2eo4BlgF91dEbqjZmtETZOEARB0JmYYQMYKaVJ/jkFuBFYroOyci7wrJmNyu80szXN7AAzs3rdqJ5pBUEQBG2Dme1fFlQPZj7MbDHgJ8CWwO/MrGsb3WeWtki3yj1/BPwduNbMurf3/SthZkuY2bCOzkcQBEHQ/syQAQwz62tm/bPvwDpAuy8RMbMlgQ2BS4CHzGw+398F+H/APsCJrQ08mFkXMzsbuKuVWQ6CIOhwzGzEzBqQNbN5gGOBs9rKmZ1ZMbNuZraUmQ1tZTpzm9mvzGxghXP6tOYeOY4DTkwp3QlMBjavU7r/hw+QTDKzv5jZoHqn38Q9ewAXAzuhJbvnd5Y2a2a9gNuACyucc5SZHdaWeTazVc3sQTO7zO2+IAiCdsHM+pnZPmZ2iJnt2Nl0kJn1NLOLzOxMM9up3vlrs4c1s5FtWJizAv82s6+AD4BPU0rt6tx7p3gKcHRK6XjgeOB2D6xsDHwDLAGsDRzRivt0B/4CLAIsYGbLVzi3m7/34/RKhtuMgol+7WWwVcjH8M5iuJVhZhua2SlmdrmZrev7uprZbma2SDPT6mpml5jZ2WY2oJnXjjazA83sOTN73syOM7M5c8fNpyNfY2a715hmfzPbxcz2zIKWnRV/vlnNbHUz+6mZrVBWhmY2h5mt04L0e5rZ3LnfQ8zsYA/iZkGBfcysZw1pdVhZmtkKwNvAz6uc19XMVrZWvlfAzAaZ2X5mtlJr0mkGRwInob/5nu4ZzWxpM5u9nfLR4ZhZbzP7pTvepxT1qGmmyq05W+EI4A7gDTN72czWa+b9epnZycA4YGvgTTM7tuS8n/mxfi16sIZ0NkV983m+64/A8f6s+2bPa2bDzOzmVsjg/n6PD4HXzGyCmb1vZjea2c/bqH86CHgL2R8/BRZFS2Ua4brpeH/Gu91obUudvSsatFos6/MK+VkI+DUaYLrKWjFTw/V6l8K+ec3sVuAy4FJgNHB6c+vBtAT5l6bZunM3cU63WsrR89mpZskUaW17a8Z98v2kmdkGVr+AZd3JZKwoZ7nji9XSr5dc1z0vky3VEybn+I9mtrGZbW+yNW8yBe7GtiTNmQm3MZZp53t2A65Gs//6A7sBV5iCu/W6xzCTP9nSAYW9gXmA15E+/kO98gZASqmuGyrEPYADgD/VO32/R1cvkHmAHsC/gYWrXDOuBfcZiEZX/gLsCAzNHdsIeBnontt3IfA3ZDxt5vtmBd4DVvDfawK7lNxrLWCrkv2/A+4Hersw3FA43gfYAjgcdegPABcBb2T3bGEZr4hGOMYABvwGeAaYqy3qtHDv/sAxwCfA58gR2LKG60aV7OsBnIkCTNuiab6bA4sDPQrnWsn1w/z+L7tMH4lm3Mzpx3sB16G/9G3TcmnimX8JTAQORAribeBPwD+BZ/3YaGAAmhX0V+AwYGm/fk7gzy7nA5CRfB9wgadVVYaQMfkyGn28AFgFWAE4x9tmL5ehK4EX/f5TgP5V0v05MthvAK4F3gf2aMeynaeS3AFDkUF/mZf3+749BFwPPAVMAAb7+d392d8HPgL6+f7B3r66+O8fA48A6/nv2Vz23nFZXB8Fn28HXvIy3RGYhHTPw8CsTeR5BOr0/ud571qlDMzbzcPAQiXtdE9gs6w91FCmQ4A3UUc2BZjd9/0B1+Ho7713Bl5Fev4t5EA1ap813G9PYCpwld/3rgpl0x84DVi8FTKziLeD/t4OxgM9/dgmKOD+BjDa982P2u1FlOj/zrIBRwOPA/M345ouaHnnA8gueBrYP3d8H+A1l9ldvb29D8zhcrce8F80C8AKac+JggUr5o8h3XcXMNJ/j/R7rJc7ZzDwLurP9m9uWeTSmcvrevnCM2+P+u1/AXv6/su8vb4LnAGMBXrVeJ9hLjfZM40GRiG9sB3wPHCgHzNgZaro1hruuai3mzly+4Z7fexWOHc40g83Apsig3p34BbgUWBAhfv09GcYWUOelgMWRjbPJGBJYAOkJ3oWzr3Z66AXcD6yJV4HflLDfcZ6HQ4EVvPy/dzl9A7gXmAa8Hsa2vYg1NedhOvxKvcwv8c7wD2ex6nA6YXzBgL/8LxXLCOkQ1+nxA6qkIeh3kYq1VF3l6nZvL6WAJZogUxtAHzv5bg/zdTnqN1mg4UHIdtnqZLzNkUzhtb13zsivfIust/OQv3zsNa0kXpsqL84C9k53wPfAvsWztkaDYj+pTllhnyNd5ENeAFwE9IjuzUzj6t4OkcAdwPXIH2+GfJJptJB9m9n2ZCtO5kmdDqyaZYHVnL5PBO9fqBPybk90PuUNnf9M6aoU7ztnouW93X3fb2RnfyC1/fu5PzTFjxTb6S/Hwde8Xz0Rnr3JODBKnpjmMvGgv57hMvihnUr9zaoyMOB/TyzJ7aRsKwI/D33+2Dg4CrX1BzAcOHY0QXyYmRc3Qg8hwzT4ajjWaOkwp9DHV6X3P6tkIP3K0/zv8Af/NjcyLh504+tnLuuF+qol/DffZHRnwnE4sB/kMN5PDL4zI9t6sLTyAFFxslxwB+beP7Z/PnO9fvdhpzhY5AxOEfJNcOAQ4A7kTM3LHdsTuAXaFr1NsCPkHN6EHLG5kKKfCO/52Tgcrwj9gbzLvDLCnW2Duq0flbY/1vkUB6BnJjrkHHzH2TU/Nrreysvr80L1x+HjItV/PNY4GzUqHv49we9nDZqphzPg4z421BwYQ0KDqWXzWHASgX5nBPYy8tl4dyxYSggsT8ypvd2eRuPnKTt0cyhN71O3/dnugT4GDkZ/XMyNIkKzilwqKe/HOVK9hqkrA/3Muvlx64Efl8h3WFepkvl9s2LAgI/rbM+6eOydyxy6gcgZT0BtYNjKQ9uXY6CKzugoMPw4nnIWbkCdWDXImN1buBW4Fd+zh/QS4YvRbI+BRnHryJn9wOkI5ZCgaGpNARNuqMp3k8Dq3udH4WCpqd7vuZDuuJ0ZHgf77J3PzLGezdRLoOQ8/m0199ET6s/ar8TkSF4u8vRMbj8ells6WW3msvCon6/U/2cI4AnvYyv8bydioIy9+euWw0Fac6nGR2y1+lbuNON2us5wBWF9jUWjdS+igJHT1ElsNPE/eZExvl+uX3XobZ2LWqry6KgypvI+Mj6mH2RvB1clKGSNmW578tQY1DZn/VoZNg0xxDe2PN2ACU6suT8Hv55uJdn9nuUy+WRyBEc7/sW8XTvAw4tpNUbBQKKTvMFLksvof52KdQHvA0MKZz7E+TY9fbf57kcLOWy18joRDMn30QG3NWovd7rn1egNvQEcFCFcljAZXoPl8N+SK+d7DL2AdLHFevCy+uCCsfn8OfYCunViag9ngz0bYEcd/Vn27Xk2BjUJ/wd6f4r/DmOpbH+7+Ll/BglQUPP7wSvw3uK1xfOnRXpxfdQ331d7tiNSBd389+ret31KuTll8ATuX3dSvK8jMviLcg+mIAGiAYgu3N9l6cRJXmcBdkCtwIDKzzLIGSLvAAsk9s/wOsxG+yaDQVFzkI2wPNF2c5duyzSJUe4rM2bOzaQgm2BAhfXoYD4e8BnSBcfRMGpcjl608v/G6SLpwGDmiFTvVEbXB/1SeOAY5tx/QhkW1/qcneyy940YLmCnLyHBnQmIVtzKrAYCrz8CfknF6B+q1Tm/H5lff7Qkn1LoHb3T9Suj6dKoNfl8QCvsyNxHY509CuoL10B9QuTkPM7jip+Ti79/fy6NZAe2h/12St5ecxTOH82cnaA52Nel53xVLBtvT6nAqs20W6bdHJbuiFduiHqz/bDB4Nyx7MB0G99+9hlp2pwscp950X2Vo/cvjFI3/4T2KnkGkN9/GuoP7kT2XdX+O8huXPXRm3xeeSn/BPpoI+Rnhvh6f0R2e8DCvfqggbD90DBpnHAIoVzRlYrBxSovB4NyHdBNsNXwNfITjrR83NcE9cb0ltnFvav6LJSFxu+rkKVq+BjkUP2o3qn7/fYErgo9/uXwFkl5+3qFTgOeLPGtIeizuV5clFmr5CLvNJuA05o4vo5KIxU+v6rkGJd3IXwReScTEbKOGuQE4BZ/JrdgNsL6RyOOoLHXRAqOfXre/rLIKNkQc/7RL/n28CyJYL7GG5I+rXH450aGtV4FRieazC7o87tAuT0noo68l5IkbyPOstjvFE8ixyW05BROAkZJfcgpT5fybMs7OW3eqGh9kaR+beRkp4KLJprqNNoojNBztgzyEB+w+VoMg2R+8Ge97lLGudNKDDyBlLyP/L8nUYTRkbu2gOQ8TIZBRu2RgbKM0jJ7efn3Ob3vxA5P2d6+uP92luoYSQEBWk2KOzr6uU3d6GMi8b/AciBzWYRDEcd4cnIiH2RCiNDyFh7E8n1iNz+Rby8Sg1sl6X/V7J/CZe1sa3UIX2Q0Xesp3e/y+clXtYTkFzPggy7R73Oj0NtZCxqR9VmkfRBwcvHvbyyAM6WyGHr6fdb3n9/jQfhkMO9LAWnHTmUL1cp94VQIONxl6k3UDseXZCBq1AwxPxZs+BzTzTydxYNQYmdkVHwGQpsrJJLa4SX4dPIIfnI5fcEl5GpXl7H0ODQdkcOzir+exQKYG5A40BQf9Tx/x3pycW8LqZ5WVxckK85URtZqZBOX2Tgr+51OAWNHj8E/MzL4SF85LwZ8rQOkuffM33w2rwudianh5BTtB3TO1mzI130d2S89vJrN0AzdK70/E5G+vRp1LbeY/oA5yyen/VRsGxdpCveRzrk36gvyxthGyHZ39HzdgIKzh7i98ycqh/570aGvB8/HfjO8/U2BUcPBYIzndc/t/8o1K+VBRMWdPnJZuiM8mcZ6uX7Cz8+FViziXxdg/ruuzxfg3z/7cDuhXOX97TW8/xug9rc2v65HQo6HkZ1Q3AvFFhvNOqEZPgFFCApzm7qiozQa1FbquYQrYycywtRnzgKjdg+g9rC9qjfvoQGe8BcNq5B+nxDf97jUNtvyrkbiEZfT0M2yuwV8mWozU9Dwbms7c/j+1ZEgYTHqdDmkJ460Z9tB6bXY31Rm7kBGfYf4DNgS8p0vNevuSy86unNjYLwE2mYPTugTB6r1EN3pDNfAhYoOb6S5+FsSgLHaLbb06jdj0ftz3w7xfNc1I29/X5b++9d/dphft3N/lxvuXxc6r9Po6E/6ol04jV+3jbIxloN2WfDsjL0z8uAw0vk+TRko25SOHYEcG3u9zCkt39bUgbLI518GtLJR6P+67CSZ98W2ZPdfbsNON6PHY+c10ZBRj/3UeCAkmML+HV3MH0gaAnUPx9LQ395CdK/+6DA2SpeT1NQEKUsCNIH2RKPURJ8RjbWPSiIeD3ugKL+4W3KZ3APoWEGZ9a2Gg00+vEDyLVv1LdOQMGXEUgnTPV9XwLn1SD3a6F+acFC238E+GuVa1dBevBRcu06d3wEsgvORwGRxdGg2f1eF1d7ef8B2Zu/Qe1hdmRD9fC6ehh3uL0ul6mQpy40nqE9C7KlnnB53AH10X9B8r0G8mO6eB3/yD9/j/r1YpCli8vK86gv64f6zUazxGiY7TsRBRWeook+uFD+u3hdbuS/TwS+QDN+rqbBr1sA2T17IT34L9Rf9syl14fpZzvOic+YLOjYo5FefY2SWU6e/kt+/yYHpJANtDAemC49p5pgtmSjCSOijulvReMAxplVrhlX+L036kQWRdHGvZDS+AQZeWWdSw8UEXuyUsE3cf/eeGDCfw9CzklxBOAE1Jg3QQbd2MLx7qhTWYEmpkIXzt8GKZZvXdj2p8GI2Au4uXD+UWgEodIo4NHegEYhA/Bxpg/2dEEKehJydKrms8YyXNvTnMsb8du+PZTVPzIu30RR7VuAk6qk2RM5qpmDnkWosylelzRx3SDUCeSnD49Ao3vTUOM/Ahmh26IIdxekhB/3+iubsbASMg7OIGfkIwV2hj/XYpXqp85tzfyZsqU8H/mzHYwcnaqjMEg5lgWlrkWOZz9vW3uhwMVJXs+lo1guB/8XxEDBkN2REbFxsVwL1/bx5/kSGT5nUnAOULvcvHDNBig4d6PX33MUZvtUuOeyaISwT25fL9QeDwXu9n29aWVgpgX12wd1Vhd6md/m8vswcgjKZgT1bCKtri4TSzP9aJ+hpRLNntVQSDx9haQAACAASURBVL8bMujvQgbE2Z7uEihgPg45MyORfiodrUJTM8e7DK1dcnxhmp69NoLpHe+uqJ2/A6xWh/rI9NEENOLxKgrcnI1GfuZCevcXaCS4CzI4p/h57yDj5B+oP5uIHKJd8GAhMlhv8fN7eRlORYbWlUj/H4H6yFOALQp5PBM427//zM8ZiZzZl5GumhcPctf43F2oPGq9Ew3O5zkUBhCQA9rkqA7Sv2egwOHA3P4VvLwuQHbEaai/rMs0V3+uJqdXozZ/JHKC7kHGfG+kZx7yeq51hs2wwm/zOv0KGd1roBH215AjNhUFs3ZDTuc9qN3fDYypx/Pn8jKvp3s9ase3knMsaZitcqkfO8rrdAgKvrxGEzPFcu3mPNRnlzpuft5v0TLKbHBrTRT8GI+M6r3q9Lw7oza5Tm7fLl7Pm1S4ztDgz+fADoVj3ZGzs2VuX1+kDy8rnHsSCogfgOzVHmh23x7I8Vq+Qh5WRX3ci0gPbVByzgIuPwOQDjnCfx+FAlav0ODob+N1O2chjbmQvriEBt20vJfbLsghvRkF1JoKTJrX37moP7+d6QPkv6aJfsfvP4lcUN3334L6md95vrf1Z3wBBfifchmdggbrGukt5Dw/6zKZ7wsHI6f+cgoOco1yNR/q+w6lYSbe3J7Ps2lYqvuHCml0RcGC02gYKf+zl/ckl9GV/dwR1DhrweXqdRoGN9dAgYb8rPFVaAiGZw78RGQ37E9DICILFp/pz3aKb1mgetvCvRdEuuN9T29USf5m8fw9i/yGSaid5J30WZEPNsHTOh7N1FvS6y0LgKyG2t1kL6/+Xpb/Qv7R60iffOH3aiqYZJ6Hp1AfdFmVMl7f67fJvrLkmuXQINn9qF0P9ef8GwoiDPS8HkPDUu2dqcHH8LL6c+73772clql0Perj7qM8gNkd9dUTkP3zJSUz3lJquwDGFV4p3XL7huPrNOuQfquXkCAFcyQy+KYhp3FzClGyknT60AZTogoCvSnqqB6sY7rdabxOtJc//1L+O5vK2+SISi6PF6CgyCmUBHOQU7ozFaJnLXyOI1HnfrM3guWRkss7h+u64rmEFqwFdtk4BnWujRzvGq4fhYIPx6MO7Fo0KvQyMk5atT65Izav80Fldd2KNId5u8sU1V3I4DiOKs4gDUGM21AncpErvae8nNcruWYxZJRd0dI2jDrdg9BIVauCSMjo+h5Yv4PrdjRyLrKZEPMj47PR+szOurl8XoIc93eQEdTUCLKhgMdaFdL7BTIUn6LhRVRHejv+2Nv0X1HH/wA1rOFv5vN0pRkBH2TAbeZ1WYvh0Q2Nat+FRul/3Yx7DfE2dxlyLM9ARs/klujLZtx3C7/Hh+QGA+qQ7ijk6F2LbImlO0B+eyIHYDwyiK+gBQ5OE2nPWWwLqO+fq7U6rAXPeCcaeX6l+HxoRtSOLsdnILvsYxRoqEtgFzmQH3rai7bx82YzvDbyZ5pEDYEhl8dVmji2KnKI+qGg0GPI+exWOK+rl/VHFGaQ1ph3QwHSJt85hRygG1D/fSPTj8TO4rrzdeTUlb5Ly5/jUi+nl1y/Nit46Lr5BaSzm/tejZHIhviXl+0aSO9n7zZZ1Nvk064fDDmrp1Dy/o1C2v1R4HCXnPw/jQIHLV7K4HnORsjn82c/GA2qZAMRFZeOIR3+GA1B72wAb31ys05akLejUX+SDfD9CgWDrqBhcHAy0rd/RQPCg3PXL+1l+xCanX0QueUuLvPzVLj/6Ery7m1rQ9T/zYIGWp9Fvk826+lsZCuOQcGd571szy7WG+p380uYsmVxG+TqvFpdmKc9mSqzKlpRL/OiYFu/3L5eKJA1ATinhekO9PZyIgr0TKVkFk0T186P9PDI3L5+KJB+Jw2zJKeb+TFdGm1RWH7T7VDE56coynMLJdP6Wph2Ny+0uWl4ieciVa4pfQcGzTQU22tDjlLpSGed77MvUqo7uzDX9JJEr4Nmv8ipDvntikb96hoYaYd890bT7GYYp7Ady2YlCu+TqfG6FdFodT54lRleU2l4UamhkaepqENtN6O9Sv6XRs5vq9ZlxvZ/5dkDBVbXrVN6XdEygsuQYX0DcgaHIkdrezS60en6jxqfrxua/np1c9uEP/vN+JIzL5eKL9KuU57noI1neHZwnfRAjtRMqRPcGL2GGl765zZQ3XU1Cs7u007PuxxyzqdQYcp6M9O8nIaR38ObNO7lQDdazlzHZ1sQOYArV7j/RrXYaigIsRAwW3vUS+HehpbFjkczsH9aOD4cObLNdi69j38XOXrHuM5stUwjx/g4tGzsfBrei/YOJUtMmkijLwpCNZph08qy/BMKUL6BBk7759rAT1AQ4XHkE3aoPez53cltwynA9vVIs4X5qPmdMnV8/llR8KHFwXI0EHkvmtW3QzOvPYGG92z0RfbwxdRoU2VTkOqKmY1ABt7GqKHdmFI6uk5pH4mml32FRso/RO+/OK7KdeNSSsvWIw8zE/63W9uhyPO3wI4ppe87NldB0DrMbCu0rvs3KNrfFy35eLVDMxbMkJiZpbboLDsBM/OzBUFHY2aLIUftiTqlNxA5+0+llL6rR5qB/goY2cF31VMfmtnFyMlbEQ36vVvHtEcDE1NK//PfvVJKX9Ur/RbmKXvJ5BMppet838+Ab1JKN+TOobP0O2Y2Bs3qe7yj8zIj4n/pujbNbDtmlgUtsn8gewS9CLUmH7StAhg3oSndd6DI0rEoOrh7SumzVqZ9JPBZSumUZl4XAYwg+AFhZseh2TpHoX+eCGMvCIIgCIJ2wQd0X0HvV/lLR+cnCDobZjY7WsZzX3Ps9DYJYJTeyGxN4KiU0thWpnMkEcAIgqAGYnQ5CIIgCIKOwswGppQ+7uh8BMHMRJf2ulFK6T70zxr1YC8ze87M/mxmg+uUZhAEMxkRvAiCIAiCoKOI4EUQ1J92m4HRHMzsXvT3PUUORS9/mYb+W/0Y9AbTHZtIZ1f0d1mg/7tetA2yGwRBEARBEARBEARBG9MpAxi14i+wuS0CE0EQBEEQBEEQBEEwc9NuS0jqhZmNzP3cDP0HchAEQRAEQRAEQRAEMzHdOjoDLeCPZrYkWkLyJrBbx2YnCIIgCIIgCIIgCIK2ZoZeQhIEQRAEQRAEQRAEwQ+DGW4JSRAEQRAEQRAEQRAEPzwigBEEQRAEQRAEQRAEQacnAhhBEARBEARBEARBEHR6IoARBEEQBEEQBEEQBEGnJwIYQRAEQRAEQRAEQRB0eiKAEQRBEARBEARBEARBpycCGEEQBEEQBEEQBEEQdHoigBEEQRAEQRAEQRAEQacnAhhBEARBEARBEARBEHR6IoARBEEQBEEQBEEQBEGnJwIYQRAEQRAEQRAEQRB0eiKAEQRBEARBEARBEARBp6dTBzDM7M9mNsXMXsjtG2Jm95jZf/1zcEfmMQiCIAiCIAiCIAiCtqdTBzCAS4F1C/sOAu5LKc0H3Oe/gyAIgiAIgiAIgiCYibGUUkfnoSJmNhq4LaW0qP9+BfhxSuldMxsJPJBSWqADsxgEQRAEQRAEQRAEQRvT2WdglDFrSuldAP8c3tSJZrarmY3z7YWmzguCIAiCIAiCIAiCoHMzIwYwaialdEFKadmU0rLAVx2dnyAIgloxs95mNktH5yMIgiAIgqC9MbNuZra6mW1mZvOZ2Uzttwa1062jM9ACJpvZyNwSkikdnaEgaA1mNiuwFLAg8A3wHvBkSmlih2Ys6BDMbCxwGTAb8I2ZPQ1cB3wATEwpPdyR+QuCIAiCIGgKM+sJjAVeTim904zr5gJ+BywJJGBh4C3gXWBRoK+Z3Q48AUwFPvPzXkopve1pdAV6pJS+rN8TBZ2NGTGAcQvwK+BE/7y5Y7MTBNNjZsOBVXxbDJjfD30GvAQ8CUwGvgc2A1YDngZeRm1yXeBCM3sHeAf4H3A3cFlK6ZP2e5KgvTCzLiml781sceB6YGfgTqArsBGwPtAXWNrMngf2zJbSlaRl6P1G37dP7oO2xMy6Ab8F5gH+DTwLPJ9S+rRDMxYEQRDMNHjwYDFgKDAKmBf4FpiA7NYHUkpfFa4ZDPwSWB0FHXoA0/z68cBAM1u5gr2yIHAqsATwIRq4uQg43E8Zn1J6K3f+KGBjYGlgGNAPrSZYysyuBd4GdgOGm9lEYKI/ww0ppXNbXDhBp6PFL/E0sz4ppS/qnJ/iPa4EfoyEdDJwBHATcA0wF2pUW6WUPqghrXG+lCS/z4CVgQ9TSi/WN/c/TLxMF0LGdl/grpTSx36sG3LG1gDuBf5eVIYzKmbWBzgS2BAp4EeAh5Cz8QoKVgxAncOyqIPohf5J58qU0meF9LoBy/h5vYGtgbU8rSnA0Smlp9v6uYLGmNkYpH/GtdaJ9Ho+AdgXBbBmAX6TUrqmifN7AYcCvwEeRu3oAyRLP0FBs0G+b4WU0vjW5C9oG1xfbApsB/QH3gDuAa5OKX3t5xiamXUu8DEK3i/h2yLAbcCuKaWPzWwQ8H0xwOlpkDrobd2er6WRTHZFhu1/UkqTm5nOYNSnPNNRzxIEMxre/lcEBqaU7uzo/ASdEzPrDhwA7A88heyHCcBraFBtNLItFgeeAZ5HNu1oYFU02HIzsne/QHbMxJTSFDM7FNmvJwIrIfu4u6fb09M8DrgB9RMTUkoftuAZhnn+hwLneR7nA0YAfVBQZOuU0kPNTbsz4rbjdz/k/rA1AYwHgMeBm1JKj9czUzXef13gT8gouiildGKV86cLYJjZT4DjUfRuMHAKcGpK6bu2y/XMjZktjcpxXuBF4Duk9B5HTvj8SCHehZzxH6EI7RvIsJ0EXJdSetYV6gjgnc4+kmxm86Ep/i+gSPK/20KOzGwEMuKXAg4DVkspvdoG9xkKbA/siepmr5TSy7nj3YDl0UyRAaje/pFSejJ3fABgwEczYptyw29nYBM0++UtJLPrIp3xJgpGTUXR//HAdimlCSVpDUFBq3t9lsVoYEuku9ZFowPbAyOB7rXoU3cM10Xtqz8yJu5HAbGpqO5+DozNHOKg7fA6/riSrOdk6hcoOPkIcAmaZTUfMvIWR/rya+T49wBOBs7N60EPZJ2KglbPAOsgfXsRkoE+yFj8OVqWdhpwSUrp81waXf269VF7/gb4C/AftJxtWSRf3YDbkY571C9fBdjKP/v4PR9F7SKhAMtanv6zyCD+Dg1GLALsl1L6q5n1QDPQtvfPgci4/QTplX/6dduhIM5nwDnAX/PBQ18X3Qf43O+xL/BT/561j3dRn/934BjUfo735zraf++WUrqlWHdBMKNhZsuh4OdA1BdfDxwMzIGCoMORAzkJjVK/A0xu6/7aR/nXBv7cmZwvM5sbzSJ4Bs106wrMCkzK59PM+gPLoUHV/yIdMxr5EX2RHv0QeKjMdnX7aE9kL96P7OVd/fBE4DE0I3cEGsCdBjyH7IOlkC6bimZDTDfw1czn7en32BLYw59l9/xsh5JrhqC+a3HPx9vAwyml9ypcY2g2xdJIn49HNs+3aHbxv1NKbf4qADNbHwU2lkY22xetKb8q9+oC9CubMe397tpohsolKaVvzKwfsCYwO/ARGtTMy9w8SEb6InlbDpgb9Y1vAQcB13em9tQetCaAsQ9SjpsBK6WU9qlnxqrcuyvwKhKCiShiuE1K6T8VrikGMFZHBs+dwJzIcPsIReh+kOumvNEtihyznkhx3taEEu6BDL6xqDEthBrTUcDFKaX/+XlD/ZyPUGR1fC6NfsAY1BCHIkX+c9TZDgM+RQb802jWwUe+vQ1cmN2jwvN0R0GTMUhG3vO8bAGcn1J6qZnlMwvwJYowj0UG/Gqo8zoQOK+9FIiZ7QwcgqbuPdqS+3pHuiCa9rcgsIB/HwHcCpyBHJs/IKfqJWT8rIPq4E7Uic+JOsE3UD2tTcMLgt8GdvfrF0DO0MsppW+am9/2wswGoI5uERSQWx09470o+PZcSim5ATAn6oS3QtH/XwH3ZPVhZmsClyKZ+Qp4ENgWzSL7BOmvc+ptNLrRcD3wbkppz3qmPbPiZbY2Wp7R1HTX1ZGB+hiSj8OQDhiAZkftmVJ6tOS6gcCFSMcdAjxSNnvHp9MujAK+rwBPV2rbZrYpMmyvQo7K/n795yiIfIXvPwDNNjzP949Fffc7yIF/DI1+/Qq18ZdR4OGfKCCxIbANCi58jmb8XILk+UsUrFgWzUzqhozzx5BRNd1ompkt4fnt5vd6AbgczSh5Hxm2A1C/sIrn/3zUVtYAfo3a5IMoODHSzzXP67fA35B98jYKenRBTtvxXg6notmcx3paf0IzYC5CbfxO9B6iSU2VfT3wPndJ1N8B3DcjBnyDjsPMVkAy/ASS2c/MbC3gSjRT72rkXF+HZO0bZFO9699nQ47THMjuuxP1/0+g6ft1sWnc3tsBzaT+HA0YnlGntHtkNkVOjy+MZgK8hPyFhZDj3QPpsTnQcyekz4YBDyAHdzAaqPgU9e8PoYDGSGQfP4ds1jHITn4TBWk/9/THIHvzl3nn3svgak97GPJB+iK98zFyaldDevQbz89gpLveBf6FAgdzeD7+5HmbAryZH6zwclgT2efzIBv4Ck//lFze70O68rGZ3QE2s5NQX/gBqveTUP/zW2T3/j/gb63xAX1A82JkOz8O3OH3+BZYD/kfkz0Pc6F+aCfU374BrIDkKwtqbYtmr1yC+sCPUF2+gvrQlYEzkQxunR+kmNlpTQBj+ZTSE3XOT633XhE4MqX0E/99MEBK6YQK1zRaQlI43h05GnMCW6SUptY10zVSXL9uZgsBg8uM4jrcqzuK6K7q21gU2X0GGaWLIaPwImRILoicuEnAfijydy/q6F6kEKluYZ66oNHICSmlL63hBZdDkYE9CDnQ04Cfp5S+NrPZUQR5U8/PHcg4/znqRN5Esz2+RB3MrWhE73Q0Df8bZKCv48cu9mv3Rp3fg6hDXAZ1TqAO8Wq/379SSt+25rlbgpnthBRvH2AcqpdLU0rPVLhmXlRWq6EO/m002vAieqbnUIDhu9w1w9Fo7kKo3O9IhZcyuSxthRyvO1NKk1yWt0Ll3B8p7W+RszEZOSv/QfV1W2uXY1R45j5ItscAr6WU7qlwbhalvwONEtfckZnZ2sgQ+AQZHmORcbgjco42QZ3N6W3tGHl+BiH5vi6ldGRb36+5eABtY9RhL4g68DuAJ/5/e+cdbul0/fHPmmJmjDbDMPqo0aJ3ogdBkCBGtF+IEiKIJIQkSpCQRIouQiREkGhRoosaMXqLPvrMGIwgQcj+/fFdx30d5/Zy7sx8P89znnvPW/be737XWnvttcvpa0cqIlZBcjoKdZj3rI7EZ1l/jAJ1b6HRy4JmR1yAAgFj8/uDwFnISd0a2a/RyAE5oDRp2VxEfAoFOOZGgYmrSykd/nnx1OdVkS7f2J2ZcamTS6CN1zrtLEbEfEiXXke25JnsuM0EDGg08lW5d0j5+DKdGWtOXwbc90e2fnWkx2fT0uGpdQbGodHTv3ZmhlPaybVR0HsJJDP/QXZ4ROZzOKrjpZAMDcnP+8BhfTFaafo3Kbej0Eyj3VBAfCVkayYhn2Db6nT5lL15gedas6+hjfG3QjO7VkG2cAKSz3FoWv4bqDN9fynlw7Qr26Ag5rKoI/4SmmH2TxToXY2WEfhvohlmd6KBx5u6WQ/fRst390GB0F9k+a9D/uxSaCDrMdTG/AcNttVmndTq4sFSygeZ5mjg9fQvF0L+z3uZ3riKvYhGdZntxfezTFOAkZnvIBSo/RoKjKyEbOA7dfePQkvbWx2ky77BQcgvmwvZp/Gos/wU8mk/RDPOxiMftjbo+01k/6fpgEUjImJQvuel0PLdBZDMvIg2D90IDTa9jOryDuB37fUJc+DrIDS75odowGLD/CyJdPIa4LJSykMpZ1vl+ZNrs5wjYjhqcz6L/Ol7kT/Saludun0G8q03n16CGF0OYIBGF0spN/RgeTqa77bApqWUr+b3nYHVSilfr7tuT1qiWHOUUsa0k+4A4Hi0AcwkZLQ/RBHP/yHH9Fcld7ptcP9Q1LH/HHJAHkadoMnt5DsQGcyNUMR8qcxrMDJM76JpVweXun0PcmrRNiiKel+ODA9DI31zos7Um8iIvo8CAMugqN7mme4t+bm1LlocyMHaGjlrj6JO/iLAiaWUO9t6rt4iR77PQ8o6GBmg36NG/LNoZsgVaJbGK3nPINSI/bNoGv9CyMiMQU7i9ajBG4vq5i+ow7IgLaN9l6E6nLktB7kvyXe0NDKQiyL5Ox34SSnlXzndcSxyIJZEdfAbtJ7+wd6aQldXxuHA0FLKa/l9KOrYz46cmi8gx2rDmnOeurg6ciL+2TDhjuW9GXAyapz+iWT+22gEeD/UgX4DydEyedseXbVrWe6NkfN3C/D3znRwepoMPt2ElgD8qvTyL9ukU7Avmr7/KLIbLyPnbTR6z5NRIHEf1Pm8Gk1fXRnZmn+jEYX5UWD1VjSrq6HdbVCG2tTfV+odtJwCuz4KyP4HycUXUGfySBR4WA04F3gaBbPmQSMkE1HQ9LUMBE6o15+0vduiJRFTgEuQo/58M4KcputkMOT/kHy8jTpyd6NRslVQO7MMajvG0LJZ8/uoozM5/38P6cD7SC9eQLZoPJqh8kDmF6gtPzCveRi13+/RsqRoA2QnO7WHSINnmxMFlycCd5c2po2bzhERi6Og2P0duDZQQGwRFCxYBi3pWgDJTO3zLPIJh6GZUOujjvf1aM+kCZneQCSL79YPMnTxWWZDfuRCyD4vTcvsqNEoADAKuAjNXLoX+b4LItu9KJLje9BSg+oStg3RTKltSym3tlOOWZB/XFu6MSHLsQlqJ76LbPW/UPuxRSllSnefv7uE9ssahAKtw1An9vHeCBykX7w4Lf7g7VRmg+Y1o9CyXrdFrZA6OTPSwaWRPm6FZlOMR/b//vx/CNK3zyLbfi3wg1LK+B4owwJoULhD7yp9zzOzzN9qT6emBbobwDgPOYCHlZYlA3MCXymlHNczRWyY73bAJnUBjFVLKfu1cU+bMzDqrh2IZgHMjaaeDkDTxzZGDs2tyDGfgqZ2zY4cnE1QhPok1Cn6cn5OR0Z1CoqMTso0l0fR87XQaPR9ee/taPbDoMxrAJp6dxSKzB1ZSnk3tLHZ39EI+nJIkQIFW57OfGZGDeNsaPbAG2jmxB/RyGxTZpp0lwxIbIue8/6eNMgRMXhqNfA5gvJLZHQfQ47RzSjy+yTqUPfq5rudJY31kcAXkYx/BgUW3kHO0b6l9U0tRyPHvvYZimYElUxjBPC1Usq1ef3SKFD1BtKPnyDHoiBH6+lpbQp3zmL6JXIAJ6CRoUtp2YDrilpwqe6+hdDyn3nRdNfZUYN9Cgoo/Dcdyw2QbdwYOWi/QT8Duxia6VObKjsBOeOzI6f4PLR3StXBGoCCTHugGUG3Zbm/jEZCzqCyrC20lG21zOfTKBCxGBrduhQFo97L934Ashl3oODSYOSI34w2z/xoWVM6g9tmOV7Msl47rcmG6R7Rsm7+KRSU+BDZoFFI7gfn93lQO3xJ6eTSxbr8jkC6cD7SjwWRDN+BgtJvZ747oj1VBqEZQ88g+z8ctQkboaDmLGiTx78C32zkD0zN7WFfkoH5g4Gvo2DVXWggpLbUYAX0vmZCPtrrqP7/jaaDT0Hv6Sr0bkcjuZkHBQKWy6wuQO9uUjNH0HMW1ILIp+iSXcxZi+ehke/zckbHKBSk2QL5xjPQsozjdlSfo1F9PQv8Iv3h2dHg4y/6m49jpm5y4GMtFCxbDOnyfGhweQIKJF7WHdveE6T/tDvaE2My8m3uRPuv1Q+2DESzP9akEwNEXSzX3Gh21gikvyshf+1pFNx8DdnDK9qadfSJdLtr/yJiF9SpPw2NHgxDG5Nc0q2E286zx5eQdCLvEWjkZX3UED2AIsLD0VSwG+uuXxP98sYgWvZ5mAM5OuPRspUrOzKtODsip6BI+Omo4/BQKeXAPD8UNYwfdGd6r5n6yZHgVVGHvFdH3XuCDGJ8B21adSM5vT0iVkAd0WuQjZmMOpYboIDFEDTqU/u8hzq0M6BZOLfVO9+hfQZWpG6jpGmdbNw2Qhs6DkFBzbtQw3wZCuh8gGzT3Gjk+ddoedHk/AxDG3ItiYK6syCn8ho0+vBQL40uDUcjxl9HncIfITv4FeTE3owCwP+k5Vd/fo+c/4KCNaehzTCnyqCtMfDRrLI1yaWWaEBifTTzcyAKYlyOgohTUOBk0fzUNkf9KGiZunUE2v/k9LxvDeTXLYP8lQtQgONjm/VlAHlN1KEcQUtABRQ4Ob2Uck3l+sXQjLinaPlVgh/kc/wS/TJZj/ku2Rn+BgoInJszVJfJ8j6N7NwGyJd7Gdm6v3dkCnY++xr5DGugAanr0My+19AygeXRbJznUfv0DKqXAWhZwb/r63R6I/TT4WchW30vWmJ1OWr3b0Ly/KF9WmM6Rg7wro9mMa+Tf+9Es7gmomDouvn/OORbnQOc0dEZz9kf/T80WHo78sGWR4GKv6Cg+FfQwNFMaNbKZLQi4D402L9o3lObffYmCl4uiNqjggIbP2806727MzBGoxkEWyKH+JJSylFdTrDj+Q5CDdKGaArb3Whqb6s/hdpTAYz+QESsjCLNgXYN7nDEypipjZzV9TVkLGdGjs1VKHL7/PQUhOgJ0n6ujqaOv5fR8W3RLImBKNj6LgpENxqRDTTT4V9omUafOZaZ95ZoDe8/0NrR8a1cOwDZyRfQXgW2k2aaJaLxevxO3L8EWv61Iwps/ho5vW+hn27eE3XGazZiCApo3oE66LUNtp9FQdB5UGDkJuTgzpfpH4uWeO2LAo6HolleB6I9kg7OtNZEgegpaORzedSxPbv2nNk27IqCDxfmrLABKIi9Pdrk+iIUpH0UzYzYKPNdBAUabkBO8ryZx/IoiP4LtNdLSZu56qr8vQAAIABJREFUTJapFrAYkfVzZ9bBP/piSea0SsrfKii41umf0TTGNCa0iXht37vRKJBxR2nZd2Me5FPtiGz806hv/UBe90glnVPQ4OhcyLZehuzhZ1CQ4hEUEFkHBTJ+SG5v0E4ZB6FNtWv7xvwatT0jgeMb2dbuBjAuRWturkKd6aNRQ7N3dw15LhM5Ao30rVpKGVc5910U5Z4DRXROLqUc005600wAw5jpkey8Rl92mI0xxnw0DXg2NEur9mnzZ85zD6bvImf3TTRVueYMDwXerywHG4DWkR+JAiC30eLAvoyWRB6CnOS70Gy9DdA+M2PQjJRX0K9dvYic67NLKc/ljMQfoBl6PyttbBidM1J2QCOHi6CZaSMyzTtoCVg87rbIGDOtkMtKVkbB5gXQTI3PkUu8UAB5EvoVmyfbWloYETN1JQ6Q+8Y815EBp24vIWmQ+YZoj4a1u5nOkmga8OloQ5JxeXwptP5zVRThvx5YvL01eA5gGGOMMcZMnYR+veYYtGT3VvSLWLWlMMuiqcqPN9rTpxv5zQW8WUp5vSfSNMaYqYXsi9+AAsfDgY36y55Ig3o6wVLKDRHR7u7LHUjnMQANun6MrYA/Fu3s/2xEPIWCGU35RQxjjDHGGNO75OaMB7Zy7sFeyu/Znk7XGGOmBkopj+Vmu8cD2/WX4AX0QgADoKei360wL/rljRov5rFPEB//GdWhvVgmY4wxxhhjjDFmmiCX/W3e7HLU0ysBjI4SEdejDUXqOayUcllrtzU41nAdTCnlDPSze8YYY4wxxhhjjJmKaWoAo5SyURduexFtFFpjPrTBkzHGGGOMMcYYY6ZRBjS7AF3gcmBsRAyJiIXQztP/aHKZjDHGGGOMMcYY04v02wBGRHwhIl5Evy97ZURcAx+txbkQ/ab3X4F92/sFEmOMMcYYY4wxxkzd9PjPqBpjjDHGGGOMMcb0NP12BoYxxhhjjDHGGGNMDQcwjDHGGGOMMcYY0+9xAMMYY4wxxhhjjDH9HgcwjDHGGGOMMcYY0+9xAMMYY4wxxhhjjDH9HgcwjDHGGGOMMcYY0+9xAMMYY4wxxhhjjDH9HgcwjDHGGGOMMcYY0+9xAMMYY4wxxhhjjDH9HgcwjDHGGGOMMcYY0+9xAMMYY4wxxhhjjDH9HgcwjDHGGGOMMcYY0+8Z1OwCdJWIGA+8BXwIfFBKWbm5JTLGGGOMMcYYY0xvMdUGMJL1SymTm10IY4wxxhhjjDHG9C5eQmKMMcYYY4wxxph+z9QcwCjAtRFxT0Ts2eiCiNgzIsbl5+E+Lp8xxhhjjDHGGGN6iCilNLsMXSIi5imlvBwRcwLXAfuVUm5p4/px3ifDGGOMMcYYY4yZOplqZ2CUUl7Ov5OAS4BVm1uiqYsQszW7HMYYY4wxHSEiRkTEwGaXwxhjTPOYKgMYETE8Imau/Q9sDPTIEpGIGJlptnZ+wYhYqCfyajI7Ac9GxBLNLoiZNki9HNqD6c0VEWN6Kr1pjYiYJSK+0+xyTM1ExL4RMV+zy2GM6TAXA4c0uxDG9DYRMZ+DdT1LRESzy2B6hh4PYNSEIyLm6EXFmwt4ICLeBV4H3iql/LU7CUbE4hFxPvAscF+jIEVEfBG4B+29MVPduVlyOUvT6KhiRsQA4LvAn4ErImJUrxasF4iIwRFxfETM0eyyNIOcQfPbiNipG2ksGhGz91B5ZgP+DpzXSA4jYoaIWKmjspZpnAtcX9O1iNgjIvrccY2IYRGxdF/n2wF2BY6LiBUbnUwd2bWjdjidpaPaCuBWrl2yLx2BlPcvR8SEiDi7PVsbETO3V76IWB84CdijJ8vaH4iIDbO9mqqJiFERsV7l+5CqLqZurtCD+Q2KiNUr3xePiEcj4u8RcUJbMhURIyv/j46IX0bEkJ4qm4GImBtYDdgrInr1V/TSfvZa5zFle6neSr9BfkP60+Bb2vRe85kz/U3S3+1zMv9du+pfR8SmwJPAqV1tayNi3YgY0ZV7p0VywOc3fZhfRA62Nzg3MCI+H63s4dhWmj1Tuo98vnXbOD8yIraLiB9mezasp/LuEUopPfoBzgROAb4DnNLT6WceA4GngYWBGYAHgKXauWdcO+evA44DRgD7Ai8Cn66c3x8FN1YBzgZOr5wbBPwNuKWdPALYB/ghMKADzzkE+CLwLdRoD2rj2r2AB4HZWjm/ILA3Clp9Abg7y3MMcCO5H0rl+hWA04EDgHWAWdop64BqfdW/r06828XQCMvc7Vy3NfBmPvOcleOjgD8Cs/eG7PX2B5gX+BVwPLA98E3gD8DaddftC9wPvATsVDk+DPgGsHg7+XwKmAQ8B6wMDAU2qdZlJ8o8NOX/ZOBR4Et1548A3gEeA8bnOw5gC2DlVtL8fKZ1LnAasDnwMvBKfV20Ua7PAfvUHQtg96zjOTqYzsHAf4E927kugOFtnJ8Z2LgL9bsEcBGwYF1ejwJXA79u5b4vAf9DNnlA5b4tU6aWqhzbIeXhDmQLhwLDgQ2BoXX5fj/r40ZgiV7QgdEoqFDN9zfAI8C6wE+BV4G1Wrl/ReCNtAMztSGzTwBHA49TZ//qrh2c8jiyjWsWBRbL/xcETgXW64G6WBtYsZP3jAImINtwSPXZsmzLdiKtw+ildrwDeQ9H7dRbwKg8djjwdk0XgF8CrwFDeijPr6fOrJzfL0Lt9Zopf5u1ct9WwAfIT5gV2ebngB91oywzd+LagcB+yFfYgTbaXGCBOpnYGhjRhfLNkbI2BM3ovBn5UKPqrhtJB/ydyvVfAhZp5dy+qE24Hdi6wflBwA+Az3ZTDgYiO3hBvW0AvkelLUg57fC7ynsWBJ5JO3YRnbSj+ZybARt14p5fIp9pme7UTXv1Vvd9xlaumx0NoL0PbNPFvAYDS7dxfnvgw3yHQ9u4bgHg57TiO3exbJG68Hx+1gTmAVZvSzcr92+B2uONgX8AP24gh4ORHze4wf3Dkf8+Bbiz/j1k/feIzexgfSxGG+1nF9NcMHXxF2nzFqqvo7rrFwYm56ehf5z1+fmqPFPxIYBlOiOvyB4/QV3fDVge9SfvQn3ZXTqY3t75Ti8FDgS+Dexce+6UuyVQf3H9tBHrNJCdBYFbUds5Edi+7vz6wLVpL/4CHAlcDpyTeWyM2sNO9xdaea5lgd8DCzc413pb1guCehhy3gYBR/d0+pnHGsA1le/fBb7bzj3j6r5/qSaowNKoYzSkcn7HNDyjUWd+Ei1O0yyo8dkrBfxI4AYULV2nQd6zoj06LkcO2W3AeY0MT16/APCzVLQb0Sjhw6hzMSiv2SkFcK5UusnA+Sl0g+vSGwn8M8t3OZpF8oWacAD3AjtUrt8eNazfR53SO1EH9AnUKdi1QZn3Qo7fjpVjawNXZN2NqLt+YaS8K1eOzZP1+hfUOZszj49ADuJ+NWHOdP8POCqvXQoZ9JuAp4Dfd1CWZkAGYGR+H4ICAGdmXV6beV2MOn2HIuX+hEOGnNfR+X9keXdDQYkZUw7mQIb2UBR82a5y/cHIoByfdX9p1v+3sg7XymuXyPe9eD73y8A1yEF5Ac2EeJBstDPtNYCzUKO6dtbRbsA2+a7fAB5KWRiW9w1O2RkBbJd5PJ7XnYuM424ogPhHFMRaDXWeah2OzyE9qr3Lr6KO1Q0oSHgPLcZ3ZxQcXBbJ2qZZZ8+hmVZrIGf7SdoIFGRan87neg2YJ4/NhPTuoazXiaiRvxUFV65GTtU9wGl5z4Csq53y2U+mgVOW+f0t679h8Aw4ETlUn83vQ4Hl6q6pb2iGZf3+Kcu7eR5fB8n96Hx3szbI72bgK8jZvwjZlFtRw3Nk1s/P8vv9KJA1MN/l/Vl392W+x6POw+lZf/MheX8dydovacMhQjK/X5bj5EyrFjjbIt/7xcD1+TxPAwdW7MgzpFzmsU2RnC1Wl8+yeXwHJO+PkDpZd92RmV9kXivUnR+NZP5nSL9eAM6onB9DBnXzOV5FbcgjWW/nprzM0BE71EqdDUGyP4m6oEPW/1yV7xujwNxgZKd+iuzO/Sl3A5AeP5nlOxvZmyeBX7WS/5b53C8Bq+exFZF9nKvB9TUbdjGwfIPzA1MONkaB/P1o3ZGcEbVVZ6e8/BR1ll9LGbwadQZeQW3qFztYpxsi/2SmSj7r5/+zIVk/DtmANZCNmjHPb0dL4H+pfM4lU1ZqMvdQystJwJxZvjVaKcvKWZcn57tbFtnUHyCd/y+S4VHtPNPAlLdbU17vBX6S5xZB7Xet7Vg7092+oi//Qf7BIqhjs22+5/rO6IKo7RmD9H1Kvo//IXu+HRq8eh3YJO+ZK+v08Fbe8YC6Y/uitu0JGnR4UPu+FfLPrquks0C+ixuRfzWJzgcFBpD6igJlN+f7/Erlmr1REH5CRS7+jOzkTHXpbYA6nl/m44MsC6HOyzey7N/J8p4FjKlLY7F8p2eiIOnMyN99CXVsX6XFd5kZ+Bqy3xdUnx/5n68gnRtPA5vYnQ/SiWNTln6ccnZtytq1wFaVa+dBduUEWnR4H2TTqoG1GZA+1LeJA5BP9ELK4C/5ZAdxZqS7G6I251bqBjmRrdw56/5vyL8ZVHd+T2Ctejltow5WRYOOv0jZmR0Fv2sdxWfz/Qyu3dMgnXWyTKvl99mRTk8ErgSuQnb9nZSD+4CVKmXeLfM5F/lP5yCfelClXp/I9I6hg4N9KYvnoPakYeAIBU52Qz7H3cgO3phycV6dLdkNDdAtXzm+AHVtel36ByB/7EVkJ05G+vNnZHcnAoe2cu/lSHeOAM5scH4I8mXeAjbKero481oG2b0XkX8yd+W+QajNuItsSypyPjnl4MuV48OQ7/aV/L400uOGg3mV+3ZFMr8S8kdPQu3iIyiQMwANzL2CbMPNqJ18IuVmTEWeHkODGzOg/u2ryLZvAPwV+UQ7U/F1ka16APkXE1G/6ORWyrooCvxXfbbIOtwata0LoEHTXyF5/zWyTQtV7lkzy9pwQLvHDFglw88jB+UbwNieTj/z2LYqgFnRJzW4bk9gXH7G151bEzVCcyOH6PAG9/8ANf6PUBnlznMroIDCMykwo5FC1hrVHVOAXkGG5r58oTOkIPwFKfa8dS/4EGTsfkqlMUvhvA4FiBZKgTsdKfM9qOEfhIzb7UjxzgUOQg36TzLvU5DxG1BJ+zNIMWZGBm08dQ5opr101vUzZMc7z41Mgd4hn/d7WYanUGDjt8CP69K7EG2++ioySgdlPR+W53+IjPMLaMTtGqQ8B6KG7nWyE4tGaycjJ+qqfI6ngS1qilfJ91OocT8Qzaa5O+vjhUznwXw3e6HO98aog/XFfPafomDSDXXvZxPgXdQQDkYjeQ+jxuo1ZMDfzHK+hByS7ZDirouM0Tgqo+x19bVJ1tXdwL+AvSrn5sgyHoIMQ2T9nogawzuyPr6NnItnqcg7MrSj874/oEjoNqjz9EaW++Z8v0sAy+Xz3Y4M4+f4uDwdgRqTg1Me1ql7ls8j3ZwBOc7roaDgRFoCd1dVrl+Ryoga8Lt8npuzrAdRCQTQEgjbEXW8T6FFN86jxfFcKeVgA9RAbY4Cm6tn+hughuyBrJsRSKeeRPr2c2TsH81387Us/1/4pNO1StbFNvl3baS3/0ZyNxDp3lvAZVk/q6LZJxdk/mshOT023+83Mu0LgK/X5bdMvoPBWbdH5Pv/Ii2OzOJIRjbg447jYGAXYIGKzhyFnIVfUelY5DtcBTmpP6grw+B8hotocdB3RoGPM1DD/gGSz69n2bbI8i6b9TQc6f4eDXTiq8jGfA4FQr6BZKfWOQvkJJ9bd98wpJO1Bv0Y4Lj8f1Gkm68jh+f7yO6NyGdYGtnfiaj9qMn4VvkOV6cliHkl8K0GdnRJpPtbAPPX1f0ctMjnN5CTsD1ynJbI4wvT4rgOQ/aw5oQ/j+SzlsasSE9rAdkTsn6PyXewNZUZDMgOfBXJ8qR8nl1RUHSlfO4LUcfhFFoc8eHI1v0D6VTNibo/39EryD4+j2zn6VmmF5Eez5zpbITs4DtIrgcjfX4d6e5JeawWYNsBBbIvz/vnB/ZtICtDkO1+CbWNdyJ9ejjT+TWS7V8jubkR2b49KmkMQO3DfkgPT0N6fz9wVF4zS9ZfLdD+RaSHFyDbsA4KxJyP2tnTkBN/Hgp4XZvlXAcFVE7IPH5CZVZClnFp1Dm+NO+rBZ5HpgwcnuU8Kd/bRvn8xyL7OATJ+P6oAzkFtS1XI6dxcspBIId5cpbx1UyzFpSu7zx+JvNbDOnAGfl95Yr+fR+167chOzQXCuo/j/TrZ/kOhlfSnSvfydAs+8R8l2/mcz6HZlQNRAGhx0n/CgWvd0by0igwMhAFT6cge/Uy8g0/nc+9Z6b9Cgr0XIragLUz33OQ3a699zWR/hydZXweBb0Wyev3rct/try2Jov7In2ehDpHh2c5XkOyskzedypqhwalDFyJ9OFb+Z7OQbbmAbITlXX/n3zWp5BsjUVtxNn5uQjJ9c319ZXysGLKxtEpG6civV0O6fVz+QyzZP6vAp/K+08EflZJb0lkEyZkva+LdPzPyA6cyMf9iwMyrxWy3v6a36/JOvs20qvfVvT2oKzLC5DduhDZlNuRXRuU6ZyK/MdZsj5vQzr/IrBqprcgcAuSzzOBHyF/9XGkN5cg+za6UubaDMihSOeuQzL0H+QvrI5kdHlSVxvU+fzIXm+WZZ4pj++c97yJbOz1wGfq2uFrgJ/n9/2Rjn8qy/kClY53g3xXQz78q6j/cVS+p/NRZ3gQav8uomXEfktkXw9C7dfsNRlAuvsoLYMZk/KZNs7/X0U+3iJ1ZVkX6d+KWRdDGpR1UdRh3yfz+T6S4Wvz+JAsy+vA/HX3H5vvbr2sz6vzXe2a35/MuvsZOSsR2aSbsn53RHJ/IfK/fof87U1Q36YmAyfkNdV2/wtZp40C/yNRQOwlGgRlkZ16EunA36ibSYR8tEPz3dyGbMFxDXyp91F7uBetDLwg3+MG1PbU3umSdW3kj5Gtuhs4taLjTyAdvzLPvZJ1dwwtbUlt9cMpKDA5EdiyUVlK6YUARhZiw95It5L+dnwygHFiO/d8YgkJGoW7CTWKrY0o/QE1GI0ipbVOxQoVQzE+hf5x1CGan8aj9YOQck1EBnn5VIyHyBHjBvcskALzAPDNPLY36sTVRrGHowDPF9Ho64lIMasNQKPynI8M2S20My0IGc9XydEzZIROzv9XzOf/Ei2N+byo4a05E2uhBn1G1FG5OIV1bOU5AnWMxlTSWTQV43fUTWtGTtCppPKiWRJTkEF8HzU2R2S5D0UN+0TUSQjUibsNddxanYZWeXcHZ1m+kO/9MWS0r0ZGcBKtTIOtS+uzqBG7lQaj6HXXLo0CFO0ufUAN+/j87EQHl/HkO7kfGbL1uqGjKyAH5NvtXLcH6qT9EDinUoaGU08rerZCvrPdUsZfQo3IWUifD81r50jZ+wNyGlpdhlWXx3aog/hnPulsbp0y+B2k40vT0mGcAUXif546UJvCdw+wc17z/ZTJ/ZCT/wzS+xtTjndM+bwXGfpZK3mPQo3xv8lZTajBfQV1KnZHDd7JwJFdfX9deN/zpz58Cjlj9yFn6gnUQWs4Y4a2Z21cgBr652m9Qd0FBUDey/pbsu78TMiurVM5tjNwdeX7p5HjcQCyD4fTuJNzYNb9/ciRWQEFxRpO/8x3ORk5QPvns7yBnI1LUl4nIGfum6jRfjPPr5nvdPlM6/8yrRNSXvZGAYNaYOJ7FVlYpkEd3EjdCGPl/I3ktFjkfP41063N0huAghFvkzMdUGDkirx2bNbfb2iZ9TUzsvPLI7s9Nw2mcWfapyH7V3MUt6QycpPX/Qx1ZmrBoeXyWOTzTUEyeFdet0Xl3qXznV2C7EGgwOa/kf2YGTnTb1fS/xSa9VTfOd8GKMDe+X0pFHBoOJsyr1kDdZy/hzpD7+d7bNXG1d2/COpkvooc4XNSBp5JmTq0QX0tidqg2ijfl9FMicPz++XIJj5feWdj+Hiwf2laAvzjaWO6foMy74M6CXcjez0WtZE1p/RPyBneL6+bguR50by/Nqvk38iWnIACTNVR3O1QJ7phe4jalDeQDXoDyfZfUJDmUrJDmtd+B/k+C2SZVqqcG4t8wB+RgXJk48ajwN7OyO7flPJ3XD7jpnU2ZwKyRXu1UW+zZ7l/j/SgOit4BJ+coTEnH599W51BMAeyO1ch3ax2mGZBPsJymd/FKBixO/Ibx6IZQj9FHaPZKuW7FMneWcinOj9lqVX/BQVULkXB1tdoxcdEndiJWa9XovbulsxjFNK3V/l4MG8g6kBvmp8zkU2dqy7tWZHd3Be1G/PWnZ8N+W9vI905hZZg/5Z5bCwaADoY+W57oU79scjetek7ZlqD855dUMB4HzRg8jYawNihvTQapDkky9/aksmRmcc++RxLV85tgjrPzyD7sknl3G/z+MF8fOBiRlo61c+jNngP2vBNkf37HQqAXEqLr7860o1XUPBzVloCdqcjX35N1LHdtAN1sXA+z9MoqPjZfH9jKtf8JGVsj3z+I7IMc+X5XbOstRlZG9HS55o9y7YT0uejaOmjDEe2ZEKWtxZkuhsFc2q+6idmvaB+2yQU8FkdDXDUguSn0Ea/DNnuo2l7qdQwpB+718tplvFTHZHfuvsOQnpaC84cjvpRo5GNeQrJ+svIh+mIfqyJbPCPgPnavLazitLBhzoPGfGqMZ0TOLiH0u/2EpI8Nhg1OOe0cV905qUiR+Fs2tkzonL9qnn9Y8iRbHMtaqZ/MZ1YU9rBcsyT9dihKc+oIXgDOa6v0M76NhSVuziVdBx1M1o6Uc6vIwey3XXhyAGbFzkX22U9N9yno4tlWTmN0bXIkQ9k3B6g4kB3IJ0V6aAz28nydWmdIxol6FBHvwfKOBQZ+zfIEf8upjMEdUYO4ZNrsA9HMz06vM473+XtqDPUZmCpwb1j0CjahcghuhU5VdXg3DyV6+dNue5ocGUgnxydWAd1wGuj4++0Z/x74V3uj5yGiann3VpjizphH9JgRL3BtbO3ZqdRIOlBWpzRv1FZx5rv4yHkhLUadEwZe5pcB9rBZ9gTOd8npXzOXXc+8t39Nm3knCiA9TZwQd21c6PR7NrMm5lTrv/enuygQEHDa1CH5VLkNH3UoW3wLjarOzYIBY3voXvBzgGogzWBuiVVlWtmpTKq2OB8rVN/CQpsvpgycRByAL9a/86o7FuQ7+ETgxgN8gnqlht14Xk7ZU8q9w1Ebc7XUMezvUB7/fKMZWlxNJdAs592byeN2jT6Ti05yHr6JhmQyGPHIFu8aN21IxvJXJ4bmnL5PdSR3aALdbYsHx8NnxHZ2+dRYO4YKkuEO5H2TSjIXKvTWgfhKBqMGqKO0vadyaOD5TgEDZh1eh+TDr7HX6AOyC3I3/kpnVwal+/xWdSmHt/OtQtR6Yzl+zoRBT7G085eVD3wzMPQCHq9vdgUBdT26c38e/G5lsvyn9bg3HDU8d8+39MwNOPhOeqCo3X3rUIH92hCNvzV/NQHjxakzl9B9vvYlLsH6ET/MXX+863ZSNSW74CCpjehgMZKnUj/MOSzbt7K+Rn5+Oz6zbIuj6p/zrr71s/nvQvNdPgWDfaF6C+frMdb0eDILmkfqstrVkK+zI69kX/Noe5xImIXFHE5DY1aDAPOLqVc0gNpD0JR9Q1Rhd2Npsc90sY940opKzc4Pgvwv1LK290t1/RGRIzJf18rpbzVzrWzoYawNiJ6UCnlf13IcwCKwl7V2Xt7g4hYADnxB5VS/tns8kyNRMS+yKk/tpfSH4A60//p5H3Log1DT+mNcvUWqWuLl1L+0cf5DkQdjbNLKc/3UJobAreVUt7rRhqBRpzfQaONN6Lpo+9XrhkJ/KuU8kE7aY0CppRS/tvV8nSE/LWAf5VSXmvnurmBD0opr3Yjr1lQZ+6fwG9KKb/ualrdKEOgIO47Xbx/TTTraP1SypSIOBU5qPeiZSBP91xppw3y14seKKV82OyyNIP0I9dFsyivLKVc3cn7F0bBi6d6o3ydKEeggEKXbWQH0l8cjaq+VUq5t4vpjEWB/IW6Yq/S39wYbVrdOx2X9sswtJTybjPy7glS558upbzZxjV/QjNwt0JLvy/owfx3Q+3an3oqzWaQvs4spZQ3ml2WZpN29Ado5snGpZRb6s7PUPW1ejTv3rADEVHbD2JLFKG5pJRyVA/nsRnqEA8EziqlHNPO9Q0DGMYYY6ZtImIomp2yNuqkf7vJRepXhH5CfBW0BKdXgzN9QeinlzdCe2N0OlBujOlZMhAyVyllQrPLYlonA0WPoODvOs0KFpmpi4gY1tlBwm7n2UsBjEtRpPUqNAXtaLQ+de/uznSIiCPQuqVaBPfQjozGO4BhjDHTLxExGK11PaOU8lyTi9OvyNHkWUsp9zW7LMYYY5pHRGwDPFxKebzZZTGmNXptCcknMtJU4CNLKWt3M50jgLdLKT/t5H0OYBhjjDHGGGOMMVMpg/oqo1LKDRFxf1/lZ4wxxhhjjDHGmGmHAX2ZWXsbknWCr0fEgxFxVkSMaO2iiNgzIsZFxDi0C7IxxhhjjDHGGGOmQvpsCUlniIjr0Y7H9RyGfjJuMvopzR+in2zZrQ+LZ4wxxhhjjDHGmD6mXwYwOkrulntFKWWZJhfFGGOMMcYYY4wxvUifLiHpCfJ372t8Af1esTHGGGOMMcYYY6Zh+mwTzx7k+IhYHi0hGQ/s1dziGGOMMcYYY4wxpreZqpeQdJeIeBh4t9nlMKYfMwfac8YY0xjriDFtYx0xpm2sI8Y0ZnIpZdP6g1PjDIye5N1SysrNLoQx/ZWIGGcdMaZ1rCPGtI11xJi2sY4Y0zmmuj0wjDHGGGOMMcYYM/3hAIYxxhhjjDHGGGP6PdN7AOOMZhfAmH6OdcSYtrGOGNM21hFj2sY6YkwnmK438TTGGGOMMcbfRtd2AAAFdUlEQVQYY8zUwfQ+A8MYY4wxxhhjjDFTAQ5gGGOMMcYYY4wxpt8zXQYwImLTiHg8Ip6KiEOaXR5jmkVEnBURkyLi4cqxkRFxXUQ8mX9H5PGIiF+l3jwYESs2r+TG9D4RMX9E3BQRj0XEIxGxfx63jhgDRMTQiPhHRDyQOnJkHl8oIu5KHbkgImbI40Py+1N5fkwzy29MXxERAyPivoi4Ir9bR4zpItNdACMiBgInA58DlgJ2iIilmlsqY5rGb4FN644dAtxQSlkMuCG/g3RmsfzsCZzaR2U0pll8ABxUSlkSWB3YN9sL64gx4j1gg1LKcsDywKYRsTpwHPDz1JE3gN3z+t2BN0opiwI/z+uMmR7YH3is8t06YkwXme4CGMCqwFOllGdKKe8DfwS2anKZjGkKpZRbgNfrDm8FnJP/nwNsXTn+uyL+DswWEXP3TUmN6XtKKa+UUu7N/99Czue8WEeMASBl/e38Ojg/BdgA+FMer9eRmu78CdgwIqKPimtMU4iI+YDNgTPze2AdMabLTI8BjHmBFyrfX8xjxhgxVynlFVAHDpgzj1t3zHRLTuNdAbgL64gxH5FT4+8HJgHXAU8DU0opH+QlVT34SEfy/JvA7H1bYmP6nF8A3wH+l99nxzpiTJeZHgMYjaKY/i1ZY9rHumOmSyJiJuDPwAGllH+1dWmDY9YRM01TSvmwlLI8MB+a5bpko8vyr3XETFdExBbApFLKPdXDDS61jhjTQabHAMaLwPyV7/MBLzepLMb0RybWpr3n30l53LpjpjsiYjAKXpxXSrk4D1tHjKmjlDIFuBntFzNbRAzKU1U9+EhH8vysfHIZozHTEmsBW0bEeLRsfQM0I8M6YkwXmR4DGHcDi+XuvzMAY4HLm1wmY/oTlwO75v+7ApdVju+Sv7SwOvBmbRq9MdMiue74N8BjpZQTKqesI8YAETEqImbL/4cBG6G9Ym4Cts3L6nWkpjvbAjeWUjy6bKZZSinfLaXMV0oZg/ocN5ZSdsQ6YkyXielRJyJiMxT9HAicVUo5pslFMqYpRMT5wHrAHMBE4HDgUuBCYAHgeWC7Usrr2Zk7Cf1qyb+Br5RSxjWj3Mb0BRGxNnAr8BAta5cPRftgWEfMdE9ELIs2HByIBsUuLKUcFRELo9HmkcB9wE6llPciYijwe7SfzOvA2FLKM80pvTF9S0SsB3yrlLKFdcSYrjNdBjCMMcYYY4wxxhgzdTE9LiExxhhjjDHGGGPMVIYDGMYYY4wxxhhjjOn3OIBhjDHGGGOMMcaYfo8DGMYYY4wxxhhjjOn3OIBhjDHGGGOMMcaYfo8DGMYYY4zp10TEmIjYICJGR8RhzS6PMcYYY5qDAxjGGGOM6e+MATYopUwopRzT7MIYY4wxpjk4gGGMMcaY/s6ewM4RcUNEnAsQEXdGxIkR8UBEjI2IiyPiwYhYLs9vERG3RMQdEbFpU0tvjDHGmB4hSinNLoMxxhhjTKtExHrARsCZwNGllJ0i4gngM8BA4F40S2NFYCxwAHBj3jMAuLqUsmHfl9wYY4wxPcmgZhfAGGOMMaYLvFpKmQgQEU+XUt6NiJeBEcAcwJLA9XntnBERxaM2xhhjzFSNAxjGGGOM6e/8F820qFJa+T+AycBDwCallA8jYrCDF8YYY8zUjwMYxhhjjOnvPAz8CFgYBTPapJTyv4g4AbghIgrwKLBv7xbRGGOMMb2N98AwxhhjjDHGGGNMv8e/QmKMMcYYY4wxxph+jwMYxhhjjDHGGGOM6fc4gGGMMcYYY4wxxph+jwMYxhhjjDHGGGOM6fc4gGGMMcYYY4wxxph+jwMYxhhjjDHGGGOM6fc4gGGMMcYYY4wxxph+z/8D2mKtj4g3ZNQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAFgCAYAAABNIolGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9eZRlV3Wn+e2IyIic53mQMoUmJCEECMnMUIISxi6Eq4wbMNguD6J7gcvF6uVi6u6lVRTLmHLZbnfjasttelFlMGCwlzGFsZFsxGAhlJJASEqllPM8Z+SckRkRu//Y++jeePkiMiLjRcbLzN+31l53ePfde+69557hd/Y5x9wdIYQQQgghhBBCiHamY7IDIIQQQgghhBBCCHE+JGAIIYQQQgghhBCi7ZGAIYQQQgghhBBCiLZHAoYQQgghhBBCCCHaHgkYQgghhBBCCCGEaHskYAghhBBCCCGEEKLt6ZrsAIwVM9sCHAMGgH53v93M5gNfAlYDW4BfcPfDkxVGIYQQQgghhBBCtJZL1QPjTe5+m7vfntsfAR509+uAB3NbCCGEEEIIIYQQlwmXqoDRyD3A53L9c8A7JjEsQgghhBBCCCGEaDHm7pMdhjFhZpuBw4ADf+Lu95tZr7vPrR1z2N3nNfnvvcC9uTnV3W+5KIEWQgghhLiCMLMOYCbQB5wFphNdl4/4pVb4FEII0TZccmNgAK9x911mthj4lpk9O9o/uvv9wP0AZrZ2ogIohBBCCHE5YWYG9BANSFOAa4A1wGJgIbAIWAJcm/vnA6eB7jz+JDAI9Od4ZgOEJ3BHru8EDgJXAcsJ4eN0/rcz/38q17ty/yCwGXgubT3wvLsfnajnIIQQYnK55AQMd9+Vy31m9tfAHcBeM1vm7rvNbBmwb1IDKYQQQogrlqzsLyMGF5+auw8Qg5CvBJYCJ4gK+VRgLvAiYBXQn7/tAran7cvjevI/RRiYOox1AUeBvcBP3P3MCOFcCNyYdj0hIKxKW0yICwOEB0V//nUQ2JS2N+9tF/Aj4DO5/4C795fruLvn9RYAVwOW5xkkxIjlhAjyRWBH7f7O5vWnZRgGcl8/IWZck+G+J5fXm9lJoBc4QggjO/OcuzKse4EfD/dchBBCtC8X1IXEzKYCvwa8FpgHHAK+D3zW3U+1NIRDrzsD6HD3Y7n+LeA/AncBB939U2b2EWC+u/+H85xrbW0QUCGEEEKIpphZD1HxXjjK5RJChNhMCA6l4j6bqEjvISrkM/L3Y8AGYBtRKZ8JrCDEjiIknCK8EqYRFfviodDMBoA5hChwDfAkIYT0EuW2xYRYsCzDtg54lvBi2JbHbiMq+h2EIHLC3QfG/TAnmOy6sph41vOIZ1Ce5XLCM2QV4SXyCCFu7CPu/flcP0AIMBetq4uZzQauI97LwrT5hJAzLe+hCEsLqYSY/rTdhEBziEq86U3bBzylrjtCiMuBCxUwvgw8AHyTSCDnAHcD/9Ld39nSEA697jXAX+dmF/AFd/+kmS0Avky0HswlEvT73f1TI5xLAoYQQghxmZGemK8GXgXcSrTaQ4gJ24nK/8y0LmL69Z1EWWY4QaKH6N5wYIRlfX1/u3RjyIrxbUTlfR4xjtg+YD8hpFzUinq7kGXHOwmxYylwAyEgLMx93YQnycYmy61j8d4wsy5C1FpJJaQsIMSKG4AXE+XXDeQ7STtMJVTVPXL2ZziXEAJTNyFGrcjzzCXic1muJrr+fB74HrDW3Q+PNvxCCNFOXKiA8R13f/1o918MzKyTUM/fQrRuPAq8292fGeZ4CRhCCDFGzGwaUeguNodo7S2tgGW9g2g9nEW4iJ+icuE+SdVSfMrdBy/uXYhLHTObDtwCvBx4HSFUdBLxbTrwcNrjhHdDB+GJsJKIf8fTBomW+OVES/VwAsWxK7GSfyVjZnOIOPOiJstVhLBwlGjIO1JbP0qkbXXBYgkRl3ak7aaKW88RHjDbJiotzK47twO/QHS9fjkhlDwKrM3l4+5+YiKuL0S7kd/EPKLL3Eoq4W8VIQR25qEziXzlLPFd9xFlnOV57BxCFN8CPJP2LPF9l/TgMLBPZZ3WcaECxn8iEvG/Y6gHxjZ3/1hLQzj6ML0KuM/d787tjwK4++8Mc7wEDCGEqGFmC4kM2YkWvdVEn/JXEpXFxURLdGm93U9U+oqLebHOPMchqsrj9Dz3MioX+Kl57Fai5XEDMQjfI8BTeS4DjqvyOHHUXO7nEO+3vLd5RCvxgvzNqcYsGM4Gctmf5zhDvPP5uX0sfy/0EOMhLCFEruNE14s+otA4O21OLhcTYsVqIq48QbQoP07VUr1Z8UVMJFn5mUkVL+fUbDaRxu0hxIqdwO52Gm8jG/1uJNL226nS+E2EoPEEkbafJtLhfuDb7q4x5kRbkPnWdCKfKB51c4n66Wqi3NFPxONjRB5zVYMNEF3ldhAiwxEqkfEsUf44RuRLXVTjEHUTIuT2/N8ZQgi/Ke1GIv8s6cF8orvgBqoBh58jvAJnEHnsAJEHFivj/JRlf15n90QO13CpcMHTqJrZzUSrR3FH/J67P9XCsI01PD8PvNXdfz233wfc6e4fHOb4K0LAyExqSlqpXPQDvSrgCXH5kgXspURrYck8+4jK41wi7Z6Xx9xIuDB3E60IEJlmERYeA35MFMiPtjLtyDGVVhMzF1wL3Ey4dd9IZNaWtpVoJXyUyPi35+8deT/z837KstxvGfCwFArKfzob7Gze+1YiTzuR5ygFo1kN611ULalkGDvyPNvd/eR57ruDaMFZQvZRd/djIxxvRGFoPkPFooXAm4gW1cG8v7NpZ4hCUQ+VYNTD0ELYTKIgd4yqILYg7/EwVSvxkQxKxwjWWVufkufoIeLNwdqzs9qtnSUKkHvy2PKMezJMR2t2hBBXfgKsa6cKoRCXOmbWTYgYryREwlmEENNPpIWvJzxF1hFCx+aa7VGZ8somu0mtJCryK4l0vnhkDhL5TQ9V3lO3Lqq8q5RPTqaVc84m4mHJl6dTid5FZDhKFSfPEvlQ6Ua1l8jftxVz95KvTThmNovoonZ9zVZn2A8R+ee0mtXrbcWmEmW2Y8T9DRIC6RYivz5KfJ9PAM9MZB7Z4MGygnjGMzJcfVTv6QzxHsvMUSepGjOKHc//OeHZu5iqIewhd+875/rjTW/MbIW77xzXSVqAmb0TuLtBwLjD3X+zdsy9wL25udDdV1/0gI5A7eMvLZTLgJcRkXwhVcToJAqY04iIcYaILKWAO5NKtICqMFuUvDIg1D7ig95JtGRtIj6A3cDT7n5gIu/3ciM/5mnER3qyjL5e+62MNN9FtFz3URXWO4lEfT7xbuc3rC/I/20lEqotxPvrId57L5EAQFXhO0NUPs5QxYsThCv0CyPDA13ufnaYe+okBs49m9sdeY8n262wkvcyl0j86hWkolifnpSATSD5fhYRGdoqKiGi2BlCgDhIvPseonLZS3zrh4m4uJ7I9Ha323sFMLOZRKvKHcAriELAKqoMrpcoAJR7OkR1v8XboxQKuqk8BepWPE6uohJATlBlrscb1gepXMOh8kDoybCdyO0SF+vLzgzTISINLp4FZ4iC1dHadYx4l9cRQkwRGUqLzFHgO8APqaa3nEI1dWUXzQd5LPnGSaI//4iCixDiyibF5ldTTZNb7BoivdzCUFFjM5Ge9VFVZEt6e5ZMT8frVl+m970c8/jJpjZ18iJi4obXUOWPpYI6g8jDyiyQZayhASqPzE6qPKevtl5Ei36qfKsMPDs9z70jz3mEykPvBJfIoMKtJsvhi6imk15JlF3KoMW3EGMerSEae7ZSDfYL8Y7qszKV51pEkeXEN/6i2nI1UWapN1Asp2qA2EG8syJU9FB11eymmsGqnyiHzaJqFCrLKXnu+uDEHcC73P3gOc+hBQLGDuAed39sXCcaJ+3ehSTFiTIw1GKi0FtGBy/9KlcRL630ET9Aqmi5foJq3vODecwUKjUTqoh4Fjg73MedGVEJy1XEIFKrici/kmgFPUm0dG3Ja54gKkPPp5UWszI/uxMV5S7gUDPFrB2o9Z1eTnywA0TCu5xqhHInPrhrqCoohUHifs8yNAGfQVWxKB/riVwW9+ve3C6JT18tDH1EheZgLuvrB/OYq4n3tCbPcTrPO5dIBLxm3UScM6qEZAaReJTR6K/NfdsI4aq44xWbltc9mudYktsdnDtw3Yna/4rbd2mBrbekNraq9lFN+3cyn2EPEbfPNLFSSZxFNSJ7MScS53q8L4p16bvY7JzlvFPyeZU+zfWR3I8y1L3vDJWiXKakPkbV5/EFa/wWslAwm6Hu8d3530Hie7yGoYOxTSfiXGm5X0HVel9Gn19Xt2aJvph4soAxn0q08IblAHC6XuCuTWe5ikrYnEm872eB9XIbFUK0Iykyr2liq4i8rVS2SmW2eGhNp2o5L+VXp/Jos5p1EPnjASLfW0SUV1fkNU4QFTPy+FJJKwJKKWdtJCp2uwnRvrflD+Qik8+/lAlg6HhU9TGquomGgDuJZ7eI6v3UrYuqcjlICOcPA98lylgnGComHAN2tmu5/0ok6zo3Ed/gUqrvaAnVrEwrGOpdOoWoh24gvpOyLLNp1buI7pnMgapbIWD8IvBHwPvd/SsNv70d+LC7v2ZcFxldOLqIBOkuItF6FHiPuz89zPFDBAwzW0O44ZYP8njNXth29/4snC4hPvwuonX8FqJiWRTD6UTFZAkhEswlEoC9xMe/j0g8y6jWm4At7fLxZ2F6FXFfV+Xu2USF97q0xUSlcJCo6HYSGVA/IYT00TAqOyF67K7ZLuK5FI+BIyO1AJvZlLxuGRhrFfHxHcrr1QWisj47w1Q8VKYTFYLt+d/ODMvOWnjIe9uUYa63EHRRuXfV48cLXhc11XpGHn+kSWVlykS7QDe7Tk4HuIaIk88TBYdriASuqLClpbkM6FW6IOxx974cyLH0jS+j9M+gEifqIsVZqoxwdoMVkeQUlfDTTTz7uiJft6LkH6cakX0b4bbf1B0wv9k5DedpPHdxYSziQunPXASE0q95Wi2cde8mhrnHIl6V5zFAZBqDVMLIUSpPmZKWbSDiYmmNOJnXdCKetl2/aiGEEGK0pBdhyTfn5DpE/lhvkCnbxQN5HlGm3Jl2jCinLKcqr5VpZ+sV9GlEo+H1VA2JvUQ3yRfsYo71kfWXW4g6xQKqMvYSovxxisj/y3MqZc6ZVNMETyGew17i/otY1NWwPkiMF/TPRONk8QYuFdMi9PTnNY6pjHHlYGadl4pXy7gFDHjB++GrwGeATwPvBX6b+KD+wN3/eNwXGV043gb8IfGhftbdPznCsY0CxiuAD1C1ps8cxsqgLr3Eh3+GqLQ/RVR2jxMJTVEki2Bx8FKJFK0gK86zGDoVXZlzvtHmUbWqTyWebd0j4QzVnOgzCUFkO6Gsb6cabG4qlTi0t7Y8SiTcTram17t3CDHRpMdTETS6iJaKYcc7EEIIIcTEkmXVFxFdE4u9nCjDryMaeZ6rLbcM1+V2hGt0E4LJcqIcWwa9voYQLt5INJSVBrS6l/NhQnSZQdU4NJ0oCx+j8sDUuHbiiqIlAga8MKjnI0TF83lCyPhKq6aMMbP7gN8gRAOAj7n7N/K3jwK/ltf+d+7+96M435i7kNTGMUCuvBNDVvTmEgn8VEJR76Hy4OjVNERCCCGEEKLVZFl/NUMHW7ye8IpYTnh8biIa1xoZpJrFaRkhjtxINU5A6Q48SLjlryNmd9nd5FxCiGFoRReSJcCHiMExHyU+zDnAO9x9/0j/HeN17iO6cPxew/6bgL8g+nQtBx4Arj+ft8OVMguJEEIIIYQQYnxkI1uZprOrySFdhEfwbMIzYgvwE3c/0eRYIcQF0uzjGysbgb8F7nL3J1K5/H3gETP7WXd/pgXXGIl7gC/m2BGbzWwDIWY8PMHXFUIIIYQQQlwB5Fhmz6QJISaJjhac41Z3f7e7PwHgwYeA3wUeMrO7W3CNwgfN7Ekz+6yZzct9K4hxEAo7ct85mNm9ZrbWzNaSXUGEEEIIIYQQQgjR/rRsDIymJzd7M/AFd188yuMfIGZCaOTjwA+IcRAc+ASwzN1/1cw+Azzs7n+e5/gz4Bvu/tVW3IMQQgghhBBCCCEmn1Z0IRkWd3/AzF43huPfPJrjzOxPga/n5g5imqTCSmIkXyGEEEIIIYQQQlwmtKILyYi4+/pWnMfMltU2f46YthTga8C7zKzHzNYQowT/sBXXFEIIIYQQQgghRHswoR4YLebTZnYb0YVkC/B+AHd/2sy+TAyo0w984HwzkAghhBBCCCGEEOLSYkLHwBBCCCGEEEIIIYRoBRPehUQIIYQQQgghhBBivEjAEEIIIYQQQgghRNsjAUMIIYQQQgghhBBtjwQMIYQQQgghhBBCtD0SMIQQQgghhBBCCNH2SMAQQgghhBBCCCFE2yMBQwghhBBCCCGEEG2PBAwhhBBCCCGEEEK0PRIwhBBCCCGEEEII0fZIwBBCCCGEEEIIIUTbIwFDCCGEEEIIIYQQbc8lJWCY2Soz+yczW2dmT5vZb+X++Wb2LTN7PpfzJjusQgghhBBCCCGEaB3m7pMdhlFjZsuAZe7+uJnNAh4D3gH8CnDI3T9lZh8B5rn7hycxqEIIIYQQQgghhGghl5QHhrvvdvfHc/0YsA5YAdwDfC4P+xwhagghhBBCCCGEEOIy4ZLywKhjZquB7wC3ANvcfW7tt8Purm4kQgghhBBCCCHEZcIl5YFRMLOZwFeBf+/uR8fwv3vNbG3aUxMXQiGEEEIIIYQQQrSSS07AMLMphHjxeXf/q9y9N8fHKONk7Gv2X3e/391vd/fbgdMXJcBCCCGEEEIIIYQYNy0VMMzsl1p5vibnN+DPgHXu/vu1n74G/HKu/zLwNxMZDiGEEEKIywELZk52OIQQQojRcEFjYJjZTc12A/e7+2vGHarhr/ta4LvAT4DB3P0x4BHgy8CNwFxgb4blUyOca216YgghhBBCjAkz6wRWAdfn8mzabKKB6HtA6a46kyifTAV2uvvJix5gwMw6gGuBlzfYNOD7wBeB9cBWYJe795vZIuClwOuAm4DniHLYQeAk0AN0AhuBLe4+yAViZjPd/fiF/v9SwcyuJuLDNCJOADyWA9QLIYQYgQsVMI4CXyFEizpvcfeVrQjYWMmCxHPAW4AdwKPAu939mWGObwsBI71KbDwZvhBCmFmPu/dd4H87gZuBpcAMYA9wGJhDFLLn1WwA+AfgR36pjgJ9hZP5zizgeLvmPWY2DbiBiJc3EZXuuUScnENU/HqB7UR55K/d/aiZdRMV7dvzt+fTjhCzlq0iGkBOEmWFU8CdwB3AEmAhsAiYDmzOc0wjRIm6LQDWEJX454BtQBcwBThKVOjfBCwmKvh9Gd6+DMch4MeEwHEI2E8IHuvLd5XvqcPdB5o8H8vwvjhtFfHN7kvbC+zK8M0lRJZfAX4+j3u8wY4AbydmdVsDXJVhP0GU9Z7M8D2d57qJSA9m5DMEuA6Yn8/jGWKmuG1EujI/7/U54Jq0gXwXi4DVwKvyng7ks/kRIaZ05vmfAJ509/7G59FumNl04v2/hogTg8R9GfBuYBnxzk+lTQFuJUSgmcT3+SzxHDYCG4DvuvuRi3oj4qJgZt3ufmayw3E5kEMNLCUE2IEs37yYaOR+EZF/dBNp0ZNEenmEEJ/7iXSpHxhsVsYxs8VEvvTIZAnR4sIFjEeAt7n7wYb9/8Pdf6ZVgRtjmF4F3Ofud+f2RwHc/XeGOf6iCxhm1kMUEN5MFA6uIgodU4mCxnrgH4G1REFnHpEBzgX+EvhOuxY2LzfMbDaR4A0Q72Jzs0KkEK0mW0jvICpvf+/ue7KycgPwPwGvJNKLvUShdxnwBmAlEVf3EwXgaUTBeDfRqvo/iEx7KlF56yQqIq8C3gUcIyprJ4nMfx6RqR+uWW+e921ExeW7wIPAX7r74Ql6JKPCzOYTAvaNhID98GSHaTxkIawUuE4DDlxNVCoPpvUR7+i8LbdmtpCYYvxniXc+i6hw7yXynnVUlc51wL5aRbqDiFMziffeXbPODN9RorI6CLyWeBe3AMupKmJPEi33e0telnF7BfAKwhPgNqJwuIKouD2d4XqeqOgfSTtNVTF/D3A3kV57XuPhvPZ1ad1EHN5KVCJnUOW/T+Txu4jv5wDx7azJY07k/dXtMLDR3U+c57nPA07UKyf5PFflvd5EFKiXAW/MdTJcPUSh+hmi8n+a+OavJ+JGfz7bIhTMIeLHYkIIWEEILb2EWPNF4L+5+66RwlwLZzfxjPePVqzMvPNGKmHlKiIN6iUq6NdRVciN8FTZD+wkvGk35H9ems/nOuAMEVdvJ4SO5/K4U/kM+ol39AjxHndTecKsJuL7dUQa+G3iO7qTeI5LifjyA+DH5ytjmVlH/ZiMvzOI53xt3uPdhHDxWF7vRIZ/AfFe/xr4p8ZrpWh3MxG/jxNx41ZC7LkR+Cmqb2FX3uMp4CEivWt7YUcE2WXr9UQ6+Wbi/X4d+L8I4fTQeMSqjEuLiDg3v7acQ8TFfiI9fpLI668mvrvlxPd2hkg/1hDf0BJC6HyIiHuHiDTwILBprI0nmQa+Cfg3RNljN5EWdBDC5Voi/VtKpAOvSLuRaGDZSAgPJ4l85iVE+n+GSP8OE/nVc8S3v4fISzYQadEAUaZ6ST6bOUTa2pnPpzPD0k98j71E3jYtz7uB+C6/RAxb8N3LSczIdG0lESfWXmjj2ERyoQLGbCJDbpsKnZn9PPBWd//13H4fcKe7f3CY41siYJjZEiKDmUl85K8nXvpWIhHaTBSoXgP8S+ID+itgE1FZ2EZkQCuID+muPN9s4sP8NpH5vYv4WHYTBZavENPIdhMf6y0ZhrVEQaeXKHi8kShEOPFBP0q0nI5b6c0IPo2qReyku2+r/36hLbRmNouoqM0kEpVTRIK5rp6om9lUIoE9RhQqj9cKxp1EIeVmIqE7Tbyj5UThfRbxnAeJRO4Q8bG+LK+9nihgLSAygqeAfyYKi9OIZ3+GqEScIRLEzgzLd/KaSzJ8c/J6Pfm/njzvS/KaXXmPzxPv+5W5fw9RsNtJJJgPEC1QPprna2bLiQR/fob5KBE3eqkSZSfi1rIMh+dxHfnfqzO8EJnVNuDb7r4tn/H8fD5za8f1EpWAXWNNJzJjm5vPaV+GZ1GGpW4riOd+mngHpVVxa95PD/BFd396mOuUitjZiXRZzrh8FVVFop+IE/OISsUeIt6sJFo/35H3so5IDw4S7+YQMYDxQ0Smvoi4/4OEkPBc7ltIxMFTRGH5euB9RNp0knhW0zJ4zxGFhS+5+7ox3JMRz/i1hJhxN/HsS+s1xHvZTryPrcCW2vo2dz9nIGUzW0DE/QUZxl15ju1EYf1O4vtcRnxbS2s2NZ/N00RF544MwzNEwfD7VAWV0uJ9gKhMn8zrTyHSU/J6h4hv4k6iEPQ08f2dyGfw00SL9lHiPRzI824j0ur+DNd1RGHpeqKSs5x4/ycIAeEhIm2eTnxvdxOVrm3Ed99NfI9biW+iFEi785m/NH8rLv3dGe6+/N81edw3icrT9/KZTsmwlArnTbVlD1WaNi3DejyXJc07m8dMJb7ZUvh9DvgGEbd25/lfmnYzkRaWb3tmPqfHiDj0IyKt3ejuZxkltfyos1HMKb81FjBzf9dYrjORZHjmE8+0POPSMv9i4r0OEPnEOnc/MJpzXk6eUpmeFmGvxPMuIv69ivjuFxFxq4+I5z8k0p9/TXyLvYRgsY74Xm8FXk18Uz+g8rgpYlkXEU+vJ9LpE0QaO52Iy6fynBvynN8CHmy1t0RWSouIs7x233cR6UoRN/oyTD8mRJ1n2qy83gEsdvc9TX4rYv3riPT7EFXe0UGk368k8oFpxDfyJXf/cTl3OzT0mdlSIm98A1HGPEakn07kmy8nyusPEPHlWeC9wL+lEh4+B/wfRPp4DZHOdjbYTCLe357HnSW+j5VEflTE7kO5PJLH9RDCwEvyuK1EfrOLSHN6iHLnFqIec4B47q8l8sj5RB62iBBjd+b/puV5niPS+F7iO6l7z83N8B0EPp/3sSzD1UElVpT88Ukib3iM+L4W5/NYlPe/jsg3yGe0y93PpHj8YsKrbUiD+2jIuDilFmaI+Lbd3QfNbBVRtnorER8fId7n8/ncfnwhomKWQ2YCR/I6XXnPe3LbgIXuvn+s5z7PdWcQ6eOvEPd1mniHy4lhGpYR8WwukfY8TDRgzSXiwPPEO4JIF2cS7/4A8R6LqL6NeGcd+fuRPOY08f5+Lm0e8fzf3OxeL0jAaLjhFe6+c1wnaQFm9k7g7gYB4w53/83aMfcC9+bmQndf3eQ8U4gC1huIh/cgUcm4k/jYryESljNEoXk10XpzhPjwv0dE3KuJSsoa4uN8mMjQNo/jHucSEeAVREvsy4kXfpAo8JWK741UAsh3iUzMiQ/gDiKje5KoZH+VaH24OX/fS0SqUgF4JRHhSsF8H1GpvynvvaiTR4hIfITIxG8lEpfN+Xz+O/AP5WNOb5TXAh8gMqqTee1H8/zvIioLpcI3laoSezh/O0u8p73ERzA7l8eIxHoW8U5KxWoa8W52UrWiHSM+xOuJBHkrUQj4dr1lLUW72wgh6tp81mcY2hJZVO2FeU+deUxRfEvBv1hvvrfNeS8zMhyziIxtExHHVhAJyM2EWn917dzPUrVM9uexS/Jel2S4nqJKHGZTZSRl2Zlh2JXn7MjjLM+/mSgMdeQzuo5Qzl9IZIm4cTjvy6haAucTFfSzVIWPMlicp53Nc/RRtRAcy/1z8tqDRIL3bM12UGW0PXm9VxAJ6ca8r/fk/w8TcaxU7l6S99hH1TL7NPGdPkbEkSMZ1jlUccsyXPupxJ95RPpwFVXf8WlEWvGv871ty3dUVP7Nec2VGe7+/P3rhCv8c/DCd3IN0Wd+1FNGX2zS++FOorJaZoGaRjyTq9NW19ZXMvQbPJbHX0fE/b3Eu1lOvM9VxHN7nEgjdhLxqthe4EC9kJ6Z/GIinXw7kaaVAlUR3RYR38lxqi4Gh4j32kN8I2eJ9HI9ke7dRKQj/UR8+JMM2wbe2WwAACAASURBVEIib1iS4V3K0DTguTzHhgz/YSJOrSK+p9uoWqIeBP5xtP3hM56UMaBm5LPrJ+I2RHzbOtqKej67mXl/g4Q4fd5KQbbYz3T3Q+c5bhrxboz4PvddTpVsMblk/J3q7qea/LaAaN1u5hq+iijzlDSpVLjOEvn3BiJ9n0HkCceJRpNJ93zINLh0tSp588uIdHk5UQ7blLaWyO9WphUh/UYiHXoZIRA9n8d1EunhCSLdWk+kZ6epugH1EA1pZUyVa4l051mqSvNKoozzaqK89BThFXQL4V1Swg3hjdxJpKvFE2qAeOaP5T0cJ9Ly9xHpevFkWkukoT8pYZ3I1vGMb8sJgfZ24GfyPv+BqNAOUHULmkKIZN8dyXsr4+knCEFjgHhvp3K9bqeJPPEH+depxD0/f7HiZeY/q4l8pzQUXkfkr3OIcldpNCsNZweADZdLup91hDemXUPE/2VE40RpxJpNlHP6iWe1lyhLTiPKkaW77lTiW5tKPKcFRHpkRBno5jzuu8D/RgglwzZK5/t5HZF+bSM8fn6pFsYZVOLYdsLj/35335r/vx54J1HueTTDDFH/emOGcTtV+jFAlYaeJr7hJVTdGq+m8iA8ScSRRVTllb8H/oIoJ50lBNhzyi6tEDB2APe4+2PnPXgCGW8XEjP7F8D/Q0SyrUSkO0wo28sJZe0xomK0n0iEjgCPtkvrTZ1MUJuOrZGua68gKsM/T3xs64iC8xKiormWiKiPEs+jeCEsyt/XES1kfbXzdhDCxWpCNNlLZDyvJxS9W4ln6kSEfoYo/H+NiLgricLDdOBz7r6jSdg7iMh/C/HRP1hXVtMjYA7xcZ9x9+1jeGwtI8Mx90JU31Gcu4f48KcT6vI1VErlDuK5nyK9JSYig8j3MB/oHSmTzIrK0gwbxPsv3g6W1k28sx7SLbEmdE0lEtemBc5RhLOTaM0pSvAMInF9ihAFPO9lBVH4eDWRAC+lElJKRfskUVDrpvI4Ie/nUSJxLy10J4nv6WvAQ+1QwG0n8r0spPKEmkW8l6auipmeNR0LoAVhMar3OcQzJOPGlIZ0rpuq//9D7dDaJ4QQw5Et0S8jymPXEo1TNxGVme1EnrWMqPj+iErsKJ5jZwkhtnSVuTF/m0Ll9j9IiB2P5/+fJ8qCN1BV3Isn6Q+IcvTPEh6HTxCNfyfzWhvHkt9nC/UrqcTsV1F5Hxdvnd2EKPItovy66UI8L9Oz4g2E4LKUeG635P2XcVu+SQgUrfB0nkV4vCufucQws5VE/ecQUY86QpTNi1dj6e53kqqL7mFCFPUs/y4mvET7zKx0tXya+G5/HfhtKm/k54g66ouIuP88lSfvRqLuNCPX7yfi6y5CLDkNHLuUBKVWCBi/CPwR8H53/0rDb28HPuwTODNJ7VpdxMu7i0gkHwXeM4L7eKOAMZ+ovI+5L9elTBbeOy9GBctiUKt5xMe7S5U6IYQQQggxUaRgfj3RaPcvCBHnGqKBYivRCNFHtELPIBo7phDeI08T3iKLiAaORUTL9/eJBqN9ecyeS6nyJy4fsh43ixALryUEivW5fQsx3s7mPG4JIYhc8nF13AIGvOD98FXgM8CniX5cv00kAH/g7n887ouMLhxvA/6QqCB/1t0/OcKxbTELiRBCCCGEEOLikJW5pVSt0j1E6/hJokV6kHDVfzHVGFs/BH7STuOJCHGl0hIBA8DMbia6WZQBpj4NfKVVbk9m9p+Bf0W4yWwE/q279+ZvHwV+La/979z970dxPgkYQgghhBBCCCHEJULHeE9gZkvM7FNULlXfJ9TKf2pxn61vAbe4+61EV5GP5vVvIgZ8vJkYCfaP011MCCGEEEIIIYQQlwnjFjCoBga5KwfQ/BnCzeqRFBdagrv/Q23MhB8Qgw5BTDv4RXfvyxk+NhADFAkhhBBCCCGEEOIyoasF57jV3TeVjRwY5ENm9izwkJm9dzRdOsbIrwJfyvUVVNMHQQyqs6LZnxqmUZ3a4jAJIYQQQgghhBBighi3gFEXLxr2/4mZbQS+QEwDc17M7AFiUJ1GPu7uf5PHfJyYQvLz5W/NLj9MmO4npo4RQgghhBBCCCHEJUQrPDCGxd0fMLPXjeH4N4/0u5n9MjFv9F21KWB2AKtqh60k5rUVQgghhBBCCCHEZULLZiGZaMzsrcDvA29w9/21/TcTXh53AMuBB4HrNM2REEIIIYQQQghx+TChHhgt5v8m5mn+VkzfzA/c/X9296fN7MvAM0TXkg9IvBBCCCGEEEIIIS4vLhkPDCGEEEIIIYQQQly5tGIaVSGEEEIIIYQQQogJRQKGEEIIIYQQQggh2h4JGEIIIYQQQgghhGh7JGAIIYQQQgghhBCi7ZGAIYQQQgghhBBCiLZHAoYQQgghhBBCCCHaHgkYQgghhBBCCCGEaHskYAghhBBCCCGEEKLtkYAhhBBCCCGEEEKItkcChhBCCCGEEEIIIdoeCRhCCCGEEEIIIYRoeyRgCCGEEEIIIYQQou2RgCGEEEIIIYQQQoi2RwKGEEIIIYQQQggh2p6uyQ7A5Y6ZTQNmA9OBGbks6z31Q2vrg0BfEzvdbNvdByf2Li4+ZtZBxM/OmjVul33l2XnaYG39QmyAeLZn3d0n9k7FlYCZGUPjbE/a1CbrZdlNxO3hzIl4OpKdBE66+9mLcJtCCCGEuACy3NsNTCHKCQPA2bQBlUeFqLDL6Xsws7cC/ydRSfh/3f1TIxz7TXd/6yjP2wXMBebXbF5tOdJ6B3AEOEFWJmrrfUQlpFDWO4lErF65qVvj/gGaixxnqBK//hGWAxnOZmYj/Dbccc1EhtEIEfVtamEbaFhv3DfIuZW7jib7Rmud+Vy7Gp5ps+Vo9zX+Vt7LmSbr/VRiCg3L4dZHu68d/1OeeRdVPBjLerPt0diF/Kf+325gWs2m57KHc+O3MTTeDidMNn6/IwltRpUeNLMSnhnEN3KywU7VrlO3EhdPAb1ph5ssDwG9l6OAKoQQQoyFrCssAZYBy3O5FJhDNGSWZaN1p3VQ5cP9RFljSppREzOIPL0VywGiTnJ8DHYMOJp2WsKKmAwuGwHDzDqB54C3ADuAR4F3u/szwxy/1t1vr23fBryfoSJFESJmEoX2Q2mHqQrwh8+zfWoiP+5s2S0tus0Ej1LhKolgV8NyClHBKgla3bzJvtEeM5zwMJIQ8YK1Q6Uo49RwreNTx7Cv2W9TatbdsF73Kqkvh1sf7b52/Q9EHCjxYKzrpZWif5Q2MIZjR/rvWaKSX6wuCgyJ05MZnzONmELl/VVsGlXBqZlNI4TbebVlfX0+IY4cAg4A+2t2IO1wM3P30xN710IIIcT4SWFiMZUosXyY9YXAQWBX2m5gD5HvHW2wI7k8Tnr8MoKXRXpnlHJiaShsXDbbd75juojywMwx2Cwq8aWLoYLGMUIQKXbyArdPunv/8G9FXOmM2IUkK3D3EBXSr5fIZGbvdPe/vAjhGwt3ABvcfROAmX2RCHtTAaMJx4EnqYSHuh1thwp1MzKxK6rs8UkOzmWFuw9QtVYLcUmSaURp1elt5bnNbApRaFsILKotFwHXc674MQ+YZ2aDnCtsHGFk76WyPMOFe1eNZFzgf6j9dyzbMFTsbbSRfhtOBG70Wqt71DRdb9e8TQghJoqs38wDFtRsOHGimTCxC3gM+Hpt/76JqnRnOl28M9sGM+tmqKBR7zJfrGzPIZ7ncL/Xt6ebWT9DvdabebI3Wx7jXFHlhaW61LaGbByri1+lQXw0VjyZ6577w3n4f9ndz6mHnW8MjP8GbCYKQh8xs/e6+wbgfwHaTcBYAWyvbe8A7hztn/O+NrQ6UEIIcbmSBYHdaaMiM71pDBU15hKFm2YeSzM518NsPGPcjGRc4H+o/Xe026WrW7PMfbj99d+H65pXX9Y9vLqbraeY1EzkGFH4GOf6eM+h/uBCiJKfzCI8Ahc0WOO++vYsQjQ/SDRUFoFiN/A4Q4WKvfIGaI67nyGe3cFWnjffaw9Dxw9sHEew2XIhlaDSdJnCSF3c6G2wI0321a1tG7WHo1bumsW53jQjbY90zHTC6/g4IRyV7k1jsWZdmxrtb2jSkHw+AWO5u/9i3vzngP/PzO4bxbOaDJq1bg0p4JjZvcC9ublwwkMkhBBiCFnxLK0oOyc5OFc0tcFl68LGsGJHk/Xz/T5zgs7bYWZFzOijanGr29FR7iv7T0gUEWLyyXRpAZUHRN1KV40iRswnhM2DNTtUW99MeEo0/t6bXraiDcm0uIwbd6hV522oyBePkTlEI0qxOcCahn11m2lmx6nEjtJtpowR0mz9JOEMMJou+c26+tfXpzJ0/LVGayY8zCDyyjKGSeOYJo3b+4b5vb5+cjK/ofMJGD1m1uPufe6+2cz+FfAXwC0XIWxjZQewqra9klBOX8Dd7wfuhxgD4+IFTQghhGgvspBYxnS5ZKj1B+8mWulm1Wx2k+1FwDUj/D4LmGpmdffj4QSPxoLccIW745daK50QE01+u0uI8vrKJsuVhEhxnKprRrGngQeJ8ZVeECPcva26VYj2paEBZe+FnCO7H82iJmgQAkGz5dLa9mgmROhg6Owz/U3WTxOeD0eIMVZONVizfOnE5SbYjTiIp5n9FLDF3ffU9nUSg2P++UUI36jJQXaeA+4iWvUeBd7j7k8Pc/yQQTyFEEIIcWWSZZuZnCtw1IWOZm60s5rsKwXWemGyuCrXZ/Ip62VAvyMN68eJqdLlGSLalmzVnk1U1pbkcmmT7SXEYJiHiUbH7Wk7assdwC4N9CyEGIlRz0JiZivcva3dfc3sbcAfEi6xn3X3T45wrAQMIYQQQrScbGmeTiVqFFfl+sC2ZVmfZrFuMwhP2borcn0gu+HsVG39NOGWXKgP6ts4jXLfCL+dlZAyNmr9+Bu7R9Wti6ED9jYbvHeQYWbGGs87yfDV3dHL9NvNBLxGMW82IUgUgeIs0aK9J2249X3ymBBCjJexCBg7gHvc/bGJDdLFQQKGEEIIIdqZnOmnjM5fPDvKNMiNUyM3s6kMHSOsdL8pFevuhvXG7bLexVBB4zTD9/s+3mR/GeSt7grdbDnA0IFp64PVnm9a92ZTuTfO0jPI0IGC6zbc/uGs2fGN/esHOHcA27r103yqy8YBfeuD85b+8J21+6pbs2nFBzi373xP7V3WXdBHM47MUUKY2EsMcnkCIYS4SJxvDIw6Hwb+wcze7+5fqf9gZm8HPuzur2lp6IQQQgghrlBypp8y+v2kURt3pAgaUxkqrNStvm9xbd9wA9PV93UyVHAoNkg1c89I1tmwbJydp5NqcMD69MyjsWNjOO4ocCxnaZgQaoPwdjFU2Ohqsq/cd12oOK1xWoQQlyKjFjDc/fNmtgn4qpndAHwaeC/w20Ti+AcTE0QhhBBCCDFZZEW3L020AZfqILxCCDFeOsZysLs/DLwF+CgxCvAHgPuAG9z9j1sRIDO7z8x2mtmP0t5W++2jZrbBzNab2d21/W/NfRvM7COtCIcQQgghhBBCCCHah1F7YJjZEuBDwL3A9wn3vjnAP02AC9ofuPvvNVz/JuBdwM3EXNAPmNn1+fNnCGFlB/ComX3N3Z9pcZiEEEIIIYQQQggxSYzFA2MjcDVwl7vfDfwM8EPgkRQXJpp7gC+6e5+7bwY2AHekbXD3TdnX8It5rBBCCCGEEEIIIS4TxiJg3Oru73b3JyD63rn7h4DfBR6qd+loAR80syfN7LNmNi/3rSDmiS7syH3D7T8HM7vXzNaa2VpiACohhBBCCCGEEEJcAoxlEM9Nw+z/EzPbCHyBGG36vJjZA8S80Y18HPivwCeIuco/AfwX4FcZOg3YC5enuQjTdG5Yd78fuH80YRRCCCGEEEIIIUT7MJZpVIfF3R8ws9eN4fg3j+Y4M/tT4Ou5uQNYVft5JbAr14fbL4QQQgghhBBCiMuAMc1CMhLuvr4V5zGzZbXNnwOeyvWvAe8ysx4zWwNcR4zB8ShwnZmtMbNuYqDPr7UiLEIIIYQQQgghhGgPWuKB0WI+bWa3Ed1AtgDvB3D3p83sy8AzxJzXH3D3AQAz+yDw90An8Fl3f3oyAi6EEEIIIYQQQoiJwdybDhchhBBCCCGEEEII0Ta0rAuJEEIIIYQQQgghxEQhAUMIIYQQQgghhBBtjwQMIYQQQgghhBBCtD0SMIQQQgghhBBCCNH2SMAQQgghhBBCCCFE2yMBQwghhBBCCCGEEG2PBAwhhBBCCCGEEEK0PRIwhBBCCCGEEEII0fZIwBBCCCGEEEIIIUTbIwFDCCGEEEIIIYQQbY8EDCGEEEIIIYQQQrQ9EjCEEEIIIYQQQgjR9nRNdgDGipltAY4BA0C/u99uZvOBLwGrgS3AL7j74ckKoxBCCCGEEEIIIVrLpeqB8SZ3v83db8/tjwAPuvt1wIO5LYQQQgghhBBCiMuES1XAaOQe4HO5/jngHZMYFiGEEEIIIYQQQrQYc/fJDsOYMLPNwGHAgT9x9/vNrNfd59aOOezu85r8917g3tyc6u63XJRACyGEEEJcBphZBzADmA0sBG4GbgQWAPPSZhJltQNN7GBt/bC7D17kWxBCCHEJcykKGMvdfZeZLQa+Bfwm8LXRCBgN51lb64IihBBCCNFSzKwbWAQsbrAVwE3AtUA3MEiM4bUFOAWcBc7UrA84mr/NAKbm9jFgCtCT1gX0AofSjuT/z45g/RncOYQIUWwhsAx4OfASYC4wK69/Mq99CHgGWAfsJ0SLw8CJPH5hE1tQW5/N8ELHgQx/d97vtFEsuwiB5HCuT83nMiWf4UlgD7ArbRvwI3c/3uz9TRZm1kk8v0XAVcDVaYuA9cCzwHTi+TnxDvuJe9xOxKMDfqkV8oUQYhRckIBhZkuAXwOeBh4HPkZkVv/Z3fe2NIQjh+M+4DjwG8Ab3X23mS0Dvu3uN5znvxIwhBBCCHFezGwKUSHuAZakLW1i84HThCDxIkIAOADsa7DdRKX/eUKUmEIMRH5VXqO7waYSldXpRLnnNCE4zKISOMp152Q45hOV4O48f7mHKQ3Wmf87QVT+i4fEQWAv8CPgydw+Chx394HxPdHAzLoynM2EjoUZ/r58RqdHsRyo3Xt5Ln2EUNNNeIYsBZanrQFuATYT72U/8DDwPeA5dz/aivtsuOcpeV/lfa0BbgBeAbwMuB5YRbzng4TIsjXtYB57AyEglfB1pU3L/64m4sy2vK89wPeB7wAb2k2wEUKIsXChAsYDwH8nMs4PAP87kYj+lrv/TEtDOPS6M4AOdz+W698C/iNwF3DQ3T9lZh8B5rv7fzjPuSRgCCGEEJcw2Z2heAx0EZXxTqIit5rwdJiah28lKqgrCaFgPiEKWP53bm4PULVoTyG8JJZQeUXsJSqEexrW9xAt/z0Zho3AtlZV9ieKfIYd7t5/3oMvQ8ysh/CGmU+IGq8BXg1cQ8SFM0Rc2EcICEX4OUHlBdO4PE4IJ1AJJbfmdebkcUVY2gI8BzxGNAquBza7+9lx3tdsIp4vJOL86/PeVhPiyVNpm4lvY1uGZZ88N4QYHjObSXxTywhRdFpa+Z7XEyLwaX1LE8OFChjfdvc35voP3P2ncv1Bd7+rtUEcct1rgL/OzS7gC+7+STNbAHyZ6IM5lyhQ3O/unxrhXBIwhBBCiEuE7I6xnBAlbgZ+DngTlefAWaLCOUBU0LYCO4jW+Q6iMrc4922j8igo/+klKp9F0OjK/RuBHRqr4crCzIwoU3YRYsMiQigrgsYMoiFvdtqs2nJW/seIripbgZ8QgsH+yYxLeV+LCc+TW6i6p1xFiDaDwI8Jr5unqDxTtiBxQ1yCZJyfTTVGz5z8qQt4KdFNbinxvZ8l8owiUM+kEskXEXnQFGAn8W0fz+NPEvnFNYQX1Xzi+z9KCNvPEN5sm4luXtuJfOXkhN34ZcyFChjfd/fX5PpL3f3Huf6Qu7+hxWEcbZg6CQX7LUTh5FHg3e7+zDDHS8AQQogLIFtsryLcmG/M5Woiw55GZOhH004SfbS7iVbs+VQt5V1EK+WPicL9XqLVovSl7yPc1Q9fnDu7Msn3OY9oIV5D5ZJf3lEnUWF7nqj4lwpawUexnEoU7FYTcWAqUQDcRxQs51IVLosVj4gpRLyaSxQqdwKbgK8B33D3Y+N9BkKIFyp6y4i04KWEx8hCQvBYQ3gXbazZc8A/A+skbIiLReZZi4juUi8mBINpRDljGSFyz6ESFGcSZZEyRs+RPJUTZY/HiHyll8jvZlB1CzzG0AGIdwG9o4nv6d01mxA/biG+qasz3KsIL44+Ih8sYxU9RwzRcDpPszX3Pa+8ruJCBYzFhILstX3dwMvd/QctDN9YwvQq4D53vzu3Pwrg7r8zzPESMIQQ4jyY2VTC9fi1hFhxI+FSf5Bwkyy2KfedIgoLpeAwI091lsikD1ENHNifx95GtKgvour7Po8ojMzJcz5FZOo/AR4Bnnb3gSxwLycqxt15rSNE5l9aTOtdCwYIgWQfKZhMhot/hns6cf+DROHrVqKSf4YobJVWnfp6WfbTvNI/v8m+eVRdJQqlm8V0olJylHjGG4nnOC2vUbpT9FD1zS9u8oO1c55veZaII1uIeNJHFDIXU7VQNbOjVGMZ7G/37hhCXM6Y2VxibJdiLya6pcwhur88kfYjosKl7/UyIcdueSmRT11PJWz3UgkCPUSavii363l9f23ba8cdIfKEMoZLGZC3CBLH0hZSjV2zJK+7kxjQdj3RcHKWSuQ+TNWt63g7dpHLcsAc4n7KoMM3EsJhKbdcTTzv64h72UmMobQnl2V9R9reK+G7G/csJGa2wt13tig84wnHzwNvdfdfz+33AXe6+wdrx9SnUV3o7qsvekDFZUsqwnOo3JuvIgrvA0Sic5DKday3VYlpJoDdAO7ed57DLwoZpllU/cxPE5nNuPv1itGTwvLVRKX4aiKTnEM1YN+zRJzsoHKZn0lUUq8HXkkUWJ4E/pFwgVxPDG53UQaBy7hUvqmbMzx3EoXnE8Q31kdUvE/n9hyi8FP6rJeK+EDeY5kVYglRuT9EFHbI/3ekGVEg2kmIHUYlhHQ0BjX3l4ESh7OeDN8comJe7uEMISA8n8dNT5s2zHoXUfA7XAt/o9X3HyXee2GQShxRP10hxAVjZsuJAUjrtogYqPYYkc6tI/KSJ4H17n5mckIrGsl8dgGR95dpkecS5YGZhHjwcsIb4EdEOaCPyO/mEPnoIFVDxb48dT3vq+eNHURDwn6q6ZhL1436wLxnqLpmHSC8H3YCe660+JN1jCLg1AeOXkbldbKSKHPvp5pd6gAhcqwnvsF9RJmgt7Y8eb4yQA64vIyob3RReWaVWZ7KbFgrqWZMKrNOzSPe78kGO53/mUa876OECLOFKLsdAf62WTebVggYO4B73P2xcZ1onJjZO4G7GwSMO9z9N4c5vq09MFLlXk58uEuIBOWmXM4hIuJOIiJ1EBHhBKFAdhIRaDaRcZyhGlymroCS+weoRrguts3dT03wbbYFtRbcFURrcTfVYG1l5PLSR3Q1URm8kfg49xLPvIx6fpJIKJ4mPsAB4rnPyuPXUL2b08TH2TvM8gTxLqdTTb1XKlw9NSsD1A0S4sh6IgEoCf2uDNNhqgpWCVO5nzV57nrlrG4j7RvMZ9Cfz6D0Feyn6mfek/tW5L71+XyO5/1uSdtMg3dXw7uakc/R8/qzqVqPz1BN80duF7e/XncfNLNZ+TwntQ9yK8h4u5JoAbuJiJ9TiDi8mnivS4m4sIn4rvcSz7uDeHY35v8GqNKFU8Q72gSsBda6e2ldaRtSnJlB5GOHxnGekhHPI+LVYFpZ7yae85LcLkJIOaZOYytTEU7ONvzWCxy50gpgQogrhyzHvphqutebiNb7WwkvvkGqclZxo6+3KO/OfU7k82WcjmmE6LszrXQvm5PLuXnNXqoywFGqWXs2E2W0Z4Ctl2pZICu0naNpFMpBJ29KW0GUeZfVlkuJMudOqmmRDxJltFJOe2w8ea24OGTZaClVWb2UvV9MlPmKoFC+lXmEIFG8Uvcy9LsrgsQyQhgpsz0dzONOU03JfYYoc5byZpnVqkxrPb3BpuX/+4i6zBxCRLuaahat33D33nPuswUCxi8CfwS8392/0vDb24EPl/EyJpJLtQtJ9o+6gegbdRvRsngrUTnbSdX36hkiwX2aSIhvICLoaSKSTScK88UdeQdRCZ5JRIqTROSqK6FQTd9W5hlfncuVRITbSETCemV5gGoO9Z25/VIi0p2m+dRm9fU+qgpAGWytDMC2jIi0zSoSZb0j77VYUXKPZ/imULkcn6lZd4Zxaf5vIeGSdW3+d3suz1BV8ouYUYSdLUTm9yzx4S7JZ3wQODTaCklWPmdSZbjNltPz+ZyiUrT35nspz/EM0Xp6Jt37rs17KhlUPaOay9BK1Im8n015T7vzt/JeBhtsuH2deS9TiBbfg8SsQOcqphHfryHi79XEe5if62uI+DeLiLvFzhCFn0W5LMr+IJVwMYuIn8VlECrRZGGGr7ybk7ld3uduhrZM193syee8lYjvpUJaWq83EgWtOUTcO5zPdTbxne0ajytfrVXkWuKbnEG8zzcCr6Jq1XqGeIdniPiymXiv29vRbVIIIcSVS45bV8pYU4j8czFDW5SXMbQrQplOtpQtVhL54QnObQQ6SeTL9el4e4ky3ouoGgTnEeW5p4DvAt8GNk2WR1oKDXcQs+C8mvB6mEmUJw4SZax5xD11E2WRY0Q5plQsSzmudEkojXPPEnWI7VQNW2W5293LmAviCiPL5qWRdClDv7udRFl5Rzt5UI9bwIAXxIOvAp8BPg28F/htIlH6A3f/43Ff5Pxh6CIGObmLeNiPAu9x96eHOX6IgGFmLwXeRySEw9l+YOOFuOnX5v2eT6hgPw28jqi0bSYSzyeJvt1Pe8NsiAAAIABJREFUEBXASXPprbkqvYiIyGWO+dPEey2V4xW5/WMigpe+01Nry6kN+3qoWvA7c/+C3L+LSKDhXFfusnSGvhenqqQWJbC4MnXXbIDIAPcQmdghYAMxJ3rbtTBfqeSYC3Nq1kMUSg4QffvG3FqS399Uoh+km9l0QixZQyTWjdS/vTId4zIqr5Mi2lxLJPplzIW5REGhuOsvINKjzUTcLiJcGdRwJVEYOZb/n5n325fXuCaP3UjE3eP5HL4DfM/dD4z1WQghhBDihalmbyIa4d6QNp0Ya6l4bpQuwGWwx20XWj7P8s1LiEbL0hJeb8CZT4wl8s9pjxLli4E8fj7RUFJawsl9ddf+MnZC8WzZxWXgdSpEnZYIGABmdjNR+R4g+vB+GvhKqz4YM7sP+A3iowX4mLt/I3/7KPBrVK70fcBn3f2TI5yvUcC4HriHyothRhNbTCQ0hzi3db/RijvMGqKSX9zZDhEV/W8SfcrXtcu4BUKI1pKq9lVEwaS49BnV2ArbiTRhFtXsHaeJgogTLUFy2RRCCCEuAma2hBA15hPelHOIhryXAq8gGsgep5pm9ieEd0MZjHklkeevJrx+Z+R5SteZ5/K/+4l6wTYq796dV8IAjEKMl1Z0IVkCfIgYHPNRQsCYA7zD3feP9N8xXuc+ovX09xr23wT8BeFytRx4ALj+fAnAhXYhyb5Fi6lc30ays6TbDXBU6qcQQgghhBCXJma2jBAybiG8KV5CDHoN0Xi5nWpcr9I1+Tg5k5a6aggxfrpacI6NwN8Cd7n7E9ln+/eBR8zsZ939mRZcYyTuAb6YXgybzWwDIWY8PBEXyzEOdkzEuYUQQgghhBDtibvvBr6eJoSYBBqngbsQbnX3d7v7EwAefAj4XeAhM7u7BdcofNDMnjSzz5rZvNy3glA4Czty3zmY2b1mttbM1lJ1NxFCCCGEEEIIIUSb07IxMJqe3OzNwBfcffEoj3+A5gPqfRz4ATGgjgOfAJa5+6+a2WeAh939z/McfwZ8w92/2op7EEIIIYQQQgghxOTTii4kw+LuD5jZ68Zw/JtHc5yZ/SmV69YOYpCcwkpixF0hhBBCCCGEEEJcJrSiC8mIuPv6VpwnB80p/BwxGA7A14B3mVmPma0BrgN+2IprCiGEEEIIIYQQoj2YUA+MFvNpM7uN6EKyBXg/gLs/bWZfBp4B+oEPaAoiIYQQQgghhBDi8mJCx8AQQgghhBBCCCGEaAUT3oVECCGEEEIIIYQQYrxIwBBCCCGEEEIIIUTbIwFDCCGEEEIIIYQQbY8EDCGEEEIIIYQQQrQ9EjCEEEIIIYQQQgjR9kjAEEIIIYQQQgghRNsjAUMIIYQQQgghhBBtjwQMIYQQQgghhBBCtD0SMIQQQgghhBBCCNH2SMAQQgghhBBCCCFE2yMBQwghhBBCCCGEEG2PBAwhhBBCCCGEEEK0PRIwhBBCCCGEEEII0fa0pYBhZqvM7J/MbJ2ZPW1mv5X77zOznWb2o7S31f7zUTPbYGbrzezuyQu9EEIIIYQQQgghWo25+2SH4RzMbBmwzN0fN7NZwGPAO4BfAI67++81HH8T8BfAHcBy4AHgencfuLghF0IIIYQQQgghxETQNdkBaIa77wZ25/oxM1sHrBjhL/cAX3T3PmCzmW0gxIyHh/uDmX3T3d/awmALIYQQQlyWmJkBU4BpNZveovWphFdwMautvxCExiA1rHfm8Z0162iyXv9vWTpwAjjWxI4Ps3+k3/q8HVsIhRDiMqAtBYw6ZrYaeBnwCPAa4INm9kvAWuB/dffDhLjxg9rfdtBE8DCze4F7c3PhxIVaCCGEEGLiSEGhB5gBzMxlWZ9OiA1duawLD+MRGgBOAqdqy8b1Zr8dAfaM8J/TwAAwSIgJg7X1uhDQKArUtwdq52i2Xj8/DcuOfG4zgVnDWPlt8TD769ZhZs3EjRNAf0OYSrimAN0jWHmXIy27as+ubgO1Z97MTgC9I9hhYJ+7n0UIISaZMQkYZvaH7v7vJyowTa43E/gq8O/d/aiZ/VfgE0Rm8wngvwC/yrmqPJybyeHu9wP357nXTlS4hRBCCCHOh5l1AvOARcPYAqpK8swm64OEF0CxE7k8BZwhKsv9wFnOFQ6OMryg0HT9Mq/AHkobN2bWTXNhYwZR9u7kXE+RMyPY2bT+8ywHGOq9UqyL8HKZPozNBOYAc4EbiTg5t2bzgYVm1ksIUbsblmV9N7AlPaKFEGJCGFbAMLN9wDYicywCwXVm9mp3v2OiA2ZmUwjx4vPu/lcA7r639vufAl/PzR3AqtrfVwK7JjqMQgghhBDpDTGbqOiNxhYQAsU8wjthP3Agl8U2Ed6mRxnaXeEFwcLdz1yUGxRjIt9LywSRdiDFtoXAUmBZLpcCVwM/lesrgJVZh9iYtqm2vjE9p4UQ4oIZdhBPM3s38G+Av3T3L+W+v3P3n57wQEVB4HPAobrHh5kty/ExMLMPAXe6+7vM7GbgC1SDeD4IXDfSIJ5mttbdb5/I+xBCCCHEpUNW0uYwNiFiPiFEnKSqtI5kBwmX/P3AQXfvvzh3J8TEY2ZdREPii4axfmqCBkNFjl0agF8IcT5GnIUkhYT3AO8Evgz80sUY+NLMXgt8F/gJ4QEC8DHg3cBtRPeQLcD7a4LGx4nuJP1El5O/O881JGAIIYQQlxFm1kF4QhR3+LkN643b9fX5+d+jjE6IqNvhy7x7hRDjJusVCxkqaFyT9iJCENxKCBrbgO2N5u6nL37IhTg/Gb+nMbQLVhmkuG49NB/+oBkDVF0B610CjxHee8V6iW5+V8TgwaOaRjULBO8FbnL3j0x4qC4CEjCEEEKIiScLdZ1Eoa0MSFhf76YawHC45VRCbBhOfCjrs4juFb1UhbreUWwfITwjjqgFWIjJwcymAWsIQWMVcFUui60gvtethMCxDdjH0K5X/z97Zx0uZ3H98c+5cSGuBIgggRCCu5Tg1gDFXRtcC8Wl0AIFCgVKKVJKf0iLtGiBAi3FSigBiksIlkCI4W7z++N7tvfNm929u/fulYTzeZ59dl+bmXfmzJlzzsz77kzf9/H3xZkLaouPWV1RQC376VdkX2/mDFh8S/2Lbz9AK/O+RC8qLny+on6CvmxRqH+HTfbTEY11hXGvMDa2Z86gRmGMK7bvAzz47p8PUZ+ZJ8a/SgMYQ1JKb7dAeVqMCGAEQRC0bfxFeF2p/1vFpnzqcr+h/u38+e/CjEd25uPrlFIlBkeL4489lPv3guynVBCh2O9anvsdMtq+pP7FhF+imaTsiwpLfX9JZUGJecYAC4KgOlzXDUSBjUJwYwB6n0zhu/C7PTDdPzMyv4vte6+t6vegceRWQ2SDDL0r/IDeSzQ798nvKwQAPkAr8VrtBbZuM/XMfXqV2FdYddib+tWH3al/wXPh3UsfFfl8TH0g5ssGvkvty/8b03fVBBwrDWBMBbZMKT1RacJtnQhgBEEQtAxm1hUZlAMzn8J2PzRw9kAzCtnf7dDsRfbvFBvz+a7Ib6h/Q3+7zHf2k53x6ODX5t/6n/8ngG+YM2CSD5xUs6+Sawq/88ZBuX8z+JLyRkYlv6u6LoIKQRC0JD7uZMea/Ce7fwHqV25MR/+qMgWt9Pjfao+U0mctexffLzJBh+zfE+e/GzqWDVJ8R32AYY5AQ5F92dUI738f29qfuOjGnLZYqU+5yYuGjnVibnvLUCCjYDsUPiunlGbMVdYKAxi7ABeid07clDs2DjgmpbRmBXXTZsgHMMxsOfSYTP5vod5FkdlYhhYETcQHp7xDBvBNODjzDt6OPSluCBb73YHSM1+z8KWLzBnx/xj4oq3o3ozsdqA+oJH9nf0uBEmKBU4q3VfpNd8B37aVegqCIJjX8JnrAdSPWYPQCo+hme+F0dj0FnMGNt7MfL63/kLGLii82Dj/nQ8+lApEfMmc/7j0MXP/C1O5Y9nVEPG+lHkED54UVpN2ynymFnvRdcm/Uc2SUrrWzF4D/mJmI4GzkbN/NDLYzq9N8VuVT5BRvSCwAnP+TVRXMytEZLMBjunM+ddns4BZbeWN4v4m6OwLYzrQeGO6oX3p+6S0fRljF+Z8OU+XBr4bOqcj9TOsZH5ntwszxfmZ40p+l3phULF2KzbDW4t9hfyyMmRAe419/5vRzv7vfTWflrwuOwNfeL7xq3mlH/hg0RVF2wvGQyGy3pM5X4RYLDDxBXMvy50BPM3cQYp5/llkL39hqWMQBEEwn+B/ezvVP0XxMXMACmYUAhuLAutltjuYWSGokQ1uTEGPGxRm/9vkyxYzjyDk7YDs70JQom/udy+0YnI29f+2VPj9HvKbXqV8QOKTtuJDBS2LP8L1HbKpP23o/IpWYPzvZP1d6WPIgJuEAhk31fK5MTM7B/ghcigmA3ullD4ws2HAi8DLfuqElNL+fs2KwFXICbwTOKwhxVDNIyRm1hkZ7dn/vS58+lH/zF0/1Jk/woMZzPlsbuHzKfWOP5nfdcwZcMi/sbbabWPOl8YUljZXu0y5knNLOaeVBkK+beCTPTf7ye6b43l15nxjbyXX1yEZ6pr7dCny3QE9J/a5122p73LH8ud8lambvGwUtrP1kb3vSn4X6xPFghpWoo5SU/eV65ceFCrManfM/K7m05jrGnNNdrY9Gy3uQP3yt3xbF5OJL8rsK2x/zdyPOWQfdyj87kB9MKLwyW9nP109j0/88yn1L3gqPOdY2M4HKWaklD4v0ZRBEARB8L3DzHow56qNwu+FkX9QeLyhHXO+6PED5nz87mvqJ60aGvsr3VfueHs0iVF4CWR2/M//LhagmE38E1PQglT6CMlA4AhgPPA4coZ6AlullGbWtEBmGwH/TCl9Y2a/BEgpHeMBjDtSSqOLXPMf4DBgAgpgXNhaf6PqTlhvFMzox9x/39YLORX5WXaQk5d3avJvrq14u6WjmL58rDHBkGLPnheeP88+G5Wf0a/L7SucX3Ass05msZUB+fQSih5/hhy7cr/nmZn2oOXwGZpCQKOwsib7yf+VVn6FTrF9hRcgZoNXxb4LUetPSnzyxz6Lx3aCIAiCoGXxidG8b1CYBCm8MyA7AVXqZdO12vcNWgXRJleGBEGeih4hQSshbgfWTyk95Y7qecBjZrZFSumFWhUopXRPZnMCsG25881sMNAjpfSob/8fsBVQNoDRXLhDUFh98b3ClV5hxj0Ivnf4arRCMPHDVi5OEARBEARtDH83Q+Gx9CAIqqTSAMaYlNJrhQ13VI8ws5eAB8xs15TS35uhfHsD12e2h5vZU2gJ04kppYfQf0Jnn1mb6vvmwszGo1UkoJnNIAiCIAiCIAiCIAjmASp9iedrJfZfamaTgevQi20qwszuQ++PyHNCSulWP+cEtKTpWj82DVgkpTTb33lxi7+To9gz/EWXP6WULgMuq7ScQRAEQRAEQRAEQRC0DSpdgVGSlNJ9ZrZ2lddsUO64me0BbIEeWUl+TeH/YEkpPeGBkyXQiouFMpcvBLxTTXmCIAiCIAiCIAiCIGjb1NUikZTSyw2fVRlmtglwDDAupfRZZn9/f0EmZjYCWBx4LaU0DfjYzFbzd3PsDtxaq/IEQRAEQRAEQRAEQdD6VPU3qi2Bmb2K3sQ723dNSCntb2bbAKehx0q+BU5JKd3u16xE/d+o3gUcEm/RDYIgCIIgCIIgCIL5hzYXwAiCIAiCIAiCIAiCIMhTk0dIgiAIgiAIgiAIgiAImpMIYARBEARBEARBEARB0OaJAEYQBEEQBEEQBEEQBG2eCGAEQRAEQRAEQRAEQdDmiQBGEARBEARBEARBEARtnghgBEEQBEEQBEEQBEHQ5okARhAEQRAEQRAEQRAEbZ4IYARBEARBEARBEARB0OaJAEYQBEEQBEEQBEEQBG2eCGAEQRAEQRAEQRAEQdDmiQBGEARBEARBEARBEARtnghgBEEQBEEQBEEQBEHQ5mnf2gWoJWb2BvAx8C3wTUpppdYtURAEQRAEQRAEQRAEtWC+CmA4Y1NKs1q7EEEQBEEQBEEQBEEQ1I54hCQIgiAIgiAIgiAIgjbP/BbASMA9ZvaEmY3PHzSz8WY20T/PtUL5giAIgiAIgiAIgiBoBJZSau0y1AwzWzCl9I6ZDQDuBQ5JKT1Y4tyJ8Y6MIAiCIAiCIAjaCmbWNaX0WWuXIwjaKjVdgWFmfTO/tzazU81sVzNrkZUeKaV3/HsGcDOwSkvkGwRBEARBEATB9xsTSzXh+p2B981sJ9+uM7N1zKxPzQoZzNeY2aZm1qG1y9Gc1DqwcCOAmf0C2BR4DBgFXFnjfObCzLqZ2QKF38BGwDz9mIiZWWuXobUxs/ZmNtrMOrViGb737dDc+IAfg3PQKFxPLFzjNPuY2RFmdouZ/cLM1qll+t9nzGyEmf3VzF4xszfNbJPWLlMt8LHqVTNbsbXLUgx3hDY1s96NuLZbI67Z0cweMbNFq732+0rBjg2aFzMb2kzpdgP+CDxnZsc14vo9gHOB3YDzzexQ4EHgCuANM7vXV5kHQVHMbAPgTuBK1/l1ZrZaawU03D9/wcy2q2W6zbUyYq2U0viU0l0ppeOB4c2UT5aBwNNm9gXwHvBxSunuFsi3Ksysq5ktUsF5JwL/rJXzbGYd5gWl545s18yu84B/omj0c2Z2l5lda2Z/NrNfmdmC2WsbkV9nMxtU4lgXM7sceNbMelWbdmtiZoML0ft5hJ8CL5pZz1ol6LK0TmOUpveXpWtVllpjZr3MbKfG6gevm2bTB2bW08w2bYZ0tzSzm83sUDMb6YGLxZCBN8nMjm2kHhhgZseZ2Riv27OBycAKwPXA18BNZrZyTW9IeXdt+Kzmp6UCtWa2JPAA8B9gK2Bv4HIz+1lL5N/MnA78F7jL++fFZjbBzDpXcrGZrexjXHO1xWbANcCbZvaXSoMSrgtnm9kOvm1mNszMhhZzuM1soJldA5wK3I9smZJBDDMbZGa3mgKGK5jZQWZ2fkOBFjNbwMwubC5ntFrMrJ2ZjWqCDvo/YIaZDSlyfL4KbPgYu6xVGbysRd8ws4NRMKCwwqGdma1nTZwoM61Cf9Q3RwJ7m9lRVVy/EXAWsF5K6QbUXw8C/gQsifycJ4HbGztumFl3M1vczEY25vqgNpjZGmb2S1NAanQN0+0IXATsDCwK/AEtJrgZeNLM1qhVXlWwHzAbuMDM9jWzRXz8aNekVFNKNfsAM4AbgHeALpn9E2uZT4m82yGDcwTQEXgaGFXm/Im57dWBkyrIpwuwD1IoPy9z3jrACfh7RnzfUGTcTAcWLHPtbsDrwDPAdiXOaQ8Mymx3A4aXOHcB4B7gfWDtGtf7EGD7bHs3IS0DLnY5Wg3YBJgC9PF6XxbY3OtnJ+BX3in+DrwNzAROAfpl0jscuBvok8trUbRi6EPgA+AuZEy3z8jDf72dL/Hj7UqUuX0D91TX3PJfJN+bgG+AFXL7VwN2z8plC5WnZD0BSwGzgFuB82uU38rAy8DzLhfLFGn/zctcf5LX3x65/esBvwF6tnSb5spxFfAZCvAZCkZ3qvDaOpfpL4GXgAuBA4ExTShPZ2Bp/14GmOT9+IJi/aaBdIaW2P9H4FXgx8DvkY78wvvvYcAiaKCeCDwBPAQsXEGe7ZGTdSfwFvAJcDk5HY303MtA18y+dsDiDaRdVOd6O5zt5V+0yHED9vC+XPQ+/JyNvO+8UiydCu7fXN4/drlYrIHzuwKnoYmCz5EOvhrYoIK8BiP7YI/c/v5IF/cvUrYxQCc0rh8DPAJ0r+L+OiCddznQt5H10xcYRhm9iR5ZneKyujHwFHLg7wEOKyPvy7ocDUXj2AdN6YtFyj46s30/sAvQ3dvsLy6HhsaGY1wm2+fSOReNl28jnTMR2TFvevsPzfSHk33fuYW+ggzY6WjMzo9Jhozrq9Bq3ZeQ0f174AWkq5dDY7/lrj0D2XozgV0rqI81gTOBjkWO9aYJYzWyH553Ob7eZWaQt2/Z8dbrfjpwDvA74Fe54yOQvj62ARmsA/YFDkU68Rq0EvkV5FgPyp3fFTgS6JXbv6K381z15Mc3Rzq+UXIKbI3s0Re97das8LrVgI/QpNaPydl1FaaxF9Lz4zzvwmz1FDSmHA5cC0xDdt+hQIcK0u0A/MNlvPB+wYW97n9FA+Mg6v/vAutW0Kf/D7iDnM2PxsBdSpUX2bUfoHH0fWDTKutuCa+nXYocKyorFaS5BTDCf3evpL9U0A6bufxu7jJ+uMvaEo1Nt4E8RwJ/BX5YwblLI59kEvAz4CfAVBoYdxuQm1GuIxYEjnO5NeQ73QTs6Lphe5frudqvwryGIRtopn+vUsE1ndGYv5zX0zMuQ1NcFu+giM2XkfXVS8lDrRtxaObT0fctAGzRHEKTy3t14O+Z7eOA48qcnw9g9POGLatI0aD6AHCAV36vIueshoz3F9CMjAHbevpHIGPxAaAH9YZBwXFe168dhZylyRRxTDydT5GyWgx41suzWu68QcjYuAwFBGYAWxZJrz9yJCtWHEhZTkYD43QvU97A+JEfzzsDXcgZ5Sj48JR3tpme5noNlGEIGgyHowj15Ugx/8bv+Vngt/492K8Zjgyv4/2+uyAD92FkoD0KvIYGOkNOyL2eXjYw1xm4Dg2oh2fasKe363Q0c/sWMLa5+0CmXBt5uxyEHLo6pDT/5vf9NDJsOpdJY2G/t5ddjperMO+6Qj37dldgT+oDd2N8fw80cK3t9X2gt8VML2sPGuFseNrLIENgO2+/A4B/+e9B3o6zUH/cucj1w5ABvrHX1zkuY6cjRXwtGnyWy1yzNArePu95dcil2RPYLLO9vMvkDGSwL5/pUxs3cH+bIkNrYW/fCV5vUyiij3LXdkROwkNeppWAozN10q/Kuh6IHI/3vE4+R/1vF6AXcB8y6tal1CCkdlnTy/Ae0mPHkXEmkM68C+iWu7Zz9p6Ro7spCmAdjfpe1oFbDDmV+3n7jkTG5d3I+WoHDChzv9cAl1JvoJ6AHIslS5y/Dfp3rK1z+7t7Wv8GTkSzap29/Q93WXsABWLORHppY2QEjEL9rAfwZ2SY7YsclleRjPelREC7SP1dg1ZDLOv5zkT6s3/mvGHAz5Hsv4lkfTjq3wshXTMVN4yQfF8CDMzldwlwbomy3ADsk9t3iMvEh96Wf0PO7nl+fCmXsSkue08Av8YDjC5Xk5Hj/jukz0ZUUC/tkQz/1fN+H+mUSUhOr0f9qEPmmnuBHxdJazmka7p5nV2KxqT/83t7DemV170NfwMcU6ZsSwOrZj7lAmg7ufxti1YTTSmUGfWVB70+X3I5ugDphhMyaXTwe18CBROuQI5BnR8/Ebgd9eOz0Dg6l+whuT3N5eQq6icadka6sJidczAaQ19EuvUmPHiF7MzZLn/Le9telLm/zpl0FvX2ed3Ld0kun7VRMPRj5BwvX6Ue/KHL52bInjgf6YXZfr+3AYuUuHZtNA5s4tsLuVz0yZxzKurrE5AePA45I/lA05ZIRi9Ck0H7UO84nIX6QcFO6Ygc92eBN1AAZmcU2JqGdNIxufQN6c5pXqYpwEJV1FP3zHUr+759gPsquHaAX7cdGo8LE1A3UmQCjbmDMt1R35oCjMzp5/OQnK+LdNwBaKz4EZoge4Dy40InpF/uJBeoQE7kfUh3dS1xfQ9kp/+kwnrs6DI2E3jc833I5e0p4BZy/Qnpnmm4HYL8i6kocLeIp1ewkQt20jKZ6zsjO+5spLPOot7P2wH4yu9x1SrkYS1kd7yL+s+nSBf+FY1hPV1+G/RLXDZ39Ht8BAUHJmTKdTbq+/n2qTho6TJyFHP6AQW/6jQ0/v6JEgF2YENvszmCYsB4pJv6l7huAaQLu+T274Z0xYt+/TSvx5KBGjR+vEsRP7BUvRb6E9LBR6K+uL2nU3KhgF93EHBbmT59HNI/ixbaA+nzE5Eue56cHfG/6yttuGo/wJDmSrtEftsCV+Qa9je5c8YjJTEReKNIGj9C0dK8kBQG6k29onv49g3A/rlzRyNHbTPkkL2IBtan8MgqMpLvQY7vNUi5nYOMsenA+pn07gCOyJfHy7m/N/CHyAHczDvShkhZb+ICfVJGCFf0PH7o25sjI/pDpNif87TqcnluRWbFCQocvAYc7tsjkWN8Viavzt6p/ujf6yMj/HQv5/vI8DkGOX2TCoKKjOk9GykLg9HMzB/QwGDeST5Cg//rwEElrh2NIvN5w6A3Mlono8Htx15v16POdp/f0xOoU1+OjP6Ofs9vu7xcigI9DUXjhyBFeQAySvqhQeUcl6mXPM+NYI5VPv1c3jZ3OXnE77mgNDshp+MmZLgcRJFAATK4LvL62Nmv/3EF5b4QGW7PIcP4Q89/EzTIvettMQ0Zig+7fBT62CFoBvxTzzM/W7cG6hMTXGbG4/3Rj6/qdb1jZl871P8u9TY6BxkVo317/VweNwMn+u9FkEN0CxqYBvn+ndHAe7K3wQxv12WRoXxYJj2jfkXMOl6eiWhAGkh9wO4aZIC8R4mZLS/3m/hsNxrYtvFyXgpcnNERy3nZfoR0wo+R7N9KLhDg11wCnJ0p81Dm1gM90aqALkjWnkXG34J+vBNzBhQ6IH3ygud9r9fvc15/LyGd+gLSAwuhwMy/kQx29+3ZwLBG6IKdkZ65FhkYs7w9L0f951VklFU0k4cG8YKeK8yanoGMx7kMIW/3S7x9R3k7HYSMtD96PRrSDU9721/ucrUb9c7GD72un0Y6aAYyVC5lTmPqZOSEFZzu1crcywCkH25gzlUl/VA//hDN0J/v9XYOCvSuWCK9gmF0nt/vH/w+N/bji3s6RQOTqB/8LbM9ytNZHBmzK3pd9fN89vT0D0KyuoC3ye9c1k7zetoik+aBSD8s49sLohmwrLO7EHLsH0KyPiDTJ1ZE/XYnl5/j/dheSIZLzXzeiGTwXTT+HYh0+0IbxYdVAAAgAElEQVR+fCQK6Jp/318inXFeh49lPgXjOW+Yd0cOykFejw8DR+fO6Yvkdy3mnDWeCSybyfPhMnLUERmZV3q9lw2Cejudh/R8YSa4qEz5+YU+0AlNIL2CHjm8BTg11zfv8naYihyX65FenokM7w7IJngR2DdT/heQHu3tbTkD+CWy+YoGHjL59vb8flDkPs3LfaKnmR/P1vSybZDbfyVwckaXv+ay1wnZfb90+fwv7jB6XhMovWq3HXLGL0Hye6vXYXtkOz6O5PQor6NFXdYW8bTHugw9i88WoyDxc4U6QjbsNS4zBXkqjHF/9La+mTknOTognbaObw9DE5IbUm9D/cDv9+e5e+qBdNSvM/sMjSXfIFvD0CqL15FO6p1Lo+Rq6Ez9/xzpjdOoXxFWhwLlv0D9+i5KrMz0e7za679z7lhfr/vfUsUEYkZ21/H22xiNJx3RuHNXIS/UN14ADs5d/xuv1xl+zZsoOPSal3cmGlO2QQHXG70++6OgwMtIf7zjdXEAGqsXz9z35RTRCZ7OA0iP16EJyM5et+cie/0TNMae0kA9DEH2wnPkAijUB0rr/F5/ioJwT6HJkq+8XTtmrmnn7dwuV94rvUxn+r5VvO7W8u2ufs4E5l71vXb23CL3cLbfg+Xy3NzbZTJweebY/kjvLFWNzPi1K1E/ifcs6psHoODgeszZd6d53i8CF+bS2Q35jXP1IW/H8X7PZVdqeHvM8Pb7gPqVwatSpk9UddNVVtBUygxKzZDfdswdwLiozPlFH2tBUe4/I8NmEHKWPkTKZQqZgQYNbv/JbPdEg+vumX0LIoWQdwT64EuLkQJ7zRtwz9x5S6MOnHXSNkSGrCEFPipzbJwLwede3h8UuceVPa9bPd8tqVfIa6EZ8TtceA05Pu8gg3lD3/d3MsZD5j6eREZ1NzQQ3urH9kQK417kQCyBlO14r9sfUiI6XUMZ6YMU8VZNSGMT1NkvRwGBguNtyPBbEY/u567rj2ZJ90eO911envbIUDgKGXVLIMdzChpsL0Wzwx/650I/vhSaIXwRKZf/oAHqQzKBO5efi8kYDL6/zu/lOqQwbqbegN4SKZBOmfNHI6fyWbRS5h6Xh0e9jKui4MPzyKBbHfXBfrl8x6HZgpVL1G/BcW6HgmbTvE67eXoz0DPzq7vM/NXLfxVytN4lN9vt6a6OZp/yBuRY1L8eQg7aBL/3kqtTMtcu7PfyAZkVNt42M6l3fPZDhuY2yFk/ycuSHaiWQYbCINTfJlC/tLuXnzPE6//MEuXp7fW1s8vYZNTfbkHO1i2UGDwz6b+HDNarMzJ3A9IzdUhnvIT0wYvIeKl0dmQpZGRtiwI9A5CTOjqfBjLCfo8CgrcBpzex3x+G+lODqxIqSK+g5z5Bur0dCgQcmDuvp9dfwSn6xtvnr0XksAcyICoNpAwFVi9Rzwt7mcYhPTIIGfBnef0PQQ7068iZLjoD5fe5FzKsKpplRQGEf+BGFepfb6H+eSuZmf0i1/ZARmtPZMg+hTuZRc7d1etzpxLHt0Jj1FyrE5Az9S5y7KchvfY4MupOQfrg+FL1kmuDWSioM4MSq3D83FHIWS+7otDP7YaCUD1y+7ug8XrD3P5BSJ/cS8aQRCt3rvbf2yCdVHaFVubavVA/H+fttk8D56+JnNOKVur5NQvgqzqquMaQgX0JCjLlV2S1QzbKcJenw5Ets1zuvCVdBi5GwYDbmVMfD0F2yj3exn8gN4Zmzr2K3GRZifN+hPRmwfkf47I214o7FNCaiVYBrI1suryONGQDTPfvscihLDnJgIJ/N6HAzhk0MM6hMWkCWvb9ChqD807dUV6Xx3s/OB313df9Ht53GTqEUjOpsg+fR+Pku57n/ciP+AYF/E8qdm9Iv091uVgC2WdPIufycS/LW1T5uESRfFZAq/UmoUmaT5HNdS4VOJHI1rsBjWeFlQu9vW5/mW/fJpa1kNfNSG/cB1xQ5LxuyOEurADdCemevX17mB//i9drz9z1myEbaKnMvjPxR4FdXr4Ari+S90ZIx5R6tHgICoAMdLk+nfrHI+5H+v08l7uZaGVP2cdoUTD8E9Tfx7rsLOjbL6J+/jsUrHrb9+2NbOVzXQ4XdTlfB+njbYr0y7O9zBei4Nf9yE4s+ZglsnkmonFpCLKTHvV0NkT68iXkdxRWRzfqsRPPr5Pf+/LIRv090g3ZiemrvI6XQv5Bsf53ErKfO7g8neJtNMO/16iwPEsjnVh0FUrRa2rVYYoUZhcUidu2yLFxwCM1zq9Jj5Bk9vf0BnvPO8VpaDA8OZ8eGiyn4gY46uSXNLL8S+NKo8ixq8lEIJEBvF8D6dVR/t0Ma6DI8VxLnVwQz0HP2H+NHKHFqX/u8TDkMM+VPor0Xk394FXSqPu+frx+zwe+A75FRvRlSPEXBvztc9e0BxYoklY76pcUL1+uzcuUpwcyWJ9GM3pvUcTQpn528DwU5BiBjKtjXUbepQYOYi7PnV0RfoYMqKWLnDMQGVEXU2aZZ5k8Ovr9nIqMoAaDF7k6KdaHzkVG2I3ZfoAGx5KPHPg5dWim60pk3HyBBtIpaPag3DPQO6EB+jCqePdE5vrzqDc4uyKD9xIUSDgbOXsdXdZ2K1eWGrR94d0MkymyYqQ1P8jw3D6zvRSZZeC+bw88gOvbzRqgLVHO05Ch/RxyWB5BQZVrqeCdFTUqQ2HG/dVifSV37h0uV7cgI63cY0cVL10vcv2W3qfGelo/QY7q74rpmDLpHISWoFe0HLeKdO8lF2h3/XRTifPb+/HpaPb5T653sgGNBp/jz9Xvzq7DPqbI2FPkmorTbwsf5Lxc7PpuaJnzeiAH8z0UrC+s3mnncv1CQ3KdSWu8y9lTyD7eoYFzX0cO79FlzlsaOVuv00CgqRF11Nn1/vqUCeihRy8eYs7VIMui4FolAe72aMn/evl8qODdCsjB/Jz6FWCFx4y6oOBITd9ZhcboqtNEtt8tyFHshiYazqukjhqRV0c0+fWm69WK7AEaYUPmrh/qst0d2S9bu67dwY/tiR69fJESq4WKpLkQcoYvRLp7PRQ8ORY53stUUb5ij6qZy/A+aMXWKN+3IQoC3Y0CQoUVuHujwNpvG5DJw12uN6cCGwb5We8jPX4PCmJkA4ajUZD/1zSTPYH83eloTHybBnS/94U70cqrl9C4PY4yOrVmZW3WxBVUeMeFtQP1yywnkZutqkFe7VHkaDj1L/EsaYjQwItF0exgg843Mgqfpf5dEBW9SK/Keyss5euLIlTvUcVLzJqYd8esQkNBmi9oIOKMZvrGt0QZ59UPRQYtNKg12jBvYnnqfJA5tpHX1lz259WPt+M+6DnB7OxEF8os68+ct5QPmBu5bluBCl/ASxNeqOs6Zo7ghw/kp7kub9FHAwv5t3Z7VljONVAQYzvvD3eTeZSplcpUhz960dr1U2F590YBl7to5EvhWqF+q3pfQoXpHglc6r/boZV7s2j4cYZV0ATCeErMdjeiLA0GL+blD5U7doPQRNZUt2MfQo9B9q4yv8Vdnzc4e4oC89/Q8GMOi6El/t/bMRitvqg6aN8K5ezk+u1tFMhotpe8ux1yakv3YeT0/wUFMAyt+v4cBVX/hFYDjm/Oe2/m+yu8C6bJf15QJO2yAaSWGBdRwCVR5B1xJc7vi4JxLWrvFJ5zaTb877ceQzPNk1A096aU0nc1zONUtOz6C7T05n20pO8XZa6ZmFJaqQZ590eRtieAl2p5X7l8LkFC1Qn9W8plzZFPBeUYgF6K98/WyD8IgtbBzNqnlL5p7XK0ZcxsFbRyZiAK/i6YUvq0dUs17+B/m3k6enng97be/K9mH0N2RT8063ZgSumZVi1YgJnVoUDRGOCqlNJXzZzfQimlqc2ZR9CymFkX9C6d36SUPm/t8tQaM1sfPbaye0rpat/XF3i/uXykoLb4X7s+n5o7SNAEmi2AYWYD0VKc8eg5tG/R4xlbpZRm1jivU4FPUkrnVnFNTQIYLYWZ9UHL9e9q7gEzCIIgaDxmtgh6nGlia5clmDcxs8XwF+mif2los4ZkEARBATMz9K6G36aUvm7t8gTzJ+2bMe3J6MUo66eUnnKBPg94zMy2SCm90Ix5z3eklN5Dz6UHQRAEbZiU0lvoXTJB0ChSSq+i94YEQRDMM3iw9YLWLkcwf1PXjGmPSSntlFJ6CiTQKaUj0MuQHjCzjWuc38Fm9oyZXenLUOfCzMab2UQzm4heThQEQRAEQRAEQRAEwTxAs78Do2imZhsA16WUBlRxzX3oJUp5TkBvyp6FXjpyOvq7q71rUdYgCIIgCIIgCIIgCFqfVglgAJjZyJTSy82Q7jDgjpTS6FqnHQRBEARBEARBEARB69Ccj5CUpZbBCzMbnNncGv3nfRAEQRAEQRAEQRAE8wnN+RLPluRsM1sOPULyBvp/3iAIgiAIgiAIgiAI5hNa7RGSIAiCIAiCIAiCIAiCSmm1R0iCIAiCIAiCIAiCIAgqJQIYQRAEQRAEQRAEQRC0eSKAEQRBEARBEARBEARBmycCGEEQBEEQBEEQBEEQtHkigBEEQRAEQRAEQRAEQZsnAhhBEARBEARBEARBELR5IoARBEEQBEEQBEEQBEGbJwIYQRAEQRAEQRAEQRC0eSKAEQRBEARBEARBEARBmycCGEEQBEEQBEEQBEEQtHkigBEEQRAEQRAEQRAEQZsnAhhBEARBEARBEARBELR52rd2AWqJmb0BfAx8C3yTUlqpdUsUBEEQBEEQBEEQBEEtmK8CGM7YlNKs1i5EEARBEARBEARBEAS1Ix4hCYIgCIIgCIIgCIKgzTO/BTAScI+ZPWFm4/MHzWy8mU30z3OtUL4gCIIgCOZDzGwBMzvMzKy1yxIEQRAE8yuWUmrtMtQMM1swpfSOmQ0A7gUOSSk9WOLcifGOjCAIgiAIaoGZnQacBPyglO0xr2JmC6SUPm7tcgRBEARBTVdgmNmW/j3AzC4xs3+Z2e/NbFgt8ylFSukd/54B3Ays0hL5ZjGzrc3sbjPrnds/yMw2aenyBEEQBK2DmXU3s21buxxB82NmCwIHAT8Hjmvl4tQUM9sMmGVmG7Z2WfKYWY/WLkMQBEHQstT6EZJD/fsS4DZgI+Ay4Moa5zMXZtbNzBYo/Pa8W/QxETPrClwAfAY8aGaDM4fPAG4zs4NqlNeuZnZmLdIKgiBoLebz5fZHATeaWaz2qxIza1eDNNqb2TItJGOnAr9HAYxlzGyFWmdgZouZ2ctmtn2t0y6TZy/gUnR/15rZyi2Vd0OY2erADDNbqsTxrmZ2Wn5CqcZlMDPbwsyuNrO+zZVPEARBHjMbbWYbmNkP2qItZWa7m9mezWED1TqAkcysPdANuDel9FVK6TGgyYZIBQwEnjazL4D3gI9TSne3QL5ZjgIeBbYBrgfu9cDKosA4YFXgJ2Z2aJk0GsTMfoICIvua2RINnLuWC9D89r6ToAhm1tlXAR1kZjsVFJqZ9TOzNRqR3gpm9msz61/ldWZmY8zsl2Z2u5kdamYL5c7pamZ7mdkRVaS7mBuLHaopT2vh9T6qEFwtcryzmY1oRLqWdfBcz2ycae/uZrZm40veMpjZNsCLDTkYfr+9apBfP6+nZv8HLjMbCByCdPW5WePC72ehkhfPh5jZcNN7qI7PByc8yHB5oV+b2VrAp2b2jpnd2Rin2czGAc+gx0lfsuLvxVrezB41s86Nu6v/pbMasBVwZkrpS+A84Bwfe9fJnNfDzH5WrT7NcCwwEfiZmf3TzO4wrfg8ysyGN+UeynA+cFtK6UxgH+B2M1uy2Imud440s1+Y2VlmtoeZjWyOQnl/OgN4DLi4hPF+JLAn8JiZjWqGMqwG/Av4JWDAnaV0fQPp9DGzbV1nBDUgr+PNbFhbdPAqpTFyVcO869xW29jMBpvZZq7HTjSzvVtiPG3rmNmgVshzG+CfaMXfZSjA3KWG6ZuZ7dZY2TOzjYHTgPWBW81s/1qVDYCUUs0+wA/Qyovr0SB7AXAPcEAt8ymRdztgMjAC6Ag8DYwqc/7ERuRhwBbeIBsBXTPHFgZmA0Mz514FXI1WoPzM9y8CTAdW8u3hwOZF8hoOrFVk/47Ay57fycCVueN1wLLATsAtwJvAf4D7gIWaUL8ropmlLr69O/A7oGMLtG034ETgWeAd4BFgQAXXzVU2YDBwDLA1sJx/lgDaV1iWrYBpwFnAhsDBwA6Z40sDp1SaXo3rqTNwFwqiXQI8AdzubTUNBfa2yrTnWcCPgRWofx/OpsDpKCC4lF93ncvsjhWUYSGXi9dd9s5ymb0SeBcY4udt6P3lDk976QbSXQQZijP8/t4GDmrBuu0GrF5O1oAdkINxKfAgMBP4wPvrp8DjuM5A+mE74DW/p46+vyuwUSbdZYHLgcV9uxOwPTLapwMjPa0bgY+9rdYDJnn9/qqULAK9gd96+daroA7M5f/XQKfcse4uO8MLslRBeiO9jm4DrvN9g7xe2mfqdR/geeBz4EKgbyParxNydmYjp/YV4Edlzh8O7NtEmfmN11V7L/8PfX974A/AV8A2mbodDeyFHkNo11KyXeU9LQPcCSxT5XU7et1f7f33jMyxMUjPPI8MsfbeRjsgfbIv0vu/BeqKtOu+wPDc/l2QDtrM63YNpI82yJzTHunIJukSoA/wBq5bfV83ZP9c7fe2vu+/xO/tXWBvoH8V+SyMdHhfpOu3B37offJSYBawSkaeFqxBe2+OdFT3zL49vS4Xyp07wu/tJjRen4j00Qxgtwby6QqsWUF5zOWlDo0hL7sMPAXskjt3sMvcCGAP4CPgv8A5NKCjPP1NgH7Ittwf2R93ARd5294OTPF2bOdluxw5FL2qkJ2LgfeRjfYBGhM7587bxut85QbSW8xlesWmtn2RtPsBHTL9rl8j0lgEeNVlZJeG2qHI9e38uj29TlaniC0IrOR1ubJvbwR8C0xAtvGhyJ7tXO09NEO9Lozem/MU8BKyE5bNnbMn8DUZHVNh2lsALwB/Bg50+Xww33crSOcIT+dfSAfdD/wCjakPI/uj2X2BtvpBtsw3lLcRuwMDvA/s4PVX1I/x/rU0MIyMn5k7Z22kW5fz7S7An5DvfZz3jw5NvK8zPY9ngEV8Xzc0nv8e6F3m2g4uM+N8e3Fks65Ts3pvhobsBIz1G9wE6NNCArQ68PfM9nHAcWXOryqAgQbNh5CRdZb/fgk5Ae28Q5+Qu6YrCqR8kG1or5sXkVH1DjJmDstccywyRmYBK2Suq3OB2NC3+7gyKQjWwmjwnOwK5VBk6LRHCnIKOUPPrxuEHPF9Stz7gsBU4B/osZyr/N7vRM5HpyLX9AbG+7nnkTE8gV7IsNwbOc8LARsjx2W412c/YB00s/GOd8xVgCHAz/AgTpn2OhoZsP1y+29GBsLt3imf9vM+B+5GyqXO5edOYIFc/T8HHOD39BAyHKcgI3IBL9fznk/FgyMyfpbycl+IBp65FJfXwQ65+jQv9x3ADczp/J2JBsQ1va6no0FsOlKgV7q8FGYqJ6FI7mwkl7t7Wit4O2xW5h6WQIb8WUj5Wu74iWjwHIOU4jq+/6fA9Q3UzR2ebsHRX9br+uAa65FCO+yBBvwu3q4PoEfDjs3fl193CjJAfunXjUX9yjLp/hk5tYYCC8/7eQ8CW/t5R6J/UzoeGd5ve3vMQv3vQ2REbIUc+zeAc1FAozf1jsx2SD/83Y+NR/qhE+pDJyHH6hLgR962J5epl0HIwC4Y8bd7Wh1cHqegwOIUL9PamWsXQAbknrge9Dp+DgXQuiJ9+DuXi/8imT0IyebfUQS/v9ffNCpwdnLlv9jTGer1v57ntWzmnMHIYNgdBVamA5s2Uo5+6O3Q37c39/yu9HLcifrkNJeFZ5GjeK3L2h1kdE8F+XUCRlR4bp3f/+FUYXS6fL3q7TSTCvsesLLf+xjf7o907k+RfnrXZWiop3sx0kWWSaMHCnwclUv7IC/TTNSPRqF+MxM37DLnbu7nFoLwR7lMr+xyW2wcG4PG1D8BZyPn9Qr//gWwn7fl+WXuf0Pqx4ipaPxbGfWjD5HeWLWCerwAOKfM8XGe/lJe3i+9zralSkcx095TgHWLHDsa9fMzgF3RmDIT2RF5vT/Ky7V/kWN1nta7KMBQcnzx83dAgb8XkP7f3vev6mmMyZx7BXB2ZrszGj9fpIGALRrfX/P2eRP1yXVRvz7cP3sWZClzXTuXjUnA6Aby2MDr90JgkO/rAtxKRhd7XlOBnyCdNKZEeh2Qg34N6m9r546PIBMYRXpwT6SDPvV7vdvz6567dj00/n3h9fE58AmwWJUydQvqR3sgm+MXVVzbGdlVE4A/+u/HkH2d1ePdUIC6YNsM9/rbEAX97kI67B7g0jL5FdWNFAkuA4u6zFyDxvndgG4N3E+dt+lsFJxdE1gSjT8zXD6GI5tgCrAz6mMrVVBXhuyCN5GtvS8Kmh+Ggup3M3dfzLd5f5fn5T3fouMLGntu80+xScOe1chIFfLQz+/tMHziOHNsoLfv86gvPof0+LAm5mlIB/TM7f8L8CRwS4nrVnU5nYFsrVtdPl/FJ6cysvtP72svZ/raa8i2X9TPW8PT2rBI+XZGdujDKJg5JndORZMjXq8veT0f6XI6hXpf6W7gvDLXH+ptkB3HN0L6psEJs4rK2ByC5QUd0lxpl8hvW+CKzPZuwG9y54xH0amJwBsVpluHFPpMvz47AJyPnIqf+3cxxTYM2KTI/utcEH6EnM9XgH+jQfxmpLi2d8Ht49dsgxR2ViDOdiG9BQ1ux5cSUORYTaZ+FnwoUrjv+/ds5p5V6YJWcBznnWMPNOD2QAPmTciZKUTm2yGjbjpS5Pt5RzrTz/8Vmin+p+f5nJ/7T7+Ht1GkfLa30+n5Duj5HOl11tO3uwJL+e8VUOe+wtMtOPSbIWU2V2ABKY5j/LqH/PMH/+7m5xRmvvOKf1WXj7uRs9kRGZCP04CjhZymC72dp6CB9VgUEJuNBsXNkPP/H2T4/wc5i7uigfxd/1xCAxFXFLX9AzA4J+Nj0SBXCBAMJye3SGnOxFdLUD8btj8aLN+hRBAsIxv3IrnfNVf371JiVhetlnmR3ODoZXwbn8Vugu4wFKTbEzkTb6L+WVjBNBEZ6AujgNed3k4/RTK9GHJWSwbUPJ/ent5taLAr9Ou9fF8H4C0UvHoe9csD/JwBSMf1z6X5UzQgFJ1R8TrfFq2KexcZ/x8igylr7A/0Ot7ftwchee+A+vqTyFlp7/v+4jL7CeoTa2XS2tzzuhb1gU+Qc/lXNIgXVlIdR32AZwVkWC7n7bE3cuLHFrmnTVE/PQQ5a0v6/byCArd75M7fERkKeaPjx8jBq0PP9xeclQlejg2Rk9a9WN2WqO+OSMe9SW42BgX1DkQ6uqAvR7ksrZ+piw6+7yVvg3bIeF8S6YKjka55Henf33h9fAgcmpPrYcBaKGg1wK+dhJyH+7xdBmSuGYBmqHdHzt5eaMXhASjw8utM33uHEo439YbKk0i/b5k7XggMnAEsn9l/AJLRJYukOczvczXf7owck5W9zvZD/XAScHiJct2Axp1CULBgEN4J7Jc7d3GkXw5G9sSxyCj7sX+fhPRCgysRka2QyM2gettu73V0OrnVRai/7eblfZ+M3i6RzzHAd16m7iho8oJvd6Z+PD6S+mBiHeqzl/i9LYP61TXkbKhcXmt7mf+KbKSSATSvy+dR8HWlzP59kM4djVbwvkPpWcl+SK+shhzq05kzkL+jy8eu3s5vUmQlhN/j7f57GT/vl0i/9/G6eQHp626oH1S7UmA3NFbuUORYZ6QjppJzQPz4wi6bI11unqd+Ze/2LpNzrX5AEzt3o36/gee/oh/bGY27b3neZyB9+zRajdnd63drZLe9jXRwe6+TKWiSqTNy1juioP1VuTL08vo7COnprK26Jb5ixrf7ez3PNdGIbOLrUR9bH9kY//ay5e2AfdAY3d7v/YpCuZDcf0QRRwuNay9TZHUQmoz5FI0rfTP7l0Nj2K6+3Qfp31kooLmb19vffF/RALjn/Tc0/gwrcnw9pD/fRHpyhO/fCvWRYjZxp8zvcV63c00gI105ERifu68vgRO8Do9E4/ZHyA7duQF574BsmD/m2nxRT7dk0AXpwAPReLcPxSeIVkeToet5+Q5Ck7f3oUDAbM97aaAn0ilnIL2yBOrnx1Pfrzt6mlWtdET6dRrqW8d5WqujftUH6fGCH7Iw8p8W9Wu2KKGLpuEBOBSkvo45V/e3Q7rgp0i/neL5b9xAWQt21ExgT9+3GfK/3kD6va/v747Gsv2QrfBHZDMNy6Q3AvmMhf47EMn44rl890CBi/cpsrLayzAFTbaV9FeQXV12pX3FDVftBynnmi9jK5PfdswdwLiozPkTc9trIiNhRTRobYWWyLyLjLxFS3S8O1yoyhoWRa7tXhB03x6AFHyv3HnnISNwA++UP8wd74ZmJbbOplcm36ORgTgTKYCf4TN9aBD/bZH8b6TEAE694rrWBf+fyEBaLnNOP+8ML3l9lV2VQ+URwotRsGcAcuo/RIPCS2iZYDs0oN/qHXkyDXf6lZEybY8MuyvRIL8bMiRKDUh7+X0XZvfqkBPwJvXPyO7tcrqaHx/hZfoVUrD5wMgift2/UIBgM7+nOi/j35BxXfGy/Rr0s93QLMx0l/tJXkfHAGtUcH1/YNsi+49Cs1yDfXsdr5ej0eAwlyPr5y3vZdnOt/siI29PNIiXfJSH+uDkLO8PtyOjK2sUr+1lq/PtHt7W+yOn52EUbDqqoXvP3NffmdMo6o6U/ZHAvzJ9pqLlolSxTBANanUljhWW+J3m348jA+8R5NxkDZMOSGcWXSqNdMHhXn+dM/v7+L4mPWKFDJObkV6ZjoLIy6Plxf9bmYNmTWeSWcmWa/+HkX5/FhhY5Jz/Q+2lndUAACAASURBVAZxt9x+Ize4Igd7AtKHVT/mUiT9zZCB+xHqc6+47FyEAt9LIWfteGQkDUM66g6/pw+QIzLB6+hT1FdXK8gBcgJfw2dnUYDxz8h5+C8yck5DY+NFWVlDumCiX7ckCqYvgYzIGcjhWZkKVhfk7rvkrC4a5972dj0Ed0QzxxdDuqjUeDUYGWeHkxnTvU5mofFuK+Q4vUkTHyPKpN8ZXy1Qpr/8n7fZH7weuyMd/7DfayXju5F7dBbprNvQ+PgACmheg2b5piL9+gQykK9GRv5LyDmoOHhXQdnaI4N9utdxf/+dtRXOol7f/B7NdnZA+vDPlJnx8+s3dLk9ulTZkVMxw+X0v8gRuRDp4PfRpMqwGtzvct63zqV+/BiE7ImbKKMj0FjwERr7e+eOXQD8PrdvvPeL7MTENt626yEduKx/TkSO6niKrDrya1d1WZns8jfXCiMUrJjpfa7wSOTbLluXoID4b5F+WA05LWNzaQxxebsa6OH7hqPg7C9Qf/y394m9KTJ2ed7/8HP/gcatQlpdkI1bdDUssrtmotnm7Lh/B9KNFyEfYAPqVwoWdMMVfuxiijwKRv0K64Nz+we73P2WRizxpz5QNzazb12k38eh/vIyZVYPosD5TDRx1dHL81Ovu2fxRwbQeL1sheXqisaan2f2XYnGpDt9uw7ZZwU7eQiy3R9E/s8zKCC6rbfN7mgiaQp6ZP51l5cnyYwTLovHe3tM9TYpFgg53/OYhvrGQ+R8OxTMvQnpy2u9HUegCb43vcxLUj/5OwXY2689GY2dv/djn3k6JV+jgPrNNKQb36aMf4TG04eoYgUqshNeQ37cu34/S7j8PYjGppvQpNTN6FGli2lgBZGnfSxwc07nTEb2SckVpCjI9ADwkyLH6lCQZhbyUWdQxDZLqXkDGLugqFgxZ2Uc8EiN82vSIyTICT4BRaY+Q4rwMBpYlosU5NBmrMfCM38vowBGkx1VT3MAcwdL+jHnezxW845V9llHr4MHkAI9heIrURZD0b2izlMj76MjMvDfx59nRA59VoH2RM/vXU3muesq8qhDivVul4lqZ2I6oxn1E1AE+UZkIL2FBrdmfz9MM8nkYJrwTpUiaXZCwZpZKAj2BjIUziUzq1zi2mWpf8zoPepnAh5GA97uRa5ZEEWJHwVGNrLMdWjQfICmP2t4JXqGcq4ofQu37XpoUFsJGYabopmMNvlOhhL3UFiZc5Xrrw3KnLs0MpCK6jgUELuV+mW+Y9HqgftRUOFJtCT3FmQQHlkLHZ3J31xXVxrU7el6dv38PZXSvWjVw1vI6fgXlb8PyKhfqTYTzajM9D68ayVpNLJONvP+/hFFAlNNSHcUWonzdxSMWb8VZLef672Z3iaXN1W3FNoeX92U2dceOSmjaimzFZSl8CjjI+QcYzSmH44C9Ie4Dv8KBXbuoQKjusIy/Nx1w23Nee/IAXwABaf6IkfxlIby9LYpGmBAAakpKBC8AHK0X6VI4M9lKQF7NbL8hYmEUgGAk1HQ81HkGK6ZK+d9yOF8mxKz+GgS7jJvjydc9qt6Jw1yMF9Htl5VwXEUuH/YddnKKPA6ifqZ5h942R4FrvZ9Q9B4UPZxDjQWvYU/huXyMBnZDY2WOzQOzUDBmdHen470uruc3NL9BtK4HQVsDAUhDscDQI0oV3/kqxyFguqz0Ez9G2jC4wLP81lkV79J5rFc5Ev81PvlJGQv70f9u8M6o+BnKXnsgoKYpVaht0OBsFHMubr+ANTnzvfy74smBI5C9vprLt+jc+kNRCsOCqu8+yIb9CKX/85U8Ggn8vG+o8p3nFTRLgNQUGVkZl8dClxMQkHCgrxX81hpZ9S/f4P64HQqnLBAQZQ5Vi57+92C+uIg6ldHF7ddmqOyMoVZHRkaJ6Co4F5+s5OAA2ucV3sXsuHUv8Sz5IsBKfEODBfwmgySNb6/dtRwNqRMPme48OyBIqclZ41y1y1AhZHaGpd3MP7+gHnpg6LLVT3H/334oKVye5YaoBq47kTmfgRqNWRAbJPZtxWKRJ9CK7xstUT5V/F+V7MA3/f5g5ykP+floQnpLeLj2EQUMD3Yx5mxyADbjiLvF5pXPtS/T6XalYTLIqej8LK8XrSA448M5bmW588vHxSI+t9jRfPbBzmK91HBe16QU1XTenCj+D/4uyea+V67Ur+k+sJa3Aua6XwPBfFuo9QMpRyAtZuaX5ly9EQrEXcqNna5jtyxwnYeiVZAN2pCoYn3UXj0eSqaMR+XOz4MBVmqduzRaoJnkY9yHXBBjco8BAXXv8NXiqHg7ueV2uLUB+Nr9sg/eqddYcV14c8L9kbO6n99jNgXBSXLvty3hdp+SdcFU9HkWckXU1aYXqNsymrH3hrdexc0AdNoPejteSua0Dmpymt/hlbctHc9ea/3kYqCKIWoV7NhZkujZ6S/RYGLs4GbUkrf1TCPU9Hymy9Qp34fPbv5izLXTEwp1fx/aed1zKwrCl6si4JPR6bmFpIgaEbMbEW0guYw9CzwUmjg/HerFiyYJzEzmx914vx6X0HQ2vjf9G4D/KkWtq//HehawNMppY+aml4g/C8o1wXurpUu9LYqvPtrCfTOn89qmPbiKaVXMvu61ir9xmJmi6Bg3V4ppff9b1bPBn6ZUpru59TV0g9sCl6+ccAdKaWvWrs88xouh5sA96aUvqnius4ouLssCnA9gmTm24quby57xf/P+gi0DO5xFMDoiZbIzKxxXqcCn6SUzq3imghgBMH3BDMr/G3Veej54S9buUhBEARBEMznmNkoNMu/QUppQmuXJwjaEmbWHz3O+1ClwQvQso3mYjJ6tmr9lNJTHqE5D3jMzLZIKb3QjHkHQRD8j5TS9ejlSkEQBEEQBC1CSukFM+sbEydBMDe+qOFf1V5XV/ui/I8xKaWdUkpPASRxBHpR3wNmtnGN8zvYzJ4xsyvNrHeN0w6CIAiCIAiCIKiKCF4EQW1p9ndgFM3UbAPgupTSgCquuQ+9lTTPCeive2ahty2fjl6GsneRNMajR1pALwkcXW3ZgyAIgiAIgiAIgiBoeVolgAFgZiNTSi83Q7rD0ItYIjgRBEEQBEEQBEEQBPMJzfkISVlqGbwws8GZza3R//YGQRAEQRAEQRAEQTCf0Jwv8WxJzjaz5dAjJG+g/3MOgiAIgiAIgiAIgmA+odUeIQmCIAiCIAiCIAiCIKiUVnuEJAiCIAiCIAiCIAiCoFIigBEEQRAEQRAEQRAEQZsnAhhBEARBEARBEARBELR5IoARBEEQBEEQBEEQBEGbJwIYQRAEQRAEQRAEQRC0eSKAEQRBEARBEARBEARBmycCGEEQBEEQBEEQBEEQtHkigBEEQRAEQRAEQRAEQZsnAhhBEARBEARBEARBELR5IoARBEEQBEEQBEEQBEGbJwIYQRAEQRAEQRAEQRC0eSKAEQRBEARBEARBEARBm2eeC2CY2ZVmNsPMnsvs62Nm95rZJP/u3ZplDIIgCIIgCIIgCIKgtsxzAQzgKmCT3L5jgX+klBYH/uHbQRAEQRAEQRAEQRDMJ1hKqbXLUDVmNgy4I6U02rdfBtZNKU0zs8HAv1JKI1uxiEEQBEEQBEEQBEEQ1JB5cQVGMQamlKYB+PeAYieZ2Xgzm+if54qdEwRBEARBEARBEARB26N9axegJUkpXQZcBmBmE1u5OEEQBA1iZj2BJYAuwCMppW9buUhBEARBEATNipm1B9YG1gXeAZ4FHk8pfd2a5Qpan0YFMMzsV8AtKaWHalyexjLdzAZnHiGZ0doFCoJimFlnoD/wOfBhXgmb2RBgU2AUWkk0C3gduBd4Mc2Lz3wFjcbM9gfOBSb5rgFmdjvwAfAm8PuU0letVb4gCIIgCAIzqwOGAJ8CXwBjgeWAC1JKnzRwbT/gW6ADcBDwY6Crb7+IbOBVgP2A4WZ2P7KB3gO+Rjb1n1NK0z3osTowHZgckz7zJ41dgbEF0MfMfgfcB9yYUnq4dsWqmtuAPYCz/PvWVixLEAD/U+ZLo+jxOsBKwELAbDSb3sXMngeeBz4BFgHWAu4Engb+C/T1NI4EepvZVygKfQVwHTA7ghrzD2bWEVgBeAnp2ROBMSml1/z40sD6SH7GAQeZ2WHovT/fZtJpD4wEegAzU0qvtuiNBFVjZt2Az0r1Z9cnByPj7lXgGaQnHkspvd5iBQ2CIAjmO3wM2htYGE20jUA26yzgDeBfwN3AG4Vxysy6AzsDu6NgxcdAZ6A78G9k265nZpunlL4okudA4BfA9sB3QCfgGmTnTAO+Syl9lLtmMAqODEI2cje0SvUUM7sTrdaYBfQEFnS7+X1gk5TSC02rpaCt0KiXeJrZ/SmlsW4kbwhsh5yzf6aUDq9xGfN5/wkJZz8UXTsFuAW4AVgS6OX7L0spnVUmnYkppZVy+7oDewK9gXOKdbagOvyFq9sAQ5Fyuh6YgCKrK6Mo60jgDuAuYFJK6b3WKGutMDMDDgVORtHhh/wzAXi1sOrCzLoihT8S1ceHaGXTXJFqT7M30A5YCjgQ2BzoCDwKjMsr+RrfUw9gwZTSS82VR1vHzNrlggQLIf23KDARLW2sA95PKc1qRPoLAzcCfYDBaEZhbErp+RLnG9K9J6PVOg8hGeoBrIcG8PeAxYD1UkrPVFumoPnw9huJ/lVrd2A08BkKaF6BZpM+91VbGwI/QbNRR6P2HuOfHwDnoJU6S6EA2M1ZPeJ/Lb4UMCGl9F2ZMnUC+qaU3sntXwAFWF8sdr0bvgsh/f1d7pghXb8Jku3OyJicBPwx16cMGc29UZDuE7Si8p2UUjKzVZBh+5eU0iul7iOX/0KovnqgMWh2oU95wHA08JSn3xEYmVJ6tpK0g6Ct4/pje+TwnZpSerOVixS0MVzvbgFchGyZx9FE22vAVBQkWByNQxugIMMkpM8XBO5BY9bDKaUPC2m6Tm0HXIuCDR8AK6KAQ3s0ngFcDJyeUvqwcF0j72NBYEfgvoK94zq9k+8/HFglpfRpY9JvK5hZfzT2f4dsvGe+jxOZTQpg5Pa1BzZIKd1dq8JVWaZ2wCuog01FHXCnUtG2fADDzMYCNwH3+65RwK4ppSebteDzIWbWFwWTtkWG+fWobRYAdkEG6rfAy8Af0CziODTALgoY6pSTgT8hx78wmzwReCGl9E3L3VFluKJcDjgOGfO7VGpkNyHPzsD5qL43rWXQzZf0rYgCJbuiNvsbcHzBwTGzxZBjsjHqM9OBF4DfoHZdElgeBV6mopUC85SidefsQlQHDyG5XRcNyPch2V4J3eu3yPk6JKV0XZG01gW2RAP262jF2M6ofkYB5yFn1ICOKaXPKyzjMGBVNOvxJfpb6Wl+bCfgdGCllNIH1d19UCnuKC+DgpG3lFu2ama7AL9Cy2zvRwbe/WjGaDW0ymIDFMRqj8az64Ar8+ma2VA/NhTJzTMoYHAT8I3vXwfNZoH0xdUppc/8+kFIL2/n5f8KGaf3Ij02BhmvM1FQ4W9ohuxJ1CcKwZdZfu8PI8P3Q6S3V/Ny3AK86/fcG+mMdmhVSV+0+mwXT6Nw3gLIQP4CBTL6oRnArYDngN+hFZcGDASGo345G/WFI1C/mgp85OeN8GtvBo7yOn/e2+CnKNhxI3BYoY6CYF7EzNZEeuC/SC/sjpbgd0c6YhCS/5nA2/55A3gwpfRxM5ZrY/wxgZTS9ObKp4JydET9/Tuk2zZDK2YnAg8ifTMIeALZM8nPH4vq7200jg9CAd6eSH8V9NWvi03ImdnyaKy/D/grCjDtjAK2U5Cd8Tiyv1b1PF5BengpFOh+B40HLzbivg09YrEw0od7IB19RErp3gquH+BlmQ1MaSgg4PV8MKqvx9HY8LXn+VVL2PN+z39E4+ktqA/8NaX0ga9uHE2NfAu/361RYOHF3LGBaNzcBAV9bkDj1njk/3QHTsj6nma2MpqgGOjHF0B9OqHx/XU0Xn2vAu+NDWCsmVJ6pBnK02jMbHUUXd7Yt48DSCmdWeL8fACjJ9A7pfSGC/pOwK+BvVJKf2v2G2hjeH2sgYzKJdFM/xTgjJTSVHfq+qSUpnh9bQrs5tf0QkvgHwF+mR2g/NwuwOfFHFk/3gMZuMuhjj4GOcUfo0FjMaToP/DPf4BDs867r24YlFl638/LOAYpgPs8jYPQwHNw9jEoDwz0Sim969s90BK1p9Bgt6qX5R00YG2HZr0nA7ejaPKXldd448lEuBcBfgv8LaX0fhXX90T1sqx/j0Z13AkN3A8Bl6NB5yTgANQWX/o5dwN/Rwq1HzIADkEDxZdohcjXqL5eBS5AMjUYBQNeQc7PtOY0mhqDz/j+EcnYMajdFwceAJ4s5qSa2bLAX9Byy3NSSi/76oojgB3QgLUbqs93UMDiY3T/zbLCxcwuRG26VVt+Z4b3/06tufots7JlQ+BnKaWpRc75AVoFdR8yHo5GxuZTaHapG1ox8Q+fhTJkpCyKDNU1gJ1TSk+UKUcnpCu/bahfmFkHpC+fTCl964HFcSgYMROtbvsYBTKORMbrXShgMQIZ0dehvvol0mVr+729gFYofGlmI5Bhtjvqw7ehF2M/7KtFFva0h6Jx4GWkF57N63s3Go/wepqMDNs/oxe0pcx5hmR3KAqAfuN1sxWwv9el+X2+hoIffVBw5DLghqxR6sblvmjG8XwUONoXrRQ8DwVgLvH7/xfq+9dmg38+YTMA9dkmBWS9HtZE41Mf1Gbnx2NBQaWY2dbAsWgsnYACcoPwwHtK6R4/byMUOH0FeAw5lB+hxwWGoGDhEmis/jfSB0+i4Oc0fCVUmXIsgCYsPkOTGVMzjxr0QoH/XZCufBj167FNtZW8P24G3On6oRfwc+rfJfYyCsouieybjmj2vy+yPUB23X1obF+J+ncozETj/kJ+3SfIJnoU2TDDkM55C60s+wytMlseOan7+fFefu0INMHzM6Szt0TB1Mu8HCOoD5A84fkMRXbHJKSPO6F22g/ppxe8rC+jtn8LObcbAPt4PQxE+voupHf7o6DWNBSwfWRem1yqFl9lfzmyTeuQjr8a6d5eSPf+Fvkvs4BXql1N6zbjFWi8XQRNQjyFguiro0fCbwb+gQLo7VBfvcLPK8ju8Uhu1kV+0NEosPYZ8FZhpaPL/n7AqSiIMdfE2fxKowIYcyRgNiSl9HaNytOUcmyLnm/a17d3A1ZNKR1c4vy5HiEpcs6qaHbnUmTIvIpmWL/zz4cNKV43voYgp3x2tdFmM1sCOZXPIiNtR+QknptSeqOatBrIpzewEQpYrI0GlseRon4WGbX/3955h9tVVP3/s9IbJSHUhB4I3VCkK0hHEBQQQ1OBV4ooIGIBX0VBVFAEkSJIEfmpiLzSLCCIoqCU0IOIFCEUSYBAKAoIzu+P7zrenZNz7r25OffeQ/L9PM957j17z56ZPTNrzZo15WyCvIT3oQ7oNaTc30BCeDryWv+tNxVhDtgXRoK+KOq4l0BOp1WRYfthpMD/jozaHVDndGfme1tUjuciJ8hpqEOfhjq1nVF5X4s6hE+gzmkx5HUeANxAx0/2/hy4ur9muHMA86H81FZH3YlWAtzTIPwiSDEehgYAU+nYUz8VGTjPNHEy1Q5qGgX8tUmYIUh5P1IxYIagJXy7oUHNU2iGdhVkuC+V138InNcbbSgiJqFBz8qog9m/tmwRGSMvo3azOjK0JgNHllIumct0RqPZ3AOQ82Yo0iWfL6U8FxFjkFHRJ0ZDlv0lyADbo68cBLkaawN0TkND2cgOeDIqq0nIIXg7cgSeX0p5PsOMKaX02gHN2Qa2R066EcjA+DAyHH6UhvEQ5AA4Ep25tAlqK2cAPyilvJHx7A4cj/TiH5EhOQgZmHcAx5cuDjXrTbJf2RYZTHf0ZAARESPaYYVCRAwHXmulHGUdTkL93Nao//gVqs9xee8N1C/+Hjl/rkMzmhMymteREfx8JewrGccOqJ9aDrWfWcjp+UzGfyha6bIU0pHDkewORf3Qzl4dOv+S/cf6yDZ5GphR54QbhAbVq6G29A40GFo8r6+BbKP9Sym39yD9RZATc0PU1pdC7TJQH/1cfm5CdsMOaMXtO5D9MDjD/yfDT0DOkZuRTfU9ZIddig583L90srWti7wuhfq21ZH9chRaufsnNDB/DpXTqmhgei8aVL6JyrVbv2aRZfKvuZkAiIgd0QTFm0jGR6Iy/Hgp5dbuxtNJ/CORQ3lZVEerobofjVYxz0LbQm7L//dCtu151G3fWxCJiNWRg+fXyJ5/J7JDxiHbfjXUPn+KVos3XaEREashJ8IWqA3WbMbapODy5JiqZn/Vdi4AfyqVLeARsRZypLyCnFOn1FbUdvIua6GtPMeWUn4wF8XwtqUVDowngV07m0nqCyLig8D2dQ6MDUspn6yEOQgNwAHGllJW6Ea8q6LzDCahBjgQDV5rn/OA79WcCWn4DEaDlg3RwHgCUqKLI6P2jGbKOpcDb4m8ve/OdG9DAjCUDoV/CFrG+7/V2bmIOAB5V3+HhAW0rG0CGny/hBRZbQnXaCRgWyLnw43I4L6rkaLOGbZJGe4V1MmORnvOetQBzSvp0PgOqtu7kKPi+8jjuQ2a+fxpo6V8lTjGIMW+GDI0L0fv9z/k0v5SygP5/ktTN0vYTmQbXAjNIn8dKdJfoMH5gcD7UEd6F3LO/ayvVot0Rg5Eavv5rwa+kLfWRe8yFvhMd5xEORM0ljxsKiJWRnI8Gc1A3YNmPjZATpyv5f9DkFz/FRlnX5lbD3xdPoag9jfH2QB9TTq5fpT5uRT4dSll6lw8H8hptVh+XisNzueoOMc+gMr4L0jH/B0Nvt5CBtdoZJwvhGT1FDTb9BLSfZPz+duRLh2IZiDOR0s/G26vqTiNJ+YH4Jwy+1kLa6Nls1siI+UJ5GB4FS3V/EmuZNgAzdKviPTidsgBcWAp5YlulNdGaAvF9cD97aozTOeE9lbvhPqEZ5DunIVmX3dAM2QboXb8NzoOo1scycpg5IT4D3JmPIgGWQ+Ry8PrVp0sjXTeI+gE/ldRv/RGpnc2Wk3158ozg+qN65T59dAA6kXg8VqYtDUOQrOPf0ODy+/35+qn+YXQluSD0eq9ayqrsJZC9sTCqH3MQnW6DloNNRoN9FdHA/9RyN5YDE0W3Y/a3w6ord2bn+/1tjMx879M5nXRzNeWqH++Hg3ybqzp5Qy/QoZ/GHiwQfsciQaPM4AP179Dyt1maEVD7WynjckVm6jvmIgcyF9D9s5RaPb6Gwuqvs0Vw+NoMsFkukdl9d9H0crJcaitTkWy+B8kC5sje/NU4PT+mpxIJ8o1qM/4JtoK1o7b7YchuX18XiZ9W+HA2AfNvB9cSrms7t4uwOdKKZvNUyLdy8c8bSHpYZoropm4vdHg8Cm0PGgh5GWdjhTpxaWU/6Qz5AI6tkC8hAyU6Rl+daTsf4N+HuhedBhbo5N7xwInoQH6UWh2dys0e70/cjKsjQTsFdSBPJt5WyQ/g9GA4lHgqtKLh0D2BVF3yKL5rwFwCDI0Fkft48doCVpbdmzZtn+DlsqtguTkMtRRbIUM9wcq4ZdARlT1Mw4Z7MPRTMRINBtzfM0hkZ3TKcjQ/CLqeN6M6PkhUu1Oevx3Re1hdzTrcBGaDV4LzTJcUmbfjrUc+jWU/chDEPOzBFrlcyYyvNdAs9Vro2XMv0K677lc8r8G0juDkMPgRWQEDyAPUWyQ35oBexOqx12QE24D5Iw5uZTyVOrivfO9NkYDvgfzsxpqQweg1Ukfy7ych9rZVOQwHoZWIzTKxzpopdKvSinTui5ps6AREUO7sSJzEWBkqTsktQdp7YgcIC+iVYMTkAF9I2rTb6E2vTeyL2pn8yxNxxabN1F/cBly0O2GZPcI1M5rB/C9E+nhEVTOTukif7W0XkcrT1+suz8Q6ek70zZaCMnu73rL+I+IIZ3Nns+r3s+VABujlQjvRoPqj+Ttt+jQdVNRvb2OBuXD89o9dKxsuK1OBw9CzoM10aqd60puj327k33DBcj+/TaaSHs/Krua4/gltGKjdiB6zYEyC21TebwS3/jSYNufMfNKOoTHIT25Blqt+yqaeLm7vyep4L/Ogf3QNu6VkCP0WrSib2quEh2JHO77oq1Xl6LjAZ6Zy7QClcMjlVUlo0tuYc/V2tuglarroH5nNOpPpqGJrOnInnwBTcjfns8OAd7srEzn2YGRCW2Clj+eCZxMx36dwWgv51nznEjXeRiEZhG2puOgmL0bzRBm+Hl2YFTiqjkflkYNZHoW/n8aeJwHoA5oMFLCK6G9aW9lvn89N7PhEbENOqBvWTR7vFvp35+0NWaeCe1h3Q5tPagaJweiGfI/o1nQndDKqLvqPg+mM2Jp5LiZ2kgRpuyOKG/zU6l7Qmg/6OdQGV6OjOiDUIfzb6STag7Bs9AqpOcqzw9FzrE90GzYw8ghcnOz1REtzPvyqIM+AG1pWxMN6H6T6c+shB2MnOwfQyvTLgQum5ulwMa0G2lLrIT030PIwbc9GjzXHI2XlspB0mncLpP3XqofsFeWvA9CsvR+NNi+HzmB10HLpJ/NMAPpOHh2fWSgjkED9aeRTbIYWon6tdJxjspFaAbuOXSg3gHo8MhVkFPlpEbGdOqsxUuD80GaOSBCB+B9KcvmeDTxs1umOSPLbRPkUJmJnKu3oK1BVzeyx1L3Tcr3rn0Wyef+gFbZvpKOmg2RM34GTbZlLuhkPzwZbdt8FxpsnY9WdLTdDLIxbwdyJc5GyEmxA3II1g7Dvg9N6l2DJoU+kv9fglYgNzyTLnQI6XpoEmk/5IBdCNnkE1H/8hdkU+6JbMlrkIP2WeR0fKCU8s/UjxPQWHgNpJtPo+NHIIZk+DUb9get0qURsSY6Q+At1JmejIzElnikcovIl5GjYMNSypTKvWNQBQzLS6+j03lP7CS+ljkw2oFcjVRFSAAAIABJREFUEj20Wi7GzI9Ex77PtdAs/81eedM60vk6GA1OBqKtIr3qkOgp6aDaFDl+O50ZjoiRC6Kjypi5IQeTm6HJoCtLKXdX7m2FVmgMQrbem2hwfhuaNHoWOQFeqA3UI2IcmtzaCM2ij0GOhNMyjV3Qz97fm6u9PoXOnrkCnVW0DprlfANNEr0G/AD92tdAtCrvkIzrUuQAGYMcDB9A2zBORkb0Ocj4fhg5akaglWS3Zv4XQUb+JmhrzZrokL+H0bkJ69Ixm1g7MPMWZLw/ZOeEMaZdScfreLRq6fW6e4ujbYu7Iad4zdF9Ozoc9MmIWB85tu9CDpBLkf4bixznf83P1kj3XkVuoetm/lZBuvpPaFXWS8i5MbORjd+KLSRLog7nIPSib6FO4P2llGfnKfLZ01kdzSqcAxxdG6hHxBpo5m1DVODXA6t2NaCZ3xwYxhhjjDHtRjpFVkEOj+e62q4aOmtqT7Qq7G40OTUMbXddGM3Ob5T/34WM3WvR6t/d0GrWv6Czn24rHSf2D0DLv+/tjlGddudeyLYciWYR/4y2mvXbIbzGGNObpK5cEa2y2BdtR7wMOTMu78+81WiFA+MVdODeyaWUu7Kj+jbaZ71zKeUv857N2dL7PbM7MGY76yIirkVnYfy5aSTYgWGMMcYY83Yj7cy1gYe7cyaHMcaYnhERR6IDSr9YSvlqf+enxqAWxLFO9TCh9Gp/KiL+CtwYEfuWUq5tQTrNGIeWsNR4Mq8ZY4wxxpj5iLQz7+3vfBhjzPxOKeW0iLgBbRtpG+bZgdHsJORSyjkR8Qj6xYMluhNXRFyPfmaqni+UUq5s9lij5JvEX/0Z1WGNwhhjjDHGGGOMMQs6pZS2cxi3YgVGU0op10fEu+Yi/DY9SOZJ9AscNcaj068bxX8ucG4P0jDGGGOMMcYYY0w/MqC3EyilPNjLSVwFTI6IoRGxIjoo6rZeTtMYY4wxxhhjjDF9SK87MFpFRHwgIp5EP2H1yzysk1LK/einXP6CfibrMP+kojHGGGOMMcYYM38xz79CYowxxhhjjDHGGNPbvG1WYBhjjDHGGGOMMWbBxQ4MY4wxxhhjjDHGtD12YBhjjDHGGGOMMabtsQPDGGOMMcYYY4wxbY8dGMYYY4wxxhhjjGl77MAwxhhjjDHGGGNM22MHhjHGGGOMMcYYY9oeOzCMMcYYY4wxxhjT9tiBYYwxxhhjjDHGmLbHDgxjjDHGGGOMMca0PXZgGGOMMcYYY4wxpu2xA8MYY4wxxhhjjDFtz6D+zkAriYjHgJeBt4A3Sykb9G+OjDHGGGOMMcYY0wrmKwdG8p5SynP9nQljjDHGGGOMMca0Dm8hMcYYY4wxxhhjTNszvzkwCvCbiLgjIg6qvxkRB0XElPxM7Yf8GWOMMcYYY4wxpgdEKaW/89AyImKZUsrTEbEEcB3wyVLKH5qEneIzMowxxhhjjDHGmLcH89UKjFLK0/l3BnA5sGH/5sgYY4wxxhhjjDGtoKUOjIiYGBHnRMRXI2KZiLgkIn4VERu3Mp0maY+MiIVq/wPbAX2yTSQioi/S6U0iYvOIOD8i5seDXc18wPwgZ71FRAyMiIn9nY+3Ky4/Y94+RMSYiLg6Iob2d16MMcb0Pa1egfF94GLgNuBm4GTg48C3W5xOI5YE7omI14CZwMullGt6GllEDIiIHSPisoi4IiJGNwizSERcAtwSEUN6nvX+JQeGXwe2As56Ow4U04G1wG4JiohxEbH/vNRdK+s9InaNiEsjYmCL4vsAcF/FSblkROzeirh7kJd2lI8PA7dFxKhGN0Ms2d3IImJ4RExqWe5aTERsHxHnRsSqLYryaGBKRAxvUXxtQTpm2rYe54aa7Fe+D6j73lLnezW+iFgoIr4REcdGxLZzEceQiNi6lfkyAOwG7Azs0d8ZmVfatD+Zb+hvJ1dEjJ+HZ9fPM/vWnYc4hvX02fmN1MffamYn9TXZP6/Znzqgq34zIkZExHoRsVOr7PlW0fItJKWUm0opVwGvl1LuLKU8BrzR6nQa8Dg6xHMNYCFgqYhYYx7iOxQ4DZ2l8Rjwx4hYtnYzDec7kbNkOvDV6sMR8cmIuLKrRCJi1Yh4b3czFRFjszF11eg2S4OroWBko6wZ/1sASwHrAhsAn20QfvGI2D1X2XSrEdcbmD0hIlaIiD27EfRw5Ejat+758RGxy7zmo7+IiOUiYp9UcktExM4RsX1dmIHAj4FTgK9V6zwiFo6I1bqRzpHA4xGxWS3OnnZ8EfEe5MxcGTiq7t7yEfGTiHg4Iv4aERPy+rCIWL5JfCOQLM4EvhNaYfVL4OKI2KKbeRodEds1uD4uIj7U3cFPvtu0iNi0O+E7iSeigVO0G88tFhEHVGUw6/swYBawT5NHdwcei4ht6uKbEBF718X3TqTbboqIyZXrczhpI+LgiJgaEZN7oxNOg2N85fvQiDgPOAd4HvhTRJzQiZ7bNiKu78zRkfc+AzyMBkWd5afLeqvqvdRfu3UWvjtkuiv14NGjgLsi4iv1ZZRy1d30xzWKo69I/fRU6HwrImIj1J6Xyu/b5feWGOsR8S7g6YgYl5c+g/rGhYEfR8TqTZ5bKyJuioh3pExdBFwXETu1Il/dyHdExAYRsU5EjJnLZ5dqQdqbRsRxEbFyC+LqbEXUh9Bk2SebPD88It4/r+015feq+rKMiFERcXgL4p8MvBgR32vW/3Xx/KBaH9rN8KtFxKMxDwPiVhKyKadExPq9FP86wAsRcXAX4QZHxHtbrd8y3SdCK9OH57VupRGyxX4N/B74VTOd08nzgyPiK8CsVvRB7UjIrts9NCYa3I1HjgKOBA7pJM6JndVRREyaizpcJO2PcXXXIyKOAh4FbgE+1c34FouIH0bElyJiw+xn1mmUn0xjSDSYlMl7B0fETcCrEbFz3f1hoR+9+A0wA/gBWohwYt5fNCJOjYhFu5PvbrzXsIjYb25sEgBKKS37ABcCPwJ+CJwHnI9WYVzSynSapL0JcG3l+zHAMZ2En1L3fSngPfn/QOARYNPK/aORgTsWGAbcDXwi740FngR2rORlOnKqvKtJ+gOAg4HngKeAz5GHqjYJuzNwFRqkPJB/T6mEeSdwAjAIGANMA/4GnNAgviHAtcC/0AqZ3wL7573xmadV6+KeBlyf5fIy8CfgTOBjwIoN0vhYpj+ucm1ctofTGoRfDfgSMLhybZlMbwZwVOV6ABOAlSrl8yiahX4SGTUBjMp6ehVYr5vtaBgwvu77jmiAeBxwLDJmjwD2A1YHBjSIZySwft33bYCFGoQdjRwwX6zFleFPQoO0K7PtzUIOtceBw+ra+u+AJYC7gJ8AB6A2Ox0N/CfWld/myEm3NDAZeAI4MMP/LP8+XS2LyvPD0UD5XOCsLJc1gUXzPWYAWwIrAs8Ca1ba3W3AN5Cj8RDU9o9ATsJngOEZdgng00i2vgxckvX5EHAv0jU75XOLdFGnQ7J8XgNWqFzfNd/zjmwnH853OTfr4nDgm8ARlWcuR/ptBnAQDWQ2y+dLwNXA0CZ5+jjwIjChcm1wF+8xAPhVltkNwNJ5fSMkJ9sC9zXJ0x+Qg+vZfM/dgTOQrN8O/BF4X7ad6WiAsHbWyclZRv/Kct8KWCfL6hFgzyy/29FKrk27eI+hSBaOyDRXquU529EnUId+WpbzTGBM3j88332h/L5kpnt8g3S2zff9ev7dvUmZ3ph5+ShwRYMwg4FJSO7/lvlZrBpHXb2+huT0AiS/zwMbd0f/dFJm+wJvAu9v1L7r8roN6sNWz/feCBlJ/68WFsn6G1nG70Dt/cImbWcYkttZwF55bRCwaTXtumdWzDjn0B917WA1YGOayEmG2wvpp59mfgO15ylIHhdCeuAxYM9uludYJAfVuhuafwciB94fgStQP/Q8sHze/yxwaf6/KDKIRyC5n4psn2eRk/X3wPZIly7eJC/Dso72zHKLzN+OyBF8C7BLo7qpiyeA76C++r5sp+/Me+OR3q3p1y2AvwKj8/vWwH9IOwTJxbjO0kR91DGob7oT6eWHgbORXjmf1GlIX0wBluxG3QTSu6VRfaK+4UXUH/wd2LDu/ipIH80CPj0PMjcs83w38HM6dNRgNLD8Nx0230pZ5qs10C87A+sBw+ru7Y90+RbA17KNfQ9YrkFe1s52VtP5yyK9/DTSN5MqYZdBMjOb/KF2fTNwKbKT5khnXj9oEuz6fLdhqI+/Bdkya9WVy4WoP/8MaTM0k9Um19dHOu1ZYL8G9wcgO/VEpLe/VWv/deHWyHqeBRzXpOyHdfbeDdrN0vnuT2SZ/DTb6t8znV26iGPjfK/t8/t+qF++EA3Cv4Sc+H/ONnQkMKgiP9vlO/0aeG+W73sq8S+OdNUZpH3WzXcbj/TfBp2EGZRt/lzg88AHkf32IrBytV6zbCfVPd+wT6nI3teQY/iXWZbXAPcDr2T7/q+eq3t2RSRjuwD/aBJma6R3PpPfV8sy3iq/fzzv79KgXM4ENq+7firwAvCdBrI/FemF5ZEc79BF2Y9BevZsZMvdk59/AF/MMJPQ+PBlZC/8G+mHs0hdn+FOQGOFHZH+mYHGVCOQXTsN2a+7A6Mq9fUossunItvvlCZ5HYT6vYGN5JmOfmFhtJruYaQLbgBG1oU9j4q9NVtc3W243WzcgYR18fx/e2CHRi/R6g9aSnhe5ft+wBmdhK93YKyflbgC8H6kdKMuzNeRUXMm8H/V+9kInkEDjMdTSA4Ars/7E5DgXYY6un8CtyIjcxzq/L8HjKhL8z1I+U5BBnbNcF8CGSCTgUWyYd0F/CLz9p0M8wgy+o5Bxv+7kJPpCmBipvsYszsOjkZKIfIdZlAxnJHRtgUy+i9CArRc5f4S+cxZSJi2zHAzMy+zOXYynd/le94IrJXtZipSgMvme/wYKa2nUAc8AymO7ZFgB5r1vzPL4So0iNg345rDSEYK9CikRNbI8ngFCfi7Mv83IaVxfNbht4DTkVJ+JMt+27p4TwdeR86fAVneDyLFcm/m58F89sV8t1uQUTIGdbw/peIAqlPEf893qw04l817o5FBcHHGuRZylN2DlNNemf6Def8FZGyuU4n7UGSQfQ61uzGow/xrfmZm+zgsw56COupXs0zeWcnr/6D29VHgu1kOVbnZE8nMFkhhHpLXz0PteWZ+au+3Qd6rDcS+l/XzrXzvHZh9cBmoI70aGTI/yOsHo3a4aYbZO/N2Yr7TiUjOP4eU+eaorc1EhvNqyLC9BjksP4QcLRfk+/4MtcHvNqi/8cg4OTXrZWw+9xywUYb5IBoEH4M6paFIFm5GBtJxSO62Rw6Vo/M9HgC2qEvvHUheBgPvRrL283zHxVH7PCrr+kgqDqF89txMZ4ksj5uRDrseWKquwzou3231Bu+9PDKYZqH2fVbWfU2W70ft6Bzk7f8iGoycQxolSPbXrYt3CdT5fTrLaTBygDxL6hmk35+j4sjL6ztlPQ5EneksOgZ1E9EA8mUkr99H7eVM4PQMMxnJ7/8ip+0TSOZ2y7pbHOmfO2jcmS+a6XRmtA1F8n5kltN2lXtHIKNs5fx+Qubn/qyjmjwNR/rwF0hGpiP9dgYyns5E7XzdStyrov78h0gXbZ51tQjqQ57KMj6J2Z0o22X8P8m8nY/05w9Ru7sBychrWW93Zbn/iDRekB47Gcn2DKSnl8z4PpnvNiLfc0qmsRdwTT4/mIrB3qDOn8q0f5JpnY8cOp9Ezp2bkJw9kO3jpMrzI5HsvRvp7Psy3M8yvkCG6YXAwvnMycjpchSS7YWRY/WLqH3difTPP/L7i6gv/DRqSw8Av8m6G9CgfaxNh7Nj0by+a77ne1D7uSvbwEqZzh9Qfzwgy/BT+feP2SZmIpvmIrIfQnr8pazf57NdrI/08mZkG0dt5FdIxkcAf8l4f0GHI2A4mhC4J8skMuy3sjy2zLrftO59DwV+XLFVrkXt65HM90uob1ouv+9UeXZ45nNkk7axKnLWnZF1+bNsB3dmWpuivvWXSK5vznz/DOnVR4ElKn3Pd7Pu7s3y3C7vHYbkrTqxMBbZmM/n+6yH2uOfkdz9KOP4Rf49BdmPh2TaNZv7BeTYOzvjOinr58isgwFZ19NQ/3VF5mcick4fhAZqRyI78nwaDCCQzlwT+ADSE9tmfR2N2tY/UR+xMx0OmtpkxmTkeK7J+3uQfn468zQxrx8CvEVlEqFib89Aff5mSJYvQDbaN9FA9JAsuwHAYlkmTyKZ+mjm87dZlgehSczHgH0qfdp3kY6ble2h5kgfnWXzVWTjfAAN9i7L934GydLESlvYGPVnGyP5+0zW942oTQ/LsGvm8zvVvfMamc/TM93DkA5aF+nUmo64F8nb3nTIWq281srvZyP9dDyS5ZPp3Im8ar7v82g2/rGsv43z/gAkr7X+5M9ZzqciPXAYkusLK+/4IupXn0J6aGCG+zfSU+s3yMc3s84+muW9aOXewqj9/hxN+g2iYwLsBCSrx2bYy4HD6+IejWTiQNROPpfv8o0suzPy+ieyrGsOo+2yPs9E/f+PsrzWqZU5amM15+ME1KaqDr3NMuwmTcp/I9QPncKc49KlkD1/bsYxOcticOW9zs56/j6yrR4k9VRFpz6OZPCXNJlwQf3Mi0h/LEndZHeG2R71yy8CX8lro5Dd/gSSpdezLF9Ffe2OWf8XZj3tjyZJn6TOvpgtrWYNdl4/NBh49eYHdYD1Dozv1oU5CCmVKcBjDeI4GhnWNwEfanB/AFJQT5KKrO7+sGz8H8/vg1GH9jU6DL0PIYUzqu7ZmlH4YFbmKDS4m5HfG82MbZD3r0IDucGos7mHjpmWCZnu1zPMrWgwV7s/ghwcVuIdjBTgdWjAOsdgpEG53U6HAr4A+Hb+/0VkPB1Dx8BgXyoOImSg3YcMuhOykV9PRcGgQd8RyDG0MuoQvogU9uXAwZWwQ5BivhIZd5FhbkSK9Q7UOR+V9XIxEsSZWX/LZJk+Szdm9JDAPoYGWkPRoG96xjUNKYybM18jkWGyNhoEr0wOGFEn+xekDL/VqM4raS6HjL99qXi1m4QN5Fh4Put/e2Y3IpvNDAZqk/9CBtp6yGBaqolsLNwknvegDvZRKl7gBuE2R57YSVl+i2ZdNFTqlfa7PzIGTkWd2wtIEX4MGaNT0CztIhnvUchAmNAs3ro09s44TgDOrJOTY7PO/i/v/w8ds56LIqP6UNRhL591fAXqVGvl+yoyCj6I5Pkn+dw+qNN8IOvgGWafUdsS6aKX6DCsPoFk60CkZwJ1HF9opb7torwOy/Y+AHW8VyK9NhMZA43az7IZttFqpvF0GOKXN0lzZTTbPTPb0HXMORt6ZLaPqgPtKuDAyvefoUHDKVkXx1EnH8goehb1MTPQKpJLsm01ctzUVgx8Hjm79kGD+WnIWfpI1m/NgfTubE9PZ9yHA7+syMgMZJB8BumdE5FxUzOklkR9xol17zoYOS3/DWzTIJ9fIWeKMt2ZaNB7JR0DjYuRoXM90h0rofb8O9TXnJ353iLDL4P09qF0rPzZJp8bVEl7MSSzNyK9eD8ytraismoNGe6FNO6Rg/gOJGvDs50si4ztQsWxjPrUc7PMtsjwP8+yvwjp7TuRcbVBpbz/TsVQzuuHZzmeTYcD9AaarAZD/ULNoK/NHD6W/y9b11bGMKeROgTplimo3ZyPZkJ/gwZMDyAdslDdc0ehlRUHZ/3/Eumbo5Fz7VnknL4dyesI1K5XyedXQH3pDKSrHkZ911J0sromn10Y6ca7s90Myfwfl3FOQ/bUbhnujiyXX9Khz3bIa79Hg6xtkSztmvdHowHv59EAbxyzO2A3Qf3BbUhGZyL76GU0O/1f2yrr6M4sj2PR7H7NAbUqGmzdiuybkcjg/htyXj6O2tPxaAD5KaRD7qKjf98c6YiLUV84x8rVin75esb5Q+QAqA2Wlsp2MLYSfhCyn47Netq8cm9ZZH/8BfUTVYfJZlm+k/Ndp2XZnoccT6ej9nNm1uHYShv9aJblQ8ihch/SPVtVwixX915HIGfTINQfbFN3f0Dm95OoXZ6NZGRLZIeelHW0aJbNeyvPjkb975eQXXgnks931KWxIZKdH+T77Upl0hANNqcj/XNr5neRrJNTs27XzvI4L9O7AOnIa5CcdboiNNOZmOG/jiZMr87y/Btqr/vMZZ8byCG9fbazRv3ofkh+t8x3rNnjiyMd/lckj2fSMT4YlvmcnuVfm7AYkO3mGdRG/0ZHG5zYJI+LZr2ujuTx4Mr132WbmIpspU8ix8aVWWe1mfrHaDIbX6crr6nk+5yspy/QMfG1Puqn9kZ91MaZVm1iYj00JphcaRd/RH1EIF1/KJL3p+jo70bSMYkzvfKOp6E+aZtsO0c0yPeO+dwe+b5j0Riw5ng7gOar9Mcjm2fzTsplFWRf/JA5ZTPQ2LShTqoLW+23PwtcVfm+PdID70O66ilk196EZG5CpjUE9S2D6+IekHV/Ub7P1p3mZW6EZC4F6kkaeNB6Mb152kJSKbxrkXIc1OS5IVQ8V93I134pmN3dwrAnGmS/mmX4ji7CH4OUbVUJz/OKF6QEL6DJoLQubCDFd0c2uic7ey7L+Q400FkPdeadNtQm8QxCnczLNNiaURd2TCqAzZFRfDEy/ibk/aF0oRi7iH8hNOi4KeuvprhOSCFeupvxLIsGOJ0uF+5B/kahWYm5ihd1YOu2KA9dtks08H2a3J7Vw3TGoM7qCuTwGli5dxSa+d1sLuKLzNe/qXjNu/nsesgpen/qlZoTqbZcfUS17aOO9GzqHD3ZPkc1iH9xZp+RH44GShchY+VBZBA1dFL1xifl+yY081Jz5K1BJzM83YjzW2hAOqmLcMukjDdy+A5CA4raDFttRU11yeIHMp2fdqYPsh0VZl+ZNofRWLm3Nho43ZJ64lBkUNS2jA1Djr6L0WD0yJTXx5GTY5269n1qhlsp2+f/QzOVO3dRPgNpbmCujAZAw5Ah+b4GYZZGhv+IujhPRUtWT69vu3PZbs7PeBou/UeDiU83qt+8f2a2vYdQXzotn9kKOYpm69My7xtWvg+jbil7k7Y0FPhIZ3XexbuOJld/9eDZ1ZGj8kwqS3ybhA1m3zY3Ajm9a4P2T2c73qqLNNdDg9qGy/k7eW4Csg1qjoCJdMwkrlcJNxQtdW800z8GOeeOQ3r4KeZuSf9w5BQ8kI6VJAsjh9q9aOD1BTQgvXxu6gQ5zwuwd6W8JyMdfgV1W2bQ4OwyunD+9KBNbJv5aDrwpYlN2424AzmeH0KDkF9nua0zl/EMRoPkHyOHVGcTNBugQX1tm/DY/P44GkjOsbKxQRxd2q7NygkNcPdi9pXJkW2woIFrq220pZGjrOVbeyppfBvp1483qOMt0eD5GuDLef3YLPdmWwUXRw6jzbpTHiln/2DOiYShaMVM1Vk9HDmKH0I2/ktUVvd2kc4o5DBoartm/V6J7KM70WTR8Mr9zvrz9VF/+9t6Ga+kvwcdK9KWRo7mu/M9G8ad7f6hfNeXkA11KHUr89vlk/V2N3Jur4vsvXdX7m+Z5XRGZ+XZ4/R78cX2Qcb6Hg3u7QLc3OL0BpFebeRkuIdO9nbRwIGR18cAa7c4bz0xUobQYI9Wk7Cd7p3viw8yjHZGHrguFTAy3mpnD3xnHtJdiQarZfqpDAYgh8UNFcUVNFmu6k/DMtwx20SvtOnUE6v24Ll1gbP7u3zmMs+1Zau79kPaE5GnvyUr8VIvH9iCeDYil6UjY/TMuvsD6cZ5FcgYb7oyqIXluFh36i/17xwOhx6kdyMaYN00t/1WK4ys1KHd3pPd4Pn10vBbO7+fjWYHp9GFc2dB/KSdMbm/89GP718buJ2OBm5zrKzt4vnBaLtFSwezPXyXbq0onIdy2go5bD7GXDiQ6uLZGTkAms4Ud/H8xshZ2i3buJfKYrX+SrsFeR+EVqI3dWahSbTn0Cq150gnUovSXyj7mBV68Gy/y1hdft7JXEwWo5UmbfUOLSqHEciZXmgw8UiuuuiNtGte+F4hIjZBs01nouV/+6Jlr4OBU0spZ7U4vffSsZfqglLKiZ2EnVJKWWB/dtOYdiUiovSmYjILNBGxI3KugJYx39Of+WknIuIAtAriXaWUm/o7Pz0hIoaVUl7L/0chg/37pZSX+zdnxizY5K8lbFBKub2/82KaExGfQ5Nx3yilfKm/82Pan/zlqUf70nbvVQcGQESsiZZMv4WWxpwMXFZK+U8L0/gy8go/m5eOLaX8qotn7MAwxpgFkHSu71VKOby/89JOhH6ieM9SyoX9nRdjjDF9T+gn07+CfsXwn/2dH2Ma0WsOjIhYEh1kdBA6IOottBf1/aWUZzt7tgdpfRl4pZTyrbl4xg4MY4wxxhhjjDHmbcKAXoz7EXTq/tallO3RT5fdBtwaEWv0YrrGGGOMMcYYY4yZz+hNB8Y6pZS9Sil3ARTxKfRTPDdGxPYtTu8TEXFvRFwQEaMbBYiIgyJiSkRMQaeNG2OMMcYYY4wx5m1Ar5+B0TDRiG2AH5dSlpiLZ65HvytbzxfQT9M9h05BPQH9ZOUBrcirMcYYY4wxxhhj+p9+cWAARMTEUsqDvRDvCsAvSilrtTpuY4wxxhhjjDHG9A+9uYWkU1rpvIiIpStfPwBMbVXcxhhjjDHGGGOM6X8G9XcGWsTJETEJbSF5DDi4f7NjjDHGGGOMMcaYVtJvW0jakYiYCrzW3/kwpk0Zi86aMcbMieXDmOZYPozpHMuIMXPyXCllh/qL88sKjFbxWillg/7OhDHtSERMsXwY0xjLhzHNsXwY0zmWEWO6T7+dgWGMMcYYY4wxxhjTXezAMMYYY4wxxhhjTNtjB8bsnNvfGTCmjbF8GNMcy4cxzbF8GNM5lhFjuokP8TTGGGOMMcYYY0zb4xUYxhhjjDHGGGOMaXvswDCO2EXRAAAF20lEQVTGGGOMMcYYY0zbYwdGEhE7RMSDEfFwRHy+v/NjTF8TERdExIyImFq5NiYirouIh/Lv6LweEXF6ysu9EbFe/+XcmN4nIpaNiN9FxAMRcX9EHJHXLSNmgScihkXEbRFxT8rHV/L6ihFxa8rHTyNiSF4fmt8fzvsr9Gf+jekLImJgRNwVEb/I75YPY3qAHRhIoQBnAjsCawB7RcQa/ZsrY/qcHwA71F37PPDbUsoqwG/zO0hWVsnPQcDZfZRHY/qLN4FPl1JWBzYGDst+wjJiDLwObFVKeQcwCdghIjYGTgJOTfl4ATgwwx8IvFBKmQCcmuGMmd85Anig8t3yYUwPsANDbAg8XEp5tJTyBnAJsGs/58mYPqWU8gdgZt3lXYGL8v+LgPdXrv+wiFuARSNi6b7JqTF9TynlH6WUO/P/l5EROg7LiDFkO38lvw7OTwG2Ai7L6/XyUZOby4CtIyL6KLvG9DkRMR7YCTgvvweWD2N6hB0YYhzwROX7k3nNmAWdJUsp/wAN4IAl8rplxiyw5HLedYFbsYwYA/x3efzdwAzgOuAR4MVSypsZpCoD/5WPvD8LWKxvc2xMn3Ia8FngP/l9MSwfxvQIOzBEI6+mf1/WmOZYZswCSUSMAv4POLKU8lJnQRtcs4yY+ZZSylullEnAeLSydfVGwfKv5cMsMETEzsCMUsod1csNglo+jOkGdmCIJ4FlK9/HA0/3U16MaSem15a9598Zed0yYxY4ImIwcl78qJTy87xsGTGmQinlReD36KyYRSNiUN6qysB/5SPvL8KcWxiNmV/YDNglIh5D29S3QisyLB/G9AA7MMTtwCp5GvAQYDJwVT/nyZh24CrgI/n/R4ArK9c/nL+0sDEwq7aM3pj5kdx/fD7wQCnl25VblhGzwBMRi0fEovn/cGAbdE7M74A9Mli9fNTkZg/ghlKKZ5jNfEkp5ZhSyvhSygpojHFDKWUfLB/G9IiwPIiIeC/yhg4ELiilnNjPWTKmT4mInwBbAmOB6cBxwBXApcBywDTgg6WUmTmYOwP9ask/gf1LKVP6I9/G9AURsTnwR+A+OvYwH4vOwbCMmAWaiFgHHTo4EE2OXVpKOT4iVkIzzmOAu4B9SymvR8Qw4GJ0lsxMYHIp5dH+yb0xfUdEbAkcXUrZ2fJhTM+wA8MYY4wxxhhjjDFtj7eQGGOMMcYYY4wxpu2xA8MYY4wxxhhjjDFtjx0YxhhjjDHGGGOMaXvswDDGGGOMMcYYY0zbYweGMcYYY4wxxhhj2h47MIwxxhjztiAilouIVyJiYH/nxRhjjDF9jx0YxhhjjGlbIuKxiNgGoJQyrZQyqpTyVn/nyxhjjDF9jx0YxhhjjDHGGGOMaXvswDDGGGNMWxIRFwPLAVfn1pHPRkSJiEF5//cR8dWI+FPevzoiFouIH0XESxFxe0SsUIlvtYi4LiJmRsSDEbFn/7yZMcYYY3qCHRjGGGOMaUtKKfsB04D3lVJGAZc2CDYZ2A8YB6wM/Bm4EBgDPAAcBxARI4HrgB8DSwB7AWdFxJq9/BrGGGOMaRF2YBhjjDHm7cyFpZRHSimzgF8Dj5RSri+lvAn8DFg3w+0MPFZKubCU8mYp5U7g/4A9+ifbxhhjjJlbBvV3Bowxxhhj5oHplf//1eD7qPx/eWCjiHixcn8QcHHvZs8YY4wxrcIODGOMMca0M6VF8TwB3FhK2bZF8RljjDGmj/EWEmOMMca0M9OBlVoQzy+AVSNiv4gYnJ93RsTqLYjbGGOMMX2AHRjGGGOMaWe+Dvxvbv3o8XkVpZSXge3QoZ9PA88AJwFDW5FJY4wxxvQ+UUqrVmYaY4wxxhhjjDHG9A5egWGMMcYYY4wxxpi2xw4MY4wxxhhjjDHGtD12YBhjjDHGGGOMMabtsQPDGGOMMcYYY4wxbY8dGMYYY4wxxhhjjGl77MAwxhhjjDHGGGNM22MHhjHGGGOMMcYYY9oeOzCMMcYYY4wxxhjT9vx/7RvJhvk6Ut8AAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -280,7 +281,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAKTCAYAAAAXPCvaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdf/BkdX3v+ec7KHJlXEAplaCWkrCWIwN4iyKZVWtJDAjqMMbEBLI3gSxmSqNJ3dqk7mWWW8ZYsTR/3Y0JhiSGC3E3qJcy11HJgpIQkxWQMQIDjMjApmQuVFChWAdURN/7R58v03Omu8/pn5/T3c9HVVf/+Jwfn3716c/pT5/Tn47MRJIkSZIkje/HSldAkiRJkqRlZadakiRJkqQJ2amWJEmSJGlCdqolSZIkSZqQnWpJkiRJkiZkp1qSJEmSpAnZqZYkSZIkaUJ2qiVJkiRJmpCdaq2EiDg6Iq6OiL+IiP+ldH3WSUScFBF/GRHXlq7LuomIt1bb/Kcj4pzS9VknEfGqiLgiIq6NiHeVrs86qdr7r0TEW0rXZZ1ExFkR8Y/Vdn9W6fqsk4j4sYj4QET8cURcVLo+6yQiXl9t8x+NiC+Vrs+6iIiXRcSuiLgyIi4tXZ827FRraUTEuyLiI333/yAiPlbdfRtwbWb+BnB+kQqusFHZZ+YDmXlJudqttobs/1u1zV8M/HKhKq6shuz3ZuY7gV8CzihVx1XU0NYD/Efgk4uv2epryD6BA8BRwP4S9VtlDdlvB04EfoDZz1xDW/+PVVv/WeDqUnVcRQ3b/P8IfC4z/1dgc5EKjslOtZbJ1cC2iDi2OkLxZmBHVfYS4MHq9g9LVG7Fjcpe89Um+/8EXL7wmq2+kdlHxPnAPwE3Fqrfqhqae0T8HHAP8K8F67fKRm3z/5iZ59H7UuP3S1VwhY3K/pXAzZn5vwGeGTN7bfazvwJcs/CarbZRuX8VuCAi/g74+1IVHMezSldA6hcRpwLfycz/t16WmU9GxDXAB4DzgLMz87tV8X56Hevb8cuiiUyRvaY0afYREcCHgL/NzH9eZJ1XxTTbfWbuAnZFxOeAv15UnVfBFLn/DHA0vSMX342I6zLzR4uq9yqYNPu+nB8DnrOo+q6SKT/jPFXd9sDBBKZp6yPiZcDjmfn/LazCK2KK3H8d+L3M/GL188L/srBKT8hOtbrm3wD/Z0RsH/QGBK4E9gLbM/P+vsc/BfxJRLwZ+MwC6rmKJso+Il5Ar0F8TUTszMwPLqa6K2XS7f63gJ8DjomIn8zMKxZQ11Uz6XZ/Fr2fnTwHuG4RFV0xE+WemZcBRMTFwLfsUE9k0m3+bcAbgWOBP1lITVfPNJ9x/jgiXg98cQH1XEWTZg9wCUvQqeuoSXP/v4H3RcSvAP8y/2pOz061iomIfwcMGnzgBOATwJkDyt4LfJPatpuZT9D7VkstzDj7bwPvnHUdV9WMs/8w8OFZ13FVzTj7m4CbZlvD1TTL3Ddk5lWzqt8qm/E2/yl6nTu1MOPsn6TXsVMLs25zMvP3ZlrBFTXjbf4u4BdnXcd5iswsXQfpGdUpNruAd2fm/1Mr+x3gtfQ6Eb+fmf9zgSquLLMvx+zLMfsyzL0csy/H7Msx+zLWKXePVKtrXgn8ZmYe8rcFEfGz9I5Eb83M70TE/xARp2fm7UVquZrMvhyzL8fsyzD3csy+HLMvx+zLWJvcPVKtzqu+5boJeHNm7q0euxg4KzMvLlez1Wf25Zh9OWZfhrmXY/blmH05Zl/GquZup1qSJEmSpAn510OSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVC+BiLgyIh6JiLuGlEdEfDgi9kXEnRHxbxddR0mSJElaR3aql8NVwLkjys8DTq4uO4A/XUCdJEmSJGnt2aleApn5ReDREZNsB/4qe24Bjo2IExZTO0mSJElaX3aqV8OJwIN99/dXj0mSJEmS5shO9WqIAY/lYRNF7IiI3dVl4O+zNR9mX47Zl2P2ZZh7OWZfjtmXY/ZlmHu3ROZhfS91UES8HPhsZp4yoOzPgJsy85rq/r3AWZn58Ijl7c7MM+ZUXY1g9uWYfTlmX4a5l2P25Zh9OWZfhrmX55Hq1bAL+LVqFPCfBh4f1aGWJEmSJM3Gs0pXQM0i4hrgLOD4iNgP/B7wbIDMvAK4DngTsA94Evj1MjWVJEmSpPVip3oJZOaFDeUJvHuedYiITcAWYE9mHpjnuiRJkiRpWdipVqOqQ30PcBzwWERstmMtSZIkSf6mWu1sodeh3lRdbylbHUmSJEnqBo9Ur5mI2AZsA44ZY7Y9wGPV7ceq+xrThNlrBsy+HLMvw9zLMftyzL4csy/D3LvDv9RaU+MOve9vqmfHvz0ox+zLMfsyzL0csy/H7Msx+zLMvTxP/14CEXFuRNwbEfsi4tIB5RdHxDcj4vbq8o5Z1yEzD2TmzXaoJUmSJOkgT//uuIg4ArgcOBvYD9wWEbsy857apJ/IzPcsvIKSJEmStMY8Ut19ZwL7MvOBzHwK+DiwvXCdJEmSJEnYqV4GJwIP9t3fXz1W9wsRcWdEXBsRL11M1SRJkiRpvdmp7r4Y8Fh9dLnPAC/PzFOBLwBXD1xQxI6I2B0Ru4HjZ1tNjWL25Zh9OWZfhrmXY/blmH05Zl+GuXeLo393XERsBd6XmW+s7u8EyMwPDpn+CODRzBw5tL6jBJZj9uWYfTlmX4a5l2P25Zh9OWZfhrmX55Hq7rsNODkiXhERRwIXALv6J4iIE/rung/sXWD9JElLIiI2RcTW6m8SJUnSDDj6d8dl5tMR8R7geuAI4MrMvDsi3g/szsxdwG9HxPnA08CjwMXFKixJLVSdui3AHv+qbzGqzO8BjgMei4jN9ex9XSRJGp+d6iWQmdcB19Uee2/f7Z3AzkXXS5Im0aZzp7nYQi/zTX33b94o9HWRJGkynv4tSVq0/s7dcdX9Q3ia8lzsAR4DDlTXe2rlvi6SJE3AI9VrJiK2AduAkQOZafbMvhyzL2dI9hudOxjQufOI6fQG5Z6ZByJiM8NP7576dfH0cdubksy+HLMvw9y7w9G/15SjBJZj9uWYfTn17Ed1vqp/PbiB3hHTA8A5mVk/TXmtO25tjbvNz+B1eabTDax1p9v2phyzL8fsyzD38qY+Uh0RRwMfAZ4CbsrM/2vqWkmSVlrVobp5SPHQI6YeLZ2vSV+Xir/ZliStpVa/qY6Id0XER/ru/0FEfKy6+zbg2sz8DXp/56QZi4hzI+LeiNgXEZcOKH9ORHyiKr81Il6++FpqWTX9RnLa8pJ103KqOlqbgXM4/GjnyN/99nXcbgDucduYnYbXBfzNtjpq3vu5acq7XLc25ZJ62h6pvhq4NyL+d+B1wJuB/6kqewkHd5w/nG31FBFHAJcDZwP7gdsiYldm3tM32SXAY5n5kxFxAfCHwC8vvrbDLfORo3nXvWn58yxvOnI0o/IiddNo897upjXiiOlUR0thuduj0kYdyfY32+qiBe3nJirvct3alEs6qNWR6sx8ErgG+ADwYeAXM/O7VfF+eh3r1svTWM4E9mXmA5n5FPBxYHttmu30vvgAuBZ4Q0TEAus40iKOHM3rm9g2dZ/mW9ym5c+7nOYjRxOXd6Bua63pyAjz3a7mZtqjpbN4T3vkZ7jMPJCZNw/64N3itZv6LIRpsp/361Z6u5pneem6NZjbfm4G5V2uW5tySZVxflN9JbAX2J6Z9/c9/ingTyLizcBnZlk5AXAi8GDf/f3ATw2bJjOfjojHgRcA35plRSLiyOpm/+h2UXusfh/gNRx65Og1EXFrbZ6jgVPofQB+YsByNtXK+9f1XOBODn6TemptGUcDd/SVn0bvA3f/uuvlT1TrPr1W99Orug9b97jf4taPqm0sf6Nug7K7pW/+pmzr5adHxJer20nvPd1/5GhvRDy77/k1lX+tVv61qrzNupuyHXfd9SOWrUyxXTdN0//FVtM0kyz3aODVwF3Ak7VpNnHoNn1qbZqm7JvK66/tYUeD25gi+6eArwBZ2yYS+D5wGr324i7g+7Vphj23jXVN015Ac/ZHM7q92phmS1X//nVveC7wKiY8Wlt4m6+/dv3TNL3nR7WH07424+5Hxmrr+74QqC9/VN37l1+v+6y3u2n2o4te97j72foZEntr296o/RhDyo/kYPb18r2199io7XrUuoeVz2rdtChf9/3srJc79roz8wdMoGpzXsOh+5H+5T+X3n7ybg5tSzamGfUZY9rP7W33c4PqV6//qPpt1L9N/abex47TqX4v8M36PJn5BPDrYyxH4xl0xLk+ZHubaYiIHcCO6u7xU9arbuPNtbHx97uLQxvluwbM+8wOE+jfIQ8r71/HKRz6QesU4NaG8lsayjfmb6p7fd6BnYsR2dd39vXlN61/2vInONgB6W/4+stP5WDDN6x80Gs/i7q1WffIhm/O2/08jXpP1d8Tp9H8nvhyX/mst6uBH7QKZv8Eh7YB/cZ9T4/TXgwr/3JDef/8h3RAOLy9a+xgLPE23/Sen+S1a/vajDvvuG19/QvUWe6nmp7bpPO3rd+i1z1W9n0/S9joYIyzH9soP43DOxj18mEf0EftZ2e17kGdh6Z1969/bvvZEZ27DaP2dRphWO71L/Fo2I/Q20YONJSPmn/cz+1j7ecWVL8nB5WN9SVeZjZegN+hd0T6LOAf2szjZTYXYCtwfd/9ncDO2jTXA1ur28+id4Q6Gpa7e4Z13AR8A/hOdb1pyDRbh5RtrebN6nrrmOUj1z+j8mF1b3zuTdmPWv4iyue8/XaqbrPc7ueZTYttcqr3RIntaoWyn3f5VO1hl3Pv8ms37evWlH0Htqu5lZeu2zps98t0mcN2X+zzUdfLR+Q+7efqtS1vmnfka9DiRfpZet8uPa+6/1Xg9Hm9Gb0clv+zgAeAVwBH0vv25NW1ad4NXFHdvgD4ZIvlzrJTPfEGWM0/9Q51kQ3XtPPOMnsvY79WC81+2LbRYpufe6d51bOfx+u2iPJZtIfLmnvp127W+4l69iW3q3mXl65bU/ZeFndhRp27advCVS9vyL3Tde9y+bi5H7LchhfoZfQ6dK/qe+xi4KrSb9p1ugBvAr4O3A9cVj32fuD86vZRwH8F9tE75eqkFstc6JHqlsvozBHNOb+e7uzXIPuGRnvlOs1dyn7ZL7NsD8296Oto9ma/dhdm1LlrsZ9c6/JRufdl28kv4bpePs4+tv8S1cxaMxGxOzPPmOHyNuHfnLQy6+zV3iK3+4jYSm+U4k30fgt0Tmbe3Ddf/++dVv6vg9zuyzD3csy+HLMvp559075sWHnTfnLdywfk6DZf2DgDlUlD5Yj/LpWWVUOn+ZAd3oDBLOqD0D0zmFc2/5+v7ylJ0tJr2pcNK2/aT657ubrHTvWaiYhtwDbgmNJ1WTdmX84k2bfoNNdH8z1kRNo2O0zWoNPsdl+GuZdj9uWYfTnzyH7SDvm6lIPbfJd4+vea8jSRcsy+nHFOSxt1+nbfvK1PzVp3bvdlmHs5Zl+O2Zdj9mWYe3keqZa0lqY5fRs8NUuSJEk9P1a6AhouIp4fEZ+PiPuq6+OGTPfDiLi9uuxadD2lJdV/+vZx1f1nVJ3kzcA5DDkKnZkHMvNmO9SSJEnry051t10K3JiZJwM3VvcH+W5mnl5dzl9c9aSltnEk+gADjkSDnWZJkiQ1s1PdbduBq6vbVwNvLVgXaaW0ORItSZIkNbFT3W0vysyHAarrFw6Z7qiI2B0Rt0SEHW+pJY9ES5IkaVoOVFZYRHwBePGAosvGWMzLMvOhiDgJ+LuI2JOZ9w9Y1w5gR3X3+PFrq0mZfTlmX47Zl2Hu5Zh9OWZfjtmXYe7d4l9qdVhE3AuclZkPR8QJwE2Z+cqGea4CPpuZ1zZM59D7hZh9OWZfjtmXYe7lmH05Zl+O2Zdh7uV5+ne37QIuqm5fBHy6PkFEHBcRz6luHw+8lt7fBEmSJEmS5sxOdbd9CDg7Iu4Dzq7uExFnRMRHq2leBeyOiDuAvwc+lJl2qiVJkiRpAfxNdYdl5reBNwx4fDfwjur2l6j9v64kSZIkaTE8Ui1JkiRJ0oQ8Ur1mImIbsA04pnRd1o3Zl2P25Zh9GeZejtmXY/blmH0Z5t4djv69phwlsByzL8fsyzH7Msy9HLMvx+zLMfsyzL08T/+WJEmSJGlCdqo7LCLeHhF3R8SPImLot08RcW5E3BsR+yLi0kXWUZIkSZLWmZ3qbrsLeBvwxWETRMQRwOXAecBm4MKI2LyY6kmSJEnSenOgsg7LzL0AETFqsjOBfZn5QDXtx4HtgP9VLUmSJElzZqd6+Z0IPNh3fz/wU4MmjIgdwI7q7lFzrpf6mH05Zl+O2Zdh7uWYfTlmX47Zl2Hu3eLo34VFxBeAFw8ouiwzP11NcxPwu5m5e8D8bwfemJnvqO7/KnBmZv7W/GotSZIkSQKPVBeXmT835SL2Ay/tu/8S4KEplylJkiRJasGBypbfbcDJEfGKiDgSuADYVbhOkiRJkrQW7FR3WET8fETsB7YCn4uI66vHfzwirgPIzKeB9wDXA3uBT2bm3aXqLEmSJEnrxN9U6xkRcRfwvdL1GOF44FulKzHEUZl5yqQzm/1UVjn7LucOZl/SxNl3PHfodvarvM2D2ZfS5dzB7EuyrS9j7Nz9TbX6fS8zzyhdiWEiYndX6xcRhw0iNyazn9AqZ9/l3MHsS5oy+87mDt3OfpW3eTD7UrqcO5h9Sbb1ZUySu6d/L4GIuDIiHqm+cRpUHhHx4YjYFxF3RsS/XXQdJUmSJGkd2aleDlcB544oPw84ubrsAP50AXWSJEmSpLVnp3oJZOYXgUdHTLId+KvsuQU4NiJOmGBVfz5RBReny/Wbtm5dfm7Q7fqtcvZdrhuYfUnT1G+Vn9u8rfI2D92u3ypn3+W6gdmXZFtfxth1c6CyJRERLwc+O+hH8xHxWeBDmflP1f0bgf+YmdP+BkaSJEmSNIJHqldDDHjssG9LImJHROyuLgN/n635MPtyzL4csy/D3Msx+3LMvhyzL8Pcu8Uj1Uui4Uj1nwE3ZeY11f17gbMy8+ERy+vsiHurzuzLMftyzL4Mcy/H7Msx+3LMvgxzL88j1athF/Br1SjgPw08PqpDPUhEnBsR91YjiF86n2pOLiL+JSL2RMTtM/hrh2nrctho7BHx/Ij4fETcV10fN8byOpt9l3Kv6jOz7LucO5h9SV3Kfp3aGzD7UrqUe1Uf25ty9TH7MnVZm/YGVjN7O9VLICKuAW4GXhkR+yPikoh4Z0S8s5rkOuABYB/wF8Bvjrn8I4DL6Y0ivhm4MCI2z+wJzM7PZObpHfgm7ioOH439UuDGzDwZuLG632hJsu9K7jCj7JckdzD7krqS/VWsV3sDZl9KV3IH25uSrsLsS7iK9WpvYMWyt1O9BDLzwsw8ITOfnZkvycy/zMwrMvOKqjwz892Z+ROZuWWCAcrOBPZl5gOZ+RTwcXojimuAIaOxbweurm5fDby15eLMfgwzzN7cx2T2ZdjelGP25djelGP2ZdjelDOr7O1UC+BE4MG++/urx7okgRsi4isRsaN0ZQZ40cYp99X1C1vO15h9RGyKiK0RsWkmNR1P13OHybJ3m58Nsy9jbu1NB5h9GV3PHWxvSjL7Mla1vYEVzP5Zc6+SOiUitgHbgGP6Hx4waddGsHttZj4UES8EPh8RX6u+WVoak2RfdaTvAY4DHouIzZl5YK4VPdTS5w4Ds3ebXxCzL8O2vpwlzX7pcwfbm5LMvowlbW9gBbKv80j1msnMz2TmDuDxvof3Ay/tu/8S4KGFVqxBZj5UXT8C/A29U1u65F8j4gSA6vqR+gQTZr+FXod6U3W9Zcb1HmkJcofJsnebnw2zL2Ne7U1xZl/GEuQOtjclmX0ZK9newGpkX2enWgC3ASdHxCsi4kjgAnojij+j5CnIEXF0RDxv4zZwDtC1/+PbBVxU3b4I+HTL+Zqy3wM8BhyorvfMprrNliR3mCz7xm2+JLMvZ0myn1d7U5TZl7EkuYPtTUlmX8bKtTewwtlnppeOX+iNSHcvvdG9Lx1QfjHwTeD26vKOFsvcXbv/JuDrwP3AZbWyTcA3gO9U15sW/PxPAu6oLnfX61fg9bgGeBj4Ab1vAy8BXkBvdMD7quvnzyL7vvy3rnvus86+KffCz9PsR9dlbu+JrmW/6Pam8HM1e3OfefZdzd3siz/PTmW/Lu3NKma/cYlqYeqoalj8rwNn03uhbwMuzMx7+qa5GDgjM98zxnJb/0l8RGwFbqD3QfYAcE5m3tz6SegQ42Sv2TL7cmaVfX2cAWDR4wwsFbf5csy+HLMvx+zLMPfyPP27+xYyLH7D6d2NpyCXPD1c0uoZ0aYUHWdAo7kvkCStIzvV3dd2WPxfiIg7I+LaiHjpgPKh+o783ADcU/8wVB0F2kzvNw+HHRVqml+SxtHQpvglX0GjsnVfIElaV3aqu6/NsPifAV6emacCX+Dgn5UfuqCIHRGxOyJ2A8f3FTUe+cnMA5l585DTLD1y1GBE9pozsy9nVPYNHd+hbYpf8jWbZpufstPcuC9Y9S88bG/KMftyzL4Mc+8Wf1PdcdXvmd+XmW+s7u8EyMwPDpn+CODRzDxmUHnfdM/89mLa3yi2mb+aZguwZ91//+jvXsox+3LGaXOmaZPajAGxTu1RfZsf9dxbvC4js53F67pKr43tTTlmX47Zl2Hu5T2rdAXU6Jlh8YH/Tm9Y/F/pnyAiTsjMh6u75wN7x1lBZh6IiM1M+EGmaf76B6mIcGAhab31H9HcuP9M52zKNmnj9HAYcHr4OrdHLZ77yNeFhmxbvG4jl9/mtVmlTrckaXXYqe64zHw6It4DXA8cAVyZmXdHxPvpDZ+/C/jtiDgfeBp4lN5fbI27ngMc+uFplvM3fVDzg5K0XkZ2zmDyNmnajh2sdHs0705z0+vW9LpP3emWJKkEO9VLIDOvA66rPfbevts7gZ2LrtcYpj5ytMIfcqW1M+3ZMW2Wz4QduxXvuM270zxSi+VP1emWJKkUO9Wau0WcEihpuUx7dsw0613XI9nz7jS3rcOw5c+g0720r40kabnZqV4zEbEN2AaMHMhs1uZ5SiAsxwepUtnL7EvqYvbzPpLdhfZoWO6lvsxoa5pOd1e+gO3iNr8uzL4csy/D3Ltj6tG/I+Ik4DLgmMz8xZnUSnPXtVECpxyRdqrRyxeta9mvE7MvZ5myb2iPphoBu2n5c3guS5P7tLo28vs6Zd81Zl+O2Zdh7uW1+p/qiHhXRHyk7/4fRMTHADLzgcy8ZF4V1HoY9T/YTf9Li/+TvbRW/T9rtZxGtUccPJJ9gOYzaw5rj1r817MmN/K1Mfv11bSvKVk+73VLWoxWnWrgamBbRBwbEW8B3gzsmF+11C8izo2IeyNiX0RcOqD8ORHxiar81oh4+eJrOV9Tfsh1pzPCtNlMOr8fcLWMWnzJN1WnG/wQPalpv4A119XUtK8pWT7vdW9MY6ddmr9WnerMfBK4BvgA8GHgFzPzu/OsmHoi4gjgcuA8eh8WLqx+U9bvEuCxzPxJ4D8Df7jYWpbV9EFqFjudUbq+w2n6hpwpOrZTzj/1GQZdz16racoza6Y6muqXUaNN+gXsvPcTbeZf5vLSdWvQtK8pWT7XdS+i067l5JcpszfOQGVXAnuB7Zl5/8aDEfECep3t10TEzsz84IzruO7OBPZl5gMAEfFxYDu9Rm7DduB91e1rgT+JiMgxfzAfEUdWN/vni9pj9fttpom+aZummXS53wd2955GHFmb5jUcOtDZayLi1r5pNgF3cHBwm1OBJ/vWdTS9HdVd9D6M9a/76Nq8c/k9d8Nr81zgFOBu4InaNPXndlptmno2p0fEl2vrGvXanD5g/ltp95p/jUMHhNo74Hluqp7bnqre9ed9J1Nmv+Tb/SyXO+66nwu8iil+m7rC2T9Frz0iIp5dm+b7wGkc3K6/X5um6T1Vf8+O/bdSK5x703Kfopf9q+m159/vy6Ip96na+r7OSf9+pr9Nqy//NA7ub6C5LW+zH7uTw9c/rD2tl4+q36LXPW5bXx98cG/1nqNaR31f9LW+coaU93/OaNqX7R2y/qZ1DysfZ91N2/Ui2ptN1XL6P0NtPD9o/gzT/xlg3LZh0Oe3+jSj7h/NwfbiyQHT9JePqt/E7V1m/oAJNOQ+bXuzsYxRr82oz29Nn61h+HZR324mfW2GbVsbyx778804ner3At+sz5OZ3wbeOcZyNJ4TgQf77u8HfmrYNJn5dEQ8DrwA+Fb/RBGxg4On7R8/l9p2010cutO5q1Z+CofuNE4BNjqWh3wYAPo/CA2ad+AOZ47ZH9Iw0vvA2N8ADHput/aVN2WzsY56wzjO/MM8waEfcK8Gg34AACAASURBVOuNWv25dS37ddbqQ67ZD/UEvffhoC8+m95T9fJBP3cx9+E2sq8bdz8xbntT/xeLels8qK2+paG8af4vN5Q3zd+2fote91jZ940av9HBqO/HnqC3f+n/AF8v799XPTmkfNgH9EHls173sP3ouO3J2O0NDM++/mUSh+/HR32GGfQZoP78Nz6f1DuOG2WjPr/1zz8o+0F1G1X3UfUb9Plpo3xQp/+Z8ogY2rmbIvdp25um5970+a3ptWn6bDvtazOqfPIv8TKz8QL8DvAp4CzgH9rM42U2F+DtwEf77v8q8Me1ae4GXtJ3/37gBQ3L3V36uS04x03AVmDTkLJvAN+prjf1lW2tHs/qemvbeReR/SzqN2k2Y8w/sGwRz22e2a/6peF1HfnamP38sm9Tbu6zz33a9qZp/mUuL103t/vJt+tZlDds90378aHlLeZt2m7mPf+0y5/pdj9m7tPWbdpsOlveNO/I16DFm+Nn6X2D8rzq/leB0+fxxvcyMP+twPV993cCO2vTXL/xotM7k+Bb0Pu7tBHLdYdzaB4DdxptGrVh8y4i+3nUrzbv5I3LBB+Elin7Vb602KH6IXdJLuY+0yynam+a5l/m8tJ1a8rey+IuzOjLpBbzlu50F+14TpN73zTTvN87+SXfvLe7UZeR/1MdES8DbgLenJl7q8cuBs7KzIuHzqiZiYhnAV8H3gD8d+A24Fcy8+6+ad4NbMnMd0bEBcDbMvOXGpbr/9m1FDP+X9NZZz/r+g1Y9kT/AR4t/jO25fo7m/0yG5Vtm9du3NfG7Msw93LMvhyzL6eefdO+omFf1FQ28vPJPOefdvnTlg+oy1i5T2uabLpePml2IzvV6oaIeBPwfwBHAFdm5gci4v30vpXaFRFHAR+j93uhR4ELshrYbMQy3eEUsmzZT9y4TNEhn5dly34a89zZT1iftcm+S8y9HLMvx+zLWWT203Ycl73jWZvWbb6wcQYqUyGZeR1wXe2x9/bd/h69315LM1c15GMdYd6YrxocZm47LA02YKTheqe4PmjSIQP/+NpJkrpu0s8ns5p/2uVPW65uafU/1ZI0iRz9n7GaQoz+D8mm/zYd+V/J4GsnSZLUlkeq10xEbAO2AceUrsu6MftyVi37Fkei6//LekineZFHolct+2Vh7uWYfTlmX47Zl2Hu3eFvqteUv70ox+zLWfRAHtNY9EBi8+Z2X4a5l2P25Zh9OWZfhrmX5+nfHRYRz4+Iz0fEfdX1cUOm+2FE3F5ddi26ntIy6jvaewNwz6DTqBtOsW61jmHzN5U11M3TtyVJkjrCTnW3XQrcmJknAzdW9wf5bmaeXl3OX1z1pKU28nfH03a6R83fYtkj61Z1lDcD59CBUdUlSZLWmZ3qbtsOXF3dvhp4a8G6SKum6WjvtJ3uUfM7kJgkSdKKsFPdbS/KzIcBqusXDpnuqIjYHRG3RIQdb6mFFkd7p+p0N8w/ctkeiZYkSVoejv5dWER8AXjxgKLLxljMyzLzoYg4Cfi7iNiTmfcPWNcOYEd19/jxa6tJmX05o7If9R+QLUbInniE7Tajb6/C/1O63Zdh7uWYfTlmX47Zl2Hu3eLo3x0WEfcCZ2XmwxFxAnBTZr6yYZ6rgM9m5rUN0zlKYCFmX86ss+/aCNtd5nZfhrmXY/blmH05Zl+GuZfn6d/dtgu4qLp9EfDp+gQRcVxEPKe6fTzwWnq/85Q0Z/6uWZIkSXaqu+1DwNkRcR9wdnWfiDgjIj5aTfMqYHdE3AH8PfChzLRTLUmSJEkL4G+qOywzvw28YcDju4F3VLe/xOEDJEmSJEmSFsAj1ZIkSZIkTchOtSRJkiRJE/L07zUTEduAbcAxpeuybsy+HLMvx+zLMPdyzL4csy/H7Msw9+7wL7XWlEPvl2P25Zh9OWZfhrmXY/blmH05Zl+GuZfn6d8dFhFvj4i7I+JHETH0jRIR50bEvRGxLyIuXWQdJUmSJGmd2anutruAtwFfHDZBRBwBXA6cB2wGLoyIzYupniRJkiStN39T3WGZuRcgIkZNdiawLzMfqKb9OLAd8L+qJUmSJGnOPFK9/E4EHuy7v796TJIkSZI0Zx6pLiwivgC8eEDRZZn56TaLGPDYwNHnImIHsKO6e1S7GmoWzL4csy/H7Msw93LMvhyzL8fsyzD3bnH07yUQETcBv5uZuweUbQXel5lvrO7vBMjMDy60kpIkSZK0hjz9e/ndBpwcEa+IiCOBC4BdheskSZIkSWvBTnWHRcTPR8R+YCvwuYi4vnr8xyPiOoDMfBp4D3A9sBf4ZGbeXarOkiRJkrROPP1bkiRJkqQJOVCZnhERdwHfK12PEY4HvlW6EkMclZmnTDqz2U9llbPvcu5g9iVNnH3Hc4duZ7/K2zyYfSldzh3MviTb+jLGzt1O9RKIiCuBtwCPDHqBo/dH1n8EvAl4Erg4M/95glV9LzPPmKqycxQRu7tav4g4bBC5MZn9hFY5+y7nDmZf0pTZdzZ36Hb2q7zNg9mX0uXcwexLsq0vY5Lc/U31crgKOHdE+XnAydVlB/CnC6iTJEmSJK09O9VLIDO/CDw6YpLtwF9lzy3AsRFxwmJqJ0mSJEnry071ajgReLDv/v7qsXH9+WyqMzddrt+0devyc4Nu12+Vs+9y3cDsS5qmfqv83OZtlbd56Hb9Vjn7LtcNzL4k2/oyxq6bo38viYh4OfDZIb+p/hzwwcz8p+r+jcB/yMyv1KbbQe/0cJhy0AmNx+zLMftyzL4Mcy/H7Msx+3LMvgxz7xY71UuioVP9Z8BNmXlNdf9e4KzMfHjE8jo7OMCqM/tyzL4csy/D3Msx+3LMvhyzL8Pcy/P079WwC/i16Plp4PFRHepBIuLciLg3IvZFxKXzqebkIuJfImJPRNw+g1Eop63LlRHxSPVXBRuPPT8iPh8R91XXx42xvM5m36Xcq/rMLPs2uUfEpojYGhGbZvUc2lr37EvqUvbr1N6A2ZfSpdyr+tjelKuP2Zepy9q0N7Ca2dupXgIRcQ1wM/DKiNgfEZdExDsj4p3VJNcBDwD7gL8AfnPM5R8BXE5vFPHNwIURsXlmT2B2fiYzT+/AN3FXcfho7JcCN2bmycCN1f1GS5J9V3KHGWXfJveqI30PcANwT4mONWuafUd0JfurWK/2Bsy+lK7kDrY3JV2F2ZdwFevV3sCKZW+neglk5oWZeUJmPjszX5KZf5mZV2TmFVV5Zua7M/MnMnNLZo77jc+ZwL7MfCAznwI+Tm9EcQ0wZDT27cDV1e2rgbe2XJzZj2GG2bfJfQtwHLCput4yab1XwYKzV8X2phyzL8f2phyzL8P2ppxZZW+nWjC70cPnKYEbIuIr0RuYoWtetHHKfXX9wpbzdT37rucOk2XfJvc9wGPAgep6z/RVHcs6Z19a17Nf1fYGzL6UrucOtjclmX0Zq9rewApm/6y5V0nLIAY81rUR7F6bmQ9FxAuBz0fE16pvlpZd17Nf29wz80B1utQWYE9mHlhIzQ5a2+w7wOzLMfsyzL0csy/H7MtZuew9Ur1mImJbRPw5cEzfw/uBl/bdfwnw0EIr1iAzH6quHwH+ht6pLV3yrxFxAkB1/Uh9gmXMfglyh8myb5V7Zh7IzJsLdKjXPvuSliD7lWxvwOxLWYLcwfamJLMvYyXbG1iN7OvsVK+ZzPxMZu4AHu97+Dbg5Ih4RUQcCVxAb0TxToiIoyPieRu3gXOAu0bPtXC7gIuq2xcBn65PsGzZL0nuMFn2nc0dzL6kJcl+5dobMPtSliR3sL0pyezLWLn2BlYn+8NkppeOX+iNSHcvvdG9Lx1QfjHwTeD26vKOFsvcXbv/JuDrwP3AZaWfc61uJwF3VJe7S9cPuAZ4GPgBvW8DLwFeQG90wPuq6+cve/Zdy33W2Xc1d7Mv/jw7lf26tDdmb+7zyr6ruZt98efZqezXpb1Zxew3LlEtTB0VvWHxvw6cTe+Fvg24MDPv6ZvmYuCMzHzPGMv1T+ILMftyzL4csy/D3Msx+3LMvhyzL8Pcy/P07+5zWHxJkiRJ6ig71d3Xdlj8X4iIOyPi2oh46YBySZIkSdKM2anuvjbD4n8GeHlmngp8gYN/Vn7ogiJ2RMTuiNgNHD/bamoUsy/H7Msx+zLMvRyzL8fsyzH7Msy9W/xNdcdFxFbgfZn5xur+ToDM/OCQ6Y8AHs3MYwaV903nby8KMftyzL4csy/D3Msx+3LMvhyzL8Pcy/NIdfc1Dou/8T9qlfOBvQusnyRJkiStrWeVroBGy8ynI+I9wPXAEcCVmXl3RLyf3vD5u4DfjojzgaeBR+n9xZYkSZIkac7sVC+BzLwOuK722Hv7bu8Edi66XpIkSZK07jz9W5IkSZKkCdmpliRJkiRpQp7+vWYiYhuwDRg5Orhmz+zLMftyzL4Mcy/H7Msx+3LMvgxz746p/1IrIt4KvBl4IXB5Zt4wi4ppvhx6vxyzL8fsyzH7Msy9HLMvx+zLqWcfEZuALcCezDwwYPqh5dPMuw7ltWnd5gtrdfp3RLwrIj7Sd/8PIuJjAJn53zLzN+iNOP3Lc6nlmouIcyPi3ojYFxGXDih/TkR8oiq/NSJevvhaSpIkST1Vp/Ae4Abgnup+q/Jp5l2H8iYRsSkitg6bz/Lh5U3zDtP2N9VXA9si4tiIeAu9I9M7atP8J+DycVauZhFxBL1czwM2AxdGxObaZJcAj2XmTwL/GfjDxdZS0qxN2qjPav4uL7/LO+MulC+zdX7u0graAhwHbKqut4xRPs2861A+VOkO/zKXT/NlRqtOdWY+CVwDfAD4MPCLmfndauUREX8I/G1m/nPbFau1M4F9mflAZj4FfBzYXptmO70vPgCuBd4QEbHAOjYq/SFznt9Y+SFPk2ja5pjyG+qm+ad9T0xTv2mW3+WdcRfKS5vndrWI7dq2XpqpPcBjwIHqes8Y5dPMuw7lo5Tu8C9z+cRfZowzUNmVwF5ge2be3/f4bwE/BxwTET+ZmVeMsUw1OxF4sO/+fuCnhk2TmU9HxOPAC4BvtV1J9SHhNcBd9N7AzxRV188FTgHuBp4AsjbN0cCrq/mfrB7fmGYTcAe9jfOxiDi1Ns3RwJ218idq6x5VfnRt+af1PYcYUt7/HEbVb9x1b2763UvdnLPfKD+FXoPcX/f+599fTm2ao+k1Kv316//SZlj96nWb17pfRYvfG00qIo6s1blex0H3m6Zp2uZP52CjDnB6RNzact1Bb3vqn/811fyzek/W67cFuJmW+jpH9eWPqv8tQ9Z9ekR8ua/uw7Jrm+2odbfJtl4+q/ptlNeXP1b2MPU2Pc+2ftznXn9tbOtt6wfqePajcqXlujuZfWYeiN7ZlRvZfz8int23jqeAU/ue/1N95d8HTuur+/drbVd/ef+yo2/+U/ue2zjr3ig/jYPZPlWtfyPXevmo+m3Uv039om/5pzJZ9hsdcqrrvbXn9rVa+df6yhlS3v/c6+V7a89975D1bzy3pvJR9RtW/2nrd+SQedt/mZGZrS7AXwOPAG9rO4+X6S/A24GP9t3/VeCPa9PcDbyk7/79wAsGLGsHsLu6/Evf45uAbwDfqa6PBZ5dXY6k9yGiv/y4vvJnDyk/sq/89VVZVtevq8o3pnndgPJn903TVF5f/utr9R9U3rZ+465765DXsVT29fJja9kfO2T9G9M0lY+q36LXvWmc7Md4D/bX+dm1Ogy73zRN03Y17Lm3Wfew12WW78l6/cbKHtg6ZPlttvtB2cxiu2qz7jbZFt/uh+U+g2160dvVOO2Nbb1t/TJmv/TtzZzbnDb7u7bTdGG5Y6+74fPJ0Nzpbfev5/Dtuf+1fx2Hb1P9297rOHyb6i9//YBtpn/b7C+vT3PsgPr1P/dh9auXj6rf62hfv/q6tzJkex/6erT8UPk7wKeAs4B/mGcn0sth2W8Fru+7vxPYWZvmeqodPL2zD74FvZHdRyx3d20dQz8szKC8vkPbtCzl0y67A9kXKy9dt6bsZ/T+3MSIhndYeZvtZtJltymfxXbdtP6G7X6q5c8zm1Uon2abb8h9rm19ye16FnVv2OY721ZPW166bsucfZfrNovsvSzuYu7lL21epJ+ld1rC86r7XwVOL13xdbnQ6yQ/ALyC3rcndwCvrk3zbuCK6vYFwCdbLLf1B9xpy/um6eyH0FHl0y67ZPYly0vXrSn7Gbw3Z1H/sb8JnfS5z3u7Hjf7WS/fS7vcW2wTRdv6GTxf23rb+qXJvst1m0X2XhZ3Mffyl6YX6GX0OnSv6nvsYuCq0hVfpwvwJuDr9E7rvqx67P3A+dXto4D/CuwDvgyc1GKZY33AnbbcS7nsS5aXrltT9lO+jjP/hn9W6+7ixR1+93Nvs13Z1k+efen2cJ3b+tL163J2Xd7Peml/Mffyl6heCK2Z8E/iizH7cmaZfX2wLeCQgYuayue57i5yuy9jnNyXcbvqMrf5csy+HLMvw9zLG2f0b0lSJQ+OarqFASNzNpXPc93SMFXHeeHbrCRJq8xO9ZqJiG3ANuCY0nVZN2ZfzryyrzodQ//OqKl8nuvuCrf7MgblPuCvzA47Er0s21WXuc2XY/blmH0Z5t4dnv69pjxNpByzL8fsyzH7Mvpzj4itwA30fiN5ADgnM+1Az4nbfDlmX47Zl2Hu5XmkWpKk9bCH3m+lqa73FKyLJEkr48dKV0DDRcTzI+LzEXFfdX3ckOl+GBG3V5ddi66nJKn7qlO7NwPn4CBkkiTNjJ3qbrsUuDEzTwZurO4P8t3MPL26nL+46kmSlklmHsjMm+1QS5I0O3aqu207cHV1+2rgrQXrIkmSJEmqsVPdbS/KzIcBqusXDpnuqIjYHRG3RIQdb0mSJElaEAcqKywivgC8eEDRZWMs5mWZ+VBEnAT8XUTsycz7B6xrB7Cjunv8+LXVpMy+HLMvx+zLMPdyzL4csy/H7Msw927xL7U6LCLuBc7KzIcj4gTgpsx8ZcM8VwGfzcxrG6Zz6P1CzL4csy/H7Msw93LMvhyzL8fsyzD38jz9u9t2ARdVty8CPl2fICKOi4jnVLePB14L3LOwGkqSJEnSGrNT3W0fAs6OiPuAs6v7RMQZEfHRappXAbsj4g7g74EPZaadakmSJElaAH9T3WGZ+W3gDQMe3w28o7r9JWDLgqsmSZIkScIj1ZIkSZIkTcwj1WsmIrYB24BjStdl3Zh9OWZfjtmXYe7lmH05Zl+O2Zdh7t3h6N9rylECyzH7csy+HLMvw9zLMftyzL4csy/D3Mvz9G9JkiRJkiZkp7rDIuLtEXF3RPwoIoZ++xQR50bEvRGxLyIuXWQdJUmSJGmd2anutruAtwFfHDZBRBwBXA6cB2wGLoyIzYupniRJkiStNwcq67DM3AsQEaMmOxPYl5kPVNN+HNgO+F/VkiRJkjRnHqleficCD/bd3189JkmSJEmaM49UFxYRXwBePKDossz8dJtFDHhs4JDuEbED2FHdPapdDTULZl+O2Zdj9mWYezlmX47Zl2P2ZZh7t/iXWksgIm4Cfjczdw8o2wq8LzPfWN3fCZCZH1xoJSVJkiRpDXn69/K7DTg5Il4REUcCFwC7CtdJkiRJktaCneoOi4ifj4j9wFbgcxFxffX4j0fEdQCZ+TTwHuB6YC/wycy8u1SdJUmSJGmdePq3JEmSJEkTcqAyPSMi7gK+V7oeIxwPfKt0JYY4KjNPmXRms5/KKmff5dzB7EuaOPuO5w7dzn6Vt3kw+1K6nDuYfUm29WWMnbud6iUQEVcCbwEeGfQCR++PrP8IeBPwJHBxZv7zBKv6XmaeMVVl5ygidne1fhFx2CByYzL7Ca1y9l3OHcy+pCmz72zu0O3sV3mbB7Mvpcu5g9mXZFtfxiS5+5vq5XAVcO6I8vOAk6vLDuBPF1AnSZIkSVp7dqqXQGZ+EXh0xCTbgb/KnluAYyPihMXUTpIkSZLWl53q1XAi8GDf/f3VY+P689lUZ266XL9p69bl5wbdrt8qZ9/luoHZlzRN/Vb5uc3bKm/z0O36rXL2Xa4bmH1JtvVljF03R/9eEhHxcuCzQ35T/Tngg5n5T9X9G4H/kJlfqU23g97p4TDloBMaj9mXY/blmH0Z5l6O2Zdj9uWYfRnm3i12qpdEQ6f6z4CbMvOa6v69wFmZ+fCI5XV2cIBVZ/blmH05Zl+GuZdj9uWYfTlmX4a5l+fp36thF/Br0fPTwOOjOtSDRMS5EXFvROyLiEvnU83JRcS/RMSeiLh9BqNQTluXKyPikeqvCjYee35EfD4i7quujxtjeZ3Nvku5V/WZWfZdzh3MvqQuZb9O7Q2YfSldyr2qj+1NufqYfZm6rE17A6uZvZ3qJRAR1wA3A6+MiP0RcUlEvDMi3llNch3wALAP+AvgN8dc/hHA5fRGEd8MXBgRm2f2BGbnZzLz9A58E3cVh4/GfilwY2aeDNxY3W+0JNl3JXeYUfZLkjuscfYRsSkitkbEpmkrPqGuZH8V69XegNmX0pXcwba+pKsw+xKuYr3aG1ix7O1UL4HMvDAzT8jMZ2fmSzLzLzPzisy8oirPzHx3Zv5EZm7JzHG/8TkT2JeZD2TmU8DH6Y0orgGGjMa+Hbi6un018NaWizP7Mcwwe3Mf0yKzrzrS9wA3APcU7FgXZ3tTjtmXY1tfjtmXYXtTzqyyt1MtmN3o4fOUwA0R8ZXoDczQNS/aOOW+un5hy/m6nn3Xc4fJsu967rDe2W8BjgM2Vddbpq/qWLqe/aq2N2D2pXQ9d7CtL8nsy1jV9gZWMPtnzb1K6pSI2AZsA47pf3jApF0bwe61mflQRLwQ+HxEfK36ZmlpLGn2S587DMy+67nDeme/B3isuv1YdX+Rlj77Ee3NsyJiKwczdbufMdv6cmzryzH7Mpa0vYEVyL7OI9VrJjM/k5k7gMf7Ht4PvLTv/kuAhxZasQaZ+VB1/QjwN/RObemSf42IEwCq60fqEyxj9kuQO0yWfadzh/XOPjMP0Psd2DnA5ur+wixB9pO2N98GfpnqtHrgJNzux2VbX45tfTlmX8ZKtjewGtnX2akWwG3AyRHxiog4EriA3ojinRARR0fE8zZu0/ugfdfouRZuF3BRdfsi4NMt5+ts9kuSO0yWfWdzB7OHXsc6M29edId6SbKftL15CngOB0+r/3fUsi85QNyKZ9/ZNmdJcgfb+pLMvoyVa29ghbPPTC8dv9Abke5eeqN7Xzqg/GLgm8Dt1eUdLZa5u3b/TcDXgfuBy0o/51rdTgLuqC53l64fcA3wMPADet8GXgK8gN7ogPdV189f9uy7lvuss+9q7mZf/Hl2KvsZ576J3rftP6qW9/u1aTcB3wC+U11vMnvb+mXPvqu5m33x59mp7NelvVnF7DcuUS1MHVUNi/914Gx6L/RtwIWZeU/fNBcDZ2Tme8ZYrn8SX4jZl2P25Zh9GfXcqyPQW4A9WTsLoPqt9Q30OtcHgHMy8+ZF1neVuM2XY/blmH0Z5l6ep393n8PiS5JmIkefVr8xQNwBygwQJ0nSUrJT3X1th8X/hYi4MyKujYiXDiiXJGmoLDxAnCRJy8pOdfe1GRb/M8DLM/NU4Asc/LPyQxcUsSMidkfEbuD42VZTo5h9OWZfjtmXMU3uDUeyiw5ktgzc5ssx+3LMvgxz7xZ/U91x1W/c3peZb6zu7wTIzA8Omf4I4NHMPGZQed90/vaiELMvx+zLMfsyZpl71ZG+h97I4Y/h0eyR3ObLMftyzL4Mcy/PI9Xd1zgs/sb/qFXOB/YusH6SpPWwhV6HeuMvubaUrY4kSd3wrNIV0GiZ+XREvAe4HjgCuDIz746I99MbPn8X8NsRcT7wNPAovb/YkiRpljYGMgMHMpMk6Rl2qpdAZl4HXFd77L19t3cCOxddL0nS+sjMAxGxmSF/ySVJ0rry9G8BDj4jSWrWNJCZJEnryCPVayYitgHbgGP6Hjtk8JmIcPCZORiUvRbD7Msx+zJK5V7tT9b6SLbbfDlmX47Zl2Hu3eHo32uqf5TAaoTxG+gNPnMAOCczb65Nv/YflGbFERrLMftyzL6MRebu6OCHcpsvx+zLMfsyzL28qU//johXRcQVEXFtRLxrFpXSwm0MPnOAAYPP9H1QugG4Z9Ap4p4+LkmzscTtaePo4Ev83LTE3O4kzVurTnVEvCsiPtJ3/w8i4mMAmbk3M98J/BLgNyRzEBHnRsS9EbEvIi4dUP6ciPhEVX5rRLx8nOVXRxI2A+cw+MjCyA9Ky9Dpblr/qPJp5p133bpeXrpuUgnTbJdt2tMOm/oLWmnWZvEZZZX3k+5npRnJzMYL8FzgQeBY4C3AV4F/01d+PvAl4FfaLM9L+wu9v9G6HzgJOBK4g17Ht3+a3wSuqG5fAHyixXJ3j1GHTcA3gO9U15tq5Vursqyut44zf980WweVTVveov5Dy6eZt0320y6/y+Wl6zbtdu9ltpdFZt/UXsxz/km2y9r8I9vTLufelN2sn9uit5txt4t69tMuv8vlpes2Kvum7a7kvqrkumdR3ma797KYi7mXv7QaqCwzn4yIa4APAOcBZ2fmd/vKdwG7IuJzwF+3WaZaOxPYl5kPAETEx4Ht9L513bAdeF91+1rgTyIisnqXtRURR1Y3++cL4CngVOAU4G7gqYh4dt80X+PQ/y79WrWsjeW8hoNHugFOj4gv963raOBODg6UdirwRLVu6H2pM6r8aHpfNmyUn0bvSMlG/evrf01E3NqyfqcPKLu1b931ebcAh/wevUH/WQD9yx9V91v65p/muWWL5zfu8++v36LXPW72wMjtvv+x+v0200TftE3TTLLco4FXA3cBTw6Ypr+8//2yMc0meu/pPVV5fV1H08v0Lg59P214LvAq5jjOwoSvzaD2ZFA+DHlsWHvTZt1t2pum13wvh7ane6v29pD5MvMHTGjOTikkagAAIABJREFU2/xTwFeAHFDvNs+tabub9r007H0x7n5mrN+L9x0tHbZdjdqPQW97qpc/waHv5/7y+nY/z/3sotc97m/16/+vvrHdQfn97Kh1T/v5xf1s95Y79ro73NbTcpouLHfsdU+S+zi/qb6S3hHRf5+Z9z9Tw4izIuLDEfFn1P5LWTNxIr2zBDbsrx4bOE1mPg08DrygvqCI2BERuyNiN3D8mPV4AriVgx8C6mWn0fvC5dQB09zFoacE3lUrP4VDTy8/ZcblTesfVT7uvHsYYET29dMlx6lb18sXve5xs++6o4Gfqq4Hld0B/C29D6P1adqWXzei/M6q/I4R5SNP4y2UfVN7AKOzbTP/KE3bbdP6N9rTNzG4PQU4uuF0za5u803PrWm725hmWHZN5aPeF+PuZw77vTiMzL7+M6pZ7+dKli963WNlnwd/4vYmetvfuJ9RVmk/6X52hYzKvdo/TNpWrnv5yH3sUGOcVvDXwCPA20ofXl+nC/B24KN9938V+OPaNHcDL+m7fz/wgobldumUwLmfnjRq/S3r5ymBK3ZKYOnLlO+JptMZi5aXzH5J2pNpTg8fa/4ubfMtntu8T9MduvxZbBejsp/3dlmyvHTdZrHdT/Oenra85LpnUd6U/Tpns8jsWZP2Zt7lTfOOfA1avkF+B/gUcBbwD20X7mX6S/Vmur7v/k5gZ22a66k+HND77/FvQe/v0kYst1MftBbZ8JS+dC37dbp0JfsWDX5nfwPYpnze2U/THjRl22L+aTvFU/2ueNz5u7LNj/G6zvPLpDbbdSc7F10vL123puy9LO7CjDp308y7DuUNuXf6i/culzfNO/I1aPHm+Fl6p388r7r/VeD00m/adbnQ6yQ/ALyCgwOVvbo2zbs5dKCyT7ZYrjuccq+p2a959i0a/LkeLV1E+byyb5PNnOeftlPskerm5zeXs5qalj+H57JU2a/Sxey7kX2Lfd3EnZt1L2/IvdNfCHS5vGneUZeRA5VFxMuAjwJvzszvVA//EfDvgYtHzavZyMynI+I99I5GHwFcmZl3R8T76b2BdgF/CXwsIvYBj9LrWEsqrPo9zhYOH8xrD4cOnLOnf77MPBARm4fM+8w0jBgwpnT5HNUH9xtr4Jw22TYY+drNe/0zqH+njdqump77LN43kmaqqb0cVT7NvOtQPtS0beU6l0+zj42qV641ExG7M/OM0vVYR2ZfziKzr4/2S+0/4Ed0uFfSrLJvynURlum1s70px+zLMfty6tk3tZejyqeZdx3Ka9O6zRfW6i+1JEljG3lE1SNmk+nCkVpfO0lqZ5qznkqfcdX1cnWLneo1ExHbgG3AMaXrsm7MvpxC2U91mvCqmEf2ftBoZntTjtmXY/blmH0Z5t4dnv69pjxNpByzL2fR2S/TacLz5nZfhrmXY/blmH05Zl+GuZf3Y6UroOEi4vkR8fmIuK+6Pm7IdD+MiNury65F11NaVxGxKSK2Vp3nw2Tmgcy8ed071JIkSavMTnW3XQrcmJknAzdW9wf5bmaeXl3OX1z1pPXVN2DWDcA9wzrWkiRJWm12qrttO3B1dftq4K0F6yLpUP0DkR1X3ZckSdKasVPdbS/KzIcBqusXDpnuqIjYHRG3RIQdb2kxNgYiO8AaD0QmSZK07hz9u7CI+ALw4gFFl42xmJdl5kMRcRLwdxGxJzPvH7CuHcCO6u7x49dWkzL7cqbJftRAY134a6euc7svw9zLMftyzL4csy/D3LvF0b87LCLuBc7KzIcj4gTgpsx8ZcM8VwGfzcxrG6ZzlMBCzL6ccbLv+830cfSORG+24zw5t/syzL0csy/H7Msx+zLMvTxP/+62XcBF1e2LgE/XJ4iI4yLiOdXt44HX0usISJqOv5mWJElSIzvV3fYh4OyIuA84u7pPRJwRER+tpnkVsDsi7gD+HvhQZtqpllpo+EssfzMtSZKkRv6musMy89vAGwY8vht4R3X7S3gETRpb/fTuiDjk9G5/My1JkqQ2PFItaV01nt6dmQcy82Y71JIkSRrGI9WS1tXG6d3g6d2SJEmakJ3qNRMR24BtwDGl67JuzL6cQdl7evdiuN2XYe7lmH05Zl+O2Zdh7t3hX2qtKYfeL8fsyzH7csy+DHMvx+zLMftyzL4Mcy/P31R3WES8PSLujogfRcTQN0pEnBsR90bEvoi4dJF1lCRJkqR1Zqe62+4C3gZ8cdgEEXEEcDlwHrAZuLA6pVWSJEmSNGf+prrDMnMvQESMmuxMYF9mPlBN+3FgO72/CpIkSZIkzZFHqpfficCDfff3V49JkiRJkubMI9WFRcQXgBcPKLosMz/dZhEDHhs4+lxE7AB2VHePaldDzYLZl2P25Zh9GeZejtmXY/blmH0Z5t4tjv69BCLiJuB3M3P3gLKtwPsy843V/Z0AmfnBhVZSkiRJktaQp38vv9uAkyPiFRFxJPz/7N1/8GR1fef75ysDIxXGCwMUiqAFGq7r6BjcS7mZFapIXBTUYYyJW7C3ErgXa8pEbv64SSUzRVXW601KsveP7CYhYdVQM7EqqGsly6jUBSQxbipI+LoRhwGRYcrSuVASAkWJxlWS9/2jzxebnu4+p/uc0+9Pd78eVaf6x+f0OZ/zOp/z6f70j9NcDRxKrpOZmZmZmdla8KC6YJJ+VtJxYBfwOUl3Vve/QtIdABHxPHADcCfwMPCpiDiSVWczMzMzM7N14q9/m5mZmZmZmc3JJyqzF0h6EPh+dj2mOAt4KrsSE5wSEW+Y98HOvpVVzr7k3MHZZ5o7+8Jzh7KzX+U2D84+S8m5g7PP5L4+x8y5e1Btw74fERdnV2ISSRul1k/SCSeRm5Gzn9MqZ19y7uDsM7XMvtjcoezsV7nNg7PPUnLu4Owzua/PMU/u/k31EpB0q6Qnq3ecxpVL0u9JOirpq5L+5aLraGZmZmZmto48qF4OB4ArppRfCVxYTXuBP1pAnczMzMzMzNaeB9VLICK+CDw9ZZY9wJ/EwJeA0yWdM8eqPjJXBRen5Pq1rVvJ2wZl12+Vsy+5buDsM7Wp3ypvW99Wuc1D2fVb5exLrhs4+0zu63PMXDef/XtJSDof+Oy4H81L+ixwU0T8dXX7HuA3ImJjZL69DD7JhpYnnbDZOPs8zj6Ps8/h3PM4+zzOPo+zz+Hcy+JB9ZKoGVR/DvjwyKD61yPiy1OWV+zJAVads8/j7PM4+xzOPY+zz+Ps8zj7HM49n7/+vRqOA68cun0e8PgsC5B0haRHqpOd7eu0dh2Q9A1JhyV9pYOzULatywknjpN0hqS7JT1aXW6fYXnFZl9S7lV9Osu+5NzB2WcqKft16m/A2WcpKfeqPu5v8urj7HPqsjb9Daxm9h5Ur4ZDwC9q4KeAZyPiiaYPlrQFuJnBCc92ANdI2tFPVVv56Yi4qIB34g5w4onj9gH3RMSFwD3V7VpLkn0puUNH2S9J7uDsM5WS/QEW2N9I2iZpl6RtbSvewlpmX4BScgf3N5kO4OwzHGC9+htYsew9qF4Ckm4D7gVeK+m4pOslvV/S+6tZ7gCOAUeBjwK/POMq3gwcjYhjEfED4BMMTn5mY0w4cdwe4GB1/SDw7oaLc/Yz6DB75z4jZ59jkf1NNZB+CLgLeCh5YJ3OfX0e9zd5nH0O9zd5usreg+olEBHXRMQ5EXFyRJwXEX8cEbdExC1VeUTEByLiNRGxc/QEZQ2cC3xr6Pbx6r6SBHCXpC9rcGKG0rxs89sB1eXZDR9Xeval5w7zZV967uDsM5WefV/9zU5gO7CtutzZvqozW9fss5WeO7i/yeTsc6xqfwMrmP1JvVfJloHG3FfaGezeEhGPSzobuFvS16p3lpZd6dk79zzOPs+6Zn8YeKa6/kx1e9HWNftszj2Ps8/j7POsXPb+pHrNSNot6SPAaUN3tz7RWd8i4vHq8kngzxl8taUk31b13+DV5ZOjMyxj9kuQO8yXfdG5g7PPtATZ99LfRMRzDH5/9zZgR3V7odY1+2xLkDu4v8nk7HOsZH8Dq5H9KA+q10xEfCYi9gLPDt19P3ChpAskbQWuZnDysyJIOlXSSzevM3jB9+D0Ry3cIeDa6vq1wO2jMyxb9kuSO8yXfbG5g7PPtCTZ99bfRMRzEXFvxoB63bPPsiS5g/ubTM4+x8r1N7A62Z8gIjwVPjE4I90jDE5Etm9M+XXA3wNfqab3NVjmxsjtdwBfBx4Dbsze5pG6vRp4oJqOZNcPuA14Avghg3cDrwfOZHB2wEeryzOWPfvScu86+1Jzd/bp21lU9uvS3zh7595X9qXm7uzTt7Oo7Nelv1nF7DcnVQuzQmlwWvyvA5cz2NH3A9dExEND81wHXBwRN8ywXP9JfBJnn8fZ53H2OZx7Hmefx9nncfY5nHs+f/27fD4tvpmZmZmZWaE8qC5f09Pi/5ykr0r6tKRXjik3MzMzMzOzjnlQXb4mp8X/DHB+RLwR+Dw/+rPyFy9I2itpQ9IGcFa31bRpnH0eZ5/H2edw7nmcfR5nn8fZ53DuZfFvqgsnaRfwwYh4e3V7P0BEfHjC/FuApyPitHHlQ/P5txdJnH0eZ5/H2edw7nmcfR5nn8fZ53Du+fxJdflqT4u/+T9qlauAhxdYPzMzMzMzs7V1UnYFbLqIeF7SDcCdwBbg1og4IulDDE6ffwj4FUlXAc8DTzP4iy0zMzMzMzPrmQfVSyAi7gDuGLnvN4eu7wf2L7peZmZmZmZm685f/zYzMzMzMzObkwfVZmZmZmZmZnPy17/XjKTdwG5g6tnBrXvOPo+zz+Psczj3PM4+j7PP4+xzOPdydPKXWpJOBb4I/PuI+GzrBVrvfOr9PM4+j7PP4+xzOPc8zj6Ps8/j7HM493yNvv4t6Zck/eHQ7d+S9PGhWX4D+FTXlbMBSVdIekTSUUn7xpS/RNInq/L7JJ2/+FqamZmZmZmtn6a/qT4I7JZ0uqR3Ae8E9gJI+jfAQ8C3+6niepO0BbgZuBLYAVwjacfIbNcDz0TETwC/C/zOHOvZJmmXpG19lNtkfWefWZ5dt2WWnd06Z2/Lq8922XbZ2cfkOvf12fUrOTv39WYdiYhGE/AfGAzujgGvGbr/t4H/CNwF3A78WNNlemqU+y7gzqHb+4H9I/PcCeyqrp8EPEX11f4py90Yur4N+Cbwnepy28i8rcqH5tk1rqz08rbLzsw+szy7bnXZZ08N2lyR+7Wr7Gc9bjzN3c6KafN97/cm7bLBcTfXMVmXffYx2Wd5dt2WOfuS69ZF9p4WNzn3/GmWE5XdCjwM7ImIxzbvjIgbASRdBzwVEf88wzKt3rnAt4ZuHwf+1aR5IuJ5Sc8CZzIYXDexE9jOoPMEuEjSfdV1AW8aKX+TpC8NPX5c+X3A5g/2twEPVPM8I+mNwPeqsgBOBb46Uv7dat0AP15TfurI8n8SeG6o/uPKv9uwfrOue0dEbK67ib6zHy2/SNLfVtcDuGjC+je3r658Wv0Wve6dwL3MSNLWoTq9cPfIfaO3m8yz2fbeABymWZvefNy0XCeVZ+73mbKvPvF4aMr2wyCjNwBHePHxSrXecbnGSPmDvLgv2Jzn1KrOw+VN1j183L++evxwX7Y5z3D5tPpt1r9J/TbLN+v3OuDwjP1NIz0eE3XPBZvzTMtm2u2642bac0Hd89DoMTFrf+O+Pq+vLzn7le7rN/X8PEvDeUpY7szrjogfMifnvtjcZxlU/ybw95MeExEHZl25NaIx98Uc8yBpL9XX9oGzhooOA89U159h8EJu2IMty9/AizvlNwB/W1N+X8vyL9WU1z3+b+d87NgnnMTsM8sXve7DjDEl+y6MG1wNl73wAh4YHkDUtauS9+u48lmzH32RO7r9o9kNv1E2LddJ5d8dKf9qTfmkdU8qn/b4Xus37o28ntt8G3XPBXXZbM4z7g0RmO+56L4GZeOWPWubd1/fXfkqZV/yfh1XnvE8axNMy7168/pNjO8r4Udv+m++eTyufNLrm+HHD78BOmv5pL68af023zyfVL/hN7dnqd+pkmZ/47rhVwp+Ffgz4DLgr7I/Xl+niQV8/bu6vY1+vz5d7NeXppW3XXZ29tnl2XWry77N1KBt7KrKorrcNUu7yc6uz+xbZjexzOX9tvm27aLNfu/iuJn2+LbLbpJ922Oq5PLsui1z9iXXLTv77G0rvXxS7rR87brO5XWPnboPGuykn2Ewyn9pdfvvgIuarsBTu4nBIPkYcAGwlcG7+K8fmecDwC3V9auBTzVY7kJ/e5Hd8bQp77LTy8je0/zZ17SLVgOAWdvNsk+j2Tc45lbyN4h9l7dt8w2Oh1Z1m3e/V+UzvaEwZRvm6uvbtnlPi5ucfRnZt+kzsvvS0strci/6zd+Sy+seO3Uf1OygVzEY0L1u6L7rgAPZB+06TcA7gK8DjwE3Vvd9CLiqun4K8F+Aowy+SvfqBsv0E07e/nT2S5B9F094rNnAuavs67Kry3Xdy9vkXrOsTj9Fn3O/z/UJQsbkvt7Zr+NER4O7tv3NqpfX5F70GwIll9c9dtqkagG2ZuQ/iU/j7PPMkr2kXQz+1WAbg9/7vC0i7h2ZZxuD3wT1csKoVeJ2n6PL3EdPMAe86PfcdeUd1mEpjjm3+TzOPs9w9m36jLb9zaqXT8t96PET+0qXTy6f93nGg+o15SecPM4+zyxPOosYIKwTt/scXefe9oXMOnGbz+Ps83Q5uCt54FVC+ci8bvPJPKheM5J2A7uBn46IC7Prs06cfZ5x2TcZNHuA0J7bfQ7nnsfZ53H2eZx9DudeDg+q15Tf0crj7POMfC2t9uvd1h23+xzOPY+zz+Ps8zj7HM493yz/U21mtkoO0+D/N83MzMzMpvmx7ArYZJLOkHS3pEery+0T5vsnSV+ppkOLrqfZMqq+zr0DeBv+vbSZmZmZzcmD6rLtA+6pfiNxT3V7nH+MiIuq6arFVc9suUXEcxFxrwfUZmZmZjYvD6rLtgc4WF0/CLw7sS5mZmZmZmY2woPqsr0sIp4AqC7PnjDfKZI2JH1JkgfeZmZmZmZmC+ITlSWT9Hng5WOKbpxhMa+KiMclvRr4C0mHI+KxMevaC+ytbp41e21tXs4+j7PP4+xzOPc8zj6Ps8/j7HM497L4L7UKJukR4LKIeELSOcAXIuK1NY85AHw2Ij5dM59PvZ/E2edx9nmcfQ7nnsfZ53H2eZx9Dueez1//Ltsh4Nrq+rXA7aMzSNou6SXV9bOAtwAPLayGZmZmZmZma8yD6rLdBFwu6VHg8uo2ki6W9LFqntcBG5IeAP4SuCkiPKg2MzMzMzNbAP+mumAR8Q/AW8fcvwG8r7r+N8DOBVfNzMzMzMzM8CfVZmZmZmZmZnPzJ9VrRtJuYDdwWnZd1o2zz+Ps8zj7HM49j7PP4+zzOPsczr0cPvv3mvJZAvM4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz+evfZmZmZmZmZnPyoLpgkt4r6Yikf5Y08d0nSVdIekTSUUn7FllHMzMzMzOzdeZBddkeBN4DfHHSDJK2ADcDVwI7gGsk7VhM9czMzMzMzNabT1RWsIh4GEDStNneDByNiGPVvJ8A9gD+r2ozMzMzM7Oe+ZPq5Xcu8K2h28er+8zMzMzMzKxn/qQ6maTPAy8fU3RjRNzeZBFj7ht7SndJe4G91c1TmtXQuuDs8zj7PM4+h3PP4+zzOPs8zj6Hcy+L/1JrCUj6AvBrEbExpmwX8MGIeHt1ez9ARHx4oZU0MzMzMzNbQ/769/K7H7hQ0gWStgJXA4eS62RmZmZmZrYWPKgumKSflXQc2AV8TtKd1f2vkHQHQEQ8D9wA3Ak8DHwqIo5k1dnMzMzMzGyd+OvfZmZmZmZmZnPyicrsBZIeBL6fXY8pzgKeyq7EBKdExBvmfbCzb2WVsy85d3D2mebOvvDcoezsV7nNg7PPUnLu4Owzua/PMXPuHlQvAUm3Au8Cnhy3gzX4I+v/BLwD+B5wXUT89zlW9f2IuLhVZXskaaPU+kk64SRyM3L2c1rl7EvOHZx9ppbZF5s7lJ39Krd5cPZZSs4dnH0m9/U55sndv6leDgeAK6aUXwlcWE17gT9aQJ3MzMzMzMzWngfVSyAivgg8PWWWPcCfxMCXgNMlnbOY2pmZmZmZma0vD6pXw7nAt4ZuH6/um9VHuqlOb0quX9u6lbxtUHb9Vjn7kusGzj5Tm/qt8rb1bZXbPJRdv1XOvuS6gbPP5L4+x8x189m/l4Sk84HPTvhN9eeAD0fEX1e37wF+PSK+PDLfXgZfD4eWJ52w2Tj7PM4+j7PP4dzzOPs8zj6Ps8/h3MviQfWSqBlU/2fgCxFxW3X7EeCyiHhiyvKKPTnAqnP2eZx9Hmefw7nncfZ5nH0eZ5/Duefz179XwyHgFzXwU8Cz0wbU40i6QtIjko5K2tdPNecn6RuSDkv6SgdnoWxbl1slPVn9VcHmfWdIulvSo9Xl9hmWV2z2JeVe1aez7EvOHZx9ppKyX6f+Bpx9lpJyr+rj/iavPs4+py5r09/AambvQfUSkHQbcC/wWknHJV0v6f2S3l/NcgdwDDgKfBT45RmXvwW4mcFZxHcA10ja0dkGdOenI+KiAt6JO8CJZ2PfB9wTERcC91S3ay1J9qXkDh1lvyS5g7PPVEr2B1iv/gacfZZScgf3N5kO4OwzHGC9+htYsew9qF4CEXFNRJwTESdHxHkR8ccRcUtE3FKVR0R8ICJeExE7I2LWd3zeDByNiGMR8QPgEwzOKG5jTDgb+x7gYHX9IPDuhotz9jPoMHvnPiNnn8P9TR5nn8f9TR5nn8P9TZ6usveg2qC7s4f3KYC7JH1ZgxMzlOZlm1+5ry7Pbvi40rMvPXeYL/vScwdnn6n07Fe1vwFnn6X03MH9TSZnn2NV+xtYwexP6r1KVhRJu4HdwGnDd4+ZtbQz2L0lIh6XdDZwt6SvVe8sLY0lzX7pc4ex2ZeeOzj7TEuf/ZL2N+Dssyx97uD+JpOzz7Gk/Q2sQPaj/En1momIz0TEXuDZobuPA68cun0e8PhCK1YjIh6vLp8E/pzBV1tK8m1J5wBUl0+OzrCM2S9B7jBf9kXnDs4+0xJkv5L9DTj7LEuQO7i/yeTsc6xkfwOrkf0oD6oN4H7gQkkXSNoKXM3gjOJFkHSqpJduXgfeBjw4/VELdwi4trp+LXB7w8cVm/2S5A7zZV9s7uDsMy1J9ivX34Czz7IkuYP7m0zOPsfK9TewwtlHhKfCJwZnpHuEwdm9940pvw74e+Ar1fS+BsvcGLn9DuDrwGPAjdnbPFK3VwMPVNOR7PoBtwFPAD9k8G7g9cCZDM4O+Gh1ecayZ19a7l1nX2ruzj59O4vKfl36G2fv3PvKvtTcnX36dhaV/br0N6uY/eakamFWqOq0+F8HLmewo+8HromIh4bmuQ64OCJumGG5/pP4JM4+j7PP4+xzOPc8zj6Ps8/j7HM493z++nf5fFp8MzMzMzOzQnlQXb6mp8X/OUlflfRpSa8cU25mZmZmZmYd86C6fE1Oi/8Z4PyIeCPweX70Z+UvXpC0V9KGpA3grG6radM4+zzOPo+zz+Hc87TJXtI2SbskbeupeivN7T6Ps8/h3Mvi31QXTtIu4IMR8fbq9n6AiPjwhPm3AE9HxGnjyofm828vkjj7PM4+j7PP4dzzzJJ9NZB+CNgOPAPsiIjn+qzfKnO7z+Psczj3fP6kuny1p8Xf/B+1ylXAwwusn5mZmbWzk8GAelt1uTO3OmZmNouTsitg00XE85JuAO4EtgC3RsQRSR9icPr8Q8CvSLoKeB54msFfbJmZmdlyOMzgE2qqy8OJdTEzsxl5UL0EIuIO4I6R+35z6Pp+YP+i62VmZmbtRcRzknYw+IT6sL/6bWa2XDyoNjMzM0tWDaTvza6HmZnNzoPqNSNpN7AbmHoiM+ues8/j7PM4+xzOPY+zz+Ps8zj7HM69HD7795ryWQLzOPs8zj6Ps8/h3PM4+zzOPo+zz+Hc87U++7ekyyT9N0m3SLqsgzqZmZmZmXXC/wFuZn1rNKiW9EuS/nDo9m9J+nh1M4DngFOA491X0SRdIekRSUcl7RtT/hJJn6zK75N0/hzr8BPOBKueTdvtm/b4Zc+uz/ovezY2Wd2+7fOYM7MXG/oP8LuAh5btuOm7PzEr0TK266afVB8Edks6XdK7gHcCe6uy/xYRVwK/AfxfPdRxrUnaAtwMXAnsAK6pzhA67HrgmYj4CeB3gd+ZcR21TzhtO/W+X0T2Vb4MT8Zttr3tvp/2+GXProvjYtp62y57GZ9wFqXvbNq0mz6PuRIsa19v9dq8gZq8X4r+D/DM/qRJeclKr3vf/WGbx5bcLhbRrnvZvohoNAH/gcHg7hjwmjHlW4FPN12ep8a57wLuHLq9H9g/Ms+dwK7q+knAU1S/l5+y3I2RdXyHwbcOvrO5rKHybcA3q7JvAtu6LG+QQa/rn1Zel83Q43c13a7h7Od5fMfb3nbfT3x8H9l1mX3f2dTUo9djroup7b6pa/d91a1JNj0fc3X7trdjrknufR5zbbNv2+47Kp+YzazZddnm2+6bPvdt3/ulbfZNlp+1b9oe7w3KF/5c0mW777O/Kb1+s+6bWdp8xjE547anjkvm3bZZNv5fVBt31cj97wH+M/BJ4LI+Gu06T8DPAx8buv0LwB+MzPMgcN7Q7ceAs2qWO+3gOx04uZq2ApeONO5Lh8pPnlC+dUr5JVX58Dzbq/lG1721mn/08cPl0+o3qbxp/U6fkM1m+fZpB2YH2W/W4ZJqXcP17iL7uu2ry350+7eP7NPRZc+y7s15Lh1ZblfZj3bal4ysY9q2Ncl+cxnD7bquXTU55pq06c11XzIh17pjrm7fbAVOnrEvGze4G923Tdr9uLoNb1tdm63Lftq6m2Tftt3Pesy1eaE1btsn3R63baP59N3zcDgsAAAgAElEQVTfLG1fP8NxMi73Js8FdftmWn/Udt+0fR6a9ZidOXvq+5tp7b5unjbZ1rXpuv1a19/UZVtXvpl/2w8OlrGvH30eHfcc2kf9JvV3jd9Apf71TdvX9XXb3vY1xrTXX331OXP39S/kPkNH/6fAk8B7Zn2S8DT/BLyXEwfVvz8yzxFOHFSfOWZZe4GNavrGSNm0Tq9ucNG20687uNoefF3Ub9LArlGnNyl72g/s2m5b246v7klp2sBuIU84U7Jv+4ZGH+2qyX7vqk23Gdw0eqHVIvtp2z/tybDNtnWVfV277+qYm/aJ6rz9TV2bb/tCq+0x3+dxMeuAfqb+Zobn/NG20vS5IHPfLLo/miv7KdmOHr+zztMm27o2PdqfjKvLtP6m69dXs/Y5q9zXL/pDi3Gf6PaRe5PXN31ve5PXll33OTP19WOPg4ad/K8CfwZcBvzVIgeV6z6xgK9/N6xHq6/FTSung68J911ek8tM72gx21d0es+m7b5v0bYX/vXr0XbfZzZN9l2b3Nusu222HbT7uevXZN012fR+zHV0bHSyfAr6SmDbx/dZ3neb72A/9vqzgY72bV+vEVKzX8C+Se1ParKf+XmMFenrF3TMtOoPp7X5zGOyi+z6bNfTytvUrUmlf4bB14tfWt3+O+CiWTfe03wTg0HyMeACBu+gPAC8fmSeDwC3VNevBj7VYLkL/a1XTV3Sf+/UQf17+U31smfTJruun3DGZb+AbUvZdw2e8Nq+GGj7Qivl905dtbtlmmbsb4o7D8KCs+r0Dcou+5sOjtnefyOZuW/6zH7Vs23b7qZlv8x9/SL2a5ftous232e2XW/7Irdt2qTqwWNJehXwBeCdEfFwdd91DH47fd3EB1qnJL0D+I/AFuDWiPhtSR9icAAdknQK8HHgTcDTwNURcaxmmRtR0J/EV2ff2wkcjojnsuvTp1mzX6dsRnW97Ytu95n7rm7dbeo2dGbO7cAzwI66ZYxm32f92lqlY26WNj/PfrXJuu5v2rbLVWrXdbrMvslxscrZzrptq9TXL9N+9ev6fFMH1ba6Sjv41omzz+Psu9P2hZYtht/Ey+M2n6fjQfUuBn/tsw14DnhbRNzbxbJXkdt9Duee76TsCpiZ2fKpBlx+YblivF/NTnCYwSfUVJeHE+tiZoXyoHrNSNoN7AZOy67LunH2eZx9Hmefw7nncfZ5+sg+Ip6TtAN/g2Mqt/sczr0c/vr3mvLXRPI4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz/Vh2BczMzMzMskjaJmlXdU4BM7OZ+evfBZN0BvBJ4HzgG8C/jYhnxsz3T/zoNz7fjIirFlVHMzMzs2U1enZvST7rvZnNzJ9Ul20fcE9EXAjcU90e5x8j4qJq8oDazMzMrJmdDAbU26rLnbnVMbNl5EF12fYAB6vrB4F3J9bFzMzMbNVsnt37OXx2bzObk7/+XbaXRcQTABHxhKSzJ8x3iqQN4Hngpoj4r+NmkrQX2FvdPKvz2tpEzj6Ps8/j7HM49zzOPs+82fvs3u253edw7mXx2b+TSfo88PIxRTcCByPi9KF5n4mI7WOW8YqIeFzSq4G/AN4aEY/VrNdnCUzi7PM4+zzOPodzz+Ps8zj7PM4+h3PP50+qk0XEv5lUJunbks6pPqU+B3hywjIery6PSfoC8CZg6qDazMzMzMzM2vNvqst2CLi2un4tcPvoDJK2S3pJdf0s4C0MzmJpZmZmZmZmPfOgumw3AZdLehS4vLqNpIslfaya53XAhqQHgL9k8JtqD6rNzMzMzMwWwF//LlhE/APw1jH3bwDvq67/Df77BzMzMzMzsxT+pNrMzMzMzMxsTv6kes1I2g3sBk7Lrsu6cfZ5nH0eZ5/Duedx9nmcfR5nn8O5l8N/qbWmfOr9PM4+j7PP4+xzOPc8zj6Ps8/j7HM493z++nfBJL1X0hFJ/yxp4oEi6QpJj0g6KmnfIutoZmZmZma2zjyoLtuDwHuAL06aQdIW4GbgSmAHcI2kHYupnpmZmZmZ2Xrzb6oLFhEPA0iaNtubgaMRcaya9xPAHvxf1WZmZmZmZr3zJ9XL71zgW0O3j1f3mZmZmZmZWc/8SXUySZ8HXj6m6MaIuL3JIsbcN/bsc5L2Anurm6c0q6F1wdnncfZ5nH0O557H2edx9nmcfQ7nXhaf/XsJSPoC8GsRsTGmbBfwwYh4e3V7P0BEfHihlTQzMzMzM1tD/vr38rsfuFDSBZK2AlcDh5LrZGZmZmZmthY8qC6YpJ+VdBzYBXxO0p3V/a+QdAdARDwP3ADcCTwMfCoijmTV2czMzMzMbJ34699mZmZmZmZmc/KJyuwFkh4Evp9djynOAp7KrsQEp0TEG+Z9sLNvZZWzLzl3cPaZ5s6+8Nyh7OxXuc2Ds89Scu7g7DO5r88xc+4eVNuw70fExdmVmETSRqn1k3TCSeRm5OzntMrZl5w7OPtMLbMvNncoO/tVbvPg7LOUnDs4+0zu63PMk7t/U70EJN0q6cnqHadx5ZL0e5KOSvqqpH+56DqamZmZmZmtIw+ql8MB4Iop5VcCF1bTXuCPFlAnMzMzMzOztedB9RKIiC8CT0+ZZQ/wJzHwJeB0SefMsaqPzFXBxSm5fm3rVvK2Qdn1W+XsS64bOPtMbeq3ytvWt1Vu81B2/VY5+5LrBs4+k/v6HDPXzWf/XhKSzgc+O+5H85I+C9wUEX9d3b4H+I2I2BiZby+DT7Kh5UknbDbOPo+zz+Psczj3PM4+j7PP4+xzOPeyeFC9JGoG1Z8DPjwyqP71iPjylOUVe3KAVefs8zj7PM4+h3PP4+zzOPs8zj6Hc8/nr3+vhuPAK4dunwc8PssCJF0h6ZHqZGf7Oq1dByR9Q9JhSV/p4CyUbetywonjJJ0h6W5Jj1aX22dYXrHZl5R7VZ/Osi85d3D2mUrKfp36G3D2WUrKvaqP+5u8+jj7nLqsTX8Dq5m9B9Wr4RDwixr4KeDZiHii6YMlbQFuZnDCsx3ANZJ29FPVVn46Ii4q4J24A5x44rh9wD0RcSFwT3W71pJkX0ru0FH2S5I7OPtMpWR/gPXqb8DZZykld3B/k+kAzj7DAdarv4EVy96D6iUg6TbgXuC1ko5Lul7S+yW9v5rlDuAYcBT4KPDLM67izcDRiDgWET8APsHg5Gc2xoQTx+0BDlbXDwLvbrg4Zz+DDrN37jNy9jnc3+Rx9nnc3+Rx9jnc3+TpKnsPqpdARFwTEedExMkRcV5E/HFE3BIRt1TlEREfiIjXRMTO0ROUNXAu8K2h28er+0oSwF2SvqzBiRlK87LNbwdUl2c3fFzp2ZeeO8yXfem5g7PPVHr2q9rfgLPPUnru4P4mk7PPsar9Daxg9if1XiVbBhpzX2lnsHtLRDwu6Wzgbklfq95ZWnalZ+/c8zj7PM4+j7PP4dzzOPs8zj7PymXvT6rXjKTdkj4CnDZ0d+sTnfUtIh6vLp8E/pzBV1tK8m1V/w1eXT45OsMyZr8EucN82RedOzj7TEuQ/Ur2N+DssyxB7uD+JpOzz7GS/Q2sRvajPKheMxHxmYjYCzw7dPf9wIWSLpC0FbiawcnPiiDpVEkv3bwOvA14cPqjFu4QcG11/Vrg9tEZli37Jckd5su+2NzB2WdakuxXrr8BZ59lSXIH9zeZnH2OletvYHWyP0FEeCp8YnBGukcYnIhs35jy64C/B75STe9rsMyNkdvvAL4OPAbcmL3NI3V7NfBANR3Jrh9wG/AE8EMG7wZeD5zJ4OyAj1aXZyx79qXl3nX2pebu7NO3s6js16W/cfbOva/sS83d2advZ1HZr0t/s4rZb06qFmaF0uC0+F8HLmewo+8HromIh4bmuQ64OCJumGG5/pP4JM4+j7PP4+xzOPc8zj6Ps8/j7HM493z++nf5fFp8MzMzMzOzQnlQXb6mp8X/OUlflfRpSa8cU25mZmZmZmYd86C6fE1Oi/8Z4PyIeCPweX70Z+UvXpC0V9KGpA3grG6radM4+zzOPo+zz+Hc8zj7PG2yl7RN0i5J23qq3kpzu8/h3Mvi31QXTtIu4IMR8fbq9n6AiPjwhPm3AE9HxGnjyofm828vkjj7PM4+j7PP4dzzOPs8s2RfDaQfArYDzwA7IuK5Puu3ytzuczj3fP6kuny1p8Xf/B+1ylXAwwusn5mZmdXwp6HF2slgQL2tutyZWx0zW0YnZVfApouI5yXdANwJbAFujYgjkj7E4PT5h4BfkXQV8DzwNIO/2DIzM7MCjH4aKsmfhpbjMINPqKkuDyfWxcyWlAfVSyAi7gDuGLnvN4eu7wf2L7peZmZm1sjwp6Gbt+/Nq45tiojnJO1gsE8O+80OM5uHB9VmZmZm/fKnoQWrBtJ+k8PM5ubfVJuZmZn1qBq07QDexoQTYfk312Zmy8ufVK8ZSbuB3cDUs4Nb95x9Hmefx9nncO55JmU/7dNQ/+a6G273eZx9DudejtZ/qSXpx4D/G/ifGJw4a+x/JFtZfOr97lQvhhr/FsvZ53H2eZx9jtHcZ+2vbH4z/q3TLuAuBr+5fg54W0TcOzKP911D7m/yOPsczj1fo69/S/olSX84dPu3JH28urkHOBf4IXC8+yqapCskPSLpqKR9Y8pfIumTVfl9ks5ffC3X09CnC3cBD63j1/amfWWx7uuMbcuzZdav9GzqLHv9l1GT/sr7Jc3mb66fY8xvrv1cY2brpO/nojavXSdp+pvqg8BuSadLehfwTmBvVfZa4N6I+D+BX5pl5VZP0hbgZuBKBr/HuqY6S+Ww64FnIuIngN8FfmextayXeXC0La95bOv/tyz9RWxdNkx4oVf3IrBtebbM+nUxOMp+Q4CC923pWuy7qf3VOuyXUvvbBr+5rn2uabttpWaz6krPvfT6tbHK21an5G3v+w3gNq9dp2k0qI6I7wG3Ab8N/B7w8xHxj1XxcX50Rst/arpia+zNwNGIOBYRPwA+weDbAcP2MHjjA+DTwFslaZaV9D0opccXan0O3hrUfeqnC23rvjlPn4Ojlvtu2gu9uheBbcuznxRavaHSsu6tBkd9P2G1rX/b9Zf8hkKT9ffYn9b1V63fJGwrsz/LbhcR8VxE3Dvhq92tP8lu266y81lmk7Lr4vVR6a/f+mw32du2rBbx2jPzNU7L5c/9PDjLicpuBR4G9kTEY0P3/xnw+5IuBb44w/KsmXOBbw3dPg78q0nzRMTzkp4FzgSearKCoca5eYKUNwLf3SwGTgUeGCr/SQZP7Ju2jSn/LrD5g/038eL/57xI0t9W12NoGW9g8EJheN2b85zKoGE/OLTuzfLR5b9J0peG5hlXfl/D+l00puy+oXX/AHgj8Drm+53b6H+Xbi5/s+5ts99cxnC2o7l+lRP3/eY8ddv/NV78NzFfk3TyhLKHJW0dWvfDY8pPHlp2XfloNnOd2GekTi/cXV3+OIPsjvDiXMdt39eqZTXJ/scZn3uTdavBuuuOubr9Oql+w2/WRUT8kPmM/r3Qw0Ptpmm7n7dNt82eah2vZ9AffW9o3cP13yzvqn6T+rvG/3c89H+8b6rq9j9Gcp92PI/btknbPmnfMOb28H1N2t20fTOu3TR9Luq7zQ8qOb2/mZbRD4Cf5EfZ/2DGY75tXz/tmKxr81D/HD/tNnSQfZ0WzwV1x8Xo8/Qbh+aZlHuTdTdp89PWPU+7mOn/1Ru8vtysx7jbdfO07evrXjtuqmufsx7LC2n3Vfabff3w82fdtkP9a8u27apu26c9FzV5XV/XJ417fbl5/I+uu/mHZRHRaAL+FHgSeE/Tx3hqPwHvBT42dPsXgN8fmecIcN7Q7ceAM8csay+wUU3fGLp/F/CdqqF9B7gEOLmatgKXjpRfOlR+8oTyrUPl24FvVmXfBE6vyjfnOX1M+clD89SVjy5/+0j9x5U3rV/durcCJzfYj5Oy3zZh+YvK/pIJ+36W7T+9etxorpvZXzLmccP1u3TMdg+3jUvH7NNx2eyaJfuh8tE6TWs34+bZ3L5x2zYp+0m5N1n31pbrbnLM1bWLzf2+C9g2a7sfavuj+7ZJux9X91nadNvs2/Qnbeo3qb87If9pude0+WnH87htm3Xb6475Wbd9dN+06Q97b/MNsp90u8k8fff1047Jtv1NXV/f6nl2htdb8z4X1B0Xo9ld0iD3pv1RXZuftu552sXYtj8pe+pfXzbpc4b7i0X29XXPs32/xqntc6bkXvfasq5N992umm77tNeWXT8XzdTXj90fDTuaX2XwifRlwF+1GSR6mrmT3wXcOXR7P7B/ZJ47qQYUDL598BQMzuw+ZbkbUw6+bSPztiofmmdsA+XETnfXLOV1y29bXvfYOfbpxozrbrNv6rJtte+Sj43aurfMvrbd1axr4uPb7rcZ8mnT5lsd83XZz7tv27bpDo6ZtuW99qdtcm/TpgvZN3Nnl93mO9o/cx/TbR7fd7uYtc0vabuf9/VR6uu3uuzbrD972/pefxf1n5J7q9fNpW3bhO3t7fXbvFOTSv8Mg4/OX1rd/jvgokVUztMLg+RjwAUM3j15AHj9yDwfAG6prl8NfKrBchsPLroor6lL7wdfSdNo9g3z6WVw1HbfZU+z1p0O30xqWLd5X0ilt/mun7C6avddtOk22XfRbvrsT9vm3kGbbvVmUWZ/lt3m+57atqt5j8m27aLJfi+53bfJfhH9SZf9zbjs5z2u2vYXbbetQbtMLZ+W+zzHzCLb1azbNmfdF/4aqq5Sr2IwoHvd0H3XAQcWUTlPL2T+DuDrDL7WfWN134eAq6rrpwD/BTgK/C3w6gbLXKon+647/eRtLebTi3Wb6PCd3L6zL3m/zfOE1WW77zubPl9MJOyrTvubli+ken+h12OOxX9SnTn12S6a9NV9Z595zJfUnzSsb+Psp+37LvqLDnJfyk+qS283i9i3GduvasW2ZuQ/iU/j7PMMZz96AhXG/42NTVDlt5OGJ+hzu89RWu6ztpuSuM33Z1q28/TVzj7PrNk32Pdp/UXd+rPLR+ZdqjafvW/7MMvZv83MVkb86EzIK9WpL0qVV+OzwJrBcrebZa576aZl6756tdXt+0lli1C3/uzyZbaK2+ZB9ZqRtBvYDZyWXZd14+zzTMp+FTv10rjd53DueZx995r21c4+j7PP4dzL4a9/r6ll+5rIKnH2eZx9Hmefw7nncfZ5nH0eZ5/Duef7sewKmJmZmZmZmS0rD6oLJukMSXdLerS63D5hvn+S9JVqOrToepqZmZmZma0rD6rLtg+4JyIuBO6pbo/zjxFxUTVdtbjqmZmZmZmZrTcPqsu2BzhYXT8IvDuxLmZmZmZmZjbCg+qyvSwingCoLs+eMN8pkjYkfUmSB95mZmZmZmYL4r/USibp88DLxxTdOMNiXhURj0t6NfAXkg5HxGNj1rUX2FvdPGv22tq8nH0eZ5/H2edw7nmcfR5nn8fZ53DuZfFfahVM0iPAZRHxhKRzgC9ExGtrHnMA+GxEfLpmPp96P4mzz+Ps8zj7HM49j7PP4+zzOPsczj2fv/5dtkPAtdX1a4HbR2eQtF3SS6rrZwFvAR5aWA3NzMzMzMzWmAfVZbsJuFzSo8Dl1W0kXSzpY9U8rwM2JD0A/CVwU0R4UG1mZmZmZrYA/k11wSLiH4C3jrl/A3hfdf1vgJ0LrpqZmZmZmZnhT6rNzMzMzMzM5uZPqteMpN3AbuC07LqsG2efx9nncfY5nHseZ5/H2edx9jmcezl89u815bME5nH2eZx9Hmefw7nncfZ5nH0eZ5/Duefz17/NzMzMzMzM5uRBdcEkvVfSEUn/LGniu0+SrpD0iKSjkvYtso5mZmZmZmbrzIPqsj0IvAf44qQZJG0BbgauBHYA10jasZjqmZmZmZmZrTefqKxgEfEwgKRps70ZOBoRx6p5PwHsAfxf1WZmZmZmZj3zJ9XL71zgW0O3j1f3mZmZmZmZWc/8SXUySZ8HXj6m6MaIuL3JIsbcN/aU7pL2Anurm6c0q6F1wdnncfZ5nH0O557H2edx9nmcfQ7nXhb/pdYSkPQF4NciYmNM2S7ggxHx9ur2foCI+PBCK2lmZmZmZraG/PXv5Xc/cKGkCyRtBa4GDiXXyczMzMzMbC14UF0wST8r6TiwC/icpDur+18h6Q6AiHgeuAG4E3gY+FREHMmqs5mZmZmZ2Trx17/NzMzMzMzM5uQTldkLJD0IfD+7HlOcBTyVXYkJTomIN8z7YGffyipnX3Lu4OwzzZ194blD2dmvcpsHZ5+l5NzB2WdyX59j5tw9qF4Ckm4F3gU8OW4Ha/BH1v8JeAfwPeC6iPjvc6zq+xFxcavK9kjSRqn1k3TCSeRm5OzntMrZl5w7OPtMLbMvNncoO/tVbvPg7LOUnDs4+0zu63PMk7t/U70cDgBXTCm/EriwmvYCf7SAOpmZmZmZma09D6qXQER8EXh6yix7gD+JgS8Bp0s6ZzG1MzMzMzMzW18eVK+Gc4FvDd0+Xt03q490U53elFy/tnUredug7PqtcvYl1w2cfaY29VvlbevbKrd5KLt+q5x9yXUDZ5/JfX2Omevms38vCUnnA5+d8JvqzwEfjoi/rm7fA/x6RHx5ZL69DL4eDi1POmGzcfZ5nH0eZ5/Duedx9nmcfR5nn8O5l8WD6iVRM6j+z8AXIuK26vYjwGUR8cSU5RV7coBV5+zzOPs8zj6Hc8/j7PM4+zzOPodzz+evf6+GQ8AvauCngGenDajHkXSFpEckHZW0r59qzk/SNyQdlvSVDs5C2bYut0p6svqrgs37zpB0t6RHq8vtMyyv2OxLyr2qT2fZl5w7OPtMJWW/Tv0NOPssJeVe1cf9TV59nH1OXdamv4HVzN6D6iUg6TbgXuC1ko5Lul7S+yW9v5rlDuAYcBT4KPDLMy5/C3Azg7OI7wCukbSjsw3ozk9HxEUFvBN3gBPPxr4PuCciLgTuqW7XWpLsS8kdOsp+SXIHZ5+plOwPsF79DTj7LKXkDu5vMh3A2Wc4wHr1N7Bi2XtQvQQi4pqIOCciTo6I8yLijyPiloi4pSqPiPhARLwmInZGxKzv+LwZOBoRxyLiB8AnGJxR3MaYcDb2PcDB6vpB4N0NF+fsZ9Bh9s59Rs4+h/ubPM4+j/ubPM4+h/ubPF1l70G1QXdnD+9TAHdJ+rIGJ2Yozcs2v3JfXZ7d8HGlZ1967jBf9qXnDs4+U+nZr2p/A84+S+m5g/ubTM4+x6r2N7CC2Z/Ue5WsKJJ2A7uB04bvHjNraWewe0tEPC7pbOBuSV+r3llaGkua/dLnDmOzLz13cPaZlj77Je1vwNlnWfrcwf1NJmefY0n7G1iB7Ef5k+o1ExGfiYi9wLNDdx8HXjl0+zzg8YVWrEZEPF5dPgn8OYOvtpTk25LOAagunxydYRmzX4LcYb7si84dnH2mJch+JfsbcPZZliB3cH+TqbfsJW2TtEvStu6rPd0SZL+S/Q2sRvajPKg2gPuBCyVdIGkrcDWDM4oXQdKpkl66eR14G/Dg9Ect3CHg2ur6tcDtDR9XbPZLkjvMl32xuYOzz7Qk2a9cfwPOPsuS5A7ubzL1kn01kH4IuAt4aJED6yXJfuX6G1jh7CPCU+ETgzPSPcLg7N77xpRfB/w98JVqel+DZW6M3H4H8HXgMeDG7G0eqdurgQeq6Uh2/YDbgCeAHzJ4N/B64EwGZwd8tLo8Y9mzLy33rrMvNXdnn76dRWW/Lv2Ns3fufWVfau7OPgB2Ad9h8NXk7wC71jX7delvVjH7zUnVwqxQ1Wnxvw5czmBH3w9cExEPDc1zHXBxRNwww3L9J/FJnH0eZ5/H2edw7nmcfR5nn2eW7Ic+qd4OPAPsiIjn+qzfqnKbz+evf5fPp8U3MzMzs5VSDaB3MPj6rwfUttQ8qC5f09Pi/5ykr0r6tKRXjik3MzMzMytGRDwXEfd6QG3LzoPq8jU5Lf5ngPMj4o3A5/nRn5W/eEHSXkkbkjaAs7qtpk3j7PM4+zzOPodzz+Ps8zj7PM4+h3Mvi39TXThJu4APRsTbq9v7ASLiwxPm3wI8HRGnjSsfms+/vUji7PM4+zzOPodzz+Ps8zj7PM4+h3PP50+qy9fkLwnOGbp5FfDwAutnZmZmZma2tk7KroBNFxHPS7oBuBPYAtwaEUckfYjB6fMPAb8i6SrgeeBpBn+xZWZmZmZmZj3zoHoJRMQdwB0j9/3m0PX9wP5F18vMzMzMzGzd+evfZmZmZmZmZnPyJ9VrRtJuYDcw9URm1j1nn8fZ53H2OZx7Hmefx9nncfY5nHs5fPbvNeWzBOZx9nmcfR5nn8O553H2eZx9Hmefw7nna/1JtaRLgf+1WtaOiPjXrWtltkQkbQN2Aocj4rns+piZmZmZ2eI0+k21pF+S9IdDt39L0scBIuK/RcT7gc8CB/up5nqTdIWkRyQdlbRvTPlLJH2yKr9P0vmLr2W/JG2TtKsawC60vK4MeAi4C3ho0vJLlpXdIsrNMrjdm5nlc19p85i33TQ9UdlBYLek0yW9C3gnsHdknn8H3DbLyq2epC3AzcCVwA7gGkk7Rma7HngmIn4C+F3gdxZby/4HZkwZuPZZ3mDQvBPYDmyrLneO274+lZpt5n7rSp+DGz/Zl6vUY6pJeVvL3i4z3wQ0s261fY6lZV+Z3Sescp+T/ebzpPJW7SYiGk3Af2AwuDsGvGak7FXAR5suy1PzCdgF3Dl0ez+wf2SeO4Fd1fWTgKeofi8/ZbkbI7e3VevaNkcdtwHfBL5TXW7ruHxXVRbV5a5FlTd47NS6d5H9tPKSs83cb11k3zbbactv89hFlXc99dDue9n2ko+pedp9l22+hHbZ175ru9+bZN/BMdTrMdtm+YvuT2bNvm39FtBuizym5smuq3bftj9ijtcIs6y/bf262P42uWe2m7bZ9lnept3MEv6/qCMvPdkAABu7SURBVFZw1Ziy/wv4120OHk8Tc/954GNDt38B+IOReR4Ezhu6/RhwVs1yN4aujzau04GTq2lrNZ0OXMLg09itQ+UnA5eONMBLR+YZLb9kaLknV7dHy0fXPa5+m+XbR8q3j9R/XPlw/UbLT59h3ZvzzPWE0yD7advWRfZ129cm+2m59rHumV7kNsh+XLazZD9t+ye1+Sb7vW2bbpL95jyXjll3drsfV/cu2lWT/T6pvMvsO233M+Ze1+b7bndt+/o2/WHd89DoY+d9E2/0mGr6PFuX/WY+l47JbXgZw+WzZD+tfnX7vW7d2f1N2+zbtPvsvr7X59kZXuuOtpcmz7FtnwsmtbtFPRfUHRejfdJMb6BOybXJa8u+292s/e2s2c8z7pi7zb+Q9wwN/k+BJ4H3zHqweJp/At7LiYPq3x+Z5wgnDqrPHLOsvcBGNX1j6P7Rd2VmeYG/iIOv6RPuuCfE0fJxndrmNl4y57pPbrAf582+7xe5Xb3YmZT9tFwX8kKrRfZt2/20Tr3vgd2i38ia9E51H+1+2pNhk23r+w2N9HbfIve+38Sbd980faHV5xuobdt832+g9v0id1r9Fv3m7Sq1++y+vpM3kyZlP8Nr3dE+sslzbN1zwXBfO64vrXsebvtc0PVxMe4T36m5T8i1yWvL0l5jLOLNppleW45txw0b+68CfwZcBvxV3wNJTy/Kvvevf9Py64xDy1iar6Im79NZsu/965jrNM2SfdtsG+7bUr8a1etX79vUr+9tb7vfS5u6bPMFtMtFHLO9fA227THVIJu05S+gbn33N22zKbY/67u8Lvu2Ey36owbL7vW1bdt212T903JvWbei++pFlM/VXhvspJ9h8PXil1a3/w64qKsKeKrN/yQGv2O/gMG7Jw8Arx+Z5wPALdX1q4FPNVhuZwefp5n36Uy/9erjwF/XadbsO1hfb79R7LO8iyfMttk3qF9RT6alTl23+ewXOsu071jgG6iFLD/lBXzbdt82m7bl2cdM18fcaPZ9Tm36g3naVZf163r9LPBDgz7azSpMqjZ8LEmvAr4AvDMiHq7uuw64LCKum/hA65SkdwD/EdgC3BoRvy3pQwwOoEOSTgE+DrwJeBq4OiKO1SxzI2b4k3j5v5g7M2v21h1n31zdMT9rn+Dsczj3PKPZd31Mzfr4vpffZ9367m/8Gqc7y9TnZO/3Ltc/nLukXQzOXr0NeA54W0Tc27a+Nt3UQbWtrmXq9FaNs8/j7PM4+xzOPY+zz+Ps8zj7HCOD6m0M/hZqO/AMsMNvFvXvpOwKmJmZmZmZWXsR8ZykHfjbFwvlQfWakbQb2A2cll2XdePs8zj7PM4+h3PP4+zzOPs8zj7HpNyrgbS/8r1A/vr3mvLXc/I4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz/Vh2BczMzMzMzMyWlQfVBZN0hqS7JT1aXW6fMN8/SfpKNR1adD3NzMzMzMzWlQfVZdsH3BMRFwL3VLfH+ceIuKiarlpc9czMzMzMzNabB9Vl2wMcrK4fBN6dWBczMzMzMzMb4bN/l+1lEfEEQEQ8IensCfOdImkDeB64KSL+67iZJO0F9lY3z+q8tjaRs8/j7PM4+xzOPY+zz+Ps8zj7HM69LD77dzJJnwdePqboRuBgRJw+NO8zEXHC76olvSIiHpf0auAvgLdGxGM16/VZApM4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz+ZPqZBHxbyaVSfq2pHOqT6nPAZ6csIzHq8tjkr4AvAmYOqg2MzMzMzOz9vyb6rIdAq6trl8L3D46g6Ttkl5SXT8LeAvw0MJqaGZmZmZmtsY8qC7bTcDlkh4FLq9uI+liSR+r5nkdsCHpAeAvGfym2oNqMzMzMzOzBfDXvwsWEf8AvHXM/RvA+6rrfwPsXHDVzMzMzMzMDH9SbWZmZmZmZjY3f1K9ZiTtBnYDp2XXZd04+zzOPo+zz+Hc8zj7PM4+j7PP4dzL4b/UWlM+9X4eZ5/H2edx9jmcex5nn8fZ53H2OZx7Pn/9u2CS3ivpiKR/ljTxQJF0haRHJB2VtG+RdTQzMzMzM1tnHlSX7UHgPcAXJ80gaQtwM3AlsAO4RtKOxVTPzMzMzMxsvfk31QWLiIcBJE2b7c3A0Yg4Vs37CWAP/q9qMzMzMzOz3vmT6uV3LvCtodvHq/vMzMzMzMysZ/6kOpmkzwMvH1N0Y0Tc3mQRY+4be/Y5SXuBvdXNU5rV0Lrg7PM4+zzOPodzz+Ps8zj7PM4+h3Mvi8/+vQQkfQH4tYjYGFO2C/hgRLy9ur0fICI+vNBKmpmZmZmZrSF//Xv53Q9cKOkCSVuBq4FDyXUyMzMzMzNbCx5UF0zSz0o6DuwCPifpzur+V0i6AyAingduAO4EHgY+FRFHsupsZmZmZma2Tvz1bzMzMzMzM7M5+URl9gJJDwLfz67HFGcBT2VXYoJTIuIN8z7Y2beyytmXnDs4+0xzZ1947lB29qvc5sHZZyk5d3D2mdzX55g5dw+qbdj3I+Li7EpMImmj1PpJOuEkcjNy9nNa5exLzh2cfaaW2RebO5Sd/Sq3eXD2WUrOHZx9Jvf1OebJ3b+pXgKSbpX0ZPWO07hySfo9SUclfVXSv1x0Hc3MzMzMzNaRB9XL4QBwxZTyK4ELq2kv8EcLqJOZmZmZmdna86B6CUTEF4Gnp8yyB/iTGPgScLqkc+ZY1UfmquDilFy/tnUredug7PqtcvYl1w2cfaY29VvlbevbKrd5KLt+q5x9yXUDZ5/JfX2Omevms38vCUnnA58d96N5SZ8FboqIv65u3wP8RkS0/Q2MmZmZmZmZTeFPqleDxtx3wrslkvZK2qimsb/Ptn44+zzOPo+zz+Hc8zj7PM4+j7PP4dzL4kH1ajgOvHLo9nnA46MzRcRHIuLi6kx7LzrFvqQrJD1SnexsX7/VnZ2kb0g6LOkrHZyFsm1dTjhxnKQzJN0t6dHqcvvwY5Y1+5Jyr+rTWfYl5w7OPlNJ2a9TfwPOPktJuVf1cX+TVx9nn1OXtelvYPmzH8eD6tVwCPhFDfwU8GxEPNH0wZK2ADczOOHZDuAaSTv6qWorPx0RFxVw+v0DnHjiuH3APRFxIXBPdbvWkmRfSu7QUfZLkjs4+0ylZH+A9epvwNlnKSV3cH+T6QDOPsMB1qu/gRXL3oPqJSDpNuBe4LWSjku6XtL7Jb2/muUO4BhwFPgo8MszruLNwNGIOBYRPwA+weDkZzbGhBPH7QEOVtcPAu9uuDhnP4MOs3fuM3L2Odzf5HH2edzf5HH2Odzf5Okqew+ql0BEXBMR50TEyRFxXkT8cUTcEhG3VOURER+IiNdExM45TlB2LvCtodvHq/tKEsBdkr4saW92ZcZ42ea3A6rLsxs+rvTsS88d5su+9NzB2WcqPftV7W/A2WcpPXdwf5PJ2edY1f4GVjD7k3qvki2DRic6S/aWiHhc0tnA3ZK+Vr2ztOxKz96553H2eZx9Hmefw7nncfZ5nH2elcven1SvGUm7JX0EOG3o7kYnOssUEY9Xl08Cf87gqy0l+baq/wavLp8cnWEZs1+C3GG+7IvOHZx9piXIfiX7G3D2WZYgd3B/k8nZ51jJ/gZWI/tRHlSvmYj4TETsBZ4duvt+4EJJF0jaClzN4ORnRZB0qqSXbl4H3gaU9tcBh4Brq+vXArePzrBs2S9J7jBf9sXmDs4+05Jkv3L9DTj7LEuSO7i/yeTsc6xcfwOrk/0JIsLTGk7AxsjtdwBfBx4Dbsyu30jdXg08UE1HsusH3AY8AfyQwbuB1wNnMjg74KPV5RnLnn1puXedfam5O/v07Swq+3Xpb5y9c+8r+1Jzd/bp21lU9uvS36xi9puTqoVZwSRdAfwnYAvwsYi4aaT8OuD/Af6/6q4/iIiP1SxzI/JPYb+WnH0eZ5/H2edw7nmcfR5nn8fZ53Du+XyissLpR/81dzmDd0/ul3QoIh4amfWTEXHDwitoZmZmZma2xvyb6vL5v+bMzMzMzMwK5UF1+Zr+19zPSfqqpE9LeuWYciTtlbQhaQM4q4e62gTOPo+zz+Psczj3PM4+j7PP4+xzOPey+DfVhZP0XuDtEfG+6vYvAG+OiP9jaJ4zgeci4n9Iej/wbyPiZ2qW699eJHH2eZx9Hmefw7nncfZ5nH0eZ5/DuefzJ9Xlq/2vuYj4h4j4H9XNjwL/y4LqZmZmZmZmttY8qC5f7X/Nbf45eeUq4OEF1s/MzMzMzGxt+ezfhYuI5yXdANzJ4C+1bo2II5I+xOA/6Q4BvyLpKuB54GngurQKm5mZmZmZrREPqpdARNwB3DFy328OXd8P7F90vczMzMzMzNadv/5tZmZmZmZmNid/Ur1mJO0GdgOnZddl3Tj7PM4+j7PP4dzzOPs8zj6Ps8/h3MvR+i+1JL0K+APgKeDrEXFTFxWzfvnU+3m6zl7SNmAncDginutquavI7T6Ps8/h3PM4+zzOPo+zz+Hc8zX6+rekX5L0h0O3f0vSx6ub/zPwuYj434EdPdRx7Um6QtIjko5K2jem/CWSPlmV3yfp/MXXsh1J2yTtqgaI1lCV10PAXcBD4/IrOduS67busvdN9vqtTJntYt3b5Cpv/ypvm1mGdTymmv6m+iCwW9Lpkt4FvBPYW5X9HXC1pL8A/rKHOq41SVuAm4ErGbxpcY2k0TcvrgeeiYifAH4X+J0e6tHbwdFkYGgT7QS2A9uqy53DhSVnW3Ld1l32vul7/XX9WekvBvruj0vd9sx2mX1MZFvl7c9+c3rZ+yNbTqW/rl/Gdt9oUB0R3wNuA34b+D3g5yPiH6vi/w349xHxMwwG29atNwNHI+JYRPwA+ASwZ2SePQze+AD4NPBWSeqqAgs4OKYODBs8vleFH9iHgWeA56rLwyPltdkmSq9b233b5sVQ3+2q5fJ7Pybb9gnzquvPuniBXfKLlbo2Wbfs5Hbbul20OCZ7XXcJ5TVq38Dt85joud21fnN63votoj9qUofMQX3Jz5PZ7bqv7V9Au2r1GqLt81yWWU5UdivwMLAnIh4buv//BT4o6d8B3+iwbjZwLvCtodvHgX81aZ7qf62fBc5k8Dv3RqoG+ybgQQYDtBeKqvs3Dw6AN0n60sg8pwKvrx7/ver+zR/sbwMeqJbxjKQ3jszzMIMBIdXlw5JOrpYL8OPAV0ce/92h8uF1qeb2pHmG6z+87Cbr/nHgdbT4TbOkrQ3rOTrPD4CfHKr7D6plbc7zNU7MdnRd24A3MBiQf3fMuk5l0CEOt42m2U/Ktcl+r9unABERP2QOQ5326L4dXsePM8jmSFU2nP1ou/7JkXmmtftJ7arJuptkX3fMbc4zab/X7ZtTR5a/Y5a23yD70Xb7tWr9m0brPm7738D4NnsRL+7PLpJ039A80/q7zTY9735v2i9NO+ZG67cTuJcGGuRe19fXtfnNfKbtm2nbXtffTmsXo8fNrM9Fs6579A3MqRpkP65dDR9TbfqbzTY1bfvq2t207LtYN1Nut+pvNk15nq3rb8YdF/fRzTFf1990se5pfX1du+87+2ntfly7mZTruPsmtekm6+6qr0/PfoLhQS+c+DxY1x/VHbt1rz3r+oRJz9Ojr72nvUaa9lxQ9/r0VOZ5XR8RjSbgT4Engfc0fYyn9hPwXuBjQ7d/Afj9kXmOAOcN3X4MOHPMsvYCG9X0jaH7twHfBL5TXZ4OnFxNW6uGPVy+faj85AnlW4fKL63Korq8pCrfOrKMS8ese2s1/+jjh8u3Vo+7ZMy6R8tPn7Du0e1vuu7Rx26bsB/HZj+U/6Vjcq3btuF5pt0ezXZ4ntMn7PvhdU8rn1a/abk22e+b9RvNZnTduyblXtPud03Yt03b/Wi7vnRk26a1+0ntqsm6h9vepDZdd8zV7de67EeXv6vj7Ke1q3F176JNN82+zX5v0u7r6l/b57TIvW2bb3vMt+3r2zwXNV13X/3NuGy76m9ObrB9bfr6tuvutb/p4Hm2z9c4df1N23XX7de6fdM6+6p8NI8m7X5c3SblOq7d1PX109bdRV/fe/Z1uU/pp+pe99f1R3WvQepee7btj9oeN9Oeq0bXPbG/PyHXhuH/KvBnwGXAXy16YLnOE4Mn4juHbu8H9o/Mc+fmwcbg2wdPweDM7lOWuzGyjroDdxsTXkzUPX7Mwdu4gTZ5fAflE+vf5rENs29V947a17R9N/e+nSebLvdrB9n//+3d36scZx3H8ffXSg1oKYkhba0WEgjSo4FclELpjT9oTQtpqiCkVxGU3OilF5HciDf2HyiIiJxcWaogCSrUNFp6oWIjNiSxpkmD0JLQ4I+bgsVfjxc7LYfTPWd3Z3b2++zs+wXD7szsj+985tlnz7M7Z7ZTu56QTdpzL2LfdM2+zza74fm3HBxtt34O2XfeN5Pq75J7x23vtd3OoW20fk22mWbJvoL1rfuE7Nrn0e6n3MY++4S++qOFvyY3Zt+l7fTdphfQbhea/Sy5992mu+z3Kevr+rfrdn/3t+8Lp9jwzzH6avyOZv6PwMFZwnNqPzEaJF8H9jL6BOUC8KlNt/k68L3m+lHguSked25vOF1fHDM8R18vrtZveG2yY4YPNLq8uOex76ZY3/oDiSlqm3s2bHrT6bpvJ7XrKR6/lz+U+mi3s257l+z7bLNzfN203e+9fgjZV+41tNuubWPK+ltn0zX7zPVd212fr4k2+4YZvziYw77utH09Pnev72PTtPs51N9bX5r9mppn9rPmnt2mZ21Xs2TbZf00+23LuiYUfR+jAd39G5Z9BVif545zmth4HgdeY3RY98lm2XeAJ5rrO4AfA9eA3wP7pnjMhf2htYB8Ov+RPYcXd9s3+2UfIHT6BL7v/bpd9kvSrqsZFM9he+b2ht+lzWZPffdHfebedd/U0J8tOIuFZr+s2fXRLmZ5n13G7at5vy6q3S+6L609+0X2N9lteppsu6xvu9+iubNWTAzsR+Kbk8AcYIuTCkxav0ibs1+m2sfps755ZzOkdl97u9hsSNl3tch9V1vuy9Zuu6gt+5rNu13M+j7bt+znX6RFtvtVynWSRfc3Zv9+DqpXlG/2ecw+j9nnMfsc5p7H7POYfR6zz2Hu+T6QXYAkSZIkSctqlt+p1gBExGHgMHBndi2rxuzzmH0es89h7nnMPo/Z59kqew8T7pdtvh4e/r2iPEwkj9nnMfs8Zp/D3POYfR6zz7Mx+2ZA/SdGvwv8D2DNgXU/bPP5PPy7YhGxKyLORsTV5nLnFrf7b0S80kxnFl2nJEmStMkBRgPqjzSXB3LLkfrjoLpuJ4BzpZT9wLlmfpx/llIONtMTiytPkiRJGusio2+o324uL+aWI/XHQXXdjgCnmuungCcTa5EkSZKm0hzqvQY8iod+a+AcVNftrlLKTYDmcs8Wt9sREecj4ncR4cBbkiRJ6Uopb5dSfuuAWkPn2b+TRcQLwN1jVp2c4WHuK6XciIh9wK8i4mIp5fUxz3UcON7M7p69WrVl9nnMPo/Z5zD3PGafx+zzmH0Oc6+LZ/+uWERcAT5TSrkZEfcAL5ZSPjnhPuvAz0opP5lwO88SmMTs85h9HrPPYe55zD6P2ecx+xzmns/Dv+t2BjjWXD8GnN58g4jYGREfaq7vBh5m9PMFkiRJkqSeOaiu29PAIxFxFXikmSciHoiIHzS3uR84HxEXgF8DT5dSHFRLkiRJ0gL4P9UVK6X8Dfj8mOXnga8113+Dv/snSZIkSSn8plqSJEmSpJb8pnrFRMRh4DBwZ3Ytq8bs85h9HrPPYe55zD6P2ecx+xzmXg/P/r2iPEtgHrPPY/Z5zD6Huecx+zxmn8fsc5h7Pg//liRJkiSpJQfVFYuIL0fE5Yj4X0Rs+elTRByKiCsRcS0iTiyyRkmSJElaZQ6q63YJ+BLw0lY3iIjbgGeAx4A14KmIWFtMeZIkSZK02jxRWcVKKa8CRMR2N3sQuFZKud7c9lngCOBvVUuSJElSz/ymevndC7yxYf7NZpkkSZIkqWd+U50sIl4A7h6z6mQp5fQ0DzFm2dhTukfEceB4M7tjugo1D2afx+zzmH0Oc89j9nnMPo/Z5zD3uviTWksgIl4EvllKOT9m3UPAt0spX2jmvwVQSvnuQouUJEmSpBXk4d/L72Vgf0TsjYjbgaPAmeSaJEmSJGklOKiuWER8MSLeBB4Cfh4RzzfLPxYRvwAopfwH+AbwPPAq8Fwp5XJWzZIkSZK0Sjz8W5IkSZKkljxRmd4TEZeAd7Lr2MZu4K/ZRWxhRynl023vbPadDDn7mnMHs8/UOvvKc4e6sx9ymwezz1Jz7mD2mezrc8ycu4NqbfROKeWB7CK2EhHna60vIt53ErkZmX1LQ86+5tzB7DN1zL7a3KHu7Ifc5sHss9ScO5h9Jvv6HG1y93+qJUmSJElqyUG1JEmSJEktOajWRt/PLmCCmuvrWlvN2wZ11zfk7GuuDcw+U5f6hrxtfRtym4e66xty9jXXBmafyb4+x8y1efZvSZIkSZJa8ptqSZIkSZJaclAtACLiUERciYhrEXEiu57NIuIvEXExIl6Zw1kou9byw4i41fxUwbvLdkXE2Yi42lzunOHxqs2+ptybeuaWfc25g9lnqin7VepvwOyz1JR7U4/9TV49Zp9Ty8r0NzDM7B1Ui4i4DXgGeAxYA56KiLXcqsb6bCnlYAWn318HDm1adgI4V0rZD5xr5idakuxryR3mlP2S5A5mn6mW7NdZrf4GzD5LLbmD/U2mdcw+wzqr1d/AwLJ3UC2AB4FrpZTrpZR/Ac8CR5JrqlYp5SXg75sWHwFONddPAU9O+XBmP4M5Zm/uMzL7HPY3ecw+j/1NHrPPYX+TZ17ZO6gWwL3AGxvm32yW1aQAv4yIP0TE8exixrirlHIToLncM+X9as++9tyhXfa15w5mn6n27Ifa34DZZ6k9d7C/yWT2OYba38AAs/9g7yVpGcSYZbWdFv7hUsqNiNgDnI2IPzefLC272rM39zxmn8fs85h9DnPPY/Z5zD7P4LL3m2rB6BOsT2yY/zhwI6mWsUopN5rLW8BPGR3aUpO3IuIegOby1pT3qzr7Jcgd2mVfde5g9pmWIPtB9jdg9lmWIHewv8lk9jkG2d/AMLN3UC2Al4H9EbE3Im4HjgJnkmt6T0R8OCLuePc68Chwaft7LdwZ4Fhz/Rhwesr7VZv9kuQO7bKvNncw+0xLkv3g+hsw+yxLkjvY32Qy+xyD629gwNmXUpycAB4HXgNeB05m17Optn3AhWa6nF0f8CPgJvBvRp8GfhX4KKOzA15tLncte/a15T7v7GvN3ezTt7Oq7FelvzF7c+8r+1pzN/v07awq+1Xpb4acfTQPJkmSJEmSZuTh35IkSZIkteSgWpIkSZKklhxUS5IkSZLUkoNqSZIkSZJaclAtSZIkSVJLDqolSZIkSWrJQbUkSZIkSS05qJYkSZIkqaX/A7sGNBAGPAhMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9UAAAKTCAYAAAAXPCvaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdf/BkdX3v+ec7KHJlXEAplaCWkrCWIwN4iyKZVWtJDAjqMMbEBLI3gSxmSqNJ3dqk7mWWW8ZYsTR/3Y0JhiSGC3E3qJcy11HJgpIQkxWQMQIDjMjApmQuVFChWAdURN/7R58v03Omu8/pn5/T3c9HVVf/+Jwfn3716c/pT5/Tn47MRJIkSZIkje/HSldAkiRJkqRlZadakiRJkqQJ2amWJEmSJGlCdqolSZIkSZqQnWpJkiRJkiZkp1qSJEmSpAnZqZYkSZIkaUJ2qiVJkiRJmpCdaq2EiDg6Iq6OiL+IiP+ldH3WSUScFBF/GRHXlq7LuomIt1bb/Kcj4pzS9VknEfGqiLgiIq6NiHeVrs86qdr7r0TEW0rXZZ1ExFkR8Y/Vdn9W6fqsk4j4sYj4QET8cURcVLo+6yQiXl9t8x+NiC+Vrs+6iIiXRcSuiLgyIi4tXZ827FRraUTEuyLiI333/yAiPlbdfRtwbWb+BnB+kQqusFHZZ+YDmXlJudqttobs/1u1zV8M/HKhKq6shuz3ZuY7gV8CzihVx1XU0NYD/Efgk4uv2epryD6BA8BRwP4S9VtlDdlvB04EfoDZz1xDW/+PVVv/WeDqUnVcRQ3b/P8IfC4z/1dgc5EKjslOtZbJ1cC2iDi2OkLxZmBHVfYS4MHq9g9LVG7Fjcpe89Um+/8EXL7wmq2+kdlHxPnAPwE3Fqrfqhqae0T8HHAP8K8F67fKRm3z/5iZ59H7UuP3S1VwhY3K/pXAzZn5vwGeGTN7bfazvwJcs/CarbZRuX8VuCAi/g74+1IVHMezSldA6hcRpwLfycz/t16WmU9GxDXAB4DzgLMz87tV8X56Hevb8cuiiUyRvaY0afYREcCHgL/NzH9eZJ1XxTTbfWbuAnZFxOeAv15UnVfBFLn/DHA0vSMX342I6zLzR4uq9yqYNPu+nB8DnrOo+q6SKT/jPFXd9sDBBKZp6yPiZcDjmfn/LazCK2KK3H8d+L3M/GL188L/srBKT8hOtbrm3wD/Z0RsH/QGBK4E9gLbM/P+vsc/BfxJRLwZ+MwC6rmKJso+Il5Ar0F8TUTszMwPLqa6K2XS7f63gJ8DjomIn8zMKxZQ11Uz6XZ/Fr2fnTwHuG4RFV0xE+WemZcBRMTFwLfsUE9k0m3+bcAbgWOBP1lITVfPNJ9x/jgiXg98cQH1XEWTZg9wCUvQqeuoSXP/v4H3RcSvAP8y/2pOz061iomIfwcMGnzgBOATwJkDyt4LfJPatpuZT9D7VkstzDj7bwPvnHUdV9WMs/8w8OFZ13FVzTj7m4CbZlvD1TTL3Ddk5lWzqt8qm/E2/yl6nTu1MOPsn6TXsVMLs25zMvP3ZlrBFTXjbf4u4BdnXcd5iswsXQfpGdUpNruAd2fm/1Mr+x3gtfQ6Eb+fmf9zgSquLLMvx+zLMfsyzL0csy/H7Msx+zLWKXePVKtrXgn8ZmYe8rcFEfGz9I5Eb83M70TE/xARp2fm7UVquZrMvhyzL8fsyzD3csy+HLMvx+zLWJvcPVKtzqu+5boJeHNm7q0euxg4KzMvLlez1Wf25Zh9OWZfhrmXY/blmH05Zl/GquZup1qSJEmSpAn510OSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVEuSJEmSNCE71ZIkSZIkTchOtSRJkiRJE7JTLUmSJEnShOxUS5IkSZI0ITvVkiRJkiRNyE61JEmSJEkTslMtSZIkSdKE7FRLkiRJkjQhO9WSJEmSJE3ITrUkSZIkSROyUy1JkiRJ0oTsVC+BiLgyIh6JiLuGlEdEfDgi9kXEnRHxbxddR0mSJElaR3aql8NVwLkjys8DTq4uO4A/XUCdJEmSJGnt2aleApn5ReDREZNsB/4qe24Bjo2IExZTO0mSJElaX3aqV8OJwIN99/dXj0mSJEmS5shO9WqIAY/lYRNF7IiI3dVl4O+zNR9mX47Zl2P2ZZh7OWZfjtmXY/ZlmHu3ROZhfS91UES8HPhsZp4yoOzPgJsy85rq/r3AWZn58Ijl7c7MM+ZUXY1g9uWYfTlmX4a5l2P25Zh9OWZfhrmX55Hq1bAL+LVqFPCfBh4f1aGWJEmSJM3Gs0pXQM0i4hrgLOD4iNgP/B7wbIDMvAK4DngTsA94Evj1MjWVJEmSpPVip3oJZOaFDeUJvHuedYiITcAWYE9mHpjnuiRJkiRpWdipVqOqQ30PcBzwWERstmMtSZIkSf6mWu1sodeh3lRdbylbHUmSJEnqBo9Ur5mI2AZsA44ZY7Y9wGPV7ceq+xrThNlrBsy+HLMvw9zLMftyzL4csy/D3LvDv9RaU+MOve9vqmfHvz0ox+zLMfsyzL0csy/H7Msx+zLMvTxP/14CEXFuRNwbEfsi4tIB5RdHxDcj4vbq8o5Z1yEzD2TmzXaoJUmSJOkgT//uuIg4ArgcOBvYD9wWEbsy857apJ/IzPcsvIKSJEmStMY8Ut19ZwL7MvOBzHwK+DiwvXCdJEmSJEnYqV4GJwIP9t3fXz1W9wsRcWdEXBsRL11M1SRJkiRpvdmp7r4Y8Fh9dLnPAC/PzFOBLwBXD1xQxI6I2B0Ru4HjZ1tNjWL25Zh9OWZfhrmXY/blmH05Zl+GuXeLo393XERsBd6XmW+s7u8EyMwPDpn+CODRzBw5tL6jBJZj9uWYfTlmX4a5l2P25Zh9OWZfhrmX55Hq7rsNODkiXhERRwIXALv6J4iIE/rung/sXWD9JElLIiI2RcTW6m8SJUnSDDj6d8dl5tMR8R7geuAI4MrMvDsi3g/szsxdwG9HxPnA08CjwMXFKixJLVSdui3AHv+qbzGqzO8BjgMei4jN9ex9XSRJGp+d6iWQmdcB19Uee2/f7Z3AzkXXS5Im0aZzp7nYQi/zTX33b94o9HWRJGkynv4tSVq0/s7dcdX9Q3ia8lzsAR4DDlTXe2rlvi6SJE3AI9VrJiK2AduAkQOZafbMvhyzL2dI9hudOxjQufOI6fQG5Z6ZByJiM8NP7576dfH0cdubksy+HLMvw9y7w9G/15SjBJZj9uWYfTn17Ed1vqp/PbiB3hHTA8A5mVk/TXmtO25tjbvNz+B1eabTDax1p9v2phyzL8fsyzD38qY+Uh0RRwMfAZ4CbsrM/2vqWkmSVlrVobp5SPHQI6YeLZ2vSV+Xir/ZliStpVa/qY6Id0XER/ru/0FEfKy6+zbg2sz8DXp/56QZi4hzI+LeiNgXEZcOKH9ORHyiKr81Il6++FpqWTX9RnLa8pJ103KqOlqbgXM4/GjnyN/99nXcbgDucduYnYbXBfzNtjpq3vu5acq7XLc25ZJ62h6pvhq4NyL+d+B1wJuB/6kqewkHd5w/nG31FBFHAJcDZwP7gdsiYldm3tM32SXAY5n5kxFxAfCHwC8vvrbDLfORo3nXvWn58yxvOnI0o/IiddNo897upjXiiOlUR0thuduj0kYdyfY32+qiBe3nJirvct3alEs6qNWR6sx8ErgG+ADwYeAXM/O7VfF+eh3r1svTWM4E9mXmA5n5FPBxYHttmu30vvgAuBZ4Q0TEAus40iKOHM3rm9g2dZ/mW9ym5c+7nOYjRxOXd6Bua63pyAjz3a7mZtqjpbN4T3vkZ7jMPJCZNw/64N3itZv6LIRpsp/361Z6u5pneem6NZjbfm4G5V2uW5tySZVxflN9JbAX2J6Z9/c9/ingTyLizcBnZlk5AXAi8GDf/f3ATw2bJjOfjojHgRcA35plRSLiyOpm/+h2UXusfh/gNRx65Og1EXFrbZ6jgVPofQB+YsByNtXK+9f1XOBODn6TemptGUcDd/SVn0bvA3f/uuvlT1TrPr1W99Orug9b97jf4taPqm0sf6Nug7K7pW/+pmzr5adHxJer20nvPd1/5GhvRDy77/k1lX+tVv61qrzNupuyHXfd9SOWrUyxXTdN0//FVtM0kyz3aODVwF3Ak7VpNnHoNn1qbZqm7JvK66/tYUeD25gi+6eArwBZ2yYS+D5wGr324i7g+7Vphj23jXVN015Ac/ZHM7q92phmS1X//nVveC7wKiY8Wlt4m6+/dv3TNL3nR7WH07424+5Hxmrr+74QqC9/VN37l1+v+6y3u2n2o4te97j72foZEntr296o/RhDyo/kYPb18r2199io7XrUuoeVz2rdtChf9/3srJc79roz8wdMoGpzXsOh+5H+5T+X3n7ybg5tSzamGfUZY9rP7W33c4PqV6//qPpt1L9N/abex47TqX4v8M36PJn5BPDrYyxH4xl0xLk+ZHubaYiIHcCO6u7xU9arbuPNtbHx97uLQxvluwbM+8wOE+jfIQ8r71/HKRz6QesU4NaG8lsayjfmb6p7fd6BnYsR2dd39vXlN61/2vInONgB6W/4+stP5WDDN6x80Gs/i7q1WffIhm/O2/08jXpP1d8Tp9H8nvhyX/mst6uBH7QKZv8Eh7YB/cZ9T4/TXgwr/3JDef/8h3RAOLy9a+xgLPE23/Sen+S1a/vajDvvuG19/QvUWe6nmp7bpPO3rd+i1z1W9n0/S9joYIyzH9soP43DOxj18mEf0EftZ2e17kGdh6Z1969/bvvZEZ27DaP2dRphWO71L/Fo2I/Q20YONJSPmn/cz+1j7ecWVL8nB5WN9SVeZjZegN+hd0T6LOAf2szjZTYXYCtwfd/9ncDO2jTXA1ur28+id4Q6Gpa7e4Z13AR8A/hOdb1pyDRbh5RtrebN6nrrmOUj1z+j8mF1b3zuTdmPWv4iyue8/XaqbrPc7ueZTYttcqr3RIntaoWyn3f5VO1hl3Pv8ms37evWlH0Htqu5lZeu2zps98t0mcN2X+zzUdfLR+Q+7efqtS1vmnfka9DiRfpZet8uPa+6/1Xg9Hm9Gb0clv+zgAeAVwBH0vv25NW1ad4NXFHdvgD4ZIvlzrJTPfEGWM0/9Q51kQ3XtPPOMnsvY79WC81+2LbRYpufe6d51bOfx+u2iPJZtIfLmnvp127W+4l69iW3q3mXl65bU/ZeFndhRp27advCVS9vyL3Tde9y+bi5H7LchhfoZfQ6dK/qe+xi4KrSb9p1ugBvAr4O3A9cVj32fuD86vZRwH8F9tE75eqkFstc6JHqlsvozBHNOb+e7uzXIPuGRnvlOs1dyn7ZL7NsD8296Oto9ma/dhdm1LlrsZ9c6/JRufdl28kv4bpePs4+tv8S1cxaMxGxOzPPmOHyNuHfnLQy6+zV3iK3+4jYSm+U4k30fgt0Tmbe3Ddf/++dVv6vg9zuyzD3csy+HLMvp559075sWHnTfnLdywfk6DZf2DgDlUlD5Yj/LpWWVUOn+ZAd3oDBLOqD0D0zmFc2/5+v7ylJ0tJr2pcNK2/aT657ubrHTvWaiYhtwDbgmNJ1WTdmX84k2bfoNNdH8z1kRNo2O0zWoNPsdl+GuZdj9uWYfTnzyH7SDvm6lIPbfJd4+vea8jSRcsy+nHFOSxt1+nbfvK1PzVp3bvdlmHs5Zl+O2Zdj9mWYe3keqZa0lqY5fRs8NUuSJEk9P1a6AhouIp4fEZ+PiPuq6+OGTPfDiLi9uuxadD2lJdV/+vZx1f1nVJ3kzcA5DDkKnZkHMvNmO9SSJEnry051t10K3JiZJwM3VvcH+W5mnl5dzl9c9aSltnEk+gADjkSDnWZJkiQ1s1PdbduBq6vbVwNvLVgXaaW0ORItSZIkNbFT3W0vysyHAarrFw6Z7qiI2B0Rt0SEHW+pJY9ES5IkaVoOVFZYRHwBePGAosvGWMzLMvOhiDgJ+LuI2JOZ9w9Y1w5gR3X3+PFrq0mZfTlmX47Zl2Hu5Zh9OWZfjtmXYe7d4l9qdVhE3AuclZkPR8QJwE2Z+cqGea4CPpuZ1zZM59D7hZh9OWZfjtmXYe7lmH05Zl+O2Zdh7uV5+ne37QIuqm5fBHy6PkFEHBcRz6luHw+8lt7fBEmSJEmS5sxOdbd9CDg7Iu4Dzq7uExFnRMRHq2leBeyOiDuAvwc+lJl2qiVJkiRpAfxNdYdl5reBNwx4fDfwjur2l6j9v64kSZIkaTE8Ui1JkiRJ0oQ8Ur1mImIbsA04pnRd1o3Zl2P25Zh9GeZejtmXY/blmH0Z5t4djv69phwlsByzL8fsyzH7Msy9HLMvx+zLMfsyzL08T/+WJEmSJGlCdqo7LCLeHhF3R8SPImLot08RcW5E3BsR+yLi0kXWUZIkSZLWmZ3qbrsLeBvwxWETRMQRwOXAecBm4MKI2LyY6kmSJEnSenOgsg7LzL0AETFqsjOBfZn5QDXtx4HtgP9VLUmSJElzZqd6+Z0IPNh3fz/wU4MmjIgdwI7q7lFzrpf6mH05Zl+O2Zdh7uWYfTlmX47Zl2Hu3eLo34VFxBeAFw8ouiwzP11NcxPwu5m5e8D8bwfemJnvqO7/KnBmZv7W/GotSZIkSQKPVBeXmT835SL2Ay/tu/8S4KEplylJkiRJasGBypbfbcDJEfGKiDgSuADYVbhOkiRJkrQW7FR3WET8fETsB7YCn4uI66vHfzwirgPIzKeB9wDXA3uBT2bm3aXqLEmSJEnrxN9U6xkRcRfwvdL1GOF44FulKzHEUZl5yqQzm/1UVjn7LucOZl/SxNl3PHfodvarvM2D2ZfS5dzB7EuyrS9j7Nz9TbX6fS8zzyhdiWEiYndX6xcRhw0iNyazn9AqZ9/l3MHsS5oy+87mDt3OfpW3eTD7UrqcO5h9Sbb1ZUySu6d/L4GIuDIiHqm+cRpUHhHx4YjYFxF3RsS/XXQdJUmSJGkd2aleDlcB544oPw84ubrsAP50AXWSJEmSpLVnp3oJZOYXgUdHTLId+KvsuQU4NiJOmGBVfz5RBReny/Wbtm5dfm7Q7fqtcvZdrhuYfUnT1G+Vn9u8rfI2D92u3ypn3+W6gdmXZFtfxth1c6CyJRERLwc+O+hH8xHxWeBDmflP1f0bgf+YmdP+BkaSJEmSNIJHqldDDHjssG9LImJHROyuLgN/n635MPtyzL4csy/D3Msx+3LMvhyzL8Pcu8Uj1Uui4Uj1nwE3ZeY11f17gbMy8+ERy+vsiHurzuzLMftyzL4Mcy/H7Msx+3LMvgxzL88j1athF/Br1SjgPw08PqpDPUhEnBsR91YjiF86n2pOLiL+JSL2RMTtM/hrh2nrctho7BHx/Ij4fETcV10fN8byOpt9l3Kv6jOz7LucO5h9SV3Kfp3aGzD7UrqUe1Uf25ty9TH7MnVZm/YGVjN7O9VLICKuAW4GXhkR+yPikoh4Z0S8s5rkOuABYB/wF8Bvjrn8I4DL6Y0ivhm4MCI2z+wJzM7PZObpHfgm7ioOH439UuDGzDwZuLG632hJsu9K7jCj7JckdzD7krqS/VWsV3sDZl9KV3IH25uSrsLsS7iK9WpvYMWyt1O9BDLzwsw8ITOfnZkvycy/zMwrMvOKqjwz892Z+ROZuWWCAcrOBPZl5gOZ+RTwcXojimuAIaOxbweurm5fDby15eLMfgwzzN7cx2T2ZdjelGP25djelGP2ZdjelDOr7O1UC+BE4MG++/urx7okgRsi4isRsaN0ZQZ40cYp99X1C1vO15h9RGyKiK0RsWkmNR1P13OHybJ3m58Nsy9jbu1NB5h9GV3PHWxvSjL7Mla1vYEVzP5Zc6+SOiUitgHbgGP6Hx4waddGsHttZj4UES8EPh8RX6u+WVoak2RfdaTvAY4DHouIzZl5YK4VPdTS5w4Ds3ebXxCzL8O2vpwlzX7pcwfbm5LMvowlbW9gBbKv80j1msnMz2TmDuDxvof3Ay/tu/8S4KGFVqxBZj5UXT8C/A29U1u65F8j4gSA6vqR+gQTZr+FXod6U3W9Zcb1HmkJcofJsnebnw2zL2Ne7U1xZl/GEuQOtjclmX0ZK9newGpkX2enWgC3ASdHxCsi4kjgAnojij+j5CnIEXF0RDxv4zZwDtC1/+PbBVxU3b4I+HTL+Zqy3wM8BhyorvfMprrNliR3mCz7xm2+JLMvZ0myn1d7U5TZl7EkuYPtTUlmX8bKtTewwtlnppeOX+iNSHcvvdG9Lx1QfjHwTeD26vKOFsvcXbv/JuDrwP3AZbWyTcA3gO9U15sW/PxPAu6oLnfX61fg9bgGeBj4Ab1vAy8BXkBvdMD7quvnzyL7vvy3rnvus86+KffCz9PsR9dlbu+JrmW/6Pam8HM1e3OfefZdzd3siz/PTmW/Lu3NKma/cYlqYeqoalj8rwNn03uhbwMuzMx7+qa5GDgjM98zxnJb/0l8RGwFbqD3QfYAcE5m3tz6SegQ42Sv2TL7cmaVfX2cAWDR4wwsFbf5csy+HLMvx+zLMPfyPP27+xYyLH7D6d2NpyCXPD1c0uoZ0aYUHWdAo7kvkCStIzvV3dd2WPxfiIg7I+LaiHjpgPKh+o783ADcU/8wVB0F2kzvNw+HHRVqml+SxtHQpvglX0GjsnVfIElaV3aqu6/NsPifAV6emacCX+Dgn5UfuqCIHRGxOyJ2A8f3FTUe+cnMA5l585DTLD1y1GBE9pozsy9nVPYNHd+hbYpf8jWbZpufstPcuC9Y9S88bG/KMftyzL4Mc+8Wf1PdcdXvmd+XmW+s7u8EyMwPDpn+CODRzDxmUHnfdM/89mLa3yi2mb+aZguwZ91//+jvXsox+3LGaXOmaZPajAGxTu1RfZsf9dxbvC4js53F67pKr43tTTlmX47Zl2Hu5T2rdAXU6Jlh8YH/Tm9Y/F/pnyAiTsjMh6u75wN7x1lBZh6IiM1M+EGmaf76B6mIcGAhab31H9HcuP9M52zKNmnj9HAYcHr4OrdHLZ77yNeFhmxbvG4jl9/mtVmlTrckaXXYqe64zHw6It4DXA8cAVyZmXdHxPvpDZ+/C/jtiDgfeBp4lN5fbI27ngMc+uFplvM3fVDzg5K0XkZ2zmDyNmnajh2sdHs0705z0+vW9LpP3emWJKkEO9VLIDOvA66rPfbevts7gZ2LrtcYpj5ytMIfcqW1M+3ZMW2Wz4QduxXvuM270zxSi+VP1emWJKkUO9Wau0WcEihpuUx7dsw0613XI9nz7jS3rcOw5c+g0720r40kabnZqV4zEbEN2AaMHMhs1uZ5SiAsxwepUtnL7EvqYvbzPpLdhfZoWO6lvsxoa5pOd1e+gO3iNr8uzL4csy/D3Ltj6tG/I+Ik4DLgmMz8xZnUSnPXtVECpxyRdqrRyxeta9mvE7MvZ5myb2iPphoBu2n5c3guS5P7tLo28vs6Zd81Zl+O2Zdh7uW1+p/qiHhXRHyk7/4fRMTHADLzgcy8ZF4V1HoY9T/YTf9Li/+TvbRW/T9rtZxGtUccPJJ9gOYzaw5rj1r817MmN/K1Mfv11bSvKVk+73VLWoxWnWrgamBbRBwbEW8B3gzsmF+11C8izo2IeyNiX0RcOqD8ORHxiar81oh4+eJrOV9Tfsh1pzPCtNlMOr8fcLWMWnzJN1WnG/wQPalpv4A119XUtK8pWT7vdW9MY6ddmr9WnerMfBK4BvgA8GHgFzPzu/OsmHoi4gjgcuA8eh8WLqx+U9bvEuCxzPxJ4D8Df7jYWpbV9EFqFjudUbq+w2n6hpwpOrZTzj/1GQZdz16racoza6Y6muqXUaNN+gXsvPcTbeZf5vLSdWvQtK8pWT7XdS+i067l5JcpszfOQGVXAnuB7Zl5/8aDEfECep3t10TEzsz84IzruO7OBPZl5gMAEfFxYDu9Rm7DduB91e1rgT+JiMgxfzAfEUdWN/vni9pj9fttpom+aZummXS53wd2955GHFmb5jUcOtDZayLi1r5pNgF3cHBwm1OBJ/vWdTS9HdVd9D6M9a/76Nq8c/k9d8Nr81zgFOBu4InaNPXndlptmno2p0fEl2vrGvXanD5g/ltp95p/jUMHhNo74Hluqp7bnqre9ed9J1Nmv+Tb/SyXO+66nwu8iil+m7rC2T9Frz0iIp5dm+b7wGkc3K6/X5um6T1Vf8+O/bdSK5x703Kfopf9q+m159/vy6Ip96na+r7OSf9+pr9Nqy//NA7ub6C5LW+zH7uTw9c/rD2tl4+q36LXPW5bXx98cG/1nqNaR31f9LW+coaU93/OaNqX7R2y/qZ1DysfZ91N2/Ui2ptN1XL6P0NtPD9o/gzT/xlg3LZh0Oe3+jSj7h/NwfbiyQHT9JePqt/E7V1m/oAJNOQ+bXuzsYxRr82oz29Nn61h+HZR324mfW2GbVsbyx778804ner3At+sz5OZ3wbeOcZyNJ4TgQf77u8HfmrYNJn5dEQ8DrwA+Fb/RBGxg4On7R8/l9p2010cutO5q1Z+CofuNE4BNjqWh3wYAPo/CA2ad+AOZ47ZH9Iw0vvA2N8ADHput/aVN2WzsY56wzjO/MM8waEfcK8Gg34AACAASURBVOuNWv25dS37ddbqQ67ZD/UEvffhoC8+m95T9fJBP3cx9+E2sq8bdz8xbntT/xeLels8qK2+paG8af4vN5Q3zd+2fote91jZ940av9HBqO/HnqC3f+n/AF8v799XPTmkfNgH9EHls173sP3ouO3J2O0NDM++/mUSh+/HR32GGfQZoP78Nz6f1DuOG2WjPr/1zz8o+0F1G1X3UfUb9Plpo3xQp/+Z8ogY2rmbIvdp25um5970+a3ptWn6bDvtazOqfPIv8TKz8QL8DvAp4CzgH9rM42U2F+DtwEf77v8q8Me1ae4GXtJ3/37gBQ3L3V36uS04x03AVmDTkLJvAN+prjf1lW2tHs/qemvbeReR/SzqN2k2Y8w/sGwRz22e2a/6peF1HfnamP38sm9Tbu6zz33a9qZp/mUuL103t/vJt+tZlDds90378aHlLeZt2m7mPf+0y5/pdj9m7tPWbdpsOlveNO/I16DFm+Nn6X2D8rzq/leB0+fxxvcyMP+twPV993cCO2vTXL/xotM7k+Bb0Pu7tBHLdYdzaB4DdxptGrVh8y4i+3nUrzbv5I3LBB+Elin7Vb602KH6IXdJLuY+0yynam+a5l/m8tJ1a8rey+IuzOjLpBbzlu50F+14TpN73zTTvN87+SXfvLe7UZeR/1MdES8DbgLenJl7q8cuBs7KzIuHzqiZiYhnAV8H3gD8d+A24Fcy8+6+ad4NbMnMd0bEBcDbMvOXGpbr/9m1FDP+X9NZZz/r+g1Y9kT/AR4t/jO25fo7m/0yG5Vtm9du3NfG7Msw93LMvhyzL6eefdO+omFf1FQ28vPJPOefdvnTlg+oy1i5T2uabLpePml2IzvV6oaIeBPwfwBHAFdm5gci4v30vpXaFRFHAR+j93uhR4ELshrYbMQy3eEUsmzZT9y4TNEhn5dly34a89zZT1iftcm+S8y9HLMvx+zLWWT203Ycl73jWZvWbb6wcQYqUyGZeR1wXe2x9/bd/h69315LM1c15GMdYd6YrxocZm47LA02YKTheqe4PmjSIQP/+NpJkrpu0s8ns5p/2uVPW65uafU/1ZI0iRz9n7GaQoz+D8mm/zYd+V/J4GsnSZLUlkeq10xEbAO2AceUrsu6MftyVi37Fkei6//LekineZFHolct+2Vh7uWYfTlmX47Zl2Hu3eFvqteUv70ox+zLWfRAHtNY9EBi8+Z2X4a5l2P25Zh9OWZfhrmX5+nfHRYRz4+Iz0fEfdX1cUOm+2FE3F5ddi26ntIy6jvaewNwz6DTqBtOsW61jmHzN5U11M3TtyVJkjrCTnW3XQrcmJknAzdW9wf5bmaeXl3OX1z1pKU28nfH03a6R83fYtkj61Z1lDcD59CBUdUlSZLWmZ3qbtsOXF3dvhp4a8G6SKum6WjvtJ3uUfM7kJgkSdKKsFPdbS/KzIcBqusXDpnuqIjYHRG3RIQdb6mFFkd7p+p0N8w/ctkeiZYkSVoejv5dWER8AXjxgKLLxljMyzLzoYg4Cfi7iNiTmfcPWNcOYEd19/jxa6tJmX05o7If9R+QLUbInniE7Tajb6/C/1O63Zdh7uWYfTlmX47Zl2Hu3eLo3x0WEfcCZ2XmwxFxAnBTZr6yYZ6rgM9m5rUN0zlKYCFmX86ss+/aCNtd5nZfhrmXY/blmH05Zl+GuZfn6d/dtgu4qLp9EfDp+gQRcVxEPKe6fTzwWnq/85Q0Z/6uWZIkSXaqu+1DwNkRcR9wdnWfiDgjIj5aTfMqYHdE3AH8PfChzLRTLUmSJEkL4G+qOywzvw28YcDju4F3VLe/xOEDJEmSJEmSFsAj1ZIkSZIkTchOtSRJkiRJE/L07zUTEduAbcAxpeuybsy+HLMvx+zLMPdyzL4csy/H7Msw9+7wL7XWlEPvl2P25Zh9OWZfhrmXY/blmH05Zl+GuZfn6d8dFhFvj4i7I+JHETH0jRIR50bEvRGxLyIuXWQdJUmSJGmd2anutruAtwFfHDZBRBwBXA6cB2wGLoyIzYupniRJkiStN39T3WGZuRcgIkZNdiawLzMfqKb9OLAd8L+qJUmSJGnOPFK9/E4EHuy7v796TJIkSZI0Zx6pLiwivgC8eEDRZZn56TaLGPDYwNHnImIHsKO6e1S7GmoWzL4csy/H7Msw93LMvhyzL8fsyzD3bnH07yUQETcBv5uZuweUbQXel5lvrO7vBMjMDy60kpIkSZK0hjz9e/ndBpwcEa+IiCOBC4BdheskSZIkSWvBTnWHRcTPR8R+YCvwuYi4vnr8xyPiOoDMfBp4D3A9sBf4ZGbeXarOkiRJkrROPP1bkiRJkqQJOVCZnhERdwHfK12PEY4HvlW6EkMclZmnTDqz2U9llbPvcu5g9iVNnH3Hc4duZ7/K2zyYfSldzh3MviTb+jLGzt1O9RKIiCuBtwCPDHqBo/dH1n8EvAl4Erg4M/95glV9LzPPmKqycxQRu7tav4g4bBC5MZn9hFY5+y7nDmZf0pTZdzZ36Hb2q7zNg9mX0uXcwexLsq0vY5Lc/U31crgKOHdE+XnAydVlB/CnC6iTJEmSJK09O9VLIDO/CDw6YpLtwF9lzy3AsRFxwmJqJ0mSJEnry071ajgReLDv/v7qsXH9+WyqMzddrt+0devyc4Nu12+Vs+9y3cDsS5qmfqv83OZtlbd56Hb9Vjn7LtcNzL4k2/oyxq6bo38viYh4OfDZIb+p/hzwwcz8p+r+jcB/yMyv1KbbQe/0cJhy0AmNx+zLMftyzL4Mcy/H7Msx+3LMvgxz7xY71UuioVP9Z8BNmXlNdf9e4KzMfHjE8jo7OMCqM/tyzL4csy/D3Msx+3LMvhyzL8Pcy/P079WwC/i16Plp4PFRHepBIuLciLg3IvZFxKXzqebkIuJfImJPRNw+g1Eop63LlRHxSPVXBRuPPT8iPh8R91XXx42xvM5m36Xcq/rMLPs2uUfEpojYGhGbZvUc2lr37EvqUvbr1N6A2ZfSpdyr+tjelKuP2Zepy9q0N7Ca2dupXgIRcQ1wM/DKiNgfEZdExDsj4p3VJNcBDwD7gL8AfnPM5R8BXE5vFPHNwIURsXlmT2B2fiYzT+/AN3FXcfho7JcCN2bmycCN1f1GS5J9V3KHGWXfJveqI30PcANwT4mONWuafUd0JfurWK/2Bsy+lK7kDrY3JV2F2ZdwFevV3sCKZW+neglk5oWZeUJmPjszX5KZf5mZV2TmFVV5Zua7M/MnMnNLZo77jc+ZwL7MfCAznwI+Tm9EcQ0wZDT27cDV1e2rgbe2XJzZj2GG2bfJfQtwHLCput4yab1XwYKzV8X2phyzL8f2phyzL8P2ppxZZW+nWjC70cPnKYEbIuIr0RuYoWtetHHKfXX9wpbzdT37rucOk2XfJvc9wGPAgep6z/RVHcs6Z19a17Nf1fYGzL6UrucOtjclmX0Zq9rewApm/6y5V0nLIAY81rUR7F6bmQ9FxAuBz0fE16pvlpZd17Nf29wz80B1utQWYE9mHlhIzQ5a2+w7wOzLMfsyzL0csy/H7MtZuew9Ur1mImJbRPw5cEzfw/uBl/bdfwnw0EIr1iAzH6quHwH+ht6pLV3yrxFxAkB1/Uh9gmXMfglyh8myb5V7Zh7IzJsLdKjXPvuSliD7lWxvwOxLWYLcwfamJLMvYyXbG1iN7OvsVK+ZzPxMZu4AHu97+Dbg5Ih4RUQcCVxAb0TxToiIoyPieRu3gXOAu0bPtXC7gIuq2xcBn65PsGzZL0nuMFn2nc0dzL6kJcl+5dobMPtSliR3sL0pyezLWLn2BlYn+8NkppeOX+iNSHcvvdG9Lx1QfjHwTeD26vKOFsvcXbv/JuDrwP3AZaWfc61uJwF3VJe7S9cPuAZ4GPgBvW8DLwFeQG90wPuq6+cve/Zdy33W2Xc1d7Mv/jw7lf26tDdmb+7zyr6ruZt98efZqezXpb1Zxew3LlEtTB0VvWHxvw6cTe+Fvg24MDPv6ZvmYuCMzHzPGMv1T+ILMftyzL4csy/D3Msx+3LMvhyzL8Pcy/P07+5zWHxJkiRJ6ig71d3Xdlj8X4iIOyPi2oh46YBySZIkSdKM2anuvjbD4n8GeHlmngp8gYN/Vn7ogiJ2RMTuiNgNHD/bamoUsy/H7Msx+zLMvRyzL8fsyzH7Msy9W/xNdcdFxFbgfZn5xur+ToDM/OCQ6Y8AHs3MYwaV903nby8KMftyzL4csy/D3Msx+3LMvhyzL8Pcy/NIdfc1Dou/8T9qlfOBvQusnyRJkiStrWeVroBGy8ynI+I9wPXAEcCVmXl3RLyf3vD5u4DfjojzgaeBR+n9xZYkSZIkac7sVC+BzLwOuK722Hv7bu8Edi66XpIkSZK07jz9W5IkSZKkCdmpliRJkiRpQp7+vWYiYhuwDRg5Orhmz+zLMftyzL4Mcy/H7Msx+3LMvgxz746p/1IrIt4KvBl4IXB5Zt4wi4ppvhx6vxyzL8fsyzH7Msy9HLMvx+zLqWcfEZuALcCezDwwYPqh5dPMuw7ltWnd5gtrdfp3RLwrIj7Sd/8PIuJjAJn53zLzN+iNOP3Lc6nlmouIcyPi3ojYFxGXDih/TkR8oiq/NSJevvhaSpIkST1Vp/Ae4Abgnup+q/Jp5l2H8iYRsSkitg6bz/Lh5U3zDtP2N9VXA9si4tiIeAu9I9M7atP8J+DycVauZhFxBL1czwM2AxdGxObaZJcAj2XmTwL/GfjDxdZS0qxN2qjPav4uL7/LO+MulC+zdX7u0graAhwHbKqut4xRPs2861A+VOkO/zKXT/NlRqtOdWY+CVwDfAD4MPCLmfndauUREX8I/G1m/nPbFau1M4F9mflAZj4FfBzYXptmO70vPgCuBd4QEbHAOjYq/SFznt9Y+SFPk2ja5pjyG+qm+ad9T0xTv2mW3+WdcRfKS5vndrWI7dq2XpqpPcBjwIHqes8Y5dPMuw7lo5Tu8C9z+cRfZowzUNmVwF5ge2be3/f4bwE/BxwTET+ZmVeMsUw1OxF4sO/+fuCnhk2TmU9HxOPAC4BvtV1J9SHhNcBd9N7AzxRV188FTgHuBp4AsjbN0cCrq/mfrB7fmGYTcAe9jfOxiDi1Ns3RwJ218idq6x5VfnRt+af1PYcYUt7/HEbVb9x1b2763UvdnLPfKD+FXoPcX/f+599fTm2ao+k1Kv316//SZlj96nWb17pfRYvfG00qIo6s1blex0H3m6Zp2uZP52CjDnB6RNzact1Bb3vqn/811fyzek/W67cFuJmW+jpH9eWPqv8tQ9Z9ekR8ua/uw7Jrm+2odbfJtl4+q/ptlNeXP1b2MPU2Pc+2ftznXn9tbOtt6wfqePajcqXlujuZfWYeiN7ZlRvZfz8int23jqeAU/ue/1N95d8HTuur+/drbVd/ef+yo2/+U/ue2zjr3ig/jYPZPlWtfyPXevmo+m3Uv039om/5pzJZ9hsdcqrrvbXn9rVa+df6yhlS3v/c6+V7a89975D1bzy3pvJR9RtW/2nrd+SQedt/mZGZrS7AXwOPAG9rO4+X6S/A24GP9t3/VeCPa9PcDbyk7/79wAsGLGsHsLu6/Evf45uAbwDfqa6PBZ5dXY6k9yGiv/y4vvJnDyk/sq/89VVZVtevq8o3pnndgPJn903TVF5f/utr9R9U3rZ+465765DXsVT29fJja9kfO2T9G9M0lY+q36LXvWmc7Md4D/bX+dm1Ogy73zRN03Y17Lm3Wfew12WW78l6/cbKHtg6ZPlttvtB2cxiu2qz7jbZFt/uh+U+g2160dvVOO2Nbb1t/TJmv/TtzZzbnDb7u7bTdGG5Y6+74fPJ0Nzpbfev5/Dtuf+1fx2Hb1P9297rOHyb6i9//YBtpn/b7C+vT3PsgPr1P/dh9auXj6rf62hfv/q6tzJkex/6erT8UPk7wKeAs4B/mGcn0sth2W8Fru+7vxPYWZvmeqodPL2zD74FvZHdRyx3d20dQz8szKC8vkPbtCzl0y67A9kXKy9dt6bsZ/T+3MSIhndYeZvtZtJltymfxXbdtP6G7X6q5c8zm1Uon2abb8h9rm19ye16FnVv2OY721ZPW166bsucfZfrNovsvSzuYu7lL21epJ+ld1rC86r7XwVOL13xdbnQ6yQ/ALyC3rcndwCvrk3zbuCK6vYFwCdbLLf1B9xpy/um6eyH0FHl0y67ZPYly0vXrSn7Gbw3Z1H/sb8JnfS5z3u7Hjf7WS/fS7vcW2wTRdv6GTxf23rb+qXJvst1m0X2XhZ3Mffyl6YX6GX0OnSv6nvsYuCq0hVfpwvwJuDr9E7rvqx67P3A+dXto4D/CuwDvgyc1GKZY33AnbbcS7nsS5aXrltT9lO+jjP/hn9W6+7ixR1+93Nvs13Z1k+efen2cJ3b+tL163J2Xd7Peml/Mffyl6heCK2Z8E/iizH7cmaZfX2wLeCQgYuayue57i5yuy9jnNyXcbvqMrf5csy+HLMvw9zLG2f0b0lSJQ+OarqFASNzNpXPc93SMFXHeeHbrCRJq8xO9ZqJiG3ANuCY0nVZN2ZfzryyrzodQ//OqKl8nuvuCrf7MgblPuCvzA47Er0s21WXuc2XY/blmH0Z5t4dnv69pjxNpByzL8fsyzH7Mvpzj4itwA30fiN5ADgnM+1Az4nbfDlmX47Zl2Hu5XmkWpKk9bCH3m+lqa73FKyLJEkr48dKV0DDRcTzI+LzEXFfdX3ckOl+GBG3V5ddi66nJKn7qlO7NwPn4CBkkiTNjJ3qbrsUuDEzTwZurO4P8t3MPL26nL+46kmSlklmHsjMm+1QS5I0O3aqu207cHV1+2rgrQXrIkmSJEmqsVPdbS/KzIcBqusXDpnuqIjYHRG3RIQdb0mSJElaEAcqKywivgC8eEDRZWMs5mWZ+VBEnAT8XUTsycz7B6xrB7Cjunv8+LXVpMy+HLMvx+zLMPdyzL4csy/H7Msw927xL7U6LCLuBc7KzIcj4gTgpsx8ZcM8VwGfzcxrG6Zz6P1CzL4csy/H7Msw93LMvhyzL8fsyzD38jz9u9t2ARdVty8CPl2fICKOi4jnVLePB14L3LOwGkqSJEnSGrNT3W0fAs6OiPuAs6v7RMQZEfHRappXAbsj4g7g74EPZaadakmSJElaAH9T3WGZ+W3gDQMe3w28o7r9JWDLgqsmSZIkScIj1ZIkSZIkTcwj1WsmIrYB24BjStdl3Zh9OWZfjtmXYe7lmH05Zl+O2Zdh7t3h6N9rylECyzH7csy+HLMvw9zLMftyzL4csy/D3Mvz9G9JkiRJkiZkp7rDIuLtEXF3RPwoIoZ++xQR50bEvRGxLyIuXWQdJUmSJGmd2anutruAtwFfHDZBRBwBXA6cB2wGLoyIzYupniRJkiStNwcq67DM3AsQEaMmOxPYl5kPVNN+HNgO+F/VkiRJkjRnHqleficCD/bd3189JkmSJEmaM49UFxYRXwBePKDossz8dJtFDHhs4JDuEbED2FHdPapdDTULZl+O2Zdj9mWYezlmX47Zl2P2ZZh7t/iXWksgIm4Cfjczdw8o2wq8LzPfWN3fCZCZH1xoJSVJkiRpDXn69/K7DTg5Il4REUcCFwC7CtdJkiRJktaCneoOi4ifj4j9wFbgcxFxffX4j0fEdQCZ+TTwHuB6YC/wycy8u1SdJUmSJGmdePq3JEmSJEkTcqAyPSMi7gK+V7oeIxwPfKt0JYY4KjNPmXRms5/KKmff5dzB7EuaOPuO5w7dzn6Vt3kw+1K6nDuYfUm29WWMnbud6iUQEVcCbwEeGfQCR++PrP8IeBPwJHBxZv7zBKv6XmaeMVVl5ygidne1fhFx2CByYzL7Ca1y9l3OHcy+pCmz72zu0O3sV3mbB7Mvpcu5g9mXZFtfxiS5+5vq5XAVcO6I8vOAk6vLDuBPF1AnSZIkSVp7dqqXQGZ+EXh0xCTbgb/KnluAYyPihMXUTpIkSZLWl53q1XAi8GDf/f3VY+P689lUZ266XL9p69bl5wbdrt8qZ9/luoHZlzRN/Vb5uc3bKm/z0O36rXL2Xa4bmH1JtvVljF03R/9eEhHxcuCzQ35T/Tngg5n5T9X9G4H/kJlfqU23g97p4TDloBMaj9mXY/blmH0Z5l6O2Zdj9uWYfRnm3i12qpdEQ6f6z4CbMvOa6v69wFmZ+fCI5XV2cIBVZ/blmH05Zl+GuZdj9uWYfTlmX4a5l+fp36thF/Br0fPTwOOjOtSDRMS5EXFvROyLiEvnU83JRcS/RMSeiLh9BqNQTluXKyPikeqvCjYee35EfD4i7quujxtjeZ3Nvku5V/WZWfZdzh3MvqQuZb9O7Q2YfSldyr2qj+1NufqYfZm6rE17A6uZvZ3qJRAR1wA3A6+MiP0RcUlEvDMi3llNch3wALAP+AvgN8dc/hHA5fRGEd8MXBgRm2f2BGbnZzLz9A58E3cVh4/GfilwY2aeDNxY3W+0JNl3JXeYUfZLkjuscfYRsSkitkbEpmkrPqGuZH8V69XegNmX0pXcwba+pKsw+xKuYr3aG1ix7O1UL4HMvDAzT8jMZ2fmSzLzLzPzisy8oirPzHx3Zv5EZm7JzHG/8TkT2JeZD2TmU8DH6Y0orgGGjMa+Hbi6un018NaWizP7Mcwwe3Mf0yKzrzrS9wA3APcU7FgXZ3tTjtmXY1tfjtmXYXtTzqyyt1MtmN3o4fOUwA0R8ZXoDczQNS/aOOW+un5hy/m6nn3Xc4fJsu967rDe2W8BjgM2Vddbpq/qWLqe/aq2N2D2pXQ9d7CtL8nsy1jV9gZWMPtnzb1K6pSI2AZsA47pf3jApF0bwe61mflQRLwQ+HxEfK36ZmlpLGn2S587DMy+67nDeme/B3isuv1YdX+Rlj77Ee3NsyJiKwczdbufMdv6cmzryzH7Mpa0vYEVyL7OI9VrJjM/k5k7gMf7Ht4PvLTv/kuAhxZasQaZ+VB1/QjwN/RObemSf42IEwCq60fqEyxj9kuQO0yWfadzh/XOPjMP0Psd2DnA5ur+wixB9pO2N98GfpnqtHrgJNzux2VbX45tfTlmX8ZKtjewGtnX2akWwG3AyRHxiog4EriA3ojinRARR0fE8zZu0/ugfdfouRZuF3BRdfsi4NMt5+ts9kuSO0yWfWdzB7OHXsc6M29edId6SbKftL15CngOB0+r/3fUsi85QNyKZ9/ZNmdJcgfb+pLMvoyVa29ghbPPTC8dv9Abke5eeqN7Xzqg/GLgm8Dt1eUdLZa5u3b/TcDXgfuBy0o/51rdTgLuqC53l64fcA3wMPADet8GXgK8gN7ogPdV189f9uy7lvuss+9q7mZf/Hl2KvsZ576J3rftP6qW9/u1aTcB3wC+U11vMnvb+mXPvqu5m33x59mp7NelvVnF7DcuUS1MHVUNi/914Gx6L/RtwIWZeU/fNBcDZ2Tme8ZYrn8SX4jZl2P25Zh9GfXcqyPQW4A9WTsLoPqt9Q30OtcHgHMy8+ZF1neVuM2XY/blmH0Z5l6ep393n8PiS5JmIkefVr8xQNwBygwQJ0nSUrJT3X1th8X/hYi4MyKujYiXDiiXJGmoLDxAnCRJy8pOdfe1GRb/M8DLM/NU4Asc/LPyQxcUsSMidkfEbuD42VZTo5h9OWZfjtmXMU3uDUeyiw5ktgzc5ssx+3LMvgxz7xZ/U91x1W/c3peZb6zu7wTIzA8Omf4I4NHMPGZQed90/vaiELMvx+zLMfsyZpl71ZG+h97I4Y/h0eyR3ObLMftyzL4Mcy/PI9Xd1zgs/sb/qFXOB/YusH6SpPWwhV6HeuMvubaUrY4kSd3wrNIV0GiZ+XREvAe4HjgCuDIz746I99MbPn8X8NsRcT7wNPAovb/YkiRpljYGMgMHMpMk6Rl2qpdAZl4HXFd77L19t3cCOxddL0nS+sjMAxGxmSF/ySVJ0rry9G8BDj4jSWrWNJCZJEnryCPVayYitgHbgGP6Hjtk8JmIcPCZORiUvRbD7Msx+zJK5V7tT9b6SLbbfDlmX47Zl2Hu3eHo32uqf5TAaoTxG+gNPnMAOCczb65Nv/YflGbFERrLMftyzL6MRebu6OCHcpsvx+zLMfsyzL28qU//johXRcQVEXFtRLxrFpXSwm0MPnOAAYPP9H1QugG4Z9Ap4p4+LkmzscTtaePo4Ev83LTE3O4kzVurTnVEvCsiPtJ3/w8i4mMAmbk3M98J/BLgNyRzEBHnRsS9EbEvIi4dUP6ciPhEVX5rRLx8nOVXRxI2A+cw+MjCyA9Ky9Dpblr/qPJp5p133bpeXrpuUgnTbJdt2tMOm/oLWmnWZvEZZZX3k+5npRnJzMYL8FzgQeBY4C3AV4F/01d+PvAl4FfaLM9L+wu9v9G6HzgJOBK4g17Ht3+a3wSuqG5fAHyixXJ3j1GHTcA3gO9U15tq5Vursqyut44zf980WweVTVveov5Dy6eZt0320y6/y+Wl6zbtdu9ltpdFZt/UXsxz/km2y9r8I9vTLufelN2sn9uit5txt4t69tMuv8vlpes2Kvum7a7kvqrkumdR3ma797KYi7mXv7QaqCwzn4yIa4APAOcBZ2fmd/vKdwG7IuJzwF+3WaZaOxPYl5kPAETEx4Ht9L513bAdeF91+1rgTyIisnqXtRURR1Y3++cL4CngVOAU4G7gqYh4dt80X+PQ/y79WrWsjeW8hoNHugFOj4gv963raOBODg6UdirwRLVu6H2pM6r8aHpfNmyUn0bvSMlG/evrf01E3NqyfqcPKLu1b931ebcAh/wevUH/WQD9yx9V91v65p/muWWL5zfu8++v36LXPW72wMjtvv+x+v0200TftE3TTLLco4FXA3cBTw6Ypr+8//2yMc0meu/pPVV5fV1H08v0Lg59P214LvAq5jjOwoSvzaD2ZFA+DHlsWHvTZt1t2pum13wvh7ane6v29pD5MvMHTGjOTikkagAAIABJREFU2/xTwFeAHFDvNs+tabub9r007H0x7n5mrN+L9x0tHbZdjdqPQW97qpc/waHv5/7y+nY/z/3sotc97m/16/+vvrHdQfn97Kh1T/v5xf1s95Y79ro73NbTcpouLHfsdU+S+zi/qb6S3hHRf5+Z9z9Tw4izIuLDEfFn1P5LWTNxIr2zBDbsrx4bOE1mPg08DrygvqCI2BERuyNiN3D8mPV4AriVgx8C6mWn0fvC5dQB09zFoacE3lUrP4VDTy8/ZcblTesfVT7uvHsYYET29dMlx6lb18sXve5xs++6o4Gfqq4Hld0B/C29D6P1adqWXzei/M6q/I4R5SNP4y2UfVN7AKOzbTP/KE3bbdP6N9rTNzG4PQU4uuF0za5u803PrWm725hmWHZN5aPeF+PuZw77vTiMzL7+M6pZ7+dKli963WNlnwd/4vYmetvfuJ9RVmk/6X52hYzKvdo/TNpWrnv5yH3sUGOcVvDXwCPA20ofXl+nC/B24KN9938V+OPaNHcDL+m7fz/wgobldumUwLmfnjRq/S3r5ymBK3ZKYOnLlO+JptMZi5aXzH5J2pNpTg8fa/4ubfMtntu8T9MduvxZbBejsp/3dlmyvHTdZrHdT/Oenra85LpnUd6U/Tpns8jsWZP2Zt7lTfOOfA1avkF+B/gUcBbwD20X7mX6S/Vmur7v/k5gZ22a66k+HND77/FvQe/v0kYst1MftBbZ8JS+dC37dbp0JfsWDX5nfwPYpnze2U/THjRl22L+aTvFU/2ueNz5u7LNj/G6zvPLpDbbdSc7F10vL123puy9LO7CjDp308y7DuUNuXf6i/culzfNO/I1aPHm+Fl6p388r7r/VeD00m/adbnQ6yQ/ALyCgwOVvbo2zbs5dKCyT7ZYrjuccq+p2a959i0a/LkeLV1E+byyb5PNnOeftlPskerm5zeXs5qalj+H57JU2a/Sxey7kX2Lfd3EnZt1L2/IvdNfCHS5vGneUZeRA5VFxMuAjwJvzszvVA//EfDvgYtHzavZyMynI+I99I5GHwFcmZl3R8T76b2BdgF/CXwsIvYBj9LrWEsqrPo9zhYOH8xrD4cOnLOnf77MPBARm4fM+8w0jBgwpnT5HNUH9xtr4Jw22TYY+drNe/0zqH+njdqump77LN43kmaqqb0cVT7NvOtQPtS0beU6l0+zj42qV641ExG7M/OM0vVYR2ZfziKzr4/2S+0/4Ed0uFfSrLJvynURlum1s70px+zLMfty6tk3tZejyqeZdx3Ka9O6zRfW6i+1JEljG3lE1SNmk+nCkVpfO0lqZ5qznkqfcdX1cnWLneo1ExHbgG3AMaXrsm7MvpxC2U91mvCqmEf2ftBoZntTjtmXY/blmH0Z5t4dnv69pjxNpByzL2fR2S/TacLz5nZfhrmXY/blmH05Zl+GuZf3Y6UroOEi4vkR8fmIuK+6Pm7IdD+MiNury65F11NaVxGxKSK2Vp3nw2Tmgcy8ed071JIkSavMTnW3XQrcmJknAzdW9wf5bmaeXl3OX1z1pPXVN2DWDcA9wzrWkiRJWm12qrttO3B1dftq4K0F6yLpUP0DkR1X3ZckSdKasVPdbS/KzIcBqusXDpnuqIjYHRG3RIQdb2kxNgYiO8AaD0QmSZK07hz9u7CI+ALw4gFFl42xmJdl5kMRcRLwdxGxJzPvH7CuHcCO6u7x49dWkzL7cqbJftRAY134a6euc7svw9zLMftyzL4csy/D3LvF0b87LCLuBc7KzIcj4gTgpsx8ZcM8VwGfzcxrG6ZzlMBCzL6ccbLv+830cfSORG+24zw5t/syzL0csy/H7Msx+zLMvTxP/+62XcBF1e2LgE/XJ4iI4yLiOdXt44HX0usISJqOv5mWJElSIzvV3fYh4OyIuA84u7pPRJwRER+tpnkVsDsi7gD+HvhQZtqpllpo+EssfzMtSZKkRv6musMy89vAGwY8vht4R3X7S3gETRpb/fTuiDjk9G5/My1JkqQ2PFItaV01nt6dmQcy82Y71JIkSRrGI9WS1tXG6d3g6d2SJEmakJ3qNRMR24BtwDGl67JuzL6cQdl7evdiuN2XYe7lmH05Zl+O2Zdh7t3hX2qtKYfeL8fsyzH7csy+DHMvx+zLMftyzL4Mcy/P31R3WES8PSLujogfRcTQN0pEnBsR90bEvoi4dJF1lCRJkqR1Zqe62+4C3gZ8cdgEEXEEcDlwHrAZuLA6pVWSJEmSNGf+prrDMnMvQESMmuxMYF9mPlBN+3FgO72/CpIkSZIkzZFHqpfficCDfff3V49JkiRJkubMI9WFRcQXgBcPKLosMz/dZhEDHhs4+lxE7AB2VHePaldDzYLZl2P25Zh9GeZejtmXY/blmH0Z5t4tjv69BCLiJuB3M3P3gLKtwPsy843V/Z0AmfnBhVZSkiRJktaQp38vv9uAkyPiFRFxJPz/7N1/8GR1fef75ysDIxXGCwMUiqAFGq7r6BjcS7mZFapIXBTUYYyJW7C3ErgXa8pEbv64SSUzRVXW601KsveP7CYhYdVQM7EqqGsly6jUBSQxbipI+LoRhwGRYcrSuVASAkWJxlWS9/2jzxebnu4+p/uc0+9Pd78eVaf6x+f0OZ/zOp/z6f70j9NcDRxKrpOZmZmZmdla8KC6YJJ+VtJxYBfwOUl3Vve/QtIdABHxPHADcCfwMPCpiDiSVWczMzMzM7N14q9/m5mZmZmZmc3JJyqzF0h6EPh+dj2mOAt4KrsSE5wSEW+Y98HOvpVVzr7k3MHZZ5o7+8Jzh7KzX+U2D84+S8m5g7PP5L4+x8y5e1Btw74fERdnV2ISSRul1k/SCSeRm5Gzn9MqZ19y7uDsM7XMvtjcoezsV7nNg7PPUnLu4Owzua/PMU/u/k31EpB0q6Qnq3ecxpVL0u9JOirpq5L+5aLraGZmZmZmto48qF4OB4ArppRfCVxYTXuBP1pAnczMzMzMzNaeB9VLICK+CDw9ZZY9wJ/EwJeA0yWdM8eqPjJXBRen5Pq1rVvJ2wZl12+Vsy+5buDsM7Wp3ypvW99Wuc1D2fVb5exLrhs4+0zu63PMXDef/XtJSDof+Oy4H81L+ixwU0T8dXX7HuA3ImJjZL69DD7JhpYnnbDZOPs8zj6Ps8/h3PM4+zzOPo+zz+Hcy+JB9ZKoGVR/DvjwyKD61yPiy1OWV+zJAVads8/j7PM4+xzOPY+zz+Ps8zj7HM49n7/+vRqOA68cun0e8PgsC5B0haRHqpOd7eu0dh2Q9A1JhyV9pYOzULatywknjpN0hqS7JT1aXW6fYXnFZl9S7lV9Osu+5NzB2WcqKft16m/A2WcpKfeqPu5v8urj7HPqsjb9Daxm9h5Ur4ZDwC9q4KeAZyPiiaYPlrQFuJnBCc92ANdI2tFPVVv56Yi4qIB34g5w4onj9gH3RMSFwD3V7VpLkn0puUNH2S9J7uDsM5WS/QEW2N9I2iZpl6RtbSvewlpmX4BScgf3N5kO4OwzHGC9+htYsew9qF4Ckm4D7gVeK+m4pOslvV/S+6tZ7gCOAUeBjwK/POMq3gwcjYhjEfED4BMMTn5mY0w4cdwe4GB1/SDw7oaLc/Yz6DB75z4jZ59jkf1NNZB+CLgLeCh5YJ3OfX0e9zd5nH0O9zd5usreg+olEBHXRMQ5EXFyRJwXEX8cEbdExC1VeUTEByLiNRGxc/QEZQ2cC3xr6Pbx6r6SBHCXpC9rcGKG0rxs89sB1eXZDR9Xeval5w7zZV967uDsM5WefV/9zU5gO7CtutzZvqozW9fss5WeO7i/yeTsc6xqfwMrmP1JvVfJloHG3FfaGezeEhGPSzobuFvS16p3lpZd6dk79zzOPs+6Zn8YeKa6/kx1e9HWNftszj2Ps8/j7POsXPb+pHrNSNot6SPAaUN3tz7RWd8i4vHq8kngzxl8taUk31b13+DV5ZOjMyxj9kuQO8yXfdG5g7PPtATZ99LfRMRzDH5/9zZgR3V7odY1+2xLkDu4v8nk7HOsZH8Dq5H9KA+q10xEfCYi9gLPDt19P3ChpAskbQWuZnDysyJIOlXSSzevM3jB9+D0Ry3cIeDa6vq1wO2jMyxb9kuSO8yXfbG5g7PPtCTZ99bfRMRzEXFvxoB63bPPsiS5g/ubTM4+x8r1N7A62Z8gIjwVPjE4I90jDE5Etm9M+XXA3wNfqab3NVjmxsjtdwBfBx4Dbsze5pG6vRp4oJqOZNcPuA14Avghg3cDrwfOZHB2wEeryzOWPfvScu86+1Jzd/bp21lU9uvS3zh7595X9qXm7uzTt7Oo7Nelv1nF7DcnVQuzQmlwWvyvA5cz2NH3A9dExEND81wHXBwRN8ywXP9JfBJnn8fZ53H2OZx7Hmefx9nncfY5nHs+f/27fD4tvpmZmZmZWaE8qC5f09Pi/5ykr0r6tKRXjik3MzMzMzOzjnlQXb4mp8X/DHB+RLwR+Dw/+rPyFy9I2itpQ9IGcFa31bRpnH0eZ5/H2edw7nmcfR5nn8fZ53DuZfFvqgsnaRfwwYh4e3V7P0BEfHjC/FuApyPitHHlQ/P5txdJnH0eZ5/H2edw7nmcfR5nn8fZ53Du+fxJdflqT4u/+T9qlauAhxdYPzMzMzMzs7V1UnYFbLqIeF7SDcCdwBbg1og4IulDDE6ffwj4FUlXAc8DTzP4iy0zMzMzMzPrmQfVSyAi7gDuGLnvN4eu7wf2L7peZmZmZmZm685f/zYzMzMzMzObkwfVZmZmZmZmZnPy17/XjKTdwG5g6tnBrXvOPo+zz+Psczj3PM4+j7PP4+xzOPdydPKXWpJOBb4I/PuI+GzrBVrvfOr9PM4+j7PP4+xzOPc8zj6Ps8/j7HM493yNvv4t6Zck/eHQ7d+S9PGhWX4D+FTXlbMBSVdIekTSUUn7xpS/RNInq/L7JJ2/+FqamZmZmZmtn6a/qT4I7JZ0uqR3Ae8E9gJI+jfAQ8C3+6niepO0BbgZuBLYAVwjacfIbNcDz0TETwC/C/zOHOvZJmmXpG19lNtkfWefWZ5dt2WWnd06Z2/Lq8922XbZ2cfkOvf12fUrOTv39WYdiYhGE/AfGAzujgGvGbr/t4H/CNwF3A78WNNlemqU+y7gzqHb+4H9I/PcCeyqrp8EPEX11f4py90Yur4N+Cbwnepy28i8rcqH5tk1rqz08rbLzsw+szy7bnXZZ08N2lyR+7Wr7Gc9bjzN3c6KafN97/cm7bLBcTfXMVmXffYx2Wd5dt2WOfuS69ZF9p4WNzn3/GmWE5XdCjwM7ImIxzbvjIgbASRdBzwVEf88wzKt3rnAt4ZuHwf+1aR5IuJ5Sc8CZzIYXDexE9jOoPMEuEjSfdV1AW8aKX+TpC8NPX5c+X3A5g/2twEPVPM8I+mNwPeqsgBOBb46Uv7dat0AP15TfurI8n8SeG6o/uPKv9uwfrOue0dEbK67ib6zHy2/SNLfVtcDuGjC+je3r658Wv0Wve6dwL3MSNLWoTq9cPfIfaO3m8yz2fbeABymWZvefNy0XCeVZ+73mbKvPvF4aMr2wyCjNwBHePHxSrXecbnGSPmDvLgv2Jzn1KrOw+VN1j183L++evxwX7Y5z3D5tPpt1r9J/TbLN+v3OuDwjP1NIz0eE3XPBZvzTMtm2u2642bac0Hd89DoMTFrf+O+Pq+vLzn7le7rN/X8PEvDeUpY7szrjogfMifnvtjcZxlU/ybw95MeExEHZl25NaIx98Uc8yBpL9XX9oGzhooOA89U159h8EJu2IMty9/AizvlNwB/W1N+X8vyL9WU1z3+b+d87NgnnMTsM8sXve7DjDEl+y6MG1wNl73wAh4YHkDUtauS9+u48lmzH32RO7r9o9kNv1E2LddJ5d8dKf9qTfmkdU8qn/b4Xus37o28ntt8G3XPBXXZbM4z7g0RmO+56L4GZeOWPWubd1/fXfkqZV/yfh1XnvE8axNMy7168/pNjO8r4Udv+m++eTyufNLrm+HHD78BOmv5pL68af023zyfVL/hN7dnqd+pkmZ/47rhVwp+Ffgz4DLgr7I/Xl+niQV8/bu6vY1+vz5d7NeXppW3XXZ29tnl2XWry77N1KBt7KrKorrcNUu7yc6uz+xbZjexzOX9tvm27aLNfu/iuJn2+LbLbpJ922Oq5PLsui1z9iXXLTv77G0rvXxS7rR87brO5XWPnboPGuykn2Ewyn9pdfvvgIuarsBTu4nBIPkYcAGwlcG7+K8fmecDwC3V9auBTzVY7kJ/e5Hd8bQp77LTy8je0/zZ17SLVgOAWdvNsk+j2Tc45lbyN4h9l7dt8w2Oh1Z1m3e/V+UzvaEwZRvm6uvbtnlPi5ucfRnZt+kzsvvS0strci/6zd+Sy+seO3Uf1OygVzEY0L1u6L7rgAPZB+06TcA7gK8DjwE3Vvd9CLiqun4K8F+Aowy+SvfqBsv0E07e/nT2S5B9F094rNnAuavs67Kry3Xdy9vkXrOsTj9Fn3O/z/UJQsbkvt7Zr+NER4O7tv3NqpfX5F70GwIll9c9dtqkagG2ZuQ/iU/j7PPMkr2kXQz+1WAbg9/7vC0i7h2ZZxuD3wT1csKoVeJ2n6PL3EdPMAe86PfcdeUd1mEpjjm3+TzOPs9w9m36jLb9zaqXT8t96PET+0qXTy6f93nGg+o15SecPM4+zyxPOosYIKwTt/scXefe9oXMOnGbz+Ps83Q5uCt54FVC+ci8bvPJPKheM5J2A7uBn46IC7Prs06cfZ5x2TcZNHuA0J7bfQ7nnsfZ53H2eZx9DudeDg+q15Tf0crj7POMfC2t9uvd1h23+xzOPY+zz+Ps8zj7HM493yz/U21mtkoO0+D/N83MzMzMpvmx7ArYZJLOkHS3pEery+0T5vsnSV+ppkOLrqfZMqq+zr0DeBv+vbSZmZmZzcmD6rLtA+6pfiNxT3V7nH+MiIuq6arFVc9suUXEcxFxrwfUZmZmZjYvD6rLtgc4WF0/CLw7sS5mZmZmZmY2woPqsr0sIp4AqC7PnjDfKZI2JH1JkgfeZmZmZmZmC+ITlSWT9Hng5WOKbpxhMa+KiMclvRr4C0mHI+KxMevaC+ytbp41e21tXs4+j7PP4+xzOPc8zj6Ps8/j7HM497L4L7UKJukR4LKIeELSOcAXIuK1NY85AHw2Ij5dM59PvZ/E2edx9nmcfQ7nnsfZ53H2eZx9Dueez1//Ltsh4Nrq+rXA7aMzSNou6SXV9bOAtwAPLayGZmZmZmZma8yD6rLdBFwu6VHg8uo2ki6W9LFqntcBG5IeAP4SuCkiPKg2MzMzMzNbAP+mumAR8Q/AW8fcvwG8r7r+N8DOBVfNzMzMzMzM8CfVZmZmZmZmZnPzJ9VrRtJuYDdwWnZd1o2zz+Ps8zj7HM49j7PP4+zzOPsczr0cPvv3mvJZAvM4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz+evfZmZmZmZmZnPyoLpgkt4r6Yikf5Y08d0nSVdIekTSUUn7FllHMzMzMzOzdeZBddkeBN4DfHHSDJK2ADcDVwI7gGsk7VhM9czMzMzMzNabT1RWsIh4GEDStNneDByNiGPVvJ8A9gD+r2ozMzMzM7Oe+ZPq5Xcu8K2h28er+8zMzMzMzKxn/qQ6maTPAy8fU3RjRNzeZBFj7ht7SndJe4G91c1TmtXQuuDs8zj7PM4+h3PP4+zzOPs8zj6Hcy+L/1JrCUj6AvBrEbExpmwX8MGIeHt1ez9ARHx4oZU0MzMzMzNbQ/769/K7H7hQ0gWStgJXA4eS62RmZmZmZrYWPKgumKSflXQc2AV8TtKd1f2vkHQHQEQ8D9wA3Ak8DHwqIo5k1dnMzMzMzGyd+OvfZmZmZmZmZnPyicrsBZIeBL6fXY8pzgKeyq7EBKdExBvmfbCzb2WVsy85d3D2mebOvvDcoezsV7nNg7PPUnLu4Owzua/PMXPuHlQvAUm3Au8Cnhy3gzX4I+v/BLwD+B5wXUT89zlW9f2IuLhVZXskaaPU+kk64SRyM3L2c1rl7EvOHZx9ppbZF5s7lJ39Krd5cPZZSs4dnH0m9/U55sndv6leDgeAK6aUXwlcWE17gT9aQJ3MzMzMzMzWngfVSyAivgg8PWWWPcCfxMCXgNMlnbOY2pmZmZmZma0vD6pXw7nAt4ZuH6/um9VHuqlOb0quX9u6lbxtUHb9Vjn7kusGzj5Tm/qt8rb1bZXbPJRdv1XOvuS6gbPP5L4+x8x189m/l4Sk84HPTvhN9eeAD0fEX1e37wF+PSK+PDLfXgZfD4eWJ52w2Tj7PM4+j7PP4dzzOPs8zj6Ps8/h3MviQfWSqBlU/2fgCxFxW3X7EeCyiHhiyvKKPTnAqnP2eZx9Hmefw7nncfZ5nH0eZ5/Duefz179XwyHgFzXwU8Cz0wbU40i6QtIjko5K2tdPNecn6RuSDkv6SgdnoWxbl1slPVn9VcHmfWdIulvSo9Xl9hmWV2z2JeVe1aez7EvOHZx9ppKyX6f+Bpx9lpJyr+rj/iavPs4+py5r09/AambvQfUSkHQbcC/wWknHJV0v6f2S3l/NcgdwDDgKfBT45RmXvwW4mcFZxHcA10ja0dkGdOenI+KiAt6JO8CJZ2PfB9wTERcC91S3ay1J9qXkDh1lvyS5g7PPVEr2B1iv/gacfZZScgf3N5kO4OwzHGC9+htYsew9qF4CEXFNRJwTESdHxHkR8ccRcUtE3FKVR0R8ICJeExE7I2LWd3zeDByNiGMR8QPgEwzOKG5jTDgb+x7gYHX9IPDuhotz9jPoMHvnPiNnn8P9TR5nn8f9TR5nn8P9TZ6usveg2qC7s4f3KYC7JH1ZgxMzlOZlm1+5ry7Pbvi40rMvPXeYL/vScwdnn6n07Fe1vwFnn6X03MH9TSZnn2NV+xtYwexP6r1KVhRJu4HdwGnDd4+ZtbQz2L0lIh6XdDZwt6SvVe8sLY0lzX7pc4ex2ZeeOzj7TEuf/ZL2N+Dssyx97uD+JpOzz7Gk/Q2sQPaj/En1momIz0TEXuDZobuPA68cun0e8PhCK1YjIh6vLp8E/pzBV1tK8m1J5wBUl0+OzrCM2S9B7jBf9kXnDs4+0xJkv5L9DTj7LEuQO7i/yeTsc6xkfwOrkf0oD6oN4H7gQkkXSNoKXM3gjOJFkHSqpJduXgfeBjw4/VELdwi4trp+LXB7w8cVm/2S5A7zZV9s7uDsMy1J9ivX34Czz7IkuYP7m0zOPsfK9TewwtlHhKfCJwZnpHuEwdm9940pvw74e+Ar1fS+BsvcGLn9DuDrwGPAjdnbPFK3VwMPVNOR7PoBtwFPAD9k8G7g9cCZDM4O+Gh1ecayZ19a7l1nX2ruzj59O4vKfl36G2fv3PvKvtTcnX36dhaV/br0N6uY/eakamFWqOq0+F8HLmewo+8HromIh4bmuQ64OCJumGG5/pP4JM4+j7PP4+xzOPc8zj6Ps8/j7HM493z++nf5fFp8MzMzMzOzQnlQXb6mp8X/OUlflfRpSa8cU25mZmZmZmYd86C6fE1Oi/8Z4PyIeCPweX70Z+UvXpC0V9KGpA3grG6radM4+zzOPo+zz+Hc87TJXtI2SbskbeupeivN7T6Ps8/h3Mvi31QXTtIu4IMR8fbq9n6AiPjwhPm3AE9HxGnjyofm828vkjj7PM4+j7PP4dzzzJJ9NZB+CNgOPAPsiIjn+qzfKnO7z+Psczj3fP6kuny1p8Xf/B+1ylXAwwusn5mZmbWzk8GAelt1uTO3OmZmNouTsitg00XE85JuAO4EtgC3RsQRSR9icPr8Q8CvSLoKeB54msFfbJmZmdlyOMzgE2qqy8OJdTEzsxl5UL0EIuIO4I6R+35z6Pp+YP+i62VmZmbtRcRzknYw+IT6sL/6bWa2XDyoNjMzM0tWDaTvza6HmZnNzoPqNSNpN7AbmHoiM+ues8/j7PM4+xzOPY+zz+Ps8zj7HM69HD7795ryWQLzOPs8zj6Ps8/h3PM4+zzOPo+zz+Hc87U++7ekyyT9N0m3SLqsgzqZmZmZmXXC/wFuZn1rNKiW9EuS/nDo9m9J+nh1M4DngFOA491X0SRdIekRSUcl7RtT/hJJn6zK75N0/hzr8BPOBKueTdvtm/b4Zc+uz/ovezY2Wd2+7fOYM7MXG/oP8LuAh5btuOm7PzEr0TK266afVB8Edks6XdK7gHcCe6uy/xYRVwK/AfxfPdRxrUnaAtwMXAnsAK6pzhA67HrgmYj4CeB3gd+ZcR21TzhtO/W+X0T2Vb4MT8Zttr3tvp/2+GXProvjYtp62y57GZ9wFqXvbNq0mz6PuRIsa19v9dq8gZq8X4r+D/DM/qRJeclKr3vf/WGbx5bcLhbRrnvZvohoNAH/gcHg7hjwmjHlW4FPN12ep8a57wLuHLq9H9g/Ms+dwK7q+knAU1S/l5+y3I2RdXyHwbcOvrO5rKHybcA3q7JvAtu6LG+QQa/rn1Zel83Q43c13a7h7Od5fMfb3nbfT3x8H9l1mX3f2dTUo9djroup7b6pa/d91a1JNj0fc3X7trdjrknufR5zbbNv2+47Kp+YzazZddnm2+6bPvdt3/ulbfZNlp+1b9oe7w3KF/5c0mW777O/Kb1+s+6bWdp8xjE547anjkvm3bZZNv5fVBt31cj97wH+M/BJ4LI+Gu06T8DPAx8buv0LwB+MzPMgcN7Q7ceAs2qWO+3gOx04uZq2ApeONO5Lh8pPnlC+dUr5JVX58Dzbq/lG1721mn/08cPl0+o3qbxp/U6fkM1m+fZpB2YH2W/W4ZJqXcP17iL7uu2ry350+7eP7NPRZc+y7s15Lh1ZblfZj3bal4ysY9q2Ncl+cxnD7bquXTU55pq06c11XzIh17pjrm7fbAVOnrEvGze4G923Tdr9uLoNb1tdm63Lftq6m2Tftt3Pesy1eaE1btsn3R63baP59N3zcDgsAAAgAElEQVTfLG1fP8NxMi73Js8FdftmWn/Udt+0fR6a9ZidOXvq+5tp7b5unjbZ1rXpuv1a19/UZVtXvpl/2w8OlrGvH30eHfcc2kf9JvV3jd9Apf71TdvX9XXb3vY1xrTXX331OXP39S/kPkNH/6fAk8B7Zn2S8DT/BLyXEwfVvz8yzxFOHFSfOWZZe4GNavrGSNm0Tq9ucNG20687uNoefF3Ub9LArlGnNyl72g/s2m5b246v7klp2sBuIU84U7Jv+4ZGH+2qyX7vqk23Gdw0eqHVIvtp2z/tybDNtnWVfV277+qYm/aJ6rz9TV2bb/tCq+0x3+dxMeuAfqb+Zobn/NG20vS5IHPfLLo/miv7KdmOHr+zztMm27o2PdqfjKvLtP6m69dXs/Y5q9zXL/pDi3Gf6PaRe5PXN31ve5PXll33OTP19WOPg4ad/K8CfwZcBvzVIgeV6z6xgK9/N6xHq6/FTSung68J911ek8tM72gx21d0es+m7b5v0bYX/vXr0XbfZzZN9l2b3Nusu222HbT7uevXZN012fR+zHV0bHSyfAr6SmDbx/dZ3neb72A/9vqzgY72bV+vEVKzX8C+Se1ParKf+XmMFenrF3TMtOoPp7X5zGOyi+z6bNfTytvUrUmlf4bB14tfWt3+O+CiWTfe03wTg0HyMeACBu+gPAC8fmSeDwC3VNevBj7VYLkL/a1XTV3Sf+/UQf17+U31smfTJruun3DGZb+AbUvZdw2e8Nq+GGj7Qivl905dtbtlmmbsb4o7D8KCs+r0Dcou+5sOjtnefyOZuW/6zH7Vs23b7qZlv8x9/SL2a5ftous232e2XW/7Irdt2qTqwWNJehXwBeCdEfFwdd91DH47fd3EB1qnJL0D+I/AFuDWiPhtSR9icAAdknQK8HHgTcDTwNURcaxmmRtR0J/EV2ff2wkcjojnsuvTp1mzX6dsRnW97Ytu95n7rm7dbeo2dGbO7cAzwI66ZYxm32f92lqlY26WNj/PfrXJuu5v2rbLVWrXdbrMvslxscrZzrptq9TXL9N+9ev6fFMH1ba6Sjv41omzz+Psu9P2hZYtht/Ey+M2n6fjQfUuBn/tsw14DnhbRNzbxbJXkdt9Duee76TsCpiZ2fKpBlx+YblivF/NTnCYwSfUVJeHE+tiZoXyoHrNSNoN7AZOy67LunH2eZx9Hmefw7nncfZ5+sg+Ip6TtAN/g2Mqt/sczr0c/vr3mvLXRPI4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz/Vh2BczMzMzMskjaJmlXdU4BM7OZ+evfBZN0BvBJ4HzgG8C/jYhnxsz3T/zoNz7fjIirFlVHMzMzs2U1enZvST7rvZnNzJ9Ul20fcE9EXAjcU90e5x8j4qJq8oDazMzMrJmdDAbU26rLnbnVMbNl5EF12fYAB6vrB4F3J9bFzMzMbNVsnt37OXx2bzObk7/+XbaXRcQTABHxhKSzJ8x3iqQN4Hngpoj4r+NmkrQX2FvdPKvz2tpEzj6Ps8/j7HM49zzOPs+82fvs3u253edw7mXx2b+TSfo88PIxRTcCByPi9KF5n4mI7WOW8YqIeFzSq4G/AN4aEY/VrNdnCUzi7PM4+zzOPodzz+Ps8zj7PM4+h3PP50+qk0XEv5lUJunbks6pPqU+B3hywjIery6PSfoC8CZg6qDazMzMzMzM2vNvqst2CLi2un4tcPvoDJK2S3pJdf0s4C0MzmJpZmZmZmZmPfOgumw3AZdLehS4vLqNpIslfaya53XAhqQHgL9k8JtqD6rNzMzMzMwWwF//LlhE/APw1jH3bwDvq67/Df77BzMzMzMzsxT+pNrMzMzMzMxsTv6kes1I2g3sBk7Lrsu6cfZ5nH0eZ5/Duedx9nmcfR5nn8O5l8N/qbWmfOr9PM4+j7PP4+xzOPc8zj6Ps8/j7HM493z++nfBJL1X0hFJ/yxp4oEi6QpJj0g6KmnfIutoZmZmZma2zjyoLtuDwHuAL06aQdIW4GbgSmAHcI2kHYupnpmZmZmZ2Xrzb6oLFhEPA0iaNtubgaMRcaya9xPAHvxf1WZmZmZmZr3zJ9XL71zgW0O3j1f3mZmZmZmZWc/8SXUySZ8HXj6m6MaIuL3JIsbcN/bsc5L2Anurm6c0q6F1wdnncfZ5nH0O557H2edx9nmcfQ7nXhaf/XsJSPoC8GsRsTGmbBfwwYh4e3V7P0BEfHihlTQzMzMzM1tD/vr38rsfuFDSBZK2AlcDh5LrZGZmZmZmthY8qC6YpJ+VdBzYBXxO0p3V/a+QdAdARDwP3ADcCTwMfCoijmTV2czMzMzMbJ34699mZmZmZmZmc/KJyuwFkh4Evp9djynOAp7KrsQEp0TEG+Z9sLNvZZWzLzl3cPaZ5s6+8Nyh7OxXuc2Ds89Scu7g7DO5r88xc+4eVNuw70fExdmVmETSRqn1k3TCSeRm5OzntMrZl5w7OPtMLbMvNncoO/tVbvPg7LOUnDs4+0zu63PMk7t/U70EJN0q6cnqHadx5ZL0e5KOSvqqpH+56DqamZmZmZmtIw+ql8MB4Iop5VcCF1bTXuCPFlAnMzMzMzOztedB9RKIiC8CT0+ZZQ/wJzHwJeB0SefMsaqPzFXBxSm5fm3rVvK2Qdn1W+XsS64bOPtMbeq3ytvWt1Vu81B2/VY5+5LrBs4+k/v6HDPXzWf/XhKSzgc+O+5H85I+C9wUEX9d3b4H+I2I2BiZby+DT7Kh5UknbDbOPo+zz+Psczj3PM4+j7PP4+xzOPeyeFC9JGoG1Z8DPjwyqP71iPjylOUVe3KAVefs8zj7PM4+h3PP4+zzOPs8zj6Hc8/nr3+vhuPAK4dunwc8PssCJF0h6ZHqZGf7Oq1dByR9Q9JhSV/p4CyUbetywonjJJ0h6W5Jj1aX22dYXrHZl5R7VZ/Osi85d3D2mUrKfp36G3D2WUrKvaqP+5u8+jj7nLqsTX8Dq5m9B9Wr4RDwixr4KeDZiHii6YMlbQFuZnDCsx3ANZJ29FPVVn46Ii4q4J24A5x44rh9wD0RcSFwT3W71pJkX0ru0FH2S5I7OPtMpWR/gPXqb8DZZykld3B/k+kAzj7DAdarv4EVy96D6iUg6TbgXuC1ko5Lul7S+yW9v5rlDuAYcBT4KPDLM67izcDRiDgWET8APsHg5Gc2xoQTx+0BDlbXDwLvbrg4Zz+DDrN37jNy9jnc3+Rx9nnc3+Rx9jnc3+TpKnsPqpdARFwTEedExMkRcV5E/HFE3BIRt1TlEREfiIjXRMTO0ROUNXAu8K2h28er+0oSwF2SvqzBiRlK87LNbwdUl2c3fFzp2ZeeO8yXfem5g7PPVHr2q9rfgLPPUnru4P4mk7PPsar9Daxg9if1XiVbBhpzX2lnsHtLRDwu6Wzgbklfq95ZWnalZ+/c8zj7PM4+j7PP4dzzOPs8zj7PymXvT6rXjKTdkj4CnDZ0d+sTnfUtIh6vLp8E/pzBV1tK8m1V/w1eXT45OsMyZr8EucN82RedOzj7TEuQ/Ur2N+DssyxB7uD+JpOzz7GS/Q2sRvajPKheMxHxmYjYCzw7dPf9wIWSLpC0FbiawcnPiiDpVEkv3bwOvA14cPqjFu4QcG11/Vrg9tEZli37Jckd5su+2NzB2WdakuxXrr8BZ59lSXIH9zeZnH2OletvYHWyP0FEeCp8YnBGukcYnIhs35jy64C/B75STe9rsMyNkdvvAL4OPAbcmL3NI3V7NfBANR3Jrh9wG/AE8EMG7wZeD5zJ4OyAj1aXZyx79qXl3nX2pebu7NO3s6js16W/cfbOva/sS83d2advZ1HZr0t/s4rZb06qFmaF0uC0+F8HLmewo+8HromIh4bmuQ64OCJumGG5/pP4JM4+j7PP4+xzOPc8zj6Ps8/j7HM493z++nf5fFp8MzMzMzOzQnlQXb6mp8X/OUlflfRpSa8cU25mZmZmZmYd86C6fE1Oi/8Z4PyIeCPweX70Z+UvXpC0V9KGpA3grG6radM4+zzOPo+zz+Hc8zj7PG2yl7RN0i5J23qq3kpzu8/h3Mvi31QXTtIu4IMR8fbq9n6AiPjwhPm3AE9HxGnjyofm828vkjj7PM4+j7PP4dzzOPs8s2RfDaQfArYDzwA7IuK5Puu3ytzuczj3fP6kuny1p8Xf/B+1ylXAwwusn5mZmdXwp6HF2slgQL2tutyZWx0zW0YnZVfApouI5yXdANwJbAFujYgjkj7E4PT5h4BfkXQV8DzwNIO/2DIzM7MCjH4aKsmfhpbjMINPqKkuDyfWxcyWlAfVSyAi7gDuGLnvN4eu7wf2L7peZmZm1sjwp6Gbt+/Nq45tiojnJO1gsE8O+80OM5uHB9VmZmZm/fKnoQWrBtJ+k8PM5ubfVJuZmZn1qBq07QDexoQTYfk312Zmy8ufVK8ZSbuB3cDUs4Nb95x9Hmefx9nncO55JmU/7dNQ/+a6G273eZx9DudejtZ/qSXpx4D/G/ifGJw4a+x/JFtZfOr97lQvhhr/FsvZ53H2eZx9jtHcZ+2vbH4z/q3TLuAuBr+5fg54W0TcOzKP911D7m/yOPsczj1fo69/S/olSX84dPu3JH28urkHOBf4IXC8+yqapCskPSLpqKR9Y8pfIumTVfl9ks5ffC3X09CnC3cBD63j1/amfWWx7uuMbcuzZdav9GzqLHv9l1GT/sr7Jc3mb66fY8xvrv1cY2brpO/nojavXSdp+pvqg8BuSadLehfwTmBvVfZa4N6I+D+BX5pl5VZP0hbgZuBKBr/HuqY6S+Ww64FnIuIngN8FfmextayXeXC0La95bOv/tyz9RWxdNkx4oVf3IrBtebbM+nUxOMp+Q4CC923pWuy7qf3VOuyXUvvbBr+5rn2uabttpWaz6krPvfT6tbHK21an5G3v+w3gNq9dp2k0qI6I7wG3Ab8N/B7w8xHxj1XxcX50Rst/arpia+zNwNGIOBYRPwA+weDbAcP2MHjjA+DTwFslaZaV9D0opccXan0O3hrUfeqnC23rvjlPn4Ojlvtu2gu9uheBbcuznxRavaHSsu6tBkd9P2G1rX/b9Zf8hkKT9ffYn9b1V63fJGwrsz/LbhcR8VxE3Dvhq92tP8lu266y81lmk7Lr4vVR6a/f+mw32du2rBbx2jPzNU7L5c/9PDjLicpuBR4G9kTEY0P3/xnw+5IuBb44w/KsmXOBbw3dPg78q0nzRMTzkp4FzgSearKCoca5eYKUNwLf3SwGTgUeGCr/SQZP7Ju2jSn/LrD5g/038eL/57xI0t9W12NoGW9g8EJheN2b85zKoGE/OLTuzfLR5b9J0peG5hlXfl/D+l00puy+oXX/AHgj8Drm+53b6H+Xbi5/s+5ts99cxnC2o7l+lRP3/eY8ddv/NV78NzFfk3TyhLKHJW0dWvfDY8pPHlp2XfloNnOd2GekTi/cXV3+OIPsjvDiXMdt39eqZTXJ/scZn3uTdavBuuuOubr9Oql+w2/WRUT8kPmM/r3Qw0Ptpmm7n7dNt82eah2vZ9AffW9o3cP13yzvqn6T+rvG/3c89H+8b6rq9j9Gcp92PI/btknbPmnfMOb28H1N2t20fTOu3TR9Luq7zQ8qOb2/mZbRD4Cf5EfZ/2DGY75tXz/tmKxr81D/HD/tNnSQfZ0WzwV1x8Xo8/Qbh+aZlHuTdTdp89PWPU+7mOn/1Ru8vtysx7jbdfO07evrXjtuqmufsx7LC2n3Vfabff3w82fdtkP9a8u27apu26c9FzV5XV/XJ417fbl5/I+uu/mHZRHRaAL+FHgSeE/Tx3hqPwHvBT42dPsXgN8fmecIcN7Q7ceAM8csay+wUU3fGLp/F/CdqqF9B7gEOLmatgKXjpRfOlR+8oTyrUPl24FvVmXfBE6vyjfnOX1M+clD89SVjy5/+0j9x5U3rV/durcCJzfYj5Oy3zZh+YvK/pIJ+36W7T+9etxorpvZXzLmccP1u3TMdg+3jUvH7NNx2eyaJfuh8tE6TWs34+bZ3L5x2zYp+0m5N1n31pbrbnLM1bWLzf2+C9g2a7sfavuj+7ZJux9X91nadNvs2/Qnbeo3qb87If9pude0+WnH87htm3Xb6475Wbd9dN+06Q97b/MNsp90u8k8fff1047Jtv1NXV/f6nl2htdb8z4X1B0Xo9ld0iD3pv1RXZuftu552sXYtj8pe+pfXzbpc4b7i0X29XXPs32/xqntc6bkXvfasq5N992umm77tNeWXT8XzdTXj90fDTuaX2XwifRlwF+1GSR6mrmT3wXcOXR7P7B/ZJ47qQYUDL598BQMzuw+ZbkbUw6+bSPztiofmmdsA+XETnfXLOV1y29bXvfYOfbpxozrbrNv6rJtte+Sj43aurfMvrbd1axr4uPb7rcZ8mnT5lsd83XZz7tv27bpDo6ZtuW99qdtcm/TpgvZN3Nnl93mO9o/cx/TbR7fd7uYtc0vabuf9/VR6uu3uuzbrD972/pefxf1n5J7q9fNpW3bhO3t7fXbvFOTSv8Mg4/OX1rd/jvgokVUztMLg+RjwAUM3j15AHj9yDwfAG6prl8NfKrBchsPLroor6lL7wdfSdNo9g3z6WVw1HbfZU+z1p0O30xqWLd5X0ilt/mun7C6avddtOk22XfRbvrsT9vm3kGbbvVmUWZ/lt3m+57atqt5j8m27aLJfi+53bfJfhH9SZf9zbjs5z2u2vYXbbetQbtMLZ+W+zzHzCLb1azbNmfdF/4aqq5Sr2IwoHvd0H3XAQcWUTlPL2T+DuDrDL7WfWN134eAq6rrpwD/BTgK/C3w6gbLXKon+647/eRtLebTi3Wb6PCd3L6zL3m/zfOE1WW77zubPl9MJOyrTvubli+ken+h12OOxX9SnTn12S6a9NV9Z595zJfUnzSsb+Psp+37LvqLDnJfyk+qS283i9i3GduvasW2ZuQ/iU/j7PMMZz96AhXG/42NTVDlt5OGJ+hzu89RWu6ztpuSuM33Z1q28/TVzj7PrNk32Pdp/UXd+rPLR+ZdqjafvW/7MMvZv83MVkb86EzIK9WpL0qVV+OzwJrBcrebZa576aZl6756tdXt+0lli1C3/uzyZbaK2+ZB9ZqRtBvYDZyWXZd14+zzTMp+FTv10rjd53DueZx995r21c4+j7PP4dzL4a9/r6ll+5rIKnH2eZx9Hmefw7nncfZ5nH0eZ5/Duef7sewKmJmZmZmZmS0rD6oLJukMSXdLerS63D5hvn+S9JVqOrToepqZmZmZma0rD6rLtg+4JyIuBO6pbo/zjxFxUTVdtbjqmZmZmZmZrTcPqsu2BzhYXT8IvDuxLmZmZmZmZjbCg+qyvSwingCoLs+eMN8pkjYkfUmSB95mZmZmZmYL4r/USibp88DLxxTdOMNiXhURj0t6NfAXkg5HxGNj1rUX2FvdPGv22tq8nH0eZ5/H2edw7nmcfR5nn8fZ53DuZfFfahVM0iPAZRHxhKRzgC9ExGtrHnMA+GxEfLpmPp96P4mzz+Ps8zj7HM49j7PP4+zzOPsczj2fv/5dtkPAtdX1a4HbR2eQtF3SS6rrZwFvAR5aWA3NzMzMzMzWmAfVZbsJuFzSo8Dl1W0kXSzpY9U8rwM2JD0A/CVwU0R4UG1mZmZmZrYA/k11wSLiH4C3jrl/A3hfdf1vgJ0LrpqZmZmZmZnhT6rNzMzMzMzM5uZPqteMpN3AbuC07LqsG2efx9nncfY5nHseZ5/H2edx9jmcezl89u815bME5nH2eZx9Hmefw7nncfZ5nH0eZ5/Duefz17/NzMzMzMzM5uRBdcEkvVfSEUn/LGniu0+SrpD0iKSjkvYtso5mZmZmZmbrzIPqsj0IvAf44qQZJG0BbgauBHYA10jasZjqmZmZmZmZrTefqKxgEfEwgKRps70ZOBoRx6p5PwHsAfxf1WZmZmZmZj3zJ9XL71zgW0O3j1f3mZmZmZmZWc/8SXUySZ8HXj6m6MaIuL3JIsbcN/aU7pL2Anurm6c0q6F1wdnncfZ5nH0O557H2edx9nmcfQ7nXhb/pdYSkPQF4NciYmNM2S7ggxHx9ur2foCI+PBCK2lmZmZmZraG/PXv5Xc/cKGkCyRtBa4GDiXXyczMzMzMbC14UF0wST8r6TiwC/icpDur+18h6Q6AiHgeuAG4E3gY+FREHMmqs5mZmZmZ2Trx17/NzMzMzMzM5uQTldkLJD0IfD+7HlOcBTyVXYkJTomIN8z7YGffyipnX3Lu4OwzzZ194blD2dmvcpsHZ5+l5NzB2WdyX59j5tw9qF4Ckm4F3gU8OW4Ha/BH1v8JeAfwPeC6iPjvc6zq+xFxcavK9kjSRqn1k3TCSeRm5OzntMrZl5w7OPtMLbMvNncoO/tVbvPg7LOUnDs4+0zu63PMk7t/U70cDgBXTCm/EriwmvYCf7SAOpmZmZmZma09D6qXQER8EXh6yix7gD+JgS8Bp0s6ZzG1MzMzMzMzW18eVK+Gc4FvDd0+Xt03q490U53elFy/tnUredug7PqtcvYl1w2cfaY29VvlbevbKrd5KLt+q5x9yXUDZ5/JfX2Omevms38vCUnnA5+d8JvqzwEfjoi/rm7fA/x6RHx5ZL69DL4eDi1POmGzcfZ5nH0eZ5/Duedx9nmcfR5nn8O5l8WD6iVRM6j+z8AXIuK26vYjwGUR8cSU5RV7coBV5+zzOPs8zj6Hc8/j7PM4+zzOPodzz+evf6+GQ8AvauCngGenDajHkXSFpEckHZW0r59qzk/SNyQdlvSVDs5C2bYut0p6svqrgs37zpB0t6RHq8vtMyyv2OxLyr2qT2fZl5w7OPtMJWW/Tv0NOPssJeVe1cf9TV59nH1OXdamv4HVzN6D6iUg6TbgXuC1ko5Lul7S+yW9v5rlDuAYcBT4KPDLMy5/C3Azg7OI7wCukbSjsw3ozk9HxEUFvBN3gBPPxr4PuCciLgTuqW7XWpLsS8kdOsp+SXIHZ5+plOwPsF79DTj7LKXkDu5vMh3A2Wc4wHr1N7Bi2XtQvQQi4pqIOCciTo6I8yLijyPiloi4pSqPiPhARLwmInZGxKzv+LwZOBoRxyLiB8AnGJxR3MaYcDb2PcDB6vpB4N0NF+fsZ9Bh9s59Rs4+h/ubPM4+j/ubPM4+h/ubPF1l70G1QXdnD+9TAHdJ+rIGJ2Yozcs2v3JfXZ7d8HGlZ1967jBf9qXnDs4+U+nZr2p/A84+S+m5g/ubTM4+x6r2N7CC2Z/Ue5WsKJJ2A7uB04bvHjNraWewe0tEPC7pbOBuSV+r3llaGkua/dLnDmOzLz13cPaZlj77Je1vwNlnWfrcwf1NJmefY0n7G1iB7Ef5k+o1ExGfiYi9wLNDdx8HXjl0+zzg8YVWrEZEPF5dPgn8OYOvtpTk25LOAagunxydYRmzX4LcYb7si84dnH2mJch+JfsbcPZZliB3cH+TqbfsJW2TtEvStu6rPd0SZL+S/Q2sRvajPKg2gPuBCyVdIGkrcDWDM4oXQdKpkl66eR14G/Dg9Ect3CHg2ur6tcDtDR9XbPZLkjvMl32xuYOzz7Qk2a9cfwPOPsuS5A7ubzL1kn01kH4IuAt4aJED6yXJfuX6G1jh7CPCU+ETgzPSPcLg7N77xpRfB/w98JVqel+DZW6M3H4H8HXgMeDG7G0eqdurgQeq6Uh2/YDbgCeAHzJ4N/B64EwGZwd8tLo8Y9mzLy33rrMvNXdnn76dRWW/Lv2Ns3fufWVfau7OPgB2Ad9h8NXk7wC71jX7delvVjH7zUnVwqxQ1Wnxvw5czmBH3w9cExEPDc1zHXBxRNwww3L9J/FJnH0eZ5/H2edw7nmcfR5nn2eW7Ic+qd4OPAPsiIjn+qzfqnKbz+evf5fPp8U3MzMzs5VSDaB3MPj6rwfUttQ8qC5f09Pi/5ykr0r6tKRXjik3MzMzMytGRDwXEfd6QG3LzoPq8jU5Lf5ngPMj4o3A5/nRn5W/eEHSXkkbkjaAs7qtpk3j7PM4+zzOPodzz+Ps8zj7PM4+h3Mvi39TXThJu4APRsTbq9v7ASLiwxPm3wI8HRGnjSsfms+/vUji7PM4+zzOPodzz+Ps8zj7PM4+h3PP50+qy9fkLwnOGbp5FfDwAutnZmZmZma2tk7KroBNFxHPS7oBuBPYAtwaEUckfYjB6fMPAb8i6SrgeeBpBn+xZWZmZmZmZj3zoHoJRMQdwB0j9/3m0PX9wP5F18vMzMzMzGzd+evfZmZmZmZmZnPyJ9VrRtJuYDcw9URm1j1nn8fZ53H2OZx7Hmefx9nncfY5nHs5fPbvNeWzBOZx9nmcfR5nn8O553H2eZx9Hmefw7nna/1JtaRLgf+1WtaOiPjXrWtltkQkbQN2Aocj4rns+piZmZmZ2eI0+k21pF+S9IdDt39L0scBIuK/RcT7gc8CB/up5nqTdIWkRyQdlbRvTPlLJH2yKr9P0vmLr2W/JG2TtKsawC60vK4MeAi4C3ho0vJLlpXdIsrNMrjdm5nlc19p85i33TQ9UdlBYLek0yW9C3gnsHdknn8H3DbLyq2epC3AzcCVwA7gGkk7Rma7HngmIn4C+F3gdxZby/4HZkwZuPZZ3mDQvBPYDmyrLneO274+lZpt5n7rSp+DGz/Zl6vUY6pJeVvL3i4z3wQ0s261fY6lZV+Z3Sescp+T/ebzpPJW7SYiGk3Af2AwuDsGvGak7FXAR5suy1PzCdgF3Dl0ez+wf2SeO4Fd1fWTgKeofi8/ZbkbI7e3VevaNkcdtwHfBL5TXW7ruHxXVRbV5a5FlTd47NS6d5H9tPKSs83cb11k3zbbactv89hFlXc99dDue9n2ko+pedp9l22+hHbZ175ru9+bZN/BMdTrMdtm+YvuT2bNvm39FtBuizym5smuq3bftj9ijtcIs6y/bf262P42uWe2m7bZ9lnept3MEv6/qCMvPdkAABu7SURBVFZw1Ziy/wv4120OHk8Tc/954GNDt38B+IOReR4Ezhu6/RhwVs1yN4aujzau04GTq2lrNZ0OXMLg09itQ+UnA5eONMBLR+YZLb9kaLknV7dHy0fXPa5+m+XbR8q3j9R/XPlw/UbLT59h3ZvzzPWE0yD7advWRfZ129cm+2m59rHumV7kNsh+XLazZD9t+ye1+Sb7vW2bbpL95jyXjll3drsfV/cu2lWT/T6pvMvsO233M+Ze1+b7bndt+/o2/WHd89DoY+d9E2/0mGr6PFuX/WY+l47JbXgZw+WzZD+tfnX7vW7d2f1N2+zbtPvsvr7X59kZXuuOtpcmz7FtnwsmtbtFPRfUHRejfdJMb6BOybXJa8u+292s/e2s2c8z7pi7zb+Q9wwN/k+BJ4H3zHqweJp/At7LiYPq3x+Z5wgnDqrPHLOsvcBGNX1j6P7Rd2VmeYG/iIOv6RPuuCfE0fJxndrmNl4y57pPbrAf582+7xe5Xb3YmZT9tFwX8kKrRfZt2/20Tr3vgd2i38ia9E51H+1+2pNhk23r+w2N9HbfIve+38Sbd980faHV5xuobdt832+g9v0id1r9Fv3m7Sq1++y+vpM3kyZlP8Nr3dE+sslzbN1zwXBfO64vrXsebvtc0PVxMe4T36m5T8i1yWvL0l5jLOLNppleW45txw0b+68CfwZcBvxV3wNJTy/Kvvevf9Py64xDy1iar6Im79NZsu/965jrNM2SfdtsG+7bUr8a1etX79vUr+9tb7vfS5u6bPMFtMtFHLO9fA227THVIJu05S+gbn33N22zKbY/67u8Lvu2Ey36owbL7vW1bdt212T903JvWbei++pFlM/VXhvspJ9h8PXil1a3/w64qKsKeKrN/yQGv2O/gMG7Jw8Arx+Z5wPALdX1q4FPNVhuZwefp5n36Uy/9erjwF/XadbsO1hfb79R7LO8iyfMttk3qF9RT6alTl23+ewXOsu071jgG6iFLD/lBXzbdt82m7bl2cdM18fcaPZ9Tm36g3naVZf163r9LPBDgz7azSpMqjZ8LEmvAr4AvDMiHq7uuw64LCKum/hA65SkdwD/EdgC3BoRvy3pQwwOoEOSTgE+DrwJeBq4OiKO1SxzI2b4k3j5v5g7M2v21h1n31zdMT9rn+Dsczj3PKPZd31Mzfr4vpffZ9367m/8Gqc7y9TnZO/3Ltc/nLukXQzOXr0NeA54W0Tc27a+Nt3UQbWtrmXq9FaNs8/j7PM4+xzOPY+zz+Ps8zj7HCOD6m0M/hZqO/AMsMNvFvXvpOwKmJmZmZmZWXsR8ZykHfjbFwvlQfWakbQb2A2cll2XdePs8zj7PM4+h3PP4+zzOPs8zj7HpNyrgbS/8r1A/vr3mvLXc/I4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz/Vh2BczMzMzMzMyWlQfVBZN0hqS7JT1aXW6fMN8/SfpKNR1adD3NzMzMzMzWlQfVZdsH3BMRFwL3VLfH+ceIuKiarlpc9czMzMzMzNabB9Vl2wMcrK4fBN6dWBczMzMzMzMb4bN/l+1lEfEEQEQ8IensCfOdImkDeB64KSL+67iZJO0F9lY3z+q8tjaRs8/j7PM4+xzOPY+zz+Ps8zj7HM69LD77dzJJnwdePqboRuBgRJw+NO8zEXHC76olvSIiHpf0auAvgLdGxGM16/VZApM4+zzOPo+zz+Hc8zj7PM4+j7PP4dzz+ZPqZBHxbyaVSfq2pHOqT6nPAZ6csIzHq8tjkr4AvAmYOqg2MzMzMzOz9vyb6rIdAq6trl8L3D46g6Ttkl5SXT8LeAvw0MJqaGZmZmZmtsY8qC7bTcDlkh4FLq9uI+liSR+r5nkdsCHpAeAvGfym2oNqMzMzMzOzBfDXvwsWEf8AvHXM/RvA+6rrfwPsXHDVzMzMzMzMDH9SbWZmZmZmZjY3f1K9ZiTtBnYDp2XXZd04+zzOPo+zz+Hc8zj7PM4+j7PP4dzL4b/UWlM+9X4eZ5/H2edx9jmcex5nn8fZ53H2OZx7Pn/9u2CS3ivpiKR/ljTxQJF0haRHJB2VtG+RdTQzMzMzM1tnHlSX7UHgPcAXJ80gaQtwM3AlsAO4RtKOxVTPzMzMzMxsvfk31QWLiIcBJE2b7c3A0Yg4Vs37CWAP/q9qMzMzMzOz3vmT6uV3LvCtodvHq/vMzMzMzMysZ/6kOpmkzwMvH1N0Y0Tc3mQRY+4be/Y5SXuBvdXNU5rV0Lrg7PM4+zzOPodzz+Ps8zj7PM4+h3Mvi8/+vQQkfQH4tYjYGFO2C/hgRLy9ur0fICI+vNBKmpmZmZmZrSF//Xv53Q9cKOkCSVuBq4FDyXUyMzMzMzNbCx5UF0zSz0o6DuwCPifpzur+V0i6AyAingduAO4EHgY+FRFHsupsZmZmZma2Tvz1bzMzMzMzM7M5+URl9gJJDwLfz67HFGcBT2VXYoJTIuIN8z7Y2beyytmXnDs4+0xzZ1947lB29qvc5sHZZyk5d3D2mdzX55g5dw+qbdj3I+Li7EpMImmj1PpJOuEkcjNy9nNa5exLzh2cfaaW2RebO5Sd/Sq3eXD2WUrOHZx9Jvf1OebJ3b+pXgKSbpX0ZPWO07hySfo9SUclfVXSv1x0Hc3MzMzMzNaRB9XL4QBwxZTyK4ELq2kv8EcLqJOZmZmZmdna86B6CUTEF4Gnp8yyB/iTGPgScLqkc+ZY1UfmquDilFy/tnUredug7PqtcvYl1w2cfaY29VvlbevbKrd5KLt+q5x9yXUDZ5/JfX2Omevms38vCUnnA58d96N5SZ8FboqIv65u3wP8RkS0/Q2MmZmZmZmZTeFPqleDxtx3wrslkvZK2qimsb/Ptn44+zzOPo+zz+Hc8zj7PM4+j7PP4dzL4kH1ajgOvHLo9nnA46MzRcRHIuLi6kx7LzrFvqQrJD1SnexsX7/VnZ2kb0g6LOkrHZyFsm1dTjhxnKQzJN0t6dHqcvvwY5Y1+5Jyr+rTWfYl5w7OPlNJ2a9TfwPOPktJuVf1cX+TVx9nn1OXtelvYPmzH8eD6tVwCPhFDfwU8GxEPNH0wZK2ADczOOHZDuAaSTv6qWorPx0RFxVw+v0DnHjiuH3APRFxIXBPdbvWkmRfSu7QUfZLkjs4+0ylZH+A9epvwNlnKSV3cH+T6QDOPsMB1qu/gRXL3oPqJSDpNuBe4LWSjku6XtL7Jb2/muUO4BhwFPgo8MszruLNwNGIOBYRPwA+weDkZzbGhBPH7QEOVtcPAu9uuDhnP4MOs3fuM3L2Odzf5HH2edzf5HH2Odzf5Okqew+ql0BEXBMR50TEyRFxXkT8cUTcEhG3VOURER+IiNdExM45TlB2LvCtodvHq/tKEsBdkr4saW92ZcZ42ea3A6rLsxs+rvTsS88d5su+9NzB2WcqPftV7W/A2WcpPXdwf5PJ2edY1f4GVjD7k3qvki2DRic6S/aWiHhc0tnA3ZK+Vr2ztOxKz96553H2eZx9Hmefw7nncfZ5nH2elcven1SvGUm7JX0EOG3o7kYnOssUEY9Xl08Cf87gqy0l+baq/wavLp8cnWEZs1+C3GG+7IvOHZx9piXIfiX7G3D2WZYgd3B/k8nZ51jJ/gZWI/tRHlSvmYj4TETsBZ4duvt+4EJJF0jaClzN4ORnRZB0qqSXbl4H3gaU9tcBh4Brq+vXArePzrBs2S9J7jBf9sXmDs4+05Jkv3L9DTj7LEuSO7i/yeTsc6xcfwOrk/0JIsLTGk7AxsjtdwBfBx4Dbsyu30jdXg08UE1HsusH3AY8AfyQwbuB1wNnMjg74KPV5RnLnn1puXedfam5O/v07Swq+3Xpb5y9c+8r+1Jzd/bp21lU9uvS36xi9puTqoVZwSRdAfwnYAvwsYi4aaT8OuD/Af6/6q4/iIiP1SxzI/JPYb+WnH0eZ5/H2edw7nmcfR5nn8fZ53Du+XyissLpR/81dzmDd0/ul3QoIh4amfWTEXHDwitoZmZmZma2xvyb6vL5v+bMzMzMzMwK5UF1+Zr+19zPSfqqpE9LeuWYciTtlbQhaQM4q4e62gTOPo+zz+Psczj3PM4+j7PP4+xzOPey+DfVhZP0XuDtEfG+6vYvAG+OiP9jaJ4zgeci4n9Iej/wbyPiZ2qW699eJHH2eZx9Hmefw7nncfZ5nH0eZ5/DuefzJ9Xlq/2vuYj4h4j4H9XNjwL/y4LqZmZmZmZmttY8qC5f7X/Nbf45eeUq4OEF1s/MzMzMzGxt+ezfhYuI5yXdANzJ4C+1bo2II5I+xOA/6Q4BvyLpKuB54GngurQKm5mZmZmZrREPqpdARNwB3DFy328OXd8P7F90vczMzMzMzNadv/5tZmZmZmZmNid/Ur1mJO0GdgOnZddl3Tj7PM4+j7PP4dzzOPs8zj6Ps8/h3MvR+i+1JL0K+APgKeDrEXFTFxWzfvnU+3m6zl7SNmAncDginutquavI7T6Ps8/h3PM4+zzOPo+zz+Hc8zX6+rekX5L0h0O3f0vSx6ub/zPwuYj434EdPdRx7Um6QtIjko5K2jem/CWSPlmV3yfp/MXXsh1J2yTtqgaI1lCV10PAXcBD4/IrOduS67busvdN9vqtTJntYt3b5Cpv/ypvm1mGdTymmv6m+iCwW9Lpkt4FvBPYW5X9HXC1pL8A/rKHOq41SVuAm4ErGbxpcY2k0TcvrgeeiYifAH4X+J0e6tHbwdFkYGgT7QS2A9uqy53DhSVnW3Ld1l32vul7/XX9WekvBvruj0vd9sx2mX1MZFvl7c9+c3rZ+yNbTqW/rl/Gdt9oUB0R3wNuA34b+D3g5yPiH6vi/w349xHxMwwG29atNwNHI+JYRPwA+ASwZ2SePQze+AD4NPBWSeqqAgs4OKYODBs8vleFH9iHgWeA56rLwyPltdkmSq9b233b5sVQ3+2q5fJ7Pybb9gnzquvPuniBXfKLlbo2Wbfs5Hbbul20OCZ7XXcJ5TVq38Dt85joud21fnN63votoj9qUofMQX3Jz5PZ7bqv7V9Au2r1GqLt81yWWU5UdivwMLAnIh4buv//BT4o6d8B3+iwbjZwLvCtodvHgX81aZ7qf62fBc5k8Dv3RqoG+ybgQQYDtBeKqvs3Dw6AN0n60sg8pwKvrx7/ver+zR/sbwMeqJbxjKQ3jszzMIMBIdXlw5JOrpYL8OPAV0ce/92h8uF1qeb2pHmG6z+87Cbr/nHgdbT4TbOkrQ3rOTrPD4CfHKr7D6plbc7zNU7MdnRd24A3MBiQf3fMuk5l0CEOt42m2U/Ktcl+r9unABERP2QOQ5326L4dXsePM8jmSFU2nP1ou/7JkXmmtftJ7arJuptkX3fMbc4zab/X7ZtTR5a/Y5a23yD70Xb7tWr9m0brPm7738D4NnsRL+7PLpJ039A80/q7zTY9735v2i9NO+ZG67cTuJcGGuRe19fXtfnNfKbtm2nbXtffTmsXo8fNrM9Fs6579A3MqRpkP65dDR9TbfqbzTY1bfvq2t207LtYN1Nut+pvNk15nq3rb8YdF/fRzTFf1990se5pfX1du+87+2ntfly7mZTruPsmtekm6+6qr0/PfoLhQS+c+DxY1x/VHbt1rz3r+oRJz9Ojr72nvUaa9lxQ9/r0VOZ5XR8RjSbgT4Engfc0fYyn9hPwXuBjQ7d/Afj9kXmOAOcN3X4MOHPMsvYCG9X0jaH7twHfBL5TXZ4OnFxNW6uGPVy+faj85AnlW4fKL63Korq8pCrfOrKMS8ese2s1/+jjh8u3Vo+7ZMy6R8tPn7Du0e1vuu7Rx26bsB/HZj+U/6Vjcq3btuF5pt0ezXZ4ntMn7PvhdU8rn1a/abk22e+b9RvNZnTduyblXtPud03Yt03b/Wi7vnRk26a1+0ntqsm6h9vepDZdd8zV7de67EeXv6vj7Ke1q3F176JNN82+zX5v0u7r6l/b57TIvW2bb3vMt+3r2zwXNV13X/3NuGy76m9ObrB9bfr6tuvutb/p4Hm2z9c4df1N23XX7de6fdM6+6p8NI8m7X5c3SblOq7d1PX109bdRV/fe/Z1uU/pp+pe99f1R3WvQepee7btj9oeN9Oeq0bXPbG/PyHXhuH/KvBnwGXAXy16YLnOE4Mn4juHbu8H9o/Mc+fmwcbg2wdPweDM7lOWuzGyjroDdxsTXkzUPX7Mwdu4gTZ5fAflE+vf5rENs29V947a17R9N/e+nSebLvdrB9n//+3d36scZx3H8ffXSg1oKYkhba0WEgjSo4FclELpjT9oTQtpqiCkVxGU3OilF5HciDf2HyiIiJxcWaogCSrUNFp6oWIjNiSxpkmD0JLQ4I+bgsVfjxc7LYfTPWd3Z3b2++zs+wXD7szsj+985tlnz7M7Z7ZTu56QTdpzL2LfdM2+zza74fm3HBxtt34O2XfeN5Pq75J7x23vtd3OoW20fk22mWbJvoL1rfuE7Nrn0e6n3MY++4S++qOFvyY3Zt+l7fTdphfQbhea/Sy5992mu+z3Kevr+rfrdn/3t+8Lp9jwzzH6avyOZv6PwMFZwnNqPzEaJF8H9jL6BOUC8KlNt/k68L3m+lHguSked25vOF1fHDM8R18vrtZveG2yY4YPNLq8uOex76ZY3/oDiSlqm3s2bHrT6bpvJ7XrKR6/lz+U+mi3s257l+z7bLNzfN203e+9fgjZV+41tNuubWPK+ltn0zX7zPVd212fr4k2+4YZvziYw77utH09Pnev72PTtPs51N9bX5r9mppn9rPmnt2mZ21Xs2TbZf00+23LuiYUfR+jAd39G5Z9BVif545zmth4HgdeY3RY98lm2XeAJ5rrO4AfA9eA3wP7pnjMhf2htYB8Ov+RPYcXd9s3+2UfIHT6BL7v/bpd9kvSrqsZFM9he+b2ht+lzWZPffdHfebedd/U0J8tOIuFZr+s2fXRLmZ5n13G7at5vy6q3S+6L609+0X2N9lteppsu6xvu9+iubNWTAzsR+Kbk8AcYIuTCkxav0ibs1+m2sfps755ZzOkdl97u9hsSNl3tch9V1vuy9Zuu6gt+5rNu13M+j7bt+znX6RFtvtVynWSRfc3Zv9+DqpXlG/2ecw+j9nnMfsc5p7H7POYfR6zz2Hu+T6QXYAkSZIkSctqlt+p1gBExGHgMHBndi2rxuzzmH0es89h7nnMPo/Z59kqew8T7pdtvh4e/r2iPEwkj9nnMfs8Zp/D3POYfR6zz7Mx+2ZA/SdGvwv8D2DNgXU/bPP5PPy7YhGxKyLORsTV5nLnFrf7b0S80kxnFl2nJEmStMkBRgPqjzSXB3LLkfrjoLpuJ4BzpZT9wLlmfpx/llIONtMTiytPkiRJGusio2+o324uL+aWI/XHQXXdjgCnmuungCcTa5EkSZKm0hzqvQY8iod+a+AcVNftrlLKTYDmcs8Wt9sREecj4ncR4cBbkiRJ6Uopb5dSfuuAWkPn2b+TRcQLwN1jVp2c4WHuK6XciIh9wK8i4mIp5fUxz3UcON7M7p69WrVl9nnMPo/Z5zD3PGafx+zzmH0Oc6+LZ/+uWERcAT5TSrkZEfcAL5ZSPjnhPuvAz0opP5lwO88SmMTs85h9HrPPYe55zD6P2ecx+xzmns/Dv+t2BjjWXD8GnN58g4jYGREfaq7vBh5m9PMFkiRJkqSeOaiu29PAIxFxFXikmSciHoiIHzS3uR84HxEXgF8DT5dSHFRLkiRJ0gL4P9UVK6X8Dfj8mOXnga8113+Dv/snSZIkSSn8plqSJEmSpJb8pnrFRMRh4DBwZ3Ytq8bs85h9HrPPYe55zD6P2ecx+xzmXg/P/r2iPEtgHrPPY/Z5zD6Huecx+zxmn8fsc5h7Pg//liRJkiSpJQfVFYuIL0fE5Yj4X0Rs+elTRByKiCsRcS0iTiyyRkmSJElaZQ6q63YJ+BLw0lY3iIjbgGeAx4A14KmIWFtMeZIkSZK02jxRWcVKKa8CRMR2N3sQuFZKud7c9lngCOBvVUuSJElSz/ymevndC7yxYf7NZpkkSZIkqWd+U50sIl4A7h6z6mQp5fQ0DzFm2dhTukfEceB4M7tjugo1D2afx+zzmH0Oc89j9nnMPo/Z5zD3uviTWksgIl4EvllKOT9m3UPAt0spX2jmvwVQSvnuQouUJEmSpBXk4d/L72Vgf0TsjYjbgaPAmeSaJEmSJGklOKiuWER8MSLeBB4Cfh4RzzfLPxYRvwAopfwH+AbwPPAq8Fwp5XJWzZIkSZK0Sjz8W5IkSZKkljxRmd4TEZeAd7Lr2MZu4K/ZRWxhRynl023vbPadDDn7mnMHs8/UOvvKc4e6sx9ymwezz1Jz7mD2mezrc8ycu4NqbfROKeWB7CK2EhHna60vIt53ErkZmX1LQ86+5tzB7DN1zL7a3KHu7Ifc5sHss9ScO5h9Jvv6HG1y93+qJUmSJElqyUG1JEmSJEktOajWRt/PLmCCmuvrWlvN2wZ11zfk7GuuDcw+U5f6hrxtfRtym4e66xty9jXXBmafyb4+x8y1efZvSZIkSZJa8ptqSZIkSZJaclAtACLiUERciYhrEXEiu57NIuIvEXExIl6Zw1kou9byw4i41fxUwbvLdkXE2Yi42lzunOHxqs2+ptybeuaWfc25g9lnqin7VepvwOyz1JR7U4/9TV49Zp9Ty8r0NzDM7B1Ui4i4DXgGeAxYA56KiLXcqsb6bCnlYAWn318HDm1adgI4V0rZD5xr5idakuxryR3mlP2S5A5mn6mW7NdZrf4GzD5LLbmD/U2mdcw+wzqr1d/AwLJ3UC2AB4FrpZTrpZR/Ac8CR5JrqlYp5SXg75sWHwFONddPAU9O+XBmP4M5Zm/uMzL7HPY3ecw+j/1NHrPPYX+TZ17ZO6gWwL3AGxvm32yW1aQAv4yIP0TE8exixrirlHIToLncM+X9as++9tyhXfa15w5mn6n27Ifa34DZZ6k9d7C/yWT2OYba38AAs/9g7yVpGcSYZbWdFv7hUsqNiNgDnI2IPzefLC272rM39zxmn8fs85h9DnPPY/Z5zD7P4LL3m2rB6BOsT2yY/zhwI6mWsUopN5rLW8BPGR3aUpO3IuIegOby1pT3qzr7Jcgd2mVfde5g9pmWIPtB9jdg9lmWIHewv8lk9jkG2d/AMLN3UC2Al4H9EbE3Im4HjgJnkmt6T0R8OCLuePc68Chwaft7LdwZ4Fhz/Rhwesr7VZv9kuQO7bKvNncw+0xLkv3g+hsw+yxLkjvY32Qy+xyD629gwNmXUpycAB4HXgNeB05m17Optn3AhWa6nF0f8CPgJvBvRp8GfhX4KKOzA15tLncte/a15T7v7GvN3ezTt7Oq7FelvzF7c+8r+1pzN/v07awq+1Xpb4acfTQPJkmSJEmSZuTh35IkSZIkteSgWpIkSZKklhxUS5IkSZLUkoNqSZIkSZJaclAtSZIkSVJLDqolSZIkSWrJQbUkSZIkSS05qJYkSZIkqaX/A7sGNBAGPAhMAAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -302,7 +303,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Since the dependencies peak maximally at a lag of around 3, we choose ``tau_max=3`` for PCMCIplus. This choice may, however, stronly depend on expert knowledge of the system. Obviously, for contemporaneous causal discovery, we leave the default ``tau_min=0``. The other main parameter is ``pc_alpha`` which sets the significance level for all tests in PCMCIplus. This is in contrast to PCMCI where ``pc_alpha`` only controls the significance tests in the condition-selection phase, not in the MCI tests. Also for PCMCIplus there is an automatic procedure (like for PCMCI) to choose the optimal value. If a list or None is passed for ``pc_alpha``, the significance level is optimized for every graph across the given ``pc_alpha`` values using the score computed in ``cond_ind_test.get_model_selection_criterion()``. Since PCMCIplus outputs not a DAG, but an equivalence class of DAGs, first one member is of this class is computed and then the score is computed as the average over all models fits for each variable in [0, ..., N]. The score is the same for all members of the class.\n", + "Since the dependencies peak maximally at a lag of around 3, we choose ``tau_max=3`` for PCMCIplus. This choice may, however, stronly depend on expert knowledge of the system. Obviously, for contemporaneous causal discovery, we leave the default ``tau_min=0``. The other main parameter is ``pc_alpha`` which sets the significance level for all tests in PCMCIplus. This is in contrast to PCMCI where ``pc_alpha`` only controls the significance tests in the condition-selection phase, not in the MCI tests. Also for PCMCIplus there is an automatic procedure (like for PCMCI) to choose the optimal value. If a list or None is passed for ``pc_alpha``, the significance level is optimized for every graph across the given ``pc_alpha`` values using the score computed in ``cond_ind_test.get_model_selection_criterion()``. Since PCMCIplus outputs not a DAG, but an equivalence class of DAGs, first one member is of this class is computed and then the score is computed as the average over all models fits for each variable. The score is the same for all members of the class.\n", "\n", "Here we set it to ``pc_alpha=0.01``. In applications a number of different values should be tested and results transparently discussed.\n", "\n", @@ -342,27 +343,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^{0}$ -1) --> $X^{0}$ (1/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.997\n", + " Subset 0: () gives pval = 0.00000 / val = 0.997\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{0}$ (2/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.992\n", + " Subset 0: () gives pval = 0.00000 / val = 0.992\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -3) --> $X^{0}$ (3/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.984\n", + " Subset 0: () gives pval = 0.00000 / val = 0.984\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{0}$ (4/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.703\n", + " Subset 0: () gives pval = 0.00000 / val = 0.703\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{0}$ (5/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.738\n", + " Subset 0: () gives pval = 0.00000 / val = 0.738\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{0}$ (6/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.768\n", + " Subset 0: () gives pval = 0.00000 / val = 0.768\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{0}$ (7/27):\n", @@ -378,51 +379,51 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{0}$ (10/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.971\n", + " Subset 0: () gives pval = 0.00000 / val = 0.971\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -2) --> $X^{0}$ (11/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.965\n", + " Subset 0: () gives pval = 0.00000 / val = 0.965\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -3) --> $X^{0}$ (12/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.956\n", + " Subset 0: () gives pval = 0.00000 / val = 0.956\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{0}$ (13/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.829\n", + " Subset 0: () gives pval = 0.00000 / val = 0.829\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{0}$ (14/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.814\n", + " Subset 0: () gives pval = 0.00000 / val = 0.814\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{0}$ (15/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.799\n", + " Subset 0: () gives pval = 0.00000 / val = 0.799\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{0}$ (16/27):\n", - " Subset 0: () gives pval = 0.69874 / val = 0.017\n", + " Subset 0: () gives pval = 0.69874 / val = 0.017\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -2) --> $X^{0}$ (17/27):\n", - " Subset 0: () gives pval = 0.62546 / val = 0.022\n", + " Subset 0: () gives pval = 0.62546 / val = 0.022\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -3) --> $X^{0}$ (18/27):\n", - " Subset 0: () gives pval = 0.58808 / val = 0.024\n", + " Subset 0: () gives pval = 0.58808 / val = 0.024\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{0}$ (19/27):\n", - " Subset 0: () gives pval = 0.02699 / val = 0.100\n", + " Subset 0: () gives pval = 0.02699 / val = 0.100\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -2) --> $X^{0}$ (20/27):\n", - " Subset 0: () gives pval = 0.02388 / val = 0.102\n", + " Subset 0: () gives pval = 0.02388 / val = 0.102\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -3) --> $X^{0}$ (21/27):\n", - " Subset 0: () gives pval = 0.01621 / val = 0.108\n", + " Subset 0: () gives pval = 0.01621 / val = 0.108\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{0}$ (22/27):\n", @@ -455,29 +456,29 @@ "Updating parents:\n", "\n", " Variable $X^{0}$ has 18 parent(s):\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.997\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.992\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.984\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.971\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.965\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.956\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.829\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.826\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.814\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.811\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.799\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.796\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.768\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.738\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.703\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.372\n", - " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.366\n", - " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.361\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.997\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.992\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.984\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.971\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.965\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.956\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.829\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.826\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.814\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.811\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.799\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.796\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.768\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.738\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.703\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.372\n", + " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.366\n", + " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.361\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{0}$ -1) --> $X^{0}$ (1/18):\n", - " Subset 0: ($X^{0}$ -2) gives pval = 0.00000 / val = 0.846\n", + " Subset 0: ($X^{0}$ -2) gives pval = 0.00000 / val = 0.846\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{0}$ (2/18):\n", @@ -505,7 +506,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{0}$ (8/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.284\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.284\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{0}$ (9/18):\n", @@ -513,7 +514,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -2) --> $X^{0}$ (10/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.285\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.285\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{0}$ (11/18):\n", @@ -521,31 +522,31 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -3) --> $X^{0}$ (12/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.285\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.285\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{0}$ (13/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.602\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.602\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{0}$ (14/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.659\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.659\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{0}$ (15/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.714\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.00000 / val = 0.714\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -1) --> $X^{0}$ (16/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.62195 / val = 0.022\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.62195 / val = 0.022\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -2) --> $X^{0}$ (17/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.20225 / val = 0.058\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.20225 / val = 0.058\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -3) --> $X^{0}$ (18/18):\n", - " Subset 0: ($X^{0}$ -1) gives pval = 0.15295 / val = 0.064\n", + " Subset 0: ($X^{0}$ -1) gives pval = 0.15295 / val = 0.064\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -554,57 +555,63 @@ "Updating parents:\n", "\n", " Variable $X^{0}$ has 14 parent(s):\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.846\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.703\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.659\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.602\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.478\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.434\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.295\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.287\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.287\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.285\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.285\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.285\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.284\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.211\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.846\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.703\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.659\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.602\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.478\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.434\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.295\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.287\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.287\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.285\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.285\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.285\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.284\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.211\n", "\n", "Testing condition sets of dimension 2:\n", "\n", " Link ($X^{0}$ -1) --> $X^{0}$ (1/14):\n", - " Subset 0: ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.00000 / val = 0.997\n", + " Subset 0: ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.00000 / val = 0.997\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -1) --> $X^{0}$ (2/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -2) gives pval = 0.00000 / val = 0.366\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -2) gives pval = 0.00000 / val = 0.366\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -2) --> $X^{0}$ (3/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.67004 / val = 0.019\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.67004 / val = 0.019\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{0}$ (4/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.48923 / val = 0.031\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.48923 / val = 0.031\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -3) --> $X^{0}$ (5/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.55674 / val = 0.027\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.55674 / val = 0.027\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ -2) --> $X^{0}$ (6/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.88577 / val = 0.006\n", + " Link ($X^{0}$ -2) --> $X^{0}$ (6/14):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.88577 / val = 0.006\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -3) --> $X^{0}$ (7/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.98726 / val = 0.001\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.98726 / val = 0.001\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -3) --> $X^{0}$ (8/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.58358 / val = 0.025\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.58358 / val = 0.025\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -2) --> $X^{0}$ (9/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.55963 / val = 0.026\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.55963 / val = 0.026\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -2) --> $X^{0}$ (10/14):\n", @@ -612,7 +619,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{4}$ -1) --> $X^{0}$ (11/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.55313 / val = 0.027\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.55313 / val = 0.027\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -3) --> $X^{0}$ (12/14):\n", @@ -624,7 +631,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{3}$ -2) --> $X^{0}$ (14/14):\n", - " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.81624 / val = 0.011\n", + " Subset 0: ($X^{0}$ -1) ($X^{1}$ -1) gives pval = 0.81624 / val = 0.011\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -633,8 +640,8 @@ "Updating parents:\n", "\n", " Variable $X^{0}$ has 2 parent(s):\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.846\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.366\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.846\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.366\n", "\n", "Algorithm converged for variable $X^{0}$\n", "\n", @@ -647,27 +654,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^{0}$ -1) --> $X^{1}$ (1/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.627\n", + " Subset 0: () gives pval = 0.00000 / val = 0.627\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{1}$ (2/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.592\n", + " Subset 0: () gives pval = 0.00000 / val = 0.592\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -3) --> $X^{1}$ (3/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.559\n", + " Subset 0: () gives pval = 0.00000 / val = 0.559\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{1}$ (4/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.954\n", + " Subset 0: () gives pval = 0.00000 / val = 0.954\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{1}$ (5/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.906\n", + " Subset 0: () gives pval = 0.00000 / val = 0.906\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{1}$ (6/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.860\n", + " Subset 0: () gives pval = 0.00000 / val = 0.860\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{1}$ (7/27):\n", @@ -683,27 +690,27 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{1}$ (10/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.590\n", + " Subset 0: () gives pval = 0.00000 / val = 0.590\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -2) --> $X^{1}$ (11/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.559\n", + " Subset 0: () gives pval = 0.00000 / val = 0.559\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -3) --> $X^{1}$ (12/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.529\n", + " Subset 0: () gives pval = 0.00000 / val = 0.529\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{1}$ (13/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.372\n", + " Subset 0: () gives pval = 0.00000 / val = 0.372\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{1}$ (14/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.356\n", + " Subset 0: () gives pval = 0.00000 / val = 0.356\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{1}$ (15/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.341\n", + " Subset 0: () gives pval = 0.00000 / val = 0.341\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{1}$ (16/27):\n", @@ -719,15 +726,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{1}$ (19/27):\n", - " Subset 0: () gives pval = 0.01056 / val = 0.115\n", + " Subset 0: () gives pval = 0.01056 / val = 0.115\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -2) --> $X^{1}$ (20/27):\n", - " Subset 0: () gives pval = 0.02124 / val = 0.104\n", + " Subset 0: () gives pval = 0.02124 / val = 0.104\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -3) --> $X^{1}$ (21/27):\n", - " Subset 0: () gives pval = 0.03360 / val = 0.096\n", + " Subset 0: () gives pval = 0.03360 / val = 0.096\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{1}$ (22/27):\n", @@ -751,7 +758,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{8}$ -3) --> $X^{1}$ (27/27):\n", - " Subset 0: () gives pval = 0.84067 / val = 0.009\n", + " Subset 0: () gives pval = 0.84067 / val = 0.009\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -760,29 +767,29 @@ "Updating parents:\n", "\n", " Variable $X^{1}$ has 18 parent(s):\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.954\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.906\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.860\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.627\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.592\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.590\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.559\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.559\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.529\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.372\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.371\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.356\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.355\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.341\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.340\n", - " ($X^{7}$ -1): max_pval = 0.00154, min_val = 0.142\n", - " ($X^{7}$ -2): max_pval = 0.00331, min_val = 0.132\n", - " ($X^{7}$ -3): max_pval = 0.00963, min_val = 0.116\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.954\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.906\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.860\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.627\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.592\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.590\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.559\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.559\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.529\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.372\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.371\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.356\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.355\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.341\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.340\n", + " ($X^{7}$ -1): max_pval = 0.00154, min_val = 0.142\n", + " ($X^{7}$ -2): max_pval = 0.00331, min_val = 0.132\n", + " ($X^{7}$ -3): max_pval = 0.00963, min_val = 0.116\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{1}$ -1) --> $X^{1}$ (1/18):\n", - " Subset 0: ($X^{1}$ -2) gives pval = 0.00000 / val = 0.702\n", + " Subset 0: ($X^{1}$ -2) gives pval = 0.00000 / val = 0.702\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{1}$ (2/18):\n", @@ -818,7 +825,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{4}$ -1) --> $X^{1}$ (10/18):\n", - " Subset 0: ($X^{1}$ -1) gives pval = 0.98930 / val = 0.001\n", + " Subset 0: ($X^{1}$ -1) gives pval = 0.98930 / val = 0.001\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -1) --> $X^{1}$ (11/18):\n", @@ -832,7 +839,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " Subset 0: ($X^{1}$ -1) gives pval = 0.97777 / val = 0.001\n", + " Subset 0: ($X^{1}$ -1) gives pval = 0.97777 / val = 0.001\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -2) --> $X^{1}$ (13/18):\n", @@ -840,7 +847,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{4}$ -3) --> $X^{1}$ (14/18):\n", - " Subset 0: ($X^{1}$ -1) gives pval = 0.94991 / val = 0.003\n", + " Subset 0: ($X^{1}$ -1) gives pval = 0.94991 / val = 0.003\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -3) --> $X^{1}$ (15/18):\n", @@ -852,11 +859,11 @@ " Non-significance detected.\n", "\n", " Link ($X^{7}$ -2) --> $X^{1}$ (17/18):\n", - " Subset 0: ($X^{1}$ -1) gives pval = 0.82437 / val = 0.010\n", + " Subset 0: ($X^{1}$ -1) gives pval = 0.82437 / val = 0.010\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -3) --> $X^{1}$ (18/18):\n", - " Subset 0: ($X^{1}$ -1) gives pval = 0.49291 / val = 0.031\n", + " Subset 0: ($X^{1}$ -1) gives pval = 0.49291 / val = 0.031\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -865,7 +872,7 @@ "Updating parents:\n", "\n", " Variable $X^{1}$ has 1 parent(s):\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.702\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.702\n", "\n", "Algorithm converged for variable $X^{1}$\n", "\n", @@ -902,15 +909,15 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (7/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 1.000\n", + " Subset 0: () gives pval = 0.00000 / val = 1.000\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -2) --> $X^{2}$ (8/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.998\n", + " Subset 0: () gives pval = 0.00000 / val = 0.998\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -3) --> $X^{2}$ (9/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.996\n", + " Subset 0: () gives pval = 0.00000 / val = 0.996\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{2}$ (10/27):\n", @@ -962,27 +969,27 @@ " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{2}$ (22/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.400\n", + " Subset 0: () gives pval = 0.00000 / val = 0.400\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{7}$ -2) --> $X^{2}$ (23/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.395\n", + " Subset 0: () gives pval = 0.00000 / val = 0.395\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{7}$ -3) --> $X^{2}$ (24/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.392\n", + " Subset 0: () gives pval = 0.00000 / val = 0.392\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{8}$ -1) --> $X^{2}$ (25/27):\n", - " Subset 0: () gives pval = 0.18375 / val = 0.060\n", + " Subset 0: () gives pval = 0.18375 / val = 0.060\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -2) --> $X^{2}$ (26/27):\n", - " Subset 0: () gives pval = 0.17016 / val = 0.062\n", + " Subset 0: () gives pval = 0.17016 / val = 0.062\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -3) --> $X^{2}$ (27/27):\n", - " Subset 0: () gives pval = 0.14489 / val = 0.066\n", + " Subset 0: () gives pval = 0.14489 / val = 0.066\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -991,29 +998,29 @@ "Updating parents:\n", "\n", " Variable $X^{2}$ has 18 parent(s):\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 1.000\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.999\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.998\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.998\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.996\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.996\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.916\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.879\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.867\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.854\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.448\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.427\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.407\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.400\n", - " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.395\n", - " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.392\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 1.000\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.999\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.998\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.998\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.996\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.996\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.916\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.879\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.867\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.854\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.448\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.427\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.407\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.400\n", + " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.395\n", + " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.392\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (1/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.741\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.741\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{2}$ (2/18):\n", @@ -1025,7 +1032,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{2}$ (4/18):\n", - " Subset 0: ($X^{2}$ -1) gives pval = 0.00000 / val = 0.610\n", + " Subset 0: ($X^{2}$ -1) gives pval = 0.00000 / val = 0.610\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -3) --> $X^{2}$ (5/18):\n", @@ -1033,7 +1040,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{2}$ (6/18):\n", - " Subset 0: ($X^{2}$ -1) gives pval = 0.00000 / val = 0.810\n", + " Subset 0: ($X^{2}$ -1) gives pval = 0.00000 / val = 0.810\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{3}$ -3) --> $X^{2}$ (7/18):\n", @@ -1090,23 +1097,23 @@ "Updating parents:\n", "\n", " Variable $X^{2}$ has 17 parent(s):\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.937\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.928\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.914\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.867\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.854\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.851\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.810\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.741\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.610\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.448\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.427\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.407\n", - " ($X^{7}$ -3): max_pval = 0.00038, min_val = 0.159\n", - " ($X^{7}$ -2): max_pval = 0.00053, min_val = 0.155\n", - " ($X^{7}$ -1): max_pval = 0.00062, min_val = 0.154\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.937\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.928\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.914\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.867\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.854\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.851\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.810\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.741\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.610\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.448\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.427\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.407\n", + " ($X^{7}$ -3): max_pval = 0.00038, min_val = 0.159\n", + " ($X^{7}$ -2): max_pval = 0.00053, min_val = 0.155\n", + " ($X^{7}$ -1): max_pval = 0.00062, min_val = 0.154\n", "\n", "Testing condition sets of dimension 2:\n", "\n", @@ -1115,7 +1122,7 @@ " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{2}$ -2) --> $X^{2}$ (2/17):\n", - " Subset 0: ($X^{2}$ -3) ($X^{3}$ -3) gives pval = 0.00000 / val = 0.619\n", + " Subset 0: ($X^{2}$ -3) ($X^{3}$ -3) gives pval = 0.00000 / val = 0.619\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -3) --> $X^{2}$ (3/17):\n", @@ -1147,7 +1154,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (10/17):\n", - " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.00000 / val = 0.862\n", + " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.00000 / val = 0.862\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{4}$ -2) --> $X^{2}$ (11/17):\n", @@ -1162,16 +1169,22 @@ " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.00000 / val = -0.496\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", - " Link ($X^{1}$ -1) --> $X^{2}$ (14/17):\n", + " Link ($X^{1}$ -1) --> $X^{2}$ (14/17):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.00000 / val = -0.454\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{7}$ -3) --> $X^{2}$ (15/17):\n", - " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.84768 / val = 0.009\n", + " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.84768 / val = 0.009\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -2) --> $X^{2}$ (16/17):\n", - " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.78097 / val = 0.013\n", + " Subset 0: ($X^{2}$ -3) ($X^{2}$ -2) gives pval = 0.78097 / val = 0.013\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{2}$ (17/17):\n", @@ -1184,19 +1197,19 @@ "Updating parents:\n", "\n", " Variable $X^{2}$ has 13 parent(s):\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.841\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.741\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.703\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.619\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.502\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.498\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.450\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.448\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.427\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.407\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.377\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.344\n", - " ($X^{4}$ -2): max_pval = 0.00013, min_val = 0.171\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.841\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.741\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.703\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.619\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.502\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.498\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.450\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.448\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.427\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.407\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.377\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.344\n", + " ($X^{4}$ -2): max_pval = 0.00013, min_val = 0.171\n", "\n", "Testing condition sets of dimension 3:\n", "\n", @@ -1205,11 +1218,11 @@ " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (2/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{3}$ -2) ($X^{2}$ -2) gives pval = 0.00000 / val = 0.662\n", + " Subset 0: ($X^{3}$ -1) ($X^{3}$ -2) ($X^{2}$ -2) gives pval = 0.00000 / val = 0.662\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -2) --> $X^{2}$ (3/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{2}$ -2) gives pval = 0.00000 / val = 0.207\n", + " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{2}$ -2) gives pval = 0.00000 / val = 0.207\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{2}$ -2) --> $X^{2}$ (4/13):\n", @@ -1221,11 +1234,11 @@ " Non-significance detected.\n", "\n", " Link ($X^{3}$ -3) --> $X^{2}$ (6/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{3}$ -2) gives pval = 0.04690 / val = 0.090\n", + " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{3}$ -2) gives pval = 0.04690 / val = 0.090\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -2) --> $X^{2}$ (7/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{3}$ -2) gives pval = 0.26053 / val = 0.051\n", + " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{3}$ -2) gives pval = 0.26053 / val = 0.051\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{2}$ (8/13):\n", @@ -1241,7 +1254,7 @@ " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{0}$ -3) --> $X^{2}$ (11/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{3}$ -2) gives pval = 0.10329 / val = 0.074\n", + " Subset 0: ($X^{3}$ -1) ($X^{2}$ -1) ($X^{3}$ -2) gives pval = 0.10329 / val = 0.074\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -3) --> $X^{2}$ (12/13):\n", @@ -1258,17 +1271,17 @@ "Updating parents:\n", "\n", " Variable $X^{2}$ has 6 parent(s):\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.662\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.528\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.216\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.216\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.207\n", - " ($X^{1}$ -3): max_pval = 0.00094, min_val = 0.149\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.662\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.528\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.216\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.216\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.207\n", + " ($X^{1}$ -3): max_pval = 0.00094, min_val = 0.149\n", "\n", "Testing condition sets of dimension 4:\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (1/6):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) ($X^{3}$ -2) gives pval = 0.00000 / val = 1.000\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) ($X^{3}$ -2) gives pval = 0.00000 / val = 1.000\n", " Still subsets of dimension 4 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -1) --> $X^{2}$ (2/6):\n", @@ -1284,17 +1297,11 @@ " Non-significance detected.\n", "\n", " Link ($X^{3}$ -2) --> $X^{2}$ (5/6):\n", - " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.10135 / val = 0.074\n", + " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.10135 / val = 0.074\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ -3) --> $X^{2}$ (6/6):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.36314 / val = 0.041\n", + " Link ($X^{1}$ -3) --> $X^{2}$ (6/6):\n", + " Subset 0: ($X^{2}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -2) gives pval = 0.36314 / val = 0.041\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1303,8 +1310,8 @@ "Updating parents:\n", "\n", " Variable $X^{2}$ has 2 parent(s):\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.662\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.411\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.662\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.411\n", "\n", "Algorithm converged for variable $X^{2}$\n", "\n", @@ -1317,27 +1324,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^{0}$ -1) --> $X^{3}$ (1/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.977\n", + " Subset 0: () gives pval = 0.00000 / val = 0.977\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{3}$ (2/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.976\n", + " Subset 0: () gives pval = 0.00000 / val = 0.976\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -3) --> $X^{3}$ (3/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.973\n", + " Subset 0: () gives pval = 0.00000 / val = 0.973\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{3}$ (4/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.660\n", + " Subset 0: () gives pval = 0.00000 / val = 0.660\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{3}$ (5/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.698\n", + " Subset 0: () gives pval = 0.00000 / val = 0.698\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{3}$ (6/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.731\n", + " Subset 0: () gives pval = 0.00000 / val = 0.731\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{3}$ (7/27):\n", @@ -1353,51 +1360,51 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{3}$ (10/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.997\n", + " Subset 0: () gives pval = 0.00000 / val = 0.997\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -2) --> $X^{3}$ (11/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.992\n", + " Subset 0: () gives pval = 0.00000 / val = 0.992\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -3) --> $X^{3}$ (12/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.985\n", + " Subset 0: () gives pval = 0.00000 / val = 0.985\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{3}$ (13/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.867\n", + " Subset 0: () gives pval = 0.00000 / val = 0.867\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{3}$ (14/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.852\n", + " Subset 0: () gives pval = 0.00000 / val = 0.852\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{3}$ (15/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.838\n", + " Subset 0: () gives pval = 0.00000 / val = 0.838\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{3}$ (16/27):\n", - " Subset 0: () gives pval = 0.60906 / val = 0.023\n", + " Subset 0: () gives pval = 0.60906 / val = 0.023\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -2) --> $X^{3}$ (17/27):\n", - " Subset 0: () gives pval = 0.58229 / val = 0.025\n", + " Subset 0: () gives pval = 0.58229 / val = 0.025\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -3) --> $X^{3}$ (18/27):\n", - " Subset 0: () gives pval = 0.55619 / val = 0.027\n", + " Subset 0: () gives pval = 0.55619 / val = 0.027\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{3}$ (19/27):\n", - " Subset 0: () gives pval = 0.05614 / val = 0.086\n", + " Subset 0: () gives pval = 0.05614 / val = 0.086\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -2) --> $X^{3}$ (20/27):\n", - " Subset 0: () gives pval = 0.04584 / val = 0.090\n", + " Subset 0: () gives pval = 0.04584 / val = 0.090\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -3) --> $X^{3}$ (21/27):\n", - " Subset 0: () gives pval = 0.03463 / val = 0.095\n", + " Subset 0: () gives pval = 0.03463 / val = 0.095\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{3}$ (22/27):\n", @@ -1430,29 +1437,29 @@ "Updating parents:\n", "\n", " Variable $X^{3}$ has 18 parent(s):\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.997\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.992\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.985\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.977\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.976\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.973\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.867\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.867\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.852\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.852\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.838\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.838\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.731\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.698\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.660\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.287\n", - " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.283\n", - " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.280\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.997\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.992\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.985\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.977\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.976\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.973\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.867\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.867\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.852\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.852\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.838\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.838\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.731\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.698\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.660\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.287\n", + " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.283\n", + " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.280\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{3}$ -1) --> $X^{3}$ (1/18):\n", - " Subset 0: ($X^{3}$ -2) gives pval = 0.00000 / val = 0.865\n", + " Subset 0: ($X^{3}$ -2) gives pval = 0.00000 / val = 0.865\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{3}$ -2) --> $X^{3}$ (2/18):\n", @@ -1464,11 +1471,11 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{0}$ -1) --> $X^{3}$ (4/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.271\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.271\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{3}$ (5/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.02885 / val = 0.098\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.02885 / val = 0.098\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -3) --> $X^{3}$ (6/18):\n", @@ -1476,7 +1483,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{2}$ -1) --> $X^{3}$ (7/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.324\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.324\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{3}$ (8/18):\n", @@ -1484,7 +1491,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -2) --> $X^{3}$ (9/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.324\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.324\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{3}$ (10/18):\n", @@ -1492,7 +1499,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -3) --> $X^{3}$ (11/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.322\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.322\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{3}$ (12/18):\n", @@ -1500,27 +1507,27 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{3}$ (13/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.654\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.654\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{3}$ (14/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.708\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.708\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{3}$ (15/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.659\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.00000 / val = 0.659\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -1) --> $X^{3}$ (16/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.33035 / val = 0.044\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.33035 / val = 0.044\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -2) --> $X^{3}$ (17/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.32084 / val = 0.045\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.32084 / val = 0.045\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -3) --> $X^{3}$ (18/18):\n", - " Subset 0: ($X^{3}$ -1) gives pval = 0.35646 / val = 0.042\n", + " Subset 0: ($X^{3}$ -1) gives pval = 0.35646 / val = 0.042\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1529,36 +1536,36 @@ "Updating parents:\n", "\n", " Variable $X^{3}$ has 13 parent(s):\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.865\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.698\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.659\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.654\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.512\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.497\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.324\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.324\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.322\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.322\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.321\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.319\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.271\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.865\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.698\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.659\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.654\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.512\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.497\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.324\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.324\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.322\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.322\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.321\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.319\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.271\n", "\n", "Testing condition sets of dimension 2:\n", "\n", " Link ($X^{3}$ -1) --> $X^{3}$ (1/13):\n", - " Subset 0: ($X^{1}$ -2) ($X^{1}$ -1) gives pval = 0.00000 / val = 0.997\n", + " Subset 0: ($X^{1}$ -2) ($X^{1}$ -1) gives pval = 0.00000 / val = 0.997\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -2) --> $X^{3}$ (2/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -1) gives pval = 0.00000 / val = 0.345\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -1) gives pval = 0.00000 / val = 0.345\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -1) --> $X^{3}$ (3/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.64261 / val = 0.021\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.64261 / val = 0.021\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{3}$ (4/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.72598 / val = 0.016\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.72598 / val = 0.016\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -3) --> $X^{3}$ (5/13):\n", @@ -1569,7 +1576,13 @@ " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.02482 / val = -0.101\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ -2) --> $X^{3}$ (7/13):\n", + " Link ($X^{2}$ -2) --> $X^{3}$ (7/13):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.43627 / val = -0.035\n", " Non-significance detected.\n", "\n", @@ -1582,19 +1595,19 @@ " Non-significance detected.\n", "\n", " Link ($X^{4}$ -2) --> $X^{3}$ (10/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.44519 / val = 0.034\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.44519 / val = 0.034\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -1) --> $X^{3}$ (11/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.44618 / val = 0.034\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.44618 / val = 0.034\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -3) --> $X^{3}$ (12/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.43643 / val = 0.035\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.43643 / val = 0.035\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -1) --> $X^{3}$ (13/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.60484 / val = 0.023\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) gives pval = 0.60484 / val = 0.023\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1603,8 +1616,8 @@ "Updating parents:\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.865\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.345\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.865\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.345\n", "\n", "Algorithm converged for variable $X^{3}$\n", "\n", @@ -1617,27 +1630,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^{0}$ -1) --> $X^{4}$ (1/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.856\n", + " Subset 0: () gives pval = 0.00000 / val = 0.856\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{4}$ (2/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.869\n", + " Subset 0: () gives pval = 0.00000 / val = 0.869\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{0}$ -3) --> $X^{4}$ (3/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.881\n", + " Subset 0: () gives pval = 0.00000 / val = 0.881\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{4}$ (4/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.408\n", + " Subset 0: () gives pval = 0.00000 / val = 0.408\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -2) --> $X^{4}$ (5/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.428\n", + " Subset 0: () gives pval = 0.00000 / val = 0.428\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{4}$ (6/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.450\n", + " Subset 0: () gives pval = 0.00000 / val = 0.450\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{4}$ (7/27):\n", @@ -1653,51 +1666,51 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (10/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.893\n", + " Subset 0: () gives pval = 0.00000 / val = 0.893\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -2) --> $X^{4}$ (11/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.905\n", + " Subset 0: () gives pval = 0.00000 / val = 0.905\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -3) --> $X^{4}$ (12/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.915\n", + " Subset 0: () gives pval = 0.00000 / val = 0.915\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{4}$ (13/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 1.000\n", + " Subset 0: () gives pval = 0.00000 / val = 1.000\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -2) --> $X^{4}$ (14/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.998\n", + " Subset 0: () gives pval = 0.00000 / val = 0.998\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{4}$ (15/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.996\n", + " Subset 0: () gives pval = 0.00000 / val = 0.996\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{4}$ (16/27):\n", - " Subset 0: () gives pval = 0.34746 / val = 0.042\n", + " Subset 0: () gives pval = 0.34746 / val = 0.042\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -2) --> $X^{4}$ (17/27):\n", - " Subset 0: () gives pval = 0.33956 / val = 0.043\n", + " Subset 0: () gives pval = 0.33956 / val = 0.043\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -3) --> $X^{4}$ (18/27):\n", - " Subset 0: () gives pval = 0.33630 / val = 0.043\n", + " Subset 0: () gives pval = 0.33630 / val = 0.043\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{4}$ (19/27):\n", - " Subset 0: () gives pval = 0.20119 / val = 0.058\n", + " Subset 0: () gives pval = 0.20119 / val = 0.058\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -2) --> $X^{4}$ (20/27):\n", - " Subset 0: () gives pval = 0.18668 / val = 0.060\n", + " Subset 0: () gives pval = 0.18668 / val = 0.060\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -3) --> $X^{4}$ (21/27):\n", - " Subset 0: () gives pval = 0.16615 / val = 0.062\n", + " Subset 0: () gives pval = 0.16615 / val = 0.062\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{4}$ (22/27):\n", @@ -1730,29 +1743,29 @@ "Updating parents:\n", "\n", " Variable $X^{4}$ has 18 parent(s):\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 1.000\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.999\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.998\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.998\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.996\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.996\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.915\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.881\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.869\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.856\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.450\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.428\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.412\n", - " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.408\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.408\n", - " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.405\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 1.000\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.999\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.998\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.998\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.996\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.996\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.915\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.881\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.869\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.856\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.450\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.428\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.412\n", + " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.408\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.408\n", + " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.405\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{4}$ -1) --> $X^{4}$ (1/18):\n", - " Subset 0: ($X^{2}$ -1) gives pval = 0.00000 / val = 0.737\n", + " Subset 0: ($X^{2}$ -1) gives pval = 0.00000 / val = 0.737\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{4}$ (2/18):\n", @@ -1764,7 +1777,7 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -2) --> $X^{4}$ (4/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.606\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.606\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -3) --> $X^{4}$ (5/18):\n", @@ -1772,55 +1785,61 @@ " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -3) --> $X^{4}$ (6/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.815\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.815\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{3}$ -3) --> $X^{4}$ (7/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.914\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.914\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{3}$ -2) --> $X^{4}$ (8/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.941\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.941\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (9/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.960\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.960\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{0}$ -3) --> $X^{4}$ (10/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.865\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.865\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{0}$ -2) --> $X^{4}$ (11/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.881\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.881\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{0}$ -1) --> $X^{4}$ (12/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.891\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.891\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -3) --> $X^{4}$ (13/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.776\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.776\n", " No conditions of dimension 1 left.\n", "\n", - " Link ($X^{1}$ -2) --> $X^{4}$ (14/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.733\n", + " Link ($X^{1}$ -2) --> $X^{4}$ (14/18):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.733\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -1) --> $X^{4}$ (15/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00050 / val = 0.156\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00050 / val = 0.156\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -2) --> $X^{4}$ (16/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00044 / val = 0.158\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00044 / val = 0.158\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{4}$ (17/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.684\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00000 / val = 0.684\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -3) --> $X^{4}$ (18/18):\n", - " Subset 0: ($X^{4}$ -1) gives pval = 0.00047 / val = 0.157\n", + " Subset 0: ($X^{4}$ -1) gives pval = 0.00047 / val = 0.157\n", " No conditions of dimension 1 left.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1829,23 +1848,23 @@ "Updating parents:\n", "\n", " Variable $X^{4}$ has 17 parent(s):\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.937\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.926\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.914\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.869\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.865\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.856\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.815\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.737\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.606\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.450\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.428\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.408\n", - " ($X^{7}$ -2): max_pval = 0.00044, min_val = 0.158\n", - " ($X^{7}$ -3): max_pval = 0.00047, min_val = 0.157\n", - " ($X^{7}$ -1): max_pval = 0.00050, min_val = 0.156\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.937\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.926\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.914\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.905\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.893\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.869\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.865\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.856\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.815\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.737\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.606\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.450\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.428\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.408\n", + " ($X^{7}$ -2): max_pval = 0.00044, min_val = 0.158\n", + " ($X^{7}$ -3): max_pval = 0.00047, min_val = 0.157\n", + " ($X^{7}$ -1): max_pval = 0.00050, min_val = 0.156\n", "\n", "Testing condition sets of dimension 2:\n", "\n", @@ -1854,45 +1873,39 @@ " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{4}$ -2) --> $X^{4}$ (2/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{3}$ -3) gives pval = 0.00000 / val = 0.613\n", + " Subset 0: ($X^{4}$ -3) ($X^{3}$ -3) gives pval = 0.00000 / val = 0.613\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -3) --> $X^{4}$ (3/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.501\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.501\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -2) --> $X^{4}$ (4/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.710\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.710\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (5/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.852\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.852\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{0}$ -2) --> $X^{4}$ (6/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.480\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.480\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{0}$ -3) --> $X^{4}$ (7/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.409\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.409\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{0}$ -1) --> $X^{4}$ (8/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.522\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.522\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{2}$ -3) --> $X^{4}$ (9/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.55941 / val = 0.026\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.55941 / val = 0.026\n", " Non-significance detected.\n", "\n", - " Link ($X^{4}$ -1) --> $X^{4}$ (10/17):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.861\n", + " Link ($X^{4}$ -1) --> $X^{4}$ (10/17):\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.861\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{2}$ -2) --> $X^{4}$ (11/17):\n", @@ -1900,19 +1913,19 @@ " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -3) --> $X^{4}$ (12/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.529\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.529\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -2) --> $X^{4}$ (13/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.490\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.490\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -1) --> $X^{4}$ (14/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.436\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.436\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{7}$ -2) --> $X^{4}$ (15/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.92613 / val = 0.004\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.92613 / val = 0.004\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -3) --> $X^{4}$ (16/17):\n", @@ -1920,7 +1933,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{4}$ (17/17):\n", - " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.90831 / val = 0.005\n", + " Subset 0: ($X^{4}$ -3) ($X^{4}$ -2) gives pval = 0.90831 / val = 0.005\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -1929,28 +1942,28 @@ "Updating parents:\n", "\n", " Variable $X^{4}$ has 13 parent(s):\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.852\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.737\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.710\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.613\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.522\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.501\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.480\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.450\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.428\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.409\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.408\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.336\n", - " ($X^{2}$ -2): max_pval = 0.00674, min_val = 0.122\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.852\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.737\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.710\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.613\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.522\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.501\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.480\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.450\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.428\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.409\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.408\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.336\n", + " ($X^{2}$ -2): max_pval = 0.00674, min_val = 0.122\n", "\n", "Testing condition sets of dimension 3:\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (1/13):\n", - " Subset 0: ($X^{4}$ -1) ($X^{3}$ -2) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.542\n", + " Subset 0: ($X^{4}$ -1) ($X^{3}$ -2) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.542\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{4}$ -1) --> $X^{4}$ (2/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{3}$ -2) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.637\n", + " Subset 0: ($X^{3}$ -1) ($X^{3}$ -2) ($X^{4}$ -2) gives pval = 0.00000 / val = 0.637\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -2) --> $X^{4}$ (3/13):\n", @@ -1958,11 +1971,11 @@ " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{4}$ -2) --> $X^{4}$ (4/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.60165 / val = 0.024\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.60165 / val = 0.024\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -1) --> $X^{4}$ (5/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.01294 / val = 0.112\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.01294 / val = 0.112\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -3) --> $X^{4}$ (6/13):\n", @@ -1970,31 +1983,31 @@ " Non-significance detected.\n", "\n", " Link ($X^{0}$ -2) --> $X^{4}$ (7/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.13305 / val = 0.068\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.13305 / val = 0.068\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{4}$ (8/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.00000 / val = 0.229\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.00000 / val = 0.229\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{1}$ -2) --> $X^{4}$ (9/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.00000 / val = 0.264\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.00000 / val = 0.264\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{0}$ -3) --> $X^{4}$ (10/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.23017 / val = 0.054\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.23017 / val = 0.054\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -1) --> $X^{4}$ (11/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.00000 / val = 0.252\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.00000 / val = 0.252\n", " Still subsets of dimension 3 left, but q_max = 1 reached.\n", "\n", " Link ($X^{4}$ -3) --> $X^{4}$ (12/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.78603 / val = 0.012\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.78603 / val = 0.012\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -2) --> $X^{4}$ (13/13):\n", - " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.67180 / val = 0.019\n", + " Subset 0: ($X^{3}$ -1) ($X^{4}$ -1) ($X^{3}$ -2) gives pval = 0.67180 / val = 0.019\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -2003,33 +2016,39 @@ "Updating parents:\n", "\n", " Variable $X^{4}$ has 6 parent(s):\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.637\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.542\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.264\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.252\n", - " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.229\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.215\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.637\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.542\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.264\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.252\n", + " ($X^{1}$ -3): max_pval = 0.00000, min_val = 0.229\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.215\n", "\n", "Testing condition sets of dimension 4:\n", "\n", " Link ($X^{4}$ -1) --> $X^{4}$ (1/6):\n", - " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) ($X^{1}$ -1) ($X^{1}$ -3) gives pval = 0.00000 / val = 1.000\n", + " Subset 0: ($X^{3}$ -1) ($X^{1}$ -2) ($X^{1}$ -1) ($X^{1}$ -3) gives pval = 0.00000 / val = 1.000\n", " Still subsets of dimension 4 left, but q_max = 1 reached.\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (2/6):\n", - " Subset 0: ($X^{4}$ -1) ($X^{1}$ -2) ($X^{1}$ -1) ($X^{1}$ -3) gives pval = 0.00000 / val = 0.908\n", + " Subset 0: ($X^{4}$ -1) ($X^{1}$ -2) ($X^{1}$ -1) ($X^{1}$ -3) gives pval = 0.00000 / val = 0.908\n", " Still subsets of dimension 4 left, but q_max = 1 reached.\n", "\n", - " Link ($X^{1}$ -2) --> $X^{4}$ (3/6):\n", - " Subset 0: ($X^{4}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -3) gives pval = 0.12058 / val = 0.070\n", + " Link ($X^{1}$ -2) --> $X^{4}$ (3/6):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Subset 0: ($X^{4}$ -1) ($X^{3}$ -1) ($X^{1}$ -1) ($X^{1}$ -3) gives pval = 0.12058 / val = 0.070\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -1) --> $X^{4}$ (4/6):\n", - " Subset 0: ($X^{4}$ -1) ($X^{3}$ -1) ($X^{1}$ -2) ($X^{1}$ -3) gives pval = 0.39171 / val = 0.039\n", + " Subset 0: ($X^{4}$ -1) ($X^{3}$ -1) ($X^{1}$ -2) ($X^{1}$ -3) gives pval = 0.39171 / val = 0.039\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{4}$ (5/6):\n", - " Subset 0: ($X^{4}$ -1) ($X^{3}$ -1) ($X^{1}$ -2) ($X^{1}$ -1) gives pval = 0.55067 / val = 0.027\n", + " Subset 0: ($X^{4}$ -1) ($X^{3}$ -1) ($X^{1}$ -2) ($X^{1}$ -1) gives pval = 0.55067 / val = 0.027\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -2) --> $X^{4}$ (6/6):\n", @@ -2042,8 +2061,8 @@ "Updating parents:\n", "\n", " Variable $X^{4}$ has 2 parent(s):\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.637\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.542\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.637\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.542\n", "\n", "Algorithm converged for variable $X^{4}$\n", "\n", @@ -2056,27 +2075,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^{0}$ -1) --> $X^{5}$ (1/27):\n", - " Subset 0: () gives pval = 0.74380 / val = 0.015\n", + " Subset 0: () gives pval = 0.74380 / val = 0.015\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -2) --> $X^{5}$ (2/27):\n", - " Subset 0: () gives pval = 0.72045 / val = 0.016\n", + " Subset 0: () gives pval = 0.72045 / val = 0.016\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -3) --> $X^{5}$ (3/27):\n", - " Subset 0: () gives pval = 0.67021 / val = 0.019\n", + " Subset 0: () gives pval = 0.67021 / val = 0.019\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -1) --> $X^{5}$ (4/27):\n", - " Subset 0: () gives pval = 0.88741 / val = 0.006\n", + " Subset 0: () gives pval = 0.88741 / val = 0.006\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -2) --> $X^{5}$ (5/27):\n", - " Subset 0: () gives pval = 0.82116 / val = 0.010\n", + " Subset 0: () gives pval = 0.82116 / val = 0.010\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{5}$ (6/27):\n", - " Subset 0: () gives pval = 0.61026 / val = 0.023\n", + " Subset 0: () gives pval = 0.61026 / val = 0.023\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -1) --> $X^{5}$ (7/27):\n", @@ -2092,35 +2111,35 @@ " Non-significance detected.\n", "\n", " Link ($X^{3}$ -1) --> $X^{5}$ (10/27):\n", - " Subset 0: () gives pval = 0.50349 / val = 0.030\n", + " Subset 0: () gives pval = 0.50349 / val = 0.030\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -2) --> $X^{5}$ (11/27):\n", - " Subset 0: () gives pval = 0.51049 / val = 0.030\n", + " Subset 0: () gives pval = 0.51049 / val = 0.030\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -3) --> $X^{5}$ (12/27):\n", - " Subset 0: () gives pval = 0.59454 / val = 0.024\n", + " Subset 0: () gives pval = 0.59454 / val = 0.024\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -1) --> $X^{5}$ (13/27):\n", - " Subset 0: () gives pval = 0.31129 / val = 0.046\n", + " Subset 0: () gives pval = 0.31129 / val = 0.046\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -2) --> $X^{5}$ (14/27):\n", - " Subset 0: () gives pval = 0.30728 / val = 0.046\n", + " Subset 0: () gives pval = 0.30728 / val = 0.046\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -3) --> $X^{5}$ (15/27):\n", - " Subset 0: () gives pval = 0.29857 / val = 0.047\n", + " Subset 0: () gives pval = 0.29857 / val = 0.047\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -1) --> $X^{5}$ (16/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.416\n", + " Subset 0: () gives pval = 0.00000 / val = 0.416\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{5}$ -2) --> $X^{5}$ (17/27):\n", - " Subset 0: () gives pval = 0.05232 / val = 0.087\n", + " Subset 0: () gives pval = 0.05232 / val = 0.087\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -3) --> $X^{5}$ (18/27):\n", @@ -2128,15 +2147,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{5}$ (19/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.283\n", + " Subset 0: () gives pval = 0.00000 / val = 0.283\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -2) --> $X^{5}$ (20/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.208\n", + " Subset 0: () gives pval = 0.00000 / val = 0.208\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -3) --> $X^{5}$ (21/27):\n", - " Subset 0: () gives pval = 0.01627 / val = 0.108\n", + " Subset 0: () gives pval = 0.01627 / val = 0.108\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{5}$ (22/27):\n", @@ -2156,11 +2175,11 @@ " Non-significance detected.\n", "\n", " Link ($X^{8}$ -2) --> $X^{5}$ (26/27):\n", - " Subset 0: () gives pval = 0.82302 / val = 0.010\n", + " Subset 0: () gives pval = 0.82302 / val = 0.010\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -3) --> $X^{5}$ (27/27):\n", - " Subset 0: () gives pval = 0.36814 / val = 0.041\n", + " Subset 0: () gives pval = 0.36814 / val = 0.041\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -2169,22 +2188,22 @@ "Updating parents:\n", "\n", " Variable $X^{5}$ has 3 parent(s):\n", - " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.416\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.283\n", - " ($X^{6}$ -2): max_pval = 0.00000, min_val = 0.208\n", + " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.416\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.283\n", + " ($X^{6}$ -2): max_pval = 0.00000, min_val = 0.208\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{5}$ -1) --> $X^{5}$ (1/3):\n", - " Subset 0: ($X^{6}$ -1) gives pval = 0.00000 / val = 0.383\n", + " Subset 0: ($X^{6}$ -1) gives pval = 0.00000 / val = 0.383\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{6}$ -1) --> $X^{5}$ (2/3):\n", - " Subset 0: ($X^{5}$ -1) gives pval = 0.00000 / val = 0.224\n", + " Subset 0: ($X^{5}$ -1) gives pval = 0.00000 / val = 0.224\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{6}$ -2) --> $X^{5}$ (3/3):\n", - " Subset 0: ($X^{5}$ -1) gives pval = 0.02180 / val = 0.103\n", + " Subset 0: ($X^{5}$ -1) gives pval = 0.02180 / val = 0.103\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -2193,8 +2212,8 @@ "Updating parents:\n", "\n", " Variable $X^{5}$ has 2 parent(s):\n", - " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.383\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.224\n", + " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.383\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.224\n", "\n", "Algorithm converged for variable $X^{5}$\n", "\n", @@ -2207,27 +2226,27 @@ "Testing condition sets of dimension 0:\n", "\n", " Link ($X^{0}$ -1) --> $X^{6}$ (1/27):\n", - " Subset 0: () gives pval = 0.03189 / val = 0.097\n", + " Subset 0: () gives pval = 0.03189 / val = 0.097\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -2) --> $X^{6}$ (2/27):\n", - " Subset 0: () gives pval = 0.03543 / val = 0.095\n", + " Subset 0: () gives pval = 0.03543 / val = 0.095\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -3) --> $X^{6}$ (3/27):\n", - " Subset 0: () gives pval = 0.04794 / val = 0.089\n", + " Subset 0: () gives pval = 0.04794 / val = 0.089\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -1) --> $X^{6}$ (4/27):\n", - " Subset 0: () gives pval = 0.01699 / val = 0.107\n", + " Subset 0: () gives pval = 0.01699 / val = 0.107\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -2) --> $X^{6}$ (5/27):\n", - " Subset 0: () gives pval = 0.01816 / val = 0.106\n", + " Subset 0: () gives pval = 0.01816 / val = 0.106\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{6}$ (6/27):\n", - " Subset 0: () gives pval = 0.00643 / val = 0.122\n", + " Subset 0: () gives pval = 0.00643 / val = 0.122\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{6}$ (7/27):\n", @@ -2243,27 +2262,27 @@ " Non-significance detected.\n", "\n", " Link ($X^{3}$ -1) --> $X^{6}$ (10/27):\n", - " Subset 0: () gives pval = 0.10377 / val = 0.073\n", + " Subset 0: () gives pval = 0.10377 / val = 0.073\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -2) --> $X^{6}$ (11/27):\n", - " Subset 0: () gives pval = 0.17521 / val = 0.061\n", + " Subset 0: () gives pval = 0.17521 / val = 0.061\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -3) --> $X^{6}$ (12/27):\n", - " Subset 0: () gives pval = 0.24251 / val = 0.053\n", + " Subset 0: () gives pval = 0.24251 / val = 0.053\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -1) --> $X^{6}$ (13/27):\n", - " Subset 0: () gives pval = 0.23355 / val = 0.054\n", + " Subset 0: () gives pval = 0.23355 / val = 0.054\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -2) --> $X^{6}$ (14/27):\n", - " Subset 0: () gives pval = 0.25198 / val = 0.052\n", + " Subset 0: () gives pval = 0.25198 / val = 0.052\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -3) --> $X^{6}$ (15/27):\n", - " Subset 0: () gives pval = 0.26405 / val = 0.050\n", + " Subset 0: () gives pval = 0.26405 / val = 0.050\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -1) --> $X^{6}$ (16/27):\n", @@ -2279,15 +2298,15 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -1) --> $X^{6}$ (19/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.454\n", + " Subset 0: () gives pval = 0.00000 / val = 0.454\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -2) --> $X^{6}$ (20/27):\n", - " Subset 0: () gives pval = 0.00105 / val = 0.147\n", + " Subset 0: () gives pval = 0.00105 / val = 0.147\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -3) --> $X^{6}$ (21/27):\n", - " Subset 0: () gives pval = 0.54157 / val = 0.028\n", + " Subset 0: () gives pval = 0.54157 / val = 0.028\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{6}$ (22/27):\n", @@ -2303,15 +2322,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{8}$ -1) --> $X^{6}$ (25/27):\n", - " Subset 0: () gives pval = 0.27585 / val = 0.049\n", + " Subset 0: () gives pval = 0.27585 / val = 0.049\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -2) --> $X^{6}$ (26/27):\n", - " Subset 0: () gives pval = 0.10906 / val = 0.072\n", + " Subset 0: () gives pval = 0.10906 / val = 0.072\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -3) --> $X^{6}$ (27/27):\n", - " Subset 0: () gives pval = 0.43574 / val = 0.035\n", + " Subset 0: () gives pval = 0.43574 / val = 0.035\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -2320,17 +2339,17 @@ "Updating parents:\n", "\n", " Variable $X^{6}$ has 6 parent(s):\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.454\n", - " ($X^{5}$ -2): max_pval = 0.00000, min_val = 0.295\n", - " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.278\n", - " ($X^{5}$ -3): max_pval = 0.00035, min_val = 0.160\n", - " ($X^{6}$ -2): max_pval = 0.00105, min_val = 0.147\n", - " ($X^{1}$ -3): max_pval = 0.00643, min_val = 0.122\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.454\n", + " ($X^{5}$ -2): max_pval = 0.00000, min_val = 0.295\n", + " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.278\n", + " ($X^{5}$ -3): max_pval = 0.00035, min_val = 0.160\n", + " ($X^{6}$ -2): max_pval = 0.00105, min_val = 0.147\n", + " ($X^{1}$ -3): max_pval = 0.00643, min_val = 0.122\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{6}$ -1) --> $X^{6}$ (1/6):\n", - " Subset 0: ($X^{5}$ -2) gives pval = 0.00000 / val = 0.405\n", + " Subset 0: ($X^{5}$ -2) gives pval = 0.00000 / val = 0.405\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{5}$ -2) --> $X^{6}$ (2/6):\n", @@ -2341,7 +2360,13 @@ " Subset 0: ($X^{6}$ -1) gives pval = 0.00000 / val = -0.423\n", " No conditions of dimension 1 left.\n", "\n", - " Link ($X^{5}$ -3) --> $X^{6}$ (4/6):\n", + " Link ($X^{5}$ -3) --> $X^{6}$ (4/6):\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Subset 0: ($X^{6}$ -1) gives pval = 0.50427 / val = -0.030\n", " Non-significance detected.\n", "\n", @@ -2350,7 +2375,7 @@ " Non-significance detected.\n", "\n", " Link ($X^{1}$ -3) --> $X^{6}$ (6/6):\n", - " Subset 0: ($X^{6}$ -1) gives pval = 0.05740 / val = 0.086\n", + " Subset 0: ($X^{6}$ -1) gives pval = 0.05740 / val = 0.086\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -2359,14 +2384,14 @@ "Updating parents:\n", "\n", " Variable $X^{6}$ has 3 parent(s):\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.405\n", - " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.278\n", - " ($X^{5}$ -2): max_pval = 0.00001, min_val = 0.197\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.405\n", + " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.278\n", + " ($X^{5}$ -2): max_pval = 0.00001, min_val = 0.197\n", "\n", "Testing condition sets of dimension 2:\n", "\n", " Link ($X^{6}$ -1) --> $X^{6}$ (1/3):\n", - " Subset 0: ($X^{5}$ -1) ($X^{5}$ -2) gives pval = 0.00000 / val = 0.513\n", + " Subset 0: ($X^{5}$ -1) ($X^{5}$ -2) gives pval = 0.00000 / val = 0.513\n", " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{5}$ -1) --> $X^{6}$ (2/3):\n", @@ -2374,7 +2399,7 @@ " Still subsets of dimension 2 left, but q_max = 1 reached.\n", "\n", " Link ($X^{5}$ -2) --> $X^{6}$ (3/3):\n", - " Subset 0: ($X^{6}$ -1) ($X^{5}$ -1) gives pval = 0.66754 / val = 0.019\n", + " Subset 0: ($X^{6}$ -1) ($X^{5}$ -1) gives pval = 0.66754 / val = 0.019\n", " Non-significance detected.\n", "\n", " Sorting parents in decreasing order with \n", @@ -2383,8 +2408,8 @@ "Updating parents:\n", "\n", " Variable $X^{6}$ has 2 parent(s):\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.405\n", - " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.278\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.405\n", + " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.278\n", "\n", "Algorithm converged for variable $X^{6}$\n", "\n", @@ -2421,15 +2446,15 @@ " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{7}$ (7/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.408\n", + " Subset 0: () gives pval = 0.00000 / val = 0.408\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -2) --> $X^{7}$ (8/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.412\n", + " Subset 0: () gives pval = 0.00000 / val = 0.412\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{2}$ -3) --> $X^{7}$ (9/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.416\n", + " Subset 0: () gives pval = 0.00000 / val = 0.416\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{7}$ (10/27):\n", @@ -2481,15 +2506,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{7}$ (22/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.939\n", + " Subset 0: () gives pval = 0.00000 / val = 0.939\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{7}$ -2) --> $X^{7}$ (23/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.887\n", + " Subset 0: () gives pval = 0.00000 / val = 0.887\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{7}$ -3) --> $X^{7}$ (24/27):\n", - " Subset 0: () gives pval = 0.00000 / val = 0.838\n", + " Subset 0: () gives pval = 0.00000 / val = 0.838\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{8}$ -1) --> $X^{7}$ (25/27):\n", @@ -2510,38 +2535,38 @@ "Updating parents:\n", "\n", " Variable $X^{7}$ has 19 parent(s):\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.939\n", - " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.887\n", - " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.838\n", - " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.428\n", - " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.425\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.421\n", - " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.416\n", - " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.412\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.408\n", - " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.388\n", - " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.384\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.379\n", - " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.307\n", - " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.301\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.297\n", - " ($X^{1}$ -3): max_pval = 0.00024, min_val = 0.164\n", - " ($X^{1}$ -2): max_pval = 0.00042, min_val = 0.158\n", - " ($X^{1}$ -1): max_pval = 0.00060, min_val = 0.154\n", - " ($X^{8}$ -3): max_pval = 0.00844, min_val = 0.118\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.939\n", + " ($X^{7}$ -2): max_pval = 0.00000, min_val = 0.887\n", + " ($X^{7}$ -3): max_pval = 0.00000, min_val = 0.838\n", + " ($X^{4}$ -3): max_pval = 0.00000, min_val = 0.428\n", + " ($X^{4}$ -2): max_pval = 0.00000, min_val = 0.425\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.421\n", + " ($X^{2}$ -3): max_pval = 0.00000, min_val = 0.416\n", + " ($X^{2}$ -2): max_pval = 0.00000, min_val = 0.412\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.408\n", + " ($X^{0}$ -3): max_pval = 0.00000, min_val = 0.388\n", + " ($X^{0}$ -2): max_pval = 0.00000, min_val = 0.384\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.379\n", + " ($X^{3}$ -3): max_pval = 0.00000, min_val = 0.307\n", + " ($X^{3}$ -2): max_pval = 0.00000, min_val = 0.301\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.297\n", + " ($X^{1}$ -3): max_pval = 0.00024, min_val = 0.164\n", + " ($X^{1}$ -2): max_pval = 0.00042, min_val = 0.158\n", + " ($X^{1}$ -1): max_pval = 0.00060, min_val = 0.154\n", + " ($X^{8}$ -3): max_pval = 0.00844, min_val = 0.118\n", "\n", "Testing condition sets of dimension 1:\n", "\n", " Link ($X^{7}$ -1) --> $X^{7}$ (1/19):\n", - " Subset 0: ($X^{7}$ -2) gives pval = 0.00000 / val = 0.668\n", + " Subset 0: ($X^{7}$ -2) gives pval = 0.00000 / val = 0.668\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -2) --> $X^{7}$ (2/19):\n", - " Subset 0: ($X^{7}$ -1) gives pval = 0.30497 / val = 0.046\n", + " Subset 0: ($X^{7}$ -1) gives pval = 0.30497 / val = 0.046\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -3) --> $X^{7}$ (3/19):\n", - " Subset 0: ($X^{7}$ -1) gives pval = 0.44596 / val = 0.034\n", + " Subset 0: ($X^{7}$ -1) gives pval = 0.44596 / val = 0.034\n", " Non-significance detected.\n", "\n", " Link ($X^{4}$ -3) --> $X^{7}$ (4/19):\n", @@ -2557,15 +2582,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{2}$ -3) --> $X^{7}$ (7/19):\n", - " Subset 0: ($X^{7}$ -1) gives pval = 0.03941 / val = 0.093\n", + " Subset 0: ($X^{7}$ -1) gives pval = 0.03941 / val = 0.093\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -2) --> $X^{7}$ (8/19):\n", - " Subset 0: ($X^{7}$ -1) gives pval = 0.04207 / val = 0.092\n", + " Subset 0: ($X^{7}$ -1) gives pval = 0.04207 / val = 0.092\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -1) --> $X^{7}$ (9/19):\n", - " Subset 0: ($X^{7}$ -1) gives pval = 0.04291 / val = 0.091\n", + " Subset 0: ($X^{7}$ -1) gives pval = 0.04291 / val = 0.091\n", " Non-significance detected.\n", "\n", " Link ($X^{0}$ -3) --> $X^{7}$ (10/19):\n", @@ -2592,13 +2617,7 @@ " Subset 0: ($X^{7}$ -1) gives pval = 0.11666 / val = -0.071\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ -3) --> $X^{7}$ (16/19):\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Link ($X^{1}$ -3) --> $X^{7}$ (16/19):\n", " Subset 0: ($X^{7}$ -1) gives pval = 0.30749 / val = -0.046\n", " Non-significance detected.\n", "\n", @@ -2620,7 +2639,7 @@ "Updating parents:\n", "\n", " Variable $X^{7}$ has 1 parent(s):\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.668\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.668\n", "\n", "Algorithm converged for variable $X^{7}$\n", "\n", @@ -2639,13 +2658,19 @@ " Link ($X^{0}$ -2) --> $X^{8}$ (2/27):\n", " Subset 0: () gives pval = 0.38421 / val = -0.039\n", " Non-significance detected.\n", - "\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ " Link ($X^{0}$ -3) --> $X^{8}$ (3/27):\n", " Subset 0: () gives pval = 0.37278 / val = -0.040\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -1) --> $X^{8}$ (4/27):\n", - " Subset 0: () gives pval = 0.95511 / val = 0.003\n", + " Subset 0: () gives pval = 0.95511 / val = 0.003\n", " Non-significance detected.\n", "\n", " Link ($X^{1}$ -2) --> $X^{8}$ (5/27):\n", @@ -2657,15 +2682,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{2}$ -1) --> $X^{8}$ (7/27):\n", - " Subset 0: () gives pval = 0.17912 / val = 0.061\n", + " Subset 0: () gives pval = 0.17912 / val = 0.061\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -2) --> $X^{8}$ (8/27):\n", - " Subset 0: () gives pval = 0.18026 / val = 0.060\n", + " Subset 0: () gives pval = 0.18026 / val = 0.060\n", " Non-significance detected.\n", "\n", " Link ($X^{2}$ -3) --> $X^{8}$ (9/27):\n", - " Subset 0: () gives pval = 0.18481 / val = 0.060\n", + " Subset 0: () gives pval = 0.18481 / val = 0.060\n", " Non-significance detected.\n", "\n", " Link ($X^{3}$ -1) --> $X^{8}$ (10/27):\n", @@ -2693,11 +2718,11 @@ " Non-significance detected.\n", "\n", " Link ($X^{5}$ -1) --> $X^{8}$ (16/27):\n", - " Subset 0: () gives pval = 0.72763 / val = 0.016\n", + " Subset 0: () gives pval = 0.72763 / val = 0.016\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -2) --> $X^{8}$ (17/27):\n", - " Subset 0: () gives pval = 0.74336 / val = 0.015\n", + " Subset 0: () gives pval = 0.74336 / val = 0.015\n", " Non-significance detected.\n", "\n", " Link ($X^{5}$ -3) --> $X^{8}$ (18/27):\n", @@ -2705,15 +2730,15 @@ " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{8}$ (19/27):\n", - " Subset 0: () gives pval = 0.24371 / val = 0.053\n", + " Subset 0: () gives pval = 0.24371 / val = 0.053\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -2) --> $X^{8}$ (20/27):\n", - " Subset 0: () gives pval = 0.77071 / val = 0.013\n", + " Subset 0: () gives pval = 0.77071 / val = 0.013\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -3) --> $X^{8}$ (21/27):\n", - " Subset 0: () gives pval = 0.65536 / val = 0.020\n", + " Subset 0: () gives pval = 0.65536 / val = 0.020\n", " Non-significance detected.\n", "\n", " Link ($X^{7}$ -1) --> $X^{8}$ (22/27):\n", @@ -2729,11 +2754,11 @@ " Non-significance detected.\n", "\n", " Link ($X^{8}$ -1) --> $X^{8}$ (25/27):\n", - " Subset 0: () gives pval = 0.56284 / val = 0.026\n", + " Subset 0: () gives pval = 0.56284 / val = 0.026\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -2) --> $X^{8}$ (26/27):\n", - " Subset 0: () gives pval = 0.97721 / val = 0.001\n", + " Subset 0: () gives pval = 0.97721 / val = 0.001\n", " Non-significance detected.\n", "\n", " Link ($X^{8}$ -3) --> $X^{8}$ (27/27):\n", @@ -2752,34 +2777,34 @@ "## Resulting lagged parent (super)sets:\n", "\n", " Variable $X^{0}$ has 2 parent(s):\n", - " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.846\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.366\n", + " ($X^{0}$ -1): max_pval = 0.00000, min_val = 0.846\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.366\n", "\n", " Variable $X^{1}$ has 1 parent(s):\n", - " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.702\n", + " ($X^{1}$ -1): max_pval = 0.00000, min_val = 0.702\n", "\n", " Variable $X^{2}$ has 2 parent(s):\n", - " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.662\n", + " ($X^{2}$ -1): max_pval = 0.00000, min_val = 0.662\n", " ($X^{3}$ -1): max_pval = 0.00000, min_val = -0.411\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.865\n", - " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.345\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.865\n", + " ($X^{1}$ -2): max_pval = 0.00000, min_val = 0.345\n", "\n", " Variable $X^{4}$ has 2 parent(s):\n", - " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.637\n", - " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.542\n", + " ($X^{4}$ -1): max_pval = 0.00000, min_val = 0.637\n", + " ($X^{3}$ -1): max_pval = 0.00000, min_val = 0.542\n", "\n", " Variable $X^{5}$ has 2 parent(s):\n", - " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.383\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.224\n", + " ($X^{5}$ -1): max_pval = 0.00000, min_val = 0.383\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.224\n", "\n", " Variable $X^{6}$ has 2 parent(s):\n", - " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.405\n", + " ($X^{6}$ -1): max_pval = 0.00000, min_val = 0.405\n", " ($X^{5}$ -1): max_pval = 0.00000, min_val = -0.278\n", "\n", " Variable $X^{7}$ has 1 parent(s):\n", - " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.668\n", + " ($X^{7}$ -1): max_pval = 0.00000, min_val = 0.668\n", "\n", " Variable $X^{8}$ has 0 parent(s):\n", "\n", @@ -2799,6 +2824,7 @@ "max_conds_dim = None\n", "max_conds_py = None\n", "max_conds_px = None\n", + "max_conds_px_lagged = None\n", "fdr_method = none\n", "\n", "--------------------------\n", @@ -2811,90 +2837,90 @@ " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{1}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -2) ($X^{1}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.682\n", + " Subset 0: () gives pval = 0.00000 / val = 0.682\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{1}$ (2/86):\n", + " Link ($X^{0}$ 0) o-o $X^{1}$ (2/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{1}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.58230 / val = -0.025\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{2}$ (3/86):\n", + " Link ($X^{0}$ 0) o-o $X^{2}$ (3/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.35848 / val = 0.042\n", + " Subset 0: () gives pval = 0.35848 / val = 0.042\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{3}$ (4/86):\n", + " Link ($X^{0}$ 0) o-o $X^{3}$ (4/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.65989 / val = -0.020\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{4}$ (5/86):\n", + " Link ($X^{0}$ 0) o-o $X^{4}$ (5/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.16523 / val = -0.063\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{5}$ (6/86):\n", + " Link ($X^{0}$ 0) o-o $X^{5}$ (6/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.42604 / val = 0.036\n", + " Subset 0: () gives pval = 0.42604 / val = 0.036\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{6}$ (7/86):\n", + " Link ($X^{0}$ 0) o-o $X^{6}$ (7/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.20779 / val = 0.057\n", + " Subset 0: () gives pval = 0.20779 / val = 0.057\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{7}$ (8/86):\n", + " Link ($X^{0}$ 0) o-o $X^{7}$ (8/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.57550 / val = 0.025\n", + " Subset 0: () gives pval = 0.57550 / val = 0.025\n", " Non-significance detected.\n", "\n", - " Link ($X^{0}$ 0) o--o $X^{8}$ (9/86):\n", + " Link ($X^{0}$ 0) o-o $X^{8}$ (9/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{0}$ -1) ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.26252 / val = -0.051\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{0}$ (10/86):\n", + " Link ($X^{1}$ 0) o-o $X^{0}$ (10/86):\n", " Already removed.\n", "\n", " Link ($X^{1}$ -1) --> $X^{0}$ (11/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{0}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.366\n", + " Subset 0: () gives pval = 0.00000 / val = 0.366\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{1}$ -1) --> $X^{1}$ (12/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{1}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.702\n", + " Subset 0: () gives pval = 0.00000 / val = 0.702\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{2}$ (13/86):\n", + " Link ($X^{1}$ 0) o-o $X^{2}$ (13/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.38736 / val = 0.039\n", + " Subset 0: () gives pval = 0.38736 / val = 0.039\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{3}$ (14/86):\n", + " Link ($X^{1}$ 0) o-o $X^{3}$ (14/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{1}$ -1) ]\n", @@ -2905,106 +2931,112 @@ " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -3) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.360\n", + " Subset 0: () gives pval = 0.00000 / val = 0.360\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{4}$ (16/86):\n", + " Link ($X^{1}$ 0) o-o $X^{4}$ (16/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.83948 / val = 0.009\n", + " Subset 0: () gives pval = 0.83948 / val = 0.009\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{5}$ (17/86):\n", + " Link ($X^{1}$ 0) o-o $X^{5}$ (17/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.61402 / val = -0.023\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{6}$ (18/86):\n", + " Link ($X^{1}$ 0) o-o $X^{6}$ (18/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", - " with conds_x = [ ($X^{1}$ -1) ]\n", - " Subset 0: () gives pval = 0.34689 / val = 0.043\n", + " with conds_x = [ ($X^{1}$ -1) ]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Subset 0: () gives pval = 0.34689 / val = 0.043\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{7}$ (19/86):\n", + " Link ($X^{1}$ 0) o-o $X^{7}$ (19/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.55754 / val = -0.027\n", " Non-significance detected.\n", "\n", - " Link ($X^{1}$ 0) o--o $X^{8}$ (20/86):\n", + " Link ($X^{1}$ 0) o-o $X^{8}$ (20/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{1}$ -1) ]\n", " Subset 0: () gives pval = 0.15053 / val = -0.065\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{0}$ (21/86):\n", + " Link ($X^{2}$ 0) o-o $X^{0}$ (21/86):\n", " Already removed.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{1}$ (22/86):\n", + " Link ($X^{2}$ 0) o-o $X^{1}$ (22/86):\n", " Already removed.\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (23/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -2) ($X^{3}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.662\n", + " Subset 0: () gives pval = 0.00000 / val = 0.662\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{3}$ (24/86):\n", + " Link ($X^{2}$ 0) o-o $X^{3}$ (24/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.00000 / val = -0.382\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{4}$ (25/86):\n", + " Link ($X^{2}$ 0) o-o $X^{4}$ (25/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.00000 / val = -0.243\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{5}$ (26/86):\n", + " Link ($X^{2}$ 0) o-o $X^{5}$ (26/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", - " Subset 0: () gives pval = 0.66846 / val = 0.019\n", + " Subset 0: () gives pval = 0.66846 / val = 0.019\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{6}$ (27/86):\n", + " Link ($X^{2}$ 0) o-o $X^{6}$ (27/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.06850 / val = -0.082\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{7}$ (28/86):\n", + " Link ($X^{2}$ 0) o-o $X^{7}$ (28/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.54563 / val = -0.027\n", " Non-significance detected.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{8}$ (29/86):\n", + " Link ($X^{2}$ 0) o-o $X^{8}$ (29/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", - " Subset 0: () gives pval = 0.66989 / val = 0.019\n", + " Subset 0: () gives pval = 0.66989 / val = 0.019\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{0}$ (30/86):\n", + " Link ($X^{3}$ 0) o-o $X^{0}$ (30/86):\n", " Already removed.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{1}$ (31/86):\n", + " Link ($X^{3}$ 0) o-o $X^{1}$ (31/86):\n", " Already removed.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{2}$ (32/86):\n", + " Link ($X^{3}$ 0) o-o $X^{2}$ (32/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", @@ -3022,133 +3054,133 @@ " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.727\n", + " Subset 0: () gives pval = 0.00000 / val = 0.727\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{4}$ (35/86):\n", + " Link ($X^{3}$ 0) o-o $X^{4}$ (35/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.375\n", + " Subset 0: () gives pval = 0.00000 / val = 0.375\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (36/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.369\n", + " Subset 0: () gives pval = 0.00000 / val = 0.369\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{5}$ (37/86):\n", + " Link ($X^{3}$ 0) o-o $X^{5}$ (37/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " Subset 0: () gives pval = 0.73680 / val = -0.015\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{6}$ (38/86):\n", + " Link ($X^{3}$ 0) o-o $X^{6}$ (38/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", - " Subset 0: () gives pval = 0.01284 / val = 0.112\n", + " Subset 0: () gives pval = 0.01284 / val = 0.112\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{7}$ (39/86):\n", + " Link ($X^{3}$ 0) o-o $X^{7}$ (39/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", - " Subset 0: () gives pval = 0.10808 / val = 0.073\n", + " Subset 0: () gives pval = 0.10808 / val = 0.073\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{8}$ (40/86):\n", + " Link ($X^{3}$ 0) o-o $X^{8}$ (40/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " Subset 0: () gives pval = 0.36038 / val = -0.041\n", " Non-significance detected.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{0}$ (41/86):\n", + " Link ($X^{4}$ 0) o-o $X^{0}$ (41/86):\n", " Already removed.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{1}$ (42/86):\n", + " Link ($X^{4}$ 0) o-o $X^{1}$ (42/86):\n", " Already removed.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{2}$ (43/86):\n", + " Link ($X^{4}$ 0) o-o $X^{2}$ (43/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.00000 / val = -0.243\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{3}$ (44/86):\n", + " Link ($X^{4}$ 0) o-o $X^{3}$ (44/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.375\n", + " Subset 0: () gives pval = 0.00000 / val = 0.375\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{4}$ (45/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -2) ($X^{3}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.637\n", + " Subset 0: () gives pval = 0.00000 / val = 0.637\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{5}$ (46/86):\n", + " Link ($X^{4}$ 0) o-o $X^{5}$ (46/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.80092 / val = -0.011\n", " Non-significance detected.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{6}$ (47/86):\n", + " Link ($X^{4}$ 0) o-o $X^{6}$ (47/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", - " Subset 0: () gives pval = 0.41566 / val = 0.037\n", + " Subset 0: () gives pval = 0.41566 / val = 0.037\n", " Non-significance detected.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{7}$ (48/86):\n", + " Link ($X^{4}$ 0) o-o $X^{7}$ (48/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: () gives pval = 0.36068 / val = -0.041\n", " Non-significance detected.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{8}$ (49/86):\n", + " Link ($X^{4}$ 0) o-o $X^{8}$ (49/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", - " Subset 0: () gives pval = 0.68371 / val = 0.018\n", + " Subset 0: () gives pval = 0.68371 / val = 0.018\n", " Non-significance detected.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{0}$ (50/86):\n", + " Link ($X^{5}$ 0) o-o $X^{0}$ (50/86):\n", " Already removed.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{1}$ (51/86):\n", + " Link ($X^{5}$ 0) o-o $X^{1}$ (51/86):\n", " Already removed.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{2}$ (52/86):\n", + " Link ($X^{5}$ 0) o-o $X^{2}$ (52/86):\n", " Already removed.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{3}$ (53/86):\n", + " Link ($X^{5}$ 0) o-o $X^{3}$ (53/86):\n", " Already removed.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{4}$ (54/86):\n", + " Link ($X^{5}$ 0) o-o $X^{4}$ (54/86):\n", " Already removed.\n", "\n", " Link ($X^{5}$ -1) --> $X^{5}$ (55/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{5}$ -2) ($X^{6}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.343\n", + " Subset 0: () gives pval = 0.00000 / val = 0.343\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{6}$ (56/86):\n", + " Link ($X^{5}$ 0) o-o $X^{6}$ (56/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.292\n", + " Subset 0: () gives pval = 0.00000 / val = 0.292\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{6}$ (57/86):\n", @@ -3158,127 +3190,127 @@ " Subset 0: () gives pval = 0.00000 / val = -0.383\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{7}$ (58/86):\n", + " Link ($X^{5}$ 0) o-o $X^{7}$ (58/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", - " Subset 0: () gives pval = 0.93945 / val = 0.003\n", + " Subset 0: () gives pval = 0.93945 / val = 0.003\n", " Non-significance detected.\n", "\n", - " Link ($X^{5}$ 0) o--o $X^{8}$ (59/86):\n", + " Link ($X^{5}$ 0) o-o $X^{8}$ (59/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " Subset 0: () gives pval = 0.63977 / val = -0.021\n", " Non-significance detected.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{0}$ (60/86):\n", + " Link ($X^{6}$ 0) o-o $X^{0}$ (60/86):\n", " Already removed.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{1}$ (61/86):\n", + " Link ($X^{6}$ 0) o-o $X^{1}$ (61/86):\n", " Already removed.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{2}$ (62/86):\n", + " Link ($X^{6}$ 0) o-o $X^{2}$ (62/86):\n", " Already removed.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{3}$ (63/86):\n", + " Link ($X^{6}$ 0) o-o $X^{3}$ (63/86):\n", " Already removed.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{4}$ (64/86):\n", + " Link ($X^{6}$ 0) o-o $X^{4}$ (64/86):\n", " Already removed.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{5}$ (65/86):\n", + " Link ($X^{6}$ 0) o-o $X^{5}$ (65/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.292\n", + " Subset 0: () gives pval = 0.00000 / val = 0.292\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -1) --> $X^{5}$ (66/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -2) ($X^{5}$ -2) ]\n", - " Subset 0: () gives pval = 0.00022 / val = 0.166\n", + " Subset 0: () gives pval = 0.00022 / val = 0.166\n", " No conditions of dimension 0 left.\n", "\n", " Link ($X^{6}$ -1) --> $X^{6}$ (67/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -2) ($X^{5}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.452\n", + " Subset 0: () gives pval = 0.00000 / val = 0.452\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{7}$ (68/86):\n", + " Link ($X^{6}$ 0) o-o $X^{7}$ (68/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", - " Subset 0: () gives pval = 0.64517 / val = 0.021\n", + " Subset 0: () gives pval = 0.64517 / val = 0.021\n", " Non-significance detected.\n", "\n", - " Link ($X^{6}$ 0) o--o $X^{8}$ (69/86):\n", + " Link ($X^{6}$ 0) o-o $X^{8}$ (69/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{6}$ -1) ($X^{5}$ -1) ]\n", " Subset 0: () gives pval = 0.18018 / val = -0.061\n", " Non-significance detected.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{0}$ (70/86):\n", + " Link ($X^{7}$ 0) o-o $X^{0}$ (70/86):\n", " Already removed.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{1}$ (71/86):\n", + " Link ($X^{7}$ 0) o-o $X^{1}$ (71/86):\n", " Already removed.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{2}$ (72/86):\n", + " Link ($X^{7}$ 0) o-o $X^{2}$ (72/86):\n", " Already removed.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{3}$ (73/86):\n", + " Link ($X^{7}$ 0) o-o $X^{3}$ (73/86):\n", " Already removed.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{4}$ (74/86):\n", + " Link ($X^{7}$ 0) o-o $X^{4}$ (74/86):\n", " Already removed.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{5}$ (75/86):\n", + " Link ($X^{7}$ 0) o-o $X^{5}$ (75/86):\n", " Already removed.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{6}$ (76/86):\n", + " Link ($X^{7}$ 0) o-o $X^{6}$ (76/86):\n", " Already removed.\n", "\n", " Link ($X^{7}$ -1) --> $X^{7}$ (77/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{7}$ -2) ]\n", - " Subset 0: () gives pval = 0.00000 / val = 0.668\n", + " Subset 0: () gives pval = 0.00000 / val = 0.668\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{7}$ 0) o--o $X^{8}$ (78/86):\n", + " Link ($X^{7}$ 0) o-o $X^{8}$ (78/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{7}$ -1) ]\n", " Subset 0: () gives pval = 0.00000 / val = -0.342\n", " No conditions of dimension 0 left.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{0}$ (79/86):\n", + " Link ($X^{8}$ 0) o-o $X^{0}$ (79/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{1}$ (80/86):\n", + " Link ($X^{8}$ 0) o-o $X^{1}$ (80/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{2}$ (81/86):\n", + " Link ($X^{8}$ 0) o-o $X^{2}$ (81/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{3}$ (82/86):\n", + " Link ($X^{8}$ 0) o-o $X^{3}$ (82/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{4}$ (83/86):\n", + " Link ($X^{8}$ 0) o-o $X^{4}$ (83/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{5}$ (84/86):\n", + " Link ($X^{8}$ 0) o-o $X^{5}$ (84/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{6}$ (85/86):\n", + " Link ($X^{8}$ 0) o-o $X^{6}$ (85/86):\n", " Already removed.\n", "\n", - " Link ($X^{8}$ 0) o--o $X^{7}$ (86/86):\n", + " Link ($X^{8}$ 0) o-o $X^{7}$ (86/86):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{7}$ -1) ]\n", " with conds_x = [ ]\n", @@ -3292,62 +3324,68 @@ " Variable $X^{1}$ has 0 parent(s):\n", "\n", " Variable $X^{2}$ has 2 parent(s):\n", - " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.382\n", - " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.243\n", + " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.382\n", + " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.243\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", - " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.382\n", - " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.375\n", + " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.382\n", + " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.375\n", "\n", " Variable $X^{4}$ has 2 parent(s):\n", - " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.375\n", - " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.243\n", + " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.375\n", + " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.243\n", "\n", " Variable $X^{5}$ has 1 parent(s):\n", - " ($X^{6}$ 0): max_pval = 0.00000, min_val = 0.292\n", + " ($X^{6}$ 0): max_pval = 0.00000, min_val = 0.292\n", "\n", " Variable $X^{6}$ has 1 parent(s):\n", - " ($X^{5}$ 0): max_pval = 0.00000, min_val = 0.292\n", + " ($X^{5}$ 0): max_pval = 0.00000, min_val = 0.292\n", "\n", " Variable $X^{7}$ has 1 parent(s):\n", - " ($X^{8}$ 0): max_pval = 0.00000, min_val = 0.342\n", + " ($X^{8}$ 0): max_pval = 0.00000, min_val = 0.342\n", "\n", " Variable $X^{8}$ has 1 parent(s):\n", - " ($X^{7}$ 0): max_pval = 0.00000, min_val = 0.342\n", - "\n", + " ($X^{7}$ 0): max_pval = 0.00000, min_val = 0.342\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Testing contemporaneous condition sets of dimension 1: \n", "\n", " Link ($X^{1}$ -2) --> $X^{3}$ (1/17):\n", " Iterate through 2 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.358\n", - " Subset 1: ($X^{4}$ 0) gives pval = 0.00000 / val = 0.358\n", + " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.358\n", + " Subset 1: ($X^{4}$ 0) gives pval = 0.00000 / val = 0.358\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{2}$ -1) --> $X^{2}$ (2/17):\n", " Iterate through 2 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -2) ($X^{3}$ -2) ]\n", - " Subset 0: ($X^{3}$ 0) gives pval = 0.00000 / val = 0.696\n", - " Subset 1: ($X^{4}$ 0) gives pval = 0.00000 / val = 0.663\n", + " Subset 0: ($X^{3}$ 0) gives pval = 0.00000 / val = 0.696\n", + " Subset 1: ($X^{4}$ 0) gives pval = 0.00000 / val = 0.663\n", " No conditions of dimension 1 left.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{3}$ (3/17):\n", + " Link ($X^{2}$ 0) o-o $X^{3}$ (3/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: ($X^{4}$ 0) gives pval = 0.00000 / val = -0.381\n", " No conditions of dimension 1 left.\n", "\n", - " Link ($X^{2}$ 0) o--o $X^{4}$ (4/17):\n", + " Link ($X^{2}$ 0) o-o $X^{4}$ (4/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " Subset 0: ($X^{3}$ 0) gives pval = 0.60740 / val = -0.023\n", " Non-significance detected.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{2}$ (5/17):\n", + " Link ($X^{3}$ 0) o-o $X^{2}$ (5/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", @@ -3365,47 +3403,47 @@ " Iterate through 2 subset(s) of conditions: \n", " with conds_y = [ ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.726\n", - " Subset 1: ($X^{4}$ 0) gives pval = 0.00000 / val = 0.726\n", + " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.726\n", + " Subset 1: ($X^{4}$ 0) gives pval = 0.00000 / val = 0.726\n", " No conditions of dimension 1 left.\n", "\n", - " Link ($X^{3}$ 0) o--o $X^{4}$ (8/17):\n", + " Link ($X^{3}$ 0) o-o $X^{4}$ (8/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", - " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.374\n", + " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.374\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{4}$ (9/17):\n", " Iterate through 2 subset(s) of conditions: \n", " with conds_y = [ ($X^{4}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{3}$ 0) gives pval = 0.90730 / val = 0.005\n", + " Subset 0: ($X^{3}$ 0) gives pval = 0.90730 / val = 0.005\n", " Non-significance detected.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{2}$ (10/17):\n", + " Link ($X^{4}$ 0) o-o $X^{2}$ (10/17):\n", " Already removed.\n", "\n", - " Link ($X^{4}$ 0) o--o $X^{3}$ (11/17):\n", + " Link ($X^{4}$ 0) o-o $X^{3}$ (11/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", - " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.374\n", + " Subset 0: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.374\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{4}$ -1) --> $X^{4}$ (12/17):\n", " Iterate through 2 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -2) ($X^{3}$ -2) ]\n", - " Subset 0: ($X^{3}$ 0) gives pval = 0.00000 / val = 0.676\n", - " Subset 1: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.637\n", + " Subset 0: ($X^{3}$ 0) gives pval = 0.00000 / val = 0.676\n", + " Subset 1: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.637\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{5}$ (13/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{6}$ -1) ]\n", " with conds_x = [ ($X^{5}$ -2) ($X^{6}$ -2) ]\n", - " Subset 0: ($X^{6}$ 0) gives pval = 0.00000 / val = 0.425\n", + " Subset 0: ($X^{6}$ 0) gives pval = 0.00000 / val = 0.425\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{5}$ -1) --> $X^{6}$ (14/17):\n", @@ -3419,21 +3457,21 @@ " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -2) ($X^{5}$ -2) ]\n", - " Subset 0: ($X^{6}$ 0) gives pval = 0.67680 / val = 0.019\n", + " Subset 0: ($X^{6}$ 0) gives pval = 0.67680 / val = 0.019\n", " Non-significance detected.\n", "\n", " Link ($X^{6}$ -1) --> $X^{6}$ (16/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -2) ($X^{5}$ -2) ]\n", - " Subset 0: ($X^{5}$ 0) gives pval = 0.00000 / val = 0.427\n", + " Subset 0: ($X^{5}$ 0) gives pval = 0.00000 / val = 0.427\n", " No conditions of dimension 1 left.\n", "\n", " Link ($X^{7}$ -1) --> $X^{7}$ (17/17):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{7}$ -2) ]\n", - " Subset 0: ($X^{8}$ 0) gives pval = 0.00000 / val = 0.689\n", + " Subset 0: ($X^{8}$ 0) gives pval = 0.00000 / val = 0.689\n", " No conditions of dimension 1 left.\n", "\n", "Updated contemp. adjacencies:\n", @@ -3443,26 +3481,26 @@ " Variable $X^{1}$ has 0 parent(s):\n", "\n", " Variable $X^{2}$ has 1 parent(s):\n", - " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.381\n", + " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.381\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", - " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.381\n", - " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.374\n", + " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.381\n", + " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.374\n", "\n", " Variable $X^{4}$ has 1 parent(s):\n", - " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.374\n", + " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.374\n", "\n", " Variable $X^{5}$ has 1 parent(s):\n", - " ($X^{6}$ 0): max_pval = 0.00000, min_val = 0.292\n", + " ($X^{6}$ 0): max_pval = 0.00000, min_val = 0.292\n", "\n", " Variable $X^{6}$ has 1 parent(s):\n", - " ($X^{5}$ 0): max_pval = 0.00000, min_val = 0.292\n", + " ($X^{5}$ 0): max_pval = 0.00000, min_val = 0.292\n", "\n", " Variable $X^{7}$ has 1 parent(s):\n", - " ($X^{8}$ 0): max_pval = 0.00000, min_val = 0.342\n", + " ($X^{8}$ 0): max_pval = 0.00000, min_val = 0.342\n", "\n", " Variable $X^{8}$ has 1 parent(s):\n", - " ($X^{7}$ 0): max_pval = 0.00000, min_val = 0.342\n", + " ($X^{7}$ 0): max_pval = 0.00000, min_val = 0.342\n", "\n", "Testing contemporaneous condition sets of dimension 2: \n", "\n", @@ -3470,14 +3508,14 @@ " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = 0.358\n", + " Subset 0: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = 0.358\n", " No conditions of dimension 2 left.\n", "\n", " Link ($X^{3}$ -1) --> $X^{3}$ (2/2):\n", " Iterate through 1 subset(s) of conditions: \n", " with conds_y = [ ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = 0.726\n", + " Subset 0: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = 0.726\n", " No conditions of dimension 2 left.\n", "\n", "Updated contemp. adjacencies:\n", @@ -3487,26 +3525,26 @@ " Variable $X^{1}$ has 0 parent(s):\n", "\n", " Variable $X^{2}$ has 1 parent(s):\n", - " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.381\n", + " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.381\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", - " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.381\n", - " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.374\n", + " ($X^{2}$ 0): max_pval = 0.00000, min_val = 0.381\n", + " ($X^{4}$ 0): max_pval = 0.00000, min_val = 0.374\n", "\n", " Variable $X^{4}$ has 1 parent(s):\n", - " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.374\n", + " ($X^{3}$ 0): max_pval = 0.00000, min_val = 0.374\n", "\n", " Variable $X^{5}$ has 1 parent(s):\n", - " ($X^{6}$ 0): max_pval = 0.00000, min_val = 0.292\n", + " ($X^{6}$ 0): max_pval = 0.00000, min_val = 0.292\n", "\n", " Variable $X^{6}$ has 1 parent(s):\n", - " ($X^{5}$ 0): max_pval = 0.00000, min_val = 0.292\n", + " ($X^{5}$ 0): max_pval = 0.00000, min_val = 0.292\n", "\n", " Variable $X^{7}$ has 1 parent(s):\n", - " ($X^{8}$ 0): max_pval = 0.00000, min_val = 0.342\n", + " ($X^{8}$ 0): max_pval = 0.00000, min_val = 0.342\n", "\n", " Variable $X^{8}$ has 1 parent(s):\n", - " ($X^{7}$ 0): max_pval = 0.00000, min_val = 0.342\n", + " ($X^{7}$ 0): max_pval = 0.00000, min_val = 0.342\n", "\n", "Algorithm converged at p = 2.\n", "\n", @@ -3518,21 +3556,15 @@ "conflict_resolution = True\n", "\n", "\n", - " Triple ($X^{1}$ -2) --> $X^{3}$ o--o $X^{2}$ (1/10)\n", + " Triple ($X^{1}$ -2) --> $X^{3}$ o-o $X^{2}$ (1/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{3}$ 0) gives pval = 0.53799 / val = -0.028\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " Subset 0: ($X^{3}$ 0) gives pval = 0.53799 / val = -0.028\n", " Subset 1: () gives pval = 0.00013 / val = -0.172\n", " Fraction of separating subsets containing ($X^{3}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{3}$ -1) --> $X^{3}$ o--o $X^{2}$ (2/10)\n", + " Triple ($X^{3}$ -1) --> $X^{3}$ o-o $X^{2}$ (2/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{2}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", @@ -3540,7 +3572,7 @@ " Subset 1: () gives pval = 0.00000 / val = -0.402\n", " Fraction of separating subsets containing ($X^{3}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{4}$ 0) o--o $X^{3}$ o--o $X^{2}$ (3/10)\n", + " Triple ($X^{4}$ 0) o-o $X^{3}$ o-o $X^{2}$ (3/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", @@ -3548,17 +3580,17 @@ " Subset 1: () gives pval = 0.00000 / val = -0.243\n", " Fraction of separating subsets containing ($X^{3}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{2}$ -1) --> $X^{2}$ o--o $X^{3}$ (4/10)\n", + " Triple ($X^{2}$ -1) --> $X^{2}$ o-o $X^{3}$ (4/10)\n", " Iterate through 4 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{2}$ -2) ($X^{3}$ -2) ]\n", " Subset 0: ($X^{4}$ 0) gives pval = 0.62679 / val = -0.022\n", " Subset 1: () gives pval = 0.62896 / val = -0.022\n", - " Subset 2: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.248\n", - " Subset 3: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = 0.247\n", + " Subset 2: ($X^{2}$ 0) gives pval = 0.00000 / val = 0.248\n", + " Subset 3: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = 0.247\n", " Fraction of separating subsets containing ($X^{2}$ 0) is < 0.5 --> collider found\n", "\n", - " Triple ($X^{4}$ -1) --> $X^{4}$ o--o $X^{3}$ (5/10)\n", + " Triple ($X^{4}$ -1) --> $X^{4}$ o-o $X^{3}$ (5/10)\n", " Iterate through 4 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{3}$ -1) ($X^{1}$ -2) ]\n", " with conds_x = [ ($X^{4}$ -2) ($X^{3}$ -2) ]\n", @@ -3568,15 +3600,21 @@ " Subset 3: ($X^{2}$ 0) ($X^{4}$ 0) gives pval = 0.00000 / val = -0.253\n", " Fraction of separating subsets containing ($X^{4}$ 0) is < 0.5 --> collider found\n", "\n", - " Triple ($X^{1}$ -2) --> $X^{3}$ o--o $X^{4}$ (6/10)\n", + " Triple ($X^{1}$ -2) --> $X^{3}$ o-o $X^{4}$ (6/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{3}$ 0) gives pval = 0.87118 / val = -0.007\n", - " Subset 1: () gives pval = 0.00266 / val = 0.135\n", + " Subset 0: ($X^{3}$ 0) gives pval = 0.87118 / val = -0.007\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Subset 1: () gives pval = 0.00266 / val = 0.135\n", " Fraction of separating subsets containing ($X^{3}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{2}$ 0) o--o $X^{3}$ o--o $X^{4}$ (7/10)\n", + " Triple ($X^{2}$ 0) o-o $X^{3}$ o-o $X^{4}$ (7/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{4}$ -1) ($X^{3}$ -1) ]\n", " with conds_x = [ ($X^{2}$ -1) ($X^{3}$ -1) ]\n", @@ -3584,40 +3622,40 @@ " Subset 1: () gives pval = 0.00000 / val = -0.243\n", " Fraction of separating subsets containing ($X^{3}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{3}$ -1) --> $X^{3}$ o--o $X^{4}$ (8/10)\n", + " Triple ($X^{3}$ -1) --> $X^{3}$ o-o $X^{4}$ (8/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{4}$ -1) ]\n", " with conds_x = [ ($X^{3}$ -2) ($X^{1}$ -3) ]\n", - " Subset 0: ($X^{3}$ 0) gives pval = 0.90730 / val = 0.005\n", - " Subset 1: () gives pval = 0.00000 / val = 0.369\n", + " Subset 0: ($X^{3}$ 0) gives pval = 0.90730 / val = 0.005\n", + " Subset 1: () gives pval = 0.00000 / val = 0.369\n", " Fraction of separating subsets containing ($X^{3}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{6}$ -1) --> $X^{6}$ o--o $X^{5}$ (9/10)\n", + " Triple ($X^{6}$ -1) --> $X^{6}$ o-o $X^{5}$ (9/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ($X^{5}$ -1) ]\n", " with conds_x = [ ($X^{6}$ -2) ($X^{5}$ -2) ]\n", - " Subset 0: ($X^{6}$ 0) gives pval = 0.67680 / val = 0.019\n", - " Subset 1: () gives pval = 0.00022 / val = 0.166\n", + " Subset 0: ($X^{6}$ 0) gives pval = 0.67680 / val = 0.019\n", + " Subset 1: () gives pval = 0.00022 / val = 0.166\n", " Fraction of separating subsets containing ($X^{6}$ 0) is > 0.5 --> non-collider found\n", "\n", - " Triple ($X^{7}$ -1) --> $X^{7}$ o--o $X^{8}$ (10/10)\n", + " Triple ($X^{7}$ -1) --> $X^{7}$ o-o $X^{8}$ (10/10)\n", " Iterate through 2 condition subset(s) of neighbors: \n", " with conds_y = [ ]\n", " with conds_x = [ ($X^{7}$ -2) ]\n", " Subset 0: () gives pval = 0.78143 / val = -0.013\n", - " Subset 1: ($X^{7}$ 0) gives pval = 0.00000 / val = 0.228\n", + " Subset 1: ($X^{7}$ 0) gives pval = 0.00000 / val = 0.228\n", " Fraction of separating subsets containing ($X^{7}$ 0) is < 0.5 --> collider found\n", "\n", "Orienting links among colliders:\n", "\n", - " Collider ($X^{2}$ -1) --> $X^{2}$ o--o $X^{3}$:\n", - " Orient $X^{3}$ o--o $X^{2}$ as $X^{3}$ --> $X^{2}$ \n", + " Collider ($X^{2}$ -1) --> $X^{2}$ o-o $X^{3}$:\n", + " Orient $X^{3}$ o-o $X^{2}$ as $X^{3}$ --> $X^{2}$ \n", "\n", - " Collider ($X^{4}$ -1) --> $X^{4}$ o--o $X^{3}$:\n", - " Orient $X^{3}$ o--o $X^{4}$ as $X^{3}$ --> $X^{4}$ \n", + " Collider ($X^{4}$ -1) --> $X^{4}$ o-o $X^{3}$:\n", + " Orient $X^{3}$ o-o $X^{4}$ as $X^{3}$ --> $X^{4}$ \n", "\n", - " Collider ($X^{7}$ -1) --> $X^{7}$ o--o $X^{8}$:\n", - " Orient $X^{8}$ o--o $X^{7}$ as $X^{8}$ --> $X^{7}$ \n", + " Collider ($X^{7}$ -1) --> $X^{7}$ o-o $X^{8}$:\n", + " Orient $X^{8}$ o-o $X^{7}$ as $X^{8}$ --> $X^{7}$ \n", "\n", "Updated adjacencies:\n", "\n", @@ -3630,28 +3668,28 @@ "\n", " Variable $X^{2}$ has 2 parent(s):\n", " ($X^{2}$ -1)\n", - " ($X^{3}$ 0)\n", + " ($X^{3}$ 0)\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", " ($X^{1}$ -2)\n", " ($X^{3}$ -1)\n", "\n", " Variable $X^{4}$ has 2 parent(s):\n", - " ($X^{3}$ 0)\n", + " ($X^{3}$ 0)\n", " ($X^{4}$ -1)\n", "\n", " Variable $X^{5}$ has 2 parent(s):\n", " ($X^{5}$ -1)\n", - " ($X^{6}$ 0)\n", + " ($X^{6}$ 0)\n", "\n", " Variable $X^{6}$ has 3 parent(s):\n", - " ($X^{5}$ 0)\n", + " ($X^{5}$ 0)\n", " ($X^{5}$ -1)\n", " ($X^{6}$ -1)\n", "\n", " Variable $X^{7}$ has 2 parent(s):\n", " ($X^{7}$ -1)\n", - " ($X^{8}$ 0)\n", + " ($X^{8}$ 0)\n", "\n", " Variable $X^{8}$ has 0 parent(s):\n", "\n", @@ -3661,7 +3699,7 @@ "----------------------------\n", "\n", "Try rule(s) [1 2 3]\n", - " R1: Found ($X^{6}$ -1) --> $X^{6}$ o--o $X^{5}$, orient as $X^{6}$ --> $X^{5}$\n", + " R1: Found ($X^{6}$ -1) --> $X^{6}$ o-o $X^{5}$, orient as $X^{6}$ --> $X^{5}$\n", "\n", "Try rule(s) [1]\n", "\n", @@ -3676,19 +3714,19 @@ "\n", " Variable $X^{2}$ has 2 parent(s):\n", " ($X^{2}$ -1)\n", - " ($X^{3}$ 0)\n", + " ($X^{3}$ 0)\n", "\n", " Variable $X^{3}$ has 2 parent(s):\n", " ($X^{1}$ -2)\n", " ($X^{3}$ -1)\n", "\n", " Variable $X^{4}$ has 2 parent(s):\n", - " ($X^{3}$ 0)\n", + " ($X^{3}$ 0)\n", " ($X^{4}$ -1)\n", "\n", " Variable $X^{5}$ has 2 parent(s):\n", " ($X^{5}$ -1)\n", - " ($X^{6}$ 0)\n", + " ($X^{6}$ 0)\n", "\n", " Variable $X^{6}$ has 2 parent(s):\n", " ($X^{5}$ -1)\n", @@ -3696,7 +3734,7 @@ "\n", " Variable $X^{7}$ has 2 parent(s):\n", " ($X^{7}$ -1)\n", - " ($X^{8}$ 0)\n", + " ($X^{8}$ 0)\n", "\n", " Variable $X^{8}$ has 0 parent(s):\n", "\n", @@ -3707,37 +3745,41 @@ "## Significant links at alpha = 0.01:\n", "\n", " Variable $X^{0}$ has 2 link(s):\n", - " ($X^{0}$ -1): pval = 0.00000 | val = 0.682\n", - " ($X^{1}$ -1): pval = 0.00000 | val = 0.366\n", + " ($X^{0}$ -1): pval = 0.00000 | val = 0.682\n", + " ($X^{1}$ -1): pval = 0.00000 | val = 0.366\n", "\n", " Variable $X^{1}$ has 1 link(s):\n", - " ($X^{1}$ -1): pval = 0.00000 | val = 0.702\n", + " ($X^{1}$ -1): pval = 0.00000 | val = 0.702\n", "\n", " Variable $X^{2}$ has 2 link(s):\n", - " ($X^{2}$ -1): pval = 0.00000 | val = 0.662\n", - " ($X^{3}$ 0): pval = 0.00000 | val = -0.381\n", + " ($X^{2}$ -1): pval = 0.00000 | val = 0.662\n", + " ($X^{3}$ 0): pval = 0.00000 | val = -0.381\n", "\n", - " Variable $X^{3}$ has 2 link(s):\n", - " ($X^{3}$ -1): pval = 0.00000 | val = 0.726\n", - " ($X^{1}$ -2): pval = 0.00000 | val = 0.358\n", + " Variable $X^{3}$ has 4 link(s):\n", + " ($X^{3}$ -1): pval = 0.00000 | val = 0.726\n", + " ($X^{2}$ 0): pval = 0.00000 | val = -0.381\n", + " ($X^{4}$ 0): pval = 0.00000 | val = 0.374\n", + " ($X^{1}$ -2): pval = 0.00000 | val = 0.358\n", "\n", " Variable $X^{4}$ has 2 link(s):\n", - " ($X^{4}$ -1): pval = 0.00000 | val = 0.637\n", - " ($X^{3}$ 0): pval = 0.00000 | val = 0.374\n", + " ($X^{4}$ -1): pval = 0.00000 | val = 0.637\n", + " ($X^{3}$ 0): pval = 0.00000 | val = 0.374\n", "\n", " Variable $X^{5}$ has 2 link(s):\n", - " ($X^{5}$ -1): pval = 0.00000 | val = 0.343\n", - " ($X^{6}$ 0): pval = 0.00000 | val = 0.292\n", + " ($X^{5}$ -1): pval = 0.00000 | val = 0.343\n", + " ($X^{6}$ 0): pval = 0.00000 | val = 0.292\n", "\n", - " Variable $X^{6}$ has 2 link(s):\n", - " ($X^{6}$ -1): pval = 0.00000 | val = 0.427\n", + " Variable $X^{6}$ has 3 link(s):\n", + " ($X^{6}$ -1): pval = 0.00000 | val = 0.427\n", " ($X^{5}$ -1): pval = 0.00000 | val = -0.383\n", + " ($X^{5}$ 0): pval = 0.00000 | val = 0.292\n", "\n", " Variable $X^{7}$ has 2 link(s):\n", - " ($X^{7}$ -1): pval = 0.00000 | val = 0.668\n", - " ($X^{8}$ 0): pval = 0.00000 | val = -0.342\n", + " ($X^{7}$ -1): pval = 0.00000 | val = 0.668\n", + " ($X^{8}$ 0): pval = 0.00000 | val = -0.342\n", "\n", - " Variable $X^{8}$ has 0 link(s):\n" + " Variable $X^{8}$ has 1 link(s):\n", + " ($X^{7}$ 0): pval = 0.00000 | val = -0.342\n" ] } ], @@ -3768,95 +3810,95 @@ "output_type": "stream", "text": [ "Graph\n", - "[[[0 1 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 1 0 0]\n", - " [0 1 0 0]\n", - " [0 0 0 0]\n", - " [0 0 1 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 1 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [1 0 0 0]\n", - " [0 1 0 0]\n", - " [1 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 1 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 1 0 0]\n", - " [0 1 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [1 0 0 0]\n", - " [0 1 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 1 0 0]\n", - " [0 0 0 0]]\n", - "\n", - " [[0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [0 0 0 0]\n", - " [1 0 0 0]\n", - " [0 0 0 0]]]\n", + "[[['' '-->' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '-->' '' '']\n", + " ['' '-->' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '-->' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '-->' '' '']\n", + " ['<--' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['-->' '' '' '']\n", + " ['' '-->' '' '']\n", + " ['-->' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['<--' '' '' '']\n", + " ['' '-->' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '-->' '' '']\n", + " ['<--' '-->' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['-->' '' '' '']\n", + " ['' '-->' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '-->' '' '']\n", + " ['<--' '' '' '']]\n", + "\n", + " [['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['' '' '' '']\n", + " ['-->' '' '' '']\n", + " ['' '' '' '']]]\n", "Adjacency MCI partial correlations\n", "[[[ 0. 0.68 0.01 0.03]\n", " [-0.02 -0.03 -0.03 -0.02]\n", @@ -4077,7 +4119,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Tigramite offers several plotting options: The lag function matrix (as shown above), the time series graph, and the process graph which aggregates the information in the time series graph. Both take as arguments the boolean ``link_matrix`` which denotes significant links by ``True`` or ``1``. For PCMCIplus this boolean matrix can directly digest the ``graph``. ``val_matrix`` can be used to indicate the *strength* of links." + "Tigramite offers several plotting options: The lag function matrix (as shown above), the time series graph, and the process graph which aggregates the information in the time series graph. Both take as arguments the ``link_matrix``. For PCMCIplus this matrix can directly digest the ``graph``. ``val_matrix`` can be used to indicate the *strength* of links." ] }, { @@ -4095,15 +4137,15 @@ "source": [ "In the **process graph**, the different entries in ``graph`` are visualized as follows:\n", "\n", - " * ``graph[i,j,tau]=1`` for any ``tau > 0`` denotes a directed, lagged causal link $X^i_{t-\\tau} \\to X^j_t$ and is depicted by a *curved arrow* pointing from $X^i$ to $X^j$. If also the lagged link in the other direction $X^j_{t-\\tau} \\to X^i_t$ present, then both curved links are drawn with opposite curvature such that they don't overlap. \n", + " * ``graph[i,j,tau]='-->'`` for any ``tau > 0`` denotes a directed, lagged causal link $X^i_{t-\\tau} \\to X^j_t$ and is depicted by a *curved arrow* pointing from $X^i$ to $X^j$. If also the lagged link in the other direction $X^j_{t-\\tau} \\to X^i_t$ present, then both curved links are drawn with opposite curvature such that they don't overlap. \n", "\n", - " * ``graph[i,j,0]=1`` and ``graph[j,i,0]=0`` denotes a directed, contemporaneous causal link $X^i_{t} \\to X^j_t$ and is depicted by a *straight arrow* pointing from $X^i$ to $X^j$.\n", + " * ``graph[i,j,0]='-->'`` and ``graph[j,i,0]='<--'`` denotes a directed, contemporaneous causal link $X^i_{t} \\to X^j_t$ and is depicted by a *straight arrow* pointing from $X^i$ to $X^j$.\n", "\n", - " * ``graph[i,j,0]=1`` and ``graph[j,i,0]=1`` denotes an unoriented, contemporaneous adjacency between $X^i_{t}$ and $X^j_t$ indicating that the collider and orientation rules could not be applied (Markov equivalence) and is depicted by a *straight line* between $X^i$ and $X^j$\n", + " * ``graph[i,j,0]='o-o'`` and ``graph[j,i,0]='o-o'`` denotes an unoriented, contemporaneous adjacency between $X^i_{t}$ and $X^j_t$ indicating that the collider and orientation rules could not be applied (Markov equivalence) and is depicted by a *straight line with circle ends* between $X^i$ and $X^j$\n", " \n", - " * ``graph[i,j,0]=2`` and ``graph[j,i,0]=2`` denotes a conflicting, contemporaneous adjacency between $X^i_{t}$ and $X^j_t$ indicating that the directionality is undecided due to conflicting orientation rules and is also depicted by a *straight line* between $X^i$ and $X^j$\n", + " * ``graph[i,j,0]='x-x'`` and ``graph[j,i,0]='x-x'`` denotes a conflicting, contemporaneous adjacency between $X^i_{t}$ and $X^j_t$ indicating that the directionality is undecided due to conflicting orientation rules and is depicted by a *straight line with cross ends* between $X^i$ and $X^j$\n", " \n", - "In each case, the link color refers to the cross-MCI value. If links occur at multiple lags between two variables, the link color denotes the strongest one and the label lists all significant lags in order of their strength. The node color denotes the auto-MCI value at the lag with maximum absolute value. Note that if ``val_matrix`` is not already symmetric for contemporaneous values, the maximum absolute value is shown." + "In each case, the link color refers to the cross-MCI value. If links occur at multiple lags between two variables, the link color and type denotes the strongest one and the label lists all significant lags in order of their strength. The node color denotes the auto-MCI value at the lag with maximum absolute value. Note that if ``val_matrix`` is not already symmetric for contemporaneous values, the maximum absolute value is shown." ] }, { @@ -4115,7 +4157,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3hUVfrA8e+ZlkxCCSGASDChE8QCFoJixb6KKKiI665lV2X1B+JiWeyuFVAWdBexYosooIi9IgYxWEAUCEgLEHoNIZlk2vn9cW/IJCSZSZnMJPN+nifPMPeee+ZNmDvvnHtPUVprhBBCiHCyRDoAIYQQzZ8kGyGEEGEnyUYIIUTYSbIRQggRdpJshBBChJ0kGyGEEGEnyUYIIUTYSbIRQggRdrZIByCECF3Rh2+nuVf8munfvycDny8Rq7XIktQ213H08TmJl1y9MdLxCVEdJTMICBH9Cp59dJBn/arb/bt3XKxLS+Iq71dx8SWWtu0/snfLmNL6/+5bGIkYhaiJJBshophn/Wpb4SuTH/fkrR2Du9QR9ABHnNvepceUltffPt7etZe3EUIUIiSSbISIUt78PHvBlIff8m5ce0Vtj7Wl95jV6pa7R0rCEdFCko0QjWz64o3XAz5gzs0D0oqqK7f3vlsmeP5YcWddX8fe8+iJyY8+f1ddjxeiIUmyEaKRTV+88V7gUaAQeAd4Bci5eUDaoZOx4NlHB5Us/vbrUC6dfbplD19t28vuUg/Xd+vImUe0MXY44tzxA84cLPdwRDSQrs9CNL5t5mNL4G/AImDl9MUb75q+eGNHAM+63Ar3aGas28bdS9YequDJ5Ru5bfFqAC7s1JanT+zBlJN68sHm3eWv4i51eNbljgn3LyNEKCTZCNH4tlaxrTfwFLD55R/Wf7W5deqlfov10M4r09rz5da9FLi9fLF1L19t28vEE7tXqGBy7iau796xwjb/np0XF334dlrD/wpC1I5cRhOiEUxfvFEBycCRwKnAtGDHOIoP0Hnl9xy1YgGtd+fzyG8bKPb6+Wb7Xt49vS/pLZwAaK159Pc8zujQhtM7JB1ezwmnXNXm7qfebdjfSIjakUGdQtRDpSRyJNCxhsfgXZcDuBNase7EC1l34oUkbV/PaUfO4eop/+W1UzMOJRqAl9duI3vHfgo9PjYcdPHXbpVaN/v2ZNTjVxSiQUiyEdXa//Yraa4lP2b69uzK0D5forJai6xt2+U6+5+ck3T1Dc16tLqZRNoSPIHUOonUxf4juvLyyk0ktWiBx1/xasTfehzJ33ocWf3BPl9imMMTIihJNuIwOx65a1Dp6hW3e7dvvViXuA4bre5asrjkwLxZH8VlHDOlwwMTmlRPp0pJpKZEcgSNkERCtfD5J0la9ysvn5DOxBWbuDg1JfSDrdZqu1cL0Vgk2YhDSlevsO165t+Pu9fkjtGl1Xe51SWueM+mDcO9O7YO2bJ185SUsfeNj+t1dEQHD05fvNGCkUTKkkVNLRF7hMKsNau7BNdrT/HTe+/w8dnH0sJu48FlG1i+/yB9k1qEVIelTdvcMIcpRFDSQUAA4N6w1r7j4XFvudesqvVodUfPjFnt73l0ZDgSTkASCaUl0mSSSCg6rFtCygfTuObj73hz0NH0bJUAwMy8HSzaWcDUk3sGrUPFxZckXnlDb5mkU0SaJBsBQP7NIyaULv+1zqPV4/oePzF1+syQR6ubSSSF0O6JNJcWeDFGt+dtGL9ft2rKbT/u53kb0he8O1DV8wWtRx41O+U/b9X6C4QQDa25nMSiHnY8ctcg95rQBv+tLS7ltW372OvxcUpSAteYo9Xda3LH7Hjkrnlzz791EeVJJFhLpLm8/8qSSFkiqfzvssfCslkCAmYRqGw6cE+Gv6BviSMupBkEquWIc9u7ZUyp8/FCNKDmcrKLeijN/b3CPZq3tu9jdZGbR7p1AOCZTbvYUurl6R4d6dA9gzEntMXVMpknv82m/7AbcbdKprR1W4erXacvMC5lNZf3VRHBE8g2ApJILWyr9DwXuOnmAWlGh4sB9y307cifUq+50dK7y3IDImo0lw8FUUf7334lzbtz+yWB2y5v15pz8zcwzpvCzwdczN9XxKy+RwGw9O+P8tOyJXz+xjTOHH4dW069OPBQJ01DWRKpKYFsvXlAWmEYYyhLNm6MFs6EmweklQYWaHnD2PEHpj2ZXtdZn1veMHZ8A8QpRIOQZBPjXEt+zKzcvdlptXDJEW14ZvMeFuw9yIyjU4m3GjMbxR3Yy3Gnn8txp5/Lc3dcz8nnXxqRuKtxkBBaImFOIqHaCiwAbr55QNrqqgrYu/bythp1z8jCVybnyXo2oqmTZBPjfHt2HTa6PK7bUdx8ybmc+K/neL53J9Liyz/j1vz4HQvefQuvp5S+p5zVWGEWcnjSqJxIoiWJhGoFcFawy2/2rr28yY8+f1fBs4/O86xfNcZcqTO+cjlZqVNEO0k2MU4HjC5XcQ5anTWQhD49uOM/b5HSKhHVNgl0+RfkEzodyRHDbmyoly8ktJbIwYZ6wWhx84C0WrU6zASysOjDt9PcK38d4N+3JwOfLxGrtcjSpm2uo8/xi6V7s4hmkmxinDJHl8elp9L6vNOwtkhkyrwFlLq9vHHHtTya9QnndGyF9ngAaNEi+FAWu9+D019Cgr8Ep68k4N+lFNha3Ptbi96zaKZJJNwSL7l6oyQV0RRJsolx9k5H5sUflUzCMb0A+Pb3tbwx/yfmP34bLZ3xFLq95PXsRtqKVQA4fsmhfWovEuOokFAS/KU4zX/b8VX3cmsp5amBg8+vtoAQonmSQZ0xrHjOpMFa85pSdALYvGsfFzz4PHPG30DvVKPb8xvzfyJ7+ToeTbTg238AABUXR7vrrsCW1Kq2L3mbc8jo/zbk7yCEaBok2cSg4jmTWgATgFHBynr3H6Dg8+9wb9leYbv9iHakXHM5ymat5sjDqwK6OIeMzq9tvEKIpk+STYwpnjPpdOBVoGuwskW/rqQw+0e0p+p72Qn9jibpvDNq8/Iu4C3gOeeQ0ctqc6AQommTZBMjiudMSgAeB0YDNU655T1QSMEX2bg3VbV6cUVJl5xLQp8edQkpG3gOeN85ZLSnLhUIIZoOSTYxoHjOpFOAGUDQrFD8+yoOLFiMdof2+a/sNtrf8pdCa0J8yzqGtxV4HnjROWT09mCFhRBNkySbZqx4zqR44BHgn4AlSPGtKMtNez//8Yxg69mUUXFx7riefaYkX3L6DHyeH4Ba9xgI4AFmYbR2cpxDRssbU4hmRJJNM1U8Z9JJwGtAKOvPvw7cnjBs3D44tFLnGHOlzsNHq8c7S2wdOn4U17vvoZU6XfOm/gn4kCCX6EK0HMgCZjqHjN7QAPUJEbKCWa+nlS77OdO3d3eG9nkTldVWZE1OyY077sSc1lf8RcY41ZEkm2ameM4kB/AAcA8QrKvYDuDmhGHjPqhq5/63X0lzLf1pgG/PrvKTrm27XGe/kxYnXX3DYSeda97U8cBjlTbfBRwHXEndFjf7ASPxvOscMnpnHY4XIiS7n7p3kPuPlbd7d26vcjl0Fe8ssbbr8FFcr6OnpNz9mEwJVEuSbJqR4jmTjsdozRwbQvGZwP8lDBu3u6Fe3zVvqgLeBYabm1YCfZ1DRmvXvKkdgJuAWzDWs6ktH/AV8DZGp4IDDRCyEJSuWWnb++yTj3vWrR6jQ5jsVDni3I4evae0ufXu8XE9+shkpyGSZNMMFM+ZZAf+BdxP8FkhdgP/SBg2blY4YnHNm9oCWAQcA/zdOWT0S5X224GhwG3A6XV8mRLgI4wWz6fOIaNL6h6xiGXujevsu58Y/5Zn3epaL+Ng7957Vts7HhgpCSc0kmyauOI5k/pi9DQ7IYTi7wOjEoaN2xHOmFzzpnbFSAb9a0oErnlTjwNuBf5M3dfCKQDew0g8851DRstUOCJk20b/ZYI797c6L1DnyDh2Ysepr4e8HHosk2TTRBXPmWQDxgEPA8Ga/vswWhJvJwwb1yj/4a55U1uFeqnLNW9qG+AG86dPPV52O/AOxqW2H6VHm6jJ7qfuHVT83Vdfh3LpbFNxKc/l7aTQ62PasemHtitHnDvh9HMGyz2c4CTZNEHFcyb1wmjNZIZQ/GPgpoRh44KP0Iww857PMcBI4GrgqHpUtx6jtZPlHDI6twHCE83MlhuGzvJuziu7v8gb+btZfbCER3unAjBp7Ta2lHiY3Lf8bTjqt7wKyQbA1jl9dqdX5tb6MlyskWTThBTPmWQFxmD0+DqsS3IlB4DbgRmN1ZppSK55Uy3AQIzEcyWQUo/qlgGfAvOB751DRhfVP0LRlBXMej2t4PVpqwN7nZVYrZy1cCWfndidn/cX8fS6bbx3Uo9Dq9RC1clGxTtLWv9lVG/pFl0zWWKgiSieM6k7xpxmg0Io/iVwY8KwcZvDG1X4OIeM9gPfA9+75k29HTgHo7VzGdCiltUdZ/7cA3hc86YuBr7BSD450sEg9pQu+zlTe91x9s5H4kjtiKPzkdjatWVEwoc8vSyX+dv28Ga/ruWJxmKpdtJZXeKKL/3t5wFIsqmRtGyiXPGcSRbgH8BTQEKQ4kUYswW80BRbM6FwzZuaAFyMkXguIvj9qmBKMMbylCWfn5xDRrvrWaeIQmZPyJOAwb4i1w2WeEe6slZMIKvzd9Dv1sd58bh0zm3X+tB2d/9jePLHXL76aQVXHZHErV06VDjO0bPPQx3/m/VwI/waTZa0bKJY8ZxJ6cDLwNkhFP8WuCFh2LhmPeLeOWR0McZYnnfNjgWXY1xqO4u6zV4Qbx57lvm82DVvajZG4pkPLHEOGS1dW5sg17yp7YD+5s8gjK72LQCsiVV3fnzinc9IaeHEF/Al3NGlM+0H9ue5gf3RHg8Hvvme0rUVGzGBy6uLqknLJgoVz5mkgL8BzxD8kpELuBv4b8Kwcf5wxxatXPOmHolxb2ckxrfXhnIA+A4j8XwD/GZe4hNRwuxY0pHyxNIfYyhAam3qmTL3G37I3cAtF5zCQ1Pe5N0TumFpmUjylZdgia84oUDRkuUU5SwB8/NTWjbBScsmyhTPmZQKvAScH0LxRcB1CcPGrQlvVNHPOWT0VuA/wH9c86b2AEYA1wC96ll1K4zLdhebz/e65k1dgNGSXAasdA4ZvaueryFCZCaWozCSSWBy6VDTccF8+9sfvPH1YuY/NZaWCfEUKcWKgy4GDbvwsEQDkNi/L/Z2yRR89i3a7cGanCI9HoOQlk2UMFszfwGmAK2DFC8F7gX+kzBsnAxirIb5wdSL8stkZ1G/Xm3V2QPkYkzPE/iYL2N96s7skdiNikmlP5DckK+zeddezr/3Od67/yZ6tGmJO38br73/FTl7Cpkx4Y4aj/Xs3EPBF9klra66UXqjBSHJJgoUz5nUEZgOXBJC8Z+AvyYMGyffpGrJ/PA6GiPpnA2cASSF8SUPYiSdyolog8x0UM41b6oVOALjslcPyi+D9QPquk5SSPyuEtxbtuHZvA13/lZ8+yuOQ47r2ZVWZw1E2aq/COQrdhVYE5w9nUPHykSxNZBkE0Fma2YExhouwb6teYCHgAkJw8bJDesGYH7IHYeReM4i4AZymJUCf3B4S2iNc8jo0kZ4/UbjmjfVgTHxamoVP53Mx44En6G8oRRh3IP7xr3r4J6C9z54PtgMAraUZFpfeBbWVjW+NXKBwc6hY7c1YKzNiiSbCCmeM6k98D9gWAjFl2K0Zn4Pb1SxzewaewLlLZ9TqfucbXXhB/ZW8bOvmu1lP/sj0WPO7IZeljCqSyb1updSTxpYBSwxfxZTqWt7qHOjqfg4Wp93Oo7ONU5YvhY42zl0bJMd3xZOkmwioHjOpGHANKBdkKJejNkCHksYNi60dZpFg3HNmxoHnEx5y2cg9R/XEy4HqD4ZeTDWEqr84whxW1XbnQS/t9iYvMAKyhPLEmBZsNkiStestO15+uGskGZ9VoqWZ2TiPLpnTaU2YCScvFADjxWSbBpR8ZxJbYFnMQYkBrMcozWzJLxRiVC55k11AqdgXG7rizFpaHcasVfn9yvWkbNqA6s2b+epGy8juWVMDu9wA79RnlR+AZbXdSaI2q5n0/LMU/zOo3vUtMz6ZoyEs7Yu8TRXkmwaSPGcSckJw8btrWH/JcALGDdCa+LHmC3g4YRh45rV9fvmyLwn0R1j+e0MjASUAfQm+Px1dfbEO58z4owT6HJEODrXRZVi4FcqtlhWOoeMbvCWvrlS5xhzpc4ql0MvW6kzsVfKUIzZOqqzDSPhrGroOJsqSTYNoHjOpFYYJ8E5CcPG5VXal4Qx/uOvIVS1GqM1s7jBgxSNyux8kEZ58gl8rFcPq3cW/IzWMOLME+sdZxTZD+QDWzA6TJQlltWN3XOvYNbraaW//TzAt3d3hvb5EpXVWmRNTsmNO/bExWXdm11zJyvg3xhDEKqzE6PTwPLGiDvaSbJpAMVzJj2BMcnjfIyE4ze3n48x3UynIFVojNkC7k8YNs4VzlhFZJljf47k8ASUQfB7eLz3/VJmfJnDef0zGJJ5LEe1b9AhJ+Gyk/JEkl/Fz5amOhO3a+7k+zCSTnX2ACfKPRxJNvVmzl+2CigbZvx/wGvA08DfQ6hiHcYsALL4Uowze3e1wegGn1zp3zX9hHUsSg38GJeLKiSOSs+3Nrfu3JW55k6+E5hQQ5FfgEHOoWNjenZxSTb1VDxn0kzgqsBNwC6MSyjBPAv8K2HYuCb5rU5EB7PLdlliqipBWTB6pAX+uBtg216ZpNTgmjv5/4CpNRR5yTl0bChfPpstSTb1UDxn0kCM+clqKw9jhub5DRuRECJSXHMn3wQ8T/Wzj9/oHDr2lUYMKapIsqmG69NZaZ5VyzL9BXsz8PkSsVqLLK2Tc+29j8txXnjFRnP0/w/AgFpW/QIwLmHYuMKGj1oIEUmuuZNvByZXs7sUGJhw2R1FwHhgrtZ6bqMFF2GSbCopfOHJQb68P2737dl5MaUlh0/3GhdfYklu95Hj2IwVymF5sBZV52OsnvlFgwUrhIgqZi+1t6h+LN0G4ISEy+44DkiKpWRT08CkmOLN+8NW8O/RE9w/ffe1b+umYVUmGoDSknj/ji3Dtc9dm0QzAzhGEo0QzZtz6FgN3ITRfbsqXYA37TZrXRb6a9Ik2QDeLRvtB195Osu7buWdeNxBRxDbuqZjcYY8Xm9GwrBx1ycMG7e/flEKIZoC59CxBzHmPDxY1f7t+w5cdGpG1yeAS5RSoXQkahbkMhpQ8O/RE7zrVgadjA+AOAfxZ59e45TjlbiBExKGjZOBXULEENfcycOBWdXs1sAFzqFjY+ZqR8y3bApfeHKQd9PaMaGWd6enM2j8c3z6c3Wt5MM4gNeK50yy1ylAIUST5Bw6djbGeLuqKCDLNXfyUY0YUkTFfLLxblg9JvDS2Sur8rkzp3w6o8eXrGNU9goAVMsWTPnlDy4feFxtX6Y/8K8GCFcI0bTcg7F+TlXaYswcEhNiOtm4Pp2V5t+7q8LqmCO6d+TzzbspcHv4fPNuvtyym2cG9gZgoSWejM5H0D6pxkWUCjDWn3kPmATcClwEZIXllxBCRC3n0LFejAUSt1dTZJhr7uQzGjGkiInpezYHJt93lWdZzszK2x/6eQ3FXh9fb9nD7HP70aVVApb27Xhi3U6KXKWs2rSNeKuFt/58AarEhb/YhS52YevZ94ZWtz7yaiR+FyFE9HLNnXwaxtyJVa1IugQ4yTl0rL9xo2pcMd2y8Rfszahq+zU9juSV1Vt49KSedGmVAIAuKuKedk4eaR/PZUlxXJOSiG9FLt51efi37UAXHMC/a3fMXH8VQoTOOXRsNsbSIVXpD/ylEcOJiJhONvh8Va48NXHZBlLi7fgCWn26qBhdYsyjd3X3Izm/cxXriPirrk8IIYAnqP5y2hOuuZNrvD7f1MV2srFaD5sA878rNlLq8/PSGccwPbeWS4lbDq9PCCHg0Pib8dXsPgK4uxHDaXQxnWwsrZNzA59/t20vb6/dxnOD+jDoiDYc9Hj5fW/oU5hZkirWJ4QQlbyG0YGoKuOac1fomE429t7H5RAXXwKQf7CEsYtyeeWMY2hpNwZs3pTRmekrQ2zdxMWX2HsdJytsCiGqZXYCGFvN7njgyUYMp1HFdG80gH3/un6Wf9vm4fWtx9Kx8+w2T7x6RUPEJIRo3lxzJ88BLq9m90Dn0LE5jRlPY4jplg2ArUuvKdgd7npVYne4bV16TWmgkIQQzd9dGFNZVeU/5uzRzUrMJ5uWN92z0HZU93olCttR3ae0vOkeWdZZCBES59Cx64DqPncGAJc1YjiNIuaTDUDitbeNtx7VrboJ82pkPar7rMRrb6uuh4kQQlTnMYwl5Ktye2MG0hgk2QC29J7eFjf8c6StW5+JIV9Sszvctu5HT2xxwx0jbek9ZR12IUStOIeOLQDur2b3aa65k/s3ZjzhJsnGZEvv6W19/9S7HCedPth65FGzy3qpHSYuvsTSsfNsx0mnD25935S7JNEIIerhFWBrNftCno2+KYj53mjVcX06K82zetkA//69Gfh9iVisRZak5Fx7r+MWOy+8YmOk4xNCNA+uuZPHY1xSq8wNpDmHjt1udhg4CRjsHDr2iUYNsIFIshFCiAhyzZ2cAmzGGGdT2TPABuDvwLHAd86hY5vkLNFyGU0IISLIOXTsbuCtanbfATyLkWgAdjRKUGEgyUYIISIv1OEXTTbZ2CIdgBBCxCrX3MkWYDDGZTKNsVx0TSTZCCGECI2ZZO4CbgbSa3HomrAE1AjkMpoQQjQyc0LOZUAVC2PVaFUYwmkUkmyEECICnEPHfgoMAraEeIhGWjZCCCFqyzl07DIgE1gXQvGNzqFji8McUtjIOBshhIgwc9G0BdRw/8Z3sHhD8ZLVr1vbpOQ6+vbPaXnZn5vU4HJJNkIIEQVccyd3Ab4DUqvaX7J8FcU/Got8qrj4EmtKh4/sPfpMSb7j4SYx47xcRhNCiCjgHDp2A1bHudrrK6pqv6/gwKF/69KSeO+WjcNdi775etfdf5vgXrsq6nsWS7IRQogo4Nm03l741aJHCuZ9luh3HT4PcGCyOcRd6nDn/nbn/ucey4r2hCPJRgghosD+Zx97zLNhzRX+/Qco/Gw+/pLSCvt9+wqqPdazfvUVBdMnPh7uGOtDko0QQkTY3mceHOTe8MehJQV8+/ZT+OUCtNdnPN9fgC41ltoq9vq4fel67ly2gffy9xyqw73hjzF7n3lwUCOHHjJJNkIIEWGeNSvH4C51lD1/PW8nd3/9C0Xf/wjAQ298xOgl6wH4ZNs+/tQxmYnHdeHLHfvKK3GXOjxrV0btGjiSbIQQIoIK338zzbd7xyWB265IbcuXO/aza9Va5s76jM9/X8dTx6UDsL3EzZFOIy9ZVMWp1Hy7dlxc+P6baY0Tee1IshFCiAhyL1+SqUtL4gK3OW1WLu3UlgmrtnDP3AVM798Vp9X4uD4i3sG2EuOSWuWRK7q0JN69fMmAxom8dqK694IQQjR3vn27M6raPqJzCmd+u5xXTupOmsN6aPtFHdtw3/JNfL1jP+d0SKqivj1V1hdpkmyEECKSfL7EqjZPXrOVtg4b3krNlwSblWeO71JDfd4q64s0uYwmhBCRZLUeNohz+rrtlPr8TDuhGy+v31nL+mxVDgqNNEk2QggRQdY2KbmBz7/ffYB3N+/mP/26ckpKKw56fawoCH3+TWubtrnBSzU+STZCCBFBjr79c1RcfAnAluJS7lyWx/MndKOFzbhPc2PXDry0fntIdam4+BJH3/6Lwxdt3clEnEIIEWE7Rl0xy7tl4/D61mNLTZvd4X+zrmiImBqatGyEECLC7D36TMER565XJY44t717nykNFFKDk2QjhBARlnzHwwsdXXrWK1E4uvSM6uUGJNkIIUQUaH3znePtXXrMqsux9q69ZrW++c7xDR1TQ5J7NkIIESXca1fZCqZPfNy94Y8Kc6VVyxHndnTrNaX138eNd3Tv7W2EEOtMko0QQkSZvc88OMizbtUY385tF+vSkvjK+1VcfIm1XYeP7N2bzkqdkmyEECJKFb7/Zpp7+ZIBvn17MvB5E7Haiqxt2uY6+vZf3PKyP2+MdHy1IclGCCFE2EkHASGEEGEnyUYIIUTYSbIRQggRdpJshBBChJ0kGyGEEGEnyUYIIUTYSbIRQggRdrIsdDV0/k9pumBzJu6iDLQ/EWUpwpGYq1p3zlGpJzWpwVRCCBFpMqizEv/qTwZRuP12Sgsvxu+JO6yAxV5CXMuPaHnEFEuvi5rENBFCCBFpkmxMunCHTa/7+nGKdo7B7w0+AZ7F5qZF+ymq6+DxqmWHqJ4ATwghIk2SDaCLdtv16o/fomhX7Ve4S2w/S/U4f6QkHCGEqJ50EAD0mi8eq1OiASjaeYVe9/XjDRySEEI0KzGfbPyrPxlE0c4xoZT9duk6zrjtf4yaNIdvl64r31G0c4x/9SeDwhWjEEI0dTGfbCjcXuEezbS5i7j1mfcO7b7/xc/4y6NvA6AUJDodlLg9pLZrXV6H3+ugcHtICUsIIWJRTN+z0fk/pemNi1YH9jorLnGTcc0Els34Jwt/38CDL3/Owv/dhjPOzkG/nUSLh517C/nncx/y5gMjyyuz2EtU2im9pVu0EEIcLqbH2eiCzZmVuzcnxDsYcc7x3Pfip3y2eDWfP/N3nHF2NDDHcT5W/KQkbWW353MKSaAlxcaBfk+8Ltg8QJKNEEIcLqaTDe6ijKo2X3/RyRx97UTef/w6unVKAaCAFvyw4Ftyc76j+OABTr/ydrLsmSTr/aT7t5Gut9K2tKiPXJcUQojDxXay0f7Eqjb/+7UvaZeUiNfnP7Rtu0qh35kn0u/MCyqU3auS2GtNYgkZONzef7pz8joAHwDzR2Wml4YzfCGEaCpi+4u4shRV3vTMzAWUlHqZ+fC1PDu7fIIAt0qkr28raf69JOsi7PrwYTVubC2AW4BPgd3TcvLenJaTd+a0nDwVxt9CCCGiXmy3bByJuYFPv/llLTM+/Ynvp91Gy4R4/llcwq9rtnB8j05sVO05z7cWK+UdKkqwUajiKHiEQQkAACAASURBVCSOgyqOA8QbjyqeIhwt/MpyDXANsG5aTt7LwGujMtO3Nu4vKYQQkSe90TYuWoXfE79pxz7OHv08Hz51AxnpHQCY8elPLFi6jhfHj2Se9Uy6+As5Rm8LqW4/UIzDTEbxbLe0ZI2lvQ/4BHgZ+GRUZronXL+bEEJEk5hONgD+n1+ZhWvv8FDKlmIH2mOl9lfFPrP2ZoslKXDTNmAy8PyozPTCWlcohBBNiCSb1Z8MYvcfX4c0+SbgJxE/bWr1GrmW9iyydq1u9z7gWWDqqMz0PbWqWAghmoiYTzYA/l+zJlC49c5QymrARwfAHlLdhcTxvu1YPMoarGgRMB14Wu7rCCGaG0k2mMsLrPksK9TJOP3E4yclpLrzVWvmW3vgViH3xXADM4BHRmWmbwn1ICGEiGaSbEy1Wc9GA37aaU1cSDdvSrEWLbB215stbVrUIqRi4Ang6X8M7NIZGA/M1VrPrUUdQggRFSTZVGKu1DnGXKkz/rAC5kqdfkubef6i0hnUYqzSHhK++cTWJ8GtbJm1CGkjcNetp3bbqf3+JEk2QoimSJJNNXT+T2m6YPMA3EUZaH8iylKEIzFXte68uGz+M3f2zOeBm2tZ9cZcS/vJi6xdLwAuCFra9Fv2l799/8E7r/228Ktnavl6QggRcZJs6sGdPbMDsAZoWYfD//u+7ZisvSpxLDAMqu9PXbBnF5+9+izu0hLOuvK6d1J79Bk1KjN9Xx3DFkKIRifJpp7c2TPvwbi3UmYV8C3GtDXBrAeue9meuQu4G7gWCNptDdgC3DgqM/3z2kUrhBCRIcmmntzZM+MxEkwaxsQBAx2njfjRnT3zXIyZAjoHqUID/wHufdme2QV4Bjg/xJd/HrhzVGb6wToFL4QQjSS2J+JsAI7TRpRgtEoAnnScNuJHc/uXwDHAK0GqUMBY4NcbPTmtgAuBi4E/Qnj5W4Bl03LyZElqIURUk5ZNA3Bnz1TANGCM47QRhy0r4M6e+SfgRaBjkKr8wETgwZftmRr4B/AQ0LqmgzBaR08D94/KTC+pXfRCCBF+kmwaiTt7ZhtgKvDnEIqvAP7qOG3EL9Ny8lKAx4G/h3DcL8BlozLTN9c9UiFinNeVht+TifZnAIlAEcqSi8Weg80pK/HWkSSbRubOnjkUY1qa9kGK+jCSzKOO00a4p+XknYdxSa5TkON2AVeMykxfUO9ghYgl7sJBaN/taN/FQFwVJUpQlo9Qtik4Wi6sYr+ogSSbCHBnz0wB/gtcGULxX4HrHKeNWDYtJy8Jo3V0bZBjvBj3gf47KjNd/oOFqInfa8NT9DjaOwYIZUJeN8o2BXvieCy2w1dRFFWSZBNB7uyZVwL/A9oGKeoBHsHogOCdlpN3GUbrqF2Q42YAo+Q+jhDV8HvteA6+hfaFNC9iBco6C3uLkZJwQiO90SLIcdqId4GjgWBT0NiBfwM/uLNn9hmVmf6+edz7QY67DvhuWk5ean1jFaJZ8hQ9VqdEA6B9V+AperyBI2q2pGUTBczebNdgrGuTFKw4cD/w9Mv2TD9wJ8ag0pq+OOQD547KTF/VAOEK0Ty4Cwfhd39NCJfONm3K57Y77ialbVt6du/GPXeOOVQLFsdguYcTnLRsooDjtBHacdqIN4G+wKfBigNPAdk3enJ6jMpMn4AxNqem6WtSgexpOXn9GyRgIZqDSvdopr3wCv8YU76s1X0PPc61N4wC4I+16/jTBefyyvSprFy1OrAWh1mPCEJaNlHGbOVcjzGrQLA511zAv4BnzdkH3scYSFqdA8DFozLTsxsiViGaLK8rDW/xagJ6ne05UMQx/Qay8pdsFi7K4f5HnmTR/E9wOp3s2bOX4SOvRynFtSOv5Pq/jAysrQRbQm/pFl0zSTZRyp098yiM6W7OCaH4d8D1L9szdwCvAjVdgy4Bho3KTP+k/lEK0US5D1yF3zOz2KPZXOhjc6GPncV+sv7zGEc6Svnqq2/48uPZdOvaBYBJk5/j5JP6c/qgUxh+9fXMfvvVivVZ7FfhaPVuBH6TJkOSTRQzWzk3A5MwBpfVpAi4c4NKnv6Nred4jA4F1fECfx6Vmf5Ow0QqRNORtTQ/rWuS7YUDpf7zdrv8FfZt3bCWO4edxQez3mDIxRce2r58RS4PPTqBlJRkWiQmMunJRypWqqwPEZf0cGPE31RJsmkC3Nkzu2IM6DwjhOJfAze8bM/8E8ZYnuqWLtDADaMy02cEbpyWk9cNyBiVmf5R3SMWIrpkLc3vjrGUx3DgxOrKPTf+Nlb+uJBX/vs0lw+9OPQXUNaJxCXdVe9AmzHpINAEOE4bsR44GxiDcZ+mJoOB5Td6ctxK62swWjFVUcDL03LyrirbMC0n71hgIaFNjSNEVMtamp+RtTT/vqyl+b9irDv1JDUkmo/fmI6ntJTbnpzG5Oem1/bliuoRakyQlk0T486e2RNjsObAEIp/+rm118x8S5vpwOFLXBu8GN/49gIfYUz6WQwkj8pMP2xSUSGiVdbSfIXRo3O4+dMn1GNX/Pg9r098gIdmfIAzsQWPXnshWS8/y/HH1dTfJoDcswlKkk0T5M6eacWYjuZRqp7DKdD+TSrpf19ae/0fSlXXu82NMRebM2DbeaMy07+sf7RChI+ZYPpRnmB61LaO3du28OhNV3LnlBl069GDzq2sLP54Nj/nLGLGi8+FUoX0RguBJJsmzJ09sw9GK+ekYGVd2L5933bs8S7lCDZotMwzozLT/1mf+IQIh6yl+RbgZMrvwaTXp74Em6JzSwudW1lp57SgVLUrtFdNWWYT16ZusxDEEEk2TZw7e6YNuAtj3Rt7TWX9ULDA2t2x3pLirKmc6cdRmekDGiBEIerNTDCnYCSXYRgDletjQ6s4S07mEfbhbZ3KXusEU05mEAiRJJtmwp0981jgNeD4YGU3qGTfImsXa4mqMTd5gdajMtOLGyhEIWola2m+DTgNI8FcDhxRzyrXALPNn6Uj+6VqSgsmoL13Bjmueso2kbjW0gstBJJsmhF39kwHMB64F7DVVNaFne+tXdhoSa6p2FmjMtO/bbgIhahZ1tJ8O0bPy2HAZUBKPatcgZFc5gDLR/ZLrfiB5/fa8BzMklmfw0+STTPkzp7ZH3gdY2boGq1VKfxgTcetqsxN943KTH+soeMTIlDW0vw44FyMBHMp0KaeVf6KmWBG9ksNPvmsrGfTKCTZNFPu7JlxwIPA3QQZT1WEne+tXdlsqXiO2/B/e6N7/vOUHMhA+xNRliLiW+Wq9t1yVO8zpeeNqLOspflO4AKMBHMJ0KqeVf5EeYJZV6cajJU6x5grdVY1VEBW6qwHSTbNnDt75gCMezm9gpX9Q7Ujx5qGx2zlOPylXLf5hcOnILA6SkhI+ojkzlMsmSPlpBMhyVqa3wK4CCPB/IngUzAFswgjwbw3sl9qw3358brS8HsGoP0ZGDEWoSy5WOyLpXtz3UmyiQHu7JlOjDE5Y6l++hoADuJgobUrWyxGD+nhW7No69lTdWGr3U2bTlNUv8vGq+RUuZwgDpO1NL81cDFGgrmQ6gcXh0JjTDo7G3h/ZL/ULfWPUDQWSTYxxJ09cxDGuJxuwcrmWtrzkyWNAXu/4+iDy2sunNRpljrpypGScARA1tL8ZGAIRoI5j9Dug1THB8zHSDBzR/ZL3VH/CEUkSLKJMe7smYkYc0TdFqxsIXFsdCuO3x3C8jdt0yZazhktXUBjVNbS/HbAUIwEM5ggvSGD8ABfYSSYeSP7pe6uf4Qi0iTZxCh39syzMNa+SQtWVh3cgaUwH6X9+P2aB979ngMuNyd07cBfzzA7vFntblKPHSz3cGJH1tL8jhjdk4cBZ1K/iX1Lgc8xEsyHI/ul7q93gCKq1Ofbh2jCHKeNmO/OnnkMxlo5NwXumz73S5av38Szd9wIwANZ37B54zpev/V8Pvh5LVv2HiS5RTypyQFTrfk8DvZuHoMxa7RoprKW5nfGGGA5DBhEkHuAQbiATzASzMcj+6UW1j9CEa2kZRPj9Kpv03x/LFrjb5Vqx2pcWi8uKeWYa+7glxkT+P731Tz0wlssemgYToedpz74kaTEeG4+51iueOZDZt1xSXllVkeJ6nt+b+kWHb2yluZfhXHvI+QZvbOW5nfBSC7DgMx6hnAQY3bx2cBnI/ulytT8MUJaNjFO71yXaXHtsauS/fhbd0YntCMhPo4rzzmFB158hy9ylvDZPZfidBhT23RKboHDZgXAaqn0pdbnjte71g2QZBOdspbmX4+x1PjFGC2Kmsr2oHweshPq+dIFwDyMBPPFyH6pJfWsTzRBkmxiXcmBDAClfVj35+F37cOflM5fLzqT464dx/t3XU73I8onir785B6MfvUbFq7awukZVcyF6DLqE9Ela2n+jcCLGJe9hlNFsslamt+H8gRzbD1fci8wFyPBfD2yX6q7nvWJJk6STazT/goD6yylBaidy3n85W9o1zoRr9dToXhCnJ2Xbjk/5PpEwzr4QVaae8XSTP/+PRna501UVluRJaltruPofjktLh1ZZYsya2n+TUDg0pOXmnOQeTGSSlmCqe8XhZ3A+xgJZsHIfqmeIOVFDJFkE+uU5bBr5pM/XExpUQEzR1/Ew7MXcfnJtViPqor6RP3tn/rIIM+6Vbf7dm2/WJeWHLZgnnv5LyXFX3/4kaN7xpSk0Q8c6qSRtTR/FPC/SsWTMWaVOAnoXs/QtgLvYSSYhSP7pfrqWZ9opiTZxLr4VrmBT79ZvokZ367g+39fTUung3++4ebXvJ0cn94+tPqcFesT9eNZt8pW8NIzj3vy1ozBXVrt4EhdWhLv27JxuGvX9iHe7VumtL5x7PhZB1rcDFS31OTV9QhrM+VT9eeM7Jfqr0ddIkZIsolxqn23HL1zbQk+d/ym3Qe46YUv+fDuobR0Gp9r/3dBf6Z8soRX/3FB8MqsjhLVrtviMIccMzybN9j3/++Jt7x5a0Kf/t5d6vCs/v3On35Ycg5Hn96vAcNZT3mC+fmwqfqFCEK6Pgv8nzw1i8Kdw+tdUcv2sy0X3S3L4zaQ3f+6aYLnj+W1Xthr88l/Yu15f22IEFZTnmCWSYIR9SEtGwHJnadQvG8IPk/d57Cy2t0kd57SgFHFtP1THxnkyVszJpSyi3cf4L3Nu/H6NcuJ55776pVollOeYFZKghENRZKNwJI5cqH/q91T2LOx7svjJh0pyw00IPfa3Ar3aF5bv51VBcU80a8rAE+t2ER+cSnPntSDASmtGJDSitdbdsfZqU9dXm4JxkqWc0b2S13dIL+AEJXUZy4j0Yyo/pePJ+nIWXU6OKnTLNX/8vENHFLMOvhBVpp/945LArddcVQ7vti+jwK3ly+37eOr7fuY0L/rof15p17G+1v3MfCCS2v7cleN7Jd6wsh+qY9LohHhJMlGAKCSU73qpKtG0jZtIlZ7aAPwrHY3KekTZXmBhuVesTSzcvfmBJuVoakpPLlyE/cv28CLA3rhtBozOeQNGsZPvU/H2aIlCS1aVllnDQY2UNhC1EiSjThEJad6LeeMvovUYwfTqsNsrI6qpxWxOkpo2X42qccOtgz+v7sk0TQs//49VQ6uHJHentfW7+DhY9NJb2GsQaaBDsuzyX30Vv7cIZFOP39Om/W/EVewK9SXG5a1NL8+k2kKERK5ZyMOY957WahXfZumd60bgOtABtqfiLIU4WyVq9p1Wyzzn4WP9nmrnIVhcu5m2sbZ8AX0IFWAc/9OHujogJ0r4LMVh/b5bHZcbY5g38nnfbC23/mLgZ4BPylmsc4Ygzt/DM9vI4RBko2olup95kZJKo1PWW2HzcLw/JqtlPo100/uyaTczVzUqW3QeqxeDy12babNqu+XnnzDjU8E7jNX0yxLPNaGil2I6kiyESLKWJLaVpiFYeHOAt7ZuJMPzziGFnYrhb/lsXx/EX2TQpuGztKm7WGzOozsl7oXyDF/hAg7uWcjRJRxHN0vR8XFlwDkF5cybsk6Xji5Jy3sRgPkb9078tLabSHVpeLiSxx9+smsDiLiZAYBIaLQztFXz/Jt2VjvWR2sndJmt5/6tszqICJOWjZCRCFH94wpOOLqtwaMI87t6J4hszqIqCDJRogolDT6gYX29B71ShT29B4VlhsQIpIk2QgRpVr/7Y7xtvQedZrVwdal56zWf7tDZnUQUUOSjRBRyt6ttzfpH/8aae/Zd2LIl9QccW57r2MmJo26Z6S9W28ZbCuihnQQEKIJMFfqHGOu1Blfeb+Kiy+xpHQ4bKVOIaKFJBshmpCDH2SluVcuHeDftydD+3yJymotsrRpm+vo029xi0tHygBcEbUk2QghhAg7uWcjhBAi7CTZCCGECDtJNkIIIcJOko0QQoiwq9+szyW7NVqD9gEatB/jud987gOt0Yee+wF/teUq1uGjQt3+So/ah65crsbHsnoDf8xt/sDngN+My28+Dyx3aHvAo89X/uiv9Nw8Tlfe5vMZx/vMv0fgo1+jzZi0z/gT4/ObIeqA/Zj7NZSVM4+pcKxZXvv8aK3RXuNv5/casfjN5+XbjVj8Xj9a+9Heqo/Tfo3f5zMfjTI+n998bsTl9/nxB+z3m/t9lZ5XPt5nvFMOPeqAf9fmUQNe89EPPKR1k1koLO6Ev2tlsWKxOVBWK1abA+O53Xi0G8/LtzsqbLfYHFgsCovVgsWiUBaF1WoxHm0WlIXy54HblcJqq1jeYbNgNR9th55byrdbjcc487m10jFlZSxKYbcqrEphtygsFvNRKexWC1YFdqsFiwK7xYLVYjyWHacUWJXCYj4qRYV/l+/D+D3K9lsUCvNRa5Tfa5xvfh9K+8F8rnw1bTc+I8qO1V4P+H1ojxv8frS30qPHbewvK3eovPHo93rQPj9+jxft8+Nze9B+P36313j0Bfzb7cXv9+MPKOM/dKzG5/Hh92n8buPR5/EZ292+kPb7tcbt1/gOPVLpsXy7R1dVzvj38zqv2vNLWjZCCCHCTpKNEEKIsJNkI4QQIuwk2QghhAg7STZCCCHCTpKNEEKIsJNkI4QQIuwk2QghhAg7STZCCCHCTpKNEEKIsJNkI4QQIuwk2QghhAg7STZCCCHCTpKNEEKIsJNkI4QQIuwk2QghhAg7pbWu+8FK3aS1fqEB42ny5G9yOPmbRE40/e2jJZZoiQNiK5b6tmxuapAomhf5mxxO/iaRE01/+2iJJVrigBiKRS6jCSGECDtJNkIIIcKuvskmKq41Rhn5mxxO/iaRE01/+2iJJVrigBiKpV4dBIQQQohQyGU0IYQQYRdSslFKXaCUWq2UWquUuqeK/XFKqXfM/YuVUukNHWi0CfY3CSg3XCmllVInNmZ8kRDC++QopdR8pdRSpdRvSqmLIhFnc6aUSlZKfamUWmM+tqmm3ASl1AqlVK5SaqpSSkUqFrNsK6XUFqXUcw34+lHzuRUtnxcRPUe11jX+AFZgHdAVcADLgD6VyvwDeN789wjgnWD1NuWfUP4mZrmWwHdADnBipOOO9N8E45rwKPPffYC8SMfd3H6ACcA95r/vAZ6qoswpwPfm/5kV+AE4MxKxBJSdAmQBzzXQa0fN51a0fF5E+hwNpWVzMrBWa71ea+0GZgKXVipzKfCa+e/ZwOBwfFOKIqH8TQD+jXHClTRmcBESyt9EA63Mf7cGtjZifLEi8Fx8DRhaRRkNxGN84MQBdmBHhGJBKXUC0AH4ogFfO5o+t6Ll8yKi52goyaYTsDngeb65rcoyWmsvUAC0bYgAo1TQv4lSqh/QWWv9UWMGFkGhvE8eAv6slMoHPgH+r3FCiykdtNbbAMzH9pULaK1/AOYD28yfz7XWuZGIRSllAZ4G7mzg146mz61o+byI6DlqC6FMVZm+che2UMo0JzX+vuYJNBm4rrECigKhvAeuBmZorZ9WSg0E3lBK9dVa+8MfXvOhlPoKOKKKXfeGeHx3IANINTd9qZQ6XWv9XWPHgnEp6xOt9eYGblRE0+dWtHxeRPQcDSXZ5AOdA56ncnjTqqxMvlLKhtH82lvf4KJYsL9JS6Av8K15Ah0BzFNKDdFa/9xoUTauUN4nNwIXgPHtWikVD6QAOxslwmZCa31OdfuUUjuUUh211tuUUh2p+m97GZCjtT5oHvMpkIlxv6CxYxkInKaU+gfQAnAopQ5qrau9iR6iaPrcipbPi4ieo6FcRvsJ6KGU6qKUcmDcSJtXqcw84K/mv4cD32jzDlMzVePfRGtdoLVO0Vqna63TMW74NedEA6G9TzYBgwGUUhkY9w12NWqUzV/gufhX4IMqymwCzlBK2ZRSduAMIByX0YLGorW+Rmt9lHmejANeb4BEA9H1uRUtnxeRPUdD7MVwEfAHRk+Ge81tj2D8QTADmgWsBX4EujZ0T4po+wn2N6lU9luaeW+0EN8nfTB6QS0DfgXOi3TMze0H457D18Aa8zHZ3H4i8JL5byswHSPBrASeiVQslcpfRwP1RjPri5rPrWj5vIjkOSozCAghhAg7mUFACCFE2EmyEUIIEXaSbIJQSg1VSvWpw3FaKfVGwHObUmqXUuqjgG0XKqV+NqcMWaWUmmRuf0gpNa6aem9XSv2lLr9LFXV9W5dpMZRStymlrm+IGISoK6XUmeZ5dmPAtn7mtnEB28aZ59dypdSysvOnpve/Umq2UqprLWNp0DEySqlJSqmzG7LOSJJkE9xQjJtmtVUE9FVKOc3n5wJbynYqpfoCzwF/1lpnYHR9XF9ThWb3zBswpvWIpFeA0RGOQTQh5ns3HH4Hrgp4PgLj5nbZ696Cce6drLXuC5xO1eNNCDjmaMCqta7xfGwEz2JM89MsxFyyUUrNVUr9ooxJCG8K2H4w4N/DlVIzlFKnAEOAiUqpX5VS3ZRSxyulcsxJ6t5XNUwuCHwK/Mn899XA2wH77gIe01qvAmMEs9b6f0HCPxtYoo3RzmXfzJ5SSv2olPpDKXWauT1eKfWqUup3ZUyod5a53amUmmnG/g5QlghRSp2nlPpBKbVEKTVLKdXC3P6kUmqlecwkM9ZiIE8pdXKQeEWMUEr9xXyPLCtr0Zvn0DNKqfnAU8qYmHOuWS5HKXWsWe4M8/z61Xy/tlRKdVRKfWduW1723q7CJiBeKdVBKaUwxoh8GrB/PPAPrfUBONTN+LUq6gl0DQHdtGs4Ny4wW0wLgcsDyrdTxsSjS5RS05VSG5VSKea+P5vn66/mPqv5M8P8PX9XSo01Y90ItFVKVTVotsmJuWQD3KC1PgGj++VopVS101NorRdh9EO/U2t9vNZ6HfA6cLfW+liMb1UP1vBaM4ERyhgYdSywOGBfX+CXWsZ+ahXH2LTWJwO3B8Ryqxn/MRhJ7jUzhlFAsRn7Y8AJAOaJcB9wjta6P/AzcIdSKhljAODR5jGPBrzuz0B1HwAihpgtgXuBs7XWxwFjAnb3xHhf/RN4GFhqvpfGY5xLYIyvuVVrfTzGe8oFjMSYRud44DiMbrjVmQ1cgTHB6BKg1IyrJdDSPG9r49B5VsO5EQ+8CFxixhyYEB7EGLPTH3gfOMqsKwOjFXaq+Xv5MBLb8UAnrXVf85x9NaCuJWY8TV4sJpvRSqllGAOnOgM9Qj1QKdUaSNJaLzA3vYbRLK+S1vo3IB3jA/+TugYcoCOHD7B6z3z8xXwtgEHAG2YMq4CNGCf96cCbAbH9ZpbPxOxfr5T6FWOgWxpwAGNSwJeUUpcDxQGvuxM4sgF+J9H0nQ3M1lrvBtBaB47Cn6W19pn/DnxffoPxrb01xriOZ5RSozHOLy/GAMTrlVIPAcdorQtreP13MZJN5asHirpNPxN4nlV3bvQGNmit12hj/MibAccPwviiidb6M2CfuX0wxhe8n8y6BmPMwLwe6KqUelYpdQHGeVem2ZxnMZVslFJnAucAA81vYEsxBnZBxTdlPLWglOoccBnglkq75wGTqHgSAKzAbFnUgquK2ErNRx/l0w/VdE26qpNPAV+arbfjtdZ9tNY3mif9ycAcjHtXnwUcE2/GI0RNH+pFlcpVprXWTwJ/w7ism6OU6q2NedpOx7jP+YZ5me6ygPPsxIAKtgMejHszXwdsPwAUqVrc6DcFnmdVnhtlL1HN8dWdfwp4LaCuXlrrh7TW+zBab99iXJV4KeCYZnOexVSywZj7aJ/Wulgp1RvjW0uZHUqpDGVMindZwPZCjLmL0FoXAPsCrh9fCyzQWm8OeAM9X+k1XwEe0Vr/Xmn7RGC8UqonGJPxKaXuCBJ/LtA9hN/zO4zmOWb9RwGrK23vi3FpD4xW3qnKmKARpVSCUqqneW26tdb6E4zLdMcHvEZPYHkIsYjm72vgyrJL0ubl16oEvv/OBHZrrQ8opbpprX/XWj+FcZmqt1IqDdiptX4ReBnor7V+P+A8qzyVywMYl7d9lbY/AfxXKdXKfN1WKuBebTUCz7Mqzw1gFdBFKdXNLHd1wPELgSvN8ucBZfd1vwaGK6Xal/2dlFJp5qU6i9Z6DnA/0D+grmZznoWrh0i0+gy4RSn1G8aHb07AvnuAjzCm4F6OMSkgGM3hF80m/nCMZvTzSqkEjOZvjV2Atdb5GAtDVd7+m1LqduBtsy4NfBwk/k8xL0ME8T8zxt8BL3Cd1rpUKTUNeNX8/X/FmKIDrfUupdR1ZixxZh33YSTaD8zr0woYG/Aap2JcgxcxTmu9Qin1GLBAKeXDuGJwXRVFH6L8/VdM+bxktyujE4sPY/qcTzF6ld2plPIAB4Eau/ub91erMg3jXP7JrMuDsaRBTT4GzgS+qu7c0Fr/YSatj5VSuzESTF9z/8Nm+auABRjLOBRqrXcrpe4DvjC/1HowWjIu8+9S9uX/XwDKmLeuO0YCbvJkupomRin1PnCX1npNBGPoB9yhtb42UjEIES7KGK4wH+NGfuWWUijHxwE+rbVXGdP0TzM7BNS2nsswWnT3EN0CoAAAAG9JREFU1/bYaBRrLZvm4B6MG5gRSzYYU443ixNAiMq01i6l1IMYC4ttqkMVRwHvmi0VN/D3OoZiI3grrMmQlo0QQoiwi7UOAkIIISJAko0QQoiwk2QjhBAi7CTZCCGECDtJNkIIIcJOko0QQoiw+3+6kOyoEOMggwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAD+CAYAAADs1qilAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXzT9f3A8dcnLW1TLqEcFpBWLgERARUQrKiAx3SVWQXUqTidim5MZt3U+fN2Ti3i6oFMN3FuWNAqVhQUFLWCBQ9uRKGshWI5Wm56N5/fH59v2zSkbZI2adq8n49HHmm+V95J8807n+P7+SitNUIIIYQ/2Zo7ACGEEK2fJBshhBB+J8lGCCGE30myEUII4XeSbIQQQvidJBshhBB+J8lGCCGE30myEUII4XeSbIQQQvidJBshhBB+J8lGCCGE30myEUII4XeSbIQQQvidJBshhBB+F97cAQgh6rd3ckInYBzQ31q0Hfiy+8LMwuaLSgjvKJnPRojgtHdyQh/gGeCXQAlgt1YVA1HAEuDe7gsztzVPhEJ4TpKNEEFo7+SEa4B5QAR110BUAGXArd0XZr4VoNCE8Im02QgRZPZOTrgTk2iiqb+qO9za5rW9kxPuDkBoQvhMSjZCBJG9kxPOB5ZSU2XmqSLgl90XZn7W9FEJ0XiSbIQIEnsnJ7QBcoAePh5iH9C7+8LM0iYLSogmItVoQgSPW4COjdi/LXBbE8UiRJOSZCNE8LgPkzB81dY6hhBBR6rRhGiEuatzY4B2wO7bR8VV+HqcvZMT4oEfMF2aG7RkdyHL8w9QUFrOzX1jueDkTlWrioEzpTu0CDZyUaeoU/bYgR2Ak4FyILfvyq2OZg4pqMxdnft74FkgEjg4d3XuEuBDYOnto+IOeHm4K4Ba7++87Hx+OHycp0f0A+Bvm3LJO17Ci6NO47KeMVzWM4ZDZRU8uv5/zskGzHU5z/n4soTwCynZiFqyxw6MAu4E7gDigFIgzFr9JfBI35VbVzdTeEFj7urcU4AduP/B5gBWAYsxyWfz7aPi6j3R9k5O+Bi42HlZUUUl5y39jhUXj2B1wRGe2ZzLBxcNxR4WVr3Nw+t3kNS7G0M7tXPe9YvuCzMv8OV1CeEvUrIR1bLHDhwLLMJ0u61qO4hw2uQS4PzssQOXAjf0Xbm1KMAhBpNY6j5/bMB51u1vQO7c1bmfAp8Db98+Kq7EzT5dXBdEh4cxqXdXntqUy2d7DrDw/CHViUZrzRMbcxh/cmfXRAPQ2adXJIQfSQcBAUD22IFTgWWYL726GqkV5iLCy4Bvs8cOPOELMoSsA/7n4bZxwG+AfwPH5q7OvcnNNh3c7XhtfHfmZefz+LA+xLerufTmn9vzydx7iMV5BbyRne+6W3sP4xIiYKRkI8geO/A84J94fiGhHegLLM0eO/Dcviu3lvstuACbuzo3AuiGaatq6OZLz7Ew4CXgDZflZe42fm7LLmIi21DhqF0Ld2v/Htzav87LcVrN/0O0HpJsQlz22IHRwHuYEos3IoBBwAPAo00dV1OauzrXhqla8iSBxAQgpLZzV+cql3acI64bzfkxj1KHg3+MPo1nN+/k8l4eFyRPOJYQzU2Sjbgb7xNNlWjgT9ljB77Ud+XWgiaMySNzV+e2xX3CiHV53J3g+qzvctNhYCswClNVyVf7DpGWs48PLxpKuzbhPLz+f2w6dIwhJ53QPuNKAz82fchCNE4wnYAiwLLHDowA7sf3ZAOmWuiPmBJOo81dndsGz6uxGvzmDUJbgAvcLE8HrgI65BWV8Mdvt/Gf806nXRtzit7avwf/+OlnUkcOaOj4R4F3mjBeIZqEdH0OYdljB44H3qWOxmlX24tKeSP/IAfKKxlzUjTX11zbkdN35dZT69pv7upcBXSi4RLIybjplRXEyjDD/HuSrN8FHr59VNwmdyv3Tk6wAwcx1+w0NqaY7gszjzXyOEI0KSnZhLarcGnk/u+eg/x4vIzH+nYH4Lmd+9ldWsGs/rH0i47k8b4n49CaB7L3Vu9TERF18lsLl95yJG5QJHWXQtoE5iU1mgYKgD313PKt+4uBtAaO9yHw0O2j4r6vb6PuCzOL905OWGEd09deohpYKYlGBCNJNqHtSmou2ATgqq4dmZj3P5IruvDtkWJWHDzO20N6V69ffuAYc3cXcoNVqjkcN5Dv73gqqjIy+rWARu69o5gEsZeaZOHutv/2UXEe9eaauzq3dz2rlwP/d/uouCwvYrwPM/2zt9MLVCkG/uTjvkL4lVSjhbDssQNLqX3RJgBP5+yjyKH58uBx5p3ei7ioEzbh1i15vDa4F9/8fjaHTx0ciHDdKaf+EkjVbe/to+KON/WTz12dOxj4htrVaJnAg7ePivvSl2PunZywAEjEwzHSnJQCS7svzJzky/MK4W9SsglR2WMHhlNH1dbV3TpyybocXhnYs1aiyTpcxCeFRynTmnGdTO1bWfuT/BFeQ9VYVVVZBxsaBsafbh8Vt2Xu6twJmOF9SoCFwPJGxvRbYDTQE5dSZz0cQCFwcyOeVwi/kpJNiLJ6opVgdbV1NvOnn1l5qIjH+3bnkpj6L0bfMeFadvximidPeQzPSiH7PK3Gaq2sEaC/wHTZbqjDQCkmOY/rvjAz28+hCeEzSTYhLHvswHJcSrev7T7A90eLuTG2E3/fVcBbQ+prljAt0vnnTOTncy7edKjf0CzqrsaSRmsv7J2ccBIwn5o2HNcfBRrTRrMSmNp9Yaa3o0wLEVCSbEJY9tiBhTgN2vj14eM8tmMfbw+No12YjV+uz+HpficzuG2DzQelwAN9V26VYe2b2N7JCaOAZOBCoKrO8giwApjVfWHmquaKTQhvSLIJQUXpKQqYVJa/7yVHcUns8bWbyfkph+s37eLVQT3pF21qbtL3HWb14SKe6R/b0CGPA2P6rty6wc+hh6y9kxMUNZ0GSrovzJQTV7QokmxCTFF6Sm/MQJBXVC3TlQ4K/vseFQUHfT1sIdC178qttT5MxRmpbTBtDsftiTPkgyZECJPeaCGiKD0lDLgLeBKXYV5UmI3IuF6+JptKYJGbRPMZZlgWBejijNRjwAHgcB23Q5j2h6/tiTNkRlARELkThw0AJmDmHooGcoBPgc/ilq1r8u7yoUySTQgoSk8ZCrwKjKxrm4qDh309fBlmauRqxRmpD2LaGKoozBwrnsyz8jww09dghPBE7sRh/YG/Y34QaWqulXJgdSHPnTjsEeCFuGXrKpohxFZHJk9rxYrSU+xF6SlPAd9RT6Ip2rC1onTHTl+eohRI77tyq+sow2N9OZjl7uKM1E4NbyaEb3InDvsFsBYzNJCd2hfl2jBjBXYAHgc+y504rGPAg2yFJNm0UkXpKeOBjZghUOoqweYDSYeXf3UbppHfGxpT/TXDzbr/enksV74O1yJEvXInDrsSMyp2Wxq+aLYt5kdaVu7EYS1xhPGgIsmmlSlKT4kpSk+Zhxmbq289m84BBkUnJb/bd+XW14G5QJGHT1OJ6X47vu/KrSc09NgTZ/wH+MCrwGu8ZU+c8bOP+wpRJ6vq7L9492MmEogH5vkhpJAivdFaCas783WYNo/6hun/AfhtdFLyStcV2WMH/g54BjOMTV2loePAPkyi+V9dT1Kckaow7US3ePQCauzFXMz4b2C99GITTSV34rAVwPn49iP7OHB53LJ1XzRtVKFDkk0rUJSeciqmpHJJPZuVYXqiPR2dlFxa10bZYwf2xzT4X0bNcDYak3yKgUeAV/uu3FrnMaoUZ6SGYX5JTvHohZxoIybpzJfSjmiM3InDxgDLaNxEgRuBM+OWrZMvTR9IsmnBitJTwoE/AI9R/0mUCdwenZT8g6fHzh47MBozIGQPTKJaB2xz7eLckOKM1AjgPeAX3uznwoH5ongTWGRPnCFdUoVXcicOmw9Mxc1YgF4oAs6OW7bO4/NI1JBk00IVpaeMAF4Dhtez2WHgXuCf0UnJzXbtSnFGajSwFEhws1rj3RfAMUwD77+BL+SaHNGQ3InDbJhZUD2akXZnUSkv5uzjaEUlc4bGO68qAR6OW7bumaaPsvWTZNPCFKWntAUexVyLUl/d8zvAjOik5PyABNaA4ozUjsBnwAg3q5dhJjf7Jd7N6LkL+A/wpj1xhvzaFG7lThw2EtNhpvo6rzfzCvjxWAlPDOwFQMr2fHaXlDPbaeDZ6RtyXJMNwLq4Zevq+4En6iC90VqQovSUS4BNwD3U/b/LA66MTkq+JlgSDYA9ccZh4FLA9ZocAIc9cUYSEIuZG+ZrDw97CnA/sKU4I3VNcUbq74ozUuvrHCFC02hcfsRcHduZT/cf4XB5JZ/uP8JnBUd4alAvT451Ru7EYY2pigtZMoJAC1CUntINmI3pbVYXDbwI/CU6KfloQALzkj1xxv7ijNSJwFeA89wF71vrCzEdHeYUZ6T2B26wbvEeHP4c6za7OCP1U0xpaTmwUaraQl5HXOYFsofZSDz5JFKy8/m88Cj/Gd6HqDCPf3tHYTrLCC9INVoQs7oz3wTMwmkqADc2Yrozrw5IYI1UnJHaDdOr7VRM54HX6koIxRmpNsy4VTcAk/Gw3t3JPsxYV8uB5fbEGT4NlSBapuKM1LYH0z9MrSg4+BtdVlZr3fbjJUz4+kdePTOeiV1rBgk4WFbBs9l7+OrAUab06Mxdp3Z33q0E6B23bN3+gLyAVkSSTZAqSk/ph7nQ8qJ6NivFtN+kRCclt/rZLYszUu1AInAjppu3p9MmO/sJK/EAK+yJMw41XYSiuRVnpMZgfpwkWLcRQLijrIyjn35F6fac6m1nbMxl5YFjPDmoJ5d283h683Kgc9yydTIZoJck2QSZovSUNpg2mYepmb/EnRWY7szbAhJYkCnOSO0OXItJPL422DqAbzCJZxmQZU+c0eD1QyJ4FGekxlGTWM4DBte1raO4hILXF0BlJa/m7uPbQ0VMO6ULs3fsYeHZ/Tx9Sg2Exy1bJ1WzXpJkE0BWtdjJwJHopOQTrhUpSk8Zibnqfmg9hzmISUbzopOS5Z8HFGekDsFUs/0ac12Qr4qAL6nd3hPQ91gpFYkZk+uglpOzmjUiRSzm3DgD8wPjPEwnEY/t/8d/WJlfyCM//sy75/SjXXgYv8j6kWdP783p7T0axWZn3LJ1cd7GLyTZBIzVyJ+OOUGOAb+LTkp+w1rXHngC+D31X3PyFnB3dFLyPj+H2yJZ7TtnYuYnmYAZmqTBOa3rsQ9TglyP6QW4Ccj1R4cDpdQ5wDPh4eEXtGvXjsOHD1dqrR8Eng61pFOckdoOOB2TVIY63dfXbtmgsl0/szktg6nfZfP6sFPpZ013/vbPB8g6eIxZp/euc9+wmE5EnBLrADLajz3nKvukmSH1P2kKkmwCwJq4bBm153gpB7pjhuN/mfp/oeUC06OTkpf4LchWqDgjNQoYA0zEJJ+zaNwV5GDGyNpCTfKpuuU3phSklHr/iSeeSExKSqKwsJDOnTtzww038N13392ltX65kTEHJWs4o77UTihnAH1o/P/J2a7irdv1sczVvXWJ97WkEb170vEXF6Fqeqt9DFxjnzQzKHt9BitJNgFQlJ5yP/BXN6s+pv7xzByYgTUfjk5KlgbJRirOSO2M6XBRVfKpb1Rsbx3kxAS02erO3SCl1Jv9+/f/9bZt2wB+vOaaa0674447GD9+/Eqt9XlNGGezKM5I7cqJSeV0/DOdxBbMEE2ZQKY9ccbO3InDJgP/xGWWWk+clDiRiFNOqJ39DrjcPmnm3sYGGyok2fhZUXrKKMx0x649pxzUf1HtWkx35u/8FVuoK85IPZWaxDMeiPHD0+RjJR7rPhsoAPYDhfbEGRUASqkumIsPPwFuuOiii1576KGHuOCCC1ZrrUf7Ia4mYZUeu2PaImOte9e/46xt/KES88VflVxW2hNnFLhuZA1Zsw1TavJKxysmEBnX092qHcCl9kkzQ7KTjrck2fhRUXpKB0zS8OYDXgw8BDwfnZQs09EGiNXeMwyTeCZiejdF1rtT0ziESTwFQEHa59+Gz3j1vcu+/PJL/vSnP6ELdr32waN3/tNpmyP+7rRgNcZ3pu7k4fx3IGdVLcUk7Y3ABszgsKs9HZg1d+Kw8UAGXo783Ca2W+VJky4NUza3NXsFwMX2STPXenPMUCTJxo+K0lP+jekl5allwB3RSck7/BSS8JB1Tc8oTJXPEOt2Ot5fVOqxlZuzufKJ11i8eDH//e9/+d+3mSx6+A7Cw2oViiuoKRkVYNqQbNYtrIG/G1pvAyKArng3Rp0//I+apFJ1v72qJOir3InDngDuxvT484QGjnS66rJ72sR2ewH31X4HgAvsk2ZubExsrZ0kGz8pSk+5HjNIpCeOYE4A6c4cxKxf/L2oST5Vt8E0rtcba37M4bKHX+GDDz4gPT2dOXPm8IdJF5J03nDO7t+qe9oeonZC2QhssifO8EvjuzWu2VOYnp8NlXDKrfgmxC1bt6F40exzMTPQuqtu3Y9JOFuaMt7WRJJNHQqnTVDUfIGUxMxb7vEbVZSe0gdTxG/f0LZONgOjpSNAy2P1qupD7RLQEOA0PBx/MOmJfzDlrnsZNWoUCxYsAODw4cN8nP4W375wv38CD6wKzCyxrqWV3c0xG2vuxGFXY8bhs3NiKacSM4fTCuCWuGXr9lStKF40+zRMxx53vwD2AOPsk2b+5JegWzhJNi4Kp00YDSRjuilXDZh0BPgcmBUzb/kJ0yk7s0YA2AQM8OHp74hOSp7rw34iCFkTxw2gJgkNwjSUd8FUVVVfN3Ljs/PYq9rRtWvX6v2LioooyP6BL1P+GNC4veTAXI+0x7rlO/3t/DjXnjijrK6DNIfcicMiMaNQ/Ao4G1OFuB9YAvwnbtk6t+0wxYtm9wS+wH1vxt3A+fZJM6Uq3IUkG0vhtAknAfOBcZhfO66tgRrTeP81MDlm3vID7o5TlJ7yPmb8Ll/MiE5KfsHHfUULU5yRGo5pYO/63badcf/+NGtc28jIk9pGRXSwR0a0j4oI73DFyDMqe3fr3AGTnLrQuGmNvXGM2omjriSy3544ozJAMQWN4kWze2MSTryb1bmYEk5uQIMKcpJsgMJpE+IxH5zuNNwDqQzz62dczLzl2c4ritJTbJh6Xl/mCdoLnBGdlCyjyYo6WbOedqGmdBSJqfZxON178nd96w/YE2dIdW4DihfNPhUzvJG7iXB2YEo4uwMbVfAK+WRTOG1CB0z9cU88H0XYgflVNyRm3vKDVQutkQLK8fzq558xbTtZwFwZhkaIlqV40ez+mB+qsc7L3/lqLQszvz/y0Tdb8h3mS/YerfVHzRJkkJBkM23CAky1l7e9iUqBpTHzlk9yXliUnrKUE0cFcABbMYml6rZekosQLV/xotkDMQmnG8Dh48X0u/2vvPzyywwfPpxPPvmE5OTkN7XWNzZvpM0rpJNN4bQJw4BV+D5kRjFwfsy85d86LyxKT3kAc1HgBuBtYHN0UrLM7CdEK1W8aPYQTCeimGPFpZx2x18Zcc5I+vXrx9ixY7nxxhv/o7X25pq7VifUp4V+isZdJR4FPIPLBGfRScnuxkETQrRS9kkzNxUvmj0ByGxnj2z34cO/Je2L79hz0NSy9+7aqVvzRtj8fGnIbhUKp02IxnRv9vg9OF5eyUUfrOHjXdVDLylgTOG0Cd5cTyOEaIXsk2auA34DMKxPL87uXzNlwTkD4s4vXjT7hNE8ixfNDpnv4JB5oW5chGl3qfavrXncm7W1+vFfv89meubm6sepm3KYFH/CD5RSzHhaQogQZ580821gtuvyiPCwKGBh8aLZbQCKF80+u3jR7I3AseJFsxcUL5odqC7tzSaUk00SLlf4T+0Xy8e7CjhcVs7HuwpYtruA584dCMAXPx/gtJPa0tUe4Xqc9sA1AYlYCNES/Pm77Tu//2x9zUAC237ez8ff/TAWeMYqzWRgLvS1A5OBx5sl0gAK5Tabgbh0UY4OD+OqU7vz5PfZfLq7kHcmDscebnpDf7XnIEUVlfx46DhR4TYm9orBphTWMU4LePRCiKBknzSz/IIwW/cbb5rGhHPPZcCAAYy48FLu/OcHvN+l491D4nqsxaWrNGYG31YtlJON29F7r+/fg3MXZfHmhUM5tUNNyfYvI8zIFG9t/5nOkRFViabeYwkhQpNDoyMiItiwYQMbNmwgIiICm82Gw6EBHnSzS6uvZQrlZON2CPVn1/+PLlFtqKyjS/i1/U5o44PQfh+FEC4W3nfz4p37992B00A+z91wCWfE9wDo72aXoBo3zh9C+UvyhCHMX9qcS2mlg9fGncHT63ZwRZzHvRVlaA8hRLXLRw7xtqRS2vAmLVurL7rVo9bUsV/mH+Ct7fm8eN5gzju5E8fKK9h4wOMpNTyaZ14IETLme7m9JJtW7AOgCCDvWAkzV/3Av8adQfs2prB326BTmLtllyfHKcb0LBFCCADsk2Z+gXc9zCTZtGKLsV5/r3ZRfJc0lgEn1cyhdG2/Hrx43mBPj/VB04cnhGjhHgZe9XBbSTatVcy85TmYYf0b62DMvOXbmuA4QohWxD5ppgbuBN73YPNW30EgZJON5SngeCP2Pw78rYliEUK0MvZJMysws4F+1cCmUrJp5f4FHG7E/scBmcZZCFEn+6SZxZhpTDY3tG1rFtLJJmbe8nJgKqaR31vFwLUx85a3+uKvEKJx7JNmHgQuBfLq2KRnAMNpFiGdbABi5i3PBO7B6pnmoSLggZh5yz/zT1RCiNbGPmlmHnAx7qvMKgIcTsCFfLIBiJm3fA5wEyaJ1PdPr7C2uTVm3vLnAxGbEKL1sE+a+QMwxc2qZwIdS6BJsrHEzFv+DnAGsAjTM+QIUG7djljLFgPDYuYtf6u54hRCtGz2STPfx1SpbQF+AK6yT5qZ2bxR+V9ITwtdl8JpEzphpnWuGs15G/BlzLzlB5ovKiGEaLkk2QghhPC7UB6IUwghgsruxJG9gR6YTgRbemasaTXX30jJRgghmtHuxJGdgQcwnZTaYtqHFRAFfAf8pWfGmhXNF2HTkGQjhBDNZHfiyEnAm5hapqg6NjsOZALX9MxY02KnM5FkI4QQzWB34siZwJOA3YPNSzAXhI7tmbFmn18D8xNJNkIIEWBWiea/QHRD2zopwwx5M6pnxppyvwTmR3KdjRBCBNDuxJExmKozbxINQATmcoz7mzyoAJBkI4QQgfUQvvcEjgb+ZCWsFkWSjRBCBMjuxJHtgduouzOAJ8KA3zdNRIEjyUYIIQJnIl5MlFZUUcnda3dw7/r/8W5eYdXiKMwcOS2KJBshhAicKUAH5wX/ztnHAxtyqh8/szWPGd/vAOCj/INcHtuZZ888lWV7DzrvFrc7cWQP/4fbdCTZCCFE4FziuuCaXjEs23uIw+UVLN97iE/3HubpM+MB2FNSRg97BAA2pZx3K8dMV9BiyHA1QggRALsTR4bhUqoBsIeHcWXPGJ7ZupsV+w4zf/QA7GGmHHByVAT5JWWc3jEal6tU7JhhbVoMKdkIIURgtMOUSE4w9ZQuvJGzj0dOP4X4tjV9B34R24mP8g9y/4YcJnQ/yXmXMOAk1+MEMynZCCFEYKi6Vsze9jMxEeFUuBRfosPDeG7YqV4fLxhJyUYIIQLjGNDGdeHc7D2UVjqYc1Zf/rnD45FoHMChpgzO3yTZCCFEAPTMWFOBGVSz2sqCIyzcVcDzw/swpksHjlVUsvlwkSeHKwb2+iNOf5FkI4QQgfNp1R+7i0q5d30Or5zVl3bhYQDc0qc7r+3Y48lxwoBl/gnRP2QgTiGECJDdiSOvBeYC7Rt5qJyeGWvqbMwJRlKyEUKIwFmKGVCzMcqABU0QS0BJshFCiADpmbHmIGZqAY+HrHGjEvh700QUOJJshBAisB4EKnzctwh4uWfGmvwmjCcgJNkIIUQAWYniTkzi8EYFsBuTrFocSTZCCBFgPTPWvAGk4nnCKQMKgAk9M9aU+C0wP5LeaEII0Ux2J468FZN0wnFzwaflGLAVuKxnxpqCQMXW1CTZCCFEM9qdOLI38CSQhKkqc1ir7EAu8ADwbs+MNQ73R2gZJNkIIUQQ2J04Mhw4EzgZKAXWteSSjCtJNkIIIfxORn12w5GZEgGcDZxmLdoGrLElJDemb7wQQoQsKdk4cWSmdAMeAm7B9P4Is1ZVApHAG8DDtoRkjwYvEkIIYUiysTgyU8YD72GGkoisY7NSzORHV9sSkj8OVGxCCNHSyXU2gCMzZSrwAWZwvLoSDda6dsB7jsyUGwIRmxBCtAYhX7JxZKaMADKBaC93LQYutCUkr276qIQQonUJ6WTjyEwJA34CTsW3KVZ3AX1sCcm+jnMkhBAhIdSr0a4FuuH7XN6dAKlOE0KIBoR6snkI0wbjq3bWMYQQQtQjZJONIzOlJ9Db0+0/X5vNuN+9zPSUdD5fm+286mRHZkpckwcohBCtSMgmG+ByXOaUmLNoFXc992714/97dSk3PvEWAEpBW3sEJWXl9Ora0Xk3B3CF/8MVQoiWK5STzZVAW+cFN116NotXbuHQ0WIWr9rCR1k/MPfeqwFIGHoqHz17K3+743Ie+dcnzrtFA78KWNRCCNEChfJwNd1dF0RHRTB1wjAefHUJS1f/yMfP/RZ7pBn122YzeblTezul5Sd0Puvm72CFEKIlC+Vk097dwpt/MZLTb3iW9/46jb49u1Qvf/eLjXyy5kcOHSvhrqvGVi8vI5xdqnu35Vk5Y4E100fHl/s9ciGEaGFCOdlUulv4+BvL6HpSWyoqa08dcdW4M7hq3Bm1lh2iHe+HX0iJiuwOfAUcmpOV8yHwPrB0+uj4o/4JXQghWpZQbrM54rrgubQvKCmtIO3RG3jhna8aPMB3YYMoUbVGtzkJuB5YCBTMycpZOicrZ/qcrJweTRW0EEK0RKGcbLYD1cMnfPbdduYt+YZ5f5nCBcP7cqSohHXbdtd7gPI6Z3EFzICelwAvA7vmZOW8Pycr57I5WTmh/J4LIUJUKH/xvQscBdi59yC3PfM2Cx69gfbRUQD8/urz+PvbmfUeYLAjGzwb7scGJAIfAdlzsnLum5OVc0IHBSGEaKuftXIAAB/4SURBVK1Cdmw0R2ZKe6AAUwLx2R7VuXxx2LiPKlXYeLwbjaAck/DmAF9OHx0fmv8IIURICNlkA+DITPkCSMD3sdEAsmwJyefOycqJAi7EXL+TCMR6cYytwCvAv6ePjj/YiFiEECIohXqyORdYjvfTC1QpAi6zJSR/6bywJDPtpiIirtmlTmqzKSx2yBGieqA8ymclQBqmtPONlHaEEK1FSCcbAEdmyhLgIryvTisHvrIlJF/kvLAsMy0NmFLrOaD4INHFe2ztOxeqthxQbTmIHYeqt8lsFTBz+uj4NUqprsBwzLVBmVrrfV7GKoQQzSqUr7OpciOwGeiC59VpGtN1+lrnhWWZaTbgGteNbWCPocge4yiqXuZAcQg7hSqafaod221dqVBhzruNAVYPGXPhto4dO/YfMWIEbdq04ZNPPvkcU10nhBAtRsiXbAAcmSmnA58DHaH+/syYwTuPYGbp3OC8wko2FfjQBnSESBaFn0G5qp3/H7hyDO/Mf5OSkhL69OnD4MGDt2qtB3l7fCGEaE6h3PW5mi0heTMwFNgAHKtn02PAJmCoa6IBiEiY6gC+8CWGDpTSz1FwwvLRv7iKyb++iRkzZgAQ1bZ9+zlZOY3p0CCEEAEnycZiS0jOB84BpmKGninBdAAoAkoxbSjXAyNsCcn1Xe15GVD/1aB1OFkfeRNTpVct8fZk/vDCf6sfd+zSrSfw+ZysnOG+PIcQwlJSaKOk8ApKCl+hpHAjJYXbKCn8gpLCeykp7NPc4bU20mbjxJaQrIEPgQ8dmSltqOm+nG9LSPZogM2IhKklZZlplwDfAlFePP3OPvrAjBWm9HQb8BgQU8e25wPfzcnK+Sfw4PTR8Xu9eB4hREnhRcCrQFfM9XFVtQX9gFHAo5QUpgEziYo53DxBti7SZuMnZZlp0zFD1XiiELg9ImFqetWCOVk5nYCHgd/tz8sNe+PPv2Hx4sVceNkveThtufO+R4H/A1Klq7QQDSgpVMDdwJOAvYGtS4F8YDxRMTv8HVprJ8nGT8oy0xTwHuYiT0+lAXdHJEytLqnEDz7z/oLdOx/u3qVz5OLFixk8eDA9+pzGbx5PpUefAc77pgPTpo+Or9XmNCcrpzMwDtgPrJSEJEJaSWFVovH02rpK4AAwlKiYPX6LKwRIm42fRCRM1cCtwM9e7DYV+KEsM+1mK1mR+8OGi194/rnIJUuW0LNnTzZt2sTF55/LlqwT+iEkAV/PycrpW7VgTlZOH2AjZlicTOAfjXhJQrRsJYWjgb/i3UXcYZjR3N+3SkXCR1Ky8bOyzLSLMKMUuH5QtZtlzlYAt0eef+0VwHPOKyKi7Nz90lvEDz7T3X4HgWunj47/eE5WTirwe5f1Y6ePjl/lzWsQosUziWITMNjHIxwDbiYq5p2mCyq0SMnGzyISpn4GPO1mlQKy6tn1QmBj6Zdv2Uu/fCtSa62qbs+v2NI1fvCZc+vYrxPw0ZysnHtx30HhBq9egBCtwxVA70bs3w6YTUmhfGf6SEo2AVCWmdYGWInpWl3FAXQHLseUXDrXc4hNwK0RCVNXOy+ck5UzGXiduqsFsoDRLssOALHTR8eXefwChGjpSgoXY861Bu3cmcfv/vhnusTEMKBfX+679w9Vq44BFxIV862/wmzNJEsHQETC1HLgakz7CZhRBu6JSJhaEJEw9Q1gEPDfuvYHhgBfl2WmvVCWmda+auH00fELMcPa5NSx32icJoizdMZM6iZEaCgpjMCMf1htzj/+xZ1/uLf68YOP/JUbfjMdgJ+2Z3P5pRP519xUtmz90Xm3SGCS/wNunaRkE0BlmWkRwABgv3OPM6f1l2CmGoiv5zB5wF0RCVMzqhbMycqJBdYB3TwMZcH00fFTPY1biBbNXFPzHtChalFRURGnDR3Nxm8z+WpVFv/32N9YteIj7HY7hYUHuPq6m1FKccN1k7n5xuucj7adqJj+gX4JrYEkmyBTlpnWFngUmEn9Jc93gBkRCVPz52TlPIDpzumpEqD79NHxR3yPVIgWoqTwj8BTuIzs/qcHHuF4URFLPv6UZR++Q98+pwKQMvtFRp4zgvPPG8PV197MO2+97rybBsKIipEvTi9JNVqQiUiYejwiYWoypn3n+3o2vRrTTfo2pfXpXj5NFPArX2MUooVpj5sBdn9z0/W8PPdfPP/sE9WJBuDSi8eT+tKr3PH7e4iPO8V1t0p8n/8qpMlwNUEqImHq92WZaaOAP2CGrnH3Ae8IzJ1S8f2PS8IHc1g1dEF0LdcDbzQ+UiGCW4VDd7QplM1lAsPH/vosXbt2oaKistbyIacPci3N1Doc5lw87o9YWzOpRmsByjLTTsXM3llnw74DKtfbelaus/WMaGBSNqdd6Dl9dLxcFS1alflr88IwnWOqpmg/zR4O55wcQa/2Zs6oWc+/xMqv1zDjrt/y8ONP88WyDzw9fAXQkaiYoga3FLVIsmkhrBEFrgWexwwe6FYRbQo/C+vfdq+tgyeDgKZMHx1/b8ObCRHc5q/NiwYmYpLLL3FzjrSxwZX9ovgqM5MZ9zzA158voX379gwffSGvz01l2JlnePJUDiBc2my8J8mmhSnLTIsBUoBp9W2XpzquXxHWf0CZCq+vbu3A9NHxdY0sLURQm782rxsmsSRiEk2D9chD2+wn8Ze/4sP33mLQQDO24Lw33+LzL1cy79UXPXnaLUTFeNtGKpBk02KVZaaNB+YCfevaxgF7v7X1/majLXYCSrkr6RRPHx0vjZ2ixZi/Nm8gNdVj5+LFrLht2yiu6BtJmPJ5iLMy4AmiYh739QChTJJNC1aWmWbHTC9wL/V09ijHtvSD8CH7D6roX1P75Hx/+uh4txepORbcYwNOB3oC5cB625RZJ04lKoQfWe0v52KSy5WY69S8pTtFqYIxPSK6doxsVAfc48BYomLWN+YgoUqSTStQlpk2FDMR1Mh6Njt6iKhZ74afeb5Wqi+wDLhz+uj4WpPCORbcczLmOp/rMdcUVHXVsQM7McltoW3KLEcTvwwhgOr2l4sxCeYK6mmjrEcJZgDc94HF1w2yDwEWAW0bEdp2YIC01/hGkk0rUZaZFgbchRlCvb4T6mvgtoiEqZtcVzgW3DMF+BdmWPXIOvY/BmQDl9imzJIZQkWTmL82rzsmsVyJaX/xZpbbKgXAYkyCWXbd8F413ZPNqM+rgbPxourNyXFgMlExH/mwr0CSTatTlpnWG3gJc+LWpQIzEvUTEQlTSwAcC+65D1Nq8aQNpxw4BIy2TZklMxgKr81fm6eA0zDJ5UpMV2VfksA2THJ5H/j6uuG9KuvcsqRwKObHlrftlKWY+aAullKN7yTZtEJWN+mrgRcwI0vXZRtwW/jP33QG3sS7k7AS2AUMsU2ZJRe4iQY5tb9UJRhfxhjTmNHMqxLMj9cN7+X5l1hJ4U2Y6do9/ayXA3uAM4mKOehdqMKZJJtWrCwzrROmBPPb+rZTR/PLbEfzInz4WVkCzLNNmTXdpwBFqzd/bV5bTLXYlZjSdhcfDlOCaWM07S/DezWu+rak8AbMgLd26i9NFWPaaS6WKaEbT5JNCCjLTDsfMyX0aXVtYyv8EVupT+NyFgODbFNm5foYnmhlrPaXX2ISzAR8b3/5AJNgltdqf2kKJYVnYS4dGIgZoNN57LRjmHEjU4HHiIopbtLnDlGSbEJEWWZaFHC/dTthUELb4V3Yjvv0460c+IdtyqzfNS5C0VJZ7S/O17/42v7yEya5ZNBQ+0tTMJ0GRgGXAuMwSXEXsARYTFTMfr8+f4iRZBNiyjLTTseUcsY4Lw/bvxlVXv9wTw6H5qGFKzlSXMZZfbpz07jqC6n3ArG2KbPkw9RCzV+b1x94GDOR3yfAw9cN71XnbK5W+8sYahKMr+0vX2MlmOuG99rqwzFECyGjPoeYiISpm8sy0xKAW6go+SuOii62Y3urE82cT9azaVcBL90yHoD/W7CS3P1H+PfvLuP9b7ez+8AxOreLolfn9s6HbY+popMvixZo/tq8y4H51EwuNgLTAeRBl+3aUvv6F1/aX4qpaX/5sNHtL6LFkGQTgiISpjqAVx0L7jlhwrWbxg1m0MzXeXLqWL7a+jMfrd3BV4+ZST1/yj/I6AE9uH3CUK557gPGn9G7ajcbZkRqSTZNLD9pzADgd8DlQC9r8W5MVc+LsemrfvD12Fb11/3AE5xY7XUp8OD8tXknUzP+mK/tL/upff2LjJgcgiTZhLZOrguiI9swdexAHlywkqXrcvj4gSTsEaaJp2fndkSEmyHaw2y1vpuigNgAxBsy8pPGRGO66E7GNGCHOa0+FbgduDk/acy7wO2x6au8akCfvzavHfA6pou8O7b5a/O+xrRp+NL+8iOm7eV9IMvv7S8i6EmbTYhyLLinDeZitRO+SLbuPsDp98zjveQrSTy7ZpzPotJyZrz+GdGRbRjYozN3XjLMebd/2qbMutXvgYeA/KQx3YFPgT40PJJxCZADjI9NX/WzJ8efvzavD2boFo/G1PeQBlZhJZjrhvf6sQmPLVoBKdmErjp/ZTye/jVdO9ipcNQe/iw6sg2v3VHf/G2isfKTxtiBFUA/3PQadCPK2vaL/KQxwxoq4cxfmzcBWAB0bmysmPaXTzAJZvF1w3vta4JjilZKkk2Isk2ZVeFYcE8FLl9ozy3+lpLyStL+cAWPvrOKq0Z63MmosMmDDE2pQDyeJZoq4ZjRuV8GbnK3gdU+8xCmx5nPY+xj2l+cr3+R9hfhEUk2oe0ATsPZfLZpJ/M+38zKx6+lvT2Ce94sY13OPobFd2voOMWYRmvRCPlJY07DjLbd4CRgbtiBa/KTxjwbm76q1iCrVqL5BjjLx9C2UtP+slraX4QvJNmEtsXAzYBtZ8ERbvvHMj748yTa2yMA+P2lI/j7R9/z+p2XenKspX6MM1Q8hekM4KsIzPBEl7ssvxffEk0F8NB1w3s91YiYhACkg0BIcyy45zIgjZrrK3y12zZlVq+GNxN1yU8aE4kZSdujrsWrC47w7q4CKhyan44W8cEF1W39pUCn2PRV1UOszF+blwZM8TG0CqDTdcN7HfNxfyEAc32ECF0r8K5twJ0yYGETxBLqxmHey2pv7NjD/WtrZnB4evNOfv/NNgBGdenA08P7MCG2E5N716rmLAUucjl2WiPiCgdObsT+QgCSbEKabcqsEuB5TJuLryqBWU0TUUi7CmjnvOCa3l35ZM9BDpdVsCz/IMv3HOSZEX1q7bRoVwGTTolxXtQel2tnrhveaxHwOHAYU1LxxlrMZHlCNIq02YingTvxrVG6GHjFNmWWdA5ovKG4/PiLDg9jUq8u/G3LTlbsOUTaeYOxh9Vc25lXVEr7NmG0b1PrNFbAENeDXze810OY3mjMX5vXBogBumGmXHZ36wBsAR7zar4YIeogySbE2abMOuxYcM+1wDt4N3laBbATeMAvgYUet+1mU+O7MW7ZOl4ffRrx7Wo357yVs48pcW57CtbbBnfd8F5VE4LJHC0iYKQaTWCbMmsJkIzn1WmlmC+qCVZVnGi8SHcLZ/+wi5jIcCrddOS5d/ApnBPT3s1e7o8lRHOSZCMAsE2ZNQe4BjhK/UnnOLAGGGqbMisvELGFiKOuC17Z9jOlDs3ckQN4LTu/UccSorlJshHVbFNmfQj0Bl7AzJRYjGlUPoKZJO17TEIaZ5syS+Zjb1oHnB98te8wC3L38fez+jGma0eOlley6ZDHY23K/0YEHWmzEbXYpsw6BPwZ+LNjwT3xQA9MotlimzKraafmFc6WYCYjs+cVlZL8fTZvjhlIuzamQ8Ct/WJ5bXs+z5/dr6HjlAIf+TdUIbwnF3UKEQSseWvW4VuvQGfHgVGx6as2Nz4qIZqOVKMJEQRi01f9hBlBoLGKMF2WhQgqkmyECB6zMCUTXxUBz8emr5LqChF0JNkIETxewkyG5qtSzIgQQgQdSTZCBInY9FUlwI2YEoq3ioDfxKavkvllRFCSZCNEEIlNX/UR8De8SzjHgdmx6asW+ScqIRpPeqMJEYTyk8bcCTyLmXKgrh+FGnMt1P2x6atSAxWbEL6QZCNEkMpPGjMC0wZzNuAA2lqrjmMS0Frg7tj0Vd80T4RCeE6SjRBBLj9pTB/gQmAwZlTnH4AVsemrtjdrYEJ4QZKNEEIIv5MOAkIIIfxOko0QQgi/k2QjhBDC7yTZCCGE8DtJNkIIIfxOko0QQgi/a9zkaSUFGq1BVwIatAPz2GE9rgSt0dWPHYCjzu1qH6OSWsd2uNzrSrTrdvXeVx3X+WYtczg/BhxWXA7rsfN21cud7isra+4dLo+t/bTrsspKs3+l9X443zs02opJV5q3mEqHFaJ2Wo+1XkPVdtY+tfa1tteVDrTW6Arz3jkqTCwO63HNchOLo8KB1g50hfv9tEPjqKy07s02lZUO67GJy1HpwOG03mGtr3R57Lp/pfmkVN9rp7+9uddAhXXvAB7RWjXqMx9AkWf9VitbGLbwCFRYGGHhEZjHbcx9G/O4ZnlEreW28AhsNoUtzIbNplA2RViYzdyH21A2ah47L1eKsPDa20eE2wiz7sOrH9tqloeZ+0jrcZjLPlXb2JSiTZgiTCna2BQ2m3WvFG3CbIQpaBNmw6agjc1GmM3cV+2nFIQphc26V4paf9esw7yOqvU2hcK61xrlqDDnm6MSpR1gPVaV9S033xFV++qKcnBUosvLwOFAV7jcl5eZ9VXbVW9v7h0V5ehKB47yCnSlg8qycrTDgaOswtxXOv1dVoHD4cDhtI2jel9NZXkljkqNo8zcV5ZXmuVllR6td2hNmUNTWX2Py33N8nLtbjvz9ys6p87zS0o2Qggh/E6SjRBCCL+TZCOEEMLvJNkIIYTwO0k2Qggh/E6SjRBCCL+TZCOEEMLvJNkIIYTwO0k2Qggh/E6SjRBCCL+TZCOEEMLvJNkIIYTwO0k2Qggh/E6SjRBCCL+TZCOEEMLvJNkIIYTwO6W19n1npW7TWv+jCeNp8eQ9OZG8J80nmN77YIklWOKA0IqlsSWb25okitZF3pMTyXvSfILpvQ+WWIIlDgihWKQaTQghhN9JshFCCOF3jU02QVHXGGTkPTmRvCfNJ5je+2CJJVjigBCKpVEdBIQQQghPSDWaEEIIv/Mo2SilLlVK/aiU2q6Uus/N+kil1AJr/WqlVHxTBxpsGnpPnLa7WimllVJnBzK+5uDB56S3UmqFUmqtUmqDUuoXzRFna6aU6qyUWqaU2mbdd6pju2eUUpuVUj8opVKVUqq5YrG27aCU2q2UerEJnz9ovreC5fuiWc9RrXW9NyAMyAb6ABHAemCwyzZ3Aq9Yf08FFjR03JZ88+Q9sbZrD3wJZAFnN3fczf2eYOqEp1t/DwZymjvu1nYDngHus/6+D3jazTZjgJXW/ywM+Bq4oDlicdr278B84MUmeu6g+d4Klu+L5j5HPSnZjAS2a613aK3LgDTgSpdtrgTesP5+Bxjvj19KQcST9wTgccwJVxLI4JqJJ++JBjpYf3cEfg5gfKHC+Vx8A5jkZhsNRGG+cCKBNsDeZooFpdRZQHfgkyZ87mD63gqW74tmPUc9STY9gV1Oj/OsZW630VpXAIeBmKYIMEg1+J4opYYDp2itFwcysGbkyefkEeDXSqk84CPg94EJLaR011rnA1j33Vw30Fp/DawA8q3bx1rrH5ojFqWUDZgF3NvEzx1M31vB8n3RrOdouAfbuMv0rl3YPNmmNan39Von0GxgWqACCgKefAauBeZprWcppc4F3lRKDdFaO/wfXuuhlFoOnOxm1V883L8fMAjoZS1appQ6X2v9ZaBjwVRlfaS13tXEhYpg+t4Klu+LZj1HPUk2ecApTo97cWLRqmqbPKVUOKb4daCxwQWxht6T9sAQ4HPrBDoZyFBKJWqtvw1YlIHlyefkFuBSML+ulVJRQBdgX0AibCW01hPqWqeU2quUitVa5yulYnH/3v4KyNJaH7P2WQKMxrQXBDqWc4EEpdSdQDsgQil1TGtdZyO6h4LpeytYvi+a9Rz1pBrtG6C/UupUpVQEpiEtw2WbDOAm6++rgc+01cLUStX7nmitD2utu2it47XW8ZgGv9acaMCzz8lOYDyAUmoQpt1gf0CjbP2cz8WbgPfdbLMTGKeUCldKtQHGAf6oRmswFq319Vrr3tZ5kgz8uwkSDQTX91awfF807znqYS+GXwA/YXoy/MVa9hjmDcEK6G1gO7AG6NPUPSmC7dbQe+Ky7ee08t5oHn5OBmN6Qa0H1gEXN3fMre2GaXP4FNhm3Xe2lp8NvGb9HQbMxSSYLcBzzRWLy/bTaKLeaNbxguZ7K1i+L5rzHJURBIQQQvidjCAghBDC7yTZCCGE8DtJNg1QSk1SSg32YT+tlHrT6XG4Umq/Umqx07LLlFLfWkOGbFVKpVjLH1FKJddx3LuVUjf68lrcHOtzX4bFUEr9Til1c1PEIISvlFIXWOfZLU7LhlvLkp2WJVvn1yal1Pqq86e+z79S6h2lVB8vY2nSa2SUUilKqYua8pjNSZJNwyZhGs28dRwYopSyW48nArurViqlhgAvAr/WWg/CdH3cUd8Bre6Zv8EM69Gc/gXMaOYYRAtifXb9YSMwxenxVEzjdtXz3oE590ZqrYcA5+P+ehOc9jkdCNNa13s+BsALmGF+WoWQSzZKqUVKqe+UGYTwNqflx5z+vlopNU8pNQZIBJ5VSq1TSvVVSg1TSmVZg9S9p+oZXBBYAlxu/X0t8JbTuj8BT2qtt4K5gllr/XID4V8EfK/N1c5Vv8yeVkqtUUr9pJRKsJZHKaVeV0ptVGZAvQut5XalVJoV+wKgKhGilLpYKfW1Uup7pdTbSql21vK/KaW2WPukWLEWATlKqZENxCtChFLqRuszsr6qRG+dQ88ppVYATyszMOcia7sspdRQa7tx1vm1zvq8tldKxSqlvrSWbar6bLuxE4hSSnVXSinMNSJLnNY/ANyptT4C1d2M33BzHGfX49RNu55z41KrxPQVcJXT9l2VGXj0e6XUXKVUrlKqi7Xu19b5us5aF2bd5lmvc6NSaqYVay4Qo5Ryd9FsixNyyQb4jdb6LEz3yxlKqTqHp9Bar8L0Q79Xaz1Ma50N/Bv4s9Z6KOZX1cP1PFcaMFWZC6OGAqud1g0BvvMy9rFu9gnXWo8E7naK5S4r/jMwSe4NK4bpQJEV+5PAWQDWifAgMEFrPQL4FvijUqoz5gLA0619nnB63m+Bur4ARAixSgJ/AS7SWp8J/MFp9QDM5+oe4FFgrfVZegBzLoG5vuYurfUwzGeqGLgOM4zOMOBMTDfcurwDXIMZYPR7oNSKqz3Q3jpvvVF9ntVzbkQBrwK/tGJ2TggPY67ZGQG8B/S2jjUIUwoba72uSkxiGwb01FoPsc7Z152O9b0VT4sXislmhlJqPebCqVOA/p7uqJTqCJyktf7CWvQGpljultZ6AxCP+cL/yNeAncRy4gVW71r331nPBXAe8KYVw1YgF3PSnw/8xym2Ddb2o7H61yul1mEudIsDjmAGBXxNKXUVUOT0vPuAHk3wmkTLdxHwjta6AEBr7XwV/tta60rrb+fP5WeYX+0dMdd1PKeUmoE5vyowFyDerJR6BDhDa320nudfiEk2rrUHCt+Gn3E+z+o6NwYC/9Nab9Pm+pH/OO1/HuaHJlrrpcBBa/l4zA+8b6xjjceMwLwD6KOUekEpdSnmvKvSas6zkEo2SqkLgAnAudYvsLWYC7ug9ocyCi8opU5xqga4w2V1BpBC7ZMAYDNWycILxW5iK7XuK6kZfqi+Oml3J58Cllmlt2Fa68Fa61usk34kkI5pu1rqtE+UFY8Q9X2pH3fZzpXWWv8NuBVTrZullBqozTht52PaOd+0qul+5XSene10gD1AOaZt5lOn5UeA48qLhn6L83nm9tyoeoo69q/r/FPAG07HOk1r/YjW+iCm9PY5plbiNad9Ws15FlLJBjP20UGtdZFSaiDmV0uVvUqpQcoMivcrp+VHMWMXobU+DBx0qj++AfhCa73L6QP0istz/gt4TGu90WX5s8ADSqkBYAbjU0r9sYH4fwD6efA6v8QUz7GO3xv40WX5EEzVHphS3lhlBmhEKRWtlBpg1U131Fp/hKmmG+b0HAOATR7EIlq/T4HJVVXSVvWrO86fvwuAAq31EaVUX631Rq3105hqqoFKqThgn9b6VeCfwAit9XtO55nrUC4PYaq3K12WPwW8pJTqYD1vB+XUVlsH5/PM7bkBbAVOVUr1tba71mn/r4DJ1vYXA1Xtup8CVyululW9T0qpOKuqzqa1Tgf+DxjhdKxWc575q4dIsFoK3KGU2oD58s1yWncfsBgzBPcmzKCAYIrDr1pF/KsxxehXlFLRmOJvvV2AtdZ5mImhXJdvUErdDbxlHUsDHzYQ/xKsaogGvGzFuBGoAKZprUuVUnOA163Xvw4zRAda6/1KqWlWLJHWMR7EJNr3rfppBcx0eo6xmDp4EeK01puVUk8CXyilKjE1BtPcbPoINZ+/ImrGJbtbmU4slZjhc5ZgepXdq5QqB44B9Xb3t9pX3ZmDOZe/sY5VjpnSoD4fAhcAy+s6N7TWP1lJ60OlVAEmwQyx1j9qbT8F+AIzjcNRrXWBUupB4BPrR205piRTbL0vVT/+7wdQZty6fpgE3OLJcDUtjFLqPeBPWuttzRjDcOCPWusbmisGIfxFmcsVVmAa8l1LSp7sHwlUaq0rlBmmf47VIcDb4/wKU6L7P2/3DUahVrJpDe7DNGA2W7LBDDneKk4AIVxprYuVUg9jJhbb6cMhegMLrZJKGfBbH0MJp+FSWIshJRshhBB+F2odBIQQQjQDSTZCCCH8TpKNEEIIv5NkI4QQwu8k2QghhPA7STZCCCH87v8B7bpTw3v8TvQAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -4142,7 +4184,7 @@ "source": [ "While the process graph is nicer to look at, the time series graph better represents the spatio-temporal dependency structure from which causal pathways can be read off.\n", "\n", - "In the **time series graph**, each entry in ``graph`` can be directly visualized. Directed lagged or contemporaneous links are drawn as arrows and unoriented or conflicting contemporaneous links as straight lines. In each case, the link color refers to the MCI value in ``val_matrix``. Also here, if ``val_matrix`` is not already symmetric for contemporaneous values, the maximum absolute value is shown." + "In the **time series graph**, each entry in ``graph`` can be directly visualized. Directed lagged or contemporaneous links are drawn as arrows and unoriented or conflicting contemporaneous links as corresponding straight lines. In each case, the link color refers to the MCI value in ``val_matrix``. Also here, if ``val_matrix`` is not already symmetric for contemporaneous values, the maximum absolute value is shown." ] }, { @@ -4152,9 +4194,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEgCAYAAABYaaN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXxU9bn/32cm2yRhCauyJYILStCokRABoaCiUSNtWntra7Ur0nvLr1Rau+/eay1eam5bpKu3i7a26aXRxkYFg4BhiQgYQXbCvodss8+c3x/POZklM5OZySSZSc779TqvSSZn5nxznnOe8/0+3+f7fBRVVTEwMDAwGByY+rsBBgYGBgZ9h+H0DQwMDAYRhtM3MDAwGEQYTt/AwMBgEGE4fQMDA4NBhOH0DQwMDAYRhtM3MDAwGEQYTt/AwMBgENHvTl9RlLz+boOBYYdkwbBDcjMQ7NPvTh9YGc1OiqJcqyjKs4qi/E1RlCW93ahBSLR2WKQoyq8URfmHoih39najBiHR2mGyoii/URTlb73dIIMAorJPMtOvTl9RlLuAqYqiLO9uX1VV96iq+ijwAFDc640bRMRohzWqqn4OeAT4aG+3bTARox0Oqar6mT5oloFGLPZJZtL6+fjngT+qqvozAEVRpgP/FbTPp1VVPav9vRz4GvCzPm3lwCcmO2h8C/h5H7VvsBCPHQz6jgD7pCr97fSvB3bqv6iq+i5wb7idVVWtBqoVRfkn8HzvN2/QELUdFEVRgCeBV1RV3d43zRs0xHQ/GPQ5AfZJVfo7pn8e+KyiKNd2t6OiKPMURalUFGU1UNP7TRtURG0H4IvA7cCHFUV5tHebNeiI5X4YqSjKs8CNiqJ8vfebZkBs90nSohillQ0MDAwGD/3d0zcwMDAw6EMMp29gYGAwiDCcvoGBgcEgwnD6BgYGBoMIw+kbGBgYDCIMp29gYGAwiDCcvoGBgcEgwnD6BgYGBoMIw+kbGBgYDCIMp29gYGAwiDCcvoGBgcEgwnD6BgYGBoMIw+kbGBgYDCIMp29gYGAwiDCcvoGBgcEgwnD6BgYGBoMIw+kbGBgYDCIMp29gYGAwiDCcvoGBgcEgwnD6BgYGBoMIw+kbGBgYDCIMp29gYGAwiDCcvoGBgcEgwnD6BgYGBoMIw+kbGBgYDCIMp29gYGAwiEjr7wakAvXz51qASUCBto0FssNslqDf3UA70Ka9hvu5DTgKHASOl65b7+6L/y2VqJ8/N4NAO1xOdDbIBrxEPv/+Px9H7HC0dN16Z1/8b6lE/fy5acAEfHYYD+TQvQ0sSEczGhu0AyeBQ8Dh0nXr7X3xvw0GFFVV+7sN/U79/Llm4Ep8F3HwdlkfN8kNHEEu+INBr4dK161v6+P29An18+cqwBXAZELbYRyg9GGTvMiDOJwdmvuwLX2GZocJwBRC22ECYO7jZp2gqw301/Ol69YbjixKBp3T97ugZ/htxUBuf7YrRk4BW4HNQD3QULpufUf/Nil26ufPHUugHW4B8vq1UbFxAdiG2GAzsKV03fqW/m1S7NTPn5uHnHt/W4zt10bFRivwNj47bC5dt/5c/zYpeRnwTr9+/tzhiFOfAZRor33dc+9tPMAufBd9PXAwUu+nfv7c/wBeKF23/kJfNLB+/txc4CYCHUt+Xxy7D1GBPQTaYU/puvXecB+onz/3YWB96br1R/qigfXz52YBN+CzQQlwVV8cu485gM8Gm4FdkUKm9fPnliNh1e191L5+Y8A5fS3eOAu4FygDrkvA13qROO8RbTuBxByt3Ww2ZN4kV9uGRPh5BL7QxpgEtPk8crFvAF4BGvWHgBbOOgmcBu4oXbf+bAKOF0D9/Lkm4GbgPuAeoIjEJA6cxGeHY0gMOBo7KEQ+//rPeUgIYzISTuoprcAWYCPwL2RU1vkQqJ8/twGx9/zSdesPJOB4AWgj22nI/XAv4ujTE/DVZ/HZ4SjQQvd2sGqfjeZ+GIbM30wBJtLzsJ4VaAA2IXaoL1233qX/sX7+3CpgPrCwdN36rT08VlIzIJx+/fy5I4C7kIv6bmB4HF9zAdiN70I+7Pfzcf8LpLepnz93CPIAmII4n8l+PxcQ3017HHgl+/IRbw2ZOHroma17n9He3w3cXrpu/akEtDsXuAOxwz3EFyJoBd4j8Pzr27G+nNCrnz83G98DYErQ62QgM46vPQfUmtLTXp10x025R2q2/kJ7/ySwoHTd+vcT0O4sYC7ywL2X+EZUVsLboal03XprmM8lnPr5czOR/yGcHXLi+NpW4DXglSsrZnOgauMz2ve0AXeVrlv/ViLanoykpNPXei/X4LuoZxHbxJIdiQFu1bYtwJFUmAzSRjKFwEygVNuiHp5nX5bHVR+5jfO7DnOqfjdepxtgH9LTPBFHe/Lx2eEDQEYMH3cBO/DZYSuwL1I4JFnQRjLXEGiHaUTZI03LzqTws3fTvO84J958F7fVAXAGeQA3xtGey5CR7X3IgzcWR+gFGgm0w3upkEHmN/lfis8WNxBDZuL1/34fHScucOyNnThbOgA6gHtK161f3wtN7nd67PQVRckBfgE4gTpVVf/Uk+9rbGycCDyADHnPAi8WFhYeA6ifP/cG4BPAB5EnfTSoSI9lC4EXdJ/13BOBbc1KEzAUcSpebVMB76GXNg/vOHXxFq/bPUP1qCWoaglhJqaHTr6MyffOBMDZbuPE+l20HDwFEgO9Te/xd2OHKxE7VCAPoGjZR6Bj2ZlqqXi2NSsVxA4m/GwAeJtefTun7ejZYo/TfYvq8ZagqjORsF0XLKOGcc2DHwDAbXdyatN7XHivCWQkMLd03fo90K0dxgMPAh9GwjbR0oSvs7MV2J5qiQCaHXIR595pA8B7qn531sXdR4vcDtcM1eOdgaqWEmYez5yZzvTF9wDgdXs4vXUv57bvR/WqNiTUs0HfN5ItUomonL6iKEuA6aqqfkH7/UdAvqqqDymK8hBwSVXVlxRF+Yuqqh+NpyGNjY1m4MfAo/j1UryXLlmdr/yzwVX/Vh4wPcqvOw/UAC8DryZrRoVtzcrhSC99DDAKGKm9htpGEmNMXPV4nR6Hy+uyOjI9dqfidjhJs2SSO25kwH4th05xbN0O3FbHbiVvxAdyv//DrxJsh/b2Duer/6p31b2Rg/SmoqENiZ++DLySrBkVtjUrc4Gr8dkh0jaSGNe3qF6v0+Nwe902e4bb5jR5HC4Us4mh+YHRr/YT5zm29h0clzpOkp09b8iTP1lMkB1Uu73D+fprbzpf/Vc6sIDoRhZ2YC3wElBTum59Ujoq25qVWYgdLiP0eQ9+L5ZRJapXdXmcLrfb5shw25xmj8OF6vUyfErg1I3tfAtHX38H29lLbcCCIZU/304I34SMCJ4FHi8sLPTE/h/3D9E6/WxgL+J0ZwM/BG5VVdWmKMrXgVdUVd2hKMrzqqo+GE9DGhsbVwCP+b/nfLMOR9XfILrRSCNyUb+MpM4ljRFsa1aOQCaU9W2a9pqIicKE4LY7Of7GTlrOW8/mPP6NMUp2duffXLt2Yv/db8AT1Sk9hNjhJWBDMi1usq1ZORS4lq62SJosIq/LzclNuzl/4HRrzuPfGGrK82WwepqOYP2fZ8AZ1Sk9idwLLwHr+jIG3x22NSuzgal0tcNkkqRKgOr1cmbbPs5s29ec9flHq9Oum/ZwhN2fLiwsXN5njeshUYd3FEV5CnnK3Q3coarqQe39h4BmVVVfVhTlz6qq/lusjdCGTXsIikN6jh3D+pMnw33MCbyBXNT/7KuUt0hoQ86pwG1I2EN37imT83xp/wlOHGwm83NLUDKzAPC2ttLxnW+CN2So3YNkROgOZm8yzI3Y1qy8ApnMvB6fU5nQr42KgbZj5zj2zlHSP7sE09BhAKguF+3f/iZYw0ZitiF2eBl4J0nscDkwD8ne0h38FfTtIru4sZ67xLGN76vKJz+nmMeGzfTuAKYWFhYe78OmxU0sw9TfIo75ft3ha/wd+JmiKPcgN308PECIiSfzxImYxk/Ae6LzXKpALfAHoLp03fr2OI+XEDQnPxmZwJyvvfbmGoB2ZLWuCblpTH5b8O9xMfyq8WRNyeeEzQqa0zcNHUratELc7+7y33UDYoeq0nXrL8Z7vERhW7NyPIF2KOjFw1mRTkfweQ9lk7ic25CJo7ly/FhOODrwIk5fSU8n/ZZbcK2v8991O2KHF0vXrT8Z13+TQGxrVo5CnLxuh6m9eDi7tkW6FxS/15jJHj2cKfeXKic9diJMAuYgPuy/4zlGXxOL0/8OMskU8BlVVTuAT/WwHWHz0tNLS3Ft3kz6LTMwX3vtL264/Y7/6OGxeoRtzcqJBDqXST34OjewH8lzPo+kjZ4Ps12wLFoWdahEm/gdguSd5wF5LYdOzci+bMRX07MzQ616Pd2RPfLEpbzJN9uzhoESeI+kz7wVz5nTpN8yg7Rrpq6+4d77Ho35v00gtjUrxxDoXK7uwdd50WrtINd4WBsgdrDF0E59wrHTDu0nL1yXnp35rczhuZeH+EizzZJ3rDnviuttljxQAp/f6TNvxb1rJ+k334L56mt+U/ThD3825v82gWjzUrfhs8P1PfzKI0iaqL8dQt4XlkXLog5ZaXbIxs8OzlbrBLfN8UT22LyCEB/pAF66MPKqzJZhEz+omrpNDkyZ0XxUTl9RlMeALORp9n2kd59Iwi4OSp99Gxm3zdN/PZTg43aLdrGUAh9D1gJcGcfXOJE5kd1+23vAAcuiZb2SRWRZtMyLLJhpQW4kLLDOtmblQ/hKHViBvwC/BzacHnfTl5AFVV0wT5tGTmEhijwM9vVGmyOh2eEGxA5lxJY1pONBspTeI9AWey2LlvVKFpFl0TIVmdDWC+phgTrbmpX3IgXjQFJX1wD/C7x2cnzxF4EVob7PPH48Od/9AYrJhNb2Pse2ZuVViB3uQ1ZZxzqyVBHHHmyHPZZFy3oli0izQ4e2HQep/mZbs3IOMkEL8vCvBZ4DXrYsWma91Nj4GJIt2B1nEt3m3qJbp68oynykJ1+qqmqboihDFUUpUlV1RwLb8SLyMOkS4tEubhBjvZjAY0bEtmbldCQd7mPENtFnRUIfm5DJ5d3AQcuiZcmS8zwWSdX7DfAXy6JlrZ1/aWxMRjtMQWzwIDIJGy1OZAn+BuBdxA77LYuWORLeyPgYi7Tp18AfLYuW+TKbItgBOm3R13YYB3wUsUNxDB/1ICth1yOlQvSHbLJMLI9FUlh/AzxnWbQsOLMpoi00+tQWPSWi01cUZRJyUd6jqqpe2fEZ4EvAI4lqRGFh4bHGxsZnCcreCeLZ3p4osa1ZORn4N+TCnhblxxzAW8A6ZGJ5WyxhmH5grmXRsvdC/SGJ7HA54mA+RvT55x4k51y3w1uxhGH6gU8Cu7UeaABJZIcRyFqMjyGhtGji4iqy4E63w4aAjkXy8U3kIRQySyFZbJFIIjp9VVWPIhOV/u89hwx/Es3j2mvYXNheOCa2NSsvQ8JWH0NW9HWHG+kp6xd1fW+FBnqDcA7fj/6yQx7wIcQOH6D7kIGKTGLqdthoWbQsZUpOJ7EdcpCwzYNIODOakh/v4bPDesuiZf0+sR8tlkXL9kSxW7/YordIujIMjY2NExAnPBaJk73YG09R25qVM5CndwXdl3CwA9XAC8DrlkXL+jVrqC/oQztcC3wZeIjua9m4kZjrC0CNZdGyAVnP3p8+tMMk4P8Bn0MSACKhIuGaF4B/WBYtS5l4dk/oK1v0Nknn9HsT25qVZqAccTKzu9ndA7yKXNhrUqkXmexok7LzkYfu3VF85E3EDn+zLFp2vjfbNtiwrVl5C2KHD9N95+dtxA5/sSxalnLOzkAYFHKJ2pD1EWQuorvsm43Ihf3XgMk1gx5jW7MyA4nVfxlZrBOJdxA7/DnE5JpBD9A6P/chdpjTze77gOeBFyyLlvV51pZB4hnQTl/LOPgPJBYXSZFpD5Iu92fLomVNfdG2wYQWr18MfJHIpSeakPTRF6KMtRrEgNb5eRhYRuTOz1ngj4iz3x5qstkgdRmQTt+2ZuVU4GvIZFSkiajXgKeBV7u7sDfNnqMgFRML6EVh9FkbNyRlcbh4sK1ZOQGZ5Po0ci7CsQWxw/9Fk9q6afac4fS+MPrFWRs3DAhnp2XhfBlYQpiqnxq7kVWlf4omOWHT7Dm59L4w+tmBYodkYUDF9G1rVo4FvodMRoWLT7qAPwErLYuWddYVCHLq4ba+0NG9QGjx54PAiVkbNyR9rXnbmpXDEGe/DFnUFwoV+D/E2df7P3T9nHq4bVjiW92FFsLb4disjRuSZd1FWLSqlV8EvkFkYaHXETvUBtlBd+rhtsByrb1DB5oQPV1tcWTWxg3JnB6dlAwIp68NWx8DvkJ4x9wMrAJ+tn3F308j5RP8dUKL6D5rob9xIisZ9br09cC2WRs3JEUetBaz/zzwXaT0bSg6kDpOz1gWLTu4afacywnUzb2Z5BdH9yChqP34CaPP2rghKVIVtRIcHwOeIPzCQhcSvllpWbRs56bZc0YSKI5+C4mR7exNdBnTA/iE0etnbdxwul9bleSktNPXJqQ+BfwA35L2YA7YL7Y9u/8vG/a5OuxF+C7qZL+go0VFVv76i3Hv625EsGn2nDuBdYnosWrZOB8CniR8rPiks922+sBfN263X2i7Dt/DNmUqX0bBPjTHg9iicdbGDRHrUW+aPWcu0DBr44aElB+wrVk5H/gJUh4hFM1uu/PXh6u3bGg7em4KvvshWlGiVKCJQDvs6G5EsGn2nGIkvJpwvehkIyWdvuZk7gaeIsTKWbfdScuBU6fPbNu3136hbRwxyAl2g5XuhdFtQT/7C6MHC0AHC6PnE6MwRBiakTi5XoZgk/9Fr4Wy9iErJx+ctXFD3PV/bGtW3oo4mVuD/+Z1uWk5dObimW37Gq2nm0chZRQSUVLXgdzY4YTRbSF+1wufBZ//4N/zEDtYEtDOdnwjgY3A+lkbNwSUH9g0e87riM3vmbVxQ9xpwbY1K6ch90NZ8N+8Hi/tR891nNm27522Y+dyUSkkMfN5bqSeULAwevD5DyeMHskewxA7JCKkqsujbkbKo6wLnjvbNHvOb5AaWwtmbdzQY73oZCblnL5tzcqbkGJUH/B/397cTsvBU7QcOOlqP37BTHzlhW2EFoLWt/PhJpVs1ZUKgKV8adwndNPsOWYkuyVY/Fl/jTeG2obEbV/RtqHIKkqQRWcPzNq4IaaaNFrRrSeRHn4nzlYrLYdO03LglKf16FkVrxqPc3ES3gZHgDORRjK26kqlh3ZQkBLZoYTppxB/RUU7UIfPDufwVa7dDNw9a+OGS7F8oZah9gNkxNt5zbs67LQePkPLwVNqy6HTLtXjjaczoTv1I2G2k92NZHqCZodRhL4XpiATyPHgRpy/bof3gFPAaCRkN3/Wxg0Ddh1Cyjh925qVI5Ee5acAVI+X9hMXxNEfOo2jOeZFslbFbNqeMSzn3dzxIw/mTZ14YkjBWLeiKP5ybEOQHl+W9moJ87v+ngkJt3iQeGOoV/+fHUgPqTXMFvC3jpMX7Kfe2p3Vevj0FNROEejrYv3HkdK0/jH3V4CKWRs3dFurRps/+R6y5iFNVVWsp5vFDgdPYzsXc/KRE5OyI2NI9q6cy0fsHz51wrHhV45zKCaTvzzeMMKf81DvmfHppoY79/6vDqI4//pmv9Daceqt3ZmX9h7PV71qCWKH6+l+cVMw5xBHo/M2cGc0cwO2NSvTkXmsbwPZqqpiO99Kq3Y/dJyMeXrBgxSm89cw3pPME9abZs/JQiaUr8cnjH4TsY+Wg+1wCHH8AzJ9O+mcfrD4sOL1vDj50Lp5wH97XZ5RLQdPcenASVoPn8HjCB2VUMwmMoZYyBiaQ8awbDKG5qhZI4dcyhiW054xxOI2Z2WkKWbTUEVR+iILpDdwIulsJ71uzzlHc7tqPXspx3ameaztfOtkV6s119luw+uM6X59DSiftXGDHUKLQE858Np04Beqx5vfeuQMl/afpOXQadzWMIMEk0JGrkW3ARlDs8kaOaQlY3hua0auxZVmyUhT0sy5iqLkkSJKSkG4kR7iSdXjPeNo6fDYzlzKtp5pHmM73zLZ2Wod5mq34bHHFD3bgYQYLkJYO4wHfqmq6vT2Y+dp3neC1oOncLbFVF/uMIEO/p1EzSv0J5tmz8kEbkQeAvqDYGIcX3UUuM3f8Q8qYfSIX6Aok5FKdcNUVf1wvN8TShg9zWll9Nn3PJ59+80Xdx+led8JvE43SpqZzOE5ZAwTR5I5NJv0odk+J5+biHBs6uNxuhz2C20m+4XWdMfFNuzN7eivqjvkqPyl9JklH8l+5JEn8LOD2e1g5Nk9btPBvWkXdx+j+f3juG0OFLOJzGE5AU7d/+f0XAuKKRV9eWLxutxOe3M79vMtGfaL7Tia27BfbMPR3B7uwbzVNH78nUO+/a1v42cHk8fFiAsHXOmHdqc37z7KxT3HcEXv6M8gMor/ROZ4BvyEpc6m2XPGI85/NrCQ6Et0HwTmDHt21VkGoTD6EmC6qqpf0H7/EZCvqupDfvv8rYdOP0AYXfG6Gfav52nbfxyzJZPMEUPI0raMoZHW+RhEg7PVqjmeNuwX5WFgPXsJdczle3O+svyazvr5qkrehr/TunMfpvQ0sUOeZodhOYZT7yGudpvfw7gNx8V2bGcv4bbkHs/95jcnKBm+SEXe9tc484912M5EHfbfjk8z9+1UWOPRF2yaPacASQS5G1hA5IWDu3N/8P0685gxX4iwz8ATRlcUJRtRfpqOPC1/CNyqqqrNb5+4nX44YfTMresYP1LV1Zp6AxW4SHh5vFZkctd/s4d4T3/fjcR1TUGv4X62IJOqwduwMO+NRSaveu2p52y3YXeAe/JUHFlDcWQOIa1pP2M7jpLeuyOoZsLboYXY7OAi9PkO954Fmb8Jd+6D7TAGmXAf2itnAnBbHdg6XGIHy3AcmbmYWi9x/rtPoLrDz2EjE/YvA/+ctXHDid5q30Bh0+w5X0V68WExTZjgzf3yMpOSHfa2G3jC6KqqWhVFeQFZ7HE3cIe/w08AIYXR7TffhnPXK2QOiyRaExIViXk3+W1HkfirvzNptpQvTfSwrFcnvrQsoSGI04m0jSeO9M+MXAsZuUBLk7hawGNKw95uj9fpnyHQDk2IHfw1UC9aypcm+rzpE7e9hq26MhdZH9KdHWI+cWnZmQzJzoS247IhdnBdPZFLuwPmF63IyuY/A2ujmYw3CKA8xHseJC37mGnixOy0qVNv9Jw4QdpVYTO/B6ww+m+R3vj9qqoe1N9UFGUk8jC4UVGUr6uq+l9xtCPkQinFnIZLSQ9VZN2LT0BZd+j+TuW4pXzpgFyeraUi6pkk74fbz1ZdaUYmsK7WN1eHfabqVaen52ZlxTJ6MqtuzGlhE1Oakdjnbro+ZI9aypemjMBMrFjKl7YjKX77w+2jPaTHITa4BrjabXfe6HW6ZqbnZmcqpugNYfa6GV2Yz6XdTQzJH8OIafkMv2q8y5yZPhyJU5+1VVdu74UH6IBEK/dhRoot7kHT6UXKO7gBGhsbf4xMDHdHygijRz2RqyjK88DtwKOqqiZUGL1RxIdDCkEPOX+ILFcHrqwhKKr3uRGXjqwADljKlyaL1mnKYauuzEJynfUHwjXAdBVuVMJ0BLzaxK8psvPfgIhrrAd29MIoakBhq65MB64g0A7TVJRbFNSQozRVVXG128kYEnbw0I7koOt2aBioHaC+IJJvCuKxwsLClOjpRxvTfwyYBVQC31dVdW4iGxEuph9ESsXNUpG927deoaie9zKdbZZMRxuZjjYynO2Y1Ljm/1rRVqEiC5LeNh4C0bFnx9v5Jq9rd6ajPTvTqdnB0YZZjev02ZAVwbodNhsPgegZiL6pW6evKMp8xNmXqqrapijKO8CnVFXdkciGBGfvhCClZshTlS52UFXSXVYyHa1kOtrJtp0/nuGy5RH5JgjFeaAGSRmstZQvHTAlpHuDUHZIc9vQH8Y51gtNGa6OYUSunhmKVkQR7mXgFUv50kGTuhkvA803RXT6iqJMQnoH96iqukd77xFgnqqqjySyIaHy9DVSMhc2VYnGDlMOrVOQlY9zgdsQ9aVYFrq5kVDQPxHns68nZRMGIlHaQQUKETvothhN9KjIwiw9rXOnYYeuDDTflIwrcgeE+HCqE4sdtEnj6wl0PpHEOoI5gO8B8KYRfvARox0UZEJ3rt92WQyHO4HPDmst5Uut3ew/qBgovinpnL5B6mOrrjQh1U/nAvOAO4g+p70dcTovIGEgY8I+TrSHwJX47HAn0Y8EHEAtkgpabSlfmvIlGgwEw+kb9Dpalsps4B7gXiRLJRouAVWI43nDmAjuGdqI7BZ8duhOnF7HilRjNR7EAwDD6Rv0ObbqyivxOZ65RNYx1jkDvIg4ns1G7Lnn2KorJyD19+9F0rGjWUR2Cfg7YgfjQZyCGE4/RhrKFqQh8eqECqMX16wdlHFsW3XlECT8cy/igKJZ5HJE9Xj/0nrk1Csn1m4/onq9iRRGdxbXrB10N4WtutKChIDu1bZJUXzsjKqqL3acOP/PozWb9wTZoafC6PbBaIe+wHD6QWhOfTzhxaAnEnvd9GhwIqtYQwlxHyquWRuzYECqoc0FzAY+pqrqR9wd9pGuNivONivyasOl/exqt6J6e+XadSETmuHsEJPISSqizQXcDPybqqr/5rE5xosNbJ228LeL6umVOm4epFxHOHH6C8ZDIT4GrdNvKFugIHJsulbrjcjqyN5y6j3lLL4LXhdG31Jcs7a5X1uVABrKFowjUBh9MtLTTIR0ZKK5iNjhEH7C6MU1a1M+372hbMEofOLotyDqVAWIME2y0YrPDp3C6MU1a1Ouvn1fM2icfkPZgpH4Lmh9iyWnOVl5n0AR6N3FNWu7jbM2lC2YUlyz9mB3+yWahrIFQxHHrtughPhl75KJQ/iE6euBXcU1a7tVT2koWzAZONzXvdaGsgUWZK2F//0wuS/b0EucINAO24tr1nZb/6mhbMEk4PRgCLMOWKev3UxliHrODCR1LVE0kzhhdP33RI0u2hBRdP3Cf7s+zMMAACAASURBVCtUSKKhbME24B/FNWt/lKDjhkTrxZchZTxmkDhxdEwZaZjS0zClmTGlpaGkmbWfzfKz2eTxOF0HnC0d2x3NbSfpXhh9CIkRDAexfQM+O2wKNRpoKFvwN+ACsKS4Zm2v1bvXOj13I+GzGcQn7xgSU7oZU0Z64Ln3ezWlmVWvy33Y2WLdbr/Y0oRKDt3fD4ka5bmAd/B1ijaFGg00lC14GrgK+EhxzdoBnZ00YJy+FosvRSah7iN6dZxQnCW8GPTR4pq1Cc1Z1kJNQ5Dwki767C8AnU/8zsiDXOw1iBbuDqTqo76o5IfAdxPV02woW2BCepD6hODNPfi6i4S3Q9O0R+8fimgmf5buJx73AKuA32nVMUPSULYgBwlphBLjvgJCFX2Nmu347LAFyVo6j6zyfA74bDSjtGjQrqnr8NnhVvyE02OkDaloeyTUNvXT95jMGWmfBD4PTO3mu5qAXwHPWsqXXojQ/izkug9lh8n0TFNiNz5R9I3IfNp+7ftrgQ8W16wdsCWqU9rpN5QtyEPkz+5FejGxrAIFWUbdgE8ndDfQlGin3lO0B9pE5GK/EnGqM5El+LHeyKeRG7jU772ngK/F6/g1R3k7Yod7kBrzseBAHKJuh0bgSHHN2tZoPqzlny9EnM69RO7BXkKWzv+PpXzpyVgaqT3QxuF7KBchdriR2B/KzcBOJGNG53ng4eKatXGVRm4oW5CJpMDqjv6KGL/CDezCZ4edyLVyKZprQ5sAno3Y4SNEfkDagN8BKy3lSw/E0kjtgTYW30NAF0a/mdjnHzqQqqR3+r23DihPNj+QKJLO6XcnPtxQtmAKsAi5qOcQ/RDVA7yLNgGqve5JVM+qP2goWzAEGarPxCcCPTLOr1sJPKbf3FHYYRw+O8wn+h6wivS6/UW5301ULNVWXTke6f1/jsi9fxfwJ+BpS/nSxp4cU4uP34zPDqXE/uDT+SvwoO74o7DDSGRkex/iuHJjONZBfDbYAuxIVA/XVl05EngIeQBEGnWriAjM05bypW/15JgNZQsygBsItENBnF/3JlDm7/gNYXT9CxRlEdK7GwP8XFXVV+P5nkhFjbwXLzznfOpHu/F6P0FgDzUSelGvV4C3gHeKa9YO6FoiWg/oSnwPgNuQcgjR8kTWU898lzB2UNvbf+P40be3a3ZYQHSxeRVxKDVIj+rt4pq1vV5hU+v934E4nXIidw5qkZrpaxOx6Euzw0R8dphDbGGuP6R96IFPp82c9SSh7OCw/8rxvW+8hcfzcWS+JJrFbSA9938iIY2txTVrw4ZXEoXW+5+F2OEBIncO6hE7/CNRi74ayhZchthAF0afSfQdxdeB+7KeesbFYCu4FqUweh6wQlXVz8TTkFDlS72HD+J+8w287+8GT1Tn9ALiXF4GXh0MOdXdoWUl3IWEv26nm56guXjGhvQHPj7H/z3vqZO4617H2/guuKLqkLcjjvQl4JX+Tme0VVeOA5YAXyByCHAn4nT+Yilf2m3mTSw0lC0Yg4SgypAeecRQpOnqa3amf2bJDf4KZ96LF/C88TqeXe+ALaoOuQNYi1ZFs7/TGW3VlSOAzwD/j8gZWwcR6cHnEl30raFswXDkPihD7ovuRmQvZT7xkwNKesayCPsMnNLKnTtFJ4z+NPAnVVW3x9qIcEIFnnfexvXC77v7+HuIc3kZ2JzK4ZreRhv+vkRg/LILaeUfIm22TyfHe+Qwzl/8tLuvP4TPDm8mY+qbrboyB3gE+DKR0xNPIOGuVb1RabKhbIEZ+CXw6Uj7mefMI+3eReiOX22+iOPJH0Dke/YUYoOXgHXJGJe2VVdmAB8FliPx+HBcBH4O/NRSvvRiotuhjci+q21hMU2/wZ3+8UfSFFPY6bOBJaLSuaOiPIU4ZV0Y/aD2vgI8Cbymqurr8TQinCSZ6nLi+NF3QvVqNiCxz5eLa9YejueYg5GGsgXpSA2bvJA7mM0OZdToTGV4HmmLPoxp5ChAJPqcK/4T9VyXDvt24C+Ig3k/VVZIaqGf+4GvIMP9cJxBru3VlvKlCc3maChb8C4yEd8Vk8mpjByVoQzPI23hPZgm5Xf+yfnrVXj3dZFG3otWDRMJY6aKHRQkTLgcGQWFoxV5CP/UUr40oaP3hrIFLyPh6VA4sGS3mcaNH2W+7QOYr40YKR1YcokAiqJMxSeMXu33/lLgYWRl4g5VVZ+NtRGa+PBXQ/3NteZveN7agDJqDMqkSRu82xseNhx9fDSULfgA4qD3ECgEfRA4lvXUM98gjB3cdWtx11TDsOGYJuZv9jbu/ExxzdrdfdX23sJWXXkr4nQWEX6O4hTwX8CvEiH0rq0h2Y0srPO3wwHgaOaTKx9XTKaQdvDsfAfXn56DnBxMEyZt9+7d8yjQkCqOPhy26srrkRHYg4Sfo7gEPA1UWsqXRpXZFYmGsgW5wEngGIF22I+URDmX9dQzTxLmngjiqcLCwsd72qa+IOmF0b0XzkNHB8rESSiKkjJP02REy312hlsEFMkOans73tOnME2egmIyDTg72KorrwK+hGT+hKs2eQJ4AvhtT8oLa6mV7nChyIh2cLvx7nsf0zXXopjNA9EO44AvIpOm4aQgLyLn538irbnoDm3kS6SV04Yweh8Io6sqXPSkMTKtS6pySsXNUpFgO1zwpDFqkNnBVl05Cun5f5HwC4COIs7/ud5Q+Qqe4zrvHpR2GAL8OxKCCzfpfR74CfDz3hJ58bfFeXcaI81ulK7jwZSyRbcLezRh9E8BD6uqWgcMVRQlWvGFqNByXZ9VVTjozOSEK+QK7GdT5aSmKrodAI67MjjkDJldN6DtYClfet5SvvRryMKmFcgiomAmAauBvbbqyk9rIjEJw98OZ11p7HVk4enaNxvodmizlC99ErHDt5DQTjCjkFTKQ7bqyi/bqit7sko3JLotLnnM7HNkYVdDRgBTyhYRnb4mjP5r4COqqrZpbz+DDIMTzeMHnZl1Z9wZdHhN/gkKHUgcLyXiZQOAx487M1466srEpZpwejsv8kFlB0v50rOW8qVfQbJ8fgqEiuUXAL8BGm3VleXaxGSiePycO+2FA84sQMHq7bxVB5sdWi3lS59AzvX3kEndYMYg52S/rbryEa1Ed8LY3JH7y912i1NFocMbkOKfkrZImhW5q7c0TUGW32cBTMmw//mydNc2UlR8OFVZvaVpBDKcHQMwPt3xSkGG83UGuR20WPPXgMWELwb2BvCYpXzpOz093uotTZlIobBrAUaZXZuuybL/HcMOecAypOM5JMxu7wBftpQvrevp8VZvaVKA15AsI3JNnm03WKxvYAij9wztxL6KTBTr/H5xSf7D/dSkQcvqLU2/RhbQ6KxfXJI/r5+ak3RoEoNfR8o8hArrqEjxtG/FWtvHn9Vbmr4N/MDvrcPAlYtL8nutEmcqoZV5+DKy0CsnzG7/AL5qKV+6L97jrN7S9Engf/3eagcuW1ySn3TrH6IlWZz+Q0DwKqwO5OQOeMWoZGH1lqZ5SG81mMmLS/KNNFk/bNWVk4BvIwusQoUTrEghuxWxTjKu3tJ0DVL4LHhEMXdxSf6bcTR3wGKrrhyNpFQuJfQIzI0s8PpBrAu8Vm9pGo2MeoPrWX1ycUn+H+JoblKQ0NhXPKze0jQKWXgRTA5Q0cfNGbSs3tKUhUxOhuKhMO8PWizlS49aypd+Dqm0+VqIXbKRGPQ+W3Xlw9HGmVdvaTIhq3VDOTBj5BuEpXzpOW3uZSqyUDCYNGQ0cMBWXfklbTVwtDxN6AKGKW2Hfu/pr97S9EtkqByKusUl+R/oy/bESl1xqYLMQ3QnjO4v+twxr6E+rvK5vcXqLU3fBMIJqhwErk7m0IJmh0yiE0bvtEci7KBN4N6FOIlwFSW3I/H+ukjftXpL0yeAcL3INuDyZA4taHbIIDZh9PZ5DfWJqrJaitTtCbfS+gCSBvqPSMX1Vm9pmoNU2gyFChQsLsk/2pO29hf96vRXb2m6DBFViPT0vWtxSX5tHzWpk7ri0hxExKEgxDaWwIs5HuwEXvhthBZGPzGvob5Xna3Wyz9KZPnIzy8uyf9Vb7YjFHXFpbqYRkGI7XIC7RBP9oyDrg/l43S1w7HuHhC26so0pAPzfcKfy78ByyzlSwMmAG3VlWmt5hzTmlG3NyA1rsLxxOKS/G91+18lmLri0gykcmhBiG08MjLX7RBPBMFJ14fySboKojd194DQHsIPIOmc+WF2Wwf8h6V86Z4Qn836/dj7X0TKhofjj4tL8lNyBNzfTv/7wHci7GJHZuJvW1ySn/CesdYruQKfMHqB35Ys+rlOZBLP/8LfB2yb11B/LhEHWL2l6dNI6mE4HMhD4ebFJfltEfaLC80O4wkURi/QtssSfbw4cSMdFN0OncLo8xrqT/jvaKuuHIZM9i4jdIemA3kw/FSv5mmrrly2xzL52m1Dp4cb9YJcCxeBGYtL8nulYmZdcekYREvaXxi9ALFPIlNS48WLlE3wfxjowuiH5zXUdzo0W3VlFhLa+SahM31cyKjgh/q8i6268kNn00d86F8j5nw8Qhv00fvti0vy3+75v9S39LfT/wByU7QjqkH+ohdFi0vydybyeHXFpaPpKo4er+hIMnCAQBHod6MNV9QVl+bMa6jvAFi9pWkmsuS9HVmQVOK36/2LS/KrQ3xF3NQVlw4DivEJo88gftGRZOAYPg3WeuCdeQ31Dlt15RVIzZ6Phvncbtv51scso4a+B+y5mDbUtGXIDY+eyxhxBMlMud9v36WLS/L/J5GN1kazweLoBYk8Rh9zlkA7NMxrqO+wVVeOQR6ynyf0KOSY41LH45nDc/4J7G4154zbnnvdsqNZ43YAH0PSdHWeXlySnzJllEPR7zF9ndVbmt4iUCDlnsUl+TXxfl9dcakZcfC6MPoMIpfT7QkOohNG9xeB7g2sSOG7zgt/XkN9yFr2dcWlLwG/nNdQ/5L/+6u3NL0A/JvfW19YXJK/Kt4Gab34G/AJo8+gex3VeHHS1Qb677oOcbAteqP36kRi+PXA5smLZjpGX3/Ft5AHXQCHXt5K9phhzZfNuEavfPp/lvKlH1q9pelJAhf9/HhxSf7X4m2QZodr8Amjz0CqfCZEHD0IN4Hn33+DrjYYQu8klXiQLKh6oH783Onnx9827TFFUW4P3vHEm414HK7WibcXDdVKWTcAM38/9v7PA7/w2/XPi0vyP9YLbe0z4hXb7g2OEej0uxO67oLWg7wTkY4ro2e9eDcS0jgSYjuB9IqtgG1eQ31MNfzriktNSOzT/+IfQaAwuv4augxyaLIRjdTO2kh1xaV7gX8h4jJvzmuot9cVlw5HJh7vqisu/ei8hnr/AnrBYYN47JCNSCjeh5StjSSY0R1eJMZ+JMR2DInD63aIKQSoOUILgQ+DPHzC6P62GBPDV2fgU2vi0JrNHFqz+WjO+JEbxt167Y3DplyWa85IR/V6ad57nHPbD+aBwmUzrgb4oK268h7G3p8IO2Qgql33IraYEut3BHGS0HY4CrTgs0NMAjR+yRD+98Mw5H8OFkUfF8NXm5Gw7Y3AF06sf5cT6989kzVq6JvjZl1XmHf1uBFpFik10rz3BB2nLg4FmHh7EYqiFCM9/ODJ2pjtkGwkU0//G0gRK50Vi0vyv9Ld5+qKS6/Ed1HfRuwPsnakd6wLox9BYugnY3XmvUFdcWke8jDQL3pdGP0GYu+lWZE8/DP4BDw8wCfmNdT/GWD1lqaPA3/0+8xfF5fkPxBFOycgDv5eZJFdrALVdiQuqwujH0ZscTxWJ9Ib1BWXDiHQDrow+s1ETkToiqJ4h+aPMWWPHcbpLb51Q5PuKOLy0msBjvx11J2fsZkta/0+tXVxSX5J8FeFaOdoRPPiXqRG/dCY2iZx7p0ECqMfQSaye1xWuqdoHYoCfHbQhdFnEHtShZo7YSRDC8YqJzf6qoRfVnI1k+68CUVRWjYPuf4D+7Kv8BeGOoNkUCWH44yDZHL6ZYh+p87mxSX5XfRw64pL05BQge7or4nhMG5kuOcvjr43GZx7rGgXfzE+HdZSJKsoHrzAI/Ma6v+wekvTNMTp6pwCxgdf5NpopRifHWIpwqciimf+4uiNyeDcY6WuuDQT+d/97RB3b3DC/OsZP3saVlPWf/5t9MJv+P3JDQwPTtfUesmFiB3u1Y4fS8hqP4H3w85kcO6xovmFQgLtcFW83zfm5ispKCsGRfntH8bev4jASp9XLS7JP9CjBvcjiRBGvxaZIR8FrFVVNa747+otTeOQsImGqhZbOr6VaVL/cP6Rzx1HHMxDSLw52syaZmThTD1yUe+Y11CfUAWkZEG7+fORi12/8G8k+pGPF3hw78//XIWMfjpLbF6baX1qRJrnZ4WFhcfqikuvQ+zwcSSFLxo6EK3WTYhjeXteQ33Cs4CShbri0nH4HM9MZG4pkiB4AJPuuJHLS6fa/zDmvjOqYupMOcxPt/9qQobrh5odChAbPET0HR8nUIcIo29BJjoTLkOYLNQVl45CEgV0O5QQw3za2BlXk7/wJv4ypqzBacronI8Zl+asvSLT8RpSe6dfdYfjIZHC6CbgV/EKo2/auce8x25p9qB0plZNbT+GZfMGp21tXbva2hpRSNqP9/Fptb6VbIug+pK64tKhSKGou7VtQjcfcZOW9uGmyt//3K6aOuPwkx1nGb51g9P22tpm74WL0Y4mjiJ2eAlYn4q9x0RRV1xqQeZZ7kbmmq7s7jMFZcU03vFw24mM0Z33w3j3JcZu3+iw1752znP6THe21DmDjKBfBl6b11A/aMua1BWXpgO34rNDpPUQAIybfR0n7n/o5L7sKzrnEkaZXVyTZQfpzDwLPF5YWJgy0YKECKMrilKOVCD8maqqz8fTkMbGxhUHHJmPnXOnk2d2MzLNTfYbtdj+9OfuPuoG1iMX9cvzGupTdtjVm/iFAVYTOGEeiMnkaf/Bj80n8yYw3OxhpNnFkHcbsFb+vLtDqMiIShflfs8/Z9rAx9sfLL/B2Wb9leNSxy2R9st89BF2TV/IUJOHUWluhp84TMf3vh/NId5Bux+Q3nzSrqTuT96avyDfnJX+a9vZli7ZPP7kfOQets97iFyT3A+j0txkmQIu7acLCwtTJo2zx8LoQfv8U1XVcCLDYdHVaZxeJcesqJi1iKS3vZ2LX/oKuLt01lsQEeiXgFfnNdS3xHrMwYjm+JvoJizjnTCJYUuXkDlGE0Z3u7n45cdRW7uUMrchvciXgFcStVhsMFBXXLoB6UCFZ8QIhi9+mLRrrut8q/m7P8TT1GX1vwsJY1YD/5zXUJ9y5X77i7ri0j8iYbLwWCzkfvYhsm4O+4xOKeWsWDJdfotPGL3T4SuKMg/4EBKzjDev/gEgJyPw6YkpN5eMm27EuXUbmM2Yx45t9Jw8+T3kwh604YIeUIQ4fDcygRcgjD50+ZduT7/6qq8pGYHJKEpaGlmzS7HV1IKiYBo9ar/37LkngL8P5Nh8b6Fl2NyKzKMcIkgYfeiX/mNB+tRrvqpkdU2AyrptNh1/kMG0aURek/di81PAX+Y11F/oq/YPFLRwj95JbaKrMPqxvBVPlptHjQxXk0onB/FhKaGRG4vT/w5wLvgzmoRiXQ/bETYHOveOeTiuvorMkmJMQ4bUFBYWVvXwWIOZc8B1wIFQmTKNjY13hvtg9uxSlNxcMmfOwDxixP8VFhb+b7h9DbpFRSbZ94XqvDQ2Ni4I90HLjJvwtraSVToT82Vj/1JYWPiLcPsadEsGkl78vr46PZjGxsZPhHpf8boBBdXUmTUdb+ZcnxOV09eE0bOQp9n3gb9H/kTMBKwaTXNayWk7TU77GTLUNprmz0c1pYFMShnESRTD/gA7mN12ctrOkNN2mixbM8duvw13RjYYdugR8xrqzyOi3uEIsIPJ4ySn/Sw5baexdFzg1MLZ2LNHgmGHHqE5+u5q53TaQvG6yW4/R07babI7znF+7HW0D+ucT08ZWySFMDrwIhIXA+DyY1sZeX4fWfYWTKoXi/Ui2t9fTPBxDQIJsMOYkzsZdXYPFlszCpDdcQ4MO/QFAXYYefZ9Rp9uJLvjPAoq2e2GHfqQTlsMv3CIsad2ktt+BpPq1e0AKWaLpBBG1xXn9d+1XkwnmbZLkGKK86lIVzsEZskadugbgu1gC7JDlt2wQ1/hbwtbkF/Ksnfmj6SULSI6fVVVj6qqOllV1T1+7z2nquojvdCWxxERio7gizy749xhUkxxPoXxs0PgRW6xXryAYYe+otMOXTpB9lbXkEvH4i6+ZhAzjwNPOyzDO7yKz2Wmue2kuaw/J8XuiX6XS9QpLCz0aLmuU10Z2T/0/1umoy0zlRY/pDL+dnBkDf2qitJ53tM8juGT9/4rtjozBnHhbwd3uuUxjym9M19WUb3po8+8F04cxCDB6LZQTeapHnPmIf+/TTr05t9TzTcljdPXKSwsPD7+6JbvIbnHOuOsVStiqXJo0EMKCwuPT7u+6CcKapPf22ZgWn+1aTBSWFh4vLCw8L/NXlfwhGOi59UMuqGwsPB4utu2PujtlLND0jl9gOyK5Xo5XX+irfNikFgGXGnZFMWwQ3IQbIeUG3ElUz39YI4hpWx1iqxVK7xIwaTG7Irlzf3TrO7ZUbFQAdLxCaNbi6pqU3UpfHBBqWnWqhWHkAUph7Irlp/qhzZFzY6KhbodvEDHALLD1daqFTcgdjiVXbH8cD+0KWp2VCxMw08YvaiqNqVCIn4E2+EKa9WK6Yhfas6uWP5+P7QpJpKmtDKAtWrFw8APkBM4nNAjkWZgYnbF8pCLKRKJ5rxH070wuv9m0V79a92rSFpXsAC3/8/BwuiHiqpqe/1/DIW1asXtSNZWDmKHUJ0DN3BFdsXyXs9a0Owwgu6F0YNtkE3XtlsJff7DCqMXVdV2qT/RF1irVkxDSlzkIqIi4eZTSrIrlm/tizbtqFg4jO6F0YNtkI10gvyxEdkGoYTRLxZV1fa5w7JWrRiL6FCMQOwQTivigeyK5X/ts4bFSbI5/Syk3n2kOthPZlcs/3qijqk5lCvpKoyub5ZEHSsOzhAoiK6/7i+qqg0pg5gIrFUrFKSI3ZwIu72QXbH8wUQdU7PDRLoKo+tbb0lMRsMFQtvhAHCyNx2RtWrFH4CQq0I13squWD4rkcfcUbHwMqSUub8wur4NT+SxYqSFrjbQhdGbetkOP0IE1sPRBFyZXbE86av6JpXTB7BWrfgoEK60ph05sSfC/L1bdlQsHEOgEPQMYpMkTBaOECgCvbOoqtYZ7Yd3VCxUIt0k1qoVM7XvDUdxdsXy7lYzRjp+HuJYdGH0GaTQUnY/ThFoh7eLqmqj1myIwg4TEIcSbv7tg9kVy9fE0N7g4+ciD1r/+yEV5wsuIDbQ7bC1qKo26rpQUdghGxl5DAuzy5eyK5Y/E0N7+41kdPpZyI0UqkfxjeyK5f8V7XftqFiYg0gL6hdzCX038eJBQgl6LLO30eUG9Yt+c1FVbdiH446KhZXAs0VVtbtD/V3r7e8mtIj56uyK5Y9G27AdFQt1dSl/x3J1tJ/vIV7EDgoSguht3MAOfHaoB46Ecyg7KhZ+B3ijqKp2Q7gvtFat+BcifRjMv4Cy7IrlUd3EWly9kEA7TKNvEjr0ECf0zahNRRTg/B/I+8LN6eyoWPgocL6oqvZv4b7QWrViNfD5EH/ahXSCUkL5LemcPoC1asWziCixP43ATd2d2B0VCyfjk46bR9dYYqy049MJ1Td/YfSQW1FVbWc7d1QsNCMOx1+AO/jnYGH0fGLXwA3mGLABeAWoLaqqPae1JxOp/WIDbi+qqt0V6sPWqhVfB/4z6O3TwLXZFcsvRTrwjoqF4xChivuQolax6pcGYyOyMHq4zaU73B0VC02IHUKd/1DC6Hp4o6drE84ialX/Al4pqqo9rrVHAfYhYt/3FVXVrgv1YWvVigeBPwW/DRR2N4G7o2LhSOAuxA53Eb6nGi1OZORxhNDC6OE2Z5AdggXpg38OFkafTM87T82I89ft0Km9saNi4euIv/hkUVVtSE0Qa9WKWYgd/VGB0uyK5Vt62LY+I1mdfinwlt9bKnBrdsXyzcH7ar2XmchFfS9SRTJWWoEGfMLoR/A5+ub+mDzS/q9J+C54f2H0acT+MFMRAfhXkBtULwN7EbijqKp2e/AHtNDCUQI1Vz+SXbG8S29Iu5FvxKeZe3OM7QNx7G8TKIyub+f6yQ5mxCn7C6Lrr4XE54jeRezwHqBXK7UDi4qqamuDd9ZCC6cRZ6izPLti+dMh2qsA1+Kzw63E3pN3IqOVXXS1w+n+yIDS/q/L6GqHyYi405Dwnw7LAcQObyC1c9KQ++RTRVW1XarIaqPffQQqn/1PdsXypXEcu99IVqevIEpd+oTuz7Irln9R//uOioXDkeHufYioS7RSiiCLvnYSKMq9N5VS+XZULMxCHKy/CHS08nmhuAQsLKqq7ZIBYq1a8RrSUwfJJLlfDydo4bMF+EZWl8dwTC/i3P3t8F5RVW3ST4TpaOmg0wnUJZ7Sg690AhVFVbUvB//BWrXi14AuRfoOMEOfNNRGbrfhs8PkGI+7l0A77CyqqnXE9R/0A9qD+VoCdYnj6fzpqMDioqraXwX/wVq14ttIhiFIltd12RXLU0pTIiFOX1GUHOBN4Luqqna5YGNBU9F6YOzxtz+a03HuFhXlhIJ63b7nX/MiYi2fAOYTfejjED5hdP2CHnACLDsqFk7Ad9GXIj3tWMISLcB8vcev22HkmffuHnbp2AIVWhWYvu/5184gjuUTyAM3WsHvk/iE0bcC24uqagecXquWKKCLcZcicfNYQlsuoLyoqvZf4LPDsIuHbx15bu+HVHApULrv+dd2Ig/ch4D7iT5Ofh4ZRW9FE0cvqqqNGKpLRbSOYQmBD4JYQ1ufLqqqsiovcAAAIABJREFU/Z3+S2Nj48Sc1lNfGntq55cB7FnDPj3ins/9LvzHk5OECKMrivIDZJLmvXidfmNjoxn4MfAokJPbcpIRpxs57hnlcNa/dYijh/OJ7ubxIA+gl4GXi6pq98XTnlRH6/3dgk8U/cYoPnaBzMwPpH3jPx9Gs0OW9SKXHdvKCXWs075ly/vqof2TiC5tT0Uciy5Sv6s/wjP9jRamK0Li6Xcjzqe7cIudtLSytG//+B40O5hdNiYdrOOUaayzo2HHu+re98Yj4Y5o2IXPDttSeGFU3Gjhx+uQCMHdyMiouxCpF3gw7ftP/w3dN6nenCv2vcbFUVfRMnLy4BRGVxTldmAUsmDhfA+c/grgMf33dGcHng3rcL5ZF83HLyJSjS8jE5YDrufSU3ZULLwccTxfQYbCocnM7DAv/nKOMlL0cRWvm7Rt67HVRKWE2Q68iqaZW1RVmzLCEn3FjoqFI4A7gf+HPABCY05zmT/9hXRlgpZspqpYdm+l7cWoyrY7gHX4Oj5dRHUHOzsqFg5BIgaLkYdAONymheUvm26du0h/Y8ilY7QNmwBK51TX4BJGVxTlCe3965CJuA+qqhpTfFwXRicopU5tvoDnp8HJI53sQZzLS0h6YsrEgvuTHRULdyEP7/AMy8P86S+gDJepEtVhx7Pi++AMuQzgCL5e5PpUigX3JzsqFr6EhMnCk2XB/MgSlMvHA6B6vXie+S+4dDHU3qfRnDzwen+t5k41dlQs/Bnw7xF3MpsxffwzmKZcE26PwSWMrqrqNwEURXkE6enHMyH6ACFyqJW8kSiTr0I9tF/eyMi8hNPxLPDHoqra9+I4zqBmR8XCKwh0+E34CaMrs+ZNN10z7eMMGw5DfOFPJTMLZVoR6jvaPG9aegdu1++APyDhgkEXtukJ2gT47X5vncRPGF2ZeVuhMnXax5RheTDUzw4mE6Ybb8H7hpbgYzY78HieR+ywPpWSEZIBLSOo3O+tcwQJo5vuKp+hXHXdo/52CMHgEkbXUVX1uR60I2zZZOWWW2HocJSiYpT8K345/fobElaCYRCSA3wSSU3dGzyR2tjY+ONwHzTdXILX6UC54WaUyVetmn7jTV/p5bYOZEYivcvdwPvB4chIdlCKbkE5flTsMOWan0+fMeOxcPsadMtQ4AnEDnuKqmq76BY3NjaGWpwYipRZTZ6Uwuj+mK67Hq67Xv/ViBH3gKKq2kYkTTIcYe2gTCzAPLFA/zWpK2smO1qM/bcRdglvh+F5mD/xWf3XuMuRGEBRVW0LsLqb3aKtcZUyvikphdHDkFLiwymKYYfkwLBD8jDgbJGUwuhhSCnx4VTEsENyYNgheRiItogY3lFV9ShBq/u02P1zvdAWXVz4UQIndTtzYXvhmAZdMeyQHBh2SB4GlC2SrgxDY2PjBGTuYCwSJ3sxlZ6iAwXDDsmBYYfkYaDYIumcvoGBgYFB75GUwugGBgYGBr2D4fQNDAwMBhGxLM4atNhrVmUgpYsLiF4YXd/cRBZ/DiWMfiqrbImxujIIe82qNESEu4DohdH1zUv3QtzBwujHs8qWpEwhrb7CXrPKhJz7AqIXRtffMxGdDfyF0ZuyypakhCpVKmDE9Om8iAsibOPp21GRHRGvCCUCfTirbEnUGqyphL1mlYI8XEMJoxcgwuk9VROLBRdSWyiUHQ5llS0ZcKWhdew1q3TBkoIQ2yR6riYWC158HaIutsgqW2IUWIyBQen0tQvaXzf3FnouI9eXHEXKFuv6n9uzypaknEaAvWbVSOTc+2u2ju7XRsXGaUSNTLfDtlR8ENhrVg0lUBy9BOnopAoXEMU1XZN4a1bZkub+bVLyMuCdvr1mVS5yQZfgu6gn9mujEo8L2E6gGPexrLIlYY1rr1m1GHixr24Oe80qC13F0a+M+KHUw4vUrve3w4Fu7PBxYENW2ZI+KX9sr1mlq33pzn0GUmpbifS5FGQPgaLoeyKF6uw1q8qQcF5IveiBxIBz+vaaVWbkYr4XEeaeTmJCM6eIThjdFvRzGj7B52AB6HDC6HkJam89PmH0fbrz0cJZJ7R97sgqW3IhAccLQAvV3IBIWt6DPHgTMYd0ju6F0W0hflcIff6Df/cXRk/EqOMC4nh0YfSd/g8Be82qrdpx5meVLYkoch4Pmh2uxielOBOpo9VTmgkvjB58/v03iHz+9d/9hdFjkeEMRysyOt6E2GGb/0PAXrPqr0h9/TuyypZ00YseSAwIp68NT+9EHEwZIuoSKy1I7+AIgcLoR4CjfRk+sdesyqOr+LP+8yTie4gdQpz/K8hNuVZ7/13g9qyyJdEWlgqL1pufj0+kPp4QgRWpehgsyH0EmdDrszrx9ppVQ+h6/vXXAuJ7iJ1EnI4ujL5be/8YsCCrbMn+nrW6szc/B584ejwjKgdyP4SzQ0tP2xkt9ppV2fg6RMF2uILoJTv9uYAI/rwC1CF2yEX0ou/KKluypccNT1JS1unba1ZNwdd7mUv30mf+OIEdBIpB70+FjBktk+gGAvVwC3r4tXsQhxNz9Ux7zapx+OxwO5KhES1e5KGj67VuRYbhSS+Io2USXUegHcKqbETJKcQOe+Joz0ikw3MvopA2NMaveB+fDbYCu7LKloRUzUkmtFHrVfh0cEuBQno2um8DyrLKlmzseQuTjx47fUVR5iHyie8Bf9YqccaNLgSN1Ng/iyx1PgZgr1l1LSLI/UEiSf75oQJuzPtUaFAV0zaXYt52KGPczrezr3Fof1YB75KZBan59KNzYnomvov+FmJzvgD7gNuyypacgW7tkA98HKgAbormy1XAg6nJq5gaVNjmxrz1dPrId97MvaEDnx1UQE1VW9hrVo3AJ4o+U/s5Vud7BrHDPujWDmOAjwEf0Y7ZraPT7HBK7KBs82DadiFtaMPrQ4pbGDh2GILcA/4PgpExfk0HEuqp19+IZItUosfC6IqizAW+hlysP1JV9UA8DQkWRtffN3uc1ryWo1uGtZ8aqsDNXhQ6TFnYlQzspgzsSgYOUzoOJQO7ko7DlIFNyfB0mCwddlMGHkzZKEosw3A3MvQ7E7SdDfHeuSUzC5Iuf9hvsu42RN5yLtENgd91pWXNbxp3y9cIsoPJ6+7Iazm2aXjb8SwFblMBq5KF1ZTpd/4zsGs/O0zp2JRMb4cpq91uylDdmLNRlFhGY15E+zj4nIeyx9klMwuSTqZRm1+aioRa7kJGQl0U4kJw3GNKm3t4QukXCLKD4vV0DG878caIliaTAgtVMNuUDKymLLGB3/m3K533h9pusrTbTJkezQ6xpFt6kZBHqOu/iz2WzCxIunRibV5jCqLvvVDbopk3awHmH5g0ZychfBN+BdcGmzC6SVVVr6IoY4H/VlX14/E0JFgYHSCn7RQXbG7aTNm0mbJpNWfTbrKgKkmzkNiLSNy9i2RtvKtth5bMLEiaUJG9ZlUOMA8Z/n+YCEplLnPm6aOX33SZavI9J3OsF2hua6fNnBNgB4/Slynz3XKEQBvsAvYvmVmQNKEie82qTOT+uRuxQ364fT2mtJajl900zJPme1ZnOtpwXDrHRVMubWa5J9rM2bhj6tP0Oifoej+8n0wPZS00NwOxQwWRowYXTowufMlmyXskwj6DSxjd7+8ZwPOqqn441kaEE0ZPd7RR5xyLN3mcfLRYEYUqfwe0a8nMgoRnycSKvWbVm0jPMyy2zKGcHF2IahKnbvY4ebs9izZzdl80MZHok5H+TmjnkpkFp/u1VYC9ZtUfkFBlWJxpFo6PvR6vWTrmiupl3yU3p9NH9EUTE4kb6TQG3A/Asf4OIdlrVv0I+GakfdymdPXE2BsUV3rYiGlKCaPH4vSn4hNGr/Z7/0PIcGk4sCqemH5jY+NjwIouf1BVdrWaaDFHMyKOiB6/V5C4pxJi6wt2Aa9p24YlMwus3eyfUOw1q0YhQ3H/p+h5NGF0a+bwMR2WEbe50zKwZw7DY/ZFAQ60uDhl7nEmqRMZHfW3Hfbhs0PdkpkFfZaJAp3htzMEhhhakFHjMWvmsFFWy4jZbnMm9swhuNN8GZbHW+wcNseTnBaAC/DgO+ehbNEXHEVs8DqwdsnMgnN9dNxO7DWr3kUmfnU60ATqgWNt2aMKOiwjyxwZObjSI/qhxwoLCweHMLqqqn+n55q5ocMNioLF5CXEHXkOSXE7hzitC9qr/6a/dyGaoeWqzUf0iz1Da89YbfP/eWzQ+7Hefddr22OAc9XmI5vwOZ93lsws6O244FXAz9CEoJFMmc4b7YAIct8W6oOZ5pChnGagia7nPpRNLkQT7/WzQzpyfkOd9+D3RhObo7pa2/4d8KzafGQrPuezuQ/mafKBP+Ozw27gtJ6/r9lhdqgPpmdkiLsOpB0Jb50l/Pn3f8/aXQ/bzw5mZBI03D0Q/HssMb9JwGe0jVWbj7yD2OA1YGNvzw/Ya1YNR9ZQ/BafHY77Z/FptiiL4utSRhg92pj+Y8AsoBL4vqqqcxPZiC49fVUFRe7h8y4zNq8Ji9mLqipPv+/I+sGSmQWtiTx+vKzafGQI0kuYrm3Xa6/xdIkvAuuQC/6VJTML+jwrIJIdLrlNtHrMWEwqXli5z5H1wyUzC5JiqfuqzUcsSPqkvw2mE9+N2I7kbb8O1CyZWdDjvPlYiWSHDo+J8+5OO1Tud2T9CDjf32ESgFWbj2QgE9fTCbwnJsTxdQ5kQdtryLqGXf3xP/7/9s49Pq6y3PffZ00yuTbT+4WmaVpKgVqBCoRUdhQCaKCgckQM3dw0HLRuj1stCsddPYpRAatu3GrRQ1RkGyLghXsQSIEgxHAJlOFSSmlo0wv0mra5dDIz7/7jXdNMJjOTmWRmMpN5v59PPtNZs2bm6fzWeta73svzG6JFkA5hyJiW/ohJ3zZG/zmwXCl1SEQ6gM8ppV5OVBDBffq5viNMObKX9wuPCd0tI/rN7BbSMQxNQCejLw6xtkYV8BRwJ3Bvqi5ywTo4/F5m9O1kV9GwihUZoQPAurbOmQxPQKcQ3x3u82gdmlLV/RCsgyg/c3q2saN42JhvJukwhcHGUeCcOJX4FlW9jtbhj6lsEB3VQqmiOT3b2FVUGm4iScZoASMkfdsY/UlghVLqDXvb1cBZSqmrExmI2+1e6/B7V887tBkQOl2LQ3fJqBHyUNa1dU7DXuZt/5XH+NZ+4D70Af/3ZHc9uN3utaL8q+cd2oLT18/bk5eEtm4yXYcS9BTW89BTKGNa74EejGxG6/BAsrse3G73WpRafUzPVooHDrHZdTw+a8iM10zXoQDdhXUuWotlMb5VoXPSncCfU9Egcr/66tqZvTtXT/bsY+ukhfTnDJvQkFFapM2K3M0dbY6ZfTs35fmOLAB423UCfj1tMCPnwkbDvhtYyOAFoBo9ED4Su4G70Af8i8m43XW73Y65hzpfLPIePhmgc9KxeHIKYALqALCurbMUnXgCf7F0CR0E7kHr0JqM6blut9sxq6drvctzoApge1EZPc4SmLg6zGBoo6gshrf1A39jsEGUlOm5R1qbVgr8EeD9gjkcyD+6zisjtUibpO9pbapFJzQA9udNe3R34Zy/k6Hmw/Gwrq3Tgb7dPRf4FHo14Ui8CfwB+P+rKsv3JCoWT2vTv6CLtAFwKLekbWdx2T1khw6C7no4F/gE+o5gJN5FJ4Rfr6osT1ilTE9r0yL09MZ8gD5H4evbShY2kD06LEIn/xXo2YEjDRC/jx4cv21VZXncZSwi4Wltmoo+12YADFi5W7a4jr8HY4w+Nuwf9g2GzuJ5zllV++FxCmlcWdfWeQJ6DvflRFnAY9OHnn3w01WV5e+M5Xs9rU15QAdDuzy6gHJnVW3GtGQSxbq2zjJ0uYkrGLkbyItutPx4VWX5q2P5Xk9rk6AHMM8J2twHzHZW1abFJIZUYo/NfBatQywNovuAW1ZVlj871u/2tDY1AJ8P2Xycs6p2VJUH0oF0Sfq3Y0/bCuF4Z1XtW6mOJ11Y19Zpofs9L0fX/Ihm9OJHdzncsqqyfFSlYT2tTd8Gbgzz0nnOqtrHR/OZEwG75bkMnXRWEmVFs80jwC3AU6PpgvO0Nl0J3BHmpWucVbUN8X7eRCLOBtE/0Do8OJouOE9r09noGXWhfN9ZVfudeD8vXRj3pO9pbToLWB/h5XpnVe23UxhO2rKurTMfXUHxCvS84WgzUB5HH+yPx5p0PK1Nx6MXj4Wry3Kns6r2yvginpisa+vMQXc7XIHuiotW2O55tA5/jXUNhqe1aQb6rjdcgbCnnVW1CZ0unanE2SB6E/gxeuZPTOUgPK1N+ejz4bgwL3cCxzqratOm1Eo8jGvSt29j24HTIuyyHX0rlRZFnLob1rjQrYtkGaNvc9XVj1gvfl1b53TgSuBrRJ8D/TI66dwz0iCXp7XpXnQdknD0AgudVbXvjRRbKuhuWFNEko3RXXX1I3aj2Os0PgtcR/Syym+j53r/YaRZP57Wpp8AX4+yywedVbXukWJLBd0Na/LR50MyjdH3u+rqR1pIlo++AK8mci4BXbr6P9HjL1FXYXtam74C3BpllwucVbWPRPuMdGW8k/6QQcMIpOxWqrthTQnRDdIT4Wg1ErsIb8S9GXgv+ARY19aZC9QC32ToUvJQOoEfAL8PTf7r2jo/UDfQ1otOTNGKHP3BWVV7Vdz/m1FgJ/X5RNYhFT66e4hgiA5sd9XVH23l2a3Oi4Dr0WV8I/E+Ovn/IjT5r2vrXHL5wPPb8vB1Eb0c81PA2c6q2qSfuHZSL2P477/Afpyd7BjQ5SnCGqKjG0lHj2e7G+4s9PlQE+UzDwH/hR5/GWKqvq6t87h5/v1dH/NtdKNn2EXiLeAkZ1Vt2hSSi5XxTvoNaMerHvQPHDwR+c/oK/M+dOJP6HSs7oY1cxhqBL0MbVmYzvSiD/a3GDRGf6HxA9f0oQ/yb6IP+ki8CXwL+NuqynJlL5p56xPeV5tnqJ5qdOuqFN0qC/Ao+iQ7jO5uO5TI/1B3w5rpDDVHP5X0X9LuQTtKbWLQGL3dVVffva6t80y0Dp+I8v4udFmTP6yqLPfZF+9Xq7yb2xar3YHzYQZDuyyeBV6xX7vVWVWb0FkjdoPnNAZ1OJ3RraRNJV707Km3GTRGb3PV1e9Z19Z5EvANtN9ApJk/+9CNoV+tqizvty8aTyzx7dy13P/u2ejfuoShjYwNaC16gN+ny11XPIx7n34AT2tTaOGj5c6q2rZEfHZ3w5pJDDdHT/cDOlZ86GTwHND2wuzlvW9NXbISXQgv0grgttN3/ONPL8ypnKfE8XV0camlqyrLD3lamx5ET5MLUOusqv1TIgLtblhTgL64BpujH5uIz04DFHrV6HNA2xvTlr738qyKi5VYVxDZ1e31pe+/dOemqScOHMkpWIue//+BVZXlXZ7Wpl8CXwra93pnVe0tiQi0u2GNEz01Nfh8OIGJY47+NrYx/bslC959bu5ZH/NbjmuI7GWw9dj9G28/kDfl3b2FM+9An1Onr6os7/C0Nn0TXUs/wK+cVbX/ltzwk0s6FeIO9WgtQxdDipvuhjXF6MG2C9C320tIzAHtQbcskmWMPo/4ClZh7/8h++/fTtv1HKftem63x8pdv9W1sHiLa9EpewpnOUOWjlfO6tlRubzrKZ4rPQslVhm6738V4XUYFXb3wFnoi8iZ6ESTiGPOh10FkeQYo5cRn/0m9ud/wP675sS9bk7c6+72iuPZrpLy3HcmH3fK+4VzCv3WEHmXzOh970ezenbyVNnH8DpyS4DfrGvrXFGXWB1y0L//hejBz2WMzlc2FIW+a0mmMfpoTNwX2X9XzD+4hfkHt/T6sDp2Fpf63pmy+ORdRXNdXscQecum9b5/4/F73bSUn09/TqED+N26ts6KROqQLqRT0n8LvSIvQFw/bnfDmnIGvVrPJvwslJEIJPXOCH+7gvtyE013w5pc9P87nAH0segTIhZmOP0D1Yv2b2TR/o14JcezY9K83O3F82RncSlOv4cSTzclnm6sbX6eLT0bv+X44rq2znvqtA7BxKvDbHSSvxB94R1NXexAUu+M8LcjuC830XQ3rHGgByfDaXAssY/tuHKU76Pl3Zsp796MTyzvrqK51vZJ86ydxfPwOPKY2bsTh/Jz1tZmniz7OF6H83zgKsauwxS098WF9mMsK75DCST1zgh/Xa66+qT56HY3rLHQ4wbhdFjIyFNnAxQ68J9ZengrpYe34kd87xfNZkdxmWPHpFIOOicz9/BWCrx9nLPlIVrKL6Avt+hk4P+i10sEk/FJP526d76AXtIc4A5nVe3Vkfa3T8xKBhN9tIHMcBxBL0QKNkffnMykPha6G9YIehrfInSrPuD9uSjez+rLKaDAOziO2DWpjGdKz8FvObasHHjhqwV47wva/UlnVe3ZI8S1jEEdYlk8E4wP3U8abMq9MZlJfazYCXUhunhbQIe47yZ7cwop9A5aKuwpmMH6+TUMOPIOnOPdeFG52h88yWGLs6o24sCircPx6AHlC9Et+3juGgPdU8HngzuZSX2s2N22C9BF3AJ+uCcT591yqA6HnCU8UX4BvbnF3tn+g8tX+F5vZ1DbPmBKJg7gBkinpH8GQd05PnEc3Ow64UZEjpoPdzesyUN32VxsP8ZjdvwGQw/oDel8QMdKd8OaGQw1465A3x7HxY7iUp6edx4lcuRnn/Zu+FpguwLfZtcJ/+G3chqDdHCgV4t+Gp1ghpVEjcI76N8/kOQ7XHX1aTEldyzY03kr0DoEtIi7db03fzot5efjtXL/+/Pe9k8TtA5gW/GCH/TlFv06SAcBPow2Rr+Q+MZHuhh6PrzgqqtP6CD9eGDP/DqVQR2WE/sdwVEO507i8QUr6M0tfurzA23HSNB8/V2FcxsP5k15iYlsjB71A0QstGduCfCCUircSsIROfjsfZPyfH3dEtRa2lJyHAOWs6dw77v3T93cdkj0wR3rrfVm4AH06sh/uurqU+qONF7YCXkpOul8BF23JKaL47ZJ83lmXrXnSu+Lvhz8QcmmnL6cop78Azv+PP2t1r2iZ0TEOl1vO/Ag8DDwrKuuPmF1gtIZu2tiMVqHgDF6TBfH3QUzWT//fD6j3PsK1ZGjM8p2Fc7lYN6UHueh3U0zX39ip+gSEQtiDGkPWoOHgGdcdfU74vn/ZCr2hbEcrUPAGD2mi+NBp4vHF6xghXqrfTL9FYHte/NnsLdgFkzkgmsisgr4oFLqS/bzemC+UuoKEbkY+CR6+tNDSqknRhOI2+1eO+/g5tUFPt3o84nFHk8OhTs2knNkxPVKoLsJnkEn+geBt0Za1JEN2BeB04Dz/ciFgjo1Wh/EFtexTJpzDPP82h/Fj7DHX0De9o04+2K+brajNXgAeMXocDT5fBC4QMH5CvmIReSfZVfRMfSXnsiJSq+H8yPspxDH9rfJ64nZavlVtA4Pohs+GZOYkkl3w5rj0D0F5/uxzrPwR1yfsj9vCtvnVwyczvZc0H1gB/KmsbtwTvBuE6+0sogUoo2NP4i+Wn4f+LBSqk9EbgD2K6V+LSL3jsUYfXL/3qI8Xz+HnCX05hSR3/0eMzY+Fe2t+9GtlweBR1119Wnh5JSurGvrLLn4zT8+UuDri1rIbvesEyiYOp2B/En05E7C0X+IORuiLj7sAf6OfWflqqsfd+PxdGZdW2f+RZvu/u9JnoORVkADsG9qOc6Zx+DNL6HHOQl8Xo556T5ERRx28qBrxTwIPOiqq383waFPKNa1dVof3/y3W6f17/lytP26i2eRM7ccX4GLw7kl+Kxh818yykQlptk7SqleEbkLvZDhfOA8pVSgH7YLfbBBOPfO2LgUKAqqUw1Av2sWXmchOZ4h/uF70CVU70F3F6TtgF+6sfK1233oQeBQvECX11nkPzJp+sI8S+jOnYzfqYcGvAUujhRPI+/wkBbmIeBe4E/Ak666+owd2Eo1K1+7/Qi6/z8UP7DD6yz0eoqnl+fk5XPIMQlvnj00kOOgd2opRXuHVHA+gq4q2QQ85qqrP5zc6CcOqyrL/d2v7TklzEsKvTJ+m6fAlW8Vu046LIV48iKu3SxC57CMsEuMZ8pmwDz4k0qpzUHb/wL8l4hUAU+PMo4IxugWPTMWULLjDfqmzOVI8bQ/T9n68mWuuvpkG1dPVCrRM5ZeJ8gcHb2c3efWJtDfDPfGnhkLcR7eR//k2XiKpt3v2u6+zFVX3xtuX8OIHI+ux76eoebona66eu9IOhTt3Ur/pBl4iqc1l+x8szZbxqsSTXfDmsno1ed3MVSHzYFJHrYWJ8Xwcem+ivwo8ST976Cdm4a8RynVS/iyyPEQugDiKIdnL+bQ7ONROU6AZ8vPu8Qk/FHiqqt/Aog25hJRh95p8+mbMhd/bj7AU2U1tSbhjxJXXf2bRJ/aGlGHIyWz2HHKRfjyigAem3fB5SbhjxJXXf0B9EyfaETUIoS0KEYYC9EKbB1FRFajV8ZdCvx7EuK4G90vNgx/Tl4g4ffY+xmSR0QdlCMnkPCNDsknog6IBBK+0SE1RNZikIzSYsSkLyLVwOeAq5RSTwIlIhKuH2zU2HNdbxtht9syZaAkUzE6pAdGh/RhImoRtXtHRMqA24EVSqnAwo1bga8CVyc4luvtxy8ydOn+0bmwCf4+Q3iMDumB0SF9mFBapM2K3ABut7sU3Y00iww2H850jA7pgdEhfZgoWqRd0jcYDAZD8ohpINdgMBgMEwOT9A0GgyGLSKd6+hlBe021hS4uF8kYPfQvFmP0normlrQs6ZyutNdUC/HpEIsx+uGK5hZTnyYObB2KGW6MHsmsPiZj9IrmFrPSPkmYPv0Q7KQ+i8im3PNJjOtQKD1o45BwJtCdFc0tGV9+OB7sZDKD6Eb1BcPfOWb60KVFwumwpaK5JavKHNg6TCG6DrGa+8TDEWAH4Q3RN1c0t5hFaaMkq5N+e031XIaXzlyIAAATuElEQVQao5eTvKQ+VrYzeOAHjNHbK5pbMr4GentN9QyGGqMvJHlJfay8h9bhHQaN0dsqmlv2jWtUCaC9pnoyg+bop6NLEJeTnKQ+VvYxeBE4aoxe0dxiiv2NQNYk/faaaheDB3TgLx7zj3REAW5sE2i0Cc1bsXQVtddUl1c0t3QmN7yw31uILvoW0OAMdGLJdN5iqA7uWLqK2muqy4F3K5pbUnoittdU56FrygSbox+fyhiSRCf69w9o8UpFc8uIZkntNdWlwHsVzS0TvszLhE367TXVZeiKoMvRB/QJJMYcHQb7H+M1Rp8U4d+FCYoLdLnpNgYP/LZwdwPtNdX/BP5S0dxycwK/exjtNdUz0TqcidZhKfGbv0eil/iM0SP9/oF/j8bPNxKH0XdjAR2eDXc30F5TfTe6vstXkjmuY7fiP4Y2dKlAWz2Oxkc6HEcYnTF6JD2KSdy52o++CwjWYWfoTu011T9G39nUxnKRyGQmTNJvr6l2oG9JL0T7hMZSGS8S+4lsBv1uovsT7dinoF2QwhlAz2P0J4EXbS7zMNpF7DVgDrq7COA7Fc0t3x918CHYfcAnMeiZewajj/0wsIXIWuxPZAvZHs9xoe88gn//wL/nM/oLlkJfBAI6vAjkokuFF6NXvn8hkYm/vaZ6MYM6VDH6iRt9RNagE9idBB2K0Sbk4UzRF6B/u9HyClqDR9AXAi/aL+Q4tLPYJRXNLf1j+Py0JqOTfntNdQlwHvqgXoEe+IuHfuAlBn1CX0cn9QOJjHOs2Lfi89EHfbAx+omj+Lht6BO1KmjbD4Bvj/bEba+pzgeqGUww8+L8CC/6RAz45rrRyT6hSX2stNdU56ATUSD5BIzRTyL+6c+7gZfRx2+AO4C60c4gaq+pzkWbHAV0WBznR/jRjYLA+fAKWoeEJvWxYjeS5jJ4QQ4Yoy8j/otBN7pRtCJo29+BiyuaWyZkJdm0S/q2i9al6Br77xNiPtxeUz0fbc94IXAWsYus0Ek9cED/E93vmrF9eO011VPQLelK9EF/BrqlOhpuAW4InNwx6DCTQR3OJb4uqrcZTPDtwMuZ3LJqr6kuRt9lBnRYDkwf5cc1AlcGEn8MOkxGJ6yL0D688ei/laHnw0uZPDvJbnwEGkQBHeaO8uPWAxcGJ/6RtMgUEmGMXoU2aM4BliilolrxRcLtdjuAmwlT1Mh/4MDv+n/43Q34/Zejzb5jwQ88y+At3AsTYaZLNOzb4hPQB3vAGD2e1t73Ctf+/PtE0EH19tze97017fh8l6P7h2Pt6ngR3a3xD+D5iTDTJRp2F9dCBnWoIr7uxt/lfvqz1+YuP/MmwungOfKbvm/f8DQ+37+ik32ss81exzZGR8/8mvAzXewB2oAO/4K+OMfa3fgo8MnCtT/3EuGcIBuN0YP2+RQwSyn169EE4na71wKrg7f5OrfgfXo9vtfd4I1prUY30Iz2CH2korklZgfpiUp7TfVC9EDqBcDZjDAN0nHG8qfzPnPZkAurf9dOBp5swffqy3AkJlfEPuAxtA4PVTS37BhV8BOI9prqY9At8QvQXTol0fa3TljSkVf3hWUig/nJv38f3vVP4H35JegdqcQ7AAPAkwzqsDn67hOf9prqaegGywVoPUa6I/tbwY/WbpFc59ei7JNdxuhB+9wNXKOUOhhvEAFjdEJmT3hfeh5P450jvX0T2pD7QeCZTO6uSTbtNdUFwP3o7piI5F78GXLPHOzy923ZzJFf3jrSx3cxqMP6bFtMFg923/tvGKE8ec7Z55J7wUUEEr9/3z76f/Q9iH7O7kG35h8AHqtobon7fMwW7Dvj7wFrou3nOOVDXufKK3PEijhsk3XG6IG6+92jSfg2lxJmupzjgydD/r3QPyx/tKFNuR+oaG55a5TfmY0MEN4YXWNZAzJteq7vtQ04jj8Ba7oeF7fKFyIzZqJ2D3OOc6ON0R8ANqTTYF86U9HcMtBeUx3Zpk/EJ1OnOvxbO/Fv24qjbD4A1tSpWIsW49+0MfQd76B1uB/dfZYxXQ3jSUVzi7+9pjqaIZSP/PyDqvvAFP+br+NYsjTSfllnjA7aI/d3Y4gjrDG65DrJWXYq3ueeQaZOwyqb/w/fyy99rqK5ZdMYviubORN9gL7CoAn0G+iVjdsKbvrpN8Syhhlyiwg5p5/BwMMPwKQSHPPKnve97r4WvfDFJPo4aa+pXoAeewk2434DPcC9teCmn35dHI6wxug5FZV4Nm2EggKs0rKX/Zs2fhk999zoECftNdVF6C7PTQzVYRN6kHtXYf0tPySCSX0I2WOMDqCU+n9jjCOi+XDOR8/G8aFTdWtT5C9Lb1prEv7oeR4oitQSdLvdkXU4vRJrbinWosWIw9G0dOnSl5MW5cRnJ1qHsF2R0XRwLD0J51V1OE5cguTk3rl06dJ/JC3KiY8HmB5t5lg0LULIGGP0WPv0V6NbiT8HvqeU+mgigwju01cKDqocXNawgduM6jfLRIbrkIvLGpaXjA5JJnSMq9tvdBgvgrXo9udSIgPI8Lk/GaVFWhmjKwXb/QXs9ueH2y2jzIczkWAT6N3+PLb7wk70MTokmWAd9vtzeddXiH9428zokAICWhz257DVV4gnfMrMKC2iJv0gY/TPhDFGTzTX7/AXrN/nz6NPOYInKPQAPyHDzIczmOvf9+Xdt8tfgBeLAXW0WWN0SC3XH/Dn/rHLVwgI/erokgijQ4p5baDkti2+Io9C6FNDlqZkpBZR+/SVUlvRi0yCt/0e+H2iA9kwMLkMvYAChbBfOe+aKp4XyFDz4Uxlw8DkEmwdAPb48x6e4+h/AqNDStkwMNkBnBx4vsef90yZ1ftXjA4ppbGjS8D6JXZxuj3+vPbJ1sCTZLAxelo4Z+kflnUELRzq8hUe+chJizNiCtQE4yaCZiLs9ucXnHfyIqND6rkOXZEUgAPKOefAgPNnK5eVmlk6qWUlejEXAL0q58QNA5PPXrmsNGPr8qSLR+5lwMdDtl3S2NGVyFK3hhFo7OiqAq4N2Xx2Y0fX/PGIJ1tp7Og6Dj1bLphj0ZMpDCmisaNrGvCfIZsnARePQzgJY9yTfoQfFnRp1f+V4nCylsaOrjz0KtFwXBFhuyHB2He9vyZ8PZ2rUhxOtrOW8GUaMlqHcU/6QD2RSyJfncI4sp2voRcMheOqxo6udDhWsoFa9IKhcFza2NGVSMMdQwQaO7rOJHL+Obexoyve8uFpw7ieyI0dXTPR00EjUd3Y0XVOquLJVuxWfrQZWYvI8NZNJmC38qPNBCkhttWhhrET7XcW4MZUBZJoxrv1toroZWF9wA8bO7rSYsB5AnMZ0ZeRK+DbjR1d6WiQPZE4i6AZO2FQwJczuZWZCTR2dC1Cl6yOxmcaO7oi109KY8Y7mT6L/nF70K5BwQfzacBLZrZCStiENkQ5jJ69c3rQa58G/mp0SAkHgE+hz4evMDTxfA241eiQEhzo8cQedCG1a4Je+xlw3cplpUnzM04245r0Vy4rfSzw78aOri6GJv1Z5gBPDSuXlR6t39LY0bWZoUnf6JAiVi4r7QA6ABo7us5laNKfbXRIDSuXlW5El5IPtPqDmZPJCR/Gv3snmNBFDmXjEoXB6JAeGB3SgwmnQzol/VdCni8YlygMRof0wOiQHgzTwR5wz1jSKemHluqtCruXIdkM0yHTD/IMZUPI81PNYsVxYRuwP+j5HEJK02QaY076IlImIveLyG9F5IYxfFRIslGVHa++9i27tKkhdWwEgo1wjyl3HP6R0SG1rFxW2o12xAqQO8fq+6nRIbXY4yhDctN0q/8Xbrd7daZqEVPSF5FVIvKroOf1IhIwr10MPKSU+jywZLSBLHQc3mXhPxz8rX3K8QPgDbfbvdbtdjsivtmQME7KPeB34htiKD+grOsxOqQUt9vtKBSvJ3ibF7kWo8M4oJ4PfjagrBr0at2M1CLWlv4dwEUiMllELgRWMFijpQOoFZEWYP1oAym2vDdPloFiQVEiA8xz9FAkXtBGEquBm0f72Ya4uHmK5TkGFMUywFxHb8DAw+iQWm6eZh05AaBQvMyx+phmHQGjQ8qZ5+idD5CPl1lWH7MdR422MlKLmJyzAETkFvR/MmCMvtnefh3QrpR6WkTuVUpdEm8QAXeaASVFFgpH+B7kjHKnyUQCOniVFAHkSNhjw+iQZAI6+BRFfoRco8O44Xa75ynFGx6sojyJOFMzo7SIp0//t8CXgK+GGKM3A18RkduAzlHGcSlQlCsREz4MOs4bkselQFGOqEgJH4wOqeBSoMghREr4YHRIFZeKEC3hQ4ZpMWZjdKWUG4i7dR/CzBj3yxjH+QzF6JAeGB3ShwmnRawDuauBfPTV7N+TEMeEc5zPUIwO6YHRIX2YcFqkhTE6cDe6XywaPfZ+huRhdEgPjA7pw4TTIi2M0QOO8yPsllGO85mI0SE9MDqkDxNRi7QxRmewjvgX0QMjAXrQP3pGOc5nMEaH9MDokD5MKC1inrKZKtxudyl67GAWGew4n+kYHdIDo0P6MFG0SLukbzAYDIbkkU4F1wwGg8GQZEzSNxgMhizCJH2DwWDIIkzSNxgMhizCJH2DwWDIIsbVGN1gyBTyT/+iEsuBlevEshyI5cDKybUfnYhDP1qB5yHbxXLgyLEQEf1oCQ6H/Zgj4bc7LMQCyxIsh4VlCTk5Fg5LcNqPeUefO/SjI3R7+Mdcy8IhkOuwsETIdQiWyNBtltj7ytF9HEP2FUTAYYGF4LBAAIclWPajCDhEsAQcgv5/Clj2e8XvQ5Qf/D5QfsTvBeUHnzfsdvF7wa+369e94PehvAP6cWDg6HPl94F3AOXzDd3n6L4e8PtRXg/K78fv8R599Pt8+Ae8KJ8fn/04/PmAfn70fT78Pj/Kr/B5fCiffvSHPB/y+oAPv0/Z71X4vH58SuHxK3wK+1Hh8RN2u5/gfQZfu011RixdaVr6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhEn6BoPBkEWYpG8wGAxZhCilxjsGgyErEJFrlVK/MXEMYmJJfRympW8wpI5rxzsAm3SJA0ws4UhqHCbpGwwGQxZhkr7BYDBkESbpGwypY9z7i23SJQ4wsYQjqXGYgVyDwWDIIkxL32AwGLIIk/QNhiQhIlNF5DER2WQ/Tomw3y0i8pqIvCEiPxcRGY847H1LRGS7iPwiwTHUiMhGEXlbRG4I83qeiPzJfv2fIlKeyO+PNY6g/S4RESUipyUjjlhiEZEyEVkvIh0iskFELkjE95qkbzAkjxuAJ5RSxwFP2M+HICIfBs4ETgKWAqcDH011HEF8H3gqkV8uIg7gl8D5wBLgMhFZErJbHbBfKbUI+BlwcyJjiCMORGQS8BXgn4mOIc5Y1gB3K6WWAbXArxLx3SbpGwzJ45PAHfa/7wA+FWYfBeQDTiAPyAXeG4c4EJFTgVnA3xP8/RXA20qpd5RSHqDJjilSjPcC5yT6jifGOEBf+G4B+hP8/fHGooAS+98uYEcivtgkfYMhecxSSu0EsB9nhu6glHoOWA/stP8eVUq9keo4RMQCfgJ8I8HfDTAX2Bb0vMveFnYfpZQX6AampToOEVkGzFNKPZjg7447FuC7wOUi0gU8DPyfRHxxTiI+xGDIVkTkcWB2mJf+I8b3LwJOBErtTY+JyEeUUk+nMg7gS8DDSqltiW9gE+4DQ6cNxrJPUuOwL3w/A65O8PfGHYvNZcDvlVI/EZHlwJ0islQp5R/LF5ukbzCMAaXUuZFeE5H3RGSOUmqniMwB3g+z28VAm1LqsP2eR4BKIK6kn4A4lgNVIvIloBhwishhpVS0/v9Y6QLmBT0vZXhXRWCfLhHJQXdn7EvAd8cTxyT0uMqT9oVvNnC/iHxCKfVCimMBPc5RA/qOUETygemE1y9mTPeOwZA87geusv99FXBfmH22Ah8VkRwRyUUP4ia6e2fEOJRS/6qUKlNKlQPXAX9IUMIHeB44TkQWiIgTPSh5f5QYLwFaVOIXEUWNQynVrZSarpQqt3+HNiAZCX/EWGy2AucAiMiJ6LGf3WP9YpP0DYbkcRNwnohsAs6znyMip4nI7fY+9wKbgVeBV4BXlFIPjEMcScPuo/8y8Cj6gna3Uuo1EblRRD5h79YATBORt4GvE32GUTLjSAkxxrIa+N8i8gpwF3B1Ii6EZkWuwWAwZBGmpW8wGAxZhEn6BoPBkEWYpG8wGJKGXcrgzqDnOSKyW0QeDNp2voi8YJeheFNE1trbvysi141H3BMZk/QNBkMy6QGWikiB/fw8YHvgRRFZCvwCuFwpdSJ6yuQ7KY8yizBJ32AwJJtHgBX2vy9Dz0QJ8E3gB0qpN0HPalFKJaTGjCE8JukbDIZk0wTU2ouLTmJoIbOlwIvjElWWYpK+wWBIKkqpDUA5upX/8PhGYzBJ32AwpIL7gbUM7doBeA04NfXhZC8m6RsMhlTwW+BGpdSrIdt/DHxLRBaDLnomIl9PeXRZhCm4ZjAYko5Sqgu4Ncz2DSLyVeAuESlEV5p8KNXxZROmDIPBYDBkEaZ7x2AwGLIIk/QNBoMhizBJ32AwGLIIk/QNBoMhizBJ32AwGLIIk/QNBoMhizBJ32AwGLIIk/QNBoMhi/gfA2HHEMixavsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIZCAYAAABK2C3FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd3gc1dW433FfN7ANxphiCIQ64AAiRtjGxk51glAgXxJCekJMmhKRL+1LJQVCCko2pDgQSkJzfoQoG6IUkLCQjTAo4HLBprjIuGBwl62RZEnz++PMsqvV7mq7dkfnfZ55pN2dmb3SnHvPveeeYrmui6IoiqIo/mLYYDdAURRFUZTcowpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh5SMgrcs63zLssrSvGaiZVmPW5a1zLKsJy3LWpiv9imFIUM5OM+yrBWWZT1mWVaDZVlvyFf7lPyTiQx41/3bsqzXLMv6Vj7apRQPmcqI3ygZBQ+8D5ic5jUHgUtc150PfAD4ca4bpRScTORgB/AO13UvAX4GXJ/zVimFJBMZAPgk8JUct0UpTjKVEV9REgresqy3AtcC37YsqybV61zX7XVdt9t7ORFYk4/2KYUhCzl4xXXdNu9lF9Cd7HyleMlUBgBc192an1YpxUQ2MuI3Rgx2A1LBdd2HLcva5Lru3HSvtSzrOGApcBrwiZw3TikY2cgBgGVZ44AfAR/PbcuUQpGtDCj+R2UkQkkoeMuypgKvxLw3HFgR5/R/uK77g/AL13W3AXMsyzoJWAY8lLeGKnklGzmwLGskMtG70XXd5/LaUCVvZCMDytAgnowMVUpCwQPnAib6Ddd1e4CLkl1kWdZo13U7vZcHgLZk5ytFT6ZyMAy4G6h1Xbc2f81TCkBGMqAMKfrJyFDFKoVysZZlnQz8Hdjquu470rjuAqAG6AFGAt91Xbc+P61U8k0WcvBe4E6gxXtrreu6X8h9C5V8k6kMeNfeClwMjAaM67qVeWiiMshkIyN+oyQUvKIoiqIo6VESXvSKoiiKoqSHKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXyIKnhFURRF8SGq4BVFURTFh6iCVxRFURQfogpeURRFUXzIiMFugJKY5gXzLOBIYLp3TAPGIM9tpPcz9oj3/mFgj3fsjvo9fOwrb2jsKdTfpaRH84J5E4jIwHRgLKk99+jPeuj/3KOPveUNjYcL9kcpadG8YN5Y4FgiMjCBgZ997PsAe4n//HcjMtBZmL9IKQSW67qD3YYhSZxBO9ExpkBN2kffDr8TeB5YD6wDXipvaOwqUFuGBHEG7UTH+AI1qY2+MvAa8ALy/NcDz5c3NDoFasuQoHnBvNHIxH0gGTiyQE06RH/F/xIiA+uA9eUNjW0FaouSJarg80zzgnkjgdOBmTHHMYPZrgzoBjYQ6ejh43nt8MlpXjBvGHAKfZ//m4ATBrNdGeACm+kvA+vLGxr3DGK7ih7PGncCfZ//TEQurEFsWiZso78MrANeLW9oVIVSRKiCzyHNC+ZNAs4l0nlnAmcDowezXQVgK9LBDdAENA404DcvmPcF4H+RleGXyhsa1+W9lQWgecG88cA59FXm5wLjBrNdBeBVRAaeBVYAy8obGrcnu6B5wbz3AD9GzMZfKW9obMp7KwuAtyo/m77K/Fxg0mC2qwDsRfrzc0Az8CiwKZnSb14wbxawBNlO+E55Q+NfCtHQoYIq+AxpXjAvAMwGLiGi0E/Mw1c5yIx5O7ADOIispg97P2N/j/d6NDAZmOL9jD1ybf5zgTVIB18GPFbe0Lg3/GHzgnknAq1R5+8DrihvaHw0x+3IK5515kJgPnAeIgOnkvsVWRfy/MMysI/kzzuebIxCFEy85z/Z+yzXTrcvIM//UWTStyP8gWfVOAgEvLcOA58ob2i8O8dtyCve33EusAA4H5GBM4HhOf6qHuTZh+VgL5Fnm+pYMBzp69HPPXZMyHW7XyYiA8vKGxo3RX/YvGDeGmRCHOZbwA1qCcgNquBTpHnBvOHIIP4W75hDdivzw0QUd7LjQL6F3fvbojv+FGAGMlCFj+Oy+AoXWEWko28BnqGvIjwMfKq8ofGPWXxPXvHMrGcSkYH5iLNTpsQO2omOPQWQgWHARPoO+CcAZxCRgZPIbvKyHpGBZcgK7zn6Wza+A/ywmAf45gXzTiIiAwuBo7K4nYv4uwwkA6+VNzT2ZvE9A+LJ9wT6Kvzp9JWBU8luEtBKRAaWAXXefaO5HbhWnT6zp+QVvDFmOPBGZAUyHFndvGjbdlbeoJ6wv4FIR16ACHwmvIIouNVRxwvlDY3d2bSxkDQvmDeRvh09/PsppN/hXcSkG88P4Xrg+nQGeGOM5bVjCrJSPQBssG37YJrt6kfzgnnHIYN4WA6OzfBWe+j7/FcDz5WS17LnFHgafSd+Z3jvjcrgljuI//+8C/h0uk6dxpgTEIe1AOIw2Grbdta+Ac0L5k0BLiUiA6dkeKuDiGUr/PxXAaa8ofFQtm0sFM0L5o1ClHysDJyBRHeky07gaPpbj+qB95Y3NO5L52bGmGOA45GJ4yFgm23br2TQLl9QsgreGPMG4JPAYsTTPKwsh3nH3cDvbNteleo9mxfMOxpR5OGOfFKazepB9iHDnXc1sLq8ofHVNO9TMnj7jacCZwEXIwPhzCxv+yfgmoGUn9eZPwJ8AVHu4Rm/hSicEPBroMm27ZQE3ZvIzCeyOjsrzba7iNdx7IRuazGvSrOhecG8EcDJyP9qFvL/u5DswnAfRbZtkg7wxpgjgPcDX0Qm5GGZsRALWyPwK+Bftm2nNKGO2n4LjwPnk77lopW+z38Vsh+d11X4YOFZgE5AFH542+pisosCehZ4V3lDY2uyk4wxY4DLERk4H5GBcF8bg/z/fwn81bbtIRUFUnIK3hgzDvgjsIhIJ45HN7J3+SxwuW3bO2JP8FbpZwHvRQTkvDSbswV4GHEqWkWJrcjyhbfimYso+/nIHmW6rAcuKW9ofC32A2PMCOCnwGeAXiL7uLH0Au1IuNe7bNuO68jnmVyvBN4DXER6FonXgEeAx4isyLK2HJQ6nrPhbOT5XwqUkb6l5xVgYXlD43OxH3hWmyrgRuQ5J3NibEPGgits234sQXuPASqBK4B5pLf9doCIv8kzwJpon5Ohijf5D0/4LgXKSX9bsw24sryh8eF4Hxpj3oPoA5fk22VtyMLvk7ZtL02zDSVLzhS8ZVk/QhzOdgIfcV23PSc3jsIYMwVRpjNIfWZ4GOmAs23bft5T6uchA/qVSAhbquwFGpAB/RFgg19XZbmkecG8oxDZmA/8D2JGTYUDwKToVY8xZjTwL2SVkKpnei/irLgoPMA3L5h3GhEZuCDF+4BMGBqJyIDx66osl3h5H+YgMnAlqZu5u4ETox30POV+G7JyTyc6wQGusW37Hq9NxyEK/UpkQpqqk+Fh4HEiMtBSStttg0XzgnljEIV/KVCJxbm4KVlGXGBebJSFMeZriM9GOlsD7cBPbNu+Po1rSpacKHjLsmzgW67rfsCyrGuBEa7r3pL1jaPwzDD/RczB6e739bqdnXsOXf+de92DBy9DzImp0AksJ9KRn9GMb5mz6ZvXvvfIU6f/v1ETx3Fo2y5eW7ORA5teiRjT4lNR3tD4d3h9YK9DVliJVu0JcXt6DrX/9Kbf9W7f9nbATvGyHuBJIjLwhCb8yZwt3/v8WWOnTVo7duqRw9pf3ceuNZvY9+I23J6kc6Qbyxsa/y/8whhTA1xDBqGHrus6HXf84bfdq54pR1aUqbKKiAwsL6V982LDqa0Zc6B1594JJ04d07m3jV1rN7Nn3RZ6u5LOkR4qb2i8LPzCGLMYuJnM9v3bgf+zbfuXGVxbUuQqVe1c4J/e7/8EbgJyquCBDyMr90yceYY5t9822T14sGqA81zgaSIdeYVm7sodk8844ZOjJkh/nHDiVCacOJWuA+3sMpvY/WwrPU4/vekiyjXMPGQVmLZyB+isfXBc7/ZtX07h1HVEZKCxvKFxfybfp/Rn0unHf2REYPQwgHHTJjNu2mSOm2uz+9lWdq/dTFdbXMPfI+FfjDEzgGvJcG/3cNNjge5Vz1yXwqmtyPbbI8CjfvajGQTeM3HGMWMAxkyeyPHzzuXY8rPY+/zL7FqziY7dB+Jdsyz8izFmLPAzMlPueNfdYIy5w7btuF/mF1JS8JZlnYJ4f57quu4O772rkX3QWYgHe9iEtp/Mvc3jYowZhphiMkoW4rouPRs3JjK/HUY8Nh8AQvH2fJXcMHJ8YGPse6MmjmX6xWczbdaZ7oHNr+zZtWrjzoPbdg0DOpDEFzujTv8uWSSM6dmwIdFHLrL18wDw1/KGxi2ZfoeSnBGB0f08mkcERnNM2WlMveCNHNy6a9+uNZte2b9xu4tLD/Cb8obGhqjTv0IW8fo9G15K9vEqRAYeRLLz6fZbfuinVIePGsFR55zMUeecTPvOvQd3mc079q7b0uX2usORPvnzqNM/Rm5yTXwKsQL4lpRN9JZlLQU2u677NcuyyhFT6dtd133SsqzPAO2u695lWdYM4CbXdT+Qq0YaYxYBS8kiJ3fH0vs4vGJ5+GUnso/7F+Dv6YZiKPFxamvCsdThxCmxyVSmI45M0we41R6gKlBZfU/4DWPM6YgDU0ard4Cuhno6ax8Mv+xB9tIfAGqj93iVzHFqayyknyZKpjMVuAzZakvGQeDHgcrqH4Xf8Dzmt5P5yo3Dq1fRcccfoPf1LYEn8ZR6eUNjwhmgkjqeDARInFRpMqI7ZlqWlUxRdwJ3BSqrF4ff8BZ7LzPwGJIKrwHTU42uKEXSUfDnIw5mcxDT1Zdc113qfXYO8A3XdT9oWdangdGu6/4qV400xtwEfDWbe7iuS8/z63EPHlzd8cc752r+9PRxamvCsfDhGPgzkDjmfGRDc4EjApXVbQDGmE8AQbJM+dqzcSO9B/bv6rj9tjPLGxp35aCdQwqntiaAOKZGy8Dx9B28c1mlclagsvpJAGPMXODvwBHZ3LBn21Z6d+3q7bjrjpPK/1P/ci4aOZRwamvCsfDReTFm0FcGMtlKTcRnA5XVvwUwxkwDNpGbIlztwFm2bScNwytlUu6Irus+bVnWk8BKZIW+NOqztZZltVqW1YQkMPlIjtuZdWEWy7IYcYYkTDrvYx9X5Z4Ab/Y9jb7JbMK/Z5PNLl0sRHGEQ9smIfmqs2L4G97AcBh5nir3pDi1NVOILwMnUdjiKG8i4oeRk1zuw487nuHHHd878uZfaoGcJERN6M+M+ZltNrt0iQ5fnoRsq+ZCwXd791MFb1nWMMSs2Ys40fXBdd1v5LBdseTSY1Wd5jw8k7pNJJd6uANntULKEesDldXRcesOIn+5YMjnKgjjTehORWSgjIgMHD2IzQqzB7gj6nUu++5wVA5ex6mtOR6RgVlEJnS5MINnSyfwo6jXDrmzElr4XB+kY0r7OZKv/EXgaiRfcKF4CXG6ynbW1ouUPB2SeAr9bCKJJ+aRY4dIZO90T8yx1/t5KfDmJNd2IfvifwTuiflsCzJzz3gPPoptObhHSeIp9FMQGQgfubbMtBN55rGHDbwzybW9wBPAn4FfByqro/dHt5ADK47HPj/vvQ6EU1tzHJHnfymZp99NRBdSSz52DNiDWGSvHuD61cBfgZ8GKqujQyteJXdbQKOQZEq+JVUv+sVIlq9wVqLvWZZ1h1u4NHh3Azfk4D4dSMrCIYE3mIcV+nxEoWdTGKMHmWy9Xgcc2AjsQjrw3kBldcIYcae25okEHz2JTBiXBiqrEzk8/ptIKtpsOIiE2AwJPBk4mUhWwfnI1kemxNaEX49M+nfhDeSByuqOJO35U4KP1iMycHegsjquw6Nt288bY9Yj6UizwUFSGA8ZnNqa6fSd1L0xy1vG1oR/AXFaCytxJ1BZHVc/OLU130lwz63AncCdgcrquAsx27bbjTEPIEmOslH0PUCdbdu+DoEd8B9kWdZbEOU633XdnZZlPeC9vhyozXP7ALBt+zVjzFJk1pfNQ33etu2nctSsosMbzM8kMpjPIzNT6yFkwF0X9XMdsCGZAk+B3xBJWfoqknP+jkBl9bMDXWjb9mHP2fJ7ZOFFjZj8/l8W1xc9Tm3NyURWZvORHOHp0okM2tGKfB3wQqCyOhuz5h+QxcI4JH3o/YhiX5lIIcRwPTLhz6aKn4U4bPoWp7ZmGn1l4LQMbhNvQr8O2T7Lxo/pfuBzSERFJ6JHbgfqA5XVqWzD3YBkIMxGF3QCP8ji+pIgqRe9ZVlnIJncPuK6bl3U+58DPuS6bjqZoLLCGHMaEiaV6eB+CHi/bdv/yF2rigOntuZs4CrgA6RvatuP5FF/DMl1sA7YFqiszkv6Vae25hQklM4EKqvTWpF7YVJbvOszoR34lm3bNRleX7Q4tTUzkOd/FekX+3GQPACNSCz4OmBzioNt2njm4WOB52LMrwPihUltAE4ks71YB7jXtu1PZXBtUePU1hyNpIK+Col2SoduxIG6EckYmosJfUKc2prJiO/Hi4HK6rTz9htjHiHzkt1dwFO2baf7Pyo5SqrYjDHmvcj+bLr7sIeQ/MPfz32rBgentuYNyID+AeCcNC49gCjzcHGM1fkayPOBMeYiJLtYuuFy7cDfgA/Ztu2L3PFObc0xwPuQAT2dyXYHotCXIXLwVL4G8nzgVZJ8EvEJSsebuwNZJCywbTvhNkIp4dTWHIFYRK5Cqh+m+v/oRv6Hy7zj8UBldcmk3zXGTELafyLpheQdRrYXLrRt2/eRNCWl4AGMMZcB9yIOdwOZaHqRTu2LvMPePtr7EKU+K8XL2hCFvgwZzFeVkkKPhzHmQiQl8gRS69yHkOIkX7Ztu6T/dqe2ZhJinrwKMb+msortQIqjLPOOJwOV1SXtQe4p+YcRS0AqE/5DSMbKD9q2XTKKLB5Obc1Y4N2IDCwitT7QDTxFX4Ve0lUPveJjf0eqVaYy4W9HLBOLbNseEqmHS07BAxhjTgH+F/gQ8csEHkSU/9+Bn5byvrsXj3wlotTnM3AMcheSkKgBr3xljCeyLzDGTAWqgU8jntXj6fu/aUdWM02IDPyn4I3MEU5tzTigAhnQ38HAnuS9yN8dloGVpa7Q42GMGY/s5X4eWc0H6LuCDdcFX4ukJF1q23bpDXi8nlzmbYgMXE5qCq0FsXYtA1aUukKPh1c6+hNILfiTkL4R3T/CZcNfRhysb7NtOxfOuiVBSSr4MF7p0Mu8Yyqi1HchA9vSUi0k4NTWjESU+oeRTj2QpaIH6cj3A38NVFb72jM0GmPMcMQ0+T9EVnO7kf3EP5XqTN0LaXwbknf7MlLzPXkcuA94IFBZ7evwn2i8KoOzECfcGYjy2wsY4C7btjcNYvOywqmtKUcU2JWkluhnLSIDSwOV1f1qP/gZY8zZSJK105BcHvsRJ8E/2ba9ZjDbNliUtIL3G5759RqgitRik5cTGdBLUpEpffFSwX4YsU6ckcIlq5CJ3dJAZfXmPDZNKRBObc0IZF/9OuCiFC7ZgIwD96cSkaIMHXKZM1rJEM+z/IvITH0g09vTSGf+c6CyWque+QQvrOmzwGcYOFfBi0QG9HUDnKuUCF5q2E8iY8GMAU7fjhTgug9oSTHEUBliqIIfJLyY9dnILL2S5Hvr64kM6C8UoHlKgXBqa2xEBq4mubPUVmSlfh/iV6EDuk/wQhyrEOtdsvj+3Ujlu/uA5aXuLKvkH1XwBSZqf/064MJkpyJZnX6PhLLpgO4TvMnd2xAZeFuSU3uQlK2/RZykfBHepwhObc0sRAauJHl427+AW4D/pJs7QhnaqIIvEE5tzZHAp5CZerLMYjuQzrwkUFm9uxBtUwqDU1szBlmpXwecleTU/cjE7leBymotZ+ojnNqa4YjF7jrg4iSndiI5P34RqKx+rhBtU/yHKvg84yUj+Tqi3McnOXUVXihPKSUdUQbGqa2ZAHwJ+ALJUwdvAn6BpO/VksY+wgtzuwb4MlIbIBGvInnyf6eOs0q2qILPE17s8nXAV0mu2B9CFPsyNcP7C2875lNI/vypSU5djshASPdV/YW3HfNe4EaSp5F+FpGBe5MV61GUdFAFn2O8EJePI0Uxjk10GnAXYn57vlBtUwqDN6hfDvwYOD3BaT1I0ZuaQGX1k4Vqm1I4nNqaucBPSZ518t+IYn9YJ/hKrlEFnyO8Qf1dwE0k3l99hcj+uu/zIA9FvMQkP0UiJOJxgMj+uoY5+hCntuYMZHJ3eYJTOpGKeL8IVFabgjVMGXKogs8BTm3NhcigPi/BKbuB7yOK3XcpQxVwamveiJhhr0xwSjvwc+BngcrqksywqCTHy2XwXWSvPZ5XfA8yufv+UMo0qAwequCzwKvo9iMkT3w8OoAa4KahlD52KOHU1kwFvg1cS/z+1IvUQP9eoLJ6eyHbphQGp7ZmPOI89xUSJ6qqBb4RqKxeX7CGKUMeVfAZ4BWA+RZS6CJe4Q8X2WP/dqCyemsh26YUBq+iVzXwNRInJ3kI+LqmD/Unnr/NJxF/m2MSnPYE8JVAZfXygjVMUTxUwaeB5xVdDfwfUswgHv8CvhaorB6SxQ38judr8VHEcjM9wWktyKC+rFDtUgqLU1uzCNlySVQv4CXgG8Bf1HlOGSxUwaeIU1tzAXA7Uns4HquQQf2RwrVKKSTelsytwIIEp2xCJn9/1qxz/sSprTkKKTv6wQSn7EJW9L/XfBbKYKMKfgC87GPfRfbX4jnObAG+icSv6qDuQ7zsY58HbiB+2dY9wA+A36oTpT/xLDf/g0TBxEtW5CDhbj9RJ0qlWFAFnwSntmY24iAVL5Z5H2KmvUUTU/gXL+TpD8RPK9qJrOZuDFRW7ytow5SC4dTWHAv8BkkxG4sL3AF8V/1tlGJDFXwcvCx0NyCpReNVebsH+JLGsvsXz4HqK4j1ZnScU+qBawKV1ZsK2jClYET5W9QAR8Y5ZTXwiUBl9dMFbZiipIgq+Bic2pqFyD5rvHzR24DFgcrqfxS2VRFWzJk7DHlu0cfIAV4fRmLx9wDO7OVN6vSTBKe2Zibib3F+nI/3IyFRtw+W89SKOXMtEj/rRPLQgzz/PcBBlYHkeCVclwBvj/NxF5LX4ieDVd3Nk4HhDNz3o18D7EVkYL/KgP+xXFefMYBTW3ME8DMkd3g8fg98NR/x7F5nPRLxyk52TCN5zfBU6CQy0Mceu6N+3wk8D7w6VAYCp7ZmNOJP8Q3iT37/DnwmUFm9LR/fv2LO3AkMLAPTgTFZflU38Z957PEa8AKwdQjJwDAkp8FNxK8hsRJZteelwtuKOXPHIimuB5KBZPUtUqGHiLJPNhbsRiICNs9e3qR1EkoMVfCAU1vzbuB3wHFxPt4EfCpQWd2QzXesmDN3OFJsYibwJuBUcjto54u9wHpgXczR6qcO79Xmvp34aYZ3I9s192ezavcmciciz38m4tuRy0E7XxwivgxsmL28yTf1yb1shLcBl8T7GJn8BbMtCLRiztxpRGTgTGTcCctAvK2AYqATmfCvo68svDB7eZP6IBUpQ1rBeyEvv0BqdMfiAkHgm4HK6kPp3NdbiZ2DdOCwQj+H+B7YpUoH0uGjO7sB1s9e3jRgNMGKOXNPBa7yrn9wsCYLXsKa7yP5DYbFOWUpUJVu6c4Vc+aOAc4m8vxnIiGWxTqAZ0I38CJ9B/1ngbWzlzd1D3TxijlzjwE+gkwi75m9vMnJY1sT4kVJVCOREPEm2ssQf4uX0rnvijlzRyKTuGgZmEnyyoKlRi+yCAqPAeuB54BVqSj+FXPmjkOKc40E7pi9vEmdVXPIkFXw3l773YjZO5b1wCcDldWPJ7uHtyI7gb6ddyayOs8n3ci+enfMEe+9bsRJbAowmexN/AOxC2hEBsVlwLOx5t0Vc+ZORAaBsMXk78BVs5c3pTWRyhantuZcRIHHS1byCmKOrx3oPivmzJ0KnEffCd3pxA+rzBWpPPvo90YBkxAZCOSxXQBtSAncRxEZeCaewl8xZ24LcIH3sgW4bPbypoLmaHdqa04A7gXmxPm4DXG0vHWgENgVc+YeSWQcCP88m/z2tx7SGwuGIxPMyeTfWtQJNBORgZWzlzf1CyFdMWfufURSfW8GFs1e3rQuz20bMgw5Be95R38PSUgS6yHfA/wEKQYRd/bpDeYLgLd4x4wcNa0dceLbnuTYAbRnuh/qTUjGIh082TEF+bvOIHurw2tEFP6jyCz/HMQDOZr/IgP8jiy/b0A87+hrEe/oeB7ydwBfDlRW7413/Yo5c49ACguFZeDMHDWtk+TPPywDB7LZE18xZ26AiLKP9+zDv5+A/G0TM/0ujwNAE5FJ3zOI4muPOa8VGeDzsr8di1NbcznyrCfF+fifiBohrwIAACAASURBVEPty/Gu9f6Hs4nIwPnEj7hJl27kGQ8kB3uzlIFRDDwOTEa2Dc4Ejsr0uzw6gMeJyMCTs5c3da6YM3crfbdG9wHvmb28aVmW36cwxBS8U1tzIjJbj1fKM27Ii2dCmkukI8/Mogm7kYx3q4G1SJKccIdtKzZHJs9jPzzIxx5TMrxtWOGX09/nYQvwrtnLm/JWQtOprZmEREnEq/rWCnw6UFn9n+g3vcHwIiIy8GYyX523Ic9/NbAGWbXkZNDOB96kcBrxZeDYDG97AHgMOAmwYz7bD1wxe3lTVj4vyfCcKX+K+FXEshf4InB3tL+F50NzHhEZmEP8yWEqdCD9PywHG4nIwK5UtrgKzYo5c49CJvyxMpDpAsdBFP5o+ltPDgOfnL286U8Z3lvxKGkFb4w5CfF6r0Ryww9DBo9HgSW2bb++SnRqayoRJ6rY2boL/BD4QaCy+vCKOXNHIGbDcEe+mPTNbC7ifbyaiEJfDWwvtgE8U7wOH93Rz0KUYC5We++dvbzp4VRONsZMBT6M+FFMQZ5VG2Ly/S2w3LZtF16v1X4f8Qel25HcBm2eUrOBtyIycAmJq4QlYzP9ZWBzMQ7gmeBZMqIH/bOAWcTP9JYO3cA1s5c33ZnKycaYicD7kMIv05B99LBj4G+Bf9u23Q3g1NacBtyPKOtY/gV8PFBZ/YonA6cQGQcWEH+lPxA76Pv8VwEv+sVB1VsAnUbfseBCxJk0W64Hrk9lzDTGjAYuBxYjE8dxiIVoCxLuWGvb9qD4eAwmJangjTELkdrb5yBmsdiZdDcSq7oN173+lA2PlAFfinOrHcDVT//swReBCmRAv5TEhWTi0YmYl6M7sSn0fnIxELXKme8dl5C40loyeoDPzV7etCTRCcaYNyHbKZd458duJfQiHbwN+PkbXnqk28L9Of1X3geBTz/9swf/A1xGRKmn4wjVgzz/sAysAtbMXt405EoEe4rxTKQfzfeOTM27PwG+nmiAN8bM8M6pQPp87L6yizz/XuD3J2189Onhvd1/oP9krRv4hrn130u69h96BxL7nsn227PI9sPrk7rZy5teS/MeJY8nAychz/5S7zg+w9v9Gfjw7OVNcfP6G2MmIUnJPow853jjTRvS7+8Dvm7b9pBJUJYTBW9Z1hHAw3irONd182ZiNcZ8HfgOKToKjT+wvfOYV5/tZ0pzdu1f9uKflzd2t3e+A1l1pIoLPA084h0rBsv7t9jxrCHRCn8u6Sn8B2cvb+pnSjfGvB9ZcQdIYd9ztLPPOX7bU/3kpetA+5qX/rLigY7dbfO89qVjdl9HRAYah6IyTwVvsD+Lvgo/ne2dZ4CyWKuHMWYu4pw5nhSe2/DDHR0nblkxepjb20deuju6Wjc99OQdbZtfPQ9R7OmEq25Bxr1HgIbZy5vSirQYKngycDJ9FX68kOREbAfOmL28qS36TWPMGUhGyaNIzcrahezxL7RtO286qpjIlYIfiXhn/hT4Wb4UvDHm20j97ZTNpZP2bGDyno0AdOw9yN71W3tfW7VxR/ehjnQEbAORwfzR2cubdqdxreLhxf+uI71QsfNmL29aFX4RpdxTdv4b37aDY3aKSHYddNj3wjZee2bjts69B6eTumPUDiIyUD97eVNekt34HS980CDm71S5NtqaY4yZDfybNMaB0R37OX7rkwB0d3Sx78Xt7Fq96ZX2V/ZOQUK0UmEv0EBEDjb4ZcutkHgK/1HEUTVVbpu9vOma8AtjzKlI0qFJpOfc6CLbgBfZtr0+jetKkpykqnVd9zDwmmXlwok0PsaYWcDXSdOr+8CE45i4fyt7nlrH1kfXgOsOY+DZ4y5kZhgezDXfeG44m/TjwF9fURljpiNez2mFeR0adzRdo8bR/tyLbHroKdzuHhhYBtoQb9/wYL5OB/OcMJX0lDtEmd69vda/k6ZPROfoibQHpuBufJENf22mu70T4ofI9rkMCfcLy8Azftk7H0xmL29yV8yZW57mZdHjgAXUImNJukrHQvyE/m6MOS3sn+NXUlLwlmWdgnj8nuq67g7vvauRFfss13XjhpLkmO+QQba3npFj2DxjDm23hCC5teIJ4K/Af5D9U184QhUZzyBmzVQdcB6evbzpiajXiZLRJMUdNoKXTyjn0L2NYeWeCAM8iKwOn/JTlrYiYgfwJBKJkArrkGRUYT5I6ivuCJbFjunn0fGvp8PKPRGbERn4J7r9lk9qEcfIVNgJXBf1ejayx5/2WOARjgxZiEzcfEvKJnrLspYCm13X/ZplWeVAHfB213WfjDrnTvJgojfGvAFxYMk4nWvbj27A3b6NiSdPY+SEAMNGDHdHjhvTOmbKxOfHTpu0ceS4MYe9+48hkwGkP12Ik9ehFH/2eS9QUeXLlcKKOXOPBd6JWGIOIivlgzG/tyHFMF53rDHGjEeSz2TizQ5A+623cfjpp5kwYyqjjxzPsBHDGDF29PYxkyesHztt8sZRE8ceIiIDuUhQ0k2Gzx9oD1RU+XKC4SWFWYTsncY+9+if+6OzoXkrt01kkXui429/o/Of/4p9+wXgL97xtFpq8o+XR+DtiKJONAaEZaBPvgRjzMOIcs7WZLzctu25Wd6jqElHwZ+P7D/NQRxLvuS67tKYc+4kPwr+m0jZzowVb8/OnRy//b+MPaJYU773w0G2Cl5FYseT/gxUVPnaa98Y8z4kT3gmXvkA9La1cfRzjRx5dMlkDO4iDRkA2gIVVb5VTsaY85D4+YyzsLldXXT8LUTvK6/0dD/77A+BB4iTbVEpTryQyF3kbhF2nJ+96lPeg3dd92nLsp5EHBtuiqPc6/BSdFqWtcR13Ttz2M4TyfKBjpk0nrGHSka5g+wzn+AdA+KEgu30H/RbkRXPZu/nthK2DBxDljIwbPy4UlLuIFaEcBGSVOh0QsFYGXgZefZhOdhSwpaBY5CQxIyxRo0i8D/vBVn93WDbdtzwK6VoORrxjciFgu9EfEJUwVuWNQzpXL1IKcU+uK67KIftiiXrh9k9YjTdw0czoifp/lspMxYxXSYzXx52QsEtRBR+9MC/CdhZxCvAEWRtkrPoHDWB0V1tA59amoxG4o2TxRz3OqHgVvo+92g52F7Ek8CcOAV7uN79VMGXFiOQZ5cLXHIzUSha0ukwP0e8Fl9EsobdnpcWxWc78jAyHuDdYSPYfux5HLF/y6Yj2rb/C0kX2YHM4jpijm6yEyILWX2NQxRvJj/zwUjEgzmRF7PjhIKbkYF+I+L3YAATqKiKm5e9gOxGUlhmmh5UHK2mncvEA9v2Td63+X4SP/8O77uyHUhGIs8yk+c/jtzkNo9lGGIRO5H4YUqHnVAwbPkJVwlbi8jAzjy0Jx12k7v/iWvbdmwufKX42U02Y0BfRnn38y0p7cFblrUY+AaSEGY+UqzlLLdAafCMMRchYWvZ2lcPAl+0bbuQk5O0cUJBC9lrPto7pqbwM98z0W14A33Uz3WBiqqCeBl7IXIbyMLR0qMTuMW27f/NvlX5w5OBsaQnA/neg3qNyLMPy8GzgYqqgphEvBC5naSXaTIeLpK+9p3Zt0opJJ6jpUGSJ2XLRuBUP4fKDajgLct6C1JSc77rumstyxqOeJ1+2XXdAUtp5gpjzGqknnY27AeOsW3bV3Z6TxlMpO9gfyzioXpy1JFpgZhE9AIv0VfxrwU25MPMa4xZihSJyaYMawdwim3b23PTquLAk4Fx9JWBaYgMnEREBgaK/c6EzfSf/D0fqKjKufnbGPMdJB9GNiVvDwFvtW27OTetUgpJLhxukcXe52zb/mNuWlWcJFXwlmWdgSR6+IjrunVR738O+JDruukmK8gYY8wVwF1k7kHbAfzYtu3rc9eq0sIJBSfQd7CP/v1ksusw0XQgg/wTSE3oZmBztvv7xphzvXtmOrj3AA/atp1q/K3vcELBAOKnEf3cT4r6fXKOvqobMe+vRJ7/E8D6QEVVVvkljDFTEMfBbBT8Wtu2s10sKIOEMWYEYlFMp15ELHuBaX53siyZYjPGmGFACMljnK6pvgtZaV5k27ZvPayywVsBTiIy0J+GFPOxkYph2To4vUpkoG8GWjIJ7TPG3Ax8mvT9FHqR/bbzbdvemu73DhWcUHAiEYV/GpJ98BzEJJrtFsB+Igq/GXgyE98OY8yngRoy27I7CFxi2/YzGVyrFAnGmLcCfyOziZ4DvM+27Ydy26rio2QUPIAxZhSSbW4eqQ/wDrLXMs+2bV87VOQLJxQcRV+FH/55cha37UGyI4YV/hPASwOt8r09uCDwCVIf4DuRGftc27ZfyrjFQxgnFByOOGdGP/9zgDeSeUYxkFV+tAw8l8r2jjGmCvgxqQ/wPYhp/p22bT+eYVuVIsIYU4FUiEup6JRHO/BR27YfyFvDioiSUvDw+kr+m0jRmUTlAUE683DgHuDztm13JDhPyRDP5H8WfQf8c8i8HvguZJB/Akmq9FSgoqo73onGmI8BNyOWhfHE7+AOonweRjr1ngzbpSTACQXHIOVhYyd/mZYHbUNS2TYjtQBWBCqq4vZdbxV3B+J0N5b4E41OZJxYA1xl27bWlfARxpiZiJKfgXjFx7M0diNysA242rbtlsK1cHApOQUfxhgzBrgcqAIuQmbo4bjG9Uj+6qW2bWsZzwLjhILTkFzj5cizeTOZmVP3I1WnHvaOPit8Y8xw4G3A572fLjKYjwK2Ar8G7rJt+5WM/xglI5xQcBJwIREZuIj0Cw2BTNKaiMjAmhgZsLzv+CzigDkCGQtGIlabW4HbbNvekPEfoxQ9xphzgMVIXfjxSJjrCER+7gaW2La9KvEd/EnJKvhovFV9uC70Adu2izVRx5DECQVHIKu68GBfjph206WVyEBfH6ioen3LxRvoxyL7xPtt24678lcGBycUHIZs80TLgE36ce2vIgVCHgYeDlRUvV6215OBMYgctPndgUqJj7f4Gw8cHOqWW18oeKX0cELBo5C8CuEBfxbpRUi4wNPIQP8f4PFARZWvwh/9jufQdyERhX8R6YdyrkOe/8NAY6Ci6mBOG6koJYwqeKUo8Jy4zkIG+kuBtyDVxlKlHSlE8jDwUKCi6oWcN1LJK14kx6mIDMwD3kqKtRg8DiN79w8D/wBWFXHqZUXJO6rglaLEM+m+CRnk34pUMUwnRWW4tvuDxOzbKqWBp/BPJyID80kvV8NmIjLQnG0MvqKUGqrglZLAS9Ayl8hgPzONyzcSGehX6kBfmjih4EhkKycsA28m9ayGrwC1iAwsK+GKeoqSMqrglZLECQWPARYSGeyPS/HSHUguhQeBx3SgL12cUPAIZDsnLAOpOm7uQ5JmPQj8p1D1FBSl0KiCV0oez5R7BjLIVyCm3FRWdnuIDPQPJ4q3VkoDJxScgcjAu4G3k1rmvXagDpGBfwQqqg7kr4WKUlhUwSu+wwkFpwCXAVcg8fGp7N0fQhyz7gH+qSv70sYJBccD70Bk4N2ktnffhYTg3Qf8NZNUyopSTKiCV3yNl23vnchA/y5SC8V7DbgXuDNQUTXkkmP4DScUHI1s51wBVJJaKN5B4M9IgasmddJUShFV8MqQwUur+hZkoL+c1CqnrQHuBO4JVFS9mr/WKYXAS7o0B5GBK0jNd2Mj8Efgj4GKKk11q5QMquCVIYk30F+CDPLvAaYPcEkPsld7FxJnr0l1ShwvFLMMkYErkRj8gWhEZOCBQEWVVqZUihpV8MqQxxvoy5E81h9AipckYw+yT3sn8F8135Y+nqPmOcCHvOPYAS5pB/6CyMAyDb1UihFV8IoShWfGvxz4KOKJPVAp1OeQFd2fAhVVO/LcPKUAeNadtyIyUMnATppbEBP+XYGKKi1HrBQNquAVJQFOKDgduBr4GJJGNxndyIruV0hefO1YPsCrivc+RAYuSuGSfyMy8E9d1SuDjSp4RRkAz3x7AbKi+yADO+c9AwSB+zW23j84oeDpiAx8mIHr3b+ElCu+I1BRpSWrlUFBFbyipIEXcvUuZEW3iOQJdXYh9ch/G6ioejn/rVMKgVcY6VJEBq4AAklOP4SY728JVFQ9l//WKUoEVfCKkiFOKDgVMeFfA5yZ5NQeJD3ur9CYal/hlbz9H+BTDGzCfwSRgX8EKqp68t02RVEFryhZ4pnwFwJVSNY0K8npq5FB/l7Nge4vnFDwQuALwPuBUUlO3YSY728PVFTtLUTblKGJKvgipGXRwmFItq3pMcc0JL/2SGBE1DHQ68NIaNceYHfU7/GOvWV19ZqmNUOcUPANwGeRFV2ycLs9wG3AbwIVVa2xH7YsWmgBR9JfBqYDY0n8rBPJQw/Jn3ufo6yuXuP8M8QrhPRp4DMkD7drB+4GfhWoqDLxTmhZtHAC8WVgAqn1/ejXAHuJ/8z7jQtldfU6AS1xVMEXGG/gPglJqhGv405HBoWRg9REgDZgJ/A8sA5Y7/1cV1ZXryuOFHBCwXFIPPUXgLOjP3Ndl+72Drr2HeTwoQ7XeW3fqrZNO9YePuiMoa8cpFIsJV+0Iyl7X8B79kTk4NWyunodOAbAK297BWLZuTj28+6OLjr3ttF9qIOO3fvXH9i04+mufQehrwykklo5X3Qgiv8lIjIQPrapDBQ/quDzSMuihQFkcH8TUr98JnAuAydSKWZ20r+zrwO2p9vhWxYtPBafrxbXXn35yCNPP/GjYF3b3d5xfsfuA1bH7v30dHQNdtOyYS/xZaC1rK4+rdCwlkULpwCHy+rqfVvFrWXRwuFT33xmhTV8WFVPR9fcjt0Hhnfs3k/3oZIOsGgjauIf9fuGsrr67nRu1LJo4XhgTFld/a6ct3KIowo+B3ir8mlElHhYoZ/OwIlS/MIB4FmgCXgUWFFWVx83lae3BfFHxEHtNeDasrr6BwvV0HzRsmjhZPo+/5lI/Hyy/Vg/4SCD/ApgGdBYVle/O9HJLYsWfh/4NlLY5ZvAr0p9VeiZ1M8l8vxnIhnyxg5muwrIYcTq04zIwLKyuvptiU5uWbTwo8AfgF7gF8A3yurq1QExR6iCz4CWRQtHIDms34LkM38TcHSOv2Y/sD3m2IEMht1IR+qOOeK9141k4pqM7OtPHuCYRHInsVTpAVoQZb8MUfgHAVoWLTwdmfGHcYGvADeXygDvTerOQWRgPnAeA8dGp4U1fFgvlrXd7e7ZQF8Z2Edqzz76vVHIsx3o+YdlJFcT0zXI838UeKysrn4PvN6Huugra7cAXyqVAd6TgVMQGVgAnO+9zhnWsGGuNcx6rbe750X6jgV7iTzfVMeC4YhfR+yzTnTkapvwRSIy0FhWV789/EHLooUbgDdEnfs34Oqyunot1ZsDVMGngNeRT0c6cnhAz8bMfgBYi6S4jFXi24EdgyXg3ur6SGAGEvoVfbyRzDt9N/AU0tFXA7fTf1XzW6AqXRNfoWhZtPBEIjKwEJiaxe0cwIycOO7wuOlT3jj6iPFHjxg3hhHjxjByrPwcNnIElmWBrIZ+iGRHy3uH9WRgAnACcAZ9ZeB0ksd9J8NFFP6jwHJkxRY7KXoIuCo8GSw2WhYtnIoo87AczMjidoeB50aMHXNg3PQpJ4+ePPH4EWPHMNKTgxFjxzB89MiwDKwDbkCSJ+W9f3hj3jjEDyBWBs5E5CNTXiAy8f8SMCv264HLyurqX8niOxR8oOCNMTOQDjcJWXXsA56wbTuuV2qqtCxaOA0ZxMMdOdPV2UZEoa0GVnk/W0tlpRpNy6KFI5HZ9pn07/TpOgP1IM8r1lpQB3wgkXk/HsaYo5G88VMQa8V+RJE8Ydt2xv/nlkULJyEJTcIy8MYMb7WN/jLwUnil6oXZvRP4FlL0JhHPIIq+drDSoHrKP3ryFy0HqZTfjcb1jlhrwTPAu6NXegNhjJkAvAPZKhuLTKJfAhps287YItCyaOE4YC4RGZiZ4a120ff5rwbWl9XVv+6M4YSCFyFbFe9Ocp+NwI1I6dpBceTwlP904svAtAxu2U3Eyz/MFmBRWV39s6nexBgzCngbIp/jEWvnVuDftm2XtMNDppSkgjfGjEFKfFYh5vGwCdIiYvbbgqQLvc+27X0D3dPbO7uESEe202xWB7Iqj+7Ea/zsPBTG6/DHI57ClyIWjtOzuOUqZIBPuHdnjBmODOif977zMGJdGIbIQw+i6H8N3Gnb9oCFYFoWLRyDKNiwDJSRnqm6Gyk+Ez2Ir07VechT9PMRRb8gyanPEVnNFYU525OBqchqbD7yTGaS+XbPy8C7yurq1yY6wRhjAbOBzyEFgrqJhIVFm6hvBW61bXvAQjAx229vQWQ6HauVi6xQo2VgFWKVS2mwdULB84D/Q0rYJvr/bQV+AtxWTPkUvElxGSID84E30195p8oB4MqyuvpHkp1kjDkXuBZJIdyL6IIRyLPvQrYm7gV+a9v2Mxm2pSTJiYK3LKscuBn5Z24HPuK6bl5iqY0xpwIPA0cx8KrxENLR323b9orYD1sWLTwKqRZ1JbJaT6cj7wLqkexUK4AXi9W0PBh4HvLziCj809K8xSHg8rK6+vrYD7wV+0OIA9s4kisRBxl0P2rb9gNx2jkBST17JZJ6Nh1nqDbEzPgI8BjwXPSKLBucULAcWc29K8lpzwFfR+rTF91M3XM6nEtfhZ8Oh4HPlNXV/yH2A2PMWCSG/G3IlkGyiVgXMuH7DvDzWKtOy6KFo5HqcVcCFaRniehEthseQWRhTVldfXsa1yfECQXPBL6B1D9IlBJ5K/J3/bFYJnvReB7yFxNR+BeSnsJ3gRvL6uq/GfuBN8n/CaLcw0o9EWFlfwfwJdu2h8RYnSsFPx3Y67quY1nWj4BnXNftN5hmizdTa0IUezorq3bgfbZt/8NTPO9BOvM8kucSj8ZBBvFHvGNNuiFBQ5mWRQunI4P89+nrVJOMHmBKWV3968U6jDHTkb38o0jPO70d+Jpt27d4q4zLEBl4OwOXAw3TjeyHh2XgqXwnBfJWc99E2pqIJuCrgYqqJ/LZlmzxQuLmIhaKC9K49MKyuvqW8AtjzHjkb07XH+AQUr/9Cx1f/WIAsQBdiZjEJ6Z4Dxd4mogMrMh3QhgnFDwF+BqS+z7RIsQgk726YpzshfEU/mygGplUpTqOfyp6oucp9wcRK0s6k/J2RHYus23b9wm9cm6ityzremC167o5DXsyxhyFmL6OJAOzX+9rrzpdv7p5LR3OhSle34soknBHbvZzvHYhaFm08BKgMc3LLi+rqw8BGGNGIt73J5KB2c9ta2vvuuXmZ9y9e2alcf1aIjLw2GA5fzmh4FlEVnOJBsW/AP8XqKh6oWANSxNvopdw6yUBPy6rq/9G+IUxph5ZFaadCMjt7DzUdfvvVrubNr6J1BXDS0SsdY8mC/3LJ04oeAISbXINif/2RuBrgYqqlQVrWAa0LFp4ELG+pcpDZXX1l4VfGGN+jUx4Mgk/bAfut237kxlcW1KkpOAtyzoFcVo61XXdHd57VwM/BWa5rvuy997JwFJgjuu6OXUAMcb8APgyGXrwdv7iJ7jbBxxXXkLqOT+CxG8OuHevpE7LooVnIwoz1QlaBzCprK6+A8AY80FgCRlm9+q6+w5616wa6LRtwH8QGWgoNk9eJxQ8FYkd/zDx/489yJ7z9YGKqqJqO0DLooVHIP/jVAf3XuCMsrr6FwGMMRcipvCM4soP/+shehoeHui0Pcg24MNAfVld/eZMvitfeKlwv4r4nySyYj2ATPZeLFjD0qBl0cKNwMlpXBI90Z+G5PPPJtNjB3Cabdu+rvKY8gresqylwGbXdb/m7bnXAW93XfdJ7/OJyL7oNa7rPp/LRhpjAkgGtYxCM1zXpfP734RDcSPP1iIrnweQPdSiNW/5gZZFCz+G5OkOIF6uB5G97PDv7UhOgUPADWEF6zlUrSf9vfzX6bylBnfL5ngfbSIiA0+VwtaLEwqeC/wY8b6PxyHg58DPAhVVKUckFIKWRQvfiaxEp9D/+YePKYhy/2VZXf3rZVaNMSHELyGjOP2u+++m9+mn4n20E6n49wASq130e7ROKDgD+AGSEjneZK8b+D3w/UBF1c5Ctm0gWhYtvAC4Hknb3UZfGQj/PhGZwNxVVlf/WPhaY8yNSHhdNgq+E3G6q87iHkVPOgr+fKABmIPMbL/kuu5S77MRSIKCn7uu25DrRhpjPoZU4Mo4L3P34010hx6E3l6A/yID+l/K6uqL1pypRDDGzAb+RRYy0POc4fC9d0FXF0ie/bBSX1WqEzsnFLwUcTQqS3DKq4jfw62DFVaVKzz/iw1kMbD3vryFrjt+DwfbQBzUHkRk4PFSSbATixMKzgRuQvxJ4nEQ+Blwc7FN9tLF26bbTXZx+GHagaNs2y6aKIRck9YevGVZ/0EcJG5yXff7Ue9/GKhBHD0AfhtW/rnAGFODzNiywm0/BD09T5xTfnGyWGOlCDHGfBqRsaxSfrodHXC4a2fnD759bKkq9VicUHAYUpP8BhI7MG5AQq/+XzE7YSXDGHMpssrOqpaD29UJHZ293U+sGHXedV8pSaUeDycUXIhM9s5PcMqryKr51kBFVUk6mBljjkcm57lI/XsImGnb9oYc3KsoSdnMZVnWMGR/rxeZLb6O67p/cl33KNd153tHzpS7x5Rc3MQaOw5rwsShkhPab0wk83ja17HGjMGaMDHgF+UOEKio6g1UVC1FEo18AcnvH8spiH/MSi+hSimSqqd7UqxRo7EmTuwd+bZ3ZpqRrygJVFTVI2FoVyHbTrFMRfJCPOuEgsmS6RQzExE9lAt6yJFMFSvp7GP9HPFgfxEpElJIcum16vvEMz7lALKnmAt8mec6UFHVFaiougUpRfwDxAQZy4VAsxMK3uqEgkcVtIHZk8u+O4z4/5+Sxpvs3Y9kl/sikq8jljcCf3dCwb85oWA6jm7FwAFSD20eiOH4XB+kpOAty1qMxI5XIqv3r1heguQCGyRteAAAIABJREFUsRrZR8qWLmT/XSk9nkWsR9nievfyLYGKqgOBiqrvIKv23xF/xfMp4HknFPy0Z+IvBZ4n9ZwFA/GybdtF70yZKd5kL4jIwA+JP5mpAJ5zQsFvO6FgNg5rhWQnuVvBW0hiNt8yYMe2LOstyN7eZa7r7kQcUkYhqSELxf3kZnDvRfZxldLjcXLTGduBH+XgPkVPoKLqlUBF1WeAsxFnslgmI2GHTzihYCInvaLBtu3tiINvtmPBQYaODBwIVFR9G7Hq/J7+/7sxiBPmWicUTOSkVzR4yWl+jYS5ZUMn8Hs/O9jBAE52lmWdgaRh/IjrunVR738O+JDrugVzVjPGfB/4XzKvZNUL/MO27YrctUopJNnGwXu8AJyRTRGaUsVzwroFMd/G4iL/228GKqr2FLRhaZBtHLxHG3CM3wf3eDih4JsQBXlxglMeBKoDFVVbCteq9MhhHPwbbdvemptWFSclU2wm20x2yMpttm3bA2Y6UYqTqEx2J5BZ2dp24CrbtkM5bVgJ4YSCo5A0od8hvpLchaRFvXOwKtYNhDHmESSaJ5MB/hDwPdu2f5bbVpUO3pbMRxCP+6PjnNKO+HDcXKyhlTnIZLfUtu1P5LRRRUip7L1h2/YuJHd8G+mb6MK56FW5lzCeeW4u4iWe7sATzkU/ZJU7vL43exOyio9XL+Io4A/Acm+1V4xUIvvx6a7Aw7nof57rBpUSniPenUgu/98g1ptoxiIladd4Vp9ipArJNpmuo2Q4F/3inLeoCCmZFXyYDKrJdSGFBfpVk1NKk5hqcgPJgINMCD9q2/Zf8t22UsPbd/0V8Wvd9yLm3O8EKqqKKm2zV03uT0hyl1SryX0buHkobs8kwwkFL0AU/ZsTnPJn4LpARVW6NQTyildw5ibgMwxcTa4H2Xe/HajWanJFjFcPvhIJA3kT8vBGIqb7cAKHLcAvkaICRTU4Kdnjde63I3Hf0fXghyMDei9SD/4WpB580eVlLxacUHA0UufhW8T3cXkVuA64t5iS5ETVg/8sMh4kqgf/e6QevG8TmmSLZ7b/BJL+OF7ekUPIts4vi60srTHmHETJh+vBj/SO6Hrw9yCpaYeUFbckFXw0xpgZwAJkb344Mqg/Ydv22kFtmFIwvBX925GBaTQiA2uBZl2tpY4TCp6ERJlUJjglBFwbqKjaUbBGpYhXQvadwDRkktKGFI9qsG27qBRSMeOEglOQqKlriO/r9ATw8UBF1fqCNiwFjDGjgbch1SbHI9ESW4F/27adrdd9SVLyCl5RlNzihIKLgHAMdSx7kf3Pe4ppNa/kFicUfDNitr8gzsedeNsdxbaaV/qiCl5RlH54iU++iuSvj5dcpmhX80pucELB4chK/gZgUpxTinY1rwglqeCXrGw9EUl+Mx74wuJZMxoHuUlKgVmysnUC4vxzMvCDxbNm3DPITfIlTih4OuKYFC9ueh+ymr97MFbzS1a2DgPuAi4Cbl88a8aNhW7DUMAJBacBvyX+1s2gr+aXrGy9EXgv4nz9ucWzZpSeUssTJRMmF2bJytYRQAtQDpwD/Mfr6MrQogl4BxLq86clK1uPG+T2+JJARdXzwCWIE17sPuaRwB+Bvzmh4LGFbhsyyf8QkqXthiUrW982CG3wPYGKqleAK4APArFJkEYj8fQrnFAwXgKlvLJkZeu3gK8jMvAZ4BuFbkMxU4qK8Vv0Tc4wCrAHqS3KILBkZesHgZlRb1kkdgxTsiRQUdUTqKi6GYlYeTzOKZchOc0/7ISCBalRsWRlazmyaovmA4X47qFIoKLKDVRU3YekPa6Nc8osYJUTCn7FM+3nnSUrW2cg1oNoLivEd5cKJaXgl6xsvQhR8LHMKHRblMHB69S/ifNRVjXClYEpltW8tz1zN/29vCfk83uV4lnNL1nZOhzJgzAq5qNs0lj7jpJR8FGdOt7s8LQCN0cZBLxO/UfiK/MTC9ycIUnUan4mg7ea/yXwhjjvl1r525KkSFbzX0WyWsaiMhBFySh44BfED9uB+Fm4FP/xFWQFGQ+VgQISqKh6AXkW15F4NV/rhILxcp1nzJKVrVcCH0/wcaLxQckDaazmT83l9y5Z2VqGVMCLx7QlK1szLUjmO0pCwS9Z2XoFkmUpEbqC9zlLVraejxTASITKQIHxVvM1JF7NVwCrnVDw0lx8n+dI+fskp5ywZGVrNlXmlDSJWs2fBfw1zimzgKedUPCDufi+JStbxyFZ6ZKlpc3phKKUKXoFv2Rl63Tg1gFO08Hdx3iD9r0k79TH6+A+OAywmj8WqHdCwR86oWCy55cUL1LmTqSGfTJ0cB8EAhVVO4Erib+anwDc44SCdzihYLZ75D9j4PFe9YFH0St44Lv07dTxKskd583sFH/yWSQcbiB0cB8kYlbzzTEfW8A3gUYnFMzUIfYy4C0pnKdbNYNEzGr+b3FO+RjQkmmVwiUrW88Crk3hVJUBj1JQ8DNjXj+c4Dwd3P1LrAzUJzhPZ+6DTNRq/kf0L0N6MeJ8dUUGt46VgacSnKcyMMh4q/n3IHHpnTEfnw6sdELBz2fghBkrAy8lOE9lwKMUFPzviKza/x+QqOTnCYVpjjII3EGk9nczYqaLh8pAERCoqOoOVFR9C1lxx6ayPRL4ixMK/sYJBdNxhvozsMv7/UXEqhMPlYEiwFvN/w64EFgX8/EopETxX73iNqnyb2Cj9/trwPuJXw9eZcCj6BX84lkz7kRMPrOQBxqv7KdL4tmcUuIsnjWjATgDmAPMAzYnOPX5QrVJGZhARVUDsuqqi/PxZ5CV3Fmp3GvxrBnrkbCsuUgBlNUJTlUZKCICFVVrESV/W5yPL0csOokiY/qweNaMPUiypbnA2YtnzXga2BnnVJUBj5LLRb9kZeubgZVRb7UBixfPmnHfIDVJKTBLVrZOoq8jTw/wv8AvNQ918eHVGv8icBNSp7vPx0g++z8EKqpcJxT8NPB5YA1SzOZgovsuWdm6i761y38FXLd41ozuXLZfyQ1OKPh+JApiYsxHvUjY2w8DFVU9TihYgfhe7QCuSVbQaMnK1makFkGYEHD14lkzEsrNUKLoV/BxiJ2xHVTlPuTYB3RFvR4O3KrKvTgJVFT1eg54FwMbYj9GomTuc0LB85AtuXOAq0keEgf9x4LbVbkXL4GKqqXAecCTMR8NA76HRFucjmSoOx94F5JLIZmeipWBu1W5R/CDgj9ai80MLTxF/mrM21MHoy1K6gQqqlqQgfveOB+/H1l9RTteXeWEghfFOTdM7FigMlDkBCqqNiJbbT+J8/E8JJ9CdCjdm5HQu0SoDCQh47jUwWLxrBkdS1a2HiBi5hmB1CrePXityi/LysqHI4I7DRiDmDlHRB0DvT6MmLT3IP+n8O+H5rc0l+qqdydwfNTrY4BNg9SWvLOsrHwYYo6eDowl8bNOJA89RJ579HGgkDIQqKg64ISCH0KiYX7t/S1hjo9zSY0TCl6coBxt7OB+TI6aWZQsKyu3ECfF6UhseSp9P/o1wF76y8D++S3NBSv1GqioOgx8zQkFG5CMh9FKOV6egxudUPDBQEVVPIe6ISUD6VJyCt5jB333cU6lBBW8N2gfhSQDmZ7kmEZ+rC2Hl5WVxxv09yAd53nEA3bD/JbmYjN9xu7LnQo8MRgNyQZv0J5E/2ceKxPH0n//Ohf0LCsrjzfo70E8lV9AZOCF+S3NsSFPGeEp6zudULAZWEr/8KdoLkJW9/fH+SyeDJQcngxMIPkYED5G56EJbhIZ2I04MK8D1s9vaT6Uqy8NVFT92wkFZyJK/q1JTj0eKXAUL5OlL2QgX5Sqgl9L38QnF9DX8a6oWFZWPgqJBJgZdbwRGbQH8xmMRGa8A816Dy8rK38RWI909PDxfC47fJqsBd4d9foCpBhRUeJZYU4j8vzfhMhwvgbtVBmOTDIHKtLRu6ysfCPeQE+UHMxvad6fyRcHKqqed0LB2xCHqmTff5MTCv4tUFHlxLy/Nub1BZm0o1B4ivxk+srAmcBxwGAm6rKQlfNAWQJZVla+hb5jQFgGdiW9MAGBiqpXnFDwFiRC4lj6VwgM83UnFPxDoKJqe8z7JSUDhaZUFXwLfWtBlw1WQ2JZVlZ+FH078EykE+dj9VUoRiITlH4hTcvKyluJdHQDNAEvDWT2XVZW/k7EW/p54EfzW5rTtcC0xLwuJhmYCJxLXxmwEYeyUmUYsjo6lZia28vKyncQkYFngRWAmd/SHC/r5Ous+ej7L3d7en81Yswops89mzGTEmYxPRGoBm6Ieb+fDCxZ2WoVg7PlsrLyAPLMw88/fJR6SdsTvePt0W8uKyvfTUQGnkPyVfx3IMvfykXvOH3s1CMfdHt7h0+ffRbjjk04xxiLJE+KLTS0CvHCD1s4T1uysvWIxbNmZDTp9BslFyYHsGRl61vom9FuzeJZM5KZ+fLCsrLyY5GYzOhOfFyevm43Yo46CHQj++rdcX6P93o0MjufQmSmPpn8KZxtwDLveBTYGK3wl5WVHwP8f/bOPT6uqlr835Ok0yR9pFCgpTw6PAQqGxqw0hQNlJeBiBWIYhQFtV7L+EC9VvnBLSreXgXt9YGPiNf6FoMSAcFKeBYCNJQCKWzetKS0tJTSR9pmkkySOb8/1pnOozOTeZyZyUz29/M5n2TOnDmzk7P2XnuvtfZaGwivXF8FGuevWZVyLgOnLnx3xKleoGbR3Jl58yUCrJwz7wBEBk4hrNCPytHX9SAysIvkzzuebHgQV8CBMUeu6mdvBx4mLAfPRyr8lXPmWVaZtc0O2lMBKqrHc9zHzmDSEQkX8gHAG7ll6uYnNlQAu4mW48MXzZ35ppt/yEisnDNvAvA+JIAwJAPHkRu3mh/pXzsJP9tUx4JyxIcf+fynsv+2NbfYi0z4VzrH07EK/+HTTn/cDtrzAKyKco69eB4Hzkqap+b0qgVXRaVCvvmJDc8Tvfg4a9HcmSuzbn0JUKwKPt4+6MmL5s6MF4ThGivnzJuERHqe6xwnunDbHmDzCMdb89esii3ikTXOKiPeoD8VmIlYHmYhprNs2ERY2a9EFPsLMddsBz48f82qx1K54c1PbLCQSPpIjXDiorkzY+/rKivnzKtEtnuFZOA9ZD+QhwbtZDKwJRfuEMd9FCkDkZPAI5DnfwIiD9nwDmGF/xCSkWwPonQAsMrLOObieUx995GJ7rG6asFVcyNP3PzEhseBeRGnLlo0d2a8POiusXLOvArEYhSSgdPJ3kI3wMjjwGZgj9tBkSvnzBvH/oo/dMwgPA4cTXayvoewwn8IWX2/CngjLzryvFqm152AZcW11m+pWnDVjMgTNz+x4Q/A5RGnvrFo7sxE2S7HFEWp4AFufmLDa0TUf66yhs89tdr/NLBbKeXKKs4R/LmEO/JcMndrbEIEeq1zPAdsLKAPO2VWzpk3BRnkZ8UcR5FZh9+IZB+MHckHgCvmr1l1ayo3ufmJDf8Gzg+9rsD+/NwJe9sQGXAlKNAJhKwlLAP1yE6GTNhGtAw8i1ghXB+03cZZpR7P/jLwLjLrE9uQSfp+RYSOOGc2h54+K94AH6hacFVUvMLNT2y4Cfhy6HUZ9g3zJuxdBuxRSgVib5AJju/8eMIycBaZr3p7CD//0LEe2FkEMlCJuGhiZeB4MusTuxH5Pzn2jUPmHIv3/PdglcUdXsZVLbhqX/+++YkNXwZuCr9t//19E/b6gF6llOsLo2KiiBV891/Bag69PrHSPzSlfDiIzKRfAn4C3KqUStkX43TkEwl35DNJ34QZQFanUQN5Bj7mUY/T4Y9DOvm7kZXM+8je9H8NcONIA97NT3RfD9a3Qq+P8fQPTx83GDJHb0S2Yf1BKRUvnWVCVs6ZdzRhGTib6GxpqRBEZDB2IH9rtA/i6eJMgo8hLANzkWIzNdncd8pxh7163EffP90qL4v0Wb9cteCqEyKvu/mJ7svA2hdcOWNcIHiUZ2AQGQd2IClS/08ptZ40WDln3gzgHEQGziEz19s6op9/F/BGCcpAOdEWv/cC88lyT3r19APeePcV51SVjx93cMTpnqoFV02JvC42u+mB5YPMquwfQGTAjwTf/koplSi9cclSdApea10GXLt3uOzaZ/urq2wsJpQNoyr9VERP+HsR89+fgS8nmsk5K5MLkLzI55HePsogkpXpMcIK/aX5a1YNpvlnlQwr58wbT7iDz0cUfiaz+9uBjyX6X2qtLw8ErZ8+01ddM0SZ5bGCnFzpZ3xZlDz3IRaG+4ArlFKxdapDbfYgq7JLEBlI14f+LPAIYRl4fv6aVbER32MGZ8CvJSwDZ5DZinf1SVde8OPqQ6Zcgax8F1UtuGrfhF1rfW7Q5nddfdUz+uzysjJsTqr0M7E8KrZvALEWrQWalVLdCdpchpj6m5AAspRy5EfwGmJ6fsb5rufmr1m1O817lAzOYukEpF/Nd46Dk3wkEeuPXnDaNQfXHvNxRGF/qWrBVd2hN7XWs22bW14YqDp+13BFOdicML6PqRVRRtwhZOG1CfiEUuqpTP6mYsQVBW9Z1jRkQB5E/OGX2badMH9wpmitPcA/EGGZMGhb+INlTCwbpjxx4cE+xAR2plJqO+yLcv4gEol/AemtOF8C7neOh+evWbUrgz9lzOAo/NOQZ3YWksUqVX/luvlrVkXta9VaW4g57rNA9bANe4LlTCwbjp3gRTKArObOUEq95rSrElHmHwEWID7IVNmITBruBx6cv2ZVWhaCsYaj8E8hPNCfRXSCm2T0ADPmr1kVFV+jtb4KuAGoCtqwO1hOtRXEU5ZwPBtGJv0XKKUed9pVgbhcPoKUN00n1mQbUrb4fuCB+WtWdafx2TGHo/BnEVb45yCxH6kQAE6MDcLVWi8A/gpU2TbW7mA5460glYllAGRFf4VS6rY0/4SixC0FXw7Ytm0HLcv6NHC4bdtLs75xBM7K/Z+kNziECNi2/dqOq76+zN6z5xLgA4gZNxW2Ip34PqQjb0rzuw0OK+fMexeyjSqdgKTz5q9ZdX/ohdb6R8DnSX/fcBDYvuu/v/+1oXXrL0T20KfqftkFPEh4YjfiNkBDfJzJ9TpG3ncfybfnr1n13dALrfXngR+T/jgAsHfvn265sv+Bh85ElHqq7ehDggRDMvDcSNsADYlZOWeeJr0g5X/MX7OqKfRCa30ecCeZuQP7gEuVUndn8NmiwpV98LZtR9pDJiGDuNtchPjEM+nUnr2//9Px9p49v03h2l7E1BbqyM+bwdw1ZpB+tHF36Bet9cnAIjKTgTL/ivapQ+vWp5IMJ4C4XUITu6fzmcqzxJlIesodIsp/aq2nIvE1GcV5DKx5emL/gytTkYGQ+y00DnS6lcnPAKTvBusO/aK1rgD+QuaxPlXAH7XW090KxBytpKTgLcs6BvEzHhsyvVuWdRnwQ2CubdsbLcuqBW5GTJ0fyEFbv02Ge3Zt2ybwxOryJJdsBNoQN0Pn/DWrSvqhF5BVyCrozATv9yFunnJEyf44xiz3X2SR9W3gidXJIv7fAe5AXEAPx5qEDa6xBUlNenmC9/uRZ1+GmNXbgL9FvP/FbL58YPWTkNhquRe4G5GB+4z7LafcgJSIjUcAcatZSPzEKuCbEe9fQuY7WUKMQ1Ig/ynL+4xqUjbRW5Z1K9Bt2/bVlmXNA1YADbZtr4657lLgbNu2r3SrkVrrOmQWnXE6x54f38Tg2qishuuQwaMNeNKs0vNDhC+uChlQ9yL7Y3uTrZK11jOQZ5Zxx957y63033t/5KktyKSuDXhkFObbL1mcnQpTCT//vYgMJAxQ1VqPR1xmGUfo9z3wEL1/iipmtwtx/bUB9+Yi34QhPk6isJnI8w/JwN5kCywnBkeTfhBkPNYB71JKlezYn46J/kbgQcuy/oTMcK8MKXfLssbbth0yX/UggQxuciGZmWX3MfkLi+hf2UGwp+eVvhX3XIpsXSvZBztacf7nmSSjOReJhs2YCc0fpWLGoQzv3LWr7867LgRWGT9qYZi/ZtV6JPg1HU4lca7ylKg8ez5lkyYy/NbWoP8fdzYCDxmLXWGYv2bVFvYvFjMSU3GvoMxhzlGycVUpK3jbtp+2LGs1st/wRtu2I5ORnGpZ1o2ISa0fiXB2kxlk2bGt8eOpajgXwD/3u98ec/shS4CpZJktzCoro3L+GQDMve7alDLmGUYVUxGTbcZYlsX4094LYFcvuLCj1H2wJchUxHyfapB0MgLO/YyCtywr5BMLIqv5fdi2vQrZ65or3NxXPmb3qBc5Q2Q5uEdgAuaKEzddKJbL9zPkhyGyXOxFYFHi+iCdNKP/iwTQvQpclpvmJOQN3HsQeS1EYXCNrbgnA9tcuo8hv2wlInd9lvSb1XtRsg33yiuPR+pZlCwpKXjLshYhe0YvQlbv37ASVALIEX/FnVXXXiTS31B8rMCd6ly9QIsL9zHkny6kKFG2DCIZLg1FhlJqN7ITxw1r3mqlVEZ17IuFEQdMy7LOReowf8i27a3AbYj/48M5bts+nDzSDyHugWzYAbRn3yJDvlFK7QV+hfjfsiWVfAiGUYYT7fxdZKKeDcPEuBkNRcV3yT6Qey9wvQttGdUkVfCWZZ0AtAKfsm37OdiX1OZHwNW5b14U30UC+DKlF7i+lLdEjAF+RHaTvH6k6ES2CsJQOP5Cdr7zQeChdIvPGEYVjyKJbzIdC2zE3fOAWw0arSRV8LZtv2Tb9kG2ba+IOf8L27bnJfpcLlBKdSLJETKZufmBfwG/d7NNhvyilNoMfIbMZKAfSdZ0nauNMuQVpdQAsm02ExkYQrZlfdrNNhnyi7NIuwjJYZDugs1GytReOBYWe274NPOGUuq/gaVIxrO4lA/1M3lHNxN2bwE7CDIQ/B24TCll9jwXOUqpW5FtmH4SdG4rOMSknW8waddGrOAwzrWrgHOVUmO2ylupoJR6DDgfybkRPzbHDjKxZxOTd3RTNjwIMma8BpyulCrpwKqxgFM06n3IhC1+sKRtU73nLWq2r6d8sB/nureB9yulXspXWwtJ0ZWLBdBan4PEBZyMbHWQqErb5vDuR/EEegHYOfWYd3Ye9K6vKqX+Uqi2GnKD1roW8aOeiQzy+xIhTdv0FBN6JVB+z+QZ/m2Hnnwd8FOllNkeV0JorWcCP0CqAQ4Rkcr6wLdfZMrODQD0V00Z2nzE3P/Fsq43E7zSQmt9APB9ZGeXjdRCAWDSzjc4+G3JqTVYUWlvOur9f7DLKhaHqoqOBYpSwYfQWnuBhYi5Zkr5YF/FzPUPT4+45PXqpsVHF6RxhrygtT4E+KRzHIhtj/e+et+0MjtoAdgwZMGk6qbFJgVpiaK1ngRcCnwOmA5UHv56x4GeQG9kMpRZ1U2Lx8SqbSzipDFeAFwJeIEJ0zY9NXFC77bI9OYLqpsW31WI9hWKolbwsfjbllUhOY0j98pOrW5avKNATTIUAH/bsteRTh5ibnXT4tUJLjeUIP62ZfcC50Wc+mR102JjyRtD+NuW/QL4QsSp66ubFn+nQM0pCEXlgx+J6qbFfexfqvY9hWiLoaA8FfN6TkFaYSgkRgYMY14GSkrBO6yJeW0U/NjDyIDByIBhPxnwty3LZ4K2gjMWFPyYm7UZjAwY9pOBU/1ty9xKc2soDl4gOnfKdKRw2ZihFBX8mDfLGHg65vWJTnyGYezwBtFpbScAxxeoLYYCUN20eAhJbxzJmNIHpajgnyV6b+xMf9uyrGrJG4oLJ6jy9YhT5cC7CtQcQwGoblpss/9kf1Yh2mIoKGNaBkpOwTvbobbGnD6kEG0xFJQ3Yl5PK0grDIXEyIBhTMtAySl4h1gFP6YeqgEwMmAwMmAY4zJgFLyhVDEyYDAyYBjTMlByCt7ftuxLwFkxp8fUQx3r+NuWLQCuiDltZGAM4W9bNge4Nua0kYExhL9tmRepQBnJmJKBikI3wE38bcsmAT+L89Yh/rZl45AqUhXA70zq0pLmZmByzLlDnD2wHwMOBX5f3bR4Z95bZsgXP0K2RUVyCIC/bdn5wEnArdVNi2N9tIbS4Tr2D6oLycBc4Aygvbpp8bP5bli+KLUV/EEJzk8D/gn8GvglUuPeUIL425aVAVPjvDUNmfz9FRn8Hx1rSS/GGAfHOTfN37bsq8C/kSI1Xf62ZRPjXGcoDeLJwEH+tmUXA48hMvCkv23ZcfltVv4oNQW/EakqFcsZSHnJEOeYwb00qW5aHCR6i1yI44AvRrx+N2PMXDfGWBfn3KHIoB7iAOCU/DTHUADiyYAFLCdcr8QDvD9vLcozJaXgncQG8R7qyTGv73H2yRpKk1finJsZ83ptddPit/LRGENBiCcD1cC4iNc72D/jnaF0iCcDIBO7EEPAg3loS0EoKQXvEO+hRq7WdwJfy1NbDIUhngxEpikdQsoMG0qXRIN7JJ93ClQZSpNUZOC66qbF3bluSKEYKwo+ks9XNy3elJeWGArFSDLwreqmxbEZrgylxUgy8LvqpsVteWmJoVCMJAOPAD/MR0MKxVhT8L+vblp8W95aYigUyWTgEaL9sIbSJJkMrAO+kq+GGArGm0AiC00P8KnqpsXDCd4vCUpqm5zDqwnOrweuymdDCklXU4OFPN8KYKi2rX2wwE3KJ4lkYDdweal36hCODJQjfufh2rb2QIGblE82AwEkiCqSYeCT1U2L9+S/SfknQgYqAGrb2sfM9uDqpsVBf9uyjUiAbSy+sbBFshQVfLyZexCZrY3qTt3V1FCB7NOckeCYDlQiA3ZFxBHvdVnMvXcjQUXJju0Rv2+tbWuPrMZVTGxGBvLY8qBfqG5avKEA7UmZrqaGMmS7ZyIZmIEEiyV69pHnymPu3cvIzz3y2IbIQdEFpDqD+0723ymxtLppcWch2pQqjlI+gOQyMInEfT9WHiLv3U/yZx4rE9uBzbVt7cFc/b05Zlecc7dUNy3+a95bUgAXeTCLAAAgAElEQVRKUcFvRhR6pIL7cXXT4scL1J59OAr8OKAWOJb9O+00cuc2mewc3lQ/0NXUsB14EXjJ+Rk63hjNHd4Z3HuJTnZzf3XT4r8Uqk0hHAV+NDAbKV8aKwOHkrt+OcE5jkjjM7u7mhpeYn8ZWF/b1h5vS+poYjfRCn4dsLRAbdmHo8APR2RgFnAY+8vB+Bx9fWXEd6RKX1dTw8uEn31IFl6tbWsfcL+JrhKbzGo30dtlSxrLtotucj4i/rZla4D3OC+3AYdVNy3Oq4m6q6lhCrI9bzai0GcDJyIdrNjxA6EOHznwv5qqGbirqaEGOAd4ubat/XnXG9i27Bbg487LAWCGU0Y2b3Q1NUwAFOHnPxuRiVJIrhJAXCGxMvBybVu7P5UbdDU1VAJnI4Nwp9uWAn/bsmuA7zkvbeCU6qbFa938jpHoamoYjyjxSBmYDRyYz3bkiGHE9Rk58XsJeLG2rX13KjfoamooR/KUjAPud3vh4G9b1gj8K+JUc3XT4lvd/I7RTKkq+ArgfxAz1jermxbvzdV3OSuyo4juvLXsv++6EAwjW8I8RG8VzBUBoBNY6Ryr4vn8nIH9ccJJRn4AXJODzv1N4ARkK8ybbt47EmdFdhjRz382UoO+0AmVQjKwn9smRwSBp4GHEBl4NNFg39XUcAfwYeflrcCn3fYR+9uWXQGcCyzLtXLvamo4mOjnH1qhF9pSGkRkoCyPbXmesAw8XNvW/k68i7qaGn4ILHZedgAXu+0adFITfwoJsr7PzXuPdkpSwecSZzBXyKBxLlCPTCTcYjviZoh3bAH2Ip110PkZ+3vo9XBoReRMQqYgq4ZUjqnAkWRvbRhAFH6ooz9R29be39XUoIDnYq79O3BFbVv7qN+X7MjA0YRlYD6J0yRnQg/JZWAX+z/veK+HQ5MmRwYmkdqzD/1+ONnL9jDwFPL8HwIeq21r3+NM8mKf9WPARYmUwWijq6lhBmKFOhexRBzu4u39SBR4IjnYSfg5JxsLhiJkwEJcNPGedaJjBu5YG54jPPF/OKTEu5oa3iDaZfQq0Fjb1v6aC9855jEKPgW6mhqOQDryec7PbFKcbgXWIgL/BtGd9q3REuXqKISZyAok9jggyUeT0Q+sQlbvn2f/XNGrgA/XtrVvy/D+OcNZnZ1NWKl7s7jdLkQGngW6iVHgtW3tvdm01S0chTCD+DKQaR8YRrLHPQRcjMQhRPIaMsAn2glRMLqaGiYDZxKWgXdncbteZAxYi5i5YxX4ntEQ3OjIwMGIJSxWBtKJ5YjlWUTZn4IskiJ5BxkHCh43VewUtYLXWo8HFgAfQqLPyxHheBC4VSmVkh8oFsd/Pp9wR44dhFJhGPFHrY08atvaizo9qtPhD2H/Dv9uxEydLeuRAf7lVC7WWpcjz+ijSIDaeByfLvBnpVRsPeiU6GpqqEYGnpAM1GZyH0RhhZ5/l/Nz42gYvLOhq6nhAOS5R8rBuxF3VbZsR1byj6ZysdbaAuqAy5BJaTViBXkO+L1SKl5tghHpamrwAHMJy8Bc9t+ZkQobiX7+a4F1ozlQNRW6mhomIs8/diw4juzdQQPAp2rb2v+e6ge01icClyPj9SRgD9L//qiUKtmKcckoSgWvtT4G+AbwScS/FGtG3Iv4mu4GfqCUejLZ/Zzo9vchK/RzgfeSnoCGVmSRx/OjZTWeL7qaGmYiE6P5wFlkHofQAyyobWt/JNEFWutpSMrh/0D8yxOJ9nf7kcG4A/ihUureEdpuAXMQGTgPOJ3991Anw4+sSiKV+XO1be05i/8YjXQ1NUxDgqbOQuQgtlxnqgwCl9e2tSes/Ki1nohERH8JcUFVEa2AB5DgOo1UEGxVSiUc8BwZmAU0IOPAmYhJO1UCiO85Upk/W9vWntfgzkLjLJDeT1gGTiHzWJT/B/wg0YRYa10BfBb4KjLejCO63sAQ8lw2AT8FfqOUGjP5IFxV8JZlfRy4ybbteGX6XEFr/SHgFsQ/PFLASBAxC1+rlPpp5BvO7Pwc4CNIoE+8EqOJ2IuYl+53jheKfUWWC7qaGryElf1ZpGfSs4Hra9var499Q2v9XqTk50RS207kB34D/KdSal+SGyeC93REBi4hPR9qAHiUsAw8XdvWPiYS6KRDV1PDdERRzkdkIF1r2J9r29o/FXtSa300cB9italK4T69iGXv40qpfS4QR6nXIjLQlGb7gsBqwjLQWQTbxvKOo/DPIDz5ryU9hf8YcEasxUNrPRVZxJ1EahMxPxLp36iUejuN7y9aXFPwlmWVIYFSR9m2faorN41Ba/0R4I+k1qEj6QV+MPTtr/8QmZ03IWb9mhQ/P4SYfEMdefUYywyXNc5AegLie03Hf3t0bVv7PhOr1roOeQbprKxAOvedw7f+4Qr7hWfPRGTg4jTaYgPPEJaBx1LdDmYI4wSm3YtsGU2VS2rb2m8PvXCU+2pk1Z6Oybwf6LI3bzx7+OafzEZkoIn03AovEZaBlbVt7T1pfNYAdDU1HIgs0hrS+NgNtW3t14ReaK0PQGTgSNKztA0iwYvvVUoVRTBnNri5ZeITwG3A11285z601scBfyB95Q4wIfiSvpay8sUEh1ONCtaEO/IjtW3tozoL3mintq3d7mpqOIz0g7PehVPfXWtdA7STvnIHqLY3bbjYXvfK+aQeJLiesAw8VCzR3aOccaSn3EG2m90OoLUuAx5AnmG6ft5Ke8f22uFb/7iR1C12bxGWgQdq29pNoaosqW1r39HV1HB2mh87Ieb13xGLYDrKHUT+ZgB3UMJ14EOkpOAtyzoG8S8ea9v2FufcZUglnrlI1OelwEXkSMED15L+wwTAtm2CK+4YT3A4mTl3J3AXsrp4sLatfUsm32VIystI4Euqk6zXETNsiM+TxaQ0eP+KSgb6k2398yOm/3ZkMF+f6XcZEvI2sIHU4zN2I/7zEBciyjmjIK7gYw9VsmtHMhkYREz5/8a433LJaiTuKRUCwJLQC631uxHXWqbZ/jzAKVrrU5RSz2R4j6IgpcHStu11lmXdjQQyXG1Z1jzg50CDbdsbLcu6AvibbdtBy3I/r4fW+mDgY6m2Ny5lcceDbcjK4DbE3GbM7jmktq19ozNz/wRiidmLKPy9Mb/bSODiY6HBVWs9DrgaiZDOjPK41tw9yMSuDbjHmN1zS21be19XU8N5wGcQRR353CN/hoKjHoqJbfg22ezNjz8ODCCTujbgrtq29tj0pgb3aUICZGcSfwzYgzwXC5GByJwJ1xIdSJcJlcB1SOxNyZKyD96yrFORme37kVXVV23bvtV570YkUjIIzAP+YNu2a5XbtNZfQ1JOZpx4Jfj6awT/9Q/o79vNnt1/RJT6oyYwqjjQWl8I/IXo/PJpYW/dwvA//wZ7dg/Qs+uviAzcbwKjigOt9fFIlryMJ3n27h6Cd7Riv7MtSM/OfyAysMK44IoDrXU1UgTHjVz9AeAQpVTJxlGkvCK2bftpy7JWA08AN4aUu/Pe1aHfLcta46ZydziWLLOqlR11LGVf+ibAC0qpL7vSKkM+OZIsZ+3WtEOp+I+vAPQopT7jSqsM+eRIxISeMdbkGsovXwSyMvy4Umq0F8wxRHMIYt1xQ8EPIBU6S1bBp+zHcqLkh5FV+o2JrrNte44L7Yolk6CqRGQSpGcoPLF7nLMhV5W6DLnFzb47jJGDYqQK0UFuYFPi+iCdQJX/RbalvIpkjMonGWUjS8CYSjpRQoRyb7uBMccWJ276xi0kqNJQXOwke/97iArclalRR0oK3rKsRcie4YuQ1fs3rFxE0yXmESTwIlv8SDCNofh4HHeqoQ0he/ENxcezZLiTJg7PJMtqZxi1vI17SrkX2RNfsow4YFqWdS4S4PYh27a3IkEpHsJlHvPBv5Go6myxgJtduI8hzyilXkKSDWU7KA8SrhFuKCKcYKjfIsFR2bAX2C9DomH0o5QKAksR5ZwNfuCGUo/BSKrgLcs6AWgFPmXb9nMAtm0PI/tSr072WTdxHup3ye6hBoDfKaXcmCgYCkO2MmADTziTBUNx8kOy98HuAla40BZDYfg92U/0QdJXlzRJFbxt2y/Ztn2QbdsrYs7/wrbteblt2n78CSmtmcnsPYgkzPgfNxtkyDsPI/nfM60Z70dyORiKFKXUBuBXZD7R6wOudBYNhiJEKeVHEqplGkPhB67JtNpoMeGGTzMvKKX6kaIVr5PeAD+I+Gzep5TanIu2GfKD4zO9CNmqmU7nDiJm2Ual1NpctM2QV/4TsSymq+T7gP9QSv3L/SYZ8olS6teImyVdJe9HKoze5H6rRh9FVy5Waz0BKTjTiPjUE211CWXCeh5YoJQq6jrshjBOicgfAj5EeSfa6hJEOvQ24INKqRfz00JDrnFqwF8F3IBseUu2lXY3MtG/RCmVsASxofjQWl+EWHdtkmc43IMsaD+rlPpbPto2Gig6BR/CqSj1WeBKRMmHMtKVIYr/z8DNSqmuwrTQkGucmvCfAr4MHER4G52FbKX5J/AL4FETMV2aOAWILgW+AhxNtAuvEinr/HPgnlIPqBqraK0rkaDvryAZVSMzU1YCa5Fa8LcrpTJ17xUlRavgQ2ity5GKYwcgiVB2Aa8qpUz60TGCs5o7GsltXonIwHqllBtbKw1Fgtb6CKRaYTWyan9DKWXyXowhnEn/Ychqfg+weSxbb4tewRsMBoPBYNifogmyMxgMBoPBkDpGwRsMBoPBUIIYBW8wGAwGQwliFLzBYDAYDCWIUfAGg8FgMJQgRsEbDAaDwVCCGAVvMBgMBkMJYhS8wWAwGAwliFHwBoPBYDCUIEbBGwwGg8FQghgFbzAYDAZDCWIUvMFgMBgMJYhR8AaDwWAwlCBGwRsMBoPBUIIYBW8wGAwGQwliFLzBYDAYDCVIRaEbYEhM/4oWDzAdmOEc04FKYBzy7ELHSK8HgR3OsT3i98hjd2Wjz87Tn2ZIkf4VLRXAIYRlYAZQTeJnnUgehon/3COPnspG33Ce/jRDivSvaCkDDiJaBiaRWt+PfA2wk/jPPjQu7Kps9A3l4+8y5B7Lts2Ynm+cDhupuBMdB+exWcNEd/6twMvAi8BLwIuVjb6ePLanpOlf0WIhz3ckGZhG/ixtNrCLsAxsA15BZOBFRAbeyVNbxgT9K1oOAA4juQwcSn4XYz1EK/7XiJABYItZDBQHRsHnmP4VLROBk4DZEcfJwIRCtitDthDd0UPHW5l0+P4VLdZYGCj6V7SMB04k/PxrERk4oJDtypDtxJeBjZWNvmC6N3MmOpS6HDiWmOOJloHZyASu2NhNfBl4PVML0FgZC/KNUfAu4QxUhxPuuKHjWMAqYNPyQQ/SwTXQATxU2ejbmOwD/StargG+gVgHvljZ6Hsm563MA/0rWqYR/fxnA7OA8kK2Kw/4kWf5PPAY8BDwarJBu39FyyeBHyCWo/+sbPS156OhuaZ/RcsUop9/LTLBG1/IduWBAGLxeQFYBawEnk028etf0TIfWI64Eq6rbPT9IffNHDsYBZ8hTic+CziDsFJ3e0VmI6byzc6xBdgLDCF+9aGYI965IWRgORCY6vyMd7htUViPDPIrgZWVjb5NoTf6V7R4gdcjru0FmisbfXe73Iac0r+ipRqoB+YDpyAyMD0HX/UO0TKwi9SefeQ5DyKfiZ7/gcBkl9u9Bef5I7LwWkjhO26qPqddIC6iL1U2+n7lchtyihMnMxc4GzgVkYGZOfiqXYRlYDMyKQo931THgnJgCuHnHW88mOJyu3cCDxOWAR2p8PtXtLyATIBD3Ahcm4k1yLA/RsGniGNmPR041znmkJ1vdBfwBtGdNvbYmq+AF+fvCymAqcggNSviOJbs/IDrCCv814DHif7/BYGrKht9v8jiO3KKY2Z9D2EZOJ2wgsqEXmADyWXgrcpG30AW35Ey/StaxhE9CTgCOIGwDBxPdqvQzYQH+seRVV7spGIZcPVoHeAdS50iLANnkt3keICRZWBLZaPPn8V3pEz/ipbYScAMomXgBGBiFl+xA1H4obHgL4gLM5K/A1dUNvr6svgeAyWg4LXWHmQFfQCiMHYBWim1J5v7OiuMkwl35DOAqgxuZQOvAmuBLufnWuDNYvI5OYP/sUR39NDPTAa47chEIpYfA99Ix5entS5DVk5TEQXUA7yklMoqIMwZzI8jLANnATUZ3m4D+8vA66NVkcXDGfy97C8Ds8hs5bfT+VysC6sN+FQ6A7zW2nLaMR3ZZbAbWK+U2pT0gynQv6LlCMIycA6Z+83fIvr5dyFujKKJWo9wRUZO/kNycEgGt+xBJgyxLqxVwIcrG33b0rmZ1vpo4EjnnnuBTUqp1zJoV0lQtApea30ysAj4FKJEI/8QD/BP4BfAo0qplP5Ix3Qc2ZEPSrNZvcCzRHfi5yobfb1p3qdocCZChwPvRla0ZyEmy3FZ3PZ24JMjrVq01kcBCxE5GI9YAUJUIiuEnwHtSqmUBtH+FS3TkWcfkoEj0mz7ABKLsDbieLay0bczzfsUDc6gPw2RgbmIy+L9iKLNlCeABZWNvreTXaS1noaMAV9GJnih52wjMrAWuAm4XSmV0oQhwv0WGguOS7Ptw0hMSqQiXzvS31Ls9K9oORBR9O9FZOBMsjP5rwM+WNnoeznZRVrrycDHgK8ARyOxACHGIZbSnwKtSqldWbSn6Cg6Ba+1rgFuI2weTWQ2DiKBPxuBC5RSG2IvcJTTacBHgA8jK9S0mgPcjwQVdQHri2lFlisc3/Q8pJOfhfyP01X4G4AzKht9b8S+4VhtfgV8HFn9JTMb70EmXh9USj0dp60WEgD1EeBixGqTDusRGXgEkYGXi2lFlisc3/QcRAbmIwo/XQvYDuCCykbf6tg3nBX7dcC1iEJNNpkIWfMuVUrdk6C9RwFNwCXIJCUd99tbiAysBJ4BXqhs9PWn8fmSxLH4nExYBs4kfQtYPzLZb4v3ptb6cmQsGCa566AXeaZXKaV+k2YbihZXFLxlWV7gSSSCFuCjtm2nZVpJBa31dGRmP43UfYHDiKnmDKXUs47QvZ9wZz4sjSZsQjry/cCDlY2+LWl8dszSv6JlAqLwz0JWW6muiv3AlMpG32DohNa6GvHfKVJfIdpIQNclSql2R6mfishAE+mt0LYDDyAy8EBlo299Gp8dszgKP7Syuwwx66ayu2QYOKay0bdvgq61LgdagQtIzz3UB3xNKXWz06bjCcvAqWncZy+izENjwQvF5G4rFM7YOxuRgUsReUh1ItVQ2ei7N/KE1nop8DXSsxT5kQnB4lQtu8WMmwp+mW3bH8n6ZglwBvZnEf9KuqtBuyw41DNz85O3lweHPkjqvqIeRJmEOvIrpiNnTv+KljnIRDAdPlzZ6Psn7Fu1PYSssCrT/X7LDvoPf+uZW8YP+s9FfMmp0Ids/QvJwFpjpcmc/hUtBwNvkl4fvqGy0XdN6IXW+tfAJ8gk9sO2/dPfefGWiX3b65BJYioMIT7hkAw8GTnpNKRP/4qWraTns/9XZaPvwtALrfXXgKVk5gbyA0uVUt/P4LNFhZvZkd5nWVYHMhj+l+2+7f+zSABNJr5da/q2F2rKg0OfGeG6ABLdG+rITxlzq6uku+sgiLg/QpyHRLGnrdwBDtq5rnr8oP9zKXznGsIysMqYW13FJv2cAPu2T2qtj0WsQBnJwJQ9b1ZP7Ns+kgwAPEdYBjoqG31ZBe0a9iNdGfh36Bet9STgv8k8xqMauE5r/SulVMnGxkCKCt6yrGOQ1fOxtm1vcc5dBvwQWU1tQfzXfuD/ENN3XJ9JJjgmuf8i0+0ots34wN5E5sBeYAXi119R2ejbm9F3GFLhSWSf65WIv2yPc+x1jj2IApiCrJz/q7LRtz3i898miy064wcSPtpBZCC/DfinSceaOyobfe/0r2i5CvgWEsQaeu6RPwPIrpgg8NPKRl/kJO9qskgaND6QUE/bwKOIDNw+UqImQ9YsRALfjiTc/yNloB/x15cDt8Zsn13owvfbyDhU0qv4lE30lmXdCnTbtn21ZVnzEKXYYNv26pjrGoE627a/5VYjtdYXAX9ECixkxNSd6xny7+XFyiPpK6scGrDGvd1XNn5rn+XZZltlQcJR+EFEwHqQrTap/Bzw1XmN6T5FMklPqrVWwGoy26oIwOQ9mxnf8xbPV3rZU14VDFjj3umzxr/VVzb+7aBVFhl9bSMTv9DzTUUG+owMpE6GMnAAsi88o9U7QHXfDmreeY3nK73sLJ9kD1oVO/rLPFv9ZZVvDVvloejrUJv8JH7e8c71GhlIHUcGrHRcXs5ibzOZbcmLZScwTSlVsu6WdBT8qcCDSIDafcBXbdu+1Xlvsm3bu53fvw+8aNv2H91qpNb6h8DibO4xGLRZ45/AUG7qdgwS7vQbkcjqdc6xHljnq/PuyMUXjxW01qEZf8ZJRWwbnu6txJ+buh1DyEC/GxmA1hEjA8DbRgFkjtb6DGT7a6a5CAB4wT+O7cGcZI0NEpaBt4gzDgCbfXVeE8ORIVrrQ5H/ZcaTvAh6AaWU6nbhXqOSlEc627aftixrNRLFfmNIuTucaVnWd5AZ7+vI9hU3ybqq2iBluVLuIHEBBznHMUiUaBQtnd27iO7okR1/k6/Oa8p0JmcK2e2tB8iVcgfpS6HsX15kG2cse1s6u9cTXwY2+Oq8JbuScAlX0qj22lmLUSLKkDZOQUzPp8W5pr+ls/t14svA6746r4n3SM4UZEHlhoIfRlxB3S7ca1SS8mhnWVYZ8g8JIn7Ufdi2fRdwl7tNiyLrAJcqy+bA8iF2DOez6mIUU5AAsffEeS/Q0tm9DjFBdyIRu8/76rwmwC+MH5G/jLEsmDEuwObBbLLLZsVEZF9wvL32wy2d3RuQAL9ViBw846vz5iVNbZHgSrrWGeMGWR8oWN2XSsIZ4GKxWzq73wSeJiwDT/rqvCWbKCsD/LhXPtlCVvElSzom+h8Ddcj+85/btv3bXDYsEq31VcANZOF/BbBthncNl/9L91e1OKesmJ8gk56JiBlwcoo/c7Ek6EWC0kIdvdNX5y3pTFjJ0FpfANxKFnEYIfYOlz33TF/1N52Xkc8+9HsZ6ctALjRGgOjBvhPYOFbN/E4E/bNkOQ4A9AetHU/6J1zmvEwkA9WkJwNZtysOw0hEf2ji3wm8OoZloApJgOTGCn4AOEQptduFe41KUlLwlmUtAq4hnIbyO8C7c7AVLi5a6wORJDPZdqA+YJ5Sam32rRJaOrtDmdRqkFSZRyHpEo+JOI7GHQWwnuiOvnasmHVdDK7ZC3xGKXVb9q0K09LZPR4Z6A9ATPSxMnAM7lTs20y0DDzlq/OOmaIcWutOZBzKhj7ge0qppS40aR8tnd3jEBkImegjZSD0uxsVJ3cQLQOrfXXeklVSsWitfwt8kuwWVkPAbUqpj7vTqtHJiAresqxzkZXTfNu2n7Msqxyp+ft127bvyEMbAdBa3wx8huwe6hNKqTqXmpQyLZ3dZcChRHf0yI6fbs77EP3IKv9fwB2+Om/SnM3FjmPJ+R7ZKcq3gRlKqbzGPDgTwYNJLAOHZnjrISRF7r+BOxCzfsmu7rTW5yPVxrKpaNYHHK6Uynvga0tn9wEkloEjSC27Xyw2kkX0PkQGHivlmB6t9XGIzGez4OsDTlNKaXdaNTpJquAtyzoB2Rt6uW3bKyLOfxH4pG3b83LfRMGpEvQcmSc38AMfVkrd716r3KGls7sGqSc+D3GDzCOzwMKXkA5+B+K7K6loXa31RKRwRLwKZKngR1JUtox4ZZ5p6eyegJTNjJSBdAvdgOziuBORgUdKzcLjZDN8EVGKmQTU+IHfKaW+5GrDXMCxAoUK9oTkIN1CNwDvIDFRdwL3+eq8eSk1m0+01nchia8ysYwOAI8ppc5xt1Wjj6IqNqO1bkRm7+kqeT+wRCn1Y/db5T7Oau8owp28DimJm86AtgXZUnQH8FCpBGtprWuRwi4TSU/J9yK1p68slhzULZ3dhxE92M8hPd/jLiQL3B1Au6/OWxJJnLTWhyPBiFNJr0/0IZkqLyiWvc8tnd1TiZaBuaQXh9IHtCMycLevzrt9hOuLAieb3WPIBCgdJT+ARM3XjYXKckWl4AG01mcj5UQrkWpyyRhCApW+pJT6Xa7blktaOrurkYIYkSu8VM26e5DERHcA//bVeXty0sg8obU+CbgXWcmPpPBChWaWAdcrpYrWqtHS2e1BIvAjZeCoFD8+gGTruwO4y1fn3ZqTRuYJrfVhiOI6itQm/L3I375QKVW0k92Wzu5yJAI/9PzrkFV/KgwjqcTvAO701Xm7c9HGfOGUiW1D/gepuGx6gaeAi0o9RW2IolPwsG8G/yXg84Sj3iNXc3uQKNi/Aj9RSj2/302KHGeVPxP4IHAREvyYympmECnY8jegtVi34DhZzRYhclCDDPKR22d6kTSXdwM/Vko9nvdG5oGWzu7pQAMiAw2k5pe0kZVsG/DHYl3Vaa0rgU8DVyF9YRzRMTp9iEw8CvwYWFEs1pt0aOnsngKcg8jAhaSeL2At8A/gd746b1Gm5tValxGuBT+b/ctHDyDyrpFEWX/Nd/xNISlKBR/Ciaw+FykbOQ1RcNsQE+4dSqkxkzTC6eSNSCe/gNRmtD1ICuAWX533xRw2L2c4Ptk6pJb7DETBvYOYcP+mlCpqa0U6OFae8xAZ+BBiwh6JASSItgV4olgD9JxUxh9DotcnIZHmzwO3KKWK2lqRDk4k/xmIDFwEHJ7Cx4KIz74F8dkXpZVLa+0FPg68C5nk9CBJhG5RSo3Jss5FreAN8Wnp7K4EzkY6+IdJbWvZSqSD3+Gr8wZGuNYwymnp7K5AsuldhEx+vCl87BlEBm4pVsuOIYxj5TuVsLJPpTzuOqRe+u+K1bJjCGMUfInj+OzmIor+YmR2m4ytSEXAXxer2c4QjTPQn17p4WQAACAASURBVER4oD9lhI/sJmzZeSHHzTPkiZbO7mOQceAipKZIsiDVAcSN90uK2LIz1ilKBR/oaPUAP0GSRiz21De/WeAmFQXOQD8Lqae9kORb8YKI/7oFuHe0me0CHa0WcD2iuL7tqW9+tsBNKhpaOrtnIqbMRYy8sn8YkYHbR6NlJ9DR+gXEJXWTp775vkK3p1ho6ew+BPgIUjL1pBEu7yJs2Rl1OzECHa0XA58F/u6pb3atyFkpUHQK3hnYNeHI0R5PfbMrRSjGEs6e20uALyCz+WSsA24GfjtazHaBjtZ/In5mkN0SUz31zWMmm5cbONadBsCHBGsmW9FtBX6DWHbeyEPzRiTQ0fo9JMNmiFM89c1dhWpPMeJM+k9HZOCjJN+ZtBv4E/DL0WLZCXS0NiPB1CEu99Q3/6lQ7RltFKOC/wwQmwf/BE99c0lnccslLZ3dJyEz+U+RfI9tLxKJusxX5y3YNpNAR+sZyMoykv/w1Df/phDtKQVaOru9yK6UhSSP2RgClgNLfXXeTXloWlwCHa3HIImdIneO3Oypb76yQE0qelo6uw9GVsKLGHn75W3Atwup6AMdrVOADUh64BAdnvrmMwrUpFFHUSl4p1OvZf9Uped76pvbC9CkkqKls3sS8AlkVR+v4lmIHmRf+U99dd6sK/2lg9Op1yLR0pFc46lvviGfbSlFnL32lyArumQD5QBitv1+vosgBTpaK5D93LFpp//uqW++NJ9tKUWc1NqRlp1E1duCSPKo7/jqvHmPUg90tN6CuJoiedZT3zw7320ZrRSNgnc69SNIcodYvuypb/55nptUsjhmu3lIB7+UxGa7d4DvI8FYeSl4Euho/QsyCYnlJk9981fy0YaxQktnt0IsO5eT2LKTd6tOoKP1O8C347x1r6e+uSEfbRgrOPEanwc+R2LLzhBiVf3vfFl1Ah2tlwF/jvPWRk99c+zkf8xSTAr+W0hQVTx+5qlvviqf7RkrtHR2H4SY7b5O4g6+GVgKLM9lIFago/UTyIohHvd46psvyNV3j2VaOrsnIpOqbyI54OORF6tOoKN1HrJ6L4/z9jpPffOxufrusYxj2bkYkYFTE1wWsurckMtMiYGO1plI2eDJcd4eBqo99c2jLiC0EBSFgg90tNYh2ajidWqAdk998/l5bNKYwymG8mWkgycqedmNTML+7KvzDrn5/U6nXotkrYvHek99cyLlY3ABJ4nKp4FvkTiByjvADUgglqtWnUBH6yQkovvoBJcEgSozuOcOx7p3MfDfJE6R60esOj9026oT6GgtRzJx1ie5zMRkOYx6Be906mdIvHIAM7jnDSdj3teA/yRxtryXESVwmxvb65xO/SDJfcJmcM8TTiKlzwP/RWKrzhbEqvMbt6w6gY7W3yIlo5NhBvc84OzAaEYm9MmsOv8L/MQtq06go/UapGR0Mj7kqW++243vK3aKQcF/H/h/I1wWRMwyRVtEothwTPdXI7ngExV8WQt8xVfnjY14T4tAR+tnkcjtkZjlqW9+KZvvMqROGladbyKTvYwHm0BHaz0SgzMSCzz1zXdl+j2G9EjDqnM9EquTcR74QEfrEcB6Rq658XVPffOPMv2eUiJRdORoIrZm75NxrikjsdnOkAN8dd53fHXebyCz918iRWximQ2sbOns/r+Wzu5ECiAVYmUgUVKbTGpnGzLEV+ft9dV5b0D63neBeElQvEhGtH+2dHZnUt8+RKwMvJ7gOiMDecRX5x301Xn/D8mQ+RUg3o6Kg4CfAY85W3Iz5QyilXuinBxGBhyKQcFHzsafQRItxMMo+ALgq/Nu9tV5v4h0qt8h1pRYPge82NLZfanjw0uXSHPbJuB/ElxnZKAA+Oq8u3x13m8je6eXAfGKPF0IvNDS2f1lx7ybLu1ItDZIwpUvJrjOyEAB8NV5+3113puQ//81QDzf+1zg6ZbO7v9x3Dzp8jDhSeQgYjmI5/4xMuBQDAp+KZI/+bPA+5ABPh5v5a1Fhv3w1Xm7fXXezyKBN61xLpmGVC1LeyXnqW/+K3AWkoDjFCBRco0t6dzX4C4xVp1fsL9VZyJwExms5Dz1zauA05Bte6cggVbxMDJQQFKw6lQA1wLPtnR2z0/n3p765k2IVfBK4DTHzx4vWt/IgMOo98HHEuhoPR14LPIUErX7HU99c3H9MSVMS2d3PfBr4IQ4b+9FOvkvI31yLZ3dZwBHAHf76rwJy7wGOloPJtoUaCP7cH2e+uZ4rgJDAWjp7D4RkYHT47w9BPwA2TvdH/GZ2cggfr+vzrs52f0DHa27iN5V0Q5calIWjx5aOrsPA36OFLiJx3Lgm746746Iz3iRCf1jvjrvK8nuH+hofRKYE3FqLXChMxkY8xSjgj8GeC3ilElsMEpx8t1fi5jsxsW55AngP3x13udaOrsjA+meA05PVNgi0NFahkzsIk29VZ765nimYUMBcbKiLQJuJH6ynFeBRb4670POiu4BxLK4GZiXLO99oKP1ZaL9rSd56pu1W203uEdLZ/cliKI/NM7bbwNXIbEaRyG1RqqAPcA5vjpvvLgrAAIdrXcj2fZCXOKpb77drXYXO8Vgoo8l1iQzzSlAYxhl+Oq8A45vthZ4PM4lIZ/c95DKViFOQrZgxcVT3xwEtsWcTqXmvSHP+Oq8QV+dtwWpYnhHnEveBTzY0tm9HMmaGBqTZgAjRULvNxZk01ZD7vDVef+ByMCv4rx9COLWuwtJPVvlnJ8E/HqEmA0jA0kYabvBqMNT37w30NHqB6pDp5CMRglNuqVCz/Il44HxyGq4IuIY6fUgsCN01Cxcmte94r467wuOyX4R4k6JzEBVgazwYyNiv97S2f17X5030Z7mrcD0iNeHAKOiylku6Vm+ZBwyACZ61onkYZhoGcirtcNX530TuLils/tixD8fu5L7LPv34aaWzu7zfHXeRGVgYwf3MTHJ61m+pIKwDKQzFoAEv4XkwF+zcGneTLiO283X0tn9F8R1Myvmkg8CZ8ecq0XGjV8muO2YlIFUKToTPUCgo3Ud0ZGStZ765rWFak+29Cxf4kGU1YwRjmy2mkWyl4jBPsGxFUlY83rNwqWuZaVzfHI/Q7JhjcS9wPnx9k8HOlrvQQpihPiop775NndamX+cQfsQRpaBg136yj5GloFtwCvAq25OCls6u2uQGga+FC5/GTg5XrKcQEfrz5A8DCGu9dQ3f9+dVuafnuVLypAtZSPJwDTcsb4GCD/r7cSXge2IS/TlmoVL/S58J7DPfff/EBdeshK1ALuA43x13lirHYGO1quQrHkhfuepb/6sW+0sdopuBe/wAtEK/lQkuGLU0rN8SSVwIhJANBsxTbo9aKfKROdIJXYh0LN8ySvAi0h5zhed4+WahUvTTkXqrOQucVZyvyL5jPsDyETgH3Hee4FoBX8qUsJy1OKsvo9Hnn+t87vbg3aqVAGHOcdIDPcsX7KO8LPfJwc1C5emnaHMWcl9wVnJ/Q7pC4k4HsmceGOc92J3UyTKkT5qcJT4Mcjzn42sYg9DZOBQ8jsmhxYW00e6ELB7li/ZQFgG9h01C5fuSPrJOPjqvAPA9S2d3X9DAmRjKwNGMgWZEH4uzntFJwP5pFhX8N8huprULz31zYn2xeadnuVLphNW5JGDeSb7f0crNpKlLLKza+DpmoVLR4xkX3n3nVdUDvX/pmf8lIrummMJliX817wBzPLVeaNWD3GqSd3nqW/+QPp/Rm7oWb7kAKKf/2xkgjfSaqXYeJNoGXgeWJPKau/hu+54/7jgYHt/eWX1ugOOZ6g84b+mFzghtlJZoKP1NCRQM0S3p755pDrmeaNn+ZKJSDxJ6PnPdl7Hlrsudt4mevL/ArC6ZuHSEd2mj9152xG2RZdN2YGvHXgC/RXVyS6f66vzro48EehoPZBo994wMMlT35yX6pajnWJV8BcSnQBntae+eW6+2+HMxmcR3YFnk7tAj2GkkMMQ4lcfijninRtC/PYHAlMRM38uV4p+pDDQSmSv8lOxCr9n+ZIpg2XjNo8LDlYBvDVhBh1HnMNg+fhE9/yBr857deSJQEfr8cigEmInMDXfWyV7li+xEGvSKUQr9GyytiXDRlwsqTz7yHMe5Nkf6By5XCkGEMW70jlWxVp7epYvsfrLKzdXDvdPB9g1/gBWHtmA35OovAF3+uq8UVutAh2tlUikdeTfcpCnvjlRhrOc0bN8yWHI6jFyQncMkKsA4F7CzzfVsaAcWQ2HxoJcTjaDwNOEZeDReAp/8x+///iEwd55AP6Kah4+8gPsrDoo0T01UBub7jaOy3aep765M+u/oAQoVgV/KLKNJsQAMmvL+R7onuVLjgLOdY5zkI6SLTbi8948wvFOzcKlGedyhn2TksmEB/p4x1RgJjJ5yTZopZdohf+0c98ol8qu8VOcAT5u2XEbmOOr8z4dOuFsldtF9Naroz31zYlSmLqGY6E5h7AcJMrBnS7vMLIMbM02JsKZlEwk8bMP/X4Ekscg278vAHQSofARxRe1yu+rqGLlkQ3JBvhP+uq8UeWCAx2tzyAKNUSDp7753izbOyKOhWY+YRlwKz3qLkaWgbdqFi7Nqu6GIwNVRD/veMcMRAaOIrvJShB4imiFv3vn8us2l2HvC7gcLKvgscPPYfOkhPPjZU4ypX0EOlr/Bnw04tSXPPXNv8iirSVDUSp4gEBH65uI8IU4xVPf3OX29/QsXzIViewMdeRs0iC+jii2tche7zdwadDOFT3LlxyIKOTYYyaZdfi9wKM2nGjFrHL7Kqp4+MgPsKMqbkjCw7467/zIE4GO1pXAmRGnLvXUN/89gzYlpWf5kklIHuyQDKgsbreZsAw8i7g5XBm0c4Xz95/A/jJwDJm5nQYQhT+VmP/lkFXBY0ecxZuTZsb7XLevzhtlgg90tP4f0b7Z//LUN49UbSxtnBiaeYRlYA6ZW8K2E5aBtUgBlc3AFjcD2dykZ/mSKmQSEysDx5GZJWAYUfhDxCRCCmLx1KHzePXAuNVoe3113igzT6Cj9ZtEx2j83lPfPFLVwTFBMSv4O4EFodebJs7c4x83aRhRIB3IVpzHlVJp/YGOIL+fcEc+hfQVWT9iTlqL1K9eCzybik+qWOhZvqSa6A7/biSVcCoBOwkZssrtxw4/23pz8n4D/L99dd7GyBOBjtZlwNdDr9+uOrR3V+XUIcRq0IXIwL1KqbQmT04w3GmEZaCO9E3aQ4g/MvT81wJraxYu3S8SuFhxdn8cS7QMzCXLXOA28NT0ebwy9cTYt1721XmjMiMGOloXEbG3euf4A/u2Vc8YRKwDryEycIdSKq1tgY6lq5awpa6e8P7sdP6UV4mWgS5gcz63p+USZ/eHl2il/14k3iQrXpyq7GemzbWwoobfHl+dd0rkiUBH69lIgiQAeismDrw5yTuA7BTZjMjHrUqpkhl/U6UoFbzWesGEwO6fH9b7xhEgs/4Nk49luGzfGBxEOvhupDBJSzJF37N8ySwk3/15iJJK6AyO93FkNRLZiV8ZrSvyXOKY/Y5DTJfzkXSTaccj2GC/Memoux478pxZyOCxCQmw2acctdbzPEP9v5q557WTLSBIGW9MPppAeWXEbdiLrBR+DnxXKZXQhdOzfMmRSDrN85y2J3QGx6GfaBnoQqKLR+WKPNc4/8v5EUdGgW/bKw9aee/RC2psq+xExHT9AV+dd59rR2t9XHlw6Jfe3a+eU24PYwNvTpyJf1yUm2cPstL+M/ANpVTCqP+e5UsOQsaBBsRql477bQhYgxTECsmArlm4tDeNe5QMPcuXHIJYvc5CZCDucnwkeismdP3r2KY9Q+We9yKWn0/76rz7EiZprQ/BDt40c/e6S8cHByyArdWH0jM+6tHtRSbodwNfUUolTYFcSrim4C3Lmg9ch3Smm2zbdj1doNbaAr6HpDWsrhzyM36oj95xk0aKwL0X+LhSagD2KaKTkOxpTaQnfINILvz7neOpsajMU8H5Px9P9GCfjsK/r2bh0v0i47XWn0OKllSNGx5gwuBe/OMmRCr3WPyIReV8pdS+Klc9y5ccgzz/JmTFnipBZDAPycCqfCeOKSZ6li+ZSbQMeNP4+CvArJqFS6OqFGqtG5BtkdUVwcGyiYHd9FdUJYvC7kcKUp2tlNoXp9GzfMmhyFbMJsTdk47LQROWgUcy2TI4VuhZvmQa0Qo/NslNMrYDx8Vux9Na1wL3ATVlweFxkwZ7GCwbFzvBi2QIWfSdr5RKmP62lHBFwVuWVQn8HWiybTtnWdK01j8AvkD620z6gJWHrWm7rmx48KNIZz42jc93Ee7Ij47VWXm2OIPpy8TPSZ6I02oWLt3XGbXWCxHlnnQ/TRwCwCsHv/DAZZV7ti1AZKB2hM9E8gphGVhZs3BpvHKYhhFwXGAvkJ6S/0rNwqU3hV5orc8F7iR9GQgC2ya/+fwFNZueOwOZ4L+P1F1wmwjLwAM1C5eaCpYZ0rN8SQfiCk2VP9QsXPrp0Aut9YlI+uvJCT+RmD3AGUop12O2RhtubZU5HVGid1mW5Qd8tm27Kvxa6zPITLkDVE1684VzyoYHL0jx+g3IzPB+4MFS8psWmFmkp9xBTO0AaK2PRLLgpesLBfBUv7Ph+PF73nmG1IKj3iZ6MC/5NLh54iDSU+4QLQPVQBvpK3eAMs+ebQdN2vzialIb+3qQnR8hOXilVHzno4D3pnl9pAxYwO2kP5aEmAjcqbU+SikVHPHqIiYlBW9Z1jFIxO+xtm1vcc5dBvwQCaqZhqyI65CglO8gNXvd5Ntk1qnBtpm05aVkkZ7DwIOI0NwLrDcdOSc8hQQ+pWI9CQJ31Cxcuibi3DfIIlnQxLdeHmeR9LGuQrLmtSP+UyMD7rMFeAQx146EjbhCIrc8XU42MrD1tfKyYFKP2nOIDPwb437LJa3AFSle241kMwxxNpL1L9NtexayBfB8YEWG9ygKUjbRW5Z1K9Bt2/bVlmXNQ/4xDbZtr7Ys6wKg0bbtL1uWNR64z7btVDpwSmitj0eCVzJZuQFwiL6X8b1RLpwAskpvA/5Zs3Bp3pNjjEWcbXfnIM9yr3PsifP7QKSC1VrXIBGxmU3ygANfW8WE7RsiTwWRHRdtwO01C5eaGtJ5oGf5kgmEg9hin3/k674YGShDtpamkl43LpM3PUfNm8/Hnn4KkYG2moVLk9YfN7iDs1PlDMSas4f4Y8BepCBObPzFI4h5P9skQquVUnlPkJZP0lHwpyKr3PcjivGrtm3f6rw3FbgViUA+DbjStm3X9iFqrb+FBPBl7FIoH/Az+U1N+WDfxqpdW64B7i6lbWuljta6GalAlalZDmsoQM2bmvIB/57qnZu+gVgIYqtRGUYpWuv3IElS0tnhEE1wmMmbX2Bc3+7h6h0brwb+UbNwac6TIxncwZnob0Oq5GVLADhCKfW2C/calaSsMG3bftqyrNVICsobQ8rdeW+7ZVm3Aw8jqyK3q/kcnk5b4zE8vpqdR58GsFUp9ZeRrjeMOg4hy05tV3jYNfNUgMChSt3sSqsM+eQQxJ2WOWXl7D78JABrO/w8tLPGUDQcjGyXc0PBDzj3MwresqwypHMFiVPZybbtXxDtK3MTN3Onl1LBl7FEGe7l9c5n1TaDe7j53GyX72fID27LQEnrg3T+Wf+LFCp4FbgsN81JyGZkYuEGJTtbK3HeQXIQuMEul+5jyC/v4N4kb1gpZSqOFR/bca9IjgeRqZIlJQVvWdYiJBnERcjq/RuWZbnV0VLhDiRRRbbsBf7kwn0M+ede3NnW2Q/c4sJ9DPnnaSRZSbYEKfHo6VJFKbWd/WvAZ0o3squjZBlRwVuWdS6SPe5Dtm1vRbJHeZCUjnlBKfU07jzUQeBvLtzHkGecQJi/484Af9PIlxhGG06q4R8QU4UuA/qBpdm3yFAgrkci7bNhD3B9urVKio2kCt6yrBOQ/Yqfsm37OQDbtoeBHwFXJ/tsDrgeWYFnSh/wg2T5yA2jnu+RnZl+ELitlKNmxwC/GvmSpNjAi0qpp9xojKEg3EV2ugAkwO42F9oyqkmq4G3bfsm27YNs214Rc/4Xtm3Py23T9uNfiFktk9n7AGIBMCu3IkYp9RKSXCmTVMHDSPzFYlcbZcgrTkWwzyMT9kzYgyTLMRQpSqlh4GNkbsnxA83pVpksRoomitQxpVyGzN7SGeD9SHWns5VSo7LWsiEtvgP8hPQ6dz+wEThdKWX2vRc5zjbXL5Cekh8CdgDzlVJu+XANBUIp1YG4ifeSegC2jeiOjyilHhjp4lKg6MrFOnmIv4wM9BVI0ot4AX97kC0QLcA1xjRfWmitL0bKwE5GstvFm6z2IjLQBviSlQo1FB9a69OB3wJHIHFB8YIw+xDZeBj4tFKqpIOqxhpa6+OAPwKzET0Qr9T3AKLcNXDFWJrgFZ2CD6G1Lgc+AHwJKUEYqhU6iKS1/Qlwh1LKlPEsUZzJ3jzgi8ACwoWIhpCc9z8BbnXMuoYSRWt9ErAI+ARQgwz0w8j22l8Cf1BKmcpvJYzW+ihgoXMcjEzqgsi2ut8Cv1FKrStcCwtD0Sr4WByFb40Fv4ohPk6u8nJjrRm7OJO+cUqpnJWtNoxuQjIADJZ6lPxIlIyCNxgMBoPBEKZoguwMBoPBYDCkjlHwBoPBYDCUIEbBGwwGg8FQghgFbzAYDAZDCWIUvMFgMBgMJYhR8AaDwWAwlCBGwRsMBoPBUIIYBW8wGAwGQwliFLzBYDAYDCWIUfAGg8FgMJQgRsEbDAaDwVCCGAVvMBgMBkMJYhS8wWAwGAwliFHwBoPBYDCUIEbBGwwGg8FQghgFbzAYDAZDCVJR6AYY9mf1+WdXAYcCM2KO6UAlMA55dqFjpNeDwA7n2B7xe6Kj57R7Hgzm/i81JGL1+Wd7kOcdKwMzgGoSP+tE8jDMyM898th12j0PDuX+LzUkYvX5Z1cA0wg/98gxYRKp9f3I1wA7if+8440LO0+758HBHP+Zhhxi2bZd6DaMKZyB+wTgXezfaUPHAQVroGADbwMvAy8BL0YcG0+750EjNFmw+vyzy5HnfzzxFfgM4KCCNTDMDuAV9peB10+758HhQjas2Fl9/tkW4AVmAYcRXwam8f/bu/P4SMo6j+OfX2fugRGYQQTCJcMK+OgYlOAglxE06wEoeBBUvHVRvFZWV13vY3FXXVhAF3EB2Y2ggiuyGAUCeEJU4sCD3DBAYEBYGGDuSfezfzwV0+l0kk66Up2ufN+vV17p6q5Ufkk9Vb96nnrqecAaFOKQp4C7GN73Q2Xhrvae3i2NDEwmpgQ/jfo6O5YCK4AXJN9XAPsTr6qb1XpGnvDLD/iar/aTE9w+wJr2nt6npyPQmaCvs2MJ8HyG9/8K4HnAwkbGVafNxMRfnvRvA+5o7+ndOJkN9XV27A5sbO/pfTT1KGeIpEXOMbIMrACWNDKuOg0CdzOyDNwK3Nbe07tuMhvq6+x4JjC/vaf3gdSjnOWU4FOQ1MiWMzqZ79rIuDI2SKzx/wq4Briuvaf3kWorJv+vS4GjgaeBU9p7ei/IKtDpkFyw7MHoMvDsRsaVsUA86f+GWAaube/pvW+slfs6O74BfATYAnwR+HIztw4lZeBZjNz/K4gtNbOpv9MDwO+Aa4nl4Pax9mtfZ8fJwFnEsnMO8Vyg2wIpUYKfgr7OjkXAIcCRwGHEGtmiFH9FEVgDPFTxtQZYR0ymW5Pvla+rLc8HdgCWJt8n+kqrZvFnhg/y64ZqaX2dHfsSr/bLfQH4XLOc4Ps6O+YCBxHLwBHEk/ozUvwVAXiE6mVgLePv72plYx7x1s9E+36ojGyX0t9xL7EMXAtcM1RLS/5/lU28FwDvaZam377OjgJxvx8JdAAHADum/GseY3QZeIh4L31o39Z6Lmgh7tdq+7va1/akc2HyMMNl4FpiS08A6OvsuAfYq2zdq4Hj23t616bwe2c9JfgaJDXOA4gH8lHAS4gnzKl6ELgZuJ/qB+9jjbzHmZx8dyfeH6z8qieJ3UJM9jcCpxM7CpW7EHh3e0/v5jp+x7RIamfPJZaBI4HDgW3q2ORjwE3AaqqXgUca2cktKfO7Evf5vowsA/UksXuIJ/lfAp8ntnqUuwZ43Uw9wfd1djyb4TLQQUyQU/UUsQzcQ/Uy8HAjj4XkAuaZjNz3Q2WhntbJNQwn+5OAgys+vwV41XitP1Kbpk/w3vv9iQfb9sQr1LXE5qHrnXNT+uOSk/lyRh7IU6nRbCXWYlclX38Cbmrv6X1sKnE1WlkTZLXEv/MUNhkY3YnoOuC17T29T9S6Ee/97sCriB3T5hFPnKuAq51zU75Q6uvsaGW4DLyM+LdPVol4v3po/w+VhTXN0lpRKelbUq0MVCbrWpQYXUu8FXhle0/v6lo34r1fRrzlszOxNe0p4E7gf51zU06SfZ0dy4jH/1A52Gv8nxjTvYzc/6uA1U1cBpYw+sJvP2BvJl/rLxLP3eUeBl7T3tP7h1o34r3fhlgG9iBefK8j3i64zDn31CRjyoWmTPDe+22BE4APEQ84IzZDG7HZbwsx0Z8FnOecq3ovuFzS0eNlDB/Iu08yrMcYefD+idjhpCmaG+vV19mxPbASeCmxyfoApt68dzvxBH/PWCt47+cBrwM+CLQRE8WC5HduBTYl378DnOOcG3NbZX/DM5LYjyKWgedMMu6hGll5Mr+lvad3wyS305T6OjsWA+3E/+FLgRcz9Q6ljwKvbu/p7RtrBe99AXgFcAoxCQ8Sy0BL8nojsTz8N3C2c25VDX/DQuBQhs8DbZOMeyPgGZnMb2rv6Z0VCaavs2M+8X92RPJ1CLB4ipvbAHS19/T+ZLyVvPcHAx8AjiXu90XEMlAk7o85wGXEfPCrqVb8mlEqCd7MDgG+lCzuAvxvCOEjdW+4Cu+9A35BvE88UcHZSNzhxznnrqz8Q71/AwAAGu9JREFUsK+zYw9ikjiemJwm80jKauBK4Cpip6KHmvVqfDokyfJQhg/0NiaX8DcBJ7T39P5P5Qfe+12BnzN8pT6eLcQy8H7n3PlV4tyReGI4npgkJjM2xCPE/X8Vscn5XpWBYUlflRczfNF3EJNL+EXg1Pae3m9WfuC9XwJckmx/MeMfu0ViOfhX4HPOuRFjPCS10VcBxwGvZHJPODwJ9BLLwLXEDmV6hDCR3O57EcMXfS9h8v2Vzm7v6X1/5Zve+7nAt4A3EffZeOeXEjEf/Bh4Vz2tOs0k9Rq8mZ0PnBdCuC7VDQPe+wOJB9NEB3SljcBJzrkf9nV2LCceyMcBB05iG48TO4BcBVw1Xu1SRuvr7NiOeN/634jP/9aiBOxUfkvDe78n0Ee8JTOZZLwB+JJz7qt9nR27AK8lloHDqf3CYz3xJD6U1G9RQq9dkvBXAqcBL5zEjx7a3tP766EF7/12wPXEC7wFk9jOBuBHwNs2fOyD2xGbc48jtgLU2qdmC/GCfqgM3KgBgWqXjAPyIuDTQCe1n8dPae/pPXNoIUnuPcQLvMlcMGwE/ggcORuSfKoJ3szmEpukXAgh1ZHQvPfPIjbdTqmHd+nBgY2bzj79XjZv3r/GH9lMfORr6ED+k67M69PX2XEEsRPVZBzd3tP7UwDv/XzioBs7M/qe3YRKTzy+cfNZ/3Z7WLt2BbWdWIrADQy31PTNllsu06Wvs2NXYGCSP/aV9p7eTwF4742YYA8g3pablLBhw/rN5377rtL9q59L7ReI/QyfB349W265TKe+zo4NTK6l5PL2nt7XDC14788D3sDUnl7aCPzEOXfCFH62qdRUwM1sb+K9xeUhhDXJeycC/wIcFEIYGqDgKODqtJN74iNM4YAesvn7Fy6sIbnfSGz+vwr47WQH7ZAJraF6h5qxrCc2xQ85gdjZcdLJHWDrTy5dGNaufcEEq91BrBlcRXy0b1bcO83QU8Rm7VqfxigS+1EMOZg4cNCUzgVbe69cXLp/9YoJVhsgloEriY/25XYQnga6n8n1cfn3oRfe+1Zis/xkWm/KLQSO9d7v5Zy7d4rbaAo1JfgQwt1mdjnwYeDjZrYSOBN4RVlyB3g9cF7aQXrvFwMnM8WDOoRAWD/m4Eq/Id7Lu1SPZUyv9p7e2/s6O04A3kU8yNYlX0+XvV5HfPRoHfCNoRpzUnP7DHU8mhbWjVkGVhHLwCXtPb1/nur2ZWLtPb1P93V2HAN8lOH9XLn/nyZeAJSI91/LzzGfoY4xJ8YpA/cQm+8vAX6vWy/T7njgU8TbdU8zsgwMvV5IPOdf2N7TW95B8qPUP4RvC/APwN/VuZ0ZreYmejM7gHj/+xDile2HQwgXl30+l9iU9fxpaJ5/F/He7VR7YzL4+xvYcsnFMFgMEK4lHsg/bu/pfSilMGUaee8PBy6njgRfvOM2Nl94PmzcAPB7hpP6XakEKdPKe78bsYVlqjU3Sg89yOb/PIew9gmIj+NdknytUlKf+ZKnZ54gnYHFNgLLnHO5veVScyelEMKNZtZHvCd5WnlyTxwJ9E5T87yjjuQOMOfAg2hpOwBC+N3z2g7oSCkuyc6+1DmqVsvf7MvCz34JQunh57Ud0J5SXJKdfYh9Y6ac4Au77MqCf/wMFIslmzfPVfaolxlvpxS3VSQ+9ZXbC/yaE7yZFYj/kBKxF+wIIYSfAT9LL7QRdkhjIzZnLtQ3+pg0ztD0mHWxOXOguSd6mc0qRz6cEmtpgZaWIrEWOKmJUaThtiXmoTSUSKlMzVSTqRF9ndjB6U7gxOkJZ0xpjvz2ZIrbkuw8SXyePQ3rU9qOZCvNY7cFlYNm9CQpXOgnCuQ8H9SU4M3svcTnho8l1t5PNbMs5ym+kXSutDcTn5+V5nMTcWjbegXiKGPSfG6jjidpKtw7m0Y0y5FHGD1JUT0eTHFbM86ECd7MjgS+ArwmhPAIsafpPOCYaY6t3A9Ip/YWiJOcSJNxzt1AHM+7XhuAL6ewHcmYc+5hYkfLepto1xGnp5Um45wbJHa4rvcR5s3AWXkf7GbcBG9m+wIXAW8JIdwMEEIoAt8APj794UXOuaFhJuvp7VgkTjyR6yu2nPs88RGaeqwmTkYkzelLxJNzPQaJ5zVpTmdOvMqEZkVlb9wEH0K4LYSwLIRwRcX7Z4UQVk5vaKOcTbxnNtVer5uIz9BK8/oxcXaoqTbRbQQ+qqbZ5pVMGNPL1GtwG4BP5r3mlmfOuceISX6qfSg2AOc659akF9XMVNdjR1lyzj1BfAZ/LZNrrg/EHfoa55wGMWliydSvhxPvm032BL0RONk594vUA5OsvZ445sZkW/Q2AKc7576VfkiSsU8AP2HySX498WmvD6ce0QzUNAkewDl3B/ACYk/+Wppq1xF74B/inJvsGOgyAyVX723EEQjXMXGLznpiWXldtdnkpPk45zYRZyb7ITFpT3TBvzH5+pBz7pPTHJ5kIBm/4M3ETt+bmLhVbwuxDJwOvCGpLORes84HP4fheaCPINbmWojDFxaJU1LeBJwB/DjPIxXNVsnQtYcQhzA+hjj3e3kZaCE2558OXJS0AEnOeO9XAO8jnuxLxErL0HzwRhz7/kzgAuecRq3MIe/9s4nDX7+H2AHcGJ4PvsTwfAbnOufubFScjdCUCb6c935H4DDi9KEtxCb8vrxPIiDDvPfbEmt0S4mjnK0FbnbO+YYGJplJZhp8KXGks0XExH4X8VzQ3Cc5qYn3voV40b87cQCbp4kTB/1yttTYKzV9ghcREZHRmuoevIiIiNQmrSH/MtXdP/AcYgebxcCHutpaL29wSJKx7v6BpcRetLsBp3W1tZ7d4JAkY939A3OAS4EDgP/uamvNbGwOmTm6+we+DbwauA54S1dbqyYQSjRdE313/8A84GHiPXeInWkWdLW1zsp7LLNRd/+AAX8mzjA3ZM+uttb7GhSSNEB3/8DlwKvK3jq6q631p42KR7LX3T/wVeIjc0O+2NXWqvFOEs3YRP8lhpM7xFYI16BYpDHewcjkDnB0IwKRxujuHziCkckd4LgGhCIN0t0/sA/wsYq3X96IWGaqpkrw3f0DhzN6hwLsmXEo0iDd/QPLqT7E5JKsY5HG6O4f2B64sMpHmgp6lujuH5gL/BejbzMvbkA4M1bTJPju/oHtiAd1tVns/ibjcKQByg7qagfxHhmHIw2Q3J45G2it8vGyjMORxvknoL3K+ztmHchM1jQJnnhQ7zbGZ/tkGYg0zKeBg8b4TGVgdjgReNMYny3PMhBpjO7+gZcAnxrj4526+wdUi080RYLv7h/oAk4YZxXV4HOuu39gJTHBj0VlIOe6+wf2BM4aZ5Vdu/sH1EyfY939A0uILbnj5S5d6CVmfILv7h/YA5hocgid3HOsu39gW2LT/HjldRed3POru3+gBfgeE/e10Mk9384A9ppgHeWDxIxP8MBnGXlQV5tYYmed3HPtA8Cza1hPJ/f8ei1waA3r6VZNTnX3D6wATqphVZWBRDMk+MrHoXrGWE87Nb8qy8DPxlhPV+75VVkGfj3GeioD+VVZBsaa/ltlINEMCf4M4kxhAP8J/M8Y6+2aTTjSAOcQJw8BuAr4xhjrqQzk1/eBB5PXNwHvH2M9lYH86gGGJpAaAN5A9fngVQYSMz7Bd7W1XgTsDexPnBLwkSqrFYHbsoxLstPV1vobYgvNCqCTOA1sNZo9Lqe62lrvBp4LvAB4MbH2Vm0YzpuzjEuy09XW+iRwILEMuK621luong9UBhLNOFTtgUBf2VtPAm/tamu9rEEhScaSMRHK53cvAu/rams9t0EhSQN09w88yshn378KfFpjkc8e3f0DvwVWlr11EfD2rrbWTQ0KaUaZ8TX4Kiqv2DYquc86TwJbypZbiAe2zC6V54IfKrnPOpVl4MdK7sOaMcH/pWJ5x+7+gWb8O2SKutpaA6MP7J0aEYs0lMqAqAyMo+kSY3J19mTZWy3ADg0KRxqn8sB+ZkOikEZSGRCVgXE0XYJPPFSxrMciZh+VAVEZEJWBcTRrgr+pYvmFDYlCGkllQFQGRGVgHM2a4P9QsaydOvuoDMioMpDMNiezxyriUzRD9k6mExaaN8H/sWL5RQ2JQhqpsgy0dfcPVM4NLfl2OyMHOtmRsWeclBzqamvdwOgR7Q5oRCwzUbMm+BsrlvfTFIGzzoOM7GCzENivQbFIA3S1tRaB/oq3dbE/+1S25KgMJJoywScjGt1Z9lZhsW090nu/u/d+ifdezXQ5lzwqN6IWP49ih/d+D+/99t77pizbMmkjykALpcO893t675d671saFZRkakQZMMLBSRnY0Xs/t1FBzQRNexI0woidulNh80XArcBjwH3e+1O993omMseMMOLKfceWzV8DbgEeBv7ivf+K976WWeikSRnhhvLlHQpb3k8csvhBYK33/lve+xUNCU4yEq4vX9rWtr6aWAbuB5723l/kvT90Nlb8mm6oWu/9HOCfN4XCB+4a3HZ+CWORDfLslnUURu6+jcQLmJ8Cb3fOrWtAuDINkgP1lMFgX7ljcNtFgxRsLkWWz1nHXBtRnjcDJWIT3hudc2saEa9MD+/9sSHw3TsHt9luE3MKBQLL5zzNAhsxmN0gcdTD+4DjnHO3NiRYmRbe+5XAxasHF+38VJg3BwJ7taxn28KIWcVLwAbi+CldzrlfNiLWRkglwZtZgTjT296AAe8OIaR+IHnvFxFnFHohsKgYYDMtLKBYmdzLbSI+K/kS59zDacck2Uqa3s8HXgcsLgXYFFpYYOOWga3E2egOd87dkkmgMq28958G/hFYFAJsDC3MtxItNub5rES86D/GOXd1VnHK9PHedwHnAgtDgE0UmEtgzthlAGIZONk5d34WMTZaWk30LwDmhxAOJR50H0lpu3+V1NyvIHagWATQYrBo/BM7wAJiz9rfeO/1+ETz+w+S5A5QMFhUmLAMzCWOdvgrNdk3P+/9R0mSO4AlZWCc5A7xXLcYuCyp9UkT894fTZLcIZaBhVaaKLmTrH+W9/710xzijJBWgh8AimZmwPbE++BpO55Yc184hZ+dS5wj+NRUI5JMee9fCHSRJPdJMuAZwDdTDUoylfSr+TJJcp+CRcB5s/F+bF547+cB5zG1XACxDJzrvV+QXlQzU00J3sz2NrP1ZrZz2XsnmtlDZrYbMaFvJs7J/u/A2WkGmRyMnwW2qWMz84EPJM380pz+idgiM1UF4OXe+91Tikey98EUttEKHJbCdqQx3gDMq3MbBeDNKcQyo9WU4EMIdwOXAx8GMLOVwJnAsSGEB4CXA4UQwnOA44CvpxznoaQzgEUBeGsK25GMJUn5FdTf6lRALTlNyXu/EDiF+i7yINbgPlN/RJK1lCp7JD//mbw/TjuZP+404L1m5oBLgfeFEPqSzwz4v+T1Y8Sm0DS9gqk3yZVbTGzql+bzUmKP6HrNA45OYTuSvTYgjcd+DDhMzfRNaRnpjVa4jHjrNrdqTvAhhBuBPuAG4FshhIvLPr4S2M3MrgMuAr6QapSwC/GgTMOylLYj2VpK/c1yQ5aktB3J1lLSSfBDpnoPVxpnKfGxxzRsJedTjdc8dnfyKFyR+LjJaeWfhRAGgTemG9oIm1Lc1uYUtyXZ2UIse2lIoyVAspfWiR1i5WZrituTbGwhvcqekW6ZmnEm00T/dWA74hCxJ05POGO6j3R2RAAeSGE7kr01pHcw/iWl7Ui21jCJSskENjjnlOCbz6PEDtNpmE/OzwW19qJ/L/Ba4Fhi7f3U5JG4rHSTTu1tPSn38JfMXEE6V+7rgDNS2I5k72Zikq/XFuJjVtJknHNPA7+g/nwQgF855/5vwjWb2IQJ3syOBL4CvCaE8AjwI+K90GOmOba/cs7dD/yc+nfqw8A19UckWXPObSQm5npv1wTge/VHJFlzzgXg88SLtHqUgH+tPyJpkC8SR6Srx3rS7ys244yb4M1sX2KnubeEEG4GCCEUgW8AH5/+8Eb4AvWd3NcDn0tOEtKczqC+i7yNwBnJxYI0p4up7+S+BehJKg3ShJxzNwB3EPuETUWROBHNr1ILaoYaN8GHEG4LISwLIVxR8f5ZIYRMh3t0zt0IfJI4acBkrSeeGLpTDUoy5Zz7C/AmplYGNhKfAsn9VXueJffNO5laLX4rsT/PO1INShrhWOBxJp/kS8Ba4NWzobLXVA/5O+dOJw5SMpkr+A3Ad4F3z4YdmnfOuZ8Sn9hYR+21+fXERzn/1jmX616zs0Fysf9S4tgbtXaU2wDcRJx06onpik2ykbTAHES8YKu1ZXczcVj1lc65e6crtpmkqRI8gHPubKADuIq4w6rV5rYQd/ofgROccx9yzqX1iJU0mHPucuKkQ5cQ93O12twgMbHfCXwIOFZN8/nhnPsD4IgzC64Hnq6yWolYNtYQ79se7Jx7NKsYZXolSXoFcDrwBLEMVKvEPUWstZ8JPM85d2dmQTZY080HX857/0zgLcTZxXYAWog78mrgO865exoYnmTAe7+EODb1m4mDGM0nzvv8e+DbzrlVDQxPMpBMGnI0sel9F+Kol08BfybOPvhrtd7lm/e+BTgKeDdx2vJtiBd3q4HvAD93zs268S+aOsGLiIhIdU3XRC8iIiITU4IXERHJISV4ERGRHFKCFxERySEleBERkRxSghcREckhJXgREZEcUoIXERHJISV4ERGRHFKCFxERySEleBERkRxSghcREckhJXgREZEcmtPoAERk5pvX9o5ghRaGvgpz51EoW7ZCgfLPraWFwpzKdUZ+boWhdQwrGGY2/LpgFCx+b5lTwAqM+bkVjJaWuE61bbUkX/PmFGgpGHPK3mspFMpeG/Naqq0z8mtoOy0Fo8ViHC0Wf/fQ8tyWsvctrlu5PHfovULyno1cNiN5D8ygQHyvYGCMtU7yf/rrOnF56PeagYUAoYSFEoQSDC2XBpPlEpSqfB5KkKxjyTqM2laJMLgVSkUoFQnFYlyvVCSU4utQKsLg1uSzZL1knfLXYeuWET8bSiVCMflKXhe3bB31fqlYsbxlkNJf1xm5ndJf1ykmrwOlYkg+H35dKgWKW4qEYkjer75ucevQOqXks0ApBIohUAxQDIEtpeHX8TsjPi8GknUCJUZ/Vr4OwLfDahvruFUNXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERyyEIIjY5BRGYxM3tPCOGcRscxFc0au+LOVqPiVg1eRBrtPY0OoA7NGrvizlZD4laCFxERySEleBERkRxSgheRRmu6e6plmjV2xZ2thsStTnYiIiI5pBq8iIhIDinBi4iI5JASvIhkysx2MLMrzezO5Pv2Y6z3NTO7xcxuNbMzzMyyjrVKTDXFnqy7xMweNLMzs4yx7Pd3mtntZnaXmX2iyufzzezi5PMbzGzP7KMcbaK4y9Y73syCmb0oy/jGU8P/fHczu8bM+s3sJjN75XTGowQvIln7BHB1CGEf4OpkeQQzOxh4CfB8wAEHAodnGeQYJoy9zBeB6zKJqoKZtQBnAX8L7A+cYGb7V6z2TuCJEMJy4JvAadlGOVqNcWNm2wIfBG7INsKx1Rj7p4EfhBDagDcBZ09nTErwIpK1Y4ALktcXAMdWWScAC4B5wHxgLvBIJtGNr5bYMbMXAjsBv8gorkrtwF0hhHtCCFuAi4ixlyv/W34EvGwGtJLUEjfEi6evAZuyDG4CtcQegCXJ62cAD01nQErwIpK1nUIIawCS78+sXCGE8DvgGmBN8vXzEMKtmUZZ3YSxm1kB+DpwasaxldsVeKBseSB5r+o6IYRB4ElgaSbRjW3CuM2sDdgthHB5loHVoJb/+eeAN5vZAHAFcMp0BjRnOjcuIrOTmV0FPKvKR5+q8eeXA/sBrclbV5rZYSGEX6YU4ni/u67YgZOBK0IIDzSwQlztF1c+E13LOlkbN6bk4umbwNuyCmgSavl/ngCcH0L4upmtBC40MxdCKE1HQErwIpK6EMKRY31mZo+Y2c4hhDVmtjPwlyqrvRa4PoSwLvmZnwEvBqY9wacQ+0rgUDM7GdgGmGdm60II492vT9sAsFvZciujm4OH1hkwsznEJuPHswlvTBPFvS2xT8a1ycXTs4DLzOzoEMIfMouyulr+5+8EOiG2UpnZAmAZ1ctR3dRELyJZuww4KXl9EvCTKuvcDxxuZnPMbC6xg91MaKKfMPYQwokhhN1DCHsCHwO+l3FyB/g9sI+Z7WVm84gdui6rWKf8bzke6A2NH/ls3LhDCE+GEJaFEPZM/r/XAzMhuUNt//P7gZcBmNl+xH4mj05XQErwIpK1fwaOMrM7gaOSZczsRWZ2brLOj4C7gZuBVcCqEMJPGxFshVpib7jknvoHgJ8TL4x+EEK4xcy+YGZHJ6t9F1hqZncBH2X8JwIyUWPcM1KNsf898G4zWwV8H3jbdF5UaahaERGRHFINXkREJIeU4EVERHJICV5ERCSHlOBFRHLCzFab2RYzW1bx/p+Scdv3TJbbzewKM1trZo+bWZ+ZvT357IhkIBZpckrwIiL5ci9xQBUAzOx5wMKy5ZVAL3Gc/OXE0ev+jjiGuuSIEryISL5cCLy1bPkk4Htly/8CXBBCOC2E8FiI/hhCeEOmUcq0U4IXEcmX64ElZrZfMsPZG4H/Sj5bRBxp70eNCk6yo6FqRUTyZ6gWfx1wG/Bg8v72xIrdmgbFJRlSghcRyZ8LieP278XI5vkngBKwMzHxS46piV5EJGdCCPcRO9u9Eri07KMNwO+A4xoRl2RLCV5EJJ/eCXSEENZXvP8PwNvM7FQzWwpgZivM7KLMI5RppQQvIpJDIYS7q82yFkL4LdCRfN1jZo8D5wBXZByiTDNNNiMiIpJDqsGLiIjkkBK8iIhIDinBi4iI5JASvIiISA4pwYuIiOSQEryIiEgOKcGLiIjkkBK8iIhIDv0/TsT6RLkI724AAAAASUVORK5CYII=\n", "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -4166,6 +4208,8 @@ "source": [ "# Plot time series graph\n", "tp.plot_time_series_graph(\n", + " figsize=(8, 8),\n", + " node_size=0.05,\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " var_names=var_names,\n", @@ -4202,9 +4246,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEgCAYAAABYaaN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd3hU17X2f2eKRjNqCNER3QWDXLBlGRljsBwT3BQSkjjx57R7k1w7heTGJE4/OWk3RYkTpTi5qTeO49gJCZELGMeyMMbCGIPBopgqJBDqXTOaer4/9hlN0Yw0MxpJI3Te59nP9Jk95z1n7b3XWnu9kqqq6NChQ4eOyQHDeHdAhw4dOnSMHXSjr0OHDh2TCLrR16FDh45JBN3o69ChQ8ckgm70dejQoWMSQTf6OnTo0DGJoBt9HTp06JhE0I2+Dh06dEwijLvRlyQpd7z7oEPnIVWg85DauBj4GXejDzwcy5skSbpCkqRfSZL0d0mSHhjtTk1CxMrDBkmSfiNJ0r8kSVo32p2ahIiVh8WSJP1OkqS/j3aHdIQgJn5SGeNq9CVJWg8slSRp83DvVVX1qKqq9wPvBQpHvXOTCHHysFVV1Y8BHwbuGe2+TSbEycNpVVX/cwy6pUNDPPykMkzj/PutwJ9VVf05gCRJVwL/E/ae/1BVtVl7vRT4IvDzMe3lxY+4eNDwVeAXY9S/yYJEeNAxdgjhZ6JivI3+VcBB/wNVVd8E7or2ZlVVK4AKSZKeAf4y+t2bNIiZB0mSJOB7wDZVVfePTfcmDeK6HnSMOUL4magYb59+K/BRSZKuGO6NkiStlSSpXJKkXwPPjn7XJhVi5gH4NPA24N2SJN0/ut2adIjnesiTJOlXwApJkr40+l3TQXzXScpC0ksr69ChQ8fkwXjP9HXo0KFDxxhCN/o6dOjQMYmgG30dOnTomETQjb4OHTp0TCLoRl+HDh06JhF0o69Dhw4dkwi60dehQ4eOSQTd6OvQoUPHJIJu9HXo0KFjEkE3+jp06NAxiaAbfR06dOiYRNCNvg4dOnRMIuhGX4cOHTomEXSjr0OHDh2TCLrR16FDh45JBN3o69ChQ8ckgm70dejQoWMSQTf6OnTo0DGJoBt9HTp06JhE0I2+Dh06dEwi6EZfhw4dOiYRdKOvQ4cOHZMIutHXoUOHjkkE3ejr0KFDxySCbvR16NChYxJBN/o6dOjQMYlgGu8OTARUl6yxAvOBhVqbCdiiNGvYYw/QC/Rot9Hu9wB1wCngXHHlTs9Y/LeJhOqSNWmE8jCb2DiwAT6GPv7B988heKgrrtzpGov/NpFQXbLGBOQT4GEukMHwHFgRE81YOOgFGoDTwJniyp39Y/HfJgMkVVXHuw/jjuqSNUbgEgIncXibNcZd8gC1iBP+VNjt6eLKnT1j3J8xQXXJGglYBCwmMg9zAGkMu+RDDMTReOgYw76MGTQe8oElROYhHzCOcbfOM5gD/21rceVO3ZDFiEln9INO6KKgVghkjme/4sQFYC+wB6gG9hVX7uwb3y7Fj+qSNTMJ5eF6IHdcOxUf2oDXEBzsAV4trtzZNb5dih/VJWtyEcc+mIuZ49qp+NANvE6Ahz3FlTtbxrdLqYuL3uhXl6yZgjDqRcAN2u1Yz9xHG17gEIGTvho4NdTsp7pkzaeAx4srd7aNRQerS9ZkAtcSalgWjMVvjyFU4CihPBwtrtzpi/aB6pI1HwJ2FlfurB2LDlaXrEkHribAwQ3ApWPx22OMkwQ42AMcGsplWl2yphThVt0/Rv0bN1x0Rl/zN64C7gLuAJYl4Wt9CD9vrdbOI3yO9mGaAxE3ydRa1hD3pxJwbcxIQp9bESf7LmAbUOMfBDR3VgPQCNxWXLmzOQm/F4LqkjUG4DrgbuBO4BqSkzjQQICHeoQPOBYeJIY+/v77uQgXxmKEO2mk6AZeBV4GtiNWZQODQHXJmn0IvkuKK3eeTMLvhUBb2S5HXA93IQy9OQlf3UyAhzqgi+F5sGufjeV6yEHEb5YA8xi5W88O7AN2I3ioLq7c6fa/WF2yZgtQAry9uHLn3hH+VkrjojD61SVrpgLrESf17cCUBL6mDThC4EQ+E3T/XPAJMtqoLlmThRgAliCMz+Kg+wtJ7KI9B2yzzcp9JWve9Oym147/VHv+CPC24sqdF5LQ70zgNgQPd5KYi6AbOEzo8fe3+rEM6FWXrLERGACWhN0uBiwJfG0L8JzBbNox79ZrMs9u3/dL7fkG4Nbiyp3HktDvdGANYsC9i8RWVHai83C2uHKnPcrnko7qkjUWxH+IxkNGAl/bDTwPbFvyzhs59c9Xfqp9Tw+wvrhy5yvJ6HsqYkIafW32cjmBk3oV8QWW+hE+wL1aexWonQjBIG0lUwCsBIq1FvPy3DZzCpdsvIm2N2u5sOcYPrcH4Dhipnk+gf4sIMDDLUBaHB93A28Q4GEvcHwod0iqQFvJXE4oD8uJcUZqsllY/pF1dJw4T8PLh/HYnQBNiAG4JoH+zEKsbO9GDLzxGEIfUEMoD4cnQgZZUPC/mAAXVxNHZuKV999BX0M753YewtVlB+gD7iyu3LlzFLo87hix0ZckKQP4JeACqlRVfWwk31dTUzMPeC9iydsMPFlQUFAPUF2y5mrgPuCdiJE+FqiIGcurhJ7QYzZzTwbsW8oMQDbCqPi0pgK+M8/sndLX2H69z+MtUr3qDajqDUQJTGcvmsmiO4oAcPc6OL+rhq7TjSB8oDf7Z/zD8HAJgoeNiAEoVhwn1LAcnGipePYtZRKCBwNBHAC+un8fyOipbyn0ujzXq17fDajqSoTbbhDSp2Vz+T1rAPD0u7hQfZT2I3UgVgJriit3HoVheZgL3Au8G+G2iRVnCUx29gL7J1oigMZDJsK4D3AA+C7sOZbefqz+Gq/TXaR6fUWoajFR4nhGi5mCj64HwOfx0rTvOC0HTqH6VAfC1bPL/96huJhIiMnoS5L0AHClqqqf0B5/G1igquoHJEn6ANCpqupTkiQ9oarqPYl0pKamxgh8H7ifoFmKr7PT7tr2zD539Su5wJUxfl0r8CzwNLAjVTMq7FvKpiBm6TOAaUCedhup5RGnT1z1+lxel9vntjst3n6X5HW6MaVbyJgTaoe6zjRyruoQHrvziJQ79ZZM5VtfIJyH3t4+147t1e6qFzMQs6lY0IPwnz4NbEvVjAr7lrJM4DICPAzV8ohzf4vq87m8Lo/PY3emefpdBq/TjcFoIGt+aOimt6GN+sqDuLr6GrDZ1mZ974f/RRgPan9/n+vfz7/k2rHdDNxKbCuLfuAF4Cng2eLKnSlpqOxbytIRPMwi8nEPfy6eVSWqT3V73R6Px+5M8/a7jJ5+F6gqOYtnh7zP0dZNfeUbOJq7eoBbs8p/sZ8ItgmxIvgV8FBBQYE3/n88PojV6NuAtxBG9ybgW8CNqqo6JEn6ErBNVdU3JEn6i6qq9ybSkZqamjLgweDnXC9V4dzyd4htNVKDOKmfRqTOpQwJ9i1lUxEBZX9brt0mI1CYFHj6XZzf+SZdbY7mjIe+PEOy2QZecx86SP8ffgfemA7paQQPTwG7Umlzk31LWTZwBYO5SJksIp/by4XqI7Seau7OeOjL2YbcQAar92wt9p/9FFwxHdIGxLXwFFA5lj744WDfUmYDljKYh8WkSJUA1eej6fWTNO873pH+8QcqTMuWf2iIt/+ooKBg85h1boSI2b0jSdIPEKPc7cBtqqqe0p7/ANChqurTkiT9VVXV98XbCW3ZdJQwP6S3vh77D78X7WMu4EXESf3MWKW8DQVtybkUuBnh9vAb9wmT89x5soGGM11YPvYAkiUdAF93N31f/wr4IrravYiMCL+BeSsVYiP2LWWLEMHMqwgYlfxx7VQc6DnXyrk36jF/7BMYsnMAUN1uer/2FbBH9cS8huDhaeBAivAwG1iLyN7yG/hFjO0mu4ThaOmivvotVfrgxyXjzKiZ3n3A0oKCgnNj2LWEEc8y9fcIw/wOv8HX8A/g55Ik3Ym46BPBe4kQeDLOm4dhbj6+8wPHUgWeAx4FKoord/Ym+HtJgWbkFyMCmCXa7WjuAehF7NY1IC4aQ1ALf5wQplwyh/TFC2hw9IFm9A3Z2ZiWF+B581DwW3cheNhSXLmzPdHfSxbsW8rmEsrDwtH8OcSkI/y4R+IkIeOWlT+NJXNm0uDsw4cw+pLZjPn663HvrAp+634ED08WV+5sSOjfJBH2LWXTEEbez8PSUfy5fq0NdS1IQbdxwzo9h8V33yA1eBwMEdXOQNiwHyfyG2ONeIz+1xFBppDPqKraB3xkhP2ImpduLi7GvWcP5uuLMF5xxS+vftttnxrhb40I9i1l8wg1LvNH8HUe4AQiz7kVkTbaGqW12TZujtlVogV+sxB557lAbteZxiLbzNwvmG2WSLteG+0Z0853TF1yndM6BaTQa8S88ka8TY2Yry/CdPnSX1991933x/1vkwj7lrIZhBqXy0bwdT60WjuIczwqBwgeHHH00x9wHOCh70L7MpPV8lXLlIzZET7S4bBOre/MW3yVwzYVpNDx27zyRjyHDmK+7nqMl13+u2ve/e6Pxv1vkwgtLnUzAR6uGuFX1iLSRIN5iHhd2DZujtllpfFgI4gHV7c93+Nwfcc2c8rCCB/pA55qm36ZpXvKgneqhmGTAyfMaj4moy9J0oNAOmI0UxCz+2Qi6uYg8003k3bzWv/D00n+3WGhnSzFwPsRewEuSeBrXIiYyJGgdhg4adu4eVSyiGwbN/sQG2a6EBcSNqi0byn7AIFSB3bgCeBPwK7G/MLPIjZUDYJx+XIyCgqQxGBwfDT6PBQ0Hq5G8HAH8WUN+eFFZCkdJpSLt2wbN49KFpFt42YVEdD2F9TDBlX2LWV3IQrGgUhd3Qr8H/D8hflFnwbKIn2fce5cMuRvIhkMaH0fc9i3lF2K4OFuxC7reFeWKsKwh/Nw1LZx86hkEWk89GntHIgRwL6lbDUiQAti8H8O+CPwtG3jZvvpmpoHEdmCw6Ep2X0eLQxr9CVJKkHM5ItVVe2RJClbkqRrVFV9I4n9eBIxmAxy8WgnNwiynkzibw4J+5ayKxHpcO8nvkCfHeH62I0ILh8BTtk2bk6VnOeZiFS93wFP2DZu7h54paYmFXlYguDgXkQQNla4EFvwdwFvIng4Ydu42Zn0TiaGmYg+/Rb4s23j5kBm0xA8wAAXY83DHOAeBA+FcXzUi9gJuxNRKsQ/yKZKYHkmIoX1d8AfbRs3h2c2DcmFhjHlYqQY0uhLkjQfcVLeqaqqv7LjT4HPAh9OVicKCgrqa2pqfkVY9k4YfjXagRL7lrLFwPsQJ/byGD/mBF4BKhGB5dficcOMA9bYNm4+HOmFFOJhNsLAvJ/Y88+9iJxzPw+vxOOGGQd8EDiizUBDkEI8TEXsxXg/wpUWi19cRWy48/OwK2RikXr4CmIQipilkCpcJBNDGn1VVesQgcrg5/6IWP4kGw9pt1FzYUfhN7FvKZuFcFu9H7Gjbzh4EDNl/0ldPVqugdFANIMfhPHiIRd4F4KHWxjeZaAigph+Hl62bdw8YUpOpzAPGQi3zb0Id2YsJT8OE+Bhp23j5nEP7McK28bNR2N427hwMVpIuTIMNTU1+QgjPBPhJ3tyNEZR+5ayIsTovZHhSzj0AxXA48C/bRs3j2vW0FhgDHm4Avgc8AGGr2XjQfhcHweetW3cfFHWsw/GGPIwH/gM8DFEAsBQUBHumseBf9k2bp4w/uyRYKy4GG2knNEfTdi3lBmBUoSRuWmYt3uBHYgTe+tEmkWmOrSgbAli0L09ho+8hODh77aNm1tHs2+TDfYtZdcjeHg3w09+Xkfw8IRt4+YJZ+x0CEwKuURtyfphRCxiuOyblxEn9t9Cgms6Rgz7lrI0hK/+c4jNOkPhAIKHv0YIrukYAbTJz90IHlYP8/bjwF+Ax20bN4951paO5OOiNvpaxsGnEL64oRSZjiLS5f5q27j57Fj0bTJB89f/F/Bphi49cRaRPvp4jL5WHXFAm/x8CPhvhp78NAN/Rhj7/ZGCzTomLi5Ko2/fUrYU+CIiGDVUIOp54EfAjuFO7F3FqyRExcSFjKIw+urq3SlZHC4R2LeU5SOCXP+BOBbR8CqCh3/Gktq6q3jVFEZfGL19dfXui8LYaVk4nwMeIErVTw1HELtKH4slOWFX8apMRl8Yvfli4SFVcFH59O1bymYC30AEo6L5J93AY8DDto2bB+oKhBn1aG0sdHTbiCz+fAo4v7p6d8rXmrdvKctBGPv/RmzqiwQV+CfC2FcHD7pBRj1ay0l+rwehi+g81K+u3p0q+y6iQqta+WngywwtLPRvBA/PhfHgN+rRWl6SuxwJfWhC9AzmonZ19e5UTo9OSVwURl9btj4IfJ7ohrkDeAT4+etl/2xElE8I1gm9huGzFsYbLsRORn9d+mrgtdXVu1MiD1rz2X8ckBGlbyOhD1HH6ae2jZtP7SpeNZtQ3dzrSH1xdC/CFXWCIGH01dW7UyJVUSvB8X7gO0TfWOhGuG8etm3cfHBX8ao8QsXRryc5sp2jCb+M6UkCwujVq6t3N45rr1IcE9roawGpjwDfJLClPRwn+9t7f3X8iV3H3X391xA4qVP9hI4VKmLnb7AY9/HhVgS7iletAyqTMWPVsnHeBXyP6L7iBlev49cn/rZ7f39bzzICg+2EqXwZA46jGR4EFzWrq3cPWY96V/GqNcC+1dW7k1J+wL6lrAT4IaI8QiR0ePpdvz1dsXdXT13LEgLXQ6yiRBMBZwnl4Y3hVgS7ilcVItyrSdeLTjVMSKOvGZnbgR8QYeesp99F58kLjU2vnXirv61nDnHICQ730wwvjO4Iux8sjB4uAB0ujL6AOIUhoqAD4Sf3lyHYHXzSa66s44idk/eurt6dcP0f+5ayGxFG5sbw13xuD12nm9obXzteY2/snIYoo5CMkrpOxIUdTRjdEeGxv/BZ+PEPf5yL4MGahH72ElgJvAzsXF29O6T8wK7iVf9GcH7n6urdCacF27eULUdcD3eEv+bz+uipa+lreu3EgZ76lkxUCkhOPM+DqCcULowefvyjCaMPxUcOgodkuFT98qh7EOVRKsNjZ7uKV/0OUWPr1tXVu0esF53KmHBG376l7FpEMapbgp/v7+il69QFOk9ecPeeazOSWHlhB5GFoP2tNVpQyVFRLgFYSzclfEB3Fa8yIrJbwsWf/beJ+lB7EH7bbVrLRuyiBLHp7L2rq3fHVZNGK7r1PcQMfwCubjtdpxvpPHnB213XouJTEzEuLqJzUAs0DbWScVSUSyPkQUKUyI4kTL+ExCsq9gNVBHhoIVC5dg9w++rq3Z3xfKGWofZNxIp34Jx39znpPtNI56lGtet0o1v1+hKZTPiNem2U1jDcSmYk0HiYRuRrYQkigJwIPAjj7+fhMHABmI5w2ZWsrt590e5DmDBG376lLA8xo/wIgOr10Xu+jc5TjXSdbsTZEfcmWbtkNOy3TMl4M2PutFNTl80/n71wpkeSpGA5tizEjC9du7VGeex/zoBwt3gR/sZIt8H3nYgZUneUFvJa7/m2/gu7D6d3nb6wBHVABHpZvH8cUZo22Oe+Ddi4unr3sLVqtPjJNxB7HkyqqmJv7BA8nGrE0RJ38pFLMkhvpGXbDmXMzjuRe8W8+imXzHFKRkOwPF4O0Y95pOeMBHRTox374FsnMRx/f3O0dfddePmwpeNY/QLVp96A4OEqht/cFI4WhKHx43VgXSyxAfuWMjMijvU1wKaqKo7Wbrq066GvIe7wghdRmC5Yw/hoKgesdxWvSkcElK8iIIx+LfGvlsN5OI0w/Bdl+nbKGf1w8WHJ531y0Ynn1wI/9rm90zrFbJ7uM014nZG9EpLRQFq2TbScDCw5GWp6XnanZUpGrznT6jFZ00yS0ZAtSdJYZIGMBlyIdLYGn8fb0t/RozqaOjPsjR0zHa1di13d9kx3b3/U4xMFzwOlq6t390NkEejFb22/Evil6vUt6K5tpuPEebpON+GxR14kSAYJc5aVtOwMLDkZpOXYSM/L7rJMyehOy7K5TdY0k2QyZkqSlMsEUVIKgwcxQ2zweX1Nrs5er72p02Zv6pjhaOla7Oyy57h7HXj740oweQPhYmiHqDzMBf5XVdUre+tb6Th+nq5Tjbh64qovd4ZQA38gWXGF8cSu4lUWYAViEPAPBPMS+Ko64OZgwz+phNGH/AJJWoyoVJejquq7E/2eSMLoJlcf0y7UeL3HjxvbjtTTcfw8PpcHg8mIJTeTtBybZlDErf9xWlYy3LETH16X29nf1mNwtHaZne099Lf30N/ei7O9B58n4qr8qbTile/J+I+PfIcgHoweJ1MbD3sMJ98ytR2po+PYOTwOF5LRgGVKBmk5GQEecjJIy7ZhycnAnJkeXJJ50sLn9rj623twtHan9bf3EOCiB58r4kR6r3Hu3HXZ3/j61wjiQfK6yWs57jadOmzuOFJP29F63LEb+iaEjOIziBjPRR+w9GNX8aq5CON/E/B2Yi/RfQpYnfubXzczCYXRHwCuVFX1E9rjbwMLVFX9QNB7/j5Cox8ijC75PGQ9+yg9JxowWS2k52WRPjULy9QsLDlDlbbWEQucXX3C+HT0CgPU1o2jqRPfzDlvZT30+csHjLWqMqXqb3QdOonRbCJ9ahbpeVlYpmZjybHpRn2EcPU6QgYBZ3sP9qZOPNasc9lf+2q+ZAl4KnL3badx64vYm2J2++8noJn7+kTY4zEW2FW8aiEiEeR24FaG3jh4JPs736oyzpjxiSHec/EJo0uSZEMoP12JGC2/Bdyoqqoj6D0JG/1owuiWPS8wdzp+tabRgAq0E10erxsR3A1u/RGe8z/vQfh1DWG30e5bEUHV8JYT5bmZiODVUCfpiODqcdDvAs/ipTjTs3FasjDWHmemvZ60zFFdQXUQnYcu4uPBTeTjHe05KyJ+E+3Yh/MwAxFwzx6VIwG47U4cvS68S67AaZ2C05KJ1NVBy9e+jeqJHsNGBOyfBp5ZXb37/Gj172LBruJVX0DM4qPCOC/fl7n5QYPBFvWyu/iE0VVVtUuS9Dhis8ftwG3BBj8JiCiM3n/9GlyHtiUys1cRPu+zQa0O4X8NNiYd1tJNyV6WjWrgS8sSykIYnaHaXBJI/0zLsooPdZ0VphbwGk309zgSNfpNhPJwFsFDsAZqu7V0U7KPmz9wO2pwVJRnIvaHDMdD3AfObLNgtlmg55xogNdgwnXZPDqPhMQX7YidzX8FXoglGK8jBKURnvMi0rLrjfPm2UzLrljhPXcOw2VRZZgvWmH03yNm4+9QVfWU/0lJkvIQg8EKSZK+pKrq/yTQj4gbpSSjCRfmSEXWfQQElP0GPdionLOWbroot2drqYj+TJJj0d7nqCg3IgJYl/mbu69/pepTrzRnpqfHs3oyqh4M5qiJKR0I3+cRBg+yddbSTRNGYCZeWEs39SJS/E5Ee482SM9BcHA5cJmn37XC63SvTMuyWSRD7EQYfR6mX7WQziNnyVo4k7yCBeRelu82WsxTEH7qZkdF+f5RGEAvSmjlPoyIYotH0XR6EeUdPAA1NTXfRwSGh8OEEUaPOZArSdJfgLcB96uqmlRh9BohPhxRCDqr9TTp7j7c6VlIqu+PUztry4CT1tJNqaJ1OuHgqChPR+Q6+weEy4ErVVghRZkI+AO/BtOQxn8XQlxjJ/DGKKyiLio4KsrNwCJCeViuIl0voUZcpamqirvXQVpWVFdDLyIH3c/Dvot1AjQWGMo2heHBgoKCCTHTj9Wn/yCwCigHFFVV1ySzE9F8+mGYUH6ziYi39u9dJKnewxZXj9Xi7MHi7CHN1YtBTSj+1422CxWxIel1fRCIDUffeH2Bwec+YnH22iwujQdnD0Y1ocPnQOwI9vOwRx8EYsfFaJuGNfqSJJUgjH2xqqo9kiQdAD6iquobyexIePZOBEyoCPlExSAeVBWz247F2Y3F2YvN0Xouze3IZeiLIBJagWcRKYPPWUs3XTQlpEcDkXgweRz4B+MMe9vZNHdfDkNXz4yEboQi3NPANmvppkmTupkoLjbbNKTRlyRpPmJ2cKeqqke15z4MrFVV9cPJ7EikPH0NEzIXdqIiFh6WnK6UEDsf1wA3I9SX4tno5kG4gp5BGJ/jIymbcDEiRh5UoADBg5+L6cQOFbExy5/WeVDnYTAuNtuUijtyLwrx4YmOeHjQgsZXEWp8hhLrCMdJAgPAS7r7IYA4eZAQAd01QW1WHD93ngAPL1hLN9mHef+kwsVim1LO6OuY+HBUlBsQ1U/XAGuB24g9p70XYXQeR7iB9IB9gtAGgUsI8LCO2FcCTuA5RCpohbV004Qv0aBDQDf6OkYdWpbKTcCdwF2ILJVY0AlsQRieF/VA8MigrciuJ8DDcOL0ftgR1Vj1gfgigG70dYw5HBXllxAwPGsYWsfYjybgSYTh2aP7nkcOR0V5PqL+/l2IdOxYNpF1Av9A8KAPxBMQutGPE3vXl5gQ/uqkCqMXba+clH5sR0V5FsL9cxfCAMWyyaVW9fqe6D5zYVv9v1+vVX2+ZAqju4q2V066i8JRUW5FuIDu0tr8GD7WpKrqk33nWp6pfXbPUdXrG46DeITR+ycjD2MB3eiHQTPqc4kuBj2P+OumxwIXYhdrJCHu00XbK+MWDJho0GIBNwHvV1X1PZ6+/jxXjx1Xjx13t3bbY8fVbcfda0f1jcq560YENKPxEJfIyUSEFgu4Dnifqqrv8ziccweOu8ZH8H3VOyp13LyIch3RxOnb9EEhMUxao793fYmEkGPza7WuQOyOHC2jPlI0Ezjh/cLorxZtr+wY114lAXvXl8whVBh9MWKmmQzpyGSjHcHDaYKE0Yu2V074fPe960umERBHvx6hTrUQIUyTaugmwMOAMHrR9soJV99+rDFpjP7e9SV5BE5of4snpzlVcYxQEegjRdsrh/Wz7l1fsqRoe+Wp4d6XbOxdX5KNMOx+Dm4gcdm7VMJpAsL01cChou2Vw6rY7F1fshg4M9az1r3rS6yIvRbB18PisezDKOE8oTzsL9peOWz9p73rS+YDjTrsxn8AACAASURBVJPBzXrRGn3tYroDoZ5ThEhdSxY6SJ4wuv9xslYXPQhRdP+J/0okl8Te9SWvAf8q2l757ST9bkRos/g7EGU8ikieODqGNBNGsxnJbMRgCjTJf2s0eH0uz0lnZ+9+Z0dPA8MLo2eRHMFwENzvI8DD7kirgb3rS/4OtAEPFG2vHLV699qk53aE+6yIxOQdI8JgNmJIMw86/qKZkExG1ef2nHF19+3vb+s6i0oGw18PyVrluYEDBCZFuyOtBvauL/kRcCnwnqLtlRd1dtJFY/Q1X3wxIgh1N7Gr40RCM9HFoOuKtlcmNWdZczVlIdxLftHnYAHoBSRujLyIk/1ZYNtLVxfWFB05NCvd7arTXv8WICdrprl3fYkBMYP0BwSvG8HXtROdh7NXfmJDNkIz+aMMH3g8CjwC/EGrjhkRe9eXZCBcGpHEuBdBpKKvMWM/Gg9t2TmvdmZmZyxpqG9A7PL8I/DRWFZpsUA7p5YR4OFGgoTT40QPoqJtbaS27KN3Goxp5g8CHweWDvNdZ4HfAL+ylm5qG6L/6YjzPhIPixmZpsQRAqLoL1deu1Iq2b+nRvv+54B3Fm2vvGhLVE9oo793fUkuQv7sLsQsJp5doCC2Ue8joBN6BDibbKM+UmgD2jzEyX4JwqiuRGzBj+tC7srIbD10yeXpV584lpltH/ibPwC+mKjh1wzl2xA83ImoMR8PnAiD6OehBqgt2l7ZHcuHtfzztyOMzl0MPYPtRGyd/5m1dFNDPJ3UBrQ5BAblaxA8rCDOQdltNHW+fPV1aVedPGbL6x4oQ/QX4ENF2ysTKo28d32JBZEC6zf0i+L8Cg9wiAAPBxHGvjOWc0MLAN+E4OE9DD1AOoA/AA9bSzedjKeT2oA2k8Ag4BdGv4744w99VSuKWHr2dMbM9lb/ErQSKE01O5AspJzRH058eO/6kiXABsRJvZrYl6he4E20AKh2ezRZM6vxwN71JVmIpfpKAiLQeUN9pjUnl9eWXYWkqixsOMcl52ox+XwADwMP+i/uGHiYQ4CHEmKfAauIWXewKPebyfKlOirK5yJm/x9j6Nm/G3gM+JG1dFPNSH5T849fR4CHYoYZ+PrSrby0ogiAuc0XWHr2NGkeD8DfgHv9hj8GHvIQK9u7ETtuM+Po+ikCHLwKvJGsGa6jojwP+ABiABhq1a0iRGB+ZC3d9MpIfnPv+pI04GpCeVg41Ge8ksSOlTcDMKO9lWVnTmJ1OQFeAu4INvy6MLr/CyRpA2J2NwP4haqqOxL5nqGKGvna2/7Y/71vHcHnuw9BZCzwF/XaBrwCHCjaXpnStUQURbEB08JaXtD9qQh/uA9xsfhC7quqL83jzkp3Oqdb3K4Z6U7nLKvLmWfyuDF7PJg9Hjqzsjk5b+HAb1r7HSw/c5Lpne0A37GVlctE4UHt7fmd45tf26/xcCux+eZVhEF5FlHn/fWi7ZWjXmFTm/3fhjA6pQw9OXgOUTP9BWvpJlVRlHQiH//g5wxE4kDwoJo9Hmu6yznD4nZNT3c6Z1qd/TPNHg9mrwezx40jLZ3DSwJKTGa3iytqTzGntRkJHjVvvOc/zMWrvkckHpz9v3F8/Uuv4PX+P0S8JJbNbSBm7s8gSl7vLdpeGdW9kixos/9VCB7ey9CTg2oED/+ylm7yKoqSRvTj779vIhoPoJo8Hku6yznd4nLNSHc5Z1id/bPMHrfBfz2oksT+pQUDHTB6vVxad4aFjeeRhPTk3baycjeTreBajMLouUCZqqr/mUhHIpUv9Z45hWfni3iPHgZvTMe0DWFcngZ2pFpOtaIoZsSSdBmiNs0yhHjGDMSJPKoitEMhv/kCS2tPkX5t4S7LPf9vdfBrvgsNuF/8N943D4E7pgl5L8KQPgVsG+90RkdF+RzgAeATwFSfqtLl8tHW76Wt30erw0ub00uv2+e2u1Wfb2R++xFhRnsrBaePY1205KDlYw9cHaxw5mtvw1P5PJ6DB8AR04TcCbyAVkVzvNMZHRXlU4H/BD4DzFVVlR63Smu/l7Z+7wAPPS6fp8+jenzq+KWKTunu4qpTb5HR73jK+j9lJyVz2n8P8faLp7TywJtiE0b/EfCYqqr74+1ENKECz4HXcT32f8N9/DDCuDwN7EkFd402Q7kUYdT9bTnCwMc6KxtzpDv7ufLUW8xeeyvm1QGdHG/taZw//8lwHz9NgIeXUiH1TVEUI8LnuxxYZpC4Mt0orXJ61XyvmpwMotGA2e1m+ZkTzFtegPnuDfgNv6+jnf7vKjD0NXsBwcFTQGUq+KUVRTEgXG3LgOUSFFhN0iqXT13k8SUcXB51GLxeltadZtGMGR7LfR82SYaoXZ1QIiojFkaXxBn5PWBbIgZfQ0RhdGPBlWC1RprV7EL4Pp8u2l55JsHfTBo0I38Dwrd9C8IFlYobi4ZEvyWd15ZdzYK6eq5qaiRtpqjKa1iwCGn6DNSWQRP2/cATCANzbLx3SGpG/loEByWICcrAeeVTwe5JrRhWJLjNZt64bBlNvX1cc/oUtiUi29iQOxXDpZfjOz5IGvkttGqYCDfmePPgr7Lq52ENQWIvKhODB5/RyJFFl9LkcpquPXSQ7GuiSuVOLmF04NOIzI0cSZIuUVX1Vwn0I7IwujkN04pCPK/sQpo+A8O8+bu8+/d9aLwNvaIoJkTgzm/kbyI5rhkXQmHK39rCHrcjYhUGhD/dEHY/+DkjIg00FxELyE1zuxZ7DYZrvcbItBsMBld+fn7anLlzMU4L7FuTJAlTUTHuZ/6FlDMFw/wFe7xvHvzPou2VR5LwnxOGZlyuJMDDGmIv4RwVBsBqkrRmIM0g9Tu8vteb7N5dXpVmBC8uInMQft+ACK7mam2q0eudY/B5b3KbI88LJEnyzp4925ifn0/a7NB4sKloJa7jxyAjA0P+/P2+t47eD+wbT0OvKIqEWMX6ebgF4W8fESSCeDAaSDdK7n6verDJ4XnJ7aMBwUM/w18LEuJ6sBHEg+TzTUtzu291WiyRV32q6s3OyalbeOmli9LnzBmuuxNGGD0eo/91oCX8M6qqliPkFEeCiD7ffpebs8uv5ZLCIgzz5iNJ0taC7/5gXAy+oijLgfWIE/pmhEFNBBcQqaFHEK6po4iaO21AryzLo3bx7l1fkr5t5c0vE5o73w/8C3jijjvuuMxisXwv/HNuj5dT85aw+L8+iXnJpUgGw98KCgrGxeArirIIEby8BVEgbMhspSHQhjj+R4DDi7NNXTfOsr59arrhXRaDZA32pSPSAFchMkG+AzwxkvLCe9eXWLatvPkvwLuCnvYA24G/rl+/foHNZvtO+Oe8Xh+1ebOZ+aGPkrlsOZLR+FhBQcFrifZjJFAUZTYBHkqIP03Xj24CPByZZTNeWDvHuma61fi+dKOUE8aDGShEuOzKgL8PtediOOxdX2LevvLmHyJiDMF4EfgrkvSP22677UOECaP7fCr1Le3kZFiZkjmwXaAp0X6MNVJSGP2thhbqzp6lu/Ec+Lzc+vb1TMnMGHO/maIoC4H3a+3KOD9+AZFv7jfuR4Cjsiy3J7GLcUNRlHogH+Ga+S3wuCzLnTCYh9rmDk7XnqXzQh2qx831N61l/sy88eBhFmL5/H5EOl48aCXAwwAXsixHnGg4KsqnAZsRK9hoG4DqEMb/j4mqfCmK8jLimjqO4OFPsiw3wWAeGjp6OHHmLO3nz+Jz9bN0RRHLF88bDx5yEQPVvYgBNx5/fBcReAAaIk10tOqrnwQ+T/T9N63AD4FfJCryoijKY4j/cw6xb+APsiwPTCyDuWjpdvDWmbO0nqvF299H/uUF3FBwOUwwn35KCqM/8+Iu+tsD1+Si5ddw7dIlYxIhVxRlJmJjyb3Enh4K0ICYIVQCLwafOKkERVF+DPxZluWI8ZdgHv69Zz9d5wN/Y8aiy1h97ZVjxcMU4J0IHkqI3cC0IXSdKxF8HEtk9eSoKJ+BMDifJLrrrhaR1PCotXTTsHV2gqEoyjeB54GXI/UvmIeXDx2j6cThgdeyZ+Zz2003jBUPNsRejHsR8bxYY1U9iFx3Pw8HZVmOu8yEo6I8GzEAbya6CHwzIqXyV/FKPCqK8iBi8Nkhy3LEJBA/FwdO1nH6YGBhZcnO5a7bSuBiyt4ZL2H0vcfOZNQfDtgkS3Zu3123leSMVi6soijZBAzM24jNwLQSZOSB46PpmhkrBPNwuK4p49hrLw+8ZrRYPatuuD79lltuGS0erIg9H/dqt7EYmG5gJwEe3kzEuESDo6J8FvAQIkc7WgrhccQA8VSyxF2Ceahr6854rer5wIsGAzlZWTmf/exnY9qxHC+01OLbECurDcS24cuByP/38/C6LMsJ7SyO+OUV5TnAZ4HPET1u0wB8BfiTtXRT0s4BPxcdDucDlc8+YxOhaIG1a9f+Ni8v7/6LLk9/LFFTU5N/tMVeduSlbfeEvTRbluXGZP2OFnxai5jJ3cXwudleRM7zM4iT+nAyjUuqoaamJv+C3bf5lR1PfQZvyLVbJMtyUv3IiqJch5jNvYvYYiW7EZkqLwIHkmlcokHL9f8i8F9EH4xeBB60lm46kKzframpybd7+dBzzz33bZ8jyH0tGe6Rv/61J5P1OwCKolyO4OF9xBYreQPYijD0e2VZHvVCZY6K8lzgvxEDQLRz5QDwOWvppqpk/vbBN2vyn3lxV527o3kg0GCw2JSvffHz30jm74w2Us7oAzyyp/bS9uqnj3u6QzYMfkyW5d+O9Lu1Wcx7EUvnqDlYQXgFIQ33N7/PdbLgkT211q43quzOprOBJw3G78lf++qXRvrdWubNXYiZWywxooMIHv4qy/LZ4d48WtAkBr+EKPMQac+Fiiie9tV4a/sMhR/84YleR92xgfRTyWzZ+vUvf/GdI/1ebfKzBsHD3TF85CSCh8dlWT460t9PFFqZh88hgrCD0r01/Av4grV00/Fk/W7ZY/+q7Tv5xgL/Y8lsOfT1L3/x6mR9/1ggWWVkk40zlun5Hk93W6B/RlMxIuCVEDQf8ceBTQxfv/1NRPGrv8qyXJvob050PLByoePH9bObnU1nB1JqJaPxppF8p+Yj/iBitnbZMG8/TcDAHB7mvWMCa+mmc8AnHRXl3we+BvwHoe5ACVH75x5HRfkPgLJEg4zBSMub/Zaj7ti1A0+ovpFUL/VPft6DmPxcO8zbLyD2ATwO7EsFN6ZWofMrjorynwBfQFzX4SuwdwB3OirKfwF801q6acRJFGnT5+0NNvqqx325oiiGibTqT0mj/8DKhZ6HG2vrCaoSKElSYSLfpaX4fRax/TvajABEUO4vCAMzogJcFxNMWVMPE7SPQvV6lyXyPVoGzicR5RCGch00ETAwe1PBwESCtXRTHfAxR0V5OfAjhA88GDbgG8DHHRXlX0YEexM2DOac6a8RZJxVj3uuoijpsiwPKxASDG3y8zGEkcwf4q2dwN8R18RL0YKc4w1r6aYW4POOivJfAv8DhLuFTYjVwAcdFeXfBH6ZaMYVgCkrd69ktrxHdWueLNVnQaTynk70O8caKWn0AUzZeRcIMvqqx3NpPCOqoigrEbOYdxE9MKsiloA/QZzYcRuYqsJiCRHgG04YPVj0uW/tvupR90MnA6bsqfUYDODTDrvPO1VRlDxZlmMq1qUoSgFiVn8fQwdmKxGVPrclYmA0HizEJow+wMdIebCWbnrTUVH+dsQejh8xuKLkHIS7Z5OjovzBRP3MBou1yWDNJMivb0CUNYhpF7yWfvwZhPbAUIHZfYidpf9IxEev8ZBGfMLovWv3VY+obIe1dNMZ4H2OivKfav0PT+3NRZxfn3RUlH8eUdQt7utdkqR2U1Yu7vaQ8OLV6EZ/5DBaM12S2cLAiIpqRQwCQ0r8KYqyAlEf/m1DvM1fy/snsiyfiPSGqsLiDISIw8IIbSahJ3PcqCos7if0xO8hsjD6+bX7qsdt6SgZjKopcwqe7pCV8dUIIx0ViqJcAnwX4UKIBg9iVv9jWZYjBj+rCov9YhoLI7TZhPIQdz2dqsJiJ4MH5XMM5qE+2gChGY9tjory5xGzaIXBUpzXAi86Ksr/Dvy35iYagKOi3AQYhpqFmrOm4nSE7EW6mmGMvraJ6huIlW60SqMqopTGj4BdkSY/VYXFaQhNh4UR2lzEKtrPQ9z1dKoKi10MHpQbGCyIfnaoAcJauqnaUVF+IyJu933EuROMSxClnCsdFeWfspZuColLaFVB062lm6JWtIti9P8Zy/9MBaSs0ZckKdLBvYooRl9RlPnAtxEzymgXfyPwM+DXsiy3VRUWS1VPbV9MQBh9YVAbbf3cdK0F/86NEd7nqiosPkPoiX8ceG3tvuqWUe4jAKasqeFG/yqiGH1FUaYhfN0PEL24XCfwa+Bnsiyf13jIJ1QYfaHWZiXhLwwFi9aGy1bxVBUWnyXAw4Aw+tp91ecBrKWbPMAjjoryvyCCvf/N4NXNu4HbHRXlCvCToPz+TyOO1w+idcCUlYuzuS74qauivVdRlExEbvtmors1HYhVyE9kWT4OUFVYPKPqqe3XEyqMvhBh2EezSF0aYhPWcEJIvqrC4npCBwO/MPqZtfuqVW0QfsJRUf4vxOrmKwzO9CkBDjoqyn8MfCso7vJORNnwT0brgClrUBej8pCKSFmjD0ixjKiaj/JLCHKjpV2+Cfzomt17/p3T3nk18Omqp7b7xaAT3cY/VkgDLtdaCKoKi08SKgL9ZqzuiqrC4oy1+6pjCTBKpszc8OcGZStoOfabgC8TPY/6DPDwkpojW/LP1F0BfLDqqe03IHhIdBv/WMFEQDErBJoR8muwVgMH1u6r/qKjovzXRPYzZyCM+4fbf//tB63Tsg8jNnlJjoryv2rxgnBIpqyYeDAhgssK0QfMJuBnM+vO/WnpwZqFwN1B18PCKJ9JFRgQs/cFiBIQwWiuKiwO5mHf2n3V33dUlP8BcTw+TugqxIzYg3Fv55/+5yHLlIxnEBtR5zgqyv9gLd20L8Lvx8RDKiOVjf6MCCPqwMHVKls+gJhVDjbcqkpuS9u+eSdP75vS1j5FErWD/jhKfXUSmzB6sAh0MnCJ1u7THturCotfI8gArd1XHa2W/V+rCov/d+2+6qeG+Y0ZQ53kWurlfYhV1rxBn1ZVsjs6j8w7eeaVvKZmiyRq2o+0VlM0uBjMgf+xX4c4nItkzF7nae29/n5UFRbvR/Dwj8UbVj4+/apFX0XUjQnGsgt7jm2zzcjpmFV0uX82/hNCa/L4EfF6UBRFkmVZ1VIv70K4NAYrVakqGT29tfmnzlTNOH/Ba1DV9yAMYVLE0cPgIfT4BzcYzEEWiev3BmMGImPnHdpjb1Vh8SE0Yfq5a67819yblz8oSVK463de66Ezf/E63d3z3nZNtlbv5xFHRflKa+mm8PjSDFPGFJCk4BLXixVFyZZleVQ2yyUbqZqnnwb0ubvbTB3VTwe/dBph5N6DmEEtDn7R6HaT29LGjPMXOvOamg0GVR1JxUUPwsdeG6GdR/gc7YBj7b7quAKPVYXFBoTvM/jkn0qoMLr/dpDFjRNvIQp5PQu8tHZfdX9VYfEURPE8gHvW7qv+R7QPP7Kn9qzP1T+/9cUngp92IWartyBqn4TMdAweL1Pa2pje0Ngz/UKj2+j1xatdHAwfwsdeG6HVI/zwfh7iCspqQUcroYNBLgFh9GAuIlaCjQN1GXPzzs658YoVOUtmZRrTzKg+H/sf3oqnz8mC9dcxq2ggg/Uua+mmZ4I//Mie2pdUVV3d+sLjqN6Qig/5iGDxDwnb7yD5fOS0dTCtsckx81xDr8njGanLsoHIPNQhauv4eYirJEVQMkTw9ZCDqMEfLoo+bLnLYdCUPi37rTmrlhXkXjZnqskqnAM1v3mOvgvtzC5eyry3XePXMPiktXTTL4M//Mie2keB+9p2/wtvb4hG0ypZlkck9zhWSFWjvww4rHq9tLzwWLhoxD6CZkzpfX3kNbWQ19RMTlsHhvj/Ty/wGgFh9FqEG6IhXmM+GqgqLM5FDAb+k94vjH418c/S7Ihdo00IFwCIncb3rd1X/dfwNz+ypzYLUeaA1qq/4XOGlDXZjSgYBkCao5+8pmbymluY0tKG0Rd37Lkf4Zf1C6OfQXBxLl4jMhqoKizOIpQHvzD6dcSrnSBJvuwFMwy2mTk0vhrYNzT/tmuYXXwFiP+9zB9MfGRPrYQo+zG149VncXeGhHJ2EmTszU4XU5tbmNrUwtSWVkyeuJOT3IiNcMHC6LWIQHZc6aGjgarCYhtiUPbz4BdGLyL+pAo1Mz+P7IUzpYaXA0VjZ91wGfPXXYskSV3A5dbSTQObMh/ZU/s6cG3XwZdwNoaU1/qELMuPJPKfxhqp6t5ZBiAZjRgzckJHVJ+vMKe9k7zmZvIaW7D1xbXvxQMcIlQc/a1UMO7RsHZfdQfQQViWhnbyFxIQRC9m+JreNkRNm2AYgceqCovNa/dVPxr22lL/HVNWLq5go6+qq7I6u8hramFqUzNZ3T2x/ymRLXKYUHH0mlQw7tGwdl91D+LcORT8fFVhsQVh/IN5GEqQHVTV0F3bRHdt6AbvuuffwOf1Mfem5QsRtXy+qb00HS3AacqaGmr0VXVNRk8vU5uayWtqIbujM15/1QlCr4eDqWDco2Htvmo7gUqdA6gqLDYBBYTycOkwXyf1nmuj91xo9nHjq8fxeXwsvKMwR5Kk7yIyn3hkT60BzXVmysoNN/oJ7V8ZDyRDGP0KRBB1GvCCqqojGu1qamrmvelI/3On13Szqqq0796Kt7eLrK5uZpw7z4zzjaS5ImdsqZKE22zGnWbGnZaG25LW25eVecyemXG+32Y725eVed5nMrkIiCerQc3/2IOo1NiktWZZlhOu2T1W0JbICxAnu//EX0HsA7sPuHftvuonQPDwVr/lZ80e8zsAOl7bgbv9AraeXmaeO8+McxdI749sG1TAk2bGbU7DnWbGZUnrt2dmHrNnZpzrt1nr+rKz6r1mcz+Dj33wYx9CNKYpqPWk6matYFQVFs8hYHhWIjJhYtbdnX/bCmYXL+0Hlp5aXOI760z7Zp077cMA3TW76T9/EovdzsxzF5h5riHqxEcFPGaTuBZE8zgybMfsWZn1Dpu13p6VVee2pPUxPA+diEqWfh46JwgP0xCZeX4ebiCOeNrMostY8PZrkSTpBmvppr1PvnZyfZvXtA3AUX+cniPVwW//X1mW/yuJ3R81JFMY3QD8ZgTC6Ebg+6rK/a/bbRl9bi/9rzzL1IOvM+NcA0afD0eGFYfNRr/NhssycCILA5NmxpM2agqFdkKNj/8CuAAcQ1R2HJP0yXhQVVicjUg/u11rQ+3ABPBgMr172m8fWa2q3F/Tn57R4THg2FdJzr7dzDjXgMXpFBxk2HDYbLjSLYFBVrv1mM0i0JV89BNqfPxcNCJiF28CF1LNIFUVFlsRLpjbEcIjlwz3mYV3FJKz6rrj5+YUzj3ptGQ0eszYa6rJfOUFZpxrIKO3D0dGNB40LsxmiK7rOhK4GcyDn4sTiNVQXQryYEakRft5GFYjY85Ny8gvuXrvqYW37KrzpH26zmVJg8lh9IcURpckqRRRgfDnqqr+JZGO+GtWqyr0+Qy0uI20/PERWq1p9NusqKNz8iYTjQijc0i7fRMh1pESS2VtJVCAyI+PrhNgMHizH/yMMW35Muw+iVaPiYZ/PEl3bzt92Vn4jKOR7JFUtBPgwH97OJVWa6+/s/RqV4/9N87OvuuHet/iDStxv/2ddFryaPWYqNtVhevoG3RMn4bXlKqe2QF0I2IzwdfDm37BnlTAKyW3LjCmm3/raO4aaiMn+bdchfld76YtczZtHhOtHhMXak/Rc2RP8NsuLqMPIEnSDxAZG35h9EGbpCRJekZV1XCf8bAIVwryo6exmcoXXxjNGfxow0tg5nMQEUR9bSxKAUeCZvjPEim1MgiGvDxyHvocxhkiYcVpd/DiE0/Ql52oQmRK4BTC8BxEBD9fGYtSwNFQVVi8CzGBigpDZgbTPvkRfFeI5Cifz8eLv/ktndNSfWvJkKgnEBvZhSh/MuKCdImiqrD4z8D/G+o9ksVC3kfugZWrB547efoMBw8Ewmxms/mxL3/5y/dF+nyqYcTC6JIkrUXkFVsQaYGJ4L1E2DWYNWsGaW53vEa/ncGi4t0IH6VEqHBypJaGSM+bGdSi7SwdDkZEMHQpgRzuLkVRXkSoJv0bODGGy+BrEAbfgxiMjiA4PQXUZ2/+7NvMl136RSnseFtsVkzxr7S6GCzy3onwEYcf80h8mBFxomAeoomYxAL/xqoN2mO7oigvITh4HjELHRMeqgqLpyPcDD5EGrKfh5NAXfZnP3WreenlX5DS0wnOgTIYDJiy4h54ewjloBWRGOAl8vkfzoURsQ8mmIehChcOB/+ehjsRmyrdiqK8guDgeYT4ypgkVmjuHv8k9SwBHk4g0lDrc8u+V2qclvft8M8aw7yX2dnZi8Pfk6pIhjB6FUJdaySImgNtzMjw/5DfT/w8YuNRvdafkJM52bNobdNLDqEn/Uytz4sQLq8riD1tLwdhePzGp05RFP8A8MIoxwZaEFkGJyNlytTU1KyL9kHztKnQ7wzmYQ9i5XKWUOPeCrTLspzUTByNhywGD8gzEdkyBcByYk/bsyGKpK3XHjcpivICmvGRZfl88no/CCoiyH48UqZMTU3NrdE+mD53FrS2B/NwGNiGSKtsJtTAt43GakZRlAwC10AwD/kIHq4kNjEcEIP7Gq19G+hUFKWSwCBwehQH4zREja5j0Xan19TURJy9G1QfJgk8Ws8MBkNCNbjGA6kijP4gQYrzJredzN5mMnqbcPV28psjvQQN/atlWX45wteMG7Ta5Jci8oWvDGoLE/i6Awh1rj/LsvxWsvoYC8J5MHr6yehtJrO3GbWnnf874hlMOgAAIABJREFU0UNPwJTfJ8vyY2PZv+GgKIoRkbcdzMFViMBpvJHlowhj+hhCnWvMgpLhPBi8bjL6xPVg7G7l72f6aLAPrAG+Isvyd8eqb7FAG6DnEzj+fi4uJ/408VrE5sK/ALvHum59MBeSz4Otr5XM3iasfS1sr7NzuENcEHl5edWf+tSnItXOSjmkhDB6uE9/fu3LmD2BIndbTts51TMwgU85ox8NmvZuAWIj1RpEJs20OL7iNeBRhJjLqGcHhfMw5/w+rI6OgdefP+fgQNuA1U85ox8NmnDLMoQBWo2ofT+ckE4wjiB4eEyW5frk9zAU4TxMbzpMdk9AhOvVZic7LwxM4FPO6EeDoigWhKvzSsQk8jYi1DIaArXAnxnDCVEwF7ltp5jaEaigfKzTTcVZYacmkk8/lYTRyxD175nWcoycrsC1FXaSTxijHw6tTs3ViJP9bQgDFIuf2oOY7TwKPCXLctSyryNFMA9TOmrJawtUng4+yZlARj8c2kx0KYKD2xDlJGLJ31YRQeBHgb+PZq2VYB4yehqZ1fTmwGsNfR7+fHJgo9yEMfqRoIkc+Xm4leGrbPoxZhMiPxeW/i7yz+0deL7X7eOXRwaSwi6+7J3Rhj9PH7g/s6cxY2bQSX6q282WMwPGZqUsy6+OQxeTDq0y5SoCJ/0KhndDdCMUjR5FZD4kdbkbzIPF0ZmRfz6ggd7i8PKH4wOuz3tkWU6qMPd4QXPPFSE4uA2xiWe43NR+hADPo8COZMcwgnkwevozFtbuGnjN6VX5ac3ADugvyLL8w2T+9nhBmxStIDApuonhN7WN+oRogAtVvX/R6coMgxq45MpruukXvudfyLL8qWT/9mggZYy+HzU1NfkZvU2fmdV4aLP/uU6nj/89NjCi5qZSrm8yodWivxv4ALCW4QeAswh9gN8ke9ZZU1OTb3I7Prjg7Mvf8T/n9an8+M0etDPmalmWD0X7/ESG5pa7HVE9dD3D+6GbgV8BP0/2rLOmpiYfVX3votOV3zUIaT4Afnmkh163ClAqy/JwlVInJDS3XAmCh3cw/Kq4GyGO9GNZliOVpx4Rampq8hec2fmqyesaKPr22Ik+ztu9AJ+WZfnnyf7N0UDKGX0Ax9aH04E+tHKrqqryk5oe3D7OyrK8cFw7N0ZQFGUeIn/4Awxf16MLeAQol2X5QjL74dj68HmCKhv+9lgv7U6fG8iUZXlEEncTAYqiTAfeh+BhyM1UiNn/7xFGZ0iFt3jh2PrwKwRtqnvyVB+1vV6ABaNh4FINiqLkABsJTIiGghehsfzDZE9MHFsffhxxPgCwvd7BoXY3wM2yLO+K+sEUQkoafQDH1offAgZqzf7f8V6aHL6nZFkuHcdujTk0//MKxMl+L0OX+HUBfwLKkhXocmx9eAdBot//PGPnRLfnkCzLE0o4IhlQFGUpYtZ5H4Nl+ILhQ7jgfiDL8uvJ+G3H1od/g9C3BeCF8/283urqBKamWrmD0YamkuefEA3WDgjFdoRgTVUyjpNj68NfRVQkAGBfi5PKBidMIA9EKhv9KoJKxj5+so/6Pu+3ZVn+2vj1KjYc2LDOv7nIL4xuX7F1x4h975oq0m2Ik/2dRF/uqsBWhNHZE+U9McGx9eH/Az7of/xMnYPDHe5HZVn+4BAfSxkc2LDOz4MP6EsSDwaEv/k+hCrWULoNLyCMzvMjMTqOrQ9/EyEYBMCuC/1UN7tekmU5qenTo4UDG9aZCBJGX7F1x4g3YMU5IXoNwcM/R7L5y7H14f8Efut/fKjNxfZz/RPKA5HKBTwiXSAHx7IDmvGezvDC6MHNqt0GBwLVAxvW9TFYgDv4frgw+ukVW3eEbBjRNp5tA7Zp/v9PIrRVw/flS4hB4Z2KouxCnOzPJhj0TRUepjK8MHo4BzbCzvEDG9bZiXz8owqjr9i6IyReoh3Hl4CXFEV5EDED/xyRC9rdqrWDiqL8AHgywQ2E484DwIEN63IYXhg9nAMbYbvaD2xY52BoDiIJo7ev2Lpj4Dhog+h+YL+iKF9EzP4/T1BJ8CBcD/wNOKUoyo+APyYY9E0JHkaCVDb6kZD0wKFmUC5hsDC6v1mT8DMSCcgkHtiwrolQQXT/7Ql5645mQFEU5YfARxDpfYsifM1qrb2uKMpDsiy/EPyioigyYkUQzwUwWjzMY7Awur8lS2LSb4SG0x4I7lsbkXk4WQoNK7bueFhRlJ8jfL1fQOzNCMfViI1e31AU5cvAluCZv6IonwMejTMQPCqB9AMb1s1CaDUEC6P725Qk/YxVa/GoeXUd2LAunIPTCB7Orti64/eKovwRIRv5EKLURTiWAL8EvqooyjeAPwQPwoqifBiojtM9OqESGlLW6Ht8aprJEEhekUSQbMTBsQMb1s1ApOcFt5FKEo4W/NvbB528BzasqwWqSzUt3LN5M5cfnH9JKcLoXBvhu64D/q0oyg7gi6UHdr9RsWLVDcA3EEbwoUgdUFVVkgaXSR7xzObAhnW5CMPiF0YvIg5DPMbI01pRhNcuHNiwboCHfpO5aMeVRWsRPKyN8P5LETPOvYqiPFR6YPfOihWrFgDf1b7/fRE+Ew3J4CETcW4EXw9Di8CMH3IQk7MVEV5rO7Bh3Z7SgCj6+ooVq65CzPzfEeH9c4D/BR5UFOVLl1+o2/rW7PnZiFXxCUVRbo7DDaTP9JMBj8rM4M5JEqfi9cUd2LAuA2EA/SfzDQwdgEsmvIg6/H5fZrKxUGvvB1jQ1tS/oK3pdRVePJ877aljs+evtVuskfy964B1DVPyjufYe51dtkyAzYqi/CPS/genl7npoWdJpyzL0cTWI+LAhnV+dalgw3LZkB9KHnwIHiRGVigsGmYjCg6+CyDd4/aUHtj9BrCnOWtK5ZG5C1d2p9tuZ/DIWQS8eHra7BMzu9o7mnKmWoB7FEV5UpblQZrFHp86LXgS5FMH1MdihuZXLyCUh+UkR5R8OKiIjDxI3qotGHmI4mn+Ampq6YHdNUB1hy3zK4fnLlrRnpH1DiQpvHji5cA/vAbDmUUtDQ1nps+Zjlh9bAIejvA7ISsdr1ir6UZ/pHBsfdiYZgg1zu1OX0xZEAc2rFuMWN7dhZhpJVoh049eAjqh/hYsjB6xrdi6Y2CzzoEN64wIgxMswB1+P1wYfQHxaeCmA6skWJXf0Up+Rys+SWpsy8x21U+dMb85KxeXWRwKg8/HjO6Oy/J6u6m+ZDnd1gwD8HtFUa4bVP9fCk0X7Xb5jsbSmQMb1s1BCFXcjdhoM9KCVA6GFkaP1tx+P/CBDesMCB4iHf9Iwuh+90Y8ZV5NiBVM4YyeTmYcewMftHVmZPXUTZ2xoDk7V+pP09LtVZUZPR2Xzm9vYu/iK2jNmgLwiKIoO2VZDtHwc/nU64ONfrfb1yDLcohocSQc2LAuD7HX4G7tNieO/xIJLsT+kFoiC6NHa64wHsIF6cPvhwujLya+yZOEVvMn197LTSfeRIXObquto27qzHnNObmmPkvg66Z3dy7K6+1a5DKaOT91OsB3FEV5WpblE8Ff2u9RC9NNAR46XD4XwsU0YZCSRh9YYJCkgb71uX30uNXqSG/UZi8rESf1XSSmVdmNEFz3C6PXEjD0HcHBo0SgZSp0ay0maP9rPoETPlgYfTkxDGYGVZ01vaeL6T1dqECnLZPzU6bRbbVh9Pkw+XzceKKG6kuW02XLXIaopPpl/+cdWx+2WAzM8j9WVZWWft/uKP3176a8C8HFdbH+1yA4EOLowcLo/taSBB58iEGiB6F6Niy0AXsOoYLo/tsCYjBEBsib2teTN7VP7KLtTrdxITuXC1OmYXM6MaByw6mj7F28lJbs3BmIWlchNd4NkhQSnOx0qQei9FdCpDH6ebiR+GfyLuANhK86nIfGkWZAaZ/vIzDzHxba/5rFYB78BfaGreopwf9v78zD26rO/P85V6t3O86+2dk3JxCyuMCYUlJaMF1o6bShG3SmrZtOZmmZTDvza6tR25lOSSnTTmYgM90oHZrSZShQU2jDFiiYmECIQ0J2Z99sx45XLff8/jhXlixLsmRLjhSfz/PosXV9JR3re+97z33POe+3tKSnu3TpicNw4jCdLjdni8s4Uj6Jku5ODOCq5n0YUnKsfGIe8EOv13t95AQIvymr3RFrJjt85oHRKgWdLrIy6J/pCV47KS/cyW3pMwEeDz1/7dZ3lQLvRh3UN5N8vQ5QVm87GWjK/VY6pvKlk+WPPBXAmsUT/bfXbn2XGxVgI02gE1ohCqCsuxNTCA5NmsaL86q44uhBivp6uPpAEy/PWcKFgqINXq/3IY/H0wTQ4TOXFDvD3ct2n6Q3KP8voh0FqJkpoTurKSn8iyYquEfqsNv6v7MG64J9zHo8G/k3azroUgb6Eg9ZQKy4txtHMMBb0yp5buEVXHH0AOO6O1l9aA+NsxZypmTcR71e7088Hs8fAC78+rslbpvoD2pBU3K+N7gloh0u4DrCOqRa2/0tBuqwc/kjT10yg5lYWBf8U9ZjQO0t68K8iIG+xEN2/gr7eik4d4rd02bx3MIrWXb8IJM6LnDl0f0IaXJ0/OQa4C+wpmj2PHKvcNnEgPGODp/523T8f6NJWubpCyEKUFPYPFLKx4faPxFNTU0z2P38k3Ncff2LLna3+c7afrt1Dipv+nHU0uxkUx+HUAM7DYQP6KywMEwGr9frROUrx6MuboKwgXXIuFpObG8dP+HihcX5vr6lzoB/md00F9mCQYczGMARDPT3TU6WlNM4W3UahWky78xx5p05jmkY/GluFe35hduAt992223Tg/safjbf6Lgu1JbDFwN9p594qbSsu/MWlA43k7zh90ngRcKBZcfyR57KGgvDobDWSETqYCNKA8Ac19leMqm9bUlBX2+VK+BfajeDVTYz6HYEAzgCgf4u94W8Qp5faK1vk5LK86dZdLIZmzRpmL2Ic8VlB4Clt91224Tg0d0b5/tOfiTUlnM9QfnIjlPlNft3rUbNUX8/yefJzwN/QmnQADQuf+SpnFhUBP3ls8tQOoxHdVwH6VDc3Zk/9ULLkoK+niWugH+pPRhcZjPNQkcwgDMYwLDiXp/dzpNLq/vff2rbOaqOH8Yd8PPazLkcK5/UCizweDznd/32gZvmytYnQvv2BSWbdl9c8JWvefaN1v+fDtJijC6E+DrqVm33cIN+U1OTDSm/DXyueM/WgglOiTRNuk610PzmyQ7biZN2kssLB1EXoMeBx5c/8lRWCmLNs1+MGtCciDqAQ0El8pFo4U/S2APqYJdC0OMcGKcLentY3ryfgr4e/jRvKVOvvPL3VUuqapx7ni+Y4fQhpaTnbBtH9pzsNo4c85HctD2JCiyPobR4Y6TpmUxgLe9fjJrbHdIh1iMtUxXtVvAXSLpdAzNDbl8fVxw7yPiL7bw8ZzH5i5f8afWq1Vew7+WCObZOpJT0tXbQvOeETx5oboVw6m0I3iCsw/Z0LIxKN5YxyyLrMZmB333keRHq+IwIWzCIMxjAZgbpdA8MK/ZAgKoTh5jeeo4dlfM5WTbhx7d98IOtgcM7/3aBea4/O3K8R9K39F33AF+qqqrKuu80Hsmmdx4A3hJC/BNqJeItWNMIhRDvROXCR2JlB/BthLgLKWnNn4yv6wzOtw7QsmM/tqEDXyvKqvFx4Mls6blYKwYnooJK6LHE+pnK/OQRE7DbCcQx0+5y5/HC/KXMPXuC6oO7edXtusk3bz7+4ikcbT9B4bFmzr7wBkZ4jns8OoGnUAHmieWPPHUm/f/J8PB6veMYqEPokUpd/RETsNkJ2GLr0Ot00TBnMTNbznDVkbd41W67pnPRYlylUzjS0kxZy2lOPdkAamA5UcDvA54m3PHJmto8Xq+3iNg6VI5mO4I2Gz222MmCgN3O6xXzOVU6nqVHDxI0jE+dP3+e0pKJHDrTwWSjl3y7oN1Rgtsqfw38fcw3y0JGbIwuhPgXa/ti1EDcB6SUKeXH4xmj+08chfv+Pd7L9qCCy2PAy9mQC/Z6vZNQtdmvI2zfl8p4wyWnqKeLpWeOY3vvbUycvwAAf3sb8t5vIQIxv+IjhHuRz2VDLtjr9ZYRtuBbhjo2k+0VZwV5vl6WnTiCccO7mXrVSgACfT2Y934L0RkzK3YaK8gDf4xezX0p8Hq9hahO4vWoKbuLUQvwcgZHwM+y44dxrLqaadddD4AZDNBz8hD24nJcxeNAiC5gYVVV1fFL2tgkGbExupTy/0G/ucr5VAO+RUxjdMe0mQRmz0MesmZNuVwX6Ou7H/jZ8keeSmmOciaweo/XowL9DQxv5tBQmIQ9gFtRtXxC5tVGxCP6uQ01o6GMFFJEnXkFHF55LStmhMerHCVlBJZdhdxhGUg4HF34/T9G1TDffqnTNlbvsYawDsn4EqSKRBmKh/xnfQz+3mNpYiM8FbQk2Xb1ON0cXP42VswNL2ewu/IIrr4W8+kn1QabrY9g8CGUDs9d6skIlj/E1YR1WE1mJotcIKxDL4nPhdDvNtRdahkqVZfUjCa/3cHBpVdx1aIl/dsMm52CGZYuqtNcgIph3x3pPzYajNgYPYSU8icjaEfcQklG9bWYJaUYy1ciKmf/99JlV/zjCD5nRFh11mtQB/QNqKX1ww0ufcBe1IX0KAMN3iMfF0ZqlGINQpYsOHW0+vCEKff57I7oFZdB4On58+cHFyxYcJPTOXhaurHybZi+PowrVyLmzLtv6fKrNoykTSPBqrN+DeHgsorU1jREEgD2oVKUR1HHeLQG54G2kU7NswYhi2edO7nkTPG4/+p2uZfG2O3F2bNn9y5cuHBNXt7g2aDGVauRx48qHebO/8+lq6vvivEeo4I1yWA1YR2uJvmB/WhM1Ir7N1HTRCN1iDwvWkdqWGMVzCua2N46s8/uuK+9oOjaGLu9Dvzi+uuvrywvL4/viBVec5etq8kHkVTQt4zR3airmRcYtGJwhMRd4WksWYaxZFno6ajniK166h9CrXy9htSDSy8qsO9GHdChx6HRmt9r1RZpAeq9Xm9k+qUJNR3tIY/Hc84ygb4p1nsYMysxZlaGnqa1Zn8yWBfcW1HVFN9BagumQE3VfYvBOuxPt+tVPCy924AXvF7vGdR0T1AzzH4E/NTj8RyzdFgT6z1EaRn2T34m9PREhps8CKs3fwvqfLiJ1BfdBYEDqO8+Uot9mbQBjcTqRLUDu7xe716Uex2oFNlPUMXY3oJ+Y/RkyJrxq6EYMuhbxuifImyMXiyEuDKdxujAw6iLSaJl8l3WfhnHShfcijqw30Xygd5ELS56BjU9sQlozrLFG3momiM/BLZHlfvNNh3cqFW9t6Pmn6cyWWAXSodt1u8Hh1ndMlMUAw+hdHg26m4u23Swoy5CH0VVbx1yIVQE+1E6PIeaRbTf4/Fc8nGfCMahxqR+gKpEG32MZJUW6SBh0LeM0X+AMkYPmXJ+D/g74M50NaKqqupYU1PT/YRHwmNxfyYHSrxerws1SH078D6SDzA7UQf108C2HDBSWOjxeGIO8mWJDnZUT/6jqHUZyY5HvEVYh2czbZadBm7Ich0EKl3zUdQdfrKzzY6iNHgaeMbj8WT74OYn4ukA2aFFuskaE5VII2gGXlW7UP6jaZ8La+X2QgHmNpKrS7KHcHB5zuPxnE9nmy41l0gHgcoNfwwVYJLJjx5mYJAf9VRHJrkUOgB4vd4lqIV3a0luGuUpwjo8Axy+3Jy8LpUWmSJrgn6Ipqam6YRP/DPAw+m+ilp5yY+jjC9iGS5E8yaqFvoWj8eTU8WVhsso6WBHXWzvYmj/WVDTQx8Cfh4qFXG5M0o6GKj8/BeJM5YQxRlgC8qH9pXLLcjHYzS0GA2yLuhnEq/XOxH4vPUY6na1GXVQ/xzYNVYO7NHAGpT9NPC3DF27/SzwC5QOL2sd0oc1ZhLq/AzlNdsO/BqlwzNZNk6lSYGsLLiWbrxe7yLgCyiv10RTys4TDjAvjXSqpGYglqH13wCfIXGu/iLhAPN0lg3A5jzWjLR1KLvNRL6yvahBzp8DTwwqu63JSS7boG/lid+BSh3UJtg1iHIyegDYOlrT98YSXq93JUqHPyfxTKjfAT9GzaIYlel7Ywmv17uQcOcn0USFbagJHI94PJ6ky4FrcoPLLuhbwf4DwFdRS7/j0YGauvh9j8dzLNF79tbf50SVLq4keWP00CNAYvPnWMbop9y163L+LsPr9b4DNd2tJsFuvcBPgXs9Hs/eRO/XW3+fHVUrp5LkjdFDD5OhjbijjdGPu2vX5Xwaw+v1XoXS4T0Jdgt1fu7xeDyNid6vt/4+A/XdV5K8MXpom0FyGkQaoze7a9fpzliauKxy+l6v9xpgI7ENkUM0A/8O/CjUi7EO4soEj2mMjqVciF7U7JRYJtCH3bXrsroXbM0AuZvEd1hngf8E7gtNr+ytv0+gLq6xjNErUXVbhrvydjj4UYPHsXQ45K5dl9Wlob1ebwXwL0QZskTRAfwPqvPTX5itt/6+kGFJZYzHTFJfHDcSTMIdokFauGvXZfs06azisgj6Xq93HvAt1EyQeLwC3AP85kurJo5noG/uKkZuIzeaHEX9Py+hjKB3uGvXXfJ8q9frnYrqUf4F8S+Sb6JqlPzvl1ZNLEB995GeraNafXSEnAa2E9ZhezZcCKyCc/+IGj+JN4Z1FNX5+eGXVk2Egebo1Yxy9dER0oJaFPmS9XjFXbuu7dI2KXvJ6aBvDUh9DTV/NlaqSrpt4tGa6QV/WD4hr0AIETqoc6rSXxL4gR2owBM68I+5a9fFFbe3/r464OF0nBzWCuYNqLx9zGX5DkM8vXpy/uPXTM2XhhChQD93pJ+dZZioVaeROhwYQoePAdvctetGXP7YWmD4eeArxKnuaggar5iQ9+s1Mwo7bEa/DotIf4G6S80ewhfjl4A9iVJ1vfX31aLSeW+MUvsuGTkZ9K2CW38HfJmoJeECmFpoZ9n4vP2Lyt1BhyHmk57UzCmSM0bvifrdTtjwOdoAOp4xelma2vsSalDuCWBfKPhY6awT1j43umvXtcR9lwRY8+w/jerdD5oFMjHPTtV4d/Oy8e5Ol91YQHrGkM4xtDF6T4zngtjff/TzSGP0dNx1tKACzwvA74GdkReB3vr7XrE+5wZ37brDw/kAaxzrw6i73VnRfx/ntrFonOvU8on55/LtYr4QYqTeF6BqCB0htjF69Pcf+YDE33/oeaQxeio2nPHoQN0dv4jSYXvkRaC3/r5foorG3eiuXbcjDZ+XteRU0LeqFH4C+AYRnrBOQzCrxMmcUifzSl0Bt90YTnBpR/UOjjDQGP0IcHQ00ye99feVMdj8OfT7TIZ3ETsEPHH8ou/F5g5/8bXTCu63tu8C3umuXRe36F00VpB5H2qV4oLQdruAmcVO5pa6mFfmDBQ64riFJKabcKXFI1GPZnftulGrE99bf18Rg7//0M9KhncROwn83hc0n3zsUEfhbfNKf2htPwascdeu25/Km3m93uuA7xCxuM0QML3QYengCpS6hqVDH+p8iKdD+zDec1j01t+XT7hDFK3DLIZX2bMFZfjzxM/2tJkfW1h6vxCiEFW2+SZ37bqGtDQ+C8mZoO/1epejZtusBCh12ZhT6mRuiYsZRQ5sRkp3pz5U6dRIM+j9uTBjxppJdAVhE+irScF16ESnn//d08aKSXnUTCvAaTNAndxr3LXrhqye6fV65wD/hSpER6HDYE6pkzklLiqLnThsKelgoi46Ib/WV1C34Vk/L9+aSbSYgTosSPiiCDp9Qf5zZwtLyl3cMKOIfIcB6s5rjbt23Z6hXm8Z9vw7qlwCbptgTqmLOaVOZhc7cdlT7hfsJazBK8Ab7tp1vlTfZLSx7lrnETZEvxplYJTUFyCl5J5Xz1FR7OTGiiJKXTZQd4+17tp1Lwzx8pxkxEFfCHE9que9G9gipXx2JO9nuWh9GJUuOHv69OnHXnzxxc8Cf1futtkWl7uZX+ZifF5ynRcJBLDtk0I0SsR2v7BtP+ycunNHwcI+688SMOuqK7L66mf1rvMJG6P3m0Cvu6J8QqHDWG0IETroV6Gmxw1if1sfvzmgOmlFToN3VRQxt9QFqqb8de7adWdgsA4XL178zVNPPfURwFPsNNyLy90sKHMxucCRVPslEMRoNoXRKGF7QNheOW0vf+2Foiu7COsgAZkDWuShZhENMKj/zNJxJcVO22qb4G1CaVFNnEVoZ7v9/Hi3Gk5x2wTvmFHI0vFuhBBnUDrsg8E6+Hy+Xz722GPvBu7Ot4vSReVuFpa5mFrowBBDX3AtHU4pHcT2IMb2Vntx49biVe3kng5uBhujmx9dWFowpcCxIkKHq1E+u4PoDZh87zVVPstuwJ9NLWDV5HwM5YZ1o7t23UuhfaO1QJVhSDjdOxsZsTG6EOLtqNz6GeCbUsoDw2lIrKJGp06dYu8br8tZBVIsKXczpcCBiaDbcNNjOOkTTnqtn33C0f97r+EMdhl5Xb2GkyBGPkKkcnsbqj1/JupxNsa2c3XVFcOeP2zZyc0lsTF65COZaXKhE0DaBP48u0GBw3C77ULk2Qy6AibHLg5s8vwyF++qKKLAYezy2903NE9d9WUidGhpaaHp9R3mVLvPWFLuZmaxEwlKB+Giz3DQK5z0GU7rpyOkg9ll5HX2Gk4ZwJaPEMldIRQmyiks+juPpcfZuuqKYZfrtYLHPBIbo0c+ksmJ9+tgCAJum5CFDpsrzy4Mt90gYEoOtg/sSM8scnBTZRFlbvvxoGF/++HpV3+eCB06OjrY+doOs9zsNJaUu5lV4kQIQa9w0m24w+dC+PsPnReyy8jr7DFcQUuHVKZbmqiUR6zjf5AeddUVw55ObJmyzCGxMXrkI1G54xADdHDZhFnoMFx5dsPmthsYwN62gYfOxDw7tbOKmFTgaAduODCzZidjreCaECIfVboybTObAAAgAElEQVR2Kcrz8hvANVLKHiGEIaU0hRCTgO9KKRPNCY5LU1PTd4goX+r3+znR+CyTZy+k017ARSOfi7Z8Oo08pBjNKfMJMVGGELtQszZ2WY9DddUV/amiOGbQS4CK0W5wPPLsgndVFDFnQsnpo1OumiytYREpJftf2krl7HlKB1t+vxamGM0p80NyhIEavAHsr6uu6E8VWRMAFhA2pw895jC66zDi4jCsXv+kwvZjU1aUBO3hdPWehm3MnzGFDmeJdS4oHQIp9WkyzgkGnw97Iy/K1iyjeQzWYT5ZsmDUEHDNlALeNiW/5fSkpY/15JXdmWD3e6qqqsaOMXrE353AQ1LKD6XaiHjG6K1HD/DWuGXZFlziIqUk2HMRX8tpn//CuVZ/R0sg2H2xUAb9pZe6bcmyaJyLmnlTaZ16BdJQ33v7uVMccU2j05ZMxyo7CPZ24Ws97fe1nW0LdLT4Al0deTLgG0eOTE2sLHbwzrkTaZ95FaZNdcy7LnZwMuDirHP8JW5d8pi+Xnytp4O+trOt/vbzfYGudrf0940jSy6yQzE5385Nc8bJ3lkrhd8RM2MKqsc/dozRhRAfBN6NMhveNMx2xDRGL5s+m4KObi46UjHqiUkofx8ySRYxHsMi2NOFr/UUfS2n8LWexuztApWGmTzSRsegj8TG6CMOaHta+ziz5xw15T3Y8woBKJkwBXdLdzqCvg91d5R+Hfp68LWextd6Cl/LaYLdHQAOEhcUGy5+Ehujj1iHIx1+tuw5z/XlnbiK1ZT7gqJi7Oc60rEW1o8quxD6zmNpMSxMfx++1jP9OgQ620CNf2Ri0V0AdU7EM0YfsQ6nuwP8fG+ruH7cBQrHxw36Y8sYXUr5G0bumRvzxBSGQZ5hcnHwn86hpriFzJNjGYqHtrUkk+/d3NAcOtidVnsmWY/I3ycFezpn9J0/WeG/cHa8r+2MO9gdo3UpIByuFqQ8JAO+IzH+hwEPj8fTHfeN6B/sDR3wNtSc5zLUGoCyOSXO1ae6/F/oDshYdx7nJ06ceHzBggVXTpgwARE1KJjvipmOb0OVtYjV3mhNWpLJ90bo4EDlbSdFPSYCk4J93dN8Ladm+drOTvS3nckLdI5sJb6wOy8gaJZ+30Him6OH/qfORCWeI3QQKB1C8//LgHFTCuwLewLyny70BWOZxVwsLy8/umDBgiWTJk3CMAZ2iPMLC9VlcyCdqPTW2RhtjdX+7qEGaSN0sKFy6tE6TAImmv6+qUqHM5N9bWcLAh2tqP7V8BB2RyfCOCIDvoNIGfp/Yv0v54GOoUptW1qEzod8InQochjTChzGN053B2It1uwFfrd48WL7vHnz3m+3Dxkqc8YYPdmc/l0o8+DvA14p5dvT2QjLfPg7kdsMM0Ch/yJtfsEpx3jcNpBwz76+vK/XVVeMWuU/66BZSdgIeqi644MRAlt+EfbCUvUoCP0sRoSnULei3If+ADxRV12RkVkBXq93Nyp/CurA/hWq4Nkzt912298SpYOQQQr8nfT4/DQ7JuOygZTcu9+X94266opRXeru9XoXo1zOalHF9FLuydnyirAXloS1KCzFVlCCYe+/qHUCzwJ/BOrrqitSmjefLF6vtx6VKgXVY30cVen197fddttfMUgHk3x/J0F/Hwdsk3DaDaQU3z/gc38TOD+aM228Xu8s1FTR96JW9KacfzXcBUqHglLsRaFzogTD0T+G0Yda0PYH1GKqNzLxP3q93vtQA7Qh/ogyR3/U4/FcHBSbpCQv0EWRr4MOVym99v4F6HdVVVXlRE9/yKBvGaN/n7Ax+mvAp9JpjB6d05/SeZRCf0f/GX2keC4+m3tU82ZWDf7brUcq5QL6MGyNjqKyo87yKaazfGqJs3RCpbDZl5B8kJIoI+kHgV+l8yLn9XrPo+6S/gd4KNLTN1qHCd0nKelrw7B6bicKZtLlLB5tHSpQAeajwLIUXhpAGK/ZC0sOOcdN8bvGTy1ylE2aYdgdy0jtDnc7SoctddUVafPd9Xq9r6LuxH4A/NTj8ZwO/S1ah7Kec4zrPYfN6uKfyZtCu7t8tHWYhCqN/VHUFMhkkQixy5ZfvNc5blKfa/y0QmfZ5KmG03UlqS2qehOlw/+ms0Pk9Xp/g7pw/Qj4scfjGbAqOlKL4r42xvecxi7VRJ1W13jO50+GHMvpJwz6ljH6syhj9D3WtjuB66WUd6azIZGzd6Z2NlPoD6dNzuVNps09PuMj5JbJx1pUoE9UljmSAGpRS8gj9KVYZhObG5rLsZZ5W4/KJN+/F/gt6oB/aiRTREEtcvN4PK/F+3ukDhO6T1LW19r/tzbXOM7lTx0NHSaiAsztqDvMZJCo+kMhHV7weDyDcm+bG5qLgbejNHgnyd+5BVA9zgeBx0YyNRHA6/VeCeyMl56I1KGs9zwTevqvCXQ6ijhZWDEaOpSgypTfjvqukh183U1Yh+c8Hk9r9A6bG5rzUDMB34nSYnmS7y1RMelB4Ncj7RB5vd5lwO5ETmAhLQp97UztCl9v+mxumovnwuU6eyfTRM7TL+1tKZjYE14c2m3Pf/N40exlGTKCHk84wCSq+x7CRFX0Cx3UL3o8npQqK1r50tmELwA3oAbCh+IcysXoQeDVTNzuRupQ4OsomNYVrgPmM5zHj5TMr8yQDsXArSgdbiS5lMEuwjo87/F4Uk43bW5ono4KPKFHMrnZDlTt+QeBbZHTc9NFpA7OQE9B5cXwZLmgsHUcLF00LkM6uIFbUD36W0iuN76fsA7PejyeM6l+7uaG5gkM7BQNZaMJqkP0COEOUUZWcoe0MMzA5+a27+2fzSCBA6WL75XC2HDZzdMfTZqamqaX9rZ8eWLPqb+K2LzDWbN2RTo/xyrrcBfwEYa+3fcB9aiA+6TH40lr3ZHNDc02VGnbd6ICXzIm4XtRufj/qauuOJ/O9oDSIc/fVTej8/BXIja3ABOcNWvTdtBYZbG/ANxJnFXEEZjAVpQOj4fq8KcL62K8FKXD+1B3BEPRDPwvsLmuumLElTKjaWpqmi5k8Pa5F/Z8WwxMDxY5a9amrYyz1+udBvw1UEdyHZA/oXR4xOPxpDWtYekwFxX8b0HNDhyqE3AWZdZ+f111xZBlLIZDU1PT9Dltb+6yYUZ+P0ucNWvfzMTnZYqsC/oAvm1bJqBEDNEDFDpr1o6oR+X1eg3UIOBdwPVD7G6iei4PAb+JzH1nms0NzQtRhtUfZ+gFXD2ofOR366orDqWzHb5tWwxUHZLIcsmTnDVrky7OFgtrcLwGpcN7GXqs42WUDr+MzH1nms0NzTNRBiSfYOg0UAAVBDfWVVfsSndbfNu27AEWRmxa7axZu32k72ulme5CpTWH6vzsQumwxePxHBnpZyfL5obmiajO2SdIrkP0W+DuuuqKP6W7Lb5tW36PugiF+HNnzdpfpftzMklWBn0A37Yt51BT9kLMdtasHW7p2TzUAfMFBp44sXgFdWA/7PF4hixAlkk2NzQbqLznx1HzgBMZvZiolMPdddUVaSsN69u2pRF1FxLiHc6atc8O5728Xq8DZXRzF1bhvATsJhxg0noxSxWr57kcdQx9lKHn/j+Bcg57Ll0pON+2Lb8GPhix6U5nzdoHhvNeVufnJpQONwyx+xGUDj/3eDxNw/m8dJJih+hFlA6PpysF59u25buoOBLC46xZ+/V0vPdokRVLnuOwj4FBfyaqzGvSWAOCf4Uylki0jHE/KlWyxePxDKt2UCawDtTngec3NzT/Dcrj9BOou5Vo7QxUb+gjmxua/4g62P+YhqCzj4FBP5lc6wCsAcFPo5ycEr3+BCo/+5DH40l7b3m4WN/hDmDH5obmDai0wydQqbhYKambrcf2zQ3NdwP/V1ddMdKc776o58PRIQ8VLL9A4juXVlTK6iGgYai58KNJXXXFXuArmxuav8bQHaJrUb3+vZsbmjeiZv4Mu0aTxYh1uNRkc9AfdllXr9c7F/gS6sRMNBD1LMpCsd7j8QzZE2jZtKEE1bvIlDH6sfL1G2PWi6+rrgjNqf/V5obm8cAnUSfv9Bi7hwYlX7eCzi9HMMg1Eh2moBy1Pk2U2U0UO1A6/NLj8Qw5O6ll04YCMmyMXr5+Y8xZIdb3+ATwxOaG5iLUhfbviV1WeRXq7uvA5obm7wA/HcGsn5HoUAr8LaoDlGhl7D7gXtQU0oQLAQFaNm1wo86HTBqjt5Wv3zjoohOjQ3Qr8e8gFwI/BL65uaH531HjL8Mdl8v6ctNDkc3pnWcYmHe/3lmz9rlEr7Fm4nwNWEf8C1oA+AXwXY/HMyAN0rJpQzGJDdLT4Wg1FKeJbcR9EDgTeQJsbmh2oHKx/4CqIR6PIyiD7J9EB//NDc1L6qordsd7oW/blp8Ad0RsusNZs/anif4Bq3roBlQwjGmfaPEYaun6c5G9SSuoVxBfh9Hw0T1PHEN04ET5+o39nQQrDfdeVEcj0Rz2s6iFPpuig//mhubFwJ54d2a+bVu8qGM7xNecNWu/kegfsKpWfh74KnHsEy2eQ110fxfZ+bGC+kwGf/+zrJ+ZKDUSTTtxDNFRnaT+49lKw12POh9uSvCeF4H/QI2/DBir29zQPA84Gu+OwLdty1+gLiAhfuisWfvpFP+nS8plEfSt29aQfWLM+uWog+e/gf/weDzHWjZtmMJAI+jlJD4xsoFu1MG+j7AxeuOvVq3vQR3k/0DiAeq9wD8Bj9RVV8jNDc1l1nt9rK664qlYL0gl6EfYJ/4z8ac+9qJWnt7r8Xjeatm0YTwDzdFXJHhttuBDpRr3EzZGf6V8/cb2zQ3N16J0eF+C1x9HBfCf1lVXBK2L9y7gO3XVFT+I+YEpBP0I+8R/RU0NjkUQ1fm51+PxNFodnpWEdVhF7LvIbCKAmj11gLAx+svl6zee39zQvAzV8bid+DN/WlGdof+qq67otS4aW4EX66orvhrrBTroZxDfti0vMHBhzqCgb9knfhz4JvEP0CMFhnnfB4t7dpXY5DLCB3W2H9DJEgR2Yh3wr828rvvgxKUfRRXCizcr5uXlR579xesza2ZIw/ZFlMdpVV11xaDFTL5tW/4XNXgZYlDQt4LMe1HzyuMNlJ91CXn/+4p6Xp7kMBcQ1mFO8v9qViNRq0ZfAl7eN+nKM7tmXPMBKYxPoOoIxeLNRSdeefDQxCp/nyP/O6j5/0vqqisGTYH0bdvyr8A/RmyKGfS9Xm8N6m5idZzP7LAjf/Cuot6ts53BSsI6LCRHKpAmwQEsY/pjZXObt8++8V2mYfs08evvH608t/sH7Xnjm9sKJz2AOqdW1VVXDFrE6Nu2pQ5VQz+EDvrpwrdtyykG3j7Oc9as7R9k9Xq9NwIbUdaBA3AgqXQGzl6V59893mZOFILFpOeA9qF6FpkyRp/BMOqYxOCcz+bcdXzcvMKj5QuubCmc7Iz2IHj3rp/Rlj+B7bPeGSqhfH9ddcW6Qf/wti0vo+6EQrzTWbN2a+iJ1+tdhQoy10W/1oZkhiN44ao8384pdrNECKpIzzhSEHWhypQx+kziB+pUaA8Y9tdPls5yNI9fdOW5omn5pjFQ3pq3fouQJi/Ou4WgKqH8BHBLdJrHt23LL1C99xB/6axZ+6PQE6/XuxD4N+D90Y0QSKbag93L8/w7ZjqCLkOwjOH5ykYjUXctmTRGT4eJe7cpjNdOF88MHpmw6IozxTNKrO+6n6sOP01512meX3ArfY58UB2p1XXVFQNy+L5tW+5G3UGE+LqzZq0nDW0cNbJyINe3bcs4Bgb8PqyZO9ay6Y1YHq0higyTSmeA2Y6gf5ojaBiCiaReVjcU1I/EeZyOzOWmm5ZNGxyoAz2WAfQcEg+GRjLBGfTdMPvcbmaf203AsPtOl1Q4TpVWitMlM3EGfBT1XqCo9wKGDNIw+91Iw/a5zQ3Nv6yrrng69Ca+bVsE4eJsId4E8Hq9s1Hpg49E/jFfmFQ4g8xyBoIVjqBpE5SS3CKnSEJB/Uicx8nIXG66adm0wYYanIylwRySH9spsZuBt89s3c/M1v0EhRE4UzzTOF1aYZwuqcBnczHh4gkMaVKz7zFemP9eAjbnzah02k+i3iueDpNQ6bTPENFhcAlJhSNApTMoZzkDPocgHzXbJRVCQf1InMfx8vUbMzaw2bJpg4GKA7F0mE3y53e+Ic1rp7YfYWr7EUxE8HzRVE6VVtpOl1Rw0V3G1AtHcAe6efve/+P5Be+n11l4BerOyhv1XjF1yCWysqfv27blWlSFvRA7v/X0W+9A9WQ+AwiBZJLdZJYzQKUjSLk95VjcB7zGQHP0g5kM6iOhZdMGgSpxOxe4irAJdCrF4ADoceST5w9PzjhZWsnLc27GNGyHUemFHgDfti3TUb3pEBe+/8KBqV2+4FdRg7QOkEywmVQ6g1Q6A0xKXYcgymUp0pT7rUwG9ZHSsmlDGSroXElYh5TvJqN1aCmYxAvz34ff7roALKyrrjgD4Nu2xY7qJffffZxs7yl/4NWjn0IF/EKQlBpSnQ/OAFPsJkZq97ah9FTk+dCUyaA+Ulo2bShCDSovI2yMfgUp3i1H63DRVcLzC26lx1UUAK6oq67oD+y+bVsOWZ8ZYpmzZm3WTC9OhqwL+k1NTTMmdp24t9TXdhsoN6pXjrW9+PSBc3MN5KRKZ5DZzgAVjgB5qXnv7GHgAf1GNh/QydKyacMEVPoldNCvRt0ep8SpkgpemluLadi+WVdd8dWmpqYZZb3nvjah50x/vnLv2Yu7/6/pZJ5Azp7uCDLHGaDSGaTQSOkYOoT6/kNB/rXy9RtHVLwsG7Cm865G6RDSImXHtNb8CWxbcCt+u+vBuuqKTzY1Nc0o8HX89bSuo/0phRPtPWd/+urREyCXT7abzLUCfaktJR2OM/B8aCxfv3Fk5hBZgDXzawVhHa5mGEY6na5inlvwAXpcRc8B76irrpBHdry4cErXsTdD5TAkmALynTVrRzr3f1QZcdAXQhgoz9xioFFKOaxVgpEFpqZ0Hi0o8ndwocfHk2+dobvjIgtdfuY6A7iTD/QHUVMCnwAaytdvTGu9nGzFSk1UoYLOdagl4+XJvPZE6Wxenvtu35K8vp+V2IIfGd99qmBcXwtdvgBb953hTEs7C1wB5rsCFCQf6E+gasXXA38qX78x7XWCshErNTEfpUMNanbV1GRee75wMtvmv49ZecFfTHIE3hMqQNgXMHn+0HkOnGxhvsvPAleAkuQD/XmUBr8DXihfv/Fk6v9V7mHdIVeidPgz1PmQ1OSBi+5Snl34QXyOvDuuKehcVuDr+KtpXUf7xxh8hlMeKZn/XS5TY/R1wFIp5eet598EKqSUnxBCfAA1eNQK/E5KuTXBW8Wlv5SslEzvPIKt9yL1r+xllbs32QM7iEoJPYYKMvtiLeoYa1gXgZXAzRLxHpArEt31N4+bz76517PE3cvknhMU9rXx6PZ9LLd1p5JCewWlwWPATq1Df/BZCtRKpcV1RgKHqbNF03l1wc0sy+9jQt9ZxvWe4/HXDrMweIHJjqR12IXS4XFUxydnAlMmadm0YR5qVfvNpjBuNKQZtyt5Ia+cFxa8v+eK4kBeub+VCd2n+/0l2lzlnMufApdjaWUhRD7wFuqg/TNUz/4aKWWPEOLLQJuUcrMQ4lfpMkZ3BPs4t/MlFnU0J3ppG6r38jjwZPn6jaPq5JRrbG5oLn7Paz98wh3ouSbRfkcmLKZj/tuY4AhiM/2073uDeacTll3pAp7CurMqX79x1Iqi5SKbG5rdN73x4M8K+9pvS7Tf6ZIKji+6gWluE8MM0H3iEDMOvIQ9/lXbhypx/DjwePn6jQlPnrHO5oZm44Y3H/7euK6z6xPt11YwgbcW30JFgUTIIIX+ixT6OrjgGkePoxByzEQlqdk7UspuIcTPUQsZbgZulFKG8rDHCS9NHm5PYpAxut/moviKP6Pr+eMUiAFvex5VQvWXqHRB1g74ZRsf2r4piBoEjiYAHA+4C0x/8cTZ410Gef4LmI4igoaDggVX0XLmAOVygDfMRVRZiF8Az5av35hTec1LyYe2b+oj9jx6EzgZdBUEfMUTKgvdBcz0nyfoHodp2HHPmM/Zo3uY6h+wiLQPVV9mC/CH8vUb01Zu+XKnrrrCbNl+NpZZkkStjD/mLyhzO8rGL5vrO4W/YDJS2LjoLOWisxTCHebL1hj9R6je+PullAcjtv8G+A8hRA2qFsZwiDnQYtjsdE+eQ96Z/fRNmIm/eMKviw823l6+fuOI3KPGMG9DzVh603rssR7HytdvDDY1NX0btZp0AEIIzMoq5OFG+sZNw1884dGiI6/fXr5+45D1WTQxWQCcQZXuDunwJnCkfP3GQDwdAOwLroKmp+ktnkigZMLvC4/tXjtWxqvSTcumDaWoMiE/Z6AOB0OTPCwtYtt0igG3XNm+iryfVIL+11DOTQNeI6XsBv5yhO2IW589OPcqzs5dgXQ4Af406+aP6IA/TMrXb9yKWmYej7g6BKYv4OyU2ZjOPIDnKt/zMR3wh0n5+o17SVwXPv75UD6ds2+7jaC7EOAPFe+/Uwf8YVK+fuMFBlaQjUWy3hEpu4VdKpKaCyOEuAu1Mu7DqGp96eZhVF5sENLhCgX8Lms/TeaIqwM2eyjgax0yT3wdhAgFfK3D6BBfizA5pcWQQV8IcQPwKeAOKeWzQLEQIlnT8KSoqqo6xsB6FrG4P1cGSnIVrUN2oHXIHi5HLRKmd4QQM4EfALdIKUMLN76Hqmh5Z5rb8iXr5+cYOKjbhfrSvzToFZpMoHXIDrQO2cNlpUU2rsidjkojTULlyR7Opavo5YLWITvQOmQPl4sWWRf0NRqNRpM5Uqteo9FoNJqcRgd9jUajGUNkZT39bKaxdo2BKi4Xzxg9+pGMMXrXyvqtWVnSOVtprF0jSE2HZIzRO1fWb9X1aVLA0qGQwcbo8czqkzJGX1m/Va+0zxA6px+FFdQnEd+Uu4L0uA5F04UyDollAn1kZf3WnC8/nApWMJlAYqP6vAx8dA+qtEgsHQ6vrN86psocWDqUkViHZM19UqEPOElsQ/SDK+u36kVpw2RMB/3G2jXTGGiMXknmgvpIOUH4wA8Zo7+ysn5rztdAb6xdM4GBxuizyVxQHylnUDocImyM/vLK+q2tl7RVaaCxdk0pYXP0VagSxJVkJqiPlFbCF4F+Y/SV9Vt1sb8hGDNBv7F2TQnhAzr0SKq+eRYjgSYsE2jgZWBfMqmixto1lSvrtx7JbPNifm4+quhbSINqVGDJdfYxUIemZFJFjbVrKoHmlfVbR/VEbKxd40LVlKkmrMWC0WxDhjiC+v5DWuxcWb91SLOkxto104EzK+u3XvZlXi7boN9Yu2YmqiLo1agDeiHpMUeHcP4xVWP0oji/56epXaDKTb9M+MB/OdbdQGPtmgbgNyvrt347jZ89iMbaNRNROlyL0qGK9Ji/g/qOUzFGj/f9h34vIH10ou7GQjr8KdbdQGPtmodR9V3+JpPjOlYv/l0oQ5fVKKtHZ8IXJU8fwzNGj6dHIek7V3tRdwGROpyK3qmxds1G1J3N2mQuErnMZRP0G2vX2FC3pO8B3ku8ynjJ0UZ8M+jmdOcTrbaXobw3YxlAz2D4J0EAZS5Tj3IR2w1MQaWLAL62sn7rN4bd+CisHPAylA7vQfUkh9v2TuAw8bVoS2cP2RrPKUHdeUR+/6HfKxj+BUuiLgIhHV5Fed6eRwW5HwB16Qz8jbVr5hPWoYbhT9zoIb4GR4BzGdChEJhJbFP0WUT4BQ+DnSgNnkBdCAIov5B5KGexD62s39ob/+W5TU4H/cbaNcXAjaiD+hbUwF8q9AI7CPuEvokK6hcSvmqUsW7FK1AHfaQx+qJhvN0x1IlaE7HtX4CvDvfEbaxd4wZuIBxgZqT4FgHUiRjyzW1CBfu0BvWR0li7xo4KRKHgEzJGX0bq05/PAa+jjt8QDwB/OdwZRI21axwok6OQDvNTfAsT1SkInQ87UTqkNaiPFKuTNI3wBTlkjL6c1C8G7ahO0S0R254CPrCyfutlWUk264K+5aL1YVSN/bOopc7HQn9vrF1TgbJnfA9wPcmLLFFBPXRAN6Dyrjmbw2usXVOG6km/DXXQV6N6qsPhbuDLoZM7CR0mEtbhnaSWojpAOMC/Aryeyz2rxto1hai7zJAOVwPjh/l2DwGfDAX+JHQoRQWs96J8eFPR/ygDz4cduTw7yep8hDpEIR2mDfPtngHeExn4h9IiV0iHMXoN8DHUreNiKWVCK754RBqjE1XUSLZf+HHft7xvYJofR5l9J4MJ/InwLVzj5TDTJRHWbfFC1MEeMkZPpbfndd/9vW8QT4furh/0ff2rr2AGP47KDyeb6ngVldZ4Edh+Ocx0SYSV4ppNWIcaUks3/tj+wQ9/1v62a/+NWDr4+v67z/OPzxMMfgwV7JOdbfYmljE6aubXZT/TxRqgDenwZ6iLc7LpxieB97vv/l6AOOcEVsG1MWWMHrHPrcAkKeXm4TSk3xg9ArP5MIFtz2K+2QSBpNZqtAO/R3mEPrGyfmvLcNpyOdFYu2Y2aiC1FngHQ0yDtK2++nnHh9YOuLCap08RfP5pgrt2Ql9Srog9wB9QOvxuZf3Wk8Nq/GVEY+2aqaieeC0qpVOcaH9jwaLXHH9Rt1xEuDPJtlYCzz1N8PUd0D1UiXcA/MCzhHU4mHj3y5/G2jXlqA5LLUqPoe7IHnH9y8bDwuH8QoJ9xpYxesQ+DwOfllJ2pNqIWMboAMEdjfi3PDjUy/ejDLkfB17I5XRNpmmsXZMHPIpKx8TFfuuHsF8TTvmbhw/iu+/7Q739ccI6PDPWFpOlgpV7/2+GKE9uu34N9pvfSyjwy7ZW+v7t65HerLE4j+rNPwb8YWX91pTPx7GCdWfsBb6SaD/jiuUBx+2ftAsj7rDNmDNGD9Xdbx9OwLcYZM/itL8AAA2zSURBVIwOYCxdBo/kQe+g+PEyypT7sZX1W/cN8zPHIn5iG6MrDMMvxo13mLt3YS5YhFGuOkGicjZi/ETk+UHOcU0oY/THgDeyabAvm1lZv9XfWLsmvk2fEEFRNs4mjzYjjx1FzKxQm8vGYcydh7l/0CF/CKXDo6j0Wc6kGi4lK+u3mo21axIZQgVxuztke3uZufdNbIur4u035ozRQXnk/ngE7YhpjC4cTmzLryL40ouIceWIGRUvmjt3fGpl/db9I/isscy1qAN0J2ET6D2olY3HXP96zwZhGDGN0W2rqgk88RgUFWNMn7nd3NP0WdTCFx3oU6Sxds0s1NhLpBn3HtQA91HXv97zRWGzxTRGt626WgX9vDyMaTNeNw/sW4+ae651SJHG2jUFqJTnfgbqsB81yH3a/fVv/ytxTOqjGDvG6ABSSs8I2xHTfNiU0HP9zRReuQJRORshxG+qvrVRB/zhsx0oiNcTbGpqiqmDlNC9+jryp07DNnc+wmbbUlVV9XpGW3p5cwqlQ8xUZEIdFi/H9UkHjoWLEHb7g1VVVS9mtKWXNz5gfKKZY7G0kBJ6pIFDSByi/1qbM8boyeb070L1Er8PeKWUb09nI6Jz+heCdtpMBxdMByZwhfMidiFzKm+Wi0TrcNG00Rp00mbaCWKwyHGRfMPUOmSYaB26TButpoO2oAM/BnPsXZTaAlqHUSBSix7TUDqYDvqkjRn2HibafJBjOf2sNEY/GXTTajoxEYCgw7RDjpkP5yLROpwJujhvOglah0m76QCtQ8aJ1qHFdHA26MLfr4M+H0aLSC06TDung276pJqp3B7sT3rklBYJg36EMfqfxzBGTzdfAu4BukqMgXe9raZjBzlmPpzDROgwcJrsBdNxAK3DaBHWQQzUod10nEXrMJp8Cbin2AgMWKHbJW1IyT3kmBbZuCJ3+smA6+ungu5PRWz+4x0rZtwY90WatNPU1DS9Nej4wuFA/hcjNu+/Y8WMVJf2a0ZAU1PT9F7TuHO3vyiyPlIvUHjHihl6ls4o8saupumv+4oPSETkYrgpd6yYkVOL3LLOLrGqqur4qaD736I2L7kkjRnDVFVVHT8cyP8qqnxFiDkPvHrMfanaNBapqqo6vnLZ4m8ycKDQjSo6phlFli2tOi4RO6M251xsyrqgb3EINbIeYsoDrx4ru1SNGavcsWJGN6rgVgiDy6Pmei7yZtTzxZekFZqc1yErg/4dK2aESp1GooPNpSH6IF94SVqh0TpkBzmvQ1YGfYvoujnZaGE4FtA6ZAdah+wg53XI5qCv0Wg0mjSjg75Go9GMIbI56KfLI1MzMrQO2YHWITvIeR2yOehHF2FLqoC4Ju1oHbIDrUN2kPM6ZGXQf+DVY06USXEk0bN5NKND9JS0PZekFRqtQ3aQ8zpkZdBHmX9HVvM8eseKGZe11WE28sCrx4pQRuAhAqjyv5pR5IFXjwkGLwKKnjqoGR2ig37O6ZCtQT/nv9jLhOg5yPvvWDHDF3NPTSaZAIyLeN4F5Jwhd67zwKvHDGBR1Oaci00jDvpCiJlCiEeFED8SQnx5pO/X1NQ0o0j410dtzrlbqFynqalpRrnh+6eozVqHUaapqWnGFFtvdFmSvXesmGFekgaNYUoN/40M8JiWrXesmHH+kjVomCQV9IUQ64QQ/xXx/JtCiJB57Xzgd1LKv2AES5Kbmppsu3Y1fUdK9vgxBtTrn2brmdPU1GQb7ntrkuelN/aEdZDi1si/jTf6xmkdRocB54MUkcUHKTH8QusweoTOiXwRfDRye4kRKGlqavpOrmmRbE//AeC9QohSIcR7gFuAz1p/ew1YK4R4GnhmBG35thDcBRRU2nuYZOvDiQlIJth87wO+PYL31iRJkRHs12G6vZcptl7cQhVznGTzXY/WYbT4thDcJQQFk+19TLP1kG+VWJ5o812F1mHUCJ0T420+5wx7D4UiAEhKDL8NuIsc0yLp0spCiLtRTj4hY/SD1va/B16RUj4vhPiVlPJDqTYi2ikohJTQh4ELEyFyy50mF4mnA0CvaeASWofRIJEOfVLgQGJoHUaFeFr4pcBAYlOz9nNKi1Ry+j8CPg/8XZQx+u+BvxFC3A8cGWY7PkyMA1wIcKtAA2HHeU3miKkDgNvQOowicXVwCYmhdRhNYmrhEP0BH3JMixEbo0spm4CUe/dRRC94iEfOOM7nKFqH7EDrkD1cdlokO5B7F8q44cPA32agHYMc5+OQM47zOYrWITvQOmQPl50WWWGMDjzM0MuZu6z9NJlD65AdaB2yh8tOi6wwRo90nE9ATjnO5yJah+xA65A9XI5aJMzpSymPArOjtv0E+EkG2hJylP8cAwdOulBfek45zucwWofsQOuQPVxWWiQ9ZXO0aGpqmo4aO5iEypM9nEtX0csFrUN2oHXIHi4XLbIu6Gs0Go0mc2RrwTWNRqPRZAAd9DUajWYMoYO+RqPRjCF00NdoNJoxhA76Go1GM4ZIpfaORjNmca/6nBSGDcPhxDBsCMOGYXdYP50Im/pphJ5HbReGDZvdQAihfhoCm836aRext9sMhAGGITBsBoYhsNsNbIbAaf109T+3qZ+26O2xfzoMA5sAh83AEAKHTWAIMXCbIax9Rf8+tgH7CoQAmwEGApsBArAZAsP6KQTYhMAQYBOo/1OAYb1WmEGENMEMgjQRZgCkCcFAzO3CDICptqu/B8AMIgN+9dPv738uzSAE/MhgcOA+/fv6wDSRAR/SNDF9gf6fZjCI6Q8ggyZB6+fg5371vP91QcygiTQlQV8QGVQ/zajnA/7uD2IGpfVaSTBgEpQSnykJSqyfEp9JzO0mkfuE/3a/PCLiHcu6p6/RaDRjCB30NRqNZgyhg75Go9GMIXTQ12g0mjGEDvoajUYzhtBBX6PRaMYQOuhrNBrNGEIHfY1GoxlD6KCv0Wg0Ywgd9DUajWYMoYO+RqPRjCF00NdoNJoxhA76Go1GM4bQQV+j0WjGEDroazQazRhCB32NRqMZQwgp5aVug0YzJhBCfFZK+d+6HWF0W0a/Hbqnr9GMHp+91A2wyJZ2gG5LLDLaDh30NRqNZgyhg75Go9GMIXTQ12hGj0ueL7bIlnaAbkssMtoOPZCr0Wg0Ywjd09doNJoxhA76Gk2GEEKME0L8QQix3/pZFme/u4UQu4UQe4QQ3xdCiEvRDmvfYiHECSHEpjS34SYhxFtCiANCiC/H+LtLCPEL6+8NQojKdH5+su2I2O9DQggphFiZiXYk0xYhxEwhxDNCiNeEEG8IIWrT8bk66Gs0mePLwFYp5Txgq/V8AEKIa4BrgWVAFbAKePtotyOCbwDPpfPDhRA24D+Bm4HFwO1CiMVRu/0l0CalnAvcC3w7nW1IoR0IIYqAvwEa0t2GFNvyFeBhKeVyYC3wX+n4bB30NZrM8X7gAev3B4BbY+wjATfgBFyAAzhzCdqBEGIFMAl4Ks2fvxo4IKU8JKX0AVusNsVr46+ANem+40myHaAufHcDvWn+/FTbIoFi6/cS4GQ6PlgHfY0mc0ySUp4CsH5OjN5BSvkS8Axwyno8KaXcM9rtEEIYwD3AhjR/NsA04FjE8+PWtpj7SCkDQDtQPtrtEEIsB2ZIKR9P82en3Bbgn4GPCyGOA/XAX6fjg+3peBONZqwihPgjMDnGn/5fkq+fCywCplub/iCEuE5K+fxotgP4PFAvpTyW/g42sd4wetpgMvtktB3Whe9e4M40f27KbbG4HfiJlPIeIcTVwINCiCoppTmSD9ZBX6MZAVLKd8b7mxDijBBiipTylBBiCnA2xm4fAF6WUnZar3kCeBuQUtBPQzuuBmqEEJ8HCgGnEKJTSpko/58sx4EZEc+nMzhVEdrnuBDCjkpntKbhs1NpRxFqXOVZ68I3GXhUCPE+KWXjKLcF1DjHTaDuCIUQbmA8sfVLGp3e0Wgyx6PAHdbvdwC/jbHPUeDtQgi7EMKBGsRNd3pnyHZIKT8mpZwppawE/h74aZoCPsB2YJ4QYpYQwokalHw0QRs/BDwt07+IKGE7pJTtUsrxUspK63t4GchEwB+yLRZHgTUAQohFqLGfcyP9YB30NZrM8W/AjUKI/cCN1nOEECuFED+w9vkVcBDYBewEdkopH7sE7cgYVo5+PfAk6oL2sJRytxDi60KI91m7/RAoF0IcAL5I4hlGmWzHqJBkW+4CPiOE2An8HLgzHRdCvSJXo9FoxhC6p6/RaDRjCB30NRqNZgyhg75Go8kYVimDByOe24UQ54QQj0dsu1kI0WiVodgrhPiOtf2fhRB/fynafTmjg75Go8kkXUCVECLPen4jcCL0RyFEFbAJ+LiUchFqyuShUW/lGEIHfY1Gk2meAG6xfr8dNRMlxD8A/yKl3AtqVouUMi01ZjSx0UFfo9Fkmi3AWmtx0TIGFjKrAl69JK0ao+igr9FoMoqU8g2gEtXLr7+0rdHooK/RaEaDR4HvMDC1A7AbWDH6zRm76KCv0WhGgx8BX5dS7oravhH4JyHEfFBFz4QQXxz11o0hdME1jUaTcaSUx4Hvxdj+hhDi74CfCyHyUZUmfzfa7RtL6DIMGo1GM4bQ6R2NRqMZQ+igr9FoNGMIHfQ1Go1mDKGDvkaj0YwhdNDXaDSaMYQO+hqNRjOG0EFfo9FoxhA66Gs0Gs0Y4v8D1t4dz4+ZqbUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIZCAYAAABK2C3FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeXxcVdn4vzdJl0kXKIW2lKVl3y6rUIg1tASXihKQKIq8uKGC+hoR44ICcVxQNKBGXhFFNlGoEuQXEMsWGkoJFKQtPdACLV2g+96kM9nv74/nTmcymX3LzOT5fj73k8zMvXdOcp9znnOe8yyW4zgoiqIoilJclAx1AxRFURRFyTyq4BVFURSlCFEFryiKoihFiCp4RVEURSlCVMEriqIoShGiCl5RFEVRihBV8IqiKIpShKiCVxRFUZQipGAUvGVZZ1iWdWaS14y3LOsFy7LmW5a1yLKs87PVPiU3pCgHp1uWtdCyrOcsy2qxLOvIbLVPyT6pyIB73ROWZW21LOv6bLRLyR9SlZFio2AUPHApcECS13QA5zqOMxv4DPDLTDdKyTmpyMFGYI7jOOcCDYA3461SckkqMgBwJfDdDLdFyU9SlZGioiAUvGVZHwKuBm6wLOs3iV7nOE6/4zi97svxwGvZaJ+SG9KQg02O47S7L7uB3ljnK/lLqjIA4DjOe9lplZJPpCMjxUbZUDcgERzHecqyrNWO41Qme61lWYcAc4FjgS9lvHFKzkhHDgAsyxoD/Bz4YmZbpuSKdGVAKX5URoIUhIK3LGsSsCnsvVJgYYTT/+04zk8DLxzHWQ98wLKs6cB84LGsNVTJKunIgWVZI5CJ3i8cx3kjqw1VskY6MqAMDyLJyHClIBQ8cApgQt9wHKcPOCfWRZZljXIcp8t9uQdoj3W+kvekKgclwP3AI47jPJK95ik5ICUZUIYVg2RkuGIVQrlYy7KOAB4F3nMcZ04S170P+A3QB4wA6h3HeSY7rVSyTRpy8EngHuAV961ljuN8M/MtVLJNqjLgXvtn4P3AKMA4jnNxFpqoDDHpyEixURAKXlEURVGU5CgIL3pFURRFUZJDFbyiKIqiFCGq4BVFURSlCFEFryiKoihFiCp4RVEURSlCVMEriqIoShGiCl5RFEVRihBV8IqiKIpShKiCVxRFUZQiRBW8oiiKohQhquAVRVEUpQhRBa8oiqIoRYgqeEVRFEUpQlTBK4qiKEoRogpeURRFUYoQVfCKoiiKUoSoglcURVGUIkQVvKIoiqIUIargFUVRFKUIUQWvKIqiKEWIKnhFURRFKUJUwSuKoihKEaIKXlEURVGKEFXwiqIoilKEqIJXFEVRlCJEFbyiKIqiFCGq4BVFURSlCFEFryiKoihFiCp4RVEURSlCVMEriqIoShGiCl5RFEVRihBV8IqiKIpShKiCVxRFUZQiRBW8oiiKohQhquAVRVEUpQhRBa8oiqIoRYgqeEVRFEUpQlTBK4qiKEoRogpeURRFUYoQVfCKoiiKUoSoglcURVGUIkQVvKIoiqIUIargFUVRFKUIUQWvKIqiKEWIKnhFURRFKUJUwSuKoihKEaIKXlEURVGKEFXwiqIoilKEqIJXFEVRlCJEFbyiKIqiFCGq4BVFURSlCFEFryiKoihFiCp4RVEURSlCVMEriqIoShGiCl5RFEVRihBV8IqiKIpShKiCVxRFUZQiRBW8oiiKohQhquAVRVEUpQhRBa8oiqIoRYgqeEVRFEUpQlTBK4qiKEoRogpeURRFUYoQVfCKoiiKUoSoglcURVGUIkQVvKIoiqIUIargFUVRFKUIUQWvKIqiKEWIKnhFURRFKULKhroBSnTaqmZZwP7AVPeYAoxGntsI92f4Een9HmCHe2wP+T1w7Kpoae3L1d+lJEdb1axxBGVgKlBOYs899LM+Bj/30GNnRUtrT87+KCUp2qpmlQMHE5SBccR/9uHvA+wk8vPfjshAV27+IiUXWI7jDHUbhiURBu1ox+gcNWkXAzv8ZuBNYAWwHFhZ0dLanaO2DAsiDNrRjrE5alI7A2VgK/AW8vxXAG9WtLT6c9SWYUFb1axRyMQ9ngzsn6Mm7WWw4l+JyMByYEVFS2t7jtqipIkq+CzTVjVrBHAccGrYMXko25UCvcAqgh09cLypHT42bVWzSoCjGPj8TwMOG8p2pYADrGGwDKyoaGndMYTtyntca9xhDHz+pyJyYQ1h01JhPYNlYDmwpaKlVRVKHqEKPoO0Vc2aAJxCsPOeCpwEjBrKduWA95AOboAFQGu8Ab+tatY3gTpkZXhNRUvr8qy3Mge0Vc0aC5zMQGV+CjBmKNuVA7YgMvA6sBCYX9HSuiHWBW1Vsz4B/BIxG3+3oqV1QdZbmQPcVflJDFTmpwAThrJdOWAn0p/fANqAZ4HVsZR+W9Wss4E7kO2EGytaWpty0dDhgir4FGmrmuUBZgLnElToh2fhq/zIjHkDsBHoQFbTPe7P8N8jvR4FHABMdH+GH5k2/znAa0gHnw88V9HSujPwYVvVrMOBtSHn7wIuqWhpfTbD7cgqrnXmLGA2cDoiA0eT+RVZN/L8AzKwi9jPO5JsjEQUTKTnf4D7Waadbt9Cnv+zyKRvY+AD16rRAXjct3qAL1W0tN6f4TZkFffvOAWoAs5AZOAEoDTDX9WHPPuAHOwk+GwTHQtKkb4e+tzDx4RMt/tdgjIwv6KldXXoh21Vs15DJsQBrgduUktAZlAFnyBtVbNKkUH8g+7xAdJbmfcQVNyxjj3ZFnb3bwvt+BOBachAFTgOSeMrHGAJwY6+DljMQEXYA3y5oqX1vjS+J6u4ZtYTCMrAbMTZKVXCB+1ox44cyEAJMJ6BA/5hwPEEZWA66U1eViAyMB9Z4b3BYMvGjcDP8nmAb6uaNZ2gDJwPHJjG7RzE3yWeDGytaGntT+N74uLK9zgGKvypDJSBo0lvErCWoAzMBx537xvKXcDV6vSZPgWv4I0xpcAxyAqkFFndvG3bdlreoK6wH0mwI1chAp8KmxAFtzTkeKuipbU3nTbmkraqWeMZ2NEDvx9F8h3eQUy6kfwQvIA3mQHeGGO57ZiIrFT3AKts2+5Isl2DaKuadQgyiAfk4OAUb7WDgc9/KfBGIXktu06BxzJw4ne8+97IFG65kcj/z3uBrybr1GmMOQxxWPMgDoNrbdtO2zegrWrWROA8gjJwVIq36kAsW4HnvwQwFS2te9NtY65oq5o1ElHy4TJwPBLdkSybgYMYbD16BvhkRUvrrmRuZoyZDByKTBz3Autt296UQruKgoJV8MaYI4ErgasQT/OAsixxj/uBP9q2vSTRe7ZVzToIUeSBjjw9yWb1IfuQgc67FFha0dK6Jcn7FAzufuPRwInA+5GB8NQ0b/tX4CvxlJ/bmT8HfBNR7oEZv4UonGbg/4AFtm0nJOjuRGY2wdXZiUm23UG8jsMndO/l86o0HdqqZpUBRyD/q7OR/99ZpBeG+yyybRNzgDfG7Ad8GvgWMiEPyIyFWNhagd8D82zbTmhCHbL9FhgHziB5y8VaBj7/Jch+dFZX4UOFawE6DFH4gW2r95NeFNDrwMcqWlrXxjrJGDMauAiRgTMQGQj0tdHI//93wL9s2x5WUSAFp+CNMWOA+4ALCHbiSPQie5evAxfZtr0x/AR3lX4i8ElEQE5PsjnrgKcQp6IlFNiKLFu4K55KRNnPRvYok2UFcG5FS+vW8A+MMWXAr4GvAf0E93HD6Qd8SLjXx2zbjujI55pca4BPAOeQnEViK/A08BzBFVnaloNCx3U2nIk8//OAM0ne0rMJOL+ipfWN8A9cq00t8AvkOcdyYmxHxoJLbNt+Lkp7JwMXA5cAs0hu+20PQX+TxcBroT4nwxV38h+Y8J0HVJD8tmY7UFPR0vpUpA+NMZ9A9IFD7O2ydmThd6Vt23OTbEPBkjEFb1nWzxGHs83A5xzH8WXkxiEYYyYiynQaic8Me5AOONO27TddpX46MqDXICFsibITaEEG9KeBVcW6KsskbVWzDkRkYzbwKcSMmgh7gAmhqx5jzChgHrJKSNQzvR9xVrwgMMC3Vc06lqAMvC/B+4BMGFoJyoAp1lVZJnHzPnwAkYEaEjdz9wKHhzroucr9TmTlnkx0gh/4im3bf3PbdAii0GuQCWmiToY9wAsEZeCVQtpuGyraqmaNRhT+ecDFWJyCk5BlxAFmhUdZGGO+j/hsJLM14AN+Zdu2N4lrCpaMKHjLsmzgesdxPmNZ1tVAmeM4t6V94xBcM8x/EXNwsvt9/U5X14693hv/7nR0XIiYExOhC3ieYEderBnfUmf1dVd9cr+jDv7nyPHl7N2wnW3LVrNnzeagMS0y1RUtrY/CvoH9cWSFFW3VHhWnr2+v79c3/7F/w/qPAHaCl/UBiwjKwIua8Cd11t749RPLJ09YVj5pvxLf1t1sX7aGXSs34PTFnCP9oqKl9YeBF8aY3wBfIYXQQ8dx/J13/+X23iWLK5AVZaIsISgDzxfSvnm+4WtqGL1n7Zad4w4/aHTXzg62v76WHSvepb875hzpsYqW1gsDL4wxVwG3ktq+vw/4oW3bv0vh2oIiU6lqK4H/uL//B7gZyKiCB65AVu6pOPOU+O+68wCno6M2znkO8CrBjrxQM3dljgnHHXrlyHGil8cddhDjDjuI7nYf281atr+xjr7OQXrTQZRrgFnIKjBp5Q7Q9cjDY/o3rP9OAqcuJygDrRUtrbtT+T5lMBOOPeRzZZ5RJQBjJk9gzOQJTJ15EjveWMu219fS0x6xuz0d+MUYMw24mhT3dnsWPOfpXbL42gROXYtsvz0NPFvMfjRDwCfGT5s0GmD0AeM4pNJmyjnHs/PN99i+bA2dOyLmzZof+MUYUw40kJpyx73uJmPM3bZt70nxHgVBQgresqyjEO/Pox3H2ei+dzmyD3o24sEeMKHtJnVv84gYY0oQU0xKyUIcx6HvnXeimd96EI/Nh4DmSHu+SmYYMXb0O+HvjRxXzsEVJzB5xnFO+9rNO7a+tnrz3vXbS4BOJPHF5pDT60kjYUzfqlXRPnKQrZ+HgH9VtLSuS/U7lNiUeUYN8mgu84xk0vuO4aAzjqbjvW27tpu1m3a/s9FBrCd/qGhpbQk5/bukEa/ft2plrI+XIDLwMJKdT7ffssMgpVo6oowD7ekcaE/Ht3lnx/Y31m3cueLdbqffKUX65C0hp3+BzOSa+DJiBShaEjbRW5Y1F1jjOM73LcuqQEylH3EcZ5FlWV8DfI7j3GtZ1jTgZsdxPpOpRhpjLgDmkkZO7s65D9Cz8PnAyy5kH7cJeDTZUAwlMr6mhkAsdSBxSngylamII9PUOLfaAdSW19T9LfCGMeY4xIEppdU7QHfLM3Q98nDgZR+yl/4Q8EjoHq+SOr6mBgvpp9GS6UwCLkS22mLRAfyyvKbu54E3XI/5DaS+cqNn6RI67/4L9O/bEliEq9QrWlqjzgCVxHFlwEP0pEoHILrjVMuyYinqLuDe8pq6qwJvuIu9d4k/hiTCVmBqotEVhUgyCv4MxMHsA4jp6hrHcea6n50MXOc4zmcty/oqMMpxnN9nqpHGmJuB76VzD8dx6HtzBU5Hx9LO++6p1PzpyeNragjEwgdi4I9H4pizkQ3NAfYrr6lrBzDGfAloJM2Ur33vvEP/nt3bOu+684SKltZtGWjnsMLX1OBBHFNDZeBQBg7emaxSeXZ5Td0iAGNMJfAosF86N+xb/x7927b1d9579/SKJ595NxONHE74mhoCsfCheTGmMVAGUtlKjcbXy2vqbgcwxkwBVpOZIlw+4ETbtmOG4RUyCXdEx3FetSxrEfASskKfG/LZMsuy1lqWtQBJYPK5DLcz7cIslmVRdrwkTDr9C19U5R4Fd/Y9hYHJbAK/p5PNLlksRHEEQtsmIPmq06L0yCMphRGnq3KPia+pYSKRZWA6uS2OchpBP4yM5HIvPeRQSg85tH/Erb/TAjkxCJnQnxD2M91sdskSGr48AdlWzYSC73XvpwresqwSxKzZjzjRDcBxnOsy2K5wMumxqk5zLq5J3SaYSz3QgdNaIWWIFeU1daFx635E/jLBsM9VEMCd0B2NyMCZBGXgoCFsVoAdwN0hrzPZd0tROdiHr6nhUEQGziY4ocuEGTxduoCfh7z2kzkroUWR64NkTGm3IPnK3wYuR/IF54qViNNVurO2fqTk6bDEVegnEUw8MYsMO0Qie6c7wo6d7s/zgBkxru1G9sXvA/4W9tk6ZOae8h58COszcI+CxFXoRyEyEDgybZnxEXzm4YcNfDTGtf3Ai8A/gP8rr6kL3R9dRwasOC67innvNR6+poZDCD7/80g9/W40upFa8uFjwA7EInt5nOuXAv8Cfl1eUxeaU2ULmdsCGokkUypaEvWivwrJ8hXISvRjy7LudnKXBu9+4KYM3KcTSVk4LHAH84BCn40o9HQKY/Qhk619dcCBd4BtSAfeWV5TFzVG3NfU8GKUjxYhE8a55TV10RwenyCYijYdOpAQm2GBKwNHEMwqOBvZ+kiV8JrwK5BJ/zbcgby8pq4zRnv+GuWjFYgM3F9eUxfR4dG27TeNMSuQdKTp4EdSGA8bfE0NUxk4qTsmzVuG14R/C3FaCyhxf3lNXUT94GtquDHKPd8D7gHuKa+pi7gQs23bZ4x5CElylI6i7wMet227qENg4/6DLMv6IKJcZzuOs9myrIfc1xcBj2S5fQDYtr3VGDMXmfWl81DftG375Qw1K+9wB/MTCA7ms0jN1LoXGXCXh/xcDqyKpcAT4A8EU5ZuQXLO311eU/d6vAtt2+5xnS1/TBpe1IjJ759pXJ/3+JoajiC4MpuN5AhPli5k0A5V5MuBt8pr6tIxa/4FWSyMQdKHPogo9peiKYQwvMiEP50qfhbisFm0+JoapjBQBo5N4TaRJvTLke2zdPyYHgS+gURUdCF65C7gmfKaukS24W5CMhCmowu6gJ+mcX1BENOL3rKs45FMbp9zHOfxkPe/AfyP4zjJZIJKC2PMsUiYVKqD+17g07Zt/ztzrcoPfE0NJwGXAZ8heVPbbiSP+nNIroPlwPrymrqspF/1NTUchYTSmfKauqRW5G6Y1Dr3+pS+Hrjetu3fpHh93uJrapiGPP/LSL7Yjx/JA9CKxIIvB9YkONgmjWsePhh4I8z8Ghc3TGoVcDip7cX6gb/btv3lFK7Na3xNDQchqaAvQ6KdkqEXcaBuRTKGZmJCHxVfU8MBiO/H2+U1dUnn7TfGPE3qJbu7gZdt2072f1RwFFSxGWPMJ5H92WT3Yfci+Yd/kvlWDQ2+poYjkQH9M8DJSVy6B1HmgeIYS7M1kGcDY8w5SHaxZMPlfMD/A/7Htu2iyB3va2qYDFyKDOjJTLY7EYU+H5GDl7M1kGcDt5LkIsQnKBlv7k5kkVBl23bUbYRCwtfUsB9iEbkMqX6Y6P+jF/kfznePF8pr6gom/a4xZgLS/sNJLiSvB9leOMu27aKPpCkoBQ9gjLkQ+DvicBfPRNOPdOqiyDvs7qNdiij1sxO8rB1R6PORwXxJISn0SBhjzkJSIo8jsc69FylO8h3btgv6b/c1NUxAzJOXIebXRFaxnUhxlPnusai8pq6gPchdJf8UYglIZMK/F8lY+VnbtgtGkUXC19RQDnwckYELSKwP9AIvM1ChF3TVQ7f42KNItcpEJvw+xDJxgW3bwyL1cMEpeABjzFFAHfA/RC4T2IEo/0eBXxfyvrsbj1yDKPXZxI9B7kYSErXglq8M80QuCowxk4BvA19FPKvHMvB/40NWMwsQGXgy543MEL6mhjFANTKgzyG+J3k/8ncHZOClQlfokTDGjEX2cv8XWc17GLiCDdQFX4akJJ1r23bhDXjsSy7zYUQGLiIxhfYKYu2aDywsdIUeCbd09JeQWvDTkb4R2j8CZcPfRRys77RtOxPOugVBQSr4AG7p0AvdYxKi1LchA9vcQi0k4GtqGIEo9SuQTh3PUtGHdOQHgX+V19QVtWdoKMaYUsQ0+SmCq7ntyH7iXwt1pu6GNH4Yybt9IYn5nrwAPAA8VF5TV9ThP6G4VQbPRpxwpyHKbydggHtt2149hM1LC19TQwWiwGpILNHPMkQG5pbX1A2q/VDMGGNOQpKsHYvk8tiNOAn+1bbt14aybUNFQSv4YsM1v34FqCWx2OTnCQ7oBanIlIG4qWCvQKwTxydwyRJkYje3vKZuTRabpuQIX1NDGbKvfi1wTgKXrELGgQcTiUhRhg+ZzBmtpIjrWf4tZKYez/T2KtKZ/1FeU6dVz4oEN6zp68DXiJ+r4G2CA/ryOOcqBYKbGvZKZCyYFuf0DUgBrgeAVxIMMVSGGarghwg3Zn0mMku/mNh76ysIDuhv5aB5So7wNTXYiAxcTmxnqfeQlfoDiF+FDuhFghviWItY72LF929HKt89ADxf6M6ySvZRBZ9jQvbXrwXOinGqH8nq9CcklE0H9CLBndx9GJGBD8c4tQ9J2Xo74iRVFOF9iuBrajgbkYEaYoe3zQNuA55MNneEMrxRBZ8jfE0N+wNfRmbqsTKLbUQ68x3lNXXbc9E2JTf4mhpGIyv1a4ETY5y6G5nY/b68pk7LmRYRvqaGUsRidy3w/hindiE5P35bXlP3Ri7aphQfquCzjJuM5AeIch8b49QluKE8hZR0RImPr6lhHHAN8E1ipw5eDfwWSd+rJY2LCDfM7SvAd5DaANHYguTJ/6M6zirpogo+S7ixy9cC3yO2Yn8MUezz1QxfXLjbMV9G8udPinHq84gMNOu+anHhbsd8EvgFsdNIv47IwN9jFetRlGRQBZ9h3BCXLyJFMQ6OcpofuBcxv72Zq7YpucEd1C8CfgkcF+W0PqTozW/Ka+oW5aptSu7wNTVUAr8mdtbJJxDF/pRO8JVMowo+Q7iD+seAm4m+v7qJ4P560edBHo64iUl+jURIRGIPwf11DXMsQnxNDccjk7uLopzShVTE+215TZ3JWcOUYYcq+Azga2o4CxnUZ0U5ZTvwE0SxF13KUAV8TQ3HIGbYmminALcADeU1dQWZYVGJjZvLoB7Za4/kFd+HTO5+MpwyDSpDhyr4NHAruv0cyRMfiU7gN8DNwyl97HDC19QwCbgBuJrI/akfqYH+4/Kaug25bJuSG3xNDWMR57nvEj1R1SPAdeU1dSty1jBl2KMKPgXcAjDXI4UuIhX+cJA99hvKa+rey2XblNzgVvT6NvB9oicneQz4gaYPLU5cf5srEX+byVFOexH4bnlN3fM5a5iiuKiCTwLXK/rbwA+RYgaRmAd8v7ymblgWNyh2XF+LzyOWm6lRTnsFGdTn56pdSm7xNTVcgGy5RKsXsBK4DmhS5zllqFAFnyC+pob3AXchtYcjsQQZ1J/OXauUXOJuyfwZqIpyympk8vcPzTpXnPiaGg5Eyo5+Nsop25AV/Z80n4Uy1KiCj4Obfawe2V+L5DizDvgREr+qg3oR4mYf+1/gJiKXbd0B/BS4XZ0oixPXcvMpJAomUrIiPxLu9it1olTyBVXwMfA1NcxEHKQixTLvQsy0t2liiuLFDXn6C5HTinYhq7lflNfU7cppw5Sc4WtqOBj4A5JiNhwHuBuoV38bJd9QBR8BNwvdTUhq0UhV3v4GXKOx7MWL60D1XcR6MyrCKc8AXymvqVud04YpOSPE3+I3wP4RTlkKfKm8pu7VnDZMURJEFXwYvqaG85F91kj5otcDV5XX1P07t60KsqBiZgny3EKPEXFe9yCx+DsAf2XbQnX6iYGvqeFUxN/ijAgf70ZCou4aKuepBRUzLaI/62jy0Ic8/x1Ah8pAbNwSrncAH4nwcTeS1+JXQ1XdzZWBUuL3/dDXADsRGditMlD8WI6jzxjA19SwH9CA5A6PxJ+A72Ujnt3trPsjXtmxjinErhmeCF0EB/rwY3vI75uBN4Etw2Ug8DU1jEL8Ka4j8uT3UeBr5TV167Px/QsqZo4jvgxMBUan+VW9RH7m4cdW4C3gvWEkAyVIToObiVxD4iVk1Z6VCm8LKmaWIymu48lArPoWidBHUNnHGgu2IxEBayrbFmqdhAJDFTzga2r4OPBH4JAIH68GvlxeU9eSzncsqJhZihSbOBU4DTiazA7a2WInsAJYHnasLaYO79bmvovIaYa3I9s1D6azancncocjz/9UxLcjk4N2tthLZBlYVdm2sGjqk7vZCO8Ezo3wsR+Z/DWmWxBoQcXMKQRl4ARk3AnIQKStgHygC5nwL2egLLxV2bZQfZDylGGt4N2Ql98iNbrDcYBG4EflNXV7k7mvuxI7GenAAYV+MpE9sAuVTqTDh3Z2A6yobFsYN5pgQcXMo4HL3OsfHqrJgpuw5idIfoOSCKfMBWqTLd25oGLmaOAkgs//VCTEMl8H8FToBd5m4KD/OrCssm1hb7yLF1TMnAx8DplE/q2ybaE/i22Nihsl8W0kEiLSRHs+4m+xMpn7LqiYOQKZxIXKwKnErixYaPQji6DAGLACeANYkojiX1AxcwxSnGsEcHdl20J1Vs0gw1bBu3vt9yNm73BWAFeW19S9EOse7orsMAZ23lOR1Xk26UX21XvDjkjv9SJOYhOBA0jfxB+PbUArMijOB14PN+8uqJg5HhkEAhaTR4HLKtsWJjWRShdfU8MpiAKPlKxkE2KOfyTefRZUzJwEnM7ACd1xRA6rzBSJPPvQ90YCExAZ8GSxXQDtSAncZxEZWBxJ4S+omPkK8D735SvAhZVtC3Oao93X1HAY8HfgAxE+bkccLf8cLwR2QcXM/QmOA4GfJ5Hd/tZHcmNBKTLBPIDsW4u6gDaCMvBSZdvCQSGkCypmPkAw1fca4ILKtoXLs9y2YcOwU/Cud/SPkYQk4R7yfcCvkGIQEWef7mBeBXzQPaZlqmmIE9+GGMdGwJfqfqg7ISlHOnisYyLydx1P+laHrQQV/rPILP9kxAM5lP8iA/zGNL8vLq539NWId3QkD/m7ge+U19TtjHT9goqZ+yGFhQIycEKGmtZF7OcfkIE96eyJL6iY6SGo7CM9+8DvhyF/2/hUv8tlD7CA4KRvMaL4fGHnrUUG+Kzsb4fja2q4CHnWE5HOwycAACAASURBVCJ8/B/EofbdSNe6/8OZBGXgDCJH3CRLL/KM48nBzjRlYCTxx4EDkG2DE4ADU/0ul07gBYIysKiybWHXgoqZ7zFwa3QX8InKtoXz0/w+hWGm4H1NDYcjs/VIpTwjhry4JqRKgh351DSasB3JeLcUWIYkyQl02PZ8c2RyPfYDg3z4MTHF2wYUfgWDfR7WAR+rbFuYtRKavqaGCUiURKSqb2uBr5bX1D0Z+qY7GJ5DUAZmkPrqvB15/kuB15BVS0YG7WzgTgqnEFkGDk7xtnuA54DpgB322W7gksq2hWn5vMTCdab8NeJXEc5O4FvA/aH+Fq4PzekEZeADRJ4cJkIn0v8DcvAOQRnYlsgWV65ZUDHzQGTCHy4DqS5w/IjCH8Vg60kPcGVl28K/pnhvxaWgFbwxZjri9X4xkhu+BBk8ngXusG173yrR19RwMeJEFT5bd4CfAT8tr6nrWVAxswwxGwY68vtJ3szmIN7HSwkq9KXAhnwbwFPF7fChHf1ERAlmYrX3ycq2hU8lcrIxZhJwBeJHMRF5Vu2Iyfd24Hnbth3YV6v9ASIPSnchuQ3aXaVmAx9CZOBcolcJi8UaBsvAmnwcwFPBtWSEDvonAmcTOdNbMvQCX6lsW3hPIicbY8YDlyKFX6Yg++gBx8DbgSds2+4F8DU1HAs8iCjrcOYBXyyvqdvkysBRBMeBKiKv9OOxkYHPfwnwdrE4qLoLoGMZOBachTiTposX8CYyZhpjRgEXAVchE8cxiIVoHRLu+Iht20Pi4zGUFKSCN8acj9TePhkxi4XPpHuRWNX1OI73yLeeOBO4JsKtNgKX/7fhX28D1ciAfh7RC8lEogsxL4d2YpPr/eR8IGSVM9s9ziV6pbVY9AHfqGxbeEe0E4wxpyHbKee654dvJfQjHbwduOWIN5/otXBuYfDKuwP46n8b/vUkcCFBpZ6MI1Qf8vwDMrAEeK2ybeGwKxHsKsYTkH402z1SNe/+CvhBtAHeGDPNPaca6fPh+8oO8vz7gT9Ne/uZV0v7e/7C4MlaL3Ddsj8/eUf37r1zkNj3VLbfXke2H/ZN6irbFm5N8h4FjysD05Fnf557HJri7f4BXFHZtjBiXn9jzAQkKdkVyHOONN60I/3+AeAHtm0PmwRlGVHwlmXtBzyFu4pzHCdrJlZjzA+AG0nQUWjs7vVdkzYtG2RK82/bM/+tfzzf2uvrmoOsOhLFAV4FnnaPhUPl/ZvvuNaQUIVfSXIK/+HKtoWDTOnGmE8jK24PCex7jvLv9B+y7qVB8tK9x/fa200vPNS5vX2W275kzO7LCcpA63BU5ongDvYnMlDhJ7O9sxg4M9zqYYypRJwzx5LAcyvt8XcetnrBqBKnf4C89HZ2r1392Mt371mz5XREsScTrroOGfeeBloq2xYmFWkxXHBl4AgGKvxIIcnR2AAcX9m2sD30TWPM8UhGyQNJzMrajezxn2/bdtZ0VD6RKQU/AvHO/DXQkC0Fb4y5Aam/nbC5dP9tKzlgu0S3dO7sYOeK9/q3Llm9sWdvZzICtorgYP5sZdvC7Ulcq7i48b/LSS5U7PTKtoVLAi9ClHvCzn9j9mxg8kap3tvd4WfXWxvYsvid9V07O6aSuGPURoIy8Exl28KsJLspdtzwQYOYvxPl6lBrjjFmJvAESYwDo/y7OWRdGwC9nd3sensDW5eu2eTbtHMiEqKVCDuBFoJysKpYttxyiavwn0UcVRPlzsq2hV8JvDDGHI0kHZpAcs6NDrINeI5t2yuSuK4gyUiqWsdxeoCtlpUJJ9LIGGPOBn5Akl7d7fsdwvhd69jx8nLefXYZOE4J8WeP25CZYWAw13zjmeEkko8D37eiMsZMRbyekwrz8o2dRPfIsfjeeIvVj71Cf28fxJeBdsTbNzCYL9fBPCNMIjnlDiGmd3ev9VGS9InoGj0eX/lEnFUrWfmvNnp9XRA5RHbAZUi4X0AGFhfL3vlQUtm20FlQMbMiyctCxwELeAQZS5JVOhbiJ/SoMebYgH9OsZKQgrcs6yjE4/dox3E2uu9djqzYz3YcJ2IoSYa5kRSyvfWN8LD2yFnsvu1RiG2teBH4F/Aksn9aFI5QecZixKyZqAPOU5VtC18MeR0tGU1MnJIy3ps+k/a/PxdQ7tEwwMPI6vDlYsrSlkdsBBYhkQiJsBxJRhXgsyS+4g5iWWw69Ez88xYHlHs01iAy8B90+y2bPII4RibCZuDakNczkT3+pMcCl0BkyPnIxK1oSdhEb1nWXGCN4zjftyyrAngc+IjjOItCzrmHLJjojTFHIg4sKadz3fPTn9G/fj37HXkwI8Z5KCkrdUaMHb129MTxb445+IB3RowZ3ePefzSpDCCD6UacvPYm+HPAe57q2qJcKSyomHkw8FHEEtOBrJQ7wn5vR4ph7HOsMcaMRZLPpOLNDkDHHX+i57+vMn76JEZNGEdJaQll5aM2jJ44fkX5lAnvjNpvzF6CMpCJBCW9pPj8AZ+nurYoJxhuUpgLkL3T8Oce+nN3aDY0d+W2mjRyT/j/9Qidj/8n/O23gCb3eFUtNdnHzSPwEURRRxsDAjIwIF+CMeYpRDmnazJ+3rbtyjTvkdcko+DPQPafPoA4llzjOM7csHPuITsK/kdI2c6UFW/f5s0cuuG/lO+XrynfB+FHtgq2ILHjMX96qmuL2mvfGHMpkic8Fa98APrb2zno9Vb2n1QwGYO7SUIGgHZPdW3RKidjzOlI/HzKWdicrm78jzxC36bNfb3G/Ax4iAjZFpX8xA2J3EbmFmGHFLNXfcJ78I7jvGpZ1iLEseHmCMr9cdwUnZZl3eE4zj0ZbOfhpPlAR08YS/neglHuIPvMh7lHXPzNjT4GD/prkRXPGvfn+gK2DEwmTRkoGTumkJQ7iBUhUIQkEbr8zY3hMvAu8uwDcrCugC0Dk5GQxJSxRo2k/NOXgqz+brJtO2L4lZK3HIT4RmRCwXchPiGq4C3LKkE6Vz9SSnEAjuNckMF2hZP2w+wtG0Vv6SjK+mLuvxUy5YjpMpb5ssff3LiOoMIPHfhXA5vzeAVYRtomOYuukeMY1d0e/9TCZBQSbxwr5rjf39z4HgOfe6gcbMjjSWBGnIJdHPd+quALizLk2WUCh8xMFPKWZDrMLYjX4ttI1rC7stKiyGxAHkbKA7xTUsaGg09nv93rVu/XvmEeki6yE5nFdYYdvaQnRBay+hqDKN5UfmaDEYgHczQvZr+/uXENMtC/g/g9GMB4qmsj5mXPIduRFJappgcFy2LjlFMYv2f9rgN2rXmQ6M+/0/2udAeSEcizTOX5jyEzuc3DKUEsYocTOUypx9/cGLD8BKqELUNkYHMW2pMM28nc/8SxbTs8F76S/2wnnTFgICPd+xUtCe3BW5Z1FXAdkhBmNlKs5UQnR2nwjDHnIGFr6dpXO4Bv2bady8lJ0vibGy1kr/kg95iUwM9sz0TX4w70IT+Xe6prc+Jl7IbIrSINR0uXLuA227br0m9V9nBloJzkZCDbe1BbCT77gBy87qmuzYlJxA2R20xymSYj4SDpaz+afquUXOI6WhokeVK6vAMcXcyhcnEVvGVZH0RKas52HGeZZVmliNfpdxzHiVtKM1MYY5Yi9bTTYTcw2bbtorLTu8pgPAMH+4MRD9UjQo5UC8REox9YyUDFvwxYlQ0zrzFmLlIkJp0yrJ3AUbZtb8hMq/IDVwbGMFAGpiAyMJ2gDMSL/U6FNQye/L3pqa7NuPnbGHMjkg8jnZK3e4EP2bbdlplWKbkkEw63yGLvG7Zt35eZVuUnMRW8ZVnHI4kePuc4zuMh738D+B/HcZJNVpAyxphLgHtJ3YO2E/ilbdvezLWqsPA3N45j4GAf+vsRpNdhQulEBvkXkZrQbcCadPf3jTGnuPdMdXDvAx62bTvR+Nuiw9/c6EH8NEKf+/SQ3w/I0Ff1Iub9l5Dn/yKwwlNdm1Z+CWPMRMRxMB0Fv8y27XQXC8oQYYwpQyyKydSLCGcnMKXYnSwLptiMMaYEaEbyGCdrqu9GVprn2LZdtB5W6eCuACcQHOiPRYr52EjFsHQdnLYQHOjbgFdSCe0zxtwKfJXk/RT6kf22M2zbfi/Z7x0u+JsbxxNU+Mci2QdPRkyi6W4B7Cao8NuARan4dhhjvgr8htS27DqAc23bXpzCtUqeYIz5EPD/SG2i5wcutW37scy2Kv8oGAUPYIwZiWSbm0XiA7wf2WuZZdt2UTtUZAt/c+NIBir8wM8j0rhtH5IdMaDwXwRWxlvlu3twjcCXSHyA70Jm7JW2ba9MucXDGH9zYyninBn6/E8GjiH1jGIgq/xQGXgjke0dY0wt8EsSH+D7ENP8R23bfiHFtip5hDGmGqkQl1DRKRcf8Hnbth/KWsPyiIJS8LBvJf8jpOhMtPKAIJ25FPgb8L+2bXdGOU9JEdfkfyIDB/yTSb0e+DZkkH8RSar0sqe6tjfSicaYLwC3IpaFsUTu4H5E+TyFdOodKbZLiYK/uXE0Uh42fPKXannQdiSVbRtSC2Chp7o2Yt91V3F3I0535USeaHQh48RrwGW2bWtdiSLCGHMqouSnIV7xkSyNvYgcrAcut237ldy1cGgpOAUfwBgzGrgIqAXOQWbogbjGFUj+6rm2bWsZzxzjb26cguQar0CezQxSM6fuRqpOPeUeA1b4xphS4MPA/7o/HWQwHwm8B/wfcK9t25tS/mOUlPA3N04AziIoA+eQfKEhkEnaAoIy8FqYDFjud3wdccAsQ8aCEYjV5s/AnbZtr0r5j1HyHmPMycBVSF34sUiYaxkiP/cDd9i2vST6HYqTglXwobir+kBd6D22bedroo5hib+5sQxZ1QUG+wrEtJssawkO9M94qmv3bbm4A305sk+827btiCt/ZWjwNzeWINs8oTJgk3xc+xakQMhTwFOe6tp9ZXtdGRiNyEF7sTtQKZFxF39jgY7hbrktCgWvFB7+5sYDkbwKgQH/bJKLkHCAV5GB/kngBU91bVGFPxY7rkPfWQQV/jkkH8q5HHn+TwGtnurajow2UlEKGFXwSl7gOnGdiAz05wEfRKqNJYoPKUTyFPCYp7r2rYw3UskqbiTH0YgMzAI+RIK1GFx6kL37p4B/A0vyOPWyomQdVfBKXuKadE9DBvkPIVUMk0lRGajt/jBh+7ZKYeAq/OMIysBsksvVsIagDLSlG4OvKIWGKnilIHATtFQSHOxPTeLydwgO9C/pQF+Y+JsbRyBbOQEZmEHiWQ03AY8gMjC/gCvqKUrCqIJXChJ/c+Nk4HyCg/0hCV66Ecml8DDwnA70hYu/uXE/ZDsnIAOJOm7uQpJmPQw8mat6CoqSa1TBKwWPa8o9HhnkqxFTbiIrux0EB/qnosVbK4WBv7lxGiIDHwc+QmKZ93zA44gM/NtTXbsney1UlNyiCl4pOvzNjROBC4FLkPj4RPbu9yKOWX8D/qMr+8LG39w4FpiDyMDHSWzvvhsJwXsA+FcqqZQVJZ9QBa8UNW62vY8iA/3HSCwUbyvwd+AeT3XtsEuOUWz4mxtHIds5lwAXk1goXgfwD6TA1QJ10lQKEVXwyrDBTav6QWSgv4jEKqe9BtwD/M1TXbsle61TcoGbdOkDiAxcQmK+G+8A9wH3eaprNdWtUjCogleGJe5Afy4yyH8CmBrnkj5kr/ZeJM5ek+oUOG4o5pmIDNQgMfjxaEVk4CFPda1WplTyGlXwyrDHHegrkDzWn0GKl8RiB7JPew/wXzXfFj6uo+bJwP+4x8FxLvEBTYgMzNfQSyUfUQWvKCG4ZvyLgM8jntjxSqG+gazo/uqprt2Y5eYpOcC17nwIkYGLie+kuQ4x4d/rqa7VcsRK3qAKXlGi4G9unApcDnwBSaMbi15kRfd7JC++dqwiwK2KdykiA+ckcMkTiAz8R1f1ylCjCl5R4uCab9+HrOg+S3znvMVAI/CgxtYXD/7mxuMQGbiC+PXuVyLliu/2VNdqyWplSFAFryhJ4IZcfQxZ0V1A7IQ625B65Ld7qmvfzX7rlFzgFkY6D5GBSwBPjNP3Iub72zzVtW9kv3WKEkQVvKKkiL+5cRJiwv8KcEKMU/uQ9Li/R2Oqiwq35O2ngC8T34T/NCID//ZU1/Zlu22KogpeUdLENeGfD9QiWdOsGKcvRQb5v2sO9OLC39x4FvBN4NPAyBinrkbM93d5qmt35qJtyvBEFXwesmhOVQmSbWtq2DEFya89AigLOeK97kFCu3YA20N+j3TsnDGvRdO0poi/ufFI4OvIii5WuN0O4E7gD57q2rXhHy6aU2UB+zNYBqYC5UR/1tHkoY/Yz33AMWNei8b5p4hbCOmrwNeIHW7nA+4Hfu+prjWRTlg0p2ockWVgHIn1/dDXADuJ/MwHjQsz5rXoBLTAUQWfY9yBezqSVCNSx52KDAojhqiJAO3AZuBNYDmwwv25fMa8Fl1xJIC/uXEMEk/9TeCk0M8cx6HX10nXrg569nY6/s07l+xZvXFZT4d/NAPlIJFiKdnCh6TsfQv32ROUgy0z5rXowBEHt7ztJYhl5/3hn/d2dtO1s52eDj+d23ev2LN646tdOztgoAwkklo5W3Qiin8lQRkIHOtVBvIfVfBZZNGcKg8yuJ+G1C8/FTiF+IlU8pnNDO7sy4ENyXb4RXOqDqbIV4tLL7toxITjD/88cHWvr+uMzu27Lf+23fR1dg9109JhJ5FlYO2MeS1JhYYtmlM1EeiZMa+laKu4LZpTVTr57BOqrdLS2r7OrsrO7XtK/dt207u3oAMs2gmZ+If8vmrGvJbeZG60aE7VWGD0jHkt2zLeymGOKvgM4K7KpxBU4gGFfhzxE6UUC3uA14EFwLPAwhnzWiKm8nS3IO5DHNS2AlfPmNfycK4ami0Wzak6gIHP/1Qkfj7Wfmwx4UcG+YXAfKB1xryW7dFOXjSn6ifADUhhlx8Bvy/0VaFrUj+F4PM/FcmQVz6U7cohPYjVpw2Rgfkz5rWsj3byojlVnwf+AvQDvwWumzGvRR0QM4Qq+BRYNKeqDMlh/UEkn/lpwEEZ/prdwIawYyMyGPYiHak37Ij0Xi+SiesAZF//gDjHBGI7iSVKH/AKouznIwq/A2DRnKrjkBl/AAf4LnBroQzw7qTuZEQGZgOnEz82Oims0pJ+LGuD09u3ioEysIvEnn3oeyORZxvv+QdkJFMT09eQ5/8s8NyMeS07YF8f6magrN0GXFMoA7wrA0chMlAFnOG+zhhWSYljlVpb+3v63mbgWLCT4PNNdCwoRfw6wp91tCNT24RvE5SB1hnzWjYEPlg0p2oVcGTIuf8PuHzGvBYt1ZsBVMEngNuRj0M6cmBAT8fMvgdYhqS4DFfiG4CNQyXg7up6f2AaEvoVehxD6p2+F3gZ6ehLgbsYvKq5HahN1sSXKxbNqTqcoAycD0xK43Z+wIwcP6ZnzNSJx4yaMO6gsvLRjBgzmrIx8rNkRBmWZYGshn6GZEfLeod1ZWAccBhwPANl4Dhix33HwkEU/rPA88iKLXxS9BhwWWAymG8smlM1CVHmATmYlsbteoA3ysaM3jPm4IlHjJ44/tARY0ZTVu7ZJwelo0YEZGA5cBOSPCnr/cMd88YgfgDhMnACIh+p8hbBif81wNlhn78CXDhjXsumNL5DoQgUvDFmGtLhJiCrjl3Ai7ZtR/RKTZRFc6qmIIN4oCOnujp7B1FoS4El7s+1hbJSDWXRnKoRyGz7BAZ3+mSdgfqQ5xVuLXgc+Ew0834kjDEHIXnjJyLWit2IInnRtu2U/8+L5lRNQBKaBGTgmBRvtZ7BMrAysFJ1w+w+ClyPFL2JxmJE0T8yVGlQXeUfOvkLlYNEyu+G4rhHuLVgMfDx0JVePIwx44A5yFZZOTKJXgm02LadskVg0ZyqMUAlQRk4NcVbbWPg818KrJgxr2WfM4a/ufEcZKvi4zHu8w7wC6R07ZA4crjKfyqRZWBKCrfsJejlH2AdcMGMeS2vJ3oTY8xI4MOIfI5FrJ3vAU/Ytl3QDg+pUpAK3hgzGinxWYuYxwMmSIug2W8dki70Adu2d8W7p7t3di7Bjmwn2axOZFUe2olfK2bnoQBuhz8U8RQ+D7FwHJfGLZcgA3zUvTtjTCkyoP+v+509iHWhBJGHPkTR/x9wj23bcQvBLJpTNRpRsAEZOJPkTNW9SPGZ0EF8aaLOQ66in40o+qoYp75BcDWXF+ZsVwYmIaux2cgzOZXUt3veBT42Y17LsmgnGGMsYCbwDaRAUC/BsLBQE/WfgT/bth23EEzY9tsHEZlOxmrlICvUUBlYgljlEhps/c2NpwM/RErYRvv/vQf8Crgzn/IpuJPiMxEZmA3MYLDyTpQ9QM2MeS1PxzrJGHMKcDWSQrgf0QVlyLPvRrYm/g7cbtv24hTbUpBkRMFbllUB3Ir8MzcAn3McJyux1MaYo4GngAOJv2rci3T0j9u2vTD8w0Vzqg5EqkXVIKv1ZDryNuAZJDvVQuDtfDUtDwWuh/wsggr/2CRvsRe4aMa8lmfCP3BX7I8hDmxjiK1E/Mig+3nbth+K0M5xSOrZGiT1bDLOUO2ImfFp4DngjdAVWTr4mxsrkNXcx2Kc9gbwA6Q+fd7N1F2nw0oGKvxk6AG+NmNey1/CPzDGlCMx5B9GtgxiTcS6kQnfjcAt4VadRXOqRiHV42qAapKzRHQh2w1PI7Lw2ox5Lb4kro+Kv7nxBOA6pP5BtJTI7yF/1335MtkLxfWQfz9BhX8WySl8B/jFjHktPwr/wJ3k/wpR7gGlHo2Asr8buMa27WExVmdKwU8FdjqO47cs6+fAYsdxBg2m6eLO1BYgij2ZlZUPuNS27X+7iucTSGeeRexc4qH4kUH8afd4LdmQoOHMojlVU4HzfKNG/bynbMS0sb69lMaXvT5g4ox5LfuKdRhjpiJ7+QeSnHe6D/i+bdu3uauMCxEZ+Ajxy4EG6EX2wwMy8HK2kwK5q7kfIW2NxgLge57q2hez2ZZ0cUPiKrtGjKj3jxp92hi/jxF9Cemks2bMa3kl8MIYMxb5m5P1B9iL1G//pq+u1oNYgGoQk/j4BO/hAK8SlIGF2U4I429uPAr4PpL7PtoixCCTvcfzcbIXwFX4M3tLS7/T7ik/f0ynv2Rkb0K69suhEz1XuT+MWFmSmZT7ENm50Lbtok/olXETvWVZXmCp4zgZDXsyxhyImL72JwWzX/+WLf7OxluW0ek/K8Hr+xFFEujIbcUcr50L/vL1q7+z4aBJDf0lpYzo6eawLZs4fNMGPN0x/60XzZjX0gxgjBmBeN8fTgpmP6d9j6/z97cudnbsODuJ65cRlIHnhsr5y9/ceCLB1Vy0yW0T8ENPde1bOWtYkvyx9n/P2zF+/5aeESMo7etj6tbNTNu0nnH+mIveX86Y13Jd4IUx5hlkVZh0IiCnq2tv151/XNq/etVpJK4YVhK01j0bK/Qvm/ibGw9Dok2+QvS/vRX4vqe69qWcNSxJvF7vgaO7Ord0jhptWf39TNmxlWmbNrB/+55YA/NjM+a1XBh4YYz5P2TCk0r4oQ940LbtK1O4tqBISMFblnUU4rR0tOM4G933Lgd+DZztOM677ntHAHOBDziOk1EHEGPMT4HvkKIHr//Wm3E2RN3SDbASqef8NBK/GXfvXkmcm66//smeESM+NOBNx2HSzu1M27SBibt3hnfwTmDCjHktnQDGmM8Cd5Bidq+u++6i77Ul8U5bDzyJyEBLvnny+psbj0Zix68g8kS1D9lz9nqqa/Oq7QA/u/GG3/SVll0T/v4Bu3dx+Kb1TN65nZKBY1I/cPyMeS1vAxhjzkJM4SnFlXf/5zF6n3ky3mk7kG3Ap4BnZsxrWZPKd2ULNxXu9xD/k2hWrIeQyd7bOWtYgni93iuRNM0DGLe3g2mb1jN12xZK+wcZR0Mn+lOQfP7pZHrsBI61bbuoqzwmtIpxHGeVZVmPISEN33f33G8DPhKi3McD9wJXZEG5e4BvkaJydxwHZ3dUXb0MWfk8hOyh5q15q9DpGTHiBWSvM4hlseWAA9lywIGM7O7eNXnHtv8e896aDaN6enYBN4UodwuoJ43UnTFkYDVBGXg5n7dePNW1K4HP+5sbbwF+iXjfh1KK63DkntPgqa5NOCIh2/SVlr0S6f0d++3Pjv32p6y3Z+9BO3csPvq9tWvHdvr3Ar8LKHeXG0hjYHd2Rc20vBmp+PcQEqudt3u0nurazcB3/M2NjcBPkZTI4ZO9TwIX+5sb/wT8xL0mX4gY4dQ+ZizmqON4Y/rRXRN371p29Pq1b+3f0d4J3DtjXstzIad+KwNtsIBrgW9n4F55S8ImesuyzgBagA8gM9trHMeZ635WhiQouMVxnJZMN9IY8wWkAlfKg3vPwgX0/L8mkJnhf5EBvWnGvJa8NWcWAl6vNzR5RrREKqHvH4uEs8XaJnGAP9XX118deMMYMxOYRxoy0Pv6Mrr/di90d4Pk2Q8o9SWFOrHzNzeehzganRnllC3AT4A/Zyusyuv1liB72LGee+hxFDCZ+H40TwJz6uvrHdjnf7GKNBR837vr6LrrDmhvB3FQexiRgRcKJcFOOP7mxlOBmxF/kkh0AA3Ardma7Hm9XguJjY/23MPfmw4cQvxF5uvA++rr67tg3zbddtKLww/gAw60bTtvohAyTVJ78JZlPYmEpdzsOM5PQt6/AvgNwZnZ7QHlnwmMMb9BrAdp4fj2Ql/fiydXvD9WrLEShtt5D2VwzOvxyECdLabW19dvBDDGfBWRsbRSfjqdfujp2ez3Xn9woSr1cPzNjSVITfKbGJgVLJRVSOjVP1NxwnJlYBKRZeAQspeS+aL6+vqAafY8ZJWdVi0Hp6sLurr6e9qeH3nGd75XkEo9Ev7mxvORyd4ZUU7ZAniRyV5KDmZer3cCkePfU/KLSZBf1NfXr2QM9wAAIABJREFU/xDAGHMoMjnPROrfvcCptm2vysC98pKEH4hlWSXI/l4/Mlvch+M4fwX+mtmmDWBiJm5ilY+B4ZMTOmm8Xu8IpMpd+AB+PENT1SpUPseTgQHEGu2B0R5PsSh3ADfpzVx/c+O/kDKlNzI4dfJRiH9Mnb+5sTaax71rkZnO4ERGxyOrsFwTusecqKd7TKxRo2DUqP6RH7nAg6xuiwJPde0zbk36S5HJ3hFhp0xC8kJc429uvNZTXftYpPsM4YQ+GqGRA+MRPZQJ+siQTOUryQyYtyCm2LeRIiF3ZaVFkcmk12rRJ55JBLcTH0MwPvV0RLlnaxaeLH+rr68PdYDZQzChUboUZZ5r1wR/m7+58T6gDnFKDZ/QngW0+Zsb7wSu+9XinR6CMnAmsoUylGVqQ3kB2UYJkMm+W4KYaIsKd7L3oL+58WHEF+MGJKQ0lGOAR/3Njc3ANb9avLMDCRmejSQqGqoJfSTeQSasAfaQeGhzPEopcn2Q0GBuWdZVSOx4IEvVjy3LutvJXRq8pchMO12h60b234cdrkI/mmDimdlI3flMsAspfrEj5Ah/vQNROJUx7rMYcdS8v76+PnxS9zpiPUoXx71X0eKprt0D3OhvbvwD4pj4FdxBsb27n3UdPazr6P3yuvbeL5E503o70Z976HufAj4T4z6rkFj1e8MmeCCm2URzFsTjXdu289aZMl3cyV6jv7nxHiS07lrcyZ6vt593O3p5t723el1Hz4VkprgUyIQp3hiwEzjHbU80NiJJjO6pr69/I+yzzWRuBW8hidmKlrgK3rKsDyLmntmO42y2LOsh9/VFwCNZbl+AB4HfZeA+/cg+btHjKvSjCGYRm43kj06V3Qys+xz4fXV9fX1CHsderzeS9+t2pDPfXV9fvzTG5S8gnTHZjHjh+ICfp3mPgsBTXbvJ6/X+7ODy0lVjykq+sa2zb/qu7gE6LVnl7kOeebgMrAw4QcXD6/VGcgTbC/wDyTL2fMCpLhzbtjcYY55CsvulMzHpYPjIwB6v1/u7A0eXrN5/VOm3d3X129s6B+jHZJV7N5KPJHwseLu+vj4hy5jX641UoKcHaEZk4IloY4pt2z1uDPw1pGdp6gL+VMwOdhBHwVuWdTyiXK9wHGcZgOM4fZZl3YpkVsqJgrdtu9MY8zvE7JhqJat+4CnbttdmrmX5hdfrnYIMfgGFfkgKt1nP4AF8ObAp2sCbBDcgA/mBSJz53cCjiSgH27YdY4yXNOLgXdYjyUCKEq/Xuz8SOheQgWM2+vpIctGzlYEyEJCDd+vr69Nd9d6CROIch2QFvBv4Z319faLe3T9F0kqn40vjIJPKosTr9XqQFL5ViAycsq2zn22dST26tCf0MbgHSQk8E3HMvhvZktua4PW/I32naweRxaKmYIrNJJLJbo+vkxde/i/de3bQ093NiJEjGTn+AN5/1vsYXz7aB8y0bTtuppNCwvVqrQEuQzpzsil8n0cShzwHLKuvr8/qnpTX6y1JVUmEZLI7jCgpO7v74fXdDhuWvkhf+zZ6ursZOXIk4/fbnxlnnenzeDyX2bbdnMafkHd4vd5yJPXuZYhyT9hPocSCqeVlHDaujMPHlnGQp3R7eVnJ94B7slWxzrUukeqE0RjzNKIcIq7g4sjAXo/H82PbthtS/wvyD9dB9kOIDFxMEpNgC5hcXsphY8s4bGwZU8rL/GPKrJ9YlnVrFkMr05WBuJnsouuDM3zjyz1zbdv+UkqNLyAKRsEDGGNORhTSoFz0e3ydPPfsM0yfNo3Zs2czadIktmzZwvz581mzdi32WRVf/3jVubcPScMzjNfrHYvMgC9DYl8TLZLjQwrjzEfqMb9SX19fUPmYY+Wi7+6Hl3eVsrPtUaZPO3ywHKxZ09vV1XVofX19PiX9SAmv1zsSefaXIbIwJsFLe4CXxpRZr1YdWn7a0fuNOHdEScT5chvwdU91bd5NiN1c9M8j2zUDLHoJyEBfT0/PITfccEMxyEAp4tNyGZLYJtEiOQ6weGQJL5w71XPEiRNGXjC6LKIQvAl8w1NdO6jg01ATLxd9PH0w+tBjT7vm8k/E2hIsCgpKwUP0anLzWhdy6MT9+PSnP41lBWXVcRzmzp3L6s3bd133rW8MRZhPRvB6vaOQ4hiXIau1REyUfoIKfT7wcn19/ZDUkM4kYdXk9snAMr+Hza/OZ8p+Y6LKwcqVK1uvv/762TlvdAZwB/TZiJNaDYmFrfUCLxGUgbbQvVJ/c+NHkCRSkWrd9yNhVTd6qmvzKm2zW03ur8gkZ181uWEgAxYSCXEZEg6XiF+Ng5SsfRaRgQX19fX7nqe/ufF9wB+Q0q6R+Adwrae6Nm6u71ziKvmbga8RVk2u2PVBouRLSFTC2La90hhzAmKG+hZSD76ve8+OMbNrLhrwMAEsy2LWrFmsvuee/YeguWnh9XrLkL3Uy4BLSCzBx2LEN6IFUehFVyDHtu2txpj3I4P7N3Hrwe91ysb6d2xh9kVfjC4Hq1efOwRNThl3QD+b4IA+JYHLViLZ2VqAF2I5P3mqa5/wNzeejEQ4XM/AFXEJ8v/9tL+58Vrg7/lSqcy2bZ8x5pOIqf7ryHjQu9cpG1dsMgDg9XptZGL3GcR5Nh4bERl4GlHoUXP0eqpr/+uWJ/4Skv44PO/IpcDH/M2NNwK/y5eytLZt9wF1xph7ESUfqAc/onvPDk+x6YNUKDgFD+J0hzj/PWiMmQZU9XR33zVp0qSI50+aNInu7sJZuHq93qOQgfUyJDlFPN4CHgAeqK+vfzObbcsX3M79OPC4u6L/SE+/89fu7m7iyEGmQoKyitfrnYwMWp9HEs/EYz3SJx4AXk1mb9NTXdsF3ORvbvw7EmVycdgpkxCntEv9zY1Xe6prNyZ672zi1nV/HnjeNdt/tKff+UcRycB44EpE8doJXLIDUeoPIEo9YUXs+lvc6SZLugkJrQz9P41BnNI+5W9u/KKnunZFovfONrZtLwO+boz5NuJceHhPd/dtxaIP0qEgFXworlf83c2PPnrXli1bmDJl8AJny5YtjByZifwo2cNdqc1E4kMvJn74yrsEB/QlGfBwL1hs294K3N+2aO19I0eOtOLIQV7/n7xe78lIAYzLie8stw34JyIHz6fr4e6prl0DfMLf3HgB0MjglWI1UOlvbqwF/pYvq3kA27Y7gH+2LVrrFIEMTANqESUbL+d6B2KxewB4Ot0tOE917XbgKn9z418Qs/37wk45B1jib268AcltnxereQDbtruARwGaH330tkLWB5mi4BV8AKt8/K758+fvH2nPpbW1FcrH59UeYgDX+7UGUexnxTl9CzKgP4DspRZtoo5U6Hec5zwHTJo1f/78iHtvra2t9PX1PRfjFkOCO7n7MGIm/1Cc09uRfOwPAM9kw0nSU137uL+5sQUpSfpDBiaXmYDsfX8qn1bzAQpVBgC8Xu/ZyDjwSWJHw3QB/0Ymdv+ur6/PeEY+T3XtIn9z49nIJOMmBvp7jEJy3l+Sb6v5AIWqDzJNwTnZRePX9zad1LtppTli2jRmzZq1z2uytbWV1WvXUjblaPu7n6/Jmwxmbrzyl5GZ+mExTt2NeIs+ADybgRjUouX2F9dMtrr9a3e1PTpq+rTDB8vB6tVd3d3d0/LFi97r9Y5GVurXIg6D0ehEnAofAB6vr6/vzEHzAPA3Nx6HpKV+f4SPdyHye3++rOYLUAZKEYvdtUT+HwfoQ/bTHwAeqa+v352D5gHgb26cAtzO4K0bkMlG3q3mC00fZIuiUfAgD7Vv99ZFzt6d5d1u7CuecXR3d/65/nt1Xx3q9gF4vd4jEOfAK4kdq7oEuBVJApKzAb3Quf3FNZP7Ozue7jBtdn/7NgJy0NvXv72/r/ekfBjYvV7vJGR//RsMLgoTyjvAb5G0rUOWM9vf3FiKyOzPiRx7/ihwVb6s5l0ZeLTDtJ0VJgN7+/t6j8oTGRiH7K1/i8FFYULZgkQy3DGU7fY3N1qIg99tRA7Hewn4Qj6t5n99b9NJfXu2LXM6dlgh+sAp2e+g077/xU+/NtTtywVFpeABbn9xzYc7N77zxJ7XFoS+/UJ9ff3MoWqTa4KtQGbpnyC2+e1RxNFp/nDeV0+H219cc0TP7m3v7Hzx36FvbwUmD+X/1Ov1noRk4LqC2DnVn0cmd83JOEplm0Jazd/+4v9n78zjo6ru/v++M1kmCWGHsIPgAjqK0SjENVbFlraIdtOqtT+7WPq0tHazdnnOc7rbjUpr0ad7H9u6m0ZFiwqxiiBFELhsChgWWcMOScgy9/fH907mzuTOZGYymWQm83m97iuZmTszJzmfc77nu9d5Ai2nmuoXP+ysEWEBQ2JFlHc3tNbjkADazxK7k5mJcOAfvemAn2na/G+XvbOxvvbRyVZz2L/wIqXUyp4aUzqRNT54B7bnD+rQ0fAirXWRUirtdYe11lchPqzpMW5rRMo33tdXouC7GbvySgdbhjfPsNraPRrDkMIoaf//aq2nIhyYGeO2NiS+Yp5SakVaBpYgimbN3dxYM/8K3LX5gcBfEd98j2vzc6ZPCCxYXrczr9+gia0n2uV5MJDVtU1qd0JrPQEps3szsbuhPY8I9hd74wG/aNbcvY0182/EXZsP+uY/1Fgzv1do84ZhbC8YVDb51L6wCuWXAzkBn6HY6fWV4CnqR6CxvdVzPpJLXJuuQdh5q/cSe1PfiyySB5VS9WkZWB/AnOkTWhYsr9udP3D46OaDYc2iriCNAl5rPRb4AaKxR8uKOAb8L/BrpdSOdI0tWdia2S8ba+Y/g9QQj9TmP0go0r6ntfkd+YOGOwU8CAfSJuC11oORQMUvEj0r4hSShjhPKdXr/cL2nP6jsWb+Ety1+Wn0nkj7HfmDhhMh4K+gjzQdyzoBP2f6hIYFy+sOFAwqG9YUEvAgp7ba7v5+rfVoQAP/j+im+LXIKf3hbCxE00uwPX9QWaSAvxz4XXd/sR1A+U3EHB/NFF+H+Nf/mECjlV6Dollz37K1+bmIdcJNm/9wY838TxfNmhtvE5FUY3v+4BE07gw708VqV5wy2AGUXwC+jfw/3HAASUVb0BviAhJFAtr8rUWz5m7piTHibtG9XGtt9EYLSaqRdQLexs78QWXDmnZvdT7XrdWr7KIU30D87NE63j2HFItY3BfI1cPYmT+oQ6GL7uZAIRI8912i1wVfDvwc+GemZ0TYmtm8xpr5z+Kuzc8C1jTWzL+laNbcJWkfoDsHKrTWJfG2Nk0UWmsP8HHEhTEuym0bkQP+33rCbZhKOLT5xYg2f0PELdOAVXZK5d/TPkDYmVc6CCMvH6u1PaN0CDAFiOw1n3XIVgF/yuXUVqm1zk913rDd9OOzgELq47vhVeBrSqnXU/ndOcTEqfwBw8DwgNVeLmC81npcqk3h9qb+EeDHRI+IXo8cAJ/LtsNdJ9r8SOClxpr5PwL+p2jW3HQeak55C4vxFpfS1tBuJMlDhM7iVH+Z1vpq4GdAeZRbdiHlgB/qTcGTqUDRrLn7Gmvmfwh3bb4U+FtjzfxrgS8WzZp7wu0zugmnDMND/sDhNNeHldK/nJyAz1x4i0vxFPgIhKInS5CFl5IAJjsy/kakdvPpUW7bBNyN9DzPqk09E2B4veQPGErLkf3Opy8H/paq79BaX4ls6tGKFO0G/hv4c7Zt6k5EaPN/RrJGgjAQU/VVjTXzP140a+52l4/oNuQPKnMKeBBLTsoEvNb6PCTe5r1RbjmGHHzmZ7rGHgsR2vyDwPURt3wSqGysmX9TursU5g8qixTwVyBjzGpkrYA3DIP8QWWRwRXTSYGA11pfhmzq0SLj9yEa/R8y3Qyb6cgfXBYp4KeTAgFvp7z9BPhAlFuOI5v+r7rLHNwb4dDm/wcJLnMGF16CBF99qmjW3CfTNab8QWU0vRvmAo6V0RI3tNZjkMj423EPomxBcth/2JeCaG1t/gbgTiTOxBmHchbwemPN/K8C96crCNPFopsSDvR2ZK2AB8gbMDRSwMeqFtYp7Kjo++joZwriJCL4f6GUSqcZKocoyO8f2RiryxwYiAj2z+AeRNmKaAbfU0rtd3k962Gb4b9ja3IPIWb6IAYCTzTWzF8AfLVo1txu12i7gQM+5PDyddwL/wA8AnxbKbU1yutZDVtwP9BYM38p8r+Y4ni5AGlRfI192DvY3ePJ798hJOa0nkqdTidiFVzJeOSVdOiuOsXtvs6gtfZore9E/Khuwr0N2dTPUErpnHDvPfCWdAhgTooDAFrr6xG/3Z24r50ngHOUUl/oq8LdiaJZcxcDU5Guf5GYg2hyXRK28cBb0p8IBXus1jpWFcmo0FpXIi2Zv4u7cP83ME0pdVNfFe5OFM2auw5xX/3e5eXrEYtOt7fvNbx5eIrCptxArAlZjWzV4D0A3hQIeLt16++Bqii3/BO4Rym1MdHPzqFbIRwoLgXDgFDFxpFa6wGJ1PLWWg9DuqvdFOWW15AgymVdGXA2omjW3AONNfM/iBTHuRepSRHEucBKO2f+D0Wz5lqNNfM/i6SXrQU+18WALA+A4fHagXZh1X4nk0CxE611CVLT4Eu4m+M3IkGUz+bibcJRNGvuSeAzjTXzX0RqPjgr+I0BljTWzP8e8IOiWXPbGmvmz0JcnHuAz3SxaFL7QTyvZADN4anTU5CS4FmLbBXwwwG8xf3A44FAexT1MK310Hj8YXYTiLlIuotb2tsK4OtKqV7ZmSoH4YDh8eAt7k/byTB5PgVJV4sJO5DyY4g50S1D4m0kiLI6t6lHh91rfF5jzfxXkA5ozja0RUhtgmsaa+bfCzyACNBzkc3541346vYcOW/JgEgBP4U4BbzW+j32GCe6vLwP0eb/lIu3iY2iWXMfaayZ/x+kYc7Fjpc8SMzGVY018+9EuhUGDwHVjTXzK20OJYMQB/oNgPBAu6SteZmCrDPRL1he50VOhRiGB29x4lq81noKoXrgkcL9JFKVqjIn3Hs12nOQXVw1nZqFtdajCPXZjhTubcjB71yl1FM54R4fimbNXQlcALjlQ38MqCFcO765sWZ+V4KhQhzolxQHBmitHwRewl24/wGYrJT6XU64x4eiWXO3AZchRXAicSViDXPa0i+ma4c8xz7QwV3X7e6hnkY2avAjcJgB84pLm9tOHHaWiJwCvNLhXbT3Zv8GktbkVlbyBeCzSqm6lI02DtRWVHqRk+gIxO+Xj8xd8OrscQtwyL4OOn4/WbVyWdYJpwXL6wxgfPCxt98A6ckVQtRDnq2134EUJOogFRD/6x1KqbSa9morKj1IgY5RQDHR5zoaH9oIzbvzOpZODhTNmnussWb+rchaut/+W4IY4/KWeY018y9JMto6xIEE3XVa6/cjcTWjXV6uAz6jlHoxiTEljdqKSgMJUhyF5JbHs/adjwEO05EDR6tWLktbCmfRrLktwN12EOZfcWjZuBeI+nFjzfwni2bNTabvfTsHUhWTlUnIRgEfVj3KU9TvECIYg3CdVK11OdIp63yXl48CdyG5zCnbDO1NeygSZTwqxjWC7rG2tNRWVLpt+ocQ0+NmxLe4tWrlskzSUIbgsLx4iwecIjxVJxoHJmCbi11ebkbMiD9PZbEke9MeRMc5j+TESML916lCW21FpdumfwgppfoWwoG3qlYuS0lZZVtY/7mxZv4yJMJ6aozbpyPa/cNJfFUsK040DgxBUrtudXnZQoq4fCuVgbQ2B0qJvQcEr1hdCJOFFYMDB4EtCAc2Va1clrKUz6JZc//VWDN/KiLkr41x6xjgq0hKYqJo54C3oxXnDK11XjZbX7JRwI93PvAW9dtFDAFvp7x8F/GlunV5+ifweaXUbpfX4kJtRWUBYg6a6rjOQDbtnpyDfKDMvmKhpbai8m2kcM9Gx7U5lQs+hQjjQF5x6buEm1gjOeBBerP/GCmIFIllwKe6EkhpW2HOJDT/5yNRvN21accLL3LIjFaFMYhAbUXlNuyNHgcPqlYuiztg0Qm7O93viV0FEuDexpr5/0wkpW7B8rr+OGrAe/sNaCbcKjdJa12glGoOPqG1/jBiVehQ3xY56HxKKfVqvGOIhC3ITyOcA1MQK4Eb79IFA9Gco5VXbkdtReUOwveAIAeSyvO369n/BjgH2Q+jNWX6ZmPN/D8UzZqb6D7cvhd48gsB4wBYw+yn8pF4kKzt4JlVAn7B8royA37g9Ri0BizyPAbFYyaNPbltLY5+wGODv2itpyNau9tpvh6J5n00Ea29tqJyKOELeKr9+d2hfaUL+cgBpYPPqraicjuhhW4i7o8tnZl9aysq34f8fzcDP6xauSwlubALlteVeQz+7DFCHDAGDhtoFPjCOBBsNqG1PhPxpV7m8nENSAW2XydSha62orI/cB7hHPATvUdBJsCDVGw8HekY147aiso9hDiwHlgKmFUrl8UMjFp7+8eut9oCv87zFTDq8nPwDYqauTYOsaD9KJ6B2hx42smBtryCNk+Bb3+guSkovL2IQNmutS5Dmr7c6PJxbUjvAJ1IznRtRWURMufB+Q9epfF+Ri/FOPu6zvlkbUXlQUIc2IAcit/ozPL3+sz3nlU8fOCTViDgHXXp2ZSMjHrGKEbiXv5fvANdsLxuvAHDnfJgSOX78w+98WKkPMhaAW9YVna4YBcsryvL9xjbRw/wFV40ZiCDiws41NDMf3YdYdfhk+xZ8lhwUvcjC/ubwPdw19r/AXxJKRWzC1ZtReVIpPSpcxG7+exSgYNI2sgJpJhKi/0z8ne3x4XI6XwIoZP6YLpP4LyLdO6rBZYA25wCv7aisgzYTkhzfRuYWbVyWZc6TiXAARD/+g2IxuamPS0BPq2U2hbrO2srKgchHCgnJNCj1aPvKo4iHDhC7Pl240YB4goYHHEllQ8eBw4CLxPiwXqnwK+tqDQMj3HAClhDAPKKCznzY1dQOjaqIt8MTOgsZSomB440WHsWP2o4OFCB/A8ewl1rX4vEW7wR6ztrKypLkD7zFxDiwJl0j1utAVlfhwnNbbx7gRexajjnfwjhaWupxAnkwF9rX6siBf7LF1/ymhWwKgGMPC+n31DJ4CljIz/HiUuKZs3tNB3V5sGO0QN8BZ3sBTcrpZJx/2QEskbAP/h6Xe24gUVXvvfM4RhGyMpjWRbPv7WfLdvqOLTieZAT+RLc/ax7gM8ppWrcvqO2orIUifS8xr7OScHQjyL1ymNde6tWLmuK+glJwtYy3Db9IYhpa4p9jYz2GXFiFyFhX4sI9shGDweB66tWLlua7JckwAGAp3AvWnQc+BrwOzfLTW1FpQ8puRrkwIV0fSMPbtqxOLCnO9whtvvIyQHnIXAsMv+TiXB7JIF6QgJ/CbAN+V+3H7ANr4dJN1Qy5OxoTdhYUTRr7rRYX5IgBx5FmgRFmoVbkJz3nzhN+EHUVlTmIYeDIAcuoesWulN0vg/sBo6nOiiytqIyn46CP3iNIrQPTKRrXD9OSOAvQXLQ3wYmOG8ad+35jJg+OWz+HNhTNGvuqM6+KAEezFVK/TrJv6fXIysEvGmanmUNpa03nDPCGFrS0Z154OQpqtfvYfdzf4n1MX9AipUcCT5hE38aoYU8jeTdGrsQQq+xr3XAzl7qww5DbUXlQGSTnxJxnUZyC34nErAUuZOfAm6vWrnskUQ/0DRNY1lDaVsXObAQuFMptSv4hB0IeT4hDlxO9PKkneEA4RxYi0Rkp3zTTjVsLfUsOnLgDJJbEweQIK4O1cTGXj2VkZdMcdvgm4tmzY0ar5AiDvwH0drN4BO27/wsQhy4iuS13qOE5j94bQMOZwAHfIiLJpIDZ5HcmjiG8P+8yBeGV5zOhPdeiOFx3V7yY3UlNE3Tt6yhtCFOHnxPKaWSGHtGIGN98KZp+pB+018CprcGLGNwsVtmGwwuKqA1ujfwIHC7UurZ2opKo/bp5/2EFvKVJG7CbEa007CNPFU+5p5A1cplR5DCMGHFYewFfyayyM9GNJlL6dz0H80GVwg8XFtReRpwb2cbnmmaXiT69ovAjC5woAnh0e+UUlZtReVEQhx4D6LVJoIAEogWuZHv7e2beDTYB9FV9tUO+xA8iRAHpiGdutxSDJ0YZl8dsPOlNRzfWf/2mR+5bITh9Th91u9E3muapoF0rvs88KEucCCARGn/QCnVWltROQq4GuHA1STnettK+Py/CezIYA40IXE2pvN5O4DUafG7CKn86eb2cCIYq9IB+1du4cSugzvOvv3qIm9hvpMnR92Eu2mafuBzwG1AvwR44MrBbEHGCXjTND1Io4dvIouyFCDfY3CooRm3E9uhxmby3PXMlwfv2//pc1esOr/26ef/DxEWnUWUOxFAKtotJSTQN1WtXJbSnvO9FfaCX2tfANRWVBYSWuBViMBP9HT/Y+Di2orKj0X7X5qm+QkknSkPOYQZSXJgfWFDwy3TX/r3COCB2qefv5bEfehrkRrkQQ6sr1q5LKubWARhz88m+3oK2jf88wlx4AoS1HiPvPXuGSt++MiKcz/3vnnFwwfejmi+dzrvMU3zGuBPiHm5GPAkyYHdRlvbrVcsfKEZ+Gnt089fR+JFULYgpufV2Ba6qpXLjsV8R5bAzqHfZl/PQrvVYzJi7aiyr4SEacPew+NW3vv4tomzLv7CsPMn3Yy4Qb7gvMc0zalI4aQJSJxJHiQkDzrLHslopMREbxhGGbK4WxAf9y2WZXWlfrArTNMsAJ5EyBIWGLWusYiB/fsRj+/N29IaGLtl25PjtmzzGPA+Egs22wS8aF8v29ptDlFgC/yLkTm7ColWj9dfubVq5bLTnU/YGtt8pBiNs0hKQhww2toYuWPX85PWbzrosaz340ipigM7kUItLwKLq1Yu25fAe/scbIFfTmijv4qIuYuBo8CoqpXLwoqcmKY5F+nqF7Z2E+EAgQBD9+5fftaadRvyWtu1cM2JAAAgAElEQVTeR2KxJgeQCncvAi9VrVxWl8B7+xxsgT+FkMC/Gon9iAfNwDmRQbimac5CAqKLiIijSIAHS5RS70nur+r9SJWA9wKWZVkBwzA+CYyxLOsHXf5gB2zNvYYom0NzAFY3lTJqgI+KMQMZXFTAocZmVgajJhc/ytC6dyh7dw+D99e3GZblFj3vhn3IIn4BWci7Ork/hyiorag8A0mjSiQg6dqqlcvaK4aZpvlL4LO4RL53yoEljzFw105G7HyXIXv3t3oDgXgtWEeAxYQOdp2mAebgDjuFcCuJaU6qauWy7wUfmKb5WWAeyewDSx6j3/59jNi+k2F79rblt7TGuw80IkGCQQ6s6ywNMIfoqK2oNEksSPnJqpXLPhR8YJrmtUiNElflLB4e2FH0plLq3K78Lb0ZKTHRW5blzBEuRTbxVGM24hN3PfkXeKDcd5zNx1r55/omWgIW+R6DYlo4suxZTn9jFaO27wzeHmtRn0RMbcGFvD63macMo0g82rgu+ItpmuchZtqEOFBitNC0+iVGb9zIpA3tKa+xuN+MuF2CB7tV6SzlmeXoR+Jm0fZJM00zWGnOdWOPzoFWjE2vMWR7HWevfDOo7sXaB4Lut+A+sDxVlfxyABJ3g9UFfzFNMw/4GzEsr9F4UGSdYs+Sp5zpsonG12QU4hLwhmFMQvyMpwdN74Zh3AL8DJhmWdZOwzDOR2o3DwRmdMNYFZ0EvBV44Nyijq5Pz4jhDN0VswDSTqSX91PIQu6QGpNDSrAM0YKujPJ6I+Lm8SJCdl6EWe7bdFL1LRoH6saOxnospteoHmku8yTiekmm7nUOnWMPUpr0E1Feb0Lm3oO4+55A0tmC+K/OviAaB+onjGX/k3ujlkpD8rafQTjwQs791q34CVKHxA3NSEaNgWTbLEN6hARxI3HE9bjxoKmpiS3NYRnH8VpwMhJxm+gNw3gEqLMs627DMCqRlKLrLMtaEXHfR4H3WJb1uVQN0jTN6cgpOqlyjqZpkv/Xv1N65Cj1I8toLiwg4PUeOuXzbTzZv3TDydJ+uwj5aQLIQj+KpHE4fwZ/b8x1EEsODl9cEfJ/PoHkx56MpSWbpjkKMe0mlaJWV1fHkb88xIgdu6gfWUZTcRGWx3P8lM+3qaG034bj/Uvr8HiCJlcLseS4cSD482SOA8nDzlQYQmj+TyAciBqgappmIeIy6yxC3xX19fW8/Zf/Y9L6jRwsG87J0n5YhtHUXFi4uaFfyYbjAwdssbxeZ4R2Ax3XvvPnCaVUzkyfJOxCYeOR+Q9y4EQsBcuOwTFJshNcU1MTzz77rPOp/UqpRAKrMwqJCPgLED/kZYjZ8suWZT1iv1ZoWdYp+/frEMH/lVQN0jTNHyCR8zEO3zHfz1vrN+ANtNFa4J46kSBacV/4RxFrwDZEGG0F3k2kzGkO7rCj5u8nycprdXV1vLFyJQVNp2guSjaNPQwBoh8AdxOa/63AjlQ2qOmrME2zEnieJHPQ6+vrebm2Fl9DA00lKSn9biGCyU347yV8H6hTSqW8WFVfg2maQ5GiUElt5C4Cvl4plbWpcnH74C3LWmUYxgrgdeDeoHC3cYFhGPciJrUmJMI5lRhFksI9CCvPS2vqrDF5xNmcAWjWWtcRWujORb8tkfrWfRxD6Gq1MMNIlXAHMSEPJL7o+zat9Q7cObBVKXU8VYPKcgxBhGryMIxUCXeQPak/8R04LK31u0TZB4BDOYtQXBiCmO9ToqkZhtEd5YR7DeIW8PY/og3RXO51vmZZ1jIk17W7kMnaTwFSDOZMtxe11nuQRf4WEtSzHFifzS0Mk0QrXd3cew5eJKjoNFxKJGut6xEObAFWIj7HN5VSuaCucGTymjCQtqdjcI9BOaq1Dgr8VQgHViqlen2lyzSjlS4qexHI1D0lLiQSRf8LRFt5G7gF6cKWLuxAhHyqOrItBoJtHyPJEiycMsC++rv8TGV7z5H2dRkhy8dJrXVQ2C8DlnfW+KYPYB/CgVSp4G8iaZfQkQMeQhwIznskB1LZqCfYrnUasrYATmmtVxHOgZ1R3t9XsI/UBkXtRArlgDsHinHfA4K/p7LF6wCkWc0FSH18EMvPWkJVJJcBW/q4pn+AFO6/lmVldQxFXD54wzDuBO5BNqAq4H+As600FbI3TXMiknqX1OZumiabN4d1BPy2Uiqu1pNu0FoX4r7whyBa2kSkfOckUpeGsZXwhb62L/l1TdPsh/g1k9pU6+rqeOONsKZgf1ZKxd16MhJa6wIkJTRS+A9Cqmo5OTAi2e+JwLuEc2BVX3Lx2AFW75Bk45v6+npefvll51NLlVJubYLjgtY6D3cODET6LDg5MIbUaJ4HCefAf5RSfaJiXhCmab6AFMpJ+P+ZC7KLvMEwrgEeAaosy1pnF7V5C/iqZVnVaRgjAKZpLkR6ECfsM0m1gE8EWusBhC905+/jSL47UyMhc+6zyGaV1cF8pmn+HClVmfAJPtUCPhForUuQg58bByaQvGWqFbFELAOeAxZnu1nfNM07gPtIItgy1QI+EdhKwQTcOTCR5C1TFqL8LEOCn5/P9pgO0zQvR/ie8GE/J+CdLxrGZMSU/QnLshY6nv8v4FbLkj6+6YCdKvcSMUpcelqbKNu3nuLm49DWAt58GgpKWVxvsGFLWJ+Kryulft7dY+4MthY4DunQVI40zagkufrI9cDTSC73C9mo2dmpcluIYR6PxoEVjf1YsSasR8b/KqXujPY56YLW2otod5OQXuKVwHSiN+SJhRPIxlcNLHR2RswW2Klye4kR3BiNA6ZnOLWvhWX19ooypVprD2LlmQSci8z/dKRTX6JoRlKKq4GnlVJ7UzXO3gLbkrMOSbeNqiC58eBEXgl/XrWDhlA0xy6lVDJrLSOQUe1iTdP8LtJkpoOQ97Q2MWHXCrzDxpB/1nSM/kOxjtXTsmk5LQd2sGDtQeekflIpFbNnZE9Ba20gJ/rphDb780nM99gALEIW+TNKqYztZBcJ0zQ/hsR/JMSB1gM7+e3aeicHfqiU+k4ah54QtNajCedABYlZLlqRntvVQI2zBW6mwzTNSxF+J8aB+p38dk0YBx5VSn0sjUNPCFrrYFxGkAcXYzfXihMWYsqvBqqVUm+lfJA9BNM0T0cyugbhYqqPxYPm/Tt4YF27PFitlLogvaNPHzJKwAOYpnkP8F0itLiR775Bv4GDKLj4gx2aCzS/XkPd1i08vOVE8OkPKKXC7DS9GVrrYuBCQgu9kvj9um3AK8gi/6dSqq47xphOOIR8WJOJ2Bx4mrqtbzs5cJdS6lfpHHdXYFt7phIu9BMp97kSe6MHNmR6oJZtpn0aMdW3H34T5MBvlVKdVsbrLbCtPWcT0vArES02XmwkxIGVmV6kxzTNyYhVdygRaXMJyIMXlFLdUXm1VyDjBDyAaZpXAz9CegkbQOGkd2opvPyjeAZ2bEEcOLKfplce5Wer2hXZaUqpFR1uzBDYWv44pP/6++0r3m5obyJNGh5VSm3onhF2P0zTPB9J17wSOcQUJ8iBW5VSf0vbgLsBWusyZJN/L3A98R/6tiCb/BPA65kq7E3THA/8FJiFWCz6JcgBrZT6n3SNtzugtR6IaPnXAjcg1r94sBvJInkSid3IyPgd0zQHIe2lb0EsFqUACfDg70qpWzrclCXISAEfhGmaE4BPAbMnbXnB75v1JQxPR5eMFWijqWY+P13THmw6SSm1LX0j7V5orfOROgSz7WtMnG99BVgAPJmpwVmmaQ4HbgVunbTlhfIEOPBepdS/0jjUboXtx70Ymf/rkV7c8WAtwoG/ZWpwlmmapcBHgU9P2vLC9AQ48EWl1G/SONRuhX3wP4fQPnBhnG99B+kj8sdMTce1YzNmAZ8DJkza8sLEOHkwXyn1pfSONn3IaAHvROPTvwkUXv5RI86T+4BsTS2xF/kFhDb6eFohHgB+jwSe1XXf6LoXCXKgQin1RocbswRa68nI/M9GzLmd4TjwELBAKbWuO8fWnUiQAzcrpR5O6wDTCK31WETozUbSmzure9IMPI4c+JZmqmUHEuLBfyulvp/2AaYJ2SPga+6r9Qw/7cqCaZ36XJoBXyaTNxForScR2ugvJXZanoU0EVqApNtklNkuAQ4AjFdK7eiRgaYZWuuRwAcRDlxN52U+X0U48ESmWXYS5MA1SqmXemSgaYbWehAwE+HAe+k8zXAdwoGHMtGykwAP5iilHuixgXYzskfAV88rw5u/3TNsXGH+5OkY/YdgHTvoFjW5Wyk1uoeH2yPQWg9DNvrbkBN9LNQRMtvt796RpQYJcACgRCnV51rCaq37Ixv8xxEuxDrwHUCCGR9USr0T475eg1gcaNm/w1qw7qDh4MD5Sqk1PTjcHoHW2ge8B7gJcW3Eys44QciyszYNw0sJbB7s8AwbW5A/udLBg2U079/p3As+opR6vIeH223IGgEP9qQanlfxeE8P5j22trXWP7D+6FDHol6jlDq/B4fZK6C1PhvxV91O7GYZLYTMdq/2dsuHzYEX8HjPDXLAams9cv/6owMdHGhQSqWyzGhGwjbhfhb4NLED9Cwkv34B8Fxvt+zYHKjB473YwYGm+9cfbWxoZZDj1tFKqd09NtBeAK31EOCTwBwkDz8WliIceDwTLDuN1fNGY3h24vEaQR7sPdl87PGtx/s79oIqpdTLMT4mo5FVAh6gsXrejUh0MABHTgXW/e+mE04/dLVS6ob0j6x3wq6ydjPweaTYTiy8Cfw3klvfa4nTWD3vXCR4DICWgPXuvHXHnVab9Uopf/pH1jthB2nORjb5qzq5/R3ge4jpttc2f2msnleE1IMApOb4L9Ye9zjywpqAfr39sJIu2EGa1yAcmEXnlp2fAvf39oJajdXzduIIOv79phMnDp0KON0TWe2qy8ZWedudD/I8jIp4fWMax9LroZQ6qZT6PaE8+78gm58bzkdSa5Zpra9O0xCTQRgHvAaRpShzHHBAKdWilHrMrup2NjAf6WnuhtOQBi2m1vpjtmDodSiafVcj0O5aMgzD0y8/rB7K5pxwD0EpFVBKLbKVn/HIIS5aFbxhwM+ArVrrz9s1GnorwvaC0nzDKdxPIg2Hsha9cnF2EWGnMZ/XiMwPz23uLlBKWUqp15VSn0ROvF9D8qXdMA14UWu9WGt9SbrGGC+KZt91DIeA8hhGXkle2Oae40AUKKU22mlDoxHT/aoot54FPAys0lp/0M7e6G0I2wv6F4RtdzkORIFSapdSSiG1Nj6CdN90w0jgfmCz1vqTdvOd3oZYHNjUmy2RqUA2Cvh6pBELAHkew+sLL/KascVd0gWl1EGl1C+QTXwGUhTFDVcBS7XWz2qtOzPvpxthJ/eIhZ3jQCewLTt/QErkTgP+jMRjRGIqvdeqE86B/BwHEoFt2XlcKXU1UjHvPiToLhIT6L1WnT7Ngd40ESlB0ey7LGJv7pvSOqAMhm22e8E22wU3cjfMRDS5x+zgvd6AiIWd0+CTgW3ZWWF33jsT2cjdSpz2RqtOxD6Q40CyUEptUkp9GXHR/Bx3N15vtOr0aQ5knYC3EdZFKy+UB7lDKXUy/cPJfCil1iqlrkf89C9Eue3DwDqt9V+11vGWzOwuhHPA084BC2l3nEOCUErVKaXuQPz00QrEOK06Pd3EIxoHoA9s7t0BpVS9UurrSEnc++ncqnNNDwv6MA7k9zEOZKuAj+ZXyfoJ7W7YfvoZSB79UpdbPEie/Wat9YN2vfSeQDQOvNPbI397O5RSm5VSN9O5VecNrfXjWutk2p6mAtE40Aa8nc6BZBuUUnuUUl9ArDp/JLpV5wVgsdb6onSOz4FYPvaslwfZKuCjIesnNF2wc0cvB94HuJV8zUNyrDdqre/oJeY6yHEgZXBYdYIbuRs+hFh1vmWn4/UGbFVKNff0ILIBtlXnU4iPPppVpwp4XWt9n9Y6kXa33YkWYGtPD6K70dcE/PqeHkA2wfbPPg9chGzkbkErg4A/IKf4ntLknMhxIMWwffSxrDqFwA8RjX5aOscWBTkOpBhKqbccVp1/utxiAHOB9VrrD6R1cO7Y3JvrOKQKfU3Av9rTA8hG2IL+SaR97624n4yrCGlyPZk3m+NANyEOq865iF92fg9rcjkOdBNsq85sxKqzyOWWscDTWutHtNbxtjfuDvQJDvQlAX8A2NzTg8hmKKXa7B7rU5A8+khfd0xNTms9RGs9sZvTbNw0zBxShAirzm1I2qoTBvBFomhyWutSrfWZ3WzOf6UbPzsH2q061wHXIdUPI/FRxH336Uj3nda6QGs9WWtd1I1D7BMcyFYBH9YpKSDleF/J9qIGvQV2/uwvkN7Ubqd4PxGanNb6KmAbov0/pLX2urwvEbhxYJ1S6lAXPzeHOGAL+oeQw95fXW7poMnZLW4329eLWuvOOp51BjcOnARWd/Fzc4gTSqlFyHr/GRLc6MRA4HfAEq31mdDe9W4NEiuzSmvd1cZgYRxoC7SLgJyAz2CMdz443iICvmeG0ndhdyB7L2K270yTm0uo6c3NwB1d/PocB3oB7LSq25GCSdtcbmnX5JA5H2k/fwXS96ArcOPAa33B99qboJRqUEp9A7HquLlurgTWaq2/DXwMmGw/Pxn4TRe/3o0DdUqprC5RG0TWCfjG6nkDcHRHaw1YnGy1AP7dY4PqAayePcNYPXtG/urZM4pWz57RY9HLtiYXNNtH1eQQbd+JH2utB3fhq8c5HxxtDkDf5ECezYEerReulHoB8cH/lOia3OyI5+/SWk/pwtfmOBDigG/17Bm+nhyLUmo1UkfjqzgaAdkoBH4A3B3x/Gyt9Xu78LVhHDjW0rc40BtrB3cVbhN6HDH79Gqsnj0jDxgOjIpyjQB8QD4yd8HL7bEn4rOPAYc6uQ46ft9XXr3oYKr+NqVUPXC71voh4AGkUIYTkRH2QxB//ZxEv8vuJDYs+DhgWZzIEA1+9ewZHmAo0TkwCigm+tw7n/NGfPZJOp9353UA4UFKXFtKqQbgbq31w4hAvzDilkgO5AG/1lpfm6R7LXwvEAGfCRwwkOyTWBwoJfraj+SD87ObiD3nkZw4COwur17klueeMGzryS+11k8irWcjhfcEl7f9WmvtT7JFbcQhLzP2gVQhGwV8mEnmmEzo0t7QOcoW4GciXdlOp+OiLaP7rCr97WtCvG9YPXvGQcQXtsn+Gbx2JLvglVIvaK3PBRRyko/la79Ta/17pZSbWS8Wwhb18RYLS3Kfe7z3ty3AJyLpRGfRkQMj6b51WWJfYxN4z7HVs2dsoiMHtpVXL0rK1K2UWq21no64Zb6PHFii4WqkQuJjiXxHY/W8fMuyRhmhKpYcb7GagRWJjzi1sAX4GIQDU5DGPpE8KOymr/c5viNeNK6ePWMzobkPcuHt8upFSfWFV0rVaa1nIu64X+E4kLvgdGSv+FGi32NZ1ngnB471MStONvaD/zxSQhGAtQebeX5X07eVUgmToytYPXvGQCRtbCoi0KciZugeNZOlCA1IIFSk8H+7vHpRXAVEHvjKl8rz2tpeOFZUMuR4Uaz9neXApUqpuA8UjdXzrsUR3LfzRCv/2NrwZ7ueetqwevaMEiTAKDj/UxFOdDV4rDegGakGF8mBzeXViyLNr6544CtfGuUNBF5pLCiYeLi4FIyotZB2AZMTKTPdWD1vAo7o7RMtAX674cRSpdRl8X5GKrB69oxCRIg7OTAV6Ir7qbegDYmrcB78NgEby6sXHYvnA3735S/6LIOXWz3eiw+UDozFgUaEA3H3bm+snuexLOuUYRjtB+ZfrTt2oDlAWV8JuM4qDX7Jgz8+57QBhb8cXlKA0daC5c1naHGAcSVetzSNlMDWyE4jfPGeT4QloYfQBrQCBUhQW6pQDJTblxPNq2fPWA7U2tey8upFHZpSrJ49w3dufsHzxS3NQwDeHj6ajaPGR1vc04HbkSYnnaKxel5ZK8YDXm9eOwfwWPQv8FyitS5TSu2L94+MF7ZGNprw+Z+KmJx7uoJfkAMd3DZdRAFyYI2MnQisnj1jFbAE4cCr0Tb7s9+tW1h6qnEiwLsDh7J6/BkEPK5DHAN8F/hmPAMTDnie9Xq97Rw43NBMaYFnbHdxAGD17BnDCJ//oIbe0/tsAOGAJ8Vj8SIcPwOY5Xxh9ewZ6wlx4OXy6kWRQbYAnLl351/6NzVcDHCwpD8rJk6mJc81ZKgI6WZ3Q7yDe/toyzUDCvPyhpXkt/Pgw5NKB+w6fups+kixo6zR4Jc8+ONzLhpZauaXjSP/rOkY/YdiHaunZdNyWvbv4D97jvuvuvOeLk+qvZn7gWvs63LEH5YqHAR2R7n2IO0aW5FSi60uvwcftwV9p/YhZCCiNcRzDUHM3F21NpxCNPDgQn+9vHpR0+rZM/zAOueN7w4cYm/wrhb7U8AY248fFY3V88rw5m/3DB9X2IEDB3bwhw3HTx1pah7f1Q3e5sBEQhyoQvzmqcJRYnPgCB3n2+1xW9CVYnOglPjmPvj7GLrO7TYkcroW4cHS8upFx+2Ar7A6CQdLSvnPxCk0u2/wFlChlIrWnx5IHwcAVs+eMQpxIVwDvAf5f6UKDcC7ROfBYULzHGsvaHVwwEBcNG5zHe0aRWqsDesIHfxfDsb3vHHDdbs9lhXMnOBEoY/XJ53NycKoKfC32emXMZEuedDbkTUCvu7hXx4eedrpAwsu/iBOn4tlWTS//jR76rYcmXDTVwYl89mrZ88Yiyzka+2fXWmgsg8J+FsH7CB80e5103h7ArZAGI9oIJFXUv9HpMXkMuA1C+40IoTioZJSVpw2heZ81w2+2m5bGxWNNffVespOuzIaB/bv3sVfNhx6+Tvf+U5VogO3tbP3EBLqExL9DAeOIBxYC9QRIcDLqxf1io6HtkAYhTsHkl0DbcBKYIkFNxgSh9COE4U+Xp94Nid9rhu8qZQ6N9aHdzMH+iMpXUEOdKU18klkD1iDmLkjBfjxVAU3dgU2B4YhKWuRHEgkliMSaxFhX44oSe04lZfHitOmcLhff7f3HVRKdXqY7k55kEnoadNRl2CaZiFiGvrgxJKCgflnTQ+bTADDMMifPJ3hB3YMjPdzbf95FaGFfFbMN7ijDfFHrXFe5dWL9ibxWWmHfep/x74WBp+3F/xwOi74sxEzdSz4kHaiV7nZrQefPM7lb61l+aQpnPR18MsPd/tA0zS9yBx9ZJLhvTIWB4bWP4rX672ikzECsHr2jGJk4wly4Px43ueCLYTm/037587esHl3BnuM79rXi87XVs+eMQiZdycPzkbcVbHgRcqYTnPjQL9TTVz21lr+M3EKhzpu8K5r2DRNA3Hl3JJiDhTYYw1yYBqxg0KjYSfh878G2JqqyPTuhM2B/fYVFpy2evaMfsj8R+4FZ9K5O+g8++qAwtZWLtlismr8mewZ1EGWRw3YMU3zHOATwFmplAeZjIwU8KZpTgK+jhRQCQClRlsLRn/3g53RfwhGm1vbYoEd3X4poqFfgxRkSMRfGdTInNf63qKNpxL2gt9nXy87X1s9e8Z45GBUhQjyhOMQSpqbuGrTmw0rJ5z1xt6BQ6YjvuMW4MvO+0zTLAPuAj5j39OPTjhAawvNzc2uPnH74FKBcOBa4BLEzxwvGhCtxCnM15VXLzqRwGdkDMqrFx0GXrOvdqyePaMMKVJzFcKDhPPYC9taufTtdW0bRo1furVsTAWyqQeI8MGbptkP+C/gC4jwL0oBB6Yg5VWvQbT1kgSG3oz4dp3CfG159aKsrJ5oc3ulfbXDVpAuI8SBchKMRfFaFhfVbWb78SNL14yddDaGEdS2f+68zzTNPKRA0peR/SYfyO+KPMgmpFTAG4ZxMzDfsqxYKQ9dgmmaHwT+jmiD7eO3vPlYx+oxBnZU9KxjByXYygH7dB5Mwbke8UfFixOIeelF+9qQCRpZd6O8etF24C/2xerZMyYQEvZXEadJz2NZxRe/s+kyC/TT5Zf+H7BTKdW+Ik3TvAh4DolGD6UTdcIB8vIpKChon6fVs2d4EUH+YeBGEvOhNiMNK4IcWFVevajHUzF7GuXVi/YhKW2PAayePWMEIiirEA7EZQ0zwHvO7u1XnL17+0NPl1/6HWC/UqrdZ2+a5kSkRe1IJABLkDgHDMQ682GkI2Ii1roAknYX5MDyZNPGsgnl1YuOAM/YV1DgX0Ho8H8+cQr88Qf3XTr+4L6l/zqn4qZTBYXHlVJHg6+ZpjnE/o5ziTiIJSoPshUp88EbhuFBFvVplmVdkJIPjYBpmh9GqqF1cNAVb1jM6HETKJjm7nPZvX1b05F/LByMnM4/BHwQGBDnV7ciwWLBhbyivHpR3zgCpgirZ88wAoYxeV//Qa815RcMHHLiGP2b4sqmmlhevag9C8I0zenIHHTQrEa++wb9BgyKygHxvx789/tXvvJ9hAM3EL8v2UJqmAc5sDTedLAcQlg9e8aoA/0GvHK8qHjiwIYTDDp5PJ6d/sby6kVPBR/Ywn0ForWHmczj48ChV96/8t/fQDjwITp3KzixiRAHasurFx3t5P4cIrB69ozBh4v7/fNQSf/LSpsaGHb8SDwc+El59aJ7gg9M0xyEcGAcLpa2TuVB3dajp910V9ab6VOpwX8ceBwpSJBymKZ5JqIZukbfHB1XwfD9q+D1p8mfPB2j/xCsYwfboyYPtw0yDK93H21t8UYFm4QW8r/LqxcdT81f0jdRXr3I+u1Xv3zngf6D2hfVkONHOa1+DyOOHMJD1IPmGdj5zKZpDgD+RRSz6b6yc/DtWgGv15A/uTKcAwd28NSWE1y9cfW5iOYXD7YR4sCSaKk+OcSPpaf7rzpYOqC9imH/hhOcVr+X0YcPkBeI6pKeCjwFYJqmB3gJCfTs4EbrlANbT3D1OxvPRoI948FeQhx4qbx60a64/9gcXFFTfukQIxC4zLJTImHs9nYAACAASURBVItPNTKhfi/jDu6noC1q7aTJEY8fQyyCrm60zuTBobEXbEnkVJepiEvAG4YxCfEvnm5Z1h77uVuQDkHTkKjPjyK1pLtFwAPfIoZPNL9ff97mAgbsWMmIAzva8x73NgY4MvZCjCfmF9LWFqs61GGkJvoiYHF59aI9KR5/n8ehkv5hi/Rg6QAOlg7A13yK8Qf3Mb5+L77WMMPIO4QL488Sg7OBPB/bx1zMsD3rKHnl0XYO7DrewtLjBVy8dxeFJ0/EipxtQEz//0I2c7fmKDl0AYdLSsPK0x4r7seacaezYdQExh7ax4QDe+nXHBa6cgz4pePxBxB3mmuMTGccmNbUSMHBA7HccS3AYoQHOfdb96DKctQ7aCgsYsPo09g0chxjDtcz4cAeBjaGJZI0A98JPjBN82zEtRZ1P48lD46Oq6CwX/8ppmmW+/3+rO4sGJeAtyxrq2EYzyCBDHcbhlGJdPm5zrKsnYZh3A48allWIDJqMRUwTXMY0mUo5njz+/Wn4ez3dGhZlW9ZtLoX0DiAaAaPI+a2nNm9G9Hm9T6MuEjC0FRQyOaR49g8YmygsKV5Tdmxw8+et3PrvzxiBrcATNPMRxpRxCx7F8jzsW/sRR2evwho3bLJzU5wHDnYPQE8nzO7dy8CHk8NlvVFHNXFAFry8tg2fDTbho+moKVl0+CTx56/sG7zQq9lLY6IbVB0kpsfiwNtzzyJi53gFHKoewJ42g4gzKH7UItlHccwwuYx4PGyY0gZO4aUkdfaun1A44kXL6h7q6aoteWF8upFzpoJ30KC6WIiqjyQHz6keNKNXfpLejni9sEbhnEBcrK9DNGqvmxZ1iP2a/cikZIBoBL4i2VZc1M1SNM070LqECddeCWwbQttzzwJjY3HOH70r4hQfzUXGJUctNYexP81ko7FMQa5PBd8Pt7shDeVUu2V8kzT/ADwNxydAhOFtW8PbU89gnX82CmOHvkHwoEXc4FRyUFrbSDzP4b4CigFeRGva3AvMC4YYGma5lnAKjo55MWCdewIbU8+gnVgf4Cjh59EOLAw54JLHlrrYUgEezx7QPCKN0OlAThTKfUugGmaxUgTnFTU6m8Ghvv9/qyNo4jbB29Z1irDMFYArwP3BoW7/Vp7iz/DMFamUrjbOJ0uVlXzTDwdz9xvAGzw+/1fTMmo+gC01oVIXqsz13UyEm0ctdxUCnC+1voMpdTb9uNxxHFqjwWjbCR5n/sywFG/35/WuvSZDK11HjCJjhyYTBcOXHFgBHAb8Ef78TjEhJ40jP4DyfvknSBR3Df7/f5cb/g4YB/og4WvInmQSAZSoihGzPPBrpLDkaDnVAj4UwjHcgLejpJvQ7T0e6PdZ1lWRQrGFYlEclE7Q3cKpYyF1nog7ot3It3X4S4WLMAZ1FZEckVG3NBdnboyGlrrEkLz7/x5Bl08XHUBmx2/p3LttiE8yAl4B7TWPmS+I/eCs+i5RlmRHEhVgSCLLJcHiUTR/wJJS3kbuIXQqTodSGVziKwsOpEotNbOojRVdK30aqpxDPiGUsrpCw3W3k6k+Ew05MyxgNZ6OOEcSLgoTZKw6DwPugm4Tym11PFcKn3jBmL+7dPQWg+gY456Og708XCgBXGh3Od47jCpO2zmkVpO9TrEG0V/J5IzPA0hwf8YhvEnK32F7P8NfJ6ut9lsQIJp+hy01mMJVZaqIrHc32g4hKSS1SML5VCUK/jaw/Z3u+EIUsDoj8Aql3aOr5GajacVaXrS52D7Sq8kxIOu1FIP4jhSjrce9zmPvL4PfCrKZzUigW5/BF52aRG8ltQc8ABW+/3+Phcdbwv0yCpzXV1XTYjid4DO94BDiNslWvvuNuBZhAMLnQWubOy3P2tk5BuTwEmkDHPWolMBbxjGNchkVFmWtc8wjMftx9cD1d08viCeQwRAVwW8ATzY9eH0fmitxxCqHlaFmNqTxQ4i+j3bV30ifZW11pF55BYSsPknpJlM1NK+fr9/k2may5G/pSupGi1E31yyClrroYRXkYts7ZoI9uLOgd0JcmC/y9PLEQ484qxUFgm/33/UNM0/IuWJuyLoTwC6C+/PGGit+yMCvQrhwAUkL9AP4dL7HdjuchiLNSa3fhwbEaH+kFIqar8Ov98fME3zB8BP6ZrrtgH4SbbHYMQU8IZhTEa0rtssy1oHYFlWm2EYv0RSltIi4O1J/R4wj+QntRn4k9/vP5K6kfUeaK0LkBS0WchCnpTgR7Qgp/DIDfwtpVSq6ql/FdlchiA5xn9VSu1I4P3fQ7Kdkj3oWcDrfr9/U5Lv79XQWnuRBjk3IByI2XnNBQHEIhPJgU1KqVStm58hgU1nIMVm/qyU2pDg+6NZAOLFERwNlLIJdmbDhUiFvvfYvycau5KSA30M/B1xB12KFBT7I7Aigc/+MzHiwBLA71PwGb0aGdMu1jRNH9LU4AwSP70HkNPnVL/fvzvVY+sp2Bt6FXAzsqATKb3YjGhOtfa13FnruzfC7hq2ENFKkwmOOQlc6vf716R0YD0Ie0O/GLgJqRWRiOkyQKhXey3wqlLqWIqHmHKYpjkP0eKTOew3Ah/x+/3PpnZUPQut9dkIB25Gso4SwXrEbVUL/FspdSC1o0s9TNP8LKLwJZMy2QDc4/f756d2VL0PGSPgob25wFIkXSbeDb4FCdq6xO/3v9VdY0sX7A19OrKQP0r8tdRbCBfoy3q7QHeD3SL4eUSoxbu4A8iifr/f7/93ZzdnArTWfoQDNxG/+yWA1NMPbuavxjKJ91bYB73fIX97IkK+EfiM3+//W7cMLM3QWp+GHOpuJkrr1SjYgMz/EkSgu7lNej1M0/wGUvgoESHfAPzU7/f3CRdNRgl4ANM0S5CGMzMRX2y0lKdWQu0bZ/n9/ozow+4GW6ifR2hDj6cNawvSjCG4mS9TSmVF1LDdIvJnSG5sgOiHvaBgP4AI943pGWH3QGs9iZCWFo8/PdggxynQs8JFZQv5ucBPkMCsWIL+GLIebsz0A57WeiTwEYQD0+N820bCBXoqs5J6FKZpzgb+D+F6rAqHxxH34B1+v//RdIytNyDjBHwQdkepO4DPIUI+WJHOgwj+h4AH/X7/mz0zwq5Da30moQ09stmCG+qRJgzVwFKl1MlO7s9o2D3hbwO+CAwlVATFQFJpaoD7gVczNWJaaz0asdTcjMQfdIYTyPw/jkSiZ4VAjwa7AdFHgS8hloxmx8s+RLD9Bng+UwOqtNaDERfcTYhLrrMguWbElfUY8FI2CXQ32O7b6xEOlCMFbILwAWuQVLun/H5/xlktu4KMFfBBmKbpRfzyg5BgkiPA236/PyPLj2qt85He1F9GzNCd4RhST/8fwGKXtJKsh63NTUSC93wIB7b5/f5UBQemFXbVsOsQDlxL51kDp5C+2A8Dz2ai6yUVME1zLOKyKkbWxQ6/35+xdS+01tOBryBNvDrL/W5Duuw9DDyV7Qe7aLAP/aMRbf44sDuTrbddRcYL+GyBXUnuM4jZcUwntzchDVL+ATwXK70sh8yB1roIuBW4i86LzrQhnQ8fRlIMe31wXA6dwy4LPBsR7JVxvOVVhAOPZaovPYfuQyr7weeQBLTWExHT0qeI7UdsRYr0/AOoUUrlqrFlCbTWZUghp88jroZosJCiTw8Djyulcv3pswR2vvodyF4woZPbVyEceCTBNNMc+hhyAr4HYAfNXULI/BbLp7YEEepPKqUOpmF4OaQJWutzEG39VmLXx1+JcOBRpdSudIwth/RAaz0Osdp9htiNe95C8scfVkptjnFfDjm0Iyfg0wjb/PYhRLDH8q83IsUcfqWUyvjUvhxCsA931yIcuC7GrW3Ao8A8pdR/0jG2HNIHrfXFCAc+TOxCNM8h+d4vpqjITA59CDkBnwbY9Z8/jZzUx8W4dQ8S8ftgTlvPLthduj6ObOqxUtyOAv8L/FoptTMdY8shPbALU12PcODSGLeeQlKBf5Vglb8ccghDTsB3I7TWxUgk9N3ENr+tAX6JmN+aY9yXQ4bBttrcgdQ+HxHj1neAXwF/ysVXZBdsq80NwI+BM2PcegBJ61yQC5jLIRXICfhugH1Svx3pnDUqxq3PIoJ9Sc78ll2wN/UPIjWzY9UwWIpw4J9KqbYY9+WQgdBaX4IUZbokxm0bEA78LZcRk0MqkRPwKYS9qb8P2dT9UW5rAv6CmN+ysulJX4ftX/0Z0mfbDW1IIZp5SqnX0zawHNIGu0jVj4EbY9y2CBHsi3IH/By6AzkBnyJorS9EWhi+J8oth5FgmQW59KbshF1K9kdIZTU3NAELgPuUUtvTNrAc0gat9XCkPvqduAfPBRD/+i+UUmY6x5ZD30NOwHcRWusJwA+RACo3nELKJP5EKXU4TcPKIY2w+65/B8ljd6s4ZiFZEf+dS3PLTmitS5CUx7uJ3s74aeCbucC5HNKFnIBPEnZ96G8hddDd2tdaSBOE7+aKUWQn7MpzXwLuIXoQ5XPA3UqpdWkbWA5pgx1E+Unge0Rv1fsf4OtKqZfTNa4ccoCcgE8YdrrTF4BvE73/+ovAN5RSq9M2sBzSBjuI8jYkiDJaWeFVCAdeStvAckgb7HibmUi8TbS0x23I4e+xnI89h55ATsAnAK31dcADRC8luRY5qS9K26BySCvsWIvfA+dHuWU7cvj7h1IqkLaB5ZA22OWlHwSuiXLLIUSjf0AplZFNr3LIDuQEfBywzfG/RFLf3LAL8cE+lEt1yk7YlhsFfB334KkjwA+A+3OpTtkJ23LzBSSQstjlliaklsG9fbWbWw69CzkB3wm01jcAv8W9SMkxZLHP76stOvsCtNaXAn8AznJ5uRmYD/xYKZWxrUlziA2t9WTgj7h3eLOQyPjv5qoP5tCbkBPwUWCnu/wa95SnAFJx6nu5lLfshda6H5Ih8UXce7I/gkRF16VzXDmkD1rrfOBriPXGrSHQYuArSqk1aR1YDjnEgZyAj4AdPHMzopUNcbllPXCHUmpFWgeWQ1qhtb4a8bVPcHn5XeBOpdSzaR1UDmmF1vp8RGsvd3n5KPBV4I+5ALoceityAt4BrfVoJIjuAy4vtyLm+B+lK3CmaeGCAsQ1MMq+RgA+JNc6z3F19rgFCfw5BBx0/O68jvlmzunzG5XdGOjnSHMgN/wvEh1/NB3jaVq4IA8YTogDoxD/b7S5jsaHNtzn3Xkd9c2c0+djSLTWhUhMzTdx3yOfBuYopd5Nx3iaFi7wAEMJ50Ap8a1952OQgltucx/cF474Zs5pTcfflUP3w7CsPr+nB7X2TwG/wD2feRWitafEDGcvWKfgjnYNS8X3xYk2whf/PmAzsBHYBGz0zZyTFqHWU9BafwCJjnbrH/AO8Gml1OJUfFfTwgUGMr+dcaAM8KTiO+OAhQQLBjlwAOlDvjF4+WbOyWqXlNZ6GqK1n+3y8kHEXfNwqrT2poULBgGjic2BkaRXGTtKuODfgoMDwJ6cMpAZ6PMCXmt9GvA74GqXl08hvrdfKKWSOtU2LVzQDzgXmOq4zgNKkhpwz2IP4Qs9eO1NZsE3LVxg9IaNwq5Edx/u1QgtxF3zbaXUyWQ+v2nhgkIkVzo4/+cjHBiU1IB7Fgdx58BO38w5CacF2gcdepoHdufH7yPdH90OVI8Ac5Pt8mZbYs4inANTkQNcpuEY7hx4J1kLUG/ZC7INfVbA21r755H68W4pL0uBTymlNsfzefZGNYbQwg1ep+MeoJVNOIoscBN4BVjimzknZjRx08IF9yApZ5uA//LNnNMjRYG01jcibhk3a8kmhAOvxft5TQsXlBE+/1OBKbin1mUTGpD/13pk7SwB3o61aTctXHArsv4OA1/xzZzzr3QMNBJ2lsRfgEkuL+9BzPH/jPfzmhYuGEj4/J+PHPDcgvSyCc2IxWcDsAyoBdbGOvg1LVxQhWSo5APf9c2c85fuH2bfQZ8U8FrrIcCfkHaekWhAfG/3xypUYi/iq5COYUGhnmqNzEJM5bvtaw9wAokHaLF/Oi+351qRjWUwEjQ4OMqVaovCNmSTrwVqfTPntNdgb1q4YAJi8g7iJHCTb+acZ1I8hqiwy8z+Evicy8ttSIWy78fKaW9auKAYuByoQgKxphK753uyqCecA0eIb+6dzxUg/Iw2/4OJXm43WezBnn+EC1uCAt92UzUSKvPcBnzBN3POAykeQ1TYee33ABp3rf2PwNdi9ZCw42SmIU2mLkA4MD71o+UIIQ7sRg5FwfmNdy/wItU3g/Ptth9Eq86ZLA4DLxPigOkU+E0LF2xADsBB3At8KxlrUA4d0ecEvNb6cuDvuJcYfQn4jFLqncgXbDPrJUj1qmuACrrmGz0C7CB80UZe+9IV8GL/fUEBMATZpKY4rtPpmh9wKyGBvwV4jfD/XwCY65s55/4ufEdc0FpPQUyu57q8vAaJt1gV+YJtZr2QEAcuwb0PQbw4iVS+i8WBvb6Zc9IV1JlP+CFgLNLLPsiBs+iaFrqb0Eb/GqLlRR4qfg7c3d0bvNZ6JPAQ7t0ftwOfdatIaVvq/IQ4cCVdOxyfonMO7PHNnNPQhe+IG00LF0QeAkYRzoHJRG+mEw8OIQI/uBf8jY7r8DHgdt/MObnaIl1Exgt40zQLEA16ECIwjgCm3+8/7ryvk9P6MeArOFJebA3jPEIL+QqgKIkhWsDbiOB40/65Bng3k3xO9uZ/OuELPfgzmQ3uIO5piPOAryfiyzNN04NoTkMQAXQU2OT3+8MCwmy3zCeB39DRLdOCcOOnSqkWaN/MzyTEgauAAfGOKwLb6ciBdzJJU7E3/wl05MAUktP8Dtvvi3RhPQHclsgGb5qmYY9jBDK3x4Btfr+/Q/c+rfV7kcI0bm6Z+4F7lFLt+0fTwgVjCXHgapL3m+8lfP7fRNwYGRO17nBFOg//QR4MT+IjjyIHhkgX1jLget/MOQcS+TDTNCcC4+zPPAHs8vv9W5IYV1YgYwW8aZrnIT2Xb0OEqPMPKQBqkMX66hNPPBE8rV/l8lErgJuUUu/YpmPnQh6a4LBOIvXonYt4nW/mnKSCszIB9kFoDBJ1fAnyP56Ge9vUePEUcGtnWotpmqch2Q93IoLdKSx9iIbwa+BfTzzxRBHia3cLpNsKfEwp9UbTwgUjkLkPcmBsgmM/hcQirHFca30z52Rtq2B70y9DODANcVlchntsS7x4HZjlmzknZlCbaZplyB7wReSAFxSWFsKBNUiQ5FNPPPFEK1JO+BsuH1UPfEIp9ZzD/RbcC85McOxtSEyKU5Cv6exvyXQ0LVwwGBH0FyEcuJKumfy3Au/3zZwTMw7KNM3+wMeQzo4TkViAIPIRS+l9wMN+v79PlRDOOAFvmuYA4HFC5tFoZuMA0NDQ0LD7+eefH2RZVofTugE/nVs+tMaX57kBuB7RUBMaDtI5bimyiLdlkkbWXbB905XIIr8KuJjEBf524ArfzDkdWu3aVpsHkIJEBrHNxsdbW1tPPvPMM8fa2trcNuq/f2LKoPkj++W/D7gBsdokgm0IB/6NcGBzJmlk3QXbN12BcKAKEfiJWsAOAe/zzZzToaiUrbF/F2nZ3Ebsw8Rxy7JYuHDhhqampmkury+ZMb70nvLhRZcDNyKHlETcb3sRDtQCq4ENvplz+nw/Atvicx4hDlxJ4hawJuSw/4Tbi6ZpfgLZC9qI7To4iczpXL/f//sEx5CxSImANwxjAtLzeL391Ecsy0rItBIPTNMcgZzsy4jTF7hx48bAhg0b2herAYwrzT9y9bjSl4cV51UgOajxYheykF8EFvtmztmTwHv7LJoWLihBBP5VrQHrNmBsnieuxIIGYKBv5pyW4BOmaRYj/js/cWqIO3futFasWBH2hSOK85qqxvZ7aVxp/hmGYSSioR1EYjVeBF7yzZyzLYH39lnYAv8ioKrNsm5pCzC5wGvEQ4I2YJJv5pztwSdM0/QCDwPvI0730OHDh1m8OLyEwWCfN3DpqJLFUwYXDjYM44J4/xbE9FtLaC/YkEnutp6CLfCnAlWWZX20OWBdVOAxPEZcNOA638w5YTERpmn+ALiLxCxFDciB4Gt+vz/r5yyVxRNetizrwyn8vDDYG/urSNGHuLXBoqIiD0CB1+Dy0SWcM8TXXJTnGYho7J3hKCJMggv5rdxCThy2i+LF5x78WdmmQ01jjzUHGFmSx4XDizlrcCExhH0xsonXQLvWthDRCnxxf7/PZwB4DZg+soSpw3wtpQVeH/D+ON7eiKT+BTmwJmelSRy+mXOagaXVv733+LsnWr5f39hmDPF5KR9ehH+oj0JvVIXZi2Q63ON4bgEJCHeAgoICPB4PgUCA8uFFXDi8qGVIUV4+0Vu+OtGK+ISDHPiP89CZQ3yw42pWaa03jemX/5NdJ1o8pfkezh9exNRhRZTkxzSazAXaBbxpmneRuHDHvv9ziEvmxwm+N+OQSgF/qWEYryCb4bet1Nv+70ACaBIy9Y4fP57GxkYu9NQzSgyEsaKem5Ho3uBCfiNnbk0dNhxsuu1Ei8jGPSdbeeadYyzeaXDesCLKhxXRv7BDqngAcX8EcS0SxR63cAcYNmwY5eXljGt8l8mlQGwOBYCVhDiwLGduTR02Hzp1a1ObZQAcbGrjxR0n+Peuk5wz1McFw4sYWuS6JbWnT5qmeTric0+IAyUlJVx88cUU12/jIklm7WwfWUeIA6/4Zs453sn9OcSPG3edaMkHON4S4JV3T7J090kmDyrkgrJiRpXk4aLVPxf8xTTNUqQoUbIxHsXAd03TfMDv92dtbAzEKeANw5iEBI+dblnWHvu5W4CfIf6qPYj/ugGpCncjEgmbEtgmuW+TRLS2YRhMmTyZsl3LwHINzD6JaIWPAwt9M+ec6NJgc4iKEy2BzcB1zucaWi2W72ng9T0NjC3NP1A+vGjXWYMKA4ZhNALf9s2cc9BxuyLJFJ2JEycyZs9RaHGd3hZkI38cqMn2cqw9iaY2q0NMRXPAYvX+Rlbvb2REcd6RqcOKtp871Nfs9RgB4D7fzDnOQ97dJFk0aPTo0ZQVHoMG1+m1EAvh48BTnRVqyqFL6OC+DViw4dApNhw6xWCf98S5Q33bLxhe1FDg9RjAIxHps59KwRgsRJPPai0+bh+8YRiPAHWWZd1tGEYlIhSvsyxrRcR9M4HplmX9d6oGaZrmbCStpTTZzxhyeButjSfYXDieBo+v9ZQnf3+TUbCv0VN4wDI8AUJR+AHEx3YUSbWJ5+epO6eN79OmezsFrQT3YirB58oQLfz/s3fmcXJU1eL/3p4t+zaBkEAYIBAWC8MyOgQJiwHBuIHywyAqiMs8IIhPX9SnPttWn6Jx5UVw3DCuAUFQcFxgZBkQBhNIoISwZGkCWTCTPTPJLH1/f5zqTHdPr9PbdM35fj71ma6u6uozXafuuffcc8/JFPewFynockv0Ddd1HWTFw1CWKgIwYc8m6nZt4dnRR7E3MCbSY2q2dQdqt3QHRr0WMYHY6GuLdPyi9zcbHege6ToABxMIJd732G0qEng5i/QZHg8ANwWDwYMR767rTkbWhec0eo9lTPd2Jm17iX+NPpqdVeNtr6nevj9Qu7UrMGpLv6mKRl9H72MXqe93svf2qQ4cLNaTeO8T989Csvul66z1Ab9HVjlZODjY28TQluQlsgOY5jiOb6dbcjHwpyG1j88C7gM+Ya29zTs2wVq723v9deA5a+0vCiWk67pLkJrMQ6Y3Ynmyexx9xanb0cvAQ78Riaxe623rgLXNTQ3bi/HFpcIz4MmSXkxn4KHNZ2lcIhaYHK3a5rruh5GlLkNOKmItPNU1mu7i1O3oQxr63UgDtJYEHQBeq3QDEAqFDmGwDhzBgA4M2fimYF4wGHwEwHXds5F4jKHmIgDgua5attuiZI2NMKADW0jSDgCbmpsaKjqGw6u4mJgHoYEBHchneWQyPhUMBr8D4LrudOS3LISe7QMcx3E2FOBaw5KsWzpr7ZPGmCeQKPZvRI27xznGmC8hPd71yPKVQpJ3VbVeAsUy7iCGbaq3zUKWhMTR0hHeSfyDHvvgv9Lc1DAsynSGQqFqZC1psoQ2hU5lmg6DxFxEK9hNogAdiCIZd5BnKdrAHYUs40xkb0tHeB3JdSDc3NQwLEYSoVAogCQLSZbMJFlyomIyG3GdQ4HSqHYVtB8aRwCRcRLy+70xyTn7WzrC60muA+ubmxqGRbyH16GfTnIdmF5icY6LeT0JGVAVwsD3I56FDQW41rAk69bOGBNAfpAIki/4INbae5AaycUi7wCX0cYyuaqPHf2lrLoYxyQkQOz0JMd6WjrCaxEX9ONIxO6/mpsaihrgFwqFDi5dQnKpn4g8TEVrAXNgZUKhny5E/4aMMTC9uofNfflkl82LccgKgGRr7ftbOsJhJMDvMUQPnmpuaihqmlovw+McRAcaGUhJO+SpkAKyBSkCE6Ug6Vqn1/SwvqfQjoasGcWAwUzEtnSEX0XKU0d14J/NTQ1FTZTlGfMTEB1oojwd+lTsA74cs99F4conG+/6viUXF/13gTOQ9edLrbU/K6Zgsbiu+3HgRvJsdKylf2d/1Z+ePTAmOrdrEv6CdHrGIW7ACVn+LYZB3IfkFog+6I83NzXklQnLM+iNyBzoucCbKGxDfoCBOtKxW7TO/NsRHUrFXuAvwE+DweBfYg+4rvtWJH/8kOMwDn5Jf+CZ1fvHRud2Y+999HWA3HWgGD7fHuIb+8eBjfm4+T2DHk0+Ei2WlJfLO4Fe4u954vYGkhd5inIAmQr8FVJ3/aA724ugf5oC6Oz+iNm+snvcFd5uKh0YQ246UIxOUT8S0R/t+D8OvJinDhikE3cuA21BIea0o0RI3QZsR9z5V2X4/KPI8/7jYDB4MDOd67qjvWsUood2ADjUcZzdBbjWsCQrA2+MaUbWoUbTUH4JOKkIS+GS4rruFCTJTL4PryI23gAAIABJREFUUDcw13Gc1flLJbR0hKOZ1CYi7sujERf3rJjtGApjANYR/6CvTufWDYVCNQw26PnMj+1FUnCuifm7DllTuj0YDKbNHR4Khf6BJLxJpA2p3HVXqmsUMLhmL/Ahx3HuyPM6cbR0hOuQhn4y4qJP1IFZFKZi3ybidWBlc1NDyt/dc7cnGvR8XN37gecZ0IHnkOJB25CGd180ICqFPMuADyY59E9EB5YHg8GU6URd130caYfyoRv4muM4X83zOnG0dIRrEB2IuuhjdSD6uhAVJ7cTrwNPNDc1pDRSnkGfzUBGuXPJr+phH1JfI7YteAGJjt8O7ElXiTMUCn0BWeaWyPOIDvwyGAymTCLmuu7PgPeT38CqD7jDcZzL87jGsCejgTfGnI/0pM611j5jjKlCbuanrLV3l0BGAFzXbQE+RH43tcNxnHQjyKLQ0hEOIPNWsQ967IOfa877KPuRhvFPwN1b/vLzl5ARUqxBH4pR2cJA4x1rzF9N13hnIhQKXYashqhD5r1+DiwLBoMbsvm858n5GvkZyteAGY7jlDTmwesIHkJqHRjqvGYfkiL3z8Dde1586ql9a1efjOhA1KAPxahsZ7AOPAe8HAwGh/zbhUKhMxF9nYQYhF8CtwaDQTebz7uuexFSbSyfimbdwBGO45Q88LWlIzyZ1Dowk/QrC1JhkSyi9wF3A49u+cvPj0Yq5Z3rbUPRrz3EP/9RHVgXLcg0FEKh0DFIJsCZ3nfchhj2x7NpX1zXnY3ofD4Dvm7gjY7jZKV3lUpaA2+MOQEJcPmgtbY15v3rgPdba5ONxoqCVyXoGdKMQAORXmZ0vcKY/gMQ6YNANV1VdWwacwSRQE0X8C7Hce4vlczZ0tIRnojMgc9FXNhzyTKw0FpL785/s3/zero3r+u3vQdyXSO8CcnW9zDi/lyTbgSVL6FQaAZyD9el6+Unw3XdcUjhiGQVyICsdOC/HMe5Jdlny0lLR3gsUjYzVgeyLnTTu2eH6MCmtX2R/ftyDTTpREp4PoQ0nM8B2/LpzKUjFApNRbxdORsKL5vhc4hRTPp/ZqEDtzqOsyjf/6PQeF6gaMGeqB5knUa5r2sP+7esZ/+mdf19e3fm2g7sRZKUPQSsRH7jTUXUgfHI6otwMBjMObbCdd17kCW3KT2jafTgQCRQ86jjOPOH/h9UBhVVbMZ13QVI732QkQ9Eejlm7zqqJh5KVYODGTsRu28X/WGX/l2v8fKYI784+5Q3JHMLDTu80d7RDDzkZyAlcatBjHqf16Dv37Ke/u6ccvNsZqAW8wPA2mI9xMXAdd1TkM7IOBKMfCYd2DDmqF/0VdddVSk5qFs6wocT39g3EjP32Ne1h/2b17F/83r69ubUJ4vW5H7Q29xcO1vlxHXdI5BgxHoSjHxGHRh7dHtfVe38Sln73NIRrideB5qIiUPpP9DF/s0b2L95Pb27cir/sQ8ZvEXbgifzGZWXGi+b3aNIB2iQkU+nB5Fdr9ldVWOPP7TpohdLLniJqSgDD+C67puRcqKjiEk7e8Te9YwdP4nqk86KS3NoraXv2UewOzY/VHvWZeeWXOAC0dIRHrMv/Nw7e7Zvuap317YzI/v3ZRVsFqgbTe3kaX1VYyeuqh436dd1U2fces1Zs3dl/uTwxXXdk5G81JOIMXiZdCCyY/NDdZWtA7Xdm9a++cC/X/lo767Oc/q7dme1ZM1U11I7ZVqketyk56rHTryj7pAjfnjNvOO3FFveYuK67uHAX5GO8MEOfxY68HDdWZedU3qJC0NLR7hq/2sbmw5sDX+sd3fnBX17dszI5nOmqpqaSYfa6vGT11ePnfiH2vrDbr7uvJMruk66Vyb2TqTjEzdl43d7kC0VZ+DhYA9+EfAxvKj32bvWmOo58wmMGzzdGNm7g77Vbbb2TZcWbSF8sQiFQkcgtY4vJ/kSuzhMVQ11hxxO7ZTDqJ0ynaqxExLzOvcivfbbgeXFXoJTLLysZs2IHkwExszetSbgUx2oB96D6MA5ZJqnDQSoq59Bbf10aqccRvX4ycgq14NYpObCncAvmpsaOpNeZ5jjuu4oJBr740hkds3sXWtqfKoD45DVB5cDF5ExFslQO2UatfUzqJ1yGDUT6zGBQV771UimuFubmxoqMjWv67oBBmrBz8ErHz171xr8qAe5UpEGPooXWX0+8NbZO9wbas66LLEhA8BGIvQ+eju18xYOJYCl5IRCoTHAFUik6DwyB97sJxD465gjZq8fN/v0IwPVNW8huyCkXUjQ2y3NTQ3P5SV0mfDmZM8ALpm9w13sIx2oRurTXwW8hcw5K/ox5u+jpjU8O/7EpqlVdaMvIrukNAeQIKdbgI5KzbTnpTJ+7+wd7hd8pAMGmWe+GjHu2ayAeay2fvqKCSedMaZ67MQLkXnuTESQPCa3APdVaqY913WPQjpAx83e4X7IL3qQDxVt4GPpefSOSPWc+aaSe2yhUOgw4DrgGjI3zn2Im3o58IdgMHhwmUxLR3gUEkF7MVIWN5ulZQ8iD/jdzU0NPRnOHZb4RAcmIsU0bkCWWmWiHfgtcEcwGDw4CdvSEa5GsuldjHQUjsriWk8hOvCbSvXs+EQHRgHvAz6J5GvPxCpEB24LBoPh6JteLM9piA5cDDhZXGstUi/91kr17IA/9KAQ+MfAP3L7g2by9HMqcc4lFAq9Hqlt/D7Sl7O1SHDUcuDOYDCYsepZS0e4CgnMeRfS0B+X/hNsRSoC/qjS3HYVrgNHI67mD5M5mc9KpEG/PRgMZrxHXkN/MgMN/akZPrKbAc/Os5muP5yocB04BOncX0fmTvkLiA4sDwaDa7K5fktHeBbSDlyM1BTJVOznduBmKtCzU8l6UEj8Y+Dbl0+jqjpsJk6rq2pwMGMmYrskatLu2nqA/r6G2nkLt5ZbziheApILkV76+RlOfwJ5mH8XDAZfHep3eg39iUg97Q+TfileBKnDfQvwt0pw21WaDgCEQqG5iA68m/QpOJ9jYJT2Qj7f2dIRbkBcmc1kHtk/hOjAXZXg2alQHTgJ+ASSAChdQqyNSOf+t8CqfFa/tHSEDwUuRUqmnpzh9FUMeHYqopy2pwcvm4nTaitFD4qBbww8eDcV006g6rjoukci/VvAnjJcbqZXTvP9yIg9WT7qKDuBFiRV49pCy+GtuX03cC3Sm0/HWk+Wnw13t11P+/JpGPNXTNWcGB3YBfb4YaQD1cgo6lOkT927H8nFfgvwdKGXM3renQuRUePbSD+i2wr8BPHsDKrpPpwQHQjcjQmcMaADfT3AkcNIBwwwH+ncvTXNqf1IMORS4NFCL2f0Ov1nIjrw/0jvQdyNJCa6uRI8Oz3tyw8D8yqBqsBBPbCRR7CRS4eLHhQbXxl4gJ725W9DRp5R/l47b2HZExqEQqFpiDG9lvSZ69YC3wN+HgwGS9JbbukIn4z05D9AevfwPqRk67eamxp2lEK2odDTvnw2kvYyysbaeQuzmc8uKqFQaAISMHUD6UfOW5EG/YfZTMMUgpaO8FHIqpQPk9493Af8FPhqc1PDK8WXbGj0tC+vQTpIsV6RMbXzFqZNp1xsvFrplyOGPd3IeQ8yVXZT7Lx6MWnpCB+C6GczsvwwHXcAweFu6Hval7+EJEWKcnLtvIW+zl4Xix8NvINkvIuytnbewmPLJU8oFGpAyud+gPS943bgO8A9+aQCzYeWjvB4JA7gWpJXPIuyC/gW8P3mpoa8K/0Vmp725aOJrzwWAUbVzltYlkQe3jK3zyANZ7oKXc8gOvDbYDBY1CpyqWjpCNcinp1rkDS3qTiAeBa+nm8RpGLR0778ZeKzAR5fO29hXtMbQ8VbGfNxxBU/Lc2pYaQT/dPYwNlS4qXWjvXspJo6igC/Br7U3NSwrkTi5URP+/I2JOA4yttr5y38U7nkKTV+NPATGKghDlKRa3TtvIUlnUMOhUKTkQI9Hyf1vFo/Esjy3WAw+M9SyZYJz203F3nALyN1x2Qb8HUkGKusI6NEetqXbyV+JHp07byFG0opgzcdcz3wOdJXbPszYtjbhlNWwZaOsIN4dj5Ias/OsPXq9LQvfwSpxxDlLbXzFt5XShm86n1XIsVV0iWleRzRgbuCwWBRy0Tnghev8THgI6T27PQhueS/Mty8Oj3ty28lvnLddbXzFt5cJnFKju8MPEBP+/IdxFfMmlE7b2HK6kSFxHPBXQd8gdRFPnYBPwL+L5so6HLS0hGeirjtPkXqB3wT8FXgp8MlEKunffkTSOGdKOfUzlv4cCm+2wugvAL4X1Lnkz+ARKp/LxgMDms3Z0tHeBzi2fk08e7OWIadV6enffmvEbmjfKR23sKfluK7vTn2i4Bvknp5WgRJNPOdYDD4WCnkGiqeZ+cSRAdOS3Fa1KtzY3NTw7CY4+5pX/4lIBjz1jdq5y38bJnEKTl+NfCriXcxv7F23sKijpC9Rv29SLWzo1Kcth6ZX781GAwOi0YwW7xiKNcjD3iqjssGIAT8qrmpoayjkJ725Xcg2d+iXFE7b+Fviv29oVDoAqRRPyXFKa8BP0Dm14elazsVXjnUq4AvkjqByjbgRiQQq6xenZ725V8HYhvzL9XOWxgq9veGQqHTER14c4pT9iIBizcFg8H1xZankHjevUsQj8RJKU7rQrw6S8rt1elpX341EjMS5de18xa+v1zylJpcq05VColJOvIpMZuRUCh0HrCE1KlkX0Xm4X9Rrvn1fPESn9zY0hH+IbIC4JMMzpZ3FHAr8NmWjvAXgTvKuLyu1DowB2nU35LilF3IiH5pqpr3w53mpoZe4MctHeFfIm7bzzPYqzMVGcl/qqUj/FXgJ2X06pRaB45C7vH7UpxyADF8NwaDwWE1nZEt3nr437d0hP8ALEQ69IlenTHI9OS1LR3hbwPfK6NXp6Q6MNzwq4EvCaFQyEFGK29LccoeZI76+0MpiTgcaW5q2AkEWzrC/4cEji0ipuCLx/FI+tPVLR3hG5qbGh4qsZglIxQKzURGMx8k+TKzXiQi/n+DweCwXmKYLc1NDfuBm1o6wj8ltVdnOuKpWNzSEf400tnzn7sQCIVCU5A4i+tJHq9igV8B/1OqiPhi09zU0A/8uqUjfDupvToTgS8DH2/pCIeQWJ2KHOBUKmrgh0AoFDoc6bl+iOQRpn3IXNRXYtOH+onmpoZtSOP9XWQk91EG947nAA+2dIR/Any63O66QhIKhSYh7t9PkDqI8rfA5yvNDZstOXh1bgfubekIX1tp2RHT4aWUXYTo/6QUp90PfDoYDD5VMsFKSA5enf8D3t/SEf5oc1PDMyglQQ18DnhR0Z9DAs5Gpzjtd8DngsFgRZdizJbmpoZNwHUtHeElSC/+SgZ3ej4CvKOlI/xx4HeVPJLzoqKvRQJ3UtULeBBYHAwGV5RKrnKSpVfn7cC5LR3hzyHz8xU7kvMC6C4DvoFUsUvG04gO/K1kgpWRLL06TcCTLR3hbyIR9/tLLOaIw/fJ9gtFKBSah5RX/ALJjfsjwNxgMHjZSDHusTQ3NWxobmq4Ggm8WZ7klGmI2/6PLR3hVJHlw5pQKPQ64FHgJpIb92cRQ/bmkWLcY2luatjW3NSwGJmT/QEyPRHLOOS3e9RLrlRxeN67PyI6nsy4v4K4rE8bKcY9luamhn3NTQ03Ascg7vnEZF3VyCDp6ZaO8LklFm/E4dcRfMHKAIZCofHIPPp1KU55Hhm1/HE4rWEuF81NDc8Dl7d0hG9GlgKekHBKypFcS0f4bGRZ2b3NTQ27yI9C6kANco//h+RzrJu9Y8uG0xrmcuF5dRa1dIRvQXTgzIRTUo7kWjrCc5Cpnfu96+RDIXXAIFn+vk3yZEW7GYi3qcggykIS49X5ERKDcnHCKccBD3gj/k83NzVsjx7wsiqeBzza3NSQb2Ii35eETYdfR/BTEvaHVPoyFAq9BXBJbty3IklAnGAw+Ac17vE0NzW0I0vFvkwWI7mWjvDVSGGTXwHt3trrfCiUDpyKFPv5CoON+17EsB8XDAZ/qsY9nuamhn8B85ApjcQo6tiR3HkA3ojuSST//j9bOsL5phculA4cjZRm/jGDjXsvEhk/KxgM3qjGPZ7mpoZXm5saLkGWrCbLRfJh4LmWjvB7WzrCpqUjfAziCfsZsKKlI/yGJJ/JhYLoQKXiuxF8T/tyw+A62jkVx/Cy0H0bCaJLxg+Bz5QrlWSl0NzUcADpxd+GNI6pRnJLiF83fjISrPPfeXx9vjowCokp+DRQleSUu4Frg8FgSRIoVSreMslbWjrCfyT1SO7vLR3hnyHLyKKDjhlIZrdL8/j6fHUggHTub0SWfiXyD+DD2ZZrHck0NzX8vqUj3Ib8lv+RcPhQZMrjA8BjDEyBjgd+1NIRbswjZiMvHah0fGfgkRKosQE+e5DKbFkRCoXehUTAT09yeC3wkWAw+GA+Ag6VzqWL65CI7Rrk3kW3TPu9wPboVr9oSUnXJTc3NTzb0hGeh+Riv5H4UVA1YsgTl5B9qqUj/HPP5T8UEudHs16e5JVw/RmDpxcA/o0Ekf2uHF6bzqWLa5AGMNW9TqUP/cTrQEkDnJqbGl4FLmnpCF+CzM8nPl9XE59iGuA9LR3hC5qbGoaaXjYfHTgeSZDypiSHuxCd/UE58lp0Ll1czYAO5NIWAOxgQA+66hctKZkOe9Nu17R0hH+NTN0kVtN8G4OTA52CtBtDTS87ZB3wA77LZNfTvrwRiM1a96/aeQtTpYo8SCgUOgRZyvHeJIcjwHeBLxZjPXvn0sW1wGHIqCXdliqDXK7sJaaxT7FtReIL1tcvWlIw13NLR/hw5He+JIvT/wZclGvUfU/78onEd+oOIJXE0ibdCYVCY5GUuzeQfO7uN8ANxajw5jXah5JZBw4p0Fd2k1kH/g28ALxYyE5hS0d4IjJffU0Wpz8PvH4oyXJ62pe/Rvzv1VA7b2HaEZxXyvdTyDLYZMsf/w58NBgMFry4SufSxQFkSVkmHZhGYaZXexi4150k14FO4CXg+fpFSwrW9nnlqj+LTNOkK8IF8izPbm5qyHnJcU/78keJ9xyeXztvYVuu16lU/Gjg343UT47SWjtvYapENNHgmYXInHCyMq7PAlcHg8GOfOTqXLp4FPA6JIBoDuKaLHSjXQx6kEb+OWCN9/c55IEf8nyjN5L7IelLkwK8p7mp4fe5XLunffnJyDKlKC/Wzls4O91nQqHQm5FphGOSHN4E/EcwGLwnFzkS8UbfxyP3/xTvdaEb7WLQj3ivovf+oB7UL1oy5AxlLR3hNyGZD4/LcOpnm5savpHLtZNUFOxHKgqm7KyGQqHXI56bZBkpdyOG/6f5eG48Iz4Luf9zkFHs4YgOTGf4elUtMvp9LnGrX7Rke7oPpqOlI3wi8pufkeHUnzY3NXwk1+v3tC/fSHwCnuNq5y0cMauchqsy5UOiSyZljz0UCs1A3PHvTHK4D3EnfzXX0p2dSxcfxoAhj23Mk83lDndqkWIZiV4Q27l08QbiH3YXeLJ+0ZKMZVlnb35ywqjerim7R08hXH88NpDyp/luS0f4L81NDbmMHnLRgYlIitmPpTjlJ8h65qyneQA6ly6eTPz9n4N08DKNVoYjVcBsb3tX7IHOpYtfJV4H/gWsyGa0d/ymFaamv+fwAzVjWH/ISfRVpfxp/qelI/zrHCuVJc69vprKuIdCoVok5uNzJG8T7wWuCQaDOVVK61y6eBwSTxK9/3O8/bG5XGeYYJCkRUcBb4090Ll08WvEd/6fBZ6oX7Qk40qY173y+F4Ls60JsO5QhwM1yUIdAPhwS0f4R81NDU9kK3BP+/IaBlfwG1bV7oqNr0bwPe3Lp4F5kkBgBpF+CFRBJLIO7Jm18xbGVTfy5tpvJbnb+yngQ8FgcHW67/N64ycS/wDPIX2953zoR0Ylfci8el/Cluy9PsTVOAVZuz2Z4o4Uu5CcAA8CDwArEw1+59LFk3oDNZtqIr2jAV4bfwSPHftWeqtTJYTjm81NDZ/J5ss9HXiUQGBWjA5sBntqEh04g9TrmTcg8RZp3XmdSxcbZNR/KvEGvVhr/S0yxZLNvY99rxa591O8rZid+x6gA9GBB4HHEr09nUsXmwPVozbV9e0/DGDX6Ck8ctw76K5LVZWWPzQ3NSQG6CX/8vbl0zDmfkzAidGBnWBPSKIDxyE6kKxCWidS7vm3mUbtnUsXH+5dI7ZDN4viLdPax8D9zbYtqEIy7kXbgmJ2NiPIiogHve2RZAb/5R+F/jG2Z+9cgO6asTx63NvZOTalQ9MFTsk24K6nffk8MA8TCHBQD6x9CBt5b6Ie+BXfGPie9uXTqKoOm4nT6qoaHMzYidh9u+gPu9hdWw/Q39dQO2/hVq+c6xIk21IiB5C5t28Fg8Gko9DOpYuPBs73tvmkzmaWCxaZ896UYdtWv2hJXkE9XqdkAgMNfbKtHjF6J5LZhZ6JfcQb/Ce968Z1nnaNmsKjs99OV12yJcZYoLG5qeHJdF+Ugw4EgP9CCoMkGjqLxAh8PhgMJibpAA56aOYzoAepKqvlyjYy68DWfGMivE7JOFLf++jrmUigYb7/Xw9S7/xBb3sMMXxxo/zumjFeA59S5d7f3NTw67RflKUOAIRCoSuQaaJkSzJvB65PVfHP89Ccy4AOpJ0CyoGdZNaBLfWLluTkVUzE04HRxN/vZNsMRAeOJr/OSgRYSbzB371t6ac3GezBgMu+QA2Pz7qQLZOOSnWdb3nJlNLS0758GoHqV8ykadWZ9MDP+MfAP3L7g2by9HOqTzoLYwb00FpL37OPYHdsfujrbc99DOmtn5rkEkmXvHQuXVyPRHZGH+Rkc7TZsh4xbKuBZxDXcUEa7WLRuXTxFMQgJ24NDO2B3ws8YuF1JmGUu796DI8e9zZ2jEvqAHmouanh3HQXzlIHLkPqsF+Y5BLPIzrwaOybnUsXjwfOZkAHMgZtpmETAzrwNOIpKEijXSy8//8EBuvALIY27XQAMfj1JPyWfYFqOmZdyOZJRyf73IbmpoakB6JkqQNvQ5bsXZXkElsQd/zdsW96MTRzGdCBRobuCetkQAdWA+sQHdhcyEC2QtK5dPFopBOTqAOzGZonoB8x+H0kLJ+1GJ5qOJt1hyZNdrivuakhY46MbPSg9qzLzh2C3BVFRc/Bu67rIEso3jHbBBqqGpy4mwlgjKGqwaF355azEYVKVI4+ZP7t28FgsN9T5LMYeJBPJXdDth9xJ60GVnl/n85mTmq44QXQPOptB+lcungM8Q/8SciSosMyXHIccFGyH3RUXxfnrvm9fXzWhWbz5EH9qKQNn+u6DUiyjMtnm8Cx6XSgb+fWs5F7kUzGm5DcBvu9YLg3MqADZ5D7s9KHzEdG7/9qYHX9oiUVV3zIC6T7J/GrU6KrP44lXgeayNwJrgPOSXagOtLHmS+2surIs1g7bU7i4aQdINd1D0HWUF892wRel4UOrCD5Esg7gY8Fg8HtnqfrFAY8dfNIXX8iFRZ4kXgdWAVsKuXytELgTbFE/4eDeKs/jiLe6L8BiTdJRxXyjA3CYDkt/BDj9u+yT898kyH+XiYdCLmuOx6pD/AfwMzZJjAtCz3wPRVp4F3XfSdS6OFIZJ1nDZE+zNiJSc83YyZiIv1Rt2QsG4CFi+r37gYWdy5dfAFipFJOBidhFzIaiX2IXxiuI/JC4Y00VnkbcNDtNxtxXZ6LpJvMKR6hyvabM19qta9MnnVPx7FvPRFpPF5BitgcxHXducD3gNcjHbC6TDpApM8w2LhvBz60qH7vKuBjng6cS3K3bSr2E68Dq5Do4mE5Ii8U3tK5Z73tIJ1LFx/JgA6ci7h3s8ZgOfXldhq2rXnwgZP+30RrAq9DXNdxS1hd152NdMzORUaEY7LUgUTjvh/4RPOUvXfWGC7pXLr4QsRrl8v0Wx/ScXiKAR1w6xct8XXmNK+de8nbDq4y6Vy6+FDE63Uecn9OyvXas7euMkfseGnV35z37emrqn0D0sG7KvYc13UPRTIJvgvRAXlus9MD31MwF70x5lwkbWcAuMlae1dBLhyD67oG+BoS+BIXbjl71xqq58wnMG5wzFxk7w56V9/PjfdH2yHLjOrI3942vntVXYC3k5vy9SKj2fu9baXfjflQ8Qz+8cQ39rkY/PvqFy15S+Kbrut+BGnY40ZUuekATKnq/+c7xu+/b3yVPZ8Uo4kURJDGPKoDj5U6cUwl0bl0cQPxOnBUDh9/ATixftGSuBwGruteCNyBtAMHXeW56sC4QOTFBeP3335odWQu4lXIZcrBZUAHHs5nyaDf6Vy6eBrxBj8xyU3ajwOzE5fjua57CnAfUnc+rlR1Jj3oW91ma9906XBdllowCmLgjTGjkDKp77HWFi1Lmuu630TyWg9aZnLE3vWMHT+JVHMuG9a9xN9Wr2d2XV/f6+p6t9cFcgoeW8XAg/yI33vlxaJz6eLpyDx3ylDpJLyxftGSg65h13U/jBj3QetpstGBe1dtYHZdn3XqereOq7KZphNieYEBHXiwftES39S2LyXeFNiz5Gbkb6hftOSm6I7ruucDf2CIOnD3Uxs4tq4Pp6536+Qqe6gxWU/BvcKADrTVL1qyJYf/QYmhc+nidmQqNFuW1S9aclV0x3Xd1yFxU0mjcjPpQd+OrStGn3Vpvnnuhz2FctGfiWTGuscY0wVcY60tqPK7rns2KYw7wKYxR3DMrnXw7CNUNTiYMROxXRI12btjC2tf2MDCSd0g/3Mm4x5Geob3A3+vxHnTYcqJ5GbcQeYxAXBd90gkwj3pXGg6HejbsYVVazZwxaQuqqRBz2TcXyO+MR9ROayLyFRyM+4QrwNjkLnypAumM+nAP54Nc8XkbuqMhczepF3Iyo+oHrxQaXPnw5hcjWusDhjgLtK0Jen0oH/Xa2yYcMxh/a4bcBwnbXbLSicrA2+MmYUriIoHAAAgAElEQVRE/B5rrd3svXcFstysCXlQjkWCkc4HvsTgggL5EiTFQw0QCdSwbtwxzNjzCmNWt0GkDwLVdFXV8eq4WZw25imZoUlOP5KC8i4kPeo6fZCLwkpkru7YLM6NAHfXL1oSW1d9MWlcqGl1YPwszpz6IlX70gYpPwb8HvgrMn+qOlB4NgMPI+7aTFhkKuQHMe99kCHqwKYJx3LOkVuo60zrgHsG0YE/o9NvxWQ5CXE1adgA/GfM/puRrH8pPS9p9WDcMUQCNZOAi4DWIcpfEWTtojfG3AZssNZ+xhgzF/lhLrTWPmGMeSuwwFp7vTGmDrjPWluwKEXXdY9HgldyjWI9SP3Ke6ndE1fPpAcZpd8J/LF+0ZLEYidKEfCW3c1H7uVeb9uT5PWBWAPruu5EZClRyk5eJiY9+zCjX1sf+1YEaEd04K76RUtGVJarctG5dPFYBoLYEu9/7H53gg4EkKWlhw/1u8etX8X48KD8VSsRHbizftGSfOuPK1ngrVQ5G/Hm7CF5G7AXKYiTGH/xMOLezzdQ7gnHcZryvMawJhcDfxoyyj0LMYyfsNbe5h2rB24DLkCClf7DWpuq1GrOuK77RSSAb8hTCoH9+xi/YTWBnq6No7a/+t/AvZW4bG2k4rruQqQCVa4u/oOYvh7Gr19F4MC+PaO3vbwY8RD4PtmFX3Bd93QkSUouKxziifQzLvwM1V27+kf/e8NngN/XL1qyPuPnlGGB19H/NwlBdUOkB5jpOE7SZEZ+IGuDaa190hjzBJKC8htR4+4d6zTG3AU8hIyKri6wnEfkImsyIqPGsuuEMwG2Oo6TNhuWMiw5lDwfaltdy+7j3gjQc4TjtBREKqWUHEq6ibZsCFSx9+hTAMxOzlnqOI6vlzL6kEOQ5XKFMPAHvOupgTfGBJCHK4KsQY/DWvsD4ufKCkkhlzNUYsEXRXSgUGtXfb88xqcU8r7ZAl9PKQ2F1gFf24NcfqxvI4UKXgSuKI44KdmEdCwKgW97az5nG5KDoBDkVBlOGTZso3CdvH7HcYZc7lgpG50UrkhOLaJTviUrA2+MaQYuAS5GRu+LTWIOwOJyN5JtKl/2Ar8swHWU0vM3CrOscz/wmwJcRyk9T5IiVWmORPB59LRfcRynk4TMiXmwAVnV4VsyGnhjzPlI9rh3WGu3ItmjakmoC11MHMd5ksLc1F6kSpRSYXiBML+jMA38TZlPUYYbjuP0At8kRV2CHNgPfDV/iZQyEUIi7fNhDxByHMfXS2HTGnhjzAnIesUPWGufAbDW9gPfAbKqz11AQsgIfKh0A9/0GgmlMvka+bnpe4E7/Bw1OwL4YZ6ft8BzjuOsLIQwSlm4h/xsAUiA3R0FkGVYk9bAW2vXWGunWmtbE97/gbV2bnFFG8SfELfaUHrvBxAPgI7cKhjHcdYgyZWGkiq4H4m/+K+CCqWUFMdxdgEfQzrsQ2EPkixHqVAcx+lHCg8N1ZPTBSx0HMf3SYwqJorUc6VcgfTecmngu5DqTm92HGdY1lpWcuJLSBW5XO7lfmAjcKbjOLruvcLxlrleS25Gvg+pHHiu4ziFmsNVyoTjOO3INPFesg/AtojtuNRxnLZiyTacKFg1uVLh5SG+Hmnoq5GkF8kC/vYgSyBuAf5bXfP+wnXdS4ClSLGJuIpiMexDdOBO4BrHcbTal49wXfdM4GfATCQuKFkQZjeiGw8BVzmO4+ugqpGGVzL4F8AcomWjB3MAMe4ucOVI6uBVnIGP4rpuFfAWYBFSgnCUd6gXSWv7PeBux3G0jKdP8Tp7c4HrgHcyUIgoWqP6e8BtnltX8Smu654MNAPvQ0qHGmRKZhNwM7DMcRyt/OZjXNc9Gviwtx2CdOoiyLK6nwE/cRxnbfkkLA8Va+AT8Qy+GQnzKkpyvFzlVeqtGbl4nb4ax3GKVrZaGd5EdQDo9XuUfCZ8Y+AVRVEURRmgYoLsFEVRFEXJHjXwiqIoiuJD1MAriqIoig9RA68oiqIoPkQNvKIoiqL4EDXwiqIoiuJD1MAriqIoig9RA68oiqIoPkQNvKIoiqL4EDXwiqIoiuJD1MAriqIoig9RA68oiqIoPkQNvKIoiqL4EDXwiqIoiuJD1MAriqIoig9RA68oiqIoPqS63AIog1mxYP5oYDowI2E7DBgF1CD3Lrpl2u8FtntbZ8zrVNuuxta2SPH/UyUVKxbMr0Xud6IOzADGkPpep9KHfjLf99htZ2NrW1/x/1MlFSsWzK8GpjFw32PbhPFk9+zH7gPsIPn9TtYu7Ghsbest8r+pFBFjrS23DCMKr+E+ATiOwQ9tdJtcNgEFC7wGPA+sAZ6L2TY2trap0uTBigXzq5D7fzzJDfgMYGrZBBxgO/ACg3VgfWNrW385Bat0ViyYb4CjgBOBw0muA9MAUyYRo+wGXmLg3kd14aXG1raecgqmZEYNfBFZsWB+PTAHOMX7Owc4CelVVyr7iG/wYx/4rHv7XgN3HLC5sbVtTzEEHQ6sWDB/AvB6Bu7/HOBkYHQ55cqTA4jhjzX6a4AXGlvbunO50IoF848Euhtb2/5dcCmHCZ5HziFeB+YAE8opV570AWuJ14HngDWNrW17c7nQigXzDwXqGlvbNhZcyhGOGvgC4I3IjmWwMT+8nHKVmD5kxN8OPAA81NjatjXZid7v9XvgncAe4PrG1rZlpRK0GHgdlgYG68Ax5ZSrxFik0X8U0YEHG1vbwqlOXrFg/neA/wR6gK8A/1vJ3iFPBw4j/v7PQTw1IyneaSPwGPAgogfPp7qvKxbMvxb4AaI7P0LaAp0WKBBq4IfAigXzxwBnAecDZyMjsjEF/Ip+YDOwKWHbDOxFjGmv9zfxdbL9OmAKUO/9zbQVamTxLAMP+UPRUdqKBfNPQHr7sXwZ+FKlNPArFsyvAZoQHTgXadQnFvArLLCV5Dqwk/T3O5lu1CJTP5nufVRHJhXo/1iP6MCDwAPRUZr3+yW6eJcBH6sU1++KBfMDyH0/H3gzcBpwSIG/ZhuDdWATMpcevbfZtgVVyH1Ndr+TbZMpTMdkCwM68CDi6bEAKxbMXwccHXNuG3BpY2vbzgJ874hHDXwWeCPO05AH+QLgTUiDOVReBZ4BXib5w7utnHOcXuN7JDI/mLjlY8T+hRj7J4HvI4FCsfwS+Ghja9uBPL6jKHijs9chOnA+cA4wLo9LbgOeBjaQXAe2ljPIzdP5w5F7fgLxOpCPEVuHNPIPAyHE6xHLA8C7h2sDv2LB/GMY0IE3IwZyqOxGdGAdyXVgSzmfBa8Dcyjx9z6qC/l4JzczYOyvBM5MOP4v4G3pvD9KdlS8gXdd9yTkYZuM9FB3Iu6hxx3HGdI/5zXmxxL/IA9lRNOLjGJXe9sq4OnG1rZtQ5Gr3MS4IJMZ/ulDuKRlcBDRQ8Alja1tO7K9iOu6RwJvQwLTapGGczXQ5jjOkDtKKxbMP4IBHZiP/O+5EkHmq6P3P6oLmyvFW5GIF1uSTAcSjXU2RBg8SnwOWNDY2rYh24u4rjsVmfKZjnjTdgMvAn9yHGfIRnLFgvlTkec/qgdHp/9EStYTf/9XAxsqWAcmMLjjdyIwi9xH/f1I2x3LFuAdja1tK7K9iOu64xAdaEA633uR6YI/Oo6zO0eZfEFFGnjXdccDlwM3IA+cQdzQBnH79SCG/gfArY7jJJ0LjsUL9JjPwIN8ZI5ibSP+4V2FBJxUhLsxX1YsmD8ZmAuch7isT2Po7r3nkQZ+XaoTXNetBd4NfBw4FTEUo7zv7AX2e39/DPzIcZyU14r5HyZ6sl+A6MDxOcodHZHFGvN/Nba2deV4nYpkxYL5Y4E3Ir/hecAZDD2g9N/A2xtb255IdYLrugHgQuB6xAj3ITpQ5b3uRvTh18DNjuOszuJ/GA3MY6AdODVHubsBl3hj/nRja9uIMDArFsyvQ36zc73tLGDsEC/XBbyvsbXtD+lOcl33TGARcDFy38cgOtCP3I9q4I+IPWgf6sCvEimIgTfGnAV81dudAfzJWvufeV84Ca7rOsDfkHniTIrTjdzw9ziOc1/iwRUL5jcgRuJSxDjlsiRlA3AfcD8SVLSpUnvjxcAzlvMYeNBPJTeDvx+4vLG17e7EA67rHg78lYGeejp6EB24znGcnyeR8xCkYbgUMRK55IbYitz/+xGX83rVgQG8WJUzGOj0NZGbwe8HFje2tn038YDruhOAO73rjyX9s9uP6MG3gC85jhOX48Ebjb4NeA+wgNxWOOwC/o7owINIQJkuIfTwpvsaGej0vYnc45Vubmxtuy7xTdd1a4BbgIXIPUvXvkQQe3AX8JF8vDqVRMFH8MaYnwO3WmsfKuiFAdd134A8TJke6ES6gSsdx/ndigXzj0Ue5PcAb8jhGtuRAJD7gfvTjS6VwaxYMH8SMm/9PWT9bzZEgGmxUxqu6x4FPIFMyeRijLuArzqO8/UVC+bPAC5BdOAcsu947EMa8ahR/5ca9OzxDP5c4BvA6Tl8dF5ja9sj0R3XdScBjyMdvFE5XKcLuAO4av+nb5iEuHPfg3gBso2p6UE69FEdeFITAmWPlwekEfgCcBHZt+PXN7a2LY3ueMb9L0gHL5cOQzewEjh/JBj5ghp4Y0wN4pJyrLUFzYTmuu5hiOt2SBHekU2vdPfcctN6Dhw4KcuPHECWfEUf5FXaM8+PFQvmn4sEUeXCOxtb2+4BcF23Dkm6MZ3Bc3YZsTu2dx+4+fvPs2vnHLJrWPqBDgY8NU+MlCmXYrFiwfzDgVdy/NjXGlvbPg/guq5BDOxpyLRcTtiurn09P/vhS/bl8OvIvoP4FAPtwCMjZcqlmKxYML+L3Dwl9za2tr0juuO67q3AZQxt9VI38AfHcS4fwmcriqwU3BgzC5lbPNZau9l77wpgCdBkrY0mKLgAaCu0cff4T4bwQEfpXf6r0VkY9ycR9//9wD9yTdqhZGQzyQNqUrEPccVHuRwJdszZuAP03nPXaHbtPCXDaS8gI4P7kaV9I2LutITsRtza2a7G6EfiKKKciSQOGlJb0Pfg/WPty+E5GU57BdGB+5Clfb5NwlNGXia3GJf/i75wXfcIxC2fi/cmltHAxa7rHu04zvohXqMiyMrAW2vXGmPuBT4BfMYYMxdYClwYY9wB/h9wa6GFdF13LHAtQ3yorbXYvSmTKz2KzOX9XpdlFJfG1rbnVyyYfznwEeQh2+tte2Je70WWHu0FvhMdMXsjty+Sx9I0uzdlwrzViA7c2dja9uxQr69kprG1bc+KBfPfBXySgfuceP/3IB2ACDL/GtvGfJF8ck6k1oF1iPv+TuCfOvVSdC4FPo9M1+0hXgeir0cjbf4vG1vbYgMkP0n+KXyrgE8D1+R5nWFN1i56Y8xpyPz3WUjP9hPW2ttijtcgrqzXF8E9/xFk7nao0Zj0reig7/e3Q1+fReZR7wTuamxt21QYKZVi4rruOcC95GHg+19YQ++vl0F3F8A/GTDqLxVGSqWYuK47E/GwDHXkRmTzq/Tc+mPYuQNkOd6d3rZajfrwx1s9s4PCJBbrBqY6juPbKZesg5SstU8aY55A5iS/EWvcPc4H/l4k97xDHsYdoLqxiapTTgcbeezkU097c4HkUkrHCeSZVatq9gkE/ucrYCNbTj71tDcWSC6ldByHxMYM2cAHph9O3Wf+B/r7I6a21kmMqFeGPdMKeK1+ZNWXbzv4WRt4Y0wA+UEiSBRsHNbaPwN/LpxocUwpxEVMdTXkl31MKR/R8ph54elAJRd6GckkZj4cEqaqCqqq+pFRYE6FUZSyMx6xQ4UgQoF0ariSy4jo20iA04vAFcURJyWFzPy2q4DXUkrHLmQ9eyHYV6DrKKWlkM9uFaoHlcguCtDR9wjgc3uQlYE3xjQj64YvRkbvi40xpaxT/CSF6WkfQNbPKpXH00hq23yxSJYxpfJYQx4raRJYP5IymvmIrQwuUpQPrxbwWsOOjAbeGHM+8DXgHdbarUikaS3wriLLFsvtFGb0ZpEiJ0qF4ThOB5LPO1+6gP8twHWUEuM4zhYk0DJfF+1epDytUmE4jtOHBFznu4T5APADvye7SWvgjTEnAMuBD1hrnwGw1vYD3wE+U3zxBMdxomkm84l27EcKT/i6x+ZzQsgSmnzYgBQjUiqTryKNcz70Ie2aUpkszXxKRkbEYK9iis24rjsZyWRXT4qOSU8ENvSPpZsa+iKW6oBhNL0cVbWP2gD7gDc6jqPrnCsU13Wr8BIukSK1aAYd6AYudhznb6WUWyksruvegxSGShosmUEHuoD/chznlpIKrRQU13W/ieRGSbm6Ko0edNUG+JnjONeXTuLyUDEGHsB13dnI6GsCCYEWPRFY0z+Rw8aP4pQZE5k0uoad3b2s2rSLLXv2c2Rg77vPmnPiXWURXCkYXlnQJ5DlLXHzsZl0YFbVnhuaXn/STWURXCkYruuOQupCnELCeuhMOnBc1Z7vv+H1J32iLIIrBcOrJPhLZKp4kJFPrwcHIjbSf8QVpzdsLrngJSavdcWlxnGcF5CH+kUSXLUb+sdy2PhRnDdrKlPG1BIwhiljajlv1lQOGz+K9f3jbiiL0EpBcRxnG1KZ7lFkLvXgOuZMOvBC3/h3l0tupXA4jrMfqUz2O2Ta7mB8TiYdWNM3PlOqYqUC8PIXvB8J+t5PQuBdej2oC0RM4LflkLvUVJSBB3AcZyOSi/pyJE/5AWB3NzWcMmMiicH9xhjmzJhIwJizSy+tUgwcx9mFJFZagARgdqM6MKJwHKfHcZyrkNz0P0E6e6oDIwjHcazjOF8BXocs4+7ES3OreiBUnIEHiaR0HOdPjuNcBMwEru6LWCaNTl5qevLoGvoitpTL+pQi4z3c7V5FqGnAB1QHRh6O46x2HOcaYCrwXtWBkYfjOOscx/kc0g68A7hW9UAoVMKAsuE4zr+BO1c/9Yrd2d1rpowZHHu1o7uX6oCpnGADJSccx9kD/FF1YOTiLXf6i+rAyMVxnH7gIYDVT72yTPWgQkfwyYhY+/CqTbtJDBq01rJ6024i1j5cJtGUEqE6oKgOKBDVg10jXg98ZOB57+Y9+w88sHYbnV09RKyls6uHB9ZuY/Oe/QcilveWW0aluKgOKKoDCkT14MCI14OKWiaXiWUrN04z8FBVwBwfXffYH7FbLcy58vSZW8stn1J8lq3cOM0Y/lJlzCkxOrDHwnGqAyODZSs3TgsY7goYMzdGB/osHKE6MHLw7MGrVQFTFdWDiLX/iFjePVL0wDcjeIArT5+51cKivoh0WvoiFgsvjZSbqXg6YLk4QQe6VQdGDleePnNrxHJWX8T2wEEdqEaWUykjBM8ePB/bFkQsHx9JbYGvDLzHywn7DWWRQiknm4hZHw8cumzlRi0RO4K48vSZEWBjwttHlkMWpayMaHswEgz8jGUrNyZfL6H4kitPn9nL4CpRM8shi1JWwgn7auBHHiNaB3xn4K88feZ+pKRglABweJnEUcpH4oM9onruCqA6oIxwHfCdgfd4JWH/sLJIoZQT1QFFdUAZ0TrgVwPfk7Dv1/9TSY3qgKI6oIxoHRhR/6yiKIqijBTUwCuKoiiKD1EDryiKoig+RA28oiiKovgQvxp4v/5fSvaoDiiqA8qI1gG//vOJSyF2lEUKpZyoDiiqA8qI1gHfGfhlKzdWAUckvJ2Y3U7xP4kZqxITXij+R3VAGdE64DsDD0wHqmL2O688fea+cgmjlJ5lKzcaBj/Y2skbeagOKCNaB/xo4BNTEY6oHpsCwCHAqJj9PcDOMsmilA9tC5QRrQN+NPAj2iWjAEl04MrTZ9qySKKUhWUrN04EJsS8dQB4rUziKOVjRNsDXxn4ZSs3TjPw1eqAAaA6YDDwhmUrN04rs2hKiVi2cuM0Y/h5gg7MUB0YOSxbuXFawHB/gg5EgEPLK5lSSpat3HiUgUNi9SBg+NVIaguMtf4Y2CxbuXFadcCEp4+vqztlxkQmja5hZ3cvqzbtYvOeAwf6IrbhytNnbs18JaVSUR1QVAcUOKgHL08fX1cbrwe72bxn/4jRA9+M4AOG26aPH1V33qypTBlTS8AYpoyp5bxZU5k+flRdwHBbuWVUiovqgKI6oEBUD+pqB+tB/YjSA18YeNd1xwaMOfuUGRMwxsQdM8YwZ8YEAsacXSbxlBLguu4o1YGRjeu6taoDIxvXdatd1z1E9GDiiNeD6nILMFRc150AvBf4OHBCX8SaSaNrkp47eXQNfRFrkh5UKhbXdUcB70R0oEl1YOThum4VcAFwPXCB6sDIw3VdA8wFrgXeDRjVA6HiDLzrutXAjcB1QB8wDiSAYmd3L1PG1A76zI7uXqoDxh/BBkr0gb4e+BoSPDUeVAdGGq7rXgz8FKhB2gGjOjCycF13LnAbMBkYg+eVVj0QCuKiN8YEjDE/N8a0G2MeMcacWIjrJuK67hjg78A1yDrncdFjo5FAmsSgQWstq+X9x4shk1JaXNcNAMsQ4z4Wz7hDZh3ARlaUVFilaLiu+wXg18AURAcMZNaBgI08XXJhlaLguu77gDZgJmILDtqzTHoQsfbhkgpbJgo1B38KUGetnQf8N/CfBbruQbyReyvQiPTU4jiqah9b9uzngbXb6OzqIWItnV09PLB2G1v27Oek6l3TXdedXGi5lJLTgrjhxiYeyKQDJ1bvPtZ13WNKL7JSSFzX/STSzuTcDhxfvfs4b9SnVDCu674T+AkwOtnxTHpwbPWeX5VW4vJQkGVyxphDge8AHwDeAZxhrf1c3heOwXXdhcCPiRm1J9ITgQ39Y+mmhr6IpTpgGE0vR1XtozbAAeA7juMUVC6ldLiuezrwMEka9igZdCAC3Os4zrtKJrRSUFzXnQZsID5TYRwZdADgeeBEx3FGhJvWb7iuWwtsRrw3KcmgB7uBaY7j7C+J0GUiqzl4Y8ws4GngWGvtZu+9K4AlQBPwKpIpag3y4L2pkEJ6c65B0hh3gNoAzA6kTDtfByxyXferjuN0FVI+pWT8D2kadsioAwHgLa7rHuk4zojKSe0jPp7phAw6AFKM6mzgoUIJpZSUy4DBk+sJZNEWvB/xAviWrFz01tq1wL3AJwCMMXOBpcDF1tqNwFuAgLX2eOA9wLcLLOc8ZJ4lXwLABwtwHaXEuK57JHAh+U8rBYDF+UuklBrXdUcjwZVpO3lZMAb4Yv4SKaUm28FeFowDvujF9PiWXP65bwDNxhgH+D3wH9baJ7xjBuj0Xm8DJhZOREAa9pRu2RwYC1xagOsopec8ZNVEvtQiS+uUyuNUoBBudQOc7RkLpbKYSmEGe9FrHV6gaw1Lsjbw1tongSeADuAWa21sJqD7gJnGmIeA5cCXCyolzMCLki0AUwt0HaW01JOFWy5LJmQ+RRmG1FMYAx8laYCWMqypB3oKdK1eMszjVzpZr4M3xgSAfmTd8Tdij1lr+5CkM8WikIEQBwp4LaV09CC6VwgK4QlQSk+hGnaQwU1vAa+nlIYeCjfYMxRWp4Ydubjovw1MAl4EriiOOCkJU5gbYYGNBbiOUno2U7iHUcuGViabKVxyri7HcdTAVx7/RgKmC0EdPm8LsjLwxphm4BLgYmT0vtgkJvktLr+hMKO3fcDNBbiOUnpaKUzPfS9wUwGuo5SeZxAjny89wK0FuI5SYhzH2QP8jfztgQXaHcfpzHhmBZPRwBtjzkeyhr3DWrsVuAOZCy3ZWmJvSdNfyf+mbgEeyF8ipdQ4jtONGOZ8p2ss8Iv8JVJKjbduPYR00vIhAnwrf4mUMvEVoDvPa+yj8LFiw460Bt4YcwISNPcBa+0zANbafiSpzWeKL14cXya/xn0f8CVNblHR3ER+nbxu4Cavs6BUJreRX+PeA/xF8yBULo7jdAAvIDFhQ6EfeBloL5hQw5S0Bt5au8ZaO9Va25rw/g+stSVN9+g4zpPA54ChJKnZhzQMvymoUEpJcRznNWAhQ9OBbmQViO977X7Gmze/iKGN4nuReJ6rCyqUUg4uBraTu5GPADuBt4+EwV5FLfJ3HOf7SJKSXHrwXUjFqY+OhBvqdxzHuQdZsbGX7Efz+5ClnG91HMfXUbMjAa+zfx6SeyPbQLkuJBvnmxzH2VEs2ZTS4HlgmpAOW7ae3QPAK8Bcx3HWF0u24URFGXgAx3FuBt4M3I/csGSjuR7kpq8ELncc5wbHcQq1xEopM47j3IsUHboTuc/JRnN9iGF/EbgBuFhd8/7BcZwVgAP8HLnPe5KcFkF0YzMyb3um4zj/LpWMSnHxjPQc4PvADkQHkg3idiOj9qXAyY7jvFgyIctMQYrNlAvXdQ9FCty8G0lYUIXcyDbgx47jrCujeEoJcF13ApKb+v1IEqM6YBfwT+CHjuOsLqN4SglwXXcUkp3waiQp1hikUX8WqT74iHrv/I3rulXABcBHgVlIKtq9SGGiHwN/dRxnxOW/qGgDryiKoihKcirORa8oiqIoSmbUwCuKoiiKD1EDryiKoig+RA28oiiKovgQNfCKoiiK4kPUwCuKoiiKD1EDryiKoig+RA28oiiKovgQNfCKoiiK4kPUwCuKoiiKD1EDryiKoig+RA28oiiKovgQNfCKoiiK4kOqyy2AoijDn9pTr7YmUEV0C9TUEojZN4EAscdNVRWB6sRz4o+bQPQcgwkYjDEDrwOGgJG/VdUBTICUx03AUFUl5yS7VpW31VYHqAoYqmPeqwoEYl4baquSnRO/Ra9TFTBUGZGjysh3R/drqmLeN3Ju4n5N9L2A956J3zcG7z0wBgLIewEDhlTneL/TwXNkP/q9xoCxFmwEYyNgIxDdj/R5+xGIJDluI+CdY7xzGHStCLavFyL9EOnH9vfLeZF+bERe20g/9PV6x7zzvHNiX9venrjP2kgE2+9t3uv+nt5B70f6E/Z7+ogcPCf+OpGD5/R7ry2RfusdH3gdiVj6e/qx/dZ7P9stWQgAAAa3SURBVPm5/b3RcyLeMUvEWvqtpd9Cv7X0RAZey1/ijvdbvHMsEQYfiz0H4Id2g0n13OoIXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVEUxYeogVcURVEUH6IGXlEURVF8iBp4RVEURfEhxlpbbhkURRnBGGM+Zq39UbnlGAqVKrvKXVrKJbeO4BVFKTcfK7cAeVCpsqvcpaUscquBVxRFURQfogZeURRFUXyIGnhFUcpNxc2pxlCpsqvcpaUscmuQnaIoiqL4EB3BK4qiKIoPUQOvKIqiKD5EDbyiKCXFGDPFGHOfMeZF7+/kFOd90xjzL2PMc8aYm4wxptSyJpEpK9m9cycYY141xiwtpYwx33+RMeZ5Y8xLxpjPJjleZ4y5zTveYYw5qvRSDiaT3DHnXWqMscaYxlLKl44sfvMjjTEPGGOeMsY8bYxZUEx51MArilJqPgu0WWuPA9q8/TiMMWcCbwJeDzjAG4BzSilkCjLKHsNXgIdKIlUCxpgq4AfAW4GTgMuNMSclnPZhYIe19ljgu8A3SivlYLKUG2PMeODjQEdpJUxNlrJ/AbjdWnsqsBC4uZgyqYFXFKXUvAtY5r1eBlyc5BwLjAJqgTqgBthaEunSk43sGGNOB6YBfyuRXIm8EXjJWrvOWtsDLEdkjyX2f7kDmD8MvCTZyA3SefomsL+UwmUgG9ktMMF7PRHYVEyB1MArilJqpllrNwN4fw9NPMFa+xjwALDZ2/5qrX2upFImJ6PsxpgA8G1gcYlli+VwYGPM/ivee0nPsdb2AbuA+pJIl5qMchtjTgVmWmvvLaVgWZDNb/4l4P3GmFeAVuD6YgpUXcyLK4oyMjHG3A8cluTQ57P8/LHAicAR3lv3GWPOttY+XCAR0313XrID1wKt1tqNZRwQJ/vixDXR2ZxTatLK5HWevgtcVSqBciCb3/Ny4OfW2m8bY+YCvzTGONbaSDEEUgOvKErBsdaen+qYMWarMWa6tXazMWY68FqS0y4BHrfW7vU+82fgDKDoBr4Ass8F5hljrgXGAbXGmL3W2nTz9YXmFWBmzP4RDHYHR895xRhTjbiMt5dGvJRkkns8EpPxoNd5Ogz4ozHmndbaFSWTMjnZ/OYfBi4C8VIZY0YBU0muR3mjLnpFUUrNH4ErvddXAn9Ics7LwDnGmGpjTA0SYDccXPQZZbfWXmGtPdJaexTwX8AvSmzcAf4JHGeMOdoYU4sEdP0x4ZzY/+VS4O+2/JnP0sptrd1lrZ1qrT3K+30fB4aDcYfsfvOXgfkAxpgTkTiTfxdLIDXwiqKUmhuBC4wxLwIXePsYYxqNMT/xzrkDWAs8A6wGVltr7ymHsAlkI3vZ8ebUFwF/RTpGt1tr/2WM+bIx5p3eaT8F6o0xLwGfJP2KgJKQpdzDkixl/xTwUWPMauC3wFXF7FRpqlpFURRF8SE6glcURVEUH6IGXlEURVF8iBp4RVEURfEhauAVRVF8gjFmgzGmxxgzNeH9VV7e9qO8/TcaY1qNMTuNMduNMU8YYz7kHTvXS8SiVDhq4BVFUfzFeiShCgDGmJOB0TH7c4G/I3nyj0Wy112D5FBXfIQaeEVRFH/xS+CDMftXAr+I2V8CLLPWfsNau80KK621l5VUSqXoqIFXFEXxF48DE4wxJ3oVzt4L/Mo7NgbJtHdHuYRTSoemqlUURfEf0VH8Q8Aa4FXv/cnIwG5zmeRSSogaeEVRFP/xSyRv/9H8//bu2KaBIAjD6D81EFEFPTgkpQEk14CLoQJHhC7BVAGSG4AIQsaBCQA59SGN3pMu2Usm+7Srlfb38fx7kq8k1zmFn8Ec0QMM092HnC7b3SZ5+vHrM8lzkrv/mItlCTzATOskq+7++LO+SXJfVQ9VdZUkVXVTVdvFJ+SiBB5goO5+OffKWnfvk6y+v9eqekvymGS38IhcmMdmAGAgO3gAGEjgAWAggQeAgQQeAAYSeAAYSOABYCCBB4CBBB4ABjoCBi8ZO1wiTS4AAAAASUVORK5CYII=\n", "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -4225,13 +4269,15 @@ "# Mark false links as grey \n", "true_graph = pp.links_to_graph(links=links, tau_max=tau_max)\n", "link_attribute = np.ones(results['val_matrix'].shape, dtype = 'object')\n", - "link_attribute[true_graph==0] = 'spurious'\n", - "link_attribute[true_graph==1] = ''\n", + "link_attribute[true_graph==\"\"] = 'spurious'\n", + "link_attribute[true_graph!=\"\"] = ''\n", "# Symmetrize contemp. link attribute\n", - "for (i,j) in zip(*np.where(true_graph[:,:,0]==1)):\n", + "for (i,j) in zip(*np.where(true_graph[:,:,0]!=\"\")):\n", " link_attribute[i,j,0] = link_attribute[j,i,0] = ''\n", "\n", "tp.plot_time_series_graph(\n", + " figsize=(8, 8),\n", + " node_size=0.05,\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " link_attribute=link_attribute,\n", @@ -4256,9 +4302,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEgCAYAAABYaaN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXhb1Zm436vVkrw7iUkIEEJYsjmExSFxDCQspRCGrkA3uk2ntDPtLO10+bXl9nTaaTtDp9NO9+k2belOaSFhKziAY0ISspskQPbFifdN1q57f3+cK0uWJVmyZVu27/s855EsXeke67v3O+d851sUXdcxMTExMZkZWCa7AyYmJiYmE4ep9E1MTExmEKbSNzExMZlBmErfxMTEZAZhKn0TExOTGYSp9E1MTExmEKbSNzExMZlBmErfxMTEZAYx6UpfUZSKye6DiSmHQsGUQ2EzHeQz6Uof+GY2BymKslhRlB8oivJHRVE+Mt6dmoFkK4c3KYryv4qi/EVRlFvHu1MzkGzlsFBRlJ8oivLH8e6QyRCykk8hM6lKX1GU24ArFEX55EjH6rp+UNf1+4G7gWvGvXMziBzl8Gdd1z8EvA+4Z7z7NpPIUQ5HdV3/4AR0y8QgF/kUMrZJPn8H8Ctd178DoCjKcuCrScd8QNf1NuP9vwE+A3xnQns5/clJDgafB747Qf2bKYxGDiYTxxD5TFUmW+nXAHtjf+i6vh/YkO5gXdcfBR5VFGUT8Ovx796MIWs5KIqiAF8DntB1fdfEdG/GkNP9YDLhDJHPVGWybfodwN8qirJ4pAMVRblRUZRvK4ryQ+Dx8e/ajCJrOQAfA24G3qYoyv3j260ZRy73Q5WiKD8AViqK8tnx75oJud0nBYtiplY2MTExmTlM9kzfxMTExGQCMZW+iYmJyQzCVPomJiYmMwhT6ZuYmJjMIEylb2JiYjKDMJW+iYmJyQzCVPomJiYmMwhT6ZuYmJjMIEylb2JiYjKDMJW+iYmJyQzCVPomJiYmMwhT6ZuYmJjMIEylb2JiYjKDMJW+iYmJyQzCVPomJiYmMwhT6ZuYmJjMICa7XKKJybgjhHADs4EqwG00l9HcaR4zvWcDoglNS/o71WupjhkAeoE+4zFtU1U1mP9fxmQmYlbOMplyCCEcSCU+x2gjPfdMTk/zSpDUA0QPcBZoAc4ktFZVVaOT01WTQsZU+iYFhaHQLwIWJrSLgfOIK/OySevg1CEKnGPoQDCsqarqnbQemkwKptI3mVCEEArSzJKo1C9JeD4fc69pIulHDgCngNeBV4HXjMeT5mph+mEqfZNxQQhRBawArmCogl8IlExwd6JAO9CBtKP7AH8Wj+neiwBWo1kSnqd7LdUxVqAYuWpJ1UqT/p6MgTBIfCBIHAxeVVW1exL6Y5IHTKVvMiaEEDbgMqSCrzEeVwDzxvG0OtCJVORtRkv3vA3oUVVVG8f+jCvG6shD6oGhEvlbn5/UKsa5W+0kDQRGO6qqamicz20yBkylb5I1CbP3moTHpYAzz6c6BxxNaqeBVqSy6VRVNZLnc04rDI+luQwfDBLbPMCe51NHgGZgZ0Lbr6qqP8/nMRklptI3GYYQwgJcDlzJ+MzeAwxX6rF2XFXVgTydxyQDhpyrkAPAAqTME1tVnk4VBV4hPgjsAvaqqurL0/eb5ICp9E0QQriAa4E6YC2wmrGbByLAQWAf0i6cqNjPqapqXngFjrGyu4zhg8EiwDHGr9eAA8gBIDYY7DW9icYfU+nPQIQQ1UgFH2tXMbZlfjuwN6HtAw6att3piRDCSnxlkDwojGU1qAOHkAPAy0AjciAwPYjyiKn0s6BxdZ0LuBB5oS8AqolHdiY3V9LfEcCLdI3zZnjeD5wEjgCn67c25cVmbSzhFzNUyV8yyq+Lzd5jin0vsE9V1XN56OqINK6uczBUDnPJTgZu5Mwy0++f+Pw0Ug4n67c2mQNXEo2r62xI19oFRjsfudHs9rtclT0VFef3l5VUDxQXzxrweMpCRUVFoz6ZrnuBLSjKZuAFYKeqquGx/g8zGVPpA42r66zIJeuCNO28Ce5SBDiONIUcSXo8Wr+1qT/dB4UQRcAq4gp+tKaaPmAHsIcJmr03rq5TkIFYC0kth3mAMl7nT4GGHIjTyWFaui0acpiPnBwsSNHmI11OsyJst9FfWjqk+T3uUfVN0bSIy+8/4fT7d7l8/mdmt7U9XtXReaZ+a5OpyLJkxin9hAu6NqFdg/SZniqcBbYDL2mKsnXndat6+stKrwduA9YhZ7q5chxoSmivjPeyunF1XTVD5XAt4+9qmE86kQPjVuAlYFv91qbeye1S7jSurqtA/vaJsqgez3OGbQkDQVmJMRDkni3DEo1S0tsXLe7vP1Xs9b5Y2dH5iMvvf75+a1P7OHR7WjDtlX7j6rpypFKvRc6Aa5n4mXteiVitdFdV0jVrFp2zqgi4c541RR2B4JmozfpE1GZ7FmhSVbVlHLo6SOPqumLk3kGiYrloPM85CehI81dsENgKHKzf2pQ2RqBxdd17gefrtzYdn4gONq6uK0J6YsVksAq4dCLOPRIRm43+khL6y0rpqSinp6KCiCO3/WJF0yjp7aO0r7e7uK9/d0Vn1yZXIPAcsC+TyfQvd9z53squrv31W5t2jfHfKHimndI37I11wAbgdmBJHr5WQ9p5jxvtDNL26xuh+ZEZGYuNVpLheSVx08acxJPrgLekhM5ZVXTNmkVvRTm6JYcATV3vB5pQlCagqaS39+Vrt247jPSHv6V+a1NbTr9GFjSurrMAVwN3Ancg3T/zEVXaQlwOp5B2+GzkoJD59489r0CaMBaSHxfVPmAbsAV4Eng5cRBoXF33MlLe6+u3Nh3Ow/mGYKxslyLvhw1IRZ8P3/w24nI4iUz+NpIcYi6a2dwPZTpc6C0puaK3vPy8nsoKpaeiglBRbiEhiqZR2ttLZUdnuKy7p7m8u/spi64/AWyt39o0uDfw4Cc/2T73TIvnwuMnbqzf2rR9FL/HlGFaKP3G1XWVSNPGBuCNQPkovqYT6UJ23GjHEp6fTrxAxpvG1XUlbdVzVnbMmX3XgKf4ep/HvSRqt2c9nXcEAlR0dVHe3UNZdw8erxdFDlpPGM2HVEAg/+eb67c2nc1Dv4uBW5ByuIPRmQj6kD7dib9/rJ2q39oUGGs/s6VxdZ2b+ABwCcPzBI0mKK0deAoph1eQeyYgB7Ob6rc2HRpbrwdn8zcgB9wNjG5F5SO9HE7Ub22aMB/7xtV1TuAiHRZ2zp61uqei4jpvSclib0nJeaEiZ04DmD0UoqKzk8rOLn95Z1eD2+9/5Nzc83YeqFm+G0XhoiNHQxcfPrLuhhe3vDhO/86kMyWVvjF7uZz4RV1HDhtLyOCgnUi7+HbkTOz4ZG4GGV42tcjVyRuQNtasNi0VTaO8q5uqjg4qOzpjSj4XXkPONM/k9jFoXF13EXE5rCM3/+0wUultT2ivZTKHFArGSuZy4DrkZvlq5Ix6LBvNrcgBuHkU/TkPee3ciRx4czGQa8go2kQ5vJIvD7Lx5EuqusDj9b4VlDuDTseVYaczpwysxX39FPn9dFTHF9fnnzwVXnTo1VtvbGp8Lt/9LQQKTuk3NzdfANyNXPK2Ab9ftmzZKYDG1XUrgHcDbyZ7t0MdOWPZxtALetLdvgxFvxp4O/BW5AZztryOnK0/uXh/8/65Z1pqiCugVeS+MX0YuD424x9BDouQcngrsCyHc7zGUMWydyJn7uNN4+q6UuTAHZPDdUizXS60AzfUb206CCPK4XzgncDbjPNmywnik53twK76rU3TIgpaCHG+LRy+yR4KvyVit60OOxxzRv7UcKpbzkYvPXjo5pteeO652GuZZDGVGLPSVxTFA3wPCAHP6br+0Gi+p7m52Qp8HbifhFmK1t3t8z+28eVQ45YKYHmWX9cBPA5sBJ4uJI8KI7Cljriin5vlR71AA1LRP6Wq6tF0BxouqEuA65HmrvVk59FzwFJZua7s61/9FMly6PcOBB5/fGvwmWc9SIWWDf1GfzcCT8w0jwpjRXopUI80P95CdrUAWhS3+8byb33zwyTJQQ8EBgJPPvVCYNPjduAmsltZBIBngceAx+u3Nk05RTVahBAXoOu3WiORN2tW6zrdYsnaTFrV1ha5/MChG+b+z7e2kUI3ITO2/gD49LJly6ZMAFlWSl9RlI8Ay3Vd/6jx95eBi3Rdf4+iKO8BenRdf0xRlN/pun7PaDrS3Nz8IPCJxNcCDZvx//Z3kN3A1Iy8qDciXecKRghGJsp6pKJ/C9nbuvcg7b9PAi+O1kc+wcb7RuAeMngvKZUVbaXqA3MsCR5Bod17GPjhjyCa1U96FCmHx4BGM7gpTuPqOjtywHwjcsa4MN2xisfTV/rA50stlfGFQuTYMfof/C8IZfWTtiDvhceAhom0wRcqxn14Lbp+mzUSfXPUZl2GomQcNCs6OyPX1a76rfvKFe/OcNg3li1b9sn89nb8yFbpu5FpU5cjc7P8G7BG13W/oiifBZ7QdX2Poii/1nX9nbl2wlg2HSTJDhk5eZJj3/8hfo+bsu4eivv7scT7GwI2Iy/qTRPl8pYtxgV2I1LRvxlZum8kfMAmoz2tquqYN1eTaVxdtwW50kiL9ZKFlPzTP6IYgZRaXx8nv/zv9JSVUdbTQ0lfH1Zt0OweRfr1xxTMq2agzMg0rq57CGmaSYtlzhxKPvVJLGVycaCHw5x9QOVcaSllPb2U9fZiHToQ70DKYSOw25RDZoQQlSU9vU395WVXZDquvLePultuoeiCtNbXAeCKZcuWnc57J8eBrAqj67ruUxTlN8BXkLOUW3Rdj6VKPY20Re9h9C55d5Ni48l24YW0XnoJrcZFb4lE8QwMdFmjkRd8bvcvQ0VFDaqq9ozynHlHCGFHmlLehlT02WQp9CKV5R+BJ8cz82Dj6rrZwJqkl88io0xP2ZYurbavWL7eUlGJHgoNKn1LaSldS5dwrFiKSNE03N6BPnsk/FKgqOhXAbf7KVVV8+72OV0xZvy3J73cgdxXOWlbsrjavnz5DZbKSvRIfC9VsdvpXXklx6zSZ0HRNFw+n88RCu0MORy/8RUXP6aq6pRQPIWAqqpdD37ik6k9m3QdRyjU7bFYg7MuuOC8gWCADLkkPEgd9l/j0tE8k7VNX1GUK5Cz8bt0XX804XUP8B2k3XDLaGz6zc3NXwc+leq9Jx55BJ+W1plDA15Ezmw2IaNIJ3R2Y2zGXg/cB7yJ7CJK+4FHgT8gZ/QTkmu8cXXdKuTK4wBSlgfrtzYNDpqZ5PDc44/T6c/YzZ1IGWxE5kcpeA+cycLYCP8YQ+UwuN+RSQ7bn3+eUx0dmb7+APHV4otmnpr0/OhDH7r07Pz5r1kikT5bNPqarijbw3b7VhRlP7I6WCCTLJL4j2XLln16nLucF7Ka6Rs8gPQsGPIZXdcHgPePsR8pZ4nBYDCTwge5slhrtK8BJ4UQsQt+83jOmoUQFwHvBd6HDKoaiV7gL8gZ/dOqqgbHq2/pqN/atA3psZGOlHLQdZ3e8Ii642qjPQC0CiGeQMrhr6qqFsxGeiFgBGH9Y4ZD0q6aeke25y8x2r8CPUKIp5ByeFJV1Rm1kT4SZ+fPbwWqv/Bv/5ZplZrtCrY1D12aELK16X8CaQf+NiB0Xb8hn51IZ9MPhUIcP36czs5OOjs79WAwmIsPdADp7bIJ2KSq6omx9tPIO/8W5CC3npE9J7qBPyMV/TOFnmo4nRyi0eigHDo6OnS/35+LHCLIFLmxwfhVM5d+ZtLJAeD48eN0dHTQ2dmpe73eXOSgIwf8mBz2mHIYmUyySGBK2fRHVPqKoqxHKvvVuq73K4qyG3i/rut7Mn4wR1J57ySi6/o3/vSnP30POfisQZpUckmx8AryYn8UuezN6oI36pPWIhX9vYzsctcJPIJU9A1TbXk9khyAbzz88MPfRMqgDumVdFUOpziKlMNjyNVYwQcATQZZyuHrSG+gWPGbVWQfpNhC3K35yclYeU4VspHFtPHeURTlQuA54A5d1w8ar70PuFHX9fflsyPp/PTJ4AtrmFhuR4b83wSZ9lqGcBj4KfB/6RKNCSHOA96DVPaLR/i+IPAn4P+Ygoo+kVHKoRq5wX8HcCuyYHc2tAA/B36mqmre885MZUYphwrk738HUh6zsjxdF/Ar4Ceqqu4bY9enHaORRSFTiBG585E74dVIO9nvs1k2GaaXdcTzvlyYxek0ZA6UnyBnPIrx2Q8gb5qRZk07gJ8Bv1VVdVrlVh+DHBzImecdRsvoDpfA80g5PGzWTo0zBjlYkak8YnJYmeUpdyLl8JtC8owrBEYri0Kj4JR+PjBMMkuJX/BrGFmB+5BKf6TI1Tbgl8jZ6Stj7Oq0RwhxCXE53MjIuXn6gF8jFc9O0+6cH4QQ5xNfjWWTmyeANFH+BHjelMP0YVoq/WQSlr1vBe4i96LOEaQd+qfAE1PZfDOZCCE8SDPcm0gTm5HEPuRv/itVVTvHuXszBiGEE7kndhfwDkbOD3QEuaL9uaqqOSflMyksZoTST0QIcTnwDWQmy5FcVjVkgebPqKq6ebz7NpMQQpQgYwY+yPCAsWRCSC+o76qq+sJ4920mYQwAdyHlcAuZPdI0ZEqQ7yM94maW8pgmzBilL4S4Cvg4cmaT60wfdP2xys6ub1+1e3c341gYvW5L44zzaRdCLEbuo9xHUgGZFLxQ0tf3X9du33HCouvjWRi9q25L48y4OQwMx4j3IZ0XRsrBv7fI739w9Ytb91o1bR5GYXQyy8CFjK3JRgZe5EZ/20yTw3gzrZW+kRbhzUhlnzHfDLr+ij0UthUFA5e7/H6K/AFcgaGPtuwSjo2VTlIX4j4CnKnb0jhtI10NeW2wB0N/5wwGb3UF/JYhcvD7KQoEsEdG9vKMXdW6ogxrABZNky399d9LejmcqtvSOG1dTY0o85ts4fCHnYHg37gCfnsqOThGDtjLBwMYhegZLovjdVsaCzr2pRCZlkpfCDEL+BDwUVLlqNd1igIBynp7A3Na2w5WdXZGbdHo5cgybYVMCFnJKJaXfiuwo25LY9+k9ipHDKVSDJTPamtfVNLfv8oWjVypaPoSFBZGrVZ3xGYjYrMRttmJ2GxE7PJvzWIZpsBTKvbMyRMHUWLKX9OwRDWsWhSLpmGNRoe+lvCeJarpQI+C3gYcilhtO/tKS7f0lZcdAdonKq1GPmlaW1/F0OLo1zLyqmuyiZUxPYz0OtoKbK3b0nhuUntV4EwrpS+EuBKZ0+RdJJSys4XDlPb1UdbbS2lvH2W9vVFHOJxLpa1CRkemlU4sxv3aSCuCprX1twIN+ZqxGh5TFchBdj5wftLz89D1CkXXK3VF8YyU0nYqo2haEOjQFeUMitKO9PhqT2ptQPuaLU2Xu/3+protjRNWxKRpbb0LWbN4FXEln21RoqnACYwBAHlP7BlpRdC0tv4apHl12icOnPJK30hhfBfShHM9SCVf1dlJVUcnZb29eHz5cfuOWiz4XS6CTidRm5WoxUrUakWzWlA0vaXY620o7+nZo6QvjJ5cADq5MPpFjGa/YTjdyJD7rcgUCE2JF33T2noFuVrYA7yzbktjxnW64fM9h/QKPfY82+A4kwSskUgkarXuQ1GOIFdyRxMeT441fUfT2noH8t7YgIygriG3vFsp0RSFQFERgaIiuQqzWoha5P2go/S7/P4XKru6mqya1kfqwuip7ofY32XI+yHXCnCpiJVHfQmZBrwhee+saW39T5DRzTfVbWnMe0rzQmLKKn0hRCnwd8iZ/YWuAR+zO9qZ1d5BeU9PJlttJvykLgR9PGqxHH9u3Y1LdYvlAWQQWDp2A59UVbUh15M3ra23AvMYXoQ79phNquZU9APPEC+MXopMSwEyLcXdz9xycwhZxeuKpHYZUqFP1ZVRNKFFjEcduRJ0MbaathNBzIRxjOEDwjHgXCovmqa19XOQfvl3It2VR2O6jAAnSXE/AMefv+F6T9jh+DQycj3d9dECfAn4saqqOW2KGZOTWaS+Fy5BTjhGQwSp/GP3wyvIFOOzkWVI19dtaZxyQVfZMuWUvhHy/3FF0/6+vKenbFZ7B7M6OkYzm/cxtDj6duBENp4CQog64AtIt890/Bap/PPm19y0tr4MebFfRbwOay75h9AUBZ/H3e1zuysG3B4GPB76Skt7fR63BUWZsD0NSzSKLRLBFonoFk0bALo0i6UlYrOdCDkcJ1CUXqAHuaEae+xFyi2mxBchs1X+DemV91+Bj6mq+mryG4ZJyoFU/lk3SyRa6gwF59rD4YsVXV+go5wXtVmLw3Y7IYcj6/2EPOEHjqPrR1x+f+uc1raSOW1tl5X096+w6HouHYkC+xl6PxzMxvwnhLgY+AzS68ee5rCXgY+qqrojhz5lpGltfRGwALlyidUkvorcV8vtDC1ydBSp+MecpLEQKTiln674sBBioS0c/lRVZ+cHZre126s6O7Py4jDQkHbvxAv6lbHas4UQtcDnkbOpVHgBFfif8QroalpbX460ycYu+uuA8ojNitdTzIDHg8/jlo9uN36XC90y2lo3mbFEoxQFAjiDQZyBIEXBAM5AUP4dDGIPh7FGo4dtkcg2q6ZtRcphX92WxjEl+zJcPv8fshJVqn8uDPwn8JXxSvHQtLbeA1yjKcqakMNRH7HZVoXt9sqQw0HYYSdkNx4djiHPw3b7uMhD0TQ8AwMU93sp9nop8fZT7PXiCIZio+Mxht4Pu8e6ryCEuAD4NPC3JOypJaADPwL+n6qqXWM5Vzqa1tY7kSknVhO/Jy4YxVedBK5PVPxmYfTYFyjKQuBzQJmu628b7fekS2rU09XlP/Lkk+2uw0cuqG5rVWyRrFeIBzEKciM9XLyj7dtIGBvIn0dG/KaiGfj78QosEkIUI2c416Dr1yi6vka3WEbys84Ju92OTdN6rT09vSX9/XOK/IGimFKPPdoikVTT7RMYBbmRnhXjls9FCLEI+CzS3z+VzfokcmXwl/EOLDJMExcjlU6sMPqC5ON0IFjkxOdyE3AV4Xe56C8u6eycPeuw1W5fFolERopazglF0/qBfbrFshMZ8bwfWXwobxvJQoh5wCeR93KqtCadyMHhZxNRbKdpbf35SDmsRa7OR0qgGOMIUF/2g++3MdMSrmUqjJ5wzB/HqPSHpS99/eGHKWncgisQyOYrwsikXRuBjXVbGo+Mti+jRQixGvge0jMiFb8C/lVV1VG7lBmJ5a4Erkloi8mDbdoSjeKORIIVl1ziLCktpaSkhJKSEpxnzhD+3e/RWrOqE6EhN5BjNXMPTHRwjRBiCfBdZK6fVDwOfFxV1Qm7RoxB4HJkVtg3IjdW05ohLNVzThd/7nPzoxYLPp+PgYEBvC0t9O7ahS8Swe9y4Xe5iNrGvB8Lcuw5jBwAdiGr0e1QVXVMEyVj5v9N0k+GtiInQ7vHcp5caVpbvwApgzci04K4Mxx+oPhL4jnrnDkfzXDM9EmtPHhQhsLoCceMWumnK1TQ8vwLeH7zm7Sf06FDiedm/2sh+Ksbni4fAb5M6tz7fchVwfdHyiVvhMgvZ6iCX8YYN1WdgQCegQHcAz48PuNxYABnMIgC2FevxvWed6MYZofouXN4vygyfWUfMjx/I/BE3ZbGjPX8JgLDXn8vMuXG3BSHBJHV1r4+GX71TWvrv4uMI0mLbckS3B+5H8UuzeS6z0ffpz8DRlCUDoTtdvwuFz6Pm/6SkkhPeXm3t7jYoVmtI9V9GIkosBc5ALyIVNAnRrNCEkK8Afgf4NIUb2vIidIXJiOrZ9Pa+k8hZ/FpscyfrxX/yz9bFHfasWF6FVEZPFBR/gOplGOF0Y8kvT8Wpf8J4MHk17VolI5P/ivOhNqsUYulV9H1n1t0/XfA9rotjQW5rDI2nP8DaWpIxR7kLOfFhM+cj5ydrkUq+BpG78KpIQfqA8Ah4JDL5zu+6qVtz9ii0WR7awA4ZZk1S7EuWrTIUlmBY80aLLPi6di9//kg0SNDRN4D/B74HdA4ktvnZGF4eX0R6dKbarA8ipz1b5qoPhmz/pMMDxwMA6eVqirdtuiShZaKCuzXXIN1fvww309+SnjHkL1QH7Joz2+BZ+u2NPphMEBxOfIaqjGeL2PkLLKZOEt8EHgR2J1t8RVjAvOvSFNwKtfeNuP9X05kTp+mtfVbGB6tHwXOAKcsF1zgtl1xxUp7zXJsl6Yaswb5xLJly2ZMYfQq4CvIZE0/1nX9q7l2IlPx4XO//CWOl7ahL1mMZ/GSPwR///t3TqUQeCFEPXImsyzNIU8Dp5DL/YxX1Qi8hszv/7LR9iQvz5vW1q9DbizHCnLHHs/WbWnUM8kh9OKL+B/6NbZly7BevODPwT//5R11WxqzsrsVAkKIGqTJZ22aQ/4AfHgi6iI0ra2/HJk9NFkOp+q2NGqZ5BA5dIiBb30b2+WXY12wYFPwySffUbelsT+b8xqr0EuIDwKxAWHhKP+VIPJaG1wNqKqa0QYohFgAfAvpcZWKzcB9qqqO+6zZcIJ4Ajk5SpTD8ZiOmY6F0XNR+r8Gbgbu13X9T/nsRLqZPoA2MAAWCxaXC6bQaJqIkVPm75FmsXwEmxxD3mwxJb8rH8XHM8lBD4XQQyEsxcUwdeWgIH3K/5PUKQZOAu9IXH1NBhnloGnovX1YKsohT3IwMp4uRe4VXYfMejraCcgR5ACwGfhrOuUthNiALMN6cYq3O4H3q6r62Cj7kDcyySKJKXNPFHRh9CSmlN0MQAgxB7gBGcx1I9l7DSRymqEz+J3jlVt+usohGSFEOXIA/ijDXTyjwANIW/+kmA4LQQ5CiNnE3R7XIN2CRxNx/QpyNfs08EKiy6zhlPBppI9/KhfPbwOfmsz6vYUgi3wzZQqjMwV2yA07aqKSXzqKr+lE1trdDLw8Fk+f0TAd5JAtQoiVyMpQqUoJNgDvVlV1UkLyC00ORhnMFcgBYA1yEphrRGwImRYkNgjsU1VVM6qr/QhYn+Izu4F7VVV9bbR9HyuFJouxMqULo082hrlgGTKnyZ3IpXEurpN6muOPIS/07WPuZI5MRTmMBWOD8Tt0JQ8AACAASURBVGvAP6V4ux14r6qqT0xsr6aGHAyXzDUJbSW5eZa1ISOmn0KmCXkfcgWW/B0DyGjeX4yxy6NiKsgiFwoxIregiw8bSuJGpJLfwMjFJhLRkKkfNiMH0y3A24DvMNxXOIL0dHhwIgJYkil0OeQbw8b8c1LnN/ov4LNjTXw2GqaSHIQQbmRK5huR+X6uI3WEdDr2IQMZb0L+v8n8Cqn8s9q4zjdTSRaZKDilX4gY7pe3E09elW2UpIYMdnkOqei3qKo6LJZACHEF0vWxJsV3PI30ZsgqMspk9Bgus78idVDXy8hN3sMT2qkpjLF3sh55z7yBFBHJGYiSetVwGLkK3jnmDs5QTKWfAsNsU0PcbFNL9mabvcCzxJV8VgEnQogipFfJP6R4uxWp+J/Osg8mo8Rwa/wsIBg+S/UC96uq+tCEd2yKY9xTlyAHgFuRg8FoE/yFkZu//z0Zq+Cpjqn0DQyluw6p6DcAF2b50QBSyT+GLBY9puWeEOIupA93ZdJbOvAJVVW/OZbvN8kOIcRa4NekTtb1DaRXialwRonhxrwKuQK4FWkWyjWVyEbgbZPp3TMVmdFK33AZux0Zrn87mXNwxNH1Vlso3FDS07tlYfPBvZ5+r5UxFkZft3vboL3Y2CB7CJmoK5lvIZX/lNk4Gg82r1xlRQ6M+S6MHlq3e5sOIISoBH6MrLOczB+Qq68pE6A2HmxeuUpBymFMhdF7qiosZy65eIW3rPS6sNN5o2a1zM8yRbUPGXT3ENIbaOYqtCyZcUrfmGHcBLwDeTNntcR09Xv7q862Rme3nC0p7umzjkPG9BAyOOgIcFRTlGMnrrj06q7z5rzd73FbtKGJtR4B3jUVa7Fmy+aVqyzInDkLUrSLkSuxdLnbx0IYGYJ/BDiqw5HTiy5e1H7+vPv8Hrcj6hhyyibgrvGKmygEDKU+h9QyWIB0ZMh7xTQdolGbzesv9lgHSkuKAx43fo+bgFs+Rhz2VHULjgJ/Ah4GtpsrsdTMCKVvFOJei5zRvx1ZjScjlkiU8vYOqs61UdnahjMwuSvIkNMxeMH7iz34SooPFQ347vzgQ7+Y0huLQghledO2ixWdG3S4TrcoKzSL5QLNap0TtdlsEbtdFkW324naUxRGT1EQPf436IoFlITi6RYFUIwC51GjyefWFK8NFkk3XtMViNrshB12Ig47waKiVkXX3901t7phqiuZzStXzSJeHP1apA1+AQVYBjNisxHwuPG7XQSKPfSXl9FfUU7QPZhaqAU5OXoYaBwpueFMYtoqfWPj6CrkjP4ehie3GobD76fqXDuV59oo7+jAGi38e1izKEcsmv4C8SLQB9bt3jai6WfzylWXrNu9Le+phY3ffRbxurnxwuhQrmhapSUanafo+ixdUYo1q9U5XkVdJhQ5OAQUTe/WFeVM1G47jqK0MrwgeqwoepeqqtHNK1ctBI7FTEoTxeaVq1zI+6M2oY02B0/BECwqoq+ynL6KcvorK+gvL0W3WtuQCel+hQx4HPZbb7z+pkX71q669P/9+79PeEzGRDPtlL5RReleRdPu0y2WBSMdbw8EmX2mhTmnz1LS3ZPtTlI30hbpS9H85FYYPfZ3vmrQ9iOLor+EHAheXLd72zAPos0rV+0A/rJu97YvZ/vFRhH688hcHP188lPcfbqjA51On99pC4d7B0pLNqEoyfVvu/Nlo968clUVMkPuWqSCryF/15yXeCnL5HsguUF290NeriFNUfCWl9JXUUF/ZTn9FeVHAx73/wEPJdZTeHTdrY+GnI47Xr9y+S2f/dpXc65vPZWYFkpfCHGRomnvtES1D0TttkUjHW8LhZnVco7Zp1so7+hMpejbSFMMGji5bve2vFUZgkG7aQnSThor+pxYAPoiUleCyoYocgB4HJlRcA+y+HrMy+jfADVh87IUWewjsTD6hUhlPpfcgm1MxkYvqYuhHwOOZ9pENq6pJcS90dYwetn1x86ZpvXke6WyeeWqIuR1n6oo+kKydbpIwUBJMV3Vs+mrrDjQM6vqR7pF+fW1zzx/3BkIurtnV0UO1yy9/lMP/ufWfPwfhciUVfpCiDJ7IPh+4CPhIudlIx1viUSoOtvGnDMtVLS2Y5H/9wAy6CZWJ/QAcCLfSn2sbF65yoZ0HVwYtVgu75k96x+dfv9lnr7+0ZTLOqfDsaCraLW/uBhfiYeu6jm7u+fM6kamz56X5+6PiCJt6RGLpg3oKF26RWnXLNZW3WrpIHNh9EjC81z+1pEJvnIqiI6uu6yRSKU1Eq1SNK0CWKBbFE/UJvcbJoEW4gPBEWs4cuiS/Qdcc06dudqi63eQOoNlJiLIqNjY/bDX+O68K/WxYAxo1RiDQPesqvssmnZzcU8vVi03k2zUaqWvskKvaO8YvJV6qirDx5dcXvvP3/7vvOYXKxQKTulnKj4shFAqz7XdG3I6PjFQWrJSt1ozzlwUTaOytZ3Zp1uoOtcWtUaj+5EX8zbj8WA29u9Cw7Cbf9EajjxQ0tNDSVcPpV3dlHb3YA/Fa5loFovc9JUbv/iKPfiNRy0/ZfZSYg1HcAQCOP2yOQIBnIEAtlAYWziiW7TocUXX9yiatt0S1Rqt0eiO27dsnvAUB/lACPFhSzT6PU9Pr8XT10+RV1YgA4Ww00nY6SDscAw+hpzyedQ+Ho5HEkskiqe/H09vP56+fjx9fXh6+7GHh9W5OUJcwW8D9qzbvW1KeoQJIe5SNO03nt4+V2lXD6Xd3ZR29VDkG92/01dRHjxxxaKaj3/vu4OJ3szC6LEvUJQ3AXcgf4jv6ro+qqjRTEmNuo4f/8O+jY9X9ZeX3hJyuTJ7Eug65e2dzD7dEq061/aiIxR6DKPKz7rd23wZPzvFEEJ8EPghMdusrmMLhbCFI2ejNqsr7HSWZ+nrnDVKNOp1+gO4vQPFDr9U5k5/gMTntsgQRwkdqVAeR7o47ly3e9uYc/8XEkKIO5BVxKTJQddx+gNUnW3dfsn+A1sVaUe/OvEzmsVC2GEn5HQSdLsMTxQ3AbeLgbLSvpCryEnqdMOjxh4Mhu3B0CmLpu0KOxzPBt2urcCh6RLcJIRYhQySnB17zR4IUtnWfmjR3ubHFU2vU3T9WiVLM1dvZcXAqUsXXrbuHz7aykxLuJZlYfQK4EFd1z84mo6kSl96dtduXj1wgM4iZyqf3CGUdnYzq+XsQNW5tsddA74/Ak+n2sCcDhhBZSuQJRX/Bhl3kB9bu65TbBREj7WiAR80bYUdu7BmV6Tei8yc+BjwxLrd29ry0rcCRghxDTJCNDlR2K+B+67/8+NVyOjT25ERqMkR10OwLVu61/mx+1fEiqIPDAzg7eyiv6UFfyRM0DnyPZElEWQ5zX3EC6Nvy0dRnsnASNP8BMOLwDQAG67/8+NO4Oaw3f52RdfeaItEM8bp9Myq7L7gSw/8qqik5GMZDps+qZUHD8quMPo3gId0Xd+VayfSFSo4/GwDe3vSV69z+vzMajnbPrvl3MOlXT2/Al6aiuaaTBh5zFMVRx+TfcYaDuPuH8Dl9eLuH8Dt9eLu91I04KPkXffifsPNg8eGXztMz7+NWAXzKFLJbwReSIwwnikYpQCfQm5+J/JjZClGDQajiX8EfCDT97neeCued9yNYij3aEcnXf/yadB1NIuFgMtFwCNXCb5iDwOlpQyUleoRh32so4GOLH6SWA/38FSJdhVCVCGvw+uS3noCeHNsZbN55Sqlbf68LXNOt6zJ9H19CxfoC77wWcWa3iQ6vYqoDB6YpjC6Iq/IrwF/1XX9mdF0Il1Jsojfz6a//IVIgv1TiUYpb+9sL+/s+n31idPffMO2xrz7mk8Whq3+UuKF0a9lbMXRQbqXbgdeVaLR15a99PJX3X3eEkcwOHwT2GYNWqqrnZaqKtzvugfL7FlomoamafR96avoLWexaFri53Yhs4M+BhwqpM2+yUIIMR94geGbqN9BFmDXATavXLWfdHWTrdaQZc5sh1JVifstd2FdcBGapqHrOv3f+QHR5lewRIfI4VWkH/qjx6+4dPfJKy6dy/A6uIsZWwRzB0MHgZcLOSJcCFGGzIl1ddJbjwD3qKoaFkLYlr243VvZ1pHSjKZZLIRcRRGtrMzmfMPNnLf+xkynnF7lEiFjYfSPA+9FlvTbo+v6D3LtRKbiwzt+8ztOOmwUeweoVpTDtkOvv/3eR/80LXbVEzIPxipt3cjYvGfOIu2ZyVOSRuCMPRC8xOn3Xx12OsNRmzWqWSyabrHouqJYAAuK4iQLM5Gi67oOfhQlgCyOndz6kBXARmq9Uz2KNREjxcdcpDL/OQm2ZYPdwEFrODLP3d9/Q9jpDEVstqhusWiaRdF1i0UBrNnKAXnvBpCySCWHfuK/dTdy76cEWTPgfKTr43mj/HcjyEH/RYx4kIkoZp4Lxox/M3LwS+Q3wHtKO7pWLH9x+0tRu60nbLefitrtr2pWy15F0192e73N9lC4bfYvf/I1zMLoE1cYPRwOc+LAAcotVqqWLUVRlCkzmqbCUPIXE1fy68i95FwMH/LGdpB9fv9CQ0POIE8BJ9K0vAUojQUjMG0uMgDtgoSW+Pd55J4pshDQkddTAHk9jTbl8SniK4HNQPNky86ohfE8MvYkkZ8te3H7/ZVtHfq63duGuTXFSKWbdF2no6MDt9uNxzN4600Z3VSQhdFbW1s5ceIELS0tRKNRbrvtNjwez5Sym8UQQlxMXMHfSOpUvSbp8TJ0EHgdaW9+BWjJp1IxcjTNR5pCYu0K5Ix4LvmLYJ0pnCVeD/cZVVUnZUPfKI7zAsPTTHwX+FimayhRNw0MDHD8+HFOnjyJz+djyZIlLF68GKabTX8yCqM///zzdHR0DL63fPlyLrvssimxQy6EuIih5ppcyikWDBaLBV3XKbQ4jiR6kcr/APGB4BXgbKYb2dgcX0RcqScq+FFHeo4HU0QO2bKb+CDQNJGuosYm+wsMn3Q9iKyNkEnxPwh84tixY+zaFfdTKSsr4+abb4bp5L0zWYXRDx8+7Nm7d+/gex6P58xtt912USH6who1c29AhrrfweQkrdKR1bVitttYqzD6lGgfjiCrcz2FTCM8pK1cuTK6cOHCrwH3t7S0eLZujUej2+32/gULFlS+/vrrNqQPeapWBJQj7cYjtfFSsD1I5d+MtDt3Gue7Grk5vpwxej9loAOZVC1RDk7gLoZvyKvAL4j//pHY88WLF0eXLFnyVeD+np4ez7PPPjv4IUVRIsXFxVX9/f1BMsuhlOzkMFpzzljwIc0uTyOvxUPjbQoSQlyKVPzJ+xhCVdUvpvtcTDcFAoH7N23aNMSUeuONN/64qqrq/kLUTekoxIjc+R0dHX/3/PPPfyHhZR2Yp6rqucnqVyJCiDlIf+sNSN/r4nE+ZRvSXnraeExsp5FmjpQukkKIe5C+4omKPwC8QVXVF9KdsLm5eX4wGHznpk2bvqzreqLXR62qqjvG9N/E+1aEvAEvQub3uSipXUhhpfXtYvhvn/j3mXT5cIQQNyBdBl0JL+vIuru/S3fC5ubm+bqu371x48YHQqFQWcJbb1dV9Y9j+m/ifXMggytT/f6x5+O9b3Sa+CrgWVVVO0Y4flQIIZYgB5vk9OqfVFX1G5k+29zcPP+JJ554zufzXZLL5wqNglP6MYQQO5BuizE+pKrqjyepLwrSI+NOpKK/jvxv2HUibYcHkcEyB5H269Njrc4khHgv0pskkS7gOlVVXx/hs38E3prw0pdVVf1CuuPzifG7Jyqji5FmmKXIZGLjoYj6iMshJotXgVOqqo4polsIcSvSvTVxxh8E1qmqmjHBlxDiG8C/JLz0S1VV7xtLf7LFkEMlcTksIC6HpUBZ2g+PDh3YiVwBPALsyvPezUpksFZ50jnfpqpqRicVIcTHkdXrYrygqmpe9zjHm0JW+l8AvpTw0g9UVf3IBJ7fibTJ32m0bGvmjsQJhiv3g+M1s4khhLgf+H7Sy68jFX9Xhs/dB/xfwktPqKp6+zh0cUSEEG5ktsjYnkkt+TXThJCeJ88abUe+i28IIe5EVndK7Hc7sEpV1WMZPncD0tQa44Cqqkvz2bfRYAwI85CD8NKkVpqn05xEFkP5E7A1H6VCjZQNzzB0le4HrldV9eUMn1uATEIXwwuUTSXX40JW+m9E5muJ8aKqqnXjfM5qpA38TcAtjN20cAKZxXOH0XZOZni7EOLzyGjqRJ5DmnpCxjEOIBybWRnL4VcSjj+jquqIBWnygZFuYjVx76dVjC7ASGd0K7N+pA04Ngg05+PmTjGQgtyMXhO7PgxPIquqqmHj7xLkKiRGFCgu1Bq9xmBwPlL5r0TKbhXSC2osdCHrEz8MPBf7fUbZx5uAJxk6AJ9FmjBPG8cogD3h/lCQg3RVwmcuUVX16Gj7MdEUstI/n3jOdxinEdUYue8B3o28QEdnttH1Nkskus/mDxx0d/a+NuvQsWNlJ88FiRdGTywGPbChZf+El28zLtj/A96T9NZPgb9F2tf/BNytqmoss6kN2efEqMVZ41EX1ujfYqQJ7Xakws8tGlnXe5RodJ/dH3qlqLv3tarXTh4pP3ba139+9Xm9F553sb+y9LKwx70s4nQsjTpsDnKr2tWO9D9/FumCOOobXQjxZeBzSS8/jZx0uJFVnv5DVdUtCZ85wlBHgatVVc057cl4snHecgUps2GF0XUFl7d6VnXvgrkLfFXll4WK3UsiRY7lmt3u1jMnzE2HD/gr8vr962gihIUQH0KmxEhkD1CPXPl9Fzm4PJTwmQbkJCTGW1RVfSTXc08Wk5IEPEtaiHtdgFyGXYxMBzsmjBn9u4APId30cqaouy9a0tKul5xps3naurAP+OcoMnjt5hE/DGyctzxAfBCIDQiDhdETHs9saNmfl4FOVVXduMgvRqZ6iPEB5ObuXcjZ2SrkxiSqqkaEEK8gS+vFWIG0iY4ZY2VxPVLR30mO3k+OPq8hh3ZrcVun4ugbKFfk912feFzZqXOUnRruB6ArSkSzWaNRh90addptUZuNcLGLYGkxwRIPwVIPwdJiQsUusFhmI1Pr3m30/SDwF6PlWoj7AWTKjbsTXrsVufdyFXLwex7YkvD+Xob+PiuQ3knjzsZ5yx1Id8cFKdr5yP2VmIJPqcEVHUrOdVBybrglU1eIaNaYHBw2zW4l5HYRMn7/YImHYJmHULGHhAHCjbxm7wLCQogm4H+Bx1RV7c/m/1JV9X+FEJcBiS6XVyLTi5Qh45P8wEMJ7+9lqNJfgdx7mBIUrNI3FNReYH3CyzWMUukLIcqBDxptca6fd3b3UdrSRklLO8UtHdgDwbEG6hQZLTFUP1Xip9DGecuPMXQweA3YsaFlf3uuJ1VVNSiEeDOymlaiF8JHE55fByR6huxlqNKvYQxKXwgxCzmTvxPp/ZS1y6A1EMTRP4Cz34fD68MSiVpRFPyzyvDNLo8XRrckFEm3WIYUTEcBJVb4PBK1WaJRmyUSRYlEY69hH/Dj7POinJDHKdEoEaeDSJGTiLuIsLuIYLFrsX925eKwx/UZoFUI8RhyAHh2pFmnqqqaEOJ9yI3RVQlvvSvheXLCsL3AmxP+rsn2d8uWjfOWz0G6tSYWRl+AVOzjFm2s6NiskajNGomCT1qsPAxPtqgrEPK444NxqYdAaTG+2eX2UInnRhTlRkATQuxGDgB/yLRnZfAZ5AB8V8JriftWqeSQSN7lMJ4UrNI32MdQpZ/TiCqE8AAfA96HzHyY9UVr7/NSerqV0pZ2SlrasfsnLeW4AxlCnhxGzsZ5yw8Tr4W7FdifjdlIVdWOBz/68bcPVFclezDEWJX0976kv1eMdA4hhBXpeROrm7sCefMsR9fPH21a4GiRE3+RE//sjJmJJwxLOILd60OJatUo/K1mt/1txOkICyFeQ8rmWeAwRlF0VVUHq7Kpqup/8CMf+/DAebMeI3Wk9pjlkImN85Z7GF4cfcFYvnO8UXRwen04vT5oGTrnCbucDFRX4Z1TaRmorrraN7vias1u+76xIvsh8FNVVb3J36mqavS797z37zuWLFzM8AypAFcKIYoS9k/yKoeJpmBt+gDGTOhnCS/9WVXVN6c5PPYZB/BBdP3vgSWDeWlHQIlGKTnTRsXRM5SeOofDl9P+WJDsCqMnFoEeD3zIDeOtGIPBhpb9KUPfH52/4skTN16zoOvSC4cNJsh+lyVsIq5j6Mx+D3KzO1Vh9Njf8yj8ScVk4EcOAG1Ae3FL+zVRu63MP7si3d7FPFVVzwIIIRYydKXbhdxfGfEmNmztlxMvjF6LdEMej9QSEbIrjF6S8Jj32su6ouCvKsM7p4qB6koGqqu0YKmnGUX5NvCLxE3gX6x941+DZcU3tVy7VEkzIVmtqupLMBhf4mXob1emqmpfqg8WGoV+U2a1jDJmlfegaZ9AUa5EUSzZzCStwRBlx1uoPHKKkpZ2LNEhJtkI0sZ+PEU7gxS6D/BvaNmfkwvZxnnLLUh7ZOLFX8nQwuixx4ocvtqNjA4e9BveOG/5q0gPhceBFza07A988wP31y7S9TcseG4HmtVKz8JhOd9cwAYhBMiZT3JBiiuRv4NJ7riQ7r8XAnjnJSfiHMbPhRCbiRcm9xKfNFQiB9czqT5o2OHrie+XXJLquBxoIfX9cJJ4/WL/hpb9OXnUGANSEUPvhzLkb5RcFD3rLLSKruPu6MHd0QMHjgBYwi5nTd/86h/3XnjeD7/y6c++HHEX/TvwwhV93vWVR08riqZxZtXyVAVqapETKVRVDQghDiEdP2IsQ7r7FjyFPtPPOKIKIW5RwpEv61br1ViUkWcsuo59wE/50TPMfvUYRV19KPL7dxAvjH4ceYO15KrMx4ON85ZXIAeD2EW/CLkkX0HuszQfsDlY4sbZ77sj4rDjryjl9OoV+KoLw1wCoEQ1P7rej0KXbrF0oijdTHZhdE3zKJpWpmh6MeBGUYo0q8WBTIc8mTyC9Cg6AjRf+ZNH/NZI9I3Eo8Vz9ZUPIydbiYXRjwOnNrTsn3T30I3zlruRJqjY/bAQORmsJce0HroCA3Mq6Z87Ozp3z6uD91LrskWcXrMiWfH/VFXVwaqAQohfA+9IeP+jqqomx8EUJAWt9AGEEM0kjKhKKPJWWzD40Yi76Hrdah3ZZ1vXcfQNUPn6CWYfOBpx+IP7GFoc/dVCUO65Ylz81yDdGq8zHpNL9cmNr2I3gfJSAuUlQ1rEPYEZDnQdu9eHu7MXd3u3bgsEz4BySLdZ9oZdRTu6L5m/M1Ti6QD68xF8MxEIIZTSU+fmlJ5urbeEo/W6wlW6xbJEs9sqIy4n4SInEZdTbv4aj6N0TcwaazCEq6sPV1cPrs4+XF29uLp6sYbTbvW8ztD7YW8hKPdc2ThvuQ05214NXKfDamX4CjVr2pcs5OTalYmKf6eqqoMZAoQQn0YWj4rxHVVVM5VULBjyURh9MfCPyFwWz+q6PqbRLrni/COPPHK3Fo3W2r0+NLudqNM+cm1QY0ZfcfiUv3r/a086fMEXkBf1ng0t+wu22s9Y2DhvudJ7QfViX1X53WGPa32o2L0kVOKuCpSVoNvGwWyr61nVaPWc7aDi6OlQ+fGWzU6vrwGpWHZuaNmflUvdVGTjvOXzMAZizWq9QdG0lYqu23Qg6rAnDAIOwu4iQiUegiVugiXFhErdRFz5H4wdfQO4uno1+4D/uD0QfNk+4H/a09r16N3NW3L2AJsqbJy3fBZyM3y1ZrVcj851Fk3LOrivbdki/dSaFTEbf/C22267wuPxvBWYs2vXrouPHTv29oTDf6Sq6ofz+x+MD/ksjG4B/ncMhdEHs2wSy6v/+hF2vPQSwSIH2QTR2HwBSk+d667e+9pv3d19vwVenIwgqIkgqTh6rC0mjxtis2fPpqSkBLum09J8UPcruhLxuEb8nKu9m4rjLT1lJ84+6u7s+TXw/FScPeaLjfOWu4Abwi7nvYqmb7AFQ1WZjo/abZxas+J41+KF83Vdt1188cX4/X4GvF68/f3S7TQ/BJAmzX3EC6PvHo/Au0Jg47zldmBNyF10r25R7nF6/SPul51bcZnvzHU1/UD1zTff7CsrK3MDJKdZZhoq/YyF0RVF+Rukr+t3dF3/9Wg6kphPP8YLD/+ZdjKv9C3BMMXn2s/OaT7y07LTrT/f0LL/8GjOX8ikKI5+LXnwvFCiGs7efop6ElrfQLT6/vuspz0OFi9ejNPp5FjDC+zqzjwhdPb0UXay9VTpqXN/KDvd+jPglQ0t+wvbdjhJbJy3fJF3TuUzxW1daWst6ED0vrcQXLmE+fPnU1ZWRujICc585DNEXE6CpR5jhSADyALlJfgry9AcYymDO8hrDK2He3Aq5ZbJlo3zls/vvvj8lyqOnclYva59VU1/2XveWlJWVkZ1tbSgTmWln5X3jq7rPkVRfgN8hXhhdH/C+48CjyqKsgmZxjcnDJPO/cmvr1izimeamoabETSNoq6+sxXHTn9/3q5D397Qsn/S8tnkG8MTaSlx5X4NYy+O3gUcQtcPzXv5lbe4OnvLi7r7cfYPoAwf9K3+H/ySpV//PHanzLxw4drr2Pf7PxJxDa0fbfMFKD3d+lpJS/svK46c+uFdJ/dMW1NBPtn54bcdu/yRhow5aBSAP2xi9qULKSuTSSwdl1yENv887KfPybiR1sGYozDwVx0ePb1mxd625ZfOYWhh9MvIbQV4mdHeZ/zdK4TYSnwQ2J5txGshs/PDbztz8bPbRqwRXLnrQElo6eVU3/uWtMfY7fYpU7I0F5fNnxIvjD7oK6zICLi3IL0hHk/90RG5mxRpcsvmzsUWDBEpcoKuY/MFKOrp21S959W3v3v7s9PCNm8k1lpBvNLW9aQOmMqW15BJ3l5Ghui/EsvguXHe8pXIlAsR5AbeAaRMjwCnqr/62Zudy674jMU5dHyxs7/GQwAAIABJREFUOhyUDfjpdDkhquFp68LZP/DErIPH3vmOXZt7xtDXGUnJ6dYNnvYuhw6E3UXeiKvoXKTIcTTqsL+mWy2H5t9915LKa1d+1OYZ7owSWXUl1tNPAuCdU4m/quzR2QePfWBDy/5kk8yjsSeGKXAJ8UEg1kb0FzUoA24zGsiI130kFEUHjk12PdxcsQZDt5eePGcFCHlckWCJxxv2uM5FihxHNbvtgK4oL6/42IeucM+f98WRvqu0tHQyiieNilyU/gPIoJIhn9F1/TmGpnwdDXPSveGx2gh09xEqchLxuPB6XF/7xI++N2UVvqHklxPPHHk9ufniJ3KMuIJ/mZGzeLYjb/7DqXypm5ubb033Qdf88yk+coxAeTEDc2cxMHfWQx976Kemwh8Flzz1YpOiswJ47S2Hdwzb62hubv56us9GrlpK57ETdF12IcGyEoBt73/20Yw2eCMlxE6jDWLkoEpcEVxpPB9pVWAxjr2SePqOViFEokno5XSFfQqFpb998jlbKHwNcOgtr28fSHVMJlkkYrFYCqrMZiayUvpGYfQi5IxcIDMx5pO0BZPtc6vp7RieoGmqYCj5pcRzwN+ADKrJldMMV/A5/TAbWvaPVLg5rRwsc6rwBlLeFyY5ctfJPR3IsorpSF9A3O3i7LX5SaOvqmorMkvlX2OvCSGKkT7va4y2muxWntXIvECxiHmvEVQWq4b1eqGtBN58dOcASQNhCrIq5q5p2pgK7EwkIyp9ozD6+4kXRi9VFOXKPBdG/z1yMJkydrF0GOmBlxI319zA8NJsI9GNXDbvwFDyE1QqctrIYYozaXIwctM0GC02abmc+CCwhuwy0xYTL0AEcEIIkVgOcXg2tcIkK1n09fVNmXz6GZW+URj9x8jC6LGNm28B/0R8k2fMLFu27FRzc/MPSPLemSoIIWYjN7jvQM7os7WVxuhBptF9DhlduX8yvCWmuhymC4UkB+M6jFV6+wmAEKIKGYcQGwSyiYa9CJnK/EPIPYHtxFcB2/JdoSxfZCuLcDg8ZZbBGZW+rusnScpvruv6zxlebzUffNp4HPTTBwiFQhpDbYyjrpSTLxJm87GcJqvJLe1sL7Ii02akot9XQFGo6eQQZaiL6KTLYZqTTg5hhlYPm3A5GH78m4yGEMKO3BOIDQI3IgvypMOCHDSuQ+4V9hmFSZ4Cni7AKlTDZBEKDduumDL3Q8EkXFu2bFkU+GRzc/N/I/cOqsPhcEdfX99XGKr0X52M/hk1c28grugX5PDxPqSSf85oewpIyQ8hlRyA1tbW1n9BZs+McWgy+jdTSCeH48eP383QlMuTLgcjW2Vso/h/jEnRMmRRmFuRzgqZwoxLkVlb3wSDFcKeRg4Cfx1rQfqxkkoWp0+fvgm4OuGwSZdDthR07h0hRA1DM22eUFV1wQSefw7xYh+3kn1K5H6gkbi5Zk+hLl+zwShAk2iDDSPrsxa0d8Z0w1Cm3UgXyhgXqap6cpK6lBWGy2g98UFgeQ4f9wFPIJ1HNhZK+mKjwFNi1t/rVVVtnKz+5ELBzPTTkFycILl4QV5JmKHENqBWkb3ZZi/wGDJWYcdUVvIpSE5pfdBU+JPChQxV+D0YZS0LGcNlNGa/RwgxD1lW9A3ALWTeA3MDbzVaSAjxDHIA+Euu3mv5woiQT66+t38y+jIapprST86vP2aMCNgbka5mG5AbTtkQRHo4PIacgQzefA01tUrDw5scyAs2AvjW79s+lcPYx10O40VDTa0dKQcNGJhmcthXaG6Q6WioqbUh01Rb6qF1/b7tvwB+kRCcGFsFrCV99LkDufK+HfiREOJ55ADwiKqqKWsKjBOLGbqvckJV1SkTs1LoSj95hpkXZWPM6K9D5sOO2UtHxBKJ9Jd2dp+edeZsz+xTZ722SMSDjHD9h4aHN8WKQruMx8RNT72hpnaAoUXQk58nF0Y/un5f6oCRSWBc5JAtDTW1CjK2YUFSm0u8GHdicyU8tyV9l4/Uv3/i89Mk1CRev297QZgUmGQ5ADTU1JYxcmH0ZBm4Gaokaaip9QPe+iQZaIryeNDjKvYXF8/pLy+9yF9aUub3uAl43EQcQzLsWpCecuuQ+wgvIQeAP6mqOqo62jkw6XIYC4Wu9PNm3jEU/XKkor+XLDdiPd29VJ1tpfJcG8XdvSXKKIqqI01EOZdJbKipbWVoQfTY4+vr923PKmgkT4y7mc1Q7BcgN8cWMlyx5KvEZEwJZTXQG33rJLUcDgMt6/dtn6jZ9oSYOxtqas9D5nxKLIwea2NJEZJIrEDNENOORddxeX24vD4qzw29xCN2GwGPm9ggEPB45N/FboJu13UoynXAfxj29j8BDwMHxmE1NKFm53xTsEpfCHEeQ9Mz+BhaHzTb71mEVPLvQKYgyIglGqW8rYPKs21UnmvD6Z/UjMDVRluT/EZDTe1xEmrhAnvX79uetZ29oaZWyUZZGeavZUkvj3lm01BTW4FULKuI12zNWhFPMFVGq03x3tmGmtpEOexcv2971mlCspWDQd7NbA01tcXIgTaxOPqFY/3e8cAWjlDc00dxz/CFV9hhp6+ygv7KcvqrKlb0V5SviNptAnhNCPEH4CFVVQ+m++6Gmlql8a13eFIVTk/BlDV3QgErfYYvofZn6+YohDgfuAddfyeKcvVIx1vDYarOnGNWyznK2zqwRvNi9o0iB6qYLTPfLDBarGRboKGmdidx5fPS+n3bM9k5v9VQU/uD9fu2HxjhPIsY2v9zqqrmtMpoqKl1IvO0JCqWy3L5jjGgIeWgMD4RrnORCQdjKRgjDTW1e4jLYStwPINi/0JDTe3m9fu2Z/T8EEJ4kLKIoQGv5NJRw66+jKFyWMo4FCVPgQ7EzJX5WrUNYg+FqTrXRpWxOtABX2kJfVUVl/VXln+ur7Lic+KLX9yFovwK+G2s2HyM/vIyUX3s1D1CiKuzUPymeWecSFbWGZdQRpTg2yyRyPuxWmtRlHRV7QE5o68828bsUy1UnmvDoqVV9F7idUJjLbEwesq2ft/2wWCNhppaK1LhlDC0+HOmwugXkVu+/CKgzmix855Cuo4+ATy1ft/2duN1JzK1xr0NNbU3r9+3PdNvm5McEs49j7i7683kWL80BX6GF+Q+hbQHp5UDEI4p3IaaWgtSDql+/9jzCuRgGpPDAnJLa20jXvfgH4zX2hpqarcgC9Q/sX7f9tNGfxTgPcCnG2pq71y/b3tDhu+9kqGeZK9n47/eUFNbhcyOeafxWJb5EyMSAk6QvjB6uhZKkoOLzPdDcmH0heQweVIAT18/nr5+5h6THq1hu/2q/qryq7qrZ3/jwX/+RNNAeemPkXsA/ZZo9L5Ld++/yBqNvCiEuFZV1WCq7xVCzGe4BaLQgskyUshK/86kv3clHyCE8CjR6Ftt4cj9OB2rUBSLZkv/LymaRnlbB7NPtVDV0ootMuhV2YfMcRMrjH6cuKLvHqvNdv2+7VHjHFlvCBqzsguJX/CJhdGXkrQxloYLgHcaTW+oqd2BHAB6id9gmxtqam9Zv2/7sN/XYEQ5GP21ACuJB6+NuMJKQSwbZDPDB9r2PMhBQw4S/cDZEQ4HBgfsecR//8THZWSniOaQsBpoqKndj5TDK8Rn75saamrftH7f9qfSfEe2clCQ+04xOawh95l8CNiDHOCT5XBurB5QxucHiM/8R8T4v85juBwWIvfqSkb6Dns4TOW5dirPtSvAWr/Hvba7evaPf3Tf+19a6B24SNF1Fu49sNwSjW4RQqxO43adLIeCDbRMR0EqfSHEXGRqg0Q2Gu8p/7+9Mw9v6yrz/+dcSbZsy3K8Jc5uZ2vqumm6uS2lm7u5C0spAdIALT92hhmGKaR9ZiBCYRnIFMrAzFAYBiidlNIU6HQNlLoLXZ2maVLHaZsmdjbHTpzFuy1LOr8/zpUlO5Is2ZIsWefzPHpkSVfSsb73vvfc95zzfvO7uq8SkjuNwoJL/BaLbdgSpUMsJUWdxyk/0EbZocPYPMPDqMuxxpDb2+k2la9uR6MXcxbP2NcaVtTaUQE21BR93jgfKQhe0odSAjzdsKL22rodjY2hL5irkG8Ys/2jIe0oAK5EBZgbUamOWPGjgnuoDjvN/zttME/YB8zbs6GvmdNBz0T9/gEtFsfwsWdy6gIlO/BIw4ram+t2ND4W+oI5CWGsg0eoDrmoVa8BHeKt7f42o3XYXrejMWxPd6owT/iHzdsLoa+ZJ+bTCR4LFxLD+F1eXz95e/dZUdNEAXWQVDa9fZ7F63vW7XZfEmYQ+KYxjx8lw0jIilwhRAGqzIBLSvnYeNtHo6mpaf7WrVvvbm1tvTnk6cbStvbVEvG9vqLCG4cK8sfNzTqOn6T8YBtlh9r32fsHXkAZowd26Gnn19qwonYewZ3+IlRPO560RBdQF+jxNzU1zX/rrbfW7dy58zMh27Sf9cyLVc7jJ28APo4qMpcb5rPC0Qa8SDCwvF63ozGWQbOMomFF7UxMM27zFksxslCGgffX7WjcDEqHtra2v3/55Ze/HrKNp/DYiYqVz75Ui0oPfYDY8+SdmO5XqGPitbodjRkzxzxWGlbUzkDpcCFwkYSLhCr3EDMHli1+8taHfnd94PEjjzxSs23btu2MvnI6zeVyvZOQRqeIhBijCyHWoy7Vdk406Icao//tb38rOHLkCPj9FHT1YDWMoa7CgtzxzNHzunsoP9DmLz3c0ejo6tkEPFa3ozGjBEkUZu/vfFRgvg51ZTAex0Se/Yry//mvW4EvbN26taC1tRWkxHnsBFVtHcecu/daiG3ankQFlkdRV2k7Uji1MW0w03QrUfn061BBaLx0yyA22/Uz7/35DcAXdu3aVdDc3AxSUtDVzcJD7V2lb707QPSiZqHsIKjDFvPqJasw04/VwLVeq/XDFp+3VsjoOkjg4LJF9537rW98CvhBa2vrl7du3TrSySksLPRfc801dwN3mPV5MoJJG6MLIa5C1Yu3A52TCPojxugHDx6ktbWVgaZmustLo77PNjBI+cG2wdLDR54uOnrsPqEGLKddz2WyNKyonY0KPF8nyloDkWfvK/6uq8BaMYuOjg5aWloYfnULp726LZav6UUttX8UNWDZkYi2TycaVtSWoFaefgV1AgiP1TpcvO4Om23JYo4fP87evXvpfmMHNQ0vRHxLCIHV4o+hOj5pXZtnKmhYUVvoF+LKgULHDwu6eyKmw/xC0HfDNVsX3/LRc7u7u9mzZw8HDx7E4/GwfPlyzjjjDIAf1tTUfC11rZ8cMad3hBAbUDMfAsboe8znv2s+X40aiLtJShlXftw0Rt/FmCl1R3e/y/M7Tp0NZQ7I9hR3dP5l1r4DP7UOe19Mt1xwutKwonYH4xS8MspKKf7mHVjKlffLUFc3J7/ydYQnbPXYVoK9yOfSLRecrjSsqH0UlX+PiMjPZ8Y31mKrVNPmhz0ejn31TowTYfs07ZhBHvhrGq3mTmseuOGDbTMPtEUdi/IbBnz2Viouu0Q99vtpb2/H6XTicDhAZTmW19TUjOdMlxZM2hhdSvkvAEKI21A9/YkMiIY1Ri9fuoTil1/mhGkQndfb5y86euyZoqPH3B97/OGMqGiXTjSsqK1idMDfR4gxev4N9WfmnLtyjaW0BKM4mMHJLXKS954LGHzW7GXm5PTh8fwauA+VLsi6tM1kMAfArwp5qg2lw7vA/rzrrq7JPffs1ZbSEoySoH2yLSeHwisvp++hh9UTVssQXt/9KB2eS7fJCOnO+nXrFp/XeXwk4HttVo/Hbj82nGNr81mtB31WS2vRBefPn3HOyg/ZK4LrBg3DYM6cOaEfVYCKYT9KWeMnwaSN0QOY5ioTJaIx+qKFlbQfOEDV8uWUr1xx14qVK++ItK1mXAqAT6Kmpr49diA1mgl03uWXIgcGsb/3PeScWf2zM8855+uRttWMSynwdygd3hqbjoymg/3Sixl+dy/2915Ezooz/nPFhRdOubtWprJ065u9Ns/wl1FjHruu2frSKVU7YzVGJ31Xk59C2hujV152SWiRHJ0jngR1OxqbUNMkIxHZoH7ZEoqWjSwIjWmOuyY8Zo79V1E2iaiDpayUGWv/MfAwlZUlpx2rH/9TB/Cf42wW6+rzjIlN4y7aCDFGv1VK+SzgFEKsTHA7HmT8hRp95naa5KF1SA+0DunDtNMiatAPMUZfFcYYPWHU1NQcAO4ZZ7N7MmWgJFPROqQHWof0YTpqkfbG6Kiz6D0hr2uSi9YhPdA6pA/TSou088htamqaR4gRNPBgJp1Fpwtah/RA65A+TBct0i7oazQajSZ5pKKOtkaj0WjSBB30NRqNJotIy9LK6Ub/pg05qNLFleZtFuENucMZQnuJbMAdyRj9cP6qtXp15Rj6N22woky4K4ndGD1w8xP99w9njH4wf9XajCmklSr6N20wUL99JbEboweeM4hNg17USuW9wL78VWvD1gDRxI/O6TOyE1dGuc0ltVdFgyjzirFG3HuBlvxVa2P2YM0k+jdtEKiTazhj9EqUKUw8bmKTZRhVWyicDnvzV62ddqWhA/Rv2hAwLKkMc1tAfGW7J4ufYIfoFC3yV63VBRbjICuDvrlDBwxFLkCVIJ6sjVwq2Y8qWxww5H49f9XajPMI6N+0oRT124d6tpZPaaPiox3YQlCHLZl4IujftMHJaHP0C1AdnUzhGMpxLeBJ3Ji/au2JqW1S+jLtg37/pg0O1A59AcGdev6UNirxDKPs80LNuA/kr1obUdz+TRs+DzyYqoOjf9OGPE41R18S9U2Zhx9VxyVUh3fH0WEN8Lf8VWtTUv64f9OGgNtXILjXokptRzaUzkx2ETwZvwzsipaq69+04XpUOi8mD+hMZtoF/f5NGyyonflGlDH3mSQmNXOY2IzRB8b8bSXoRzvWADqSMXqwtOLk2vsyQWP0dwLBx0xnHTK3uTp/1dpjCfi+UZipmrNQnqI3oE68iRhDOsr4xugDYR4Lwv/+Yx+HGqMn4qrjGCrwBIzRt4eeBPo3bWg0v6cuf9XalgR83yhMHZYRtFK8EFVHa7KcILIx+tjfP/QG0X//wONQY/R4bDgj0Y26On4RpcOW0JNA/6YNm4A61PEQyS96WjAtgr55eXoNKsBcjzJ1iZcuVO+gldHG6K3A/lSmT/o3bSjmVPPnwN8LmNhJbC/w5MF+34v7+/zO95TbAkvL3wSuyl+1NtbCUtHanYc6cN6HCjATSRH0o6pPjjXkbkUN6KWsTnz/pg2FnPr7B+4rmdhJrA3Y7PHLPz920OP40ILc/zGfPwBcmb9q7e4EtNsGXELQHH0iV1RDqOMhkg5dk21nrPRv2pBPsEM0VocqYrfsDOUYyvDnyY0tQ/5bKnPuEUI4gJNAff6qta8mpPFpSMYG/f5NGxYT7L1cBtjieLsHeIPRZtC7M2HGjDmT6CxG++FWxvr+tn4/97cOcU6JhffOtJFjCFAH95X5q9bGXT2zf9OGOQR1uAo1QyNW/KiTTsCvtRF1GZ72hjjmTKJqRutwWqzv7x2W/Gz3INVFFq6YZSPfKkBdeV2Zv2rtrgm0pxTV4bkR5ZAWlx8s8BZBDRqBHfmr1nribUeqMa9alxI0RL8IqCHGjpGUkrvfGmRBgcFVFTZm5Bigrh6vz1+1Niabskwj7YK+6aL1EVSN/SOopc4HAPo3bTgdZch9E1Es/0KRgDSs7yDEa1IYW6TFtqWvfMn2E1UXDgVeBvzVFc70+iHG4Ha7BWram0AFSz9m2z+/NLfcYRW1hhCBnf58IgTfd3t8/OmAOpYLrYKrZttYUmgBeAe4NH/V2g4YV4eFwBrgZuCcWNpv6rAPYbwmBVukYWscLJqzrXP5lX0EdZCAzAAt8lCziEY0APyfWZxbVGgTtRbBhUJpcQERgu+RQT/37lUmY3YLXD7LRk2RBSFEB0qHd2BcHWYCq4FVKN3HDXRKB8thpYOxRQrLFo+j7LUjNdd3kXk62FFXWyMaAP7VC3MKKvKMc0N0uAjlYXAKgz7JT99WF/FWAReXWzmv1IohRB8q1fNyYNtoWmQSkw76QojLUZ65O4EHzPLLcRNqjE5IUSOLd6h/RufuV50n9jsFnCsReHMd+HPy8Fnt+G12fDY7fqt5b7Pjs+X5vLmOPr8tD2lY8hEinstwL+rSr2PM7UiY545WVzgnPH/Y7XY7UJfeM1EpqVLzPtItlmlygQNAWgTDeRYosAq73SKE3SLo90oO9I++oFlWaHDV7BwKrOLNYVte3YElV9zJGB0M33DfjM49LxYd32sXcKkEfDkF+HLyT/n9/TY7PqsdX06e35fr6PXZ8qQ0rPkIEc/VmB84zqm/eTg9jlRXOCds02gGj6UEdRjvFktOfEQHQ+C1G8gCq8jNswjDbgGvhL29o3WYn29w7RwbxTnGQZ/Fdtm+ZVd/iTE6CL+3r+hYyzPFnbsNAddKsPhsefhyCoLHgvn7hzyW3tzCXp8tzycttnyEiGe6pR+V8gi3/5+iR3WFc8LTid1udw4qbVPB6N870nFxitteGII6gDfXgt/UwWK3gCEEb3ePHt8tzxVcNyeHWXlGF1C39/TrtxMmNhFScG06GqN/EThTSvkl8/F3gIVSyk8IIS4D7kQJ/x0p5bsTaUioMXqAwhMHyLEIvHYnw3Yn3rwivLkOMFI5VTsqfpTF3ZuoWRtvmre91RXOkSPa7XYXolIBobczgIWpbnAk8ixw9ewcFpU62g9WvbdCWoLxOb+ngzzfEN48J167E2+e0gMjrdb2tTJagx3A7uoK50iqyO1256NSMGcwWovFpMnqdJswe/1l9q5Diy4t8tmC55fcgZM4B44xnF+M117EsKlHqFZpwCFOPR7eCj0pu93uXNRJdqwOy0iTBaMGcFG5lQvKrMeOLLjg0QFH2W1RNp9+xuhCiHzgbdRMmPeievbvkVIOCCEMKaVfCDEL+JGUck28jYhkjG4b6MI3tzqdgnxUpJT0dXdxpO2g51hH2/GTnUe8vd1dDu+wZ8b4704PTndauLiqnJOLLkCaQd0yPIhlxiy8eZmzlGGgr5cjbQeGj7UfPnGis8PTc/JE3rBnqIQMmZq4sMDgyoUz6Fn6HvxWNU4p/D7sObkMzZgzzrvTh6GBAY4ePuDrbG87fvxox1DPyRN2z+BACWlykh2PWXbBtfMdcmj5xcKbE/HCYvoZo0sp+4UQvwO+C1wHXC2lHDBfC/RoTzCxUXSIYIw+bHeSM9iDN3/SMTOQvxeonU2EuU2I/t4ejhzaz5G2gxxpO8BAbw+oNEzFZBsdhiFU+inwPxght0n9HwF2dfvo2NvDJbP7sRaodLTPZsfmGYDJB30P6uoo4ToMDvRz9NABjrQd4EjbQXq7ToAa3I/ovzwJhlH/y1gdQv+vSbGvz8+De/u4fHYPuTPUYSUNC/gSUo1gGPAR/M3DaTEhPEODHD18aESLruOdoMY/krHozos6JsIdCwnRoWNQ8vvWAXF5xUkcMyMG/WlrjP4rVG/8A1LKPYEnhRAfAq4FZgD/McF2hD8whUCG38mPoqa4HQU6UTn4zjG3wHPHYsn3Nrd3B3b2HLM9s8xb6N+z+nq653cc3LfwWHtb2dH2Q/a+7snNXMvJtR+TUu4d9gy1hvkfRt1cLld/xA9iZLA3sMNbUHOei1FrAIoXOYza9gH/V/t9hDuLds6cOfPgaaedtrK8vBwhRh8vERKWJ4B9Edo7VpNjseR7Q3SwofK2s8bcZgKzBvv75nYc3F/V2X5oZmd7W173icktNbDl5p4UiH2eoaE9IAP7VaT/qdflckW8RA7RQaB0CMz/LwZKZueJ5QNe/vnksAxnpt1TWlq6/7TTTjtj1qxZGMboDvFw+FROLyq9dSRMW8O1v3+8QdoQHSyonPpYHWYBMz2Dg3M6Du2v6mw/VHGsva3gxLGjMIlxQltObq8wROvw0NAeKWXg/wn3v3QC3dF0gBEtAsdDPiE6FFrF3Hwr3+4YlOEWaw4Cj1dXV1uXLl36Aat13FCZMcboMQ/kCiHuR03J+4KUMqHG6E1NTbcDd4V90WYHiw38XkD80HCWra+ucHYn8vujYe4056FmSdQT46yhUIQQOIpm4JxRirOkFGdxCc7iUgqLirEEd6bjQAPwFPBkdYUzKbMC3G73TlT+FNSO/RDwW+CZm2+++StE0sGaA7Zc8PlAcLdRWPbt6gpnSpe6u93uauAW1NTElUygJ1fgLMI5o8TUwdRiRilW20gw7QWeBf4KPFFd4Zz0vPlwuN3uJ1BXzaB6rI8B9wKbb7755r8jkg4WG+TkBY6HnxiFpd8BOlM508btdlcBH0OtAahlAvWQ8hyFSofiUopKSnHOKKGwuISc3JExjCHUgranUIupdiTjf3S73T9DDdAG+CvKGfARl8vVEzU2jeb2mpqajOjpx5rTvx24GPgJ4JZSXpbIRkTK6Y8hpXkzt9t9OirQrya+xS1DFovlNWdJ2f5Zcxf4Z81fWFQ6c3alxWo9g9iDlASeA+4DHkrkSc7tdneirpL+G7jf5XKNFKtKUx0WogLMLcCKON7qNQxjW2Fxyd6Zc+YPz5q3sLCsYu58W07OCuK7wt2C0uGB6grn0TjeFxW3270VdSX2S+C3LperPfBamuowCzU19BbUFMhYkUKINx1FM94qnz1vqGJ+paN89rw5OXb7SuJLBzejdNiYyA6R2+3+I+rE9Svg1y6Xa9Sq6HTUYrKMG/SFEHWoYH+RlLJHCLEN+JSU8o1ENiTc7J0xJH2E3O12L0AFmNWonmQseFGLWhqAZ4CXXS7XKat3m9u7SzGXeZu3yhg/fxD4P9QO/5fJTBEFcLvdZ7tcrm2RXk8THWaiAsxqVGcjFiSq/lBAhxdcLlfP2I2a27udqMV8V6OuXGO9cvOiepz3AY9OZmoigNvtXglsj5SeSBMdilBrYlajfqsv9z6BAAAgAElEQVRYB193EtThOZfLdXzsBs3t3XmoSSFXobQ4O8bPlqgrsfuAP0y2Q+R2u1cAO10uV8Qpl+mgRSKJGvSFEAtQP/ANUspd5nO3AZdLKW9LZEMizdMnyXNh3W53GcEAc0kMb/GjKvoFduoXXS5XXJUVzXzpIoIngDoIm2cfy1Hgd6gdfmsyLnenUAcn8EGUDlcTW8rgTYI6PO9yueJONzW3d89DBZ7ALZbcbDewCaXD30Kn5yaKKdTBjqqVdIt5H0tvfDdBHZ51uVwd8X5vc3t3OaM7RQtieNsg8DDBDlFSVnJPlRbJIh1X5KbEfNjtdp+NOnt/lPEv9z3AE6iA+2eXy5XQuiPN7d0WVEGyq1CB7/wY3vYWKhf/39UVzs5EtgdSqsNS4KvAbYxfwsEPPI3S4TGXy5WwdAuMnIzPROnwftQVwXjsAzYCP6+ucCa8UmYKdZgL/D3weWLrgLyE0uFhl8uV0PaYOixBBf8bUBNFxusEHAEeAO6prnDGXcYiFrQxegbidrsN1CDg7cDl42zuR/Vc7gf+GJr7TjbN7d3LUeUmPs74C7gGUPnIH1VXOPcmu22JwBwcvwSlw/sYf6zjFZQOm0Jz38mmub17AarcxCcYPw3kRQXBf6uucL6Z7LYlCjPNdDsqrTle5+dNlA4PuFyu1iQ3bYTm9u6ZqM7ZJ4itQ/R/wIbqCudLSW1YhpIVQd+slfIJVI9y+TibN6J27AddLlfcBcgSSXN7t4HKe34c1cOINlHej0o5bKiucKZlaVi3221D1eu5HTUjKho7CQaYKT2ZmT3Ps1H70C2MP/f/SWAD8Fw61q8xOz/1KB3qxtm8FaXD71wuV1OSmzYucXaIXkTp8FgyUnCZyrQO+uaA4N8BXyJ6ueXdqFTJAy6Xa0JlJJJNc3u3HVVB8ROoq5VovbK/onb2v6ZD0DEHBD8D/APRc7WHUPnZ+10uV1r2lpvbu62otMMnUKm4aCmpLSgd/lRd4ZzynK/Z+fk4qvMT7crlOCpldT/w6nhz4aeCODtEbwH/hpr5M+EaTdOFaRn03W73EuAO1IEZbSDqWeCHwBMul2vcnkDvxvVFqN5FsozRDzjWrBu3Xnxze3cZ8EnUwTsvyqZvoILOpmQNckXD7XbPBr6OCviFUTZ9HaXDJpfLNe7spN6N6wtIsjG6Y826cWeFNLd3F6LSDl8jelnld1FzvX872Vk/E8Htds8AvoLqAEVbGfsOcDdqCmnUhYAAvRvX21HHQzKN0U841qwbbyGZHXUCHu8K8jDwY9T4S8r8ANKNaRX0zZk464AvErkn7AV+D/zI5XKNSoP0blzvJLpBeiIcrcajnfBG3HuAjtADoLm924bKxa5F1RCPRCuqhMZvxgb/5vbuM6ornDsT+Q+Y1UO/jgqG+VE2fRS1dP250N6kGdQXElmHVPjodhLBEB045FizbqSTYPY634fqaESbw34EFfz/Y2zwb27vrgZ2JfLKzKxa+SXgm6hV2ZF4DnXSfTy082MG9QWc+vtXmffJKDUyli4iGKKjOkkj+7OZhrscdTzUR/nMHuCnqPGXUWN1ze3dS4H90/mKYFoEffOy9R9R1T4jmUd0Ab8AfupyuQ70blw/m9FG0GcT/cBIB/pRO/s7BI3RX9t/5T8OoHbytUQfoH4L+Gfg4eoKp2xu7y42P2tNdYXzL5NtnNvttqJ69d8i8tTHQdTK07tdLtfbvRvXlzHaHP3cKO9NFzwoR6ndBI3RGx1r1nU1t3dfjNLh/VHefxDVOfltdYXTZ5683wTuqq5w/nKyjTMHyj8CfA81NTgcPlTn526Xy/Wa2eE5j6AO5xP9KjId8KJmT71L0Bj9FceadZ3N7d0rUB2P1USe+XMc1Rn6r+oK56B50ngaeLG6wvnNpLd+isjooO92uy2onN53iLyDtjos/Oyj83hzhk2sILhTp/sOHSs+YDvmDn982eX9vfPOugVVEynSrJhXit9q+P2JZZfNx7D8E8rjtKa6wnnKYqZYMIPM+1BzmSMNlB/JNbjn5jm8MtsuTiOow+KJfGcaIlGrRl8GXulecE7HySXvvQlhfILIrm7Nzr2v3Nc7b8WwPyf/LtT8/zOqK5wTngbodrsvQV1N1EbYpNsq+OUNs3h6iUNUEtRhORlSgTQG3sU0pu+buXTfsTOuvQbD+hkir6rdX3Co6ZfDjrJ9nqKKe1HH1PnVFc6IixgzmYwN+m63+2rU4MxZY1+zCVhUwJHaYnaW5zBTCFFNYnZoD6pnkSxj9PlMoI5JGI76LTlv9s9a5uirOH3lUNHsHMYU7pr98r14Css5Vn1toHT1PdUVzi/G+0Vut/t8VJC5dOxrFgEL8zh5fjHb59opEkLUkJh66T7UiSpZxugLiM9+MxJdfsP6xkD5Ylvf7OqVg8Vz88d6EJRv+yPC7+foWe9HWnNAzfy5Id40j9vtXg58H/jA2NcEMC+P/vNm8HplPrmGECuYeEXcUCTqqiWZxuiJMHHvl8LYNlC60Nc3+4yzBksWFJm/9Qglu/5KTtdhjpz9Ify5BaA6UrXVFc60t4yMl4wL+uay6X9DGaGP4LTCogJYUsDw/DwMQ4iJBM9AUG+NcGsPzeUmmt6N622oHT2cAfRiog+GRsRvWD2DZVW2gdJKMVBaieEdYs4rvwWgv3wJnTXXBQL/ldUVzoZYPtPtdi9CpQ8+Gvp8vgUW5cPiAnxVBfgt8bllBQgE9dYIt7bQXG6i6d243oIanAynwWImOLYjheEdLF1oDJRWGgOllfhtduY9/3OE9DNYNIejKz+AVLXzP1Vd4fxNLJ9p1sT5FvBZQjoMuQZUKR3k4gI8NkNMJMgHgnprhNtBx5p1SQuKvRvXG6hxg3A6LGKCZbMlwjdUPJeBskWWgdJKvPnFzH3hv7F4+hnOL+bIOTfjy3UAfKu6wulOzH+TPmRM0He73cWonsxnASGA2XYV6BflK4uzOBkCtjHaHH1PMoP6ZOjduF6gStwuQfnSBrw/4ykGB4AvJx+LJzg5o79sEZ1nXg+GtQWVXog4w8QcP/kmapDWBjAzV2mwqABm2+PWwYdyWQo15X47mUF9svRuXF+MCjorCeoQ99WkN6cAqyc4WWvIWcGRlR9E2uwngeXVFc6I5QzM8ZOvoAK+A6DEZh4PBTDXrqwA4yCQngo9HpqSGdQnS+/G9YWoQeUVBI3RzyLOq+WxOgznzVCB317oBc6qrnA2J67VU0/aBf2x5sM+n+/Bhx9++GLgxxaYVaV68ywqgDxLXDv1Lkbv0DvSeYeOld6N68tRA9GBnb4WMwjEw0BpJUdX3AiG9TvVFc5vhjOB/sMf/rAcuEfAogV5sNShdCi0xqXDXtTvHwjy2xxr1qV8GmOiMafz1qJ0CGgRt/vPUOFMjpz9IaTNfl91hfOTEXSYhZqUcPYcOyxzqJNucU5cOhxk9PHwmmPNugmN6aQT5syvcwnqcBETuCLw2p10nLsKn73wOeCK6gqn1MbogQ8QwkDZJzqB16SU907kc8IVNerr6+P117f6rN1HLdWFaueOI9DvQU0JfBJ41bFmXVbMyzVTEzWooHMpqm5JaSzv7S9fzNEzrvfIns7/xTv0UUwdBgcH2b79De/QkUPW6kJYXgiO2AP9IVSt+CeAlxxr1iW8TlA6YqYmlqF0uAQ1uyomn8OhotkcWXkTvoGe3zPUdyOmDsPDw+zcuXP42P491upCxOmFMMMWsw6dKA0eB15wrFnXFue/lJGYV8iVKB3eizoeYpo8MJxfTMc5H8aXk3+rPHZgBdlUcG0cY/SbUINHx4HHpZRPT6QhY8uXDg8Ps/u5x3nPDF+sO7YPZbrwKCrIvDPeoo5swDwJnAdcJxE3gjw32q/ZV7GcziWXIntUbJZS8uYzT3KRYyCeFFojSoNHge1ah5HgcyZwvYTrQFwqiPyzDBbP58gZ1+PvCdaU2/FCA+fZTjAn9hTamygdHkN1fDImMCWT3o3rl6JWtV8nhXG1kP6IJaM9jjI6Vt404Os9nhfFEWz6lFYe2Si6MfqdwAkp5c+FEA9JKT8cbyMiGRV0Nr/GecNRCxeeQPVeHgP+7FizLqVOTplGc3u3c+7ffvGkxdP/nmjb9cw+g2NzV8KwyrocbXmb87ujrt/qA/6CeWXlWLMuZUXRMpHm9m777Jd+/b+2ga6bo23XX1rJkcXvhSE1/nLiyGHOPPQSViNi0PegShw/BjzmWLNuXyLbPd1obu82Zm353b/ndnd8Odp2Q4Uz6Tj9WvxDERfLZ5SJyqSN0VG5wUBufKI9ibDG6CWnnU3v9gM4LKNOTJ2oEqqbUOmCtB3wSzcWPP1jH2oQeCxe4OCwLd8/VFC6yO8dxtrbiVdNXaOschlHt71DuWVUhYQelNXi74FnHWvWTdsVjIlmwdM/HiL8PHo/0Oa15XmHCkorvYaNnJNtePLU0EDxzNm0tzmYx6jgM4SqKvkA8JRjzbq4vB2ymeoKp7+3uyOcWZJErYw/4LE77YO5zhU5x1oZdERcCJ5dxujAH4GfCiEuAZ6fYDvCDrQYFgu9JQvJ79pHf9EcPAUlfyhpe3O1Y826SblHZTEXomYsNZu3XebtgGPNOl9TU9MPUKtJRyGEYHjOafg7mhgsnMVQfskjxR27VjvWrBu3PosmLKeh6rE/Q1CHZqDVsWadN5IOAKJyBex7mYH8UjwFJZuLju7+WLaMVyWa3o3rZ6DKhPyO0TrsCUzyMLWIxaYz3VeRjxBP0F+Hcm4a9R4pZT/w6Um240ikFzzzajg4vwa/JQfgpQVX3KQD/gRxrFn3NGqZeSQi6jA8cxEHSxfgt9kBnpt/1Sod8CeIY826t4heFz6yDkUVHDi9Hl9OPsBTc69ZrQP+BHGsWXcSNdMnGhG1GEPcbmFTRUyel6Yxuh11CfOVJLTjQSBswsxvzQkE/D5zO03yiKiDNKyBgK91SD4RdUCIQMDXOqSGyFoEySgtxg36pjH6p4BbpZTPAk4hRKym4TFhznW9Z5zN7smUgZJMReuQHmgd0ofpqEXU9I5pjP5LlDF6YOHGv6MqWt6W4LbcYd5HnAub4O/ThEfrkB5oHdKHaaVFOq7InRbmw5mO1iE90DqkD9NFi7QL+hqNRqNJHjEN5Go0Go1meqCDvkaj0WQRiTC0yCoa6+sMVHG5SMboY2+xGKP31W5uSMuSzulKY32dID4dYjFG763d3KDr08SBqYODU43RI5nVx2SMXru5Qa+0TxI6pz8GM6jPIrIp90IS4zo0lj6UcUg4E+jW2s0NGV9+OB7MYFJOdKP6vCR89QCqtEg4HVpqNzdkVZkDU4diouswIXOfcRgC2ghviL6ndnODXpQ2QbI66DfW181ltDF6JckL6pPlEMEdP2CM3li7uSHja6A31teVM9oYfRHJC+qTpQOlw16Cxuiv1G5uOD6lrUoAjfV1Mwiao5+PKkFcSXKC+mQ5TvAkMGKMXru5QRf7G4esCfqN9XVFBHfowC2m+uZpjASaME2ggVeAd2JJFTXW11XWbm5oTW7zwn5vPqroW0CDC1CBJdN5h9E6NMWSKmqsr6sE9tVubkjpgdhYX5eLqilzAUEtTktlG5JEK+r3D2ixvXZzw7hmSY31dfOAjtrNDdO+zMu0DfqN9XULUBVBL0Lt0MtJjDk6BPOP8RqjF0b4Oz9B7QJVbvoVgjv+K+GuBhrr614F/li7ueEHCfzuU2isr5uJ0uFilA41JMb8HdRvHI8xeqTfP/D3KZVeJ0Ev6mosoMNL4a4GGuvrHkTVd/mHZI7rmL34a1CGLrUoq8ecqG+KnSEmZoweSQ8HiTtWB1FXAaE6HB67UWN93b+hrmw+FstJIpOZNkG/sb7OgrokvRF4H7FVxovECSKbQe9LdD7RbHsxyu8znAH0fCZ+EHhR5jJPoFzEdgKzUekigHW1mxu+PeHGj8HMAa9A6XAjqic50bb3Ai1E1uJEInvI5nhOEerKI/T3D/y9kImfsCTqJBDQYSvKY7gTFeR+CXw+kYG/sb5uGUEdLmHiEzcGiKxBK3A0CTo4gAWEN0WvwvRnniDbURo8iToReFF+IUtRzmIfrt3cMDiJz09rMjroN9bXOYGrUTv1DaiBv3gYBF4n6BPajArqJxPZzsliXoovRO30ocbop0/g4w6gDtRLQp77LvDNiR64jfV1dqCOYICZH+dHeFEHYsA3twkV7BMa1CdLY32dFRWIAsEnYIy+gvinPx8F3kDtvwHuBT490RlEjfV1NpTJUUCHZXF+hB/VKQgcD9tROiQ0qE8Ws5M0l+AJOWCMfjbxnwy6UJ2iG0Ke+wtwU+3mhmlZSTbtgv545sON9XULUfaMNwKXE7vIEhXUAzv0q6i8a8bm8Brr64pRPekLUTv9Baie6kTYANwZOLhj0GEmQR2uIr4U1bsEA3wj8EYm96wa6+scqKvMgA4XAWUT/Lj7gU8GAn8MOsxABaz3oXx449F/P6OPh9czeXaS2fkIdIgCOsyd4Mc9A9wYGvi1MXrgA5R5yhrUpWO1lDKqFV8kwhmjm/T5T5789eD3vrUDv//jKLPvWPADLxG8hHttOsx0iYZ5WbwctbMHjNHj6e258+/6ybeJoIPs7/vlgPsbjfh8H0flh2NNdWxFpTVeBLZMh5ku0TBTXIsI6nAJ8aUbf227+aOfs1108fcJp4Nn6BcD37zzeXy+NahgH+tss2ZMY3TUzK9pP9PFHKAN6PBe1Mk51nTjn4EP5N/1Ey8Rjgmy0Rg9ZJsPArOklD+fSEPGGqMD+Fpb8D7/DL7mJvDGtFajC9iM8gh9snZzw7GJtGU60Vhftwg1kHo9cAXjTIO0XHDR87mrVo86sfrbDzP8bAO+N9+AoZhcEQeAp1A6PF67uaFtQo2fRjTW181B9cSvR6V0nNG2N5ZXb8v99OfPFiIYn/wnjuN95mm8b7wO/eOVeAdgGHiWoA57om8+/WmsrytFdViuR+kx3hXZw3n/eleLsOV8Nco22WWMHrLNg8BnpJTd8TYikjG69/UteO6/b7y370YZcj8GvJDJ6Zpk01hflwc8gkrHRMR20ypsFwdT/r6WPQz957+P9/EHCerwTLYtJosHM/f+C8YpT2694ips17+PQOD3Hz/O4L+6Ifox24nqzT8KPFW7uSHu4zFbMK+M3cA3om1nWXmON+eWT1qFEXHYJuuM0QN197smEvBNwhqjW848C+wPweAp8eMVlCn3o7WbG96Z4HdmI8OEN0ZXGMawKC2z+XbuwHLacowyNS5uVC5ClM9EHj3FOa4JZYz+KLAjnQb70pnazQ3DjfV1kW36hPCJkhKLf38r/gP7sSxYCIBRUoKxZBn+3W+PfcdelA6PoNJnGZNqmEpqNzf4G+vrohlC+bDbu2XXyWL/W81YqmsibZd1xuigPHJ/PYl2hDVGF7YcrGefi/flFxAlpRgLFr7oe+P1T9Vubtg9ie/KZi5G7aDbCZpA70KtbDyQ9/0ffV0YRlhjdOv5FzD8xKNQ6MQyf8EWX3PT51ALX3Sgj5PG+roq1NhLqBn3LtQA9/687//on4TFEtYY3Vp7IZ7db0NeHsa8BW/4d7/9ZdTcc61DnDTW1xWgUp67Ga3DbtQgd3v+dzZ8jwgm9WPIHmN0ACmla5LtiGg+bL3sCiznnKt6m0L8seb7d+mAP3G2AAWReoJNTU2RdTj/Qoy58zCWLENYLA/U1NS8kbRWTn8Oo3QIm4qMpoOlZgU5t34ay+nVCKvtvpqamheT1srpjwcoizZzLJoWY8gYY/RYc/q3o3qJPwHcUsrLEtmIsTl9S24evqFTUjoZlTfLRLQO6YHWIX0I1SKCDpBhWqSdMXqOswRbQdiJDRllPpyJhOpgK3CS4ywJt5nWIcmE6mCxF5A7o5wwswy1DikgoIWRk0vujHKEJWxyJKO0iBr0Q4zRV4UxRk80d+QUljxjyy/EsI0qCdIH/JAMMx/OYO6wFTj/L6ewGMNiJWTGgtYhtdxhsedvzC0qRQiBYRtZg6h1SDH5M+fdYy+e6RFCYFgzPzalzYrcls6eKtQS8DyAoa7O33kH+l4jQ82HM5WWzp5i1OXsLABPb9cTw70nn0brkFJaOntyUIvaagC8A70vDHUd+xNah5TS0tkjUGt/rgHweYYaB4+3P0sGG6OnhXOW+cP+jJCFQ7lFZUPLF1dlxBSoacb3CZmJkOMoyjutcp7WIfV8DTPgA1jzHLOteY67q8oK06OXlj3cghnwASw5uacXVCy8oqqsMGPr8qSLR+5q4Noxz324pbMnkaVuNePQ0tlzCfC5MU9f0dLZs3Aq2pOttHT2LEXNlgtlMWoyhSZFtHT2lAI/HvN0IXDTFDQnYUx50I/ww4IqrfqhFDcna2np7MlFrRINxyciPK9JMOZV788JX0/n1hQ3J9u5i/BlGjJahykP+sB3iFwS+bYUtiPb+SpqwVA4bm3p7EmHfSUb+BhqwVA4PtLS2ZNIwx1NBFo6ey4mcvy5qqWzJ97y4WnDlB7ILZ09M1HTQSNR19LZc2Wq2pOtmL38aDOylpDhvZtMwOzlR5sJ4iS21aGayRPtdxbA+lQ1JNFMde/ti0QvC+sDvtfS2ZMWA87TmNVEX0YugW+2dPako0H2dOJy4Kwor0vgy5ncy8wEWjp7lqBKVkdjVUtnT+T6SWnMVAf9l1A/bh3K0SmU8wBbVVnhBVVlhTHVVdZMmN0oQ5QrUaUaQrkZsFSVFS6qKiuc1n4EacBJ4IOo0suPjnntqygdyqrKCjPOuCPDsKDGE69BrVMK5W6UDo6qssKtKW9ZApjSHnRVWeFTgb9bOnsOMtpmb5aenpYaqsoKR+q3tHT27EEZTQTQOqSIqrLCbcA2gJbOnqsY3dus0DqkhqqywrdRpeQDvf5QZleVFSbNwD4VTHVPP5SxixwWTEkrNFqH9EDrkB5MOx3SKehvH/O4akpaodE6pAdah/TgFB3MAfeMJZ2C/thSvZeE3UqTbE7RIdN38gxlx5jH5+rFilPCAeBEyOPZKP/jjGXSQV8IsUAI8YgQ4ldCiDsn8VGjgo2U8sKdzbv+2SxtqkkdbwOhRrhzBo93/KvWIbVUlRV2oRyxAtg83Sd+pHVILeY4yqjYNNzX/R9NTU23Z6oWMQV9IcQXhRD/FfL4O0KIgHntMuBxKeX/A6on2pCB4+3t0u/vDfkOYVht3wV2NTU13dXU1GSZ6GdrYqevfZ/f7x0eZSgvLNY70DqklKamJovPM+QZ9aRhfA6tQ8qRUo6a0SYMSz1qtW5GahFrT/9e4H1CiBlCiBuBGwjWaNkGfEwI0QA8M9GG+D1DP/AO9jmklHgH+xk82YlveAiUkcTtwA8m+tmauPiBd6BvjpQS39AAQ13H8A72g9Yh1fzA29+zHMDnGWSo+zje/h7QOqQcT9exhQC+YQ+enhN4ek8GXspILWIurSyE2ID6JwPG6HvM578GNEopnxdCPCSl/HC8jQi40wjDUiClH8K3KaPcaTKREZcgYajcsQw7M03rkGSCOogCIQykP6y7pdYhBYzEJou1QPoiLhfKKC3iyen/CvgS8I9jjNE3A/8ghLgHaJ1gOz4CFEi/L1LAh6DjvCZ5fAQoQPojBXzQOqQCUwcZKeCD1iFVqNgUOeBDhmkxaWN0KWUTEHfvfgwzY9wuYxznMxStQ3qgdUgfpp0WsQ7k3g7YUWezryShHdPOcT5D0TqkB1qH9GHaaZEWxujAg6i8WDT6zO00yUPrkB5oHdKHaadFWhijBxznx9ksoxznMxGtQ3qgdUgfpqMWUXP6Usr9jFl9JqX8DfCbJLQlUEf8C6iBkQB9qB89oxznMxitQ3qgdUgfppUWMU/ZTBVNTU3zUGMHs8hgx/lMR+uQHmgd0ofpokXaBX2NRqPRJI90Krim0Wg0miSjg75Go9FkETroazQaTRahg75Go9FkETroazQaTRYxpcboGk2mYD//C1IYFgxbDoZhQRgWDKvNvM9BWNS9EXg85nlhWLBYDYQQ6t4QWCzmvVWEf95iIAwwDIFhMTAMgdVqYDEEOeZ97shji7q3jH0+/L3NMLAIsFkMDCGwWQSGEKOfM4S5rRjZxjJqW4EQYDHAQGAxQAAWQ2CY90KARQgMARaB+j8FGOZ7hd+HkH7w+0D6EX6vKvbn84Z9Xvi94FfPq9e94PchvcPqfnh45LH0+8A7jPT5Rm8zsq0H/H6k14P0+/F7vCP3fp8P/7AX6fPjM+9PfTysHo+8z4ff50f6JT6PD+lT9/4xj0e9PuzD75PmeyU+rx+flHj8Ep/EvJd4/IR93k/oNsHX7pGtEd3udE9fo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaL0EFfo9Fosggd9DUajSaLEFLKqW6DRpMVCCE+J6X8hW5HEN2W1LdD9/Q1mtTxualugEm6tAN0W8KR1HbooK/RaDRZhA76Go1Gk0XooK/RpI4pzxebpEs7QLclHElthx7I1Wg0mixC9/Q1Go0mi9BBX6PRaLIIHfQ1miQhhCgRQjwlhNht3hdH2G6DEGKnEGKXEOInQggxFe0wt3UKIQ4JIf4jwW2oF0K8LYR4VwhxZ5jXc4UQvzdff1UIUZnI74+1HSHbfVgIIYUQ5yWjHbG0RQixQAjxjBBimxBihxDi+kR8rw76Gk3yuBN4Wkq5FHjafDwKIcR7gIuBFUANcD5wWarbEcK3gecS+eVCCAvwn8B1QDWwWghRPWazTwMnpJRLgLuBHySyDXG0AyFEIfAPwKuJbkOcbfkG8KCU8mzgY8B/JeK7ddDXaJLHB4B7zb/vBT4YZhsJ2IEcIBewAR1T0A6EEOcCs4C/JPj7a4F3pT8+V9oAAANjSURBVJR7pZQe4AGzTZHa+BBwZaKveGJsB6gT3wZgMMHfH29bJOA0/y4C2hLxxTroazTJY5aU8jCAeT9z7AZSypeBZ4DD5u3PUspdqW6HEMIAfgh8PcHfDTAXOBDy+KD5XNhtpJReoAsoTXU7hBBnA/OllI8l+LvjbgvwLeDjQoiDwBPA3yfii62J+BCNJlsRQvwVqAjz0r/E+P4lwOnAPPOpp4QQl0opn09lO4AvAU9IKQ8kvoNNuA8cO1c8lm2S2g7zxHc3cFuCvzfutpisBn4jpfyhEOIi4D4hRI2U0j+ZL9ZBX6OZBFLKqyK9JoToEELMllIeFkLMBo6E2ewm4BUpZa/5nieBC4G4gn4C2nERcIkQ4kuAA8gRQvRKKaPl/2PlIDA/5PE8Tk1VBLY5KISwotIZxxPw3fG0oxA1rvKseeKrAB4RQrxfSvlaitsCapyjHtQVoRDCDpQRXr+Y0ekdjSZ5PALcav59K/B/YbbZD1wmhLAKIWyoQdxEp3fGbYeUco2UcoGUshL4GvDbBAV8gC3AUiFElRAiBzUo+UiUNn4YaJCJXzkatR1Syi4pZZmUstL8HV4BkhHwx22LyX7gSgAhxOmosZ+jk/1iHfQ1muTxfeBqIcRu4GrzMUKI84QQvzS3eQjYA7wJbAe2SykfnYJ2JA0zR/9l4M+oE9qDUsqdQoj1Qoj3m5v9D1AqhHgX+CeizzBKZjtSQoxtuR34rBBiO/A74LZEnAh1GQaNRqPJInRPX6PRaLIIHfQ1Go0mi9BBX6PRpAQhhE8I8YYQokkIsUkIkW8+XyGEeEAIsUcI0SyEeEIIsWyq2ztd0UFfo9GkigEp5UopZQ3gAb5grrr9E/CslHKxlLIa+GfUymBNEtDz9DUazVTwN1S9oSuAYSnlPYEXpJRvTFmrsgDd09doNCnFXHx1HWqaag2wdWpblF3ooK/RaFJFnhDiDeA11MKj/5ni9mQlOr2j0WhSxYCUcmXoE0KInagVuJoUoXv6Go1mKmkAcoUQnw08IYQ4XwiRaE8BjYkO+hqNZsowywrchCoTscfs+X+LBNWO15yKLsOg0Wg0WYTu6Ws0Gk0WoYO+RqPRZBE66Gs0Gk0WoYO+RqPRZBE66Gs0Gk0WoYO+RqPRZBE66Gs0Gk0W8f8BCM5udsc+pnYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIZCAYAAABK2C3FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeZgcVdX/PzUzmSUzWSYbJDHsRpYCDIIhTgaIgOACKOAGou8rKrjj9oob1+vvdccFXBBFBUV9EZFVRLYEZoYhbBOgQkIgQCD7Mvu+1e+PU53p6eme6X26O+fzPPV0d1V19Z2pW/d777nnnuP4vo+iKIqiKIVF0WQXQFEURVGU9KMCryiKoigFiAq8oiiKohQgKvCKoiiKUoCowCuKoihKAaICryiKoigFiAq8oiiKohQgKvCKoiiKUoDkjcA7jnOc4zjHJ/id6Y7jPOI4zirHcR5zHOfUTJVPyQ5J1oMljuM0OI7zsOM4DzqOc0imyqdknmTqQPC9/ziOs8txnG9molxK7pBsHSk08kbggfcBsxL8Tidwku/7pwAfAH6Q7kIpWSeZerANONP3/ZOAKwGb9lIp2SSZOgBwMfCVNJdFyU2SrSMFRV4IvOM4pwOXAt9yHOdn8X7P9/1h3/cHg4/TgWcyUT4lO6RQD7b7vt8RfOwHBsc7X8ldkq0DAL7vb85MqZRcIpU6UmiUTHYB4sH3/fscx3nZ9/3aRL/rOM5C4CZgMfDRtBdOyRqp1AMAx3Eqge8C/53ekinZItU6oBQ+WkdGyAuBdxxnHrA9Yl8x0BDl9H/5vv//Qh98398CLHcc5yBgFXBXxgqqZJRU6oHjOFOQjt73fd9/LqMFVTJGKnVA2TeIVkf2VfJC4IFjAC98h+/7Q8CJ433JcZwy3/f7go/tQMd45ys5T7L1oAi4EbjN9/3bMlc8JQskVQeUfYoxdWRfxcmHdLGO4xwM3Als9n3/zAS+9ybgZ8AQMAUwvu8/kJlSKpkmhXpwPnA98ESw61nf9z+b/hIqmSbZOhB893fAW4AywPN9/90ZKKIyyaRSRwqNvBB4RVEURVESIy+86BVFURRFSQwVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRChAVeEVRFEUpQFTgFUVRFKUAUYFXFEVRlAJEBV5RFEVRCpCSyS6AoiiFjbW2GJgSbCVh76dMsL8EKAb6gT6gN3iN+t4Y42ftj1KUPMDxfX0mFEURrLVFwAygeoJtVtj76UApsUXbyVLxQx2BCTsDwdYDNAN7gm13xOseY0xflsquKGlHBV5RCpRg5Lw/sAh4HaNFOZpQVyPini1Bzgc6iRB9onQEwvcZY7onp6iKMhoVeEXJQ6y1DiLOi4ADgtfI9wvRabjJoBcR/M3AJuCV4HXve2NM12QVTtl3UIFXlBzEWltJdNEOfz910gqYGD4wELENxrlvGDH/lwHlwWu096VZ+2vSw25Gi/+oV2NM22QVTCkcVOAVZZKw1lYBhwNHBtvhwEGIeM+avJLRAbTE2Jqj7GtF5rSjirYxZijTBQ58B0IdgYk6A6HXqcj/eQ4wO9jmhL3OQpz8JoM2Yoh/8NqsToXKRKjAK0qGsdbOBI5gRMhD2wFZ+Pk9wGvBtouJBbvVGDOYhXLlPGEOh9HEP/w1ct+ULBSvBVgbbF7ovTFmZxZ+W8kTVOAVJU1Ya+cSXcjnZ+gnu4FXGRHwVyNeX1OHr+wS+EZUAfshHbgDg+2gsNdFZM4ysIvowt+cod9TchgV+BymblmNA8wEFgTb/ohpMbT8qCTKFm3/ADJSCy0Jao7YWmsbGzJuRi0EggZ8PiLckWI+J40/NQhsAV51hoe3lfb1tU3t6u6u6ugYnNbR0TWtra19ald3vzP+fQ8/NsTY+x6+tdQ2NgyksfxKDILVDQsYLfrhHYEDkGmEtFEyMNBd1tvbXNbbu62ip/eVqZ1dG2bt2eNVdnVtYaRdaKltbNBlgQWECvwkUbesZhojwj3eVp6lIrUyusHfATwPrAfWAS/WNjb0Z6ksOUMwKj8BeDOwNHg/Oy0X9/1hx/dfndI/sLmip3vPtLb2zhmtbU5VR3tFRXdPdZHvh+pAVVp+b2I6GF0HdgEbkPu/Hni+trGhJ0tl2SeoW1ZThnTc9z7zvuMs6KmoOLSnouKgvvKy+f1lZbP7yssreivK6S2voKeiguGS9BgAynp6qOzsorKzk6rOTqZ2dvVUdnbuKRkaCg0E9gAvInVgHbC+trGhIy0/rmQcFfgMU7esZgrwBuDYiG2/ySxXEgwCGxl50EPb84XywFtrK4AliJC/OdgOSfnCvj/oDPuvlPf27prW3j4wo6WlckZr68LKzq79i4eHU758FvERB6/IOrC+trFBTcDjEFjjFjHy/L8xeD2UBOMO+EBvRTldVVV7t86qKrqrKhkuToPw+z5VHZ1Mb2tjemsb09vaqOzsDC/kFsbWgXXAztrGBhWUHEIFPo3ULaupBo5h5OE9FjiKNJvbcpDNyAPuAXXAQxM1+HXLaj4LfBkZGV5W29iwLuOlDCMwkx7OiJAvBY4mtXXjvfj+C2V9fdur2tt7qve0lFU3N+9X2dn5+iLfr0xDsXOZnUgdWAs0AKtqGxu2jveFumU17wF+gDiMfaW2saEu46XMAsGo/ChGi/kxSCChjOEDPVMrRgm/bJX4RamlHSkeHGRaWzsz2lpF9FvbKOsfY9BrQZ7n54BGYCXw8niiX7esZilwLTKNdEVtY8MtKRVUGYUKfJLULaupAGqAkxgR9Ex4RfcgPeatwDYkslZoOdJglPfRPpchS35mB6+R28w0l9kHnkEe8FXAw7WNDS2hg3XLag5AlvuEaAXOrW1sWJnmcuzFWruQ0SPz44FpSV6uC3gO318/rb29c+6OnVWzd+2eU9XRcZgDh5H+SHD9yP0P1YFWxr/f0epGKSOR66Jt1aQ/+dQG5P6vRDp920IH6pbVFCF1uSLYNQB8tLax4cY0lyGjBH/HMcBbgeOQduAI0u9EN4Tc+1A9aGF07ICYdWGoqGi4ec7s6vaZMxd2T604uK+8fFFfWfm8vvKy6ThO0nW1rKeHGcEIf3prG9Pa24likXqNkTqwqrax4eXwgw+cvGLtUHHxkRU9e2d+vgl8Ty0B6UEFPk7qltUUI+bb04JtOamNzAcYEe7xtvZMV/bgb5vJSGM/G3H4OSJsW5jCT/jAGkYe9FeBJkYL4QDwsdrGhj+l8DvA3iAxITEPvS5I8nKDSGflMXz/sQNe2bT7kA0vHFLk+6cCp5B8JwHGNtqxtuYs1IEiJKZ8eCdwEWLlCNWBg0it87IeqQOrkBHec0CkZeMK4H9zuYGvW1ZzECPtwKmk5lzpI/4uE9WBXbWNDWmdz7HWlgKLEWuDi+8fBRyD4xyazPWc4eEI034rU7u6IyvMJoI68PiypRUd06f/Gsdh9s5dHOGtpVSsAn8ALlWnz9TJe4H3PK8YeD0yAilGRjcvuK6bkjdoMGd2CCMP8ltJPvjIdkTgng7bNtQ2NuTNeuO6ZTXTGd3Yh94fSuKjFR8x6UbzQ7CATaSBv/LKK0unT59+bldX16k9PT0nDAwMHEXypvaXgMeA1cBjSx57fEd1c0sNI/Ug2SVvzYy+/08Dz+WT13LdspqpiCCEd/wOD/YlE0luG9H/nzcAn0jUqdPzvEWIw1oF4jC4yXXdlH0D6pbVzAZWMFIHkhJAxGLxDCP3fw3g1TY25FTYWmttNeJMuhQ4MXhNyrG0ZGCAaW1to0b6pQOi208sfTPt1SPGw9LePo585llmNTcDPACcX9vY0JrI73metx+Sd6ESsbRtcV13ezJlLwTyVuA9zzsEuBi4BPE0D4llUbDdCPzGdd018V6zblnNXETIQw/yQQkWawiZhww9vE8DT9c2NhRs8IlgvvEwZJnYW5CG8NgUL/tn4OOxxC8IQHJseXn5OSUlJR/o6elZPDQ0lMzIcg8i5nu3t95zbz8yMg+Nzo5M8Jo+4nUc2aHbnMuj0lSoW1ZTAhyM/K+WIv+/E0jNn2ElMm0zbgPved4M4P3A55EOeajOOIiF7SHgF8A9ruvG1aEOm34LtQPHkbjlYhOj7/8aZD46r7wqYe/S0EOQexsS/TeSZHjgqZ2dVDe30FlVSdusiDGT73PQxpc4aONLFPn+WuCdtY0Nm6JeKMDzvHLgHKQOHIfUgdCzVo78/68CbnVdd59aBZJ3Au95XiXwJ+AdjDzE0RhE5i7XAue4rrst8oRglH4kcD5SQZYkWJxXgfsQp6I15NmILFMEI55aROxPQeYoE2U9cFJtY8OuoIE5DBHcU4PrJjqi6AeeJBiZB9tLxhg/MLmeB7wHabwSsUjsAu4HHmZkRNaZYNkKjrplNVWISJ6C3K/jSdzSsx04tbax4bnIA57nOcDngO8j8erHc2LsQO7/ua7rPhyjvPsB7wbOBU4msem3dkb8TZqAZ8J9TgoRa20ZIvJLw7ZkLRtjmNHcwlFPP0N5X18HcF5tY8N90c7zPO89iB74jD9d1oEM/C52XfemdJUz10mbwDuO813E4WwH8GHf99MeQcvzvNmImB5I/OvDB5AHsMZ13ecDUV+CNOjnIUvY4qUFeBBp0O8HNhbqqCyd1C2rmYPUjVOA9yJm1HHpKyujefbsnnVHH3UTjnMqMh8cN5WVlcyZM4fq6mpmzZo1PGPGjJ6ioqJ3hBr4umU1ixmpA29K4NLdyKgwVAe8fByVZZsg7sNypA6cR/xiMAgcEO6gF4j7dcjIPZHVCT3Ax13X/UtQpoWIoJ+HdEjjdTIcAB5hpA48kU/TbZkiiBkR8nsJ+b4k7cBbPDjI4rXrmL9tmw+cHLnKwvO8ryI+G4kkXeoGfuS6rk22XPlEWgTecRwX+Kbv+x9wHOdSoMT3/V+mfOEwAjPMk8hILlHT0LDf29vc9vVv/tXv6DgLMSfGQx9Qz8iD3KQR35KnblnNEuCpaMcGSkponTWLltmzaJ49i+6qxGK7lJeXM3fuXObNm8fcuXOprBzb7vtDQ10d//u93wxt3nwG4MZ56SFktB+qA4/uiwF/0kXQ2XuNxAI4fb+2seHroQ+e5/0M+DiJiTsAvu/3dP32d9cMPPHkMmBZAl9dw0gdqM+1efNcJJhKW8zoUf6xJGjJmbd1K+4z3l21jQ1nhfZ5nncJ8FOSy6jYDXzddd2rkvhuXpGuXNG1wL+D9/8GfgikVeCBi5CRezLzPkWd1/52lt/R8bkJzvMRAQo9yA0auSut7G3Uhx2H1lnVNM+eTcvsWXRMnw4JrNiZMmUKc+bMYd68ecybN49p06ZNuOKn5+Z/VA5t3vylOC6/jpE68FBtY4Om7kwfDolHZ7w/9MbzvAOBS5O4BgB9q1ZVDDzx5BfjOHUTMv12P7CykP1oMoUxZhiZaluPOE5irZ0OnFze1X1bb+XUuCwmO+fPZ/jZtQ+FPnueNxW4kuTTJU8Fvud53h9d121P8hp5QVwC78iyiWeAw3zf3xbsuxD4MdIrq0Y8YkHSHKY11aXneUWIKSapYCG+7zP44sZYlWkA8dj8B3BHbWPDruRKqUzEw6euWHvgSy/f1zF9+ql75swuGpqSUNKt3urq6p4FCxbMnDdvnjNz5kyKEgzeMfjCC7EO+cjUzz+AW2sbG15N6MJK3NQ2NuyqW1ZzObLeuQqZP+8Mtg5G4jxMR6wnv65tbHgw7BJfIYX1+oMbYtYBkFH6P4B/ItH5dPotzRhj2q21M+MV94Dhkx+pvzLs83+RnlgTH0OsAAVLXALv+/5Gx3HuAi4Dvuo4zjJkhH6G7/uvOY7TgqRVJHhNd9jKM0lhLsdxHEqXvpn+h/b61/QB9wC3AHcmuhRDiR9r7QLgbODdTJny1o1vWByvqg8BjyOdrwdPO+20XTNmzFhNCg926dKl9Lz6Wvj1H0Ia9NvC53iVzFLb2PDDumU1P0Wil/XEK6SBx/x/k6T3NkDpCScw8FQTjARkeYxA1GsbGzYme10lIeL1zxoC2nGcz4Z2BIO9b5DkYC+MqcDlnuddHe/qinwkERP9D4EHHcf5M9LDvdT3/ceCY/XA1xAzzBnIaCidnEyKCTemXngBpcctwe/ofLrrut/XFkr89Fwj8Hg/AvFIPgdxtIkXDxH0B4CHjTF7TeOe530UGe0lTfnbTqfkkEMYbmvb3fWba4+obWzYncr1lOQJgpgkGsjkmCS+M4rS45ZQ9M2vM7x793DXb687qLbuodcm/paSZm5FRs7vRhwfX0ZyHERuzcaYyM7fPNJnIa5EAniNuwwvn4lb4H3ff8pxnFAAkB/6vn9T2LFnHcfZ5DhOHRLA5MNpLmfKiVkcx2HKkbKk+biLP6rinkaCuO4nMiLqr4/zqzuBfyFznQ8aY3aMc241MuJLiZLDDgWYcpyKez6SlljuJYsWwaJFw6XX/EoT5EwCwdz8l4ItUaqRTl46smwOBtdTgXccpwgxmQwjo/lR+L7/tTSWK5J0eqyq01waCDKvnYqI+tnA3Di/+gJwG3A78KgxJt5VCT1I/UsH+3ysgjwlnc9uMVoP8pEe0pczwaHA9SARE/1PkHnwF4ALkXjB2eJFoJcUem0DAwNs2bLFLyoq6rrllluKgl6kkgDW2tnAO5FR+pnE78X6GCLqtwHro5jd4uFVpOdeMdGJsRgeHmbz5s04jtN5yy23lBljtIHPL14lRSuO7/ts3bqV4eHhrscee2xqoXtRFyA7Sd/qr1IkmFLBEtc6eMdxLkHm2ENhKL8NHOlnKQye53lzkYc7KYEfHh7mvvvuo7Nzb4Cx9cD3gL8ZYwrWwSIdWGsXIcFAzkGC1cSzhjW0MuF24A5jzLhpQ+PB87wpyEqNpGJiA9TX17Njx95ZgC3IKpDfGWPSHpRJyQye5z2JhCNNijVr1rBx415fulbgauAqY4ya6/MEz/NuRIIcpSL0Q8Adruuem55S5SYTCrzjOKcBNwGnBHPtxUgayC/5vn9bFsoIgOd51yOWg4RvaltbG/fff3+0Qy8h0w036GhuBGvtDCS614eQDl08nuvtyHz6bcA9xpi0j4w8z/sK0rlMeP3r0NAQt90WtbruQqxT12SizEp68TzvbCTPRFJZ/O6++256esZYZTuBXwM/ncAPRMkBPM87EniCFKx5iCf/ctd1m9JTqtxkXIF3HOdwxEP+w77v3x22/9PAh3zfTyQSVEp4nrcYifOcVON+7733+t3d3bGEagvwI+C6fXU0Z62dgpjdP4TMqcdjLdmCjNJvAx4yxmQ0wluwTOpVZI10wqxatWp4z549sebvWpGEFFfraC53CZZJbQQOIIm52CeeeGJo06ZNsaxQvcDvgB8bY9S7PofxPO9+kk/Z3Q887rru8vSWKvfIq2QznuedjyQWSLTn1tXa2nrNAw88MA+xAsR6wEOjuV8bYwre0z5Y0rYUEfUPEJ/522NE1J9Mcj49aTzPOxGJLpboOtjuvr6+f911111bgU8Quw7paC7HCTJJPob4BCUS9rR3eHi46fbbb793eHj4s8RebjUAXA/80Bija+NzEM/zqpE6cACJxUUYQAYmJ7iuW/ArafJK4AE8zzsL+CsywpzIXD+M9Mr3xh221h4CfBUJmBHLYacFWaf5M2NMwcWcttYeioj6h5DY/hPxODJNc1suNHie552AhESeRnwPdxeSnORLrusOWWvnAV8APk1sU28v8Bvgu8aYgm8I8o1A5O9D8snH0+HvQvxCLnBdt8taOw0JeftlZG11NIaBvwBXGGNeSbnQSloJko/dicRHiKfD342EoX6H67r7ROjhvBN4AM/zDkUezA8RPU1gJyL+dwI/dl338chrWGtfF1xjvNHcViRq0p/y3es+8IB/P/I/i2dq5RVkrvNGY8zzGSxaUnieFxLpTyAdtSpG+wp0I6O7OqQO3Bt5DWttNfBZJEJjrDXWbcD/Ar9QP43cwvO8KqST9hlkNF/B6BF9KC/4s0iH/SbXdUc1eMFyz4uRTv/rYvxUHzJ9873w4EvK5ON5XgnwUSQX/EFIWxA+cAulDX8NuYfXua6bUrCkfCIvBT6E53llwFnBNg8R9d1ISteb4lkCEzaa+wyxo+WtAb5kjHkwxvGcxFpbDrwLSdTzDia2eLQAfwf+DDySbfN7MnieV4ysx38vI6O5PUhApj/H01MPRnOfRAJvxBrNvQJcDvw9H/4v+xJB+tilyPTbgchorgWZTrrBdd2XJ7qGtbYUCdB1ObFT2e5GnDx/a4zZZ0QiX/A87yjkHi5GQqa3IUus/+y67jOTWbbJIq8FPp1Ya2cho7nPE3s0dxfwP8aYdVkrWIIEKRprEVE/n5EcAbHoR/6uPwP/3pdHqcFo7mPA/xB7NPco0tl7JGsFU7KGtbYEsXR9Awm5HI3nkTpyp3b2lFxGBT6CYInY1xGzbbT53SHgt8C3jTE5M49jrT0CEfULEceTiahDTPA3G2NaMlm2fMNaW4Z09r5J7A7SzcDlxpiXslYwJWsEHeWLkHgZC2Kctgrp7D2VrXIpSiKowMfAWnsQ8H3EuzwaHcjD/3NjTG+WijWKQIjOBT6FLBmZiOeRkfpf1GloYqy1c5A0xZ8k+vRGP/ALxBFPO0kFiLW2EvgiMkcfzZHLR56pbxhjNmezbIoyESrwE2CtXYosnauJccqrSJS//8uWI17Q+bgEcQ6aKAb8TuBvyGg968vaCgFr7WIkTsI5MU5pBr6DBMvJaCwAZXKw1s5H7vFHib7+vgdpJ360LyyxVfIDFfg4CNaLn4tEvYvlgPM4Yq6ry1AZipFANJ9EHObGiy7Xg6RkvBG4T8Pxpgdr7cmIN3asUKkvInOzt2lHqjCx1h4NXAm8LcYpOxCrzx/0uVMmGxX4BAhM4p8CvkVsR7xbga8aY15I02/OQ0bqlyAewuOxCvgjcKuOIjJDMDd7ATJ9E8sRrw7p7I1ZnqkUBtbaMxGhPyrGKWuBLxtj7sleqRRlNCrwSRB43H8LWYMbLVjOIPAr4DvJhD0NLAbLkc7EeTF+I0QbcAPwm1z27i80Ao/7LyDTM7GWV/4V+Jox5tWsFUzJGoHH/X8D/w/YL8Zp9yJC/2zWCqYoASrwKWCtPQwx28fKSNSKPPy/iGfdrLV2OuK5+0lijwxCPIWEVP2/Qoy2ly9Ya/cDLPBxos/N9gE/Q4KkqFWlAAniKPwPEkchWtCsYSS99jc1/LGSTVTg04C1thZxsDkhxilNwH8ZY6IGW7DWvhER9QsZP+RiL/B/wDXA4zrPmztYa49C0s++PcYpm4CP5luwJCV+guiY30WCrUSjGQmo9X/67CrZQAU+TQRzs+9H5majzZUPICO9HxpjBoMoc+9FhH2i0LEvIKJ+g2Y6y22stacjc7PHxDjlV8j6+c7slUrJJtba45AO/ykxTvkn8MlciqOhFCYq8GkmEO7PI8FyoqU1fRbJZXw242dvG0Kytl0DPJjvsfD3JYIVDx9BYtjPj3LKS8B/G2MezmrBlKwR+NGchVh1Fkc5ZTfwKWPMzVktmLJPoQKfIQLv96uIHSgnFluRnNS/M8ZsSXvBlKxhra1CfDA+z9hljT5wNfB1Y0x3tsumZAdr7RQkUM53iB4Z8+/ApzVjoZIJVOAzSGC2/z7ygE+U6OV+ZLR+pyayKCwCH40/Ej2GwouIf0ZDdkulZBNr7ZFIjvlofjo7gUuNMbdmtVBKwaMCnwGC9fIfAr4CvGGC04cQM943jTFDmS6bMjkEIU+/j8S4j8RHAuh8yxjTk9WCKVkjWFb3FcQXJ9rS178CnzPG7MlqwZSCRQU+jQSJai5BEtVEm3sdj0eQedkNaS+YkjNYa09BRvMHRTn8PDKafzSbZVKySxAN73qiR0TcDlxijLkjq4VSChIV+DRgrV2IzLNeCkwb59R7kPn1i4B3RznegwRO+YU61RUuwdz8j5AVFJEMIxadb09WEiMl8wRz85cjYW2jTd/9CbhMkxgpqaACnwJBitYvI4IdK9rcEJLs5cehdfCBh+0HgV8SPeRtHTKa35j2Qis5g7X2VCQASrT0vs8ho3kNd1vAWGuPRSJRHhvl8Fbg48aYu7NbKqVQUIFPAmttDRK56uxxTutCRus/N8ZsinGd+Uhu+XdFOdwd/MY14aP5huW1RUiPP3ybMsHnAWAPEmijp6a+Tm96jhBEL/wx8Ikoh4eAHwD/zxjTF9rZsLzWIfa9jlUfhpD73wx0ah3IHay1pcA3gq04yil/AL5ojGkL7QjqQDETP/vhnwFakDrQpnWg8FGBj5PAI/5dSF7ot4xz6i5k+dOv4wlKY6118P2LSgYHf1HW1ze9rK+P8K2yq2vXjNa2zcXDw7OB/Ym+1CYR+hhp6CO3PWHvdyBzwju1Icg81tozigcHf1/W17cwsg5UdPe0Vbe0vFQyNDQDWACUp/hzg0S/55HbLmADsFnrQOax1h5XPDh4Q2l/vxt+/0v7+qno6emubml5oXRgoAKpA7HyH8TLECNiP15bsAdZ6fFKTX2dOgHnGSrwExB4xF+IeAzkAC4AACAASURBVL8ePs6pG5EIZjdE84RuWF5bjCyTOhZ4I3AY8qCGtlQb7UzRAqwH1kVsm/SBT4xg1HUAcv+PRVZYhNeBVBvtTNFF9Dqwsaa+Tpd0JkjD8tr9GakDRwALGakDMyexaOPRh3T41zG6Lmyoqa9TX5EcRQU+Bgl4xD+JJJz5Z2iZW8Py2mnA0cgDHBL0o4GpmSxzlulFHvjwh90D1tfU103oINiwvPYwxA9hPfDPQussNCyvLUcSBoXu/7FI+NpcbcCTYRAJoxze6K8Fnq2pr5swF3rD8tr9kLjtLcBfaurrCmqJYMPy2ilIJy68DhwLzJvMcqWZYeBlRtqA9Yj/yJp4hL9heW0lkpFvCvDHmvq61gyWdZ9DBT4Ca+0cJCvUp4geajbEPc7w8I9WPLhyY5Hvhz+8xyKj84zhw6Aj8+qDEVu0fYNAGRIWdxapm/gnYjfwEJKbfhWwNtK827C8djrSCCwMdt0JfLCmvi4vs+I1LK+dByxhdIfuDUSfT00LQR2Y6N6H7ytFHDpnET3jWTrpAOqBlUgdaIom+A3La58A3hR8fAI4q6a+bnuGy5YRGpbXzmRExEOvR5HB582HISe+ex/aipEO5iwyby3qAxoZqQOra+rr+iJPalhe+zdGon2+Aryjpr5O016nCRX4gDBh/yyxM7oNlff03Hrk2ucen9XSshg4jeiJZZKhG9iCeM5u9WHrzv3mHbhz7rxz+srLpvSVldFXVsZwURE4zivAu40xTyfyA4GJeCrygI+3zQ7+rsNJ3eqwixHBX4n08o8GIsv+JNLAb0vx9zJOw/LaGcDJyP0/DTGzpoM+gvsf2pqrq2dsmz///N6K8qq+sjL6SssYKikGx2kB3m+MuS+J8lcwIvbR7n3o/SLkbxuvoxsP7cjKkFXB1oQIX2SI3k1IA/9cir+XcYL/YQ0jdeA4xoYjToZBYBthdaBjWlXR5oWvO79nasXcUDswWFICjtOHrJm/IYnylzJxOzALmTY4ApiT4t/Vi8T6WBVsj9XU1/U1LK/dzEhHHyTF9ntq6utWpfh7CirwEwp70dAQ1c0tfQu3bFk7Z/fu8iLfPzKFn9sDrEHE7VngVUYe5I5ojkzW2uOBW4HXRRzqRpbS/T2F8oxL4LEfauQjt/ES5YxHSPCXMfrBBvl/vLOmvs5L8toZIWgMT2SkMX8zyY/OO5D7/zTwDDJqCdWBlhh14GDgNsZmqBtGVlr8NFPpR4NO4f5ErwOJBnMK0Q48jAT7cSOOtQHn1tTX5VRa3cCHZgkjdWA5YhlLhl7k+Q/Vg5cYqQO7o01xWWtnIamiT49yvauBL2cyxHXD8to5SIc/sg4kO8DpQQS/DPlfhjMAXFxTX/fnJK+tBOS1wHuedxDwMSRozAygCGk8VgLXuq4bc4QbS9id4WGmdXQwa08zs/fsGZjZ2lrkJN6Y+4j38dOMCPrTwNZkvJGttfsBNwO1UQ7/gEkIcxs88OEP+pGICKZjtHd+TX1dXCNTz/PmIXEILkQ6HaWIiD6BxPavd103of95IGou0pieBpxEbKvOeLzC2DrwSjw+CpEEoW7/ALwvyuG/Iuuls5q0JrBkhDf6RwJLgbkpXnoQ+HhNfd318Zzsed505P9yMdIZKWfEMfAa4D+u607oExBOUAcOZUTQ30r0mBUTsY3R938N8EIyPidBqNvvI7E3IlmJWHR2JVHGpAnm0Bczui04geixHRLFAjaeNtPzvDLgHMRv6iDkee1GBg3XAre5rltQPh7xkJcC73neqUhFPxoxi0X2pAeBfsTkbV3X/UvoQDRhL+vtZe6uXcza00x1SwtTBhNqC/oQ83L4Q+ylez45WCv7U+DTUQ7fA1ww2VGvwkY5pwTbSYwf2S8WQ8Cna+rrro11gud5b0SiwZ0UnB85lTCMPOAdSG7un7uuG7NRbVheOxtJ7xkS9UQcoYaQ+x+qA2uAZ2rq69rG/VaCBAGS/gep+5Hm4CbgPbFiLmSLQBiPAFYwUg+SNe/+CLg8VgPved6BwTlnI8985Lyyj9z/YSTexLfHa+QbltdWAW8HziC56be1yH3Y26mrqa9Lu+Baay8Afs/YlTebkDrQlO7fTISgDhyE3PsVwRZpgYyXvwMX1dTX9Uc76HleNfA9pJM/TPT2pgMZpP0NuNx13X0mc19aBN5xnBnAfQSjON/3M2Zi9TwvFN4xXkehbuDme++99386Ojq+QCDs5T09zNuxk/127mBGW3siRfCBp5Dsb/cDDdn0/rXWfgz4FWOdd15E5uXXZqssE9GwvLaE0YJfS2KC/8+a+rrzInd6nvd+ZDRbQXzznl3AY8A5rut2hJVvf8T6c35QvkQsNesYqQMPpVvMx8NaeybSWEV65O8G3muMWZWtskxE0NgfyWjBT2R6pwk4PtLq4XleLeKcWUV8960Hsaic7rru3jTMgRXiLKQOnEFiy1VfRdq9+4EHa+rrdibw3ZSw1h6HTN1FjpR7gIuNMX/LVlkmIqgDBzNa8COn58ZjK3B4TX1dR/hOz/MOBx5AOpDxODP2I3P8p7qum1PTgJkiXQI/BWlsfgxcmSmB9zzvW0igmYTMpd3d3T0PPvjgcFFzS+V+O3Ywb+dOpnd0TPzFETYy0pivrKmvm9RsT9baZcAtjJ0D7QQuMsbclv1STUwgqOtIbKnYkpr6ujWhD2HinqjzXy/wTOeVV35w6MWN70Ia9OXE7xi1jZE68EBNfd2WCc7PKNba1yPz8pE+IUPI0s5fZWpePhWC5YMe0VPnxuLScGuO53k1wH9IfNpkENjWd999p/be8s9apA6cRuww05G0AA8yUg82TmYAIGvtXGSEe0qUwz8GvpaLGSoDwV+JOKrGy3U19XUfD33wPO8wYDUybZKIc6OPTAOe6Lru+gS+l5ek1UTvOM71ZEjgPc9bijxcCXt1b9y4kd133MniDRsoiu/v3Y30DEON+cuJ/mamsdYuQET+xCiHvwPYXEtY07C89lTkf5oIy2rq6x4F8DxvAWKpSGqZ10DTmv7u664rYmgoWnKPSDoQb99QY74u16K5WWunIUlJoiUu+iPwqVxLWNOwvPYAxJScCF+uqa/7Ceyda91GcvPhDL78ymDX1VcP09MTz4ivD1nuF6oDTbkWryFIWnMl8Lkoh+8FPhhPRM1s07C8to/ElhDeWFNfdxGA53kO4qR4BOJ3lSg+MmhbnKh/Tr4R1z/HcZxDHcfpchxnfti+Cx3H2eo4zqLMFW8UV5BktLdpVVUc8tJLE4n7o4h1YAmwX0193Qdq6uuuy0VxBzDGbEV67r+PcvgK4NYgznku0YSYNePlvpC4B3yB5B5oAPruvbd0AnH3kM5RDTC7pr7u7Jr6uqtr6uueyzVxBzDGdADnASbK4f8GHgoyHeYS25DpknhZB/w87PMFxD/iHkP/qlUlE4j7K4ivy+lAdU193Wk19XU/qKmveyLXxB3AGDNgjPk88FHEBB3O24DHg/S0uUYiVsYdwBfDPtcgc/zJtgWhlSGnJvn9vCHuEbzjODcBr/i+/1XHcZYBdwNn+L7/WNg515OBEbzneYcgDixJCbzv+7R821K8Y8eo3cja3FuQud7NKRd0Eggcrz4JXMXYtJPrgXNyKcd8w/La+Ygj01RkSqEjeA1/34Ekw9jbYHmeV4Xkyk7Gmx2A7t9dx8CTT0bufgqpA7fU1Nc9n+y1Jxtr7dnAjYz1cdgBnGeMach+qaITBIV5BzJ3Gnnfw1/bwqOhBSO3l0kh9kTv7bfT9+97IndvIKgDwFO52JmLB2vtUuCfyNr1cLqAjxhjbsl+qaITxBE4AxHqWG1AqA6MWh3ied59iDinGneg3nXdaCuTCoZEBP44xES+HHEsucz3/ZsizrmezAj8N5BRStI996GdO+m7/Q6G29u3Dr3wwv8DbsvXqFnRsNaeBPyDsUuU2hEP+39lv1Tpw/O89wHXkZxXPgDDHR303nobfktL5+C6dRYR9Zy00CRDkL74duD1EYcGgM8YY36b/VKlD8/zliDr55OOwub399N7+x0Mb98+NLh27f8iz8yYaIv5irV2f6SjEi0h1neBK3Jt6i4RgiWRu0lBC8LoBxYWsld9QnPwjuPci5hHfuj7/ncijt2NhGjcBFzr+/716Sqk53nXEj2dZjI87rrum9N0rZzCWrsI8ax9U8QhH7g0nxt4z/M+iyyJSkdSnj2u66YamSsnsdbOBP6CjJAj+SHieJWXYuZ53plIsJcZabjcMFDhum7U5Vf5TLCk9hdEbzP/Dnwok0FxMonneYciSxDTEWq3A3G2y/nIickS9xyG4zhFiIfuMNJQjML3/Xf4vr/A9/1l6RT3gHT01jJxrZzCGPMashTtxohDDnCttTaaI06+UEJ6QoFCBmPETzbGmFZkXfh3oxz+KvDzYFonH4nHOTJe/DRfL2cwxvQbYy4BLkWsN+G8D7g5yJKZj5Qg9y4d+BSwHkBiJvqfIR7bZcAvfd//QyYLFo7nef8LfJ30NPD3ua77tjRcJ2cJGvDPI961kWJ2uTFmTAct1/E878PI+v909Nw3ua57UBqukzTBKGsaEvlvetj7yNdypCPuBFtRxOt47w9BAgFFCtmLwONI498VbN1h78fbQuf1ZtsS4HneMiSoUzqcRwdd1y3oxh3AWrscmYbYL+LQf4Bzsx39MFU8z5uDBDBLRxKfXuD1ruvmpf9VPMQl8I7jXAJ8DQlDeQrwbeBIP0th8DzPOxFZtpZq4pNO4POu62atczKZWGvPQh7uyIfBIsvo8sZUGyyR20jqJvo+4Jeu60YL9xk3wRK1+YhD01wmFurIffk6ggoRihQYqyOwB3HwC23bw943J1P3giVyO0jdRO8j4WvfnuJ18gJr7YFI+xkZe2AVcJYxpjPrhUqSwNHSY2z8h2R4CTiskJfKTSjwjuOcBtwEnOL7/rOO4xQjXqdf8n0/awFVPM97mrHJNhKlDdjPdd0xaQsLFWvt6YjjVeTa8R8ho/m8qdye592ELAtLxcTeCxzquu7WaAettVWMCHdomx/lfabTbRYyg8BOxgp/rM7AXqcwz/OuAC4ntZS3XUhEu8YUrpFXBMsl70dyB4TzCPAOY0zWIjGmSjocbpHB3qdd1/1TekqVm4wr8I7jHI4Eeviw7/t3h+3/NPAh3/eXZb6Igud55wI3kHzD2gv8wHVdm75S5QfW2pOBuxj7v/sFcFm+eNV6nncMEq8g4cZ9cHCQnp6eofb29ocfffTR3xJbuFNpNJT0M4hkINwBbC8uLm5ZvHjx+VVVVVOqqqqorKyktLQUx0lo9u5Z13VTHSzkHdbaeYjIR66LfwI4IxcD4kTD87wSxEyfSL6ISFqA/QvRyTKcvEk243leEXAHEsc4UVN9PzLveGJ4LPJ9iSC87b8Za968DvGwz7kgHtHwPO+niHfwmPXwQ0NDdHZ2jto6Ojro7Oykry/njDZDyBLGjgleexBzuB/26k+wL9b7OcjoNzIW/AZkKqcM+b9G26ZGfE7HHGhamDJlCpWVlYQEP/y1vLw8Uvw7gZNc153UhCyThbV2NjL/HrnS5hngdGNM1uLpp4LnebEsk/HQA7zPdd270luq3CNvBB7A87xSZBnYycQf8KQHmWs52XXdSY0hP9kECSruA2ZFHLoRyS2fUBq9yeCqq64qWbJkye/7+vre39nZWRYu5t3dWfUX6kOism1FRpdtiCDHI9odQM9kTI9Yaw9A4lmkNB8bpC6N1RGYhvgl7Bex7R+8Zs1KUlRUFBJ8v7KycqC1tfXq3bt334f4c2zKhzqfbqy1M5DOfqQFdj1wahAlM+fxPO9sJOlSvEmnQPxGPuK67j8yVrAcIq8EHvaO5L+BLPmJlR4QZJ6tGFkT/BnXdXMqJvdkEYStvJ+x5q1/ABcaYybdZBWsApiP5JmO3A4hs0tb+hkR7q0R78M/t+ST/0I4QR6DBxg7H9sIvD3T87HW2gqiC3+0LR1r3mMxhISm3YhY+DYgI9mn88VcnSyBr8mdjE1UsxER+UlNOxwvnucdi4j8gYhVKdrSx0GkQ74FuNB13SeyV8LJJe8EPoTneeXAOUiShRORhzW0rnE9Er/6Jtd188Z5JFtYa0NpFiNDWt4JvC+bCUqstfsBxwXbMYiIv54UQtLGYICxgh3tfVIe3vlGMB97H2MdV59E5mNzwtplrS1ntOAvRKwPhwXboaTmcBeLV5GAKqHtaeDlQqob1tqpiEU0ctnwq8BbjTEbs1+q5PA872jgEiQvfBXyvJcgFtwbgWtd110T+wqFSd4KfDjBqD6UF7rddd28mE+eTKy1hyIiHxnX+17gPeleHxuMyhcxIuahLTLlbSr4wGvA88G2AXgheH11XzTHjoe1dhYyH3t8xKFngdPyYT42zNpzKHBYUVHRGxzHWTw0NHRAsC+R1MQT0Y4IfbjwP5drGfsSIQh483ckOFI4W5GRfN6lVA0Gf1VA575uuS0IgVeSI5iPfQAZCYXzEDIfm5RDorW2CGlcQyK+JHiNdO5Klh2IaIdvLwAb87mxnQyC+di7GRu7fD0i8pOa9z5Vgk5MaKQf+bp/Gn5iCMl4N2q0b4zJm/jmQcrZvwDvjTi0E6kDz2a/VEo6UIHfxwnmY+9HciuH04isj22d4PslwBsYPSpfQuqOVO3IKDw0At8r5MaY9hSvrYRRKPOxiRL83YcwYu53gWORICqphrHdwmjRfwJx6svJBjd4jv+AmLjDaQbeZowZk4ZRyX1U4JXx5mOfQh7uPcF5U5A1tOFifiypRZfrQxybnkLyxa9FhHxXrjaGhUjg+HYrksIznFcRkX8x+6WaHAKz9ZFI8qzwLdUQuVuQuCJ1wauXS8tTA8vbb4CPRxxqB840xuwzgYEKBRV4BRh3PnYd4mG/DDHjphIuuAsR8afCtvX5mtmq0AiE7SbEeTWcTcCJxpiCSa+cKMFc/4GMFf2kc9MjSysfQcS+HnjcGNOTYlFTIvg7f444L4fTDtQYY9KaClzJLCrwyl6CcJb3kp44z62MFvKngBdzacSijCWw0tyIZB0L53HglHxLTpJprLXViBXrjWGvR5HcUs5+xJQfEvyGyViuF4j895GlyOG8inT0tmW7TEpyqMDvw1hr5wDLkRSzJyEm97hTCIexE1leFS7mOTvfqIzPOPOxtwHnaydtfIJMgUcwMsp/E/BmkkswtJYRwa9DVoNk/LkKRN4EWzhPAicbY7oyXQYldVTg9yECh7qTwrajkrjMDiQefLiYb1MxLywCkb+LsXPyPzfGfGESipTXBNMfxyGd6eVADWMjSsbDZkbP46/NVIcrEPlfI3nlw7kTWUqrHb0cRwW+QAkezoMZLeiR4UkTZRg42xjzrxSvo+QB1trpiIhEJif5rDHml5NQpIIhcGg7nBEL2nLgoCQu1YaEHv438G9jTFpzmwcdvTuAyNS6VxtjPp/O31LSjwp8ARGM0M8ETkMEfWESl1mHjA4eRjIu/Z3RUeW6gFpjzD6ZrGNfw1q7CLHYhEc9HAbOMcYUfLKObGKtfR0ysg8J/jHEH2M9hAfcgwh+fTpCT1trpyFtwrERhz5vjLk61esrmUMFPo8JetdLkd71O5D154ngI2t0Hw62+sjoZdbadyFZm8Ln5rcizjavJVl0JY+w1i5BGvjwjl43cJKuj84cQRCiZYwI/lISm8fvZPToPul4BoED7mpGDxp8xFR/e7LXVTKLCnyeEaxZPwMR9DOA6gS+Poh4Q4cE/ZGJAtkEv/kZJHd8OM8CyzXozL6BtfYdyNxreEdvO7DUGPPq5JRq3yIN8/jrCcQeqEs06qO19lhkyqYqbHc34nS3zyRwySdU4HOcYK7ueETQ3xG8j9ds14NEpHsYGYE9muwyJ2vtT4FI56r/ICFtdR37PoC19lPAryJ2e0hHT5M6ZZmgbViCTMu9HRntx7sKphtYycjo/qU4f/PtSEevOGz3DqSjV5ARD/MZFfgcJAg68zZE0M9EcmvHgw88hsQWvx94Il3pX621xcDNwHsiDv0WuFS96PcNrLVXAl+K2H0f8E7t6E0uwZr805E240wSS+T0AiOj+4fGC7hjrb0EiXgXzlokEI529HIIFfgcIPB4fyMjo/QTib8n3ow41dwN3GuM2ZWRQrI3veQq4ISIQ181xvwoU7+r5A7BqPFm4NyIQ9cBn9COXm4QtCnHMjK6r2H0qHs8epHn/F/ArdESDllrfwR8JWL3A0j+irQMKpTUUYGfJAIHmtMQQX87ifW2n0IE/W7gsWyuRw3yt69mbIjO9xtj/p6tciiTR9DRW4kEbwnn68aY709CkZQJCGtvQoKfyAqbBmQ1zS0hsQ86ejcB50ec+0fgYu3o5QYq8FkkiBz3HiQt4wriz1jVhoSQvRu4Z7Jjgltrj0RiaM8I290HvNUY88jklErJJkFHrxGJtRDOB40x/zcJRVLiJBjdu4yI/XLiD63bgFhw/oFYDx9ELI7hfNMY8930lFZJBRX4DGOtnQ28G4ntfSrxm8meZWSU3phr85vW2rciTnbhnZTdyPK5jZNTKiWbWGuPQDp6M8N29yHZ5xomp1RKogTr3N+KiP3bgQPi/OojiBn/E4y16F1gjPlb2gqpJIUKfAYInOTejYzUTyO+kXoX4qx0d/HAwH9q/nVfDxJcJHzbH0nNOiW4Zmib6PMA0ttuBvaEvY+2taxoWh1XZ8Ja+xHg+ojdG4C3hFLMKsmxcslSBxHOyDqwAMnoF+tex6oPQ4x/30dtK5pW98VTTmvtKYh1KXwEuAdYZox5IZm/XRlh5ZKl04heB6YR37Mf/hkkeFW0e74HaB52nOaXjj5i1s7XLagZLC19N2P9bWIxyOh2rh84zRhTl8SfraQJFfg0EXiwnoOM1E8nDlEv7h/YNr2ldePcLdt2z92yleKh4f2Rh3c+yWWjShcdyNKX55HIduuD13Urmla3hJ9orf0O8K2I798LvN0YM5yFsuYdgXjPB95A9MY7tJVPVhmRZVS7kA7bOkbXg50rmlbvbTistR8Gboj4/jrgeM0+F5uVS5bORpLSLCR2HaiKeYHM0+s7TmtvRXl3x6zqqvbqmfO6p1XSPa2K/vJycCZcrdsMuJp9bvJQgU8Ba+1M4GxE1N9GHKI8tb1jeO6WbUVzt2xjamdeJmTawUiDv86HdU+cetKlPVWV50U88F80xvxsvAutXLJ0PgmMFvORlUuWTkEa8WPDtjcCcyazXCnSQlgdANatqT3x9PZZ1ZdF1IFrjDGfGu9CgcgNrGhaXbABk1YuWVoMHMbYOpBMKOmcYLCkhO6qSnqmVdE9rYruKhH+nsqpUDRqAVAb8B3g5miRL621TmlP75cd3z+ub2rFb40xK7P1N+wLqMAnSOCNGi7qpRN9Z2p7B3O3bGPO1u1UdnRmuoiTwlBx8VDnjGnF7bNn0TpnNu2zqvuHppQsNcasiTx35ZKlRcCfgAuRUeKlK5pW/zPbZU43K5csncXo3ODHAkcSRx0pBIaLnKGuadOK22dX0zpnNm1zZjFYWnqOMeaOaOevXLI0ZP3pBL4B/CLcMpCPBCb1Yxgt5kcj0yoFz7Dj0FNVSfusatrmSFvQX7HXENVI4KAXEvu/vOe9N8zf9NqHfWDLoQfzyhGLL7viO/aqSSp+waECHwdBVq2zEFE/kzga7IqOTuZu2cbcLduSFfU2JOZ7+LYNaQwHkXn1wYgt2r5BJH71LGB28DreVk3iCS7G4DsOXdOn9VR0dP6qeHj4fqBhRdPqToCVS5a+ATH37j0dWVP703xp4AMz+9GIj8UpSESx16X5Z7qBLYytA63Ed+/D95Ui93ai+x+qI/HGYRiXrmlVQ6W9fddPGRi4C3h4RdPqZoCVS5aWIPO04XXtl8BlK5pW50Ua0qAOHIrUgbciYWRTzdgYSR9j24GtiBUldH/jbQuKEb+OyHsda0vLNGF35VTa5symde5s2mbPCgl+PXDDiXff/9PS/v5poXN3778fLyxxfzBQVvZ1XWqXOirwMbDWVhESdd9/O44zYZKHio5O5m7dxtwt25na3jGeSrYjXvKvEv3h3baiafWk2O+D0fVMxCv2iIjt9ST/0Ifi4K8Cngb+wNhRzTXA51Y0rR5M8jcyysolSw9AGvPTkBUR81K4XA8S5vUVoteBrUDHZHR4gjowDViEpDQNrwNvACqSvLQPPIOsoa8Hfs7YTtFdwAdDncFcY+WSpfMQMQ/Vg0jv8UQYAJ4DXiJ2HWiZpDrgIMmFFjC2DhyB1I+k6K6qpHXOLNrmzGbhiy/701vbRjWVHTNnsP5Nx17fM63qY5pzPjXyXuA9zzsQeeCqkVFHK/Co67peotcKwrGuAD6C75+H40zYkJV3do2M1KOL+kuIoD2NZG57GtiULyPVcIL55EOQBzzyoU/UGWgIuV+R/7K7gQ+saFrdEe+FPM+biyTemY1YK9oQIXnUdd2k/88rlyytRupDqDF/fZKX2sLYOvBivoxUwwnEP7zzF14PEkl8AiL4PmOtBU3Au1Y0rd4a74U8z5uGWNf2RzqO7cCLwIOu6yb9f165ZGklktwlVAciU6bGy25G3/+ngfUrmlbnXdS3QPwXEL0O7J/o9YYdh6IIHeqtKGf98W/8d/vsWe+ONzKe53mlyLTpgUh71AlsBv7jum5CiXUKhbwUeM/zypGAMZ9D5jtDJkiHEbPfq8DVwN9c1x03Y5q19vCiwcGP4TgfGS4untD5aa+ob91GZdteUe9FRuXhD/Ezhew8FCJ44F8HvGW4qOj0vvLyD1d0d6di3luDNPBjQmSG8DyvGGnQP4OI8ABiXShC6sMQIvS/Aq53XXdCT96VS5aWIwk7Qo358SRmqh5ERmThjfjTK5pW707gGnlJUAfmAUt9WNFTVfmxis6uqhTmel4D3rmiafWzsU7wPM9BQrB+GlnBMsjIsrBwBBM10QAAIABJREFUE/XvgN+5rvtiHH9HCXLfQ3XgLSRmtfKRlQfhdWANYpXLv8Y2QYJO8fHAKd1VlR8r7+qeFyne8TJYUsKGJUev2b1w/nJjTEyLpud5xwCXAhcBw4gWlCD3vh+ZmvgrcI3ruk1JFSZPSYvAO46zDPgp8s/cCnzY9/2MBGbxPO8wZL34HCYeNXYhD/q7XNcdFXjDWju7tLf3oz58cqC8PDIa1xjKu7qYu2U7c7Zso6qtHUd65A8gSV0agBdy1bScbay1J5T29j4yY3dzyczde5ixuzmZFQNdwDkrmlY/EHkgGLHfhTiwVTK+z0AP0uh+xHXdf0QeDJyi3gmch4QNTsQZqgOZcrgfydj3XD6OyDKBtXZRSV//MzOaW2bO2L2Hmbv2UNUet1EmxADwyRVNq38fecDzvKnAjciIrYLxO2L9SIfvCuAnkVadlUuWliFLW89DHGgTsUT0IdMN9yN14ZkVTat1aSAyzVk8MNA0vaX1sBm7m5mxew/TWtrGjNbHwwc2H3Zw18vuEQcZY0Z1lINO/o8QcQ+JeixCYv9H4DLXdfeJtjpdAr8AaPF9v8dxnO8CTb7vj2lMUyXoqdUhwp7IyKobeN8tt9xyb2Vb+wW+41zWU1V5rF9UNO4Ao7S7h3lbtjJ38zaq2tp7HGnE7w+2Z1Y0rdZ13jGw1l4O7I1LXtrTy8IXX/rroo2vnIiY+eNhCJi9omn13gxVnuctQOby55CYd3o38FXXdX8ZjDLOQhr0MxCzfjwMIp7AoTrweLxBgfZFrLXnISFNASjp72fea1vvPezZ52YDb0rgUiesaFq9N9+453lVSDuQqD9AFxKY6bO7Lrq4ArEAnQe8C5ge5zV8JBdEqA40rGhaHTPz2r6OtfZ45JkpASgaHGT29p1rFm58eeG0lra58Vh4fODlIxY/e/Ff/3xMaF8g7v9ErCyJdMq7kbpzluu6Bf/sxhsLfVx83w+fKxtEzCRpxfO8OUgPeRqJe3lP3fLcultK+geKumZMH9fcVjQ4yJyt29nvtS3DM3c3P+74fuhBbizk9doZ4MeIeJ4C0F9RTvP8/d63aOMridS5YuBk4A4Az/OmIA/nPBKvu1OH29p++NDb3vkBYGkC33+Wkcb84Vx1/spFjDG3WGt/D1wMMFhayu4F+7/tsGefS/RS5wFPhH2+HZn3TTQQUKXf2/tfbVf+fAkytRevMLzIiLVu5Yqm1RqlMU6MMU9Ya78J/ABguKSEXa9b8MbFTc/G3Yg7wKyduxdF7L6axMWd4PxaJN3txQl+N++Iq5FzHOdQxGnpMN/3twX7LkQa8aW+778W7DsYiWWciUQDn0ce6ISn9Xzf58lnnikbLI2t7TN27Wbulu075mzdfntpf/+/gVUrmlaPO3evxMYYM2StvQipN9UAA6WlJT4J3cBeJCpeiPeSnLgD0Pmnv04d3rW7ZoLTtgS/eT/w4Iqm1ZOa2KcAuAxpUBcDDJUUM1RcTPFQ3H5vw8iKCwA8zzsBSW6SVJS/7jvvrhx4/oW3THBaMzINeB/wwIqm1a8k81vKXn6MTKW8NbSjv6yUiu74DB8+MFBW+r3QZ8/z9gc+SvKRHqcCF3ie923XdccE3ykk4jbRO45zE/CK7/tfDebc7wbO8H3/seD4dGRe9OO+7z+fzkJ6nleBRFBLamnG0NAQd918M4NTRgt8RWcXc7Zu3zF7246/Tm9p/T0yh1rwjjDZxFp7LnBL6PN+mzaz6IWNO6d2dm1FvFw7kbns0PtuYC5iTv1eSGADh6r1BEKRDC32uwy++FK0Qy8HZfwHYnbXqZc0Yq19E2KmnQJQvWMnB617oaWqte01Z+z9D22zEXG/akXT6r1Dfs/z7kB8JpJap9/+m+voa2iMdmgHcCtSBx5Sf5r0Yq1diHT2ZwFUtbZx8Nr13dNa2nb5Dp04TpfvON2+vHYCnUVDw1PBn1I8NPTr055o3BvhzvO87yMdx1RCOfchTndfSOEaOU8iAn8ckhpwOdKzvcz3/ZuCYyWI2ewnvu8/mO5Cep73X8AvSCEu84t3/5u1ba04wz4zd+3eVb1r9y3zNm/92alPProhbQVVomKt/S3w8Yjd5xtjbol2fjQ8z6sB7iGFOtD31Braf/1b6OsDibMfEvU12rHLLNbaryAOUeFcboz5YbzXCPwvNpJCwz7w0iu0/fQq/LZ2kCVU/0TqwCP5uGwxn7DWvgf5f4fze2PMx+K9RjBNt4cU1uGH0Q3McV23YH0oEnKycxznXmRZyg993/9O2P6LgJ8hgTsArgmJfzrwPO9nSI8tJYY7O2Fo6NFjamqWpaFYSpxYayuBJxGnqBAtwDHGmM3xXMPzvE8gdSylkJ/DPT3Q379jz2e+OF9FPXtYa4uQqY9Tw3YPIlnnnoj+rdF4nrcCGWXPSKUsfm8ffm/vcM+Dq0qXXvENFfUsYq29FkkvG857jTFxOWV7nvc6pHOejtC/XcCxrusWbHrruM1cjuMUIV7Nw8CoXrfv+3/2fX+O7/unBFvaxD1gdjouUlRVRdGMGftETOhcIljDegGy7ClENfDnILhQPEwnDU6hRRUVFM2YUaHinl2CzIIfQea3Q5QAfw2iRsZDvJ7u4+KUl1E0c8Zw5bnnJBuRT0meLyICHc7vrLWRTnSxmI7oUDoYIk11KldJpMH8CRLC9AUkScgfxj89raTTa7XgA8/kIsaYp6y1X0ccbkKcgsSg/0Ecl2hnJKBRquR0Gr9gtFuFND7ljET8c8LeR9uX6PsB5H8R2rqD1/5MxAE3xmyx1l6MjMJDvB64ivg8mtP57BYhf6+SRYwxXdbaDwKrGQkgNBPp7J8aR2jadmR1TToopsD1IC4TveM4lwBfQ5YXnQJ8GzjSz1IYvHTMwQf0I44VKZv7lcQJhOs/yPKWEINI3vCnx/tuOubgA3zgAdd1T0/xOqMI/rZKZG5wepTXaPtiHZvMHOAgI5uuGFv3OMfCtz2I49oOY8yopYXW2t8Al0T85ruNMbePV6h0zMGHscl13YPScB0lCay1XwKujNj9ZWPMT8b7ns7BJ8aEAu84zmnATcApvu8/6zhOMRKK8Uu+79+WhTKGQtPuIHVzSi9wuOu6m1IvlZIM1toFiDdt+LRLHXDyeKPGdHjRB3QhkQ1XTXSitdZB6tx8JPb2ghjv55JcfIZ9hW4CsQe2Iw30OUiwohCbkWxsuyeoByl50Qd0Al90Xfd3KVxDSYGgQ3wPEkEwRCfwBmPMuDkI1Is+fsYVeMdxDkfCMH7Y9/27w/Z/GviQ7/tZc1bzPO87wJdJPpPVMPAv13XPTl+plGSIXDoXcIEx5m/jfc/zvAuAa0lthLvhueeeO3zdunXTmFi4F7CP5PHOIXoY6QyEb9uBHQcffPDMww8//OqKiooKx0m6P9UB7FfII7d8wFo7H8ndMDNs943GmIvG+16wDv5lUhP4XuD1ruvG5eSbr+RNspkgkt0GpDJEfbI3bNjAunXrOOKII1i8eHHk526gxnXdNdkstzKWYGT8LyQoUogtwOGR5txwAvPceiSNacyoRaH7fuCBB1JdXc2mTZtobm6mrKxsuL+/f/vg4OAMxJyey3Qh84M9SOfUD3v1J9gXz7k+4s8wFflfhG9piXCZSYqKiqiqqqKysnLM69SpU3nxxRdjtQX9ixcv/obrupHmYWUSsNZ+Bpl+DWe5MaYh2vkhPM/7FfBfjNMBH0cP+hcvXvwX13U/mvIfkOPkjcADeJ53NGJRGBOLfsOGDaxfv56TTz6Zhx56iFmzZtHc3Lz3c3V19e8++clPRi7PUCYJa+1iZFlluFB/3xjz9fG+Fx6LfnBwsLSzs5OOjg46Ozvp7Oxk165dDA4O7r3vAwMDTJkyZdTnDNKNiHJHnK+xjnVOZh5sa20pY0U/Wkcg2jYVma6YC+wXbOlwjEyI8HteVlZGX19feB34ojHmZ9kukzIWa20JEtv/6LDdTcAJ4z0DE8Win0gPBgcHv3zFFVeMO99fCOSVwEPsbHK33377/2fvzMPkqMr9/6nu2TNr9gxbCBBIqIQ9bAIhorhERWW8KqhX/d2rXveFcHE7HkWFqChevVe87htg4OISViFhC8sgSyZFFpJMSDKZzEzINvvWXb8/3qrp6p6ent5m6Z76PM95urumu/r01Fvne8573vMeli9fzsUXX8yuXbu46667qKurY/78+WzYsIH169fbX/3qVzOZt/PJMlrrm4DrPYf6gdOVUjs87ylGNqdZiERcLwwEAqcXFBSc19/fP2wUHwwGufzyyxPZAaHk06SCuPKanbLf89z7uhVoV0r52c9icLw1VYjQzyUi+m45j/T3WI9LkjbwKBKwt8PzuEMplfKWdz6ZobW+DNlnxMvHlFI/T/Q5R+RvBj5BzG5ysXpw9913c/XVV085Pcg5gYehoLurkPz0ZwKhV155pXjr1q0F73//+5k/f/7Qe3ft2sXtt9/OwMDA55VSP5qYGvvEQ2tdgayJnec5bAHrccQcmE+KAVWFhYUksAP3UC/Rgj3S86NjsWTMR3CCrZ5F9hB32Y4kQ5nJ8E7BscBJjJLsJkkbiEcjsn+7tzT5NjC2aK3vAP7Fc+ggsFApdWiEjwzheHY/QWQ/+EJHDwJTXQ9yUuC9WJZ1ArKJQfWDDz747+Fw+LTrrrtu6O/f//736erqulcptXLCKukzhDOiOx44C4mafhvSScsqZWVlxLGDZ5H11s3AEb/Rnhxorc8Hnok5/Dml1K0jvN9AcpqfjIj9yYFA4NTCwsJzBgcHa0OhUAUMt4Hvfe97dHentfT9MMNFf4tSKu+3Gx0vtNbxMtT9VCn1qWTPYVlWMbKpzfFA+dq1az8ZDAaPm8p6kPMC76K1/nxhYeEtU73HNplwRmcnIULuLdOz9BUhZMT1CjLqewVYUlhY+AnfDnILrfWvkaApl6PICK4tjXP9Z2Fh4XfTHMEnSz8SAe4V/Y1KKX8HyjRxEmF5dyINA2cppRrSOJevB+RAtGyyBIPBH1x22WXMnz9/aN7t6quv5sQTT+Syyy5j/fr1twB5f0EnCidY5lSihfwsspOQogkRb7e4Yr4rdhR14403hn07yEluQPZ9d+2lCvgOkPRGJC7BYPA7o9iAHQqF3obHA+B5nux0UBHieYryPmmtXwU2Ei38u31vUVLcgnjYFjivA8B/aa2Xp/r/8/VAyBuBD4VCX3zsscduAYaipW+//fahqMlQKPTFia5jvuAEvp1OtJifQWbrUkNEp6DsRdz3Tymlkvar+naQmyilWrTW30BSYrt8RGt9m1LquVTOlYwNKKXujf2c1roMseszPeUMUltSOd8p7/AcO6q1/ieyAuhJ4JlEy0GnKkqpXq3154C/eQ5fiszN35HKufx2QMgbFz2IWyYYDP4gFAo9A1wIElEbCoUeUUpdMcrHfUbAyT53CXKzXQiYJFiHngRdyFKYF5zyIhKJvgXZhMblj0qpa9Oor2sHQ/kSHDvwl0dNYpzleRuB0zyHnwUucjarSeVcWbEBzzTTGUQL/zGp1CeGEGLzruA/qZRqzeB8eYMTX3Ef8CbP4X1IhruU9pBIYANfVErdkp0aT27ySuBdnM0M/uQ59JRS6uKJqk8u4dxg8xExd8vJGZzyMBERdwV9R7w1rlrr/wB+GnP4KiT4xs3THkRcd+7jSOUk4Fue83Qge9J3j1B6nMc+3506cWit34BsK+vlc8D9RPL2F5D42rulAsl86DbwNhKdf4CR7aAb6B3NBrTWMxku+otIfyOU7UQE/wnkHpmSdjhCjozvKKW+ksa5DCQL4mzP4fOS3aI418lXgT8W2Os5NABUKaX81JQxODfAIqIFPd3RSSsREXdLG8PTwNYQaay9pQJZGpeJdyBTbIY3+EcRUWhLUF7z18HHx5nScW3AfZzOyDZwEhOfIjjWBjoY3QbakeWdsS7+dPbQaCNa8F+aSvaltb4ZWOU5NCxHRgrnuguJ73CZMp68vJmD96KUatJa7wJOdA4VIjvhPTphlZokOMFwZxBxuV9C9KYfybIXcanvAV5DGsFypPG+AHiX8zzheuVJiEEkK1tKaK0PEmnsXTHYg0T6NwKNSqnD2avqxOK41OcyPH9/bE7/GSOdYxJTRnqdjCNEdwRuR7xDpcj/43SkAzMas5F76F3O6y6t9TNEBP/ZPJ/HvxFZ1+7myChCgvDS2UvkCaIF/lJgSgh8Xo7gAbTWvwE+5Dn0daXUt0Z4e97ijJ7OJTI6v5jUI9tDyDyYuxfzbHKz0Z4MHMEj+DFlz2RbW+3Yz0lEEg95H2snsGq5TDfSCRhEOpKzSX13PO88/sPA+lSCUXMBrfW1wO9jDr9FKXV/iuc5C/EmuhwEZk2FKZC8HME7PEG0wF86URUZT7TWpcBFRAT9AlKPbg8j0xrFzusgkjxiIjkAvIzUKzxCCcW8nokkvnDpBtYRGZ3FK2OdN72ayMqDWMJaa3fEvxPYhGytuymZjF7p4nh1TmC4gC9ErvtkSenZgYhaHyPbQGwpInr0ZiPz+cWMbAPFjC1lyP97JGxG33o4iHTcz0ViFPq01o8hv+0BYFseCNgfkQx1F3mO3aq1XqeU6kvhPA3I4MSdKpmBTEtuzkotJzH5PII/BVkr7dIF1Ey2EVI20FovQHZmewuS1S+T5WrZZhBJ/eqmf92PiHXspiux5ROIm84lDJyDuOzej2w489NEG1JorUuQ+XOvaJ+glNqT4DMFiDvVbeynIaI8e4Qyi4hHYyz3g29CGipv2ZbqvKyzRaebo+AsxGW8gLGNewgj8RneNMCuDSQqVyAubi/vQqY9Pg28Ctw8WmyN1no70YGir1dKrUvw/iByD3lFv4bItY699t7Xk6Uz9Coi9vcjo/ucdOdrrc8G/kn0vXU98GfgK8ge8jcqpQ6Ocp77iN698uNKqduyXN1JRz6P4Hcgjcoc5/U0pEGrn7AaZQnHbXoJIuhvQRLMjDchooV7pHzur6W6xAlAa/194MNE5isDyBzccuRmvxZxd/9upHM462rrgdd5Dl+CjAxG+swg0vFIadMRp2Mwg+gGfx6yImGBU04k/c7XsU55i+dYv9b6ZWKEXynV5izvWkBEyN0yh+xhM1y44z1vSydATGt9J7LyYYXn8HeR/4MbIxEEvjbKqZ4gWuAvRTw5cXE6jV1OSaW+ASR40GsDc5HR+gJPKR/pHFlkPtJJ/gRiJ08QEfwtuTK6V0q9oLX+OfAxz+EbkIQ4C53X84D3jnKqJ4gW+EuRFRZ5Td4KvFLK1lo/DtR5Dl9Ajgq81vo4IqP0Kxif/cxDyEjAmz3Ofdw7lluaKqX6nKQXf/ccvjzmbW8kgcA7PE60wF9AAoFPF0fAWp0SF0cA5iJCvyBOSXVOu4iIcHu/px/pBGVrVL6H4dd/O3EyCWYT5x7+DNJxcUfGsZ3ZNzK6wD+OdBZdLshODaNxOrKvOSWu+9dZtTKT4dfetYnjyL4XoAh4vVO+D+zRWj+AiP0jObCD3leRZDfVzutqz3OInoYbicdjXo+JDUw28lbgHf5JtMAvnqiKpIrWuhCZe3JFfUniT2SEmwo2thHfpZTqH8PvHRGt9XuRdeydjDziqR7huJfY9a4TZgOOALgj2w2xf3fiJ+YjXovTgKVOWUxqYp1OHEErw6//K8DOiVpeqrW+BPgfxF0/0rXONRuwkemJA0gSnyiclQnHI2LvtQETmTrKBscj+QD+HRjUWj9JZHRvTabRvTPV+kfEWzQSVVrrwCiewheIjm04UWtdmu9Lp/Nd4LfEvF40IbVIEmd+9E2IoL+R9NbPJqIDyY39olNeAl6ZbNG3Tufmd4wuajWj/B1yyAacxmaLU9a6x7XW85GO6huRJY6zsvB1R5CgxfXAX4AXJlPD7vBLJNgvEcnYwHYkDsAdGR+ntS6fjPPSTod6h1OGEv44cQEnERH8pYgtzM/wKwuQaa/lyN7q+zyj+4eVUkczPH+m/Ag4b5T3uEmNRqyrUqrH2SfAXTptIN6gl7JQx0mLL/ATiHPTLiMylx4vsjpd2ogIuZtFrjGd+fAJoAQJzhtN4JMZve10zuXa+jytddUkaLji4rhwT0ViBS5BphdOTPih9KhGlkxejLhAD2mtn0Lmph9kcszTJpMVrlprbSSqqzPds5PozsJpDB/ZT1qc6TDXq3KXe1xrXYWM7pfGlHTn+Y9B5rc/Cgxorf8BrAH+OkE5HJLNDFhNAoF32EL0vbQIX+Bzml3Ikhp32cssrfVMpdRrE1UhrfU04K3IZhRvIjtbp77KcDHfPwka6LRQSnVorb+CBNUlYtTRm1JqwImi9nbuFjF8//EJwRH0Jcj8qCvo6YzQ9yPXfiPS0JUjInYxkWQhiZgOrHQKQJPW+iFE7B8ZLUp5jPgCcDeJG/lCJMp9tIC4LUQL/CJySOBHwumobsAz5eMMHBYj1/4i53FB3BMkppDI4GOixP4ryD0xWsxRDbB7lPdsITpIdVIN+MaCvBZ4pVRIa/0K0fPXi5CIynHDEfW3AO9BxD2TubQQIuBPOGWDUupAxpWcZCilfqi1HgR+nOBtyYzgQW5s7828mAkUeK11NfAGpIP3JtJLGGMRsYEnlVJ7473J6UAcT6Sxvwhx7Y4WyHUs8BGn2Frr5xCxfwjJojbmy02VUn/VWr8buJPEa9OrSU7gvVnQciYeJ1Wc0f4mp/wMQGs9F9koyrWDc0gtVsMr9oNa60eQ6/KXsRR7pdTzWusVyAY0iZJrJdMWxHp089YGXPJa4B22MAEC72w96Yr620h/eVQPtv10QU/fSxXNba/MfXHb9rJDR12XcwFw3trb7ir0vC5Abkbv6wHgkFMOep53rWzeNGlH+Uqp/9JaHwJ+Q3xbLdVaFyeR9GJCp2qc6PmzEDF/MxLBm8qmJAPY9j+D/QP/LN//2vY5m7Zvq2g+0EPkWi9Ze9tdZxHn+p8TeR1C7P6vPTWVvS1nnnp8R+2sxQPTSs/BMC4kcbyHgUwlLUMi1tu11q4r/yGlVGMKvyUlHJG/EllNMVIGxhok02IiJvV0XTKsrV1iIEJWi/wv4t3rcV+fE7l/XgAe7i8r6Ww5e1Ft+7FzTuurKDubQOAikvccFQBXOuUXWusNwK8ZI7FXStU7AZcPIR3PeORVPE62mCoC72XMLqoTBf1mJIPem0gjmtkYHOwpPdTeWrH/QFflnpZAectrVYGwvZzotcDZYmBt7RJX7GNLK7KL2xZg58rmTROy0YVS6o9a68PIvGM8z0c1CZamOYz7je3sNvYGxB6uJHo3q4QYoVB/yZGOlvKWg52Ve1qoaG6rCA6GzsXZAjlTSg+3c+L6oS3WQzYctoOBVwdLiukvL5vWV1E2fbCkODhYWkxfVTk91ZX0VZdjB4f6JJXILn9XOb91BxKUdQ/wRLY3RVFKPaa1Xo5kaIsnQsmkTZ60jbsj3BUMz+Ufr2Qly15Rdy/HP/mi+9K24bAdMHaHSorD/dNKy/oqp00fLCkuHCwpoq+ynN6aSnqrKwgXDpOMAJF4kV9qrV9A1pffnc3si0qpLVrrixGRj5f3I5kNsmJt4BStdUE+b+LjC3yGOKK+Evg4YuQprT0O9PZTta+Vin1tlO9/jZIjHaVG5pGxyVKIJD4ZLfnJwNraJduBrUSivLcA21Y2b0opGUg6KKXu01q/EWngY+fi5jEJBN6Z9zwXEfQ3IaPdpDLbBQYGqWhuG7KBsoNHiwzbHq/UwEEDZhqh8Myirh6Kunoobx0+3W4b0FdRTm9NBb3VFfRWV9JbU0FPdSXh4sKTkcxynwYOaK3/gsydrx9tmaVz/1SOth+6k/DkdUgQYGxjvgR4bJTfuTXm9Ula66LxXAbqCPmJyBSJu9XsIuT3jEdei5EwDJhuhO3pge5eCrt7mXYg/kC8r7xMrn9NtA2ESotB7P0c4OfAbVrrl5znf04k9lrrY5B7595EYquU2uOM5B8kJveD870JUUod1lp7k58VIisTto322Vwlb1PVusTZaGCzUur0DM9Zgoj6p5A5reQ7SrZN6YHDVO9toXJvC9PaDmPk9jXYTUTw3XnhHaO5/tfWLnkz8v/bBnx7ZfOmUYO4tNZLkRS1Xs/IzCTSVJYTnZluACjONAjRyV53CXA1kkJ1brKfLTl0lKq9rVTubaF8/2sEwrmwuCE+/WUlTqNfSU9NJV1zZ9AzvQoM4wjwN0TsH1JK9Xo/97Or3veZaW2HfhgqLjIOnH7Sn7pn1Xx4tLl9ZyvoBqJdsiuUUutHq6fWej/R12i+Umq0wKy0WFu7pBSJbne3jHVLqhs95QSDJUX0DHX8KumcM53uWTUQCICsP9+EjOzv8Ir9Dz/68c9O3773R0Y4TOuZp3Z3z6q5SCm1MdF3aa0rgeeJzk54g1LqptHq6SQ/u8Rz6A1KqYeT/6W5xVQQ+GOQRC4ubUqplNN1Oulh30Yaoh7s66NydwtVe1uobGqlsDetQcNBJFK6E1n2NeA8xj6P97oYiZKe4Ty6JVuJM2LZh2zN+yiyzrrRK/hra5fMQToGrrtxO/CWlc2bRt3rWWt9JvBXZBvam5K5qZ3PdRP9e6uUUu3JfDbmPIVIRr2rgXeS5Fa7gf4BKptaqdzbSlVTC0WdaeXXOIrYwBESX+94tlGEiOL0mDImaVMHS4romDeLjtpZdMybRe/0yk4M4z5E7O8757a7ugaLi/oK+voLAQZKinj18vOebj9+3huUUgm9Qk6+iH8gwYO3K6U+luj9ns9tRJaQuZyrlHo+rR/oYW3tkmlIm3A2kZH5QsYmL303cn8dJnJtk20LgsiUlvf6zyD7+TYACBUW0Dl3pthA7Sy6Z1ZDIGAj+Rf+B/jdaf/3SOu0A4fLAMLBALtWLAsdWXDsGxPtFQBDg6yHkJH8E8Bbk+mw6+F7w79PKXVHmj9x0jMVBL4Y8I4cQkBRMuvBPaIn+UCuAAAgAElEQVT+aWT+Mzn3u21TcugoNTubqNrbStlrhxP5ao8SyW42UmlZ2bypd8QzpIkzyojX6M9A8mcvckoyy6wS0URE7B9FhD02ledB4B0rmzcNy/CWDZxd2o7zHDpZKbUzyc8WIemBr8a2r8IwkgnoofS1w5FReutBjPCI95rbaCeygf1jMR2ytnZJrPB7O4HHIdf/NBLvfjYqAyVFdLqCXzurr39a6UNn/vbvb/N6r8LBAHsuPmv7wUUnXjgWy/KcyG9vLMublVIPpHqetbVLChCX8hVOuYjM0wL3MXo70Ax0ZDswdm3tkkKGC79baom0AwvIoNMSKiygc95M6fgdM4vuGdUh8/YHjOLO7qFz2sC+C5barUtOea/S3/hz+r8qPlrrnxGd1/4zSqn/yvb3TBbyYg7esqwAMhIJAu2maQ7lSHeSXHQQcY25vdi4c0JOxPOVwPXY9kUYRlI3rjE4SMW+Nma8spvKpjYK+od5GpuQpAobnbIJ2Dsec9gjsbJ5Uw/QgzQcI7K2dkk10sgviiknktwNfyyyOcy1zuu9SH5z7zzzDOCRtbVLPrSyedOdKfwMACzLMpB5zCLEBmLn8g4QLfAzkSQ4cXFGCG/Etq/Gtt9JICAjXWPkrlqgf0C8NHtaqGpqpbB7WJ/sANE20IDkMMh6o50sK5s39TNKDn0YGqWeynAbOIUk2pHC3n5qdu2jZtc+gOKBkuK39VVOo+RoJJlcIBRm/uPPn1LU1b35m1/7+nlf/9Y3R9z1Lx6ODZQ6pcM0zVhXWexy0qS8L87c+alEBP1y0h/1HiVy/d3SCByeQBsYIJI+d0TW1i4pQdzisTZwKkmsEgoODFK1p4WqPS0AhIoKgn3lZVHvMYBjn2kwito77/zm17427+vf+tatqf4ey7JKkLagyzTN2JswLRvIVXJW4J2L+Hbgs8iyoxDSASy0LGsrkuLwTtM0jyKbP3jnvmYRI/Ba67OwbQVciWGIsSZozAGMgUEq97Yw29pJRcsBDLk9+5HRaVRDnswc82RlZfOmI8i68ai1484NvxC5yRcTSaoxmuv/uBGOFwN3rK1dciJw82gNnmVZQSRS/dNIGlcbZw9wy7L2Aj8FfmuaZitiA16GRWO7qyCCff0fMgoKrrSDgWIMI6EdBPv6qX61merGfVQ2tbpz6WEkqCu2IW+ZzMsSE+F0RF8gOp7FHf2dRMQGzkd26qpKdL7C3j4Ke+Ovbqx9fsvsos7uzd/+zxsu+spN321IdB5H1C8E/gNxvRYgbUGhZVmHgF8A/2uaZiNJ2IDnd9UiyYeucB6TidKOZSfR1/8lYE8O20AvEmdjeY+vrV0SJNrjdx6S+jbhypFg/yBlh+LPks3e3EhxZ/ePvj1wwzFfuem7q0arm2VZJhLo/AFksDeA2EA38AfgZ6ZpbiQFG8gHck7gndH6l4H/RBpSV7i9I8lFSBa0Wy3L+gNyUb0pCmcC27TWs4zB0I0YvI9gsGI0QYfIXOrsTdspbzkYNmR3ug1EBH2r0yPOe5wb3t2mFIC1tUuKidzgyxHBTzUHwHeBZWtrl/zLSP9Ly7I+iHTiCpAbOvbiHQ98A/imZVn/CAaDR0OhqM3vZoJEvwf7+l9f0Nv3RWNa2eV2QbAwVJx4dWOwt4/qXc3U7GqiYl8bgbDdgOxW5drAy453JO9xrs9Wp9wDQw3+mTg2YMOlRooj3pnbdk8rPdT+0s09X3j/9bfeEneO1LKsK5D119VINju3DXDbtZnA54HPWZa1sbS09OmenqjLMjR6W1u7JIB0FN6NePBSTYKyA5l+crMJblrZvCnlGI9cZGXzphDihWgE7oUhr8dpiLdjuQ3LjRTFtGpPC6fes/66m3q+8Lr/vPWWi+K9x7KsM4A/ISuPiohceze+pxz4f8AHLctqmj179u/a2tq8p8jrEXxW5uANw5iD3NwDSO/5Gtu292d84hgsyyoC/g9pOJJdVtLz+OOPDx44cGBoBB/oH/gDcEW4sGBusqJetaeFWZu2U952aKsBDyPlMWd06zMCjuAvQ67Z5UjayWTnK3eubN7kjZR1R2w/RjKslcX91HD6XnzxxcHGxsYhmwkMDPyo5HDHcX2V094cKike9TwFPb1U79pHTeM+yvcf2BsI2/9AbGDdyuZNoy3Tm9I4gn8WTkNvB4wrA2E7qcHFYFEhW9+xfMV/3npLVJS8ZVmfAW4i+UDR0I4dOwY2btw41Nk0QqH/PfsX99xOJGAylViTA8AjiA08srJ506spfHbK4Qj+IhzBHywseEfBwGBS7UA4YLD1qssfWvWTW6/0Hrcs6+3A7YgNJLUktaWlpXfDhg3eAcd6pdRY5BiZFGRL4IOAbdt22DCMfwWOtW37xoxP7MEZuf8NMZBkG3YAnnvuufCe3bsDwd4+QiXFo7rewRmp72lhtrXjYHnrwQcMidp9ZGXzpqZRP+wTl7W1S05BImhTCUh6w8rmTUPLWCzLugXZ5jKldcNbtmyxN2/ebJQcbidcEKS/YvSPF3T1ULNrH9WvNndWNB94yLBtt2M36jJAn/j8/uIrZ5bvf+1AKitJDpx24qYPr/vbUPS7ZVn/DvyQFNuBpqYmnn32WcraDjFzyy6m79zbHxwYTDYZVQ+y1t61gU0rmzfl7trGCWbN6RfbpYeTd3Acnl8b+sBTDw51Ci3LegOymiallUBHjhzhkUce8R6ylFJjuRX3hJIVF71t217fZwXSiGebq4DLSPGmBiguLg4YgyFCpYk9xcZgiPLmttDsl3c+W7WnZY0zUn/Zb8yzRi2pRxu/6j6xLGspEgGbjg0YpQcO0zMrcQB8QXcvNY1Noaq9LRsr97b+n2HbDwEvOG5Inwyp2HegOE4A6mgMjd4ty5qBTM2kvMSzqKiI6sZ9LHj4aTdeJpG4h5HpN1fQn1nZvGm0lMg+SVLUkVpscai4cMhLZllWAbJHfFo2EEMyWRBzlqQE3jCMk5B51pNd17thGNcA3wPOt217r2EYZyKJDKqRgKdso0hzza4dDmMXjJD6O2xTeuhIf82Ovf+Y27B9tWHbzziRxT7Z52lkFHTZCH/vQaZ5gkiw4g9j1sZ/hTRTdQYCAUIl8dvzwMAgVbv391U2ta6vaWz6SXBgcP3K5k3d6XyPT2IK+gea+6eV3FvU1fvWeH8PB4wwRiAMdsA2DLu3uuLZWVt3fc7zlk+m+92BQICanXtdcY9HJ7AWmQb8hz/9Nnb0l5f9d+mRjv+I97dwwLBtWS9vAEZvTeVrM7ft9q64eRdp7u0RCAxb9JPKnhA5R1ICb9v2TsMw1gKfA643ZHOKnwBX2ra913nPS8D5hmG8B7gBiWjMCpZlXYBE6qZFsKCAYF+/uOcBbJvCrp7Bin1tT817fvOXSzq6n/JH6WPPyuZN/Wtrl1yOzMWVIg1qJ5JlrivRKNmyrFpk1UTaN2RRe2fENR+2qdh/oK+8+cATNY1NPyw90vHQROXbn0o499nKtbVLFiCjJ/f6dwJdb29qGHF4b1lWMbKFbNoJmjprZzG9MWqWLSrb3ljkm/AZTt3mpz65tnbJjUj0fQcRG+h8e1PDiAMsJwZHkacZAbNNKi76m4F1hmH8Hunhfty27XoAwzCKbdt23VdHkcQd2WQlabhlvYSCQUoPHMII2wT7Bn658P4n/80X9fHH+Z/HJrlJhiuQbFxp0zlvNhV7WzBCYeyA8cjC+ze80Z9HnRhWNm9yo65T4WySDKYaiQOLFzBYUkTx0U76qspfXvDws2f7HruJYWXzpv1IZsZUmEF0itpMGYtsg5OGpAXetu0XDMOoB54FbrZt25uM5GzDMG5GIuh7kQjnbFJLhjc2hQX0zJruvmr0xT3nmEGm2cICBh3HDaUi3+uLe84xA8l1kD6GweGThtIwtK/83S98cc8tZiBZ/1LeqTMehmH4Ag9D/4gQEnxys/dvtm0/jSS3GCumxLpyn4QMkmnj7pPrZHsKxben3GOQTAd70eS1DaTiov8BEkC3HbgG+NWY1Cg+e3AyE43jd/pMLloRG0gruGYi0VobSHBgJTJ3mMpjCeJGNJwSiHnM5PkA0OWUbs/zRCXR+3oy3aFvFFrJblBUXjfuecoB0gy0jYdt23ntxUs2iv5jSCKI85GEJd8wDOPX9vjtVHM78FV8gZ/K3McEz5c5Ql2DTBnVIolRapEMXZUkFuqcyxqZBraza18XsnlQa5zS4nneppRKZenZS855x2QHPJ/Jj2ma7ZZlPYakD87GSD6vO3mjNjqGYVwBfAdYbtt2q2EYdzmv3wH8ZYzrB4Bpmo2WZa1HUkjm9ZyJT3xM0+y0LOtnyHa9WevBw5BwVzNcuGNfz8v2d+cZ7oY/05A85ItG+4DW+gjxxX9YUUr1Wpb1TeBWfJGfynwTSSucUrKrqUhCgTcM4zTgDuADtm1vAklqYxjGLcD1jJPAO3yTNBPdxOQgB1lj7ZN73IJsKpI0tm3T1dXFkSPDljRfqrV+koiI+8I9MVQ75dTR3qi1Pgq0zp49u6S8vJzy8nKmTZs29BgMJvbe++1A3vAkkgBrESkO+KaaDSQUeNu2txInGb9t2z9FduoaN0zTfMayrJuQTWZSEvne3t4Q0XN3CbdF9JmcmKbZbFnWh5H4jyEbsG2b3t5eOjs76ezspKOjY+h5V1cX4XDcabYFThkvBoF2p3TEeT7SYw8S2Gp7Hu1RjiXzXhuJRC4jMupOVJJ531h3kqqAqra2NmI2DAGgtLR0mOi7j4WFhfT19fntQB5gmqZtWdZVyIquGlJw1ff19bkJdFzy2gZyal7QNM1vWZY1CHyN5JNddHd2dh5BRmkusVsG+uQAWusaYNcJJ5zwq5KSko91dXUVukI+ODhuOWq6gGan7HceW5H8D4lEu2+MA9AmHK11EOkIVCBxCXNiytyY17PI4pRbT08PPT09HDgwvM0uKioiGAyGiRb4oNZ6FvBavl+bfMM0zR2WZV2MbPgzk+SWzfX39vZ2IZ0Cl7zWgqxsNjPeWJb1eiQOYCnSG4sdOQwirpcm4Jt33333F5HdrFzOV0rVj0ddfVJDa12GJLI4Bdlr3lvGcmvHboYLd7znHb4YZAenQzCD4cIfr1Mwi7FLK9qBbPf6CpKS+yWn7Pev9eTGsqwaZHvpaxCvVLwMdx2I7dx+3333vdDT0+P1Pv9JKXXN2Nd0YshJgXexLGs+8FFkI5pqZDTQjmxO8TPTNBsAtNZ7gOM8Hz1JKZVqFi2fLOIEth2PdLzOdspSoq9TtjiA9PCrPMduBh4iIt6+cE9itNYBpDNwDJK2+mTP48nAsWR3fTSI3bwUU15RSvkpjScZThrjtyMp0ucjU0ZdyBLr24C/mKbZq7X+IvB9z0d/rJT67DhXd9zIaYFPBkdIuoleP12llEp+r0KfjHAa55OICLlbpif6XIp0IiOw2LJdKXVEa90AeLeFPFcp9XwWv99nAtFalyANu1f43cf5ZG+JbS9gES36DUqpjiyd32cM0VrfhASIu3xdKfWtiarPWJNTc/BpUka0uPcjLhufMUBrXQCcRrSQn0l2NofoR1yp2xku5K2jjMBj3ft5HVwz1VBK9QJbnRKFY5PHIat+lnr+tAtx/6cStFsCnOsU73fsQMR+IxHh3+d7hSYdU6odmAoCPyvmtR9QkyW01sWAiYi462o/g8yyzdnIEpihEbjn+R6lVMr7sjtenNgbO6+Da3wiOC71XVrr2FH8O5E597nISN9E7PdMpCOQyq517lTB1Z5jB7XWrtj/E3hSKdUU78M+48YwPZiQWowTU0Hg58a8zuse21jhBESdgSSYcEfmJpnZUBfwolNecB63OaOxbDKdaBdtt1LK3+99CuF08oa1BU5n393V7AnP+4NIoOeZnnJGnHMkYgaSce31nvPudr7nSadsUUrldbrUScaU0oOpIPCnxbzeNSG1yDG01kWIG/JSp1yMpFxNlyOIiHvLjnRG5Gng24DPLKKXR/Uiyxvj4til6/K/wz2utZ5LZJTvllNJPsDvBKdc67w+pLXeQETwn08xfa9PkjidvCnVFkwFgY9Nl7llQmoxyXGWp11ARNAvJH1XexvwPNFivnsCp0Z8G/CJtYFt6XQulVItSErdB91jWutpRLv33dF+MnP704G3OQWgV2tdT0Twn1ZKDUvD6JMW84gepHQBeyeoLuOCL/BTFK11NTIqdwX9XNKzhz1ERNx1tU+29cO+DfiMmQ0opbqQrGrPusccF/9JiNifg9xr5zF6QpYSIvckyAY+DUQE35/HT59YG9g6ydqprDMVBX7zhNRigtFazwYuIdJ4nEHq64YPIvOHz+AIulIqF4JUfBvwGVcbcLwDbnDon2FoKd95wOuccjHRuRniYSD36hnAJ53zvIpH8IHN+S5UWWLKtQN5LfDODRWbb3zYMpp8RGt9HBExv5Thc0/J0Aw8BjzulK05GhDkj+B9JtwGnODRJ5zijvJPJyL4lyAJe0ZjvlPcefz9WusHgPuBf/gu/RGZcBsYb/Ja4JEoWG+u6z2OOy3v0FpXAFcAb3Ee56dxmp1ExPxxYFeujwyc2IITPIdsZFTlM7WYdI27M8pvcMp/e7I7umL/OqQDMBrzgA87JaS1fhpwBf+lHO2UjwWTzgbGmnwX+Ly9oE5jsAh4MyLql5B6ti6LiJg/oZRqzmolJwexEc67lFI9E1UZn/HH6fx6R8YhJL/CpMLpTO92yh8BtNbTgYuICP55JL7Pg0Q8AjcCrVrrBxGxf0gpdWjMfsDkJ2/1YCTyXeAXx7zO6QvqROtejgj6W4gemY5GGJk3dwX9SaXUwaxXcvKRVzbgkxaxDftOpVRO7APuCPJap6C1LkUCYi8hElOTKFp/DvBBp4S11s8SGd0/P1VG985OlN418AOIxzKvyXeBvyDm9csTUosM0FqfTETQl5P8ntv9SFSvK+hPT9F82TlvAz4Zkzc24HifvPP4xcho/c1Oie3Qegkgy18vBDRwwBndPwA8mCMBs+kSawPbpsKmQXkr8E7+6YtiDj85EXVJBScw8DJE0N+MxBEkyyvAfU550ndFAzLK8TLpbcAn6+StDThJcR5xype01icAVyJtxxVAeYKPz0IC9a5FluM9h4zsHwCeG6ckVONF3tpAIvJW4JFlJd4NTg4A2yaoLgnRWs8nMpe+guQ3v+hFtsa9D7hfKZX3LqdUcNb6L405vGEi6uIzMTixKpfGHH4i3nvzAaXUbuDnwM+dbJQXERndL0nwUQNY5hSF5NF/ALgbeCAPBgtTxga85LPAx/bYnpgsEeHOphevI+J6T+RWi+VV4F5E1B/1c6on5GKiA+w2TfEgo6nIKcBsz2t3/4O8x4kzeNQp12utjyUyun8DiVNPzwCucUqn1notsp4/58TeiVs4L+awL/A5zqTqsTmivgJ4D7KLVU3iTwwxgMyhu673bZOlo5IDTCob8JkQYm3gqakw9xoPJwPeL4FfOu3RBURG92cm+Gg58F6nuGK/BvEa5oLYLyM6g+CrSqm8TlHrkpcC77jlYkfwj09APQqQqPf3AO9C8k4nQxOO2x14JJ3guHVLlxnI9S0ABlc01A+keo48YMJtYCJxbCCILKsKrWioz4nI8Szj24DYQAHAiob6XgCl1ACRYL0va63nERndvxGoHuGUXrHv0lr/nckv9lPWBvJS4JGsbd79vzuAjePxxY6oLyci6jOS+FgI2GCEww9M39/67GnPvtgesO1aoBa4bt3d97rP5yK5qguJiHfBCK+9CX5Yt3RZO3BolHLQ87x1RUN9zi6jcxLc5Jxbbt3SZQHEdmsTlDJGvvbeY8GYc3cx+nX3lgOIHeSyxyjnvDiOKNeQ2AYqGPnej7UH77l7iXPNL4k8fyQcCNzdMv+4eYfmzT6/u7J8RV9p6RyMuFmtpxEt9t6R/WSaOsw5G8gW+SrwsT22DWMZEeqI+mVAHfBuojsXcQkMDnZXHjrSNGNfS/uspuaCwv6BU5B5+cBon02TSqfMT/YD65YuO4isG9/qPLplz4qG+sm+fvZ8ou1752RI5OMI+AIkCPRUhjfc8xi7+3KaU45L4TPt65Yuc7dN9dpA44qG+knt6nbSNc/3HOoH6iemNhEcAT8WsYFFwDEMt4Nkl8OmSonnO+ISCIepbdxNbeNuAGzo6ystae+cXl3eWVVZ2lNRTndFOT3lZdjBoT7kNOBfnDJpxH6E1VT+CD7HeUPM66z32Jw80pciI/V3I0tOElLQ38+MfS3MatpP1YGDZQHbXpjtemWZGUSyYnnpXrd02TaGi//2ZN3A65YuqwJeD2xb0VA/FuuSx9wGRmPd0mXuNqLu9qFnIFH9iZYuTTYqiURXe+lft3TZdobbwLYVDfVJNejrli4rQeJSDgPPjIGn4IqY18+Ntxt53dJlxYiIe23gDJKfrptwDCgu6emdVbKvhZn7WoaO24ZBz7QyXMHvriynp2Ia3RXl00KFhV6xvxcJ0Bsm9rd89nMVxV09fw0HAycfnjv7v+1AYHWWk+9cgHQ+XNqYhFkMxwrDtnPZ+xaN1vrzwWDwB6FQqA9nL/NgMEgoFLpVKfW5LJw/iHgH3JH6nNE+I6Leyqx9zVS1HSQwvv/vEDCIBJikunNcOvQjO8096pSn3Tk/L07D/hRwlnNoNXBDtrwCjh3cEgpFnDbBYNAOhUJfVEr9MBvf4cUZkR1DpPF2G/NTGJ//eyJcGxg2bTNGuBkT1yM28OSKhvr2eG9ct3TZX4B3OC/vBP41nr2kw3jbAMC6pctmEX393RH6RA+kwogNBMarLl2V5RydNYMjs2ZwdOYMBouLALqRjHxrgHuVUj1r3rhyw4yWtosAjs6cztbzzryrv6z0/U6MQEZ49GDoHnT04AtjZQOTjbwReK315wsLC2+57LLLeOyxxxgYGKCwsBDP67QuqiPqFyMj9atJStQHmNHcwsym/VS3vZaqqB9EdnGLV/YDncjNOuA8xj53X4fcEZHjFq5GRg3JlBnIphclqVQ8Dn2I4LuN/bMrGup71y1dZgKbYt67BvjQiob6jEZYY2UHXhxBX4CMEK9AYi5GnZZJgaMktoEjDL/e8V6H3E6TYwMVJHft3efHEp1LIh1CwPPI9V8PbFjRUN/hdPJir/UG4KoVDfUZZVQbDxsAWLd0WS3ihboC8UQksxNcsnQD+xjZDg4Tuc6J2oJBjw0YyGg23rUeqdSSBW9DV2WFiP2s6a7gtwNrLvj7Q+8r7B8YyvvRXT6Nreef9WhXddVbM3Htj5cNTHbyRuBvvPHG8OWXX25cfPHF7Nq1i7vuuou6ujrmz5/Phg0bWL9+vf3Vr341qRGME4V/IRI8cjUyL5qQoCPqs/btp7o1oai3IgF/m4A9RN+0LdkawWSKIwgnICOQ2JLsEr9YeoGnkdH7vzN8WuNp4B0rGuoPpHn+rNqBF2d0toKIqM9Pt46IQG9EdhF7lRgBX9FQPyl2PHQEoZb4NjBqR3cEQsA/EbF/JxKH4GUH8JYVDfVpu1HH0AYqkVgb1wZSyV8RSxfSBmwEGhku4B2TIbjRsYFZSOByrA2kEssRRWdVBUdnzqD8yFGqDh6O+ttAURFbl53ZcGTOrMvS3fp2rGwg18hpgbcsqxh4O/A2y7LOa2xsPO39738/8+fPH3rPrl27uP322xkYGPi8UupHic7npHn8ILb9rxhG7D7ywwgODDCjuZWZTfupaXuNQDjKwxxC5iY3esuKhvqWOKfKGZwbfjbDb/jFiJs6UxqRBj6prIOWZQWRxrYOmGdZ1smNjY0LM7EDgHVLl5Uh0zFuY55onXAidhC5/i85j3snQ+OdCeuWLqtBrrvXDhYDJ2bh9AeRkXxS6UQtyzKQudZrgBMsyzq1sbHxlCzYQBESrOnawPnErExIkr1EX/+NwM4cCFRNyLqly8qR6x/bFiwkhekgm+HzWOFAgB1nmbtb5x93oVJqfzLnsSzrdGRTnVMty1qcDRvIdXJS4C3LOgm4DsmhHMZxIz755JN0dnbypS99aei93//+9+nq6rpXKbUy3rm01hVGKFwXHBz81GBx0Vnx3uNlSNT37aemdUjU3RGZt7w8WUbj48W6pctOQNzVy5H1/6nsduflKPD2FQ31I0a7WpY1B/g88G/I/HI5Tjtx//33A3DdddcNvX80O3A6LuciwXlvQCJvi+K9dwS6kRG5V8w3rWio70zhHDnPuqXL5iDBp5cjdhC7k1uyDAAfXNFQf8dIb7Asqxz4JPApZAqqFEeAH3roIUKhUDo2sAhZD34FMlqfFu+9I9CPbGTjFfOGFQ31Uyp74rqly6qRwFzXBs4izViUVxef0t608ORzv/5NHdejY1lWAfAR4HNIe1PoFNatW0dfX19KNpBvZFXgDcN4H/Bj27ZHjShPF8uy3gb8CZkfHgoYeeWVV9i6dSvJ9Ni01sFg/8AbCvv7r+srLbnUDgYTBp4EBwaZvr+VWU3Nrqh3InOKDztlc66PyMaCdUuXzSci9peTmkvPBvSKhnod+wfLss5DkgCVE7OcKBU7WLd0WRAR8quRnAWpzKH2IxtWuDbwwoqG+nzanCMrrFu6bC4ilMsRG4h1yY/GH1Y01H8g9qBlWQuAfyDTZ6Xev6VoAwbinbkaCZxNpX5hZNmdawPPrGio70vlx00FHMG/FKfzb8OZRgqCf3R6tf3yxcvO/+q3b3zOe9yyrBlI0N4SYjpiqdhAPpM1gTcMI4AESp1o2/bZWTlpDJZlXQ38jpgbGuCvf/0ry5cvx51zufvuu3n3u9/NiSeeyIYNG3j00UftwkOHzywYGPx6T/m0Nw8WFyXc0MUIhZi+v43Ze/dR03JgMBgOP0PkRq6fopnh0sZpSE9D5l5Tmb9dsKKhfpf7wrKsC5BrEHdkNZodrF+/3r7oz397I9KYvzOFuthIDnPXBjYkuxzMJ4ITmPYQcHoKHxeWu8oAACAASURBVHvXiob6e9wXjrjXI6P2YS7zJG3gIsQG3k1q0wpbidjAoysa6o+m8FkfYN3SZdOPzqjZVXXwcKJc+FE0n3j8vmv/etdQB9yyrBrEBo4njqctGRuYCnPw2Vwy8X7gLuCLWTznEJZlLQR+SxxxB1i0aBGPPfYYAI899hjTp0/n9ttvH4qanF5QaLdVlG8cISPTEBUHDzN7TxMzm1q2FPX3P4jcyI+vaKifinupZ40VDfX2uqXLjiH14KxTgF0AlmVVAQ+SwG06mh0cb23tQUZ+ydBIpDFfn2l0tw8g7tNUxB1kudk9AJZlBZCtUWsYYZ53VBvY3tiNBHQmQwsRG3hkRUN9U4p194lhRUP9oYfPOD+l1RllHZ2FMYfWIB7BuNNoo9nAKaec8moaVc85khJ4wzBOQuYXT7Zte79z7Brge0jgSTOyjOwqxkjggS+TYE504ULJGfPoo4+yePFiTjnlFF555RUeffRRTj31VLY0NAQIxo+PKeruYdbe5t6Zza0PVB46fBewbkVDfVKBHT4psQ1JG5zszb2LaDH+d0ax2UR2MH9fC/M2v5LIc9ONuP4fRBrzxiTr6ZM8bcBuko/PaAdu8bxeiSzvGnH0lcgGFnR0MedFK9G8+gCwDrEDf/ptjAgVFLwcGBgwk3lv2DAYLCysc19blrUYmVobMdtfIhtYtGgRCxcunGNZ1lmmaeb1zoJJu+gNw7gTeNW27esNw7gQ2QzlStu26w3D+BAQsm37D4Zh/NO27XOzWUnLsmYhS8rSWpcdDoe5//Y76C2J2ENgcJAZ+9t6a1raHp65r+UnwVBone92H3vWLV12LuLtKUXW9Hc4j97nNhK4uMFtXC3LKkTWgCeT2z8uR266hf4GK/ZwB/B3nH2vfbf72LNu6bJTgA8j19J73b2Pg0icw3pvbINlWc8DaU8Bdvzmj/Q89Ejs4T6kU3c38PcVDfWHh33QJ6usW7psjg3/ZgeMBdi0G7bdbgy3gT5krn69Nz+GZVl/QLLkZeKBDgN/NU3zXRmcY9KTisCfjfRsX4eMqj5n2/adzt9uRiIlw8j68d/atv2ZbFXSsqzPA98hg8Qrbc+/yMsvvgih0OC0AwcfndW0/wfT2jv+4QdG5QaWZa0E/kjiPawTMri3ifb//Q3hw0f6wgcP3Y5MKT3sB0blBpZlnYpkyUsYP5OI0KHDdNz2Kwb3t4TDrx38P8QG7vOn4HIDy7LKkE1xspGrvx+YbZpm3sZRJN0Dsm37BcMw6oFngZtdcXf+dr373BnBZ03cHU4mw6xqs885i9nnnAXwT9M0Y/OU+0x+jsdZ/pIuBccdy/RvfhXgqGmaH85KrXzGk+MRF3raBKfXUH3DF0FGhu8zTXNSb5jjM4zZiHcnGwLfh+zQmbcCn3QUoRMlH0JG6TeP9L5su+cdUlmLOhpxg/R8Jj1Da5yzwFjt1OUztmTz3g3h20EuUopoUDawyXM9SGWZwA+QZSnbkYxR40lrFs81pZJO5BFu7u1s4Ltjc5Nszo0bSFClT25xmAw9eR4KyK5NTTqSEnjDMD6GrBm+Chm9X2cYo6w3yy6PI4EXmdKNBNP45B5PkZ3d0AaRtfg+uUcDqWUXTMSLpmn60fG5RxvZE+UuZEOfvGXUBtMwjCuQALe32bbdigSlFBHZ5nE8uB+Jqs4UA7gtC+fxGWdM09yK7EyXaaM8gNizT47hBEP9CgmOyoROYFiGRJ/Jj2maYeBGRJwzoRu4Kd9jMBIKvGEYpwF3AB+wbXsTgG3bIWRd6vWJPptNnIv6TTK7qP3Ar03TzEZHwWdiyNQGbOBZp7Pgk5t8j8znYI8gy3x9cpPfkHlHH+AXWTjHpCahwNu2vdW27Zm2bd8Xc/yntm1fOLZVG8bvka010+m9h5GEGd/OZoV8xp3HkPzv6e4Z341sSuGTo5imuRv4Gel39HqAjzuDBp8cxDTNbiShWroxFN3ADaZptmevVpOTnMnFa5pmL7JpxS5Sa+AHkDmbi03TbB6LuvmMD86c6VXIUs1Ubu4w4pZ9i2maG8eibj7jyhcQz2KqIt8D/Jtpmvdmv0o+44lpmj9HpllSFfluYLVpmj/Ofq0mHzm3XaxlWdOQDWfegsypj7TUxc2E9TLwdtM0c3ofdp8IzhaR3wM+gYj3SEtdwsgNfQB4q2maW8anhj5jjbMH/GeAm5Alb4mW0rYjHf13maY54hbEPrmHZVlXId5dm8QpsDuQAe1HTNP883jUbTKQcwLv4uwo9RHg44jIuxnpAojw/wG4zTTNlyamhj5jjbMn/AeATwMziSyjM5ClNH8Dfgo86UdM5yfOBkTvAT4LLCB6Cq8E2db5J8AD+R5QNVWxLKsECfr+LJJR1ZuZsgTYCNwK3GOaZrrTezlJzgq8i2VZQWTHsRokEcoRYLtpmn760SmCM5pbgOQ2L0FsoNE0zWwsrfTJESzLOg7ZrbAMGbXvMU3Tz3sxhXA6/ccgo/kOoHkqe29zXuB9fHx8fHx8hpMzQXY+Pj4+Pj4+yeMLvI+Pj4+PTx7iC7yPj4+Pj08e4gu8j4+Pj49PHuILvI+Pj4+PTx7iC7yPj4+Pj08e4gu8j4+Pj49PHuILvI+Pj4+PTx7iC7yPj4+Pj08e4gu8j4+Pj49PHuILvI+Pj4+PTx7iC7yPj4+Pj08e4gu8j4+Pj49PHuILvI+Pj4+PTx7iC7yPj4+Pj08e4gu8j4+Pj49PHlIw0RXwGZnuNauLgLlArVPmAiVAIXLt3DLa6wHgkFMOep57S3tZ3Sp7nH6aT5J0r1ldAMwmYgO1QBkjX+uR7CFE/OvuLUfL6laFxumn+SRJ95rVAWAm0TZQQXL3vvc1wGHiX3u3XThSVrdqcDx+l8/YY9i236aPN84N6xXukcqscaxWiOibvxXYBmwBtgJbyupWHR3H+uQ13WtWG8j1Hc0G5jB+njYbOELEBg4AryA2sAWxgdfGqS5Tgu41q2uAY0hsA/MY38HYUaKFfwceGwD2+4OB3MAX+DGme83qcmAJcIanLAWmTWS90mQ/0Te6W1rSueG716w2pkJD0b1mdTFwOpHrfyZiAzUTWa80OUh8G9hbVrcqnOrJnI4O+W4HjifmVKJt4AykA5drtBPfBnal6wGaKm3BeOMLfJZwGqpjidy4bjkZMCawauPBUeQGt4AngPVldav2JvpA95rVNwDXId6BT5bVrXpxzGs5DnSvWT2H6Ot/BrAICE5kvcaBbuRavgxsANYD2xM12t1rVl8LrEY8R18oq1v14HhUdKzpXrO6mujrfybSwSueyHqNA/2Ix2cz8DTwKNCQqOPXvWb1cuCXyFTC18rqVv127Ks5dfAFPk2cm/hy4FIiop7tEZmNuMqbnbIf6AQGkXn1wZgS79gg0rBMB2Y4j/FKtj0KjUgj/yjwaFndqib3D91rVs8Hdnne2wW8t6xu1dos12FM6V6zugy4BFgOnIXYwNwx+KrXiLaBIyR37b3HihD7HOn6Twcqs1zv/TjXH7GFHa7gO9NUPU69QKaIPlVWt+pnWa7DmOLEyZwPrADORmzghDH4qiNEbKAZ6RS51zfZtiAIVBO53vHag+os1/sw8BgRG7C8gt+9ZvVmpAPscjPw5XS8QT7D8QU+SRw360XAFU45l8zmRo8Ae4i+aWNL63gFvDi/zxWAGUgjtchTTiazecCdRAR/B/AU0f+/MPCZsrpVP83gO8YUx816DhEbuIiIQKVDF7CbxDbQUla3qi+D70ia7jWrC4nuBBwHnEbEBk4ls1FoM5GG/ilklBfbqfg+cP1kbeAdT51JxAYuI7POcR+j28D+srpV3Rl8R9J0r1kd2wmoJdoGTgPKM/iKQ4jgu23BH5EpTC9rgA+V1a3qyeB7fMgDgbcsqwgZQdcggnEEsEzT7MjkvM4IYymRG/lSoDSNU9nAdmAj8JLzuBHYl0tzTk7jfzLRN7r7mE4DdxDpSMTyQ+C6VObyLMsKICOnGYgAHQW2mqaZUUCY05gvJGIDlwNVaZ5uN8NtYNdkFbJ4OI3/fIbbwCLSG/kddj4XO4V1N/CBVBp4y7IMpx5zkVUG7UCjaZpNCT+YBN1rVh9HxAZeT/rz5i1EX/+XkGmMnIla90xFejv/rh3MTuOUR5EOQ+wU1tPAO8rqVh1I5WSWZS0AjnfO2Qk0maa5I4165QU5K/CWZS0FPgZ8ABFR7w8pAv4G/BR40jTNpH6k4zr23sgzU6xWF9BA9E28qaxuVVeK58kZnI7QscBiZER7OeKyLMzgtPcA1442arEs60Tgo4gdFCNeAJcSZITwX8CDpmkm1Yh2r1k9F7n2rg0cl2Ld+5BYhI2e0lBWt+pwiufJGZxGfw5iA+cjUxavQ4Q2XZ4F3l5Wt6ot0Zssy5qDtAGfRjp47nW2ERvYCPwYuMc0zaQ6DJ7pN7ctWJhi3UNITIpXyDeO9ltyne41q6cjQn8eYgOXkZnLfyfw1rK6VdsSvcmyrErgX4DPAguQWACXQsRTeitwh2maRzKoT86RcwJvWVYVcBcR9+hIbuMwEvizF3izaZq7Y9/giNMy4GrgHcgINaXqAA8jQUUvAY25NCIbK5y56QuRm/xy5H+cquDvBi4tq1u1J/YPjtfmZ8D7kNFfIrdxB9Lxeqtpmi/EqauBBEBdDbwT8dqkQiNiA48jNrAtl0ZkY4UzN30uYgPLEcFP1QN2CHhzWd2q+tg/OCP2rwFfRgQ1UWfC9ea9xzTNB0ao74nAu4F3IZ2UVKbfWhAbeBR4EdhcVreqN4XP5yWOx2cpERu4jNQ9YL1IZ//ueH+0LOuDSFsQIvHUQRdyTT9jmuYvUqxDzpIVgTcMYz7wHBJBC1Bn23ZKrpVksCxrLtKzn0Pyc4EhxFVzqWmaDY7RvY7IzXxMClVoQm7kh4F1ZXWr9qfw2SlL95rV0xDBv3wwbH8AOK4gkNTCgm6guqxu1YB7wLKsMmT+ziT5EaKNBHS9yzTNBx1RPxuxgXeT2gjtIPAIYgOPlNWtakzhs1MWR/DPA5aHbPuakM1pRQEjGSMIASeV1a0a6qBblhUE7gDeTGrTQz3A503TvM2p06lEbODsFM7TiYi52xZszqXptonCaXvPAJbbtv2e/jDnFQUIGEmZAVeW1a16yHvAsqwbgc+TmqeoG+kQfClZz24uk02B/75t21dnfLIRcBr2BmR+JdXRoB0IDRw9budj9wRD/W8l+bmio4iYuDfyK/6NnD73/+Tb12xtD/2hfcBmXqnBWTUFnFoZZBSxf0dZ3aq/wdCobT0ywipJuQLhUPexr274U1Ff5xXIXHIy9CBL/1wb2Oh7adLnnltvXNrcE37ptT7bmFFkcOb0Ak6vClIcTGgDN5XVrbrBfWFZ1s+B95NO7Idtd89peuFP0zpbL0A6ickwiMwJuzbwnLfT6ZMaWuuyY8sCR5q6w4UVBQZn1ARZWlPAtIKENnBvWd2qle4Ly7I+D9xIetNA3cCNpml+N43P5hTZzI50sWEYTyCN4Vfs7Pv+P4IE0KQzt2vMaXqhKhjq//Ao7+tHonvdG/l5392aPTYfHfxAp/Pf3N9js79ngEdbB1hSXcCZ04NUFg7zioaR6Q+XNyBR7KmLOzCzdXNZUV/n/xvlbWHgn0Rs4Gnf3Zo9XmkPXdsblqC6g/02j7QM8HjbAKdXBTlregEzi+N6xoeWT1qWdTIy556WDVQd2lU2rbN1NBsA2ETEBp4oq1uVUdCuTxTvauoOFwJ0DNo8eWCQpw4McmplkLOmB6ktDRBnVH+/+8SyrArgW6Qf41EGfM2yrJ+Zppm3sTGQpMAbhnESMno+2bbt/c6xa4DvIaOp/cj8dTfwv4jrO+6cSTo4LrmvkO5yFNumuPfoSN3DLuA+ZF7/vrK6VZ1pfYfPqHQOsg240nusOwTPHhyk/uAgx5YFDpw1vaBpYUUgbBhGD/CVsrpVBz1vV2SwRKe4d8RMuwNIQ34X8Dc/HevY0RtmWEzFQBheOhzipcMh5pYYR5bWFOw2q4P9QcMIA7eW1a3ydvKuJ4OkQQlswAaeRGzgntESNflkxLDp2zCwpT3ElvYQ04uMTrM6uPusmoLuoqBhAHfGLJ/9aBbqYAMfB/J6FJ+0i94wjDuBV23bvt4wjAsRUbzStu36mPe9BbjAtu2vZ6uSlmVdBfwO2WAhLaa3bqF0oIv2eacTKpo2GC4obgsVlbaGisoOYATCRKLww8gc21FkqU0yj32L51ZOade91tpAOmDxkqm4x+Ygo/DR4h46gVVKqf9xD1iWZQL1pLdUEYCKw7upPtpE+zFLGSipDIcLil4LFZa1hIrK2ggEvdHXNtLxc69vMjbQM9VtAEBrXcrw6+4tM5HAy5NInOGxD/ixUmqVe8CyrBpkXXhao3eA0s42ZrVuof2YJfRPm2HbwcJDocLS1lDRtBY7WOBGX7vXsZuRr3e8Y12+DYDW2ptTYyRbeB0S3JqoszYI/B/wXqWUDUODvWbSW5IXy2FgjmmaeTvdkorAnw2sQy7MP4DP2bZ9p/O3Stu2253n3wW22Lb9u2xV0rKs7wFfyuwsBoGaeRAckz0bBojc9HuRyOqdTmkEdi6eW3loLL54vHAEPF7Si3lEbtpMlsbFYgM1SqmjAJZlfRRZ6pJRxr1A1RwoHJOMoYNIQ9+ONEA7ibEBoC3XBUBrPYvhNnAsERtIW3xH4BKl1JMAlmVdiix/TTcXAQCB8ulQkkmulhEJE7GBFuK0A0Dz4rmVOR3DobWuYngehBOI2EAmyyPj8UWl1C0AlmXNQ/6X2bCzLsA0TfPVLJxrUpK02tm2/YJhGPVIFPvNrrg7XGYYxjeQHu8uZPlKNsl8V7VgcKzEHUTYZjrlJGRJSBSbW9qPEH2je2/8psVzKyfFNp1a6wJkLWm8hDbZTmWaCAOJuXB9qtVkowMxNuIOci+5Ddx8ZBlnLJ2bW9obiW8DuxfPrZwUIwmtdQAJZo2XzCRecqKxZCHiOocspVG1C4vHanOIAFLHauT/tyzOe3o3t7TvIr4N7Fo8t3JSxHs4Hfp5xLeBeeNcnVM8z6uRAVU2BD6EeBZezcK5JiVJK55hGAHkHxJG8gUPYdv234G/Z7dqUWQe4BIaxO7vwShK28ObKdVIgNg5cf7Wv7mlfSfign4Gidh9efHcyjEN8NNaDy1dQnKpL0JupmyOxNPleaWUN8FFN2J/GWH3dGCUpj3TkynlyLrgeGvtQ5tb2ncjAX5PI3bw4uK5lWOaplZrPbR0CVm37qaknbAbxUML4N18JCvpWu2eDozy6dk4VTqUEBHMWOzNLe37gBeI2MBzi+dWjmmiLEfMT0Ns4HwmpkM/El3ANz2vu8ne9smGc/68JZUh7Q8QkdoOXAP8akxqFJ/tyHKljBodu/1AyC4suTdQNdud2zViHkH+J+WIG7AyycdMBbGIyE3/IedY1+aW9ueI3OjPLJ5bmVEmLEfQz0XmQJcDF5PdhryPyD7S3uLuM78SuCDB5zuBB4BfKqViE5K8SiRLWdrYXYexezs3BWrmuXO73mvvPg+Qug1k6hoIIp6TBcB7nGP9m1vavY39M8DeTNz8jqC7yUfczZIycnnHMED0NY8t5wFvS/D5PmQq8A/AHUoprzv7VTLL/S/0dhLu7zkUmH7MNc6RkWygjNRsINN7yU0DeyzwdudYaHNL+yYiHf9ngO0Z2oCBdOKWE2kLsjGn7RJm5DbgEOLO/9dRPr8BuBP4X6WUNzNdG9nbmbEI6UTmLUnNwRuG8THgBiJpKL8BLB6DpXBxsSxrOpJkJtMbqAe40DTNjZnXStjc0u5mUqtC3JcnIo30SZ6ygOxsFdlI9I2+MZFbV2tdyHBBz2R+rBNJwbnV89iI7HZ2SCmVMBWo1vopJOFNLI8gHcZ7RjpHFoNrOoEPm6Z5V4bniWJzS3sx0tDXIC76WBs4iezs2NdMtA08v3hu5Yj/d8fdHivombi6e4FtRGxgC7J50GtI493lBkSNUJ/fAh+M86fnEBu4Qyk1YjpRy7KeQdqhTOgBvmOa5o0ZnieKzS3thYgNuC56rw24z7Ox4+Qhom2gfvHcyvaR3uwI+kIiGeWWk9muh4PIoMvbFryCRMcfAjpiOmax9fkqsswtlm2IDfxeKTViEjHLsn4FXEtmA6tB4C7TNN+XwTkmPaMKvGEYVyA9qeW2bW8yDCOIXMwv2rb9l3GoIwCWZd0GfJjMLuqzpmkmGkGOCZtb2gPIvJX3Rvfe+KnmvHfpRRrGe4G/rLnthzuQEZJX0NMRlRYijbdXzPclarxHQ2v9HmQ1RDEyGvsN8Ful1KvJfN6yrM8A3yEzoWwDak3THNeYB6cjOIuRbSDdec1BJEXu/cBfXv7n0y9ufv6ZJYgNuIKejqgcYrgNbAH2KKXS/t9prS9C7LUaEYTfA79WSlnJfN6yrDchu41lEiXXAxxrmua4B75ubmmvYWQbOI7EKwtGwkayiP4D+AuwYc1tPzwR2cJ2uVPSsa8Oou9/1wYalVJpx4torRcgmQCPc77jTkTYn0mmfbEsayFi85kM+HqAZaZpJmV3uUpCgTcM4zQkwOWDtm3f5zn+SeBa27bjjcbGBGeXoE2kPwLtBt5hmubD2atVdtjc0l6FzIFfiLiwLyTJwELbtjnUup89O7exZ8e2UH9vT6ruq2YkO9zjSK6DrYlGUJmita5FrmFjol5+PCzLKkc2joi3A1kydCMpKv9n1HeOM5tb2qch22Z6bSDpjW6OHnqNPTu2sWf7lsHuzo5Uo0kPIlt4PoY0nFuA1zLpzCVCaz0T8XalLBRONsMtiCimEzXbDfzaNM1PpfHZMcXxArkb9rh2kHQa5a6Oo/z/9s48Ps6qavzfm6QrSWhpaNOWAhUQiBcLqIEia9giKovyKlh3FBVF3Pe341TcFxQBef2huFVBWVRQwxYBQSQKUngIlC1la1OaljZJm2ab+/vjPNNMJjOZmcwzM5kn5/v5zCcz89x55mSe89xz77nnnvP8U2t59snHh7tf3pxrP9CLJCm7C3gA+Y3XF1AHapCliGcjkUjOsRWe592EbLmdiGe0H7jXWnviBD5bVpRVsRnP805DRu+5GvkdwFestZcEL1Xw+LO9pYzc5EciJXGrQIz6ti1dPP/UWp57ei07etJ651KxgZFazH8Hni7UTVwIPM87FBmMVJObkd+O1J7+cLnkoG7v7F7M6M7+tSRED/d2b92lA91bNqc5S0riNbnv9B9eroOtUuJ53l5IMOI8cjPyfUimyjeUy97n9s7ueYzWgSNIyAeyc8d2nn/6CZ57ai1bXsqpNMZ2ZPIW7wsezGdWXmz8bHb3IgOgXIx8P+I9PHIqVJYrKwMP4HleE1JOdCaZA26GkPSzH7PWXl1o2QpJe2f37Ke8h05/af3z792yaeNRfb09WYWCz5w9m7r6xUO1c+c9VDt3j9UL9trn6kP3mZ82nVc54HneIcCtyEw+03aZeKGZ7wFRa23ZGLJk2ju7pz/75GNNnc91fHDLpo3H9W7bmtWWtWnTZ1C3cHFs9z3qHquZM/e6hUv2vfKwpfVlHVzked5i4BZkIJzNgH874r4+z1pb0J0JhaS9s7tyw7PPHPFCx5Pnv7zppZO3vbx5EVn04ZVVVdTVL3K777FnR82cuX+av2jJFY0H7l3WddL9MrHXIwOfbJZstiPeiTPDnqI2TtkZeNg1gv8YcD4jUe+Js7keJAr2d8APrbWPjjlJmRCNRvdCah2fS+otdqOomjad+iX7Mn/xXsxftITq3ecm53UeREbtvweuKfQWnELhZzX7EKIHuyOdfOL2me1ItO3NwCXW2n8WXciAiEaj85CKZ+ciJTfH9VxUVFayYPHezF+8N3su2os5e9RhKkbtLHLITPZ64FcN9bU5Tf8nC57nzUSisT+ORGZPY3SMTh+iE/cAlwB/LRfvTTLRaLQa2X1wLtBMplgkY9hz4V4s8HVgjz0XUFE5xmu/BskUd3VDfW1Zpub1PK+CkVrwyxhbProf0XcPSZT1u2LH35SSsjTwcfzI6pOQspELEGO/CXHh/tFaOymSRuRKNBqdjWxFfCdwDJld0TsrKitvWXqQ7Tik8ei9p02ffgrZjWi3IUFvP2mor30sL6FLhL8meyRSy30REnjThbhwf2+tLUtvhZ9w6CzEgJ1CZlf0sDGmda9XHNB+6FHH182cvVsz2SWl6UeCnH4C3F+umfb8VMZvR6LXa5BliEeB31prN5ZStoniR7+fjBTaejPZeSrum794yX8OP/rE2TVz5p6KrHNnIobkMfkJcFu5ZtrzPG9fZAB0AOLd24YkEfqttXZKlnUuawMfNqLRaD3wUeAjZO6chxA39TXAnyKRyK6F+PbO7plIBO2ZwBlkt7XsTuQG/2NDfe1AhrZKgfDTgJ6HzEj2zuIj/0A8VddFIpFdRTzaO7urkGx6ZyIDhX2zONd/ER34bbl6dsJANBqdiZTD/RSSrz0TDyE6cG0kEnk2/qYfy3M4ogNnkl153KeReulXl6tnRxlBDfwkIBqNvhr4JHJTjxdX4JDgqGuA6yORSMaqZ+2d3ZVIYM4ZSEd/wPifYCNSEfCn5eq2K0ei0ehSxNV8HpmLKj2AdOi/j0QiGa+R39EfwkhHf1iGj3Qz4tlpz3R+JRj8PP8fQQb5mQblTyA6cE0kEnk8m/O3d3bvh/QDZyI1RTIV+/k9cAVl7NmZ6qiBLxF+ApJTkVH6SRmatyE38x8ikciLE/1Ov6M/GKmnfR7jb8WLIevXPwFuLVe33WQnGo0uR3TgLYyfgvMxRmZpT+Tzne2d3fsgrswPkXlmfxeiAzeqZ6cwRKPRBuATSAKg8SLCn0cG978DHspn90t7Z/d84GykZOohGZo/xIhnR8tplxFq4IuMX07znciMPVU+6jhbgf9DUjU+HbQc/p7btwAXIKP58Xjal+Xn6rbLH399uMJdVQAAIABJREFU/Uzg04yfuncnkov9J8DDQW9n9L07pyKzxjcy/oxuI3AV4tkZU9NdyQ1/ff1EZHD3hnGaDiPBkJcB9wa9ndEf9B+F6MD/ML4HsRtJTHSFenbKAzXwRSIajS5AjOkFjJ+57mngh8AvIpFIUUbL7Z3dhyAj+Xcxvnt4OxKJ+r2G+topsc0kSKLRaC0SMHUR48+cNyId+pXZLMMEQXtn977IrpTzGN89PAT8DLi4ob72hSKIFir8WunnIoZ9vJlzD7JUdmniunohae/s3hPRzw8h2w/H4zogooZ+cqMGvsBEo9F9kPK572L80fE/gB8AN+WTCjQf2ju7a5A4gAtIXfEszjZkX/mPGupr86/0F3L8bW6fRzrO8Sp0PYLowO8ikUhJ9mq3d3ZPRzw7H0HS3KajH/EsfDPfIkhTAX9nzMcRV/yCcZo+iwyif5YYOFtM/NTaiZ6ddEtHMSR51Fcb6munZJT6ZEcNfIGIRqNzkQI9Hyf9utowEshySSQS+XexZMuE77ZbjtzgbyP9wKQL+CYSjDVuoZmpiL8ccyHwJcav2PY3xLDfMZmyCrZ3dlvEs/Nu0nt21KszDn71vvcgxVUWjdP0X4gO3BiJRApaJjoX/HiN84EPkN6zM4Tkkv+aenUmF2rgA8Z3wX0U+Arpi3xsA34K/DibKOhS0t7ZXYe47T5N+ht8PXAx8DMNxNoVQLkC+Drp88n3I5HqP4xEIpPazdne2V2NeHY+h+SAT4V6dRLw19ibge+QfntaDEk084NIJHJfsWSbCL5n5yxEBw5P0yzu1flWQ31tWeYeCBtq4APC79TfjlQ72zdNsw5kff3qSCRSVp2gXwzlQuQGTzdwWQdEgd801NdOmllIMYlGoycjnfqhaZq8BFyOrK+XlWvbL4f6XmAl6ROodAHfQgKxpqRXJxqNvgbRgaY0TXqRgMVLI5FIR9EECwDfu3cW4pFoSNNsB+LV+a56dUqLGvgAiEajJwDfJX0q2ReRdfhflWp9PSjaO7vnIDsAPkX6bHlrESNw3VTZXheNRpchnfopaZpsQ2b0l6WreV8u+ImUzge+THqvzgbEq3PVVPHqRKPRfZFr/I40TfoRw/etSCRS1obP34FxDjKgH8+r833gh+rVKQ1q4PMgGo1aZLbyxjRNepA16h9NpCTiZMZ33X8eyQWfruDLGuCihvrau4omWJGJRqNLkNnMu0m9zWwQiYj/eiQSCdUWwxy8Op9DBnuh7Gyi0egeSJzFhaSOV3HAb4D/LVZEfLHIwasTRWJ1ynqCU26ogZ8A0Wh0MaKw7yN1hOkQshb1tcT0oWGkvbN7ETKT+yDpC2BcBXwuTO66aDQ6B/gCEhWdLojyd8CXy80NmytZenVuBi4IU3ZEP6XsxxD9n5Om2e3A5yKRyH+LJlgJyNKrcz/wwYb62keKJtgURw18DvhR0V9CAs5mpWn2B+BLkUikrEsx5oq/j3olEjGcatCzEdlR8Idynsn5UdEXABHS1wu4E/hsJBL5T7Hkmgxk4dXpRe6fK8p5JucH0L0N+DZSxS4VDyM6cGvRBJsEZOHVGUKWsr7WUF9blsXAygk18FkSjUaPQRJ8pMvlfg9yQ/+reFJNPto7uw8Evoqsz6WibGdy0Wj0VYgOHJGmSTvSsf11Mm13Kza+V+dLyIwulVenbGdyvvfuSuBNaZq8gOyg+U25x9vkQxZenSeB8xvqa+8splxTDTXwGYhGozXIOvpH0zRZi8xa/jyVO/Vk2ju7j0G2Ah6U4nDKmVx7Z/exyLaymxvqaydNmddoNDoNucb/S+o11g3+sV9Opj3Mpaa9s/tViA4cleJwyplce2f3MqSu9+0N9bXriyJoFviz9vOQoLFUyYq6GYm3KesgyiBp7+xejMSgnJmmyc+Q5bstCZ/ZFzgBuLehvjavugtTHTXw4xCNRk9B0kWmKtu5EXHT/kw79dT4+e6/hCT8GXcm197Z/X7kZgfJ6HbUZChsEY1GD0OSeKTa9taLuGkviUQiWl41BX5WtA8hv1OqZDlPAh9qqK/9e3tn9/HAHcgSz3pg+WTIe+9X+vspqYtCDSIV1y4uVlrhcqS9s/stiKFfmOLwS8jy3e+RFLkesgTaA5zYUF87aZKAlRtq4FPgZ6H7PhJEl4orgc+XKpVkudHe2d2ADJTSzeS+ixjQxKIb32qor/1iEcRLiR9AtRJxuVemaPJH4IJIJLKhqIKVKVnM5H6ObCP7SMJ71zfU155daNnS4ee2+CiyU2Z2iib/BM7LtlzrVKe9s3t35Lf8cJomfwHuQ7ZXxnkIeG05x2yUEjXwSUSj0TOQCPhUI82ngQ9EIpE7iyqUT+/qVTOQiO1pQFXCI9PrQWBL/FG9YmXR9yUnzOS+RWoX52ZGB60NAoc01NeuLYJ4o/BLuP6c1MsLm5Agsj+UYkmmd/WqacjsJt21TqcPw4zWgZIEOLV3dp+FJPpJdX9tY2xK31Ma6mtvK7hgSUSj0QMRj9LrUxzegXilLi/FOnvv6lVVjOhALn0BwMuM6MGO6hUri67D7Z3dRyMekVTVNPsYG8D80Yb62isKLlgIUQPvE41G9wR+jGSjSyYGXAKsLMR+9t7Vq6YD9Uiu6vEe6fYa5/yVJHT2aR4bkfiCjuoVKwNbgvBncj9GsmFl4laguVhR99FodDdk9nARqfe0/xa4qBCuWL/Tnk9mHdgzoK/sI7MObAKeAJ4MclDoz+S+yejZejrWAq8uVrIcv5Tvp5FtsKm2P7YCH4xEIoEXV+ldvaoCqTSZSQcWkL4ATC4MMHKtN5NaBzYDTwFrq1esDKzv85fvvoAs4Y1XhAukdPYrG+prQ73luBBMeQPvB8+cA1xK6jKu7cD7I5HI/fl8T+/qVTOBVyEBRMuQaPygO+1CMIB08o8Bj/t/H0Nu+AkHE/kzuSsZvzQpwFsb6mtvmOj3ZEs0Gm1ClhFekeLweuDDkUjkpny+w599H4hc/0P950F32oVgGPFexa/9Lj2oXrFywhnK2ju7Xw9cTfqdKXG+0FBf++2Jfk+2RKPRVyOem1QZKbsRw/+zfDw3vhHfD7n+y5BZ7GJEBxYyMtOebDik0t1jyY/qFSu3jPfB8Wjv7D4Y+c2PzND0Zw31tR+Y6PdMVaa0gY9Go4sQd/zpKQ4PIe7ki3Mt3dm7elU9I4Y8sTNPtZZbrjgkS1nize4BD1avWDmY6cPP39/6nsqBHVcN7javanv9QVCR9qd5Dji4ob62IJkAo9Ho7kg09/lpmlyFbH/cmst5e1evmsvo678MGeBlmq2UGy8yWgceBf6TzWzvhX/dfrQZGrglNn327N5FFleV9qfZDhxUqEpl0Wh0OpKg5UukNrA3Ax+JRCI5fX/v6lXVSM33+PVf5r/eLS+BJx8vMXrw3w60Va9YmXEnzIv3tiwBHnKmYo/exYcQmzHuT3NEQ31tWxACTxWmrIH319qvJrXb+7/A+yKRyJrxzuGPxg9m9A28jPHrPefDMLL+N4SsUQ8lPVK9N4S4GvdA1rjnUtiZ4g4kJ8CdwN+BB5INfu/qVXNildPWVwwPzgLYOXcJmw55I25auoy3fKehvvbzQQsajUaPBK4hdbKSdUi8xR3jnaN39SqDzPoPY7RBT1dFLl8cssSSzbVPfG86cu338B+FnCkOIDsk7vQf9yV7e3pXrzLD02atrxzsqwcY2G0emw49g+GZqcIzAPhTQ31tugC9CRONRg9AdCBVhbTNSHT37zLN2ntXr1rsnyNxQLcfqZd6gmA7I9c3276gEsm4F+8LCjnYjAEPMqID96Qy+Fuvv+SfVTt7lgMMzdiNTcvOYLAmrVPPAw7VgLvsmXIG3i/n+l0k21Iy/cja2/cikUjKWWjv6lVLke0yJwEnkj6bWS44ZM17fYZHV/WKlXkptz8oqWWko0/1mIcYvYPJ7ELPxHZGG/wH/fOOGjwN7LYHm5adyfCslB28QyJpH8xTFmBXdPRnkMIgyYbOITECX45EIim36fkemhMZ0YN0ObhzpYvMOrAx35gIf1BSTfprH3++BAk0zPf/G0Dqnd/pP+5DDN+oWf7w9Nm8tOwMBmvTjo/f2VBfuzpPWXYRjUZXIMtEqRKx/B64MF3FP99DczwjOvDKgMTaSmYd6KxesTInr2Iyvg7MYvT1TvVYhOjAUvIbrMSABxht8Lt7Vn9tvcHtCriMVU6jy57Gzrql6c7zvYb62s/mIceUYkoZ+Gg0+kpktH5YisMpt7z0rl41Dyn7GL+RU63RZksHYtjWIHu9nyOgTrtQ9K5etQdikJMf+zCxG74XuMfBq0zSLHd4+mw2LTudgdr6VJ+7q6G+9vgJfN8ootHofKQO+6kpDq9FdODeUQKvXlUDHMuIDqSr750N6xnRgYcRT0EgnXah8P//gxirA/sxsWWnfsTgzyPpt4xVVLHZnkbfnilvs3UN9bVpe/5s8YMpL0OKpCTTibjj/5j4ph9Ds5wRHXgtE/eEbWZEB9YAzyA6sCHIQLYg6V29ahYyiEnWgVcyMU/AMGLwh0jaPuswvHzg8fTutSzV57Y31Nemq3egJFHWBt7zPItsvXozMis1iAH5B7IV55/WWgcQjUbfiay3JyvHELL+9v1IJDLsK/LRjNzIh5G7IduJuJPWIPs41wAPZ7MmVS70rl41m9E3fAOypSildc6WWEWl22xPM317jqlA+beG+trTkt/0PG8fJMPYuYgLugrxGjyE6MCt1tohgGg0eiJS1SuVjJciuQ12+sFwjYzowJHk7tIeQtYj49d/DbCmesXK0EQC+7s/9me0DhxBfoNg6eBfeRy9S8bkFlrbUF87Zuui53l7Au8C3o94nGYg3oGnEB34o7V2J+wKpLuW1FsgrwfOj0QiW3xP16GMeOqOIX39ifT/iiTySdSBh4D1pdieVgj83R/7Mtrovw6JN8mL7iWHua0HHGswo7rfbQ31tWMK+3ieV4PUB/gwMnGYhewUWY94aa611oam/82WsjTwnuedjmTG2hvZ55mcJS2G3ODdsVjsGzfeeONhiBFIZh1wzqf3N93AGcDJiJFKVx0sFduQ2UjiTfzEZJ2RFxLf7fdKxHV5PJJuMud4BAdux/z9b9p8yJsORjqPF5AAm13G0fO85cAPgVcjA7DkaxZfqx4GLrvhhhv6nXOrGDtY2wK879P7m4eQJCwn+7LnMkvYyWgdeAiJLp6UM/JC07t61d6M6MDxiHs3Z/pr5t+58XXn7I6peBXiuj6lob5219KO53mvRAZmxyPXOVUymh5kpv2bm2666d8DAwOXM1ZXdgKfuPAVXD+9wpyBeHeayG35bQj4DxK/E9cBr3rFyimZ4bB39ar5iNfrBOT6NEzkPEMzqh/acOS7e1zV9Nchnp/3NtTX7vKueJ43H/gR0n8Pk/q+7UUG6DcDF1lrJ00K5EITmIE3xhyP5OOuAC51zt0YyIkT8DzPAN9AAl9S3cxj6Ojo6H/wwQfHGOy9ZnLrmQt5aEaleRO5Kd8gcC9SBvJ2JIhsyhnzbPAN/oGM7uxzMfi3Va9YeUrym57nfQDp2LOaUW3atGnn3XffPSaCb950/v2WhdxWO82chMzYsyWGdOZxHbivVIljyoHe1av2YbQO7JvDx58ADq5esTKW+KbneacC1yH9QEZX+fbt2/tvueWWGcn9XU0VT55Rz+8XzDTLgePIbcnBY0QH7s5ny2DY6V29agGjDX6qJDfp2Ay8Mnk7nud5hwK3IcmR0pWqTmQI2e7YbK2dEulvAzHwxpiZSJnUtzrnCpaQwvO87yClOrPeZvLYY4/R3t4OwJ7T4eAahg6pZcvMSpNL8NhDjNzI90zVUXm+9K5etRBZ506VkzwdjdUrVu66GT3POw8x7lkN8ACef/552tpkd83uVXBQDW7Z7mysqTK5LCc8wYgO3Fm9YmVoatsXE38JrJ3cjPxF1StWXhp/4XneScCfyEEHXn75ZVpbWwGYXQkHVsOy3dm4xzTmG2OyXYJ7gREduKN6xcrOrP8DZRS9q1f9A1kKzZZfVq9Y+d74C8/zXoXETaXddjEOPcCx1tqHJvDZsiKorTJHIesdNxljdgAfcc4Fqvye5x1LjsYdYOnSpaxbt45XTd/BsXUG5H/OZNyfRUaGtwOtYVo3LTEHk5txB3G1A+B53t5IhHtOa6GLFi1i7ty5zB98mTcsMFQaDJljBV5idGde8qInIaGO3Iw7jNaB2chaedbGHWDOnDksXrwYt/lFzlpomCnz9EzepG3Izo+4HjwRlrXzScDrcmyfqAMGuJHc+5I41cCfPM9baq2NZWxdxmRl4I0x+yERv/s75zb4761Atpsdgdwo+yPBSCch9cDTFRSYKBFyvKkBZs6cSfOpp7L3o3+BWNr8K8NICsobkfSoz+iNXBAeQAKf9s+ibQz4Y/WKlf9JeO+zTCBqu7KykhNOOIH6ta1U9o8bZ3MfcANwC7J+qjoQPBuAuxF3bSYcshRyecJ772YCOmCM4cgjj2TuM/cxs2fc+kCPIDrwN3T5rZBcA7wny7brkNrycZqQrH8T3bZnkC2AzcBfJ3iOsiBrF70x5lpgnXPu88aY5cgPc6pzrs0Y8wbgNOfchcaYGcBtzrlsbuCs8DzvQCR4Jdco1l0sfOLvzOgb5VUdQGbp1wN/rl6xcnNeQipZ4W+7OxG5lr3+oyfF8/5EA+t53u5IRGzOg7w4dc/+m+qtzye+FUN2XFwP3Fi9YmVBMqUpo+ldvWo3RoLYkq9/4uu+JB2oQLaWLp7od8/pbGfOxjHF3x5AdOD66hUrtf54EfB3qhyLeHN6SN0H9CIFcZLjL+5G3Pv5JhFqs9Yekec5JjW5GPjDkVnu0Yhh/IRz7lr/2Dxk68nJSLDSh51z6Uqt5ozneSuRAL4JLylUDuxgzsbHqBzsf352T+cXgZvDtG0t7Hiedw5SgWqibjnM8CBzO9upHOzr2W3b+s8iHoKNgQmpFBTP816DJEmZ+D7o2DBzXlrLtJ09w7tte/HzwA3VK1Z2BCSiUmD8gf4msguqy8QAsMRamzKZURjI2mA65x40xrQhKSi/HTfu/rHNxpgbgbuQWdH7A5Zzr1xkTcXw9NlsXvIagI3W2sCyYSlFYz553tSuchpbFi8DGFhg7f8FIpVSTOYjy2kTp6KSrfUNAGYTXGatnZJbGcuYPZHtckEY+H7/fGrgjTEVyM0VQ/agj8I5dzmj18qCJMjc6WEq+DKVqCC4vN6TtWqbMj5BXjcX8PmU4hC0DoTaHuTyY30fKVTwJLCiMOKkZT0ysAiC0I7WQk4XkoMgCHKqDKdMGroIbpA3bK2dcLljpWRsJrgiOdMRnQotWRl4Y8yHgLOQTF/fBj6bw97RIPgjkm0qX3qBXwdwHqX43Eow2zp3Ar8N4DxK8XkQSVaSLzFCHj0dVqy1m5E8CkGwDtnVEVoyGnhjzElI9rg3O+c2ItmjpiOpAYuCtfZBgrmog0iVKKXM8ANh/kAwHfylmZsokw1r7SDwHZKq0E2AncDF+UuklIgoEmmfDz1ANF6rJKyMa+CNMQch+xXf5Zx7BMA5Nwz8AAi8PncGosgMfKL0Ad/xOwmlPPkG+bnpB4Hrwhw1OwW4Ms/PO+Axa+0DQQijlISbyM8WgATYXReALJOacQ28c+5x51ydc+6vSe9f7pxbXljRxvAXxK02kdF7P+IB0JlbGWOtfRxJrjSRVMHDSPzFZwIVSikqfkWw85EB+0ToQZLlKGWKtXYYeDsT9+TsAM6JV5kMM2UTReq7UlYgo7dcOvgdSHWnJmvtpKy1rOTEV5Eqcrlcy53A88BR1lrd917m+NtcLyA3Iz+EVA483lob1BquUiKstf9Alol7yT4A2yG242xr7R2Fkm0yUXblYv08xBciHX0VkvQiVcBfD7IF4ifAF9U1Hy48zzsLuAwpNpGuoth2RAeuBz5irdVqXyHC87yjgJ8j9b+nkzoIsw/RjbuA91prQx1UNdXwSwb/ClhG6rLRIB5ch1T/e89UGuCVnYGP43leJXAK8DGkBGG8HOggktb2h8AfrbVaxjOk+IO95cBHgdMZKUQ0hOS8/yFwre/WVUKK53mHAB8C3oGUDjXIksx64Argl9ZarfwWYjzPWwqc5z/2RAZ1MWRb3c+Bq6y1T5dOwtJQtgY+Gd/gm6mwrqKkxs9VXqnemqmLP+ibZq0tWNlqZXIT1wFgMOxR8pkIjYFXFEVRFGWEsgmyUxRFURQle9TAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihJCqUgugjKWtuWkWsBBYlPSoB2YC05BrF39kej0IbPEfmxOep3tsa2xpjRX+P1XS0dbcNB253sk6sAiYTfprnU4fhsl83RMfWxtbWocK/58q6WhrbqoCFjBy3RP7hBqyu/cTXwO8TOrrnapfeLmxpXWwwP+mUkCMc67UMkwp/I77IOAAxt608cfckgkoOOAlYC3wOPBYwuP5xpZWVZo8aGtuqkSu/4GkNuCLgLqSCTjCFuAJxupAR2NL63ApBSt32pqbDLAvcDCwmNQ6sAAwJRIxTjfwFCPXPq4LTzW2tA6UUjAlM2rgC0hbc9M8YBlwqP93GdCAjKrLle2M7vATb/isR/t+B3cAsKGxpbWnEIJOBtqam2qBVzNy/ZcBhwCzSilXnvQjhj/R6D8OPNHY0tqXy4nampv2BvoaW1o3BS7lJMH3yFlG68AyoLaUcuXJEPA0o3XgMeDxxpbW3lxO1NbcNB+Y0djS+nzgUk5x1MAHgD8j25+xxnxxKeUqMkPIjP8fwN+BuxpbWjemauj/XjcApwM9wIWNLa2/LJaghcAfsOzDWB14RSnlKjIO6fTvRXTgzsaW1mfTNW5rbvoB8ElgAPga8PVy9g75OlDP6Ou/DPHUTKV4p+eB+4A7ET1Ym+66tjU3XQBcjujOT5G+QJcFAkIN/ARoa26aDRwNnAQci8zIZgf4FcPABmB90mMD0IsY00H/b/LzVK9nAHsA8/y/mR5BzSzaGbnJ74rP0tqamw5CRvuJrAK+Wi4dfFtz0zTgCEQHjkc69d0D/AoHbCS1Dmxl/OudSjemI0s/ma59XEfmBPR/dCA6cCfw9/gszf/9kl28vwTOLxfXb1tzUwVy3U8CmoDDgT0D/pouxurAemQtPX5ts+0LKpHrmup6p3rMJZiBSScjOnAn4ulxAG3NTc8ASxPa3gGc3djSujWA753yqIHPAn/GeThyI58MvB7pMCfKi8AjwHOkvnm7SrnG6Xe+eyPrg8mPfIzYo4ixfxD4ERIolMivgQ82trT25/EdBcGfnb0K0YGTgOOA6jxO2QU8DKwjtQ5sLGWQm6/zi5FrfhCjdSAfI/YM0snfDUQRr0cifwfeMlk7+LbmplcwogNNiIGcKN2IDjxDah3oLOW94A9g5jP62sd1IR/v5AZGjP17gKOSjj8KvHE874+SHWVv4D3Pa0ButrnICHUr4h76l7V2Qv+c35nvz+gbeSIzmkFkFrvGfzwEPNzY0to1EblKTYILMpXhXziBUzrGBhHdBZzV2NL6crYn8Txvb+CNSGDadKTjXAPcYa2d8ECprblpL0Z04ETkf8+VGLJeHb/+cV3YUC7eimT82JJUOpBsrLMhxthZ4mPAaY0treuyPYnneXXIks9CxJvWDTwJ/MVaO2Ej2dbcVIfc/3E9WDr+J9LSwejrvwZYV8Y6UMvYgd/BwH7kPusfRvruRDqBNze2tP4n25N4nleN6MA+yOC7F1ku+LO1tjtHmUJBWRp4z/NqgHOBi5AbziBuaIO4/QYQQ385cLW1NuVacCJ+oMeJjNzIe+coVhejb96HkICTsnA35ktbc9NcYDlwAuKyPpyJu/fWIh38M+kaeJ43HXgL8HHgMMRQzPS/cxDY6f/9f8BPrbVpz5XwP+zuy34yogMH5ih3fEaWaMwfbWxp3ZHjecqStuam3YBG5Dc8ATiSiQeUbgLe1NjS2pauged5FcCpwIWIER5CdKDSf96H6MNq4Apr7Zos/odZwDGM9AOH5Sh3H+Ax2pg/3NjSOiUMTFtz0wzkNzvefxwN7DbB0+0A3tHY0vqn8Rp5nncU8DHgTOS6z0Z0YBi5HlXAnxF78I+JTvzKkUAMvDHmaOBi/+Ui4C/OuU/mfeIUeJ5ngVuRdeJMitOHXPC3WmtvSz7Y1ty0D2IkzkaMUy5bUtYBtwG3I0FF68t1NF4IfGN5DCM3+mHkZvB3Auc2trT+MfmA53mLgVsYGamPxwCiAx+11v4ihZx7Ih3D2YiRyCU3xEbk+t+OuJw7VAdG8GNVjmRk0HcEuRn8YeCzjS2tlyQf8DyvFrjeP/9ujH/vDiN68D3gq9baUTke/NnoG4G3AqeR2w6HbUArogN3IgFluoXQx1/uey0jg77Xk3u80hWNLa0fTX7T87xpwE+Ac5BrNl7/EkPswY3AB/Lx6pQTgc/gjTG/AK52zt0V6IkBz/Neh9xMmW7oZPqA91hr/9DW3LQ/ciO/FXhdDufYggSA3A7cPt7sUhlLW3PTHGTd+ofI/t9siAELEpc0PM/bF2hDlmRyMcY7gIuttd9sa25aBJyF6MBxZD/w2I504nGj/qga9OzxDf5y4NvAa3L46DGNLa33xF94njcH+BcywJuZw3l2ANcB793xmY/PQdy5b0W8ANnG1AwgA/q4DjyoCYGyx88D8lrgK0Az2ffjFza2tF4Wf+Eb9xZkgJfLgKEPeAA4aSoY+UANvDFmGuKSss65QDOheZ5Xj7huJxThHXvxhb6dV/yog/7+hiw/0o9s+YrfyA/pyDw/2pqbjkeCqHLh9MaW1pvYKasIAAAZuUlEQVQAPM+bgSTdWMjYNbuMxF7e0td/+Q/Xuq1bl5FdxzIM3M+Ip6Ztqiy5FIq25qbFwAs5fuwbjS2tXwbwPM8gBvZwZFkuJ9yOHdv7r7ryqdhz615F9gPE/zLSD9wzVZZcCklbc9MOcvOU3NzY0vrm+AvP864G3sbEdi/1AX+y1p47gc+WFVkpuDFmP2RtcX/n3Ab/vRXAd4EjnHPxBAUnA3cEbdx9PskEbug4/b/79awsjPuDiPv/duCfuSbtUDKygdQBNenYjrji45yLBDvmbNwBBv90wyy3deuhGZo9gcwMbke29k2JtdMi0o24tbPdjTGMxFHEOQpJHDShvmCw9bbdYs+tW5ah2QuIDtyGbO0LbRKeEvIcucW4/Dj+xPO8vRC3fC7em0RmAWd6nrfUWtsxwXOUBVkZeOfc08aYm4FPAJ83xiwHLgNOTTDuAP8DXB20kJ7n7QZcwARvauccbnva5Er3Imt5N+i2jMLS2NK6tq256VzgA8hN1us/ehKe9yJbj3qBH8RnzP7MbSV5bE1zvWl1YA2iA9c3trS2T/T8SmYaW1p72pqbzgA+xch1Tr7+PcgAIIasvyb2MSvJI+fEODrwDOK+vx74ty69FJyzgS8jy3U9jNaB+PNZSJ//68aW1sQAyU+RfwrfSuBzwEfyPM+kJmsXvTHmcGT9+2hkZPsJ59y1CcenIa6sVxfAPf8BZO12otGYDP37fgauvxaGhh24O5Eb+cbGltb1AYmpFBDP844DbiYPAz/8xOP0//oX0LcD4N+MGPWnAhFSKSie5y1BPCwTnbkRW/8i/T//KW7ryyDb8a73H2vUqE9+/N0zLxNMYrE+oM5aG9oll6yDlJxzDxpj2pA1yW8nGnefk4DWArnnLXkYd4Cq1x1B5WGHg3P3HXLY4U0ByaUUj4PIM6tW5SsPYlbkYnCxzkMOO7wxILmU4nEAEhszYQNfsWgxM7+4EoaHY2b6dJscUa9MehYEeK5hZNdXaAf4WRt4Y0wF8oPEkCjYUTjn/gb8LTjRRrFHECcxVdMgv+xjSumIl8fMC1NVBeVd6GUqk5z5cEKYykqorBxGZoE5FUZRSk4NYoeCIEZAOjVZyWVG9H0kwOlJYEVhxElLkJnftgV4LqV4bEP2swfB9oDOoxSXIO/dSlQPypFtBDDQ96kg5PYgKwNvjPkQsm/4TGT2/lljTDHrFD9IMCPtfmT/rFJ+PIykts0Xh2QZU8qPx8ljJ00SHVMpo1mI2MjYIkX58GKA55p0ZDTwxpiTgG8Ab3bObUQiTacDZxRYtkR+TzCzN4cUOVHKDGvt/Ug+73zZAXw9gPMoRcZa24kEWubrou1FytMqZYa1dggJuM53C3M/cHnYk92Ma+CNMQcB1wDvcs49AuCcGwZ+AHy+8OIJ1tp4msl8oh2HkcIToR6xhZwosoUmH9YhxYiU8uRipHPOhyGkX1PKk8syN8nIlJjsjWvgnXOPO+fqnHN/TXr/cufc8sKKNoYrkDWziUa97kT20Crly41IdaiJuuj6gE+pa7Z88QvGtDLxGdwO4Ethn7mFGWttF2LkJxpDsQO4ylq7ITipJid5bTsqJtbal5E9+FvJzV3vkAv6ZmutJjEpY/zSr8ch62a5dtB9wAXW2lsDF0wpNv+D5NzI1aO3A/iRtfYnwYukFJkvAH8idyO/Hdnt9YnAJZqElI2BB7DWPgEcikTyZ+Oq7UUi8I+21uaaA12ZhPij98OQDIS9ZPbobEd05S2pqskp5Ye1didSmewPiNHONODv8x8XWWu/VGDxlCLg5y94JxL0vZPMXr0BRAd+BLzNnyyEnnKtB1/FSB3o45HZXCWSvnAYKUn5MHApcGOYMxVNVfzUtUcjKYzPQGq/J+pAJeLO/xFwje8BUkKG53nLgA8jnX0MmbTE68EbJPf9ZcAvrbWatTKEeJ73CiT99flIALhhpB58jJF6BldZa58slZyloCwNfCKe5+0JHIuUD61EXPhtYS8ioIzgeV4NMqObh2Q52wo8Yq31SiqYUjT8SoMnIJnOZiOG/SmkLyjvTk7JCs/zKpFB/95IApsepHDQ3VNlxp5M2Rt4RVEURVHGUlZr8IqiKIqiZEdQKf+KSkdXz4FIgM1uwEVL62puLrFISpHp6OqZh0TRLgG+vbSu5ooSi6QUmY6unirgBuBwYPXSupqi5eZQJg8dXT1XAm8C7gLetbSuRgsI+ZSdi76jq2c60ImsuYME08xcWlczJddYpiIdXT0GaEcqzMXZd2ldzbMlEkkpAR1dPTcDb0x46/SldTU3lUoepfh0dPV8E9kyF+drS+tqNN+JTzm66C9mxLiDeCFsiWRRSsP7GW3cAU4vhSBKaejo6jme0cYd4K0lEEUpER1dPQcAn0l6+5RSyDJZKSsD39HVcxxjLyjAvkUWRSkRHV09+5M6xWRtsWVRSkNHV89c4NcpDmkp6ClCR1fPNOA3jF1m3q0E4kxaysbAd3T1zEFu6lRV7F5ZZHGUEpBwU6e6ifcpsjhKCfCXZ64A9kpxuK7I4iil43+BxhTv71lsQSYzZWPgkZt6SZpjBxRTEKVkfAU4Is0x1YGpwQrgnDTH9i+mIEpp6OjqeT3w5TSHF3R09egs3qcsDHxHV887gHPHaaIz+JDT0dWzHDHw6VAdCDkdXT37ApeP02RxR1ePuulDTEdXTy3iyR3PdulAz2fSG/iOrp59gEzFIbRzDzEdXT01iGt+PH1dpJ17eOno6qkEfkXmWAvt3MPNpcDSDG3UHvhMegMPRBh9U6cqLLFQO/dQ8zHgFVm00849vJwFHJNFO12qCSkdXT3LgPdk0VR1wKccDHzydqiWNO30ooaXZB34W5p2OnIPL8k6cE+adqoD4SVZB9KV/1Yd8CkHA38pUikM4OfAH9O0W1wccZQS8FOkeAjA7cAP0rRTHQgvvwNe9J8/DHw0TTvVgfDSAsQLSL0AvI3U9eBVB3wmvYFfWldzDbAf0ICUBNyYotkw8Hgx5VKKx9K6mnsRD80yoBkpA5sKrR4XUpbW1TwNvAo4FDgSmb2lSsP5SDHlUorH0rqabcDrEB2wS+tqHiW1PVAd8CnHVLWvA9oS3toGvHtpXc2fSySSUmT8nAiJ9d2HgQ8vrau5qkQiKSWgo6tnE6P3vn8T+IrmIp86dHT1/BNYnvDWNcD7ltbV7CyRSJOKST+DT0HyiK1PjfuUYxswkPC6ErmxlalFcl/wBzXuU45kHbhRjfsI5WjgX0p6vWdHV085/h/KBFlaV+MYe2MvKIUsSklRHVBUB8ah7AyjPzrblvBWJbBHicRRSkfyjT2/JFIopUR1QFEdGIeyM/A+65Ne67aIqYfqgKI6oKgOjEO5GviHk16/piRSKKVEdUBRHVBUB8ahXA38f5Je60WdeqgOKGN0wK82p0wd1iC7aOLs55cTVihfA/9A0uvXlkQKpZQk68BhHV09ybWhlXCzltGJTvYkfcVJJYQsravZwdiMdoeXQpbJSLka+AeTXh+sJQKnHC8yOsBmFnBwiWRRSsDSupph4L9Jb+tgf+qR7MlRHfApyxnP0rqabR1dPU8ykn++Yri/7yTPe/a/wFagx1pbXhl8lJxYWlfjOrp6HgBOi78XGxps8jyvG0lru81aq3uiw88DwNHxFy42fKzneQ8CPcBWa+1w2k8qYeEB4H3xF87FjvI8b1/Eu7PVWjuY7oNhp+wy2cV5ZlP374wx58Rf923p3Bkb6I8B04BO4MfAr6y1qVIZKiHgmU3dUWPMyvjr/m2bB4b6egcRHehBcthfZa19plQyKoXlmU3d5xpjfht/PdC7bWiwd2s/MnkZRMoMX2mtXVMqGZXC8sym7tcYY3bN4od27oj1b93Uh2yhNkj9ksuBe6baxK/sDLzneVXAt0zVtI/N2qN+hqmoYHign51bNpKUmroPWYK4CXiftba3BOIqBcDzPANciKn4xqy6hbMrKqtMbGiInVs24GKjJu39QAxx4b3dWruhFPIqhcHzvDOBn82cVz+nctqMCheL0belEzc0asI2hGQ9fBZ4q7X2sVLIqhQGz/OWA9fOmLPnwqqZs6ucc/S//BLDA6OS2cWAHUj+lHdYa+8uhaylIBADb4ypQCq97YeMmD7onAv8RvI8bzZSUeg1wGyMoaJyGrGhgfE+thPZK/l6a21n0DIpxcXzvArgF8BbgN0AKqqmExsaJHXtEUBmct3AcdbaR4sgplJgPM/7CvBFYDb4OjA8COn7sxgy6D/DWntHcaRUConnee8ArkLib6iomkYsNgyxcVfm+oALrLW/KLyEpSeoILtDgRnOuWOQm+6TAZ13F/7M/a9IAMVsAJzLZNwBZiKRtfd6nqfbJ8qf/yPBuAO+Dow7UJ2GZDv8h+d5ryiodErB8TzvUyQYd/B1YPzJSgWiM3/2Z31KGeN53ukkGHdABvnjG3f89pd7nvc/BRRv0hCUgX8BGDbGGGAu0BXQeRM5G5m5z8rUMAXTkBrBnw1UIqWoeJ73GuAdJBj3HDDA7sAlgQqlFBXP8xYAXyfBuOfIbOBqf5lHKUM8z5sOXM3EbAGIDlzled7M4KSanGRl4I0x+xljthtjFia8t8IYs94YswQx6P1ITfYfA1cEKaR/M0aA6jxOMwP4mO/mV8qT/0U8MhOlAjjF87y9A5JHKT4fD+AcewHHBnAepTS8DZie5zkqgHcGIMukJisD75x7GrgZ+ASAMWY5cBlwpnPueeAUoMI5dyDwVuD7Act5DMEksKgA3h3AeZQi4xvlU8nf61SBenLKEs/zZgEXkt8gD2QGtzJjK2XSEdBkD//zK/2YntCSyz/3beBDxhgL3AB82DnX5h8zwGb/eRfiCg2SU5m4Sy6R3RBXv1J+nIBEROfLdOD0AM6jFJ/DyBBskSUGOFbd9GVJHcFlK6xDlm5DS9YG3jn3INAG3A/8xDl3bcLh24Alxpi7gGuAVYFKCYuQmzII6gI6j1Jc5pG/Wy5ObUDnUYrLPIIx8HEmuoarlI55yLbHIBgk5KXGs85k52+FG0a2m3w78Zhzbgh4e7CijWJn5iZZ0x/guZTiMYDoXhAE4QlQik9QHTvI5GbKZjgrYwYIbrJnCFanJh25uOi/D8wBngRWFEactDxLMBfCAc8HcB6l+GwguJvxpYDOoxSXDQSXXnvHVE5hWsZsQgKmg2AGIe8Lso2i/xBwFnAmMnv/rL8lrlj8lmBmb9sJOMJfKRp/JZiRey9waQDnUYrPI4iRz5cBZJuVUmZYa3uAW8nfHjjgH9bazRlbljEZDbwx5iTgG8CbnXMbgeuQtdAzCizbLqy1zwG3kP9F7QT+nr9ESrGx1vYhhjnf5RoH/Cp/iZRi4+cRjyKDtHyIAd/LXyKlRHwNyUiXD9sJPlZs0jGugTfGHIQEzb3LOfcIgHNuGPgB8PnCizeKVeTXuW8HvjrVig2EjEvJb5DXB1zqDxaU8uRa8uvcB4AWf9KglCHW2vuBJ5CYsIkwDDwH/CMwoSYp4xp459zjzrk659xfk96/3DlX1HSP1toHgS8hRQNyZTvSMfw2U0Nl8mKtfQk4h4npQB+yCyT0o/Yw46+bNzOxWfwgEs/z/kCFUkrBmcAWcjfyMaSk+JumwmSvrDb5W2t/hCQpyWUEvwP4GfDBqXBBw4619iZkx0Yv2c/mtyNbOd9grQ111OxUwB/sn4Dk3sg2UG4H8DBSdOrlQsmmFAffA3MEMmDL1rPbj6RVX26t7SiUbJOJsjLwANbaK4Am4HbkgqWazQ0gF/0B4Fxr7UXW2qC2WCklxlp7M1J06HrkOqeazQ0hhv1J4CLgTHXNhwdr7X8Ai1QW3A70pGgWQ3RjA7Jue5S1dlOxZFQKi2+klwE/Al5GdCDVJK4bmbVfBhxirX2yaEKWmLKrB5+I53nzgXch1cX2ACqRC3kH8P+stc+UUDylCHieV4vkpn4nksRoBlL3+d/AldbaNSUUTykCftGQ0xHX+yIk62U30I5UH7xHvXfhxvO8SuBk4INI2fJqZHC3Dvh/wC3W2imX/6KsDbyiKIqiKKkpOxe9oiiKoiiZUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIqSq1AIqiTH6mH/Z+ZyoqiT8qpk2nIuG1qagg8biprKSiKrnN6OOmIt7GYCoMxpiR5xWGCiN/K6sqMBWkPW4qDJWV0ibVuSr9x/SqCiorDFUJ71VWVCQ8N0yvTNVm9CN+nsoKQ6UROSqNfHf89bTKhPeNtE1+PS3+XoX/nhn92hj898AYqEDeqzBgSNfG/512tZHX8e81Boxz4GIYFwMXg/jr2JD/OgaxFMddDPw2xm/DmHPFcEODEBuG2DBueFjaxYZxMXnuYsMwNOgf89v5bRKfu8GBUZ91sRhu2H/4z4cHBse8HxtOej0wRGxXm9Hnie1qM+w/d8SGnX985Hks5hgeGMYNO//91G2HB+NtYv4xR8w5hp1j2MGwcwzERp7LX0YdH3b4bRwxxh5LbANwpVtn0t23OoNXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQogaeEVRFEUJIWrgFUVRFCWEqIFXFEVRlBCiBl5RFEVRQohxzpVaBkVRpjDGmPOdcz8ttRwToVxlV7mLS6nk1hm8oiil5vxSC5AH5Sq7yl1cSiK3GnhFURRFCSFq4BVFURQlhKiBVxSl1JTdmmoC5Sq7yl1cSiK3BtkpiqIoSgjRGbyiKIqihBA18IqiKIoSQtTAK4pSVIwxexhjbjPGPOn/nZum3XeMMY8aYx4zxlxqjDHFljWFTFnJ7retNca8aIy5rJgyJnx/szFmrTHmKWPMF1Icn2GMudY/fr8xZt/iSzmWTHIntDvbGOOMMa8tpnzjkcVvvrcx5u/GmP8aYx42xpxWSHnUwCuKUmy+ANzhnDsAuMN/PQpjzFHA64FXAxZ4HXBcMYVMQ0bZE/gacFdRpErCGFMJXA68AWgAzjXGNCQ1Ow942Tm3P3AJ8O3iSjmWLOXGGFMDfBy4v7gSpidL2b8C/N45dxhwDnBFIWVSA68oSrE5A/il//yXwJkp2jhgJjAdmAFMAzYWRbrxyUZ2jDGvARYAtxZJrmQagaecc8845waAaxDZE0n8X64DTpwEXpJs5AYZPH0H2FlM4TKQjewOqPWf7w6sL6RAauAVRSk2C5xzGwD8v/OTGzjn7gP+DmzwH7c45x4rqpSpySi7MaYC+D7w2SLLlshi4PmE1y/476Vs45wbArYB84oiXXoyym2MOQxY4py7uZiCZUE2v/lXgXcaY14A/gpcWEiBqgp5ckVRpibGmNuB+hSHvpzl5/cHDgb28t+6zRhzrHPu7oBEHO+785IduAD4q3Pu+RJOiFN9cfKe6GzaFJtxZfIHT5cA7y2WQDmQze95LvAL59z3jTHLgV8bY6xzLlYIgdTAK4oSOM65k9IdM8ZsNMYsdM5tMMYsBF5K0ews4F/OuV7/M38DjgQKbuADkH05cIwx5gKgGphujOl1zo23Xh80LwBLEl7vxVh3cLzNC8aYKsRlvKU44qUlk9w1SEzGnf7gqR74szHmdOfcf4omZWqy+c3PA5pBvFTGmJlAHan1KG/URa8oSrH5M/Ae//l7gD+laPMccJwxpsoYMw0JsJsMLvqMsjvnVjjn9nbO7Qt8BvhVkY07wL+BA4wxS40x05GArj8ntUn8X84GWl3pM5+NK7dzbptzrs45t6//+/4LmAzGHbL7zZ8DTgQwxhyMxJlsKpRAauAVRSk23wJONsY8CZzsv8YY81pjzFV+m+uAp4FHgDXAGufcTaUQNolsZC85/pr6x4BbkIHR751zjxpjVhljTveb/QyYZ4x5CvgU4+8IKApZyj0pyVL2TwMfNMasAX4HvLeQgypNVasoiqIoIURn8IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKEoIMcasM8b0GWN6/e19Vxtjqv1jpxpj7jbG9BhjNhlj7prsQWxK7qiBVxRFCS9vds5VA4cj+fy/Yow5G/gD8Ctkr/YCYCXw5pJJqRQETXSjKIoScpxzL/rJgg4B3gF8zTmXuK3vLkpUGEcpHDqDVxRFCTnGmCXAacAOJNvadaWVSCkGug9eURQlhBhj1iFpUOOFZP4CrAbuAWY55yZTJTalAKiLXlEUJbyc6Zy7Pf7CGHOQ/3Qh0FEakZRioS56RVGUqcNapKTpW0stiFJ41MAriqJMEfy8558C/tcY8z5jTK0xpsIYc7Qx5qellk8JFnXRK4qiTCGcc9cZY3qR+vY/BvqAR4HvllQwJXA0yE5RFEVRQoi66BVFURQlhKiBVxRFUZQQogZeURRFUUKIGnhFURRFCSFq4BVFURQlhKiBVxRFUZQQogZeURRFUUKIGnhFURRFCSH/H+J1raP9eHEvAAAAAElFTkSuQmCC\n", "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -4275,6 +4321,8 @@ "link_matrix = results['graph']\n", "\n", "tp.plot_time_series_graph(\n", + " figsize=(8, 8),\n", + " node_size=0.05,\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " link_attribute=link_attribute,\n", @@ -4287,9 +4335,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Still the PC algorithm fails here in multiple ways: True links are not detected which then leads to false positives since the previously removed links are not available as conditioning sets anymore. In the paper, the low detection power is identified as the main culprit and this toy example is thoroughly discussed.\n", + "Still the PC algorithm fails here in multiple ways: True links are not detected which then leads to false positives (link with conflicting orientation marked by `x-x` here) since the previously removed links are not available as conditioning sets anymore. In the paper, the low detection power is identified as the main culprit and this toy example is thoroughly discussed.\n", "\n", - "Only for very large sample sizes do we get the correct graph. Note the very small ``val_matrix`` since values of a link $X^i_{t-\\tau} \\to X^j_t$ are determined corresponding to the largest p-value across *any* condition set, and there are a lot." + "Even for very large sample sizes do we don't get the correct graph. Note the very small ``val_matrix`` since values of a link $X^i_{t-\\tau} \\to X^j_t$ are determined corresponding to the largest p-value across *any* condition set, and here PC runs through many." ] }, { @@ -4299,9 +4347,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEgCAYAAABYaaN4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5hcV3n/P2e2zd3RNkmWZEmWZMnGxl7bOMaNYhtjA670joMhJJRUMD0JSQj8AsSEQAiBAAkJHUwIWOCYamNww7iuJVtWL6su7ezszLmzOzPn98d77k7Z6WV3yv08z31md3Zm7tn53vvec99zzvtVxhh8fHx8fDqDwEI3wMfHx8dn/vCDvo+Pj08H4Qd9Hx8fnw7CD/o+Pj4+HYQf9H18fHw6CD/o+/j4+HQQftD38fHx6SD8oO/j4+PTQSx40FdKjSx0G3x8HZoFX4fmph30WfCgD3yqnBcppZ6ulPq8UuoWpdTbG92oDqRcHV6ilPqiUuoHSqkXNLpRHUi5OqxXSn1ZKXVLoxvkk0VZ+jQzCxr0lVIvAk5XSr271GuNMZuNMW8DXgU8s+GN6yAq1OF/jTF/CNwIvLrRbeskKtRhuzHmD+ahWT6WSvRpZroXeP9HgK8ZYz4LoJQ6C/iHnNe82RhzyP79euD9wGfntZXtT0U6WP4K+Nd5al+nUI0OPvNHlj6tykIH/bOBR7xfjDGPAdcWerEx5ofAD5VSPwK+0fjmdQxl66CUUsDHgNuMMQ/OT/M6horOB595J0ufVmWhc/pHgLcopZ5e6oVKqcuUUp9RSn0B+HHjm9ZRlK0D8KfAFcArlFJva2yzOo5KzoclSqnPA+cqpT7Q+Kb5UNl50rQov7Syj4+PT+ew0D19Hx8fH595xA/6Pj4+Ph2EH/R9fHx8Ogg/6Pv4+Ph0EH7Q9/Hx8ekg/KDv4+Pj00H4Qd/Hx8eng/CDvo+Pj08H4Qd9Hx8fnw7CD/o+Pj4+HYQf9H18fHw6CD/o+/j4+HQQftD38fHx6SD8oO/j4+PTQfhB38fHx6eD8IO+j4+PTwfhB30fHx+fDsIP+j4+Pj4dhB/0fXx8fDoIP+j7+Pj4dBB+0Pfx8fHpIPyg7+Pj49NB+EHfx8fHp4Pwg76Pj49PB+EHfR8fH58Owg/6Pj4+Ph1E90I3oBVwtXaANcA6uy0H+gtsTs7vCWAKiNjHQj9HgN3ANmBv0HES8/G/tRKu1r1k63Ai5WnQD6Qo/v1n/rwX0WF30HGm5+N/ayVcrbuB1aR1WAWEKK2Bg3Q0y9FgChgHtgM7go7jzsf/1gkoY8xCt2HBcbXuAk4hfRDnbivmuUkJYCdywG/LedwedJzIPLdnXnC1VsDJwHry67ASUPPYpBRyIS6kw/F5bMu8YXVYDWwgvw6rga55btY+5mrgPR4JOo4fyMqk44J+xgF9Qcb2TGDRQrarQvYD9wP3AvcADwQdJ7qwTaocV+vlZOtwPjCyoI2qjKPAbxEN7gXuCzpOeGGbVDmu1iPId5+pxfIFbVRlTAK/I63DvUHHObywTWpe2j7ou1oPI0H9AuBC+zjfPfdGkwQeJX3Q3wNsK9b7cbX+E+CbQcc5Oh8NdLVeBPwe2YFl7Xzsex4xwGayddgcdJxUoTe4Wr8RuDPoODvno4Gu1kHgHNIaXAicOh/7nme2ktbgXuDRYilTV+vrkbTqg/PUvgWj7YK+zTc+G7gWuBo4ow4fm0LyvDvttg/JOcZKbBoZN1lkt4EiPy8mndpYVoc2H0EO9ruA24Ax7yJg01njwAHgyqDjHKrD/rJwtQ4A5wHXAdcAz6A+EwfGSeuwB8kBl6ODovj37/08gqQw1iPppFqZBO4Dfg38H3JXNnsRcLV+ANH78qDjbK3D/rKwd7ZnIufDtUig76nDRx8ircNuIExpHWL2veWcD0PI+M0G4CRqT+vFgAeA3yA63BN0nBnvj67W3wMuB14YdJz7a9xXU9MWQd/VejHwIuSgvgoYruJjjgKbSB/IOzJ+3pt5gDQaV+sB5AKwAQk+6zN+Xkd1J+1e4DZM6m5MapBA96ft85uAK4KOs78O7V4EXInocA3VpQgmgcfJ/v69bc98Dui5WveTvgBsyHlcD/RV8bGHgdsx5iekEovo6vmcfX4ceH7QcZ6oQ7uDwKXIBfdaqrujilFYh11Bx4kVeF/dcbXuQ/6HQjqEqvjYSeCnwG0kpqGr59MoFUI6ES8KOs7ddWl8E9KSQd/2Xk4jfVA/m8oGllwkB3i/3e4DdrbCYJC9kxkFLgIutlv5t+cmBckZUAEIdINSAFuQnua+KtqzlrQOzwN6K3j7DPAwaR3uB7YUS4c0C/ZO5jSydTiTcnukxqCS05hsHQ4iF+CxKtqzArmzvQ658FYSCFPAGNk6PN4KM8gyBv8vJq3FOZQ7M9EYSE7L9x/o8XSIAtcEHefOxrR6Yak56Cu5On4OmAbuMMZ8vZbPGxsbOwl4FXLLewj4zujo6B4AV+tzgDcAL0Wu9OVgkB7LfWQf0PPWc68H8chEABhEgkrKbgZImUD3MCrgDcRdCFyIUvkHplNJVErOZQM24ARAqa3AJV6Pv4QOpyA6vBy5AJXLFrIDyyOtNhUvHplQiA4BMjRAdAihAs9EBkUvBC5CqcV5P8ikUEk5BHN0OAxcGnSczVBSh1XA64BXINqXyy7SnZ37gQdbbSKA1WEREtxnNQBSJtAVRHU9g/S4xcUolX8cz158wdOhC1QXKKWRVM9d3kuLadFKlBX0lVJvB84yxrzD/v4RYK0x5gal1A3AhDHmVqXUt40xr66mIWNjY13Ax4G3kdFL6erqii1evPiBwYGBEaXUWWV+3BHgx8BG4CfNOqMiHpkYRnrpy4ClwBL7mG9bQoU5cSMX4hSoPkChlBzkZGue0dvcNDMz87xdu3e/lxwdAoFAdPHIyD1DQ0MhpdTFZTYhguRPNwK3NeuMinhkYhHwNNI6FNuWUOH6lgwdeoGA9CYNKufcMyjo6gYVGE8mk5ft2LnzreTooJSKjoyM/GpkeLhHKfV8yruzcIGfA7cCPw46TlMGqnhkIojosIL833vuc5XcVWLkzjJhdeiyvXqUSeW8blaHCPD8rdu2PUie2ITcEXweeN/o6Giyon92ASn34P0v4Eml1AeB5yD52mfZv60GHrM/1/KPfxy4KfOJocFBli5d2q+UuqSM948hB/VGZOpc04gQj0wsRgaUve1M+1iPgcKCqNmTwgaXAhd4ZVKY5DQEus8A81ggEFiWSqVPhFB/PytWrAgppa4oY7fbER1uBe5qpsVN8cjEIPB05mrR0FlEZeuAwSRnINC9EmMe6O7qGkwk04dxX18fq1auDAUCgavK2O04ci7cCvxiPnPwpYhHJvqB05mrw3oaWCVAyVhYT9k6qK4BAl239/f3/zAWi70xz0tDpGPWuxvQ5IZQdnpHKfUJ5J+8CrjSGLPNPn8DcNwYs1Ep9S1jzGsqbYS9bdpMTh6yt7eXNSedVOht08AvkYP6R/M15a0Y9pbzdOASJO3hBfeWmfNsVAA9k2R8fBzv2Ojq6mLd2rUolbdTmURmRHgB5slmGBuJRyZORgYzzyYdVFYvaKMqwCjFdNKwb3w/yYzAf/K6dXR1FRy++i2iw0bgoSbR4UTgMmT2lhfgT2Z+F9lVjUGRQJl94/vVzEzBjHAUOH10dHTvPDataiq5Tf0PJDC/2Av4lv8BPquUugY56avhVeQZeJqeniYej9PXJ5MkjDFGKXU78FXgh0HHmapyf3XBBvn1yADm5faxkWsAppDVugHkpAlkbLm/V4UyKbpNku6uLmYSkvtPJpNEYzEWhbIkugvR4XtBxzlW7f7qRTwysYpsHdY1cHcxpNOR+73n06Sq4KaMocsk6enuzgr6kUiE4eGsyWkPIjp8J+g449Xsq57EIxNLkSDv6XB6A3fn2q3YuaAyHitGYQikkqq3u5siQT+ExLB/qmYf800lQf9DyHSzrPcYY6LAm2psR8F56ZOTkwwMDhKJRIjFYp877bTT/qTGfdVEPDJxEtnBZU0NH5cAnkLmOR9Bpo0eKbAd7RsYLjtVYgd+B5B55yPAiFGBCzCp96r8q14PRLXedywcOc+Nz93N5OQkvT09ooPWXzj11FPfVtF/WmfikYllZAeXp9XwcSlsrR3kGC+oAaKDrqCd3oBjWgfUGWD+SkntoFyOx1x3z/Fw5OyYG5/zx8lIhFAoxNTUFDGtv7xhw4a3VPSf1hk7LnUJaR3OrvEjdyLTRDN1yHte9A0Ml52ysjr0k6UDq0F9VGHW5XlLFLj18PGJvvDk1EvLuGVqmbv5soK+UuomIIhczf4O6d3Xk4KLg8KTk4QnJ71ft9d5vyWxB8vFwGuRtQCnVPEx08CTyJx4b3sc2No3MNyQWUR9A8MpZMFMGDmRAH4Rj0zcQDrox4BvA/8N3DV+6OhfIAuq5hCLxdgdmz3HtjSizcWwOpyD6HA1lc0a8kgiKzUfJ1uLJ/sGhhsyi6hvYNggA9peQT2AO+KRiWtJB/0Z4H+RsbOf7jt45E+Bm/N93vT0NLt2ex/Dpka0uRTxyMSpiA7XIausK72zNEhgz9Vhc9/AcENmEVkdonabTcPEIxPPRQZoQS7+twNfATb2DQzHJnbtvQmZLViKg3VtcAMpGfSVUpcjPfmLjTERpdSgUuoZxpiH69iO7yAXk2Jzi6P2dfNCPDJxFjId7rVUNtAXQ1Ifv0EGlzcB2/oGhptlzvNyZKrel4Fv9w0MT6b/tLcZddiAaPA6ZBC2XKaRJfh3IRMNNgFP9Q0Mz+0+LwzLkTZ9Cfha38BwxsymptRhJfBqRIdnVvDWJLIS9k6kVIh3kW2WgeXlyBTWLwNf6RsYzp3Z1HRa1ErRgVyl1BrgDuAaY8xm+9yNwGXGmBvr2ZCxsbGbyZm9k8MnR0dHGzpCHo9MrAdegxzYZ5b7NuBu4BfIwPJvK0nDzDfxyMSZfQPDjxf6e5PocCISYF5L+fPPk8icc0+HuytJw8w38cjEmcAm2wOdQ5PosBhZi/FaJJVWTl7cIAvuPB3uyu5YNBfxyMTTkYtQwQWBzaBFPSna0zfG7EYGKjOf+wpy+1Nv3mcfC86FbcA+iUcmViBpq9ciK/pKkUB6yt5BfU+jUgONoFjAtyyUDiPAyxAdnkfplIFBBjE9HX7dNzDcMiWnm1iHEJK2eR2Sziyn5MfjpHW4s29geMEH9sulb2B4cxkvWxAtGkXTlWEYGxtbjQTh5Uie7DuNmAoVj0xcgFy9X07pEg4u8EPgm8DP+gaGF3TW0Hwwjzo8HXgXcAOla9kkkJzrN4Ef9w0Mt2U9+0zmUYc1wJ8Df4hMACiGQdI13wR+0Dcw3DL57FqYLy0aTdMF/UYSj0x0AdcjQeY5JV6eBH6CHNj/20q9yGbHDspejlx0y1lo9CtEh1v6BoaPNLJtnUY8MnE+osMrKN35+R2iw7f7BoZbLtj5CB1hl2hvWW8E/oLSs29+jRzY380eXPOplXhkohfJ1b8LWaxTjIcQHb6VZ3DNpwZs5+c6RIfnlnj5FuAbwDf7BobnfdaWT/1p66BvZxz8CZKLK+bItBmZLvetvoHhXfPRtk7C5uvfCvwpxUtP7EKmj36zzFyrTwXYzs8bgXdSvPNzCPgaEuwfLDTY7NOatGXQj0cmTgfejwxGFRuI+inwSeAnpQ5sW8J1MQ02Rm/W4nDVEI9MrEYGud6MfBeFuA/R4fvlTG21bmjraKwx+rFmKGNQD+wsnHcBb0eO4UJsQlaVfr2cyQnWP2EdjTVGP9QuOjQLbZXTj0cmlgN/iwxGFcpPzgBfBz7VNzD8qPdkTlAvtM2Hj+5R8ps/bwP2tUKt+XhkYggJ9u9EFvXlwwDfR4L9PZkX3YygXmgbqn+r5xCmsA57WqHWvK1a+afAByluLPQzRIfbc3TwgnqhbUmdm5yPKNaInrla7Gymgn6tQlsEfXvbehPwHgoH5uPAvwGfNd19B5DyCZk+oc+g9KyFhWYaWcno1aW/B/ht0HGaYh60zdn/EfA3SOnbfESROk6f7hsY3uZqfSLZvrnn0fzm6EkkFfUUGcbozVCDCGZLcLwW+CiFFxbOIOmbT/UNDD/iar2EbHP086mPbWcj8WxMt5I2Rr8n6DgHFrRVTU5LB307IPUm4MPkr2MCsNWgPk9XzxaUyjRWaPYDulwMsvI304y7pPuUq/ULkJK7NfdY7WyclwEfo3CueNzAF+jqeRAVOIP0xbZlKl+WwRZs4EG0GCtV4tvV+lLEN7cu5QfikYnLgX9EyiPk47iBLxHouYtAYAPp86FcU6JWYBfZOjxc6o7A1fqZSHq17n7RzUZLBn0bZK4CPkGelbMGQAUOEOh6EtRKlCrfTrA4MUobo2sKG6PnGkDnGqOvpUJjiAIcR/LkXhmC32Qe9DaVtQVZOfm6WlzE4pGJZyFB5lm5f7M6HCPQNQZqKUo9nfqU1I0jJ3YhY3Sd53ev8Fnu95/7+wiig1OHdk6RvhP4NXBnbl17V+ufIZpfE3ScqqcF2xW+n0DqEmUhOqgoqvshlFqEUqPUZzwvgdQTyjVGz/3+CxmjF9NjCNGhHilVzx71XqQ8yi9yx85crb+M1Nh6fj38opuZlgv68cjE7yHFqJ6X+bxBWd/XwAyoLpSqprywJr8RtLcdKTSoFI5qBTAUqn7QydW6C5ndkmv+7D1Wm0ONIHnb2+w2iKyiBFl09qqg41RUk8YW3foY0sOfxQZ6UF1JlDIoVU1wmaawBjuBg8XuZMJRrWrUQSElsvMZ02+g+oqKLlLWxNPhMOnKtfcCVwUdZ6KSD7Qz1D6M3PHOHvNpHQIGFZhBqWo6E15Q31lgG2+kWZHVYSn5z4UNyAByNSSQ4O/p8DiwHzgBSdldHnSctl2H0DJBPx6ZWIL0KN8Es70X78CWrTJixvCggccMbEsa9hk5GDLt2AaQHl/QPjoFfveeC9imJZF8Y77HzJ/jSA9pssCW9TcFbpciGIANSs2aQJ9R6T+OlKbNzLnfBrw86Dgla9XY8ZO/RdY8dMvRoyBQtQ7TxvAw8GgKnkoZ9qTke8m0xxui8Hee77ku0r6phb77zMc4ZXz/pHWIdin6ArBWKS5EdDib0oubcjmMBBqP3wEvKGdsIB6Z6EHGsf4a6J/VQTo+9ueKbqqSSGG6TA/jzc08YO1qHUQGlM8mbYz+e1R+t5yrw3Yk8Lfl9O2mC/q55sNK8Z1T1qy+DPgnA0uzgnyBg9r7l4y3GYyBCQNTNrB3I73d+ZgF0gimkels48BhBUZBSCmWB6QXtEhR6TnPT4HrPaPyfCbQp65dfRbwOQNrq9JBngsbmLR+pV7qa4QWcVLKIYH0EMeBgwqSCvqVYpmC9QqGvH+qAi0eRlIMx6CgDquAfzdwlnR8uorqUIAdZAf4h1rNHD0frtZ9wLnIRcC7EBS03yvCbuCSzMDfUcboRT9AqfXAXwJDxphXVPs5+YzRe7q7WLZkJOk4TlfmgW1MOogAWb831yVswYkrCCjoUSpt41TkgnDrZCTyykOHDn2UDB26AgFOWDycWBQKdUuPvitLB5gN6L4O+Zm233tvmTrcH4/HX7Bn796/JkOHgFIsGRmaGVq0qIeurlkdyuQgYqP4I2SMp+0HLD1crVchwf85wAspv0T3NuC5W7dtO0SnGaMrpd4OnGWMeYf9/SPAWmPMDcaY7cAfKKVuqbEtWcboSilWr1yJ6urpSipFytig4keTSuibDcC535vJDjzWU+66np6eR4DTMl+6euUKunr6upMqMKtBytehEnor1OEClBpTSq3O7JStXH4Cwf5QTwUptAdJe+b+rhXWeDSCoOPsA75nN1yt1yETQa4Cnk/hhYMbgJ/1dHffMZNIvCPP39vXGF0p1Y84P52FXC3/HniWMUZnvOaWanv6hYzRly1ZTN9gQ6dsG+AYhe3xJpHB3czNzfOc93wCyesGch4L/ewgaabcbajAc8uRwatiq1trJpmYYSoSYXo6zkw8zqJ+h8GlDXeDO05hHcJUpsMM+b/vQs85yPhNoe8+V4dlyID7YEO+CUsqmWQqMsl0PM70dJze7i5WrVxVrHevkQH7jcCPbLDzKYKr9XuRDmdB4vF4at/4eCCVKnjNbD9jdGNMTCn1TWSxx1XAlZkBvw7kNUY/dPQYJw0OU0W61yB51l0Z224k/5oZTI4Pheo++6ChA192ltAAEnSKbauocvpnV3cPQyPp1frJZAKFkRlSlXOQbB12ITpkeqAeGwrVfcDQG7htGOGoXoSsDymlQ1XTPwNdXQwOpzs9qWSSZCpFV1d6vNgYYkrxfeBbwM/LGYz3yeL6PM8lkWnZe+LxeH8sFju3t7cX1y1YmaJtjdH/A+mNv9gYs817Uim1BLkYnKuU+oAx5h+qaEfBhVLJRIKu7jnlc1KkDZS9gJ4ZVPYOhdpzebadiujNJHmi0OvCUd2FDGA9LWO7CLlbK1QaIS9dXd2Ywln640jucxNzL7K7h0JOyxjMVMpQyJlCpvg9Veg19iK9Evn+T7OP5yJa9FFBjybQ1UXSGAJG1EgaRQpmMAwjeepD8ah+sAEX0LbElvvoQootbsb69CLlHRIAW7dt+ziiVynayxjd8iHSc4pnMcYcJW0sXC0FB5Ui4TA9vX3MzEyjlPrK0Mjim4GtQ6HK5pV3GvYOZqfdfpL5t3BUB5FZPt7F4DRkzOZcVXBefcHYNIJ4pm5AFoJNYC8EDbiLajnsRXqf3X6Z+bdwVPcAJ5Otw5nGmPNVgXn1Rimms6+/Q8A1dgOYCkf1bxCTkzuBB9q1A1Qrdk3ExSVeVu6Ad8sYyZSb078JeDbwGeDvjDGX1rMRhXL6ObRU3qwVeeKJJ09WAfV4b2+f09PXR29vHz29vQQC1axzYxK7ChVZkPQ7/yJQHps2b14bCAQ29fb29ff29dHT20dvXy+BQKXLAADJ899DWod7/YtA+bRjbCoZ9JVSlyPB/mJjTEQp9RDwJmPMw/VsSLuZD7cq+XTo7umh114Egv39e3t6ekcofhLk4wjwY2TK4O1DofYpId0I8urQ3Y13MXb6Q7t6enuHKF49Mx+TyJ3fRuC2oVDnTN2slnaLTUW7cEqpNcCXgFcaY7y6IJ9GVmPWm/ch5V1zF4hE7fMtZT7cwszRITEzQ2xqKjpx7OgnD+zdsw4JNBcC70WCRzkBfCnw+8C3gSPhqP5FOKpvCkf1aV4JC58s5uqQSKCj0Wj4+LFPHti3ZwOyavkc4M+Q6YjlOL0NItaIXwEOhKP63nBU/1U4qp/h61CQtopNzbgity3Mh1udSnSwg8ZnA5fa7RKKm3XkshW5A9gI/MpPP6SpUAeFDOhemrGtqGB3+0jr8POhUHZxuE6nXWJT0wV9n9YnHNUBpPrppcBlwJWUP6d9Cgk630TSQP6AfZXYi8AppHV4Adk1ZooRB25HpoL+cCjU+iUafAQ/6Ps0HDtL5TnIDJNryVnxW4QJJG3xLeCX/kBwbdg7svNJ61DKnN4jhlRj9S/EbYAf9H3mnXBUn0I68FxKcR9jj4PAd5DAc28tpZN9hHBUr0bq718LXEF5i8gmgP9BdPAvxC2IH/QrxNW6G8lX19UYvVO9PsNRPYCkf65FAlA5i1x2At8OwG3dip1K1dUYfboTjbjDUe0gKaBr7bamjLcdBL6j4Ec9is05OtRqjO52og7zgR/0c7BBfRWFzaBPovK66eUwjaxizWfEvT3oOFMN2GdTYccCnoP4u74SWJJbkdL7GSouHV0uM8iAZiEdKjI5aUXsWMB5wGvstiqfDmT83gCSSLmOQub0R/2LQnV0bNC3rjxrSXu1nousjmxUUK+VQ6QPeM8Y/b6g4xxf0FbVAVfrlWQbo683hjVK1cU6st4cQ3TYToYxejuUKna1XkraHP18YIMxrFOqsrId88QkaR1mjdGDjtNy9e3nm44J+q7WS0gf0N5W7kyGZuYJsk2gN5VjYedqvSHoONtKva7euFoPIoHd0+BCqre9aya2kzamvwd4tBzvYVfr9cCO+e61ulo7iMtU5vmwfj7b0CD2ka3Dg54xUDFcrdcABzohzdq2Qd+eTFcjtTUuQKau1Yvj1M8Y3fu9XncXEcQU3Tvw786XknC1/i3wg6DjfKRO+82L7cVfjZTxuACZR16XhECmM1fW8+kfk8BWBQ8qGFeqpDH6APUxDAfR/gHSOuQ1LnG1vgU4Cry9kfXubafnKiR9dgHV2TvmpQwdDLDD6rBLKUKUPh/qdZc3AzxEulP0m3x3A67WnwROBV5ZqV90q9E2Qd/m4i9GBqGuo3x3nHwcorAZ9O5628rZVNMAkl7yTJ8zDaDXUn0wSiIH+48RL9yHkaqP3qKSvwf+pl49TVfrANKD9AYEz6vh445RWIdd8RSDiGfyWyg98LgZ+DfgP211zLy4WoeQsZt8ZtwnI5Uxq+VB0jrch8xaOoKUtPgK8JZ6GY3bY+oM0jo8ixIr8IsQQSra7sy3xVMEkNXWfwScXuKzdgFfBD4/FHKOFml/EDnu8+mwnto8JTaRNkX/NTKe9pT9/NuBl7ZzieqWDvqu1iOI/dm1SC+mklWgIMuoHyDtE7oJ2NVsXqH2gnYScrCfggTVi4BRKj+RDyAncGZ1wU8A76828NtAeQWiwzVIjflKiCMB0dNhDClvO1nOm+388xciQedaivdgJxCLu38ZCjnjlTTSXtBWkr4oPwPR4VwqvygfBx5BZsx4fAN4Y7Vm5NYf9lLSgf7kCj8iATxKWodHkGNlopxjww4APwfR4ZUUv0Bq4D+BTw2FnK2VNNJe0JaTvgh4xujnUWHZcCQG/AZZuObxC8QvuqniQL1ouqBfynzY1XoD8BLkoH4u5d+iJoHHsAOg9nFzvXpWC4Gr9QByq34RaRPoJVV+3KeAm7yTuwwdVpLW4XLK7wEbpNedacr9WL1yqeGoXoX0/v+Q4r3/GeDrwCeHQs5YLfu0+fHzSOtwMZVf+Dy+C7zOC/xl6LAEubO9DglciyrY1zbSGtwHPFyvHm44qpcANyAXgGJ33Qb4PqLD3bXs09W6F6lFlKnDuio/7lfA1ZmB3zdG9z5AqZcgvbtlwL8aYxohC6kAACAASURBVH5S4i15yWeMbol2d3d/Ze2aNZuUUm+gdP1rjwRS3/024G7goaDT3rVEbA/oFNIXgEuQcgjl8tGt27b9DQV0CAQCXz553boHrQ7Pp7zcvEECyo+RHtXvgk7jK2za3v+VSNC5nuKdg9uBm5F6MzX3gqwOJ5HW4blUlub66qHDh988OTn5MfLooJT64vqTT75bKfV6ZLyknMVtID33HyEpjfuDTuH0Sr2wvf9nIzq8iuKdg3sQHX5Qr0VfrtYrEA08Y/SLKL+j+DPguq3bts3QRsbo5dbTL2iMnvGaEeBmY8wfVNOQfOVLg8Egw0NDhEIhVHmTgY8iwWUj8JNOmFNdCjsr4UVI+usKSvQEJycn7zp0+PBzM5/r7e1lZHiYUChUbm39KSSQ3grcttDTGcNRvRJ4O/AOiqcAH0GCzreHQqVn3lSCq/UyJAV1NdIjL5qKjMVij4zv339O5nPd3d2MDA+zaNGiLMvEIsSBn2PN0Rd6OmM4qhcDfwD8OcVnbG1DrAe/Uu+ib9Yt6wpEhxdR+o7s1m3bt281xryzyGtaqrRyPY3RPwl83RjzYKWNKGRUsGjRIlYsL7lA83EkuGwE7m3ldE2jsbe/t5Kdv5zD4SNHCIfTnfFgXx+rV68u9fHbSevwq2ac+haO6hBwI/Auik9P3Ieku/6tEZUmXa27gH8H3lzsdccnJjh6NN0Z7+7uZu2aNaU6QPsRDW4FftGMeelwVPcCrwbejeTjC3EM+Ffgn4dCzrF6t8Pekf2N3QoyNTWVOHDwYLExm/YyUZl9oVKfQIKyZ4y+zT6vgI8BPzXG/KyaRoyNjd2E9LBy98m6tWvz9WruQnKfG4OOs6OafXYirtY9yNL5kXx/N8bEp2dm+hIzMxw+coREIj2euOakk+jtnTOL7kGkPv6twBOtskLSpn5eDLwHud0vxEHk2P7CUKi+szlcrR9DBuLnYIyZnpmZ6U0kEhw9dox4PD2DcOWJJ9LfP2fiypPYaphIGrNVdFBImvDdyF1QISaRi/A/D4Xqe/fuar2RtNVkLvFkMhmJT08vnZiYIBYrev2/aXR0tCWM0SsJ+qeTNkb/Ycbzfwa8EVmZ+LAx5vOVNmJsbOzjiCHHHJYuXcrw0BDT09O48fhdgwMDb/QDfXW4Wj8PCdCbyTaC3gbs2bpt2wcpoMPw8DBLlyxhJpEg7rr3Llq06A+CjrNpvtreKMJR/Swk6LyEwmMU+4F/AL5YD6N3u4ZkE7KwLlOHrcDurdu2vY8COiwKhVixYgXJZBI3Hn8w1N//NuCBVgn0hQhH9dnIHdjrKDxGMYGYlnxmKFTezK5iuFovAsaBPWTr8BRSEuXw1m3bPkYBLXL4xOjoaEuYqdTDGP0ziJ1iLRTM+U5MTBCJRLzezv8uW7bMD/jVcw8wWGQRUEEdJicnibsu2nUBvjt6wgktH/AB7IyRl4Wj+lTEEe5NzK02eSJyjL8vHNUfBf6jxvLC+4BQkVRkQR2molHG9+/3ep1fHx0d/W0N7WgahkLOo8CN4aj+IPCnyKBprhXkMJJafmc4qm9Gpt3WUpMqDiwpsXK67YzRyxqVs8boQWT0/c8b0I7vMNeKDBCLOBvwo/Z1PlUSdBy3xKrPgjqkUikv4LelDkMh56mhkPPHyDTPjyMrqnNZBXwO2BKO6j+yuemKCTpOvMTYU0EdAC/gt6sO40Mh5wOIDh9A8vq5LAb+H7AjHNXvtWM1FRN0nJkySmUU1cLSUlqUDPrWGP1NwBuNMXcAg0qpcs0XysLOdS2VFvp8qwyUtCq+DjAUco4MhZz3IwubbkYWEeWyBvgC8GQ4qt9sTWLqhq8DDIWcyFDI+Riiw18hqZ1cliIX6O3hqH5XOKprWaWbl3bUwjdG98nF1wEYCjmHhkLOe5BZPv8M5MvlrwO+DIyFo/r6OhuL+zoAQyFncijkfBT5rv8WGdTNZRnynTwVjuobbYnuetJWWjTjity2MB9udXwdsrFz/d8PvJXCxcB+Cdw0FHIeqtd+fR2yCUf1CPBOpOM5UOBlDwHvGgo5d9Rz3+2iRdMFfR+fZsZaDH4AKfOQL61jkOJpf1VpbR+f8rFlHt6FjDEWyun/AHjvUMjZMm8NawH8oO/jUwXhqF4D/DWywCpfOiGGFLK7eSjUfAuk2oVwVJ+ATKn8M/LfgSWQBV4fbsQCr1bED/o+PjUQjuqzkLzulQVeMg58EPjqUKhx9fI7nXBUn4yspXh1gZccBz4MfG4o1HyrxecTP+jXiF3KHaS0MXqm6XO02vK5PvmxOvRRnjH6rB710MEO4L4ICf6FKko+iOT776h1f82M1aGXyozRp+pYZfVipG5PoZXWW5GV2D+oR3G9VsQP+gWwNeLXkt8cfTnZB3NVuyD7wI+Q3xh9XyMdlZqdDDONdXm2E8nWoZrZM3HmXpT3MleHPaUuEOGo7kZy/X9HYSvOW4B3DoWcrAFA+95As/ZCbd2mk8ivwyokr+7pUM3smWnmXpTHmWuIvqvUBcJehF+FTOdcW+BlvwD+ZCjkbM7z3mC9y240Ex0d9G2v5GTSxujrMrZm8c+dRowsMg/8LcBvg45zeCEbVi+sDqvIMEYnrcOKBWtYNgnE9cnTYdYYPeg4+zJfGI7qIWSw953kzzNHkQvDP3vVPMNR/U6gZyjkfKJh/0EZ2Gqg59ttA9mBvZ5TUqslhZRNyLwYeMboWV7D4agOIgO9f0n+mT4zyF3B33vjLuGofhnwfLtQry3pqKDvan0Cc83RqzUdaQa2km0C/Vi56QpX69BCVWB0tR4CnknaGP0CqjcdaQb2kPZgvQcpehYvI8+8ScFNRirFbkaC6tOHQs7u+Wi0vZvNNUdfNx/7bhCHyNbhgaDjRMNRvQy5yP4R+e9C9iBz7X+E1N9ZCVwwFHIemJdWzzNtG/Rt+drzSRujX0Dxcrq1EKc8Y/RME+hGEEMK380e+IVq2bta3wr8e9Bxbm1QW7z9KMTNyDNGv4DSPqrVMs1cDbzfPR/iXC0a0XudRnL49wD3zqSIp2RV6TNzX9itIGU4nkpXPv3+UMh5Wb0bZHU4jbQx+gVIlc+6mKPnkCD7+8/cYK4GA1Tv31uMJGL/eA9wTyLFkaR4dlyR+8IuAMVk0jBon3oAuKheZi7NRFsFfduDfAFiHXc1tfXiE0iOfWeebR+Sc4wButIa/tZrtZ/sg38x2cbo3mPeMsgV8CTwf4i5zK+CjuNaIwkvNfTqoOP8T437yMLVuh+xULwOKVtbzDCjFCkkx74zz7YHycN7OlQ0KGsDoUP2xWCEtDF6phbLavgfMIbdBnYlDeemMi76vQqUgpmU/KOWa4dCzo9q2R/M5uGfi1haXof8L7UwTn4ddgNh0jpUZECTMRki83wYQspd5Jqir6zlHzCGgwaeTBpGUxlGNj0KAgoSBpLpkPjHQyHnc7Xsrxlp+aDvan0K6YP6Eio3qJ5CeseeMfpOJIc+3gyGLNb8/WTSB71njH4OlffSYsiq0YOkDTySwBuCjvOtGtu5Ggnw1yI9qUoNql0kL+sZo+9AtNhbaRBpBNaPOFMHzxj9PAqv0M2LMaQMBFJIT98jkRIxkP/7jGoGE20K8ypEhxfCbM+1XGYQB7FMY/SdyEB2zWWla8V2KNaR1sEzRr+ACidVGIMxQApUlg7pwB8GThsKOS1TQbMcWi7ou1p3I6kCL9CfVsHbE8jtXqY5+pPNENwrxR78zyTtw3oxMquoGlLAjUHH+WoF+w/Y/Xs6VFKEzyB57Exz9LFmCO6V4mrdh/zvmToUM2QvSkbg/5uhkPPhMvavkDTNtXa7mMpSVk+RfT480gzBvVJsXBglW4dTq/28pJHgj5TRrsoCtlmphzH605ER8qXAz40x/1bL5+VznD9lw4a9SIC5AXgN5c+sOQ78FMnp3Qc8HHTacyqWPfnXIge7d+CfS/l3PingdUHH+Tbk12F0dHSPq/UZiA6vR6bwlUMU8Wr9DRJYfhd0nEjxt7QurtYrSQeei5CxpWKG4FnYwO8Cp+/ZsS1Ffh3WIRrcQPkdn2ngDsQY/T5koLNtV6m6Wi9FJgp4OlxIBeNpGT3+C4dCzv2Fzol6t7vR1NMYPQB8sQZj9C5yHOe7u7sZGBiYHhocnOru7i5qJJ3BE6S9Wu/u5EVQrtaDiB3dVXYrZXSbMMa8Ytv27c8lQ4dAIMDgwMD00NDQ8Z6ennLvJnYjOtwK3NmKvcd64WrtAJciGlyNpOiKMpMC7bpbDu3f582BRynFwMBAfHho6HBvb29J02LLQWRWykbgp0GnJtORlsbahT6LtA5nlXpPwkAiZe7fu3P7XWScE5YoUnb5faOjoy2TLaiLMbpS6nqkAuFnjTHfqKYhY2NjNyMj67MMDQ5ywgklO/UJ4E7koN4YdJyt1ey/3clIA3wB6fnkxRiTHN+/v0vr9A1Rf38/K08sOaPSIHdUnin3461u4dcoYjF9joIvKsX5hV5jbHrhwP5x4q5o0dvby5qTyrq5egh7PiC9+Y5d3FcMHdNrDXwpoObO5skkkYJDhw8Rmyp4c/rJ0dHRd9e/hY2hZmP0nNf8yBhTyGS4IPa2aTM51fICgQAnr1uHeK9nEUZMoG8FfhJ0nHCl++xEbODfRYm0zMzMDPvGx7OM0detXUt395xMkUZ6kbcCt7XLYrH5wNX6LqQDVZBkMsmRo0eJRNLBZvXq1QT75mSKZpA05g+BHwUdp+XK/S4UrtZfQ9JkBUmlUhw7PsHExPFCL4kCp7dKmeVKZrr8B2lj9NmAr5S6DHgZkrP8cZXteBV5yqOmUimmpqYYGBjAGMP0zMxYX2/v3yIHdsemC2rgGUjATyADeFnG6PvGx69wXff9+ToCkUiEkZERjDEkEomnenp6Pgr8Tzvn5huFnWHzLGQcZTs5xujj+/c/X2v93nw6TE5OErR3vzOJxK6e7u5PAN8OOs7R+Wp/u2DTPV4ndRdzjdH37Ny16/pEIvGREh8VQmLYPzWqrfWkHsbodyCDQ7VQcA70RDiM67pEpqZIpVI/Hh0d/V6N++pkDgNnAFvzzZTRWr+g0BsnIxGSqRSRSIRkMvn90dHR/2pkQ9scgwyyb8nXeYnFYs8v9MapqSm6u7qITE0xMzPz7dHR0babRz6P9CLTi58otDo9kUi8oczPqnbm3LxTVtDPMUb/O6Cui3ko4jgfj8c9Y3RoIcf5ZqSM2/6COszMzDAxMWtT6utQA0HHOQIcKfKSgjpIqmE2zeDrUAM20P+uxMsKapFDy2jRFMbotKHjfIvi69Ac+Do0D22nRVMYo7ej43wr4uvQHPg6NA/tqEXR9I4xZjc5RcqMMV9BPEDrjecoX3AubAP26TMXX4fmwNeheWgrLZquDEO7OM63Or4OzYGvQ/PQLlo0XdD38fHx8Wkcjahh7ePj4+PTpFRahtinDOzK1x7Sxugxfyn8wmAX4HjG6FFfh4XBVsGcNUZvxcq27YKf3imCDd4nUNoYPXNz7GNmrXuDDPrkGnBn/pxrjL59oewMmw2rw2JKG6PnatDP3I5NjPzff0Fj9KDjTDbmP2s9rFHROoobo+dq0I90gjLRFNcgnzH6Mb+eU+10fNC3AeUU5hqje5uzIA0TDpJtiO49PlXIBrFVsTqcxFxjdG9rlMVkORwlvw5bEbOdtjqJXK1XIKXMM43RvW14gZoFUnMrVwPPGH1Xu+nQKDou6LtaLyPbCPoCarckXAh2km0C/UjQcabLfbOrtVrIk8Q6gj2TtDH6BbTQUvYM9pOtw+8q8WxoAh0WIRfazPOhahOYBeQoooGnw/2V1IVaaB3mk7YO+q7WIcRa0DuYL0SMRuaDJJJK8HKZjcazG/QO+nuDjrOv4Iu1/gzw+aDjbGp4w9LuUpmB5WmN3q8lheigyFPUrwEkgIdJ63APsLNQQHG1/hDwy6Dj3NXohmW4S2XqcCbzM6HDS3HC/Ny1GcR2M/OCvKXQmI6r9duAI0HHuWUe2ragtF3Qd7VeT9o67jLm5hIrZYq0T6i3ZRqj590yC5q5WnchASfTgDv351xj9LVU7oGbyx7gLuA24Hav9LENwkeQvOoVQcd5tMb9zMG6R12NWCleQYX+pXnQFDdGL7TNeAHXWjyGyP/95zNG99IbFXng5uEQ4lb1f0gJ6r22PQrYgph9Xxd0nF/UuJ85uFovAV6E6PAixHC8FqaRipQ7yW+MXmibztEh15A+9+dcY/T11N55Oo4Ef0+HWe8NV+ufIfHi94OOU5UnSKvQ8kHf9l4uQg7qa5EqkpUyCTxA2hh9J+lAf3whbvvs/7WG9AGfaYx+JpVfzAxiAH8bcoJ6ZWCPAVcGHefBGtsbQMZFPM/c86r4GI3crWQao3vb4QXSoQsJypmG6N7jKNUFoscQHR4HvGqlLvCSoOPcXmN7FfB00jo8i8p78tPI3cqjzNXhwELMgLL/1wrm6rAeMXcaqOJjtyI6/BKpndONnCdvCjpO21aRbcmg72o9DLwQOaivQnrJ5TIDPEK2KfeTrTSVz9U6iATYTBPocu3z8jEBvDDoOPdX2I4QYsfo3VmVtNfKIIUE90wdHm8le0s7HfQssn2JN9TwkdPAy4OOs7HCdvQBl5DWYX3xd8zhSbJ1eCToOPHib2ke7IX56WT7ElfT+fMwwFuDjvPFOjSv6ahL0FdKhYBfAX9jjKnogM2liCH3IsSs5Q3A5ZSf+thO2hjdO6DbzoDF1Xo16YP+YqSnXUlaIgxc7vX4i+jQhwSWNyAX3HINv8dJG6PfDzzYjn6tdqKAZ8Z9MZI3ryS1NQNcH3Sc/4OiOnQjF9wbgBdTfp78CHA3ooFnjj5R/C2th+0YXkj2haDS1Nabg47zn94vvjF6hjG6UurDyCDN49UG/XzG6AD9/f3uyPDwjmAwuNZ69ZYiiVyAPM/cLdW0p9Wxwfl80qbo55bxtqOpVOp523fseCM5OgSDQb14ZOQpx3HWKKXKmbZnkMDimdQ/2imzIzKxwfkZSD79KiT4lEq3uKlU6urtO3ZcQ44Ofb29evHixZv6+/tXKaVWlNmMR0nr8NtOXBhl049nIBmCq5A7o1Ip0hTwuq3btt1CnthEpxqjK6WuAJYiJitHagj6c4zRR4aHWbJkSTlvP4ZYNW5EBizbrudSK67WJyKB5z3IrXBekqlUdO+ePaGZDH/cRYsWsWJ5WbMpp4CfkPbMbRljifnC1Xox8ALgz5ELQF5Sxszs27evJ8NAiGAwyOpVq8rZTRz4BemOz+6aGt2GuFoPIBmDtyIXgUIkjhw5snEiHH5Jkdd0ljG6Uuqj9vkzkIG4lxpjKsqPFzJG7+7uZt3agjMsNyPB5VZkemLL5IIXElfrR5GLd0FyjdGVUpy8bh2BQN4O6k7Svcg7WykXvJC4Wt+KpMkKkkwm2Tc+zvR0evnF2jVr6OnJ20E9gA3ywM/81dzl4Wr9WeCPi73GGMP4/v1oXXD5RWcZoxtj/hJAKXUj0tOvZkA0rzF6IpEgFovR3y9ZnVQqNREIBD4PfC3oOI9XsZ+OxtX6ZLID/i4yjNGPHz9+VjQWe30ikZgN+CAH/dTUFIODgwCkUqloIBD4T+CrSLqg49I2tWAHwK/IeGqcDGP0iYmJ0Wg0+tqZHB1AvIqXLJZ5C8aYuFLqG4gOd7bSZIRmwM4Iuj7jqcPkGKMfPnLkglgs9rZcHXLoLGN0D2uuUi0FjdHDk5MkEgkikQjadf99dHT0AzXsp9MJAb+PTE19Mncg9ei2bR8v9MbJyUlUICA6aP1vZ5555nsa3NZ2ZgnSu9yEmHJnpSOPFNEhEokQ7OsjMjVFLBb71zPOOOOmQq/1Kckg8FFEh83WuziLcDh8epmf1TKryZveGD0ajRKNzt6p+jniGgg6zhgyTbIQBXVw43Hcg7Nf//56tqvTsDn2/yjykoI6JBIJ9h844P1acMW1T2mCjhMGvlDiZb4xOr4xejvj69Ac+Do0D22nhW+M7jOLr0Nz4OvQPLSjFr4xuk8uvg7Nga9D89BWWjRdGYZ2MR9udXwdmgNfh+ahXbRouqDv4+Pj49M4fGN0Hx8fnw7CD/o+Pj4+HUQli7M6FlfrXqR08TrKN0b3tgTFzZ/zGaPv91dXzsUWL1tFZcbo3paitBF3rjH63k4sTlYKW7zsRCozRveeC1CeBpnG6LsyTYl8asPP6TN7EK8rsq1ifu+KXMS8Ip8J9I5KPFhbCbssfjX5jdHXIcbptbqJVcIMUlsonw7b27E0tIc1R89njL4OMfep1U2sElKkO0RztPALLFZGRwZ9e0Bn+uaeT+02cvPJbqRssef/+WAregRYK7/zyfZsPWFBG1UZBxA3Mk+H37bihcDVepBsc/QLkY5Oq3AUcVzzPInvDzrO8YVtUvPS9kHfmq+chxzI3kF90oI2qv7MAA+Sbca9p1ghNFfrtwLfma+Tw9XaYa45+inzse95JIXUrs/UYWsJHV4P3DVf5Y8z3L684H4BUmpbzcf+55HNZJuiby6WqnO1vhpJ59XdL7rZaLugb63TLkTK1l6NHOD1SM3spzxjdJ3zczdpw+dcA+hCxugjdWrvPaSN0bfkGFPvs6+5Mug4R+uwvyxsquYcxNLyGuTCW48xpMOUNkbXeX5X5P/+c3/PNEavx13HUSTweMboj2ReBFyt77f7uTzoODvqsL8srA5PI22leBFSR6tWjlPYGD33+8/coPj37/2eaYxeiQ1nISaRu+PfIDpkmcm4Wn8Xqa9fs190s9MWQd/enr4ACTBXI6YulRJGegc7yTZG3wnsns/0iav1CHPNn72f11DdRWw7EvxvQ07Kn9vnHwOuCDpOuYWlCmJ785eTNqmvJkUQQ6oe5hpy70QG9OatTrw12sj9/r3HdVR3ERtHgo5njL7JPr8HeH7QcZ6qrdWzvfnnkjZHr+aOKo6cD4V0CNfaznJxte4n3SHK1eFkyrfszOQoYvhzG3AHosMixC/6RUHHua/mhjcpLRv0Xa03kO69XEpp67NMpoGHyTaDfqoVZszYmUTnkO2Hu67Gj92MBJyKq2e6Wq8krcMVyAyNckkhFx3Pr/V+5Da86Q1x7EyiM8jW4bQaP3Y/osPmKtqzBOnwXIs4pA1W+BFPkNbgfsTecrr4WxYee9d6Kmkf3IuBUWq7u48AVwcd59e1t7D5qDnoK6UuQ+wTHwe+ZStxVk0x82FX66cjhtwvpYjlXx62AA8gg26/BR5BejLGbqlWNgKxA9MXkT7oz6ey4AvyHV3iWRyW0GEt8Hrg5cDvVbCPXaR1uB94CKlfYjK3VtXCWiF6pugX2Z8rDb4HER22QEkdlgGvBV5p91luoNtP9vnwAHKn2y46DCDnQOaFoCzf1QyiSKrnHu8J3xjdGqMrpS4F3o8crB8xxmytpiGFjNG7urpiIyMj9w0NDg4qpc4r8+OSpMuh9lPZbXgCufU7mLMdyvPc4WacP5wxWHcJYm95KeXdAj82MzNz+a7du99Pjg6BQCA6Mjz8m+Hh4aBS6pIym+LNjTeIDpXcjaUQ7+Pc7zyfHoea0abRji+djqRaXoTcCc1xiMvD3mQyeemOnTvfQY4OSqno8PDwLxePjASUUi+kvCmsBtEhiehQyXTLFJLyyHf8z9GjGacT23GNDYi/9wvtVs64WRi4fOu2bY/gG6NnGaMHjDEppdRy4J+MMa+vpiH5jNEHBwc5YelSlGraiQUpxOLuMWTWxmN2295MqSJrz3cZcvv/Coo4lc3MzBzYvWfPiszjItTfz/Llywt55DYLO8nW4FEkZdc0qSJX6z7k/LkK0aGgAXQymQzv3rNnKJlMx5K+vj5WrVzZ7DrsY+758EQzXZRtau4CRIeXUzxrcHTf+PitWusbi7yms4zRM/7eC3zDGPOKShtRyBi9r7eXk05qydmVMcShKjMAPdqIWTKV4mr9K6TnWRCtNeP79+MdG11dXaxbu7aZL76F8AYjM4PQI0HHOVD0XfOAq/VXkVRlQaanp9m7bx+plPQflFKsP/nkVtQhgXQas84HSkwrng9crT8C/GWx1yQSCbNv3z41U9gnt7OM0ZVSL0Nul4aBz1bZjrzG6PHpaVKpVD16Nl7+XiF5T5Vnqyf9pOeiz+Jq/SjwU7vdFXScWJ73NgxX66XAs3OePoI1Ro/FYsuisdgliUSCQCCA18tMJpMkk0m6u2uecTmN3B3Nlw59yNqALKc3V+stpHW4Yz5notj99yDTWDMJI3eNe2JaL41Fo8/xdPCCvjGG6elp+vqqmaySxQyS6vG+83xa1JNu4Ey7vSbj+d2u1j8Ffgb8POg4h+u833J4cc7vUaxBPbAnMjW1LhqNXk3xC21nGaMbY/6H2j1zi6Ub8h3kh5EpboeRoHXUPmZu3nNHy7m1tHk/heQ7lyH1dZbn/Lw85/lKp4aebbebgGlX69+QDj4PzUOdl1ORC/Mm5AK+OfNE2yqG3Hnz9a7rsmjRotynjyODs7nffT5NjpaT783QoQf5fvN977nPnUBlgeppdvtjIGnnynvB5955GKdZC3yLtA6bgANer9fq8Jx8b4zGYvnOhykkvXWIwt9/5nOxUj3sDB26kEHQQudA7u+VlMlYA/yB3XC1fgjR4KfArxs9PuBqPYysofA6tJuQBVqzqVmrxdVlfJxvjF4hBeeIHzt2jJ7eXmZmZlDwyRUrVnw46DiTdd4/9iQwSN2b3XYrip0lMIqMdZyFBPSzKG+QqBd4nt3+H3DM1foXyAF/W9Bx6j4rwM5EuKfISwrqMBEOE4/HRQelPrV8+fK/b8Rq3gwd4kh+uKT5t10fcAbZGpxFeSdiF+kplx8Cplyt70CCz4/rMW8+l6DjbAXeUeQlBXWYmprCGOPp8Jnly5Z9BDhS7zRJhg4ppNxEyZSYnU58Ounv39NjdZm7Pddu7wHirta/Rs6H/0PSo/X+HyeAPyzxsrYzRi+ZZF5pqQAAIABJREFU07fG6J8BLjbGRJRSDwFvMsY8XK9GZOb0e3p6GBoa4siRI7kva4m8me0hrSQ7AJ2DXBzK7Y0a4E7gq8AtjbjI5SNTh66uLpYuWcLBQ3OO+ZbQAWanNOYGoGdQ2R3ubxEdvjVf6YdMHZRSLF++nAMH5sTcVtJhhHTnyDsnzqOyRVWbEB2+3ogOUSEytVixfDkHDx0iT8xsGS2gRNC3xuh3ANcYYzbb524ELjPG3FjPhoyNjd3c1dV10+pVqzDGsHvPHF1baoQ8F7t45nLgSrutK/etwA+QA/4njU49jI2N3ayUumnVypX09vayfcecygCtrsMgMoX1SmQKZbnrPRJIj/OrwK2NTj14s9lOXLGCUCjEjp07yZzJQ+vr4CAprCsQLc4t860GiUlfBb43Hx2isbGxm09YuvSmoaEh9uzdSzw+J1vcUlo0zYrcbVu3di1duvSpvr6+kwG279jhDWC15FzYYti7gfWkLwCXIwPhpTgMfBM54H/XiJkPY2NjXStPPPF3/f395wDs3rOH6elpaEMdAFytVyOBx9vKSQlNAt9FdLirEdNzx8bGupadcMIvBwcHnwswvn8/sVgM2leHE8juFK0p523A/5LuEDVkeq6OxV6nlPo6wOHDhwlPzl5nWlKLpgn6rtavQQIaABMTE7cfOXr0J7So+XAl2EU85yFB5yXIasJSPAH8N/DFoOPMyYXV0JbnIEXaAJiamrr3wMGD36UzdFBI6uEK4HrkjqAUu4CvA1+oZ6VMV+tTkOmNQQDtupv27dv3ZTpHh1OQ4H8NMjuw1ADxIWRw/PPVlLEo0pbFyLl2AsDMzMyOXbt3fxffGL027Be7mexZPPcEHedZC9SkBcXV+nRkDvcbKLKAx6KR2Qf/FHSc7TXutw8pjZCZ8tgLrOtEBylX6zVIuYkbKJ0GSiCdln8MOs5jNe5XIQOYz894WgMr5mt8p5mwYzOvRnQop0P0A+ATQce5uw77/jLw5pynT7WD8S1JswT9L2GnbeVwmleDpBOxxaSegwT/V1Hc6CWFpBw+UW1pWFfrvwY+nOdPVwYd52fVfGY7YIPwuUjQeR1FphhbbgM+AdxZTQrO1fr3gf/K86e3BB3ny5V+XjtRYYfoN4gOG6tJwblaPw/4RZ4//X3QcT5U6ec1Cwse9F2tLwN+WeDPHwk6zl/PY3OaFlfrIFJB8QZk3nCxGSg/Qw72n5UbdFytT0NWSeary/LVoOP8fmUtbk/sEv4rER1eQvHCdr9FdPh+uXdKNre9mfwFwn4VdJxyUk5tT4UdoieAf0Rm/pRVDsKeb48ia1ty2QlsaKZSK5WwoEHf9qDuB55Z4CX7kFuppiji5Go9hPQuGmWMvqecevF2Ze3vA++k+Bzoh5Gg891Sg1yu1rcgdUjyEQPWexU4FxpbS2gdDTRGLyeNYtdpvBp4N8XLKm8Fbgb+u9Sx7Gr9SeBdRV5yVtBxxkq1bT6wgXEtjTVGP17GQrIgcgG+icKxBKS66D8j4y9FV2G7Wv8Z8OkiL7k66Di3FfuMZmWhg37WoGEB5u1Wyk7nW1dkq4ejVSkOkN+IextSxTDTdakHWdb+XmQedCF2Ah8FvpIb/F2tz0SC+laKl+b976DjvLHSf6YabFBfS2Ed5sNH9wgFDNGBfZm9PNvrvA54H7LIqxCHkOD/2dzg72p9BrLKfC/FyzHfCTxvPmrW2GC6hrnf/8n2cUWj24CUp8hriI50kmaPZ9uJvAw5H15U5DMjwL8g4y9Zpuqu1qciGowhM+wKsQU4u5kKyZXLQgf9LyOOV1HkC84svfs95Mp8DAn8dZ2O5Wp9ItlG0OciloXNTAw52LeQNkZ/ABnkexFysF9W5P1PAB8E/jfoOMYumtmCzD+/HOldrUZ6ZR63IyfZFJJui9Tx//HuWjLN0c+j+Ze0TyOOUk+RNka/P+g4YVfrZyM6XF/k/XuR1b//HXScpL14P4aUBPDOhxPITlncjfhARIFPBx2nrrNGbIfnmaR1OJ/yV9IuFAlk9tRW0sbo9wYd54ir9dnIyt7XUnjmzzGkM/S5oOO49qLxc6Tj9Tzkux4ku5PxKKJFFOlENcVdVyUseE7fw9X6MbJ7qxcHHefeOn32AHPN0Zv9gC6XJBIMPBPoGDLY+DIKrwC+F/g2YhD/LqTkxGjQcSKu1hvJLgb2mqDjfLseDbULcs4l2xx9Qz0+uwkwyKpRT4eDiNnPDRT2EfBWmc4gdwCTwJlBx9nrav2vZJdqeF/QcT5Rj4bacglnkX0+nE77mKNvJW1Mvwu5kL6Fwl4Gu4Ev2df+F3JOnR90nIdcrd+L1NL3+FzQcf64UQ2fD+phVF0vctf7r0FOnopxtV6EDLZdjdxun0F9Duhp5MBolDH6SVRWsAr7+t+zm3cwHkYGxxchZQdyB2c9ly2PNUju/+3k16EqbHrgMuQi8mwk0NTjmEtiqyDSGGP0NVRm+IL9fK+S5Fvsc2GkV9iD6NCf854zgH/I+H0Q+HdX62uorw7dyPd/LTL4eS7V+crmYpC7lkYao1dj4n6K3W6wv8eQqchJpCRK7qDvGrJnrXUB/+lqfQF11KFZaKagvwVJMXhU9OW6Wq8j7dX6PCpzB/LwgvrOAtuBRo7Y29v8NeQ3gN6AnBDl4K1u9JhGAk+xC9/bXK2/i+iQSaU6rECC/LXIhbccp6hcvKC+s8A23khzFLtYbhX5NdhA+WM7Q2Qv8Eog4ybFxk6uAt5I7TqM2M+61j6Ws+I7Fy+o7yyw7W2kj64dK1lBfh3WU3rqrEc/2SXFvZlUxTpY5wAfQNZLZNLyQb+Z0jtvRZY0e/xX0HFuLPL6LqS36gX6YgOZ+YgjV/9Mc/RtzToNy+YblyA9mN8j7f15Sh13swP4C2Rxi8cdQcd5Xol2nUtah3IWz2SSRPKkmabcTzaT41UuNqCuR3rvng71upsEsSe8juxJDjuCjlNwYNHqcJp937VIkKvkrtFLT2WeD2PNbI5u07YnI0XcPD/cc6j8brkQCfu595PWVgMjrTiA69FMQf9CMtI5yWRycsfOnR8m2wi6D0nZvNQ+VmJ2vJnsA/rRZj6gy8XO6840474AuT2ulk8hU0EBMMYkd+zc+ZepVOobGTp0IatFX44EmJUVfP525Pv3gvxDzTIltxbsdN4LSJdpvojqetceX0O+39l1AHv37fuo67pfyNBBAc9CjNGvpbLxkb1knw8P1HuQfiGwM7/OI63DxZR/R5CPO5Hje3a+/sFDh74RiUQepJ2N0Yt+gFIBxDN3EHjAGJNvJWFJJo4fH+jr6wurDC+4nbt2kUgkoosWLfrh8mXLIkqpV1L+rfU24FZkdeR98+2OtFDYgDyKBJ1LkLolZV8cjTHTxphkIBCYDTb7xsfRWkf7+/u/d+KKFUeVUq+l/Ol6+4CNwI+Bu+tZJ6iZsamJpyE6eMbolVwcSSQSx7q7u2dnlB08dIhIJBINBoPfWrVy5X6l1OuRnm45HEE0+BFiUDJeSVtaFXthXIfo4BmjVzR5wBhzv1Jq1gXv2LFjHDt+HNq54JpS6u3AWcaYd9jfPwKsNcbcoJR6KWI5dgz4kTHm59U0ZGxs7ObVq1bdFAzKuE0ymWQiHGZwYICenrLG1JLAr5FAvxHYstD+m82AvQg8k3R+97xS70kkErPWiKlUiuMTEywKhSqx6bsf0eBWxJPW1yFdzO1qRIu8DmWZJJNJurokU2GMYSIcxgkG8c6RMngM0WEj0vFpmcDUSOxcfE+HKyk+xkIqlZoJBAI9IDqEw2GOHM2yu26/0spKqX7E2Pgs5Gr598CzjDFaKfV+4Lgx5gtKqVtqMUYfGhwM9fb1EZ2aIqY1/Y7DypVFO0fHkd7LRuD2Rjg5tRN2LvZtSEqgIKlUing8zkQ4TCwWo7u7m7Vrio5fRYGfYO+smsF4vJmxs5q89E1BUqkUM4kEx48f98oqs27t2mKe0dNIrZiNSL2ZXfVrdfth78Y+DfxJsdcZY0hYHaKxWK6vAbSYiUpZs3eMMTGl1DeRhQxXAVcaY7w87F7kYIP0qHilvAoIZdSpBiCmNTMzM7k9/SNICdXvIumCph3wa0KSyCBwLglg78zMTMp13fWJRILw5CSJhHy1MzMzaNfFye5hRoBbkPn+d7TywNYCEEfy/7mkgPGZmZmE67rrEskkkUjE8zMAIBqNMjCQNYkrjgy8fwv4adBxphrY7rYi6DgpV+tn5PmTQRZo7YnH40Gt9dnRaBTtuoU+qm2N0T3z4BcbY7ZlPP8/wL8opZ4L/KrKdhQcaIlEIgwPDxONxYi77veWLl362nkwrm5XLkJmLG0iwxwdWc6etCbQ7833xsnJSYJ9fcRiMdx4/IdLFi9+bdBxYvle61OS05DFW78k2xx9Z9BxEkV1iEQYGBhAa43ruv83MjLymk4Zr6o31hi9HymJnanDNm+Sh9Xi7DI+rtlXkc9SSdD/ELLoJ+s9xpgY+csiV0JRQ+6JcNhz0bp79Ukn+QG/SoKO83NkmXkhihpyx9K3tneuWrXKD/hVEnScJyg+tbWgDlprb4IDwE9PXLnSD/hVYuvulBrjajtj9KIDGB5KqZuQlXGvAv68Ae34DpIXm0Mqlcq0TfxOA/btk6agDsYYL+D7OjSegjoAXsD3dZgfimphaSktSgZ9pdTlwJuANxpj7gAGlVL58mBVY+e6fr7Eyz7fKgMlrYqvQ3Pg69A8tKMWRdM7Sqk1SCGia4wx3sKNTyOrNm+sc1veZx/fRvbS/dm5sHXen09+fB2aA1+H5qGttGiaFbkeY2Njq5E00nJa2Hy41fF1aA58HZqHdtGi6YK+j4+Pj0/jKGsg18fHx8enPfCDvo+Pj08H0Uz19FsCu3R7kMLG6LlbOcbo0WYt6dys2Fo2lehQjjH6lF+fpjKsDouYa4xeyKy+LGN0f6V94/Bz+jnYoL6cwqbca6mP61AuUcQ4JJ8J9M52KD9cCTaYnEBxo3pn7jtrRiOlRfLpsKPTyhxYHUYorkO55j6VEAfGyW+Ivs1fhVw9HR30Xa1XkW2Mvo7GBfVa2Uf6wPeM0e9vkxroJ5BtjL6exgX1WjmI6LCdtDH6vUHHObagraoDtiyBZ45+PlKCeB2NCeq1coz0ReD/t3fuQW6V5x1+Xmkv0q5sr9fGNre1TYAA46FhAgFK3YRLaEJCAi1hoEkLbRpKMpRpAhmYNGlzD6ZJ6XTSlGRygTJtKGWSBhIIoVxKA+UabCrwJGYdR9DYYEe+afdoV5e3f3xHu9q1pJV2dTt73mfGc3SOvtV5rd85r77z3X5Txui22N/chCbp+yYXpQu69K+h9c27EAWSTJtAP4lbUnrOpqKs562LxeM7WhtexfMO4BZ9K2lwOi6xBJ1fMFOHZD1NRb7N56/avfy0b0h0MjPN0d/YzhhaxA7c91/SYks9ZklZzzsKeC0M63ot2qSf9bwR3IqgZ+Iu6BNonp1dqf2xUWP0JVVezzbMXgh7cRd96cJ/stLTQNbzngK+F4vHNzXx3IeQ9bxVOB3OwumwgebZ2Y3TmDF6te+/9Ho+fr7VyOCexko6PFHpaSDreXfh1ne5tsX+y0PA+ThDl7fgrB7n4yNdiQnmZ4xeTY8EzbtXs7ingHIddh5SyPP+Fvdkc9licNSrxaJJ+r5ZyGk4o5ALqW9lvGrspboZ9K+a3Z7ox74c54JUyQD6aOZ/E+Rx5jL34dbSfxE4HNdcBPDXsXj8c/MOfhZ+G/DJTHvmns78Y8/gfHt3VPm3t5k1ZL8/ZxnuyaP8+y+9Xsv8f7AU9yNQ0uE5nFn9HlyS+ybw581M/FnPO55pHTYy/4EbHtU12AHsboEOCZwJeSVT9PW4726+bMFpcD/uhyCP8ws5DucsdkksHq+6jnLQCXTS901B3o67qN+F6/hr6COAnzHtE/oSLqnva2acC8V/FF+Lu+jLjdFPnMfHvYK7UTeWHfsC8Kn53ri+Kcg5TCeYoxv8iDzuRiz55iZxyb6pSX2hZD2vB5eISsmnZIx+Mo0Pf94NbMZdvyVuBz443xFEWc/rxZkclXQ4vsGPKOIqBaX7YQtOh6Ym9YXiV5KOZPoHuWSMfgqN/xjsx1WK3lV27CfAxYt16fCuS/q+i9aluDX2X2eW+XDW89bi7BnfDbyN+kVWXFIvXdBP4dpdA9uGl/W85bia9Bm4i/50XE11PtwM3Fi6uevQYRXTOpxHY01ULzOd4J8GNge5ZpX1vATuKbOkw5nAynl+3L8Cf1xK/HXoMIRLWBfifHgb0T/FzPvhZ0EeneRXPkoVopIOR87z4x4B3l2e+OfSIig0wxh9I/B+3KPjSapa04qvGslkMgpsosKiRtFo9Dvr1q59QUQ+QB3eoj5F4AmmH+GeXQwjXWrhPxafgLvYS8bojdT2PvPy6OjnqKJDJBL55vp16572dTif+ps6nsM1azwOPLMYRrrUwm/iOoZpHTbSWHPjd17fvfuqAwcO3EQFHUTkG8esX/+Yb4x+IfWPNnsJ3xgdN/Jr0Y908TtoSzr8Du7Hud7mxgeA9748Opqnyj1BGI3Ry8pcBKxW1a/PJ5BkMvll4LryY7H+fpYNDTE4MFDLF7Sc/cCPcR6h98fi8d/MUX7Rk/W8Y3AdqRcAZzPHMMj9Bw48tnv37hk/rH29vQwNDZFIJOrVwQMexOnwo1g8/ut5Bb+IyHreEbia+AW4Jp2ltcqPjY09v3PXrlPKj/X09DA0NMSSRGLKMH0OcsCjTOswWrv44ifreStwFZYLcHrM9UT2H6Pbt/9SVT9ao0y4jNHLytwF/JmqHqj8KdUpGaMza/REIpFgzeo5Xci24Qy5fwj8NMjNNa0m63lx4B5cc0xVXt+9mwNlfsWxWIyjjpzzKflVpnV4JGyTyRrBb3v/BnMsT753715+k55+KCoZ1IvUrKjuwdXm78V55jZ8P4YF/8n4M8Ana5U7ePBg/rXXX6/VCR46Y/TSuvv755PwfS6lwnC5sbExCoVCpVrNkzhT7ntj8fgv5nnOMJKjsjE6AKqay+VyvYnBQcbHx6eM0bPZLJOTk/T1HTLCL4kzRr8XeKGbOvu6mVg8nst6XlWbPlUt5PP5aH8sRn9/PxMTznM+n8/jeR4DA4d0n2zH6XAPrvksME0NnaSGMXqJQqFQONDT07N8YGCA8fGq/bqhM0YH55H7nQXEUdEYXVXJZDIsW7aMXC5HNpt9fMmSJX8Si8e3LeBcYeYs3AW6hWkT6K24mY2vjG7f/nFqGHKvXLGCfD7PxMTEM4ODg1fhJr5Yom+QrOetx/W9lJtxb8V1cKdGt2//GDV0GBgYoFAoMDExsXlgYOAa3Nhz06FBsp43iGvy3MZMHbbhOrl3/XLHji9SRYtZhMcYHUBV/2aBcVQ3Rt+3j4OZDNlsFuB7h61aZQl//jwDDNaoCVbV4eDBg0xOTDDueQB3btiwYXMrAgwJO3E6VGuKrKrD2NgYO3ftYmxsDOCODRs2PN6KAEPCJLByjpFjZoxOG4zRe/qn+xpz+Xwp4QfKfLgbicXj43M8+s/UITbdjFAoFEoJ33RYILF4PDtH31NVHVS1lPBNhwUSi8dzdQwVntKiXIdZBEqLrjNGjy1bQd+SikONA2U+HETKdehLLCO2bLhSMdOhxZTr0BMfJL78MCqMMjQd2kBJi2hfjPjyw5BoxcaRQGlRM+mXGaO/r4IxerO5IbZs+JG+wSVEe2Z0GI4BXyFg5sMB5oa+waU/iC1dTiTag0SmOtFNh/ZyQ09s4F/iQysRESK9U3MQTYc2s2TN0bcOrFg1KSJEe4Ofm7pmRm4qnVmPmwIeB/D27vluzss8S0DNh4NKKp1ZjuvMWg0wcXDffRMH9z2E6dBWUulMH25S2waA3Hjmp96+Pd/HdGgrqXRGcHN/zgfIT2afHt+z61ECbIzeFc5Z/hf7T5RNHIovXznxxjesC8QQqEXGTZSNROhfMhQ/bu1RpkP7uR4/4QP0DiQO7x1I3DIynOiOWlp4+EP8hA/Q0xc7cekR684eGU4Edl2ebvHIvRz4vVnHLkmlM81c6taYg1Q6sxG4atbhs1PpzNpOxBNWUunMcbjRcuW8ATfk1mgTqXRmBfD3sw4vAS7uQDhNo+NJv8oXC25p1d9vczihJZXO9ONmiVbij6ocN5qM/9T7dSqvp3NFm8MJO1+m8jINgdah40kf+DzVl0S+so1xhJ2P4iYMVeKKVDrTDddKGLgMN2GoEpem0plmGu4YVUilM2dRPf+cl0pnGl0+vGvo6I2cSmdW4YaDVuOcVDpzbrviCSt+Lb/WiKxjCXjtJgj4tfxaI0GWUt/sUGPh1PqeBfhsuwJpNp2uvX2Y2svCFoAvptKZruhwXsRcTu1p5Ap8KpXOdKNB9mLibcBv1XhfgWuCXMsMAql05ljcktW1eF8qnam6flI30+mk/wTuyz0H5+hUzqlA78hw4vSR4US+7ZGFi204Q5RzcUs1lPMHQHRkOHHMyHBiUfsRdAH7gItwSy/fO+u9j+J0WDkynAiccUfAiOL6E8/HzVMq5xacDomR4cRzbY+sCXS0Bj0ynHiw9DqVzrzKTJu91TY8rT2MDCem1m9JpTOjOKOJEqZDmxgZTjwPPA+QSmfOY2Ztc43p0B5GhhM/xy0lX6r1l3P4yHCiZQb27aDTNf1yZk9yGOlIFIbp0B2YDt3BotOhm5L+lln76zsShWE6dAemQ3dwiA5+h3tg6aakP3up3o0dicI4RIegX+QB5YVZ+2+2yYod4RVgb9n+4Tj/48Cy4KQvIiMico+IfFtEblzAR81INqp6xosvbf2Eb6VotI+fAxNl+0eM/+a1L5kO7WVkOLEf54hVoje7P/13pkN78ftRZuSmicz+ryaTyeuCqkW96+l/WES+Vrb/eRG5w989HviRqv4pcNJ8Axnbs2uXFguZsnNItLfvC8DWZDL55WQyWZcTtLEwDvx6R7GYz80wlJdozw2YDm0lmUxG85PZyfJjEolehenQdlR1xoi2SCT6Dtxs3UBqUW9N/3bgQhEZEpF3A+9ieo2W54HLRORh4JH5BlKYzG7KeeMJVSXnjePt3U1+MgvO3u86YNN8P9toiE2T45kjVJX8hIe3bw/57BiYDu1mU27s4AkA+cks2f1pJscOgOnQdrL79qwFKOQmyB7Yy8TBfaW3AqlF3Usri8jNuP9kyRh91D9+PfC0qj4mIner6iWNBuE/Jm2VSHRQtQiVYwqU43wQmdYhMgigxYoj00yHFlPSAZFBkQharGh2Zjq0gal7ItozqIWq04UCpUUjbfrfBj4C/OUsY/QfA9eKyK3AjnnGcSkwqMVCtYQP047zRuvwdShWS/hgOrSDS4FBVKslfDAd2oW7J6onfAiYFgs2RlfVJNBw7X4Wq+osFxjH+YBiOnQHpkP3sOi06BZj9EXnOB9QTIfuwHToHhadFl1hjE6Z43wNAuU4H1BMh+7AdOgeFp0WXWGMXnKcn6NYoBzng4jp0B2YDt3DYtSiZpu+qqaYNftMVW8DbmtBLKV1xK/GdYyUGMN96YFynA8wpkN3YDp0D4tKi7qHbLaLZDJ5FK7vYDUBdpwPOqZDd2A6dA+LRYuuS/qGYRhG6+imBdcMwzCMFmNJ3zAMI0RY0jcMwwgRlvQNwzBChCV9wzCMENFRY3TDCAqx065WiUSJ9PYRiUSRSJRIT6+/7UOibhsp7c86LpEo0Z4IIuK2ESEa9bc9Uvl4NIJEIBIRItEIkYjQ0xMhGhH6/G3/1H7UbaOzj1fe9kYiRAV6oxEiIvRGhYjIzGMR8cvKVJnojLKCCEQjEEGIRkCAaESI+FsRiIoQEYgK7v8pEPH/VooFRItQLIAWkWIetAiFfMXjUsxD0R137+ehWEDzObfN5ab2tViAfA4tFGaWmSo7CcUimp9Ei0WKk/mpbbFQoJjLo4UiBX976H7O7U/9XYFioYgWlcJkAS24bXHW/oz3cwWKBfX/VinkixRUmSwqBcXfKpNFKh4vUl5m+r1bdUdVtzur6RuGYYQIS/qGYRghwpK+YRhGiLCkbxiGESIs6RuGYYQIS/qGYRghwpK+YRhGiLCkbxiGESIs6RuGYYQIS/qGYRghwpK+YRhGiLCkbxiGESIs6RuGYYQIS/qGYRghwpK+YRhGiLCkbxiGESJEVTsdg2GEAhG5SlW/YXFMY7G0Pw6r6RtG+7iq0wH4dEscYLFUoqVxWNI3DMMIEZb0DcMwQoQlfcNoHx1vL/bpljjAYqlES+OwjlzDMIwQYTV9wzCMEGFJ3zBahIgMi8iDIrLN3y6vUu5mEXlRRLaKyD+IiHQiDr/sUhH5PxH5apNjeIeI/FxEXhaRGyu83y8i/+a//5SIrGvm+euNo6zcJSKiInJqK+KoJxYRGRGRR0TkeRF5QUQuaMZ5LekbRuu4EXhIVY8DHvL3ZyAivw2cBZwMbABOA97a7jjK+BzwX808uYhEgX8E3gmcBFwuIifNKvZBYK+qHgvcAmxqZgwNxIGILAGuBZ5qdgwNxvJJ4C5VPQW4DPhaM85tSd8wWsd7gdv917cDF1Uoo0AM6AP6gV7gtQ7EgYi8GVgN/KTJ538L8LKqblfVSeBOP6ZqMd4NnNvsJ5464wD3w3czkG3y+RuNRYGl/utlwK+bcWJL+obROlar6k4Af7tqdgFV/R/gEWCn/+8BVd3a7jhEJAJ8Bfh4k88NcCTwStn+q/6ximVUNQ/sB1a0Ow4ROQU4WlV/2ORzNxwL8GngAyLyKnAf8BfNOHFPMz7EMMKKiPwnsKbCW39V598fC5wIHOUfelBEfldVH2tnHMBHgPtU9ZXmV7Cp9IGzhw3WU6alcfg/fLcAVzb5vA3H4nM5cJuqfkVEzgTuEJENqlpcyIkt6RvGAlDV86q9JyKvicjhqrpTRA4HXq9Q7GLgSVXN+H9zP3AG0FDSb0IcZwJLOMzfAAACPElEQVQbReQjQALoE5GMqtZq/6+XV4Gjy/aP4tCmilKZV0WkB9eckW7CuRuJYwmuX+VR/4dvDXCPiLxHVZ9tcyzg+jneAe6JUERiwEoq61c31rxjGK3jHuAK//UVwA8qlEkBbxWRHhHpxXXiNrt5Z844VPX9qjqiquuA64F/blLCB3gGOE5E1otIH65T8p4aMV4CPKzNn0RUMw5V3a+qK1V1nf89PAm0IuHPGYtPCjgXQEROxPX97F7oiS3pG0bruAl4u4hsA97u7yMip4rIN/0ydwOjwP8CW4AtqnpvB+JoGX4b/TXAA7gftLtU9UUR+ayIvMcv9i1ghYi8DHyM2iOMWhlHW6gzluuAD4nIFuC7wJXN+CG0GbmGYRghwmr6hmEYIcKSvmEYRoiwpG8YRlsQkYKIbBaRpIj8u4gM+MfXiMidIjIqIi+JyH0icnyn412sWNI3DKNdeKr6JlXdAEwCV/uzbr8PPKqqb1DVk4BP4GYGGy3AxukbhtEJ/hu33tDZQE5Vby29oaqbOxZVCLCavmEYbcWffPVO3DDVDcBznY0oXFjSNwyjXcRFZDPwLG7i0bc6HE8oseYdwzDahaeqbyo/ICIv4mbgGm3CavqGYXSSh4F+EflQ6YCInCYizfYUMHws6RuG0TH8ZQUuxi0TMerX/D9Nk9aONw7FlmEwDMMIEVbTNwzDCBGW9A3DMEKEJX3DMIwQYUnfMAwjRFjSNwzDCBGW9A3DMEKEJX3DMIwQYUnfMAwjRPw/1MjGXpYJ+w8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIZCAYAAABK2C3FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydeZgcVdW435rJpLvSmfQkgSSEAEF2KAgqyCYQFkVRFsFPRdwFwQ23n5/7gjvu64c7KCjED5FPEBcQAsgqQkIuJOwhhIQtyXQ6PdWdzEz9/ji36Z6e3rfprjnv89Qz091V1Xemzj3n3nPPPccJggBFURRFUcJFz0Q3QFEURVGU5qMGXlEURVFCiBp4RVEURQkhauAVRVEUJYSogVcURVGUEKIGXlEURVFCiBp4RVEURQkhauAVRVEUJYR0jYF3HOcljuMcVOM1MxzHuc1xnKWO49zlOM5xrWqf0h7qlIMXO45zq+M4NzuOc4PjOC9qVfuU1lOPDNjr/u44znOO43y2Fe1SOod6ZSRsdI2BB94AzKrxmi3AUUEQLAbeBHyj2Y1S2k49crAeeFUQBEcB3wbOb3qrlHZSjwwAvBv4eJPbonQm9cpIqOgKA+84ziuAc4HPOY7zvWqvC4JgNAiCYftyBnBfK9qntIcG5ODpIAiS9uVWYLjc+UrnUq8MAARBsLY1rVI6iUZkJGxMmegGVEMQBNc5jvN4EARH1nqt4zg7AkuAPYF3Nb1xSttoRA4AHMeJAV8F3tnclintolEZUMKPykiOrjDwjuPMAZ4ueK8XuLXI6X8JguDL2RdBEDwFvNxxnIXAUuCaljVUaSmNyIHjOH3IQO/rQRA80NKGKi2jERlQJgfFZGSy0hUGHjgAMPlvBEEwAhxa7iLHcSJBEGTsy81Astz5SsdTrxz0AJcCVwVBcFXrmqe0gbpkQJlUjJORyYrTDeViHcfZFbgaWBsEwatquO6lwPeAEaAP+EIQBP9sTSuVVtOAHLweuBi42761IgiCDza/hUqrqVcG7LW/AA4HIoAJguDUFjRRmWAakZGw0RUGXlEURVGU2uiKKHpFURRFUWpDDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFEDbyiKIqihBA18IqiKIoSQtTAK4qiKEoIUQOvKIqiKCFkykQ3QClN2vcdYACYb495QBR5bn32Z+FR7P1twEZ7bMj7PXsMRl13pF1/l1Ibad/vJycD84FpVPfc8z8bYfxzzz82RV13W9v+KKUm0r4/DdiBnAz0U/nZF74PsIniz38DIgOZ9vxFSjtwgiCY6DZMSooo7VJHtE1NGmRsh38GeBBYBawEHom67tY2tWVSUERplzqmt6lJScbKwHPAQ8jzXwU8GHVdv01tmRSkfT+CDNwrycBAm5qUYrzhfwSRgZXAqqjrJtvUFqVB1MC3mLTv9wF7AYsKjrkT2a46GAYeJdfRs8eD2uHLk/b9HmA3xj7/A4GdJrJddRAAqxkvA6uirrtxAtvV8Vhv3E6Mff6LELlwJrBp9fAU42VgJfBs1HXVoHQQauCbSNr3ZwIHkOu8i4D9gMhEtqsNrEU6uAFuAW6qpPDTvv9B4P8hM8MPR113Zctb2QbSvj8d2J+xxvwAIDaR7WoDzyIycD9wK7A06rrryl2Q9v3XAd9A3MYfj7ruLS1vZRuws/L9GGvMDwBmTmS72sAmpD8/ANwO3Ag8Xs7op33/EOBnyHLC56Ou+8d2NHSyoAa+TtK+7wJHAEeRM+g7t+CrfGTEvA5YD2xBZtPb7M/C34u9jgCzgNn2Z+HRbPdfANyHdPClwM1R192U/TDt+zsDT+SdPwicFnXdG5vcjpZivTMHA4uBFyMysDvNn5FtRZ5/VgYGKf+8i8nGVMTAFHv+s+xnzQ66fQh5/jcig7712Q+sV2ML4Nq3tgHvirrupU1uQ0uxf8cBwLHASxAZ2AfobfJXjSDPPisHm8g922p1QS/S1/Ofe6FOaHa7nyQnA0ujrvt4/odp378PGRBn+SzwNfUENAc18FWS9v1eRIkfb4+X09jMfBs5w13u2NxqYbd/W37Hnw3sgiiq7LFjA18RAMvIdfQ1wL2MNYTbgLOirvvbBr6npVg36z7kZGAxEuxUL4VKu9SxsQ0y0APMYKzC3wnYm5wMLKSxwcsqRAaWIjO8Bxjv2fg88JVOVvBp319ITgaOA7Zr4HYBEu9SSQaei7ruaAPfUxEr3/2MNfjzGSsDu9PYIOAJcjKwFLjW3jefXwPnatBn43S9gTfG9AJ7IDOQXmR287DneQ1Fg1phfxG5jnwsIvD18DRi4JbnHQ9FXXe4kTa2k7Tvz2BsR8/+vhu1d/gAcekWi0M4Hzi/FgVvjHFsO2YjM9XNwKOe522psV3jSPv+jogSz8rBDnXeaiNjn/9y4IFuilq2QYF7Mnbgt7d9b2odt1xP8f/nb4D31BrUaYzZCQlYc5GAwSc8z2s4NiDt+7OBY8jJwG513moL4tnKPv9lgIm6bqrRNraLtO9PRYx8oQzsjezuqJVngO0Z7z36J/D6qOsO1nIzY8xcYAEycEwBT3me93Qd7QoFXWvgjTEvAt4NnINEmmeNZY89LgV+6nnesmrvmfb97RFDnu3IC2ts1giyDpntvMuB5VHXfbbG+3QNdr1xd2Bf4HBEES5q8LaXAGdXMn62M78N+CBi3LMjfgcxOH8GfgLc4nleVYJuBzKLyc3O9q2x7QESdVw4oFvbybPSRkj7/hRgV+R/dQjy/zuYxrbh3ogs25RV8MaYOPBG4EPIgDwrMw7iYbsJ+BHwN8/zqhpQ5y2/ZfXAS6jdc/EEY5//MmQ9uqWz8InCeoB2Qgx+dtnqcBrbBXQ/8Jqo6z5R7iRjTBQ4BZGBlyAykO1rUeT//wPgT57nTapdIF1n4I0xMeC3wInkOnExhpG1y/uBUzzPW194gp2l7wu8HhGQF9fYnDXAdUhQ0TK6bEbWKuyM50jE2C9G1ihrZRVwVNR1nyv8wBgzBfgW8F5glNw6biGjwBCy3es1nucVDeSzLtfTgdcBh1KbR+I54HrgZnIzsoY9B92ODTY8Ann+xwAHUbun52nguKjrPlD4gfXanAd8HXnO5YIYk4guOM3zvJtLtHcucCpwGnA0tS2/bSYXb3IvcF9+zMlkxQ7+swO+Y4DDqH1ZMwmcHnXd64p9aIx5HWIPAsovlyWRid+7Pc9bUmMbupamGXjHcb6KBJw9A7wtCIKhptw4D2PMbMSY7kL1I8NtSAc8wvO8B61RfzGi0E9HtrBVyybgBkShXw88GtZZWTNJ+/52iGwsJgj+C5iHU9WEaDMwM3/WY4yJAH9DZgnVRqaPIsGKJ2YVfNr39yQnAy+t8j4gA4abyMmACeusrJnYvA8vR2TgdGC3KmVgGNg5P0DPGvdfIjP3WnYn+MDZnuf9zrZpR8Sgn44MSKsNMtwG3EZOBu7upuW2iSLt+1HE4B8DnEoQHIBTlRAEwNGFuyyMMZ9AYjZqWRoYAr7ped75NVzTtTTFwDuO4wGfDYLgTY7jnAtMCYLgxw3fOA/rhvkP4g6udb1v1HGcjbvsvPPvp0yZchLiTqyGDPAvch35Xs34Vj/pLcnXE4z+LwTgOOD0gtNDBUV/ctR1r4YXFPu1yAyr1Ky9HKmdFiz4aSQSOQHwqrxmBLiLnAzcoQl/6ie9JbkvwegKCHrAgZ6qZODrUdf9dPaFMeZ7wNnUt/XQnzt37oX906cfhswoq2UZORn4Vzetm3cameRgNHCcTQRBVGSgx+qCsjJwTdR1T8q+MMacA3yX+tb9h4BPe573gzqu7Sqalar2SOCv9ve/AhcATTXwwFuRmXs9wTw98+bOnTVlypTzKpwXAPeQ68i3auauJhKMvPuFLhwEEAzLQllPb6kOHiDGNcvRyCywHuPOdrNnxyKRyMeqOHUlORm4Keq6iXq+TylCMPI254WZcgCjVgacXisHRZX89dlfjDG7AOdS59pufMYMt3/69I9WceoTyPLb9cCNYY6jmQBe5wSBfX4BjI4QMCIDveyAbzxLs78YY6YB36Y+44697mvGmIs8z9tc5z26gqoMvOM4uyHRn7sHQbDevncmsg56CBLBnnWhJag/2rwoxpgexBVTd7IQ13VLud+2IRGbVwB/LrbmqzSNxwrfcCDbwQOcno04vc/Q09MDpJHEF8/knf4FGpCBqFtyXBAgSz9XAH+Kuu6aer9DKY8j6+qF70EwQjAyAo4ziNP7NE5PgOOMAP8Tdd0b8k7/OA3s1y8jAyCz9CuAK5HsfLr81hrGGVWRgVEYGSXA2UJP73qcnq04Ti/SJ7+Td/o7qD3osRhnIV6A0FKVgQ+C4FHHca4BPgx8wnGcw5AZ+glBEDzpOM4mIG5PjyNbgprJq2gwGUsymSQezzaRDLKO+0fg6lq3YijFySQHs3ups4lTxiRTsT1yHbK3dgwOOASjswlGZzPKRuC8SP/A1dnPjTF7IYPJujv2lmSSaOSFGJ8RZC39CuCq/DVepX4yyUEHyZ1fKpnOHGSXwe6F14qSDwYIhgeQLWXfiPQPXJj93EbMv5P6vHgAbNmyhemxWP7S711Yox513Ufrva+Sw8qAS+mkSrOAZQEscor0Z4dgOqPDeyB6+jeR/oH85Zke4DM0nhlyGvBJY8wPq91d0Y3U4qK/ALjBcZxLkBHuuUEQZN2n/wI+hexfPQGZDTWTo2mw4MZzzz/PllSK3t7e5fPmzj1S86fXTiY5mN0Ln90Dvzeyj7nZ2dBmAZdkkoN/jvQPZJ/TEUiwXN0MJhKk02l6p0x5fod58/aJuu7zDbd0kpFJDrpIYGq+DCxgrPJuxtLfdOArmeTgdZH+gayeOYDcVsi6SKVSPLl2LX19faNz58xZOC0We7Lhlk4yMsnB7F74/LwYuzBWBioOwqoYqUeA92SSg8vyBnpzaJ6HOIYk8Cq7Da+bqbojBkFwj+M4dwF3AhcEQbAk77MVjuM84TjOLUgCk7c1uZ1NKczi+7KcHl24UI17Cezoex5jk9lkf28km12tOIjhyG5tm4nkq26IdCYDmUyfGvfyZJKDsykuAwtpb3GUA8nFYTQll/vWrVvZunXr6GOPP77R86qNtZx85A3o9yn42Wg2u1rJ3748ExnkNaPK5rC9nxp4x3F6ELfmKDKbH0MQBJ9qYrsKaWbEqgbNWaxL3SOXSz3bgeNlLmsXqyL9A/n71n1E/prBpM9VkMUO6HZHZOAgcjKw/QQ2K8tG4KK8183su72oHLxAJjm4AJGBQ8gN6MYtpU0AGeCrea99mlczwSHk9qAWV9p3kHXwh4EzkXzB7eIRJOiq0VHbKFLydFJiDfp+5BJPHE2TAyKRtdONBccm+/MY4GVlrt2KrIv/FvhdwWdrkJF7XRH0BTzVhHt0Jdag74bIQPZotmdmiNwzLzw84NVlrh0F7gD+APwk0j+Qvz66hiZ4cSyDYV57rUQmObgjued/DPWn3y3FVqSWfKEO2Ih4ZM+scP1y4E/AtyL9A/k5VZ6lebu/plIk6DNMVBtFfw6S5SubleiLjuNcFLQvDd6lwNeacJ80krJwUmCVedagL0YMeiOFMUaQwdYLdcCRyPjnkQ68KdI/UHKPeCY5eEeJj+5CBoxLIv0DpQIe/06D66+WLcgWm0mBlYFdyWUVXIwsfdRLYU34Vcig/3msIo/0D6TLtOeSEh+tQmTg0kj/QNGAR8/zHjTGrELSkTaCj6QwnjRkkoPzGTuo26PBWxbWhH8IyeqYNeJ+pH+gqH3IJAc/X+Kea4GLgYsj/QNFJ2Ke5w0ZY65Akhw1YuhHgGs9zwv1FtiKiW4cxzkeWAIstmvtvcjD/FgQBFe1oY0AGGMuRkZ9jTzUez3Pa1Q5dCxWme9DTpkfTX2u1hSicFfm/VwJPFrOgFfRvrchSrwXGYlfAlwU6R+4v5rrjTEfB75I/ftfQWYVO3ieF9pKVZnk4K7kZmaLkRzhNd8G6ef5hnwl8FCkf6But2YmObgYuAYJcEoClyMycWcpg5CPMeZkZMDfSBW/NLCz53mh3RKbSQ7OY6wM7FnHbYoN6Fciy2d1xzFlkoN7ArcgAXMZ4CpEBv4Z6R+ouAxnjNkXuJvGvHlDwMs9z7u3gXt0PGUNvOM4eyMR8m8LguDavPffD7wlCIJaMkE1hDFmTyTPc73KPQW80fO8vzSvVZ1BJjm4H3AG8CZqd7UlkDzqNyO5DlYCT0X6B1qSfjWTHNwN2UpnIv0DNRlZu01qjb2+HoaAz3qe9706r+9YMsnBXZDnfwa1F/vxkZ0vNyF7wVcCq6tRtvVg3cM7AA8UuF8rYrdJPQrsTH1rsT7we8/zzqrj2o4mkxzcHvgvRAZeXuPlw0gA9U1IxtCGB/TlyCQHZyGxHw9H+gdqzttvjLme+kt2bwX+7Xlerf+jrqOris0YY16PrM/WOnJLIfmHv9T8Vk0MmeTgixCF/iZg/xou3YwY82xxjOWtUuStwBhzKJJdrNZ9sEPA/wFv8TwvFLnjM8nBucAbEIVey2A7jRj0pYgc/LtVirwV2EqSdyExQbVEc6eRScKxnueVXEboJjLJwTiyfHoGUv2w2v/HMPI/XGqP2yL9A12TftcYMxNp/87UlhdhG7K8cLDneaHfSdNVBh7AGHMS8Hsk4K6Su34U6dShyDts19HegBj1Q6q8LIkY9KWIMl/WTQa9GMaYg5GUyP1U17lTSHGSj3me19V/eyY5OBMpkHIG4n6tZhabRoqjLLXHXZH+ga6OILdG/jrEE1DNgD+FZKx8s+d5XWPIipFJDk4DXovIwIlU1weGgX8z1qB3ddVDW3zsaiQ/QjUD/iHEM3Gi53mTIvVw1xl4AGPMbsD/A95C8TKBWxDjfzXwLc/z/t3eFjYPux/5dMSoL6byHuStSMW7G7DlKwsikUOBMWYO8BHgPUhk9XTG/m+GkNnMLYgM/KPtjWwSmeRgDDgZUeivonIk+Sjyd2dl4M5uN+jFMMZMB94PfACZzbuMncFm64KvQFKSLvE8r/sUHi8kl3klIgOnUJ1Buxvxdi0Fbu12g14MWzr6XUgt+IVI38jvH9my4U8iAda/DHP8TSFdaeCz2NKhJ9ljDmLUn0cU25JuLSSQSQ72IUb9rUinruSpGEE68uXAnyL9A6GODM3HGNOLuCb/i9xsbgOynnhJt47U7ZbGVyJ5t0+iutiT24DLgCsi/QOh3v6Tj60yeAgShLsLYvw2AQb4jed5j09g8xoikxw8DDFgp1Ndop8ViAwsifQPjKv9EGaMMfshSdb2RHJ5JJAgwUs8z7tvIts2UXS1gQ8b1v16NnAe1e1N/hc5hd6VhkwZi00F+1bEO7F3FZcsQwZ2SyL9A6tb2DSlTWSSg1OQdfWPAodWccmjiB64vNodKcrkoFkJA5QGsJHlH0JG6pVcb/cgnfkPkf4BrXoWEuy2pvcB76VyroKHySn0lRXOVboEmxr23Ygu2KXC6euQ7cuXAXdXs8VQmXyogZ8g7J71I5BR+qmUX1tfRU6hP9SG5iltIpMc9BAZOJPywVJrkZn6ZUhchSr0kGC3OJ6HeO/K7e/fgFS+uwz4V7cHyyqtRw18m8lbX/8ocHCZU30kq9PPka1sqtBDgh3cvRKRgVeWOXUESdl6IRIkFYrtfYqQSQ4egsjA6ZTf3vY3pDz3P2rNHaFMbtTAt4lMcnAAOAsZqZfLLLYe6cw/i/QPbGhH25T2kEkORpGZ+keBfcucmkAGdj+K9A9oOdMQkUkO9iIeu48Ch5c7Fcn58f1I/8AD7WibEj7UwLcYm4zkk4hxL1fTfhl2K083JR1RKpNJDvYDHwY+SPnUwY8D30fS92pJ4xBht7mdDXwMqQ1QimeRPPk/1cBZpVHUwLcIu3f5o8B/U96wX4MY9qXqhg8XdjnmLCR//pwyp/4LkYE/67pquLDLMa8Hvk75NNL3IzLw+3LFehSlFtTANxm7xeWdwPnIvuxi+MBvEPfbg+1qm9IerFI/BfgGsFeJ00aA/wW+F+kfuKtdbVPaRyY5eCTwLcpnnfw7Ytiv0wG+0mzUwDcJq9RfA1xA6fXVp8mtr4c+D/JkxCYm+RayQ6IYm8mtr+s2xxCSSQ7ujQzuTil1ClIR7/uR/gHTtoYpkw418E0gkxw8GFHqR5c4ZQPwJcSwhy5lqAKZ5OAeiBv29BKnDAHfAb4d6R/oygyLSnlsLoMvIGvtxaLiR5DB3ZcmU6ZBZeJQA98AtqLbV5E88cVIA98DLphM6WMnE5nk4Bzgc8C5FO9Po8CvgC9G+gfWtbNtSnvIJAenI8FzH6d0oqqrgE9F+gdWta1hyqRHDXwd2AIwn0UKXRQr/BEga+yfi/QPrG1n25T2YCt6fQT4BKWTk1wDfFLTh4YTG2/zbiTeZm6J0+4APh7pH/hX2xqmKBY18DVgo6I/AnwaKWZQjL8Bn4j0D0zK4gZhx8ZavB3x3MwvcdrdiFJf2q52Ke0lkxw8EVlyKVUv4BHgU8AfNXhOmSjUwFdJJjn4UuDXSO3hYixDlPr17WuV0k7skswvgGNLnPI4Mvj7g2adCyeZ5OB2SNnRN5c45XlkRv9zzWehTDRq4Ctgs499AVlfKxY4swb4DLJ/VZV6CLHZxz4AfI3iZVs3Al8GLtQgynBiPTf/heyCKZasyEe2u31TgyiVTkENfBkyycEjkACpYnuZBxE37Y81MUV4sVuefkXxtKIZZDb39Uj/wGBbG6a0jUxycAfgf5AUs4UEwEXAFzTeRuk01MAXwWah+xqSWrRYlbffAR/WvezhxQZQfRzx3kSKnPJP4OxI/8DjbW2Y0jby4i2+BwwUOWU58K5I/8A9bW2YolSJGvgCMsnB45B11mL5op8Czon0D/ylva3Kkfb9HuS55R99FV5vQ/bibwT8qOtq0E8ZMsnBRUi8xUuKfJxAtkT9eqKCp9K+71D6WZeShxHk+W8EtqgMlMeWcP0ZcEKRj7cieS2+OVHV3awM9FK57+e/BtiEyEBCZSD8OEGgzxggkxyMA99GcocX4+fAf7diP7vtrANIVHa5Yx7la4ZXQ4acoi88NuT9/gzwIPDsZFEEmeRgBImn+BTFB79XA++N9A881YrvT/t+P5VlYD4QbfCrhin+zAuP54CHgLWTSAZ6kJwGF1C8hsSdyKy9JRXe0r4/DUlxXUkGytW3qIYRcsa+nC7YgOwIWB11Xa2T0GWogQcyycHXAj8Fdizy8ePAWZH+gRsa+Y607/cixSYWAQcCu9Ncpd0qNgGrgJUFxxNh6vC2NvevKZ5meAOyXHN5I7N2O5DbGXn+i5DYjmYq7VaRorgMPBp13dDUJ7fZCH8JHFXkYx8Z/P2w0YJAad+fR04G9kH0TlYGii0FdAIZZMC/krGy8FDUdTUGqUOZ1Abebnn5PlKju5AA+CHwmUj/QKqW+9qZ2P5IB84a9P0pHoHdraSRDp/f2Q2wKuq6FXcTpH1/d+AMe/2VEzVYsAlrvoTkN+gpcsoS4LxaS3emfT8K7Efu+S9Ctlh2qgKvh2HgYcYq/fuBFVHXHa50cdr35wJvQwaRv4u6rt/CtpbE7pL4CLITothAeykSb/FILfdN+34fMojLl4FFlK8s2G2MIpOgrA5YBTwALKvG8Kd9P4YU5+oDLoq6rgarNpFJa+DtWvuliNu7kFXAuyP9A7eVu4edke3E2M67CJmdt5JhZF19uOAo9t4wEiQ2G5hF4y7+SjwP3IQoxaXA/YXu3bTvz0CUQNZjcjVwRtR1axpINUomOXgAYsCLJSt5GnHHX1XpPmnfnwO8mLEDur0ovq2yWVTz7PPfmwrMRGTAbWG7AJJICdwbERm4t5jBT/v+3cBL7cu7gZOirtvWHO2Z5OBOwO+Blxf5OIkEWv6i0hbYtO8PkNMD2Z/70dr+NkJtuqAXGWDOovXeogxwOzkZuDPquuO2kKZ9/zJyqb5XAydGXXdli9s2aZh0Bt5GR38RSUhSGCE/AnwTKQZRdPRplfmxwPH22KVJTRtCgvjWlTnWA0P1rofaAck0pIOXO2Yjf9feNO51eI6cwb8RGeXvj0Qg5/MfRMGvb/D7KmKjo89FoqOLRchfBHws0j+wqdj1ad+PI4WFsjKwT7OaRvnnn5WBzY2siad93yVn7Is9++zvOyF/24x6v8uyGbiF3KDvXsTwDRWc9wSi4Fuyvl1IJjl4CvKsZxb5+K9IQO2Txa61/8MjyMnASyi+46ZWhpFnXEkONjUoA1OprAdmIcsG+wDb1ftd2a8EbiMnA3dFXTeT9v21jF0aHQReF3XdpQ1+n8IkM/CZ5ODOyGi9WCnPolterAvpSHIdeVEDTdiAZLxbDqxAkuRkO2yy0wKZbMR+VskXHrPrvG3W4B/G+JiHNcBroq7bshKameTgTGSXRLGqb08A74n0D/wj/02rDA8lJwMvo/7ZebI5BOoAACAASURBVBJ5/suB+5BZS1OUdiuwg8J5FJeBHeq87WbgZmAh4BV8lgBOi7puQzEv5bDBlN9C4ioK2QR8CLg0P97CxtC8mJwMvJzig8NqSCP9PysHj5GTgeerWeJqN2nf3w4Z8BfKQL0THB8x+BHGe0+2Ae+Ouu4ldd5bsXS1gTfGLESi3k9FcsP3IMrjRuBnnue9MEvMJAdPRYKoCkfrAfAV4MuR/oFtad+fgrgNsx35cGp3swVI9PFycgZ9ObCu0xR4vdgOn9/R90WMYDNme6+Puu511ZxsjJkDvBWJo5iNPKsk4vK9EPiX53kBvFCr/TKKK6VfI7kNktaoecArEBk4itJVwsqxmvEysLoTFXg9WE9GvtLfFziE4pneamEYODvquhdXc7IxZgbwBqTwyzxkHT0bGHgh8HfP84YBMsnBPYHLEWNdyN+Ad0b6B562MrAbOT1wLMVn+pVYz9jnvwx4OCwBqnYCtCdjdcHBSDBpo5wPnF+NzjTGRIBTgHOQgWMM8RCtQbY7XuV53oTEeEwkXWngjTHHIbW390fcYoUj6WFkr+pTwPl77LLgIODDRW61HjgzmBJ5GDgZUejHULqQTDEyiHs5vxObdq8ndwJ5s5zF9jiK0pXWyjECvD/quj8rdYIx5kBkOeUoe37hUsIo0sGTwHd233nHYcdxvsP4mfcW4D3BlMg/gJPIGfVaAqFGkOeflYFlwH1R1510JYKtYdwH6UeL7VGve/ebwCdLKXhjzC72nJORPl+4rhwgz38U+PmLFsy/p7e351eMH6wNA58Keqf+DMd5FbL3vZ7lt/uR5YcXBnVR132uxnt0PVYGFiLP/hh7LKjzdn8A3hp13aJ5/Y0xM5GkZG9FnnMxfZNE+v1lwCc9z5s0CcqaYuAdx4kD12FncUEQtMzFaoz5JPB5qgwU6o9Ny8zbbtY4V1qAs5Tevptshz6khiYEwD3A9fa4daKifzsd6w3JN/hHUpvBvzLquuNc6caYNyIzbpcq1j2jkan+TvPmjJOXAO6jt+8KnJ6jbftqcbuvJCcDN01GY14NVtnvy1iDX8vyzr3AQYVeD2PMkUhw5nSqeG5TenvTu8yfF+npccbISwBP0NN3ET09L0YMey3bVdcgeu964Iao69a002KyYGVgV8Ya/GJbkkuxDtg76rrJ/DeNMXsjGSW3ozov61Zkjf84z/NaZqM6iWYZ+D4kOvNbwLdbZeCNMZ9D6m9X7S6dFe9n9oBMyAMccHpG6eldj+PUImCPklPmN0Zdd0MN1yoWu/93JbVtFXtx1HWXZV/kGfeqg//6p7nM215sSgDg9EJPz1PgzMdxqg2MWk9OBv4Zdd2WJLsJO3b7oEHc39Vybr43xxhzBPB3atADkal97LyDlGwXGeiBnt6nwZmN6K9q2ATcQE4OHg3Lkls7sQb/RiRQtVp+GXXds7MvjDG7I0mHZlJbcGOALAMe6nneqhqu60qakqo2CIJtwHPV68raMcYcAnySGqO6N28ZIt4/nd4pfQQ9U3Acp4fKo8fnkZFhVplrvvHmsB+17wN/YUZljJmPRD3XtM1ri58ms3UbUyORrAxAZRlIItG+WWW+UpV5U5hDbcYd8lzvdq31amqMichs3UbKTzPNdQl6+7IyUGyL7JjLkO1+WRm4Nyxr5xNJ1HWDtO8fVutl2V+MMQ5wFaJLajU6DhIndLUxZs9sfE5YqcrAO46zGxLxu3sQBOvte2ciM/ZDgiAoupWkyXyeOrK9DY+M8Pja9ey6cCG95QcgdwB/Av6BrJ+GIhCqw7gXcWtWG4BzXdR178h7XSoZTVmCIGDN+mfYacECIpGyMmCAK5HZ4b/DlKWtg1gP3IXsRKiGlUgyqixvRpKi1My6Z59n3ty5TJ9e1pu7GpGBv6LLb63kKiQwshqeAT6a9/oIZI2/Zl1gye4MOQ4ZuIWWql30juMsAVYHQfAJx3EOA64FTgiC4K68cy6mBS56Y8yLkACWutO5LliwgMjUCFmrHUBAwBMBPDgq21S22ftHqVOBFLAVCfJKVflzzHvxWDhnCmnf3wF4NeKJ2YLMlLcU/J5EimG8EFhjjJmOJJ+pJ5odgLlz5zI9Np0AXjgIWBfAKisDKXIy0IwEJcPU+fyBoXgsnAMMmxTmRGTttPC55/9M5GdDszO3x2kg98SsWbOYNXNcMPxDwB/tcY96alqPzSNwAmKoS+mArAyMyZdgjLkOMc6Nuoz/5XnekQ3eo6OpxUV/AXCD4ziXICPcc/ONe4s5gwazgj3z9NPMmb+Ant4XbpON9FzYUMtaRCLl+8hSwbPI3vGyP+Ox7ojat4lsfl3HpScCDXlVnnvuOXr7IvT2jRm/ZXOAH9vIvVtBIuVvpQYZAJLxWOcbJ5uO9Pd1XHog9edfAGDTpk30OA59fX0jsVjsK8AVFMm2qLQW6xmpmCWyELsl8miak1ToZcaY7cIcVV+1gQ+C4B7Hce5CAhsuCIJgSf7njuNci03R6TjOz4IguLiJ7dyZBmfVgePkG/duwEWSzOxUzcmJlD/EeKX/BDLjWW1/PtXFnoG5NCgDo6Ojhca905lKbgBSDZlEyi+UgSeRZ5+VgzVd7BmYi2xJrJsgCHh+wwYQA/E1z/OKbr9SOpbtkdiIZnTkDBITogbeBqeNILOoCwo/D4LgxCa2q5CGH+bI8DDDw8NMmdKUuMJOZBriuiznvtyWSPlryBn8fMX/OPBMB88Ap9CEUfvWTIapkXoTkHU8EWS/cbk9x6OJlL+Wsc89Xw7WdfAgsJmdN7D3UwPfXUzBrq41gYDmDBQ6llo6zHeQqMWHkaxh9bhZ62Ud8jDqVvBBEPDc+nX0x+OPT58R/xuSLjKNjOLSBccwjQmRg8y+YojhrednK+hDIphLRTH7iZS/GlH0jyFxDwYw8ZhbNC97G9mAxEk0ZJ2fe2Y90/tnDMZnzrqc0s8/bb+rUUXShzzLep5/jOa4IQvpQTxiO1N8m9K2RMrPen6yVcJWIDLwTAvaUwsbaN7/JPA8rzAXvtL5bKBBHZDHVHu/0FJtFP05wOuQhDCLgS86jnNR0L40eNcgEdQNFT4ZHt62ZdOG57+y4w7z2jk4qZlEyneQhDDb22NOFT+bMRJ1yaWbLGzTU1hFn/dzZTzWtijj62nCDG50ZCSzeXDTr3ZesOP/a0KbWoaVgWnUJgN1B6Hm0YdUQxxXEdG6/7PPPisH98djYxOQtJB7aM7sLSDk0dMhZgPwCJI8qVHWIdlOQ0vFKHrHcY5HSmouDoJgheM4vUjU6ceCIKg5SKJejDHLkXrajZAA5nqeN65sYTdjjcEMxir7HZAAwl3zjoYClIowinS2fMO/Ani0FW5eY8wSpEhMI8EUaWA3z/PWNadVnYGVgRhjZWAeuUDSrAxU2vtdD6sZP/h7MB4rnl60EYwxn0fyYTRS8jYFvMLzvNub0yqlnRhj3gD8kvrSYGfZArzf87zfNqdVnUlZA+84zt5Iooe3BUFwbd777wfeEgRBrckK6sYYcxrwG+qvY5wGvuF53vnNa1V3kUj5/YxV9vm/70pjHSafNKLk70BqQt8OrG50fd8Yc4C9Z73KfQS40vO8avffho5EyneROI38574w7/dZTfqqYcS9fyfy/O8AVsVjjeWXMMbMRgIHGzHwKzzPa3SyoEwQxpgpyMy7lnoRhWwC5oU9yLJris0YY3qAPyN5jGt11W9FZpqHep7XLndiV2FngDPJKfo9kWI+HlIxrFH3+LPkFP3twN31bO0zxnwXeA+1xymMIu69l3iet7bW750sJFL+DHIGf08k++D+iEu00SWABDmDfztwVz2xHcaY9wDfo74luy3AUZ7n3VvHtUqHYIx5BfB/1DfQ84E3eJ53TXNb1Xl0jYEHMMZMRbLNHU31Ct5HAsaO9jwv1AEVrSKR8qcy1uBnf+7awG1HkOyIWYN/B/BIpVm+TXbyQ+BdVK/gM8iI/UjP8x6pu8WTmETK70WCM/Of//7AHtSfUQxklp8vAw9Us7xjjDkP+AbVK/gRxDX/as/zbquzrUoHYYw5GakQV1XRKcsQ8HbP865oWcM6iK4y8PDCTP4zSNGZUuUBQTpzL/A74AOe56VLnKfUiXX578tYhb8/9dcDfx5R8ncgRT3+HY+5w8VONMa8A/gu4lmYTvEO7iPG5zqkU2+ss11KCRIpP4oEZRYO/uotD5pEUtnejtQCuDUec4v2XTuLuwgp7zyN4gONDKIn7gPO8DxP60qECGPMIsTI74JExRfzNA4jcvAUcKbneXe3r4UTS9cZ+CzGmChwCnAecCgyQs/ua1yF5K9e4nmelvFsM4mUPw/JNX4Y8mxeRn3u1ARSdeo6e4yZ4RtjeoFXAh+wPwNEmU8F1gI/AX7jed7Tdf8xSl0kUv5M4GByMnAotRcaAhmk3UJOBu4rkAHHfsf7kADMKYgu6EO8Nr8Aful53qN1/zFKx2OM2R84B6kLPx3Z5joFkZ9LgZ95nres9B3CSdca+HzsrD5bF3qz53mdmqhjUpJI+VOQWV1W2R+GuHZr5Qlyiv6f8ViubK9V9NOQdeKE53lFZ/7KxJBI+T3IMk++DHjUvq/9WWSL23XAdfFYrmyvlYEoIgfJsAdQKcWxk7/pwJbJ7rkNhYFXuo9Eyt8OyauQVfiHUNsOiQDZF30dUgHwtnjMDdX2x7BjA/oOJmfwD6X2rZwrked/HXBTPOZuaWojFaWLUQOvdAQ2iGtfRNEfAxyPVBurliHgZkTRXxOPuQ81vZFKS7E7OXZHZOBo4BVUWYvBsg1Zu78O+AuwrINTLytKy1EDr3Qk1qV7IKLkXwG8nNpSVGZru19Jwbqt0h1Yg78XORlYTG25GlaTk4HbG92Dryjdhhp4pSuwCVqOJKfsF9Vw+WPkFP2dqui7k0TK70OWcrIy8DKqz2r4NFKe9EpgaRdX1FOUqlEDr3QliZQ/FziOnLLfscpL1yO5FK4EblZF370kUn4cWc7JykC1gZuDSNKsK4F/tLGegqK0FTXwStdjXbl7I0r+ZMSVW83MbiM5RX9dqf3WSneQSPm7IDLwWuAEqsu8NwRci8jAX+Ixd3PrWqgo7UUNvBI6Eil/NnAScBqyP76atfsUEpj1O+CvOrPvbhIpfzrwKkQGXkt1a/dbkS14lwF/qieVsqJ0EmrglVBjs+29GlH0r6G6rXjPAb8HLo7H3EmXHCNsJFJ+BFnOOQ04leq24m0B/oAUuLpFgzSVbkQNvDJpsGlVj0cU/SlUVzntPuBi4HfxmPts61qntAObdOnliAycRnWxG48BvwV+G4+5mupW6RrUwCuTEqvoj0KU/OuA+RUuGUHWan+D7LPXpDpdjt2KeRAiA6cje/ArcRMiA1fEY65WplQ6GjXwyqTHKvrDkDzWb0KKl5RjI7JOezHwH3Xfdj82UHN/4C322KHCJUPAHxEZWKpbL5VORA28ouRh3finAG9HIrErlUJ9AJnRXRKPuetb3DylDVjvzisQGTiVykGaaxAX/m/iMVfLESsdgxp4RSlBIuXPB84E3oGk0S3HMDKj+xGSF187VgiwVfHegMjAoVVc8ndEBv6qs3plolEDrygVsO7blyIzujdTOTjvXuCHwOW6tz48JFL+XogMvJXK9e4fQcoVXxSPuVqyWpkQ1MArSg3YLVevQWZ0J1I+oc7zSD3yC+Mx98nWt05pB7Yw0jGIDJwGuGVOTyHu+x/HY+4DrW+douRQA68odZJI+XMQF/7ZwD5lTh1B0uP+CN1THSpsydv/As6isgv/ekQG/hKPuSOtbpuiqIFXlAaxLvzjgPOQrGlOmdOXI0r+95oDPVwkUv7BwAeBNwJTy5z6OOK+/3U85m5qR9uUyYka+A4k7fs9SLat+QXHPCS/dh8wJe+o9HobsrVrI7Ah7/dix6aoq2la6yWR8l8EvA+Z0ZXbbrcR+CXwP/GY+0Thh2nfd4ABxsvAfGAapZ91KXkYofxzH3NEXd3nXy+2ENJ7gPdSfrvdEHAp8KN4zDXFTkj7fj/FZaCf6vp+/muATRR/5uP0QtTVAWi3owa+zVjFvRBJqlGs485HlELfBDURIAk8AzwIrARW2Z8ro67OOKohkfJjyH7qDwL7FTvHkSNwHJb1wgrHIcpYOaimWEqrGEJS9j6Effbk5ODZqKvLDJWw5W1PQzw7hxc7x8keDqt64J4e8f3ky0A1qZVbRRox/I+Qk4Hs8ZTKQOejBr6FpH3fRZT7gUj98kXAAVROpNLJPMP4zr4SWFdrh0/7/g6EfLY4NOT3jQa8HTgXh5f0gGMVejezieIy8ETUrW1rWNr3ZwPbom54q7ilfb93eJSTgfNwONKB3h66XgaS5A38835/NOq6w7XcKO3704Fo1HWfb3orJzlq4JuAnZXPI2fEswZ9LyonSgkLm4H7gVuAG4Fbo27xVJ52CeK3SIDac8C5Ude9sl0NbRVp35/F2Oe/CNk/X249Nkz4iJK/FVgK3BR13Q2lTk77/peAzyGFXT4D/KjbZ4XWpX4Auee/CMmQN20i29VGtiFen9sRGVgadd2nSp2c9v23A78CRoHvA5+KuhqA2CzUwNdB2venIDmsj0fymR8IbN/kr0kA6wqO9YgyHEY60nDBUey9YSQT1yxkXX9WhWMm5YPEqmUEuBsx9ksRg78FIO37eyEj/iwB8HHgu92i4O2gbn9EBhYDL6by3uiaCAJGkef+qOOMkYFBqnv2+e9NRZ5tpeeflZFmDUzvQ57/jcDNUdfdCC/0oa2MlbUfAx/uFgVvZWA3RAaOBV5iXzeNICBABsEP58nAOsSLkn2+1eqCXiSuo/BZlzqatUz4MDkZuCnquuuyH6R9/1HgRXnn/h9wZtTVUr3NQA18FdiOvBfSkbMKvRE3+2ZgBZListCIrwPWT5SA29n1ALALsvUr/9iD+jv9MPBvpKMvB37N+FnNhcB5tbr42kXa93cmJwPHAXMauJ0fBBhg2yjsEQRsHyAjHfJ+Wm4HvoJkR2t5h7Uy0A/sBOzNWBnYi/L7vssRIAb/RuBfyIytcFB0DXBGdjDYaaR9fw5izLNysEsDt9sWBDwAbB6FXYOABWVkYCXwNSR5Usv7h9V5MSQOoFAG9kHko14eIjfw/zBwSMHndwMnRV336Qa+QyEEBt4YswvS4WYis45B4A7P84pGpVZL2vfnIUo825HrnZ09hhi05cAy+/OJbpmp5pP2/T5ktL0P4zt9rcFAI8jzKvQWXAu8qZR7vxjGmO2RvPGzEW9FAjEkd3ieV/f/Oe37M5GEJlkZ2KPOWz3FeBl4JDtTtdvsXg18Fil6U4p7EUN/1USlQbXGP3/wly8H1ZTfzSdrzwq9BfcCr82f6VXCGNMPvApZKpuGDKIfAW7wPK9uj0Da92PAkeRkYFGdt3qesc9/ObAq6rpbsyckUv6hyFLFa8vc5zHg60jp2q1lzmsZ1vjPp7gMzKvjlsPkovyzrAFOjLru/dXexBgzFXglIp/TEW/nWuDvnudNyoySXWngjTFRpMTneYh7POuCdMi5/dYg6UIv8zxvsNI97drZUeQ6sldjs9LIrDy/E98X5uChLLbDL0AihY9BPBx7NXDLZYiCL7l2Z4zpRRT6B+x3bkO8Cz2IPIwghv4nwMWe51UsBJP2/ShiYLMycBC1uaqHkeIz+Up8ebXBQ9bQL0YM/bFlTn2A3GyuI9zZVgbmILOxxcgzWUT9yz1PAq+Juu6KUicYYxzgCOD9SIGgYXLbwvJd1L8AfuF5XsVCMAXLb8cjMl2L1ypAZqj5MrAM8cpVpWwTKf/FwKeREral/n9rgW8Cv+ykfAp2UHwQIgOLgZcx3nhXy2bg9KjrXl/uJGPMAcC5SArhUcQWTEGe/VZkaeL3wIWe591bZ1u6kqYYeMdxDgO+i/wz1wFvC4KgJXupjTG7A9cB21F51phCOvprPc+7tfDDtO9vh1SLOh2ZrdfSkZ8H/olkp7oVeLhTXcsTgY2QP5qcwd+zxlukgFOirvvPwg/sjP0aJIAtRnkj4iNK9+2e511RpJ39SOrZ05HUs7UEQyURN+P1wM3AA/kzskZIpPzDkNnca8qc9gDwSaQ+fceN1G3Q4ZGMNfi1sA14b9R1f1X4gTFmGrKH/JXIkkG5gdhWZMD3eeA7hV6dtO9HkOpxpwMnU5snIoMsN1yPyMJ9UdcdquH6kiRS/j7Ap5D6B6VSIq9F/q7fdspgLx8bIX84OYN/MLUZ/AD4etR1P1P4gR3kfxMx7lmjXoqssb8I+LDneZNCVzfLwM8HNgVB4DuO81Xg3iAIxinTRrEjtVsQw17LzGoIeIPneX+xhud1SGc+mvK5xPPxESV+vT3uq3VL0GQm7fvzESX/JcYG1ZRjBJgddXPFOowx85G1/O2oLTp9CPiE53k/trOMkxAZOIHK5UCzDCPr4VkZ+HerkwLZ2dxnkLaW4hbgv+Mx945WtqVR7Ja4IxEPxUtruPTgqOvenX1hjJmO/M21xgOkkPrtH9x9t91cxAN0OuISn1HlPQLgHnIycGurE8IkUv5uwCeQ3PelJiEGGexd24mDvSzW4B8BfAQZVFWrx8/KH+hZ434l4mWpZVA+hMjOSZ7nhT6hV9Nd9I7jnA8sD4KgqduejDHbIa6vAepw+/X19fkLdtxxRW9v78FVXj+KGJJsR749zPu120Ha948CbqrxslOirvtnAGNMHxJ9vzN1uP16e3uHFuy44719fX2H1HD9CnIycPNEBX8lUv6+5GZzpZTiH4FPx2PuQ21rWI3YgV7JpZcSfCPqup/KvjDG/BOZFdacCMhxnNT8HXZY7rrugVRvGB4h5627sdzWv1aSSPk7IbtNzqb0334T8Il4zL2zbQ2rg7Tvb0G8b9VyTdR1T8q+MMb8BBnw1LP9cAi43PO8d9dxbVdRlYF3HGc3JGhp9yAI1tv3zgS+BRwSBMGT9r1dgSXAy4MgaGoAiDHmy8DHqDOCd6cFC4hEKk7UHkHqOV+P7N+suHavVE/a9/dDDGa1A7Q0MDPqSslVY8ybgZ9RZ3avuXPn0j+94qVPAf9AZOCGTovkTaT83ZG942+l+P9xBFlzPj8e66y2A6R9P478j6tV7qPA3lHXfRjAGHMw4gqva1/5rFmzmDVzZqXTNiLLgNcB/4y67up6vqtV2FS4/43En5TyYl2BDPYeblvDaiDt+48Bu9ZwSf5Afx6Sz7+RTI9pYE/P80Jd5bHqGbzjOEuA1UEQfMKuuV8LnBAEwV328xnIuujZQRA82MxGGmNcJINa3Vszdl24kN7eot74FcjM5wpkDbVj3VthIO3770DydLtIlOsWZC07+/sQklMgBXwta2BtQNUqal/Lf4EFO+5INFpUJzxOTgb+3Q1LL4mUfwDwDST6vhgp4DvAt+Ox6ncktIO0778amYnOZvzzzx6zEeP+g6ibK7NqjPkzEpdQ1z79OXPmMKO/qBp5Bqn4dwWyV7vj12gTKX8X4MtISuRig71h4OfAl+Ix95l2tq0Sad9/KXA+krY7yVgZyP4+AxnA/CbqujdnrzXGfB3ZXteIgc8gQXcfaeAeHU8tBv4lwA3Ay5GR7YeDIFhiP5uCJCj4ThAENzS7kcaYdyAVuOrOyzxjxgy23247HMkP+R9Eof8x6nauO1PJYYw5AvgbDcjAtGnTmDd3Lj09PSB59rNGfVm3DuwSKf8YJNDooBKnPIvEPfxiorZVNQsbf/EoDSj2SCTCDvPmMWXKFJAAtSsRGbitWxLsFJJI+YuAC5B4kmJsAb4NfLfTBnu1YpfpNtDYPvwsQ8B2nud1zC6EZlP1KDgIgnuAu4A7gQuzxt1yBrI95vOO4yx1HOeNzW0mi2iw6MLmzZt5fPVqHl+9+o6o6x4Udd2vq3HvKvajwexqQ0NDWRl4Btgn6rqfibruvd1q3AHiMfdGpO+9CdkjXcgcJEPcA4mU/wa7Fa9b2QuZedVNJpPhiTVreHz16tGNGzcujLruh6Kue0u3GneAeMxdHo+5r0ICzu4pcsp04IvAI4mU/z5bBKdbmUv1gdGVCJD9/KGlaoXpOE4Psr43iowWXyAIgkuCINguCILF9lhS9Cb1M7sZNxkdHWVkZGSy5IQOGzOofz/tCwRBwMjIiNvNRr2QeMwdjcfcJUiikQ8iqU0L2Q2Jj7nTJlTpRqqNdC+LlYHRjZs21ZuRryOJx9x/ItvQzkCWnQqZg+SFuD+R8ssl0+lkZiB2qBmM0CSZ6lRqmRF9B4lgfxgpEtJOmhm1GvrEMyFlM7Km2AxCmec6HnO3xmPuj5FSxF9GXJCFHAzcnkj5v0ik/O3a2sDGaWbf7aH4/6ersYO9y5Hsch9C8nUUsgdwdSLl/18i5dcS6NYJbKZ5M/heQm4PqjLwjuOcg+wdPxWZvX/ccdpa7HA5so7UKFuR9Xel+7gf8R41SmDvFVriMXdzPOZ+Hpm1/5TiM56zgAcTKf89iZTfLRUPH6T6nAWVeNLzvI4PpqwXO9j7ISIDX6H4YOZkZOnmc4mU30jAWjt5hubN4B0kMVtoqdixHcc5HkmLeVIQBM8gASlTkdSQ7eJymqPcR4HvNeE+Svu5jeZ0xiHgq024T8cTj7lPx2Pue5H4hWJ5KWYh2w7vSKT8UkF6HYPneeuQAN9GdcEWJo8MbI7H3M8hXp2fM/5/F0WCMFckUn6pIL2OwSan+Qmyza0RMsDPwxxgBxUMvOM4eyPG9a1BEKwACIJgBElL+4nWN0+whQJ+gGSTq5dR4DrP855oTquUdmLTi55P456cp6g92U5XE4+5D8Zj7ulIENaqIqccDNyVSPkXJlJ+rQVj2s2XaVy5B0ia20lDPOauj8fcc5AMgrcVOWV34G+JlP/HRMrfub2tq5kfNOEeAbLsHGrKGvggCFbZ4LlrC97/SRAE5apetYIfIh273uCoNJKzWele/hfZ9lVviskh4OONVJjrnayk/AAAIABJREFUZmwQ1iIkpWmhy9ZBcno/mEj57+pUt73nef9G0gXXa+RTwJfCPnMrRTzmLkPSBb+T4sGYpwErEyn/k4mUX0sq6Lbhed7TSLnpemMohpAiZGub16rOpCM7cTE8z3seyR2fpHYXXTYX/bKmN0xpG9Y9dySimGrd053NRf/npjesi7BrsxcgQVjF6kVsB/wK+Fci5R/Y1sZVz6nIenytRjqbiz70M7dy2EC8i5Fth//D+EnTNKQk7X2JlH9cm5tXLech2SZrNfLZXPTnNL1FHUjXlYuto5rcVqSwwLhqckp3UlBNrpIM+MiA8O2e5/2x1W3rNuy6648oXut+FFnv/Hw81llpm201uUuQ5C7VVpP7HPDdyerBKUUi5b8UMfQvK3HKH4CPxmOlyzdPBLbgzAXAe6lcTW4EWXf/NfARrSbXwdh68Kci20AORB5eH+JmzLpv1yBrNZdXUw9e6S5s5z4B2fedXw++F1Hoo0g9+B8j9eA7Li97p5BI+RGkzsNnKV7r4Vngo8DvO6lSWV49+Pch+qBUPfifI/XgH52gpnY8dknmXUj642J5R1LIEucPOq0srTFmf8TIZ+vB99kjvx7875DUtJPKi9uVBj4fY8wuwLHIHv1eRKnf4XneigltmNI27Iz+BEQxRRAZWAHcrrO16kmk/IXILpNTS5zyZ+DceMxd37ZGVYktIftqYB4ySEkixaNu8DyvowxSJ5NI+bORXVNnUzy//R3AO+Mxt1iw5oRijIkAr0SqTU5HAnLXAn+3gdqTjq438IqiNJdEyj8RCWrdrcjHm5D1z9910mxeaS6JlP8yxG3/0iIfZ7DLHZ02m1fGogZeUZRx2MQn/w18muLJZTp2Nq80h0TK70Vm8l8DitXY7djZvCKogVcUpSSJlL8XEph0eJGPB5HZ/KU6mw8viZQ/D7iQ4ks3OpvvYNTAK4pSFjuT+xCS/a1YStOrgXN0Nh9ebBXCNyFBq8WSId0JvENn852FGnhFUapCZ/OKzua7CzXwiqJUjc7mFZ3Ndw9q4BVFqZlEyt8TuAidzU9adDbf+aiBVxSlLuxs/jwkyrrYbP7PwFnxmFss57kSAqqczb8lHnMfaWvDFEANvKIoDVJhNr8eODMec29sb6uUdpJI+XOR2fzrinycRLZU/r69rVLUwCuK0jAVZvOBff+L8Zg7KXKAT0aqmM1fDHwwHnMbLfmsVIkaeEVRmoadzV8MFCsnfRvw5njMfaKtjVLaip3N/ww4pcjHDwJvsmVrlRbTNeViFUXpfOIx9yHgKCTKvnD2cDiwLJHyT2t7w5S2EY+5zyCu+vciwXb57AXcmUj5H7AzfqWF6AxeUZSWkEj5xwKXAjsU+fhC4GPxmFtrTXeli0ik/P2BJcA+RT7+P+Dd8Zi7ob2tmjyogVcUpWUkUv72iMv+xCIfr0DctQ+0tVFKW0mk/BjwfeCsIh+vRYIwb25vqyYH6qJXFKVl2C1yJyH15LcVfLw/cHci5Z+VddcmUv57Ein/vkTKvzSR8qe3ublKC4jH3FQ85p6NBOBtLvh4AXBjIuV/wQZqkkj5JydS/n8SKf+aRMov5v1RqkRn8IqitIVEyj8IuJziZWiXABcA/yFXh/yyeMx9c5uap7SBRMp/EXAZ8LIiH98EnAPcBcyw790FHBaPuaPtaWG4UAOvKErbSKT8Gcj6ezHDvRaZ0eVzWDzm3tHyhiltI5Hy+4CvIOWIC9kIDDDWu/zWeMy9tB1tCxtq4LuAtO/3AnOAecge4z5gSt5R6fU2pONsBDbk/Z6KuppKtBtI+34PMBuYD0yj9LMuJQ8j5J57/rG53TJg3fFvB35i/5Zy3AEcrilvIe37DmL85gP9VNf3818DbGK8DCSibvvTySZS/gnAbxHdVo61wF7xmDvU+laFCzXwE4hV2tshUcbzyxzzaE28RL7hLzyeQfasrgQejbqaoKQVWKU9k/HPvFAmdkCUdbMZobjS3wg8BzyEyMBDUdct3PLUELY63RJgUYVTz4jH3Mub+d2dhJWBfsrrgOwRaUETAkrLwAbgEUQGVkVdN9XML7b57H8LvKLCqZ+Px9wvN/O7JwNq4NtA2venAvsiiix77IEo7SllLu0UtgEPA6uQjp49Hmx2hw8r1guzJ7nnfyCyJ7hVSrvZjAKPYRU9eXIQdd1EvTdNpPwPAF9ABrqlWAPs3e1b6qwh35WxMrAPsCMQm8Cm1cIaxuqArAw8X+8NEyn/ZGTZZgdy8ReFDAF7xGPuunq/ZzKiBr7JpH1/O8Z24EVIJ27F7KsTeIJcRzfALcAjldy+ad9/NfABxEvw1agbnr2wad+fARzAWBnwAHci29VC1pOTgfuBWwETdcsHRqWG/FOAqwCGK6uhz8Rj7tcabmmbSPu+izzz7PPPHv0T2a4WsoGcDDwA3A78p5Lnb2jI3ysQmekdCcZnRirg4njMfWdzmjs5UAPfAGnf3wE4krGdeMcWfd0GRJFuAYaRWfVwkd+LvY4guaFn25/Zo1UG5ylgqT1uBB7LN/hp35+LDAyyM9eHgROjbvdVnEr7/kxEBl5MzqDv2qKvSyAyMEj5511MNqYiSwGzCo5WbUXbgERFL7XH/fkGP+37ThDwnOMwGyAIYFt5Bb8VWNiJdebTvh8DjgBeQk4G9qQ1y2pDSP/aRO7ZVqsLepE1/PznP5tcxHqz2YIM+Jfa455Cg+8P+bc5jqQ1DgIZ6FUIlz88HnNvb0Vjw4ga+BpI+34/cDRwvD32a8JtE8C6CsfTUddNN+G7xmBnGcWU/mxgF8TzsA/FM5HVwlpyxn4pYtgLk5tsAE6Juu6tDX5XS0n7fhRJuZqVgZfSuCLPKu1yMrC+FcshdvkoXwbyB4E7Ic9/b0QeGuF5cgb/RuCxICDpOPRmT6hCwd8Vj7mHNNiOhkn7/hTgIHIycDiNe+gyVNYD64Bks4Mi077fx3jDnz3mk9MDL6IxWU+SM/g3AsuQwf3C7AlBACOBBIaUYH085s5voA2TilAYeGNMDzIT6QU2e57XlIhQK/iHkOvIh1D/mvlaRKCX22MF8GQ3rGGnfX8AUfL7FBy7Ul+HfxKZrO1c8H4GeHvUdZfUekNjjIOsY05FZKApQYE2EPJAcjJwJMVrn1fDc4yVgfuA1bRAaTcbO0vdi/EysAf19YnnkCCuvQo/GB4tqeC3xmNuyXgFKwOuPZKe522to13jsGvne5GTgWOof9abIPf8s8djwKYukIEosDvjZWAv6usTmxH5P6Dwg5Gg7LJNX7mqhMaYKKILUp7nNX1i1E10rYG3D/Fk4EPAoYhOCJCR9CokNeISz/OqDgCyHXk/ch35aGp3YW5FZqdjFHmY1piz2A6/J9LJ90VmMkfQuOv/U8AFlRSeMaYXib79IPBK5PmPIkb+SWQb1m88z3umli9P+/6LyMnAscisthZGERksVORPd7oSrxU7CN6NnAwcghSbiTdy35GAh4cD5jF2zfrBeMzdO/88a9QPA94HnI4MNkYQPbAR+CXwC8/zHqvl+9O+Px84DpGB46hv6e1Rxj7/ZcCaEMpAL2M9fgcDi6m8/a0sowFrtgW4wPZ5byfiMXeg8FxjjAecC7wV0dnbEBkYQuoh/NTzvOWNtKcb6ToDb2frnwY+iSjSUkErKWRGfynwwVIjOTszeTVS2vAVwNwamjOKZFq6lZxBXxV13cKUnJOGtO9HyHXwxYjBr2d0/yfgjaX+l8aYtyGDuClIhy4WfesjHobrgLd7nrexRJunIrOy0xAZqHUN/T7gZnIycH/U7e6I70awCv9AcjJwFHXMeIOAu7YFfC+QPfMJ4Jx4LBexb4w5HrgIcS9Po7g3KYMM/JYDb/I8b3WJNvcgA4XTgROQwUotPIK4nu+137Ui6rqFaVknDXaytDfSrxbbY/sylxQlCHhsOOBTo3AGYrA/EP//7J15nF1Flfi/N51ObiVN9o0kQFhkLQgwCASRHRFEZJMZxF1HcB+dQX7quKDIiDguKKCO44Y6ICAoCLIHWQ2yBIodkkAgC0kga9dNp7vv749TL2/p97rvfe++1/1e1/fzuZ/ut91X3XWqTtU5p84Zq5bkXjfGzAV+j5j5R1HemtSNbLxeAd6jtX44bTualUwUfBAE05EJeQuyej4rjuPMg2GMMaOAPyLCkvRYiUVMYIdrrdfA1ijndwCnI8o9zY7zGeB2d90dKrU2xWeHHU7hH4j02ZHAoST3V74YKrVL4RNux3YJ8GEGTpKSYzOymztMa/2Ca1eIKPPTEUtQn11BPyxFFg23A3eGSqWyEAw3nMLfj/xEfyTJ+24dMDNUxUlOjDGfAb5N8rHbgyz6j9da3+/aNRJxuZyOlDdNE2uyCrgDkYE7QpVXOp6+OIW/B3mFfzQS+5GELmCv0iBcY8xJSNpbReXjdaV0Iov9axK+v6nJSsG3AXEcx71BEHwQmB3H8QU137gAt3P/M+kmhxxdwAtzdtjhuyNHjjwVMeeOSvjZlcggvg0ZyK+k/G6PI7L2TciRmDQBSceGSt2ee2CM+R7wMdKfG+4F1syeNetzYRieCJxIcvfLWuBO8gu7AY8BesrjFtcv0v+591K+Fir1jdwDY8zHgO+Tfh4A2DhlypRzJowffzii1JO2wyJBgjkZeGKgY4CeykTWGtIFKf8xVOq03ANjzLFIudlq3IEWOENrfWMVn20qMkmyEsdxYUzMNsgknjUnIz7xagb1qKlTp+42cuTIXyR47ybE1JYbyE/6yTwzZpI+2nhJ7hdjzD5IMYpqZGDEhPHjJ4dhmCSndRfidskt7B4ZjFSeLUoH6ZQ7SK4EAIwxkxHXTFVxHmPHju0YP25cEhnIud9y88CDWWfyG+akdYMtyf1ijBkJ/I7qY30U8BtjzIysAjGHKokUfBAEOyN+xl1ypvcgCM4CLgYOiuN4aRAE+wI/RUydb6tDW79GDWd2t+noaOvn5aXAtYib4cFQqZbu9EHkAWQXdHiF1y3i5mlDlOz3S8xyX6aGrG8d22zTX8T/aiTpyh8R14vPe10fliOpSd9f4fUI6fsRiFn9WuAPBa9/spYv7+joIAgqWnM3AjciMnCbd7/VlW8D36jwWhfiVguQ+IkHKC5McyrVn2TJ0Q78M3BFjfcZ0iQ20QdBcBWwJI7j84IgmAfcBBwXx/GCkvedARwVx/E5WTXSGHMwsoquOp3jtjNmMHZs0cdfRCaPa4GH/C69MRT44hQyoW5Ezsdu6m+XbIyZifRZ1QN7yuTJTJhQ5GpfjizqrgX+5vPtNw53UmEy+f7fiMhAxQBVY8xoxGVWdYT+uHHjmDa1KNZrLeL6uxa4tR75JjzlcYnCdkD6PycDG/vbYLkYHEP6IMhyvAi8SWvdsnN/GhP9RcCdQRBcgaxwz8kp9yAIRsdxnDNfrUMCGbLkRKozy25lxcqVjBs3jpFtbc9NnDjxDOToWst27FDF/c9Lk9wk4RgkGrZqVq9ZQ1dXFyNHjlw7adKkE4EHvB91cAiVWoQEv6Zhf5IHU5Vl/fr19Pb00N7e3jt58uQTgLu8xW5wCJVajiyy0zAZOYufBbPc1bJxVYkVfBzHjwRBsAD4O3BRHMeFyUj2D4LgIsSkFiERzlkykxoHdhzHrFu3DqBz25kzh915yBZgMhnk81+/YQMAM2fNGtIZ8zxlmcyA6coHZuOmTQDxG2vX3tPqPtgWZDJivk8aJN0fXe5+XsEHQZDzifUiu/mtxHH8AHLWtV5kea582J5Rb3K6yWByd/iAueYkSxdKkPH9PI2hmxo3ewUEtLg+SJNm9L+RALrngbPq05yKvEx2HfFqRvfxNJaVZCcDqzK6j6exrAT6C5ZNQ+R3703JKrIrrzwaeC2jew1JEin4IAjORs6Mnozs3s8N+glFrQP/Rza7ro1IpL+n+biJbKpzbUJqT3uaj8eQokS1sgXJcOlpMrTW65GTOFlY8xZorauuY98MDDhhBkFwDHAh8M44jlcC1yD+j3fVuW1bcXmk72LASoID8jpwS+0t8jQarfVG4CeI/61WkuRD8AwxXLTzN5CFei30UOJm9DQV36D2QO6NwPkZtGVI06+CD4Jgd+BK4H1xHD8BW5PafA84r/7NK+IbSABftWwCzm/lIxHDgO9R2yIvQopO1KogPIPH76jNd74FuCtt8RnPkOJeJPFNtXNBjLh77siqQUOVfhV8HMfPxHE8JY7jm0qevzSO43n1bVoxWusHkeQI1azcOoG/AL/Ksk2exqK1XgZ8iOpkIEKSNX0l00Z5GorWejNybLYaGehGjmV9MMs2eRqL26SdjOQwSLthi5EytScOh81eFj7NhqG1/iZwAZLxLCmdwNXAWVprf+a5ydFaX4Ucw+wk+eDuRLJhHaO1HrZV3loFrfV9wNuRnBtJY3MsUvHtEK11SwdWDQdc0ai3IAu2pMGSXUhQ3aFa62fq1bahRFMpeACt9X8B70TyREeU98l2I5P6c8DHtNYf1Fr7IzEtglPyb0HyxG+m/G6uF/GzLUd27cdqrTc0rJGeuqK1vgeYi2Sgi6jsl9+A7PQuAfbXWvtTNC2CU9IaKRmcy4hYjg3IHHEFsJfW2jSmhYNP09WDL8QYMwf4CGKumYAsWNYjAXk/0Vo/Pnit8zQCY8w04L3umoQcfVkPPAxcBtw3HExxwxljzDbAGcBHgRlIOuONSJGay4Bb/QK/tXFpjE8CzkFqw49F4q5eRk5OXa+1HnZpiJtawXs8Ho/H4ylP05noPR6Px+PxDIxX8B6Px+PxtCBewXs8Ho/H04J4Be/xeDweTwviFbzH4/F4PC2IV/Aej8fj8bQgXsF7PB6Px9OCeAXv8Xg8Hk8L4hW8x+PxeDwtiFfwHo/H4/G0IF7Bezwej8fTgngF7/F4PB5PC+IVvMfj8Xg8LYhX8B6Px+PxtCBewXs8Ho/H04J4Be/xeDweTwsycrAb4KkPkbUB0r8jge5QqS2D3CRPg3Ey0Aa0Az2hUl2D3CRPgymQgZEAoVLR4LbI00iCOI4Huw0eR2TtSGAaMLPCNQMIkQl7ZMFV7nGpdWY98PoA15qC31eGSq2pz1/qqURk7QhgCpVlYCYwhsp9X/hcW8ntNzFwvxdeqxA58JNEA3FKeSL9y8A2VB77pfJQdHv67/NSmVgDLAuV6q3LH+upK17BNxCnwHcF9gV2oe+gnc7QcpusAZ4GnnE/c9fLfsBXh1PgOwFzgd3oKwPbMrQsa+uR/i+VgUWhUt2D2bBmxSnw2YgM7AHMoq8cjB60BvbFAs+S7/ucLDwfKrV5MBvm6R+v4OtEZO0EYB9kEO/rfu6F7MCbnU7yA75w4n8+qRk4snY8cDTwbKjUk/Vq6GASWTsW0OT7fy4iEx2D2a6M6AKep68MPBsq1ZnkBpG1IXAU8AbwYCtaCiJrRyNKvFAG5gKTBrNdGdEDLKJ44fcM8HSo1PokN4isbQMOQywPt/uNQ7Z4BV8jbke2I8WDd19gh8Fsl6MH6AZGAUEDvq8LeBCY764Hyvn83MR+P7Cfe+o7wBebdXC7Hdksivt/LvAmGvN/74+cDJRz29SDXuAR4C5EBu6tNNlH1l4PvMs9vAr4YDP7iCNrp1Lc/7kd+mBbZHoRGRjRwLY8SV4G7g6VWl3uTZG1FwP/4R7eA5ziXYPZ4RV8StxkroFj3PVWxB+WFWuAZRWu5cBGZLBucT9Lf8897sntiNwiZAKya0hyTQa2p3Zrw2ZE4ecG+t9DpaLIWg08UfLeq4EPhErZGr+z7jgZ2Im8DByB+M2zYh39y8Ba+vZ3ucc9uUWTk4FtSNb3ud9nU7ts9wAPI/1/F3BfqNQGt8gr7ev7gJMrKYOhRmTtTMQKdQxiiZid4e07gVepLAdvkO/n/uaC7gIZCICxlO/rStdMsrE2PEF+4X93TolH1r4MbFfwvueBE0KlXsjgO4c9XsEnILJ2O2QgH+t+Tq/hdiuBhYjAv0zxoF0xVHYwTiHsgOxASq+J1d4WeADZvX8MmFry+gPAu0KlVlV5/7rhdmdHkVfqc2q43VpEBh4HllCiwEOlNtXS1qxwCmEm5WWg2jHQA/wDUfanIHEIhbyATPDPV3n/uhFZOw44nLwM7FnD7TYhc8BCxMxdqsA3DAWXhZOBqcDu9JWB7fr56EA8jij7/ZBNUiGrkXng/hru76HJFbwxZjRwEvBOJPq8DRGOO4GrtNaJ/EClOP/5EeQHcukklIQexB+1sPAKlVpRTZuGCm7AT6PvgN8TMVPXyiJkgn82yZuNMW1IH70bCVAbjfPpAr/VWq+sphGRtWOQiScnA/tWcx9EYeX6/zH3c+lQmLxrIbJ2ItLvhXKwJ+KuqpU1yE7+3iRvNsYEwMHAWciidAxiBXkC+JXWenE1jYisHQUcRF4GDqLvyYQkLKW4/xcCLzarSypHZG0H0v+lc8Gu1O4O2gy8L1Tq6qQfMMbsBbwfma+3ATYg4+83WuvHa2xPU9KUCt4YszNwLvBexL9UakbciPiabgS+o7V+qL/7uej2tyA79GOAN5NOQHM7ssLryaGyG28UkbU7IAujI4AjqT4OYR1wUqjU3yq9wRgzHfgc8K+If7mDYn93JzIZ3wNcrLW+dYC2B8ABiAwcCxyCxC4kpRPZlRQq8ydCpTamuEfTE1k7HQmaOhKRgz2qvNUW4P2hUldWeoMxpgP4JPApxAWlKFbAm4EYMMD3gCu11hUnPCcDewDHIfPA4YhJOyldiO+5UJk/Hir1eop7ND1ug3QoeRnYj+pjUf4f8J1KC2JjzEjgw8C/IfNNu7tydCP98grwQ+DnWuthkw8iUwUfBMGZwCVxHJeaXjPDGPNO4PeIf3iggJFexCz8Ja31DwtfcKvzo4HTkUCfySmasRExL93urqeafUdWDyJr55BX9keSzqQXA+eHSp1f+oIx5s3AzYhST3KcqBP4OfB5rXVPQfvaEEV+OnAq6XyoXcC95GXgkVCpnv4/MvyIrJ2BKMojEBlIaw37bajU+0qfNMbsBNyGWG1UgvtsQix7Z2qtt7pAnFLfF5GB01K2rxdYQF4GHvTHxvriFP5h5Bf/+5JO4d8HHFZq8TDGTEY2cXuTbCHWiUT6n6C1fi3F9zctmSn4IAhGIIFSO8ZxvH8mNy3BGHM68BuSDehCNgHf2WXnnS9GVuenIWb98Qk/342YfHMDeYHPDJcON5Hujvhe0/hvdwqV2mpiNcYcjPRBmp0VyOD+04zp0z/Q0dFxOCIDp6RoSww8Sl4G7kt6HMyTxwWm3YocGU3KqaFS1+UeOOW+ANm1pzGZR8Bjo0ePPmq72bPnIjJwGuncCs+Ql4H5oVLrUnzWA0TWTkI2acel+Ni3Q6W+mHtgjJmIyMD2pLO0bUGCF9+stW6KYM5ayPLIxHuAa4B/z/CeWzHG7Ar8mvTKHWDs2DFjvhTH8X8EQZA0KtiQH8h/C5XaUMX3ehyhUnFk7SzSB2e9CVgMYIwZD9xCeuUOMGb06NGnKKXeTvIgwUXkZeCuZonuHuK0k065gxw3uw7AGDMCuAPpw7R+3nDkyJH7zpg+fSnJLXYryMvAHaFSr6T8Tk8JoVKvR9YelfJju5c8vhqxCKZR7iDyNxO4HnEjtDSJFHwQBDsj/sVd4jhe7p47C7gYCTxZBpwBnEydFDzwJdJ35lamTJkyOgiC/sy5bwA3ILuLO0Olllf7XZ6KPIsEviRdZC1GzLA5PkYNi9LJkyaFbW1t/R3960RM/7cgk/miar/LU5HXgJdIHp+xHvGf5zgRUc5VBXFNnDAhbG9v708GtiCm/Jvx7rd6sgCJe0pCF/CfuQfGmD0R11q12f5GAfsZY/bTWj9a5T2agkSTZRzHLwZBcCMSyHBeEATzgB8Dx8VxvDQIgg8Af4jjuDcIss/rYYyZCvxz0vamYBWyM7gGMbd5s3sdCZVa6lbu70EsMRsRhb+x5PcYCVy8Lze5GmPagfOQCOmqqDBLb0AWdtcCf/Vm9/oSKmUja48FPoQo6sJ+L/yZC466qyS24WvUcDa/ggxsRhZ11wI3hEq9Ue39PYk5DQmQ3YHyc8AGpF8CRAYKcyZ8ieJAumoIga8gsTctS2IffBAE+yMr20ORXdW/xXF8lXvtIiRSsheYB/w6juPPZNVIY8zngAupIfGKCkOmTJ1K24gR60eOHPkbRKnf6wOjmgNjzInA74Bx1d5j1KhRTJs6lba2ts3t7e3/h8jA7T4wqjkwxuyGZMmrepHX1tbG9GnTaG9v721vb/8jIgM3eRdcc2CMGYMUwckiV38XME1r3bJxFIl3xHEcPxIEwQLg78BFOeXuXjsv93sQBP/IUrk7dqHGrGo2ili6dCnAU1rrT2fSKk8j2Z4aV+1dXV288uqrAOu01h/KpFWeRrI9YkKvmp6eHpYtFy8jElHvC+Y0F9MQ604WCn4zUqGzZRV8Yj+Wi5LvQXbpF1V6XxzHB2TQrlKqCaqqRDVBep7Bp/SMcy0MpUpdnuRkOXZ78HLQjChEB2VBTIvrgzSBKv+NHEt5HskY1UiqykZWgWGVdKKFyOXezgJvjm1OsvSNB0hQpae5eIPa/e85RpKtTA05Ein4IAjORs4Mn4zs3s8N6hFNV5m/IYEXtdKJBNN4mo/7yaYaWjdyFt/TfDxODSdpSni0v6x2niHLa2SnlDchZ+JblgEnzCAIjkEC3N4Zx/FKJChlFPkyj43gZiSqulYC4KcZ3MfTYLTWzyDJhmqdlLcg8uxpMlww1C+Q4Kha2Aj0yZDoGfporXuBCxDlXAudwLdbPQajXwUfBMHuwJXA++I4fgIgjuMe5Fzqef19Nktcp36D2jq1C/il1jqLhYJncKhVBmLg726x4GlOLqZ2H+xa4KYM2uIZHH5F7Qt9kPTVLU2/Cj6O42fiOJ4Sx/FNJc9fGsfxvPo2rQ9XIKU1q1m99yIJM76VZYM8DeduJP97tTXjO5GOLUX5AAAgAElEQVRcDp4mRWv9EvATql/oWeAct2nwNCFa604koVq1MRSdwBerrTbaTGTh02wIWusIKVqxmHQT/BbEZ/MWrfWyerTN0xicz/Rk5KhmmsHdi5hlT9BaL6xH2zwN5fOIZTGtkrfAv2qt/5J9kzyNRGv9M8TNklbJdyIVRi/JvlVDj6YrF2uMGYsUnDkB8alXOuqSy4T1JHCS1rqp67B78rgSkRcDH0eUd6WjLr3IgF4FvENr/XRjWuipN64G/GeAbyNH3vo7SrseWeifqrWuWILY03wYY05GrLsx/Wc43IBsaD+stf5DI9o2FGg6BZ/DVZT6MHAOouRzGelGIIr/t8BPtdaPDU4LPfXG1YR/H/BpYAr5Y3QBcpTmz8ClwL0+Yro1cQWIzgA+C+xEsQsvRMo6/xj4a6sHVA1XjDEhEvT9WSSjamFmyhBYiNSCv05rXa17rylpWgWfwxjThlQcm4gkQlkLPK+19ulHhwluN7cTkts8RGRgkdY6i6OVnibBGLMdUq1wDLJrf1lr7fNeDCPcon8WspvfACwbztbbplfwHo/H4/F4+tI0QXYej8fj8XiS4xW8x+PxeDwtiFfwHo/H4/G0IF7Bezwej8fTgngF7/F4PB5PC+IVvMfj8Xg8LYhX8B6Px+PxtCBewXs8Ho/H04J4Be/xeDweTwviFbzH4/F4PC2IV/Aej8fj8bQgXsF7PB6Px9OCeAXv8Xg8Hk8L4hW8x+PxeDwtiFfwHo/H4/G0IF7Bezwej8fTgowc7AZ4KhNZOwqYAcx01wwgBNqRvstdAz3eArzurjUFvxde60Ol4gb9aZ6ERNaOBKaRl4GZwBgq93UleeihfL8XXutCpXoa9Kd5EhJZOwKYQrEMbEOysV/4GOANyvd9bl5YGyrV3Yi/y1N/gjj2c3qjcQO2UHFXuqY2sFk9FA/+lcCzwNPAM8DToVLrGtieliayNkD6dyAZmE7jLG0xsJa8DKwCnkNk4GlEBlY3qC3DgsjaicAs+peBbWnsZmwdxYr/BQpkAFjuNwPNgVfwdSaytgPYG5hbcO0DjB3MdlXJcooHeu5aUc2Aj6wNhsNEEVk7GtiLfP/vi8jAxMFsV5WsobwMLA2V6k17M7fQodXlwFlidqNYBuYiC7hmYz3lZWBxtRag4TIXNBqv4DPCTVSzyQ/c3LULEAxi0xrBOmSAG+Ae4K5QqaX9fSCy9ovAuYh14JOhUo/WvZUNILJ2OsX9PxfYA2gbzHY1gE6kL58E7gPuAp7vb9KOrH0v8B3EcvT5UKlbGtHQehNZO4Hi/t8XWeCNHsx2NYAuxOLzFPAAMB94vL+FX2TtEcD/Iq6Er4RK/br+zRw+eAVfJW4QHwkcRl6pZ70jixFT+TJ3LQc2At2IX7275Cr3XDcysUwCJruf5a6sLQqLkEl+PjA/VOqV3AuRtXOAxQXv3QT8S6jUjRm3oa5E1o4B3gocAeyHyMCMOnzVaoplYC3J+r7wuVGIfFbq/0nAuIzbvRzX/4gsvJBT+M5NZV27QFxEnwqV+knGbagrLk7mIOAoYH9EBnaow1etJS8Dy5BFUa5/k84FbcAE8v1dbj6YkHG73wDuJi8DplDhR9Y+hSyAc1wEfKkaa5CnL17BJ8SZWQ8BjnHXAdTmG10LvEzxoC29VjYq4MX9fTkFMBmZpPYouHahNj/gi+QV/gvA/RT//3qBz4RKXVrDd9QVZ2b9J/IycAh5BVUNm4CX6F8GVoRKba7hOxITWdtO8SJgO2B38jKwG7XtQpeRn+jvR3Z5pYuK7wLnDdUJ3lnqNHkZOJzaFsebGVgGlodKddbwHYmJrC1dBMykWAZ2Bzpq+IrXEYWfmwt+h7gwC7ka+EColK3hezy0gII3xoxCdtATEYWxFjBa6w213NftMPYhP5APA1QVt4qB54GFwGPu50Lg1WbyObnJfxeKB3ruZzUT3BpkIVHK94Fz0/jyjDEjkJ3TZEQBrQOe0VrXFBDmJvNdycvAkcD4Km/3En1lYPFQVWTlcJP/HPrKwB5Ut/N7w32u1IV1LfC+NBO8MSZw7ZiBnDJYDyzSWr/S7wcTEFm7HXkZOJrq/eYrKO7/xxA3RtNErRe4IgsX/zk5mFbFLdchC4ZSF9YDwLtCpValuZkxZidge3fPjcArWusXqmhXS9C0Ct4Ysw9wNvA+RIkW/iGjgD8DlwL3aq0T/ZHOdFw4kKekbNYm4HGKB/EToVKbUt6naXALodnAnsiO9kjEZNlew22vA9470K7FGLMj8BFEDkYjVoAcIbJD+BFwi9Y60SQaWTsD6fucDGyXsu2bkViEhQXX46FSb6S8T9PgJv3piAwchLgsDkUUbbX8HTgpVOq1/t5kjJmOzAGfRhZ4uX6OERlYCFwCXKe1TrRgKHC/5eaCXVO2vQeJSSlU5AsH+luancjaSYiifzMiA4dTm8n/ReAdoVLP9vcmY8w44J+BzwI7IbEAOdoRS+kPgSu11mtraE/T0XQK3hgzHriGvHm0ktm4Fwn8WQocr7V+qfQNTjkdCJwOvAvZoaZqDnA7ElT0GLComXZk9cL5puchg/xI5H+cVuG/BBwWKvVy6QvOavMT4Exk99ef2XgDsvB6h9b6kTJtDZAAqNOBUxCrTRoWITLwN0QGnm2mHVm9cL7pAxAZOAJR+GktYK8Dx4dKLSh9we3YvwJ8CVGo/S0mcta8M7TWf63Q3h2B04BTkUVKGvfbCkQG5gOPAk+FSkUpPt+SOIvPPuRl4HDSW8AiZLF/bbkXjTHvR+aCHvp3HWxC+vQzWuufp2xD05KJgg+CYA7wEBJBC/DuOI5TmVaSYIyZgazsp5PcF9iDmGoO01o/7oTuUPKDeVaKJryCDOTbgTtDpZan+OywJbJ2LKLwj0R2W0l3xZ3AhFCpLbknjDFjEP+dJvkOMUYCuk7VWt/ilPr+iAycRrod2hrgDkQG7giVWpTis8MWp/BzO7uzELNuktMlPcDOoVJbF+jGmDbgSuB40rmHLPA5rfVPXZt2Iy8D+6e4z0ZEmefmgqeayd02WLi5dy4iA2cg8pB0IXVcqNSthU8YYy4APkc6S1EnsiD4j6SW3WYmSwX/3TiOT6/5ZhVwE/vjiH8l7W4wHjFixLodtt/+ura2tneQ3Fe0DlEmuYH8nB/I1RNZewCyEEzDu0Kl/gxbd213ITusMO33B9A5e/bs348ePfoYxJecBIsc/cvJwEJvpameyNqpwKukG8PfDpX6Yu6BMeZnwHuoLvajc8aMGb/vGDv2YGSRmIRuxCeck4GHChednvRE1q4knc/+L6FSJ+YeGGM+B1xAdW6gTuACrfV/VfHZpiLL7EhvCYLgHmQy/HKcve3/w0gATTW+3WDG9Onj29raPjTA+7qQ6N7cQH7Ym1szJe2pg17E/ZHjWCSKPbVyB5gyZcqY0aNHfzTBd/6DvAw84M2tmRKTPifA1uOTxphdECtQVTIwYfz4MR1jxw4kAwBPkJeBe0Klagra9fQhrQzcnPvFGLMN8E2qj/EYA3zFGPMTrXXLxsZAQgUfBMHOyO55lziOl7vnzgIuRnZTyxH/dSfwP4jpu6zPpBqcSe7L1HAcZfTo0ZXMgZuAmxC//k2hUhur/Q7PgDyEnHM9B/GXbXDXRndtQBTABGTn/OVQqTUFn/8aNRzRGR1W1AlbkIn8GuDPPh1r/QiVWh1Z+xngq0gQa67fC392IadieoEfhkoVLvLOo4akQaNHV/TsxcC9iAxcN1CiJk/NfAQJfNue/PgvlIEI8de3AVeVHJ/9SAbfHyPzUEvv4hOb6IMguApYEsfxeUEQzEOU4nFxHC8oed8JwMFxHH81q0YaY04GfoMUWKiKyZMnM3HC1oDObuA1JInMKmQiyf0jehEBW4cctUnyc7M33SenmvSkxhgNLKC6o4oAjBs3jmlTt6b370USyKxAZKEw+jpGFn65/k0iA9bLQHKqlIGJyLnwqnbvAGPGjGHbGTMIggCkn3N1F1aQj77OtamTyv1d7rlNXgaS42QgSOPycpu9ZVR3JK+UN4DpWuuWdbekMdFfBNwZBMEVwB+Bc3LKPQiCcXEcr3fveytyRCRL3kINyh3gjTfeYNy4cbSNGAHyd+cKOWTBlsja3KBfikRWv+iuRcCLoVKvZ/RdTU+Vk+BBFB+DS8369euZOGEC7e3tIO6CaWQzUQB0R9auRyb7ZeT7f6sMAK95BSBU+X/YGzmGWLWC7+zsxEYRY5QCCfKb7K49q71nAb0FMrCCMvMAsMzHcAhOBtLKwTSyy7g4CgmyXpLR/YYciRV8HMePBEGwAIlivyiO46sKXj48CIKvIyvexcjxlSypuapaW1tbTrnXg3bE3DgF2BmJEi0isnYtxQO9cOC/4st0DsgEajtbD5BT7vVgJPnsX3OQY5ylbIysXUR5GXjJB24NSCZpVNtH1q0w2wikjRMQ0/OBZd4TRdYuprwMLPbxHgMyAXGpVb3IK6AHcQUtyeBeQ5LEkh4EwQjkH9KL7Oa3EsfxDcAN2TatiJoDXLZs2cKmTZsYO3bQirhNQALE/qnMa12RtS8iJugHkYjdJ32AXxGdiPzVxNq1a5kwIet024npQM4Flztr3xNZ+xIS4PcAIgePNipNbZOQSbrWtWvXMnVqIysxFxGSzwBXShxZ+yrwCHkZeKiVE2VVQSfZlU8OEFdcy5JmKfvfiJJ6HjnH+ou6tKg8zyNBV1X7XwGWr1jRo5T6y6yZMy93TwUlP0H+Jx1IgMe4hD9r3RaOIj/oP+Ce2xRZ+xD5gf5gq2fCGoAl5P3kVbN6zRrWb9jwxPbbbfcF91Rh3+d+H0F6Gai1UlgbkoVrJ+SMMMjCr3CyfxApyzpczfxLqC33PwDr1q9nU2fn63N22OEs91QlGRhDOhmoaX5y3z3bXSe553oia58gv/B/kAGq9LU4r5FdZcZRiCulZUkUZBcEwdnAF8mnofw6sGcdjsKVxRgzCUkyU+sAssA8rfXC2lsluECR0cgAnwzsiEzSOxdcO5FNqchFFA/0hcPFrJthcM1G4ENa62tqb1UeV6xnHGLym0NfGdiZbCr2LaNYBh4eTkU5jDEPIvNQLVjgQq31BRk0aSuuXsM48ib6QhnI/Z5FxcnXKZaBBaFS6/v/SOtgjPkF8F5q21h1A9dorc/MplVDkwEVfBAExwBXAUfEcfxEEARtSM3ff4/j+PoGtBEAY8xPgQ9RW6f+XWt9cEZNSoxLibstxQO9cOCnzXm/9dbI0bO/ANcPlLO52THGfAa4kNoU5WvATK11Q2Me3EJwKpVlYNsqb92NpMi9GbgeMeu37O7OGPN2pNpYLRXNLDBba93wwNfI2olUloHtSJbdr5QYySJ6GyID97VyTI8xZldE5mvZ8FngQK21yaZVQ5N+FXwQBLsjZ0PfH8fxTQXPfxJ4bxzH8+rfRMFVCXqC6pMbdALv0lrfnl2rsiGydjxST3wecLD7WY2T8BlkgF+P+O5aKlrXGNOBFI4oV4EsCZ1IisrLB3xng3HpfPemWAbSFroBOcXxJ0QG/tZqFh6XzfBpRClWEy3XCfxSa/2pTBuWAc4KlCvYk5ODtIVuQI5/3oDIwW2NKjXbSIwxNyCJr6qxjG4G7tNaH51tq4YeTVVsxhhzArJ6T6vkO4H/1Fp/P/tWZY/b7e1IfpAfjJTETTOhLUcq6l0P3NUqwVrGmH2Rwi4dpFPym5Da0+c0Sw7qyNpZFE/2B5AuengtkgXueuCWVkniZIyZjQQjTibdmLBIpsrjm+Xsc2TtZIpl4CDSHRm2wC2IDNxYkjiqaXHZ7O5DFkBplPxmJJbj4OFQWa6pFDyAMeYopJxoyMABN91I8opPaa1/We+21RNXoW1/ind4Sc26G5DERNcDN4dKratLIxuEMWZv4FZkJz+QwssVmvkucL7WummtGq5gyz4Uy8COCT++GcnWdz1wQ6jUyro0skEYY2YhimtHki34NyF/+0e01k272HUFW/Yg3/8Hk/wMfw+SSvx64E+hUkvq0cZG4crEXov8D5K4bDYBDwMnt3qK2hxNp+Bh6wr+U8DHyEe9F+7mNiBRsP8H/EBr/WSfmzQ5bpe/A/AO4GQk+DHJbmYLUrDlD8CVzXoEx2U1OxuRg/HIJF94fGYTEm17I/B9rfX9DW9kA3D1649DZOA4kvklY2Qney3wm2bd1RljQuCDwGeQsdBOcYyORWTiXuD7wE3NYr1Jg6tffzQiAyeSPF/AQiRp2S+bNTWvMWYE+Vrwc+lbPnozIu8GSY37f42OvxlMmlLB53CR1ccgZSOnIwpuFWLCvV5rPWySRrhBfgIyyI8n2Yp2HZIC+PJQqayzDzYE55M9GKnlPhNRcKsRE+4ftNZNba1Ig7PyHIvIwDsRE/ZAbEaCaC8H/t6sAXoulfE/I9Hr2yCR5k8Cv9daN7W1Ig0ukv8wRAZORo7cDUQv4rO/HPHZN6WVyxgzBzgTeBOyyFmHJBH6vdZ6WJZ1bmoF7ylPZG0IHIUM8HeR7GjZfGSAXx8q1TXAez1DnMjakUg2vZORxc+cBB97FJGB3zerZceTx1n59iev7JOUx30RqZf+y2a17HjyeAXf4jif3UGIoj8FWd32x0qkIuDPmtVs5ynGTfR7k5/o9xvgI+vJW3aeqnPzPA0isnZnZB44GTiU/oNUNyNuvMtoYsvOcKcpFbwLNvoBkjTiP0KlXh3kJjUFbqLfA6mn/RH6P4rXi/ivLwduHWpmO/e3nI8orq+FSj0+yE1qGiJrd0BMmWcz8M7+bkQGrhuKlp3I2k8gLqlLQqVuG+z2NAuRtdOA05GSqXsP8PbHyFt2htxJjMjaU4APA1eHSv1msNszlGg6Be8mdkM+cnRdqNSgJRdvVtyZ21OBTyCr+f54Efgp8IuhYraLrP0z4mcGOS0xeThl88oCZ905Dvg4EqzZ345uJfBzxLLzcgOaNyCRtRciGTZz7Bcq9dhgtacZcfPpIYgMvJv+TyatB64ALhsqlp3I2n9BgqlzvD9U6orBas9QoxkV/Ifomwd/91bP4lZPImv3Rlby76P/M7abkEjU74ZKDdoxk8jaw5CdZSH/Gir188FoTysQWTsHOZXyEfqP2egG/he4IFTqlQY0rSzO3PwMxSdHfhoqdc4gNanpiaydiuyEz2bg45fXIJazQVP0LrD4JYrLx94TKnXYIDVpyFG3+qn1wA3qH5V5aU6Dm9JShEo9ESr1SaQ28jlAJXP3WOBLwOLI2v+MrE2TcCMT3KAut0KvNt2vBwiVWhIq9SUke96ZyEmUcoxEFMALkbXfd6behuICCH9L32OhkxrdllYiVGpVqNRFwC7IiZwbEFddOU4Hnois/U1k7U6NamMJl9G3Nvz4wWjIUKVpFLwb1FdQPg/5QIFjngSESm0IlfopkjXvLcgkWs7vOh74JrAosvbzkbW1FgFKw6XIUahSqs3l7ikgVKorVOrKUKnDEd/spZQv1zwa+DdEBr7lcqw3iv9EjkaW4if3DAiV6g2VujlU6iQkR/6FSA2HUkYgVr9nI2t/Glmb5EheJkTWnoUsREtppBwOeZrGRB9Z+1UkqKocPwqV+kwj2zNciKydgpjt/p3KpttlwAXA/9YzECuy9j1Iutly/DVU6vh6ffdwJrK2A3gP8AUkB3w51iHZAn8YKlVuQZBVW+Yh2djKlQx9MVRql3p993DGBTafgsjA/hXethkJxvt2PTMluiDRx+m7ewfJ1jdmKAaEDgZNoeAjaw9GslFVqgN8S6jU2xvYpGGHK4byaWSAV1olL0EWYb8Nlaq5dnvJ9++AZN6qtEtbFCpVSfl4MsAlUfkg8FUqJ1BZDXwbCcTKtIytcwk9huwqy9ELKD+51w8XlHcKYsGrlCK3E4nVuTjrWB0XGHoX8NZ+3uZjshxD3kTvBvVvqazcwZvo606o1KZQqW8jk+s3kLrqpcwBfgmYyNozXJncmnGD+jf0b4Kd43YZnjoRKrUlVOp/kPH2WcqbbacgO/kXI2s/kXGf/JDKyh1kPkuam99TBaFScajUH5GaCO9FTtiUMgY53bA4svYrGcfqfIH+lTt4fbCVIa/gkaCugXZmc9yxL0+dCZVaGyr1NWQi/S5Sk76U3ZD0p49E1h6ewdd+AEm/2R8j6H/y92REqFQUKnUJ8v/+IlBul7Yt4r9/NrL23W7nVzWRtW8FPpTgrdWUV/WkJFSqJ1Tqd0hejY8B5U5UjEc2A4siaz/lFupVE1m7nbvfQHgZcDSDgi+t2ftQmff4yb3BhEqtDpU6F1l8XYYUsSllLjA/svZ/agzCKpWBSlH+fmA3kBRWnT8Af3YTdLWUysDiCu/zMtBAUlh1fgTc547kVsthFJ+cqJSTw8uAoxkU/A0Fvz9K+SNS4BX8oBAqtcwdsdsVMc+XO1bzUeBpZ7avZid3Y8HvrwDfqvA+LwODQEKrzonAU5G1n65yJ3cLcgYfJOHKJyu8z8vAIJDQqnMQYtX7lquXkZa7yS8ityDxIOXiLbwMOJpBwV+A5E/+MHJ0q1JyjRUNa5GnD+4c9YeRwJsry7xlOmK2T72TC5X6P+BI5Pz1fkCl5BrL09zXky0lVp1L6WvV6QAuoYqdXKjUA8CBSJ6G/ZBAq3J4GRhEElh1RiJu18cja49Iee9XEKvgOcCBoVI3IhkWS/Ey4GiKKPpCImsPAe4reKoLidr9ui+IMHRwPtOfAbuXeXkjMsgvC5XqKfjMYUiilRtDpSqWeXUZtwpNgTGS3fDjoVLlXAWeQSCydi9EBg4p83I38B3gm6FSUcFn5iKT+O2hUssGuP9aigMvbwHO8CmLhw6RtbOAHyMFbsrxv8AXQqVeL/jMHGRBf1+o1HMD3P8h4ICCpxYCJw5mlsWhRDMq+J2BFwqeWhoqVS7xiWeQcYGPX0JMdu1l3vJ3JMXsE5G1H0YGO8ATwCGVClu46Pwuik9WqEJF4RkauL46G7iI8mmQnwfODpW6y+3o7kAsi8uAef3lvY+sfZZif+veoVImq7Z7siOy9lRE0ZdLSPUa8BkkVmNHpNaIQhIsHR0qVS7uKnffG5E6CjlODZW6Lqt2NzvNYKIvpdQkM73WCF1PfQiV2ux8s/sC95d5S84ndyGS+jLH3sCX+7lvL7Cq5OmGp0z1DIzLinY5Em19fZm3vAm4M7L2f4EzyM9JM4HvDXD7PnNBLW311A93tG4PpNZ8KdMQt94NSHa6XGbMbYCfDRCz4WWgH5puBw8QWbsJOWuZY0J/Jt1Wwe2IRyO74ZEF10CPtwCv567BSARSsJP7NuUzUK0BJhc83oLsyMomrIisfQwx5eZ4c6jUPzJq7pDFJZtRVO7rSvLQQ7EMDIq1w5X2vJTyO7l19M118LZKZWAja6+meGH4Hhev0dK4tN05GUgzF4AEv+XkoHMw3JqRtYcirps9yrxsySv4HJ8Mlbqswr1KKwp+LVQqyVG6YUFpsYZmYQXFkZJzEN9LU+KSgcxAdi39XZnkWY6s3UjBZF/hWgk8CyzOIiud23Vf7sq8/gjJhlXI5JLH7cAlkbVvrzAJraBYwc8BmlbBu0l7GgPLwNSMvs8ysAysAp4Dns9qURgqdV1k7Z3AfyElSgspl8joR5G1+1T4/tLA2jkZNHHQcIvgKQwsA9PJxvraFVmb6+s1lJeBNYhL9NlQqc4MvpNQqXsja/cD/h/iwitMhlSursW3ImuvDpUqtdpBi8lA1jSrgn+KYgW/P0NcwbtjIXshSmkuYprMdNJOQYe7ksQudEXWPgc8jZTnfNpdz1aTijRU6lXgVLeT+wn9m9bfhiwE/ljmtaeQWuY59kdKWA5Z3O57N6T/93W/Zz1pJ0Uh1QNnJXhvT2Tti+T7fqscVJN33lnbPhFZ+zvkaGV/mcd2Az6H+PBLKT1NUSlH+pDBKfGdkf6fi+xiZyEysC2NnZNzG4sZCd4bR9a+RF4Gtl6FAXJJCZXaDJwfWfsHJEC2XPGgHBOQBeFHy7zWdDLQSJpVwT+MnKvNcQAyUQwJImtnkFfkhZN5TZmcBolRgHZXIXFk7RKKB7sBHkkYyT6OZOU9vx9Z+9cyu4eHSx4fwBDCJfYp7P+5yAKvGdPptiHBbLsiR1a3Eln7KsUy8CTwj4S7vYBkC4yvRNb+rkxk9FCXgQ4kniTX/3Pd43IVMYc6AbI7ngMUFXWKrH2N4sX/U8CChG7TjSRLTPORyNqfhUotKHn+kZLHOrJWZV0HoVlpVh/8iRQnwFkQKnXQILRjBLICLxzAc6lfoEcPUsihG/FRd5dc5Z7rRvz2kxAz+ETqu1PsRAoDzUfOKj9cqvBdTfdllDfHleM7oVLnldxjN2RSyfEGMLnRPkUX4LkTcja7UKHXkrWtP2JkUkzS94XPjUL6fpK76rm470JOSMx31wOlE677vy0j2e4R4E+hUkVHrZxVbAPFf8uUUKlKGc7qhjsOtj/FC7qdEcVYDzaR79+kc0EbshvOzQX1XGz2Isp3vrvuLafwI2vvB+YlvKcB9i08Wuvu8SLFFt15oVIPVtHmlqNZFfy2yOSQYzOwTSPOQEfW7ggc466j6es7roYY8XkvG+BaXSrcaXGLktzuudI1GdgBWbzUGp2+iWKF/4i7bxqXSgwcECq1dbXu/o61FB+92ilUqlIK08xwFpqjyctBVnWwVzOwDKysNSbCKdcOKvd97vftkDwGtf59XcCDFCh8RPGl9em+1+U/30pk7aOIQs1xXKjUrVW3NCHOQnMEeRnIKj3qWgaWgRXOxF01TgYUxf1d7pqJyMCO1LZY6UUsLvPJK/z1kbXLKB9wWYnvumRKhX/LH4B3Fzz1qVCpS2toa8vQlAoetpoGZxY8tV+o1GN1+J7JwFHkB3ItaRAXI4ptIXLW+2UymrTrRWTtJEQhl147UN2A34go/L1It8u9O1TqiJK2zQcKi9mcESp1dRVt6hdXDesw8gY61BkAACAASURBVDJQ6q5IwzLyMvA4UmI3k0m7Xri/f3f6ysDOVOd22owo/Mmk+18uCZUqqhYXWfs/FPtmvxwqdWEVbeoXZy2YR14GDqB6S9ga8jKwEFiEyMDyrALZsiayViGLmFIZ2JXqLAE9iMLvpnwipEpsCpXqKGnbFyiO0fhVqFSSwkQtTzMr+D8BJ+UeL1u2bEOntT2IArkHOYpzv9Y61R/oBPlQ8gN5P9IrsggxJy1E6lcvBB5vpaN8kbVjKB7weyKphJOaXCsRU/7/fXOo1Aklbfgu8O+5x6tWr960bt26bsRq8BgiA7dqrVMtnlww3IHkZeBg0pu0uxF/ZK7/FwILK0QCNyXu9McuFMvAQdQvF/izoVJFmREja8+m4Gz12nXr7OrVq7cg1oEXEBm4Xmud6ligsxDtS95S91aSu5RyxEgin0IZeAxY1ipZN93pjzkUK/03Iwv4Wik3F6wLlZpQ0oajkARJAGzq7Ny8fPnyzciRu2WIfFyltW6Z+TcpTangjTEnjR0z5sfbbrvtdgDd3d28vHQpvb1b65z0IgN8PVKY5PL+FH1k7R5I8NCxiJJKU3p2HbIbKRzEzw3VHXk9cWa/XRHT5RFIuslq4hFiJMZiD2TyeAU4qFA5GmPmjRo16ifbzZ69TxAE9Pb28sorr9C1ZUvhPTYiO4UfA9/QWld04UTWbo+k0zzWtb2j0nvLfZxiGXgMiS4ekjvyeuP+l0cUXNXWaJ+PHJ3bCzFdvy1Uaqtrxxiza9uIEZdtv/32R7e1tRHHMcuXL6fTFrn7NyA77d8C52qtK0b9R9ZOQeaB4xCrXRr3WzdyTPNR8jJgQqU2pbhHyxBZOw2xeh2JyMCeVd7qMaQP34xYfj4YKrU1YZIxZhpwyfbbbXfGqFGjAoDXVq1i/fqibMUbkQX6jcBntdb9pkBuJTJT8EEQHAF8BRlMl8RxnHm6QGNMAFyIpDUcM3r0aEaPHk1nZyfd3RX16SbgVuBMrfVm2KqI9kaSZJxGOuHbguTCv91dDw9HZZ4E93/ejeLJPo3Cvy1U6m2lTxpjPooULVHt7e2MUQobRXR1VTyq3YlYVN6utd5a5cqlPT7NXQemaFcvMpnnZOABnya3MpG1O1AsA3NSfPw5YA+XR2ErxpjjkGORY9ra2kZ0jB3L5s2biTZXXFNFyJnpo7TWW+M0XDzPKYgMHE46l4MhLwN/q+bI4HAhsnY6xQq/XJKbSqwBdi09jmeM2Re4DRg/YsSI9o6ODrq3bCld4BXSjWz63q61rpj+tpXIRMEHQRACVwOnxXFctyxpxpjvAJ8g/TETC8zfcc6cr7S1tb0bGcy7pPj8Y+QH8r3DdVVeK24yfZbyOckrcWBhLmpjzEcQ5T6m8kfK0gU8N2vmzLOUUichMrDvAJ8p5DnyMjA/VKpcOUzPADgX2FOkU/KfdaVIATDGHAP8ifQy0Ausmjhx4vGTJ006DFngv4XkLrhXyMvAHaFSvoJllUTW3oO4QpPy61CpD+YeGGP2QtJfl8uKORAbgMO01pnHbA01sjoqcwiiRG8IgqAT+Hgcx5kKvzHmMKpT7gBq4oQJR7e1tR0/8FsBeAlZGd4O3NlKftNBZg/SKXcQUzsAxpjtkSx4aX2hAKM6Ojp2C8PwUZIFR71G8WReseiJJxVTSJ9trFAGxgDXkl65A4wIw3DKxAkTFpBs7luHnPzIycFzreI7HwK8OeX7C2UgAK4j/VySowP4kzFmR61174DvbmISKfggCHZGIn53ieN4uXvuLOBiJKhmOrIjPhgJSvk6UrM3S75GdYMagAkTJvQX6dkD3IkIza3AIj+Q68LDSOBTEutJL3B9SX75c6khWdCE8ePbg6DfzdoDSNa8WxD/qZeB7FkO/A0x1w5EjLhCCo88vZ8aZGD8uHFtI0b0u757ApGBm/Hut3pyJfCBhO9dgmQzzHEUcrSu2mN7AXIE8O3ATVXeoylIbKIPguAqYEkcx+cFQTAP+cccF8fxgiAIjgdOiOP400EQjAZui+M4yQBOhDFmNyR4pZqdGwCzZ80iDMPCp7qQXfq1wJ8HIznGcMQduzsa6cuN7tpQ5vfNhQrWGDMeiYitepE3fdo0ttmmaNHfi5y4uBa4zteQbgyRtWPJB7GV9n/hY1siAyOQo6VJst+VZdLEiUya1CeB4sOIDFw7UP1xTza4kyqHIdacDZSfAzYiBXFK4y/+hpj3a00itEBr3fAEaY0kjYn+IuDOIAiuQFa458RxnEsbuAD490C2R/sCL2bbTP6Z8vXEE7N8xQomTZrEyLa2pWPHjv0icGMrHVtrFlygTDVn1Y9HLC1Vs2r1anp6ehg5cuSGjo6OcxELQWm5SU+dcTEsNwz4xr7sR/mCNIl5/Q0JnWgfNapnm46O84A/NiI5kqcYl5TsjgHfWIJb6B9MNhkC9zXGTNNav5bBvYYkiRV8HMePBEGwAElBeVEcx1cVvLYmCILrgLuRXdGHM27n7DRtLUdPTw+rVq0CWKm1/t1A7/cMOaZR4yKvt7eX1WvWAHTpqVN/mkmrPI1kGjUu8mCrkg9Wrlz549zJGk/TMBU5LlfTXODY7O7nFXwQBCOQwdVLmcpOcRxfSrGvLEuyzJ3ejAVfPCIDWeX1bmTVNk92ZNlvccb38zSGrGWgpfVBmn/WfyOFCp4HzqpPcyqyDFlYZEHLrtZanNVIDoIsWJvRfTyNZTXZLfJ6tNa+4ljzsYbsiuSMQmSqZUmk4IMgOBtJBnEysns/NxggHDljrkcSVdTKRuCKDO7jaTy3ks2xzgj4fQb38TSeR5BkJbXSS4tHT7cqWus19K0BXy1LkFMdLcuACj4IgmOQ7HHvjON4JZI9ahQldaHridb6EbLp1C3AHzK4j6fBuECYq8lmgr9k4Ld4hhou1fB3SF+FrpQIuKD2FnkGifORSPta2ACcn7ZWSbPRr4IPgmB35Lzi++I4fgIgjuMe4HvAef19tg6cj+zAq8UC3+kvH7lnyHMhtZnptwDXtHLU7DDgJwO/pV9i4Gmt9cNZNMYzKNxAbboAJMDumgzaMqTpV8HHcfxMHMdT4ji+qeT5S+M4nlffpvXhL4hZrZrV+2bEAuB3bk2M1voZJLlSNamCe5D4i//ItFGehuIqgn0MWbBXwwYkWY6nSdFa9yBHp6u15HQC/5K2ymQz0jRRpM6UchayekszwXci1Z2O0loPyVrLnlR8HfgB6QZ3BCwFDtFa+3PvTY475voJ0in5buB14AitdVY+XM8gobW+B3ETbyR5AHaM6I7Ttdapz+A3I01XLtblIf40MtGPRPIKlwv424Acgbgc+KI3zbcWxphTkDKw45DsduUWq5sQGbgW+Hh/pUI9zYcx5hDgF8B2SFxQuSBMi8jG3cAHtdYtHVQ13DDG7Ar8BpiL6IFypb43I8rdAB8YTgu8plPwOYwxbcDbgE8hJQhzeWi3IGltfwBcr7X2ZTxbFLfYmwd8EjiJfCGibiTn/Q+Aq5xZ19OiGGP2Bs4G3oNkugsQl8wy4DLg11prX/mthTHG7Ah8xF1TkUVdL3Ks7hfAz7XWWWdYHfI0rYIvxSn8YDj4VTzlcbnK27y1ZvjiFn3tWuu6la32DG1yMgBsafUo+YFoGQXv8Xg8Ho8nT9ME2Xk8Ho/H40mOV/Aej8fj8bQgXsF7PB6Px9OCeAXv8Xg8Hk8L4hW8x+PxeDwtiFfwHo/H4/G0IF7Bezwej8fTgngF7/F4PB5PC+IVvMfj8Xg8LYhX8B6Px+PxtCBewXs8Ho/H04J4Be/xeDweTwviFbzH4/F4PC2IV/Aej8fj8bQgXsF7PB6Px9OCeAXv8Xg8Hk8LMnKwG+DpS2StArYFZpZcM4AQaEf6LncN9HgL8Lq71hT8XulaFyrVW/+/1FOJyNpRSH+XysBMYAyV+7qSPPQwcL8XXmtDpbrr/5d6KhFZOxKYTr7fC+eEbUg29gsfA7xB+f4uNy+8ESq1pc5/pqeOBHEcD3YbhhVu4t4deBN9B23umjhoDRRi4DXgWeAZ4OmCa2molBeaGoisbUP6fzfKK/CZwJRBa2Ce14Hn6CsDi0OlegazYc1OZG0AzAH2AGZRXgamA8EgNTHHeuAF8n2fk4UXQqW6BrNhnoHxCr6ORNZOBuYC+7qfc4E9kVV1s7KJ4gm/cMAnXu27Ce5NwPJQqQ31aOhQILJ2HLAP+f6fC+wNqMFsV41sRhR/odJ/BnguVMqmuVFk7faADZValXkrhwjOIqcploG5wLjBbFeNdAMvUiwDTwPPhEptTHOjyNppwOhQqaWZt3KY4xV8Brgd2S70VeazBrNdDaYb2fHfA9wF3B0qtbLcG93/64/AScAG4NOhUr9uVEPrgVuw7EBfGdhpMNvVYGJk0r8PkYH5oVIvVXpzZO33gM8BXcA3gW81s3XIycAMivt/LmKpGU7xTkuBB4D5iBw8W6lfI2s/AVyKyM7PkLnAuwUywiv4KoisHQMcChwDHIbsyMZk+BU9wHJgWcm1HNiIKNMt7mfp7+UejwYmAZPdz4GurHYWT5Ef5HfndmmRtbsjq/1CvgF8vVkm+MjaduAgRAaOQCb18Rl+RQyspLwMrKX//i4nG6MQ189AfZ+TkQkZ/R2LERmYD9yV26W5/1+piffXwMeaxfQbWTsC6fdjgKOA/YGpGX/NavrKwDLEl57r26RzQRvSr+X6u9w1kWwWJivIy8B8xNITA0TWLgJ2LHjvHcDpoVJrM/jeYY9X8AlwO879kYF8LPAWZMKslleBJ4CXKT94Vw+mj9NNvtsj/sHSqxYl9iSi7B8BfogEChVyBfCvoVKba/iOuuB2Z3shMnAMcDjQUcMtVwOPA0soLwMrBzPIzcn8LKTPd6dYBmpRYouQSf5vwPmI1aOQu4BTh+oEH1m7E3kZOApRkNWyHpGBRZSXgRWDORbcAmYaxX2fk4VarJPLySv7DwCHlLz+JPCO/qw/nmQ0vYI3xuyJDLaJyAp1LWIeelBrXdUf5ybzXSgeyNXsaLYgu9iF7noMeDxUanU17RpsCkyQ5RT/tlXcMqZvENHdwCmhUm8kvYkxZnvgHUhg2ihk4lwI3KG1rnqhFFk7m7wMHI387WnpRfzVuf7PycLyZrFWlOJiS8rJQKmyTkIvfXeJTwMnhEotSXoTY8wUxOWzLWJNWw88D/xFa121koysnYKM/5wc7Nj/JyqymOL+XwgsaWIZGEffhd8ewM6k3/X3IHN3ISuAd4ZK/SPpTYwxHYgM7IAsvjci7oI/a63Xp2xTS9CUCt4Ysw1wJvBZZMAFiBk6QMx+XYiivxT4pda6rC+4EBfocTT5gbx9ymatpnjwPoYEnDSFubFWImsnAvOAIxGT9f5Ub957FpngF1V6gzFmFHAq8BlgP0RRhO47twCR+/k/wM+01hXvVfA3jHdtPxaRgd1Stju3IytU5k+GSnWmvE9TElk7FjgQ+R8eCRxM9QGlq4ATQ6UWVHqDMWYEcBzwaUQJdyMy0OZ+t4g8/A64TGu9MMHfoIC3kp8H9kvZbgsYipX546FSw0LBRNaORv5nR7jrUGBslbfrBN4TKvWn/t5kjDkE+BRwMtLvYxAZ6EH6YyTwZ0Qf3FPtxq8ZyUTBB0FwKHCBezgT+Escx5+r+cZlMMZo4FbETzyQ4Fikw0/TWt9W+mJk7Q6IkjgdUU5pjqQsAW4DbkeCipY162q8Hjhl+VbyA30/0in8CDgzVOr60heMMbOAW8iv1PujC5GBT2qtf1WmnVORieF0REmkyQ2xEun/2xGT82IvA3lcrMrB5Bd9B5FO4fcA54ZKfb/0BWPMOOBad/+x9D92exA5+C7wda11UY4Htxt9B3AacALpTjisA+5EZGA+ElDmjxA6nLvvAPKLvreQPl7pslCpT5Y+aYxpBy4H/gXps/7ml15EH1wHfLQWq04zkfkOPgiCXwG/jOP47kxvDBhj3owMpoEGdCkW+IDW+urI2l2QgXwa8OYU93gdCQC5Hbi9v92lpy+RtRMQv/UPkPO/SegFphe6NIwxc4AFiEsmjTLuBC7QWv9XZO1M4BREBg4n+cJjEzKJ55T6k16hJ8cp/HnARcA/pfjoW0Ol7s09MMZMAB5EFnhhivt0AtcAH9xl550nIObc0xArQNKYmi5kQZ+TgUd8QqDkuDwgBwD/Cbyd5PP4p0Olfpx74JT7X5EFXpoFgwUeBo4ZDko+UwUfBEE7YpLScRxnmgnNGDMDMd1WFeE9atQoO3vWrMUjRozYM+FHNiNHvnID+TG/Mq+NyNojkCCqNJwUKnUDgDFmNJJ0Y1v6+uwGZOTIkXbWzJnPtre3zyXZxNID/J28pWbBcHG51IvI2lnAKyk/dmGo1JcBjDEBomD3R9xyqRgxYsSmmdtu+0IYhnuRfIH4KPl54N7h4nKpJ5G1naSzlNwYKvXO3ANjzC+BM6ju9JIF/qS1PrOKzzYViQQ8CIKdEd/iLnEcL3fPnQVcDBwUx3EuQcGxwB1ZK3fH56hiQOeYPm2aSqDcH0HM/7cD96dN2uEZkOWUD6ipxCbEFJ/jTCTYMbVyB5gyebJqb2/fd4C3PYfsDG5HjvYNC99pA1mPmLWTnsboQeIochyCJA6qai6YOGHC2DAM5w7wtlcQGbgNOdrXskl4BpGXSRfj8qPcL8aY2YhZPo31phAFnGyM2VFrvbjKezQFiRR8HMcvBkFwI/BvwHlBEMwDfgwcV6DcAd4N/DLrRhpjxgKfoAYF39ZWUSfch/jy/uiPZdSXUKlnI2vPBD6KDLKN7tpQ8PtG5OjRRuB7uR2z27l9lRqOpvUjAwsRGbg2VOqpau/vGZhQqQ2Rte8CPk++n0v7fwOyAOhF/K+Fc8xXqSHnRD8ysAgx318LPORdL3XndODLiLtuA8UykPtdIXP+FaFShQGSn6f2FL5twBeAj9d4nyFNYhN9EAT7I/7vQ5GV7b/FcXxVwevtiClrnzqY5z+K+G6rjcZkm222YeqUKQRBEAdBMB8ZyNeFSi3LqJmeOmKMORy4kRoUvFKKGdOn5yb5h8gr9ReyaaWnnhhjtkMsLNXu3Bg1ahTbzphBe3s7yHG8a9210Cv1oY87PfMG2SQWs8AUrXXLulwSBynFcfxIEAQLEJ/kRYXK3XEMcGedzPOaGpQ7wIYNG9iwYQNBEDyw1157HZVRuzyNY3dqzKplrWXxkiUEQbBir732OjCjdnkax5uQ2JiqFXxXVxcvvfwyQRD0xnGsSyPqPUOe6Rneqwc59dWyC/zECj4IghHIP6QXiYItIo7jm4Gbs2taEZOyulEcx7VkH/MMHrnymDUTx3EzF3oZzpRmPqyaOI57kF1gqsIonkFnG0QPZUEvGcrUUCTNjui/kQCn54Gz6tOcimSZ+W1dhvfyNI51yHn2LNiU0X08jSXLsduGl4NmZB0ZLfQR/dfS+iCRgg+C4Gzk3PDJyO793CAIGlmn+BGyWWlvRs7PepqPx5HUtrUSI1nGPM3HM9QQaFvC4uGU0ayFWEnfIkW18GqG9xpyDKjggyA4BrgQeGccxyuRSNNRwLvq3LZC/kA2u7cYKXLiaTK01n9H8nnXSifwrQzu42kwWusVSKBlrSbajUh5Wk+TobXuRgKuaz3CvBm4tNWT3fSr4IMg2B24EnhfHMdPwFbf1feA8+rfPEFrnUszWUu0Yw9SeKKlV2wtzvnIEZpaWIIUI/I0Jxcgk3MtdCPzmqc5+fHAbxmQYbHZ61fBx3H8TBzHU+I4vqnk+UvjOJ5X36b14TLEZ1Zt1GuEnKH1NC/XIdWhqjXRWeDz3jTbvLiCMXdS/Q6uE/hSq+/cWhmt9WpEyVcbQ9EJ/FxrvTy7Vg1Najp21Ej0/2/v3sPkqMo8jn/fnksgGaJMghiEMQqs4h4XEW9RLl5A0ZUQBZWbF/RBfVi8rKvPuop4wfW2iz5EQFZxVVwVlF1XYFEU1gVxV1DwAQpvASVNMOGShpBOJpmZ7rN/nGrS0+me6clUV3VX/z7PM890VZ2peWf6dL11TlWd49zDhGfwH2Fu3fWe8IYe65zTICY9LJ769UjCdbO5HqDHgTOccz9OPDBJ2+sIY27MtUdvK3Cec+5LyYckKfsg8APmnuS3EJ72em/iEXWhnknwAM65PwDPItzJ305XbZlwB/5hzrm5joEuXSg+ez+EMAJhmdl7dLYQ6sprm80mJ73HObeNMDPZ9whJe7YT/vH46z3OuQ91ODxJQTx+wamEm763MXuv3gShDpwHvD5uLORer84HP8iOeaBfTGjNDRCGL6wQpqS8HVgNfD/PIxX1q3jo2sMIQxgfR5j7vb4ODBC6888DLo17gCRnoig6GHgn4WBfJTRaavPBG2Hs+/OBbzjnNGplDkVR9FTC8NdvJ9wAbuyYD77KjvkMLnbOrckqziz0ZIKvF0XRXsARhOlDBwhd+DfnfRIB2SGKoj0ILbolhFHOHgHucM5FmQYmqYlnGnwJYaSzhYTEfhfhWNDbBzlpSxRFA4ST/jHCADabCRMH3dAvLfZGPZ/gRUREZGc9dQ1eRERE2tOTCb5YKj+tWCrfXiyV7y6Wyq/OOh5JX7FUXlIslW8slspri6XyGVnHI+krlsqDxVL5imKpvK5YKu80P4b0h2KpfFFcB75VLJV7Mqd1Ss910RdL5WFgA+GaO4SbaXYbGx3py2ss/ahYKhvwG8IMczXLx0ZH1mYUkmSgWCpfBfx13aqVY6MjV2YVj6SvWCp/mvDIXM05Y6MjGu8k1otnO59kR3KHMPGAyygWycZbmZ7cAVZmEYhko1gqv5jpyR3g+AxCkYwUS+UDgfc3rH55FrF0q55K8MVS+Uh2fkMBlqccimSkWCofQPMhJhenHYtko1gq7wl8s8kmTQXdJ4ql8hDwb+w8s9yiDMLpWj2T4Iul8uMJH+pms9j9RcrhSAbqPtTNPsRPTjkcyUB8eeZCYN8mm5emHI5k5yPA85qs3yvtQLpZzyR4wod6vxbbDkwzEMnMWcDzW2xTHegPpwAntth2QJqBSDaKpfKLgA+32Lx3sVRWKz7WEwm+WCqfDJw0QxG14HOuWCqvICT4VlQHcq5YKi8HLpihyJOKpbK66XOsWCovJvTkzpS7dKIX6/oEXyyVnwzMNjmEDu45ViyV9yB0zc9UX/fRwT2/iqXyAHAJs99roYN7vq0GnjJLGeWDWNcneOCjTP9QN5tYYpkO7rl2JvDUNsrp4J5frwEOb6OcLtXkVLFUPhh4cxtFVQdivZDgGx+H+lGLcnpT86uxDvywRTmduedXYx24sUU51YH8aqwDrab/Vh2I9UKCX02YKQzgX4H/bFHuSemEIxn4MmHyEIBrgc+3KKc6kF/fAe6LX98O/E2LcqoD+fUjoDaB1Drg9TSfD151INb1CX5sdORSYH/gGYQpAe9vUqwC/C7NuCQ9Y6MjPyf00BwMHEOYBrYZzR6XU2OjI3cDfwk8C3gBofXWbBjOO9KMS9IzNjqyCXguoQ64sdGRO2meD1QHYr04VO1zgZvrVm0C3jQ2OnJFRiFJyuIxEernd68A7xwbHbk4o5AkA8VS+UGmP/v+aeCssdGRakYhScqKpfL/AivqVl0KnDY2OrIto5C6Ste34JtoPGMbV3LvO5uAibrlAcIHW/pL47Hge0rufaexDnxfyX2HXkzwDzQs76UZhPrL2OiIZ+cP9t5ZxCKZUh0Q1YEZ9FxijM/ONtWtGgBGMwpHstP4wX5CJlFIllQHRHVgBj2X4GN/bljWYxH9R3VAVAdEdWAGvZrgb29YPjSTKCRLqgOiOiCqAzPo1QT/q4Zlvan9R3VAdqoD8Wxz0j9uIzxFU7N/PJ2w0LsJ/paG5edkEoVkqbEOHFIslRvnhpZ8+z3TBzrZi9YzTkoOjY2ObGXnEe2enUUs3ahXE/ytDcsHaYrAvnMf02+w2R04KKNYJANjoyMV4NcNq3Wy338ae3JUB2I92eIZGx3ZVCyV17Bj/PnC1Pbxo6Lonl8DjwCbnXO9NYKPzMnY6Igvlsq3AK+qratOTb40iqJHCcPabnLO6Zno/LsFOKy2UK1Wjoii6FZgM/CIc67S8iclL24BTqst+Gr1hVEULSf07jzinJts9YN513Mj2dWs3bj5O2Z2Ym15y0MbtlUmtlWBIWAD8EXgEudcs6EMJQfWbnz042aFs2vL4488NDG5tTxJqAObCWPYX+yc+2NWMUpnrd24+SQz+3ZteXt509T2Rx/eTmi8TBKmGb7IOXdbVjFKZ63duPlQM3usFT85vqU6/vCD44RHqI0wf8kFwI391vDruQQfRdEg8JnC4NCZi5YuW2CFAlMT29m6cQNM/1vGCZcgrgROc86Vs4hXkhdFkQHvskLhU4v22mdhYWDQqlOTbHloA746rcG2HagSuvDe4Jxbn0W80hlRFK0Cvrpo6bLHDwwvKPhqlS0Prac6Na3BNkUY9XAtcLxz7rdZxCqdEUXRCuCy3ffca9nQ7osGvfdsLd1PZfu0weyqwFbC+CknO+duyCLWLCSS4M2sQJjpbX/CGdPp3vvEP0hRFC0kzCh0KLAQMwqDQ1QnJ2b6sW2EZyVf5JzbkHRMkq4oigrA14HXAosACkPD4aDeui5PErrtj3TO3ZlGnNJZURSdBfwDsBBqdWAKfMurMlXCSf9xzrnr0olSOimKopOBiwn331AYHMJXK/jqjFfmxoEznHNf73yE2UvqJrtnAQu894cTPnR/m9B+HxO33K8m3ECxEADvZ0vuALsR7qz9eRRFenyi9/0LdckdCHVg5hPVIcJohz+LouipnQ1POi2KovdRl9yhVgdmPLAXCHXmirjVJz0siqKV1CV3gOrU5GzJnbj8BVEUva6D4XWNpBL8OqBiZgbsCTyU0H7rnUBoue8+W8EmhghzBH8g0YgkVVEUHQqcTF1ynwMDHgd8IdGgJFVRFO0N/CN1yX2OFgJfiy/zzxO1zAAAC79JREFUSA+KomgY+Bq7lgsg1IGLoyjaLbmoulNbCd7M9jezLWa2rG7dKWb2ZzPbj5DQtxPmZP8icGGSQcYfxo8CI/PYzQLgzLibX3rTRwg9MruqALw8iqKxhOKR9L07gX3sCxyRwH4kG68Hhue5jwJwagKxdLW2Erz3/m7gKuC9AGa2AjgfWOW9vxd4OVDw3j8NOB44N+E4DyeZASwKwJsS2I+kLE7Kr2D+vU4F1JPTk6Io2h14F/M7yYPQgjt71lLSdRJq7BH//NnxPT25NZc/7rPAO8zMAf8BvNN7f3O8zYCN8euHCF2hSXoFu94lV28Roatfes9LCHdEz9cwsDKB/Uj6DgGSeOzHgCPUTd+TlpLcaIVLCZduc6vtBO+9vxW4GbgJ+JL3/rK6zT8B9jOz64FLgU8kGiXsQ/hQJmFpQvuRdC1h/t1yNYsT2o+kawnJJPiaXb2GK9lZQnjsMQmT5Hyq8bZHsosfhasQHjf5bP027/0U8IZkQ5tm2+xF2rY9wX1JeiYIdS8JSfQESPqSOrBDaNz07QhnPWyC5Bp7RrJ1quvMpYv+XODxwBrglM6E09JaknkjPHBvAvuR9K0nuQ/jAwntR9K1nuSG197az0OY9rAHCTdMJ2EBOT8WtHsX/TuA1wCrCK33D8SPxKXl2yTTettCwnf4S2quJpkz9zKwOoH9SPruICT5+ZogPGYlPcY5txn4MfPPBx74mXNu46wle9isCd7MjgI+BRzrvb8fuJxwLfS4Dsf2GOdcEbiG+b+pG4Cfzj8iSZtzbpyQmOd7ucYDl8w/IklbPI74xwknafNRBf55/hFJRs4hjEg3H1tI/l6xrjNjgjezpxNumnuj9/4OAO99Bfg88PedD2+aTzC/g/sW4GP9NtlAzqxmfid548Dq+GRBetNlzO/gPgH8KG40SA9yzt0E/IFwT9iuqABF4GeJBdWlZkzw3vvfee+Xeu+vblh/gfc+1eEenXO3Ah8iTBowV1sIB4Zvz1ZQupdz7gHgRHatDowTngLJ/Vl7nsXXzY9h11rxk4T7ed6aaFCShVVAibkn+SphSvFX90Njr6ce8nfOnUcYpGQuZ/Bbga8Cp/fDG5p3zrkrCU9slGm/Nb+F8CjnK51zub5rth/EJ/svIYy90e6NcluB2wmTTj3cqdgkHXEPzPMJJ2zt9uxuJwyrvsI596dOxdZNeirBAzjnLgReClxLeMOateYmCG/6LcBJzrn3OOeSesRKMuacu4ow6dC/E97nZq25KUJiXwO8B1ilrvn8cM79CnCEmQW3AJubFKsS6sZ6wnXbFzrnHkwrRumsOEkfDJwHPEyoA80acY8SWu3nA890zq1JLciM9dx88PWiKHoC8EbC7GKjwADhjbwO+Ipz7o8ZhicpiKJoMWFs6lMJgxgtIMz7/EvgIufcbRmGJymIJw1ZSeh634cw6uWjwG8Isw/eqN67fIuiaAA4GjidMG35COHk7h7gK8A1zrm+G/+ipxO8iIiINNdzXfQiIiIyOyV4ERGRHFKCFxERySEleBERkRxSghcREckhJXgREZEcUoIXERHJISV4ERGRHFKCFxERySEleBERkRxSghcREckhJXgREZEcUoIXERHJocGsAxCR7jd8yFu9FQaofRWGhinULVuhQP12GxigMNhYZvp2K9TKGFYwzGzH64JRsPB9YLCAFWi53QrGwEAo02xfA/HX8GCBgYIxWLduoFCoe20MDzQrM/2rtp+BgjFgIY4BC7+7tjw0ULfeQtnG5aHaukK8zqYvmxGvAzMoENYVDIxWZeL/02NlwnLt95qBeQ++ivkq+CrUlqtT8XIVqk22+yrEZSwuw077quKnJqFagWoFX6mEctUKvhpe+2oFpibjbXG5uEz9az85Me1nfbWKr8Rf8evKxORO66uVhuWJKaqPlZm+n+pjZSrxa0+14uPtO15Xq57KRAVf8fH65mUrk7Uy1Xibp+o9Fe+peKh4z0R1x+vwnWnbK564jKfKztvqywBc5O+xVp9bteBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh5TgRUREckgJXkREJIfMe591DCLSx8zs7d77L2cdx67o1dgVd7qyilsteBHJ2tuzDmAeejV2xZ2uTOJWghcREckhJXgREZEcUoIXkaz13DXVOr0au+JOVyZx6yY7ERGRHFILXkREJIeU4EVERHJICV5EUmVmo2b2EzNbE3/fs0W5z5nZnWb2WzNbbWaWdqxNYmor9rjsYjO7z8zOTzPGut9/jJn93szuMrMPNtm+wMwui7ffZGbL049yZ7PFXVfuBDPzZvacNOObSRv/8zEz+6mZ/drMbjezV3UyHiV4EUnbB4HrvPcHAtfFy9OY2QuBFwF/BTjgucCRaQbZwqyx1zkHuD6VqBqY2QBwAfBK4BnASWb2jIZibwMe9t4fAHwB+Gy6Ue6szbgxsz2AdwM3pRtha23GfhbwXe/9IcCJwIWdjEkJXkTSdhzwjfj1N4BVTcp4YDdgGFgADAH3pxLdzNqJHTM7FNgb+HFKcTV6HnCX9/6P3vsJ4FJC7PXq/5bLgZd1QS9JO3FDOHn6HLAtzeBm0U7sHlgcv34c8OdOBqQELyJp29t7vx4g/v6ExgLe+/8Dfgqsj7+u8d7/NtUom5s1djMrAOcCH0g5tnpPAu6tW14Xr2taxns/BWwClqQSXWuzxm1mhwD7ee+vSjOwNrTzP/8YcKqZrQOuBt7VyYAGO7lzEelPZnYt8MQmmz7c5s8fABwE7Buv+omZHeG9vyGhEGf63fOKHTgDuNp7f2+GDeJmv7jxmeh2yqRtxpjik6cvAG9JK6A5aOf/eRLwde/9uWa2AvimmTnvfbUTASnBi0jivPdHtdpmZveb2TLv/XozWwY80KTYa4BfeO/L8c/8EHgB0PEEn0DsK4DDzewMYAQYNrOy936m6/VJWwfsV7e8Lzt3B9fKrDOzQUKXcSmd8FqaLe49CPdk/E988vRE4AozW+m9/1VqUTbXzv/8bcAxEHqpzGw3YCnN69G8qYteRNJ2BfDm+PWbgR80KVMEjjSzQTMbItxg1w1d9LPG7r0/xXs/5r1fDrwfuCTl5A7wS+BAM3uKmQ0Tbui6oqFM/d9yAvDfPvuRz2aM23u/yXu/1Hu/PP7//gLohuQO7f3Pi8DLAMzsIMJ9Jg92KiAleBFJ22eAo81sDXB0vIyZPcfMLo7LXA7cDdwB3Abc5r2/MotgG7QTe+bia+pnAtcQToy+672/08w+YWYr42JfBZaY2V3A+5j5iYBUtBl3V2oz9r8DTjez24DvAG/p5EmVhqoVERHJIbXgRUREckgJXkREJIeU4EVERHJICV5EJIfM7B4zGzezcvx439fMbCTe9gozu8HMNpvZg2Z2fbffxCZzpwQvIpJfx3rvR4BnE8bzP8vMTgC+B1xCeFZ7b+Bs4NjMopSO0EA3IiI5572/Lx4s6JnAycA53vv6x/quJ6OJcaRz1IIXEck5M9sPeBWwlTDa2uXZRiRp0HPwIiI5ZGb3EIZBrU0k81/At4Abgd299900E5t0gLroRUTya5X3/tragpk9PX65DPhTNiFJWtRFLyLSP35PmNL0+KwDkc5TghcR6RPxuOfvAz5iZqeZ2WIzK5jZYWb25azjk2Spi15EpI947y83szJhfvsvAuPAncA/ZRqYJE432YmIiOSQuuhFRERySAleREQkh5TgRUREckgJXkREJIeU4EVERHJICV5ERCSHlOBFRERySAleREQkh/4frYNxyDjmxPcAAAAASUVORK5CYII=\n", "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -4324,7 +4372,9 @@ "results = pcmci_long.run_pcalg(tau_min=0, tau_max=tau_max, pc_alpha=0.001)\n", "link_matrix = results['graph']\n", "\n", - "tp.plot_time_series_graph(\n", + "tp.plot_time_series_graph( \n", + " figsize=(8, 8),\n", + " node_size=0.05,\n", " val_matrix=results['val_matrix'],\n", " link_matrix=link_matrix,\n", " link_attribute=link_attribute,\n", diff --git a/tutorials/tigramite_tutorial_prediction.ipynb b/tutorials/tigramite_tutorial_prediction.ipynb index c93f21d9..1fe09cb0 100644 --- a/tutorials/tigramite_tutorial_prediction.ipynb +++ b/tutorials/tigramite_tutorial_prediction.ipynb @@ -6,13 +6,15 @@ "source": [ "# Causal discovery with `TIGRAMITE`\n", "\n", - "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI method and create high-quality plots of the results.\n", + "TIGRAMITE is a time series analysis python module. It allows to reconstruct graphical models (conditional independence graphs) from discrete or continuously-valued time series based on the PCMCI framework and create high-quality plots of the results.\n", "\n", "PCMCI is described here:\n", "J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. Sejdinovic, \n", "Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 5, eaau4996 (2019) \n", "https://advances.sciencemag.org/content/5/11/eaau4996\n", "\n", + "For further versions of PCMCI (e.g., PCMCI+, LPCMCI, etc.), see the corresponding tutorials.\n", + "\n", "This tutorial explains how to use PCMCI to obtain optimal predictors. See the following paper for theoretical background:\n", "Runge, Jakob, Reik V. Donner, and Jürgen Kurths. 2015. “Optimal Model-Free Prediction from Multivariate Time Series.” Phys. Rev. E 91 (5): 052909. https://doi.org/10.1103/PhysRevE.91.052909.\n", "\n", @@ -22,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -54,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -78,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -103,7 +105,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -125,29 +127,29 @@ "\n", "\n", "\n", - "## Resulting lagged condition sets:\n", + "## Resulting lagged parent (super)sets:\n", "\n", " Variable 0 has 1 parent(s):\n", " [pc_alpha = 0.05]\n", - " (0 -1): max_pval = 0.00000, min_val = 0.485\n", + " (0 -1): max_pval = 0.00000, min_val = 0.485\n", "\n", " Variable 1 has 3 parent(s):\n", " [pc_alpha = 0.3]\n", - " (1 -1): max_pval = 0.00000, min_val = 0.671\n", - " (0 -1): max_pval = 0.00000, min_val = 0.622\n", - " (0 -4): max_pval = 0.24260, min_val = 0.113\n", + " (1 -1): max_pval = 0.00000, min_val = 0.671\n", + " (0 -1): max_pval = 0.00000, min_val = 0.622\n", + " (0 -4): max_pval = 0.24260, min_val = 0.113\n", "\n", " Variable 2 has 4 parent(s):\n", " [pc_alpha = 0.2]\n", - " (2 -1): max_pval = 0.00000, min_val = 0.558\n", - " (1 -1): max_pval = 0.00000, min_val = 0.467\n", - " (0 -2): max_pval = 0.09687, min_val = 0.161\n", - " (1 -2): max_pval = 0.11617, min_val = 0.152\n" + " (2 -1): max_pval = 0.00000, min_val = 0.558\n", + " (1 -1): max_pval = 0.00000, min_val = 0.467\n", + " (0 -2): max_pval = 0.09687, min_val = 0.161\n", + " (1 -2): max_pval = 0.11617, min_val = 0.152\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADYCAYAAAAH3zO4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2dd5wUVfLAv28XECWJemIAbc+sqz8D5pwQc06nnlnb87wznjl7hjs5s7aeCmbFgGIOmD1QAUUXMaGtmEVFybC77/dHvVl6erpnZ3a7Zye87+ezn92dfjNdNTNd/V5VvSqltcZisVgstUFdZwtgsVgsltJhjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUEJ1u9JVSfTtbhlJQK3qC1bVaqSVd46iG96DTjT5wdSGDlFJbK6VeV0p5SqmtU5YpDQrSE0Ap1UMpNU4ptWuaAqVIoZ/p6ubzfFgpdXzaQqVEobruqZT6r1LqcaXUoLSFSolCdf2jUup2pdTDaQvUCRR8HZcrnWr0lVKDgdWUUqcVMFwDM4DuwNepCpYwReoJcAYwPEWRUqMYXbXWk7TWLrA/MDB14RKmSF0f01ofAxwOHJC2bElTpK6fa62PKoFYJaUd13FZ0qWTzz8VuEdrfQOAUmot4PLQmCO11j8Cr2utX1VK9QP+AxxcWlE7RMF6KqW2Bz5Ebm6VSDGfKUqp3YEzgRtKKmUyFKWr4VzgxhLJlyTt0bXayHoPKpXONvprAxMy/2itPwAiXRpa6xbz56/AQumLligF6wlsA/QA1gBmK6WeDuheCRSjK1rrkcBIpdRTwH3pi5coBeuqlFLAFcAzWuvxpREvUYr6XKuUrPegUulsoz8VOFopNVVrPSnfQKXU3sCOwKJU3qywYD211ucAKKUOB6ZWmMGH4j7TrYG9kZv40yWQLWkK1hU4Edge6KOUWklr7aUvXqIU87kuDvwTWFcpdZbWOrwiqFSK+bzLFmVLK1ssFkvtUA7ZOxaLxWIpEdboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUENboWywWSw1hjb7FYrHUEF0KGaSUGgxcC9QDt2mtr0hLoMbGxgHA/sCSwI/A8IaGhilpna8zsbpaXSsdq2vl6aq01vkHKFUPfALsAHwNvAMcpLX+MElBGhsb64ErARfoETg0E/CAMxoaGpqTPGdnYXUFrK4VjdUVqFBdC5npbwh8prX+HEAp9QCwB5Co0Ufe1FMjHu8RePy0hM/ZWVhdra6VjtW1QnUtZKa/LzBYa320+f9QYCOt9V+TEsIsmyaRfRcFYNbP02iaO4/eyyw5E1itoaHh66TO2xnk0/X3b36g68LdWXixPlWv66+fT6FHv8Xp1mORqtd16sdf0HeF/tR361r1ugawupYphQRyVcRj+e8UxbM/MW/q+KGPcM8ux/LyxTf0+Hb8xOMSPm9nEKvrm0Nu567BR/G/q4f1+PmzL48osVxpEKmr1prnz7yKuwYfzbjbHuox44eph3aCbEkTqWvT3HmMPP4C7t7lWBqHP91j7vSZB3WCbEkT+x0O0MOMq3SqTtdC3DtfAwMC//cHvk1YjiWjHpw97XcmDn+GlqYmJj70LB8+8vzZjx52xpLAZZ72v0xYhlIRqeuvn09h8oujQWvG3/Ew79392Hn3zz+hJ3CVp/2fSixjUkTq+tX/xvPTpMkAjL72Tt659YHzhs2eq4EbPe1PL6WACRKp60ePj2LWT78A8MolNzH6mjvP++/0mdOBoZ7255ZSwASJ1DWCfqlKURqqTtdCZvrvACsrpVZQSnUDDgRGJizHj1EPfnD/k8yfPaf1f93SUgccC3zqKucWVznLJyxHKYjUddwdj0DA1dYyv6kr8A/Ad5VzpaucP5RIviSJ1vW2h7L+b5o9d2HgckTXs1zl9CqBbEmTo2tLUzPjhz6S9djc6TN7ATcj32HXVc5CJZIvSSI/1wh+SFWK0lB1urZp9LXWTcBfgecQ39ZwrfXEhOUYjvjFsui7Qn96918qanxXxPh/VoHGP1LXJddYkUUWXzRq/CJUrvHP0bWluZllB65Ft56LRI1fDLiMyjT+Obo2zZuHs9UG1HfrGjV+AJVr/CO/wyFmmnGVTtXp2mYgt1Q0NjZeRUSEvHl+E5889Qpv/ueOaXN+/T3SKgJNwG3A+ZXgConTdf7sOUx8+DnevvHemfNmzorzI84CrgEu97Q/I005kyBO1zm/zWDCvY8z/vaH5zXPm98t5um/IDeB6z3tz0tTziSI03XGjz/z7tBHeP/+p5p1c3N9zNO/Bs4D7vK035KmnEkQp2uAIQ0NDRWT0ZKPatO1nHbkngEMIXRXre/aZebqe24/ZOXBW/YDjgAmRzy3C5JD+6mrnJNc5UROrcqISF27Ltx95jqH7jFkidVW6AecDHwf8dxFgLOBT1zlHOoqp5w+wygide3ep+fMjf5y8JCe/ZZYBrgI+D3iuYsBVwEfuMrZOXVJO06krj2XXHzmFmccO2ThRXs5yCbHKF9+f2AoMMZVzsZpC5oAkbqa/4eY49VCVelaNjP9DI2Njf2RSHg/xE82PJgK5SqnC3AwMitaMeZlPgJO8rT/XMridogCdF0YcWOdCUT6uYAxwN897b+dsrgdogBd+wJ/B04C+sS8zNPAKZ72P05Z3A5RgK7LIC6744DuMS9zN3Cmp/2kkyYSpS1dq4lq0bXsjH6hFGj8nwBO9bT/ackES4ECjf8w4GxP+9+VSq40cJWzKGL8TwF6RwxpAq4DLva0/1spZUsaVzlLI8b/eCDKpz8TcW/9x9P+nIjjFkvRVKzRz+AqpxtwInA+0UZiPnA18E9P+1EuhIrBVU5P4Cxk91+UH3wGcClwTQWnAwJgAtaXIDe7qL0iPyFurqGe9itmC3wUrnIc4N/AvjFDvkB8yo952q/sC9bS6VS80c/gKqcfYvCOItpI/IAYzDsrIVCWD1c5f0R83XvFDJmMzJSfqHQj4SpnHcQPvmXMkPGIe+uN0kmVDq5ytkZ0XTtmyCjEbdlYMqEsVUfVGP0MrnLWRy6czWKGjAX+5ml/dOmkSgdXOdshuq4ZM+R54GRP+0nXSSoprnIUsB9yoxsQM+x+4AxP+xVX9TCIcVsejUxgFo8Y0oykel7gaf+XUspmqQ6qzuhDq5E4EPgXkhURxT1IoOybkgmWAsZIHIe4QvpGDGkGbgAu8rT/ayllSxpXOYsgrq0zgYUjhswGrgD+7Wl/dillSxpXOYsBFwAnICXNw/yCxLNu9bTfVErZLJVNVRr9DK5yeiDpVKcTnSVRNYEyVzmLI6mPxxOdijsVOBe4rQp84MshN/QDYoZ8iXzmD1eBe2tNZF/G9jFDGhH31kulk8pSyVS10c9gAmX/QlwEUVRNoMxVzlqIy2ebmCETECPxaumkSgdXOVsguq4bM+RVRNcJpZMqeczKdTfgP8Rnqj0KnOZp/4uSCWapSGrC6GcoIFD2EmIkKjpQZozEXsjGESdm2EOIkfiqVHKlgauceuBIZMW2RMSQFuBW4FxP+z+XUrakMaUaTkJWbD0jhsxF4h6Xe9pvq3SApUapKaMPBQXK5gHnIC6fSs/y6Y6sYM5GdvKGmY74jO+pghXOokja7olEV4/9HjjC0/6zJRUsBczmrsuBP8cM+QQ4xNP+O6WTylIp1JzRz1BAoOwV4M+Vng0C4CpnWaT7z8ExQ4YDx1dDNoirnNWQfRmDY4bcAPyj0gO9AK5yNkI2qm0YcbgJifFcYQO9liA1a/QztBEo+w0xhveXVqp0cJWzKeLeGhhx+BvgcE/7L5ZWquQx7q2dEeO/csSQSchMeHxJBUsBU3vpEOSmHrVb+3/AoZ72Py+pYJaypeaNPmTlgXtEpz3eB5zgaX9aSQVLAWMk/oLsAI3KaLoaKedQ0dlM0Lpb+zzEvRXOaJpvjl1V6dlMAKYM9b+R9N0wMxC3152V7sazdBxr9AMYN8gwomf9UxB3zyullCktXOWsjuxVWC/icCNwsKf990srVTqYFc7dwB8jDr+OfK5+SYVKCVc5uwG3A1F9Fx4Fjq30gLalY1ijH8LMhE9ElsvhIlgayY44r9Jr20DrTPhCZLNTuHTFPKRsxTWVHtCG1pnwNUimT5jfkdjOvdUwEzYlSW4Hdok4/B3ixnu+tFJZygVr9GNwldMA3Et0eucEZCacdAexTsHku98NRHUgewk4zNN+xZWQjcJVzt5ICmdU5taDSAynoncuQ6vL8jgktz9q9/J1yI70ig9oW4rDGv08mLzoS5G0x/BMeC5SFveGKpkJ90EMQVQa4DTA9bT/YGmlSgdT0ngosGPE4a+Rm1xV7HB1lbMq4saLCt5/iExe3iutVJbOxBr9AnCVsw1wF9F1fJ5H8r/LutlFobjK2Z/4gPY9wF8rvY49tM6ETyA+oD0EOKdK3HhdkT0McQHtzL6Uig9oW9rGGv0CMZ2dbgQOijj8CxIge6S0UqWDq5z+SEB7u4jDXyEpgK+VVKiUcJWzBuLGWyfi8AfITPiD0kqVDiagfQ+wQsThV5GAdkXv0La0jTX6ReIq50/ATUS39BuGlHGo6GYt0BrQ/juy8zMqoP0vpBF92TcsbwsT0L4IKc4XFdA+E7i2Stx4vZGA9hERh38D/uJp/77SSmUpJdbotwNT5fEuYKuIw18AB1TLFnhTwO1eYK2Iw+8C+3va/6y0UqWDq5wtkYD2chGHRyGz/h9KK1U6uMrZBwloLxZx+H5k5TqjtFJZSkFUCV5LG5gl8HZIIHd+6PAKwGvGN17xGNfGhoiPO8y6wFuucqJufhWHcVmtjRj+MNshujaUVqp0MK7ItZCYVJiDgNeNm89SZdiZfgcx7fzuBdaIOHwe0pu3Kt5kVznbIiucZUOH5gPHedofWnqp0sFVzgFIQHvR0KHpyErumdJLlTzGjZcJaIfdeN8Bu3vaH1tywSypYY1+ArjKWRjZzHVixOF7gKOrIQsEWgPatxDdm+BKpIRDxfu+oTWgfTewdehQC9Kr9vqSC5USpgbVfeTuS5mN1Cl6tPRSWdLAGv0EcZVzBGIQu4YOvQns5Wn/p9JLlTwm3fEcpEVjmEeRLJCqqOdu0h2vA9yIwzcixr8qqli6yumJrFp3jzh8FnBltaxaaxlr9BPG+LcfJTdA9gWwa6U3KQ9i4hZ3kpvnPg5xC1TL3gUF/A3Z3RqOgz0LHFgNexegtSnNFUgv4jDDEDdexWds1TLW6KeAq5yVgSeBVUKHfgP287T/QumlSgdT0/1xoF/o0DfAbp723y29VOngKmcX4AFyu1ZNRHStmlaFrnKOBm4mtyHNa8Detmhb5WKzd1LA0/6nwCbAy6FDfYBnXOVEuQoqEk/7bwEbIRuZgiwLvOEqZ4/SS5UOnvafAjZDKq4GWRPJ7Nmk9FKlg6f925BGNOFy4lsCY0x5B0sFYmf6KWI2/dwEHBVx+BqkR21VbH03m37uR5qXBNFIauuQavEHm9o9jwMbhA7NBY6sps1NphPZk+Q2ZJ8G7FMtNYpqCWv0U8b4g09FdrCGd3s+BRzkaX96yQVLAeMPHoLs5A1zO7Lbsyr8wSZj606is5guAi6qopvc4kicasvQoSakKultpZfK0l6s0S8RrnL2RDIjwg3KP0ACvFVT88RVzvHA9eT2Hn4Z2LcaevFCa477RcC5EYcfQArxVXwHMmitOHsLcFjE4SHAGdWyaq12rNEvIa5y1gWeIHdz0w/AHsY/XhW4yhkEPAT0Dh36BLnJfVp6qdLBVc6hwG1At9ChMcCeVVS6QSH1iS6PODwSKVNhSzeUOdbolxjTknEkuW0K5yB13IeXXqp0MBUsnyS3quOvSAbIKyUXKiVMI5oR5DZn+RK5yTWWXqp0MHV77ia3Oct7SBZTVTTcqVZs9k6J8bT/DeIbHRE61B140FXOWaWXKh3MnoSNkM1pQfoCz7vKiWrYUpF42n8d0fWj0KHlgf+5ytmh9FKlg6nbsyXwfejQOsDbpjSJpUyxRr8TMLtV90XKFoS5zFVOlI+4IjG7kLdH4hlBugLDXOVE+YgrEk/7k5FU3VGhQ72AJ1zlbF96qdLB1OPZEGkdGmRpYJSrnKg2o5YywLp3OhlXOUciAbLwJpizPO1f0QkipYLxB58LXBw6pJGmLOGbQsViSjdcj/SoDTIb2MXTfnj/RsViSjfcB+wWOjQV2Kaa3FrVgjX6ZYCrnK2RAG94p+dpnvajShpXLK5yDkL8wcHMnhbgT9XSgxeyUnX/HTo0C9ipWjqPQWuq7tXkFhz8Edja0/6k0ktlicMa/TLBVc7mSB2XHqFDJ3nav7YTREoNVzn7IRu5goa/GSlZXBUtJzO4yjkZqdkTZCawo6f9cKyjYjE3uWvJNfzfI4b/49JLZYnCGv0ywhRre4bcrIi/etq/sRNESg0z47+H7LhSE5LH/3jnSJUOrnJORzbnBZkODPK0P6YTREoFY/hvBI4PHfoW2KpaOqxVOtbolxmmUclT5FauPM7T/q2dIFJquMo5BGnKEtypPB9J53yyc6RKB1c5ZwP/DD38O7BdNTUpMRvWPOCY0KGvEcP/eemlsgSx2TtlhqllsgdSxyXILSboWzV42r8HOBIJ5mboCjziKmdw50iVDp72LwMuCD3cG3jBVU54z0bFYhrouEC4i1p/4GVXOcuXXipLEGv0yxBP+88DewHhOjW3VVOKI4Cn/WHAsaGHuwGPVVNuO4Cn/YuBS0MPL4oY/v/rBJFSwRj+Y5BVXJDlEMM/oPRSWTJYo1+mmB6s+5LdeF0BQ13lHNw5UqWDKdgV9gMvBIw07q5q4nykSUmQxYAXq6XpOoCpw3Mkks4ZZAXE8IdLkVhKhPXplzmmUNtDZOfxV12KI4CrnL8i+e1BqjHFUSGpnKeGDlVdiqOrnC7Ixrz9Q4c+QXT9rvRS1TbW6FcArnL2Rao21kKK40lIzneQak1xvJrcMtRVl+JoNqvdD+wTOvQRomtVFKSrFKzRrxBc5RyALJVrIcXxNHI3Nc0AdqjCFMfrgRNCh6ouxdEY/oeQJIUgE5Gduz+VXqraxPr0KwTjyvkz2ZkuXYCHXOXs2jlSpYOn/auAcOG5nsBzrnLC3aoqFtNk5USkDEeQZRC/9x9LL1U6eNqfj7h4wqm4ayLxjHB1UktKWKNfQZj6NEdQGymOVwDnhR7ujVTnrKYURw38BeksFiST4uiUXKiUMF3T9kU2IAZZGzH8i5VeqtrDuncqEJOvHzYSs4BNPO2/3wkipYarnIuQjJcg3wMDTZnqqsBsarqD3M5UE5HPtSpaagK4yumO9JQIp+S+BAw2qwJLStiZfgXiaf8Ocis4LgI87ipniU4QKU0uBC4LPbYUkscfLldRsZjc9qPILUG9JnC3uSlUBaaF5J6IkQ+yLdJ60ZIiVfNFqjVMSYa/hR52EB9/19JLlA7G/XEuuUXLBgL/NcHQqsDkth8OPBw6tAfSi7dq8LQ/C9id3AY7J7rKOaoTRKoZrNGvYDztXw/cHHp4a+Ca0kuTHsbw/wOpSRTkYOC00kuUHp72mxAXz/jQoXNNddKqwTQT2hv4KnToZlc5m3WCSDVBmz59pdQdwK7Aj1rr1HcMNjY2DkCi/Esim1WGNzQ0TEn7vJ1BErqaWf0LwFahQ2VVoC0hXfsgzcZXCzyskcYk4eBgp5GQrgOAseY1MswCNvO0/15SsnaUhHRdF5nxB911PyJxm7K59qvFNhVi9LdEcqTvStPoNzY21iPtA12ya8rPRKr2ndHQ0NCc1vlLSdK6usr5A/AO0o81QxOwrend2mmkoOsqwNtAn8DDvwEbdfaGphR03Qx4GcnQyvAVsIGn/R87LnH7SUHXA5ANiEHGA1sYV1CnUW22qU33jtb6NeCXEshyJbItPdxEpId5PKqfbKWSqK5mY8seyEwwQxcklbOzqxomresnwAFIKYoMfZA6PYt2QM4kSFrXN8nduLUc8LCrnG7tFTIhktb1QXID9usBt5dB3KaqbFNBKZtKKQd4Mq2Zvlk2TSL3TeWTp19l+rc/0mvZfnM+e/a1PT9/acxoT/u/pyFHKcin6wcPPMX8OXPps2y/OZ8+98Zunz33+mjj9ywIU67hodDD7wGbF/M6SZFP17G3PkjXRbrTa9l+cz5/8X+DPxr50hhP++Fy0rG4yjkVuCr08LPAriYgWlLidNVa87+rh9Jr6SXp3X+pOV+8NGaHiQ8/+1YxaYmucm4g1/jf4mnf7bjkxZPvcw0wE1itoaHh60Jf12QoPUZuv91O6xedlq6dSbgZd2exPzFv6vv3P8n3700CaSryLICrnJ+AyebnE2QZONbT/vclkbZjxOo67o6HmfHdTyC6vgDgKuc7RM/PgI+BccA4T/s5qy9P+w+7yrmE7E1N6yCVOQ8wAdFSEqmr1pp3bnmA5nnzQXR9BdCucqaw4HOdhOj6bsxN/j/A/wGHBh4bDFyOBH1LTaSuc6b9zrtDH8382x14HWh2lfMlCz7XDxH//QRP+7MjXvtkYA1gm8Bjx7nKmeBpPxzILwWx3+E3h9zBCttsxDLrrdnDjAtnXcXiab/FNNYZjeib4TJXOY2d1FgnVtcARevamZSL0V8y7sDPn3wR9fAfzM/GwQdd5XyLXDzjzM/YMizmFKlrS3MzM76fGnVoafOzefBBVzlfENATuRH8iuS1r4XkQWfYD5hAbuemtInUdcZ3P2UMfhCFuC6WI9u4aVc5n7Dgcx2L3AhmuMo5FlgV2DAw/nRXOe+bBi2lJFLX7977KOrheuCP5ie4QanZVc5EAp8p8L6n/dmucvZH4jZOYPx1rnI+9LT/asfFL4pIXb8Z28i7wx7l3WGPMmCTdVl9z+3XbWgozjngaf93Vzl7IHGbvuZhBdznKmejTqhAGmubQvRLVYoEKRejHxmU+n7CR8yfNaeY11kGyf3dPfOAq5xvyDYY4zo5CBZ57kmPj4LidkevYH72zTzgKudzRM/xyAzfCYy/1FXOB572RxYrcAeI1PXdO0cU8xoKMeyrIimaIDeCj5HP8ylgRSBYu+U2VzkflbgNYaSuH9xf1OS0HilJsDZSbgPkRtCIfK73ID7kTJZLF8S/v4Gnfb8dMreXSF3H/ndBpe8po99lyuh3D3n+jH8vDpzuaX9ioS/uaf8zE9h9lgVxx17I5sONzOSmVBRqK8ptchlLIdk79yO530sgil2gtQ6XAOgQcX6zZ0+/ks+eTSX5ZAoLZsmvAqNNfnTqxOn64IEn89PET9M+/Uwky6XgC7AjROna0tTM0O0PY/bP09I+/Q/AuqWq1x6l65zfZnDHNofQMj/1r9YkJKOnJHGbKF1/+XwK9+0R7oPTSjNwE3BBMQbbVc7J5LpMnkNSdEsSt6lGn37Z1N5pbGy8ilBTiXkzZjHh3pG8d+cI5k6P/T77SMrequQ2Ey+UaciX6Sng2bTLvEbpOmvqr4wf+ggfPPg0zXPDXRJb+RTpnbsa7V+lNSOpcY8BL3ja/62dr1MQUbr+/vX3vHPrg3w0chS6uSXqaS1IrfU65HNtb/bGXKRX6xPAK2mn/kXpOvXjL3j75vv4fNTouKfNR3Ttgbh72st0pFrn08AbadevidL123GNvHXTfXzzdmz5p5+ReNOthRhtk7UzlNx6REM87ZdsU16UrmF5GhoaKmaTYDkZ/dhc2Bk/TB1656Ajf9EtLSchlRbDzEfqkj+CGMSBwPpIoG+hIkXRiD/xaeQm8K6pi5IY+XT9ZfJXd9+31wnz0Po4omWfYZ77MuIGyOjaQHaTlUJoAt5A9HwamJR0sDefrt+9++EDjxx2Rje0Ppjo9OGfgIuB95H0vfURfdtzI5iD1Hp5GngqDXdIPl2/eOWtR5/62yV90AtcjyF8pLDctyzQc33adyP4HUkEeAp4Jo0Eh3y6fjji+adeOv+6ZQjFoQK8D/zd0/4rbZ3HFGd7BdgodOgwT/vhHrypUG15+mVj9DM0Njb2RyLh/ZAl+vDMsslsQroUabocddH/iNRhH2YyAboiBasyF9BAxFAWk+P8PVIK9mkSnhm3oauDpCSGuw1lmAycAjzhaV+b4mPBm8BAJAOimBuBz4KbXaIz4zZ0XRu4FnEjRvEu8DdP+2+Y8b2Adck2jqsWKdIkFtzs3jRlfxOhDV23RHRdJ+bpLwEnedr/wIxfDLnhBT9Xp0iRxrHgcx2bpGskTlczS98Dcc+sEPP0h4HTPO1/me8crnKWRuI3ywQengts6Wn/7Q6qUDD5PtdKouyMfiGYbdvXAlvEDHkbmQnkpE6YTS0NyAW0NbAj2UHAfGRmxpkLKPGZcRhXOdsA1yEyR/EMcExUmWFXOYsgN4JNgHMoXE/Inhk/7Wk/Mo0qKYyR2Bupshi3oewuZIaYExBwldMbuRFsCZyJVB0tlOnA8yzQNdXUX1c59UhFzX8isbIwLUgrxXNNRcrw8xdHvr+DkHaLxbj6piIB0qeA59IOipqZ+snI9y/KLz4HuABx2cTejFzlbAi8Rvbq9zvg/2zXreKoSKMPrUZif6St3oCIIXOAM4Ab8rlnzAW4IbALsDNiOArlfeA24N6ovPmkcKW59LHAJUBUo4lfgePzNUp3lbMUkvLXv51ivIno+lCaAUOzYjkNWbFFlU6eAhzuaT9cljf4GmsgNXp6tUMEjdwAbgNGJrkCCOMqpy9i8P5K9IpsInBIvlo7ZlLwQszz22I+8Dii64tpBkdd5SwLXAEcEjPkdWSiFju5cJVzKHLjDzLc0/4ByUhZG1Ss0c9gZrNnIBtyogK5LwJHeNovaBnmKmcZYCfkBrADhRmOucCjyMXzStIxgIBsiyE+7uOJ9oHfD5wQN3tzlbM+slIJvk8fIvVctqGw+Md0c57bgXfSWumYgmNXAgfFDLkGODtmMxOucreW11IAACAASURBVHZDGnUEGYN8VptTmJGcihiZ2z3tf1iI3O3B3KSuIbepCIhhvgD4V5xRdpVzAnBD6OEXgEWBQttLTkGauAxty93SEVzlbIKsXAdGHJ6BrFyGxn2vXOVEBVUP8LQ/PFFBq5iKN/oZTI2Za8jelJRhGvAXT/v3F/ma3RADkVkFrJb/GQB8gRjEYWl1dnKVsxZwI9HurW+QmfCLMc+NSoM7GjHk2yJ67oJskmqLDxBd7/G0/3Nh0heHq5zNkfLRUe6tD4FDPe2HyxBnnnsd0oM2yCBkxbMDoudOFLYBZzRyUx/uaX9GYdIXjlm57oYkJES9928Cf/a0/3nMcx8nu3zBPGTV+jPiwtzF/O4Tfn4IjdwwbgceL6Y0RqGYcguHITGrqJXr48CxUftpTJzuLbJX5D8Da5bhRsyypGqMPrR++Q9BZj1RWT4PIsa/Xa4YVxpV74xcXNuTv2BdC+Jvvx14MukUOuOWOhnxC0cFpq8HzgwHY80F9wrZN4zpwFqZGZ55H9dAdN0DaKu2+TxgBGIUX0p6peMqZyHEtXUauQH8JmQX8pXhvRaucnogtYdWCjw8BdH1NzOmDgmU7oJMGOICrBlmICmvtwNvJb3ScaV89HXAnyMOz0Q+89vC5zXuu4lkG9GxSKvFJjOmC7Ap8rnuDazchjg/s2Clk/jeDhOgvQMpnxHmJ+DoqM2EZtIzjuzqo48Be3dCqZGKo6qMfgZXOcsBw8jezp/hW2TGNKqD51gW6XJ0FPHZCRl+BO5ELp5Ey/+aC+BuJD01zEfAnzztvxt6zopIPCIY7BwFDIoy2K6UMz4S0bet7eY+ciEPS7oWusl8uYvoQO9o4OCwT9iV8sSvk32zuMPTfmR3Jlearh+F7P5ta1Y8EbnR3eNpP7KGRntxlbMPkncfFXx/EnFZTg0950BkxRbkPE/7l0a8vkJu/EchZTraaj05BrnRPegl2K/XyHEcEsCPCr7fjmRuhScvZ5FblfMQT/vhdpOWEFVp9KF1Bvd3pABX2FfdgqQ7XtfRmYE5z9aIi2TviHOFeQOZhT+c1IzYzIQvQuIa4ZnwbMTdMzz0nCg/8F/yFfAyS+udEUOxC22vdJ5DXG4vJDUDM1k617CgTEGQn4F9wrVoYvzAu3jafzrPeRZG0mWPIj6VNMM8ZKY5JMkUQjN7vx15z8N8Aezuab8xMF4hVVaDab7zkd26E/Kcpw8SOzkayQrKx0xkpTMkyTo4rnJWRiYv4Xx8kLIiewYnEWbV8ibZdZemIW6eb5OSqxqpWqOfwVXOmsiXKSor53Yk8JmI39IEWg9GLp612xj+IeKyeCiprAnj/76L6JXHJcCFmRuNuVm9gPjxM8wE1o7yG0ecaxnEL3sUUvsmH2OQm9JzCRr/PYD/IoX3gjQBf/W0f0tg7MKI4QjGZL4FGgpJWXSVsxILVjpLtzH8WeAiT/tj2nrdQjCG/BgkDhNOeZyBzG4fD4z/A7ICCb4vE4ANC8lEcpWzDvKZHoIEguPQiLv0kqSC3MaQn4kErsNpqD8Ae3naHx0YvzqyhyM40XoaKa9d3YatA1S90YfWgOwFSBpgeCb8JjI7TCwIZC7U9ZGL509ExxcyfIQY5AeTMP5m49LV5txhRiCurRlm7PJAI9AzMOY1YJtCVyHm5rGVOd++5F/pvI0Y/2eSuChd5fRDDH+4/jpIrZeTMrEUk+c9muzVyT2e9g+NeG7c+boggd+jkZVOvgyg5xHj/79CX7+Nc6+E3NA3CR3KNI6/PPOeGtdQuLn6JZ72zy/ifAsDeyGf67Z5hmpkdXFJcNXREUyW2T3kJk7MQ9qADguMjeqrcKSn/aFJyFKN1ITRz+AqZ2fE5xk2wlOQpXLivUdNSum+iKGI20wGUiv/UuCBcECynec9Csl66Ro69AGiq2/GHQOEe+me5Gn/2nacsy9ykzua/AHRsUjq6ZMJuNcUYvQujjj8MrBfJrPIVc5lyI0/yF6e9h9rx3mXZsFKZ6U8Q19EjP8bxZ4j4pzdkCDvcRGHHwCOyvi+XeXcR3a6azNSbG9cO867IuJOO4LsXbFhHkaMf2zxnSLO2Qsx/FFlK/4DnOFpv8kkNLxKdrLB78gqruL615aCmjL60LokfIJcl8QsZHNIeIaU5LnXAM5GLsY4f/inSEbOvR01/sbd8yi5LpCpyOrmNWM0nyY7g2I2sI4nrQnbe+6NkOJau+QZNh4x1iMTMP57I268cDDwC2A3T/sTTezjHaTfQIYfET9wuwKx5v3bAambky/L6WXE+Heo9r053/GI8Q+vNMYhvu+vjatxIrBU4PhEYP32ujPNSmdv5HPNVyh/BHBxRydRZhV5CXLNhHkOONDT/jQTD5hAdjD6BWBH6+bJpeaMPrT63ocD20UcvgCZraT2xphsmHMQv2mc8Z+MGP97OpLuaTKZRpKb3dOE5EIPdZXTH3HzBLNVRiNNqTvkcnKVMxAxiFEumAzvIcb/8Y4Et13l/B+S4x3O7pkB7O9p/xmTnfMW2T7jDu/qNMZ4W+T7k29F9yoSW3mlg+fbFnGrhPPcv0ducmNjNqhd6Wn/zA6euw5x/ZxP/tjV48iN7t08Ywo530FIRlj30KFPgJ087X/uKudE5EaY9dRgbMci1KTRh9ZZy3/I3bwD4iP8R9qzBOOnPQdp+RfnH/4cSU27q73G3+Sr30l08ba/etq/0VXOYUiaa5B/eNr/d3vOGSHDeoiR2CPPsPcR4z+ivcbfBDIfIdfwzkd2bo5wlXMhYpyDJLar01XO1sjega3yDHsNiW+83N7vmXG7jCS7tSCIe2Owp/3RrnKGkV2auAXYLIlAszH+eyCfaz533hOI8S/atRQ410AkQ2rZ0KFvkJvtZ0ja8daBYzORPRmp1o2qNGrW6GcwPu0byfV9X4f4tlN/g8zFezZyccYZ/y+Ak4OZGkWeow7xfV8UcfhUJPgb3tU5F1gvqewMI8c6iHtg7zzD3kduRu3qoGN83zcgWS9BmpGYwwhKsKvTVc5WyM0lar9IhleBEz1TVbMd5+iN+L7DK6kZiGvtfWQVFzSWHyMNZiJLWLRDBoX43i8gf+2qx5Brql1lHkwcZQS5aZ3fI6v22Yi+wcSEV4Dtkt4wWMnUvNEHcJWzBTJjCqeo3YLkrpfkC+MqZwXE+B9OfOXEJ5DNKn47z7EPcB+5u3jPRhpW5N3VmRSulFM+j0C7xwiGIauNoqsoGkN0IlKNNUgLcnOdQO6uzhFIrCPpXbZbILPh7WOGNCOrzou9dpR4MDf0K4DTQ4dmIca4C5JKGuQ/nvbzNQYpGvOe74roGlVbJyPTxeb8Ra9cXanaeQe5NZl+Qt7fTZAa90H+5mn/+mLPVa1Yo29wpVzzi+T6SIcipYtL1iTBlVr6ZyHZEuEVCMiMJnPhFF0F0lXOjsisK+wjvRDxk94XevxcT/upNFV3ldOAGP/9iO6R8AtSUO+O9tx8XeUcgezHCL62RjKMliK3WXxquzpd5WyKzIYHxQyZAvwNiW0UfWG6yjmf3JXcHKS8xD5kr3w0sFV7V1NtyKGQ1NYLyN48FeRDpDLsa+14/Xok4+zI0KFfkKD6FWQXr5uN7D/5rNhzVSPW6AdwpaTBKHKzXe5FdrWWpI9uQJ7lEON/DNFun0nIhVN0RogJBD5BbrbL5cAqFLmrs6OYzKbzgbiA6mgkMFd0OqCrnEOQmEY4aH4CMusv6a5OVypNXkR0VU2QMgsntmc15yrnTOQzDDIPiRv9i+wg92SkHn0qpbKN8d8RmaDEVfscRjtWc2Z1cyPghg5NQ3S9l+zU7DeRm1zFdLhKC2v0QxjjM4rsVDeQTImDO5JJ0wGZ1kZy7jeNGXIXcLoXUZWwjdfdAknX7Bk6dDPidgne/MYied6purpcqa9zM7nBSRA3yLVI9ktR9V9c5eyPrGDCN8/LkJhGcFPZI57287mdOowxiHsisaOoHgezkXTFIcWu5tzoSqpN5vXCK4GrPO2H3UKJYgz0UUip7L4RQ35FVnO3F/P9Mu/hNcjqKMh0pNRJONXzBE/7NxX6+tWKNfoRmJTKl8jNFLgbyeUv+ZtmLpwjkNlaXCOVs4D/FnnhbIL4e8Mb1h5CXC5BDva0H3b9JI4JxJ6MuAeiCoF9g9RVerSYz8JVzp5Iqm7YZTYcacgTZHNP+28WLHQ7cZXTE9HzZBJczbnRtZWakY5ZwQ1P84DVSpHhYjKr/k1uo/MMoxFdC15RGsN/JbnxjOlIKnAwi2sqsJKXYMvTSsQa/RhcKaP8Erk53xd52r+w9BIJrnKWQAx/VMExkKwUt5iNMSYd7nlyZ2FjyQ7IfYkYiJwWfmngSpmI64jelQmySjnRK6BWUOA1d0FSOoMz+yYkNXaVwGNjgE1LdYNPYzVnMtNuITueMR1JZQyuZO/3tP+n4iRuPwWs5q4DLih0NWcM/8VIdlqQb5HkjKAL83JP+1GbvWoGa/TzYIzOy+QWMDvc0/6dnSBSK2a3rYc0fg/Tgixvz/e0/3uBr7cOEsgOlvLNxDCCmUSJ5e4XiivF1a4jurnIHCQY++9Cd5q6yhmEpKcGA9kzyS1otr+n/YeKl7h9FLCam4YUJCt4NWf2Xwwl2/D/EvH6G3raf6doodtJgau5kxBXW0FGKiaQ/T3ZN7g5wCq1XKLBGv02MFu8R5NrDAd7HazJ31FcKXV8EpJ1E1WL/BskG+WVAl9vU2R1E5wFzyM7vfM3YEUvpU5ZeWTrgQR6TyE6nXUSsi2/oECvq5x9ERdWkNlkG6DPgdXbkyHVEcxq7kpys1MyvIn0SfiqwNc7BalXHySs62vA1qV2XRawmnscKaDWZuMjM+O/Duk5HGQu2d/puzztx7mYqh5r9AvAlUYco8j+4vyGLP9T651aKCbL51qiW0W2IEvfSwvJXHCVsx/i4w6iyZ4pXutp/6R2itshTIrnTUSXOpiD+Pr/W4jxcpVzGuJjzsfJnvavKVrQBHDzt4r8FVlx5nSWingdhaz8Tmhj6J7t3fzXUVzl7E58q8gpyA29zYqlJp1zBPnLfmikBlGHykNUKtboF4irnAOQSoZBvgQ29rT/fSeIlIOptXI90Z2lXkJm/d8V8DqnIy6GOOYDa3RW3rMxYochBnuJiCEPICV487q2zOvciBQwi+MXJPjXZt39NChgNXcNUnEy72rElB0ZgWyeiuNjpGxByTPUoHU1dx6STRVezTUjJUv+3ZZry7zOq+RvCDMK2KEWC7Ll63xkCeBp/0HEnxpkeeAJ8yXrdDztP4H4+MP1xUHqk7znKicuNzzIVeTuagzSldxc8JLhaV97UlN9NSTAGeZAYLyp95P3dZB0v9gOWojvu9MCf57255sYyurk7qoFuSG8aRIP8r1OE7KLNbKJvGFVcktXlAxP+zNNMbh1kN4LQeqRTVdPu8rJ28je7DvYDcjn/tqO6N68VY+d6ReBmRl6wLGhQ/d62j+kE0SKxey6vZvcjWYayU2/MN9mMzMzHInsrIxjUy/QyaizcJVzKOIGCd985yHN1G/IN6MzaZOvEV83Zh6wantLXySFCfSeinx+4Znw70g9/bylwU39mreAATFDfkJWNgUlAKSFCfRm9lCE+Q44qK00Vle65v2P+CZGE5ES4iXddNnZWKNfJMYYPkHuLOEwT/tRs85Ow5WWhvcQXfDrdSQY+HWe5/dCjGFcBcXRSMXGTv8SucpZFYlFRJX6HYEYxFgXjXmv3iJ6oxSUOK0xH2ZvxQNE+79vBk7Jl1Zr4iJvEm8ML/O0f06HBU0AVzm7Irupw9lGLUimzj/zxapc5WyHrJDialkd42n/tiRkrRSs0W8HxhiOJjtdciZSkbLdjUfSwAS2zkVS48K1bX5G2ifmaxC+DFKYLLxDOcO+nvYfSULWjuJKi7//kLs1H8BHgoFv5Xn+Wkh+fpTvHKQUxdiOypkErnQpu4Po4P0EJN009rto3HzPEV3vaA6wcr4JQSlxlTMA6XgX1aTmJWTTYGxczZUucnGG/TskhbPoQneVivXptwOzaeQAJO0tQw/gAVe6M5UNnvabPe1fhPgwwxfG4sBTrnL+ZQKGUc//Fmn2Ejc7uMIsxTsdT/uzPe0fj3w24Y09DvCGq5xTjZsu6vkfEN1fIcNVcc8tNWbVsjeSrRQOvP4fMM5VTuzKxNP+C0h7zii6IyUbygKTU7810XGkbYEJrnLiKpjiaf92ZMUbxdJEu5CqFmv024mn/YlIEC3IunRigDMfnvZfRozB8xGHTwdeMznTUc8dhQTRoliJ6Jl1p+FJM5R1kRVKkC5IkHqkq5zFc54oDCU3SyvDVuRPBSwpJqB9HbKLN7wruSdwr6uc21zp0xzFxUBc797DXOlEVhZ42m8yO2kHI3GHIEsCz7vKudS4X6P4C9JoJYrTTayjJrBGv2P8l9wNPie70oC97DBb+HdCslHCftCNkeyeuLK/FyCujyjOd5UT7kXQqXjan4y4A8It9EDSFt+Lyu4x8QkXaVoTReyqqLMwLqf1yP0ughQ6e8uVct3h5zUBByM5/2EUZbSyyeBp/zkkxvRK6JBCUjpHRd3Qzer8QHJXRSCr9KjmQlWJNfodwBiIY5F8/SB3Gl942eFpv8XT/uXIcvmb0OFFEXfPnyOeNx9J+YvK6lgcKfZWVnjan+tp/+9IP9dpocP9gVejbnKmINdBLChDEWRVpBZ/WWFkPgDZcxAuR9EAjHalZ0T4eV8Rr8/2SGnkssK4HLdHDHXY7bglksLqRDxvHLlp1xmOMtk+VY8N5CaAKV/wGtlVEst+84fZ7j8MaasX5hykOJUOPWd/4MGI8XORtMZ2tcJLG2MEHiC31V4TktmTk3nlKucMot1aPyKBzk5Na4zDuGWGk11ADqSF4t7Gnx9+zs1Eu+kakbTGsqxD70pfiHvJTTT4Htg5vOvWpL0+RXSO/tOe9qOuharCzvQTwGwPDzfa3g4JgJYtnvanIj7qM8idMf0TuNFk/wSfM5zoTIiFyO1CVTaYHPstyG2f2AVZmZ0d4cr4N5BjIBEf8j8SFzIhPClNvD657p6eyOamQyOedgpi4MM0IO07yxJP+y8hsapwzv5SSJxqh9D4TLvMqGyfnU2KZ1VjZ/oJYYzjC2TnxP+IlCLulC38xWBq7txDbu/cx5B8/tmBsYsgZZdXj3ipgWYZXba4yvk70gg+bORvRko1NwfGLoU02w5vcpuNzPbDLrKywcxq/0V0dsrZwBXBlZxxb4wlt43md4iuqXTYSgKTNXcnuZ3XmpCCbXeHxm9P9A39XeQ7XLWN1O1MPyGMoTiGbH/qkpTx7DeIJyWEB5Hr+94TCY4tERg7i9xdyRnKMnspiKf9axHjEK5XczzwSDDbxeR/nxzxMguTu7orK0z85jRE/vDs7jJCKzmTkRaVxrk0ud2pygpPymr/idxqol2Au1zlnBVcyXnafxHpnRxmXeJbdlYFdqafMG5uTW+NtBksWa3yjmBme8+Qu03/E6Sc9BeBsXcQ3cylbDYx5cOVZh6PIwHsIGOA3Yz7K1N+YxS5O5vnAyuU82w/Q6ErOTNjnoAErIP8BDjmhl/WuMo5Cdmkl3clZyYyH5O72/cDpHdwVRpHO9NPnn8Bnwb+V8DNYd94uWJme5sgX/wgqyAZIME0x38gVSjDlF0mTxSe9l8DNkdK9wbZGMkAWcGM00hZ4nC6X1fEF172FLCSW9yMm0t0CeY/EF/fv6zwpBR23EruYbNzOxPTiorNrEV0ckNVYI1+wpiaJ+EmDusDx3WCOO3CzFy3QLqGBemHpDnuaMZNJToFbi9XOaulK2UyFHqT87Q/iejqpce7yonqclV2mAJlmwPh8gqbkH2TG4WUPQhzRrntUYij0Jscshkvqmhg1bZUtEY/BTztP09uI5LLTFCwIjB53zuRe/H3BJ50pQ0fiF80XM9GUUEXTaE3OcTfHS7XuzD5SzeUFXlucquSvZI7FUnxDNIf2b9QERRykzMB2+ORAm5ZY1zlRDXqqXis0U+PU8i+aPqQvzFJ2WGW+oeQ212qCzDMVc7ZSMzieHIDhQe70tGrIijkJmf82VEG/jS3THoqFIIppJbvJjfIk2Y7UZU2LzZZQRVBATe5dU2Ka9TO7bjaRBVNxXx4lYaZPZ4XevhQVxqQVwwmA+QfSGGvqFz+C80GmOtDx+qQ6p4VQwE3uaM8aU8YrkraE6ntUjEEbnLhOkM9kcZAg5G2lBNDx5enjOoPFUIbN7mXzOrmAmBq6PiWlXa9FoLN3kkRU/xpPBIYyvCMp/2yrM3TFq5y9kF2P4YriV6I5L1PIbtGexOwdCYLppJwlfM3pBVhMANEIyULXkKKdwWD878BS3olbqLeUcys/Qqk6F6QucAeiF5hn/enyO7rijIeJjNpKLkuql+RzZSrkrvSe97TftmVougIdqafIqagVTjQuZNJFcRVTldXOfn6eJYVntTN3wExBEEuRCqOhlc2XTC57K5yerjSEKMiMNUr9yc7Y0chu5G3JredZB9MDRtXOYvlKVxXVgRWcuGKsQsh6ay9ya3MujJS0hhXOcu50sC97Ams5MK5/H2BF4GPyK3EOchVzkogzWfKqfJoe7FGP32eQbpUBbnCVc6RSI5wRdXy9rT/OlKEK1x35iLk4gmncB7nKudOZDY1LHUBE8ST1oP7kGv47wA+JDcl8FJXOSOQnPb/lETIhDAb1sIuqozhjyo1faurnFeQ5jRlW5IijAncng5cGTq0GLIXIypD6x5XOeORuMDB6UqYPtbop4xZAofz1jdBsl5WIL45SdniSfepHcltVHIhuSVvuwJ/Nr8ryvUBrc3m9yO74qYCbiB3G39fJCWwDuk+VVF42r+Z3HTj7ohvP+zi+SPSX0CR3Uyo7Alck+HYzWJInCo829+IBf2TK77DljX6pWEMUtMjioqs8eFpfwxi+MMXwd7E38gqzugDeNp/HHH1hA1/vqbxFWf0ATzt30huyYXuSL3+OMp+l24YY/jPINfVsziQryy6NfqWeFzl1LvKOQipXphTy9xQkUYfwNP+aKINf1zjjXCd94rB0/4IZJdnsMRwvuunoma/QTztX49kawXJ1wa0bAux5cMY/tORJIQgcZ3GoAqMflxrsZrDZNr0QQJX04BpHclOcKXJ9vKIUcy3O7Xk7h2zq3JRJD3vZ2B6e3X1tP8/k69/JbJRKR8lN/omY6MvMlud6nWgAban/Udd5VyNFDBrq6xGSY2+qQ/UHdG1K/BjsDJqsXjav85VzsYUthmrpDN9o+siiK4gurZrFelpX7vKORUpz7xtAU+xRr+ccZXzB8QftwLyBemLGLvg78zfvUJPn+cq50fghzZ+psQ00xiEpMIdg/i5byLaKEZ1ZyoaVznLIjVjBhCvY+Z3eCPRHFc5ben5A/BVTMGttcg/E2w9T3Fa5WIu+BWADZFleFu6Lhx6/kza1jOja9RNKm7FFqbDhtCkU64KDERyyuN0zDzWLfT86Ujd+EJ0jfoeboisRNvyCHTYEJpJ11rI+7sE+a/VRZEbW/D502hb1++BryPKJtcjcbZCCGeuVRxVY/TN7HVtxPBtjHyIK3bgJbsh2877F3DuT4B3Aj/vIUGuLkhe8AXABkhTi3AN+nAwtE1c5WR8rBk9Ny5Ezjx0R1YlkY3RA7S4ypnIAj3HIlvcD6EwV2G4DkqbuMrpibx3QV3Dte2LoQcShPxjG+Pmu8qZwAI930FiEtsS774KUvTeBFPDZ0MW6LkRsvpsL73Mz8ptjJvtKuddsr/Dy1H49RPVkCQvpiTJxoGfDcjvVmmLzM2grZpPv7vKGUe2rnvS9io1Q9lXVG2LijX6rnSvz1wcGyOzoUI/uKRZxfxk0rnCreUuQgzqJkgz9f0Cx/LOkszM1iH7AlmX0EynRNQhs7G1WFBxcX4RsuQ1+mZmuwrZN+4GOif21BX5Tg0MPDafwgw+tGH0zcx2TbJvZuFyxqViYWBT85MhqoF4HHmNvqucbkgz86CuTnEiJkZvpER2sEx2MavtcB2fiqNNo6+UGgDchbQfawFu1VqHW84lRmNj4wAkU2JJpPPU8IaGhimmNPFmiMHcjbZnpcXSghilGcgyMuzuKYYof++R5nUPQnK8LwBYefAW6zQ2Nl5Jtq5dkR2C+wM7I0v7JGlG8uZnI9kKHZlhFXzzWXrdNfpH6LoIkgWzP7Lxq2++12gH8xFd5yErhELcUHEUrOvqe+3QEKHrosDuiK5bk+tm6yhzEV1bEF07MjEo+LnbXXbKNo2NjZuRrWs/JJNrP+Rm0pH3PYpZyPVah+jakdLlBU9+jx834vDGxsY/ENC1A+ftFApRtgk4VWs9XinVCxinlHpBa/1hkoI0NjbWI8FAF3Mx6JYWvh3/4SVP/OXCj5CbztJFvmwTkio5HtkwMw25KH6N+Ht60Ndnam73a+NnaWAlCp/97QU8sOIOmx20xCrO+mP/O3zXZdZv2BXYtXl+E1PGvHfpiKPO/gxYluKN3xzEDTEBCc7m03VGqE1ezwJ0XZbiZ2dzCLTeW3aDtTYBNmmaMxf/tXcuffjg075E3FLFGr/pwNtIXZhfYnTM/D07o6tZNfUuQNcBRt9imEvAsDlbDNwHYN6MWUweNfqfD+z3t6/N64abmLTFz0jK7ycx+rX+bcp6E9C1bwG6Lo9MsApFI5OGLuZvNWCjdU4CmPXzND57/o1/3vvA8T8gn2uxK7TvjK6T43RkQZJFa7zFrBAXL0DXP5LbMCcfzci1XYdSGrSq79Y1mNt/UWNjowec0dDQUJaN46No0+hrrb9DPgy01tOVUpOQCyJRo48Y/Kzdqe/e9Rj/G3LHwhQePPsa+dKMQTaTvNveDAbzPN/8xGIM5nqIG2AD85PPF7rn7998/8GgK09bacCm6zF3unh33rjyv3zw4FPdEXdGIUwmW9f3Pe0XsyRvxWS0zDCvXNNxwgAACkZJREFUGYurnL5Ib4CMngPJ7bAVpPtiKy7nL9Snl1PfrQuLOmJHnznlcr58fWx3CndnfMgCPccAk4J9bAvFGP/fzM8n+caamWrmM838zmccF1pyzZU/0S0tq3TtsQi9lpHF2UMHn8qvn09ZiML8481IP96MnmOAz9qTWWWe84v5mRQ3ztwc+pOt50DijaMC1FLrrvHhrJ9/XaN7714ssngfmufN557djmPe9JkLIfGAtpgHjGOBnmOQpIj26NqCTOp+Irq5O9Cq64pkX6vrET/pqAdmLbP+ml9M++q7NfuukDMP6MECm3VasXJ3FkUVXFNKOcBrQIPWOipjpV0Yl84kQm/+79/+yF07xjbrmYvMbFu/NKaaXqdivlg/IhkIsaywzcYMHnIG9V1lFf3N2EZGHBHVjwQQg/w22br+lJjQ7cRVTh/EqOSd0a114C5sdOKhdO/dE4CPRo7ixXPCqdGt/Er2zewdT/tFB4CTxqTgvt/WuE1OPoK19t+Jbj3FY/b2zffx9k33xQ3/gQUGfjQwrhyaj7vK2Q0YmW+MqqtjhytOw9lyIN16iK4vnnsNHz3+YtxTviT7xv1eTHZUSTGF9fK6q7t0X4hdb7iAfmutQtdFukcNmQms1tDQ0On2pxAK9mUppXoCjwAnJWnwDfsTcbftvcyS9N9obb5+S661ui5d5rY0NT2MNCh5PricLSNWJ9vga8QN8REwuWH/nf640qDN9+s9YGlU3QJbucx6a9C7/1L8/rXExOoX6jazee68exFdX41JqetsNifb4DchhvFjYPLaf9ptpZUGbXZg7wFLs1CvBR/vittvxqv/9Jg/SxZhXXssPG3+zNlDEV3fjkipKwe2Cv0/B8nS+hSYvM6he66y4qDN/tRnwNKtBh9gtd22zTL6C/Xp+dPc32bcgmRyfVCmlSrDuk5H3KSfAZPXO3Kf1VYctPmhffov3WrwAVbfY7sso7/IEn2/mTX11xuAhzzt511FdiJhXX9BPtfPgMkDjz1gjRV32OywPgOWijP4ILZrfyqk3lJBRl8p1RUx+PdqrR9NQY7YZfOa++7Ewov1ZeUdN2fZDda6cf1NNy73AmUNwBMsmK2+42m/NS3TBPdyUHV1rP2n3fhl8pesNGgLlll/zZvWWX+9ci9ktQrwMAt0HR90p8Xp2nWR7qx14C40z5vHSjtuQb+GVW5de53/O6M0Ireb5ZCy0pHutDhde/dfitV2344e/RZn5R03Z/GVnaFrrb12uBppufEHpKhcpDstTtdl1l+T5bfcgKXXWZ2VBm3Gossve29DQ8MVpRG5eMyqvAeyhybSnRanawRJJ1ukRiHZOwopDjZJa53WnezHuAMrD96ClQe3di0r+xxZT/vDyW2VGCRW13UO3SP4b9G5z6XG0/7V5G5hDxKr66YnHx7894eEREoNU344H7G6bv/Pk4P/VoKuh7UxJFJXVVfHbjdeEHyorHU1xn1wG8NiP9cQZa1rkEKi65sBhwLbKqXeMz9JNwEZTtv1O2aS35hWClbXbKyulYfVNZuK0rVNo6+1fkNrrbTWa2ut1zE/4XZxHcLkuoabUoTxKiVQkg+raw5W1wrD6ppDRelaTjtyMz7d1jx9w0zkTS93n28xWF2trpWO1bVCdS27HrmNjY39kUh4P8RPNryS7qLFYHW1ulY6VtfK07XsjL7FYrFY0sM2UbFYLJYawhp9i8ViqSGs0bdYLJYaopyydyyWsqX7Bq5WdfXUde1GXV09qq6eui5dze9uqHr5XZf5P/S4qqunvksdSin5Xaeorze/u6jox+vrUHVQV6eoq6+jrk7RpUsd9XWKbub3Qq3/18vv+vDj0b+71tVRr6BrfR11StG1XlGnVPZjdcqMVa1j6rPGKpSC+jqoQ1FfJ9XY6usUdea3UlCvFHUK6hWip4I681zV0ozSLdDSDLoF1dIEugWamyIfVy1N0CKPy/EmaGlGN82X3/Pnt/6vW5qhaT66uTl7TOvYedDSgm6ah25poWVeU+vvluZmWuY3oZtbaDa/c/+fL/+3Pq+ZluYWdIumeV4zull+t4T+zzo+v5mWZm2eq2luaqFZa+a1aJo15rdmXguRj7cQHLPgmKf92Mq/dqZvsVgsNYQ1+haLxVJDWKNvsVgsNYQ1+haLxVJDWKNvsVgsNYQ1+haLxVJDWKNvsVgsNYQ1+haLxVJDWKNvsVgsNYQ1+haLxVJDWKNvsVgsNYQ1+haLxVJD2CYqFkuJUEodq7W+1cqxACtL6eWwM32LpXQc29kCGMpFDrCyRJGqHNboWywWSw1hjb7FYrHUENboWyylo9P9xYZykQOsLFGkKocN5FosFksNYWf6FovFUkNYo2+xpIRSajGl1AtKqU/N774x4/6llJqolJqklLpOKRXb3zRNOczY3kqpb5RSNyQsw2Cl1MdKqc+UUmdGHF9IKfWgOf6WUspJ8vyFyhEYt69SSiulBqYhRyGyKKWWU0q9rJR6Vyn1vlJq5yTOa42+xZIeZwKjtNYrA6PM/1kopTYFNgPWBhqADYCtSi1HgEuAV5M8uVKqHrgR2AlYAzhIKbVGaNhRwK9a65WAq4Erk5ShCDlQSvUC/ga8lbQMRcpyLjBca70ucCBwUxLntkbfYkmPPYA7zd93AntGjNFAd6AbsBDQFfihE+RAKbU+0A94PuHzbwh8prX+XGs9D3jAyBQn48PAdkmveAqUA+TG9y9gTsLnL1YWDfQ2f/cBvk3ixNboWyzp0U9r/R2A+b1keIDWejTwMvCd+XlOaz2p1HIopeqAIcDpCZ8bYFlgSuD/r81jkWO01k3Ab8DipZZDKbUuMEBr/WTC5y5aFuBC4BCl1NfA08CJSZy4SxIvYrHUKkqpF4GlIg6dU+DzVwJWB/qbh15QSm2ptX6tlHIAfwGe1lpPSX6CTdQLhtMGCxmTqhzmxnc1cHjC5y1aFsNBwDCt9RCl1CbA3UqpBq11S0dObI2+xdIBtNbbxx1TSv2glFpaa/2dUmpp4MeIYXsBY7TWM8xzngE2Booy+gnIsQmwhVLqL0BPoJtSaobWOp//v1C+BgYE/u9PrqsiM+ZrpVQXxJ3xSwLnLkaOXkhc5RVz41sKGKmU2l1rPbbEsoDEOQaDrAiVUt2BJYj+/ArGuncslvQYCRxm/j4MeDxizFfAVkqpLkqprkgQN2n3TptyaK0P1lovp7V2gNOAuxIy+ADvACsrpVZQSnVDgpIj88i4L/CSTn4TUV45tNa/aa2X0Fo75n0YA6Rh8NuUxfAVsB2AUmp1JPbzU0dPbI2+xZIeVwA7KKU+BXYw/6OUGqiUus2MeRiYDHwATAAmaK2f6AQ5UsP46P8KPIfc0IZrrScqpS5WSu1uht0OLK6U+gw4hfwZRmnKURIKlOVU4Bil1ATgfuDwJG6EdkeuxWKx1BB2pm+xWCw1hDX6FovFUkNYo2+xWCw1hDX6FovFUkNYo2+xWCw1hDX6FovFUkNYo2+xWCw1hDX6FovFUkP8PxO3nsfak/p+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADYCAYAAAAH3zO4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd5jcxNnAf3NnG4PpIYEQiuhNtFBC6MH0HkqAUEL5AFFD7yX03hKMFXrvzRQXwGA6phtEJ0Z0U2zAuPvu5vvjnfVptdLd7p623vyeZx/7VtrVOzvSOzPvvEVprbFYLBZL76Cl1gJYLBaLpXpYpW+xWCy9CKv0LRaLpRdhlb7FYrH0IqzSt1gsll6EVfoWi8XSi7BK32KxWHoRVulbLBZLL6LqSl8p9Uel1JplfG6qUmqUeR1QCdmypty2ms8uq5SaqZRaP2u5KkU57VVKza2Uesn066tKqYGVki9Lymzr6kqpF5VSzymlnlZKLVkp+bKmB8/tCKXUD0qp0yohVy3oyXNdD9Ripv83YP4yPve11npj87oha6EqRLltBTgdeDZDWapBOe2dBGyotd4Y2B24MGuhKkQ5bf0W2FJrvSFwKXBW5lJVjnLv5QOA4zOWpdb05LmuOVVV+kqpzQAPOF0pdUWJH19IKfWsUupBpZSTuXAZ05O2KqXWBsYBX1VCtkpQbnu11h1a6zbz59zAO5WQL0t60NZxWutfzZ8zgLauzq8XenIva60b5h4uhh7qsLqgTzUvprV+Uin1mdZ6gzI+7mitf1RKbQHcANS1GaCHbT0N2A+4LGOxKkZP2quU+gNwD7AssH/mwmVMD/sWpdQA4Dykj+uenra3mWiG36KqSl8p9TtkBht9rxV4MeH0x7XW5+T+0Fr/aP4doZQaVFFBM6DctiqltgFe11qPV0pVXtCM6GHffg2sb1Zwo4DHKiZoBvSkrUqpvsgAd4HW+v2KCpoRPWlvs5H0WzQaVVX6wCpAEH1Da90OrNPVh5RScwJTtdbtSqlVgB8rJ2JmlNVWYDVgY6XUusDKwPJKqd201p9XRszMKLdvZ9NaTzd/TgR+7er8OqHctrYAtwMPa60frpx4mVPuvdyMFPwWjYaqZmplpdQSwKPAV1rrLUv43NrAfxGFoIEjtdZjKiNlNpTb1th33Axcr7V+IUvZKkEP+nYN4AqgHegLnKm1HlkZKbOhB23dBbgZeN289a7W+ojsJcyWntzLSqnrgHWB2YBAa71jBUSsGlk817WmqkrfYrFYLLXFBmdZLBZLL8IqfYvFYulFWKVvsVgsvQir9C0Wi6UXYZW+xWKx9CKs0rdYLJZehFX6FovF0ouwSt9isVh6EVbpWywWSy/CKn2LxWLpRVilb7FYLL0Iq/QtFoulF2GVvsVisfQirNK3WCyWXoRV+haLxdKLsErfYrFYehFW6VssFksvwip9i8Vi6UVYpW+xWCy9CKv0LRaLpRdhlb7FYrH0IqzSt1gsll5En1oLkCMIAgUcDhwAfAkc4bpuWFOhKkgQBMsCVwELAYOAG1zX1bWVqjIEQdAKnAT8DfgY6dtxtZWqcgRBsCpwBTAPcJHruvfWWKSKEQRBP+BsYCtgDHCU67oTaitV5QiC4M/AxUA/4CzXdYfWWKSSUVp3r2eUUvMDNwCbAz8CJ2ut78xKCKPwHwQ2AwYA7cBUYEPXdd/K6jr1QhAE6wEjgNmR1dZk4EHXdfepqWAVIAiCFuAZYA2kb2ci7V3bdd1PailbJQiCYGvgPqRvFdJW33Xd42oqWAUwCv81YGlgDmA6MBFY1XXdb2spWyUIgmBP4DqkbwGmAGe7rntR7aQqnWLNO4OAGcCCwJ7AYKXUShnKsQOdCh+g1fz/TjMgNA1m1nsX0r7c7z8A2CkIgoE1E6xy7EenwgfoC8wF3FQziSpEEASzA7chCjB33w4ADg2C4I81E6xyHEenwgeYDZgXGFwziSpEEATzAT6dCh+k3WcGQbBkbaQqj26VvlJqALAzcLrWepLW+gXgEWDvDOU4jU6lMOvSwCLAuhlepx7YDHkw4gwATq2yLNUgqW9bgdWDIFi+BvJUkp2RZX+c2YDjqyxLRTGTsePoVPg5+gJbBkHwu+pLVVH2Qe7bOH2BI6ssS48oZqa/LNCutf448t4YIJOZfhAEswErpxzuB2ycxXXqiE0pVII51jHmkKYgCILfAAunHNbARlUUpxpsCcyZ8H4LsEmVZak0SyODWRLTgQ2qKEs12I78WX6OPki/NwzFKJg5gV9i7/2CLNGzYBVgWsqxfsjMuJnYhPTfvR0ZZJuFtZG9mSQG0HyKcP0ujs0TBMFvqyZJ5fkTcr8mMRfNp/TX7OLYUmZ/oyEoRulPAuaOvTc38GtGMsyHzPoKmPLjT4y5fchSnnLW9ZTTLLb9JNMOWmvGjnxZPX7EOTt7ypmv2kJViPlIucd+HfcDb9xw/yqecrp6mBqN+HMCQEd7O5+MeF4/sPfxu3nKSVoJNCLzIaaNJBTQbOadtNU5yODXMP1ajMvmx0AfpdQyWuuct8WqwHsZydCW9Oa0XyZxxw6HMH3ipEWAF4HRnnLOBR73ddjIro2Js6OXr7iZN296YABwLnCip5yrgSt8Hf5QVemypY2EAX3SuB+5YzuPtmnTlwde85QzCmn3083Yt6POHsT7Dz7RH/gPcJannCuAq30d/lxV6bKlDejo4vjMaglSJdpJ15ctpOixeqTbmb7WejLiTnm2UmqAUmo9xNvmtoxk+IyEza9v3giYPnFS9K0/AY8Cb3nK2cVTTqPavj9NenPsM69E/5wLOBkIPeVc7iknzS5e74yl04tlFl+8/CZt06ZH39oYeAp4yVPONg28qvsi6c2xT+f17fzAOcDnnnLO9ZSzQDUEqwCfka7oZgAfVFGWatCVC+p0srN8VJxiFeehyCbG94i74SFa66xm+iEJdt/frbQ0s82duGJaFfGDDjzl7O0pp24CzIpkKAntXWzdRI++OYCjgc885VzjKceprGiZ8zYJJoDfr7YifWZP3ANcB3gMeNNTzs4NOLAPJUERLrbu6knnzo14a33uKedSTzm/r7BsWfMSyRubIHt0o6onSlV4ihQzNDC6kQIri3qotNYTtNY7aq0HaK0XyzIwy/xYjxBbDs654ALsfOvF0/v0n+2JlI+uANwKfOQp50BPOWmeBPXGMBJmv+uf8H/TV9x5ixeQ4Lc4/YBDgE885dzoKachNntd120DniZmBphviUXY6aYLp7X0aR2V8tHVgPuRgX2vBhrYhyCz3DwGnnPUlCU3WecZCh0iQAb2Y5GBfZCnnMUrLGMmuK47ERnUk+gA3qyiONXgASTQLs4kZCLcMNTLTOoMCh+WafMvtdh1V0/9aAtgdWR2nzSaLglcC3xqlH+SL23d4Lrup0hb8uwbLa2tMzb51xE7Aw4yu09aTvZBgp0+8JRzR4PM/I8n1lZgyu9WWuaCa2b+7y/An5HZfRIrIGbEjzzl7FnvM3/XdV8HniM2gWnt13fq1ledtgOwODK7H5/w8dmQFfWnnnKua5CZ/z+RqNQok4GTXNctGPwanBHAR+Tv22hgAtmZuqtCUWkYqkEQBJshyrDFvIYB+7iuO8sU4ilnBcTW/XeSAyUAAuBYX4dpK4SaEwTBXMDdwIbIjTMD2Ml13edy53jK6Q/si+SsSZv9TQeuBC7wdZg0i6wLgiDYCbgFmQH2wZgIXdedpRw95awOnIIEOKXZ9F8DjvF1+EJlJS6fIAgWAB5CVisaUYLbuq77Ru4cTzkDgIORAXGhlK+ajOR4uczXYdIMsy4IgmB/ZIO6Denba4ATGsncUSxBEPwBeBxYCunbH4GtXdf9sKaClUjdKH0A48e8ITDOdd0X087zlLMkcCIy601zGxsOHOfrMKu9h0wxEY0bAAsAo9KSVHnK6YukvjgFWCbl635EVkvX+TqsSy+CIAgWRqKrQzMjTsRTzop0DuxpM/v7gZN8Hf4vc0EzwATYbYK48Y10XTdxk88M7Psj9/JiKV/3NdL3t/s67MpbpmYEQeAgfuwfu677To3FqShBEPRBYof6Ak9GJ6WNQl0p/VLxlLMoEgp+ENA/4ZQOxPRzpq/D76spW9YYs9WuiHnATTntA+T3GNbgro94ylkKUYb7kjywzwT+DZzn6/CnKoqWOZ5y+tE5sC+dctqbyAp2VLXksjQnDa30c3jKWQQ4D8mPkcSvwPnAlb4O06J/GwJj194baU+aK+eTyCqn4WddRvlfhJh9kpgA/AvwfR02tG+4WdUdCJyFrACTeBg4wddh02UotVSHplD6OUx052WIiSiJzxEb+T1NMBMegHh9nEhh0iuQVc6NwOm+Dhs+d72nnA2Ay0kPh/8YsZE/2gR9Ow8y6z+K5ARubUjm27N9HTZt7npLZWgqpQ9gAnt2AC4hfak8GtkQfKlqglUIE7h1DrK/kbQBOhm4ELjc12Hc06KhMKucPZD2LJJy2jOIGaTh6zB4ylkCaevfUk75Cen7Qb4Om81bxlIhmk7p5zB20kOAM5E8IUnch2wIjq2aYBXCU85qyConLYnZV8gG6Z31uiFYLJ5yZkfcWk8mOeeJBm4GTvN1+E0VRasInnLWRfp2nZRTPgVOAB5u9FWOpfI0rdLP4SlnfuB0pBRjUpDPDKRs4fkNngslt8rZBrgUWC7ltNeRVc7zVROsQnjKWQixf/8fyZ4+UxC3x0vr2e2xGEzf/g3Z30hz4X0e6dtU7yiLpemVfg5POcsgD8xfU075EdkQvLZJNgQPQhTib1JOexA40ddhYi6gRsJTzsrITDgtDfc3iNfTrU2wyumPBEWdSnp689uAU30dflk1wSwNQ69R+jk85WyIbAiukXLKh8CRvg6frJ5UlcFTzryIcjiS5A3BmUhgzZm+DiclHG8YzEx4S2SVs2LKaW8BhzfJXs7vkEnKwSSvcqYh+1rnN7rHmiVbep3Sh1kbgnsCFwB/SDntv8Dxvg4bJnteGiaY7ULEzz+JscC+TWLy6YOYe84GkoqWaGRgOKMZlKEJZrsE2DrllPeAf/g6fCPluKWX0SuVfg5POXMAxyBunElFEj4D9vN1+GxVBasQnnLWQ1Y5aycc1ubY6b4OGy7KMI6nnLmRjd6jSS7r9z6iDJvC/u0pZzPExJVUerQNiWM5r9FNl5ae06uVfg6T3Ops4AAK3R41stF7SpMowxZgN2TmnxT6/yGwj6/D16oqWIUwSenOR1w947TTqQwb3uXRRG3vhxSkWTDhlDeRgS6oqmCWusIq/Qiecv6EpGtOSl38EfLAjK6uVJXBrHIuQOz9cdrNsXOaQRkCeMoZCNwELJpw+C2kb9+trlSVwQR3XYmksIgzA/Fmu8zXYVqNW0sTY5V+DKMMz0c8JOJ0IDPks30dxtMFNySecjZBIneT3ADHILP+hk/nALOU4eVIkrM4M5CkdZc2izL0lLM9knsqadb/MjLQ2XQOvQyr9FPwlLMxMjN0Eg6/gyjDMdWUqVIY+/dlyAZonJlIgNsl9ZrBs1Q85WwLXEdyWuNXEGX4cXWlqgymHOMgkqN6pyJpPAY1uiurpXis0u8CTzlzIcrwwITDMxE/+IuaSBluDVwPJBXweBVRhg2VOzwNTzm/Aa4Gdk84PBXZ3L+6WZShp5zdkFz38yccfgZxWPi8ulJZaoFV+kXgKWcrRBkmZbV8DVGGTVEI2kQw/wfJZx9nGuIR8+8mUoa7AoNJDmIbhSjDsJoyVQoTwXwdsG3C4V8RT6cbbSqH5sYq/SLxlDMfogz3TDg8HcmKeGUTKcNdEGWYlOL3WUQZflZdqSqDUYb/BbZPODwJUYY3NIMyNEFs+yIeaUkRvUOBA5shZ5ElGav0S8RTzs6AT7IyfA5Rhg2fwA3AU86CSFt3TDg8CUntfF0TKcN9kMIscyecMgz4v2ZRhp5yFkM28AcmHP4JOAy4uxn61pKPVfplYELgfZLz+ExGqlf9txkeGKMM90JWOfMknDICUYZfVVWwCmGqsd0IbJpw+CfgCCRTaTP0bQuSifZikmsy3A8c6uvwh6oKZqkoVumXiVGGeyKbgUnK8H4ktUFDZ3fMYaqT3QBsnnB4PLBLs5TyM33rIekakpThDcBhTeS2uwySinrdhMNfA39tlmA9i1X6PcYow+uBLRIOjwF2aBavCKMMD0I8muJpK9qQRHWDqy5YhTClGm8G1k84/CKws6/D76oqVIUw0bxHIxHK8eR804ADfB3eWXXBLJljlX4GGGX4f0jgT7yoxw+Icmj4ZGY5TAK3m0guS+kD/2yiSN5WJFDvfApz+HyJDOoNX6Urh6eclYBbSM5CeyFSmKYpgtd6K1bpZ4hRhg9TmPRqJmIOuK76UlUGYw8+FclZFOc5xNzTNLZgTzku0rdLxQ5NRcx491Zfqspg6jFciCQjjPM48HdfhxOrK5UlK6zSzxhPOXMi+XuSNnmvRiobNU2mQ085OwK3U2ju+RzYvllSOMCsGIZ7SfZ4ORepS9AULrsAnnL+gaRxiJt7PkD6tuEL8PRGrNKvAGYWfCaSyyXO08DffB2Or65UlcNUrhoCLBE7NBlJV/Fg9aWqDCZf/2UkJ6obAuzdDDUYcnjKWQd4iMKUFT8h9/FT1ZfK0hOs0q8gJsDpFgo9QMYituCmSXFrcrzcB2yccPhfSMbOZpoFH4AEr/WNHQqQvm2KWA0ATzl/QExba8YOtSMmoP80gwtrb8Eq/QrjKWc1ZAYYz10/CdjT1+Ej1ZeqMhhb8JXAoQmHH0DSVTSFCyvMKkrzIPC72KEJyJ7GM9WXqjJ4ypkd8VJLSs9xI+LP3xQurM2OVfpVwARzPUCh658GTgMuaKaZkqecg5H9iz6xQ03lwgqzIlsfBlaPHWpHXFivqb5UlcF4qZ2A1FqIFxt6CdipWVxYmxmr9KuEp5x+SIrbpPTF9wD7+zqcUl2pKocpQP8AhekqmtGFdQ7EhTUpffF/EeXfFC6sMCs19Z0U5u75ChnU36y+VJZiaam1AL0F89AfhITxx/2cdwOeNykAmgJfh88BayG1B6L8FnjaU05SuuqGxAzWuyOrtjgHA096ykkq0t6Q+Dp8DFgHiHvvLAK8YNI4W+oUO9OvAaZa1X0U5jb/Dlkiv1R9qSqDcWG9Bdgp4fAg4Ogmc2HdAXFhjQfpfY7Mgpui8A7McmG9h+Q8RecBZzTT5n2zYGf6NcDX4dPA2sB7sUMLAqM85exTfakqg6/DScCuiAdPnMOAEZ5y5q2qUBXE1+EQ4M9APO304sBLZlBoCnwdTgC2QtI0xzkVeMiYvix1hJ3p1xBTmet2kvO4H9RMEbwwKy31rRS6sL4GbO7r8OfqS1UZTGWu+4C/xA61A3v4Oryv+lJVDk85+yMpOOIurE8D2zXTflWjY2f6NcQE8fwVWQrHudZTjldlkSqKr8MHkEyOce+dtYCnjLmgKTDBd1sgJqworcBdzWb39nV4IzLAfR87tAnwuKeceMS2pUbYmX6d4Clnd2QWHJ8pHe7rMK44GhqzqZkzg0R5C9ismaKVYZYL62Dy3Rw7kOjdpspcaZwRHqcw/9RzwDbG3GepIVbp1xHGFe4BCnOdHOnr8D81EKliGNPW48AGsUNjgE19Hf5Yfakqh6ecPZFBPbq67kAC1m6vjVSVwZi2ngJWix16Adi6mdJUNCLWvFNHGFe4vwJxn+5/e8o5qgYiVQzz4G+N1NuNsiri0tk0Lo4Avg7vQCqQRb1ZWoBbTWKzpsGs1AYiK7co6wPDPeUklaO0VAmr9OsMX4dDgR2QYutRrvCUc2wNRKoYZqm/DRBPV7Ayovjj6Q0aGl+HdyFpDKJxGgq4yWyENg3Gs2cg8Ebs0LqIx1ZStTlLFbBKvw7xdTgc8eiZFjt0qaecE2ogUsUwuXi2BUbGDrnAM6Y4e9Pg6/AeYA8KFf8NnnKSorUbFl+HPyE+/PFSi+sATzSTq24jYZV+neLr8AlgO6RIR5SLPOWcXAORKoZx59sOeDJ2aEVE8cfT+jY0xl3zb0iJySjXeco5qAYiVQzjhrsZMDp2aG2s4q8JVunXMSZX+bYUKv7zPeUkhfw3LL4OpyJmrRGxQysgAWsLV1+qymFqDOyKVFWL8l9POYfUQKSK4evwF2Bz4OXYoaZz1W0ErNKvc0z07lZAPLjlHE85Z9ZApIphFP+OwNDYoeUQxf+H6ktVOXwdPgzsTKHiv8ZTzmE1EKlimPKKWyAF5aOsgSj+31Rfqt6JddlsEDzlbAAMo7As4dnAv5osNfNswP3IKifKp8BffB1+VX2pKoennG2QvPxxV91/+jr8dw1Eqhi9zVW3HrEz/QbBpCLeAim+EuUMZNYfz2/esJhiHLsA8QIzSwPPmhz2TYOvw8eRFU7cY+sqTzlH10CkitHbXHXrEav0Gwhfhy8iij8e3HIqcF4TKv5dkQIlUZZETD2LV1+qyuHrcBjJrrqXW1ddS5ZYpd9gmLTLmwMTY4dOBs6qvkSVw9Qg+Bti+oiyBKL4f199qSqHr8MRiBdTkqvuP2sgUsXoxlX3aU8581Vfqt5BXdn0gyBQwNzAFNd1mybHehpBEPQD+ruuG1fg3eIpZ23gCSAe5LKPr8PbspAvS0zfzgNMcl037qrYJab27h3IzD/Ka8BGZgO4rgiCYDagn+u6Jacc8JQzEHgUmD3ytga2N1HbdYXp23mBia7rxgsEdYmpvTsEceuM8hSSsqHu9EAQBLMDLa7rNmS957qZ6QdBsDDwPFJO7+cgCPY1N1PTEQSBCoLgUOAXYHwQBE8FQVDSktbX4atI4Es8HfH1nnLWzUjUTAiCYEngbSQD44QgCJIKqqRiHvy/IwU7oqyFRLPWzX0SBEFLEAQnIyuxCUEQPBQEQUm+6L4ORyLmj6jHlkKyc7rZSdtzgiBYCfgYGAd8HwRBXHl3SReuupsCV2QiZEYEQdA3CIKLkOf25yAIbgqCoOGyhxal9JVShyulXldKTVdK3Zy1EEEQzAG8igRs9EXyrQ8Cmio0PcI/gYuB/kjx8A2Al8zssGh8Hb6ObIpF7cD9gIfrxeYdBMH8yIx8JaRv5wJuC4KgpGIivg7bkNw1w2KHdgNOz0DUrDgX2WPph/TtVsDIIAhKmmD5OnwGqTYWzdUzJ/Bovdi8gyBYBPG9Xwpp7/zAkCAINizleyKuunE//sPqzHV1MHA4ch/3Qe69hxttclrsjfgNcjPfWCE5jgHmIz+t8BzA5Y04knZFEATzIb9ltF39gIWQGrol4evwZeCA2Nu/RZRDvHB1LfgX0petkffmAP4bBEE8jXSXGMW/B/B+7NBZnnKSipJXlSAIFgWOIr9vZwOWJbloepcYG3880Z4DPGjcWmvNZcjEJar0ZgeuK1UR+jqchiQb/CJ26CpPOSWtHiqBWdH8nfwCQLMj6cGTykXWLUUpfa31g1rrh4FK5Tn/PwqrKeVoqB+0CLYlf/aWYwBSRLtkTAbHeCGWlYE7POW0JnykKpgHf29EMcSZHfhTqd9poju3o/BevMVTzpolC5ktO5OvAHPMCZRbEOdqpCJVlPWQIjs1m2Ga/agdKKz/APAHJKCuJHwdfof0bdRW3grc5yln+XLkzJC9SG7rAAonXXVNzW36QRD8Bkjzwphz5tRpmzVZnc3NEBNHAVrrZS7fbt8Fy3yYz6DQy2U74Pwyvisrcsv+JPpPnzhpoKecpAGhS3wdjkVMH9FNvv7AkBpH7W5D8gCH1nqt4xZac95S+9YE3R2JlB2Msg9wfFlSZsMfKXQvjVKSiSeHr8N3kBl11MNkHmTlWst0DVshJp0kNq6iHD2mJO8dpdS5wCJa632zEsDY/x4h5oWitealK27i7Vsf1rq9QyEbRZ+Z19jYv1/5OizJa6BWBEHwAVAwaxn/6ec8cvAZevL34xWSa+czUtqbVoTClKR7Hlg9dmg/X4c3Z9aIIjEbtjchHlmz0B0dPHP2ID546AmtO7RCzIe5Nsbb+42vw6SVUa4u6w2xt98ANqxFTdYgCMYhxe3zGPfORzx2+FlM+2kiyCw22sa8/xtXxgKMwnsFWCbytgb+aoqxV5UgCA5ENlrTzK/Xu657YLnf7ynneGTfK8ozwBa18OgJgmAK+d5UUdqAeRvFmydt5KomiTOjyd+N562bHoTO5fJC5hUvsQcwzVPOO0jRhtzr3Xp05UNsvAWM/s9tGIUPcnOtaF4FeMr5nPy2vgV87etwsqec7ZGN02hmyms95Xzq6/CFjNpQLHF7LwDjPwl5/4ERRI4tbF7rJ3zHZE85Y8hv63u+Dqf7OrzRU84KwHGR89dATD27pQ0WFSRxVfPiZTfmFD6IknTNqwBPOf8j1re+Dsf5OpzgKWc7RPHnvIEUYsJbz9fhmOyaURT9yd+nAWSy9t59w/lk+HObX/3au0cB16UNZN1wKXL/7xt57y/A1Z5yvBqkHelq/6kd+T2s0i+SRMX8y9fjSvmO/ojnz9qR99o95XxI/gP0tsnxXUvigTcA/PDB2FK+Y3Hz2jHy3o+ecnLtvBrxaMkNMH2BhzzlrO3r8LOSJS6fqeQv0wH4Kfy6lO8YgBTeiLqhtnnKeQ/Tp8BLseO7AGeaVzVJNHf8NDa+N9klS5nXLrk3POWMo/Me/jfiHZRTuAMQ08favg5Lemh6yFTyawIAEI56lVHnDAJYDFkJnOIp52JgcCnK39eh9pTjIak3opOBg4D3kN+hmswgXV/2IUWP1SNFKX2lVB9zbivQqpTqD7RprUsKskkhIGETd+bkHv+GrYib4ErIJgwAnnJCCmfJ31Rx5vAqki44j9bZSnJkSWIBZL8gzdNhAeBJTznrVDGp1dskzJDap8erQZZMHyRXy6pdnHOGp5xvfR3GN0EryRjyV1iC6vF+60KITXmrlOOLItWo1qti4fExJDgk/PLlt/G3fgtcAhxvlP8g46nTLb4Op3vK2Ql5ZpzIoSs85Xxsig1Viw+RfYwkvnddt+rmxHIpdiP3NGQkOwlRoFPNez3Gdd2fgIKsiQuvsRK/W2npruz0M4CQ0j2KHMQ17Gwk6vEr4AtPOdd7ytm1CuHfT1KYO4c/7r9zd5/7HvichNlVCSwFfOcp52lPOQhfxiAAACAASURBVCd4ylmlwh4gIQkzoMU3WJN5l1ikK9PLNPPZeOBZqQz2lPONp5zBnnJ2qIIL61AS2rvGAbsknJrHOMRVsSfmqFWAnz3lDPeUc5SnnBUq3LdvkWDOWmrz9Zjz979NmkD9DjHZfGCes6Jk83X4A+KQEB3MWoB7jGmvWgyjMAV2jlFVlKPH1EUahiAIjqfTn3sWM6dO+/nGjfa6YObUaceQsEFmeB/xe5+IbGDmXkuUKU4HYjcdAQwH3shykzgIgnmQgWbO2KHJwX3Drh519qBVSJ/RzQT+g2x8L0tnW1clfZOpO76ls61PmaLWmREEwSVIQEve3s30Xyd/e/0GewzW7R1HIzEaSbyJeB/NRGZZufYuWqY4bUg+9+FIm8dkafc3UeWfUtgXk0cPuv3i1/y7NwE2Svn4VOByZFKwIp1tXZmUfaAi+ILOto407q6ZEQTBrcDuxFZzU8b//NGNG+/1AOJ1FL/Pc7wAHOXrMF5DNxGTfvpR8veIxgJrZ33PJhEEwXLIQFfQt8C2ruuOqrQMWVEvSr8/8AGymZebPUwBDnRd907jsukBJyIzhiSGAsf6OvwQwJRhW438gWAFEjafumECkuNmOPCEr8OC9WupBEHgIYEtuUFuOnIDr+q67kxPOesg9ugtU77iB8Rmf72vw3bjix8dBHKvUl3cNLKUzimKV3s64JlB7hNk8zGnHKYAO7uuO9yTAtlHAMfSuUEZ5z7gxNx+hCm4EW/rciT7yHfFd3T27ZNmVtkjgiA4AziBTq+WaYiyWN913Q5POX9BEuPF88nn+ApZUd/l67DD5B1anvy2rkZhzqXuaEciXoeb11s9HfCCIFgIMXvMSedzNQXYxHXd0aafjiFd+WvgZuDUYp4rTznHIM9NlGeBzU1yvooSBMEgZGM599xOAZ5xXTde96GuqQulDxAEwQJIUq1NkdFzf9d174+eY5T/UcApJLuKtQHXAGf5OpwQP2iSO7nkP0CrkuJBlMIYOpXii+XcbCZoaS8krHt2ZAazr+u6eeYMk0PnctKDmN5FZktxH27M8nlRpI0bAodSWjsBfkJmniOAEb4ubQc2hwnXvwcpiP0z8HfXdfNyrRjlfyKiJJJmttOR3+KCJJdV4666CtLeg+ja3p+ERtw9c0pxtIkALgnTt4chpow+wJ3AIVF3PtM3AxEFtkrKV41G+vaV+AHz+SWQtm4CHEjX3iVJ/ED+ZOb7Ej8PQBAESwMPIM/Vd8CuruvmVcfylLMAYg4+jOR9xMnABcDlXXncmXZfR2Ew1A3AgZXelwuCoBXJZnsGYmK6Bjjedd2u4hXqjrpR+jlMpN9M13VTBfMkpe65wH4kz+5+Qm4yv7vZjAkOWh+ZVW9BiitdCpMQpXgrMLTUAcAoiL6u66Z+zlNOC7KEvghYJOW0IcCRvg5T3UQ85ayB+PCXawYCGWTuA27p6lppFNm3DtLWtLQF3yEz6dvSHnLzmz2IRIyWyy+IQrwFUYolrXhMrp3WrrLFmhXaAci9nFY85E7gGBOtmvY9f0EUeFShakpb+byJDMy3lbOaNXmjZnTTt8sjg+E2Kad8gQx0D3XxHf2QZy4e/HW4r8NBpUldHkb5q1KzxdYLdaf0S8EositIXyo/A+zv6zAs4TsXQfLVb4l4whSbIfEHZKVyk4kqzBSzyjkemQ0nKe6JwNHm+mnKcBdEaUd5HYn23JL0WWccjeRBvxl4sBLxEJ5y1geuRPzuk3gUOCjNTdFTzpyI3Tg6429HlM7yyEw7zd4c5xvgNuS3/ajIzxSNWeWciqxik2bs44FDfB3G+y76HQdTmK5hFOJBtQUJHmMptCOD3U3AY6aYTaZ4ytkCWbUlxqEgA90RSat18/kFkJXQkpG3pwGr58y7lnQaWunDrCXfzohbmJNwyiTEZHB9qcs/Tzl9kPS9W5rXWhQ3e3oTeWjuTLtxy8UMShcQcUON8TiiDL9J+fzpiOdSlMN8HV7jKWdh8ge8YvYEJgJ3I+0dneUS28zY90bam5SqYwJiMrgn6bqelFV8jfx9oI8Qs0g7Eui3BdLeeBRzGi8jbb3HFPvODE85SyNRqH9NOeUepK8SNy495VyF2M+j7O7r8B7zW+TauimxKOkUxiMK+CZfh28VcX7RmGfrIOReTCqK/i1isnk85fMrIg4XUY+sV4H1yjHL9SYaXunnMGaao5AZU9IMbjjwf+Xapc01foMow9zDU+iTnc8MxNPmJsREkNnN6EkRlStJjlD+CfGYuSuuDI0iHUl+vpApwGq+Dj+JnNcKrElnW/9E9y6+HyKz/9vSBp1yMLP2E5HI26R9ifuBQ5M2Yo3XR7zwyFW+Do+KnbcgnQPe5khcQ1dMRUxINwHPZOkFZMw1V5C8L/EdMqjH6wfnTB+jkY3eHBOAlaP9YTaH/0SnSbOYRHVj6JzI9HjDOyLLfIhTwhEk2/tvRMxbBZ5HnnL2QcxvUU73dXhuVvI1I02j9HOYGc31JAcp/YzMhG7v6YzUrDDWRnbz96B7b4pvEdv/zVktQY0CPwSZHSYlpXsQMQt8H/vc4oh9PjpLehnJWZM4MJkBbzdkH6U7JdFBp4ng0axMBJ5ylkUGlaSB7nvgYF+H8Zq6eMq5DsnkGmVg0ga4Ob8F2efZF9lb6C699+eI8rk5q4hnMxM+HvH0STL53ILYv+Ob/y6yIR31oR8GbNOF2W9BJMnZfoiLaFfMRAbRm4BhWU1kPOWsirQpaaD7EjHTPhX7jELu8WhkehvwJ1+Hb2YhVzPSdEofZt0MByP226QHdgiiIFI3x0q83uzIpuF+yGDTnQnoFeShuaPMvCTx6y+NKMP1Eg7/AHi+Dh+MfWY/CusjnOLr8IIiruciCnFv0l1oc0xATATX+jp8t7vvLuLarYh75zkk57q5HdnU/inymbmAd8g3/30BrNKd77pZZeyCtDfNxz7Ks8jvek8Wg52nnJURZZhkfvoKOMDX4ROxzyQlKzvY1+G13VxLIfEQ+yGDQHeBit8hex3X+Tr8uJtzu8WsVE5HPGSSXKsHA8dHnxlPCsoE5G+Evw+sUWzkb2+jKZV+Dk85SyLKNSnN6zfATr4OR2d8zUWRtLf7InlDuuIHZENrUJIbYonXbUXMW+eR7PJ4BXBCbmZmHvAhSLRjjpnAWsUm7zJmgq0QJbEt3af1eAQ419fha8V8fzfXXglRhkkbvWOBHaODjKecDZGNzeiAfLOvw/1KuOZSwD/Ma7FuTv8aUbzX+z3M+Gl+51MRj7QkZfgv4JycicncC6PIz1kzGRnkikryZMyl2yF9uwVdm/Y0cC9wXkYD+1pI3yZtPr+L9O3YyPk7AnGPn0t9HdYy9XTd0tRKH2Yt1Y9ENgPj9uAZiPkj84pgRqmuhzw0f6NrT5GfEPv8f3qaEM6T0PRbkE3nOE8Du+Vy75hlfUC+/fpdRPGXNEv1lPNbYE+kvd15AY1AlNSL3ZzX3TX7IrPC0ykccCYD+/o6vD9y/qXIKiHKjn6JqYnNPbUJMrDvTNfxD98jK87BPc2LY7zVbkHyScUZAuyT21w2A9QY8le6LwAbl+p+6kmNgr2Rvl22m9MfRvq2R+YVM+icg/RXfOX8E7JB/UTk/JuRwTiHRtr6XE/kaEaaXunn8JSzHPLAJAU6DQKO9iuUp9uYCHZGHpquTAQTkQyZV/g9SIpm7MEnIlG9cXvw54iie9ucuzOyERrlQl+HJ5d5bYWYInImgq48gEYhD/YzPdlj8ZSzOtK3Sfbo84EzTORyf8TeHXUV/B5wy92cNO6Wub2Odbo4dTyy2rq6J+kQTBv+hdj747PvD4EdcqYWTzkHAf+NnXO8r8NLy7y2Qtq4HxI70lUuo6GI8n+lnGtFrrkeYrqMr5o7kMjlS33JyDkPMmGJpuj4DFi1p6voZqPXKH2YpQzPJ7ni0PPArlnZ+buQYUnEVe1Q0h+ayYj98rI0P/Qir7UmsuyNB3VNRWzBd5nzbiPfBbQD2MDX4UvlXtt872zA9ojXzdpdnPoSovxHlKv8zbX+g0SnxhkG/N3X4c9mtvwK+SuDh4CdM9jcXx5JF3IQ6UFwvyBpga/siTuvp5yNkZiLuJfRRKStjxsl/Tj5uZxmIPbuoNxrm+vPgUxkjqfrzd+nEJPesz241gBknyQpYO9uxCtvsqecTRDPtCjX+TosufZ0M9OrlH4OTzm7IzdR/MH8CqlE9HoVZJgfMTv9k/QAsGlI2PnFvg4LMpEWeZ0FEeWQFMB2CWIemQsx80RLDf4PcePscapeo3w2Q8wwSYVScryORKc+0gPlfzCi/OMrnE+QFc77nnLOQLxiouzj6/C2cq6ZIMOCSGzIYaR7/kxCVpiXx72rSrjO4siAFd/k1chvfT4S3xCQvyn7FrCOn0G+GmPq2s5cLy2QDmRSdQ6S1K/kvjX30AmImTZu7hmD9G2YEquwja/DoaVes1nplUofwFPOasgD48QOTUdmwXdUSY65EeVwDOm+4TOQDemLynEJNLbvyxHf/ThPArsiM/EnYscG+zo8tNTrdSPLRoiCGNjFae8gyv+BcvzfjUngAQozs05CTE7DkWyb0X2PXxB/9i9LvV4XcvwGGdSPJN2ldypigrmknNgG4zl2LcnBeg8gtvjtkRlxlHN9HZ5e6vW6kEMhfv+nk+xSm2M00rePl6n8t0DaEp8ojUdWHq8hwZHRwuzjEBNexbNxNgK9VunDrHDue5BNuTiH+Tq8poqyDEBMA8eTnka6HbFvnlLO7NC4afoUujq+jjywZyEDUJQtfR2OIGM85fwZ8UbZuovTPkCyaz5axvf/AfHhjpuV2hFFmCugE92EfQqpwZppmUVPMr4ejqTJSNvjmI4o/zPjvvdFfL9CPLcuodC7ZxSi9K9D9h5ytCPRq1l7rymkrOHpdF0w/C0kK+4zZVxjaWTDOL6hPQ1R/D8iJsPob3GPr8PdS71WM9KrlT7MsvNfhMy045S96dUDeWZHknCdSHqCtZ+RTKPXluGJ8SdEGS4cOxQgyuEJ8jfNvkFmSRUpM2ls7KeRH2AT5xHgn34JOZTMd/dHTCj7xw5pxPY/J+I1FaViibvMhv4hyB5HWnzD9+Z4yQGEnnIGIpOYeFqDV5AVzovkp7P4GMlXU5GqT57kTzoNcflM4w7guFL3rsxveTOi5KPMRIIlV0UGnih7+DqMr3h6Hb1e6efwlLMXYueP24LPQlI1V/WHMhuT+yA297SCMK8hLqdFFaKIfPdCyEwp7sn0MWI3fZB8z5A7fB2m5frJBE85qyC+6LuSHNw2FcnTcnkptmgz8zwM2TyNf+9RSFDdX2LXWS2LYKMuZJoDGXROoHDwzfEsklri/RK/20GS0cWzxb6NTG7uir3/b1+H/yzlGqXiScqQ08iPCYkyEen7waVMYkzfnorsFUTpQCZOR5K/3/ETMoHJLEVII2KVfgRPOVshCi/ud30pEthU9R/L2OP/jtzcyyScopG83qeVYhYwM6VHyFd4IC6dQ5EZaZRdoz7vlcJ4wJyC+PwnBQR9iCjDkswCZvP+dgrNHxcjbY16Ur2CeC9VNHGXGdj3Q1wPF084pQ3JuX9OKZHbZi9hOIXpMt5H7N3xAXxTX4dxr5fMMftopxIp+h7jLWQSU5LJyVOOh3i7RdHIJOEk8oMVhwNb1+JZrhes0o9hXOEeo9DrYjCy9M/U3lssRvkfiaw8kjxCvkcCWe4o9oY2pqT7KbSrf4PMvpaPvDceWKFcf/ZSMQriGtI3BUs2C3jK2QGJHI3vaTxK4Sz0JF+HFxX73T3BmKFOQAa7pGjqL5AN4SEl9O08yH0c95Yai7irRiOKvwRWzMJTq0jZ/ow8T0l5djSyMX1KKS6tniRfu4nCicIjiNkyyoG+Dq8vXuLmwir9BMxNOYxCj4tbEM+ezGrmloonqZWvIH22VJJZwJN8J3dSaBudgKTfjfqzD/J1mOQBVBGMO+B+yGw8aQO0ZLOA8f54iEJ33bHk52efDCzdkziJUjEblFeTbgN/HMkzX5QHl3EOeBhJpRzleyRXTdTcdbavwzNLk7h8zF7aYYhpJile5UfEqeGWEga6XZF7OR6d/Tn5K6kfkL7NNDV2o2CVfgomyvMJCt0oC9Ly1gJPOVsiCmKphMNtiEnq3GLMAuYBvInCZf+v5D+Q7YhNtKqFKoyX1YUUlsnL8SZiFni1yO/bEFGg8dQYU8kfDK71dXhwieL2CGOn3gm4ivy4iRzTEJfHS4tJlWFWEfdSuJL5hfxJzVRgGb8HqcfLwZMaDpchEb5JvIBMYorK6eMpZ1tk9RpfMc0gf4V3vq/DU0sUtymwSr8LPCnUMJLCvPlH+zqMe31UHfNAn0Sh3TLHF4hJqNtgJzOrHoxEk0aZSf7m9iO+DntShrBsPKkZPJjk3D4acXk8pRhPI7O5OIKuK6N1IEnK3itD3B7hSWbQM5HN5qQkax8jbsVPJRyLf1dfZD8jHtHaRv6s+CZfh3FPp6rgKWczxNMqad+qHVndnlWMCcp4MT1CfrrxePnIacCyWcZlNApW6XeDWXI/S76XhQZ28WPpimuFp5xlkFn/5imnPISYpbpUhmaWeSWFEY1x/uLrcFSpcmaBWZUcjpgFkpLY/QDs56dUXIp916pISc2uUggP9XWYVtO14niSWnkwyWmzQUyOh3enDD3JvHkz6RXXQO7r1f0is6xmjdnYPh4x2cWdKUAi5vcqJqWDCdB7gq4V/22+DvcpX+LGxCr9IjDK4XnyTR3TgE18Hb5cG6ny8TrLRl5JslngcyTDZpeeEWbGfxfphclBzClr1WpTG2YFX11GfsBRlEuAU/1ukuh5ytkACcpKys2fY7NiZtSVwvTJPkibkqK2PwT+1p0JxMz4Hye5wFCOp4DNa+nd4kl+qv+QHLjXAZwBXNDd/WdMPUPoOi30Gn4vK7hilX6ReMrZHHFljC61fwT+7Ovw09pIVUg3ZoE2JOjriq4eamM2eor02SXA3r4Ob++huD2mG7PAy0gK3i+6+Y7dKExTEOUd4I+13MCHWfmaLkB8/OMxB9OQFdCN3fTt3MgEpqv011v7OhzWQ3F7hJnE7IjsbSyacMqTyKy/y8j0FHfOKKOQyVuvUYRW6ZeAp5z9gRtib3+KKP6yUyFXAmMWuJHk0oaPICaQVJc44+v9Eun5078ElvN1OLWnsvYUYxY4CYnAjA90E4B/+DqM18mNf0dStako+/s6vKlHgmaEp5x1kPtwxYTDdwBeV+Ye4wH2CskrQhB//lUrHadQDCae5CySI+a/RTKKjurmOy5CXGLT2L6cVB+NSneFri0RfCm2Eo/+WxoYYpbOdYNZ6q9HYZoBEL/lt4zySPv8eCQlb5pf/qLIaqLm+Dqc7uvwLCTXS9z7ZH7gUU85l3TTR5fS9YzwXOMCWXN8yVG/NuJxFWdP4HUT4Zz2+a8Q00lanvkVKUxdURN8HU7ydXgsci/GJ1a/B0Z6yjnN7FmkcTKSniKN7u6NpsIq/dI5E6kLGmVdClP11hxfhzN8HR4N/BXJ1xNlMeB5TznHmqV00ufHIq5+abP5kz2pUVoX+Dp8AVgNMcPFOQ54zpN0xEmf1cgGdtqKYGGSZ5s1wdfhZONpsy8Qz52zHDDaU87/ddG37yB7QGmz+bONqbAu8HU4HOnb52OHWpCJ2HBPUlonfbYD+Z1eSPn65Uiuw9CUWKVfIkY5/B9SejDKSZ4Ucag7fB0+jOQgifux90FmuEOMvTjps6ORBFZJdsC5kCpOdYMxs22H7F3EbfDrICucxBwwxpyxO5J1NIkTPeX8PuVYTfB1mCuNGXcr7Y9k1rw9TXn7OnySQhfdHAuSXGyoZpgYgk2QOgFxNgXe9pQTTyuS++w0JM/SRylff5aJYm56rE2/TEzA0BjyXTm/Rfy668q+n8NE316IpPiN8wWy6ZnojeQp5yzEayJOO5KH/oPMBM0I47Z3N8nZSi8DTk7y7vGkuP0Ykl0567ISkydJ3P5DslnmYyR30jspnx2EVHKLMxXxZS+rgE8lMZHVt1PozdSBTETOT9p496SG9BskVzYru0xoI2GVfg8ws4qR5HtSPIrUKa3bH9ZTzo6IPTgemNSG2D8vj7vDGf/4USR79Dzm6zAtg2JNMRvStwBJvvavIAPd5wmf2wkpQhKnA9nk7FG5wUrhKWdvpGbCHLFD0xDz1fXxe9PkYHqVwsycADf7OtyvErL2FOO2eyewYcLhpxDvnoLyp15y7WCQmgbLduft1ehY804PMJkeL4y9vR3Js6a6oRtzzyXAA2bmGP1MG7JJmFTUe9s6Nm2NRzaujyfd3LNxwuceRBJ/xWlBfqO6xJeSj2si9RGi9Efac2N809J4YO2BDAxx/uFJ8ru6w5h7BiJpKeKTrJy5J6mE43VINt04swHnZSpkHWJn+j3EPEDPk5+bfjoSvFRUvpBaYcw9F5C8QfkisF08itdTzt9I9oR4C1izlgFb3WHSONxNod/3DMT174HY+XMg9v0VEr5uC1+H8fKSdYOR/Spk/ynOMMTcMzn2mUOQzKZxRiIBanWrLEwcze1IIrkok5C610/Fzp8fqTGQFAOwll+FOtm1ws70e4ixCf+dfPe32YC7jP943WK8e45FNrjiKRrWQ7x7/hD7zL2I/3+c1ek6xL/m+Dp8CZEz7qHTD7jPBPJEz5+CzICTirZc2o2bYE3xdTjF1+GBSGnIeNK9rRBXx3iFLR/JyhlnoPlM3WIG4NWQlClR5gSGmgC86PkTkJVr0iTl0jSvp2bAKv0MMK6NXuztlagTP/bu8HX4CKIM4yuTlYCXPClsEuVIZHMwzvlxs1C9ETH3xDMsKmCwp5wzow+8yUOT5MWyMvCPigmaESZqek3gf7FDfwJe8JSzWOTcnGdaUqbNS8y+Tt3iS0WsTRGPtCh9kUnYEbHzn0dMQ3E2Ir3KV8NjzTsZ4innVmRmlWMy4gP8KxIR2IKkxC26OEQ18aSA9yPABrFDE5DQ/NGRc/+IbITGg1pOQ7w+DkVywuxTx+3dF7iewiheH0li1m7OU8jqIJ4LZhxSpOR2JAjsJF+HD1VS5nIxPuzDyC8fCKLgt4xuTJs9jqTKZB7irbYXUqrzQF+HaQFeNcVTztHA5QmHzkeqzGlzXh9kdbBu7LxPkBXw7ch+yJF+FaqLVQOr9DPELJc/Id/V706kGMm25u+Rvg7jRS3qBuPJcRdyw0eZgmQWHRY592IKZ8GTya/s9ZCvw50qIWsWmKRc91LowvcgsKfx78YEdX1IYfbHn+n0gtLAQt3lg6kVJu/OQ4ive5Sfkf2bFyLn3ogUsIkygfxiNr6vw3hZzbrBU86eSGbR+ArlBiRVRZs5z0Xs+/HBfwqdXlAzgfni+yCNiDXvZIgxHZwWe/vv5D9kA01Cs7rEeHLsgng4RJkDeMS4BOY4F6nCFCWeqiDJna5uMDl5BlK4p7ETMCwXsGPcOuOeWpDv9qpIL+9Yc3ypFLU1cF/s0LzAk7GgtZORTdAo8QC+tFTedYGvwzuQyVZcUR+AeKjNbs4LSN7Ajpoq+1K4SmpIrNLPEE85v0VusnhFo/iGbleFO2qOmQEdTGGeoT7ArZ5yjjN/Xwt0l4ahrjezAUxA2vpIvvYoGwPPesr5vXH9O7GIr6ub1AVJ+FJtaw8kM2mU/sBDJqkgSKqRpHoFUZICnOoKX4cjkElXPGBye+AJTznzeVJ0pZgKaXW9X1UsVulny3mIl0Nc0cWXjXUf7u3rUPs6PAM4gkIf6Es85VxPei77KA2RyMqXmsLrAvHI4lUR99XbKU7JJaazqCfMXsURSFbSKK3ADZ5yrqHrnPs56n5AB/CljOb6SE2JKOsj7ta30HU9hRxW6VsKKHbmU/dKP4evw6uRfDTxdAVp9Wrj1LXHRxRfSuetj+Thj7IEkk21GLqqwlU3mEH9XCT3TtxtsVg7fTGKsi7wdfgRMqgneaglJmpLoCH6tjus0s+W8yjMZplEXZt34hjf/K0otPEWQ2sj+TwbT6NNkQpTUYodvBpKMfg6vA7Zw+m2yHoCDbGKy2FcOjekMFNnsX0bj2toSKzSzxBfhx8iPr4F+T5iNMxMP4dxV9uIQttoMTSEGSCHCcr6K2LSKZVG7NuHkE3ZUt0vG2YVl8PX4c/AFhQO6sXQUAN6GlbpZ4zJZLgBhfbDKA2nGAw7kFyjtTsa0Ra6OOLVUypzZy1IldiV0jehG2oVF2F5JO9SqTTUCj0Nq/QrgK/DT5A0BmnphpPyfdQ1JoilGO+VJOreyyOB/ZHKTKXSiH07H3BYmR9vGLt+BI/yTDUN17dJWKXfAzzlbOAp5wZPOUfG8+yYDIAbklyQ449VETBb+lH68j9HI85+yzVJOVkKUUXKrXXcUKY7Q7kyJyXeazis0i8Tk4hsODIjvAoYYWZMszDFVDahME9NUm6TeudyyjPtgBRRbxhMrqEjuj0xmW+ylKVKXEf5JrhyNvdrhid1ofcp8+OfZClLrWi4jZgs8ZTTggSgzIPY6+ZBBsJJyKw295qSkFZ2cfIflI2Alz3lbG0SsAHg6/BXTzmrAs8hWQA/pEaJ2MxqJNrWAUgO9Whbf82Fp8dIKrDRHRq4xddh1RWD6du56GzrPEjE7K+x19SEvl2GQs+UdgrjLeJMpEYRuSbKO9rWAUgagWhbJ6X07UqxvzX5hYGS0MAltUilbbKbzk1nW+cx8sT7dlpC365AYds66H4C/CPJhXgajqbOvWMyPq4KrGFeS5H/YMxN9zc3yE0xDhnpc6+xSJH0uDL8AcljMpoqYjbUHKSdawKrILnFow9GscvaSUj7cm39FLFnnplw7lhgyYT3P/J1GM/OmRmecuZEwuJzfbsE+W2di+L6th2ZnUfbGgIXm++M8rM5P8kevISvw7DEZhSFGcCWorNvVzYyRNtbrG19IpJxM9fWT8z3JdVUSOvbl30dN/IVhgAAD4lJREFUxhOUZYZJffFHOvt2MQr7thjakCjraFu/RspKxiPJxyMDfZIpsk9S6cVGpa6UfhAECyMeE+OAp1zXLVo4k0cjp+DXNP+uSPezs56SNAOchhTlSM24GASBArZEHt4nXNctOkmXUfCLk9/WNah8NGjaDPBZxM87movlPF+Hs/IQBUHgIHscoeu6z5VyUaPgVyO/vcunyJIlSX07EUlRsB+dK72JwLy5WWUQBK3IrHBOYJjruvG8PqmYvo0q+FzfVnpfJK1vhyHtiGZePdzX4aw0DkEQLId4w3zoum5Jkx2TBC6n4HPtXaY00csiqW9/RPIS7U/nBOlbX4ez6mAHQdAPSbvcF3jMdd2GMm9BHSn9IAi2A+5AbjyFBFDsmvSjmpnP6khO8NyNshKVV/CloJFC4ufFl5hBEMyLFKvIlXJrR9r6ZNIXeVKEfUPylUC9BYp8CPwTyevyvK/DWYVWgiDYC6lJ2oH07aPAP1zXLShOYpbuawFrk6/g62n/qR2ZGc+LePicmcusGQTBgsBQYFlz7nRgO9d10wrO/x5RqNG+rTeX3jeQlA17AI/7OpxVOS0IgsORVVE70ke3AYe6rltg9jFV5v5Eft8uGz+vxsxAopSXRwa7U3Lpo83EZTiQKyz0C7C167qJBefrlW6VvlJqNiQD3abITPJT4BSt9bAuP1gCQRAsgdT0jNrIpwG3u657IMwq7bcxsCPiL74w2TAZ6bzcqw1ZPuZec9Izl8MRvg63jL4RBME9SDuiS/LJwLKu634D4ClnSaSdOyKpAbJQem3kt3USkmgr2ta5enCtGUjJxFmh7kEQrIqkNYj+hlOBK1zXPRVmrdIGIm3dnsKSd+Uyifz2dlDYtz3JeHqHr8O8amFBEDyNKPHoftnPgOO67i8AnnKWQ9q6I+X5iycxk/y2TkZ+83jflrs6mgysGC0aHgTBRsgAF31upwAnu677bwBPOQOQYKgdkWSEWQU4/Up+e6Gwb3viWXSVr8NZe29mZf42Ys6NPh/fAEu5rptUX7guKWYjtw/ifbER8AWSmvVepdTKWuswIznOodAm2b+jrX3PU5fb+M3xH4cbIMvlcpa4YxG3yTeQTvuBzhtloil32CVmwMnlX1kP8VcvVjFu4SlnaV+Hn8KspfB2FLa37zdvBJdevfK2nyAPyCpFfn+UScCbdLZ3LJ1t/ZnkTcs8jHnht0hbl0HaWqyrWj9kghA1BVxM4cM3e9v0GUcdu+Aan0/+fvzmiJkrnpK5GD5C2vkG8A6yPM+1dWIxdlizAboE0taBSFWwYtnTU84hkZngn5FZbPy5mm3syJfPv3rlbScifVvOXscvSDtzffs5nW39heRNyzxM3y6ItHUZZCW6eJHXH4B4qf018t6VFHr9zDFj8tRzDp99uWlt06ZviyRuK3Vg7UBWjrm2vovk8s+19dci+3YOZE9iGUR/FJsvCuAITznHRDaqtzHfFX/u5wH2RQrvNATdKn2t9WTgX5G3HlNKfYYszcKeCmBG0G3isnS0tfPAP06YbfzHYVKe6zTG0qkEXgfejBf2LgdfhzMQBfORWaKWOhOO+kBvRcJs6+Ohz/Z78pTL9yjhOychxchzD8YbwMc99aYwiuN783rJU068rGB3zGprEAR9kclC3u81c8o07tvzmP6Tvx//3xK+92Py+/Ytkx++R5giKR8AH3jK6S5NdBxNfs6a7UhQcO/e/fjsz57vH1rC9/5C/uD9BvC/nhYmN58fZ17Pe8qJlxXsjim5/xgT5YoFJ4z/mfv3Om7OtmnTi+1bjfz+0b59O4tiJSadRgAEnnJKNSN1kJ9ddieSJyYDkGyzzaP04yilFkTscO9lJMOSJHgejHvnQ75756OulOtk4CmkZF9OwVejLN+ziPfDUt2cp5El92ATqJVjKxIUwzt3PYZu73Ly8g5Swu518/qkSh4FN5BcPCROB+IpsW/kvT8iSjFvpv/lK28z4dMvuurbicATwGg6FfwvXZyfFUMRhbhQN+fllP2FZkKQYysS9pXG3PEIdG1GfQPp26iCr4Yr5A3Acd2eJX37KfnZN9dFBvi8Zzd89lUmfjWuq76dAIwAXqVTwVdjM/QBpDBMd/slGjEtnxAbZAeSbhpbKwiClqR9jHqkJKWvlOqLbLbeorX+MCMZFqcwbS/zOYvQ0qeVjrY8vfYDMMS8RpoqT1XF1+FPxu9+feSGn5TwmhxTBlGSXOCYf6nFGPd2XtaGDmQzewgwJOr7X2UuRjZelye5rZNINxstTsKDMv9Si4JScUX4DbK5/TDwbBe/X8XwdfiNsbfn9lDS+jbNJLhI0pvzL704P+eN+7QhSn4I8IhJ6VwLTkCSyi2F8eNPeKWZjRYnYbI2/1KLJZxKiPTrEOCFlFiBiuLr8FOzT7YuotjT+jZNtq7SL/dF9hB6vPKsBkV77yilWuis97qD1rpbW3gxBEGwGeImVTACf/v2B7xzx6M/fTL8ueuQgt2vNLq/bBAE/yNB8c+cOo3X/nv39E+GPz/816+/exh4zET0NixBEOyBeO0U+FV/8dJbBPcO/WbsyJdvQpTBG7UI9MmSIAjGk+A2O/3Xybzm3zXzo8eeeWDqhF8eBYaabI8Ni/HauYSEVev/Rr7E+w888b/Pn3/9NkTZv9NT01StCYJgBumppKcDC7uuWw1LQ48pSukrpRRwIxL8s7XWOrMZdhAEawIjSd+kHeW67l+yul6tCYLgdTpdNeNMAtZ0XfejKopUMYIg2AK4h/Ql9d2u65ayj1HXBEHwGem5d2YAf3Bdt6EH8hxBEOwJDCY5UKoDuMp13aSAr4YkCIIJpHsetQFzuK6byUS40hS7ITkY8eDYLkuFb3iH9N39GYj9r5l4CvFpTkLRJPk9DK+SntNlMjLYNxPPdnFsfLMofMPLpJuHJyFpR5qJ17o49nGjKHwoQukrpRZHigavBoxTSk0yrz2zEMAE6LyVcngGMCqL69QRI4l4QUTQwMuNshlUDCYSNa2uQAtdK8lGZDjJmUg7gKerLEul+Yzk+xhk4/6FKspSDR4lub0zkajlhqFbpa+1/lxrrbTW/bXWc0Zed2Qox9nIzC/v0siNVdUcNlVgJLIhHWcqEq/QbCT1bRsw2nXdZlrVADyEeH7EmQ5cVGVZKopJkXIBhX07AxjSZKsakEjjpBV6G5LLp2Goi9B213WHIhs+uRuoDZkx7VlK/p1GwMzkd0eWwDlPgcnAraXmpGkQ7kBmfbm+nY74oe9XM4kqhOu604G/IzPC3IptCnCp67rxgtzNwL8R1+1c305DAuTKTUtdt5ho6v2QyVlOJ00BTnJdt6sqeXVHPeXeUciPegAS+XtsLiVBMxIEweLAZYhP+CDXde+qsUgVIwiCFkQR7IYEWR3ruu742kpVOYIgWB5xdZ0XuMR13UdrLFLFCIKgD3ASEmD5FqIEG8J1sRyCIFgdWeH0A85xXfeZGotUMnWj9C0Wi8VSeerCvGOxWCyW6mCVvsVisfQirNK3WCyWXoRV+haLxdKL6NWF0S2WYum/lqdVSystffvR0tKKammlpU9f828/VKv825L7O/a+ammltU8LSin5t0XR2mr+7aOS329tQbVAS4uipbWFlhZFnz4ttLYo+pl/Z5v1d6v82xp/P/nfvi0ttCro29pCi1L0bVW0KJX/Xosy56pZ57TmnatQClpboAVFa4uElLe2KFrMv0pBq1K0KGhVSDsVtJjPqo52lO6AjnbQHaiONtAd0N6W+L7qaIMOeV+Ot0FHO7ptpvw7c+asv3VHO7TNlOy10XNmnTsDOjrQbTPQHR10zGib9W9HezsdM9vQ7R20m38L/54pf8/6XDsd7R3oDk37jHZ0u/zbEfs77/jMdjratfmspr2tg3atmdGhadeYfzUzOkh8v4PoOZ3HfB2mFsuxM32LxWLpRVilb7FYLL0Iq/QtFoulF2GVvsVisfQirNK3WCyWXoRV+haLxdKLsErfYrFYehFW6VssFksvwip9i8Vi6UVYpW+xWCy9CKv0LRaLpRdhlb7FYrH0ImzlLIulSiilDtJaX2vl6MTKUn057EzfYqkeB9VaAEO9yAFWliQqKodV+haLxdKLsErfYrFYehFW6Vss1aPm9mJDvcgBVpYkKiqH3ci1WCyWXoSd6VssFksvwip9i6VCKKXmV0o9qZT6xPw7X8p5Fyul3lNKfaCU+rdSKrW+aSXlMOfOrZT6Wil1dcYybKmU+kgp9alS6qSE47Mppe4xx0crpZwsr1+sHJHzdlFKaaXUmpWQoxhZlFKLKaWeUUq9pZR6Rym1dRbXtUrfYqkcJwEjtdbLACPN33kopdYF1gNWAVxgLWCjassR4Rzg2SwvrpRqBQYBWwErAnsopVaMnXYA8JPWemngCuCiLGUoQQ6UUnMBRwKjs5ahRFlOA+7VWq8O7A5ck8W1rdK3WCrHDsAt5v+3ADsmnKOB/kA/YDagL/BdDeRAKbUGsCDwRMbXXxv4VGs9Vms9A7jbyJQm4/3AwKxXPEXKATLwXQxMy/j6pcqigbnN/+cBvsniwlbpWyyVY0Gt9bcA5t/fxU/QWr8MPAN8a14jtNYfVFsOpVQLcBlwfMbXBvgD8GXk76/Me4nnaK3bgF+A31RbDqXU6sCiWuvHMr52ybIA/wL2Ukp9BQwFjsjiwn2y+BKLpbeilHoKWCjh0KlFfn5pYAVgEfPWk0qpDbXWz1VTDuBQYKjW+svsJ9gkfWHcbbCYcyoqhxn4rgD2zfi6Jcti2AO4WWt9mVLqz8BtSilXa93RkwtbpW+x9ACt9aZpx5RS3ymlfq+1/lYp9Xvg+4TT/gq8orWeZD4zDFgHKEnpZyDHn4ENlFKHAnMC/ZRSk7TWXdn/i+UrYNHI34tQaKrInfOVUqoPYs6YkMG1S5FjLmRfZZQZ+BYCHlFKba+1fr3KsoDsc2wJsiJUSvUHFiC5/4rGmncslsrxCPAP8/9/AEMSzvkC2Egp1Ucp1RfZxM3avNOtHFrrPbXWi2mtHeA44NaMFD7Aa8AySqkllFL9kE3JR7qQcRfgaZ19EFGXcmitf9FaL6C1dszv8ApQCYXfrSyGL4CBAEqpFZC9nx96emGr9C2WynEhsJlS6hNgM/M3Sqk1lVLXm3PuB/4HvAuMAcZorR+tgRwVw9joDwdGIAPavVrr95RSZyultjen3QD8Rin1KXAMXXsYVVKOqlCkLMcCByqlxgB3AftmMRDaiFyLxWLpRdiZvsVisfQi/r+dOhAAAAAAEORvPcgFkfQBRqQPMCJ9gBHpA4xIH2BE+gAj0gcYCcDtXzKaZoPJAAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -175,11 +177,12 @@ "# Plot time series graph\n", "tp.plot_time_series_graph(\n", " figsize=(6, 3),\n", + "# node_aspect=2.,\n", " val_matrix=np.ones(link_matrix.shape),\n", " link_matrix=link_matrix,\n", " var_names=None,\n", " link_colorbar_label='',\n", - " )" + " ); plt.show()" ] }, { @@ -191,7 +194,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -213,47 +216,47 @@ "\n", "\n", "\n", - "## Resulting lagged condition sets:\n", + "## Resulting lagged parent (super)sets:\n", "\n", " Variable 0 has 6 parent(s):\n", " [pc_alpha = 0.5]\n", - " (0 -26): max_pval = 0.13044, min_val = 0.199\n", - " (0 -18): max_pval = 0.17469, min_val = 0.187\n", - " (0 -14): max_pval = 0.26686, min_val = 0.146\n", - " (2 -30): max_pval = 0.34987, min_val = 0.123\n", - " (0 -29): max_pval = 0.39563, min_val = 0.114\n", - " (2 -2): max_pval = 0.48642, min_val = 0.092\n", + " (0 -26): max_pval = 0.13044, min_val = -0.199\n", + " (0 -18): max_pval = 0.17469, min_val = -0.187\n", + " (0 -14): max_pval = 0.26686, min_val = 0.146\n", + " (2 -30): max_pval = 0.34987, min_val = -0.123\n", + " (0 -29): max_pval = 0.39563, min_val = -0.114\n", + " (2 -2): max_pval = 0.48642, min_val = -0.092\n", "\n", " Variable 1 has 9 parent(s):\n", " [pc_alpha = 0.5]\n", - " (0 -2): max_pval = 0.00007, min_val = 0.494\n", - " (0 -4): max_pval = 0.03531, min_val = 0.277\n", - " (0 -27): max_pval = 0.09264, min_val = 0.221\n", - " (2 -7): max_pval = 0.14074, min_val = 0.198\n", - " (0 -15): max_pval = 0.22216, min_val = 0.165\n", - " (0 -23): max_pval = 0.35496, min_val = 0.131\n", - " (0 -24): max_pval = 0.38855, min_val = 0.117\n", - " (0 -5): max_pval = 0.40215, min_val = 0.112\n", - " (0 -22): max_pval = 0.43156, min_val = 0.103\n", + " (0 -2): max_pval = 0.00007, min_val = 0.494\n", + " (0 -4): max_pval = 0.03531, min_val = 0.277\n", + " (0 -27): max_pval = 0.09264, min_val = -0.221\n", + " (2 -7): max_pval = 0.14074, min_val = -0.198\n", + " (0 -15): max_pval = 0.22216, min_val = 0.166\n", + " (0 -23): max_pval = 0.35496, min_val = 0.131\n", + " (0 -24): max_pval = 0.38855, min_val = 0.117\n", + " (0 -5): max_pval = 0.40215, min_val = 0.112\n", + " (0 -22): max_pval = 0.43156, min_val = 0.103\n", "\n", " Variable 2 has 9 parent(s):\n", " [pc_alpha = 0.5]\n", - " (1 -2): max_pval = 0.00000, min_val = 0.598\n", - " (0 -2): max_pval = 0.00057, min_val = 0.432\n", - " (2 -2): max_pval = 0.03584, min_val = 0.277\n", - " (0 -12): max_pval = 0.33745, min_val = 0.133\n", - " (1 -6): max_pval = 0.40552, min_val = 0.113\n", - " (1 -12): max_pval = 0.39462, min_val = 0.112\n", - " (1 -21): max_pval = 0.42749, min_val = 0.104\n", - " (2 -21): max_pval = 0.48092, min_val = 0.097\n", - " (0 -17): max_pval = 0.49660, min_val = 0.089\n" + " (1 -2): max_pval = 0.00000, min_val = 0.598\n", + " (0 -2): max_pval = 0.00057, min_val = 0.432\n", + " (2 -2): max_pval = 0.03584, min_val = 0.286\n", + " (0 -12): max_pval = 0.33745, min_val = 0.133\n", + " (1 -6): max_pval = 0.40552, min_val = 0.113\n", + " (1 -12): max_pval = 0.39462, min_val = -0.112\n", + " (1 -21): max_pval = 0.42749, min_val = -0.104\n", + " (2 -21): max_pval = 0.48092, min_val = -0.097\n", + " (0 -17): max_pval = 0.49660, min_val = 0.089\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAADYCAYAAAAH3zO4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd5hdRfnHP3O3ZHdTN73npJHCpheSkIQQQjXSa2ih6QUR+QnSFFRQ6VXAS5NQlG4oAZFm6ALSV+nhEpqkkUDqtvn98Z67OXfOnBJY2Ha+z+Mj9+S755w5M/POzFuV1poECRIkSNA6kGrsF0iQIEGCBN8fEqGfIEGCBK0IidBPkCBBglaEROgnSJAgQStCIvQTJEiQoBUhEfoJEiRI0IqQCP0ECRIkaEVIhH6CBAkStCI0itBXSpU3d15Tfre4vKb8bg3Na8rvtiW8LeE39bY05f79rv6+KUA1RkSuUmqB1np+DN5C4AugK/A4cDNwNVAFLNZa/8XlPQF8AHQHrgI+AX4DrAQe11rfHcB7G7gSWAG8q7U+L4C3ATgYKARGaq2nKaUWAPcCP/DwHgPOAToA/9Za32S5V5XL+Q9wu9Z6se2ZWutHlFJtgaeAX2utFwW828fAz3LfSGv9pwBemfdd3fvb2vA+8Eugo9Z634B7PRvQD3cDa3J/q5QaGdAPJq9/QD+YvBlmPwTwUpZ+WACc7W2bUmqW2Rfmvdz72/rBfOaIgH4weXua/RDAG2T2g8vLXd9Ba+247+brC5e7ALjA1gdeKKXuAtqY39/CewhYan5/C28B8Kn3+wfwHgbaYsyFgPv9BKMPLJzzsfSBwfPNs4BnBn3/WLKrKeN73+krpXYBhiulTo7B64UIof2BicDewN1a62OA3T28MuAdYD5wALAr8Eet9bHAYSG8rYAHtdZHAiODeFrrp7XWaWARcFOuDcAQ911y99sD6ANUA58EPFMDa4ESZHEKejeAU4E7jW9ivttb7rvlvlEQ717vuwa1QWu9RGt9VNgzQ/qhL/CWpxuD+sHkBfVDHs/sh5D72fphOLC3t21mXwTcC+z9YL5bUD+YvHuNMRPEW2K8a/114C6gvTuHfH3huedw4DyMPvDC5W0NVHm/fwCvMzIf679/AG8qsBPu9w/h9QO64ZkLAbzhyObkzgjOD8w+sPBs88wH2/ePK7uaOr73nb5SaiIwRWt9pft7FHCuQTsS6A9MQXYWpwH3IR21HPgKGOf+r3/ufkqpi4EXgKMRQVILlCMDwsY7CpjgPvMTZKDaeLnJMh54A7gYGOZpw03AQGQAV7vvrIHfhtyrGJlg4wOe+XOXk0J2cXND3q0HMBjIArtEtGEEsgs7J6ANX7m8CcCYgHv9NqIf7nY5F0f0Q453UUQ/5Hi5cZLrh8MCeHd6+mGCy/O29RH3m+ZQ7LblPMu9rovoB++7hfWD2YZcP+wbwZsAvAwcqbVe5r7/ROA6rfU4pdTpwHvI3BgHvOr+3eXAMPdb/BoRdnsAz3nanZtns5EFWgNPIPMOCy/3jncClwC/CuCdCTyktb7G8q29vKla6z8qpXoAN+BHjnc4crosQU4Guxq8y3H7Vym1O3KiqwM+C2mDOS/qebnvDHIC85z48mRXs4XW+nv9H/LxZ2wpD3gQOBSY6/6+3ctDjnZzjHsUAPcF8YCTgZnuf98ddj9kwFxncJRxv0OA/d3/viPi3YrDngn8HrgMeARZ8FJh98t9o5D7me9qbYPnXmHvFtgP3r8N6wfjGYH9YN7P2w8h97P2g9k2sy8C7hXYD7Z72frBuJ/ve0d8O9v9j0RUOda+CJg/9X1guddV5vcPmo/m9w/gneP9/lHzG89cCODdbPZBlEzJ9UFAG6zzJ+D5d4c9pzn+r5DvHyuAo5VSK7TW5jHa5P1SKbUcWA88BPwNuFIp9QPgAQ/vIqAd0FEpNQR4GDgD2RVcGMH7jVJqHrI7s/K01hnkVHCjtw3Ibm6O5343A390dc9PBTxzGbAz0AnRYwc985cASqn5wAqtdZ1Syna/t5Ejfhv3GwW1tdh4188C2nAXIuhyu8j/WO51S0A//EQp9RPP394W0A8m74GAfsjjaa3PNfoh6H6XW/rhaKVUNe6O2OW9Y/RFB8szg/rBfObzAf1g8tZ5v7c7tmy8a7394LYdpVQXYD9gglLqEmRXbfZF7tlHK6WKETWGtw8weH2Rueb9/jbe0Yg67MYATo43Gxjh+f5BvLOVUrldddDueQVyArkG2Aa3D2zvppQaiKh1vH1g8mxz2wf3O5vfP67satJoFENuggQJEiRoHCR++gkSJEjQipAI/QQJEiRoRUiEfoIECRK0IiRCP0GCBAlaERKhnyBBggStCInQT5AgQYJWhEToJ0iQIEErQiL0EyRIkKAVIRH6CRIkSNCKkAj9BAkSJGhFSIR+ggQJErQiJEI/QYIECVoREqGfIEGCBK0IidBPkCBBglaEROgnSJAgQStCIvQTJEiQoBUhEfoJEiRI0IqQCP0ECRIkaEVIhH6CBAkStCIkQj9BggQJWhESoZ8gQYIErQiJ0E+QIEGCVoRE6CdIkCBBK0JhHJJSahfgcqAAuF5rfd539UKVlZX9gP2B7sAy4M6KioqPmwKvKb9b0takDc2d15TfbUt4TR1Kax1OUKoAeBfYEfgEeAk4SGv934Z8kcrKygLgfCANtPX80zogA5xaUVFR2xg893eTfLekrUkbmjuvpbSVZoI4O/3JwPta6yUASqnbgT2ABhX6yEc9yXK9ref6yY3Eowm/W9LWpA3NnUcTfrct4TULxNnp7wvsorU+2v19KLCN1vr4hnoJ99j0FvmrKABv3vEQn7z4BkN23HZjux5ddu01buQiG++p866lrqqagbOnbOw0oPecjv16/cPGe/CEc+g8uD/OdpM3dBkyYPvidmWPm7zaqmoWHnUGg2ZPYcD0ies7D+mPUqrMvNfKD5by5O+uZuguMzcVFBftM3KvHe+wPfOdRf/k/UefZchO0zeVde74g35Tx91n4z1/+U2sX7maQbOnbuzYr+eOnQf3f9jG+8cvLqBdz644Mydt6DLUmV3Sqf1jJk/X1bHwyNPpv+14BkyfuKHz0AHbFRQW/tPkrf3fCv5xygUM3XUmA6ZPWN+xXy8AX1s/fPJFKu94iCE7Td9U0qn9DwfO2mah7d3+ff2drPrgYwbvMHVjhz49du42YvBDNt7jZ11OUVkJA2dts7F8UL/Z7bp3edTGu+9Hv6LX2JEMmDlxQ5chA2YVlrR5wsb74j/v0X3kEJRS6wBla0NtdQ2rPlhKt+GD1gHbA77vAbB+5WpqNlXRoXf3UN7qpZ9R2qkDbTq0C+WteOdDygf2paC4KJTnQWAbDE7cezV1Xkto6/CKiopPQjhNBnGE/n7AzobQn6y1/mlDvURlZeVJwEW2f7tlt2NY8/Hn8i6plO41bqQaMGMiA2ZMpMvQASil0FqTmbg3tVXVABQUFdX2mza2YMCMSQyYPoEOfXoAsPaLlSyYc3j9vYvallYN3G5y8YAZE+m/7XhKyzsCIqQfPf3iel773t0ZMH0CA2ZMpO/kMRSVlQAiuN5a+Gg9r/OQATjuu/UcO4KCIjlI3b7vT1nxzodCUoqeY4bjzJhI/+kT6DZiMEopAK6duj9Va9cDkCosrOu7zZiUtHUCnfr3BmDT2vVcN3X/+mcWlpZUOzMnFQ2YPoH+0yfQtms5AEuff5X7f3RmPa+kU/uNg3aYWjJg+kT6TRlLcTuZY89deiOv/Pmeel75wL70nz4BZ8Ykek/YmoLiIgD+Nv80Pnu5sp7XY9RWLm8i3bceikqJT8ANsw5hw8rV0tSCAt1nYoUaMGMizoyJdBrYF6UUtdU1ZCbuja6rk/5qU1wzYPqEwgEzJjJg+gTa9egKwIq3l3D7fifUP7NN+7abBm4/pc2AGRPpN3UcJR3bCe+dJdy+7wn0GD2MycfOo/+24+u/qRdvP/AEj51xCQO3n8KYQ3Z/su/k0dv5SMAzF17PG39dxIi95jBm3u6Pdh7Sf0cb796jz2DZfz9gzCG7M+qAHzxU1qXTbianZlMVN+96NKmCAiYesx/Dfjh7UVFpyVzb/b4B7gd2bwG8OGjqbTipoqLikhi8RkccoT8V+I3Wemf39+kAWutzG+olKisrzwdOMa9/9dkybt75yMC/a9+nB4N3mEqqqJBXbrg7kNd12EAG7TCN/732Fkufe8XKUakUvcaPZPCcabx+63189ckXVl5BcRH9p43HmT2Fp/+QoWbjJiuvTfu2ONtvQ98pY3n8jOCx0K5HVwbtMJWy7p3512U3BfI6D+7P4DnT+DL7Ce//4xk7yV1QBs+Zylv3Ps6q9z+y0lKFhfSbMoZBc6bx7MV/purrdVZeUdtSnJmTcbabyGNnXIKus4+Vsq7lDJo9hfIh/Xn6D9cEtqHjgN4M3mEaG79ay3/vfjiQ171iKIN3mMaSxS/wxetv25takKLvpNEMmjONdx78J/979a36f7MJ/7raWm7a8QjWLV9Vzxu4/RQmH3sQ3UYMrr+2btlKbtrlKOqqa9znFOiRe++oJhy9Px16d6/nLX3uVe7/8eZFtaispHbs4XsVjD1kD9p0aFd//aVrbueFK2/d/K26dKqafNy84hF77li/oAL87/W3WfXBUkbuvVPgd9Fas+Tx5ylsU8yAGRMBXgC2MXm11TVU3vkQ/aaOo/OgfoG8qrXrefWmhYybvxfFbcsCeWv/t4L/LnyUSekDc9/Tylv+9hI+f/W/jD6ofk2z8rJPvURtVTWD50wLbGtdbS1vLXyUbiOG0H3rIYH3ql6/kdduXkjFAbvlNm1W3roVX1J5+4NMOvYgUgUFgTwL4vIuqKioODWa1viII/QLEUPuDsCniCF3ntb6Pw31EuZOX2tN9skXeeS0i6het6GhHpOglaHHqK2YfOw82nRqz2NnXMLq7KdW3sBZ2zAxfSDrvljJ42dexqav1vo4qcJCRuw5h3FH7sPHz77C0+dfR11NjY9X3K6MMYfswci9d+bN2x/IO0V50a5HVyYcsz8Dpk/ghatu5Z0H/klBm2IOXXQt7Xp29fFXvJvl6fOv5dMX36Bjv17Mu+9qCoqKfLvQpc+9yjMXXMeqD5bizJrM3D+eBcZuVdfV8dZ9j/MvV5046ccHss3xh/h4NRs38eqCv/Hyn++mZsMmdr30jJygzuNtWLWGf/3xFv5zzz9QKcW8hVdTPrCvj/flh5/wzIXX89HT/6asW2cOWXQNxWWlvrZ+9nIlT513LSveXkLvCRXsdeO5KKXy26A17z38FM9dfCNrv1jB6IN/yMzTfux7Zm11Na//5QFeytxG9boNzD77Z4zca0cfLwStb6cPoJTaDbgMcdn8s9b69w35EqZOP/vUSyz6yW8b8hEJEjQIVCpVr5YK5RUUoGujHTpUQQpdu/l+w/eYw5zfnZin596wag0Ldpxfr74E2PYXR1WNO2yv6Xj0zZ+9XMnf5p+Wd/89r//9xr7bjJnp5b3+lwd4+rzNJ7LCkjYc8sA169v17DrLyzPVlx3792LewqvXFRQX1eu5tdbcecCJLH/rg3reoNlT2O3yX+Xpw6vWb2DBDofXqy8BJh83j8nHzstr64p3PuT2ffM1x7teesbGwXOm5bUhp6rLIVVYwEELr1pf7vTNa8MzF17PazffW89r270zhyy6dl1RaUmr1enHCs7SWj+ktd5Kaz24oQU+gOvrmsn97r/teLoMdfI4qcIC/7YqQYJvAJVKRUttQFnGnE3g28amTeCrlPL9sVfgA7x9/+N8+OSL9wB/yl0r7dyREXvlmxVe+OOtdVeOmvs+nnnTa/zW9BwzPI/3+JmXr7ly1NyXvbwRe+5AaedO9ZyajZt49JeXLKmoqHjJyxt3+F71thqANUs/55mLbnjBy1NKMf7IffOeueSJf/H2/Y8v8vKKy0oZdeAP8niv3HgPqz5Yeou3rV2HDWTA9Al5vMXnXL3hylFzX/O+25CdptPetdUB1NXU8uhpF39qtmH0wbvnqdHWLVvF4nOufs3kBSCzBbxmIfChaUXkngpcDKxLFRSw7cn5uvy6mtpC5LTxgeVvEySIDV1XlwLuRvS1wTwZc1cDS8J4dTW1Chm7K8Ofq9cAVwJ2QxCA1jx4/NkjP3npjfr5ADD52HkUtd2sCqnZuKkEOAPPvFFKse3JR+Xd7uvPl/UADvLyituWsc1P5uXxPn3xja3Tyhnt5XUe3J+R++TbGN68bdGYtHI6eXlDdp5Oj9HD8niP/fLSQWnlpLy8CUftR2nnjpvbsGETf93rJ0VeDsC0nx+Rt9hsWLW6HPiRl1fYppipPzss75nL/vPe0LRypnt5HXp3Z8whe+Tx3nngibFp5fQ0n+vBOvd6Tkcfl9csEEu9832isrKyLxL11uPWuT/aY/VHn3lH0zvAWOAAVVDwG11b6zTGOyZoMfg7cFNBcdGptVXV4wI4tcBPgCpVUHBWyJj7CjgMGIFSp6B1eQBvCSLAfgj8GCgJ4D0BHHr8m4tSuPPh7z8/t+KDR5/1eghVAcMzOvuhd97cts9Pd1757odjPLylLm9DjlezqarngjnzD9+4+qvuHt4jGZ3dGTbPw1UfLB10+74nHF1XU9PGw7sgo7OnennvLPrn+EdPv/hgow3zMjp7m5f31LnX7PLGXx/wHlvqgLEZnX3T24a7Dz155v9ee3uKh7cCGJLR2TU5nq6r67FgxyMOXLdsZX8P70VgSkZndY63dtnKfrfsdswxtZuqvCqaazI6m/a+G9AD+AKJtPXt3OPymjqanND3Iq2cUcBr5J9Ijsvo7J/SyikEDgbOBAbb/h7YSPCk8kIjesXmjLhtaMptbYw2aOAZZAHYg2BPjZeB/wMGET7m7gfOAnYBfgF0sXDqEJXBVcAxwLFAGwtvHfAH4JKMzm5MK6cM2fj09XBuz+jsQd4/SitnMGIjK/JcPi2js+cbvLnAA8Yzd8no7D8M3q+AczyXNiGLSNbg3Q3s47n0kcvb6OEUAW8C3s3cwxmd3dW4Vy/gPfJ16edldPZ0gzcDeMpow4EZnb3D4B0P/NFzqQ4YldHZhg4ybfJoSuodHzI6+yZwo3H5zLRy2mR0tiajszcBI5HJZbOalQA1yOoftiLnBIgGqkN4OdQGPM9EtXvPKFTF4ECYWiBfCIbdL8erQ75NFGpoum3QxGtDLdLeoHvNQITrQERor7fwJiDCZSckJckvAu65O+Lh1hkYh0df7UEKOA5ZbJYAWwOPWnhtgd8D/00rZy9gA/BLg3NgWjkV3gsZnf0AUSN5cWpaOe2Naw8iRkovzkkrx1xQLwE+8/xug6iWTJxGfn8MAPL0tBmdrcbvnr1LWjnbGrzPgQsM3s/Syulm8J4GFhq836aVU2BcuwZZRHJIAb+2tKHFo0kLfRdnkT8JewH1EVYZna3K6OxFwL7mH7ooRFJJFCHh1K+HPEuxeXcUJugK3P9F8YqItyMtjsGBzbvBKCGcu18YL8XmNBxhvEKabhsU8dpQQLyx3h0R2mUh95sHVCIbinkBnCJEsL3o/i8oQWE5cAVwHyLg/hHAGwj8DVkYXkVOv16c5vsL+B2w2njWj72EjM5q/OkDJiHu2V7eeuBXBm9+Wjl9DN77iA3Ei1Pc3b0XD+DfnZ+OHxcDn3t+lwI/s/DMxWYYsJfxbtX4de/7pZWzleV+LRpNXuhndPYzZJX24lRXvePl3Yt/1+JFD6TTa4BVIbwc4qoPGkNV0tDvlrRhy+5Xhqg7zgPC4lV6IifVOYSPudxOP0XwiQREGL9G/q4b4CBXpVOPjM6uQjLjenFSWjklBu8VZNHxwjxNANxCvkG7CHu+mfPIP80NwFgc3cXG3GX/IK2csQZvHf7d/vFp5XQ0eO8CfzF4Z1hOLPeSv+lT2BfMFo0mL/RdXEz+cX8QcICF94cY95qAHL0TJPi2cBCBHYWJxBtz1nQPBlLAbuSrF1NYItoRHbbX46QncISFZ86bWWnl5IXLZnS2Bjkpe/Eji7rlc+DPBu90i7rlSeB5k2d5t+sQI24OHRHVmInzyD+djUPsKt530/jbemhaOf1pRWgWQj+js58CC4zLp7suYV48jhynvahEDLpReOmbvV2CBD68SbjtIgfbmLPNSVvuEFOI2tQtK/HbFHzqlozOvgg8ZvBsAvgm8k8ZZcAJFt4F5C9Kw4A9jWdqxF7hhU/d4u72LzN4/+catb28twEz/Nlmd7gHyTCQQyFin2k1aBZC38UF5B99t0bc3uoRsJKPBHYG7oq4/1BgOv7dR4IEW4oKZJcZnBBKMAQZc/+K4NUhnkVhMSrFgC2M/RLyT8kOcKCFZ86buWnleN0+yejsJvyJEX+aVk4Hg5clnrrlIeANz2+F3ef9KuBrz+9uwFEWnpkPbLrr3eN9t1r8Npaj08rpQStBsxH6rkfC7cblX1oG0gPk61lTwCEZnd0fCal+Azs6ATcgPtSH4NebJkgQFwoxvGaA2cjO34Zy4HrgaOBQgsfcRMQIOxvRQfuTAwmOSivn4rRy6t0cQ9Qt5txfjH/xse32ryU/CC2uumU8svmqR8Am7TBT3ZLR2dWI4PfilLRyig3eK4CZyc9mn/gL4K14VQKcaOG1SDQboe/CXMltngZ1+AfS/LRy+mR0djGi0z8We/TkMMQfuxcwHDl+xjmmJ0hgohxRmewLbIsIRpsxdziivunh/vcfsI+53Vzee8g4vTnguT8HXkkrZ5LnmqluGUE8dcv+MdUtP7eoW95CFj4vbOqWu8l3pSzEbiC+lHw1bV9kc2bCbMPOaeXk5XXI6GwVfgPxT9LKCQqoa1FoVkI/o7OV+D0NbAPpTvyeBie596jJ6GwG2ArZZZkoBi5E/LWvQdRDpntZggRxcRyiu38RUSHeYOEUI2qT+5DTwUjgaQuvC6KTPgc4HpiCRNua2Ap4Lq2cX6WVU5jR2Q+Bvxocm7rlQfzqFpuB2KZuseVANzdpM2KqW45JK6e7wVuGGHW9OM00EGd09hn83852YrkBqXObQ3sk8rrFo1kJfRfmLn77tHKmei8EeBr8OK2crh7OqozOHoNfZZTDLORYvo3732GuebESeG0BryHDpOPeK2nDN+dFYRiiOkkjapo7Ang59eNkYDuCS5IeibhuFiD2A5u6pxBZHJ5MK2cQfsE6AQk0q4e72zcF9WFp5fQzeF9i98c31S0v4489sG3SbsWvbvk/C+8i8v3xh2KPzzFlxN5p5Yww3m0Dcnrw4kSvaqylotkJ/QBPA9tAsnka2AI7Tic4urYjskO6FTg75LVSiGBaHcLJ8WrwJ24yoZDoyzjRwV/FuBfAlxG83FiI04ZagvXK3uduIp56bC3hAjbXhjjvBvHaWkf0t0shfRCnqMM6wqO0CxHVw/PITjmI2wm4DfGLDxtzg5Ad7S8IqDrnYhrimz6ZeOqWu4D3Pb+D/PFNdUs/JC2KCVPdsktaOeO9F1x1y4UG7yduYjcvbyl+tZbtxPIP8j2egvzxrwbWeH53QWx6LRrNTui7+K49DUzMc+8V5j2hkAn7EeECrBAJr/9fxDNLkQn3eQSvg/u8FRG8cmSSRi04nRDhGibACoB2SNKpMLRx/xfVhnbI91sWweuEeKJECetyRP0QtmimkG8X9d2KkL6IakNb955R/ToJcS02o2pNHIzoncPGXArJA7Q74f3aDgkS62Rcn+lmpazHFqhbvsCvHrWpW55G0k14EaRuWe75HaRuOZ/8k99oxN7hfabNQHxwWjmOwfuK/Hw8ACenlWPLg9Ri0FyF/mL8nga2ldzmaXCshWd6GoBfYPRDdlde2IT7gIDrJnpanmlDrxi8FOAvt+RHCeHFIHLohN8P3IYeNFwbFJIGIQrFiLCOQnvyE44FIc53g/htiNOvRYh6xYQ55voTb8yNx58GwxabMhv/ycsmgG8hP1dVUPqDC8lXt2wF7G3hmQJ4n7Ry8hL/u6keItUtbvSt6X5t8+JbCHhrbRZg98e/nPw0L72RbKktFs1S6Id4GgwyeEGeBm0Mns3T4DX87p3mwEohg8vcBRYSD980xUBj6bhtaG5t+Da2hm/a1rjv9ip+907bmPsb/hOFucCVIAGNpmrK3MXu5ubRr0eAuuX4tHLaGbylyALhhW3z9TDSthwUdgFsqlu6YjcQm4vIVCTewftudfjtE0dZIohXYE/z0ixlYxw054aZngYpYL6FZ3oadAd+YOHZ3EEPQtQ6YYJiO2TXZi4aJl5F0vdGYTHhSeFAJs1tRMcSpJABHaV/r0VORVEZKz8nup0gxUmiAo5yvuzZCF4KUSNE6fNBPF+isn2uRtR5UcL/DSRVQBT+jqQ7DkMKEcDLI3iTkWSCYTp6kDE3Hn92SRODkHQE/47g2QTr9eSrvjpgN5qa6pbxlhw6NnXLAZZFJFdkxgtfEFZGZ19H5n8oD5kjH3l+t8Fud7iY/FPWYGCmhdci0GyFvjuQTH3c4eYK7XoamMYfX/4R19PgWePyQRmd/QUSCxCUmrkzsojsi0yeIAE7Dok2rCDcE2gWIkSOJFzHfSAyqE8h3NB4BJJx8QqC9fRFSB704wgXJL0QT5R5SDxDELZBBMZhhKe03huJyjyB8IVpPnJiO4/ghSnlvtf/Id8lSKiXIzvDw/Hrmr0YjezQDyZcr74rMm7ShC9MhyEL61mEL0zPAB8igUxB366L+9x9CB9zM5G+nYaMgaATx9GWRGzr8btI2ubNO/gDomz5fRaS3562wH4W3tXGe45JK8dW4OYK4/d+ZupoN7Om6WV0hKkKctO8mNHTtja0CDRboe/iTvIFXn9Eb2nCzMm/a1rKpUXxDk8rpyCjs/9EhMBtAe9xNbB3RmdvBMYAzwXwFgNtMzpbgQgyW952kOo81yI74SuxC2uFxB6ciRj8zPiFHIoRYbk3cqQOEtZd3GcOQoRwkMDZGvFoWune7+sA3lxkd/uY+35Bwvo49/3+SLCwLgR+gwi4XxIsrDsgJ7txiA46SFgPQjYCdUgwU5C3z/bIqeAlxP0xSFgfieiGb0QMkrY2pNx3PxFJl2DLnw/iZXYVkjPnbILdO/8E7OWOucIpjvUAACAASURBVLEEpw9ZjFSmOhOpG/ChhdMW+Lcl8dgC4/dMM5unC3PeHGxx36wl3ubrM+ItIo+TP0bLsC8it5C/iIxGxocJsw37WuoPtAg0a6HvWt/NJEu2AfIKkngthwIk7N3EXeQvIv1wF5GMzn6Z0dl5yM7P3FkVAXenlXMjssPdDsk/bgrrzkjQzJmIMOmJ/5iaQyGyezwKUVu8FcBrj6SpnYaoBYJOB32RPCztkV1zUBK6McguKouE7wftDndC9L6PhLQhp3I70b3XqwG8MsSguAtizPs0gNcdUSf0RY7kQTvc4W4bvkS+XdAJZybyTZ7FP468OBBxb/wrwcK1DXLK2N99tk24goyB3yMBWBcRfDoYhCzCI5E2m945xcA9aeXkgoxmIqcIs7+64AZqIQFiY/ELOJDF/I20curTILtGU3MDM9/ytw+Qv3B2wciL5eIm4/eMtHKGWHgLjN8HW+xwcReRz4m3iDyBfxHZ38Jr9mjWQt+FOYD3tvj3agvPdsz7iohjXkZn/4pMEJuL3HzEADwuo7O/R9RC5q6vANnBPQV0yujsXOx+0DmUIq5rnQgv5N3Nvc8yggUOiIfFiYjOPWiXDmIYOxKZ0GGGyH2QdgadNEAE1I+QRTQsurkc2XmvJ9/zwoSDnHLeIDxP/URk4fw74e6bcxG3xzDVVgHSvyPxx4l40R45ZSjCbTN9kP76gHB30FGIWvAZ7Gq8XKDW2IzOnoPk7jfHXH2gFtAxo7NHYk9s1hH4S1o5f/Xo262nX+8FtxyiGfFrE8Dv4lehzre8x/3k92tn7IvIAuP39LRyhlp4ZhvmBSwi5qLUIlU8LUHoLybfGFiCPdf+reSrGEYghjMT5gDZKyBI5KyA9xkIPJVWzv4ZnX2SYJXQVODFtHImI7vNqFqdvRBdeZQnSIX7DlGYhexmorAH0QbeEpcXFYjVFdmRRpWaHIrs1qMwDb/vuQ1zY3CKkGpLUW3oiAjWqG/iIKemKExA+jYKOxPsgjoIeDqtnH1dVWRQlPk04IW0ciYip7SghfUg93598atQ60+/BmwqVFu74iwim4i3iLyHX9U33/LMB/AvIrtbeAuM39uauYdaApq90Hdds8wVer6Ftwy/GsLHQ3ZDWc/voEXkFoInfglwh3ukNo1hXvR0n7dvBM+LhuyzOL74sOWlEBvquXEQ93vE8dmH+G2I65bbkAh7ZglwV1o5Z2DPKZVDL+S0tQ/hY24sog7aCv/pd76F/wr57qYp7AnR7iTfltWXeIvILjEXkcMCFhEzAHO+eSO33KOZt+dwk9fc0eyFvgtT6E8xc224MAfIQWnllHovuIvIAoNn22UsBxZFvNc5iE4+TN1SgkyEbsQr8v1N0ZC5cBoLLaENcfFN2/p7RFBlQziliP2qM+FjLrdAvG9c/zYq1K+J5ynzKn6X7CA7nLmI7GDh2RaR3jF4vpNIc0eLEPpuFkGzPu58C/Uh8n2lO2KkmHVhLiLbxFxEbPlyDsG/s7XpcM/A73eftfBsiJOjRxHtw55DlPplSxD3Xg3dhjj3g3jCNW5wVdxFO25b47bBfL/D8M9tW0zHL/GPxazxuxTxNvIaaoNOv3+h4VSoW7KImBG6tk3aq+TbWMIWEa+9rg+izmsxaBFC38UC4/dhaX/x9GpEt++FbYBk8S8itt3I38n3lilF3A9N46LpCtcL8e4xhYTJ64zo+6MQV3VRTDwhVxCTRwxe3F3SlrQh7v3itEHF4MWdJ3FVPnHbGrcNuYR/XphjqTfi3muOuX7G73L8Uey5617Y5o1NhWqbN0/hV6HaqnmZi8hwxK5lYoHxe6+A3Pgmz7aIrKWF++y3JKF/D/neKD0xKvW4MHcPcyz+yTbeoTEXkalInvN3CUcnpBB2WEbIDoiu9GgaTvXzTVMJfFteYyBpQz7aI662YWOuI6LLP4bwMRf39HtgA6tQgxYRrwq1DfEWkWHIXDVhtmHPllRgpcUIfTfPzp3GZdtAepP8ACWFPcGSbRHZxcIzB8gOiAfIVPynBS8ORdzXppBfOcjEERmdvYHoyZogQRQOQwyVU/Dr6b04IqOz1yPjPSzK2CaAHyL/9NsR8YoyYapQJ6eVM9LCsy0iZpWuLVlEHojiIYuItwhTG8SjqUWgxQh9F+YA2T2tnC4xePMtx7z1+KMh55s3cqt5eXObKOCwjM6uQiaNrVISSIbKXV3f5SmI66kNs9PKGeC64kVN1gQJwtAT2MUz5oJyC81JK6dfRmcfRzYvQZHNR8U8/c43/9BVoT4RxcOvQu1AsB3Oq+KalFbO1haeOfcPsCwiGv8iYnu3ZomWJvSfI1+tksspY+I28g2Cg5EEayZsi4gtNNsX/AH12QqPQdIV2HSzf0orp727QOyMv4A1yCJyq5sOImqyNqT3T1ydfkMaareE11BVrbbkXg3dhoY0mMdtQ8YdcyuR0+MCC8c75t5G9Oi2oLrO+CvUgV2FakubbQuaMjdf1fgzec4zfpPR2Y/wLyK23fnfya8D0QEjH78L2yJiix5udmhRQt9doc1dhk8l4wpZU1doU908j7/W7vYW3u0YhafTyhmQe6eMzl6E5L4xUx/0Bp5NK6e/u0AcjSRQMwXudOBeY7LaQukLCU9wlkMd0QVQctW7ogqWFCCpJ6IEXRHRWUFzvDhtUEQXLAFZ3ONU0lpNdIWsIveZcfLlx2lDAcEpJ7yoIbrYSwpRR0YVyekDPOMZc0diT4c8E1iYVk47z5gzVTIgqcov8ro1uqdfb5EYhVGa0cXfyP/mfZBodxOm0N/eTBAXwLPN/Rr8AZM23lL8myubjGh2aFFC38VDxu85aeXYvCVMnq3jdUzeKvw5WXY2OPciCa9MgTEKiczdxl0gLkSSkJmYS/5kPQr/Agfip/wm4VkrU4h66SXCd4ilSNTuSyEckEjb9YRnDwVZ5D4mvx6qDX2RCOU1IZxcwZKXCV9witlsnAxDJ+RbRKW17oksmEsieH2RU2eUsO6DCMigXEggi3lXotvQHllIXongjcaNBnfH3PlIoXUTP0TGXD83wOkI/JGyICkx/makSo4zb9bjt3vZBOsb+EufTrfwzBw7EwJOGL53M08YQTwLp9mhJQr9V/GXXZtq4ZkFm7dJK6ezhWcOpF0DBojJsw3yf2NPTtYDWJxWzv4uL4NdMOZNVuCn2IX2KMC2UzExCQljD0sBUejy7iV8Z90R8Ya4jeDsoSAugu0Qf+iwHfNIpB8fCeGApDF4meBkbiDjfDLy7ZeG8Noi3+4Owk84PZHkb+YJz8RWyE42KohvLJJQ718RvMlIds6wVM8lSK79uwnPS9QDKZqey0x5NfbTyRhkzE1yx9zx2Mfc7mxO3QD++bBz2l6YJM680TF5X+Bf8GwnjKeJd8Iwnxl0wmhWaHFC37XkmwLdNkA+IT/zZgp7EMZi8vX/DpIbxoQ5QIJOGPdarsHm1A258nVBCcxyk3WvjM6uJjiN80hECP+acA+MmYj64CLCbQJ7IhPKPEJ7UYjoUW8m3HOp3L3f7whPrDYESZr2K8ILkExBTiV/IHzH/ANEYF4bwkkhgUcLCc4eCrJw7Y+kjQ6rd9sPybp6JuHqrXHIYnIO4SqaHZFv8UfCT2n7IumHTZ9zL0qAO9PKOc0VrPcH8Hoi+aT2dOtTBC1OY5EFYqzL8S6cXZHFyIQ5b2YYJ4YgXtCuO87isJF4J4xK4p0wmhVanNB30ZADZB1+I5btfq+S72UQ94Rh4g9uzh7z3bzI5VnZK4LXE8mouS/hAmc0IhDnEJ5wbDdk8tp8oL1IIwuEWXLPiyJEmF9M+DfpjOicDyN8hzscWXB2Jly1tb3LnUv4SeNw5JvZasjmkHL//Ub8UaFetEfaehz+coheOIhdZy7hu/QpSPK0nQg/aezn/ns6hANwblo5vyTemNszgtcLWWxG4M9Gaps375OvKitGkgGaeIz8RW7rtHLMwDIs7/adnzCaG1qq0H+E/Ak9Lm0vmmKWLwzS7fl4JmELTxjmxDcn7jnIrihMABfgT14F/t16OaKuMOuAmhiBFO8wE1OZ2BWpKRClijgJ6YMwNYlCdt1RC2E7pK1RSekGsrmQSRhmImmNo1RHxyCRrVEG6MsRfXvYItIGUQfZjKFe9EL05mGnERC11rlEl0w8ALElhZ2oQE5dYwlPc1GI9IO5qJpjrjMi+E37SJBgjTO/viTCbubiefx1dr+PE0azQYsU+m4QhlkX1Kbbe5b8o3QvRKdrwuz4WWaUYQAv7gnjEfwT6Wzy63uCCA2vYClEXObWGNfMI30XpBpWFLbGPpFM/BCZ2FE4hfBc8SCC/2KiPXHaI+mso9wcBxF9EgHZTdqqQJk4lnCDcg4XEm4vANktR6mgQMbhMTGeOQlRf0XBVhfWhrPxt8Ecc0VIqpGoMdcVsTl5MTUgsrUhT+Y1NM4Jo9mgRQp9F3EGyCb8vr22AfIW+YbVUmT3ZOJR4p0wzHcbi+ygTV2umcu7I3L896IIEYhevIfsPr3ogn9HZhOgfSzXbDDfLcgeMMz4bTPy5jxxvLC5T5bhH7M2z50exIszMP2ug/7GTDcQJLQHGL9tbS3Gn77ZdqLrYnkfmw7fCXgXE8ON30E7evObtEcK4HhRjH/MvYO/ZnVX8sdFCnsGzMXG+wwO8Ik3582OAXazhjQO22wYcTZGTRatSejvlLanSG3IAfJtThhfIXr1MF/xWYh3zI+N62Y/7oKU7rvKuG4mBHuQcD15DtcTbgzO3fsq4hVcsQWhmViOXXdsqt+exO4qavJuJrzQfO5vria6kEoJUoYxChsRX/Sod3sF/7ix8e4inv9/hmh//WL8Rcht2B5xDTbtArYx9zOkdq8X5pizzZu1+PPY2zZfr5DvAtsBewI2U134nZ8wmhNastB/kXxB1QXRg5owO3R62h5125BHUOsJw620NZfgnWQpMCOjs9ciJRSDMA7Z7f6UcF3+JJdr8/f3ojei9orS469BjIxhfvgp5BvtRbjBtT8iRH5OuGCajBjMTWFjYgjShscjeCDjJCwfEogAisqH1BlRhfyY8FiCiWyuORyGUYjRPaw0JcgufCz5+eht+BDxLApbDMuA6RmdvQa7L38OE5CaEMcTbnsJspvFmTdx7WYfk78RCDph/JP8fvm2J4xmgRYr9F3d3qPGZdsAWUL+BA+Kun2cgKhbA9/qhJHR2ScILz2Y412NCMUg7OSeUI4j2LDZCxiY0dlDkcCbIH35jsgOazri2hmEAzM6+zLiLhrm7niwG6w2gnAD4wEZnb0UWZyChGsHYEpGZ49DvJSChOtUpH07Ie6TQaqc/ZC4hdEElx3MteFRRG0SFgx1kLtIjyU4CroI2Dmjs6cg/Ru06I9EDPN7IV5ZQW3YA9FXTyJcAM/L6OwzbhvMnbYXBwNkdPYq5AQZhJ1cwZzGHjEO394nviE3X3FPGC8T74TRLNBihb6Lhhwga/D7xNt0e9/6hJHR2UeQiW3Tu9YXr8jo7BWIl4wNh7icOkQnG+Q1cqDLW4AIJlux9CJkAS3N6OwvkJQStgViUFo5lwEbMlLw/bcBz9wjrZzDXU+mCuwqEICz0sqZmdHZV5Cdf1AQ2e1p5QzJ6Ow9yEJic3dUyOmqY0Znf4f0ne37dkPy0dRmdPYgRMjZhOt2aeX8FFFDTST4+/4srZxdMjr7X0T/HhRVe11aOVtndPYfiDE6yLD9CNAto7OXI26btgWiHRIPksro7I+Q6G3baWlcWjlnIuN1O+CKgGcenlbO3gAZnb0M8XyywTvmjkFUajbYCrD8h/yUFEE+8abHVVDUrW9Of8sThvncZqviaelCvzGibhvkhJHR2b8jyeLMnWvvtHJO8PAuAU61vOuctHKmupw6ZOLb3DFPTLtRlG7OFAd7PpjpSFHtIRmdXYgsZDb7w8+ARWnllGd09jeI77xN4CxIK+ePiGDaB3virkLgibRyjkd01BXY3Sw7Ay+nlbNrRmc/QAyqtjQJo11ehbtL3xq7S+lhwGNp5fRwhdxc7IvcFYh9ok1GZ+cj1c9MpICH0hJ0twlRf9l8+tsBL6WluPnnbhsqLbzBwKtpiZD9FxIouNLC+yESIdsvo7N/RuxBtkXubMQNs21GZ3+GeCuZi5wC7kkr5/dpScJ2Mfb4hZ3SytkGIKOztUheH2vahrRy8hwGtsButoz81Ohgt5s9Q74h/fs6YTR5tGihn9HZT/EXa7btHp4kX53i4K8oBHbXzTiLw6yAVwzlZXR2ERL1aU7Cy9LK8e74L0DcGb1QwD/SypnocmqR9LBmSoBSRLD2dnmrEOFqc7UciQim3TI6+zoSom9TQ+3i8kZldPZ2JKjLtls+HnjcFa6nIdlITRQgXiELEAPqrtijmjsAD6alMPg6RMDbjNQDgX+llbNfRgphV2C3LcxEFojJGZ19CNkJ2xav+Yhw7Z/R2XPxe7qA9MUfEGHfDtnp2ozZpUgA1LnIIjMRey6g3u4z57unpZHY1V8T3TZsl9HZpxH7h83Qvi/yTYa4KUCCcsefweYF/Twk2tts56Np5UyA+jF3OP4cNrkxZxY6b5B54z7bFnVru58t6tbmBms7YXQIeL8mjRYt9F2YOruxJsGNujV3Dz4eEm7v9YooRxJrRT1zTMDi4ONZ3u1e/OoPBfwlrZx9Pbxz8Bsf2wOPpJUzzuXUIGojUyUwFBG+PV3eaoInXCdk4v8SEapBBuXBiCDZ31VZBHnszEAE0zYZyUYapB8/DNm99UVOQDbfeYUUBr8bGdu2iGiQHDt3ppVzHjLhg/zY+yDC9ciMzj6LxBPYkBOuszI6ex3BKSj2QYzhQxDX2yAVzmmITaQtosKxLTZtgBvTyrkKUc/8MOBe3ZC+PQEx7J4ZwNsa+Le7oN9BcLqQXVzeqIzOno2/vkN7RPCPhfoxtyf+MbcVIvh7eK6Z86EibeTrD+D55k1cnnvCiMP7AnFL9cIW09Pk0RqEvpkXxSbMY/FcNYm587Ld7wPyF4fO2BcH3zMDFgezmAvIDvi2tITF52DLs1KOqCpGQ/0kXGzhDUeEQ3eX9y7BQkkhEZz3BNwrhzIkn9D5Ae+WQx8kt8tR2Nuaw3hkcd4OfxSnF3sDLyDf3ZyoXpyK7EJfIdhDqBi4Ia2cqwkWhCA+6Y+llXMi4QbgkUjW0t0i7rcz4sY5BLs7Zw7HIbaKDwl29y1A4jZuwr/r9qIjsqD/ivB+GIS7oBM+5kZBfU58W/K/3Jjr5vK+IH/MtcEf5wH+eTMqYHFosLm/hbwmjUTofwe872FxyKEQ2bHOjeB1RiZXhfs7KCPlSGSydo3g5bAnoi6K8n8/hfAcNiDC9XrsQW9edEVsJm0jeCMQo2lU3YCd8BfqtuFYZKcf5j5aAFyKvTygFx2Rsn29I3gDkbQCUTUNtkUWkqiYi0MRNVlYLIhC0oAcFXGvMmRhsOnJQRwYHk9vrl4VNJa2RsZcrsJdnPnV1BeHJo3WIPQryZ+oA9PK6WjhNdbiYPpSx1kcvChCjGy7Wp7pRVdkEo6I4I1CJmHnCF4Ow4mXkmEm8SpFzY2mUECwOsOLDu5zozAQfzStDVOIV6EqjpFPIemIo1CGPfurid7Ioh2FcciYicIc4kU1h/VDN0SFM5zwsTSa4DEXNL8iN1Xu4uBd9L+vxaFJo8UL/YzObsDvCz7aQm1ui4MXxcgxuy3hkZjdkeO9mdPH9BAa497PTAwXlCffnCBBMQZmvEJjlDwMU4F4EeQrb7a1IUtUxkXQu5nzOaitZhuCYhtsqsYtRW7MZSOeORYxdJtj7vuYX/+jYReHJo0WL/RdxOn4b7o4DGqkxcHMfV6GZFw0fdlNHa6DRIl6F4ciJDWEF9vjrx26iXiF2d8gWiUBopePI6yD8rx7kcIf5RzEC0tvnMMSoqte4T4zTk3cqCjaHKIyf4J4MYXp+XNYRrxyjM8RXSoS4rfBHHMDkYyg3k2DbczNxn9KCrJzNcbmK+7i0KSRCP0t5DWhxaEGfxbDAfgTpr2APyJ3Fv4grEvxT8JDyN+1lyPufFHZJHP5+aMEyXAkEjgOLonBeZLwXO8gE/Uswg28IO+2O9EZNkcjLphRqpBOwG8iOCCLdpjRO4criVa/DUBcfsMK0ICMuT2JPrXkUmNEYRl+b63t8W8ELsE/5g4lP56gK3bbR1wniMSYayAR+t8R7/tYHDI6eyWSNMsLc4KMQTw8zEIwZlbLkYjXiynQiy1/twfhAr0NEmwVlh8IxK1zW+TkEYbdkXw+YakdQAqVXE907vjrkZw+YQI9hSQuSxMu0HsigvWXEc/M+fmbRblN/BQ5sUXVuf0j0t4oI/pNROf+6cjmPEdhGIc4GkQlmzscMUCbrpDmmBuBfcyZNgfbPHyP/DHY1BaHJotIoa+U+rNSaplSyhYd2OCorKzsV1lZeVJlZeX57v9bc1dvCe+gv105zbhckTYSJlVWVvbb9qQjzWRLY01OZWXlSSP23tEcXFZez7FmRl4/7/g3Fx1b1rXcDKwZbfKOevIvs1HKK3xyi8OJhNfCHZuRQur74tflm7xliED3HsPNCTI2o7OvIUFJYZiGpIgw0+2a+BHS3jAXTJCTyEeEC/QixKPkL4QL9C5IpOgfCFcvjUZcU6MSoR2IuFhG7dDPRk5OYQK9AEmA9yDhAr09Ekl7MeECfQgSOXxuxLvtxmbvnjD8Avl+Ybl6FJLz5wXCT4W5Mbcn+QLcN+a8P9x5c2KHPj3MeePjHfvywrmpwgLvCca3OFRWVvabe9Wvx5n3MheHysrKfuOO2Mc8Sbc8oY8Mgu885LiysrKgsrLyIiR3/UWIm99FwFuVlZUXVVZWFnxTXpehzm/ads9zMCkuKisdafKG/XB2XjSlKkiNuWyPI9uYzxy688xZxuuPtb3boNlT8r0plBpn4/WZNLpLHq0g5eOVdu54bvnAvnmDsKBN8diMzla369n1gDYd2wfp0AedPmh6eUZnlxeVleyVKiq0HuFLOnXYobKysuD4Nxe9OeWEw4IzUSo1FuD4NxfdM2TnGf8K5Am2BvbpNKBPVDrg3YBepZ07hmWsBDmxfFTQpjisulMBcE6PMcM/V6nQ4d0R+F3PMcPfjXjmYOCozkMGZCN42wEVbbt3ibIDzAe+LiorDSser4Azu1cMXZ0qtOXqq0cZcG7PcSOi7Cx9gRO7jhgc5dI5Cdiufe/uQfEZOewHFLXp0M6Wp8mLk4HXDaFbj9LyjnPcMffGNscfEjnmzHnTb9q4POGtUv55U1BcdGG3kUPyjK2posLxJq//tuNPKSzJK3PQtbRLp74mb+Secw7xkopKS7Z9+Ma/hnZSU4PSOtorSynlAIu01hUR1G8M96P6kodVr9/Ixq++ZuW72ZsX/eS3C6aeePiJJR3b777pq7VUrdtAzcZNVG/YSNXaDVR9vY7VSz/9ZM3Sz1eUlHcYUFBUWF6zqZq66mqqN2yCGG1N0IhQCtCR2vGyruWsX/llJK/biMEsfyu6XEDXYYNY8Y4tVc9mpIqLaN+jK2s+Di8EVlLeEerq2LgmXB527N+brz/7grqacC/WrsMGsuKdD0M5EK+tqiBFx/69Wf1h+Bpc3L4thW2KWb8ifA1u16s7G1etpmZT2BoMXYY6rHwva/23IxffckVZl/Jq4KTnr7iZl6+708cpLe+4+tJVr5ebMqLyzodYfM5m7WaPUVu9+9s3Hhlm8v559pX8567Npp7hu89+5sT7/jzD5N118El88cZmU8+M0370t4PPPWMfL6+utpZrp+xPzcbNpq4D77nymll7z02HfoQmhCbhbuSqZqwf7cYdDqNq7XqQMPzDnr8sqsQofYG+G7+M4zySoEkh5qIcJYxyWP7WBxSVlVC9Prw64Yp3llBS3oGwMVNXVc2ajz+nqG0p1euCzRkbv1xDQXExqcKCUIG+ZulntOnQjk1fhZUUgBXvfEhpl05sWLk6lLf8rQ8o7dyRDauCtVq6to7VH35Ccfu2VH0d7Nlb9fU6ajZsoqC4iNqqYM3R2s+XUdyuDCKE/sr3soHv9uWHnx5T1qVcA0w5/hBWvpcluzg/EemGL9d0evz2hdv1qBiaJyO6DhuUz1v91dDKyspJGLKk2/B8XtW6DVNtvK7DBuYJ/U1fr5tr8lIFBXTZysnjff3ZF4dXVlb+rqKiIk6Bm0ZHUzHk7k9AhGVdTWO4QSdoKYgS+Dls/PIrSEW7pVev2xDpvV5bVUVdbXQc2qav1mJTQamCfG3BhpWrKSy1JH7Mt/GwYdUaDBWFFVVfr0MVhE/9upoaamPMvaq160kV+2O9zPtvWLXG2oZXb/pbKaKmQqVS7HTuyXQe3N/He+/hJ6/CkBFdhjru6VDw1SdfqI2rv/6NyTMXh5Xvf1SAGMHzeObisOq9j4ptvK7DBubf772PShAZ1izQVIS+LR82ADWb4rhAJ0jQAKiLqf6LQ4t7qzq/HVnX1voEZM2GjXkCTohaFbUtzedttMTFpZTGEMK61v/cVJvi/JUq4HsUtSvLWw3qqqp9C6auraO4fdu8yVuzYSPK4GUXv8iHi1+o/13crozdrvgVqcJ8JcQbf100YtWS/IJsRWUldBrgUetrzYr3PvStGObisOajz6jZuMlXu7rLVvnCfNUHS0Eq0OXBXERWvf+RlddU0VSEvtVL4d/X3ZHo4RO0StRssJxQLHOhet0Gisps6d89qNOKOk2qKFybW7epqiCKA1C9dn1hYalxorAsEFVfrysqbleWd01beI+cdhFegd6pf296jsv3fKurrkk9eMI5bFyTrw4zDd1fffw/n4G8oLiIwjb5nsdffbbMp2vq0Dd/HVi3fBVYcjd16JMv39eJujEqx1OTQRyXzdsQn9thSqlPlFJRiZi+Ce7EEyFaV1vLs5f8mX9dcct38KgECVoWqtf7d9A+aE1ddY3/tGCgrjqeOrVmyZpT9wAAIABJREFUQ1TteIFrjwtF9boNPPjTs+sF+qs3LeSzf/s9xNd89BmPnHoBdbW11FZX88/fXsmq9/M9Qt+697HH8ciSDV+u4f70Wb4TUOUdD/0VI2VJaXmHPHXbpq/Wsubjzy8weWVd82usr1u2UiMyrFkgUuhrrQ/SWvfSWhdprftqrYPqrX5jVFRUfIwn4EOlUqz6IKy29maY+s8ECVojbDtoO7FpnpzXLP2cf5xyPnU1taxZ+lngey599hWeu3QBSqVYtcQfAvD5q//tiRE89uWHflnyxl8fKDB5qYICSjvnx0Xestsxn5i8tobQX/v58qrmYsSFpqPeAcltfjGwTinFnHNOpKybL3mjbyToGAazBAkSNH18/NyrPHfpjUz/xdG07xOsIn/tpoW8+9BidjrvZJ/aBtj39v1OOBtXlpSWd2TH86wlfX/+yUtv1Muc3EVzFw/0wiObAEqME0HNpqo2aeWUmn/YVNFkhH5FRUVtRUXFyUjOk5NKO3e8YPwR+/yJfEGvkDTDcbYrUblVEiRI0MTw2s338tK1dzw4cq+drgvjPX7m5TVfvPHuLT3Hjlhs/FP7FW8vOc8rS/pOGn1Bu57dzGCHkfceecZRXh5wQc3GTW8ZvJ6mbEoVFFxQWFJs+vc2G0NurOCsxkRaOb/HX3D6FCSPd1jBjWokn8iJSGm2INTRhBa/BAkSUAXsQHiqB5A6zj9CCtKY2DGjs4/lfqSV8zPgMoOzFhiV0dmsh3cDUtA9h+MyOvsn8+Zp5byMVHLLYVpGZ5+PeN8mgeYg7H6D1BX14lQkFPxAJBGXDUVItabxSDh4UIhkCinBdxHRyasSJEjw3aMY+BPhtSFAVC/HBvzbn43C5Z9ZOO1cnlcOmikofK6dW8hrcmjyQt+trzmP/IRMXZBBcSdy5Dobe2GJfkiFnTuQ4t+LAx4zAUmuNQTJoRInj3qCBK0FcQ1ncYNq4vAqyE+xHASz5kMO/chPxx2UP2N7JKdTEK9XwN/F5TU5NHmhD5DR2Q+RjIhe7AXskdHZ9Rmd/TUi/G2FpgcD/0EKNJwd8pidkAWi1vKsBAlaM+K6yMUpw7glPJ9VdQtxVFo5uXKZYUnkzksrp3cAL0iYx+U1OTQLoe/iIvyFny9KK6cNQEZnP0Jyc/+f5W87IKl0rWZ8DwYieednfas3TZAgQVPBZWnlFBC80wdJs/B7979NXpDaJi6vyaHZCP2Mzm7EX7VnMHC8h6MzOnsZwfnPzaOgLZd6Cn/B6jjHzAQJEuQj7ryJm2Drm3idjAMOy+jsOoLtegDz08qZQKLeaVrI6OyD+C31Z6WV0824dibxarmmCC727cXKGBz4ZoOyqaEltCHBd4/w9KCCOHV3QapgxcHrMXlmjYQ/pJXTHr9KxpzXl1k4PQxDbw6JIfd7xInk123tgKGrz+jsJuLV8gQpnReFbsBdMXgfEK479KIhhWvce8UpQq5i8rbkuQmaBhqyv6xZcQ10BG6MwSsHXorBW43fycI2Vh8yrvdEPP7M3bk596cj2gCvD34h4jhiItnpf1/I6OwSpP6qFz9KK2eUwXsIuD/GLWcDUVUqCpG6r1GngiFEl/3LITqPb3zEvVfc/o7La8g2JPju0RhjbiAirMPQEykIH7UozcJ/0reN1eGId58XJ+MvzF4JPGNcuxB/8jRb4JXvRGDhNEk0O6Hv4nzy672mgHMsvP8j/1QA/oFVgfjrRmF3/MdB2yA9An/sQNydc7LDTtDSMItof3uQYupxEm4dgV/gmraD2Ui+nOWea22AYQavCLEJeuedA5gpFXzeRhmdNVVXBQEF15scmqXQz+jsekTN48UeaeVsbfCWAOcZPJvPcTfLdRuvH/lGp6BO7kf+QEp22AlaM/oQz1jbn3gxAab+3EzAU4z46J9mXB9s/E5ldPZ14GrjulnfI2hempuvZiFPm8VLBuA+JJLWi1MtvIvJP14GJQw3fZGDfJPjlphszt82QYKGRtx501Bpc3dEhL/XocOck7nfvydfI2AuIkFz2TyZN4s53yxe0oaMzmrgXOPyvLRyHIP3NXDl9/RacSMXExfQBAm+e1wEhKWCTwFkdPZ/wJ+jeBYkQr8RsJD8bJoFeKrbe3AFwe5jVxAvLNyXdMmCL4lnPH6B+O5nCRIk+GZoC+xCcGCWV016IcGbtiB1qin0m4XatVkL/YzO1gEXGJePTiunu8FbTrBr5qNIRr8oD4M/IEaksN28QtJDmO9kogrYlngLRIIECb45tkM2WTbUyz831cvtUTwDyU6/kXAr4K1aUwL82MK7CLsxKZXR2acRi/+qkOekMjq7ADgg4D45Tl1GZ08Fzoq41zpgX8LLrMX15mkMJB5ECRoKccd52Pz04lPj986AryYufvlnOn0E8XJIhH5jIKOzVeRn0wMJqU4ZvKVI/h0TOb3eq4h72XILB1y3rYzO3gPsg10vXx+wktHZc/B7D+TQ2+VUAwcjC5cN9yOuZ1G2ggsQw3YUTgBejMH7dwzOMuIVg36WeDaMhTE4AA/H5MW1r8TlNeQiF1fIxU1PELcNDbmJiPs9Ho3BSQH/jMHbiF+g2/AO+T75pfh99HPPrUdGZyuBRVE8DxLvnUbETeQLlkFIdJ2JayzXOuX+I6OzbyKC3zZArkgrJyf47wf2wD/ZitPKOSvnr5vR2fOBn1vutVVaOfu6nBpgPnCzhbcbcC1SE+A5y7/ncALwK0R/aSal8+IXLucYwndN6whe/HLoATxGtMCZhr1tJuYSfLz2YgLxojfjeoHE5TWkvjbuvGtoj5eGnO9xv8dwwKxGFXQ/27zzojeipo1avLbD77zRL+B+JmwyoizgOclOv7GQ0dlV+NMqH2GhPo8/Z8hM74+Mzv4XmGP5292AGzwC/WHsO/nf4hH0GZ29FHjc4Cjg9rRydnY5tdiDTooRwboRqRJ2NHZhXQK8hkyw0UhaCtvuuh+iCvvc5QaFyG9HvLFxMOHZC0HaejT5KjgbihDVWVQtg27AGPxBdwmaJvohAU9Rp5ZZxHOoOIvoU2EB8FP8lbdMIb2N5W8fxj93Zlp4tvslhtzvGaYA2y+tnLxIW9fN00y5sL15o4zOvoQ9ivBQ4Nee30EePRemlbOP5/dFFk4BcFdaOWPcZ9YBf7HwOiO5RLpkdPYGJKrQVuGrAEkY9U9kUozCPonKkCPsn5AJFDSguxDvCN+XeGqDvjHup4CuMe5VjERYJmgeKCXeqSXOmFPAD8iPyLehPRKM5U2dYsq7ibnTew7uydvcfO0a8Ixkp9/IeJR8fV9bpKSiCVPoO2nljLPwvgx4zq/Tyjnc/e8gYaeAW9PKmeL+thmRQAbmg2nl9HF/B6lmBgP3pZVTmtHZFcgiEITJSNDacSH3A7FLvAVMIngX1tA5fZrFTihBoyLOGCnBo5YNQW/CVUbtsAt0024w1oz/cZEI/caEqyIxdceHWqi2pGk2Xljq2OvTytmB8B1uCXB/WjmDI3h9EMHfPoI3FbjJNVDbSkN6kUKyjA6K4LVDIpYbKgoyQYLvCx2Jl7q5J+GqwMMs12x59w+xXEuEfhPAAuP3jLRyOhrXbMfHuZZrYcfMQuAeRC8ehm7Ag8iOPgxjENfNqF3OfkgUclzPCTOcPAjJDjxBc4SZGC0IYarAndLKMefJN5URzWIetSihn9HZd8n3FChEcnB4YRsoQ9PKGRqD50VH4gVXDcOu0zexC/bdhIlTgLExeAkSJIhGe/yefra5P9lSrMnkxS0M36hoUULfhanvNkskBhkKTd1eHINi/4Dr5g5gTADP9BLYNoBnHk+nBvDi+ms3JOL6kkeppLb0fgkSNBTiyAiFBHkB4J4OOnj+vZZgO2CTQmsQ+rsagVpBwry+49PKKSE4x/5rMd5BAW/H4BUDn8Xg1RKvrGNUMZgc4gRVQbxAmMKY9yshvEZpDjXE8waKcu1MkCAuTKFv7uhtPFOOrHQ98Jo8WqLQf4Z8I2xP8tUhQR06K62cXERt2C6/gHhRoa/jr9Vpw61EB6WUIbl/onT5g11eFHoQT2j2Id7upTvxCmW0Ifo0UkK8+qtdSQR/gobBiLRyBgK4G0RbeUSAXdLKyTk9mDKi2YzFFif03bQMZuj3DwDcDusc8KdtkPw7EC70RyEVuf4T8So7uM+NEpoTEffJqF1CZ+wZRL3InTBuiuCBtDGOKqWcaEGtEBfZqEWpmHieQh1i3AukDY2h0krQ8pDbxXciXy56x2E5kHPDToR+E4Op4skZasrJt7CbuvIcz+xQ089+HBI9ahpuvAOkKxJlelTEu04FFgO/i+BNR4KvoozH04GfANkIHtgDZmzCtjFSFcS9V+JumqAhkJv7pibAPMEG8aLSljQZtFShbxY7nuimTzA7ytyFT3L/3+SZqQYmZXT2P8ATxnVTUE3K6OxCwmt/lgIjkRq/Ydb/McgicnoIB2Cim8EzKr1zEJqF21mCBA2MXEqGqB38xJi8JouWKvTfJd9o2BkYiL+jTGE+wdXpmTwz5DvX8VGGzhwvakBMRNQ7Yf3RBiniHrWzHe0aouPoxRMkSCAYmFZOOf65b+aMym0MTV6y029MuFZ0s37uJOwd6i2e0gEYauG9Y/we79oHotw6cwMkyDDk5XUiWqBPJNgQnUMhknQtildHPM+hz4hnpF1OPD18NgYH4L2YvKUxOHGD2RJ30eaFuP0VNznf3vjnzRLyT+ADXH99k5fs9JsAzPS7NqG/HH/ueBvvffI7tS0wwsIzMdZN6BRncYgTF9CQvBSSYjlqh9ILScoWNcG6AukY79YdsU3Egak+s+FlogW/It4CV0i0JxXEz0sfV9jEccfdkvvFMW7HXQjjBhzFSYkADRuvURDzfnHb+gv882YZ8KZxbaKFlwj9JgBT6Nt2ySsamGeiBMn/7s3HbRMYY/Dn9rYJgimWZ9oEwWQLzzbwtyI6W6EinjeNQnZKUShDBH8UhgIrY/B+SHQbIH5KijD7Sw4p4uWIb0N06mkQu04coVlFw52mFFAZg1dEvNNUKfHiMCDeomRmurRBEc8tuoR4/TUMma9eLMe+gUwMuU0QZkeNx746NyTPNCCDPw3EF/gnUaF7Py9ewr+L2RrxsffiAcszd7C8298tvDQiXKNwH27lsAjsHE0BYF5Mni1LqolCpNZAFOKckEC+cRyMiMnrFYOjiJdHJiqHUw6DY/LitrVnTF4cT6oS4u3i+8Z85uiYPCcmb7bxe0tkRLNASxb6H5FvzGyPBBt5sRz/bmcQdjWQyRuMuIDmoIEj8e9iDjJ+LwOOtbzv7sbvLOLR44XCvxNZin9Q9sGfVsKMOgTZ2ZgJ6WzoEE1J8D2hMdxi456SgipMmWiMWghxk7OZcTwr8M99m1NIIvQbG27BlKxx2dw9rECEpvfI3Bu7esdMcWCmLV6V0dn38NfYNHeEKzI6+xBiIPJimvF7OZI11FTfmLvpn7PZYOxFUmQkQYJvj+VYanCQGHKbLLLGb/OovSKjs5vIN/LZqjettNxrgHkv9/9tNTZtPLNIu6k+ORZxCTWFdxKMlCDB94cViOD32lw6kD9f12d0Nq4xvtHR2oS+aSz9KIDnjVRdltHZDYjg97oumsfF3L0iXQ3TyjkNS5lGA20j/j1BggTfHHEMxRr4OEBr4EUcR4Img9Ym9L275nVs7niT58X7EKgu8vEQ748wD4sDkEIoQWmUEyRI8N2jmmgvouUZnc05U2RDeO+H/FuTQ2sT+l687wryKJ535x7G25hWznFAhiQJWIIETR39iHaT9RqwsyG8uIGETQJxKtQ3Z4T5F3s7Kux4Fpf381hvlCBBgqaCdsgGLchO1imtnLEZnX2N+LKkyaOlC/0wi7r3SBYWBPS+G1U7geiauAkSJGheiHKMOB/xmIsrS5o8WrrQD8tl712dw3gnANcTXEkrQYIELRc7pZUzhPD0HMlOv7GRVk4ZIqR/FUIbnVZOOyRo68wQnuk/nyBBgtaF5wkOUKxFInSbjQeP0jpuLqLmg7Ry7gX2iKAtQaLvOn33b5QgQYIWjEeREqr/yujsc439MlFoqd47pxLtQTOIROAnSJDg22NH4GKCS7E2KbRIoZ/R2XeIjoxNkCBBgobCZRmdNVOwNEm0SKHvVo56iaQoRoIECb57vAKc1tgvERfNUqefVk5RRmerzWtISuEDgb1IMkMmSJDgu8daYLybbLFZoLl67+yZVs7PEVfKjxEhvy/xc6YnSJAgQUPgx81J4EMzFPpp5Sgkj/0U938JEiRI0Bi4MqOzZrbcJo9Ioa+U6gfcjFTPqQOu1Vpf/l29UGVlZT9gf6Sk3jLgzoqKio/TyukOHIIUKolT8aeOeDaLuDxNdNGJOJyWghrs4yfouokq4hXn2ES82gDVRFf30kh/R0VhNlYb4o7FBI2Mtj26fLT7n357aWO/xzdBpE5fKdUL6KW1fkUp1R4pRL2n1vq/DfkilZWVBUjIcxo3rXBtdQ1v3/fYppeuuWP12v8t707rEahNGVXIYtyW/MphJr5GKimFCViN6ETbEdK3/9/emUfHVd13/PN7s2i0a6TRastItkbryItsS7bBMhgbL2wGg7FjN5iCCdiQQwItnLQ9SdNzmpbTLE0aILQkoUAJDnACCRACrsEpYT044A2DWY5NcMxaEtvYkubd/vHGI43mSRrBaKHz+5yjc+e99525v5/md3/vvvvuvCuW2MY2RxniV9HisaImancx9CpJR3GS+lAJ+3Dss4Y6SfwZ5/8xcMIWMRhzhKF8sKyose1oCrYpY0BOKEj3J8dY+4ubyasIHcF5wOL1kUjkc/OQxSF7M8aYg8QWdzbG/FlE9uAsx5fWpI+T8K/tu+M3f30jrz/+uyyS14VVxg4/qa1fmsp6rpKKztjGIoXHYJio7SG1ZfFSXdYv1UdvDO2rMZLK5xnb9qAL5Yw7LJ+X/Koy5l2zHn9eDnkVIXBO9Cdy1nVjZ93wGNbsHRGpAbYBEWPMYM+iGBaxIZ099Fs45I8v7+Xetde6v0lRFGWUaDx3MfNv2EBWnmt/4QjQGIlE3h5lsz4VKY8fikgecB9wTToTfoxVuKwUVTG1AX9+8gJS3uwAlnfoIVe/+xf0qXW+3BR0loUvJzC0zO/D4x9qCBq8OQGQoUe1UvchhY6wJfhyhtZZPi/ewNCjEL6cAOIZOtTcvutPqxPLSslXx4ehh9u9gayUYi4rRR9S0qU6mJlCfAxLNxak24c0uFowsYKaBe37T/vG1bRvXDNQwgcnd6367DWODinN3hERH07Cv8sYc/8I2FE20IG6Jafw1tbnqFnQTs2p7XvKW+ubckqKuH/99Rx80RlhEo+FPzcHj99Hw9kLmXRy267SxiktgcI8ftRxId1HnbUSvNlZYCC3rITmC5ZQNaN5R6i+tvXoBx9xx/IN8Tr9hXn0HDlGSX0NravPpHJaIwUTK3jzyef49Ve/FdflhIIc//gwlbNaaDjz1L0TZkYa8ipLee6m/+KFW++J67JLiuj55Bg1p7ZTd8Ype8pbG5pyS4t56Opv8taTzzsiEQIFeWAJ9csXUNM5e1dpc11LdlEBP120nsOHnCe7evw+LK+XQFE+zSuXMGFW645QQ01rtLuH2+Z/IV6nLy+H6PEugrUTiVy0nPKW8MvFdSdNPbh9Nw9s6H0OXU5JEcc+PkzF9MYTOvIry3jprgd46l9+HNflV5WBgSmL5lIxo/mVitaGxtyyYh772nd49aEn4rqCiRV4A37qlsynPFK/u6y5rjkQLODu8zfx4T7nkeSW10tuaZDcshLCSzsJNdbuDDVMjngDWdzctiL+Wd6cAL5AFqXNdYSXzKd4yqSXS8InTf3g9f38fPVXEv6/pifKpJPbmLxwLqHGWvKrynnlwS1s/cYP4rq8ylJM1Gby6XOoaou8UjGtoTGvPMS2b/2IHT97KMEHy+uh7oxTqJjasLusJdycXVLE/Rdfz8HtvTGXV15KdrCA8NL5hJqm9MZc+wV0f3IsHnP+vFyKp0yi7oxTKAmftCNUX9t65P0PufPMy+N1BoIFYBsmdExjyqK5lDZOweP38Yfnd7Dl777X60N5CDsapfbUDqpmRfZWTm9qsG3Drp8/zPaf3J/gAyLULZ5HxbTGPWUt4aae411s+8db2P/Ui/GYK5hQhj83h7qlnZS31O0KTp7UYkej3LfuOo6892E85rKDhRRUVxBe2klJuGZHfmVpa9fhI9x9/lW97SY/F8tjUdnWQt2ikwlOnvhyIFgw9d1d+xLaTW5pMdGeHmo6Z1N7Wgeh+lqwhFd/+QTP/vDOxJgDppzeG3M9x7t45gd3sO/R3/bxtRxvIIvwkk7KIuHdJfU1zdGubn616e/56I0D8ZjLKQ2SVxZyvq/G2p2FEysj0Z4e7lh2WW+7yc2m4azTaFm5hNKmKeAMbU9iaD43Q9CpzN4R4DZgjzHmOyNkx7sDHVj49avh6/HN14AmgOxgIZbPS9slK4msWkZeecIU/deJzfDJDhbg8ftov3INDWcv7N/DehNozbYLASg8qYo5V61j8sK5rr3w7KCjq2prYfaVa5jYPhWx4j3YvUADQHaxowsvW0DbJeefCJ4kHwJFhVheD9PWnUvr6jMpmJAQN3EfAsECuo4cZfYVq2lasZhAYcIQ8ptAq7FtxLLIqwjRcdU66haf3L8H+xYwNTvo/GatLBKmY+NaqufNwPIkDyEHihwfJi+cw8zLLqQsUo/09rJeJba2QHawEERovWg509adQ9FJE/p+zD6g+YTOm53FrMtW0bxyCTklCY89egOIgNMD9gSy6Ni0lvCyTvyJVxwxHxzbSsI1dFy1jprO2VjeZB9O6KrnzWD2l1ZTOaPZ3YfY99V8/hlM/+IKiqcktPG4D4EiJ5baLllJy4VLB4y5QLAAT5af9o1foPHshf2vwpyYK3K+h6KaCXRsWsfk0+fg8SXH3J/eOQRA1cwI7VeuYcLsVteYyy0tAaB++QJmXLKS0sbJfT8mHnM5JcHemFtzFgVVCf2t3nZTXEj3sePM/tJFA8acHS0GEfIrSweNueN/cpaWLm+tp33jWqrnTneNudg4uRNzG1ZR1hJ2/b5yQkWIZRE5EXOTEpa+Toi5w9nvMXPDKprPP2PAmPPn5eDLCdCxaR3hpZ39r9QPJRnqTqq6MSeV2TunAL8FduBMKQP4mjHm4XQZMdCYfj+O4CwmvhXI3bn5EapmtvRvoEm6F/59M83nLSYnlDTRJK4zxuQ+/a+3037FGrdL/SM4F4s5Hx84yFvbXmDqmjP7NrykOg88/Xt6jh+n9tSOQW3b84vHCTXU9j8pJOle/Ml91C9bEG8UA+me+f4dtF26En/yMFRcd/T9j3L3PLCFGRef55Yo474e/P0eDv/xPeqWzO/b8JLqfO3X28irKKVyetOgtr105wPULGinsLpyUN2zN93FtLXnEihMuucZ13V/ciz3xR/fx6zLV7klyrgP7+99g3d3v07TikWD+vDm1mfxZmdRPWf6oLbt3PwwVbNaKZ5cPajuhVvvcTuxJeiMMblPf+922q8cPOb+d/877H/qRVovWj5ozO3/3Xai3d3ULmgf1LaxiLkj73+Uu/fBLUz/4hAxt303hw99QHjp/EHrfPWRJ8mvLEsx5joorK4YVJdKzDF0bvr/M6ZvjPkfY4wYY6YaY6bH/tKW8AEikcgBnKlPg3FLJBJ5/oQusmqZW8JP0s3asMot4SfoRIR516wfaGz3FuBmgMLqSqatPbt/40uqs3rudLeEn6RrWrHIrfEl6douWenW+JJ0c778F26NL0GXEwoy89ILXHvGfX2tnN5EeGln/2SZVGd4aadb40vSTVt3rlvCT9J1bFzr1vgSdL7sAB2b1rr2jPv6EGqYTPN5i4f0ofa0DreEn6SLrFrulvCTdLMuv8gt4SfoRIR5Xxk65oomVTF1zVlDxtykeTPcEn6SbixiLjcUpO0vU4i5Gc1uCT+pzvplC4YRc0kJP0mXSsy5Heyn+1wkfBhfv8i9PlbG5+nHiM+FHWPdeLZNfVUfPu+68WzbcHwY94y7B67t3LlzIs6d8HKccbLNbmfRsdCNZ9vUV/Xh864bz7YNRzfeGXdJX1EURRk59DkfiqIoGYQmfUVRlAxCk76iKEoGMZ5m7yjKuCUw+wojlgfL58eyPIjlwfL6YqUf8TildWK7336xPHi8FiLilJbg8cRKr7jv91iIBZYlWB4LyxK8XguPJfhjZVZ82+OUnv773UufZeER8HksLBF8HsESSdxnSUwrcY0nQSuIgMcCC8FjORPuPZZgxUoR8IhgCXgEx08BK/ZesaOIscGOgrERuweMDdEe1/1i94Dt7HeO94AdxfR0O2V3d3zb2FHo6cZEo4mauLYLbBvT04WxbeyunnhpR6PY3T2YqE00ViZvdzvb8fdFsaM2xjZEu6KYqFPa/bYTjndHsaMm9l5DtMcmagxdtiFqiJWGLhvX/TZ9Nb3HbjFvDfggCu3pK4qiZBCa9BVFUTIITfqKoigZhCZ9RVGUDEKTvqIoSgahSV9RFCWD0KSvKIqSQWjSVxRFySA06SuKomQQmvQVRVEyCE36iqIoGYQmfUVRlAxCF1FRlFFCRC43xtyqdvSitoy+HdrTV5TR4/KxNiDGeLED1BY3RtQOTfqKoigZhCZ9RVGUDEKTvqKMHmM+XhxjvNgBaosbI2qH3shVFEXJILSnryiKkkFo0leUEUJEikXkMRF5LVYGB9DdKCK7RGSPiHxfRAZc33Qk7YhpC0TkDyLyb2m2YamI7BWRfSJyg8vxLBG5J3b8WRGpSWf9qdrRR3eBiBgRmTUSdqRii4hMEpGtIrJdRF4WkeXpqFeTvqKMHDcAW4wxYWBLbDsBEZkHnAxMBSLAbGDBaNvRh38Ankxn5SLiAX4ILAOagTUi0txPdinwkTGmDvgu8M/JDVjJAAACpklEQVTptGEYdiAi+cCXgWfTbcMwbflbYLMxZgawGrgpHXVr0leUkeNc4PbY69uBFS4aAwQAP5AF+IBDY2AHIjITKAd+k+b624F9xpg3jDFdwM9iNg1k473A6em+4knRDnBOfDcCx9Jc/3BtMUBB7HUh8E46KtakrygjR7kx5iBArCzrLzDGPA1sBQ7G/h41xuwZbTtExAK+DfxVmusGmAAc6LP9dmyfq8YY0wN8DJSMth0iMgOoNsb8Ks11D9sW4BvAOhF5G3gYuDodFXvT8SGKkqmIyONAhcuhv0nx/XVAEzAxtusxEek0xmwbTTuAjcDDxpgD6e9g4/aB/acNpqIZUTtiJ77vAuvTXO+wbYmxBvipMebbIjIXuENEIsYY+7NUrElfUT4DxphFAx0TkUMiUmmMOSgilcC7LrLzgGeMMYdj73kEmAMMK+mnwY65wHwR2QjkAX4ROWyMGWz8P1XeBqr7bE8keajihOZtEfHiDGd8mIa6h2NHPs59lSdiJ74K4EEROccY88Io2wLOfY6l4FwRikgACOH+/aWMDu8oysjxIHBx7PXFwAMumv3AAhHxiogP5yZuuod3hrTDGLPWGDPJGFMDXAf8Z5oSPsDzQFhEakXEj3NT8sFBbLwA+G+T/h8RDWqHMeZjY0zIGFMT+z88A4xEwh/Slhj7gdMBRKQJ597Pe5+1Yk36ijJy/BOwWEReAxbHthGRWSLyHzHNvcDrwA7gJeAlY8wvx8COESM2Rn8V8CjOCW2zMWaXiHxTRM6JyW4DSkRkH/BVBp9hNJJ2jAop2nItsEFEXgLuBtan40Sov8hVFEXJILSnryiKkkFo0lcURckgNOkriqJkEJr0FUVRMghN+oqiKBmEJn1FUZQMQpO+oihKBqFJX1EUJYP4P9ZXYOFsayxHAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFwAAAFTCAYAAAAEFxi7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd5xcVfm4n5O66YUUQl06JBN6EykJIEUQFVCKqCCIY0FF8Afq14qigCAowkiR3qRK772XUDIhARIYSA/pdTeb7P398Z6bPXt3yq2zCb7P5zOfTe6UZ86dmXPPfe973mM8z0NRFEVRFEVRFEVRFEVJjy6d/QYURVEURVEURVEURVE+a2jARVEURVEURVEURVEUJWU04KIoiqIoiqIoiqIoipIyGnBRFEVRFEVRFEVRFEVJGQ24KIqiKIqiKIqiKIqipIwGXBRFURRFURRFURRFUVJGAy6KoiiKoiiKoiiKoigpowGXAMaYq40xnjFmeJ18A40xfzfGzLHeZmPMJ8aYB4wx+1d53t7GmMeMMYuMMUuMMU9Ve3yZ529ojDndGDPdelfaf99sjMlVeE5XY8xPjTFvG2NWGGMW2vewX8be7saYvDHmNWPMfOt90xhzhjGmVxZeY8zv7OOq3b6ZRXvt84wx5lvGmOfsZ7zUGDPBGHNZFu21z6nW1lOy8pZ5jXvsc+eGeXwcr/O7e9kYMzvs7y4Fr//4x40xU+Psnzhe+5xvGmOutL+dFvu8MWGdcb32eYn6K+f9T7Lemu/fpNBfxfQm7q+iek1K/VWc9trnGJOgv4rjrdHWUP1V3PYGnh+5v4rqNSn1VzG8qfRXUb3O4xP1V7Vex1QY75kU+qsq76er/Rw9k6BfiuHtbox5wXoXxO2XIjpT65di+v3P9+W4/VIMZyr9Ukz3mu9z3H4poi/W+UsK3sTjzATutPqlup5rKmsBnufpzbkB44CZdfRtCSwFFgPLgHOBa4GFgAecWeY5BwOr7GMuBy4GZgKrgSNCev9iX78JWG7/fz/QareNDTzeAHfb57wP/B24GlhgvUdl4bXPudc+p2jbejEwwW57BuiSQXvHAL8rc/s9sNK2ecOM2tsVuNk+bxxwEXABcCcwN8P97AGlCu3eOStv4PnH2X27ImxbY36+/u/uMeQ3VPN3l5LXf/z7wBVR90/Cz7dknzMbmGb/PSbsPk7gTdxfBd7/6lrvn5T6q6he+/jE/VWM9o4hhf4qZnsT91cxvYn7qzjewHNj9VcxPt9U+qsY3lT6q5ifr//42P1VrdehzHiPlPqrCu/F7ZdWkaBfiuH2+6UWEvRLEZ1j7O9xJrCEBP1SDHdXYD4J+6UYXg9oDrTXv4Xul2K6x9l9HbtfiuiLfP6SkjfRODOhO61+qa7nmnrr/Funv4G16QZ0tx3lQ3V0dgUagl5gBDDLdia9ne097A9+OTAq8PjZwAygVwjvkfZgGPR+zXYgEwOP97c/CzQ42zdFBgtzgf4ZePew25/EGRDY/fZ02M4uqrfK64y1jw/1HYnjBc62951R5r5uGXo94OmE3+fY+xkYBnyKDARLRDtZi/q96lpuX1Lhd5ei90hgnzKvE/V7GOfzPQDY2P77r2F/Ownbm0p/ZZ9zkO+t9f5Jqb+K4U2lv4rqrfIakfqrOF5S6K9iehP3V0n2Mwn6qxjfq1T6qxjeVPqrmJ9v4v6q2utQZrxHiv1Vhffi77dW4BFne+R+KaJ3D8frtjdyvxTDXW4/R+6XYnh/Wek7GqVfiuHtsJ/rcXP28xNJ+qWIzkjnLyl6UxnPx3SnMY6q+7mm3jr/1ulvYG25AVfaH07wtqizvMBd9t9bOI//ot12ZZnX+j97X82rJDW879l/D3Eef4PddmiZ17rQ3ndyBt5j7bazy7zWL+x9R6ftrfI619nHfj2Fz7dce/vY+57K8HtVtr2kE3CJvZ+B25EBQh+iB1xS+Xzta3X43dXJG+V7mMhL/IFC1O9z1v3V0gqPz7q/quTNur8q663yOmn1V5Xam3V/VbG9ZNtf1dzPZNNfRfp87Wul0V/F8abRX4XykiDgUuF17q/wfpaRQn9Vxf9BBe8iIvRLMbxPVPGG7pdieCt97iuj9EsxvNdUam8WvhDt7Sxva5R+Kc32RumXUvZGGnclfB+R+6XO+o7orfNv3VB8ngOGA19CBlLv2u2zO8m7BDgdSdWb6jx+X/v3sTKv9RhwDrAfkjYZxzsb+KH99yrn8evbv6Uyr+VvG4Okx6bp9e8/yBhzvud5rSDzoJHU32bg5RrOON4OGGP6AkchV6L+G8IZx3sQ0B+40xjTH/gysBFyZe0hz/PmZOT1GWiM+R6wnn3s057nTQnpjO01xhwFHA0c4nneMmNMBGV8b5n3MRjYnY6/u0y9lpYIj0/TG4Wo3qz6q42AzyHTHMqRVX9Vy5tVf1XL24GU+qta3qz6q7DtTbu/CuXNoL+K/Pna95G0v4rltSTpr5J40+Ad5GQ02I99DvlOJ+2vKtHs/DvYf/rj8THU7pei8iTg19RwvXOArxO+X4pKueNFD+BnROuXorLY+ffd9m9/YLoxZliEfikqzwF+nZY3kADAUuD1jHyu19/PADcCU4DT6ugNc/6StTfr8U8adNa5ptLZdHbEZ226AX9GIo07dpK3APwBiYDOQQY03ww89g772A5zQZFBpwc8GLe9wC5222uBx95itx9S5nX8KzOvpO219/3T3lcE/mZvE4B5RLgqE9Vb5vnfsY+9NOn3qsp+/qPd/mtkLm67q4HAN7JqL+Wj7q3AVUCPDL3rIemnNzjbSkRP0Y/8+SLTAn5X63eX5fcqzuOTekmWoh/l+5xJf1Xr/ZNRfxVmv5FBfxXn8yKF/irEfs6kvwq5n1Pvr0J6U++vwn6+pNxfxfle2ddI1F9F9cZ9n9Veh/L9WGr9VQW/3y+189r7IvVLMdxv2NefTIJ+KYa33X6O2y9FdP7R2c+fJumXYrhT6ZdieP9mXfc72yL3Swk+35rnL1l+r+y2yP1SwvcQt//slHNNvXXurdPfwNp0Q+YWr8yyU6zibQl00EvKHRSAR+39W5a5r7u974U47QX6AuPtwWH/wGO/bV/7aaCns31j2gqTvZe213nOL5EiYO4B7HJgeNzPN4w38PxnrXuXJN+rGvu5YB2rgPuAbYABwDHIFaGWsJ101PYC5wO7AQOBQcAXaBukXZbVfgZuQg7Q7lSUEtFPYOJ8r3KE+N1l/L2K9Pg0vCQLuET5PmfSX9V6/2TUX4Xdb6TcX8X5vEihvwqxnzPpr8K0lwz6q5De1PurCN+rVPurmN+rxP1VVG+c91nrdSgz3iPF/qqC3++XWoG+zvbI/VIM90P2d5qoX4rpdY8XsfqliM6C08b7k/RLMdwf2tcfmqRfiuGdYR0jnG2R+6WYn2+o85eMv1ex+qWE7yFuwKVTzjX11rk3nVLUnh2Adz3PW1nrgcaYSyO87gLP835dwzvB87wdjTHdkAJqpwA3GGN29Dzv585jt7V/f2OMWRx4HT+veXP7/sJ43/U8b6UxpgeS3pYDfut53pOBx+6OdOj7AbOMMZ8gKbBbIFcMAIam7bWvdwCwOfAUbRXCNwFOBL5hjLkNSYlN2+vSH9gHuRp0kjHmJOe+NPfz3vZvE1IB3U0JfQsZKN5sjHkyo/Z+O/AabwBbA3ljTANSBC1N7/3AYchA93dOav5goHvgc8jq8/0n8tvpB4wEbjTGnAG8mLEXoAvS/k2AV4EjjTFH1sH7efv3J8aYowP3pfl9zqq/qvIwILv+qqo0w/4qjNclrf6qqpfs+quq0gz7q1rerPqrWt6s+qsoXkivv4rqTdJf1Xw/rtr+9cq8n2B/VYlq7+cmZBpVD+ANY8zDQG9k6t805AR9dcAblopeY0wXpC80yNjyfus5GFkp6RBjzC6e581P02txP/ctkD5jvOd5b5R5n2l5u9i/LcDXPM9bYf9/mzFmIBKQOQ04OWUvSBHZCZ7nfWr//5gx5lUkGHCqMeYPnufNStNrjPkSUqj2Y8/zZtZ6oc46f8nwexV1/JPEmwahzzWVzxCdHfFZW25INNoDrg35eC/CbVocL/APe99+WXqRExF/qcK/1qu96v3f9iLFJv9n2qvedLz2/7UyL9Sr3lS9ZNRfra3t/Sx4y7yu7/2y+36c+8tOKcpgP7yNFNBdCUxHlive2973TAbe0+1jXi5z33H2vnPq8LmfY/9/esbft0vtYyaXuW8De99bWbc3cN9F9r4j0vQi/dLMcl4qZLjUqb2fufOXKv1J2X4s6j7T22f75keBFZlXDHJVriae55kIt41iev3Cbfs6286zf48JeoA97X3/iOB9B5lX/BX7vDOjtpe2q4x/S9uLVDoHGF3Gu4G974Es24tcLfkYuVoyLObnG7a9p9q//yjT3r72vvfr/Pn+yj7suJS9Q6u8jsuiOrf3y/Zhv8nKi6Sn32E3d/iss24vUi8AYGzG3+e0+6vE/TPx+qtQXtLvryK3l3T6q7DtTbu/SuPzjdNfhfFm0V+l0d44/VUkL+n1V7HaS/z+qhJbVng/kwP3r3k/dOyvkoz3rvE8byvP83p4nrehJ1kAm9v71mR+1PBE8fpZSE+Xuc/ftlMG3jWfu5G0pm8i/dKN5R6cotfPHJhR5r5F9m+vLNtb5r659m/vlL1DaSsS/21jjOffkGyT9ez/F9a5vR3OXzLwJh7vpdSfRCHqMVb5jKBTitoYbf++sxZ5/QG6W237WeAsZF7ofwKP/4LzmLDew5Dq9QXP834c4nnlON7+vS0Db0/7d0iZ+/xtzWXuS+p12R85cN3jtaWJhiWq92n7d7sy9/nbPsnAW43d7d+PU/YuofJqDMcgg/wbkWkBaXprUe53l5rXrlhzA7LKSdz3mWZ7s/Sm3V+l0T/H6a/CetPur+K0N43+Kqz3afs3rf4qjc83Tn8VxptFf5VGe+P0V6G9KfdX9R5fVcIPbgTfT1r9VSWq7Yco/VJUBtu/5VZCidIvRcVtb5J+KSpN9m/vMvdF6ZeiUu3zjdIvRWEJ8AqwB/Agku3iE7VfikrU85e0vfUe/6TB2tYXKnVCAy5trGf/Lqr6qPQZWc5rjNkY+IX976POXY8jB4pvGGMu9jxvgn38CGRO6kzggRBev737I4PIH9R6gjGmv+d5iwPbfoTMA/6v53mvZOB9EelUzzLGvOjZOY92EOjPs3wmA6+LX//gmgjPieX1PO8DY8zTwAHGmLGe5z0FYIzpjqxOAeGWpIzkNcZsD3zoed7SwPYTkCuoHwGvpen1PG8ebUsoBt/PgUhRwbL3J/Ha198RaW/w+1zpd5eWtwuSBntsmMen5U2RqN60+6vQ/XPK/VVYb9r9VZzjURr9VShvBv1VKG8G/VVNb0b9Vdj2pt1fhfWm3V/Ve3xVif72b/D9pNVfVaLsfojRL0VlDjLWPNoY888E/VJU3Paebv8dp1+Kimf/7pywX4qKH8wJfr5R+6XQeJ43zxjzBBJw+Y3n1MaJ0S9FJer5S1p01vgnDda2vlCpExpwacNP77raGPMAkvZ4u3/AzZAR9u+Txpj3kVTIZUgaXk/gPLcD9aRA1PeQomcvGGNuQa5MHINcqTjSaysQVo2t7d/VSAX3p4wxE5Al9Hwu9jxvofP/V4wxHwMTkaj1Pkgn/yay1F8YonovQ04gDgGKxphH7XMPRDr7t5Hl9tL2AmCM6Qd8Fbky9GCoFib3fh85cXvEGHMnMsg7ANgeKcSZRXu/A3zHHrj9KzC7IsUKlwLf8jwvzJWKWPs5BaJ6TwRONsY8hcxzbkaueh5Gmd9dit7fAicAC5F059+WKSAZZv9E3s/GmFNoK3K6q/17tjHmRPvvqzzPez5Nb4r9ld8/P2aMmUpbv1nt/afRX0X1ptVfxWlvGv1VHG8a/VVUb1r9Vaz9nAJRvSeSTn8V1ZtWfxV5P6fUX1V6nZzzfu5DToRv9zxvQkr9VSX8/fCUMcbvl/oiv5Uo/VJUrkUKWO8FzDTGTAHeA3YmWr8UFb+91yAF1Jch39+s8b2twOPGmHeBcch0jij9UlT8rI4n7Hi+FSmQvBPR+qWolD1/ycATJNL5S4p01jgzjX6ps841lc7GWwsKyawNN6R6+znI1Y1VSIR8pzp490Z+gO6yanOAe4BDazzvcSSdcCmS2h1licZrHV+lW2PgOb9D0uCWIOmJ7yBR7IaMvYOR4lTvIYOfJuQk6lygX1Ze+7xTqFKMK0PvFsjc1E9tm99HBr89s/AiJ4h3IUsaLrPOKcC/gC2ybm+Z1ykRYTnDGO3dGxkETgIWI7+/GdT43aXgTWv/RH6dEM85McPvc9L+yiAnBaHfP+n0V3G8afRXkb32eUn7q7jepP1VJC/p9Vex2lvmdUpE66+itjet/iqq99oajw3bX8X5HdVy1/xcQr6Ov0zyTs5zEvVXNfbDM8iJqe9/n4j9UkzvBfa743ubidgvxfSeg6yW5nvrMa72vTOQoIdn93mkfimG9xDaAvx+e6cSsV9K0N525y9kvCw0Mc9fUvCm0i9l5D4xzmeV1b7S29pzM/YLoCiKoiiKoiiKoiiKoqSErlKkKIqiKIqiKIqiKIqSMhpwURRFURRFURRFURRFSRkNuCiKoiiKoiiKoiiKoqSMBlwURVEURVEURVEURVFSRgMuiqIoiqIoiqIoiqIoKaMBF0VRFEVRFEVRFEVRlJTRgIuiKIqiKIqiKIqiKErKaMBFURRFURRFURRFURQlZTTgoiiKoiiKoiiKoiiKkjIacFEURVEURVEURVEURUkZDbgoiqIoiqIoiqIoiqKkjAZcFEVRFEVRFEVRFEVRUkYDLoqiKIqiKIqiKIqiKCmjARdFURRFURRFURRFUZSU0YCLoiiKoiiKoiiKoihKymjARVEURVEURVEURVEUJWU04KIoiqIoiqIoiqIoipIyGnBRFEVRFEVRFEVRFEVJGQ24KIqiKIqiKIqiKIqipIwGXBRFURRFURRFURRFUVJGAy6KoiiKoiiKoiiKoigpowEXRVEURVEURVEURVGUlNGAi6IoiqIoiqIoiqIoSspowEVRFEVRFEVRFEVRFCVlNOCiKIqiKIqiKIqiKIqSMhpwURRFURRFURRFURRFSRkNuCiKoiiKoiiKoiiKoqSMBlwURVEURVEURVEURVFSRgMuiqIoiqIoiqIoiqIoKaMBF0VRFEVRFEVRFEVRlJTRgIuiKIqiKIqiKIqiKErKaMBFURRFURRFURRFURQlZTTgoiiKoiiKoiiKoiiKkjKRAy7GmPWNMZcYY6YYY5qMMbONMfcZYw7I4g0qiqIoiqIoiqIoiqKsaxjP88I/2JjtgSeB9eymxUBfJHDjAb/0PO8vab9JRVEURVEURVEURVGUdYnQGS7GmF7AvUiw5U0g53neAGAQcCFggD8bYw7K4o0qiqIoiqIoiqIoiqKsK4TOcDHG/BT4G7AU2NbzvOmB++8GvgKM8zxvl7TfqKIoiqIoiqIoiqIoyrpClIDLa8CuwBWe532vzP17AS/Y/27ned6k1N7lZ4BisTgQGGb/OyeXyy2sk3eQ9Xqd6J2dy+UWfca9g4Ghnehttd7FdfKuBwzpJO9QYDUwK5fLLamTdwjS3v9F78xcLre0Tt6hSBblKqS9neGdmcvlltXJOwwY/D/kHY5kxa4CZuRyueV19A4GViLt7QzvjFwut6JO3vWR/Vxv7whgYCd7p+dyuaY6OA2wfid5RwADgGZkP3eGd3oul2uuk3cDoH8ne6flcrmVdfJuCPTrRG8Tsp87wzstl8u11Mm7kfWu+Kx7lc4nVMDFGNMPWIRMGzrK87y7yjymCzAf6Yx/6HneZSm/13WOYrHYD/g28B1gFNJ5AvQEJgDXANemfRJVLBb7AycCJwEjA96i4031ZMZ6T7K37QLe8cC/gevSHtwXi8UByD4+Cdgm4H3H8aY6yLZBNN+7dcD7tvVen4F3kOPdKuB9E/l8r097sGuDO753S+s1QA9gnONNdfBngyy+d4uA9w3Hm+ogzAYdTkZ+S5sHvK9Z740ZeIcCpyB9x2YB76uON9XBkD0J972bIicRBujueG/KwDs84PXb2x14Bfkd3Zz2oMSelPreTQLel633lgy8IxzvRrTfzy853lUpezcAvgt8Cxngut4XrPe2DLwbWe83kRMY1/u8412dsndjxzsi4H3Wem/PwLuJ410/4H3G8bam7N3U8Q4DWhzv09Z7RwbexoDXb2834CnrvSsD72aOd2jA+6TjDV+oMJx3c+BU4AQkSOvv527AE8DVwD0ZeLdE2nsCEsRzvY9b738z8G7leAdZbxegK/Co9d6XgXdrZD9/Awlq+d4u1nsV8EAG3m2A7wHHlfE+jLT3wQy82yHtPQ4J8qxyvA9Z70MZeEc63n6O11jvVcAjGXhHOd6+Ae+DwFW5XO6RNJ3WOxr5Ph8H9Al477fexzLwbo+095iAF+u9MpfLPZG2V1l7CBtw2R0Z+IJMJ3qvwuNeAXYH/ul53o9Se5frIMVicSek0xgA9KrwsOXAEuDQXC73ZkreXay3Xw3vIuCLuVzurZS8uwEPIB1nNe9C4JBcLjc+Je8eSGfVp4Z3PrKfiyl5PwfcB/Su4Z2HtPfdlLx7A/+1zkreZdZ7cC6XSyXTrFgs7gvcY50NVbyfWu/7KXnHAHdbZzXvHOCgXC43OSXv/sCdIbyzkPZOScl7IHAHEjyr5p1hvR+l5D0Y+I/19qzinYZ8n0speQ8Fbg3h/cR6P0nJexhwCxLEqub92HqnpuT9EnBTCO9H1ju9wmOier8C3ICcfFfzTkH6yRkpeY8ErkPa26PCw5YCk613Vkreo5EAYS3v+8hxcHZK3mORE5TuNbyTgMNyudyclLzHA1eE8E4ADs/lcnNT8n4TKFhv9yre8cCXcrncvJS8JwL/DOF9Gzgil8vNT8l7MvD3EN5xwJfTyiguFounIlP6a3lfB76SVoZtsVj8PvDXEN5XgCPTynQtFos/BM5HvsvdqnhfAo5K66JlsVj8CfBnpK2VvMuA54CvpXHR0mY8nA78sYrXQ8aTTwPHpHHR0nrPBH4fwvsEcFwaFw+t92zg18jn27WK9zHg+DQuHlrvL4FfhfA+DJyQxsVD6/0NcFYI74PAt+qRsabUn7ABly8jJ1sA/T3PK9u5OXVc7vI876jU3uU6hr0iMA4JPoRhKbBzLpf7IKF3G+SAG8brIQeOHZOeLNoI+atI0COsd3TSk7ZisZhDrkSH9S4FcklP2orF4g7Ai0iwJYx3CTAql8tNS+jdGbkyG7a9S4Dtkp48FYvFXZErs2Ha22q92yY9eSoWi7sjV0jDehcD2yQ9ibHBtMcjeBcBWyc9ibHBtEdCeldb71ZJTyaKxeJ+yIE+rHeh9S5I6B2LBEvDeudbb6KTiWKx+AXkeBbGu8rxJjqZsEGtu6kcKA1651pvokF9sVj8InA74ds7B/k+JxrU2+DSrSG9Lda7VdLBtQ0u3RTBOwtpb6JBbrFYPAq4PoJ3BtJfJcqQKxaLX0eCS2G8K4HpSP+cKFPNBnmujOCdihyPEmWMOUGeMN5mJGg6KmnmVrFYPAm4NIL3Q2SckyiDqlgsngJcEsE7GdghBW8eWRAjrPd9ZDyZKJOpWCz+CDgvpLcJCV7ukoL3p8CfIniLwO5JMz+KxaIf9AjrfQfYMwWvH/QI6x0H7J2C9/+QgEuYcewK5JxmvxS8v0MCTGG9L+dyuf2TOK33T8BPInifz+VyuvjMZ5BKEdwg7hel2mDIj36GDTR8VrmQyleny9HQtHjpxXnT+CdkwLsC6eCa3H8XvFKtAcPfCDeYB0mfa2hatOSivGk8HxkAJvGGba8BGlYsXHxR3jRemND7dyK2d8WCxX/Nm8ZLkAFgByewouCVag1U/k7E9i6fv/CCvGm8NKH3H4Q7OLZ55y44L28aCwm9lxJ+P3cBGpbNXfDnvGm8yvF2+Iyree1VgcsienstmzPvz3nTeA0yAKybd+mceX/Km8YbEnovJ/zn2xXovWTWp+fkRzfeYr2Vfkdpe/ssnjH7D/nRh9+WwNslhrfv4umzf5sfffhdCb2XRfB2A/oumjrzN/nRh9/j+IKfcS1vV6S9Yb9X3YD+Cz+e/n/50Yffn9Abtb0DAf/kIxbFYrFbRG936z0NubId19s9hncw8EPkuB3X2wPJuIjiXQ/IIyfTcb09CR8EALnCOhRJqf9nAm8DchyM4l0fmaJZSODtBVwcwdsTmcb2bWRKRlxvH+CiiN6NkelO1ybw9kUyTKJ4N0WmS9yYwNuP8EEP37sZMl3ilgTeAUiGSVhvAzK9+WgkQzOudyBwTkTvtsBXgQ4lFiJ4BwO/i+gdCRyBZDrH9Q4B/i+id3vgi0gme1zvMOAXEby9gJ2Bg5Gsk7je9YH/R/jjby9g92KxeGAul3s8gXcDJHspinevYrE4NpfLPRXXq6ydhM1w+QZtnXd3z/PKnggbY24Cjgce9Tzv4NTe5TqEnb/9HhECLjPfmsg9J/+S1StrXvhZTYWTjG4NPb0RO263a7eGnl269epJz3596Nm/r/O3Lz3796VH/z409O9Lj359mD/5E+499desbqnpXVXOCTR169XTG7GD722gZ/8+7d1lvPPeL3Fv/je0ttS84FTJu6J7rwaz/g7b7tytV0PXbg09O3qdNvfsL///dOJk7vvB75N5e/fqsv722+wUxTtnwgfc/8Pf07qq5gUn39tuHwMruvfp1XX46G127O562zk7ume9M4kHTvsj3upY3hVAU4++vbsNH731Dt0awntnvjWRB3/yp2Tefn26Dc9ttUO3hoau3Xv1pGc/+Q5Vc88YV+Shn56L11rzQlfFoGbP/n26Dxu11fZRvNNfe4eHz/hLMu+Avt2HjdyynTf4u2n/ty/TXnmLR35+fiJvw4B+PYaO3GJ0FO/Ul8bx6FkX4LXWPHa0lHMCTQ0D+/ccuu3muW69rNffnwOkzyjn/eT513nslxcm8a7oNWhAryHbbDaqe++Grt16NbT1UQPa+qrg5/zR06/wxK8vTuYdPKD3kK03GxnF++FTL/PEry+B2sdo39vhMzqZTkUAACAASURBVO613sA+Q7Zq3K6d1+mbyrl79O3N8nkLl1130Em7t65aPaXglSJnYNgsk+uRqa2hWTpn3pJrD/j2nsDkgleKnIFhs0yuieydPXfhtQee+PkE3mOQqUSRLjYtnTV3wbVfOHHvBN7jgX9F8Xqex9JZc+ddd9BJ+1hv5IyTYrH4LSRgE/Xi2sxcLrdBVJ/jPQkJ9ET1Ts/lchsl8H4XubAU5iq1y8e5XK4xgTdKlonLR7lcbvMEXn9KT1TvB7lcbusEXn9KT9gTVJ9JuVxuuwTenyEB5igXSgEm5HK5XALvWUjAJar37Vwut2MC76+Q7JZK00srMS6Xy8VehbZYLP4WCbhE9b6ay+X2SOA9B/h5DO9LuVxurwTePwM/o/I0z0o8l8vl9o3rVdZOwma4uCnNvZApA+XwO+e6rCyxlrIRcvU1dAf64t+uDRNsAXuVlzKDjVVNzUx9OZVyLOXoVtG7onO8LSuaOse7fEXneJetYFoneFcuXc7UlzrBu2RZ1t5+lDkpa17cSd5FSzvF27RoSZZef95/R+/CxVn+jip6VyxY1Dne+Z3knbeQqfNiefsg9T7Im8ZlwAJgNjItZApQQqZaLbT3rflb8EpNSBHiSjUfyvL6Vf/h5Uuu72e9q/Km8T2k9sd4JH1/PPBxwStVizBuQsRB9Wv/upVXLr1xYAWvf/u44JWqRb4ie1+9/GZevezmQdbbUsZbDOmNdLL2yqU38voVt60HvGu9k2jbv/7tkxDeqCfj0LZSY1w2IXrQozO96yf0NhJvPyf1bhbTOyKhd3OiB1tAspiSsCXRgx6d6Y0dPLRsRfTgA0jWVmd4N0no3boTvVGDLSBZaspnjLABF7cGxAZIBkc5/M5nZux3tO6ziPD7FYClsz7N6K0oiqIoSiL62NtGQM2rm3nT2NStoUdz3xHDejRUybLsPWQQfYcPoc/w9ejZvy/j/n2n+zLdkJX9RgHHOtuX5k2jHxxYEyQoeCW/ftIiZBpjqEGu19rKuGtCeZfkTeMEAoGYglfyi8AutN5QQaYy3u5Azt6OC3jdYEgx4PXbG2rM0bp6NW9ed3fQO9reXO9i620XiCl4Jb9e1ELkwlLUk+OkRTd9b9ST1KRFRn1v1JO2pN75RPg+OyS96DkfyZyLFDQleXvnIRmZkcbQJG/vXCSDvFxB0yy9n8b0Ji0SPAepP9el1gMDJC2K/GkneeO2N2nx6bjtTaXotbJ2EbZTm4QU4TTIQKRDwMUuC72N/W8qK7Kso7yLFGkbGfYJG+4+mkn36GpgiqIoyjpPw6qmlQ0LPwpfI7xLj+5hpk6BZMPtaW9ryJvGmcAbPfr1GX/Qn8/oNnz7beg1aEDtVzOG/hsM9+Z9UDI1HtmvmrdhQL/igef+rOvw7beh18D+YdpB/w2Ge/OnfBLG+zl7c70zgDcaBvaf8IVzf9Z12OitQ3mNMfQbMdRbWJpey9sf2MveXO904I1egwe8e+AfT+8yfPttaBgQevZWEzLtKgn/QaacRGEFUtw3Cbchq8hE9f4rofdWZMpJFJaToE6O5WZkykmUgMtypH5SEm5CppxECbik4b0BmXISJfCxDKmflITrkXpZUQKXaXivBX4U0bsUmc6XhH8jS25HbW9S79VI/ah6t/cK4FsxvLHreilrL6FquAAYY14FdgMKnud9v8z9n0NWboEqS0f/L2CXlPWXDC7LquaVTH3pTfqNGEbf4estv+vEsx+aP+WT7ZEUw1qDoap079ObvusPofd6A+nZtzfdGnqyqnklzUuW0bRwMcvnLqSlqZlVyxOvtKYoiqIoax39NxzOsNzWDMttxfBRWzF01Jb06C3j3uVzFzB7/PsM2W5zVq1oXv6fY3/6aMvypt2ADdPyDh+9FcNGbc3QkVus8S6bu4A5499n6HZbsHLZ8uX/Oe70R1etaE7Hu9H6DM9tJe3Nbc3Q7bake29JBFn26XzmFD9g6MgtaF6ybPntx53+2KqmlbuRfEoEAzYewbDcVgwbtRXDc1u18y6dM49PJ0xm6Kgt6TtsvaXApimsqnYBUuS44knM0tlz+fTdKQzLbUWfoYOXAJskXaK5WCz+jRoni0tnzeXTiVMYNnprr8+QQb436apq/6DGyeKSWZ8yd+KHDB+9tdd7yKBF1psoC6JYLF6OFBuu7J05h7mTPmL49tt4vdcbuNB6k66qdiVwAlWymBbPmMO89z5i/R229XoNHrAA2DjpksXFYvEaJKutsnf6bOa9X2L9Hbf1eg0aMN96k66qdgNS9Leyd9os5n3wMevvtF1rr4H95yH7Oemqarcgq8pW9C6aOov5kz9mxM4jWxsG9JsDNKawqtrtwOHVvAs/mcGCKVN972zrTbqq2l3AodW8Dq3ITI3NUlhV7T7gC4TLjluNrCK3RdJV1ZS1jyhR5JuRgMs3jDF/8DwvOG3oTPv3jf/lYAtALpd7slgsno5U028gEEDxWlu569tnMWfCB5guXdj2iP3vPHfys98CyJvG3kh2TI62VN/RRJiT27JsOQumfMKCKW2rH/fbcDjDRm7JwtI0VsxfaL0HXDvp3id+hqwOMQKpQp5D5h1uigzG/tdXnFIURVHWMRZPn83i6bOZ/MhzssEYBmw8gvW2amTqy2/SsmwFPfr2ZuRXDzrjH8smFQDypnEQHY+9OSBEukx5r+nShUGbb8SgzTfhk+dfp2V5k3iPOvgnly5/7yrrHUzblCLXHS5dBjkpWzxtFh887Ho3ZvDmG1F67g1WrWiiR78+3qijDv7RpSvevybgDbY3tHfR1JksmjqTDx56do138BabMHCzDfn4uddZtaKZnv37eiOPPOiH37vmokTBFssvkQDVEZSpq7LwkxncftzPaF68lJ4D+nmjjjo4f+rVf00UbLGcZb1fLOddUJrOHcf/jOYly2gY2I+RRx703VOvvjCNqQFnIGOxg8t6P5zK7Secycoly+g1aAAjjzrolO9eeUHSKScgmRcjgAPLeedP+YQ7TjiTlUuX02vwAEZ+9aCTvnvVBWnUbzwNGe+OLeed+36JO7/1c1qWraDX4IHeyKMOOvG7V5yfdKoawA+QWj/7lfW+9yF3fussWpavoPeQQd7IIw864ZR/nZfGVcvvWe/ny3nnvDuZu088m5YVTfQeOoiRRx50wimF8xIFWyynAEOQ7LkO3tnF97n7O79g1Ypm+gwdzKijD/nGdy47N1GwxXIScC+weznvrLcncc8pv2JVUzN9hq/njTrq4GO/889zEwVbLN8C7gd2Led1WIFMbRuTNNhi+QaystNOIbyfWq8GWz6DRMlw6QVMRE7ExwHf9DzvXWNMPyT18Of2oQd7nvdoFm92XaNYLO6EpL+OQeb/dgOYN/nj1lu++kM3kLES2KPglSpWN8ybxiGUHxglCYh4SCbOo8BrwNvBFSms1/Wl4VUURVGUtYFW4HXgZeRY+Lh7HMybRoPUrwkee7cjXkFEn5XIlILnkePve+4S39a7MR2P+9sRvbaGSzNwHZKR/Kr1rilE7HhHB27bJvQ2OV6/vTWXWCuHXc7+60jwZRva6ti0vnX9Pd2ev+Aq92ry+8AuBa+UOBhgvcci0162dr3jrrmz24sXXeN6JwG7FrxS0romvvd44Gyk8Oga7xtX3d7tpUuuc70TgN0KXilxMMB6T0CCTVsgdV26Aa2vXXFbt1f+cYPrHQ/sbotmp+H9NrKU72au99XLbu726uU3u963gT1T9J6EXEBu533l0hu7v/avW93f+zjgc3FWF6vg/Y71Nrrely65rvsbV93uel8D9k7R+11kJZ1Nkfo5XYHWFy+6pvu4a+50vS8D+8ZZ1ayMt4v1noH0NWva+/wFV/V46/p73H7mRWC/gldKHISw3jwSTGznRc6HmpDpVr/L5XKJf7cB7w+AnyBBW79uj9//LUdW1/tDml5l7SJ0wAXAGLMD8ASwnt20GDnx7oJ8WX/ped5f0n6T6zrFYrEPcAC2gnvzkqVzrtzr2Ctp248gdXF2iXJwzpvGLkhV992c287Eqy4P0vm8jXTo/m2iOwh0vFuU8capLg/S6Sy2/p5EuLqWAq3IQQaSDZ7Vq171qvez7jUkO+leV7wrkNTud4EX7G2SU6yWvGnsjmSj7oZcrd0NCUxELYDpsxR4g7Zj76uUWaXIekfR/vibxLsk4H2tijcX8OYSel8PeGutjtSBYrE4AsmGGACsfPHia7uOu/qOYO2Ufxe80skx32cl7wbIxbSBQPPzF1zd7a3r7w7WTrmy4JVOTdm7IZKFMRBoeubcQs/xt9wfrGFyecEr/SBl70bWOwBoeuoPl/aacPvDwVoilxa80mkpezcG9vW9T/z64j4T73k8WFvjkoJX+mnK3k2stz/Q9NgvLuz33v1PXRx42IUFr3Rmx2cn8m4K7ON7H/75eQMmP/zcRYGHnV/wSmel7G0E9va9D/70TwM/fOKlCwMPO7fglX6Vsncz6+0HND3w43PW++ipV84PPOycglf6TcrezZGson5IoOVtZNnrSP1PDO8W1tsXOc68DbyZtVfpfCIFXACMMesj0f3DkUjdYmRg8DfP87Tya0jypvFrSAE4l6sLXumUhK/bjbZBoH/bnuhV332WIZH8V5FI8zPuoLOM1x94+oPAJN4PgGlIBfkVwFDkO7cRkmIbd6AXhlXIygRutf7+9j3U2zsASf3sDO9QoldYj+P1VyfoQdt+rofXb2+9vC2Ot57tLef1v1dZexfYm+sdSsJaVRG9fiC33t4eyInRkIy9Kx3v6k709qTte/VZ9K4APkQCBe8iWQzvAR8WvFJL3jT2Anak7Ri4O5IJEZe5tAUjngNeLHilDtMn7FRk17tbQu+nZbwdMiasd6eAd6sUvK9a70txMjXypvEK5Aq6y3EFr3RrgvcWxvtvJEPC5esFr3R7xt7rkCkTLkcWvNLd5R6fktMANyKZNy5fLnilezP23gIcE7jr8IJXeiBj73+Qeisuhxa80sMZe+9C6q24HFTwSo9l7P0v8CVnswccWPBKT2bsvR+Zuud69y94paez8ipK1kQOuCjpkTeNVyLzKF2OLXil21L2NNB+MHYEEeakB/CAd4CngKeBZwteaUEFby9gB9oGnkcQP3vFQyLBvvd5pD6OH4DxbxsCmyCZP8OJH/Cp9j6m2ds8JDDkIQP+oUgaalbeqchV13lICqJ/ojGsDt5pyMl6sL3+fk47GNRKx/b6Xre99fZubv9m4f0EmNFJ3unI5+t6hyP7OQvvatr2c9C7vvVmEdxcTdt+dr0NtLU3a+885MTd9/rtzSKouhpZNc9vr+/tiWRc+u1NO+i2irbv1QLat3cEkjaflddtb1MdvVNoC8C85/x7NbKc9m7AHsBhxM/WaUFS+59GjoUvVZpKkTeNA5F6Bb73iwm8KwPel6t4ByHt3d3xxj0u+d6nHG/NOhI2EPQ6Mv3KZzGwY8ErfRTzvdQkbxr7ItlCbrBrEbBDwSt9nKG3H3JhbEtn8wLrnZqhtz/wFtKP+MwHti94pekZegcCbyK/Z5+51husL5mmdxDS3k2czXOQ/TwrQ+9gZPy7kbN5lvXOydA7xHrd4tozkf08N0PvMOt1a1dOR9rb4YKvoqwLaMClE8mbxj7IoGBbZ3O9BgVvIdOCfOKsFQ8ymH2TtgHRcwWvtLiCtx/SiboH57je1oD3+aDXRsoHI/v3LuTEMUuW0DbQnoqczP0MGJSxdzFtg/xPkJMMvxhyPbx+e5uQOblxg3lhWUT79rYg7c16Kprv9dvbgrQ39LqoCbz+ydtU5OTuDLKvo7TQ8U5DThzPoHrhtzRYQNvnOxX5rZ9J/KmSUbx+e6c73rhTJcMyn7b2TkMyNM4g3GoKSb3u59ulTt55tP2OpiNBpjMIt4pDUq/7+Xaz3qynZs2lfQBmCfA32u9nf05/VJqBl2g7Dr5aKSCRN40jkfGG+32O620q4y1bUyJvGnNI1koa7W1CMm39Cy/VvDsgmTKZ1KGoRN407mQ9rje1OhRVvLsgn4kbVHsOGBucFp6ydw/kApgbVHsayYTI0vs5pH3u9+gJJPMjVm2gkN7PA8/Sftz6KJLpkqV3P+DJgPchJLMnS+9YZL+6mYP3A0dEnf4X0Xsgsl9d73+Br2bpVZSs0IBLJ5M3jTsCr9D+4Pw8MCbjg9XOyKAgWJzqz8hVMX9q0JCIL70aucLzNG2BkDXF6vKmcTfrcQ/OzwPn03Y1bnfa17eJ4nUDMGvq4VQYFDyPpIjui2TibEL2g36QqVIPIldnRllvPeoxvAc83AneiciBczNk2lm9vBOQgUIjbe2tRx2IovVubr0b18n7DvK726zO3reQAajf3o3q5H0T+Q1vjnyv6uV9A6npsUWdva8hxwq3vWlntJXjVXvzP98N6+R9GQkQ1Nv7IpIt4H6+WU7n9HkG6Z+HIRkiuxA9uLmCtoDEU8BrbnAhbxpPBYL1TQrW7dZji+N9wfG+HvB+HwjWGbkMOWH2vbsQPai6POB9I+A9DQjW+/hDwSv9NqInEnnT+FMkqOby24JX+kPG3jOAvwY2/6rglc7N2HsWEKzfeHbBK52XsfeXwJ8Cm88seKVg7ZG0vb8Bfh/YfHrBKwVrvKTt/T0QrGVyWsErBWvppO39E1Kg2uUHBa90ecbevyAFm12+V/BKV2TpVZQs0IDLWkDeNP4YuCSwuR4HjdOBYDGunxa80iX2foNULt8N2AspELcD0ebIr0JOFPwrUi8AP0QCLC5rDhrW21jGG4VVyEmC730R+DESUHJZc9BwvLsjSyHujwz2s6IVuer5OvAREjTaAimYlrV3ovV+jOyrLa13syrPS8P7LnLCWkLau5X1NmbsneB4W5GU732Q73dWrEba+zqSidNKW3uz9vrt9b1+ezep8rw0vEXH6yEriOyDBH+y9r6OZGq0Illte2fsXRXwesgUhr1pn/qdhXc8sp+n2W2+d8MMvS20b6+x3n1on3Kehddvrz9NYSTS3qy97yDBF987ynpHZOhdSfv2GuR3O4box4VlSFDSPw6+AdwKHOU8phVZ9eQlgLxp7Ip8rrsjxR3HEv24sDTgHQfcTvs6FK3AXgWv9Ir1drPe3ZB9PJbox4WlSBDnaet+E7gbqTnosxpZFfKNiK8dmgp1KFYhq/i8maG3C3Ix52BncwuyWtI7GXsfQcZNPiuRhSCKGXq7Ao8h3xWfZmCngleamLH3SeRinU8Tkp3+Xobebsh3+/PO5uXW+0GG3u7IRZU9nc3LkCk+UzL2Po/0RT5LkSlNmc0CUJQs0IDLWoA9OD8AHOpsbkYOVhMy9HZBUhIPcjY3IQerSRWeMxipVD/W3nIRtS3IVdoNaT+IW4EcNN6v4F3P8Y6J4V1pvRvTfhC3HOm8yx407BxW1zsqojcqfnCgiBzQBlrndtWelAJ+cMD15mg/3S0rr9/e5cj0qxxyop61t2jdy5GpZzmSFZoMwyra2tuEtHc0yQpNhvX67a23dzzy3WpC9vNo2tcayAI/ONAZXr+9zda7Pe2nb2blfQcJpDYjGYLbk23gFqRffQcJHPveHcg2cOt6J9p/D7Hexjp430ba63t3JNsAKsi+fRvJUlyJ1KHZkegB1CXItJM9aD/18wPkuF92lcS8adyUtmPg2BjexUjG0p60n/r5nvWWLYybN42NAW/UAKrv/Rztp36+i4yvEi8lXAlbh6KIfFY+RST4UbMOTQLvcOtxs5PfRoI9iZcSruIdYb2Dnc1vIks2Z+ndEOlz3anbryPBvCynjm1sve7v6FXg8xlPHdsU6fvc39GLyFS5LLPiN7NedypzPbLxt0C+v27W3TNIEd3MplIpStpowGUtIW8aN0AOVu5B4w3gcxkfNDay3lgHjbxpHEr7AEySwMAEYLcwqxLYwYzrTRIYeAe54lVz8GW9Yxxv1oEBkODAJKQ4WzdkcJ9lpoLPKmRA3BneSciKFd2tszO8m5JthoRPC237uQdy0phlhoTr9dtbb+9EpKaG780yM8NnJdLeucjUwc3INkOikndzss2QcL3+fm5A2lsPb7P1zqe+7XW9Dda7ftVnpOudh9RH2QIpwJw1Tda7AGlvUu8twAm1TmLsBaLNaDsGjiXZ7+gG4MSQ3s0D3iTfq+uA72Rc/+IrSIaNy3kFr3R2Vk7rPQq4I7D5TwWv9H8Ze49BMqhc6jGF63jgpsDm3xS80jkZe7+FfI9c6jGF6yTg34HNZxW8UjBzPG3vd4HgdJ56ZOPngeD0pTXZ+IqyLqABl7WIvGk8Drg5sLke835PQAY9LrEOGnnTuD4SkBiDDIiiZgy0IFk39wEPhK04b6+uuN6oV+5XIvPn77XeUBXnHa8/AMz6CrrPKiStvwm5qjy0+sNTowVJc/ev3neGdz2i1xZK4p2GfD/q6V2JtLczvUOIXktpXfROQz7nobS/OvtZ9DYj+7kFqRWSdUHvoHeV9WZd0NunCVmxqDO805Fg+XCyLySelncRUpjyPuCRgldaUusJNhCyFe2Pg1EDPwsd76MRvW4AJmph/IXAPY53aY3HRybfccnmVmCfgld6MW1XwHsj8I2Ad80Urgy9t9J+yebVSJbL6xk6yy3ZXI8pXOWWbG5BLhy+nbE3uGRzPaZwVcrG37ngld7N2PswEbLxFWVtQwMuaxFVDhp7FLzSuIy9dwJfdTanctCw6Z5jaEsLjppa/xoyGLoPeDtsdXKbueN6o6bWv+p434nodVOgs06td1mNDCB7kP3KOS6rrLeB7FfOCXoXIVfR6+3trPZ25n5uIPsVilxarLdXJ3l7k/3KSC4rkSkQ9W6v7+2s9qo3W5qRqUR9iLbiVgtSL+Je4L6wyxrb8cS2tAVBxhAtYLzSeu+L4d3OccbxPuV4P4nw3GrvayCSRexm8U1GplCXncKVkneQ9brZR1WncKXkXQ/JVnaDbhORk/Isp3ANRdrrBt06awrXO8j4OcupVOsj+zk4hWuPjLPiy2Xj12MKV6JsfEXpbDTgspZR4aAxATloZD3feAIdDxq7p3mwyptGv/ifPxiLMvd9KlKI7j7gqSj7w857db1Rpqh8EvCG3h/O3Hf/FmWKynLkZDfJcset9jWirAr0v+ZdZp+XJEi12r5GlNVq1Fsf71KkoO3/kheSBeXUW5slyBKtSYJj/olClNWXOss7nraLEK+GnYpja8WNpO0YuB/RMrrecbyvRfSOCnijZHTF8lZ4LwchRWVdLi14pdPivmZI76FIEV2Xiwte6fSMvV9CAnUuFxa80pkZeztrCtfRSFFol3MLXulXGXu/DtwW2FyPKVydlY3/TeD6wObMp3ApShpowGUtJG8av4ykubqcX/BKweXR0vYeiWS6uGR60LCFuP4fkI/41GVIdXp/6tHsCE5/Dvr/A74Xw/uo450T0bs5cDZwSkTvCuBD+3c49akt4nunIOmb9fQuR9rbbL31qC3iepuQ+gD1qC3ie6cgV1nXr6N3GdLeenuXIitzNSNXYOtRS8X3fohcvd+A+tQW6UzvEmQ/tyC/oXrUFgHJ5PgIObHvLO/GRJ9iktS72nrrNdVyEW0rvtXTOweZWnAf8FiUqTg2EDIaWa553xoPDzI74A2dIWK92wP/QFZBiur1L7o8HiczJW8aL6fjOOfAgld6IuprRfReAXw3sHlswSs9nbH338BJziYP2K/glZ7L2NtZU7huAo4PeP/XpnDVIxu/7lO4FCUNNOCylpI3jdcC33Y2ecjSjVkfNG4ATnA21eugcQtwbMyne8gKRP7VqGKYKUC2874N+FrgtcIue+1777XeCRG8wSlcUb2vI5lQS5CB9q5kHwzxkBTOCda7qfVmHQxpRaaW+SsobQrsUiev317fuyvZByVake/Vu8iJ+mbWm3VQYjXS3neR9m6G7Od6eP32Lrfe3ci+4Okq652IBBb9/VwP78tIId3lyDTLXck+KLEKWaFmEtLeLa0366BEC23tbaKtvfXwvoRMo1iB1PvYleyDEisdb7PjzboO00pktZL36+xtpv1UnKlhnpQ3jb2QKRBu4fnVQNcI3icd77Qaj/e9fYC3aF9vbRXhs32agSes9/4I3r7Iaivu9OZPkFUSF4V0RyZvGvsh2TqNzuaS9daslZPA2x/JinKziT9ElhJOvVaO4x1ove74oLOmcL2PTOFanqF3Pet1j1udNYVrAlJHJsspXHXJxleUtNGAy1pKhYPGFORg9b9y0JgMXAQcAnyB8PPPP6Yt+PJMtU7YLvs8gfYHjfeAS5DCYAdG8JYC3orzdyssGTkRuNTxNoT0fmSdzyGDwR2RE+WsgwMfOt4WZFnWXck+ODDFep+33h2tM+vgwGTHuwrYyTqzDg58YL0vICckfnuzDg68b70vWu9OjjfL4MB7jrcV2NnxZnmSPsl6X0KCizvT9jvK0jvR8Rra7+csgwPvWu/LyBQV15vlSfoE633Fet39nKW36Hi70b69WRZp9qfivGq9/vd5l4y9/pSY16x3F9r2c5ZFmt+m7Tj4erWpOHnTuAfyO+/ibPaPKUcAewXuq8ZbjveNGt69rMN97f8iv8EvIctIh/W+6XjH1fDugyxp615cuabglb4T0hWLvGncD6mL43JlwSudmrH3AODxwOZCwSt9P2Pv2jSF65KCV/ppxt7Dke+fSz2mcB2B/G5cPpPZ+IqSFA24rMXkTeMXkOkrLv8seKUfZew9BFkpyKUeB43DkLRdl4sKXukMezVsf2Qw9CXCn1gvRQ689wEPFrzSp2W8FQ8aedPY2/EeHsG7JOCdW8Zb7qDx54JX+qX1HkBbe8OeWC92vUhNAn+QneVJ+mKkivx9yHenh+P1/2bhXRTwNtD+xCKr4MDCgLcXHfdzFifpC2lbxeth6/V9WQYHFgS8fQLOrIID8wPefnTcz1mcpM9Hfj/3Ib+n/nT8PmfhnRfw1T9ogAAAIABJREFUDqDjfs7iJH1uwDuojDeLk/RPHe+j1hHcz1l5/akpjyL7NNjeLFZw8qfi3ItMiR1axpvFSkrtpuIgfURwP2fhnUX7qTgdLtrkTeOfgF8GNh9d8Ep32gsxX0SOgYcQvh7STNr28xMVvH8BgieGXy14pXvshRjfe3BEr9/eSt6/AmcENh9R8ErBE+ZUyZvGvwHBMdwXC14pONZL2/sPIDhmPaTglYIBkbS9lwHBwE5nTeHav+CVnsrYezXgBu7qNYXrWjonG79TVuFSlLhowGUtJ28a/wn8ILD5gIJXejJjb4GO9U3GFLzSMxl7rwJOdjZ5wL4Fr/S88xiDXCX0gxE7h3x5D7mC9V/gPwWvVHJe8xrgxMBjP1/wSi85j/GvAh9hvTuF9LYGvGtWXQgzhct6d6GtvTtG8L7oeD+xr7cBcAvR58+HpRXJxvC9U+1ntgFwK9Hnz4dldcA7zfHejly1zMr7vOOdbr0bIgG13TP0Pud4Z1jvRkjhwF0y8q4KeGc63v8S/ncRx/us451lvRsjJ1Y7ZOh9xnpvd7ybWu/ojLwt1nuP9c5xvA8ghUiz8j5tvXc43s2sd9uMvP7qNL73U6fu1YPA1hl6n3K8c613CyTYt2W1JyfAnxJzD3BnwSvNy7ctdfwQ0VfWi+O9o+CV5lvvNsh+zmplvSZkKs49wF0FrzQfIG8aeyBZONs7j50LjHQvkNjH7UvbcTDs+2xCsix87wL7ej2Rqbk557FzrHdewLuf420M6V2BtPdu611oX68BGIesqOQz23rnh3ztyFSYwjXTehdm6O2NZB9t5WyeDozKeCpVX+t1V8acar1ZTqUqN4XrYyCX8VSqSlO4RmecnV5pCtf2Ga+GVSkbf4csp1IpSlw04LKWU+Gg8QHSmWU5P7MfkhrsDmreQzqzLOdnljtoTETm35adopOXpacPRwZDBxB+Ks4LSKX125FB93ja10EpIvNgyy51l5dl6lxvz5De5x3vaut1p/68jaxKVXapu7xp3Njx7h/B+5z13oEERSbQPutkNjKnfBfCp1OH4VngJiT4YJD96madzAKmIYGztLwecrJ6s/V2o+MUrpnADCRAkKb3acfbA9nPblbCDOvemfB1e8J4n7Leu5DfwATaX6WfjnzGO6XobQ14+yD72b1aPg3JKNgxZe+TjtfvN9wlIz9BMlV2SNn7uPXejezf8bS/Av4xkomUZgBoteO9B/k+vUP7lXlKSKbZ9sEnJ/Q+5niHWa+7rPFHSCZhmoGn1Ujmyc1IoGt9pF90p3dOQWrgpOldFfBuhJykuseUychJfK7Ds5N5H7bee5Gg2jja9+0fIMepUSl6WxzvfUiQ53Xar/L2vn1/aQb4WpCgku/dCgm6uKtEXVfwSieWe7INEI1EjoFHAHsS7jfeggSVbkYyUbahbaqXz78LXunkMs/1vaNoC76E9a4MeEchU/ncejX1mOKzO3Lxxz3eXV7wSsGLeml7y03hqscUn72R8Yf7GdVjlaZyU7jqMcVnfyTI51KPVZoORI4TLvVYpalcNn7mqzQpShw04LIOUOGgUY+l3/ZFTlpdflPwSudk7C130Ai19Ju9mnIgbVOAwkxj8Qf379Axxfisglc6P4S3T8AbZhqLP7gfX8Z7ZsErXRjC2zfgDTOdZBUybeBd4OeB+04H/o1koYxFltJOKxDiD+7fA4IDj9OAG6x3jHWnFQjxB/eTgZ8F7vsBku0T9KZxgu4P7j9E9qvLqUjAbR/rHZOi1x/cfwz8JHDfyUigwPWmFQhZiWRATAV+HLjv28iJ1b6ON61ASDNyEjMD+R65nIB89vvQ9n1OKxDSjLRpNvDDwH3HIQNQ15tWIKTJeufSMWX+a0gAzN/PY0kvINGEBAMW0DH78UjkhMr1phWQWGG9i5DfjcsRyImr+71Ky7scCboso+OqcochAYL9HG9agZDlSHCrifZTBECmt7wV8KYVCFlmvS20z/YEqaE2HtnP/vd5O9JhqfWupv3UBAi5mo6tieZPATqIcEuEL6VtCeFvBu7bN8xUDOs9zPGGWap7ifV2pf2UCJCpGC+EeI3YlJnC5QGfq8PCCOchK0O63j0KXum1jL3BKVytyKo2ma2mY70X0/74uxopKJvpajplpnCtQmowFjP2BqdwtSAXSt/N2BucwrUSuSD9XpZeRYmKBlzWEfIdlxSsS6eSN41X0n6w2YykKH6QsTe4pGATkpI5JcJrxJmKE1wlYQWScluK6N2VtqlHYU60gt7lwHb+NKAI3t1ou+oX5kQr6F1qvWtWXsibxgG0D8CkEQgJepcA2xa80gzHO5D0AyFB7yLrnRXw+gGJsaQTkAh6F1jvmmXFbYps2oGQ4Oob863XTdUfRPqBkKB3rvW6qfqDy3iTEtzPc6x3geNdj/QDIUHvbOtdk6pvve4JaxqBkKB3BvL7Xex4h5B+ICTonW69a1L187KKhetNIyAR9H6C9M9rCsnbk2D3e5WFt4RMTViTqm+9aQdCgt4PkePgmlT9vGkcHvCmEQgJejtk1Tpe//ucxlSzoDdyVq2dKjSGtuP+JlWfUN5bNau2grch4A2zamDQWzWrNg3s+xxP+6lyVbNqU/L2tl53qtybyOoyWXr7INmemzqbX0eWTl6dobcvclHL/R68gkxVz9LbD/n+ulnTLyJLY1cs6JyCd4D1jnA2P4eUIsjSOxApeO9e5HwaqZujJ7jKWoMGXNYROqtTsSdFk2g/FeNx4KCMvUOs152K8QhwaFyvnYrzFWT56b0iPPVl5CAZ66CRN42bAl9GrnrvGeGpLyBX2pJ4v2K9e0R46rPIlcWy3kBAYgzpZWY8hRS1q+X1B/hpZWY8DhxcxesGQsaSXmZG1e+z/e0FvWnwIHB4DW/agRCQLIWvVPH6AQnfm1ZGyN3AUTW87glrWhkhdwBfr+IdEvCmlZlxG3BcFa8fCPF/R2llZtwMnFDF6wZCxpJeZsb1wIk1vP5+Hkt6mRnXACdX8WYRCAG4EvheFe/6AW9aNXcKwA9qeMc4t23KPS4Gsaee2ClAo4GjgOOJVo8n9kIB1ru9492i+jPacVHBKwWL6qZKhSkgobJqE3oPRrJcXU4veKWLM/Z+Ecm+dDmt4JUuzdhbbkGGHxS80uUZe7+KTLV1ObXgla7M2Hs0krnrcnLBK/07Y++xSKayy7cLXun6LL2KEgUNuKxD5E3jccig1iXzTiVvGk9Apnu4fKPglYLvJW3vicig1uXYgle6LYXX3gwJRHyDcAP/+fa93Ay8mSDos7njDTMAn+d430rg3cLxhhmAz3W8b1fzppyZMRe42nrHh/S6U0Xiej/1vQWvNL7aA1MOhMxxvFVTfp3MDN+bJCAx2/FOCOFNKxAyC7jKeifW8LqZGWNIFgiZab23hPSmFQiZ4Xgn1fAOJb0pKtNp28/v1/D6gRD/d5QkEDLN8VbNgrQBCTcAkyQg8THyfb6l4JUmh/C6AZgkAYmS462afZlyIOQjx/thDe+IgDdJIORDx/tRCO8Y55ak6PFk6701SrZp4P0YJOP1eOSiy4jqzwDkos+11vtxjcdW8+7qeMNMc57oeENnuUZ8X8FVXiJn1cb03goc42zqkFWbkfd24GhnU4es2oy8dyMXvnw6ZNVm4DRIoOdLzuaF1js7Y+/9yPQ+nw5ZtRl5H0am9fl0yKpVlM5EAy7rELZTeQSZT+2TeadivY8hhWF9OqTqZ+R9Chks+sxCDs6pVNV3roAdjwQkwqQfv4cEBG6JO7XKuQLme8OkH09yvFVPKmp4d3C8G1V/BiCDP99bc0pXilNUpmCDPrUG99brB0KS1uqYjNSxuTWkN61AyAeOtxTSm0atjvcdb82TihQDIZMc79QQXneKyhjiB0ImWu9tEbxpBEImIieNt4U5uUhxisoE2to7PYTXD4QkrdVRdLw1T2pSDISMd7wzQ3jdQMhY4gck3rbe/4Q5mUoxEPKW4615MpWXVepcb9xAyJuOd06tB1vvGOe2VZWHV2Oc9d4exlvhvXRF9sHxyEn4gOrPAKTY/S3WG+vk0XrHON7+IZ62pth9wSvNjeOt8F6GI32wW+D83oJX+nJajgreEdbrtv3uglc6MmPvBtbrFji/veCVvp6xd2NkapFbV+jWglc6LmPvptbrFji/qeCVTqjwlLS8jdbrFjivWAA7Re8WyDGnwdlcsQC2otQbDbisY+RN45ZIp+KuXnB1wSsFi/ql7d0aGci6qxf8q+CV8hl7t0WK2bqrF1xW8ErBIpVpuLogU42Os7dB1Z8BSOHEmwk5uK/i/TxtQZAwg79XHW+sKyXWuzdtV97CeF+x3lAnFdaTxhSViUgq/c1hr9Dk06nVMRH4FxJsCjW4TykQ8q7jDTW4z6dTq2OC4w01uE8pEFK03lsjeNOo1TEemSpxW9igdUqBkLet9z+FkEvBpjRF5S3HGypYnk+nVseb1nt7BG/SQIgX8IYK0gcCIWOJHpDwkKCA7w219G0KgRAPqU1xObLM9OIaj/e9Gwa8UQMhHnIcvBxZ/jiKd4xzi7r8toccB31vrKV+81Lz5VDkOPgV2o81ytFuBa0E3oaAt1v1Z7RfQauQwhLDedN4KtLvuny14JXuSfraNbw/AP4Z2HxEwSvdl7H3NODvgc1fLHil4Eo3aXtPBy4KbD644JUezdh7JnBBYPMXCl7p8Yy9ZwF/CWwOVQA7ofdXwB8Dm0MVwFaUrNGAyzpIZ3UqedP4W+B3gc17FbzSSxl7/wD82tmUeVX9vGnsjkyjOqbWYy3tlseNm4GTN409kCWUj671WMe7ZnncsIP7Ct5bga9G8D5hvXdH8ebbFw89jPZF9Grh0RYUuD7s4D7g3d96N6v+jA5ePyhwfZRBthMI2R9JtY3jLQA3RPT6gRC/vZtWf0YH73jkZObGKIN7JxDie8Nkjbnet633poJTDDWkdz/HGyZrzPW+Zb03R/T6AQnfGyZrzKfVei9DglzLazze9foBif2RFco2iOh9Eznpua3O3nFIe28tOMVfQ3j9QIjvDTMlxPW+AVyKBEGieP1AyAHI5xtmSojrfR34B5Kh0FTj8a7XD4T436uo3leR9t4Z0bsR7fdzmJXvfFYHvFGK3W6EBF5879CqT+jofQXZz3dH8QbeQ3+kZlvYYKa/gtbNwMOFCEV2A96ByPsPG2TzV9C6GXg0gbcLkkHj1rSbhhSijhVICuntitSoc2vLfYIUok4cSKrhfRmZ4uVTIlAAOwNvN+R3sZOzuUMB7Ay83ZH+x73Y1KEAdkbecbS/+BK5AHYMbw/keOr+fiMXwFaULNCAyzpIZ3Uq9krQO7QfFHzWq+oXaX+C7FF7esxKpGBmAXg+at2VfPmq+mG8zY73hRjeclX1w3pvt94Xo3idefVPEC692sU/Sb4QOUmO6t0dmSrXr8bDg/gnyRciJ8lRvXsiVyrDLF0a9I6z3ttiePdCpiSGWbq0nPcC5GQ1qncfZGnm3jUeXs77uvXeGcO7H1IguFeNh5fzvma9d8XwjkUKNDbUeHiQ1dZ7XtQrzNZ7ILJcdM8aDy/nfRX4S8Er3RvD+wXkpDOO9xXrjXRl23oPRQoi96jx8HLel4A/F7zSgxG9XZCg6V3UzoQIssp6zy14pWDh0DDeLyH9e61MiHLeF633kRjeLwP/iel9Afhj1Cvq1nskchGga42Hl/M+b71PRHxupazaMMwHrkMyfyOvHpk3jaOQ40rU/TwPqfdyRa16TRW8o5H+3fVeXPBKp0d9rYjeHZAgqPv5XljwSmdm7N0Z6We7OJvPK3ilszP27ob0d+546tyCV/pVxt49kd+/6/1DwSv9NmPvXsjv3+W3Ba/0h4y9+wLPBDb/quCVzs3Sqyi10IDLOkpndSp50zgWyahwOavglc7P2NtZVfUPQU4WXW5DrjbuS+1gxETashNC17vJm8bDkOJjLrciV5P3DfESfhbIDVGybfLlq+rfgly13yfES/hZIDdEzHo5ErgzsDm4tHA1WpCD+8XAQ2EDj3nT+DXkZCKud6X1/g14JIK3XAHsqN7nkTTlR8MGPPPlC2BH8TZb74XA4xG8J9KxAHZwSdRa3meR/RzFezJSxNUlanufQfbzE2EDvHnT+D3kdx/X2+R4n4zgLZeqH2U/NyGZehcBT0fwlkvVj+JdYb0XAs8UQi6bWiFVv5Xwy9avQI5nFwLPRvCWS9WP4l3ueJ+L4D0b+HNC7xPW+3wEb7ms2iif7zLk+H0RcjEg1Mp7FbJq43gvRC4GhPWWy6otIEHcMFMIn0KOg3dHuQiWN43nAr8o4x1DuKybJ+3j/xvRex7w/5xNrcBuBa80LuxrxCFvGv8KuCsyrQZ2KXiltzP2Xgz8xNm0CtipUKNwfQrefwA/cja1IBdK383YezngTv9fiWSbVC3knoL3CuC7zqZmYHQhZu3DCN5/Ayc5m5qQbKKaNQgVJSs04LIO01mdSt40Xg9809m0AklBLWXsvQmZ7+xTr6r6twFuYbWlyODHIFOOjqd9qmg5ViCBmgLwapir5nnTeAeyrKTPEqR+Qlek5srxyIpAtby3Wu9rIb1lq+ojV5J9b606LMuRQM2/gNdree0V63uRVHKfBcD3kSvKXyZcjRmQQcwzyNXGh6rV5rDeB5Cr5T7zgR8iafxHED7zpgUZaF9vvRVrc+QrF8D+EXIl+0sRvCsD3oqBvXzlAtg/Rtp6eETvE0gA56Fqgb18+QLYs5FB71eQfR0206jZ8T5cw9sF+S7s7WyeCfwUuYJ+GOEzjZqRJcR9b8WAovU+D3zO2TwD+Bnymz40grcJ+cxuRIJ61bxdkauZuzubpwJnAl+z3rAZTk1IJpbvrTh9r0Kq/sfISdwxwCGEz3BqQn4bvrfi1Aabqv8a7fvBj5CT1mOAgyN4VzjeR2t4y6XqTwb+D+kjD4rofQiZSvpotSkV1vsm7esVfYAEB46z3rAZXcsd72M1vOWyat9DgiHHI9lVYb3LkMyzm5DgacXpexWyat8FzkFW2DmQ8Jlky5C+/uYQ3opZtUjAJWyR/TlIgd8rCzVWk7Leclm1byK/51GEL7Lvr353ZSFc4fdyWbWvA3uGDcrFoUJW7SvA5zP29kMuhm3obH4R2CdsUC6md4D1utMhnwPGZOwdiBQMHu5sfgapq5LZSWBe6vdNov30wCeQOjJZeodY73rO5keBQ7L0/n/2zjrKkup628/FCUkIECKEkBvcJRAIwTVAgCQQ3HWKIVjwIEGCOyEzB7cZILgGdxt0cJdCBncdr++P99T0qbrnlHTf23y/mbvXykrSU9VP15Wqs/d597u70Y2i6BZc/g9H4KbSHy7zM1vujM6PrzRJvH7glHZxfa76/eEy73PVz7jMWxnyJsDmlHuSpIaZQ0sW9b9AD2c3ER1ikngL55j5HG6ZN8hwVAC5qITrc9XPuMxb+XM6ZrpZwn3c4RYt6n2u+mebJN4+6pmutD1KlKv6NyRIgXIN+m60SK4jjQh/lmzCcIZJ4gGWu6jDreqjMD7HbdnRifyu+oNMEu9suYuh3aE/1+Te53BbpllFfgPsf5sk3tVyf+Nwf5o/PxDjLPdq4Dpf0Tcg1T/ZJPEetkDhcqv6RoxDC9b0eluSmqjRnB8liy73eJPEe1vu4g63qm/EOKS4Sa+3JakJSPWPMUm8n+X+1nLXrcm92+HGHu6iKFlyVQBHmCQ+0OHuaLk/rsG9E73O1xnPNKuAVP8wk8T/tAWZJS137RrcsTluS3E9INU/2CTx4Za7lMOdKX9+AfcOh9syzSog1T/AJPGRDneA5c6YP7+Ae7vDbZlmFTWay6Dvmhv7miQ+1nKXtty1anDHONzrA1yfqnYvk8Qn2MKXy61iOJ9yb3O4LVO0AqraPUwSn2y5y6D3dy2ya4OiGJ3jtkzRCqhqdzFJfJr999Rkf1NU3Ct7rW9Gz/3ri5RjAVXtQJPEgx1uarK/EcWvdeJwbyjhroUKUm7saJL4zILf3+cIqGq3M0l8Toe5f0GtgW5sZZL4gg5zfarazU0SD+0wd2O0CebGJiaJL+kwdzNUxHZjA5PEl3eYuxVqtXNjPZPEV3WS241uhKJbcPk/HoGbyiomifMLlHZzfVL9FUwS39Nhrs9Vf1mTxPle0XZzfVL9FsNguxhaGck3/0yx9PkrtNtmTBIPD3B9Uv0lTRI/4uGuiha8f6rAHWq5TwS4u6P2DTeWMEn8mIe7GrredUq4X6IH7+khybBHqp8gqe+TueNmBfZGC86qRQHQCORrkdfFA+kCNGp11R+PpL5P57i/RLv2G9TkvuhwH3S4ean+OGRol5EYR43mbA63jonlC5Z7LTAs3TWMGs2DgUNz3AXzEuNIIx73QSbOdUwsn0PXel2Om5fqj0WGhZlCmC2C7YPUIHW4z1rmtUhJlnKPAP7hHDcaqfIyhaGo0Zzd4VYtCoAKZy53vP19ean+aGDefIHGFt/2RUW9qkUBUOEsfZ1dbl6qPxKYJ1+wiDT1bj9kll01OQcVztLrfdThnoTUQ2l8C8ydT+CjRnMuy/1zTe6TDvcxh5uX6n8DzJVPpKNGcx7L/RPViwKggl3KfdzhDkIqvDS+stz3ctx5LXfdmtzhOW5if19eqv+F5WYmqdli437o3ly1GAEqFKbc4Q73bGBb57jPgTlNbrKY5e5vuVWViSBPj5T7hMM9H9jSOe5Ty82oCKNGc0HL/WNN7qMO90mHOwRtKqTxMXqdMypCq4j5K3oOLlPCegetnc7yFfLs77uErGH/R+h6P88dNy16Jgwga3zrixEO1zuWPmo0LyNr2P+B5XbMQNdyryRr2P8eep07aaDbQIWedZwfj0D3ycqm6b3kXo8KhGm8bbmdNO5tADchFVwab6LnUSeNextIXbKq8+PXkTq9kwa6DVSoXdH58avoud810O1Gv0e34PJ/POxN5X6y0vUnUHLcSUnmZMgA0JWuP4aKAZ2URk6GDB4Xd378MJpa1Enu5GhR5krXh6Gii/dLZJUx26LdtzLp8SP0jKed8LC33OFkRwvfh6ZShbizANuhBXmZ9PhhhzvhYW93Dp8gK10vlKBaRU7KLZvUMoye8bQTHvaRJPNPkR09ewewagF3LuAwlMzUMWb9BEnbL0c7mcPJStdvRaMbQ9y5LXedmtyPHe4d6HWew/n3/5kk/mPoZJu8HWq5dQxhP7Lcy5Bq4GmyqqjrTBKvW8CdD13vH3vBvcFy70HFCff7cLVJ4uB0LKumOtRypwkd54kPHe59qBjjfi4vN0m8QQF3Ictdsyb3A4d7Pyp6uYqs/5ok3riAuwhq1VijJvd9h/ug5brKqKEmiTcv4C7qcOsY4L5nuZei+9gLZIuCF5gk3qqAuxh6nVfvBfd6y30MFTXdItk5Jom3K+Aujq53deoZ776LkvPL0D3jJbJFozNNEu9YwP0t8E9UqK7DfcfhPmW5bhFlsEnigQXcJdH1rlKTO8JyL0Xf3ZfJFjNOM0m8SwF3aeBgy61jRPu2w30BXa+r9jzFJPHuvhMt9/eWu3JN7lsO9yV0vW4bXqGxqy36DEAFoqL2zPHoe3M6alGcsF6zz9KXyD5XjjVJvG8BdyGHW9SeOR59bwxqYXO5s1que3/vD2PX2dD3173fHW6S+OAOc3+NPlvu96E/jF3nQOpl93N5oEniIzrMnRs9B13V5f4miY8OnNIu7rzo3uFuyO1tkvj4DnMXQPdKV3X5d5PE+c3EbnSj49EtuEwEYaXN+dHM/SHJ9Emb+0OS6ZM294ckc2Uku3ZjY5PE/y05b3KUxAxASWORweEXyIvjdGMN3ALS5lJJpuWuiXbd1qLY4Pdzh/usPf8PaEfEjVJJpi3WpNw1S7if0TPZ4Xl7vs8weF1TMsnEctdGypey3b58fIqKT3/I/fyPpmSSieWug5QMv6vJ/QQV8lbP/fwPJolvKeFOiYpMe5Mdr1klPkZJap67qimZ7GG5f0a+IEsWHeuJj1CSulru5yuZJL6rhDuV5e5N1iukSnyIClt57vImie+twP2L5S5edGyA+yTZ3T2QR8EDJdypkeJlb8o9ovLxAVpo5rlLmSR+uAJ3fcst84jKx/toYb1K7ue/NUn8aAXuBuhzVeYRlY/3kKpqZednCTLg9KoHHe40yKNrL7KF7SrxLkrYVnJ+Nh6p8p6qwN3IchcsOtYT76DEeMUcd+H0/l3AnRb5zOxJtqBeJUYgrxrXi2kcMsJ8voT7PYdbxXjWjbfRGF3XMN6rjgtwN7XceYuO9cRbaGywaxg/Bu2St7Rr5rjTofc3Qm18RfEmcAYqEr5rz88bBo9GqoBCL5hIvigbo/VG2X0yBs603Pfs+XkV4iikvmhpI2xneFSI31quVwXURm5ehfgNUuW1tLe1mZtXIX6NVD3vdpibNwz+0nLf7zA3r0L8AqmnPuwwN28Y/JnlBr39utGNTkS34DKRRNRoXoQ8NdLouCTTci9Fi+Q0Oi7JtNwrUDKSRsclmZZ7DUpy03gDSTJHVjx/NuQHsj3lPiT3o12oy+1/XNVDLUlmJH+UlFvmB3Iv2nW7Ao1dXcP5t1qSzEgtKSm3rAXnHnS9V6KCi5ssvoRaXqpOp/k1UtrsQL3WkHy8gJKYqtzZHW6d1pB8PItamqpOiZkDKam26yP3KTTmver0kjkdbp3WkHwMR0l5Ve5cDrdOi0Y+HkVFiKrTS+ax3G2p16KRj1qqPLtDmHLrtErk4wHUglnpwW9VTSm37th2N+5FLadVufOjhHHrPnLvRC22VbkLONy64+LdqGUM6agTtqL+uHg3bjJJvGb5YRO4CzvcuuPi3bjBJPHa5YdN4C7icOuOi3ejlmedVVMNQKb/feHW8qyL5G80ALUnFb3OY1Gby+loE+1FNJkwjVqedVGjuYTlbkrx9Y5FvlAG3ZteJLs+udgk8aa+E9s05iIdAAAgAElEQVQVkYxsXya7Tsh41nWIO73luq2r55kk3iZwSru4P0LFS/d5fbZJ4u07zJ3Rct3n5hkmiQd0mPtjy3WfX4NMEu/cYe5P0PvrPkf+bZJ4105yu9GNfHQLLhNJBCSZ/zJJfFDglHZxfZLMQ0wSHxo4pV1cnyTzIJPE+dGV7ea2RZJpVQJro8VQXlWRj0/QImxLspLMfUwS50eTVuGugyr++d3+fHyMpNVb5Lh7miTOj2Ktwv0Tut78rns+PrLcrciqgXYzSZz3synjTmW5Ednd7zpxNbBrnZ02R40Rkd39rhNXALuH+u0D3KmRGiMiuwtdJy5DppSVd/gcNUZEtbHlvrgEfbZaDCwLuNM43Cpjy30xFMmbK+8sRvU8G0JxIfoOv1eDO63DraviSuM8YL86O5qWu6Hl1lVxpXE28I+8z0gJ93sOt66KK40zkFy/8k6qo04YQH0VVxoGmffW5W6MrreuiiuN/6Bn8EelR/ZwU1VERH0VVxqnoDaQyjvHNsnexHLrqrjSOAmtdYJT4QLcTS23roorjeNRu01wKpyH+0NUdInITrjyxauoILxR7ufLmSTOK4vLuNM73DIV18uoAJ4v7CxtknhYHW7diBrN7ZHixo1SVV4buBEw2PlRgtryOz0We2fgtBz3NybgrddG7m7Ayc6PvJ51HeD+HY1oT8PrWdcB7j7AMTlui2ddN7rRyegWXCai8EgyRyJpZFeS2V5uWyWZtni0A9pFrmMQ2idJplUnpNw6KhCvUWIN7lwOt44aw2uUWIM7N9qt34b6aowEtbENRd4fwVHEHm6qiti6l9y7LPeKmtxUnbAV9VUgCVIHpNzgKGIPd36HW1cFkiBfm6FoF7kOdwGHW1cFMh6pEoYCV5mCEcgeblXPhhD3Nodb2Zwyqu7Z4ItxDvfqmtxUnbB5L7m3OtzKCsxIHjMpt64KZBwybky5lRWYNdQJvhiLpsQMRWqMOtzF6VEn9IZ7k8OtrPysoYrwxRiHe11VbiQvuiVQQWAT6nlEpdx0xPV1pqIJqOX+1nI37iX3Bsu9vobStUHPFKuNKfZqSsi25T6CxjXX9qyz3N+h692IYs+kPHcYBZ517YhIbdCPky1G3Y+KTJ3k1vasaxO3tmddm7hTodbPuZwfF3rWtYk7NdqwdD3rbjRJvFbglHZxp0EbtE3nx9ebJF7Hf0Y3utH+6BZcJqLoSjKB/8OSTPswSlURK1Y87XSTxFH5YaXcuqqIPktBox6viAFUV0WcapJ4t/LDCrnTWG4ELNuLXzGankX2DTUW2X1VRYyy3CHIWLdqO1k6ySIia65dh3sdut4ba3C/53B7o4oYmeNWbWP7Hj3qhN6oIkaiaSVDUYtGVW4dzwZffGu5Q4Cba7Sx1fFsCHGvsdxbanJTdcJvesH9BqnHhgK31uD2VRXxdY5btW3vh/SoIup6zKTcq9DrfHtNblVVhC++crh31OBOj4pbA6jvbZNyr0Cv8x012gV/ZLkR9T1mQBsgKffOmtwtLLeuxwxoAyTl3lWDOwMqmg4A5qvI2sIkcX7Ubq2w65gt0fXOU/G0/hgj3CvPujZwfZ51fzFJfHWHub5x3KWedW3g+sZxl3rWtYHrG8e9hknimzvM9Y3jXs0k8W2d5HajG2l0Cy4TWXQlmROHJDPq8WzYmnJ1wr+BQ9thAuaoIramXJ1wCnBYbxUnOW7q2bBlBe6JSEJeWcpdwE09G7akd94YnyN/naHA3TU8OVJ1whb0zqPiM4d7Tw1u6tmwBb3zqPjU4d5bg5uqIragdx4Vn6JWpyHA/TW4qWfDZr3kfoIWaUPRGPGq3L6oIkDtfC63qhdIqorYjN55VHzkcB+swXXVCb3hfmi5Q4CHqnAddcIAeqeKSLn/tdyHa3CXpEcVUaROCMUHqIVuKPBIDe5S9KgTesN93+E+WoO7NHqdy1QRoXjPcofgjLeuwP09ut4Nesl91+EOr8FdxuHWmeiUxjvAxeh1fqIGdznLXb+EOxbYBTi3agG8hLu8wy2a6DQG2Bk4v2ohupd/03Wo5TqN15F3XKXNjT5wbyTrWfcKMmbu5LU2kArObfF+CRlRd5p7O9mW51qedX3g3kV2k62WZ10fuPeRbcWt5VnXjW70JboFl4ksupJMYCKSZEbVPRu+Ac4CTjJJHLeJuyFaZBepIr623BNNEr/ZBm5Vz4avkTfDyW3itsOzYQQ9i+wnKy6yU8+GAfROFQEyjL4YqdkKJ6M43HZ4NrwFXITGDVcqNLZBnQCa6JFyn6nB7atnwxsOt3ASjMPtqyoCNEkk5VbqdY/qeTaE4nWHWziBJsdN1Ql1J++k8arDfbEiN1UnDKB3qoiUO9RyCyffONwZ6FFFVFUn5ONleq735YrcGR3uvCWHh+Ilh1s4cSfH3Qq9zlVVEfl4Eb3OF5kkfrUidyaHO3cvuS843MJJPw73x2jzYQAwZy+5zzvc1ytyZ3a4cxQc+i7a+Dm9TvtlAfcnDnf2gkPfsdwz2sH1/B3zAk+T9cqr7VnXC+4CaKqc61nX8THCdgPmCfroWdcL7qIoX3Bbx3Y2STyow9zFUWucy41MEp/eYe6SwEO5H+9gkvisTnK70Q3oFlwmyuhKMoHvTpK5lkniGzvEWxh5x2xJdiHixji0Y3tcu1Q+Vp2wO0qkiriXWO6TbeIu6nAnDxw2FhUbjmujuug3lrtpAbcsnqVnkV1pnKZdhKTcotHhRfGMw61UiIoazd9a7sZ94D7tcEs9oxx1wh6o0FU0OrwonrLci2twl7TcDfvAfcLhlnpVRT3eCXugAmpvucMt95Ia3KUtd/0+cB93uKWmxo464e+oXbG33Mccbqk3l+Uui673z33gPupw36vIXQ5db+WpOZ542HL/ayp4gjnqhD2RGXpv4yGHW2pqbLkrouutPJ3IE8McbqkXmeWubLl98X140HIvrcidzOFWngLlifst9zJTwQPNcle13CJz/S+RSfMpVe4LFbmrWe7qBYd+4XArm51X/BtORSoel9UfY4QHATs5P+qXMcJRo3k6Uhen0SfPuhrcs5GfXhofIU/Cyn5xveSeh4qoaXyIrreyf1ovuUPQZkQa76Prrexj1o1u9Ca6BZeJNAKSzMpjhPvA/f9Jkll5jHAfuHlJ5vNIktlJaeQsaKH6y5JDbwGORf3zff6iR43mrJb7i5JDb7bcO9vE/SVKCMrGaN9ouXe3ifsrdL1lY7TL4j56Ftmli7ZIo7QfAn7SR+69Drd00RZppPVD9G2MNmTNhUvbviKZNw+jb+Osa5saRzJvfoi+jZWubWpsd28fpG9jpWubGkdq23uAvo2Vrm1qbHeNH6Bv451rmxrbXeMH6NuY5dqmxrZQfB99G7PsmhpfZSqYC9uC7T30bdxxbVNj2052D71r6XK5qbnwNaaCuXDUaC6Fvnu9aa1Ko7apcdRo/h59FvvKrWVqHDWay6LPRFFr1RjUPnV8VTVcBe4KaC1R1OI0Gk1dO960afKLVTW9QvY+Odgk8cB2/P4C7ncyRjhqNH+Krte9X51skniPDnNnQetl9351vEnivTvM/QV6nd37xjEmiffrMNc30fVIk8QHdJLbjW50Cy4TaQQkmf0hFfRJMgeYJD6jw1yfJHN7k8Rnd5jrk2RubZL4/A5zfZLMUDyOChFX9LUQZNUQVf2AHrXcK/vaIxs1mkuj5KlKPGK5V7WBuywqXLQjKk/SsIvcu9rI/R89kzSKuCujZKIdMTrHDfbfR43m6ijxaRe3kqlx1Giuaf/GdsQo4HrLLTQ1jhrNdZBBbru4lUyNo0bzz8hAtR1R2dQ4ajTXR94/7eJWMjWOGs2NkPKuHVHZ1DhqNDe1f1+7uKnJb6GpcdRobgm069lT2dQ4ajS3Ac5pE7eyqXHUaO6AWkvbxa1kahw1Wjzr+hKVTY2jRvNvyLOtSlyHnoP393UDImr1rCuKa5Di9P6+MC03P0Z4LJqAWak1qw/c/BjhMUh90ef25RLu/sCRzo9GA3OYJH67w9yDgMOcH40EZq+iKuwj9xDgn86PvrXcUlVhH7n/AtwCyzfAr6uo+7rRjd5Gt+AyEUfUaJ6GDM7SGIEeGp02HjOoBziNN9FDstPqmjMBd0JRDMzTSXWN5Z6L+p7TeBWpiTqmrrHcC1AffxqjKd6Feh0tXs6tsqNWwB2K2l6qcl8DjkeTqyqN6wxw/4vaQKpyX7Xc8/vIvRy1Y1TlVokvkVN/ushuMWONGs2rybYnjKJ3xpFufOFw7wxw8+q4dnA/RxM8hhAwF/ao49rFvdzhtjzwokbzFrLquHZwU1PjIcjUOMO16rjbUJtCO7mpqfGFwH0B7p1kp5G1i3uZ5bYkeJZ7D9mpYO3gpqbGQ/CYC1vuA2SnZLWDm5oaD8FjLmy5w8j6QY2kb6oI6DE1vhCPubBtBXmE7NSodnBTU+ML8ZgLW+5jZP2R2sH9ALXIXojH5DeSZ90TZP2C2sW9xHIf83CnQBtL7jSjdnBTU+MLTRI/lv/HSJ51T5P1zyn7PD+ICi/X+u67VcJynyXrWVfGfQAVLa7vA3cqpBp2/WT6YxLl1Mjzp+n8uM8TIStwp0Hqi9mcH/d5ImQF7veQysVVL/d5ImQF7nRI5eKql08ySfz3DnO/j9RE7kTXjqt6ujFpR7fgMhFH1Gj+HCW77iJgV5PEVXdIesudFd3M3IfxQJPE7doRCnFnQzdvNxnuD3VN03JdNdF2JonbteMX4s6OHpKumuhkNBq2aNzxx2iX7D9V+sg93LnQIsjlnoSSmiKD3Q8td1Bv+qGtautZsiqmE9BEiaKxwx8Cp1pu7X5o24rxDFk10fHIO6HIYHcMxRMf0ngV9cGf674uVrWVN8E9FrWwFRnsVuW+4nAnvC5WtTXcw12FYoPdqtyXLPc8t+XIqrYezR17NPIQKBo7XJX7ouWen+P6jPSOQsWfImPfqtwX0G74BW7LkW1NyO8CH4W8KYoMdqtyn3e4E1p/okZzOVT8cOMI5AFSNHa4Kvc5y70wx/Wpto5ARcUig92q3Gcsd4jbchQ1mqug4pYb/0LeMkUGu1W5TzvcCS1HAdXW4ah4WzR2uGpB9ylgEDK9ndD6E/k9zQ5Dxep528B9Al3vRTmuT7V1GPJoKjLYrcodjq73Yrf1J/KPmT0UbQrMRTiqch9D13uxu1ERNZp/RUXGNBLL3Zxig92q3EfR9f43x90Y+ZalMR59rjan2GD3RfTcGtKbTbeo0dwMFRhd7mHIU67IYPcF4Dj0Oa296eZRbY1DG2mVDJd7G1GjuS3gKqTHIq+PuMPcvGqrv9Q1O6HPWxqjLLfT6pq8amskUvW01RPIw90drVvT6Bd1TTcm3eitQWI3/g+ElQPmW4j+EWkCTSe5bwN5t/EDbPW+k9w3aR2JfaDdregkNyb7YAY4yO7OdJL7GnBu7sfrol3zZZAs21dRnQk4BHgzajT/HTWav67JfRm4IPfjdVABYlnCrRIzowXam1GjeYotVNXhplMm3FjbMpdDEuoQ93DLPTmSN0sd7nNkF7igpPj3SCmQT27SSJO10UgBEIo50IJ0RNRonh81mr+LGs2GkQnwpblj10TFpZUIt8JU5c6JFuAjokbzvKjRXNJyn0BqFDf+gIpLK9NqjJ3njirhzo1Ge4+IGs1zbJsadkc3b0K9Giogrop8BIq4Zdc7D1pgjYgazbNtgQeTxA+jViA30uLSarQakOe5o5CiJRTzohHqI6JG88xIpsyYJH6A1tdyRVTk+QPh1q6q3PlQofGdqNE8I9KIbEwS30vrNS2P1AlrII+WIu5IpBwKxfxoAT0iajRNJNNtTBLf7fndy6Aiz1qEW+hcbtH1Lgj8x3IHRzIZxzLzBabfWe7ayPuniPstxde7EHrOvhM1moNsoRT0GucLakva49ch3KqYPje+RYq0UCyMCojvRI3maZHaeUFti/kC4uKouPQnz99Ul7soer6PsM+PtHh0Pa0F00XR5+HPSGlRxP2mhLsYer6PsM+PdCrU1bQWiBdCn//1aH0t6nIXR5P4RtjnR1q0upJsQbyBXuN5UVEt1Hrrcos8gZZAbVojokbzxKjRTKczXYY2HtKYDN3b5kFjrPPvQRrzoNfv9ajR3C/SZK86cQkqnrjcOe3v3QgVpnwxL1ofvR41mvtEmmRWJy5CRfo0JgcOqvk7ehMXos2QNKYADuwH7nlIjZzGlGTbXzoV5yA1ehpTA/v3A/csNGkxjWmAjvq42DgdTflKY1pg337gdmMSja7CZSKPSEZcr5E10uuPMXfflbrmF+gh6RZZ+sO75rtU17xEdid2gneNXRzuiXahQgWg8SixP84k8eMVubOjHTNX1bONSeLz7L/PB+yFWp5Cu8S1JyoF1DVbmCQeYv99fsvdvIR7CTUmKkWN5jxo594tUm9qkvhi++8LWu5mhCc5jUWfkZkpN6ZNd3OH0+rVs6FJ4sssdyHL3bSAOw59RqpwH7fcJ1HC4HLXN0l8peUuYrmbUDxB6iUk2y0zxH0U7SI/R2ti9ieTxNda7qLA3miB3w7uI+h6X6TVI2htk8Q3WO5iDje0UTEGvb8/A2Ys4T6Ervc1WosBa5okvslyF7fcDUq4LwGzUG4APAxd75u0FjhWM0l8m+UuYbl/LeCORtdbhfug5b5DayFpZZPEd1rukpZbNFEp5f6CcuPh+9Hr/D6tRaYVTBLfY7lLAftQPFEp5c5KufHwfeh6P6G1qLaMLbal3lR7UzxRaRRSo1Xh3oOu9wtaC8G/M0n8kOUuY7lFE5VGomfpLyk3PL4bXW/qc+PGb00SP+pw90EbA2Xc2YAflHDvRNc7hlZvot+YJB4e9Uyu2ofiiUp1uHdYbkKrN9EiJomfinomV+0D/LFN3Nssdwr07EwjARYySfys5a5guUUTlb5CSefJVVUMUasn0ng0nOB5y13Jcts6USmgrpnPVBzf3tv4DtU1eU+k/vKu+a7UNRFZT6T+8q7Jq2tGIZVLR9U13Zg0o1twmQQiajSPRYurND5AN5VSR/4+ck9E4znTeM9ye+2nUZF7CuA6yveXd81/ANdB/y0kQe20d03eM+cN9HAe7Rzzc/Sa7ETxov0W4ECTxI9U4OY9c14D5nW9ayI54O8GRBQv2m8CDkoX5iXcvGfOK2jxNdY55hcOt2gRe6PlhnbnXG7eM+dFNIFrnHPMrGjE8gCKp6M8hFq7VqVYXv45+t64kvzn0CQslzub5e5I8XSUYSgJrMJ9H6lR0ngaWNTtx7dqod2BHUq4DyJ1wqoUt2l8hnwqXEn+kyh5crlNdG/ZnuKpLA+g5HOVEu6n6HVxJfmPoWRxwkPSqsFSbpFS8H6U0KxCuBCGZX5GVpL/MEqOXe7saETrtgXcxHK/rsD9GL0urrrtQVQMcLlzONyQQjFBBYZvLbdolPrHKOFqOj+7FxU/XO6cqFC8DWGfiJQ7Eimvirgf2r/P9Ua4yySxO2EOqyLYE40rDXHHW+5oyy1SCvu4t5kkdj2D0oJuyi0qjN+Lkq+VSrgf2L9vVudnN5skXiPHnZeewniIO85yx1Xgvm//PtcL4gaTxJlCR42C/L3ofV6RYoP4d+1xszg/u9YkcaagZFVAaWG8iJsWQatwG2Qn2V1pktj1/EoL8ntTXBgfa7npyO0i7gj7e1wPistMErseZ1iVV1oYL+KeBxxellhH8up5imwr3iUmiTfJHbcIut6NCX8vxzjct0q4k6OWwXmdHw8xSbxF4JS2RCSvnufItqadb5J4637gvkD2edQf3jVTouJ90/nxGSaJB/jPaBt3KlTM7m/vmmnQ+tG9X3V8IlU3Js3oFlwmgYgazZmRRNFNiPY2SXx8h7k/tVw3QZiY1TU+75rvSl0TmSTOt3URNZo/RMnxHhSPd74GFSKeLuA2KVDX5I6dHhUDdie7KM7HVZb7bOiAyO9dM0Fd4+EOsNyisdJXAAebglGaZeqa3LE/QsWe3SgeK30teu/WI5v8lsUEdU2OOwMqqu1KdjGej6vRrur6ZBdXZTFBXZPjzuhwQ+OsE8t9HSknZgsc54sJ6pocdyZU5NyVsHonQZ+rGClFysapuzFBXZPj/thydynhXonUJBuQTX7LYoK6JsedGRmh/42wemc8+jy/jXw7ysa4uzFBXZPj/sThhtQ7KXeE5RZ9z/MxQV2T4/7UMncmrKIZj9os3kUKpLLx8W5MUNfkuD9D7+1AwiqacZb7vuXWGR8/QV2T4/7c4YYK46ky8CPLLfqe52NZ45keYwvjaUE+VBgfa7kfo0S6ztj6CeqaHPcXlltUkE+5n1juzDW4E9Q1Oe6s6N48gHBBfgxSc3yGChZl6kA3fmOSON/mRNRo/tLhhgryY1AL65foestUem4sYpI47/tVtSA/GilPjjRJ/H4IEPm9axY2SfyM59hfobXGDoQL46OQuuEoUzAlpkhdEzqnHTEJqmt83jUTs7om713TL+qabkx60S24TCIRNZpHku3H/AiNQfsqcEq7uN+VuuYEtDObxnelrnkH3bw7ra7JT6R6Gz2svOoau6OwCZL/hgwcE7Tw+6dJ4lcCv6dUXZM7fmq0y7c36rEPcYcCh4QWFx51zetoMeKdDGW5m1nuvL5j0EIq5b4W+D2l6prc8dOg9qa9yapF8twhqMVjPSQ/Lxv3/TFa1HsXI5a7heWGjCPHIy+eu1EBZK0K3A+BJQq406L2tb0IG0eOQwvJ+1AhYo0K3A/Q9Xol6Ja7teWGDBzHIc+jBx1uWbyHrjfE/Z7DDRXMxlruMJQgr16B+w6wuAkY+EWa7rANUkU0C7hno7apjchOYgrF2yhJLeJua7khL6QxlvsousesUoH7JrBkKNGLNFViO3RPDxXqxiA/gMfQPWblwHFuxMBSoUQvajR/gO4zfydcMBuNvDGeRNe7UuA4N15DRYgPC7hpYbyIezpSnm1GdvJUKF4BljYBs3RbkN/RckMFs1EoMX8W3duWr8B9EamnvGbpTkF+D8IFs5GW+zy6txUZw6fxPCoyec3SbWE8LciHCmbfooLAi+jetkwF7jPA8sYx5/ZwI8sNFcy+RYngK5ZbZEifxlPAigXctCC/G+GC2TfI++k43+tmVS7DyRpsX26SeIPQH2UL8mlhPFQw+xp5XR3v+/urqmvaHQF1zVCTxJt3mDsF+o6564b+UNdMib43rrrmHJPE2/UD90Wyz9H+UNdMjTbw3OfKYJPEAwOndKMbvYpuwWUSCbsT/DrZ3Zz9TRIf3WHud6mu6XrXlKhr7CJmTWRSFlrAponqYXnpbx11jYf7R2RSFlrAjkV9zIfndxvqqGs83LXR9YYWsGNR4vavfKJdR13j4a6Lrjc0UWkMStzOR54O21O8m5sgJdJg1KbgG7U8OfJp2JfwRKUxKHG7ABV8tqd4N3e85Q4iPNJ6cnsN+xKeqJQmjEOQ0mY7indzxyOlymDL9Y14ntxew76EJyqNtr9jKCq8bEex58o4yx2E2lB83Ckcbmii0ij7Oy5BCpBtKnCvsH9raKT1FKhYti/ZkbxujERmspeiwss2FHuujEO+FIPxjLR2uBtYbmii0kjUH38F2qnfmmLPlbFo53wwnpHWljsleu32RcaovvjWcq9yuEVtlGPRazMYz0hrh7sxKlCHJiqlieo1qPCyNcVtlGMsdxCe0dKWO5Xl7ku4MP4Nmk53PSo0bVnCHY0UI4OBYQXcTdH1hgrjXyMT6v+hgs+WFLdvjkaf/cF4RlpbblqQ34dwYfwry70RFV62oLh9cxTaOBgMPFLA3dxyQ4XxL9FUvFvQtW5BcRvlKGT4OjjUousU5PchXBj/wnJvQy1nm5VwR1ruoFCrrOVuiQryocL458hU/RTjTN+y5/+ZVs8cr7omd9609hr2IjxR6TNkIn9qfkOwjrqmnfEdqms2JTsoYGJX1/z/5F0zl0niNzrJ7cakFd2CyyQUUaN5GFl390+QyqXIob8d3O9KXXMMWsikMbGra05GO1dpVFbXRDK8WwWNaQ0l5mmiepS7E11XXePhrma5SwQOSxPVo9wd4ajRHIx2CdMoVNd4uH9A42FDiXmaqB7t7gjXVdd4uGug6w2NHB4JnIaSihXQzmDZbq53xHOOu5blhhLkNFE9Ge3SD6R8N/dl9JnIjHjOcddGr3No5HCaqJ6KPoMDKd/N9Y54znHXtdxQgpzuqP4bfQYHUjxeHAIjnnPcP6OpWKGRw2mi+h/0GdwJWKqE6x3xnOOuZ7mhBPkrNB1qECqyDqR4vDgERjw73MkcbihB/tJyB6Mi60CKx4tDYMRzjvtXNPUsNHI4TVTPcLhF48UhMOI5x93QckMJcpqonommEQ2keLw4BEY857gbWW4oQf7Mcs9CRdaBFI8Xh8CIZ4c7OSr4HEZYOfYpSpDPQZ/9gRSPF4fAiOccd1M0Ta+IewzyAVkPfY9CRbg0vCOeHe4UqKBxCGHl2MeWewEqFA+keLw49JiCX1LA3QL4J2Hl2MdobPwQVOzcieLx4iA/qMFotHTL+sNyt7LcUKvlR8CRqHA00p7XQK+l+7m+yiTxeiV/T8qd0uGGFFwfoOs1Dre2uqYd8R2ra54me0+fmNU1Pu+a70pdc6ZJ4h07ye3GpBXdgsskFFZO+jrZ3b4DTRIf0WHud6Wu+TGSjE/K3jW7mSQ+tcbvaKAk4V+EF6/foET1OJPEn/ZWXePhVk1UTzBJ/FmkfvhXqKmu8XD/YrmhxWu6o3qCSeLPe6uuyXHTRPUwwglymqieiBbh+6JkoChG0rOL3LKbWzNRPRklHfui5KeMezGB3VzL3cByQzvIX6CE8WS04NoPJZlF8a3lendzayaqp6Aken/7txbFN/TsXrdM9nIS1UMp3sk9FhWa5gX+gT4TZdyh6HpbJnvVTFRPQ5+9A9B3ryi+RoneYOOZ7GW5m1OcqH4CHI0KTQz7oxIAACAASURBVAugEatF02pA372U6/OmmMLhFiWqKXch4GCKp8ak3Astt8XHynK3RAljqMXpI5QwDkYJ4sGo6FkUX6JEfrDx+Fg5ierBhBPkD1GCbFBC/E+Kp8aAvnspt8XHynK3sdyQJ9D7lns6KqgdQnkb2+doJ9341AKWu63lhlqc3keF5DNQAfEQytvYPrPcwSaJX/Rwp0JF9QMJtzi9a7lnooLpYcjstox7nuW2qBSs0iblhlqc3kHP57NRYfowytu6PkUqVWOS+OUAd0d0Lwi1OI1Az8lzTBKPiRrNdWidSLW4734YCqu0GYDufaEWp7fRNZ5nub1S1/Q1JkF1Tde7ph/UNd2YdKJbcJnEImo0/4kWJGl8BvyqH1Quh6NFRBqfWG6nVS4+dU2zH1QuPu+aZj+oXHzqml9XUbnkfk+VRPVztLN5Clp45r1rZq+icslx6yaqx9CqrpmjisrFw62TqJ5Aq3fNXFVULh7uZuh6m4HDPnG4g1DCVSWCu7k1EtWjLPMMe3yVCO7m9iJRPQd9HqpEcDe3F4nqBZQXXdJIRzxfGuBuja43lKh+gL4/p6Pi0V8qcoeh9+ay/Pe7RqL6L5QwXkp58SONB9D1Xu7hToVatA4inKi+53CvorwIkUY64vny/H2lYqL6LkoYz0aJYlkRIo17LffKALdyoorab1atyE1HPF+Zv5/ZRDXlliaqqA1mxYrcdMTz1QFuhBLkULvjW+h+dj4an7xcRW464vnq/H3UtqLshJ7loXbHNy33AvTaVfE8wf6Ng9BUozz3e0jBsh/hdsfYcoegz2hIIZqPdMTztSbnAWa5f0PF7lDb4evo/j0U3fvK1Ftp3Iqu93oPdzpk2rwP4bbD19D97GJ0D3KVqS2ToapEJI+mlBtqO3wV3c8uQc8YV13TMhmq3RFQ17RMhuoQN6+uudgkcdkmSF+53+VkqLy65jyTxNt0mOvzrun4ZKhuTDrRLbhMYhHJnC4m+1DrD/XFDJbr9pbXUl/0kutT1/TH5CCfd00t9UUvuT7vmh1MEp/Vy99XNVE9DS2GXXVNqbdJCXdryhPV/6DFv6uu2dIk8YV94FZJVAehZMdV13gnB1XkVk1UB9ljXHXNOIpH4qa7ucYk8Qs5btUdVYNeE3e06FiKRw+nu7kmv4tcI1E9HX0G3Osru97gbm6NRPV0lES5I3DLuJ843IzJdI1E9UzLdU2Ex1M8ivdjlMyfnt8FrJGontUL7kcON2MyXSNRPddy3SjjfuhwM7uPlruz5RYlquf1knsWMnKMc9yqiep5qAhSh/uBw814CtRIVC8ku9EC2qEvMqt+H30ezzCt3l3fR+2rexP2x3kZqcD+WZP7Lj3Xm/fu+gEymt2LsE/NS1iz915wz0CtBHnvrh863JBPzQuocHlwTe47DvedHHd6ZCS8J2GfmueRT9KBgX8Pxdvo/T3TJPG7Oe6P0MbNHgXc59AUtjx3vvxzpmpY7l7otQ751DyDfJIOcH6WIBVEi3qnneFR14xHKohOqy/WR75aaYxDbdtxh7l5dc04tIFXOMa7Ddy8d80Yy/Wa17eRm1fXjEYbpe8GTulGNypHt+AyCYZH5fImUgV4J620kZtXucRIFdBpbl7l8ip6OI/rMDevcnkJLUZaTEbbzM2rXF4AFugLt2Ki+hXZxdkzSHLb65tMxUQ1z30KWLSP3CqJap77OJpo01fuQMsNJap57nAkdR5AWK2Sxh1oV/Uadze3YqL6Jdlk41G0+BxA+Yjn2+nZRZ7wfbeJarqTG0pU89f7EHCd5ZaNeL4VXe91OW6VRDXPfQC4CX0PykY834Ku9wYPtyxRzXPvRbvhAygftXwTut4b3PtbxUQ1z70bTc7aoYSbONz/5bhVEtU89w40wWpHikctJ0gxMhi4KcdNE9W/1+Deinbsd6jAvcFyb85xqySqee5NSI22PcUjnsdb7iDgFvd+XjFRzXP/hzxctqd4xPN49H0bDNya486APsu7ER77m+deh3awt6PYFHw8UiK1mIJHmnqzN1JVhrhfk30trkY+DdtRbAo+jh4z8jty3JnQPWMXsi3DRdwr0JqjzBR8nP0bW0zBI7VH74vuldP4T2/hXoaUl9tSbM491nJbTMHtxtF+6Nkwtf90viH7HvTZ+yLSGPr90LOwKrfjk2UitSA/QVblcppJ4l06zPWpXE42SbxHP3CfJatyOcEk8V4d5k6OComuT9YxJon36zB3CnSPcFXOR5okPiBwSje6UTm6BZdJMOxD9E2yD+5NTBJfEjilXdyfWq6rCtjQJPFlgVPaxf05Wni4qoD1TBLn+4DbzZ0V7aa6KoA/mSTO9z23mzsb2k11d+PXNkl8Qxt+93RokVuUqLqxhknim9vArZKourGaSeLb2sD9gcMtmvyRxkomie9qAzdNVPesyF0eFQTWRIWiNam2m/sfkzUirpKourEMKoCsZblrlHDfQeqRQSZrRDw9utaiRNWN36EkdS20KC9rD0nVMoOMM5q2YqLqxhJo/O/a6HrLRjy/jdRBg41jZmwT1ZQbShjdWAwVMFMT1rK2lDfR9Q42jqlwxUTVjUXQwndddL1l3hhvoOs1xjEVrpiourEAUkik5q9lo5ZjhzvB3Ncmqik3lKi6MS+6d6bmryuWHP86SpDPyHGrJKppJEg+/yZqJ9uJ8hHPrzncCe3AFRPVNMajhOZt5B00kPL2n1dRYn6mcUyF7bN9f/u3TxU4N41xSLb/HjKd3YlqpuCDgLNy3J+hYvyACtyxKJH6APlYDQR+X3LOy0hFebbb/mzXFAegouCUgXPTGIPaRT9xuFVMwQdZ7oT256jRnMXhFqkLQbvzv0KtvxtYbpk59wvoes9x20Ej+bQdiIpzZdxRwGwmMGq9Ttg11EGoWFWkLgT5ec1mAiPP2xUeFcQ3wC9NYPR4G7n5CT5fWW6LeXubufkJPl9abouJepu5EbrHpfEZen9bzMzbzP0bMtJP41N0vR21IejGxB/dgsskGlGjach6UPR5d74iNz/h5RFgqX7gnotaVNJ4wCRx2QSWdnAvQNMH0rjXJHGZwV07uEPJGp3eZZK4LGmp8/urJqpPAou16/11EtXdSrjDkYFfu7hVE9W2fp5rJKoPAUun3KjR/DX6fpft5n6L5PvHmyR+0+FW2VEFeRYs53Bnd7hFu7nfIDn7iTnuzA63KGG8F1jB4c5puWW7uV+jxeOJbrtCjUT1TmAVhzuXwy0atfw1KoCc6MqiaySqtwGrO9y5kfJr6xLuV6gQcZLbrlAjUb3ZJPEaznnzONyiguuXDneCHLtGovo/k8QTjG2jRnM+y92K4oLrF2iRfrJJ4vec89NEdYcS7nUmiSd42USN5vwOt6jw+QVKVE8x2QluVRPVzISXqNFcwOEWFT4/d7gTElwnUd22hJuZ8BI1mguiz+IWJdzPUBvpqbmC7S8dblGCnJnwEjWaCzncooLrpw7XLdj+CrXybFXCzUx4iRrNRSx3c4qfJ5+gJOzfuYJt0+EWtYVlJrxEjeaills24vlj5FV2Wq5g+2vUMrVFCTcz4SVqNH9juZtS/Bz7CHmz/SdXsJ0dqaM3p7iw3tYJL/b+fgj6u4u4/aFymQoVWl3V3wEmiY/sMHdqVFh21Xf7miQ+tsPcaVAh3VXB7WWS+IQOc7+HitDuOmJ3k8SndJg7HWrvdZ+ru5gkPq2T3G5M/NEtuEyiYRfOz5N9eLVld76EOx/q/XVjeZPE93aYuyAar+fG700SP9hh7iJIgurGUiaJH+4w9zdIAeDGEsYzyaWPnCqJ6rPAHiaJb20jt0qi+jTyJ+qz0sXhVklUn7TcO9rI/bnDDSWMwy33Lue8qdGu6k4Uj3gei/wWjjHOlJKKiepjlnuPc940VNvNHYvMJo81ztSFionqw2jhd69z3rT0jEwtGvE8BvlaHGscfxmbqB6ICkYh7jDLvT/H3RBdb5Fp5hhk6nmscaY9VExUHwT2dO9ZdlG6EbreohHPo9Gu7HGuz4FVwx2MCigh7n1outuwHHdjykc8j0a+JccZx9emYqJ6j+U+7Jw3neXuTPGo5VHIH+Y44/jLVExU77bcR5zzpkPJ3kBg0QLuSLQLfbxx/GUqJqp3APu492ir7Eu5RSOeRyIz4OON4+sQNZpzWO5mBdzbLHe4c94P7Dk7UTziOS3YnmAcfxlbiDwE2KSAezOwn3GmbVnu5uh6Q+PcU+6ZlusWbOdG3jxFRts3Wu6EqTZWUbgFut6iEc/foILtCbmC7TyWWzRV7XrgH8aZemWVfSm3aMRzWrA9KcedD3kC/bXg3OvQVMgJU6/shskW6HWet+Dcr+gpFLsF2/ktt8io9hp0vS1Tr3obdh13GMXG4leiAkivfGQq/h37oslnabyHvD5qDQnoBfcfyGA9jXeQt0mtIQG94B5M1vPqbTQUodaQgF5wDyXrifQG8q7ptA3BEWi9lcZryKunozYE3Zi4o1twmYQjajSvRpLtNK43SbxOP3CvJzuW8xqTxGVjSdvBvRG1PKRxhUniooVKu7i3km0BuNQkcdm423Zw7yArxe+Ys33FRPV/qPDStrGCFRPV6y33lcC/94ZbJVG9FhUi2maoVzFRvRol5nkj04Xp2UUu2lW9BjjKJPFDzrlVEtUrLTfOcdPd3M0J76om9u8+Opdgz265mxdwL0cFkLyh6GL07CIXca+03Eedc6skqv9FiXneUHRxenaRQ6qkBHk7HJ1LsKskqpegBDnPXcLhhlRJ49HrdXQuwa6SqA5FO6p5Q9HfWu4mJdzLLNdNsKskqkMs1034GqiwtZP9m0PF3vHofTo6l2DPZ7lFk6guQIm5q9BpoLaMnezfHOKOQ+/TMbkEu0qiei5KVF2FTgMVEAeiwl6o2DsOGcYeY5xxtRUS1cThugqdBmq72Qm9ViFuWrA9NpfYL2S5oed7ggo2B+SUMg1UIB6IigmhYu9Y9Lk8JlewXRhNhgpN3kpQweZAD3c5e73rF3DH0FMonpDY23vd4ajl0BfjUQHjoJxSpoHaQlNu6BmaFmyPyxWKF0OTv0ITv8Zjjc893BXQ6/yXAu5oegrFbsF2cctdI3DeOKQ4+2c7W27sPedfhFs6xyEl1CGdaLmxBau3yKqxtjVJfG67WTnujJbrPs96PSSgBvfHluve3zczSXxRh7k/QSoX9z67kUniSzvM/TlSE7n3u7+aJL6ik9xuTNzRLbhMwhE1msuhXUQ35ncXLh3iroik+WkkyEz2Rf8ZbeOuiowRXe5c7UyIA9w/IGPENMajKv3rgVPaxV0LmSymMQ7tSrwZOKUdzDnQAnrFwCFjgJOBf5k2jiK3iepZaNHqi9HAScARpo09wDZRPYewemQ0GiF9pGnjCHSbqJ5LWD0yCjgeFU4yvcd2N3d75JlSZIZ6FxrPfKvTyjKf5Ya8AEaiUeFHm9aR0NMjpczfCU9iAu30H42MMlPu/EihsUTgnJFodPaxHu6PHG6RGert6HrvcLgLWm5o5Oq39m89zrSOhJ4Btc7sQbEZ6q32d9zpcBdCCU5ITfGN/VuPN62jmWdASqg9KDZDvdly73a4CyPlT0jV8DUanX2ihzsjaoPZnWIz1Jvs336vw13UckOqhq9RgnVSfhc5UtvdTqjNsKh97n/o+3Cfc+5iKHEOqQu+Qgn0KR7ujx1uUfvcDZbrKqIWR4WCeQLnfIkKFafmd68jtd0NRO2NRe1z11muq4hawnLnDpzzBSpEnebh/sThFrWxXYO+/64iaknLnTNwzueo0Pif/K55JDXjzqitsqiN7Wp0vW7B9neWO3vgnM9QQXewh/sz1Nq4cwE3QcbhR+cUUUujAlQzcN6nqHBu8rv1lruL5Yba59JC8VG5gu0ylhsyMf8EbVCc4eHOYrkDCbfPJfQUbB93zl0Ovc4hE/OP0YbMme1UCUSN5vLoekOTDD9CCs2z261OiBrNk9C9Lo3ngAVN59vj/40+l2n0eUhARe4gdL9Lo61t2wXcM9DzO43+siE4G23kpZFp2+5GN+pGt+AyCYfd3RhGVgJ/lkniHQKntJP7KNkk5nSTxFE/cIeTlWb/xyTx3wKntJP7FNlk4lSTxLt1mDsZMtqcz/nxiSaJ9+wH7quEF5sgCe5+wIWmTVObIjnbv07x5Jp3kUfI0DZyp0C7IaFFH0j6uw9wUbse2Jb7JsXFixHIe+aSPDdSu9Hm9u8KJWAgf6ejgStNEo+LNDr7bYqT+bcs99IAdwv0PoQSMFCr0tHI32JcpN75ERQn1W8ij5/LPdxpgC3R9c5R8DsesdyrTRKPt+e9TXFS/QYqYF0Z4G6NXo9Q4gdqkToaKf7GR2pTGkFxcvu65V7t4U7rcH9d8DuGWe51lvs99Hkt8kp5DRWwrg1wt7XcoqlZD6LCyw2W+33LLfIOeRUVkq73cL/ncIumZt2PrvcGk8RJpDaWdyj2DnkF+Qe0GI9HajfaDn3uiu4996HrvdFyp7fcIi+Nlyz3xgB3B/T+F03Nusdyb7bcGdDnqsgT6gXLbTE8t+9Tyi26592FXudbLHcm9D0KqaBAbc67GU/7qX2fdkSfu6JC8Z3oem+z3Jktt8ir6FnLvd3D/aHDLbrX3o6u93bL/YnlFnkGPQPsapL4zvw/WG6EPu9FheLb0PXeabm+IQH5eMpy7/Zwp0eJdVnB9hbLvdtyf2G5RR46T1pufqOv1xFJbfo6xV42wy33voJj6nKb6H7kctfyfVfbGXZT66Ucd3Xfd6bN3LmQmbOrvFzFtLF1OsCdF90X3FihnZ+hAHcB9P10Y1m3cN6NbtSJbsFlEo+o0dwQSa7TGAX8ypUVd4i7CdqZSGMkciD/MHBKu7hboJ3jNL6x3I8Dp7SLuzVSBqTxNXI+/9R/Rtu42yHlRxr95TA/AEmYy+IhtBBqi6dN1GgORCaSZTHMch8pPbIad1dkMlgWD1huW7x0okZzD+DECofeZ7nD8/9gC1V/QQWwIj+Ol4FjkRJhV/u/y+Iey30ywF0PefEU+XG8ZFlDUBJwVAXuXSiBeir/D5b7V3S9RX4cLyLVzFBUpDm8AvcOy80v1NIC2QaWW+SL8YLlXoRem0MqcG+z3Ba/BMvd0HIXKvgdz1nuxWgX/KAK3FtQYt6iirSFuY0st8gX41mUqP4XqSv2r8C92XJbfBosd2PLLfLFeBpd73+RL8I+Fbg3ovbEFjWm5W6KConz5f/diafQ9V5m+X+vwL3Bcl/O/4MtRG5muSHFDMhL7GikUDgBKXPK4jrUFtnSjmkLpym3qGA73HKvQPfInStwvW2RDncL9H7Nlf93JyYUbFF7SZUNnStRe2KL+tQWTlNuUaH4UYdryO7Oh8LbFulwt7LcSgVb9MzfpgL3UtQW2aJ6rVGwfQjdk69Da5wtK3C97Zi9jah1SEAoLkbtmG+XHlmNewnZdsjbTRKXTZBrB/dysm2JGXPzDnKvItsemDE37yD3OrJteteaJP5T6Pg2cv+HJj6mkTE370Y36kS34DKJh12Mv0xWjXC4SeKD/We0jTsl2jV0dyIPMUl8aOCUdnGnQruz7s7cgSaJjwic0i7u1GgXxt0h298k8dEd5k6D1BduS8PeJomP7zB3WqQ2cNUInxPeNT8PvR7v9ZHrc7YPcb2+Bb3kfh+pOlzpeRH3bORb0KfRmXbX960c5wv8knCvb4Hzuxpo7O/+wMoF2HfRyNJ9yKoRQtzxyGjyIOMZ2Wm5q1nuigXcEcgPYH+yHjRF3Bbfghz3DygxLxrD+7blHkhWFRDiFvoWWO6alls0hvct+/cfRFYV8CV+Fcg4VGw8xFfItdy10OtXZKCcjpQ+mGzv/Ff4VSBjUUJ7qPH4JVjFW8otGsP7BvqcHEJ2d76IeypwmK+AbLlrW26RgXJsuYeR9bD4Gr/X0RhUODjc1xZpuetabpGB8msoMT6crCqgiHsSasdsaYu03D9bbqj1DrQrfzZq0XJ3yb/Br7YZjYq6R/jaIm0BM+UWFWxfQffbf5HdJQ9d7yhUGDqqgFulYPsyags8PMcNXe8oetoiW0bBWu76lltWsL2ArMkpqA3Rpy4aiQrLx+TbIi13CnoKxUUGyi+gonhV7rf0tGN+m//HmgXbi9D768ZI/Kqmb+lpi2zh1onIPyRgFH6PpW9QW+QJ+bbIXnCXQIpIN37j29hoZ0RqlcsPfFjEt8HQZu4yaPPGjQWN49vUIe4KaBPFjXl9he82c1dGyrU0EmAeX+G7G90oi27BpRu+3fmPkeqj5aHfZm5+d/4jy+3Tw7cCd2+yu/PvI4f5Pj18K3D3I7s7/67ldtph/gCyi6D+cpj/J9nd+bfQAnQv/AuhoG9BTe5hZHfn30ALwT3xy8qDvgU1uUeS3Z1/De1i7xHgBn0LanKPIbs7/zLaXd0Dv6w86Fvg/M4l0QK7aBpEfkH7Itrl3B2/+WLQt8Dh/g7tmBeZaOe5zyFfkF0D3KBvgcNdGl1vyGQTWhOHZ5CyZBf8MvpS3wK7gN2PsMmmj/skmqSzc4Bb6lsQNZrLWm7R7mSe+xha5A/EL9//EE12ONfHtQWfZdF3ZM38vxdwH7H/iQLcD+zvPM/XJhj1GJLuR9jc08cdhlQhA/AbGL9vf+cFBdwV7TEhc08f936k+tkhwH0PfUeGFHBXQq9J0W57nnsPUpNtF+C+Q087ZsvC0SnY7mf/uyr3TrQZsa3/cEag+9vFBdzVLHel/L8XcG9Hz6StA8e/jdQd/y3grm65K9bg3ow+OyElyFvoGXlZAXcNyw15lvm4N6J70ub+w3nDcq8o4K6JPlfL1uDegJ51IQVKjJ7NV/Wl3TZqNG8nu1FwLSquhIzAX0fqsmv6yL2LbME+M3q8UxE1mveRLZxnRo93iNlAKl23gJ0ZPd5B7sNkC8lnmCQe0A/cx8gWdDs+erwbE2d0Cy7dCO3O72SSuEpLSF+4P7Rcd5d4R5PEZ3aY+105zM9gue5u3lYmiS8InNIu7kyW6+5u9YfD/Mxot9xdfG2MHpwnEE7mg74FFbk/RYtHNynfAEnbTyA7mcuNFy33psC/l3FnQYtHt8jxF5SYnwiEJoAFfQsqcmdFi0e32LAu2uk8iXBS/ZzlBsdmRzLJ3RtJ6UMTLNxYCxWaTiac3D5jucHe70gmufugloUq3D+gz9rJ9n/74inLvauAuwBKKjel2IsgjVVQAnwySvp8UepbEMkkd1/0/ajCXREVVk4hnNyW+hZEMslNuUUeCGksiwqUpxBObh+z3AcKuItY7kYVuUuj5OlUwmqkRy03v/Prchez3A0qcpdEypJTCauRHrbchwL/nu7A74cUCqHpU278xh53KmE10kPALkVtkXYHfj+kBKnCXQTdv/5N2JD7QXS9jwb+PS3Y7ovuf1W4CyK1yamE1Uj3o+sNqgeiRnMpdL1Vpx7Oh9SBpxJWI92LrveJwL+nheL9CD9b3EhQ69dM6HUOqZHuttygaiFqNH9vuVWmSyaoBeun6HpDaqQ70X3y6cC/Vy3YpjEeeWbNarkhNVKwHbNKRP4hAb+2/zmVsCoo2I5ZkbsOKu6kMRZtpI0InNKWiBrNv6AWuDTGoA3LPqmEK3D/ijaS0hiN2tT7pNatwN0YtYSlMQqY1aeabTN3M9TOnMa3ltu2qVvdmDSiyoKjGxN5WLluvrgywFZ3O8n9AknXM9xOMi33M9Ra0d/cT5GUu7+5H6NJOv3N/RBJuTNck8Sv2z7Y1VDSn4+5gf9Fjeb1kYza6nLfR5LqPPdVo/Hjf6DVhA20CL4xajSvjRrNoh79EPcd5PeR575iknhdtDvok8DOB9wSNZpXRxqDXJf7NtmFSMp92STx2mhR7BvFPT9wa9RoXhlp7LPvdz9vknhb5B1wMkp6i+J0VDBYCyUBvlHcCwK3R43m5ZGMB33c5+xu3ZxosVymejsDJXZromKTb/LYwsCdUaN5aSSjRR/3WZPEW6IE4TS0W1sUZ6GF/R9QktfiOYEW+ndHjeYlkcaY+7hP213RuVBbUBn3bLTAXg0l07HnmMWAe6NG8yJblPNxnzJJvJnlDkaL2KI4F70Xq6DiQYvnBErk7o8azSGRjDR93CeNRtTPjZ49ZdzzUOvJSqhI4/N+WAJ4IGo0L7DFTx93uEnijdF3/QyULBTF+ajAtAIqSvm8H5YEhkWN5nmRJsz4uI+bJN7Qcs9C711RXIgUYcuhoqMveVsKeDhqNM+xRWYf91GTxH9F95j0M1MUQ5AKYhmkhHjHc8zSlntWJGNYH/dhk8Tro3vMuSgJLYqhSPWxDFJ+vOs5ZhngsajRPMMW833ch0wS/8Vyz6/AvciylkZKF19r6XKWOzjSZCofd5h9tiyIVJxFE3Ealvs2eg+3RSqtfKwADI8azUF208THfcA+WxZC710V7huWuwNSpeVjJeCJqNH8d6TJYz7uffbZsgh674q4k6Hn02vAb5EBsS9JXtlyT7WbU3XjJrLricmB7Wyhe3FkBOzz6lsVeCpqNE+2m3F14wayz/UpCKu12hnXkn2+Tkk1356+xlVogyeNqQirxNoZl6NNlTSmpppfUF/jUrL3/WnRBlQ3ulErugqXbgBgE4GYbBHut0W7WG3i/grdvN3izuLGGTnYIe4ctCaD/dEDOxetyW9/9MDOS2uRoT96YH1O73OnPbCRvHx2Qi09vsVOoW9BAXdhpCxwYw5jTRgtd2fL9flwFPoWFHDzveQJ8GtjzRAjeQj9DbX0hLjpOOc63N+infY0xqNdtrcc7q6opcfn/1HoW+Bwfmz//rLRsFcjA8cnkDnnQfh9OAp9CxzuzKh1p2g0bGK5RyE1yx6opcfnD1HoW+Bwf4KutWw07JXoep9BMvUD8PtDVPItsAl0yi0aDXuF5T6HZPn7B7iVfAssd3eKR8OOx46GRSqqvdFut88f4mvkJXFSCffn6HMykPCUo7FWTgAAIABJREFUovFo8XsMuofug1QU03iO/Qq1UZ5scuOcc9xZ0PXuRHhK0XjgEst91TL3IdwWmY6RDhZzbCFqD1T4DnHHOdzX0Wscasf8ArVj/ruEO6vD9X0vUu7FlhujNrFQO+bn9LRjBos5dn3xd5Rsh6YyjUUFgWNQQe0Ae46vLfJzdA8dVMKdzf7tOxCeyjQWFSuORYWtA9FnItSOeTBqKwgWc+y6Zk9g+wLuGFRYOxap5A5C34FQO+ZBaJpjEbeJPiPbEZ4GNQYVhY5FhZ6D0X3Vx/2YnnbMYFHFbhTsabm+zyfo2XY+es58hN6/vxFuxzwATc2sPM45ajR3Qv5iabyNnoPj7L/PiNp4Bwa4H6HP+zk1uX9DaqU03kDrjbaOovZwd0frozReA+bytRq2mbsnWqek8Qpa13V6VPO+6LmTxgvA/P3A/QdZT6RngYU6ze3GxBXdgks3JkTUaF5PViJ6pkniHfuBeyPZ9gNjkninfuDeSrbH/TSTxLv0A/cOsnL8U0wS794P3LvJ9nyfYJJ4r37g3k/WLPNYk8T75o6ZGSVIvfItCHCHoZ28NI4ySfyP3DE/QQ/SXvkWBLiPkpVrt5hQ28T2SMI7Ye+gRNbrW+BhNtD4ZtfEscWE2u7AH0UvfQuc31N1NOydaIH0tP3vXvkWONyqo2HvQNeZTt7plW+Bw606GvY2dJ3phKM++RZEGtE6gPLRsLei630FJVJ98i2w3MhyveoJGzdb7usokdowcNyrlntdCfdHqPixO8UjaW9Er/MbaOH/18Bxr6BruKGEOwNKwnYDvOoJGzdY7gjLDU2seAlNFfpfwe9KE8CUWzTu/HrLfRe1RYZaZiq1RVrFxM6oqFc07vw69P5+gArQIY+j5y33lgrctHDqVU/YuMZyP7HckMdRaVuk5f7Y4YYKxWnB9mhUWDkJKfV8UdoWabkzo9f4b1Qr2H5luWsEjn0atRndVcJNC8V/o1rB9hukYAx5DVUa52yfa7uhz1aVgu1oyw15DT2B2sgqjXOO/KPW1za5ce5Ro7kgaosMmcMPt9xKI4DtfetdskWuNcu+h30N+30aQbbItVrZ96EN3B9brluEXdl4xpu3mftTtEZxi4PLmyS+t8Pcn6M1ilukW8YUtM12oxv56BZcujEhokZzXbTQSeNr4Od1lAW95OZ7Ub8EZqmzw99L7gZoxzSNzy2302bB+V7UTy2306a9m5NttfkY+EXRDnCbuFuhloA0PkQ9sC07sVYhUuRbMIyK45yj1pHY76Ne45Yd0ajRXJw++hY4v2tHsq1y76BR6y07k1aZUuZbsGsVxZdnd+8tpK7xGZguRR99C+zvmRq1q5WN5HycnkT1FIp9C3YznjHSHu75ZEdy+iIdDfseWtj32rfA4Q4hnOCn8Yjlfoiut0++BZGmjV1EsYkxSOV0FLqnnELYt+BWlCAX+hZEmjZ2CcVmwqDv5VH0+LuExl4Hx0h7uJdSbCYMMnA8Gj2rTkEtHb64yXILFX2RppxdQbG5Luh7eRRSaJ1CeOx1cJxzjjsdegYWmeuCvpdH0zMpKTR++nrL9bX05bnXUGxyCzLUPQol6ScD8waOuwaNc/a19Lnc76Nizool3Lssd3LLDY2fDo6RznF/gF6bIrNZ0PfyaJRQnkR4/PQVaJxzXIF7I8XTwUBGvkchVczJqLXRF8Ex0jnuD9FnP/RcS+NWdL0/QAWuUGtrpXHOtvBxC8VTukAF26NRMeokstMy3ag8zjlqNM8mu5HhHSFsNynWQwXMXwV+3UWWW+rHEjWa56Hx3Wn0ywjhqNEcgtoO07jMti92mnsx2cL+JSaJN+kH7mVkn79DTBJ3vMUnajSvJPv87bhJcTcmrugWXLoxISKN/3uD7M7xAJPEZ3SYOyVKDt2d1O1MEud9R9rNnQpVy90dza1NEud9R9rNnRolnu7O4uYmifP+H+3mTmu57g7fJiaJL+kw93uo6ODutG1gkvjywPEN9CA/jrB64lw0Rjo4ztku6t8h26Kwnkniqwq4myKFgE89kaDiwj9MgUGcXVy/S1ayv65J4usCx0+GFkzH4lcxJKhwdIDxjHN2fo9vd++PoV12y90CKTF8Kobx9IyRDhrTWXXAO4Ql7G68jN7XBCmLfCqG8ahgdZDxjHN2uDNZrq/VIR8vWe5kSEnlUzGMRz4mB5sCQzy7az0Cf8tBPl5E7+tUqNXEp2IYhwpl/zSecc4O17e7F4oXLHcay/WpGMYhn5pDjGecs8OdBfXOVzHzfQ69ztOhFhefimEsKm4eajzjnB3urOh5VMVr7hnLnR61uPhUDGPpGedcxPW1uYbiafQ6z0hxW+TJqC2yZYy0w50dv/eQL55C1/tj1CLhUzGMRknsEUWbJpH8qqqOOX3Ccn9GcVvkCcCRRZsmkb/NNRTD6XkeFLVFpu2YRW2R86OWgCrxmP2ds1HcFpm2Yxa1RS6E3rcq8Yjlzk64LXIkPW2RRdzFUMG7SqSG9nNS3BZ5NHBcSVukb2RyKIZZ7jyopSfUFpm2Yxa1J+ZHJo9DGx7eooldF+2F2jFDbZFHAieWcPMjk8ciE1ufH1HbImodmTwWbWgF10Zt4uZHJo9GG3idNrFdHRXq0hiFNiw7amIbNZprAu5a6lvLDT47u9ENN7qmud2YEHYHPl/k6HhLkVUcfBfc0WSVF/3FHUWrmWx/cL9Fvdv9zf2GrMt7IdckcWKS+GK0i3oEfkPNbYCXokZz96jR9CaCdrGfL2KVcYeiRd9RtBpqNlDr0ctRo7lrAfdLWk1si7jjTRJfiHZvj6HV2LKB2ndejhrNXQq4n6MdyDrc8y33OA93MtTO8nLUaA60BRrf7/mU7NQC8JtAgnaKz0CL6gPQIjuv/JkMtZW8HDWaUQH3Y7TTW4U7Nyoe7YMW1icFuDtb7g4F3A+RcWAV7jzIrHRP1Jp2Cq0Gk5OjVoeXo0Zz+yhgVm4X0NfkfhxaVM+L7qm7oxaxfwe4u1nuNgXcd5AaoQo3NUndBbUQ/QcVstyYArX5vBw1mlsXcN8mu8At4i6I7qkD7e8eHODuie4bWxZw30CqgCrchZBqcAB6LU9HxUQ3pkTvwYtRo7lZAfc1pDSowl3YcrdHr/WZHu5U6DP3YtRoblLAfQUpOqpwF0X31K3Rd+XsAHd/y92ogPsCUs5U4S6G1AZboHuDb6Lg1Oie8mLUaG5QwH0OKZSqcBdH9/JN0Xvs24yZBhVjXogazaCiwarnhlXk/hbdyzdE9/68CXzK/SfwfNRoBqcyGU11yiszQ9wlLXc99KzzbQJNi4qLz1tVdCgeQ4WyKtzfoWfIn5A6Jf/8BBVhDrfcIuXbQ6gQmsbkFJjJmiT+1iTx4eiemX9+gopdRwDPRpqEFIoHyJr2TkH/mMmm49xd7laBY9sZd5H1QZyK/jGxvY2sSfzU9I+J7S1kTXunJass6kY3CqNbcOlGPvILqMVtm0en46zc/18qkvFpf3N/H8notdORn5K0vN3x62/uSlEvJgG1gbtaVDKRxyTxVyaJD0RJ3NWeQ36IEucHCt6zPPcPUWAyTo77D9QmcK3nkB+ixPk+u1vqi7wqbK0oMCnG4X5pkng/y73ec0g6vvSeSOOaq3DXjgITWxzuFyaJ90FJq08N8yOUON8dNZrzVOTOiCYGXUlrQgYa1XkmmrLzN1oTXJBKYTCaLBT6jOa5M6B2EK+KCUn0z0K9+zujRVQ+ZrS/9/YoPK0qz/0RmlSUL4ikMSe6ty6PigK+HvuZ0GtyeyRT7yrc6dH1etVTqNB0DvJQ2onWxBqkkjgHTcryTqui9Xv0Q8v1fU5BhabzkIfSALI7sGnMjBLnmwq+k/nr/T5quwl5o8xruYtbrs9z4icocf5fFJhWRev1ToeuNzSqPp2KswhKkH2eEz9Dhefro8C0KlqvdxrLvdlzLOhecQH67u6Ikr58/BwVK64tuAfluVNbbmhUfVpomhddr28U9yyoHe3qgntQnjsFum/c7jkWVGgagr5PO6DkOh+/QO1oV0byXqjCnQz5tYQ8WdJpPL9GRS6fcuOXwBWRpq+F/JbynyssN+R9kRaafmm5j3mOmQ24KtL0tZDfUv56xyG/vrsDx6eFpp+j19mnkPkVcE2k6WstikHrmZS/3jGoTTDkufFb9JmZ2XJ9La1N4LpI09dC3Pz1bh8qoDvnvWk0wWxFWg33QWqjGyJNX2tRKga4wcJ9u6KA2+kpo6kC1o0dvyNuf1zvOFrzhY5fbzcmnugWXLqRCduLnF/c7dAPXN/uXn9wX6J1sdMfXN/u3vb9wH2W1kV5f3CfpHVxvF3Fc18zGvW5On4J+pJofObBkdrE3HMfJ7tIbVBxZKPROOc/ocTD5/3wO8s9MFJbnBuPkl0sTlaD+7JJ4nXQQtw3zvn3aHzmPzzcWrt7Oe5LJon/iBbEvhaDZYEno0Zzv0jth27cT/a9mQJY1JSPhl0YjQWeDqlPfC0Vy6OxnXt7uPndvSnR9ID1LPe8AHcRpEaYBqkAfN4PK1runh5V0Z25v3UqYAGj0bBpEuzjLma5U1hu7DlmJeDpqNHcw8PN7+5Ng6ZDlI2GXZyeRfm++Mc5rwo8E1Bv3Ux2FPO0aArHOug9DI2GXQItjsda7pueY1a33F08ycmNZEciT4d8if6I1BYX06pkAd0TzkRtF/vhHyO9Btq19qm3rke+P2l8H8n010Lv4SUB7u/QovwrpPLwtTGsZbk+9da1ZNVS0wM/M0m8BnoPL8VfwFwaXe/nSD3mG+e8tuX6koSryY7q/REws0ni1dF7eHmAuwy63k8s19c+sS7wXNRobufhXoH8htKYCZjBJPGq6D28IsBdDl3vB0jV8p7nmD9brk+9dRkyxk1jZuD7JolXQUXCUMF2eXS971iuT7GxvuVu5eH+F3nUpfFTYFqTxCuj99C3sQC6F52Fvj8H4h/nvIHlbuHhXoI+k2nMAkxhknhF9DzxbSyACtNnonvOQfjHOW+EVCebergXoVagNGYFMEm8PHqehAq2q1ruK0jF42st3QRd78Ye7hD03U/jV6i4Xxomie+mZ4y0r01lM8vd0MO9kKwi99eEjXnbGeeTVeTOSbk/UjviPLLK2HnQ+9rpOJfs82YByn2K2hHnkL3vL4yKhN3oRml0Cy7d8EW+erxZJD+M/uZuEcn/o7+5W0bq6+1v7taR/F06HfndkG3yhYoORf56t/UUDIJhkvhWlCjvjhILN6ZEMudHIxnRupG/3u08iXsR92b0YN0TmYK6kXpzPBrJeDc9x7e7t70nkS3i3oiS6L3ILtJT7hHAw5F69Iu4tXbZjCY6LIgKIHkPhqlRu9VDUaO5qHNOkGuS+AWTxNuiHcJB+AsRyyEvjBeQ30Xeg2Ea++8Pusq3AHfHqNFsmCR+3iTxNkjVYgLc5VEb13NItZTnTou8FB6MNNki5Y4nsNtlkvg5k8RboUXv6fgLESta7lOWm/dgmBaZV97vqrdKuM8YmQfOiV4TH3dlyx2O1FJ5D4bv2b/nXldFFdjdG2C5T5sk3hy1i52NvxCxquU+htqb8l4I09Gj3pqgoipqczVJ/KRJ4k0t99wAd3XkN/Ew8qvJc7+P1Ft3RY3mBEPWojZXk8RPGJlDzoMSHR93DfQ9eQB95vNtkT9A6q07XPVWUZurSeLHTRJvZLkX4i9ErIn8Ju63vz/fFvlD9JnMqKiK2lxNEj9mkngDpGYZEuD+Ed2P7kHftTx3evT5udVVNlpPDG+bq0niR0wS/xUVTi/yMAHWQZ5Md9nryrdF/gi9jze7KirbXuttczVJ/LBTsL0kwP2T5d6Oni/5e8sM6H28MZInUMr9uoA7zG4sLIC/tQVk2nkYKoCmhUw3ZkSv5w2uequozdUk8YN2Y2EhWltD01gPPV9vQu9j/t4yEyq6XueqqGyba/41TLn3OwXbKwLcvyLPnhtoTbJB6ryLkdJmgt+b9dW4NHds5fZpk8TjTBIbdG85jdbv+MzoPbrSVW8Z+Yjk21z7o237I1qLhP3B/YBWVWd/cN+lVdXZH9wR6LPYr9xuTBzRNc3tRktEfhPb7U0Sn91h7ndlYjuN5brGkluYJM4vjNrN/f/JxHZDk8ShxVa7uLVMbEt+189RouSb2jIeeYMcYpL4m8hvYvsnk8ShXb0i7iwokfH1ro9DyfmhJom/jWRi+y5ZI76giW0Jd1bL9fWuj0PFiMNMEo+M/Ca2a9jCUV3uL1EC5etdH4uS6H9Zrs/EtmVEpU30DkW+CD45boIWjzMBKwS4RyEz0FGR38R2JZMbnRqpPegwtDPqi3RM6k/wTzEZg5LKo0wSj7ZtA29RMqLSJtSHE56oNB61Xv0M/+7gGHv+MZbrM7H9vUniTFuHLSAcTnhU83h0vbPgn54yGr1ex5okHhP5TWyXMkn8cI47L0pG1w9wx1nuL/HvSo5Cn4/jLddnYruESeJMe4UtEP2L8KjmcSihbOKfCjYK7aafYJJ4bOQ3sV3M5CZ32YLYvwiPah5ruXPgn9oyEqkHTrbcuWhVti1kcpOsbAHwCMITpFLunPh3Yb9FaolTTBKPs4WuF3LHzG9yE6VswfMIwhOkxljuPPingn2D1CH/ttwFkOmxG/NY9anLXdRyQz4aY1CSPR/ga4P+GqlwTjNJPD7ym9jOaXITlmxB+whUzPLFaMtdAP80sq+Qymqw5eZNbBNgdpObdBSplftI1KoY4v4XFSx808i+QkXz0y03b2I7HqnFMqoze9yRhBUhoyx3UfzTyL5EnkVnWm7exHY8MpPNqL/sRsnRhBUhI9Hr/Bv808i+QJsTZ5kkTqI2mtja1+Rs/Nf7OdqMOcdylyfbqjWxm9iuRrY1d6I2sY3kH+QWe75B01yDhujd6AZ0FS7d8ERgd68/2mxG02qG1x9V65G07u71x/X+/2Ri2x/XW8vEtuR3vYsSug1oNSydDC34nowazRX+H3vnHSY3dfXhV1u8a+OOKS5gUUyx12BjU0InIST0FjqEDqKEEBIgpEDoAULoIAgkhA6hhE6opmO67XVvcl/Xtddld73lfn+cK1vSaGY0M5qxzaff8+xjmNHMu1czK9177jm/k2l3Lw/uXGRhdSKpad3lSNnEKMsw98m0u5cHdzaysDqZ1LTucqR84XvLMPeyxcQ27929AHcWsrA6ldS07gpk4fSdZZg/ssNNbFO+V7ZypuqMiKGEe3G47Tr3RCZywc49FcgC9VvLMPewxcT2xcAxKeO1pUTsZM0N8+IwkB3VPTQ3OHGrRDrCfGMZ5q62cupI3d0LG+9kW7wBhhHuxVGmubtpbnDiVokEPr6yDHO4HW5iGzbeSTojYlfCvTjKkL+f4ZoblkV1g+buYoeb2IaNd4LOTNiNcC+OciQItIvmhmVR3YRkUQ21w01sw7jjbSlh24NwT4xy5O92COHjrUIWfCMtw9zZjljmaitnrM5M+BHhnhgVSJBvMOHjrUZMqz+3DHOwLS2kg14iYdxanZmwF+GeGC53kOaGZW/djnhg1djSMjv4+4dxR+vMhH1INZ8F+b6ejGTEvE1q9lYnxHvrE8swB9pS5hp8n5QyV51ZdCgShA3zqqlEyj2219xg9tZGeLK37HAT2zDud7aUku0fcjzI34mb4fU24VlU96I9sOxUE1vXjD3I/daWUrIfE+5V0wExC906A/d+1npgBU1sQ8tcbeV8bUsp2YGEe9VUIeaopuaGZW/ZrPXACpa5puN+ZUtJ108J96qp1twtNDcse8v13tqGGE1sbeV8jVxH/xzCdbO3XA+sj/GXIP/QTWzfQwLirn7oJrZvIRu0rjoh17tEiTIqyXBJFKo0u3s728qJ2tYwX27Y7t4gWzoLFJO7A6n+IDvoSWgxuWG7ewNs6RxRTO7OpBrSbW0rZ3rY8TFyw3b3zOAuW47vuTFSfpFucmEjO3LeRVg70ipydvhLInF7IeUv6W7y9yM7+d5FZxuwRT67bB7uJsjCISxTQyGZPy/jXywWvMtmGeamSNlHWKaG0s+9hT+Y0YLssmVqZ70vkrGyZ5pDViGZFWFGwQr5DN7Fn+q7Gtl1ytTeeT/NTVf7vRKZ0IVx25FF44f4/Q+aEc+NTG2WD9Dc3dMcsgLJnEnHvR1ZoHr9Hho1N1Pb4Z9obrqa8+VIptAOIc+1IUGBr/EH1VYi5zlT2+EDNXd4Bu5cZKEcxr0FuVY9F3hNbztN+19LvBV+qrnpTN8bkAy0MG4rEnwZiz9Y24Cc59B2uJp7kOaGZTu471GHGBqHcW9C7oHeoHg9snsb2pZWc90yprBsB5Cd+PlpuG721jT8mwBLkPMcXGR6uYdo7uA03KVIcDrM+Ho1koU1B/8mzyJkvMESIS/3MORchWU7gJyzxUiGTxj3WiRY7y1JnI9cJ8PKD13uEZqbzjB9iWaHGV83I0HbeuS+5Goecl8IKwN0uUdqbjrD9EzcJiR7awVyf3A1G7kPhpXFudyjNTedYfpi5LsVZoLfyNogxd2ex2cg841M3GOR72TY9xXkO7Ic8UkJ4/4RuT/c4Xl8GpLFlPfCxxKj/H8Sfv1ehWRRVSDZrq4mI1lbRV1wWYZ5BXK9dDUByVIrNvcq5DviqhbYqQTcPyObEa5G2coZku74GLl/Qf6eXH1jKyfd/S1RIiDJcEmURnp3L9hJI10qfpzcyaTuTpaCO4HUXcJScMNMbE8sAXcU4mtQau53pJrYpiu1iPqei23xzDiEcHNMC/E88BqjlpG+1CIqd5HO1DgM/46HqwuROn5vEKscySoohLtQZ2ocQaopp4F0/XkYvzFqBZJFUQh3gc7UOIpUc0wDaYv7AP5zUUn60hL3fT9CSmmOIDX4CLKDtCMyuQ4u7A2kDfA9+M9FB9KXlrjcD5HsgCORhXVQG2luQwi3DEkjvwO/YWcV4WVuXu4HSJDnaMJNoDtn4V6OBD+8wbOOehyZuO8hi4RjCTeB7oIEW5aRmoVRjpRF3IQ/s2sjxEcjE/ddJNvlOMJNoLsgi7llpGZhlCMLmOvwZ3Z1QXxD0jGVrZy3keDSCYSbQHfV3KUh3Aqk3OZq/BlWXUlf0uJy/4cEl07Ev+PsfY/tNDeY/VGhmX/An2HVg/SlJS73TSS4dArhJtDdMnDd7K0r8Ptj9UQCSJm4ryNZQ6fiv9a56o4EW+pJzTpxPbB+g/871wvJsMjEfVVzf0m4CXQPJNiyJA33RqSltpe7GWJanYn7MlJacgbhJtA9kaDHElKzTlwPLAv/Z9Cb8PJJL/e/SFDrTMLvc5m41chC/Bz856IfGUxONfdFJKh1DuH3uY2RYMtiUrNdXA+sMwLP9SeDyanmPo9kZ51LuPl0LyTYko77d+RvwRss3Jrwsr7I0pt/eyHf2bDsrTuRa443WDiA8PK6uPUofl+fHZC/kVJwvcHCGtIHQuNU0MR2Z6s0XUb/SWo313QByUSJgCTgkiizguUuYW7wCbcI3BIwf3BcveAYhGSWBNWP1B24uLiva+6DIU9vQeoOXFzcVzU3rNVof/1TDO7LyO5umKeTie5EkQs3ZAHlhBzWRf+EZTVsjbSDzYf7CpIVcAbhC6iuGbjbIN4r+XCzLaAycQfg99jKhesuoM4mfAHVDQn6hHG3w++xlQs32wKqGxLACQZ7QBYOwVasUbjttnJcf43zCe/e0z0Dd0f8Hlu5cJ9F/k4uILyLTndkgRbGHYjfYysX7lP6976I8C46mbg1yPcuH+6TyOd0MallniDnsWMa7mD8HltRuW22ch5HAmeXEN69p2cG7k4FcP+N/D1cSnj3np5IoCOMOwS/t1cu3Ec19zLCu/dk4g7F7+0Vldtqi4ffdohPSljm4MZIQCmMuwt+j61cuA8j17vLSS0vzcYdng83wu/VZivnTuR7G9ZKfFf8HluxcCP8XgtILb8sBXcefh+XUnHnkFq2WtAGXkTuTFI3hovOTbRhKykpSpRWlmF2RSZs3hv0HrZywuqJ4+R2QyZsXvPNFJPEInB7IhNj7w06xSSxCNxeSMaA13wzxSQxZmYZsjCejj/wejSyGKpCPveqwH+HPZbp2Apkx6UV2fFpQT7Xw/CbYL6C7OZ7L0iG55hyz/+X69+5XL9/mf7X/alEFg0mqZPLoF4mPGsiG9f9CXK7IYGObNz/kjpBDOOWeX6ycU3kvGfSi6Tuyhmen7KI3Er9b1zcILMCCaJsh/864JUi3HTX+/yLpO5uZ+JWau6AArkvkLrLHIW7HakLhKhc1wQ3uNubjbsNMt5Scd3vUaHcNsSzYSVyXfFeY7z/7f1/t9ToGFIX2q5a8V+Lg2oCNs1URhWUJUbllyBZQsFASlTuKs0NLaNKw90IyTy7ktRASlTuCmAzW7y/onI7a+4VBXCXI+MNLaNKw+2CBEAux2/Ongt3KVI2Fvw+Z+NehgQj0nV0zMbNWL6VhtsVybT7Lfl/nxdpbmgZVRpuN2SslyHBu3y4C5By01y43ZHP9tIM3DZSgx1eZSzfylV6U+5spNQz3XcdspRvxSXLME/G75U3EynbLnZ5z2n4N9MKLt+KyD0Tfzliqcq3zsG/2VWS8q1EG66SgEuijLIM83n8JQF32sr5TQm4L+Hv+vA3WzmXl4D7Kv7uC7fYyvl9Cbhv4O+CcKOtnD/pwEgPZBfH/enl+e+eyMQjW+Aj+FjkdsyJEiVKlMinViS7oD7kZ0max93d+V8hwYhsQdkwnakzHHKS9rm6UrPz4f5SZ5Lkw70KyXrJFpQN08m2coKG51G4vZCyrItIHzjNpLy69ml/rT8g5aT5cI/VGWi5cjdFPEsuIL97+xE6wzBX7mZI6d35eXLz7drXW3PPI3NQJ50OspUTZiSetyxpS30/6buGAfzEVk5YRkycv0dnJJjlzaBK6WJXBG5XzfX+ne9mKyfMeDlObnfN9X7/htnK+TbNS+Li9kQ2pL3fv6LG6DRfAAAgAElEQVT7XCbacJUEXBJllGWYv0BaPLqKdXcgA/cE/B1eSrU7cAp+s8IZSOvEgv9QLGl73RN/wMQNoOyDP+DSgng49CAp/UuUKFGiH4pWIz4plUh5Ty5qAo6zlfNaPmBLWntfjXSJyZQFEFQj8It8FseauwViMnkmud3PViFBiGCZRFTulog3zek5clcCx2gfoHy4/TX3lzlyVwBHa9+jfLgmYgZ8Gpmzw4JaDhyVbzBAN1m4FvFMyYXbABxpK2dEntxtEH+nXLvELEOCTB/lw83w+7iedPeQWgIJkj11uK2cT0Kei/P3eA6/V9zdtnJ+XUym5r6A3zvtDls5l5WA+zL+QNdttnKuKAH3NfxeYn+1lXNVsbmJNkwlAZdEGaVToefjT5PdXxtOFpO7ERK19qaN7lOCG1UXzfXuAv7IVs4XnmMM/XulyzpJ9//pUpwTJUqUKFGiqGpADIgXkppdMxcpI5gFzAvbHNEGj9eTu4H3E8BvbOWEeZZkle4GeANZjLRD9BhwmS2t5/PhDtTcjIbWIXpUc8O8Q6JwByHmvBkNrUP0T+C3doZuZ1m4g5HxZsq2CNPDwOUFcHdCjLXTGlqn0YPAlbZylmU9Mpw7BDnPaQ2t0+gB4Pd2hu5uef4+vZBOgukCQfcBV+VSlpgj/xikzNNVHdJ9q9gbpcfh7yY3F9mgLfZG6UnAU56HZiIbpcXmnoo0ZHDlIN23koV1ohQlAZdEWWUZ5hP4W9/atnIuKAH3afzGW/fZyrm4iLxypFvAY/g7FUxGMmy8AZR80rITJUqUKFGiUqkN8eRyAzDef2ci97LfI742UbUQKRH6T74LC8swd0O69fw4h5ctAC7S5st5yTLMPTR3/xxeVqe5OZf6eLg/QtqM75vDy+YBF2pz7Xy5e2lu2k5EIZoLXKDNxPPl7oOc571yeNkc4HxtQp8vd19kvGk7IIVolua+mS83w+9zFOIjFpb1MxM4z5auZnFzOyIbpd5Nvh/b0iGvaNIbtAvw+wntF3cmUQg3rIxqL1s5wQ6gcXPXic9log1TScAlUVZZhnkY4K3vXQT0sZXTkuYlcXGPRMxFXeVsshZ4vypgS9Z2cOkf+P8tyK8eOFGiRIkSJdoQtRLxo+lOZtPPoJ5HFox5ZX8AWIZ5ILJAzqVl7nPIAjnfLAzXOPmvSNeeqHoaCUTkm4VhIK29bya3Vr1PIoGXvLIwNPdgzd0ph5c+DlxcIPcQzR2cw0sfBS7JN/tDcw9HMm1yaRH8T+DXtnLCuh3lLcswH0dapqfTw8CluZhhR+Q+hpSWuXrIVs75cTLScJ/En9nzgK2cC0vAfRY43vPQPbZyLikBd534XCba8JQEXBJllfYeqcPfHvPgfOuqc+BWIdFjb1eHn6arb9bR5v4ZfoLtWxMlSpQoUaJE+Wk+YhD7cr7lCnqBfCxSErJdxJfNBE4ppMRYG9L/QnO3jfgyBzHyzduAVHOPR0p+ton4suma+0XWIzNzT0RKybaO+LJpwEm2cr4sgFsOnKS5ZsSXTdHcrwvknoJ4vPSP+LJJmhub4aplmAcB2bJYJmhubB0xLcM8BPBmC+XcBStP7uFI10lXOXfBypN7NJJN5Go+UkZVbO468blMtOEpCbgkiiTLMP8BnON56N+2cs4oAfefiNGeq1eQOvJgMGVLcjcgLEQKSdd2W52WSu36J+GWRtla0yZKlK/c77bbcrxUatTcCvLrHJNwE25QivCSJe9j9ZlKkCzDrADOQMxm+0ZgtiOL+BsKWVRZhlmJmAhfg5QUZ1MbYhB7UyGLKs09W3OjbAa16WP/WiC3AzKXuxrYLMJLWoE/A7cW4omhuefp99o0IvePSIfKQrhVSBelPwGbRHhJC9JZ6444PED093oefhNdd07j1WqkvO+umLiVyEZpT8/DeXWFypHbAQl2eOfjPy9G6VSAW6253iy9A23lvFdkbkck+97rc3lAvkbQiX64SgIuiSLJMsyfAN7MkgZgM1s5TTG9fwXQj9SSn130T6nUiHRGqMCfWVNsrdLs/2/cSnJLY4+Duwpp2Vlq7roYb6INV63I90Yhten5tJlNuOsvtwW5JijEhD2ftrobEnc5MB4Yp3/G6n9neheYegHzMtF9ZT5Fsl1mFPLLaf+JV4nuK/MRcKqtnFkFcjdCMhH2i/iSEcBptnJmx8B9E+mQGEXvI+3B5xTI7YxkfOwZ8SXvau68ArldgHeA3SO+5G3gdFs5dYVwNft+pGW3q/8h2T7bhxz+FnCGrZz5MXAfRIJcrh63lfPLQt83AvdhJJjo6lFbOWemOz5G7qNIRzJXD9vKObcE3GDZ2IO2cqxicxNtWEoCLokiSadnzsG/I3J0LoZuOqV1C2AgUls7EBiABFb6UvwMBoUEipqRXeUqxFSs2BkM6wu3GonCF5vbjkyu1wW3AdkpKkPOc6m56+o8l3m4iUqjFsT7Yon+70qk7DLKLnkhWo3sqC3T3A4l4jZrbgMSpKhEdk+LXaq5rrirkR3TBtae542JlhUQB3cZktVQWSJus+YuR8ZbpblRshEK0Ur8gZhx+nfJZUd8GXCurZz/ZD0ygyzDrAHG5PCSeuCcQgx1NXcI8F0OL1kCnF2Ioa7mDgNyKdtZDJxViKGu5u4O5FIetQg4M9926B7unkiALqoWIsGPgrJCtJmvt7PnKmTe+1f8gQlX85FgT0FZIZZhHoAEylwtBzaNa6M0A/dAJLjlqkFzm4vM/TkSRHRVD2xegjKqQwHvd3MxUkZVVJ/LRBuWkoBLosiyDPMepDuBq3/Zyjkr5Lgy5GbiDay4PxsFj49RqxGHfXch4mYT9Ka4XYWC3AoknXLzEnDnAUtZO95uJeA2a+4y/TtUIuPtTXFT2L1c73iLzfWqAUmP74yc51JxlyGdsjoj4y3VLnyi3BUsQytVWVowTb1U3HU13nVV7hdWDlAKravxbkjcRxDj07wNSC3DrCU3s1WAfyDGp6vyZBpI0Cks4yGTbKR9dCHcSUT3sHF1P/A7WzmNBXCnAlvl+NJ7gCvyDRjouel0JJM6F92FtK3OK2CguTPxl8odbivnNcswjwceIjzD+O/AHwrgliPzBm9wuhT+ixXIBq03WHuQrZx30rwkLm4lMkfc2PNwKbozhflcFr07U6INS0nAJVFkWYb5Y8BbDzkfaTe4I/7gyo5IqnKx1IR0SGhDFp7dkRvZAPxt4eJWI/CCh9sD6FNCbiuywO+OlF9tW2TuSuAlza3Gf56LGdBZobltyHh7au62ReYuR1LZW5HA4I+Q81xsNWhuu4cbxcOgUC1DPJFKzXXVjnzWlRT3e5yrViLlDp2RiXmpsobWFXeF5nZFMhDXBXdLihuM92o5kkWxrrjdkPNcKm4Dspjvhoy3mPfmIHccct8oJbcg41PLMK9H/D5cfYBkFw3M8tIJwIm2ckblyb0Z8fBw9R4yv9gxy0vHIeMdnSf3VuByz0PvIJ9XtuBPrebW5sn9O+Dt5vI/JACTzTh5DHKex+XJvQvwdq95C5lbZAs6jULGOz5P7n2IwbQr21bOBfq5/kg3qrA22t9p7sQ8uTbiYePqXls5v8rnvXLkBn0f77KVc2kJuP9CvKBc3W4r53cl4Aa7Qt1qK+fKYnMTbThKAi6JskpHybcCdkZuCsXa1V8AzPD8zESyGjojLf6KtaufjtsV6WBQrBr3+QHubM3tgoy3WC2qg9xZSKZKV80tloFnHf5z7HK7I+e5WLvGXq473hYkYHZDEbnzkHEGuRsjZo/F2jWeR+p4WxHTvuuKyP2h6b/I+VqIBBndLD03sBzFgDEfvYh8PxYji4BgpmAxuAoJ6t6AlCsExzsI/65hnNz/IH//9ZrrHWsxuc8i17ulyCIvON6eaV+dv9qBZ5BWuQ2Ej7dY3KeQEoYVrP18B3n+7ZH21fmrDZkz3KK525E63mJxnwBuBSbnktpvGeYegLcL0VIkq/ACxCy3S4aXrwauAO7OZBCchrs38LHnocVIAPxixEg4UyC0GQma3JsHdz/EF8bVQiQgeAli0pspMNgE/BZp/ZsrN+gLWIf4mlyKGOtm4/4G8crIlRvsGjQH6RZ1GRJoyxQYbAR+jXiD5MoNdg2aBfR330dnhfwRMTMOzklWIZ/HP/PgBrsGTQe2yfV9cpVlmEchG2euptjKGVBMpuYGuwZNsJWTLWgZB/cE5NruaqytnJpicxNtOIoccDEMowtwALArMFz/606EdlRKTSjKb5ioZNIX/K1JnYjtQHxBlmWsNcsbi+wKzUSCC9sE2HFyl3q445Adv5lIMMVd1Ljs7YvAddnueDsg4/VOPuPk1pN6nmcj5zm4mNqe+IJZLtc73ln6/bcldbxxcZcQPt4qUhet2xNfEK0N2YH6mrXjnY2My7uYGoQsNuLkfgt8w9rxzkHGG1xMxclt9XC9460GhiE7dDshAdoexB/cWYoEkcYCXyH1+PNYe93yjjsuj482JP3de/0YiyyItiZ1ARmX10Yb0h41aDK6mNRr5cAicIPjXULqtXIg8Xl8tAGT8Y91XIDrHW/c3OB43QBQsQJtrYSPdymp18pB+LucFMqdROr3ahnFDbS53OB5Thd4iovbQvh4J4d5O+gNpjr853s/WzkfWYa5ORLEOS34uoDeQDxHFkT9JfX8awH+ANRetnI+swyzt+aeGvritXoN8VhZmAO3EgmyeEta9rCVM9IyzL7AbUhb50x6BfGUWZQDtwNyLfMGkobbyvnGMsx+wN+AE7K8zUuId8/iHLjVmusNrAy1lfO9ZZhbau5xWd7mBc2tz4HbEbmWebN0d7KVMyZw3N5IkDKs7Ok54HxbOUtz4G6EjNc7txyYb6ZODtwumuude2xvK2dSkbndEM8f74blNrZyphWZ2wP5O/JuWJqFmnkn+uEol4BLMFrpVRJw2YCkb+xhE9hiLvjHIZOeTqROrIq54B+ruZ0JH2+xFvzueDvjX3THveBfTOoEdjKyCxcMnMW58PZyvePtRuoCJU7uIsLH243U79V2xJcltBAp+ehPahBhNdLRoIm14y0F1zWWXI2Md0CM3AXIbt6WGbgtrDW+LlY2VhS1A9OQ78N3wEj9A3AH4O3K0Eh85Ute7rea+SVyvu4CTikid2oItwzxOPAujorBHYuc5y80twK4Dzi+iFw38OQdbwXiYXFskbjeQJuX2wHx7DiyiFx3vN9o7lea+whwuOfYVcRXquMNtH2LfL5fIXOCR4FDish1A0/e8VYDjwE/8xwb53n2BrzWcG3lLA/pOnKLrZw15T56UXwvkvWbTguRLkZvR/2FLMN8GjjR89BNtnL+6Hl+H83dKcPbzNfcdzMcE+Q+hz/IcL2tnKs9z++nuZl27OuQblHvZzgmyH0RONrz0DW2cq7zPH+A5mYq55oHnJxLG17LMF8GjvA89CdbOTd6nv8Jci3NlBkxByn1+TjDMUHu6/j/jn5vK+eWkON6AA8SHviZiZznT3LgvoX/7+hyWzl/i/r6fGUZ5jvAgZ6HfmMr584ScD8A9vc8dImtnHtKwP0If9evi2zl3F9sbqINQ7kGXB5EdnK/Qi42D+mnk4DLeii9cxG2Qxfngh9kYvY9pV3wA3wGjKa0C36QXfXRlHbB73JHsTbYMAnZDQsGkuLmfozUTbvjnYKUAQXHG/fC+2PWnudxyHnuSep44+Z+iNSnu9+rKchu60DgIGTXLW4/AoW0GfWe52msHe/PkQVt3F4nCkkn9wYppyK7uy73uCJxP0YWB03Ioq4X8lluERNjMjKWn3sec7MHgqUNw4lvR30SkrbtneAuRq672+P//g4nvhKSiYAT4C5EMgVdny2XPZz4SjkmIllHB3keq0MWZzuQep7j4rrZc972wXOQxehAUsfbPSbueM3xLiRmArsg59k73l0JN8PMVUpz5wa40zUjeM8bHjN3HvATz+OTkba+YeONo+29Qq5F8/G3aZ4A7Euqb9zwGLljkb+bAzyP19rKGew9UG9cnY+U4WX6bt2JGK5m7ZRiGeapwOOeh0bZyhkSwr0AKTvM9Bn/HbgqIvd0JKjm6ltbOcMCx1QiHiTXkf5cKyQj5k9RyrgswzwbeNjz0Je2cnYPHFOJlFVlKudSSNna1RG55yHrGVef28rZM3BMB+BXZC7nUkhZ4l9s5bRG4F6IBKddfWwrZ980xxrAWcDdpM432pHP4caI3F/p93E1wlbOAemOj0uWYV6KbHq4etdWTtR274Vwf4d8D139z1bOz9MdHyP3SqRs09UbtnIOLTY30YahXAIu5UqpNs//m8jNHpKAyzqXTlfcCUnrd38GEl+gYSFrF76H4k93vAGZkLncQcS7w+8uBI/Ab2L6FyTjwTveOHf43YXv0Yh5natrkIwWl7tjzFx3vMfiL4v4M5L2vQtrxxuX38p81o73ePzp+n9A6u+9442LW8fa79WJ+NO4f4/saLrcHWLmuuf5FPyL3iuQrBH3PMfJncfa83wa/sXn75BdV+944/KXmcfa8Z6Bf8LsGhe63O1j5M5l7XjPwj9hDu0eYBlmV+Q7titStx533fdziE/KSGCGp4a+DzJZOpni+Bg9g2SJjgRmerj9NPfEInGfQvxoRgKzAtxbkQBiMXyMnkDMoEcCsz3cLTX3uCJx/42UVnxhK2e2+6A2prwN+AXF8TH6F+LRMDLANTX32CJxH0FKWEbaypnj4W6NlEccVSTuPxDD0S9s5cz1cLfR3COLxLWRjMKRAe4AzT28SNz7EUPZkbZy5nm4myCePGHtfV1NAQ7NVk5hGWYvZA7g/f238H6fPMduqrkpnSI9mgQcZitnchbupsg90cvt4x2n59jNkODG6RnecoLmTs3C7Y3cI1wppI1vSilWxHKucUj3n4zlI/raNyvA3TSsJErfF27Fn7EYVK3mOlm4/ZGguKs2YJNMpUmWYW6P3DuGhDz9CZLNlLFsRV8LvJ9FK9DLVs6yTK8rVPpv0vudbwE2tpWzvMjcHZHvgqtmzc27e1lEbrCtfJPm5tVFLNEPS3mb5iYBl9xUW1u7CWsXz3U1NTWRa2yDsgyzE5LK6i4I3SBHHJN174J/TbmIrZyFHu6fgYNjYHnlXfC7/473cIcgZmI/S/8WeXODpTHjbOUs0rWvQ5DAzoFp3yE/eRf83vF6udfh392LQ+6CPzjexZZhdtbc6/GnY8bFDRuvyx2KGGfuk/4t8pJ3we+yx9nKWaJrjIcgk9aw7gCFaDmy0PRmjoz3cIcii+wfxcxtQMoeavGf53odyBiKTB53KwL3C/znerx3ImkZ5qP4J+l/s5Xj7Y5BbW1tXyTo1grMuXfwYcuQXeQ7SO1QpZCMlUIyJuYDIzfadOPxfXYZNKXmxENGfXnfk8z5asxNZP6bb6CwHfW6NdxhNVNrTjh41Bd3Pca878bdjD+ToBjcLzpv3mtC76GDptaccPCoz+94tKxu1ISb8e/ox82dB4zsvHmv8X12GTR18EmHjfr4rw9WLBg75a/Afhlet4zCMjXmAiM7995kYt9hNVNqjj941Ed/fbBy4bipt5D5WhMH94suvTeZ2GdYzdTBJx32/QfX3lO1eJJzK5mvNYVy5wBfdOmz6cQ+w2umDj7h0FHvX3N3xyVTZtxK5mtNodzZwMiufTeb2Gd4zZSdTj581Du//1un+umz/wbsnuF1hXJnae6kvrsOnjz4pMNGv33lbZ2XOnNuI/01TiHf50K5X3Ttt9mkvsMHT9n51CNHvfGbG7s0zKq7Hcm2CVMbcBVy3Us78bYM8zP8n9V5tnL+4f5PbW2tgZjLdgOaHzv47M0aZs+/HZkPpuNeCfw9C3ck/nN2tq2cf6bjPvrTMzdfUbfwduSeEqZWpHX0XemYmvtN4Hc/3VbOYwHuVsj1p/nRA8/os2L+or+TvqyqFSlduTcL93v8JWGn2sp5Mh33nwec1nfVovo7SF9W1YK0JH8gCzfYdvwkWznPeLhlmtsFCRQ49w4+rB3JpLks5C2XIX4y/wl5zssdj2ziuDrOVs7zabhNwIyampq82n4HuJPwb5ocYytnjT1FCNepqanJq+23hxnWdvwIWzmvBrhba25jjFwH/4b0obZy3sjAnV5TU5NX2+9EG5aSgEsRVVtb2w04FzgTMTl0/6iqkIvBo8BDNTU1aaPMnmCDN3Ol8AwDw5iPUkGvk/FuhN+z6HeZuyAZFYXtSBpGneamLPg11130e4NJO8bEdRehvgV/gOs9z4VnGBjMQ/kW3WsW/B7u0BBuYTt0wg0br8t1F/3e8xwHd25gvGsW/AGud7zbx8T1Bhl8C35PsMHL3a5grizYOxK+GP0MCRb0wn+e4+DWIV0cwlKsPwEsxNwzON5ClYn7ETJpnRXyHJZhHo90hnE13lbOQB1ksZCdy82Q7CKQAMv3wCOPHnTmlyvmLXwM8KX1e7g3I51Edgf20Mfl/rdrGPTcegvVY+stFq6oWzhu/phJg0hvkjoH6VjRTXN3L4i7zRaqx1ZbLFw+b8H4BbWTM5mkzkI6efTwcGvy4RplBj222VL1MPstWD5n/oQF46bUkL60aobmbsza8zwoX27Pbfqr7lv1m98wu27CwnFTdiJ9aZWDZGH1CnBz/htyuT226jd/2ax5ExaOnzqE9OUg0zR3M9ae5/y45WX0lPNct3Tm3ImLJkwbSvoF/1RkYbW5hzswX+7G2/ZX3fr3rVs2Y86kRROnD8nAnYKMtw9rz/OOhXC7m33n1U+fPWnxJCfTeCchnW764h9vzjLKy9h4gKm69+87t37arMmLJzu7kD5QOAHp7NPPw82rm4lRXs7GA/qr7lv2mbNk2qwpS6bMGEb68pexwIG2curCnrQM80/Ipoerl23lHFVbW7sjcp08CbkGtyKfTYf21raP377ytulT3v7kBNKPd4zmhhr5WoZ5DbK55OpFWznH1tbWDvRwOwW4H711+S0zpr372QkZxvs9cFA6I18rtQ33c7ZyTqitrR2ElDCdgNxj13DbWlo/fOu3N8+c/sHIE0lf7vMd8NN0hrqWYd6EBMBcPW0r5+Ta2trBSMmWW8LrcivbWlpHvPmbm+Y4H355Ium7KH2txxuatWIZ5i1IFq2rJ2zlnFZbW7uTh1vt5QLvAw/ft/Phjapd/Ztww/BHkIBPaBaHZZi34w/YPGor58za2tqdPdwOSIDO5b6HZLK9UlNTk9di0TLMO5H75Jrf01bOObW1tUM19zjN8nLf1dxXC+DeC1zkeehBWzlWbW3tLpr7ixDuO4hVxusFcB9A/l5c3W8r56La2tphHm6Fh1uBZOw9BLyZLzfR+q8k4FIk1dbW7oakF29Eev+DRsQQ89CampovQxb9bk143ov+6u5d2GjTXnTq1YNOPbtR1a0zlZ06tqi2tpap73z20rJZ85YjE6HeyMSyp/7/4G5yTjLKyiirrKCsopyy8nKM8jLKysqUAtW8bHl9e2ubW55WjlzoKpGLfUGBJKO8jLKKcG7T0uX1qi2F20H/+8PiKlTTsoZ61dbuciv0T5G5qr1p2fJ61dbeHuAW7fM1ysoUqdyif6+MsnKFam9vWrp8qWpv70j8vi6p3IoyDGMNt161t3cqLrdCcw0Pt6Fetat0XIWUnzUideZt+t92/ZzpPbiiuqpuo017borCAAyl2lEKUArVrlCqHdWulGpra29a2rBUc8OupwrJKmry8NzvXVWa3zUuNWr2/2duB/1TSq77911F/B5D6bgK/3kuJncV8rdU6vF6uQq5dnZYh9xqCpuPKNIHjRRSFvWKZisk8LM1MgdLl60SRatJb8rfigQZbg1mnViGORQxLXa18tzPnvlzVZfONyKff7ry5RUrF9WPf+zgcya3NTWfnIF7VZhhqmWYwxF/RlfLz/viues6bNTpOjLfQ1euXLB49GOHnDujrXn1iWmOaQWusJVzR/AJK7UN97Lzv3z+xsqO1ddm4a5YMX/R6McPPXd2W3PL8WmOaUGybO4OPmEZ5l7I5oSreuvrF2+rqOrw52zc5fMWfP/4oefNa29pTdfNqAXJsrkv+IRlmPsiPnGuFl3wzUt3lneo/GM2LjDy7d//7fxJr4+4F783matJwIm2cr4L4f4YCaC4WnDhdy/fV1ZR/vss3JWIf+CxNTU1K9Ick1aWYf4UCSi4mnfRqFf+YZSVXR6B+zHwi5qampxLgSzDPBgptXQ1+6JRrzxqlJX9NgJ3BHB8TU1NzqVAlmEeBrzqeWjGRaNeecooK7sUuYamW8+tRD6fk/LhJlr/lQRciqDa2trtEdf7dBFwn+aPmdT40llXjW9tah5KcWqPEyVKlChRokSJEuUrw4A858xpNB440uuxossSZuPxjTv8gWub++89LEoHydXA9Ad2Pfa0tqbmZ/GXVHhVCxxtK2eKh1uGlMKtaS9/xIPXN22559Aowa7VwJQHdj3mrLam1c8QCKx7NFpz13isWCFtuI965KamfrvtFIXbDEy6f+hR57a3tj5HeCtlkCybY2zluGsWl7sAT2bd0f/6a2Pf4TVRgorNwIT7hh55gWpte5b0Ru/fAsd6vV0sMT1eiCez7tjHb2vqPWTHKONtAsa9ednNu05959NLEC+dYFCvGbBs5TzqfdASE+BFeDKRfvHk7U2b77R9VO4YYPdcMzAsw6xCTOPXrIeOf/bOxk0HbhvlPDchn92eeXA7au4azgn/ubtxkx22jsr9Gtg3D24nzV1zXk968d7GjQeYUbkja2pq9s+FmWjDUDEM6xKJO3zkHZl3rvpbx9am5l1Igi2JEiVKlChRokTrn+INtoBkME+yDHO0ZZjnWobpBki8O/PM+OTrKMEWkMV33wu+emEg0o3tT0iWYVA1wETLMG/WC0Rs5bSHcKPOYzsAW17w1YsDkPL5q9Nwd0LGe4OH2wa8mSe3Ctjqwu/+uzWSlXRtGu4QYLJlmNfrheXYGHQAACAASURBVLjLfSvAjZrBVQVsc9F3L/dDglo3pOHuAkyxDPMvlmFWa24r8D8f9+PI460Gtjv471cdpdsr74F0iQv+bv+yDPMeSzo8obmr8Wea5HKeq5Hv6uHZDgzKVk4zUqqzlvtx5PNcjZTpHpLtwBBuI/6Mnlw+32qkBP2gbAeGcFcBvmYAOY53eG1tbdyekYnWAyUBl5hVW1vbHzEfjFzCsGJ+aIlpokSJEiVKlChRoh+2BiMeDtOQchRfac7Udz9jydSZtDZn7fCMUqrz8nkLb0CyTG5GSqRGhRxahnQCnGQZ5rE6s+Z17wGzPk+pTMnGvV5zb0SyTcaEHFoO/BEJ+BwVyv0sN27D3AU3AP2RRgP9EZ+cMO6fNPfIQrmId8y1tnLabOX8GRn3+DTca4AJutyEFG4O51lz/wKgS4eG4W+t7epi4D1Lukq5Kni8ubwgJu5G+L2FSsmNZbwzSzfeROux4mplm2it+iLplZFrnbv02Yz6aTMLoxpGS4fOnSoqO1YZFdVVVHaspqK6Sn46+v/f/e/RT79GU318XeGqu3elulsXyqsqqajqQHlVB8o7VFLRoQPlVZWUV3WgokMlk9/6mNUrkhLFRIkSJUqUKFEij8oJGMGunL+Yp466EAyDzpttTLct+9Bti83ptkUfum3Zm25b9KbbFpvTYaNOfHLbw4x6/OV+iPnyCqSM51MkE+JYUjcD+wLPI1kIf8DjebNkykwalzbQsXv2BmUf3/IQo5981fRwRyEeHBM0N7jB2w94Ccn2uNr7xKJJDs0NK6jqms4Pd60+uslmzDOvu22Pl+vxjtDco0O4WwD/RbJq/uLjTpzO6hWr6NA5shWV23kU3bp7oGWYf0BMj4Pc/sCrlmG+jt8UmYXjp7J6VSMdOkVeNqwpN9MmuedahjkCMZr1vsk+wDeWYR5rK2ckgQyXBWOn0NLYRGXHyAn5faMeGJCPO792Eq3Nq6moSmdxlKJ+cXDrRk+kraWF8srKdMcXiTuBtpZWyisjL7nTlagl2oCVBFziVz05ntfqbtlvKvp9JyM7Bl8hLVgXIEZLjRePfnUHxHgskm8MwIxPvo4ScHG5oz3chZr7B6TdIADbHrQX+//5orD38GnB+KksHDsl22FLPNyvA9w/A79zD9zhyAMZds5xtKxqpGVVE6tXrqJxyTIaFy9l1eJ6Vi2qZ+WieupGT6R9dUvW3y9OGWVlqDU+riXklpeh2hJuwv2hcMtRbWEZ2z9MLmVlsA6uG+uMW14G6+B7ta7G+//v7zfhxiKlWFG3iBV1i5jz5eiUpzv27EbjEt+crjOwp/7Jpp8C+yIt3Ncs6Ou+G89WB2Tq7A2rV65i9JNen1A6I+3PM7VAd/UzpDV8HW4AQynmfT8ec99dM76wuWEFY57xJRN0yYF7MJKNPh/tW6Pa25n3/Xj67z0swssBCfD4ZCvnJssw30AW3WEd7g4FfozMZzcBaG9tY/6oiWzxoyFRuQ0h3CctwxyHBLH6e57qC3xkGeYFtnL+aRnmNKT8ivbWVuaPmUS/3dJ12E5RXju0tnJmWoY5w/292la3sKB2En2GpeuwHQ8X8Rmdgw4UtTWvZsHYKfQeErkZ2dI8uVPwfJ9bG5tZNGEqmw3evtjcROuxkpKi+DUBSQuNpKZlK+i8ebrunz71AHYDzgZsJPjxMlI7etz9uxy1Sik1Ixdul83TdTsN5Z4DPIgEP/6LROh9njNzvw3L4gxyl9Old1hHuxT1RNo0nqu5XyE3kuuDBy6aMJUeZl82HbgtfYfXsNV+uzHw6J8y7Jzj2OfK8/jZbVdy8B1/yOUmGpvWRbAFWCeTzISbcIvHXQdBj3XIXSdBj3XJXUffq3U13v9/f78JtxQKBFvyURWeYAvAnG9qM75AKcXKBUvo1KtHIQY31XiyRQDmfpN5PqmUYtXipXTs2b1QrrfkJus8VilFw+w6WpuaVwJ3hR1jK+d7xPPkg7DnkSwU3wQ8CnfZrDpam1evAO5Mw/0O6az1XuCpDsAjlmHej78zU6Tz7OGmdJnKQR/7uN+Oi8pdmS9XdwD7yMfNMl6PViB+nPlyfeOdUwJuovVbSYZLzKqpqVG1tbUXI+mKGfMSx730Nu9ffTeUGVR26ji1ZVVjBf7IdCZVArvqn1+1t7TywC5HL9tij53bNh+yY/nmO+3A5kN2CE0VHPv8W3xw7b2aWz2lZVVTZY7c3fSPT0umzGTqu5/Sf+/hVFSnerzVPvcGI66/H6OsjIqO1VNaG5s6kN5VPqgOSAAmZatl0cTpTHv/C7bcc2god/RTr/LRzQ+63MmtjU3VxJSyt8520NZZ5sz/r0yDJEOpRCozoD12Q8rMMpCuI6XmJkqUKNEGoin/+4TtD92fXttvhVHm36Ntb2vjrd/dwrR3P6Nyo45gGN+jVH9ko64gTX7rIwYcvC+9tjNTua1tvHnZzUz/4Asv18TT+Sdv7psfMeBne7PxgHDuG5fegPPhV1R369Kpvb191t0N4QtpWzmLdUvkm4ArsnHnfB1mdyNqa2nljUuuZ8Yn31DdvWun9tbWWXcvDw9Y2MpZZBnmzxH/nt8Fnr4AyRxfo7kZAmptLa28/qvrmPnpt1T36NqpbXXL7HtWhNnURNJHwKk+7rnh3bzbWlp47cJrmfXF93Ts0a1ja3Pz7HtW5t0I92PgJC932Nm/yPaaNqTT0GP5QpHxrmkbPvebWnY545go3IXAEwVwE62nStpCF0m1tbWnA/cjkezQ7kOPH3Yey2bM9T70CnJBHIC4qu+s/61BAh05qayygs133oEtdt+ZfnsMYdNBAyivrOCxg8+hYXad99CXgIuA7T3MIcCgfLm9h+xIv913pt/uO6/hPnrQmayYt9B76AvArzTXZe6sx5tzMLC8QyWbD9lRxqu5ZRXl/Osnp7Nygc+Y+Dng18gOhPc8D8qHW1ZZQc9ttqRL702o7NSRllVNNMyuY/FkJ9e3ypO7KZWdqmlZ2UjDnPml4W67JV02d8fbyLJZdSyZEjnBKi+Vd6ik5zZb0rn3JlR2rGb1ykYaZq8b7rJZc6mfOqv43G23pPPmm1LZsarE3P506b0JFdVVrF6ximWz5lE/rcjcqg5rvlfl1R1oWdFYMu7G2/an8+a9qKiuonnFSpbNnMfS6bOLyk2UKFGiDUVVXTaSOd0eQ+i3+85079+H+umzeerIC7yHKWRu9TL+udVQ0reozqjq7l3pu+tgtthjZ/ruJtzFk2fwzLEXB7m/Al7DP4cdkje3R1f67bqTnsfuRLct+7Bo4nSePe4S72HtwEW2cuxM72UZ5vHAv8i0CWsYnPCfu9hk+61TnlowdgrPnXhpkHu+rZwws1wv90Tgn2TwlKyo6sC5nz8b6mtSN3oiz5/yW+9DbcB5tnL+mYmb5nfZHqkAAKCyUzXnfvosZRWp/UXmfT+eF0673PtQK3COrZx/58EdhLRBB6DDRp0459OnKStP29ekESkz27+mpibvyaVlmDvhMauu6tqZcz5+KiWIF+DO09ziTnoSrRPlFHAxDMNb+7IF0mMe4EdIzZqrJUqpdZQjvP6otra2BnFrPwgx0nX/0tqBymdPuHTlwnFTgvVEnwOH28pZEyHQ7eSGIC3gdtf/mrn+PpWdqum9y6D2RROmNa5aVB/0evkUOMJWzpIAd2iAGzUTxsPtSJ9dBrYvHD+1adXipcEbzsfAkbZy6j3cjprrMvcgeiaMnztsUNuCsZObG5csC3JHAEfbyllTK+nhuszd8+Ju1JE+w2ra5o+Z2NxU3xDkzkcuqlsB3XJ970wq71DJpoMGtC+ZNqu5edny4A12PjAXadmY3QEvF25VB+FOmdHc3LAiyK3TP1vHza2o7sAmA7dtWzx5Rsvq5SuDqVwudxukrjte7qABbYsnTm9ZvWJVkDsP8VbaOn5uFZsM2rZt0YRpLS0rG4PcuZob/3g7VrHJwG3bFo2f1tqyqjGYQjYHWKS5kcyocuFuOnBA28LxU1pbVjWVkFvNpoO2bVswdkqbzsLzajbiL7V13NxEiRIl2lBU1bWz2mTHbVrmfD2mXLW1B1evtwJX6VbTAFiGuTGSGb2H5yfnOcFGm26sNqsZ0Dx9xJcdVHt7cPV6M/BHXdLhcnt5uLsj65Wc75GdN+ulNhm0bbMTzr0BuNrLDcoyzMFIOX5qREXLKC9Xu198StsuZxy7qqyivBxZK5Q1zK5b+fhh52+s2tqC5/kvwHVZuDsjm6ppA09HPXLT1H677dQPaEZMlduBsmWz5q164vDze4Z8vlcDN2TihvweBjInW+MpcMy/b5naZ5dBKdx6Z87Kp460eql2FTzPfwD+miO3DJkbbew+duwTt03tvfOOboOTNVzEK+YR4OaamprGqIwM3MV4sq6Oe/qOqZvVDAhyyxGvTJfbVAg30fqrXAMuUQ/eSinl5PUb/QBVW1tbjZiC9dYPzQM+vHfwYVsgtZbB8paJwM9t5Tjp3lO3evMGJHal8AXAeM1N2zLJMszNPVz35hXZ4jyNxmlu2qiuZZi9Q7ip9UO5aQxwsK2cORm4fVhbyuSe60K5oxHDtmZgW/0zAMnsGYIsIouh74BDkN2CbTVnANKScggZJgIF6hvEKK6N8PEWi/u15irCx5vXzlcEjQQO1//tHa/LNYvE/Vxzywkfb7G4nwJHINlhYePNOUgbUR8DRyLlhsHxDiWPYGlEjUC6X1QRPt5icTOplXVTItxCHlmQMWhdjTc5zwk34UbTk8BZtnJCe1nrBekuSGedyG6xEfQYkg0R2iFBc3dF2nBHdouNoH8hWSdpOzNYhtkTeAoxCk6r6h5dp+x7lfXYdgfvOw1pcT3q3sGHnaV/52AQ4mHgAls5rRm4GwNPI8bIYbrq4jGvPYaYDXcFmpD58Zh7Bx/m+jcGM/UfBC7OxA35PZ5HOla5uuziMa89p7ldAlwLuC+Eez9wia2cyDXmlmG+BBzleejXF4957UXETNrljgLG1tTUxFZjbBnmq8BhnocuvnjMa69obmckq2UUMC5ObqL1U0nAZR3LMsy+wBukXvjrgEO0CVaU9ykHBrI2KLA/+S1kVyCpmY9HuaDpwE9dtuMici8CnozI7QfEkXa3HLgQeDoitz/gxMBtACzguSDXMsyuyPfBTcV1y8oi99DLoNXAPcBttnLmB7jdPFz3Jy5uM3A38DdbOQtCuME04LzK6NJw7wJuD+F2xz/eoeRZRheiJsTY7u+2cnx1dJrrjvdopDNEaNlhntzbgTtt5SwKcHsg4x0KHAPsHSO3Efib5i7xPqG57niLwb0VuDuE29PDPRaZ5MTFXQXcAtybhXsccj2OixtF7Ug3t1gzndZjbhvyeSTcHy63kdJnlLUi19OEm7+WIFkJT+j2xSnSAZCrgWti5E4ETtTmtaHSc+a/AH+KkTtec1NbSPm51wNXZXmv1cB1wK1uEMcyzCOBZ0jd5HxNc0PPsYd7I57Ooh7VAzW2cuaGPIdlmEcjAZvgZuMrwEm2clZlGYv7PpfgNxr+r62cozMcfxziZxKcg74EnGIrJ1IWimWYv8FvRPuCrZysRi6FyjLMy5H5iavnbOWcUGxuovVTeXu4JIpPesH5EtKizqvlwM9s5Xye5/uawE/0z48JuLFn0TIk/fEV4G1bOSsycMYhfiiuTkcukC43UlsiraUBbqYbyCRkZ9nVaUit6o/z4NZ7uO9k4U7FH8w6BZmkuNxI7Z+0lgS4oTcuyzArgRmszZICCVIVMjlaBnwJ/AfJtJoeTNXU3Fn4vzsryaH9eBruF5r7PuCEcDsgZTIbex4ulLs0wJ2RhluH3/QvDu7nLtdWjq8uOErKb56q93A/COEOJbWFZBxaEuD6MuYsw9xFc+POBHG5z2muLyBrGeauwItAvyJwP9XcEbZyfOYvlmHuprl9Y+YmSpQo0YaiecCHyH3ho5ANgSORxXWcAZ+JyPzqZeDLsE01HUx4nMLu8WHclzzcFIsFyzB/AfybLM01EOuGM90gjmWYewKvIp08vfoUydhOaVUd4B4PPEqqr0sdcKytnM/SvG5vZJ4aNET+GNkcTrtG8LzHECTT2tViYNOw8+N5zX7IeQyW4I8ADss0V/e8xzAk49nVQmCzXEqT8pFlmLsjc05X84C+xeYmWj+VBFzWE1mGWYVcBE8MPFVQ0MXz/gaSAeMGYPYnev1sM7Igfxl41VbOvMB7Pwic53noJls5f/RwB3m4++XIfVdzXwvhPoy0yXZ1na2cazzcGtYGffYn+s5ck4f7akgmyKNIUMnVNbZyrtPPlQW4++XIfYe14w1yH8fj8g78EZkouNkZ++n/Dt6Io2opchN7F7mJ1trKabcM82n838vfI7sdLnffArn1Hu4nHu5zeFzegcuRyZqXu3MB3CWa+x4y3rGa+wKSieHqN8jkKTjefDsxuFz3PI/T7zWe8GDd20hb9L2Q8RbCfZ+14x2PnLvxQFhv+reQcrC9NTffDhCLQ7i9EAO9sM/uDWRStg+SkZMvd1GAOwE5vxPTvOdrSLmfy83XY2mh5r7v4W6m/43VtylRokSJNlDNQuY7I5Dr5AykgcIYspc5tSM+Xn2QEtooWoAEKl4B3vVublmGORC59md7r3ZkI6h3Dtz5Ae6arAzLMGuQkpK0TqpaLYhPzM22closw9wBuT8HN0uiBl12Qu6xQW4LkuH+UFhQQJ+nt0i1QYgUdNFZNovx3wdrbOVk7Jmsz9ObpG6WjCBC0MUyzApknukN5u1oK6eozV70huVS/EG1AbZypqR5SaIfsJKAy3okvVi/Dbgs8FQsQZcAqwKpn3UDIQeQ/aLv6kvk5vEfWzmTLMM8BX8bs09s5eyTgTsMf+AnKnekhzvZMszTkSCVqxG2coJZQl7ucPyBnyhcpbkva+5UyzDPQgyuXL1nK+fANNxKD/dAopePKCQy/jLwvOaeh9TNuvqfrZyfhzC7I4GBI5Bx7kAGl/oMWo7cSFfjr399w1bOoUXkNmhum34vV6/ayjkieLDmDkP8S/ZDJm35cJdprmKtBwvAS7ZyUvr56VKZYfp33BfYLk/uUs0tQzxnwvQFsvs0N8DdT3Pz8VFairQurEQ8hcL0KfALWzl1ulRmOHJu3PHmw61HxtsBSPn+an0MHGcrZ76uPw9y8/FRqkfG2xExMg/Th8DxtnIWeLju5zsgT+4Szd2I9DX0QS1ErrP9C+DmowVIcM9EvGlKyf0SyRzclnjKGKOoDgkqbrWOuFsj3kOl4s7T3G2Q8ZbKF8blul5LpeLOQRaW64o7APmMS8WdhQQOXG6pfGFmau72yN9SPty5yPV3e2RuGkXjEF+T/si9ZMfMh69RI2s3t16ylVMf4vORSbWId4qpuTvkwH0bybr5r62cpSE+H5k0CjjDVs732l/wDWQzxKuoQZc3SH/ffxjxZ2kOeV06G4SoQZfXES9BVxfaynkg02v06/ohQZeawFMjiBZ0eQu/d875tnIeysYtVJZhvovM/12dnU+Xp0QbvpKAy3ooyzCvBq4NPBx70CXA7IoEEXKta/waeB1//e1qoGvYxToN91HEyyIXfYVcfK/2PNakuWlNyzzcbkg655E5ckcC/wtwVwHdopiH6eDA40S/wbr6AsmI8NYbLwd6RPSe2RZ4lugTmUxqRj6vT23lNGThbqe5cZjiNSETos8iTCa2R0o84jDFW4WM9/MI3IHIeIOTgjiUNuXXktaHzyLZZHFrruZ+EXzCks4LzxF9wpmL5gDH2Mr5MoS7k+ZuXwTubKSD2dfBJ3T513/wlzIWU48iAfitkM932xJxn0E8pgZobrGMrYN6CvHU2l7/DsUytg7qCcRDbEdkvMUyeg7qMeBi5HrxLKk7x8XSo8hO9k7IeS4FVyEtan+N3IeepjRldgpZQF6KmKU+hWRGlIL7IPBbxMfpSWDzEnEfAH6HZEU+QW7l5IVw7wWuQLIEnyC3su581Yb4ZFyLXB9fIbfr1WokgLAEOCtH7l8RP5btkOBNLter1cjceSlwZg6vawVuQvxYOiIBnN0Cx2QNuliG+VvEdy2dRiL3/ZSmEnoe+w6yIeFV1qCLZZhXIufN1dO2ck7O8Ht4X9sDmQcH57EjyBJ0sQzzD8g5c/WErZzTonALUch67lFbObl83ol+IIqaWZCohNLlKX8JPNwF+J9lmHsUidkAHI/cPHLRcFLNzjoQceGnucciN5BctCv+oAfIbnukHQ5bOcuQRfQtOXJ3D+F2IuLCz5Y21Ecgxqa5aA9Szd26EHEBplMYhyNGroWqCpmgLLYMc4RlmFdYhlmjy7iC3EnIzfHeGLjVSDrrEsswP7AM83LLMAel4U5EgjxZd04iqBMSZFtiGeb7lmH+zjLMgWm445Adp2LsnGwOjNCZTkHuWGTx9EjKqwpXH+AjyzDPDj5hK2cMslh8tAjcvsAnlmGmTE50PfsgJHgZt/oBn1qG+csQ7ijkGvNUEbhhOgPpUtGXtcGAUuhEJMvmYuR69Z8ScU9Gsl0sJCj9Uom4pyLjPRfZfX25RNxfau4ZyE75ayXinoGU3P0S2fV9owRMAykBXox8zgci19VScM/V3OOQ3eZ3S8S1kPN8FJJF/H6JuBci4z0MySL+sETcX2nuwUj25ccl4JYjBrTfIlmEQ4BQH5I06oB8PsFgS7bd6HKkrPsbZE40BL9fRxTu0aQGW7JxK5A56NfI/O9nSHagV3sBb1qGmamc/dMs3N2Bb7RnjE96HnsQfl8UkEDb65ZhZvLhCXIjbwLayqlHskS/DTy1P/CaZZiZfHjy5haodcVNtJ4pyXBZj2UZ5jWkBl6WAweF7TbHxDSQaOyfA081A1OIvoP+NVJz+qadpi1gCPcGxNHeqyZgag7cL5Eo9ls5cP+K7Mp41QhMR3xvouhzJGj0v4gZNgZSPvbbArmfAjcjBsNRuXcgu4xerUIWOmZEbphmIRP31xFz2DW7DZp7N7KAi5s708P9IIR7H3BB4DUrkYlwITvZjua+obnemvAyJNgTDI6sQCakhe6gf4tMusK4D+H3NnK5SyjcqPZrzR0RqEUvR3aRzwgcvxwp5SmU+5XmfhjC/RdimO1VA1IiVujO/UgkoPyhrZymAPcxZOEY5DYQvzEvyI7xZUiXsWCng2XIuS4GF8R/RpEa0F6GfLeKlakwHlnIBTOoliLXjmJlKoxHNqSCgfR65BpdLO5YpPxkuxJza5EFYJC7BLn39055RTwag+zSBzcOFiN+EsXKCBmNLM63CeG2UryMkFHIRkkwA2MR4g9SrIyQUYh3XjADo9jc7xDPMTPw+ELkehI3tx3ZzLoNKdsJBgvmI5klUe8LS4nmIdammX9HMmyCG6N1yPcq6vU5F+4tSOefV8kh08UyzE7IPcO78T6N1O9mM3CqrZznQ96jB5JhE8x0+Qg4NCzTRQdjGlhbWq+QzPSsprue9+iJBE2HBp4aQZpMF51Nv8zzUDvQJWqHpXylf9fFnodagc5RKgAS/bCUBFzWc63DoMt1pGZULANOQhZPJyI7GNn8SOqR3dEnEG+XtF84zb2R1HZ5SzXX9HCzaYmH+2kEbljQpV7zttH/7huBu9jD/SwC92+kevYs0bwB+t9QP5wQ7nOa+3kEbljQZRFynnfQ3L0icNNpNXLzewPxfJmcIeiyUHMHam7KjkoOag5wp2QIusxHOkwN0twfFcj9wMOdqoMfNrK76lWd5g7W3EKy1poC3GkZgi5zkZ38nTV39wK573u403UQ4hH8htIgJTq/RHYAT0Ky0/JVY4DrZAi6zNLcXTQ3OCnMlfuehzvDEl+of5MadJmBnIPhmjusAG5Q85Hd6+NJDbpMRwJeu2luqXbSpiK7w3tobhzlg1E0RXP31Nygl0GxNAk4B7k+nkQ8ZYtRNAG5luyjuYNLxB0HnI/c/06mOGWLYapFMkT2R66XUf05CtVopLzsAOQ8l4r7HXJv/Aky3mKUS4bpW+ASJOPoZFKDbsXS14gh/YHIeOMsl5yIfIbXkTqfGImUW/0UGW+c3PHIZ3gjqff1z5E55kGaGwz2FaJxmnsLqffXT5Ayn7Cgy1j8m3uH6vcJerso4Le2cu4IeY8eSHlR8D6XKegyEf/3bK903ZHSKUPQ5QPg8DRBlyn4z/setnJG5sLNR5ZhOvg32Ybbyvmm2NxE65eSgMsGIMsw/0Jq2U4D4umyLoIuB9nK+VKbWJ2I3CyjTLInIgvQx2zlLMnATRd0OdBWzjeWYW6BTIROIdpkd4KHW5+Bmy7o8hNbOd9ZhrmlhxtlsjtOcx/XKZjpuGFBl8WaO8oyzP4ebhRvkLEe7rKwA7IEXX5sK2eMJW3FXW6hk+wprM0GOQqZSHu1EDjAVs5YyzC3QiYkcUyyJ2vmm0jnoWDGyXzNHW8Z5tYebqGeJJM83ONJDX7UAfvbyploGeY2Hm6hk+yJHu7JpGaczNXcydrXx+UWOsmeoLlvIYGPYPBjNnKep1iGOcDDLdQLZbyHeyapwY+ZmjtN+/q43EInu+M83HNI7S43AznPjiUdJVxuXF4o7yOZJUET6emaO9MyzB093GJ7ocwF9taBt4Eerllk7hxksj5D+xidotnF9mCZDfzIVs5sSzpouNy4W50HNRPY01bOHO2f5HKL7cHiIAvXOuTe53KLlVHlajoSCF+ABNRO1j/F9n6ZggTUFiJzm1OQe2GxvV8mae5iZCHpcouVYeRqouYuQQK1LrfYnjPjNXcpsmA/BbmWxsFVyObXlqQGP0YipTgNSIDiZM2NI7OpHSmh3oPUjJPPkGDGcv3cKUjgPI5Mn3ZkQ2tvUjcXQoMulmE+oX8HV5fq3/1apFwqqDuRwIuvjXOWoMshweCHZZjP4N8wuNhWzn3phxauXIMulmH+B79P5QW2cuxcubnKSjVkPtdWzsPF5iZav5QEXDYQra9BF8+xP0Z2rp6qZQAAIABJREFUgKOoCfEisIGRwWyMKEEXz7E/QxY9UbnPaO6Xabi3IO2HvVoTdPEcewhSwhJFjYhBoA18nYabMejiOfYIovsLrHK5aQxAswZdPMcdDbwQkRvl9worI1oTdPFwj0c+s2Jy1wRdPNyTEJPDOJSufGlN0MXDPQ3JmoiLu5jUReCaoIuHewZiaBmH0pUvrQm6eLhnA/+IkVtP6uJzTdDFw7WA+2PiLkeuTUHumqCLh3sRUhIUhxRynjcOPL4m6OLh/hr5Wy+m2oEXkSy7t5Hr7WVkNmaMi/u85r6DZNddjt+YsVjc55DrxLua+3v8xozFUFuA24Isjq4rAfcZxL/oPc29hlRPs2Jwn9bc9zX3OsIXhHGqVTOf1tw25LO9sgTcJzX3A9aas/6uBNzHkc/4A+T7fRuShVJMtXi4I5Dr2u1I1k0cakOu0cESnZHI/HkZrOlkeReSQZiLmgjv1jdFPxfcJPsMKfNp8HDvRbLI4uBOQsYc3KxKCbpYqca5/7aVc4Z+7gzk3hzsOPUCcJq3tFcfHznoYqUa5z5iK+eckLFkVS5BFyvVOPchWzm5nvd8fsegce79tnIuKjY30fqlJOCyAWkdBl2uJ3Vy4wu66OMW4p/8R6lDHYUEIp4M3AgMxBPl94HjfUEXfdySACcK93vNfSqEmzXooss2liL12K6WAd2ycL/V3Ke9qZaaezupkxtf0EWXTzQgRq65cL/xcIMeJ3eSOrkJBl0qkEmL9wYfhZurgkGXSmQh7W2b2oDUo8epYNClSnO9k43l+D/vOBQMunTUnPIic4NBl400x1siWAxuMOjSBfkeebkrgEyme/koGHTpjvxNu1JIQC6T6V4+CgZdgvXcxeIGgy6bIt9xV+3IhL1TyGvj0EokA+h9/MbVbUhgIp/26VG0QnM/RMoIS8l9HTEJ9RqEt+qfsIVRHFquuZ/iD+S1IGMuJvc1xCT0Ls/jq5HvdLHaiTdo7pf4DeBdP4RicZdp7jeIT4erJsQDo1htvZch3hzf4Tfab0TuEcXiLkW8SEbjX5CvQjyGitXmul5za5Fgj6uVyFjj5gaDLnvjN/pdgfwNZWtzvZrwz0Ih191gxk4w6LIfEmxytRy5VmXjNhP+nU/H9QVdQjZKR9vKWVOaaRnmQUgwOzgP+Aw40lbOIu+DUYMu+n29htnf2srJu/Q2atDFMsyD8RuEf2UrJ5iFFLsswzwc+V67+txWTiGl84k2QCUBlw1MGYIue7uL4yIwMwVd9vIsjt9B6nFdnaqPOR1Jp8t081iB7OrYtnK+93DTBV329CyOP0DqvF2dhNygT0faPmfiLkd2Rh/0BDUMpM1gcEdpCZJGPkkf9xF+f5XjkRvgGUiqfznptRzZ1bEDmSTpgi4/8iyOP8PvN3IMsoA6Azg8C7fBw631cMOCLgs1d6o+biT+FNkjNet0zY2r61kT0u3gcVs5zZZhfoPfj+JwZHJzBlJzHCf3IiT412wZ5vf4fSEORhbGZyCdTOLiNiK7ak/ZylltGWYt/hKunyEBpjP175DNNymqViGZHs9q7nj8pVQ/AXqxtoNKXNyVyG7ec7ZyWizDnIS/tOgAJLX7DGTscXLPBZ7X3Gn4S232QUokzkTq7OPSCiST5yXNnYE/+2cvJPvpTMRXIC4t93BbLcOcg78kYg+ktOpM/NftYmtX5Ht2JvDjEnKHIX9XZyLfsVJpCHIdOYto/mNxaSfkunkW0fzH4tIgxB/qLKS8oVTaESl7OrPE3AHI53omhfme5aptkGv0mRTmP5artkKuj2dSmP9YrjKR+9BZpJbqFKK5SEnRR0ig37sBoDT3EM3N5j/WRvj8Kywb5SNk07LZMsxuyLzW+z4mMtc5m+w+YLlwRyBBptUhGwAphq6WYQ5BghTBsrbJwM/dTQzP8elaN7+HBJlaLMPcBMk2drVac7M2fkgnPZb3SLU3eBsx0m2xDHNzYJ7nuSbEOLc1X27E360f4innahViFNxWTG6i9UtJW+gNTLZy/oI/NQ1kMfaavpgUg6mQrkXBVOlumuvWn34XeH4nWzmv2co5Dkm3/yOy4xumzsgi7DvLML+wDPNk5AbyB1JTw7trbq803MG2cl61lfMLZGHzJ2SHO0xdEDPV7y3D/NwyzBM19wpSU+F7Ii3v3CyeMO4rtnKO0dyrkR39dNwLgdGWYX5qGebxmvtbUlP/N9bj7ZmB+7KtnKORhds1GbhdkaDCGMswP7EM8zjkOnApqaUOm2iumy0Uxn3JVs5RmnstMnkpVNVIKut8yzD/hf/GDFBjK+dFWzlHIJOS6/DfRAvhPgLUWYb5CP6MAJf7gq2cw5FJ5/UxcTsipq91lmE+jGS9eDXIVs7ztnIO1dwbQ363fNQJ6bRTZxnmP0j97AbZynnOVs4hiPfITaR+FvloIyTIWWcZ5kOID4dXA23lPGsr52BkUXFzjNyngHmWYT5I6t/IQFs5z9jK+RlipHgLEnQsVJ2REsq5lmHa+CdeADvaynnaVs5ByOLtViTDrFB1QUpP5lqG+QCp194dbOU8ZSvnp5p7GxJULrb+jVzDT0c8i27Hn21ULD2GXP9OQwI+f8e/yCmWHke+AycjQYE78XfLKJaeQP7GT0SMMe8qEfdJZNf9OKSc4h4k0F8KbgXi0TAYyTRKMQotgp5G7qHHIEGu+5Agaym4CtnMGoJkkqUYhRaJ24ZsKg1FMmdLxW1BNlmGIcbwcXSY6YMEIaYj81zv9dkA+tnKsXUmxHBkbtIYfBOtdJtdYZlm+wIPWYZp6Awbb+CiHOhjK+cBWznDkUDPIzFx9wdszV2C/75QQaAESm+A7oF4A3o1APjcMsxdA8fXIwH8YOvmnwD3a+5C/Pf9DkTvzBkqPZYDkex1rw4C7tHcOvzzq2oK9+uLojn47+mdKNy/LtEGpiTgsgFKB12C9dpbAv/VJQnFYLpBl5sCT5maW03qhW5Nep+tnDpbOTchC6hDkTTZdsK1OzJ5moJkOtxAatBla82tIjUQ4OXOs5Vzoz7+MCQt+P/YO+9wOar6jX8G6b0n9KEjCChNBIEIiIggCEiXDo7woymICtI7ghSFAaSoKE1FmoBSBZSWAAkl9IEUAoTQ05P5/fGeSc6cPTM7uzt7kWTf58mj3Dt7P3fm7s6c8y3vt6isa0P0UH8ZObWfRGPQZSXgb4Zbdr4j4zQ5FW2Qv4syBEXcjdCG7EUUhDmexqDLKsBfoiCcnfLzHRGnySmGuz0yTy3ibow2ZC+iSodjaQy6rGa4szXhDjfvy+XQAvCuEm6mcRS/B0ABvX1RVsvWtMxJnCbD4jQ50XB3RNmMZmrGXRBls9wqB5v7ZpwmJxjuTqiMtgq37JoshLJZWzhft6/zG3GaHI8CmLtQHEhslXsgjdUGNjeJ0+Q4w92N4oBeK9yFUcXJgBLu63Ga/MLiusGZdriLIPNkd/qXzX01TpOfGe6eVAusjW3CXRQFld0suM19JU6TY1GlzV40Bt/a0WLo8+1mwV3uT5EZ6T7UE9Ar0uroPjMMBUHeQRUJ+1JPYK1Ia6BN+HDgGnRtN0aZ+joCa0VaE23CRyCfpBHob3Eg9QTWirQW8ikagUa2DzPcg8lntetWtvkfCVyGDHe/ht6D3QysrWN4b6HzfhVVQvyI7gbW1kOb/1Ho/fUy2iAfSncDXBugzf9bKJg21Pwuh3WZuyF6P41C65TnDfcIuhtY+xoKOryN1mVDUODlKOoJrC2HWsld7zH7PjkwTpODUbXHT+g8sLY3SipC+frqyVgeJ0ugyutOA1z7Md2LqHAda/HfRPfoB5xvLQ48EAXhts7xRUGXA9F1g5LzbVdxmryHP+jyQ5RUxPO9jrkVfq+ULpxvT58v9VqKPqcybSC/odHg6yZgt9hxEa+ZG9M47eV6FAR63vraaGDxuGBEcaSpPweaf2Uu/GPQAmp58o7qoCze2ejhm2lUnCaFPy/S1J+MW1YVNAZd41VonELye5SptG+iI+I0KZzaEGnqT8Ytc8N/z3BXR1lCW1eha2Gb4L4Rp0lYwl0ebWwPoNwNfzTaCK2Fggi2rkCLLHuE3mtxmhROe4k09SfjLlbC/QgF19agWg/+FLSBuR541H1/RZr6czAKmiza+PJpyrJKq1fkTra4PrPnlSyua2Tqcl9FmaQqPfiT0d/lBvxmz6czfdFWpg9QFm+NitxJhns9jtmzuQ+cSTUDyQ/QdV6Taj34k9C0heuBgR6ur93PpzFos1eVO9HiDvJwfcbWZdy1aN6DD2pDzLhPebi+dr86NN7iPu3hXow2jX2lIch0d1Ua77fd1GDDXR0FMftKzwA3o/vAzk2OrVNPG+7aKEjdV3rKcNdFyYC+0kDD/Spq0egrPWm4G6EkU1/pCeDvaIPsjvftph433M1QK2hf6THD3YLutEa+j6rhbsjaujOZRNTfUctRJ9oVVTycZn3tsjhNIt/BJvF2K51f5++j9cBJ1tcKDV1NovEqGqcBTgUOjZ2JP6Z16DHyrbspuu+sg5K4mS6K08Qd4NCWoiDsZ7j2oIIU3Xe+Rn4gx6/jNKnyXO/0dzqb/BTUc02So6eZRL2Ay+dYkYxMb6fxpnu6yYJ3izsbqthwH26noui1bcS4bJwmbgm97+dthzJgZR4G41Ewwh0JeRLyebHLJ5eM06Q0K2243zXcsgf1eLSJckdCnoAeGPZmrl+cJqVZWsPd3nDdagZb49Bm1Q0e/QIFt+zN3KImul/GnZ3pI5nLPAzGoiCIG4zKJnDY5asLxQUjrx3u9wx3QBPueFT5UFVvoCod32Z1DvRgjyj3MPgUbXpb4SYW192szoECVhGNVRS2PkHBhYVa5F6Pgi/PZNwoCHdCwUdfCbGPO5nmxtK2XjPMG5CxXsbdBbVMVAngfIwWZq0YLb/G9PMdYnF3R1UKVbgfocVWK9xXDPP6zOvIcPdE7V9VAjhZtrcVg+eXLe60Eu4oCPdG2d0qAZx29BLmOsdpMi1oHhVPqui2XkWL9L6uwv0suStQn19Rj+vXK6hKta/1Kp2Pov+8cFN0354RuQPRffLGOD8F7iQ6m9Y1Hq3rbEPmUkPXqNhbsVXuceQNmR+N06TQEyjSwIjTafRWBFWiH2cnfKMg/CLwX/LP37HoetkV5A/HaVK2XmpJURB+CZn72oa/n6LW93Osrz0Yp8mAurglv89uqII+071xmvSld1pPn7F6AZfPuSKZbT1C3mQTYJ84Tf7QRe6C6Cbq9j+6C5rt4zS5lYqKgnAVlEXel9YmDrgLi+/EafKPooM93FUNd58Wua+Tj95vHafJ3UUHe7iroSDV3rQ2ceAN8tH7LeM0qTqWmygIVzfcH1Dd+T9FZel2ye034jR5oAXuGoa7VwvcqvJuVg33S6gqYk/q3zy+ZHHtCi+iIFwLne8eXeC+yPRN8gtREG6EWvVaCRy1o6EWd2gUhJugUeWtBI7a0QsW98VIkx3+TmuBo3b0vMV9KdJkh5upf1KWq+cs7stREG6JKjHqnhzlaggmuBanyStR8aSKnnrqqaeZVf9B98mb4jR5KwrCA1BLW9nQgjKNJl+RW8nQNQrCg1HVc7vcd8hXPlcydI2CMEIVv25w+s/A/nHeeHdL1GZu/44u9xNggTqr86Mg/Baa4mZzR5FPJn6IEodd3QybPcZQ60tjUKK0twmfSdQLuMwAMq0qj5G/eU1Cm/B/d5G7guHaD4mp5G/AxxnvllZ/dj/Ui3wI1TZyrkv7sXGanFN0cAm3v8WtspFzuUfHaXJe0cEl3CUsbpVMvMs9Mk6TC4sOLuEuidoVfkS1DaTLPSxOk98UHVzCXQr1fP+wItd9XzVTbrNqcZe2uFU2kEXu/0XKbVYt7jKoh/hgqo08bpU72HAfR34CyzvfT6mWTW6V+wym5Qi1nC3nfL9b3KcNd5Dhun333eI+ZbhPo4oTt4WwW9xBhjvYcN0qv25xn0Tvq2dRKblbbdctbjP1uD1uj/v55VbVZ8VtZb2RIm+TG1D70ZVUe8b7NJl8Yma1OE1ebPaiKAi3QXYCczc7tkDudV7ZXr+UcLdDzyWX+wDwPbv62QSGLmvCXT5Ok6T6r91cURAeggJDtty/b9NK/Bp+j1lQ1es81pebVuL3NOOoF3CZQRQF4YboJmdXZ4wBvlrlxtkBd2PgPoqrM66O02T/Dn7+vMgD5Mc0bqrKdIUxN2uXO5/FXaaFl8ZxmvyoQ+5ByAiu0A/Go9/EaXJYB9z5La67mSvThXGaHNn8sELuAigIcSSNLVtlegn9XaqYRA9C7TZ/yNquTIXWD1Hwpcw/yNWLKKhQpXVnoMUdY3Ejw21lqthQZFBdhfsU8pBxPy/jUZtaK5UoQ1HwpkrV11Mo+Op+XtrhvoBaDqpwB6Fgs/t5GYdaxVqpgHkBVcpVqTYbhLyY3M/LWOQH0y3uQPSedT8vY1GgvZXWqeeRd0CVarMnDdPlfoo2Cq1wn0PeWJ1UuU1A17mVypvnkEdMJ9VmE9B1bmVTVQd3PGZsa4vc1ehs0zoebYzmaXagpWfRRKbPIzczVW+VuzqdtaJlZt+tbJqHoOrmTrhjUdCllYELdZxvu9w16KwVrZvcKcCj5lj3/v++YVZ5hmfaNk6TO6ocGAXheqiaw/Xpa4f77ThN7qrIXd9wXZ++54BtstYrc+yvmG6a69M34zS5p4Xfs5KiILwArbmKtHmcJvfXzfX8HoPIm+VuGqfJQ93m9vS/od6UohlEcZo8itphbGVjjLvWYhCnySPIJLRIHY0+i9PkE1O5sRJqB3mm4ks75X4cp8kFaBP0A/KmvN3mno82m3ujB31fcD8ylTkroHYudwRgt7gfxmlyLtrU70fedLlMQ9HCYg9kHjep5Nh1UG/0yCgI/2RaUT6M0+Rswz2AfKlnmZ433D1R+04Zd100xWFkFITXRkG4qeGehYInB6IAThU9a7h7Id+mMu5XULDFLc2dE20ifofar6roacPdGy2qysqbv4KCLWXcqsHfLJixD5q0VcZdBwVbXO5c5t/lqOWwih5H57svKoEuK6teBwVbXO7cTB9t/pr7ogL9F53vfsDdTbjroqCHjzs7yiK+XpH7sOHujyZ8lXHXM1z3mHlQ4ORyGkdPF+nfhnsAmvDVThn5HCjY8irVpxvdZ7gHAfd0wJ3XcKtON/oXCrAeDNzbJndOw32Z6tON7jLcHwL303xyXBF3nha5d6CgYIQSQZ1wX6L6VKVb0Xv0EODBNrlztcH9GzrfQ9F7u13u3OiZUHWa01/Q+f4f0O7GbW7DboV7Hbr3HYZa2tvlzomevVWnSF1ruIejlp5OuVWnOf0ePWOOQPfqIn0BTT5bkMb75EKowuFyqr+vKq+v4jR5Ek2QctcU3eY+gYxo3TXFGmhs9Jetrx2LPqMdc1vUT9A9qa+5rtxr1BsNPROpV+EygykKwuORkZat+5G3yMQuck8CTvR8q3RiUBucABnr/pTmhrMb2IaXNXC3Mlx3fK6tsYZbNWBRhbs1GldYZnT7KbB+nCYv1MSdBU04OAZNHSjSx+h8qwYsqnC3Qde5zEDtI8N90bxuQWQIvBsyQG6W4XwJbYh/H6fJu4a7LTrfr5e87gPDfdlwF7K4W1TgvmhxRxvuduh8Nyp53fuG+4rhLoyMiHc13FaD579AC86fokVakd5DVXKvWtwdDXfzNrjHoqDLsWisaZFGG+5rhruI4e6GjJdb4abIv+dNdL7rlxz7juEmhruow20ls5qihd4Iw1235NhRwIZxmrxhuItZ3M3a4B6BzuUkGn22bL1luJkB5OLI8HlXZDTdCncq2giNQc+CVUuOHWm4wyzuzoa7SYvcTNlmsaySajjwtThNhhtuP8PdjfLPfTNuQHlF05uGO9Jw+1tcd0x4ndwE2CgrWzetqxm37H5TpjHoPldW0fQasHGcJqMMd0mLW2jI2UTvoQqhMu4rwNfjNHnbcJdCk1h2pfw+14w7G+Wtry+ibPU7hru0xf1qm9zRKIBaxn0B2CxOk3cNdxmLW3Z/7ZT7HDAgTpPRFncX9PddrwNuFkQt0mBUjZBVqi5rccvur2V6FwWcyirHnga2sCpVQ8PdFQXeW9FYlMTrj4YulFW6DkLWAJXHqZtn5S003lc+RQmbpYHjKZ+U+SSqNqk8Tt08K2+l8fP9CbBTnCb/NMfNi4KSvrHI58dpUlYB07ZM9fjDaHqgqz6ZGBQ1TpQ8M06TKhMme5oB1Au4zGAyG/Tfoxu6rauAA7tl0GS4fwJ293x7/jhNPu4CcwM0radoNF6K+ktPdMf5dcj9KgpqFU1USpFx2El1tnOZtrFTKZ6oNBX9DU7ONsg1cTdC4wqLAj5TUebp5GyDXBN3Y8MdUML9PXCK3ffb4mZ1EjJAvRy4P06TqcYE9jSKJxtNsbjTMvqGu5PhNtusTkRZ0cuBB+I0SU3lzekUb8CmoAk5pzpluv2YvkluZbN6Kdogb2K4RRuhyej+cZrd52xtVjNuVf0WBQQGGG7RhmQyqoo5PdsgG267m9ULUQDkG4ZbtCGZZLinZRtkw213s/prFPDZ0nCLNiST0PvhdLuvu4PN6rloksQOKMhXVOk4CYiBM7INsuG2u1k9C02+2AlV2xQFQCYhs8czsw2y4daxWS3zfpiI3oNnxdZEOWuzuhvlQbl2uRMs7rTKmJo2q824FwNnZxtkw61js1rGzcaOnxNbE/SiIFzO4ra6Wa3CHYc+6+dmG2TDXZ7pm2TfZq+Kyrw9xlrcaRtk43WXcb9c8NpOub8GfuV4ZqxgmLuiEeB1cz9FlaPnO9yVmP73XbML3E/QVJ1fx2kyrULFcHc13C91gfsxmqpzQZwm2QS6bNBDxl29Bc6PkN/L/6F7ZlHLz8foXn5B1XV0FIRzAn9A9zNbU1DV2TWoOulMitt2P0LTfC6M0+STity50FrQHTc/GTgoTpNrzHFLoWpStz21dEJSpzL32sdpDHLVOiGphL8vWsNl+kucJu7fqKcZVL2AywyoSGNp76ExY9ftyUVzopJt94b5izhNzuwit9n0Du8GuQbuVsBfKc6MeDfINXC3RqXERT3m3g1yDdxmxmyT0QLiNHuD3CEzAL6DDOmKuN4Nsnn9kqgd5iDULlWmV9HG9BpUHbA9CpwV9XpnG+QzPNylLK5rYOvqFYv7Lqpc+RPFC7CJaCOb2yAb7tIWN2zCBbVIbY0y/zujEc9FC7CJKEiT2yAb7jKo/edAGo1zfRqCKqhGosXqNSXcCWhjntsgG+6yFreKx9MzhjsKBYevptg3ZbzFzbWOmE1jxq3i8fS04b6N2tGubML9Dc4G2XBD1O50ANU8ngYZ7rvoPXZAybHj0MY8t0E23OUtbhWPpydQpdp76F60b8mxYy3uGPsbZtOYcVvxeKqiT1FAILdBNtwVUXvX/rTm8VSVewFwnoe7ksVtxeOpij5BG/PcBtlwVzbM/SjPfLejj9HGPLdBNtxVLK7rPdGpPkIb89wG2XBXM8z9aPSe6FQfWtzcBjnSiNz90Xt60caXdqQPUECgYYMcaSphxl2kZu77KCBwsYe7hsWtu7X9fRQQuDhOk08d7pfQPWPvLnDHAGcj37yxDnctdL57U82z7BbUFj0Vtf+VVRO/hwIzl7hcn0z17LnIh9DViSh5NydqJS2r7huNAjOXxmkyrgL3C+h96PP2Oz5Ok9PNceugdjR7nTMFWNpd19SpSJ4zD5Ffb0wGlnLXF11gf51869/TcZq0G/zt6XOmXsBlBpUp73uU/KjkT4Av11n94OEujsqY7U3qOGCNOE2q+gq0w+2HyrbLTCcnoYXuae4CrAPuEsi3oMz8cSJa6J5eV6WPCSQkTbgT0EL3zBq5SyN/iDLzxwnogXtW1cxIBe6yqEy9rGVnPFpgnO1ZgM2CKhsORgGNsus2GS2ELketR6804Y5DC79zPAuwWVDrTcYtu26T0JjjzPvjJcpbZ8ahBdivCrhbGu72TbgpClheit7LLzbhjkULsPPcBZhZbGXc71bg/tVwR6DgTxn3U+AMtGEc7+FuZbjbUf73mooCh5ehlprnKa8K+gRVplxQwP2W4W5bgXsjqiZ5F/nylHE/RpVWF8bWiE2Lu7XFLbtuU1HAMkbtJ7eUHAvaqJ4KXOS2oUZBOCsK4ByMAirNuNeh67wY+ls3456MNjI+7jaG++0m3Fb1IWq9+m2cJjlvpCgIZ0MB34MMtxOzTlcfoI3PpQXcbQ1365q57wMnIIP3nDeS4W6HrvNWNXPHoBaKyz3c2R1unXoPtVBcETujbg13e8MtqhxtV6NRpdeVHu4cFresNbodvWO4VxdwdzDcstbodvQ2ape4JnZG+5pk3PcMd0DN3FHAz5E5vY+7o+GWBTPa0VuogvBaD3cuVOF3MM2rPyegZ/4V6Bqd1OT4kagl988u16coCA9H6173s3wO8DNTXXsaes+UKWuNva5KpXwUhEehwKPLPQMFXtIoCPdAySVbdyOz3drGQ3t+t31QksfWP5BJcdc2xWafYgeTPkWjv3sb8ZlAvYDLDCyT1XiSfPDjMWATd4FXM/fPNLYW/Qf1GpeZX3bKvQGVsjbTO+gB3bAwaJP7F/RwbabChUGb3FvQpraZChcGbXJvR5uQZmppYVCBexfF7WO2ShcGJii4N1oMNTMtS1AAZqUK3OHIA+aGAm5mAntQhZ+XBSebVceAAo3HADeVcPc13BXd7zt6DW1mwwrcN1CrzF8LuP0tbrPqoldQEKxKdUyCWoNuLuAugTLXVap8XkYZtipVKq8Z7i0F3CUtbrPzeAlVbFWpUnkVZSlvK+AuZXGbVfm8iLwZqlRtvGy4dxRwl0bZ3CpVPkNRsKdK1cZLwFFxmvzD901TTZVxW5nk1kxDDdc7ncNUNe1P9SqfqnoBODLzOCjgHmDYdXKfM1zvVBBTTXWA+Vdnlc+zwBFxmtz9bYNrAAAgAElEQVRXwF2B6edbZ5XPYMN9oIC7osWts8rnGcN9sIC7ksWts8rnKcP1mumaqqYDqb/KZ6Dhes10TVVTxq2zyudJ4PA4TbymtlEQrorukfvUzH3ccB8r4H4Rne8+NK8uegy1fxVVt9p6FF3nx5sdGAXhjvirZi9C94A0CsJPqDaZ6z+G+2QF7s6oxcitXv018BPD/ZTG6uUjYw3L6IpM5fRYGq/H/8Vp4o6Qrpv7Efmq+CW6WdHT0/+OegGXGVxREEYog2zr1DhNTugi83DUy+zqxDhNTuki9yhU0VFVpQuDFrjHoGxBVT1huGVu91W4P0OVBlVVujBogXscyrxXVeWFQRPuiTTP/tgqXRiYh99maBG2M9VG8lbRI4Y7sIA7i+EejLJvdXEfMtynSrgDkH9KlUBdVT1ouN4JYlaVz+Eoi12X7kMLM+8EMcPdAp1vlQBhVd1ruF5Dbqu66EhUFVGX/okCAt5JXqbq5ZuGWyUwWVV3G67XkNuqLjqKYl+rdnQn8OO4wJDbqvI5inqrBO4w3JcKuLNa3DqrBG5DmxCv35hVXfRj6q0SuMVwvZWvhvsddL51VgncDBwdF/h+WdVFP6Y1j6hm+itwTFHFrVXl82PaNzT26SbD9bY1W1U+P6Z9Q2OfbgB+WtTWbLjfRcHkdo2FfboOOLaordmqLjqa9g1+ffoTqtzwtjVbVT5H075nkk9/NNyRvm8a7vcMt13PJJ9+D/w8tny/CvgboyoO1wz5cuQn82+qv99TVCHyi2bBgkieeHfQ2PJ/KfKveYTG991ENARicMXfp2VFQfgEjX//8cB6cU1DLwq4vdHQM6l6AZcZXGZT+XfyG6ypqNrk4S4xt8E/gm0Kqq7pKNBQwt0O/8i5qaisuCiLU7owqMDdAS0eXU1BZdRF3GvRA3pEm9yd0SLOx32f4ixO6cKgAndXZEbsajIqky/iVloYlHD3RNfMx/0Qf/ao0sLAtOD9AAVBVqv4KzXjXgUc5/qdeLhZtU3ZVBdbk1Cbi69HPEV+NseX9SObrNu9tJa5LuNORSXRv3T9ThzuGshfqpXM9USUjfJNY5mKWlZOcP1OHO6aaDRvK5nrCWgB5puKMhUtGE90/U4c7tqG20oGeYL555sSMgX5ypzk+p043K+gAE1dmdwpyFfmZNd3xOGuh7wI6vKJmIz8XU5xfUcc7gYoQFOXX8MklP091fUdcbgbok1MFb+Gqtymba+RjMzvoHxCUSuq1PZqNk+3UT4pqFXueTRpe42CcAAKDJVNzmlFldpeoyDcAj3byybntKLCtleHu6Xhlk3OaUWFba8O91soIFWl0qEq9yw8ba8O99vIl67Ip61VFba9OtxtUZtnkU9bqypse3W426N1Z13cwrZXh7seei6496vM23HvFrmFba8OdwMUuHfvV5mH2p6elz2Hgi5NfWPaUUElPqgS7qtl17FD7o3kzYz3j9Pk6qLje5px1Au4zASKND1lMPlNzhvA2mWLyQ54K6OycJ9eRz4ytXioONzVUHm2T6+h4MQR+Ms1Ky0MCrhroDJpn15BC5gj8ZuCVloYFHDXRmacPr2MAm1H4K+gqLQwKOCug6qDfBoK3I6qGXzcSguDAu4GqOTWp+fRRu8w/P4sVRcGAcryHIweis1Ke99HQb49Srin4PHD8HA3QdU236fYQDbTGLTh2h2/T0qhH4bFXBgtglrJ8r1nuHsUcAv9MCzuomjR14pZ3Gi0od4Dv09KoR+GxV3McFuZFPIOCpjsVsAt9MOwuIubn+EbR1mkt1FAbDf8fiWFfhgWtz8Kbq3RAreZCv0wLO4Shlt1YkcVFfphWNylDLdqwLQq9+d4/DAs7tLob7VKjdx3URtoYdtrJF+re6nW7lhVbxtuYduraXG6j+Ztgq1oFGo/LWx7jWTcfB/V2h2r6i3UflrY9mpaje6jmil3VY1EbaCFfhim1eg+qrU7VlVp26vhrmK4dbavDUOVHd62V8NdDb2f6zTHfhNV7njbXg13dcOts33tDVSp5G17NdwvoftVne1rpW2vhruW4bpJgCG0P1WqtO3VcL+MnoNuEmAwxc/Gi+M0ObzN36lUURCejJ7dPv06ThOf2XAd3N5o6JlUdRrP9fQ/KpNx3sf58nIoU9oNJSgj6tPyKGPZDb2OMs8+rYD6o1dDGQ1Xc6EN6gtREO5iNsBVVTYKeSWU7f0iyuC4mhsZVL4QBeHOLXLLzI9XRlm5LyJDVFfzoMDHC1EQ7tgit2zU9WroWq6OAj6u5kUBpueiINyhRu7qaEO8BsrAupoPTRZ4LgrC7xZx4zRJ4zR5OE6TvdHC73CKg3igTNE+qH3JV7k1H8poPhsF4bZNuP+O0+QHhnskxUFLUCb/B8DD+INQ86PM8RBTceZjjkGtL/8p4bhaBGXBHkItaq4WQJnywZGmafm4o1ErRiutbVkF0oOoJc/VgqiN8ZlI08N83HcN1/f6Ii2OgjwPII8AVwuh+9nTJivt476DDJuLgpQ+9UPBtPsLXrcwGjH8VBSE3rYWU9E1AHk51KVFUGXPoCgIvWPiTQXbAORdUZcWRZVMAyONT/dxRxiut8WsA+4VwFBT3eHjDketNnWWoS+GJlm9YFoBfNw3DdfbctWm+qGs8/NREHrHs5qWmE2RH1Bd6o8qIJ81VUM+7uuG6225alNLoIrPwSag7+O+ioLhdQ4bWBK1vjxjqg583FfQ+ZatL1rV0qiy4ukoCL1tLaaVblO0jqtLy6DWpkGm+s7HHWq4tU10REGym9B9wxtoNy2am6JgVF1aDiXaHjcBDh/3WfT5bavCuUAroMqof5mAjo872HDdSuN2gy0gb7hbgLtNAtLHfRrdn91K47JExGFF65caVLaePKpoHdEFbp0B857+h9WrcJmJFAXh+agP29ZecZq4LuF1sF6h3KBz9zhNfG0pnXJfpzwDtkucJjdFQbgp2qAVZbvvA35oFj1VuG9SnonaKU6Tv5nS6AspfsjcY7iVFllREI6kvC1k+zhNbjWbsgsofqj+y3ArTZKKgvBtyg3+tovT5HazCb2A4iz7XUBU1Nfu4b5HedvAt+M0ucs8LH9NcZb9H8CPivraHabP6KxIr6AgWlGW7nbgkCrta4b7KdXKjl9GQbQi7q3Aob6+9igI50VBqgEVOK5eQkGlovfg3w23oX0tCsL5ULVMO/4ML6LgTlFW8q/AYb72tSgI50d//3b8GYaiIEtRVvIm5JPU0L4WBeECqErHu5HtkHuD4Ta0kUVBuJDhfrUNbjNdh/xsfNyF0ed7/S5w/2S4DW1kURAugiqZ1ukC9zHg+77Pr6nc+hetVVBV1X/Rs8v3+W2ngqqqHjFc3+e3H3peeTd2Heohw/V9jrpRQZXpQWBXXxtoJFPse6m3girT/Ybb0I5pKrfuo94Kqkz3orWYj7uM4XZjQ/hPYA9fO6apoLqX5gbv7ehuw21oxzQVVPdSzai+Vd1puA1tkZFMou+jmmF8K5qK1kAn+Kq2K1RQTSJftTuZ8qmDmaagZM/JBdxV0HUuMjx3ue8Aa5a1SLcjE9i1k2QudxSwVlmLdJvc3mjomVS9gMtMpEgj8h4jvzD7GLUW1TqyOQrCf5Efs/gG+QfKh4ZbaaPdAvc+lE3O9Cb5UuAP0E10WCTTxf1Ra43P62A8Kjn8dVHZvsV9EGVJMg0j/yAbY7gjDPdAVGHi8zoYh9oFLqzAfYS8wd5w8g+y0Yb7ViTzw4NQRY2POxa1C1xUVD5vcR8lv4EbQb4E+V3DHWW4PzRcn9fBp6jE8rcVuE+SN5x7i/xm/23DfSeS+WGEWnp8XgefoHaBSytwnyK/kZpC+QjgMSjw4mtJ+hiV7cdFZewWdwj5DU0V7lz4gzQfobL9y11uFIRzo8xYUVZnKuUVkWXn+xEqY/+dhzsPCsoUjWRtxn0PBZp83A9QGftVbpmzCTLdSv5e0Sp3XvytXx+gsu6rPdz5UHCryHy0GXc0CnD5uGNQWfcfPNz5UXDr621yy/QeCuRf6+EugIJbRSagKe2PHh6NWiYb2jKiIFwQbXKKTEA74abonA5zn5smuHUXxSagnXJvQwbVicNdGG1ii8w4O+Xeari553XUvD2wU+7NyLA5FxiP1B74LzTRpW5Ntbi5wJoJbt1DZ9UAZdy/IMPmXNVD1J32QJt7IzJOzgXWTHDrXlQp2w3u9cg4ORcYj8rbAzt5T2XcPyMjYZe7NApC+KYXdnKPBD27/2S4uYBeVN4e2OyZ30yvAQfHaXKv+41Ik8juxd8eOAEFWGy2u44v06vAQXGa3O/hlrUHjkXPN5tb+8jmqHFE88doLWH/jW9DScs6uUuRr6YaHadJnVPCevofVa+laCaS8czYAwUSMs0HXGs2xXXKzSxfjW7gmRYA/miCD93kXomM+TItmHHjNJkSp8kV6OF6Porg25oTGc09XlQGW8K9HEXMMy0M/CEKwlkM9zLDvcDDnQsZ+v03kk9LK9zY+XmLAtcY7uQ4TS5FmbKLaGz7mhtdh/8WlcGWcC9xft5iwNVREAaG+1t0vr/xcOdBVT+PFJWjlnAvJt9G1g+40nAnxWlyseFeQmO72bzm9Q9F6uNuhXuC5+fZWhi9fyaiBaKt+VA7yL8jmde2yi17+C+M3j8+35b5UTvIA5FGZE6TyUR9F387Fuh92ow7J/nPuM29DLjPZLds7qdoMod3BLDhlmmREu6CyED4XpPNs7mfoAko3hHAKEPXjDtHCfdK4J5I/g8292NgG7RJ9anZlLVFS7gLI4Pou82C1uZ+hCbrNCy6jX7VhFumRZDp4p1mAW9zP0QTkxoW3UbndsBdFG1g7jBZcZv7AQoe/rsL3AC9d16LgvDuKAg3N9VoxDIU/iZq9fOplWl2Pu53gdejILwzCsJvWNwxaFJTkSF9p+e7PZBEQXhHFISbWdxm7YGdcnc03NujINzU4jZrD+zkOs8C7AS8EQXhrVEQft3iNmsP7JS7CzAsCsK/R0G4scUdRXl7YCfXeRbkFTU8CsK/RUH4NYubtQcWTYvplLsHMCIKwr9GQbihxS1rDwzo7H41C7AXOt+boiCcljiy2gN9k+BmoflzoUxfQO24I6MgvCEKwmmVf03aA7/QIXcF9Cy6ygRmp8kEbjfF3748h4e7HGqxLDRst7Qieub/zgSibW5Ze+DcHu42wCEVmK1oNPm16HzIx9HWdihZWKfeJr+WWtQkB3uawdULuMxkijXu7GjnyxshQ8I65W4Up6Dsuq1NUKa/m9yJqIrB1mYo4w5ocR6nyU9QJcE9np/5FeCJKAjPioKwqL3DLX2egKpFbG2OMtAZ9/04TY5C2TLfRmg94MkoCE831Uk+uec7lkYjsK1QJjjjjonT5AhU6eTbCK2Pep5PK+G65/sJjSObt0Zj/zLue3GaHIaykg96fuZXkSfFyZFGKPrknu+HqHLG1rZozGHGHR2nyaGoQsU3fu9rqKf9xBKue77vocqoZpodLRB9wYqNDfeXkUZk+uSe7zvIi6YKlwLuJsg74Dj7QR/LTHhn/F5DB6LNfDNl18/H3Qx5Jfzc4Y5H4zJ9k74OQN4OnXC/gbxsfmoHlmOZVO+Aes9dHYi8HTrhbm64RzvcsWgD6wtu7Y+CCJ1wv4m8MH5sB7SbBLf2xz95rBV9C3kkHelws+DW3Z7X7IvaoTrRtw33MIf7sfme756+D/73eavaCt27h0RBeHAUhPNYwa37PMfvjd9Tq1VlP39wFIQHRUE4txXc8t1b98T/Pm9V2yA/o6ejIDwgCsK5THDrm/jvrbtTHMStqizA9SB6PuxvuGMM1+dBtSvFQdxWuNuh8xoYBeG+URDOadpgtsQf3Po+xUHcVrjbo6Ddk1EQ7mO4o1FQzRfc2pHiIG4r3O+h6/l4FIQ/iIJwDivI5POw+h7FQdxWuDui6/lYFIR7Ge7bhjvI85rtKA7iVtUs6Hn3aBSEj0VBuGcUhLNbQSbfQIJvUxzEbYW7C7rG/42CcHfDHYl5Rnpe8y2Kg7hVtR/yZvp+ZHnJmeBWkQfV1jS+z/dGn6+q1+EAw93J/qKpHisKbm0JPOp87VcVEnKVZaqa3Talq2j8fJ1fITHWCncyqgC3Vdae39MMol7AZebUJTSObT7OzXp3KHeD2h9VVbiLkRPc7HMXuBeg8mNbJ0XqnZ2mOE1eRAvofdH0EVtfQAGjwZF8WFy5G+P+KAvjLrpP9WRjh6KF4/6oHcHWrKjd5plIvjOufOd7Do2L7tMj9WTb3OfRAu5AFLhwucehhbXPY8N3vmfSuCg4M1IJpc19Dm1GD0btJrZmQwGjpyKNPnXlO9/TaFwUnB2pHNrmDkELqaiAexIy9fN5bPjO9xQaH86TyFeQZSoqgZ7d/JyBdqbNku98T6Rx8TsRf9VDEXcOdN0GOpm2iWiT5C6C5kfZdddAeAL+apoy7hkogDnNLNJwd6XRiHMBtNlyM3CtcudEgapctZoJMn2fxkzbQmiR6359PPnKtWbcuVAW+NHIMm00QaadaTTEXBgtNt2vj2uRm2UJc9VqJsi0I42GmIuiz4bbWjqOxgq8Ms2NfAP+E2kUt83dnkZDzMVRptPljm2ROw96vjxsL8pNcGs7Gg0x+6FAq/v7jKXY8L1Ma6AqrmFREJ6LKvy2RdNobC2BAtquB0y73C+hasrhURCejd4/29B431gKedq4Bp2ftsldC1WPDY+C8Cz0efk2jRuYZcyx7nX4hPIKwSKtjarHhkVBeAa6L32Lxg3McqgNxr0OH7fJ/Qqq0h0WacrIvIbrepAsjyoqXQ+YjymvECzSOijQ/WYUhKeiz9dWNK5PVkSVDO51+KhN7nqoau3NKAhPQffPLWlcn6yEWrbd69Aud30U6H4jCsKT0PNxCxrXJ6ui97TLbXfq5gbAtYZ7IlrvbY7+brZWR/cs9/q3y90QtTclURD+Et3Pv4E+H7a+hD7b7vVv8IRpon6ofexme11mVVC5o8rXQp8xe700B1qzbI7WIlU+T/2Bv5gKqmk+c1Zwy/V6WQfd0+3rPycQ28GiGuSu6xZFwWn7+s8FXFIz17eu62kGV8/DZSZVpF7kweRNGO8CtqmjXzEKwt3RgyTT3+I02SlSL/Jg8iPpbovT5LudMg13L/KZ6RvjNNnV3OQHk/cu+XucJt8r+Dn9UJvLrgWo3wHHZCZoURDuQ74C4Lo4TfaI1BM8mLx3yV/iNPl+ATcLTHm/jxb1x5psJlEQHmB+l0x/jNNkbxNcGUzeu+SGOE12K+AugdprdvJ9H7Wi/Mxkb4mC8GDzu2S6Jk6T/Uww6Rm0Uc70pzhN9irgLonaa3bwfDtFwcGfm2w1URAeYo7P9Ls4TQ6K1ELxDCoLzfSHOE3c6VwZdynzs33vuxS1Ph1ncQ9Df5dMl8VpEkVqGXmavKHudShA8H/4vXKKlKL33C9NVQBREB5Fvs3kkjhNDo3UmvMUWoBnuhZtXA+l3FjYxx2CyuSzzdda+H0oJqHFqB2sfw1tzFfGPwq8TB8yfXEeoL+fz29nqvm+vegZjQIv/ahm5udys0VygBaVC3iO83HfRcGeOrgLGHYV7jvo+ven9Z7+TrmT0fn2Jfdt9H5sh/sB0zcJAXpPzec5zufLkHH7e77XisaZ//VVRfq4o8zXu8n1+UGMQp+/fn3MzTY7nXBT9PvPgt9QejyN/k53md9lM1q/X2Wagoy550aBNVejaNxEnYHe/wd4fqeqmmy486MAlyvX0wxUAbooSugUVXBW4d6Enivfqsg9GV2DfTvgTjLcxVBSypXrHQcKAixluO3+fSehwMQSKLBQhftLFOjbh7z5aiuaiCr+lsFvYu969IESYyugypNWuB+hkehXZN5qURDejhIcVbg/iNPkWpMI/JPn+0X6EFWYX2lx70TVNK5cL0SQ+fB1FVmlioLwDhSgzvS9OE3+7lnPgxm4URP3bvJ+edvFaXJ7HT+7p/9d9SpcZlKZMtEjnC9vjf9m2468EVwTSXcnJW0XBaFv8VAndyRWO4/RDlHxCNm3TXDiu/jH9h2IRnZu34Q7nMYWrp2jklGucZrsggIQDZMhUD/p81EQZou8Iu4w9DC1tWtUPFL1rThNdkbZ74bJLqhF5/koCLP3RxH3DRrbxPaMikebjjTMnT0/M0DBg+ej6SOGi7ivo0ogW3sXVKtkZbQ7oNJeNysbAIehtozs/VHEfZXG1rHdUTn7sqjvuNKkK8M9Ep3v3lEQrkOjyfAmJuP4Ixr72/dCi/mU1rLWAQqw7Ife1wdSbPo5G43PjRVQhr+dxe0CaEG1rPlfX7AFw3QzTIuiRW87/lMLGGbG9QVbiriL1cj1BR+KuIsbbju+V51yl/wMuP064C7ocH3BlozrKuN2uj4qMq8u4vbvA67vWvZHG8u+5i5RAzcwP6NoepcvsLE12ry3uxkHnc8u+IMtoGs6zvna/6HgxzKoutBXCdlMs6IkUNF6aQkaqxQOQ0GIZVAVqq8Ssgp3d/zBliLu4SgYsCzyxvBVJDbTbMjnxRdsAd0Pfdyfo/M9pwPunviDLWXcY9D5noe/IrGZZgd+QPHEwKULuD9BwZ7zW+DOjzz/HrCqzIumJy5NY9XNOVEQzhenyb9Ru/atBa91K2AWQFV591lV5kXcZTzccyOZ3tehokqTP9DYAntepOEC3eT2NAOrF3CZuXUjjX2YF0TFPhatyNeCkenPaNyky+1kAVSFey2NfaEXRiWGVXGa3IbKSC/1fLs/8PcoCC+jsbTT5l5Do7nfRVGJUXGcJrcY7mWeby8J3BYF4aU0lrba3Kto7H9uxr3ZcK/wfHsp4PYoCH/ThHsFqjaxdXFUYJAcp0kap8lfDfdKzyFLI0POi2gsIba5MY1BiIujIPTe5wz3JlR6frXnkGWRAemvaTSJs7mX0NiC81v0d3oWZb6uxh9A82kZ5Fsy0LzW1prma0fiH/O7JKqqqduMuqeeeuqpp+pyg0/zo/XJcyiR8xCNrYN1aB7y7TwLAqfFafJunCa/QEH8WioEmnAXAk6N0+SdOE1+bv67U7+mKtxF0Ejid+I0ORZV5dTh19SMuxhwokmaHY3Otw6/pmbcfqgq9i3jRbgwrfk1bYJax/fDn2zLNK/DXQLj/Wh8jXZAyTa3Qn4WGoNEoAqzZ6Ig3LsC19ZSNPoytquiRFqK1lh2W+syNPpQtquyfUpPM6h6AZeZWOamcjj5CPSKNFagtKOGG1nWA2m4h5G/Ma9CY8VNLdzs/5jyxcMd7mrmdylUnCYfxWlyCHowuR4TIC8S1+jS5bqMNWjiuh6nyYdxmkToweRzkY9oNBS1uVPQ+dpaiyau68ZE+GDUS+yrzjiUxsCIy3XP9yuocqKM+36cJgeinm3fQvQwGgNQNncyjee7LiqlLuOOidNkf5RF841HP5J8GxPAclEQ7hwF4eEoa+lWQa2H/D/+jRa3+6FgSE899dRTTzOnAlQxthZ63vjG8dbFsXVQFITrgvyU4jTZA1VRtOs9UpX7w8y7Kk6TsaZqeAsaPdTq5h6SeUjFafKpaeHeikZPlrq5h2UeUoa7E6oKcqs06uYeEQXhaob7SZwmO6BWGV+gw6d5UILObbF2va9c7o9Ne3OWwDobVcm776t50DVwq7rmRWtYt7Le5bo6OqrH+7FsvzCUximJx0bOBMC6uT3NuOoFXGZyxWnyDKoMsHV85BidtqEPyZeuzo0VqY7T5ClUVmjrhMgxOm1D75MvqZzfLgOM0+QJ9GCxdZLxTilVnCYPo9LJ02g0dFzR+e+F7EqhOE0eo7En9JQoCBejiUzJ5tqoB9xtFXEfOrkRc3GaPIIqe2ydGgXhohW4D6CF4Vke7srOfy8e5SeEPERjFu30yBlLWMC9D1VynEtjOapr7NzPrmAxv/ONzjFnRkFY1KoCgKmuegkFZ26lMUvjcvuj3vILUdajqOS5p5566qmnnj5LBTjGn3GaPIies74pQHVpFlRlanPvQ+uKohHXdXEvcrj/QuuoohHXdegLqGra5v7TcH0jruvSrB7unWi96ps+VKR1nf9+Dvh7yfGzIZP0aTLc9Wk02J/X/J7u133cwRS3KIFar84v+X5VNas0OZW8AbZvVHY76gVcZkL1Ai49gabC2C0T81Bt9GyhTBWLe1NxgynHk2/FmRdt7jvhTqVxQoB7M/sF+QzLfFQb8UucJuPjNPklmnDhTjBx5XJ/Tj7DsgBwegvc49AI71dLDs0yaLaOJZ/pWIjGUcpF3HGmHPjrlJc/z0LeCBnkIWO7zy+CjPSqcMfGafJTVFWUlBw6G40GsceQ759fFLg0CsLtoyD8URSEp0ZBeGUUhHdGQfh0FITvoODgG2jU5Hcpnv7SU0899dRTT583bQBMiILw9UjjiG9Ga5I78I+arktfB3Jm/cbr7et0p7Up0wDkDWdzX0drKDcpU6e2QOOybe5rhtuN1qZMW6GJbDb3FbRWvbnNn7kE8iq6vuSYbSxvv4z7MprA5LY2zYpauP9DuYdRf/S3KzOprcP7sXSPYoZEuG1E34uCsNMEW7O9UU8zoHoBl56y/kvX+LPQ6LQFlUaP4zQZTaNHRaHRaY3cd5CJnK39oiAsMgptUJwmT6I2GZ/XSabdndeMojHgcGBW6luR+zjKWrhVOrbcxc1IGgMsP4ys8bgVuI8a7jUlh7nnO5zGgNK0Ut+K3P+g7NAfSw47KArCzaIgPDgKwl+hCUOup85uKFNzCXqv74/ME9emMVDUU0899dRTTzOaZgNCtBneAZmv/xK/H1idusA1Oo01sn1PNFSgnVHdVXSxa3Qap8mnaD3g8xupS7+JgjDn4WMmD+6CEn7d4v42CsKcUbSZtLgzjWvtKloDtb3tRWP7uq0G70cTrNgROMlz/EaoPf/Zgp+3Jnqf7kH52q9T78cqlSZ/pDEgWer9WEE9D5eZUL2AS3ibzx4AACAASURBVE+ZLqcFo9OKqnIzi2m86RYandbI/S2NpY0tcU2P7sHooeKaqoJaWa5yFhoXk/eBCXBKbitwP4nT5AA0Oto1rwX4VRSEVzjcC8j7sQQ4JbcVuB/HabIfmpLgBjQAzo+C8LIoCOexv0a+Mqah1LcC9yM04eE48hUzmc4AHkD+Lj9BWZ5exqCnnnrqqaeeuqsU/yRHW4sDL0ZBuKe9QTa+H+ehqUu+tUwz7htNjulnuLt7uGcjnxPfWqYZN2lyzBKGu5vT4p3GaXImmm7Vqn9OFe7SwNAoCHdxuFPjNDkNVe+24mPzBTQQ4HSUpPINcQC1th/pftFwT0bBPdfHZm1Uffxnz8+bDbWc7YPGe/+ugLsKjb59rajQazJTgQfjF5GXYde4Pc146gVcegIKDVa/gsbMtqumgY8So9P9usydRKNJ7wbA3q3CzGSfNfFPodkPeMoyrJtI44PpayjT0yr3L6gX2j1fkEHtoKyKJU6TCR5uQ6lvRe6NhuuOUwYZCA+MgnBtc+x4Gk2YB+CU+gJEQThbFISrRkG4XRSEP4mC8PIoCB+IgnAkWpycjryAuqEULbxGAG+iDETdRnfNuMMMt6rRXafc9y3uqM+A+2Yfcqfy2ZzvZ8Xt6fOhiXQv293j9rh9oQBNjgE9M4uqVZZEfnJvREF4ou2bZ3xO1sdf8VB0HgEahfwBal0pGv+8NNrUJ1EQnhAF4bQR4nGa3IXWfe6UwWbcEN3Xby3hLoNappIoCI+PgnBaq3ecJv8w3KFtcMeg8y0a/7wcmgb1ehSEx9k+gWbq5gb4hzAUcWdBbTUjUSvWhQXHnRAFoXcwgJm6+VUa2/D7o8Th+R7+PCjQciNqT/9NAfekdr0fTdWR/TyeHU31co/zeT+ebP9NW9RH5Fuqch6XPc2YCtL0s3gW9PS/qigIryO/CX8PWDlOk1azD0RBeDoqn8x0QpwmXu+QKAhvRDfeTO8Cq8Rp0mr2gSgIzyLfd/kLk1XwHfs38v22bwOrxmnSsnu/aWf5ScG3JwCHxGlylTn2FvKO8G8Zbssu+lEQXkDxhKfxQBSnye/NsXegrE6mEcBq5sHTKvc3FEf5xwEHx2lyrYnc34nc+jO9g9qcVkBZilXM/+/2OONxaHLQrMhDpx9aCHabO9ZwZzfcxfuI+ykaP5pxs/PtdrB9HKo6mqOPufZ1XtBwl+gD7qeGOyfTz7cvuOPQon0eNHZ2froXlLQ1hekj2mdD5+2Owe0WdwxanM9mmHOWvqIeTUaVeh+hv/UEdM2XQxu6vlBWSfAuun90amz/eeAOR++z7H45s3Cz+0dfaKrhjulj7mQUsDjbtEpjqnJ/j6qGXU1Cn/kiPYaCEs1awyeigMRFpjWcKAjnA/6AKjFa5f4XrSfWr8C93nAHGu78qGXFnQ4Euj6zlvy8R9C9r1lL+gQU+LnIDKsgCsIF0GRNdzpQFe4DaL26u+d7N8VpskvRC83wgj+jiiZXHyM/RZ9eQe+JCP90z+vjNPH9Pk0VBeGbKDiWafk4TRLPcf1QoGp+68tXmsma7XBHkL+3LGPa8HuaQdULuPSUUxSEy6AFvL1oPy9Ok6Pb+Fk/J29Ge06cJt459lEQLodafOaqcnwT7vHkPUvOMIazvmOXN1y7//TMOE1+4Tu+CfckGr1hXF2OKnqWRlkVu//01DhNTmiDeyqNHjyuYlThshzKItkLiJNM2Wer3DNRH3SZ/oUWQuuQD/R0W48CT6BAzreaHFun/gs8iaYabdWHXFCwcAS61n2pD1GQoa/V4/b0WWoCCsK8BoxGwe3VUeVgt8vDx6MJIs+ioNuayBehL7jPGvY4VOn4tT7gjrO441E7woZ9xB2CntXjUdXvBn3EHYzWJuPRPX39PuCOReebcdeleSChLu5TwMOoCmJDVF3dzvm+DlQd3fswqpy927COp6Kxv0cJqkCpoocM95+GewLN1451cB803HsM9xTUql0ndwszicorY1NwKjJsbkVjgYOQ994PPN/f1EzHbElRED6PWoQyrRmniddbJgrCo8hPR0qBr5hpr61yX0Tr00xfNKOoe5pB1Qu49NSgKAiPQ6OPM30KLGfMdVv5OYcBF1lfuiROk8K+xygITyD/sPsEWLbV6pooCI8kP6ruojhNiipAiILwFPKGYh8ZbktVLlEQHo1GGWd6Bi0MXT2OWmoi8hVAH6Dr/JHnNWXcY8lPdyriPma4h6ESzUxjDLelKhfP32sMjROD6lKWYX4JTTuyjZXfM1/rFvdVw10MLQQzdft8M+7i5E0NJ5IP1NWpSRZ3CfKL7b7iLgms14fcVwx3afLZwr7iLos2cn3BnWi4r6LFnj3uPOWzmc71WXGn0P0Ksx535uNO5bNp15/ZuJ+iKrM6NBCteW9F/irXUlxtMZb6qgifMNzbgO1RtUtRa0md3McM9w5gJzQMoehajqO16sVK68koCHcBrqb4nIYCq3m+fhFKHG7vfH00EBpT5MqKgvBx8uucr5khEb5jZ0PraztAc12cJnu0wjQ/ayD55Nj6WcVVTzOmysrGepp5dR5qFclKS+cx/31Kiz/HbY9p1qN4LioXzHps5zX/XWl0siX3Rt+MezZy61/U/Pf8KBjS6mhs93wfB85Bfaj2A2sD9IDfl/ymfUHkgfKrFrnu+f4H/Q0vJ19u/1XD3c9wsl7VhZHnywVFAGOE+2W0IV3H/O/qzmF1BB9Gok3oS8hc+E1UjdMPbUrXJf+wg3qCLSMNL2O/YbhLlHDrON8RNJ7v7IabXW+XW8dmfAT587W52fm6i506uMOZfq4vIV+T2VGQJeOu6rymLq59vhl3KcNdh+6c7zDy5zscVdN1+3yH0Xi+cxpu9vldxXnNZ2Xa91lx30VZ2g2bHFe33kGft25PhnE1Cn3uK0/jq0lvGfZ6zQ6sWSPRta48BbAmDUebv76uNHwT+YpUnj5YkxK09vElebqpUSgIUXnqIapKm8Pz9XXR6OQhaL2ZjVJe2XPsH1Hyxdf21Cp3feTHMthwNwL+hkxoXV2NWl987UdFGo+/5fKrKMjzDAq8bITOdwXPsVcAK+JvP/JpYeCfURBubjz8vIrT5MYoCIei6ZG+iqR/oAokt2XncPP1IeT/9osCd0VBuKXxLKyqyvuUOE0mRUH4M/LjrneNgvB4M/q7FbW6T+npc65ehUtPXkVBeAwKFmR6D0WtK0ePoyDcGbjJ+tLf4jTZqclrfgbYfivvoqi1bzpN0c/YDfWsZroxTpNdm7zGbUN623ALHxien7Enyoxkui5Okz2iIFwLPURXdF4yFZV22q0nb6Ee0soPjCgI9yE/rvmPcZrsHQXhlw3XfZhNAe4HtrS+NhxYMU6TiaafOdvsZwGW1ehOFutDFMx7AZ37yuSDOqvRnQ3ZBxZ3FNp8ZsxsE9wN7hjDfdHi2te529yhaBOSce3Nd7c2vm+hsZIvoL+nfZ1X7iJ3hOG+hK7ruuS53dJwi/tF8te5m9w3kfn2a4ZrX2ffAr4uTUBZ0AazwS5rAtpQ9HWbVebh0q3qtiKNRxUbnYwjbUfjUHKux+0+dzb6PhE6FgV5ZxbuILSe/WbJMS+hBNR2+P1GYtS2fBn+QIpPA9G6Y4uSY1403B3wt0L/1vycmOqB+SdQUGHzkmNeQGa4O5NfF2a6CAU4LqH65+JWYGczoKJQURAugjx1fNflAvO7XUzj+Y5Czxw3oHQzsIsZyNFUHj/F78Vp8veS42dBAbI1rC9fGqeJz1umjOv6KW4Xp8ntrfyMnj5f6k0p6qlIl5EfW7cIrU8sciO4RSWati5FLT2ZFqP1iUVuxLoK97fkf99+aCRdK/Keb5wmg1F2z72ZzoKCLVOsry2Bvz+1TN7zjdPkabTZ+ofz/S+gh6rNXRp40GQcPkQGoL9GG8fVaf1eMYniaSz2FIMFUCDgz2iD/CDqkd0LbRpb3YxX5S5ouNejTOgDhrsn7QV5JuEfWe1yF0Yjrm+wuOcBe3SBa2thFMi8CV3n+1El1R60F+SZWJELek/fic73PsPdnfaCPK1wl0K9+SMM91xkCN5O0KMV7tKGOxK4FwWu2+VmwYwqWhYFcEeY/z0HjXBvJ9jSCncO+sYw18d9Dl3vDdBn9yRkBvk4rY+Zrap5kKfHUihTvBdqrfxzl7lzourFTdE9vWgaTN2aC2WUN0Of477K0s2FngcD0OepL7n3ow3qv/qY+0/DvacPuXMDd6E1wX19zL0DBT7u7yMmKBD9Mfrs3lxwzCoouPBFFMh2FSE/kW1QgLuK1kX3hg1RVYdPq6I18CqoKtHVoagy+tvIq6aK1kdJlg1REMSnL6IgzvIoYeDqcHR//TbNR3Fn+i5wjQlQFMpYFWyNf1LUkegZ9h0a/w798Qd/vgdc2YxrqaV9ihkT7Va/729Pv6qodvYpPX2O1Qu49OSV8RH5rfPlo6MgbKXcveWSOeObcqnz5WNM72Q3ue+jIJOtn0ZB2Er2pZBrpi1tj4zR3AWN22f+U2MsVgf3fZSl8RnBuYwN6azCYih6MK6MFlMLkPcCyuTed77WIfd5w13J4p7hOc7lbkRjW0UrehYtuGzuOZ7jXO7GdFbpMNhwV7S4VdrQQjqrdHgKLbgy7oLkDeTK1EmbzCDDXcHiFo2mrJP7BFoIZtyFKB5N6apq1hMa7wePoezm8mhzvxCN98RucP/r4br3xDq4dWoj9P74MroPnBmnyV5xmnw1TpOFUZn5AODH6O9Zl75uuGuj+8DpcZrs6XC/gabW1dmXvxkak/o3tKH5HcXjYevUN1DV6F/Q8+Qq5DPVbW2JAmg3GO7VfcTdCrWO/Bld59+TT1B0S9sY1h+Z7unRF9xtgSsNe3tUqdsX3O1Ry8rV5v//mb4JJO6I3s9/M9zrC7ghCmT7tDGabHQQjUmtIu2MfPt2QobT1+MPcC1PfnKOrU1RRfMBKFBWRbuhyZ07oHvljQXcFSmeujYAfe73RYHIKtoDuN5MqiyUqUZ5oODbm6P3yN4oEGmraJ28N3BRM65RO60915MPPM2BgkOtqNdSNJOp5+HSU5kuRAvVrGRvGZSZ/n3F17d7Q7kA3byyRfxyKMp9beEr6uGejwxls03aCugBeX0dXBMZPyUKwifQwqKoBH9ltCC4qeD7TblREC6MMjl2W0GnehmVs2b/5kIZqkzvoTLbddCCoi7uSxZzENoM3mZ9fzTTJyF9n+ktHJ0oNdxBFnsB8pmpd1BGe12L2+n5Zlz7Oi8C/NU65m20eVwHfS7q4r5I/jovjhZmmUahzeO6aAFX13UeajEHoooY+zM30nx9XbSAy97TdXGzf8ugzV2mESjItI7h1nGdp3q4K5C/pw4Hsuq0vWrkvkD+Oq+ENjqZ3kQ9/euiKrs6rrPNzf59ES2g69LiyK8KYGIUhM+ic3zK/O8TcZo8GAXh++TPt1P1c7hDLOYg4PE4TR6IgvAj6vUv6Y8CLaBKpBfQxmMVutsGsyTalGfc5w13Vbq7llwKbfQy7nPoPFfpA272fsmmM/UFdxmm3w9s7qp01wR4OYc7BK3BVukyN0SBC5g+nWlOtA7qJncFFNACVS+2w10KBVt+iNYCJ9I8cfRddG23iNNkdzPd8ufoXl+Vu4zhHoTWAr8sPxxQ5cczwDfjNNk1CsITDXfPFrjLGu6Bhltlmuf3gVWiINwqTpN3So4rM9kNUXXd/mgN0mw6Jqga6EOaT2FqJ0E7KQrCX6FWp0yHREF4VgvDNnoBl5lMPQ+XnkoVBeFv0I0r0wvAl0zwoNlrV0QTMTK9HqeJz5TL99pLUdlmpueAtSpyV0Wbmkwvx2lSqZIhCsIryJt0PYPGvjX9oERBuLr5PTMNjdPENTzNjl0BZVeKjOYGAetV5G6CWoAyTaKzhXe2+baDDU+505OiIPwGKkHO1Ol0Fd+m38fdgnymow6uu+l/2sPdGj306+Jmm2/7Oj8dp0mu1DQKwu+Qb0crMuBrVSlqUTgLeNDD3Z58gKkuLoZ7huHmFh5REO6EMund4D6EWqse8nB3JR/oqZP7b3S+D7s+WFEQ7kE+0FMn90F0vj7u3uQDPUUGi+3ofsN9xPXfioJwB/Kl/MPwZ3NfQRuwL9GZz0/2ORuNssOZhuPP5r6MrkUd3BeQf9Im1teLzvcldE9Zo0Nuq3oRPTP6mjsUVVGs3sfcF9C9zzV977aeR+fpXRN0Uc+hDbVv4ku3ubPSaArebdmBor7UhaiF9A9U87OaiAI0F8RpMj4KwuVRFcr+tLZ+Ox89X35PNT+rCWgM9YVxmkww6/RjUeVKK9xzUVXkNWjQRBXu8Whq6ET3m1EQ/pL8YI438VcXnY2CPVdTrQ3n53GanFX0TRPwskdynxKnSdMR3VEQzo2qXBa1vvyzOE0qDduIgvA08sGgE+I0ObXo+J4+/+oFXHoqlXkIvEw+Ar5DnCa3FLzEfm0/lBXP9G6cJotX5K6IFqB2O0YlU6koCJci34f6VpwmS1bkroIWgvYC8NtxmjQt3YyCcFnyZYbD4zQpKgvNbtgxxZ4t34rT5J/OaxYjb7K6LspM1anvxGmSK5GNgnBxh7kuxaW27WrrOE3uLuDa/wqvaZvaKk6TXImsee+617lu7jfiNHnA4fan8ToXlfjWpQ+RX8/TKACYcZfqMvcDw32G/ASsbnPfR4vUZ8mfb6V7RAcaY3GzCUXrMn0aXLf0HvIJesHirtMH3NEo8/o728AwCsItyZek34cq1n5FY6Z1CCqdv5D8KPg6NA4929akccM/GAXeL6b+aUJj0VhuX0DnKZQt/w19O01oEJrUdwl9O9XnCZTQuYy+na7zGPKluJy+na7zKHAEqlBqZbpOp3oEVStfid53faWHgGNQhVJfBrgeREGEa+jbQNP9wE/RdV6r4mteB44Gbo7TJI2CcGl0zX5E9QDIPaha5Wqq/31fNdxbDHcZw41a4P4TBVGuofrf9xXUanmbnVCMgvAo8i3KF6P1/6E06m4UNLqGagHMQ+M0ucT3jSgIj0bBo0znx2nykwo/s6NhG54BIefEaXJsFW5Pn0/1Ai49NVUUhNeissNMj6FZ9aVvHjNK2M4ij4vTZO4WuNeh1oVMj8Rp8vUKr1sAbeYyfRynSZUIfPb6m1ArUaYH4zQZUOF1C6PNTaYP4jRZqMlrArQQOpfGxfc7aLNhb5I62fRPRVm2rJJjVTR229UoNDY6G5fb6abf5g5ED+bIc9xItNmwgw2dbL6nONw10Xm5Go6uQ8btdNM/BWX3suu8No2jDUEZnP8jH2DpZNNvcwean7l/Bz+vqiaTP9/1ULasL7jPGu5TyBywVaPrdrlDmN46siGtG123o0lMP99ByENgz9JX1McdwvTrvCn5+3IzDQGOjNPkPoAoCDdEmdFMj8dp8lVTuXYjjdN/3ketrNvhX3x3S2PQee6I/37VLY023F3w36+6pXdRi+KetG6Q34neMdx96Jv7RqZR6DofQN98fm3uLug9tUcfckei63worX1+O9UIwz0CtZf0lYah8/wJrY1w7lRvovPNPFOq6gHgKDPsgCgI/498y0ozvY7uk7+gtdHR96H78xDDPQK19VfVa4Z7AtVHR4OCREfFafKs4R7E9BZNgCvjNDkwCsIDkZ+kW038quGejH+SlKu94zT5o/vFKAgj8h5pl8dp8sMqJxAF4ULo7223A0VxmjT1PvP8fS+J06Qvn2899bF6AZeemioKwjVRxs9WQ3be87pZ0ObEDiTM1sK4ti+jBb6tTeM0eajJ62YlbySYAl+o0p5jXr8ujUaHG8Vp8l/f8dbrZkdlk5mmoPOt0ha0E2orqKuVwN30DwSe8ZT3fx9543TSGuNyMw+FbOM/2MPdDZXA1sW1N/02NzdpxbRvXEN9Xgf2pj87Zx/3ByjLV1fvv821zzeXWYmCcF+UTa2rF97e9Gf/hni4+6PFU53cbNOfXWcf9yBUNVaXIfwkdO+z389D3LHtZtH22xq5E5l+vtm/Zz3cQ9HIzjq5gy3moALu4WhR3koryN9RBnVOdG6ZXojTZHXzc5c3x7nZ4alo4xSgap2+bEG5F1Uu7tfH3HvQprHVKX2dKEXVR2/RN8FLm3s3Cvr0ZfAjRW2i79M3wUub+w9UXdiXQZcUtad+St8GXVI0IWcCCjb1JfcW9LzcucmxdWqq4aa0FuxJ0fP6eGTMbXu3Tab5+mEcMozdBFVwVdVU9Lw+AZnj2t5tVVrUx6LP7ea0FhSfiqrbTkDTqv5sfe/GOE12BYiC8GvoWrhVmZ8Y7rdoHhSfAnw/TpPcZKooCPdiupcPwHVxmlT+TBovF7si5jVg1Wb7HLM2sz3F/hinyd5VuT19/tQLuPRUSVEQ3oac7DPdHafJ1hVe9zH56O+CLZhKEQXhP8hHr/8Rp0nTKHoUhOPI+xHM63oYNHn9P9EDINOtcZpsX+F1E8k/nOYqKi800fFN0OSJAaitop2Nk+9BPJ/rUWFxF/Zw29lI+Lhzu8EGh7up4W7WAdddAKSGW3SdF3G4a9fEnYyucxF3UYe7Vk3cCcAC7ibY4i7mcH0tE1U0lfz7cSywcAXuAIvbjlzuJ8CiJdzFaTzfdjSFfIDoA6Cfr9/ccPs53HZL9V3uGGCJJtzNrH9r1MR9F1i6iOv5PXZAPlStvLcmokWmnUEcFqfJtPZEUxl5Ff6N2YWoPeKGFrmTUPvKRi28xlXaIhN0vk9+BtxJhttJG1a75zvwM+BOQMHBvuaOR0mhz4L7NKqumxm4mZluJ+197nOlisai4HBfcz9C97iDrK89gFp4fkzeN8SnU9DfyjetsUwfomCLzb3P/DsKGfiXKZvCeUqT41x9gHzb7Erg3Fo/CsIlUdDFfe9NRZXC/VHgpkwTgW3tFnKPp9htcZpUrhAyv9fr5JOHu8dpcn3BS7LX7Ux+MMbNcZr0ZSVWT32sXsClp0qKgnBj4GHny1+K0+Q53/HW694nbyC2sBlVXJW7KerHtfXFOE2G+o63XucGeuZ3TUGbvH5zlNm0tUqcJi83ed1YNL0n0zxZdUdNG3A70z8t840e0PamfI5s41TTBtyb6UcLEnsxMWucJlM83AG0txH2ZvrRYmKa4jSZdj41bcB9mf4XUGYw05Q4TaYFnGragE+g8Tq/BNjv3YlxmkyrhKpxA95MY+M0mcfi9ne43erRz7UEWtwB5n+7ZUL5vhnxm3GXcLjd8gYYHafJYhZ3SfLXuVvcUXGatOTrEgXhGcg7oBONiNMk17JoWi1/inrc3XvVX1EZ91EdckehcvSvoetatxdWkUYApxvupn3IHYYMsjdG487d1q1uKUEts1833NI22xr1GvKEyLhVjEzr0Muo6iy7zn3FHYo8eL6OMv5VDFTr0HOoSmETw63cvt2hhqBqkE3QGO++4j6DgsaboKRcX3Hvj9NkcxOQ/iGqFuxfcvzzqF1vQIfce+I0+WYUhPNa3H4lxz+HWus3LTmmiu6K0yTXKhQF4RzoPe5rlT4LtWV/0/M9W2ORb98j5mduS37q5R1xmmzrfWWBosZhG0/EaVLqweUJ9NwSp0krLWg9fc7UC7j0VFlRED6EHuaZzorTpHSxXUPAJUAZTTuDdHqcJsc3eV2nAZcAedWsb3355DhNTmryOjfgshfTF/SdmtVNBPaP0+RP7jc8lTV7ogVfHRvwicC+cZpc5+FOIR9w2Z3pQYdON+ATUN/tje43oiB0b1y7Ud8GfDzwgzhN7Ek5vla1Kejvm23CO90Ijwf28JS8zkE+wDQReR3UtQEfh8Ysfo/yxdkEtNDJuH01fWIcyrhl3L6aPvEpKlPOuCv3EfcjVJY9wHBX6iPumDhNmmUwc4qCcE4U/Fis2bElKjRTj4Lw2yjT606j+C9633eyeX87TpNpG5YoCJdDm6hNUVVlt8yqcwEmw93U4nbLNNqtJFoBBbV2pbtBgSROk+UNMwBWRJu2XeluUODVOE1WsrgrofPdhe5ukl+K02RVi7uK4e7cZe7zcZqsYXFXtbhVprm0q2fjNFnT4n7RcHeiu6Nun47T5CufAXdgnCbrWdzVkV/LjsA8ZS/sUI/HaTKt0sbce/c37LIBBu1UFNn6b5wm0yr0oiCcy+KWeQp2yn0oTpOGoI255ofgb6W9BXl9Naso+ggYEKfJUzUFXHzDNkoTw56AS6Uq+p4+v+oFXHqqLOND8QfrS8OQI3fhqGZPwGWROE3GtMjdl3yv4xvACk24bsBlgdgZ81uBeyBwhfWlV4GVizxZTAY8oTNfkudRaf9mJcfkHNdNBvwNOvMHaZaVSIEf2WZgkaZBDaOzh+qzqH9+k4Lvp8DBcZr8zuIubbidaAgqny0yYZ4KHBinybT3XRSEISod7USDUbXKxiXc/eM0mTauN2ocr96qUnS+n1Dc2jAFeTaMRdNiKo1vr8AdbH5m3RNmmnGfQUGqTkrf2+E+jQJidU+2KdNUw51M55NtrgaObuUeHQXhOWgD3YmuBI7xBeOjIFwb+V24htLv03m1xOXAsXGafOB+I9I0pZvoTjAiRiNEG9proyDcCgWZusG9BI1JnfYsjILwCyjYehYKhnRDvwF+YSc9DHcnNOY17BL3QuB4u73WcL+Pzrdb1UW/RmNebe6sKNhzFvVPvMt0HnCi3T5tuLsabreCiOcCJ9lebYa7u+F2awLc2SgRNq2NOQrC2ZAvzpl0ZxJban72qXY7seHuhdp4yipPOuGeAZzmcGc33FPp7DoXBUhS87PPsNt6DfcH5nudXOcy7skosdvQTmwCJTcA7iCOMVSr3huN1rsrkg+4VLIt8Pw+9yIPm0ylieEoCLdHfmWZegGXGVy9gEtPlWVKCt8mf4MrNc+NgnAM+UVxOwGX+Q3X9mQpNc+NgvAj8lmddgIuC6Kyc9vIdpp5rtn4Z9nvAbSXAR+MWqYeBP4dp8m7xuvkLcoDN9ejDfQA2yamrwAAIABJREFU2suAZ9wHUCbhXdPy9BblgZvr0Aa6ncx7tgG3uaNNC9BIyg1W/4QqLDaj9U1BtgHPrnPGXQJNKCrLhlyLqlo2o/UgRLYBt7nvmffNm5QHqv6IgiCbAcu3yM024DZ3TNQ4ttz3+/4B/R2+Q+ub2Yz7gMV9P5IR6mst/qxWuU9Z3IcNdyVU3t9N7iCmv58fjtPkgygIV0XZrm5piof7YRSEq6PAaRVNNj/HZ9L9DpoockNRcNlWFIRroc9XVe5U/Pe2t5HR400u17x376T9qrlJ6P3t474FHAb8zcMNDbcbbVzvoiD2X91vmM/MnXSniuwdIPJU0gWoLP4i8s/auvQ28MM4TW5xuLOgaUwXUJ9pvK23UND+dg83QsGRuszbXe6BcZr8w8M9FAW2u8EdARwQp8ndHu7hwDnUZxpvazhKFtgj37MA1xEo8NIN7jDDvcfD/TEKUtRlVm/rDWC/OE3u93CPQYGIbnATw33A4c6Kqk5O6oCbVWj71iZDgYPiNMlZCxjuzwy3XZP8T9G+wsd9wXAfcb8RBeEGyAS63QrLYWiqk22a227AZT/kPZYpAVYsSgz3Ai4zn3oBl55aUtQ4IvqqOE0KR0h6Ai6LxmnyXtHxJT/HHRF9RZwmhSMzPQGXlsx6rZ/jjoi+Dz1oa9uAF3D/hrKO9mvbrSRJ0YY0twEv4N6KSjLr4Ho34AXcO4BtauRm5/sAZgNewL0L9Z3Xxc02wtM2/gXce4AtauLaG/CM25CxN9z7ybcNdfq+GoyM/DKu9zPmaUfslPuMxX2khPsf8tU1nXKfdrjeIG4UhI+Tb0fsRNnn1+Z62yOjIMzGgVdRswqRO4BD4jR5s9kPioLwGRonCxWpWQbydsPNVbFFMhm/mfLqvzKNptxs8hZUPTjC4S5svldUDdep3kYVPncAT1reW4ugyS6dGO6WaRTaINyO2iQy7qLAv+meN9JbTD/fgXGaTDLcxQ23W62KIw33Hw63H/AQ3WsZHIG8Ru4EBlnc/obbrZbB4ahC9y7gKYu7pOHWUcXo0zCHO9lwlzbcsMvcO1G7UcZdBvkPlrXddKI3DPduh7scOt9uVTMlqELvn4abeectb7jttiYOp7wS6jJUFZh75ppK3H/TfpXNMMqv1aWoOs/HvYv2P0evOK+9M06TbYoOLlKriWFPwKUls96ePn/qBVx6aklREG6NHmiZPgL6x8WTad4jv7huN+DyHbQwzPSh4RZNiPmQfL90q9ORArQgOQJlP9vVIOB+rAx4Be6KyBDykA64T5LP+FflHk1+gkiresLhll5zq7f+GPLO+K3qMaYHHAo34A53ZdTzXRgwrMh9gCYbcIe7CsoI7dsB91GHW+pPFE3v6f8F9Y5dHY/Kfs/LFvQe7mpozGWd40/HoYkIv4494xej6T39v6Te8adj0SSEC5twT0JtC3Vy/5+9846To6z/+HtIu1CEgFIjLiL9KNJCJ5TQEnr/gTQRRjpIUUFEUVGa0gcQBekgvUkNvbfAEUggZNJ7u5LrN78/Ps/czc7O7M7M7p0Q9/N65aXc7ux7n9lnZp7nWy8CrvUX1lGyrdzZqFCorylo4Z21bXQTcCFwfQnuechz7msS2uBkNW41orl6Y5Brq57R7cT/pi5KE8nKbUDXphP0TNqql3An8a1lJ5I+Ei1KzejafhVd2x8io0hc94oJVCYNqBnVxXnV/PsIpZf1dhHHxSHuxyjKbt9iB1WI+2aAOwZFM6b2bKdUU4hbh6I39+oj7isB7n2o2GxvqpGe8b6CohXuJ9/Z0FvcN+g5z1+g7ju79DK3IcQdh4p8l1tANgn39QD3S9RBrreMxDOA0xzPfTj4xz4wEk9HRvGgoQJbDRoeJz6F+DOS1zLMZHAx3+M+lL7n6xbHcyPX07aV2w8Z8n1VDS5LuKoGl6pSyYQPTiW/SvnhTkRhU/P+ShlcBiBPUTB08JCocGzz/lQGl8AGPJgilNZD0IkW+sHNTWx75gB3XfK7kKTl+hdxcJMR2545wF0vxE3rmYjiDozaeIe464e4afN/o9os9itR08fnDg9w0+ZZh7me47lFN7KBDbjP3akC3A7Hc4uGZts9xfz8ubwTxTsLRCncNrjD/ItKNxiDDGYfBLj+v8iCqCnUhs5BFPcjw/0ILah85k4V4Pp541FpDh8a7seoGHaQW04BWdDmtx/R6QbvozSFyBQe4zWfRv58OReF85cKM29CIf9R3HdRWPcnMdyoek5JuY3oHEfN6bcNty7AWsp8blzdmPPM66XC2+tRGHvU93vLcLtTtAz3SuK7I52HakpkNW5FqQl4AUVr7hrznvPReHuD+x16f5MaVKPhDiF7JFM53BXp/c1xUA3A8+ieEVfHrDdUj8a7Mr23KY/SIsNdjd7blMdxn0drq76sJ+Zzv0/f1vVaYLg5yq/rNZ34teGjyPDSHRVoq6juXcQbiZNqGvFr4UcMd3qAuzRwDxCVltOMUiUvSMAtx+ASdgwvBFaLcgxHGFyedDy3tw3NVf0XVTW4VJVatpX7K3BW4E+xltkIg8v3HM+dm5F7LfnRJo86nntgzHvDBpch4SgPEwI4AhiF0krSbvzb0UbEj6x4E4VpByvVF3RHsq3c8sizNNJwK1FgLbw5LjC4BLj+eNNuwKMUTtHobkcd4K5geCMNvxLcsLrbUQe4Q0LccjfgBXIC7ahD3L0C3HI34GHltaMOcFcMcYulT2RRKzJq3Ey0h9JDES+DI14rR4uBzVCh0ahNZ29x61Fa0M1Ed2/y0DmpdL2LBWhTcAvRm79OtPH/XZRRNSJN7nLk9XyI4jUy/GLdtxC9CetAxTEvjeGG0+QuQ4aLB0twZwK7G27UJqwDGTLCxSJPR0VRw9fgx6jt8t0Ur5ExDV0vtxLtGW1Hhow/hopFno2Kk4a5H5r3303xWhXzzXuHU5kaD++iOiR3lvi8eejc7FwhblLNQUW7dyZ7jYcsmoUiKnbsY+4MYDy6hvqSOw1FPG3fx9wpKLJsuz7mTjb/tqOyxsZScpERYps+5k5E98phfcwdDfwePQejOgTWo6jAm32nl6ljczWqGZRVz6NnyC1EpwvVIwPKLSHutURHh9+N7kN/LsEtaEedVDGO4YPDkUDmvfuiqBxfVYPLEq6+vGirWnJ0Z+i/9zYhfVGqpEUvzB1pQhgTc20rt45t5c42m4O5wL9RakcaY0snsqKv4HjuDo7nXuh47nMmkiWOu65t5c6xVcl8LgpvPZZ0xpYOYD/ksZgVei280LFsK2fZVm4928r9wrZyLwW4x5DO6NGO6qtsgxbPeZzwmw13fdvKnWtqhsxF4cs/ycDdGy2oShrpDHcD28qdZ1u5l813vRdV8E9jbGlFG7Ht0SYlCXdD28qdb1u5Vw33HlTrKI2xpQUZSnZEm+4k3I1sK3dBgHs3St1JY2xpRhvenZFHJlaO505ARspfI0NIUBbpjB6Lkfd8OPIExmmA47lfmu/4G/N9y+E2GeauaNEWpxrHc8eb911Cfmtun5vG2NKADCi7I496nAY7njsOnZuTKDw3/dBC81PbykUZvsL3yaNQjvveaOxxWsbx3M/RPLApPDf9gV8Bn9hWLirqIYr7FDIAhudKmPsZmvenoPMU5l4IjLGtXHfUg+O516EuN+GIus1Q8dfDKJwrQS1nImd2QIb88G8yAM23MbaV644+cDz3ryhsPJxStjl6lhxG4VwJynI8dwSaO3+iJ5Iqq7ZGz5LDS32W47m7G+6fK8CFZM93z/Hc3dA1ejmKWOsLeY7n7mK4V1E4T3pLXY7nDkfRU1f3IbfT8dydDfcaCudnb3J3Qo6m6/qQ2+547o6Ge2Mfctscz90edcG8Ca0H+0ItjtozL4eMH33F/Z4p0LspMmSHz/N30Pl/1Vbhdozz6yzgF2VwVzYFiTdBhpco7k3AK7aVWz/APY3oSJajUJrraSW4mR1kJrr7vtCfk6Zwl9Pts6pvgaoGl6qy6CPkOfLltzvsbb2PPEe+BpC8TsIfbSs3zhx/NfLElqqY34Ks+5cgj4avfuhhUGwT4esy28p9iXJ5r0Kbt1LexWZUnPcS5NHw1R+lZL2HNm7FWiNfjvJ4v0De8F0Scl9EtTFmB/4+wHDfMdxpEcf6ugoVIfscecOHU9rr1YzCjC8m37AyAFjRUVeoncn/DcL6G/LujUVjT+JNXRzgBg0rg5Ax7U3zOTMjjgXAtnLXoQ48nyEvfBJv6mLkvbmYfANHDYqIet1ww0Y1X5Zt5a5HHq86tHnakdL38yZUYO9i8jfxg9Hm81X0e4WNar6Wsq3cDcjD9ycK2zHGqREVFPwN+ZvppYFlHc99BV0XcUa1AcZwNwl1fkhqXGlEhobfkL+ZXgZFgI023Dij2sAA9xKSG1caUJ2r35BvaFgOGXFeRPefOKNajW3ljnE8t8vx3FtRStq/I963NvCCbeX+GTI8P0q+YWUNYGcz3t2JN6otbVu5ow33ZsMt8Mwhb+NLtpW7zURV+XqYfAPHmsCOZrwjiDeqLWdbuSMN9ybDfTTifesCL9tW7lYTRYajTjtRdTf2RPexI4k3qn3HtnKHOp7b6Xju9SgV7omI962HNhM3m2g9HM99EBm/w9oH1do5gkLDka8htpU72HAvNON6Kua9SbUXcAeKJoozMq1kW7n9DfdXaFzPxLw3qSxKb3RXNvOq3fHcC1Bq57MljkmiUoaMVW0rd4Thnmu4L5Q4phLcNcy8anM89xdoPr/YB9w1bSt3oOGehebz6BLHVIKbM/Oq1fHcM1AU5Ct9wF3btnIjHc9tcTz3VGBjVCy2t7nr2lZuL8dzmx3PPcVwCzro9AJ3A9vKjXA8d7HjuTYygLxVAW4pA+hGtpXbxZzni5Bh+Z2I920PfGxbuUtsKzfI8VzP8dyriU/jmR3zd1+b2FZuZ3Oefw1sgWoEhrUDMopfbFu5gYZ7OboPh3UKehb9DKUpR2kz28ptUeK7FdNdof8eGXpO+qqml/yPqWpwqSq1HLXODHsze92Km5Rrq9tB2JhyCtHhkEH5G/CL0AZ2Bcdzd3U893co7LwUdxUKjRqnUrp6ur8Bvwg9PFZwPHc3w/17FNd43ndExo0onUrpYor+BvzCAHd3x3N/T357uyD3C8ONa/N7GqW7H/gb8F+jh/QKjueOcDz3UlSoMYo71nDdItxSRSv9DfivUNTMkAD3jhiu73mPa6d8GqW7LjSijc0vUarICo7n7mG4/4rhfkq8Uc1vK/qDElx/438Bik4a4njunoYbXhT43DFovFMjPm8Auo7SdHuoR4Wn93Y89w8o8ieK+yHFjWrDSdftYRGKWtjHcCO9To7nfkBxo1pa7kI0J0Yabri2lc99l+JGtb/bVm64ee8Mx3MPRVF1UcbO44DPbSt3pG3lLMdzmyg0lPjctyluVLvNtnI7mfdOdzz3YNQtLep3OcFwDzfcBgoNJT73TWT0jTOq3W5buR3Me6c5ShU9GKVnhHWi4R5quM8TbTj4MfL0n0C8Ue1O28pta7hT0Dk+lOj5cBIw1rZyBxvuM+j+GdYWKMXneOKNanfZVm6Y4U5GRWKPIH4T0kbpBfqyKJpvcJH33mNbuS0NdxIyVv0f8fMhCTdJetKdtpW70bZyyzqeOxFFWx1N/HxIwk3SYvhe28pdZ1u5ZRzP/RpFEB5D/HyoFPcB28pdY1u5pQNRgcehdLI4bikl4T5sW7mrbSs32EQF7obmf9w8TBLllIT7iG3lrjRcPyrwZ8QbdyvFfcK2cn+xrVyNWZsMR0X/44y7leI+bVu5PxnDwufoWf1z4o27leI+a1u5Sw33M7RuO5V4424SbqnW5BbwojGkDDRrk+2Jjwr8LTK8+Pfzy4leL66MHHNxa0kLGfZ9Q8onaP10JoWRmgNR8f6PbCu3vfnbn4het+2PniEnEm3k6ofmVdbuUu9R6BhO4pCuRrgs4arWcKkqk2y1vHNDf17XPOSD75tDfnrDyo7nxi3uknDXovAGvTawPKpNMhKFWCe9eY1HRa6eQl11Ihc+tpVbh/ybKGijvVKIm1TjAtw3inDXQ1EqvjzD/Z7hHoBC6JPqixA30qtiW7mNUPSEry600V7NcA8keRtY0IPV575ZhLsJKsAa5K6BNr3+eNNwxwa4bxXh/hjVVfDViQrF5egZb20K7mchbqQX2LZyW6EaDL7aDXftADdpdX3Qb+Zz3y7C3YZ871ib4a4T4G6YkrsY2JJoQ/6LKE3Fb4Xqq8Vw1zfcg8z/rxT3ecP9Purq5KsZzeWN6BlvGu6n5rtvSfS95lm0AP8h+V71JmAVYxTBtnLronMT1YZzIbCdWdBj3v8dtJA8JYb7jOGuR34UQQPq6rbYfM56KIouqhjiAmBbR2lNPnd5FNb984j3g2khja6RYLRGvRlvi/mcDQw3KpVynuF2P0NMRMmfie+c9gTacGxGfj58eDxnoOi7qNTCucA2ZmPsc4egiLW4zmmPGe5WqIBjlOajzcHVRIepzzbciQHuiigy8ISYz3wfGUN3RwaWLJoFDDMGF5+7EoqEPC7mmPeQsW8E+TXK0moOirC7zfHcdlstqK9CRpAovYuMbiNIHlEXpVmG+w/HcztspUBfjYw+UXrbHFMudyaKdLvdcFdGxri4jm1voXM0gvJqUs1ADpw7HM/tNM6gvxHf3etNdB2Uy52OHDh3Gu6qyOgZt+F8A10nfopdVk013LsNdzWU3nRwEe4Cwy1WX6qUpgS4XbaKh1+HnidReg0Zg8rlTkaOo/sMdyhwPdEFY31uveGWMrAU0yTDvd9wvw/cQHxXsZuRw+dkdD+N0gR6npdx6/aJhvug4a6J0pjiuordZN5/KkqDitJX6FnqEH1OPgV2cEp0noySbeV+g+re+HrD8dwdQu8JF9h92vHc3u6SVtV/UVWDS1WZZatORrCTwO8cz70k9J65yCjhaxXHc0uFEpbivkZ+UccGFK6fRO0o3PUp4KmwgagE9y3yiytm4T5puHGRKVHcd9HCPgu3LcSdUOL9Qe6HyEuclftygBvnxYjijiHfqJKWOzrAnVji/T7TQg/YoHEjDbcVbST9eeWm4H6ONsjlcP3xxkXiRHHHkx991UjyTVwLMhT4451sPndLFA0WZQRsQak5NvlRQWnG6xnuQ2iB4nO3QtFgUca4ZsM9lfzonDTj9ZDx5mHDnWK4w9B4N444ZjHy9p1FfreFoxzP7Y70iTAyBjURbcrz7pkmKuNWoo1xTWiTdz75ho0jHM+9P/AZm6OuUlH62nDzjOPGe+inOcVxf0W+geFQx3O7U6LMOXs7hvslMrrkRSDYqqFyC9FGsUa06bmY/GdNUK0oHe0PMa+PQ8atvAgEWzVjbiE6OrLBcC8hvzB8UC1oUf/7mNc/B7Z3PDcvAsFWjZybkQE0rHp0nv9IdqPLPGRceTZohLZVE+hmoqMjFxnunynPCAG69/wKeMTxXM+2ciPQxicqOnKh4V5O+YWxvzDcxwx3T8PNRbx3ATJaXEX5hbE/RxGOTxju3mhTGBWlOB+N96+UtzkGGf5/hQpyemaTdyPRUYrz0DX0N5JFWxRTHRrv04a7r+FGGZbnGu61lF/M+RPD/Y/h7o8MAlHdbuag+/N1lF/sdwwyLDxnuAcablRtwFkoGuN6ys8y+Ai4wPHc580z/SDzuVEG7ZnoPlQJ7geG+6LhHoLOY1SNvhnoPN9MvEFlLqq3d3rM677eB853PHe04R6G5k2UIX06ujffUuTz5qDo1zjuc8CoOEddnGwr90NkSArqhyHj+ijyU1gzd0eq6tuhqsGlqsyyrdyJ5KfavOt47rDQexop0bUnBS+HvNE26bz+oNSNx4Hn01qszc1zJLLAR200iul2dFN9Pu24DXeU4abxvgf1FHBgmgeGbeX86IokaVhxehxVZ09cyM62cj8KcKM2Gkn0CHBYSq4f1XEKpdO/4vRvtKFNXMjORDeMQoaAUmlYcbofbeATce2eNuQ+t1QaVpzuAX7iRLTitlWp/2y0qIzaqLRR3kbiA1STJC+s2HB/gRZ3Udx2yttIvAcMd0K1mwz3PLRpiPJaziJ/IXqX47ndKYm2lVud4nWR3gZ2dQq7jg1ERpXfEH0+Z5K/8L7D8dzjAsd/H3lK4/QmsJsTamlpW7lBaHNxYQw3PN7bHM89MXB8VJRiUK8DI2K4v0YbyKjfMTzesMId1cJ6BdjTCXQkMtwaNNZfEr0hLJc7GtgrHOVoq73qReg3zsJNonpkSHwKbY5nGe7FaE5HbUQrwfU1ATjH8dzHbbV1vQQ4J4Ybnlfl6EvgbMdzn7Kt3DLoXnU20RvRSnLHG+7TtpVb1nDP6gPuOOBMx3OfNdw/oKivqHlZSe4XwBnGILAcMhKe1gfcsYb7YoKowNlUroNhneGOThAVWEnup8Dpjue+YqIC/4JSIKM0h8p1ThxjuK+ZqMDLUapOFm6adcF/kMHnkwRRgXMp3kSgFPcWwHZU0iCxbCv3Okq98nWKoxpl/uuHoJpbvh42KbxVLaGqGlyqyiwTLhrMse8CVnJM+2Xbyi1FYSX1gva9RT6/P8rZ9FN20hpZfHlAv6Q3TMPdznBHkd7I4qvD8dzEGzyzcfO5I8vghlV0U26429Mz3vWi3pdB96JNeTHuDgFuUuNOqQ3MXcCxUcYAwx0Y4iY17pTi3gGcUIK7Y4Cb1LhTinsbcFIJ7k4BbqnaPkm5RRciJn3kbvKjpJKoi9IeuCeQIbFgbtnqlHA36VLtknIfBQ6J4a5LfAvpoGYAa/jnzRw3rvghPIQMiVEGrvWIbyEd1FRgzQB3A7QxKaYHgCNjuBsQ30I6KNfx3G7Dnm3lNkae6GK6F92zCuaWrXTHuBbSQc0nPvIkTneie0cUt5b4FtJBzSM+0iZOt6N7RxR3E8MtlbJaiY3U+5ioNWSgvIX86MooVWLjuBBds7ej6/BWVJyzmCqxQV+Anhd3oHvdLZS+X1XC4LQAzbU70D0nLiowqBmk66YYpfkB7gAUFRgVnVdp7jzk9PoXMobfSukU3elEpzym0Vw01juR4+9WSqfKTiM6IiYt959obi1HfFRgpblzAtwhaD6XWs9NJTryKI1mB7grER8VWEmuX9PxYsdzJ5mowLgW0kFNIV1dNpBx5/I0B9hW7gLyW1A/5HjuIYHXjyO/ZuGdjufGpVZWtQSoanCpqizZVq6OfEPIAY7nPmZeW4b8olotjucWDQk21uq90MZwL/TQSKIWlAf6JMpXDdY9aXQ8t2jKgq0c9iB3hRTc/xjum+RvYBY5nlv0c2zlsO+NDCx7oVo0SdQc4L5Dfr2VTgo9hHnGgAB3FOrokYb7NFqQf0B+KkQU95/AiQHuyvSMd0/U2i+JFqP6FE8CH6NQ2mLcW4GTA5tLn+uPN2kKSxM9461DGxJfHRR6nh3kyfC5q6DOJSNRwcY0XH/j8zn5dV6iuDcgT5PPXTXETZp60IjG+yTyAgfrvERxrwXOiuCOQvniSbkN9Iz3a/K7PkRxAa51PPdMw12dnvGmqTNRT894JwOvJuD+1fHcc6I+zEQQnYDqYRS79jf0a7PYhfWD4rhXOJ57fgx3KeCnyNNX7Fpez1FRSz/9K9j1IY77Z0ddbeK4P0OezWLX8tp+WqFdWD8ojvsHx3N/U4Tr1wUodk2dixa9UZ8fxy1IjQ1w+yGP9WUUn9vnmu8WFakRx/2No0LLcdxTkae+2Nwuxi1lQA1rNnrGdKFCwsW456PzHGWwTMudg+4DluHGpS95KNKqUtzZhtsfpUjErVU8FGV1Wcznp+XOCnAPIz59qRNFPP0p5efHaabhDkLnOa6mSAeKePpTBZg+92nDO6QItw2lwMSlAabVdMMdjMYbF9XQapiXVpi7DBpvnBOuGV27l1SIO81wly3BbUL1jCLvtRk01XCXRzV04tLEGlB9n6huQpDMAQL6va5H87MZjeO8ItxFKL0t8plWhHuYo+50iRTxfJ2PWmz7a+FTzff25TieGxcNVdUSoKrBpaqyZFu5a1Boqq/rHLUG9De5wS4c8xzP/W7oeIuewpUjkdcyS35pkBsO0Z/leG6eR8pwawPcbTNyuzdfESH60x3PzfNYGO7GIW6WxdOVjueeZz4zh2o9dHPRgyccyfAgMpCMRF7aLNzLHLXo81OAgjVwJqNFYThN5QEU8joSGJaR2735sgsLCbvmM8P58PciY0XaQspBdW++7MJCwl+hRVs4H/5uFDqetpByUN2bL7uwxsd4tAkJe4fuRCH6IyntlY7Trx3PvcxwwzU+PkeLqLDX8XZUTG8kKiKbRY8CB5n893Ah4c+Q1yzKq/wf5NXP2sbxIVRjxLNVF+XNwGufIg96lPf+NMdzb4j7UGN4+htweMxb7gP+z3B3IL+Q8Mfot40Kg7YdtWyO466GjGCHxLzlLuAYw92Z/ELCH6JrKCo642eO54Y7pgW5q6Mc/oNi3nIHcLzh7kZ+IeH30L0qKhrlBMdzw53Lgtw10KL1gJi33IbuPw9RaCBpQIvrKAPVsY7nhjuIBbnfN9yo1tAgT+sjKNUwbKjwU1qjDFR59X0iuKWKRd6INtEPUmioWIgMMUmNvkF1oO8dFzF0LfpN76fQULEQbX6y1Jspxb0aGUnvjeDOR5v5LEV+29H8iONegVL97qbQQDLPfJcsdW5KcS9DzoY7KTRUzEVjzVLnph0Z2+McXJciZ9IdFBoq5mBa3vcC92L0TLudQoPBLGTUzlJ8thT3QrSe+UcEdyb6fbKkxbYh51GcMf4CZPi7lUKDwXT0rMuSFluK+wt0nd5CobG2HG4rWovGcc9ATsubIrhT0TM/aV2fhej6uA5FLReLCjwFGUZvoHDdPwVFdIW57SiVOVErbmMkn0v+2Ldw1JER28qdT34h4ascta+vaglVtS10VeXqpdB/7xb4/+GFjt+ZY7Bt5fZ6o5xJAAAgAElEQVS2rdwNaLP8KbpR7kDxOdmJFlfno+4PQQWL9xbj7mNbuRsN9xNkFd8+AfcVZDU/O/Ta8ATcpW0rN9K2cjehjekYlMu8HcWNAB1oQ3Su+RdUsfHWo98h3FL4UOS5KWXk6UB1BX6BznVQu5Tg7kphPYrD0IKtlJGnA82nc1C9hKCGF+EuMtxwC9kjkYeslJGnHW0WzkY1ItJwd6OwhexRKDe/lLHF555FoXepGHeh4YZbCv8EecdKGVvaUN2GM1G9k6TcBYYb7jJ2nPmcUsaWNmTAiWoVegBqtblaBHe+4Ua1VN2L0sYWnxvVKvRg4EljIAlz5xluVEvV62wVoIyU47kzHc89AnVvCM8PULeQx00EVJg713CjztONtpXbqwg32EI6quX00cCjtrq0hLlzUPebqBpXN9sqbBrHDbaQjupCdyxqWfvdCO5sFJUUVePq77aV27UI128hfQjRLYZ/imoZjKLwd1zO/C3cYhTgH7Zpyx3DnYLm7GFEtxg+CUU6jaLwd/yO+a6LwwcBd9gqEBzHDbaQjroeTkEdf0ZRON9XQL9NS/ggkrV+LpaedYb5TqMonD8roGsgiltKpbjnoN9+Xwrnz4pos5ikNW5YA0pwz0PGtv0onD8roc1iklbPabm/QpGa+1E4f76LjASpCnwGuMWiiX+D7kn7R3C/h9ZTvcH9PVrr7E/h/FkFRUP2Btdfnx0QwV0VOVsS14kLaCDFIx//gp6jB1E4b1dHzpbEdeJScK9CKW0HUThvfW5kynIJDSrBvRaleB1C4e84FDnWorhRf/Nr14xHa4Id0Jou6r5zIzLKHBrB/T4yLoYZA9AaJVG9PZN2/HLoz8FnWeR+oaolV1WDS1Xl6hXyb0wbms0LFN5Q+ttW7nG0QH0aLQ6jquUHNR95kY5E4Xg7O557BfLUBheJm5iImijuINvKPWG4T6GQ8FLceciLdATwXcdzhzuee6X5LkFtZtKRorg1tpV70nzWk9DdnraY5hru4Wi8uzieexUab1Bb2CqOFsUdjB4oafLq5yDv1WFovLs6nns1hePdylYRuijuMoabpo7AHOS9OtRwd3M896+oKGtQ29gq9hfFXRZ5KtLUTfBzjg8x3BGO5/4NeUqD2tZWMcco7vLIy52GOwt5zQ5G9Y5GOJ57DYp4CGp7W8U6o7grIC9OmvoUM5G3/yA03j0cz70WeaSD2tFWcdIo7opogZQ0zQ9kBPs72oiv5Hjuliia4dmI9+6FjK+7h/6+Ego9Tpp+5nNvRQvmIPeFiPfuY7i7hP7e6Hhunfk+jaHXLGRAKFrvwfHcJ1FE2+iIl0cZ7s6hvzc5nvsJMkKEF2FLAY+YqKdi3McN95WIl/cz3HDtlUbHcz823PCmailkICpad8Hx3EcN942Ilw8w3HDtlSbj9dsjhvukqctTjPuQ4UZ5Hw9G13X4GgN1p2mhcJPRD3jKtnLrF2F6JsR8Y5TWGdah6P75QMRrP0RjDXP7o0V9bP0Dw73fcKO6TB2OamXEcRso3GRYaK5dgKJyUrdCRa2ObzfHh/Ujw43apDYTbaRLqqPRPTWKuw4yPPUG91gUERDFXRcZ86K4i4k2DibV8Sgi4KGI19ZD642oTXkT0cbBpDoRPe+i2qCvj8YUtRFuLJN7Err/R3E3QL9hFLeBaKNkUv0cdYp6LOK1DdGzPIpbT7SRPqlORSmaT0S8thF6tkUZSBeVyT0dpec9GfHaRsiRFseNcg4k1VnIEfhUxGu1Mdyl0FinRxwzFN0PPkQR2FsgA2hY5yAH1X8iXtskhrsCMNqUPkiiF0P/XcwhHV5jVLWEqZpSVFXZsq3cO+R7849yPPceU8QqHAGTRJ9i2twCbxcpuvo++d7tIxzPvd+2cnsQvaErpU8C3HeKcD8GNg386RDHcx+yrdw+RD80SmlMgPtuEe6n5BeaO9Dx3EftwvZySfVxgPteEe7n5HdJ2tfx3CdttT58OAP3oxA3rtjrePIL2u7jeO4zdmF196T60HCfBD4owp1AftegPRx1WTiSQkNQEn1Az3gjuSbVzCXfELib47kv2VbuaGSES6v3A9wPi3CnkF+sb7ijbgfHkV/ULaneo+c8f1yEu4DktYOS6GM0H58CPoopQLoUWhwmSau430Sp+HVHXqIwXH8BsInjuVELujC3nmTpDfc4nnuUOW47tGgLh+vPBzZ2PDdqwRnk9jPcJOkN/3I891hz3I4oCioqbWETx3PD0WRhbn+04UmSZvBPx3NPMMftjFpxhsP1ZxtuVNROkDsQjTdtmkEz8mCGw8hnofNcdGNujJQNpA+7X4y+azicfgYab9GNuTEGLyJ9O9047jT0bGtAkZ8jzb9Yw1OEitUwaULXUNjZNxV52S8ge0HaLNxJaDN/AdkL8BbjNqJrL8ydiIwXF5C94HAxbgNyRIRf/xo5J35J9gLLxbj16N4afv0rVN/slxTvGJOVuwgZ5MOvj0OOhgtIX8g6KTfqGfY5Mj5eQPrC3eVw65Bz7gLSOUaSchcSHbHyKTJqnx/zehIVq9mygOjxjEGG5fOJX0u8igyUYWdaEm5c4fX3ge2dUGe5sOzCwvSLgSGO57aZiHc78NqpjufeWOzzqvp2q2pwqaps2VbuT+QXoHoJ3Zj3JdkCtMUc8yTwlAmbTsL9C/kpLy+ghcaoFNwXDffpFNyrkHXc1/PoRjqSZAvf5hA3nPoTx/0b+alUz6Kw030ScsM63PHcKC9omHs98rr4egZ57vbOwPVQzYwo71yYG34gPWWO3ysj9yDjgS/FvZX81oZPogfynkQXoyymLlRIuqRBzLZy/0DeS1+Po3m8RwZuJ7Cf47lPJ+D+C6Uj+XoMbcb2IH0UZCcw0vHckgZP28rdjbzildJEYDOnRNt328rdR3xtlaD+4XjuTwPH7Yyu9fC9ZQLwY6dE23fbyv0bRVuU0q2O53a39DSG62cjuF8CmzueW9QzZlu5R4ivcRLUTY7nnhI4bnd0rYevtXEoF71oCLSJKhyVgHu947mnB47bA0VAhuf8WGArJ9SWO4L7NLo3pVUX2miENxt1wNZOqC13BPc5FB2UVp3oOgtzxwDbOKH22BHcF8kPVU+qDnSOw9yPgG2dQHtsE0bvG192I9vzphT3fXT+TkPP9Sy1Zkpxo773O2i++NwstWaKKa4d/VvofJ6BUpSy1JrJwn0drc3ORmnDlebGtdl9GUVYnmP+Zalxk4X7EopkPReNOUuNm2JqJdrA+xyKzPa5WWrcZOE+g6K+LkDrxSw1boqpheixPImivn6J5nRfcR9DqaO/QlE6cbV1msn228cd113/Le5A41iaRn6Xrx0dz33dtnJ3ot/J13GO596R4ftV9S1RNaWoqkro1dB/74oerMWMHlORx2NfFPI/0vHcm5IaPWK4u6PUhWLcKcjaPcpwRzme65TJHYFyjIstQifTU+xwJcdz93U89+akxpYY7p4oPaAYdxLyaJ1JYY77ncXqBQT0Wui/90a/WzGuizx4Z5EfKmkBd9tWbvsM3JHodyvGnYjSbc4mPx3DAu41kQppuaOQUauY0eNrlG5zDvlpEUsB99tWLknx3DB3P3SuS3GvQQvn4IawH/CAbeWSFJMNc/dHRq1iz4evUFHYc8nPke4H/LtUqk0MN4m+RGHe51EYNr8W8B9b7caLKRzmG7dgqjWRGgA4nvsKmgth7tooDaTUJjQrdzSaC+FIoXWAJ0wUSyW4Gwc/y/HcF5ChJsxdD6UXpeXGKcx9Dt3Hw99zQ5ROVWrdkpQbvudHGT1AUYUPVZA7KfTfUcYHUKTJg73I7R/D/TG6Z3W/5nju147nXud47l4oEuRnyNCYRXHcLVE0wh/RNXUt2epzFONGaRhai/zBcK8jW32OOA0g+prbFj2bf2+4N/YRdwf0zLgEpXrdRLa6IHEaGMMdjqKYLjbcm/uIuyvwF8dzLzTcW8lWjyROg2I+bw9U7P/XhntbH3H3Bi5xPPcC9Iz4Z4W5NTGfNwq4yFEnvXVRinolPfo1RM+X/YFfmoKz66Jo4ChuUmPL1xHHRXEPpkTnLmOMiUsrqtZw+R9TNcKlqkwyG4JdUY2Tg0iWGtCA6jk8CYwuZhkuwh0Q4B6YkFtvuE8Ar5TB3S3ATVJPYlGA+2oZ3N0D3CRevwUoh/Ux4HWnp2XvCOQ57h967/aOaVEb4A4McA9IyJ2PHu5h7p4oOqVf6L3bOZ47LoI7IjDeJN63eWa8jwJvBbj7oCiRIHcu8t5+FeL6ER3+eJN43+aa8T6MUtB87ih0DoIbpTmGm7dJMdw9DXf/hNw5hvtIiLu/+S5B7izDDXax8rl7BbhJFiN+3ZuHHc/t7iJkW7mDUB2D4CZqJvLO523yTF0an7tfQi4oxeL0YGSUbeUOo7AGDSjt6+i46822cmsjg5GvTrSxi/KefYzamnfXyiiSWnYn6m4Txw131yrFPd7UVPGPj0st607JieFuiDo9+eow7CgP5AeoM9AngeOPR9dXWHmROBHccHetdrRQj+Me73jup4HjT0Sbo7DyInEiuOE2221oAR7FnYzqaiXpYNbdCS+GG24D6oebR3lcJ6H0wSTc2Dbkhhtus91qPjeOG+7mFqfYNuSGuz2Klqi0utuQm8iaP6BIgd5WsBPe2sjwkyQSrlxd4nju7wx3HcM9tA+4Fzme+0fDXRdtHpNE4JWrXzqe+xfDXd9wD+wD7rmO6uH5qR6XoWdfb+ssR3Xa/E6HfyK+u1kl1d1Jz1btrctIFnFYrn7ueK5juJsY7j59wD3J8dxbDXdTVI9mryLvb0VGySiDtovqeyVRqU564efnTLSWWof89c/+yIg93vHcShqaq/qGqGpwqSqxjKdtB7RZOoT0OcCfokJ/bWhjcl8K7o4BbtocYJ/bCvzEFDpMwu0X4qbNAfa5LaiuTaJ6J4a7U4CbNgc4yD0ymEZjW7ljUW5xUJNQB6E5qIDnEWjhlZXbjNKVutNoYjZtE5GXbx7yfh1uuGlzj+uQF3oxCvHsTqOxrdzPUGHDoCYY7gJUKNU3GqbNPQ5yDwqm0dhWzkaew6C+RAVDF5LeWBmUf56bULpSdyFY28qdiiKLghpnuA2kN1YG5Y+3Edjf8dzu+ky2lTsTRbwE9TmqA9FIemNlnK5GC2ffyHQBWliFdYHjuZeH/2h+l2NQEcA03+NytFHwuReijWBYv3BUbDrMPRWlT21CupSFy4ALA9zfIs90WGc6KoIcZFooTeKIDNw/ABcHuJcCF0W8r6A9tuGega7nTUmXOnAJ8PsA9zIKO5YBnOx4bt51bbhno3vIj0kXPh6XbhLWiY7n3hbB/QWa25uTLnUgKbegTbV5Lp6LFupbkC6Ev5NkaYpHO56bVzjdcM9Hm8YtyNYet5SODK4PTKTeX8gvOtkbOtTx3O4iuLZa1P+FwoLaldbBwfWBiYi8Aq0DelP7hZ7T26B7XZLI13I0MvSc3g6NN1xQu9La00TQ+dztDXfbXmR6qA5c8Dm9o+EO62XubiZC0ufujH7fJBG35XCHO57bHZFtq+PbFZTuZFiOuoCdHM/tLthuq8PdFei+nOXzkmSBdCHnYV7hdFv1tfxuV0nOt28M/xqlsJZTaLqqb6CqBpeqisosJrdCi/bDyC+uWY4+cNQ5pBh36wB39Qpx33E8NzatxHCHBbirxb03pd50PDc2jcZwtwlwsxYODOs1x3PzFm22lbsItWkOag56UGYt4BfWaMdz8+oKxGwWZ5v/rRT3Bcdz8+ooxGwWZ6GHadbCgWH9x/HcvLoRdmFtI5B3o18FuU85npvntbKt3OUo5SaoGcibk7VgYViPOZ6bVxfELqxt5HMHkr1gYZSeAn7qeO4sc93cjFIcgvJQ5NA0FPm0PIo2C7f9TqPHgZ85njvbcG8jv+aOz90dXU8Po8iw28rkPoq8d3MM93ZkNApzhyNj3sPIuFIu92HDnWe4fre4oLqQkXYxKl64LDrPF5bBfRCwHc+db7j3oXtimLsDMljch4w6t5XJjasBEeZui0lRRMaVf5TJjau1EVQnei7VoKKYg/qQuyWax/9C5+d2yptXSdSBjDkrGl5/lKLQF9xN0XP/H+he/S8K7+OVVjsyiq6Jrh8LRbP1NrcNGe/XRvdR0HUeZeSsNHcjVIz5JnRd3dMH3FaUmrgxckz0FbcFdVTaHKXKdaDozNgIsgqpGZ3jYcgh0kZPkdne1GKUeroDcpK0oijYc3uZ22S4w5GhpQU9x35RxmcmMbw0onSmEcgB1Iye27GRiSV0uuO5YcdZVd9yVQ0uVRXILHI3Rpv/I1BthErrEcdzD4rgbhLg5nqB+2/Hc/PCdQ130wA3ach1Gt3neG7eZsVwNzPMw3uJe7fjucHCXD73YZIV0syq7o4nIe6j9G44bV6h0wD3CVQDprdUkF5huE9TPKy1XBWkVxgP9H/IVsAzqfIKnQa4z5OtgGdazUHRBn4tkf9Q2E66FUVP+cbapB6rYpqNQoifMtznKBxvCzJ8+EbTSnBnoZSbZ0w65wsUtpNuRlFMvvGyEtwZhvus4b6MopaCWmz++ca8SnCnoyKCz5u0ylco9EI3oXPtG/MqwU3yGa1o4+KnWSaNFimX22JYfpplX3GbkUHPj1SqBDeJWtH38yOVkkYDVYLr0ROp1FfcFmRo8SOVkhjEKqHFaHy+sbEvuQMCrCQGz0qoyXD+G9xB9MyluKK3lVYDuoZ8blzx2UrL78rn3yv6irsIGf59btZiuUEV69zkay4yEPv303K4+zue+3jGY6v6hqpqcKmqWyaP1zc6bJDgkEXooZElOmG4KULp1zbwuesnOHYhWhRkiRLY0fHc1w13A2ToOAJZxUtpAVpsZokS2M7x3LcMd8MAd90Ex85HN/wsUQLD/HobJn/YP88/Snh8A9m6RWzp170w+cM+d+1e5v7Y8dyPjbEjyP1h8cO61Ui2LhWbOJ77aRnGyixcD6h1PHdsGcbKJtJ3qegCNnQ8d1wZRsMs3CjdirxInahuR/j+EV4oxbXTTCsHees81NUlfB2HufWUl0rl60YUvWShOi/h6zjMzXodhXUd6nrRD/iEwnndW9xrkJe/P0qlKzW/sl6/5eq/xa3UdfRt4S6m8t1tkqgSm7ZvE7evNsdh9ZUR4pvC7StjT1h9ZVQLq6+Ml2H1lZG4EtwJwPqO51aygHZV3wBVDS7/47Kt3A/o2fwn6SzShAqC3o9ala6PNjppPIujgRMC3M0Sch9F4ePPoc30eym5zwMnB7ibJjimMcB93hzzDsmKHfr6D2qr7HM3SXBMQ4D7Avpt3krJfQp1CfK5tSmO9fUM6VusPoY2hT53owzcJ0lf4O1htDnzuRtm4D6BOjCl0QOo84LPTWKsDOtx0kf+3Is6XPjcJMbKsB4jfeHAO1FtEd+4k8RoGNYjpC+UOJto4+5XqD7KRPOv2MZ3BunTBOO441GKzRRUZK/YRrCS3HGGOx2Nt9iGbBrp00DjuJ8b7izDLbYhm4KK0VaCOxbNs3loMVqMOxmlZaTRHMpP8UtTjNZX3HjTyCV9JGglxjuR9JGvleBWynCZVpUy1KbVQtLXFquEFpC+ltq3mTuf9DXrvs3ceVQ2zTep5pLeYZkkuuSbyvXr3qVRQb2uqpYMVQ0u/4OyrdxqqAr+ESQrFtaKNu/3oZoRwba32Fbub6jtcFJ9RrJNeCvaeN8HPB3BvQ4VhUyqsSTbhLeEuMF2u9hW7ibA7gVuc4D7TAT3FgprVVSCW0zzkBHiuD7mzkYGvZ/0MXcG8BJwVML3e6jzTBYjS1BTgTdI3hWjUtxJyHB5SML3dyFDQxbjTlBfo0iJpGltnWishwO/pdBL1o5y1M+huEfJQ2leSdPLOtBYj0JGtfBnt9HTHruY8ddDhuI9E3LbDfcYVH8ozG013PNKcLtQW8qk6WWthvtTVC8j/NktqAZBqfF2ovSjpEVOW1CU4cmonkIc14/uKcZ9ncJ0qzg1I4PhaaiuQdYFdgcyiCctNurXGjgTncus3HbgfZIX/Ww03F+Qvb4AaN5/RPKin/WGewFyAlRVVVVVLemahZ4NSZ0e44GNqtEtS6aqBpf/EdlW7ruoI8oRqKBUqQVeB9og3IcKZNYX+ezvoM1fJQrMdqCN9n3A4yW4KxjuKhXgtoe4DUW4Q5CXuRKFT9tRBMx9wBMluCsZbiU8E22ogGsSb/C+qHBgJTxPabgjUQG/Snj4WpERJ4nXfW8UwVUJT2or8uwOTfDePVFhuUqkYrQgY1mSB/0IFE1ViRSBtNzHSJYicJvjuSdCd+eQu8gWWQMyJPyGZKH6NzueaxvuMMNNmo4X1gUoIilJ6PqNjueearjboqiipOl4YZ2LWpEmCV3vbn1sOofcRfYaXmehwoVJQte7Wx/bVm4HNN5cRu4ZqFBjktD1Kx3PPc9wdzLctBEyvk5FRqEkIeTB1sfD0f01bUSQr58DN5As2vOPjudeZLi7oUK0WQvhn4wKnibh/s7x3EsMd3fDrVQh/Kqqqqqqb6qOB2LbRodU0BWuqiVH5RaYq+obLNvKLW9buWNsK/c08tzfjNobxhlbPOTdPwlY1fHckY7n3lnM6AFgXi/HW+Z7YX8GrOJ47ijHc+9KwF1I+dXHn0fe3FUcz93X8dy7ixk9DHcBhV1g0qgTGbNOMNz9HM+9JwF3HuVVl+9ERqXjkZFqfMLjdqa8Kv6dyKh0HAqh/zrhcTtSXleKDpQSdSwar5vwuB2IboGbhvs0ik5YGaVXJNF2KIqiHO5TKCpoFZROkkTbEt1qOKnaURTUUWi8sxIetxUyQJRSB4EWzI7nvoe6PTjpvma39iW6pXNY7chQ4XPfQal9t2bkjgp+XhG1oZQtn/sWSru8LfaI0tyo1tlhtQTf53jum4Z7e0buvsjgUkrNqPWuz30dpW5mDaseCVyV4H1NqEWqz30VpXveVQY33Bo9So3AlQHuy4Z7b0bu3sjQU0r1yBDlc19E9abuz8jdE9UUKqVFBM6LaY+7MTIu96aaSH4vqqQa6em+15dq+C9x65FToa+1CKWK9LUWIKdCX2u++dfXmofG3Neai1Lq+lpz0NyqlIaidXcpfYEcr1UtoapGuCxhMr3fR6FIln1I5k19E13o/3Y8d0YZ3PdIl9LxRoA7MyN3GcNNk1rxmuE+5HhupgWZ4X5Ici+7F+JmWhjZVm45FMqd1NvtAa8GuN0LI9vK7YlSmEp5gr9ELTrHkNzb7aHOIj63e2FkW7l9UGRDKe7nyBgwhuT1ETyUynAf8HCIuy+qHVLKA10H7IRSXpJEpoCMd0Fu94LMtnIHAA9R2sD9Mep4U0dy728XMpLehzp/dS/IbCt3EGqxW4r7Ado81ZG8HblvJPW53Qsy28odijZxpaLo3kHn+TOKR43c4njuyVEv2FbuEGSISBON1IrqMXxO8fncHWUSwT0cGV7SRCO1oCixcRSPouiOMongHgncQroCrc0oKm48xefz3xzPPTuGezQycKWJglqMogC/onj0Y3eUSQT3GBRFkaZQaiOaxxMoHv34F8dzIw3JtpU7Dp3nNIUl69H5nUDx6MfuKJMQ00JGeId0hSUXofk0geJ1Cn7veO5vY7gnovOcpsDjAlSMfALF61Bc7HjupTHck1F73t4oaDkWGXS3RKlbfVUk9DPD3RpFW/UV91NkSN4GOJ2+K046BhmSt0OpeeX+lklrZ3yEDNM7AqdUgJtUHyDD9HAUXVau4zrpeN9Dhund0HXTVw7zd5DhfARyxpZb1yTpeN9ChvM9kDO2XG5SvQH8FXWX/GkFuHUou2Asxa/JIx3PrRpclmBVDS5LgMzCZRiKXDiCZJuPD9Cm6AHHcycFPuto5CF/G7jc8dymEtxtDPfwhNz30SbtAcdzuz3/tpU7FnnI3wCuCNdrieBuG+Am2fS8Z7gPhrjHoYKbrxtuc/Th3dzt0KL4MJJtet4NcKcGPuun5ru/ijYcLSW4O6DxHkayTc87AW53pINt5X6G6ve8gh5ma6OHaanCuEm7Q7yF5tWDjudOD3BPBg5GBZOvRoaqqyhdWyJpl4ZIo6Ft5X6OirO+iB6i6xtuuIVwWEm7NEQaDW0rdyoqRvs88u5uZLilWiYn5b4e4HYbDW0rdwaKLHgWdXipRed7eIW4kcZK28qdhTz8zyBv+6ZovKVqaayGjKUvFXnPDxzPnRz+o7kubkCbxbSbml3MMc/FvO4Bawav2RDXQfeBtJuabdHm9Kki3KHBayfEvRVFbKXlboXOdVyrSQ9YPcrwbbi3oedCWu5m6B7zUMzrXcBqUQZow70d3Z/TcjdCcz8ueqMLRRcWeMgN907DTbvYXg+d67gomU5g5aBhNMBdyhx3RAbu2mjjeXsR7ndNVGgU9z5Uxykt9wdoQxQX9dUBrBQVrWqrrfp96LmQlnsy2uwmKbg/GzkWfoQMvOXoZJQ6lqTw/SzDXZfktX3idBIy3iQpwDkT3V/Wp7CFe1qdiKKIkzi0ZhjuhmidVC73PJJ1j5yOIko3Inkto2LcC4B1Erx3GnrebUzyWkZx8mtmJXGkTTXcTZFRrxydCFxIMkfaFBSp/GNkxCyX+xuSOdImo/VMuVwPGW5+S7L0zUlofbAFiqgthzsARQOeFPOeBcD3HM/tLINT1TdciQ0ulmWtiax0u6ELfRUU+vw1uviv8TwvU3REVdlkW7lV0SL4eJI9EMeisOX7Hc/9MuLzNkVeA3/x8zFwQNAgY963WoCbtHjmHNQa+asI7hbIEOPrQ8OdEnrf6ihN4ziSPYhBi48dHM+dEMHdChlEfL0PHBjeZNlWbo0AN2lEywzDLUifMTUZ3gz86V3DnR5631DDPZ7kdSOmodbXEyO426ONuq+3gYMcz51hol2uIltHIdDDeCfHc90I7k7IwOPrTbTInoW8CFeRvfjrZMOdFH7BtkCYjKkAACAASURBVHK7IkOLr9cNdw4yMF1F9uKvE1Fr8yhDwAjyN/Kvos3MXBR9diXZ649MAHYJXxuGuzdaePoajQx085AR5kqSLSSj9CWwa4wBYhRKKfL1kuHOR0anK4ifv1c5nnuubeU+pKdLWtAD9pzjuZGFZm0rtz+qPZNFYx3P3ci2cmPo2TwFuU87nhtZWNdEDsUZEEppjOO5m9lWro6ea62LHm/l447nRnaNsq3cYWRP//jQ8dwtbCv3OT1zPjjeRxzPPSiGeyRwT0buu47nDrOt3Dh65nyQ+6DjuYfFcH9C9rSiN5GRejw9cy94nu91PPf/YrjHkTznPqxXkDFvAj2bmOB473Q895gY7k+Bv2fkvoAMHxPp2cQEuf90PPeEGO7JZE/PewYZWifTEz0V5N7qeG7kJsO2cqcgg2kWPY4Kbk8jXe248Sh6MGsL738jR8l00tWOG4dq5WTl3gscjdYzaWrHjUO/S9b6XLejzfEs0tWOG4c2tVlbeN+CDFuzSVc7rlzudSg9fg7pasd9gaLMsnKvQh0W55IuWvNzVOsqa+vwPwG/M9w00Zp+dGgSJ02UfouideaS7poYi4xSWVt4X4AcQnNJd02Uyz0Lzem59MyR4H3yDMdzr8v42VV9S5TIa2RZ1vdR/YOgF6IeTdhNzL+TLMs62PO80ZX+klX1yLZyA9EC5wS0aSwVRjkBeZHuczy3rsR7Vyf/N94MeM+E7b+NNm3Ho01yKW4D8hJ2oYfmZUUqb4cXTJsD75uNzfshbqkwygZ6FukzDTfOahwuFrhlgPsBatN7PEq3KMWtR4UA+6HF2J+LcMPpIlsb7oEoPHd/wx2RkHs7upanojD5rpj3hse7jeEegDYKf0LejiRpYYvQpmQgMrZcXoQbTmPYDkUcHYjScP6IaqYkMX4sQt72GuSBuMLx3DircXi8O6D5tD8yRlyGvEpJjHcLDXcwuhdeWYQbHu9OAe6L6Dz/mmRGlwWGuwy6lq9OMd5d0HneD23IfG4So8t8w10ObVL+lmK8uyIj4v6O5z5qq4bUKahOTLi16lbmf7dGv8cKKCzeRtdvsdoUSdO9ouSn9GyBFn7LGe6p6Dq6vsixWYubQs8mfDNUP2RZNP9PQddRsQ1oOeP1PaebovEORvPhNMB1PLdYLY5yuP5c2xgZ3gai3/l0YILjucU2+uVw13M817OtXC0yNPZDaQCnA186nntLL3E3NNwNDddC5/sM4AvHc4sZVMqZVxsb7gb01Ie53HA/czz3H0WOLWe8mxnueobbiX7nM4E6x3OLGa7KGe/mhruO4baj9cZVyMAWZ4TJauj2tZXjuV2GewVKT7ybHmN2XEpmUgdRnIYZ7o8MqwkZX69E13Zvcbd3PLfTtnJrG1YDMjpdjs5znNGpXO5Ojud2GO4V6Pn7KLqW1u5F7i4B7uXo+fuY+f8/LMLN6rjxtbtxPKxNjyHiyQA3rn18uV0K93Q898IAdzYyov4FPat6i7uP47m/N/P5z8hB6a9RinHL7UK5r+O5l5vr9zL0rH8ZPYPXIt6YWS53f8dzr7Gt3LqGNQXdN36OnEpxEa9VLUFKFOFiWVYORbI8jTZ3L3qet8CyrIEo4uUGNFnrgfU8zysIS66qPNlWbhO0CT+a0v3km5AFeqL5/4ORVTX4bxHaOAb/TUEhzeHwyC6UUlLKEh3mLh1iD0ZzJMydijyo4XDBLpRSUsoS3Rjg+qkvYbY/3okB7jRkjAqHC5bLDbIXRox3GvAAheHQSbkNhutGcH12mDsRGYIeQpufoDrRwrGUd8bnTjTfM4q7IGK8M4CHKYyeScqtD4w3LfdRChcHHSg6Lw23hcLraDAyTIS5s9AiLbz4S8pdZLiTDDfqOorizkaRJuFokg60ISnlBVuEPDmT6PldguwgN3gdzUGh5D8MfV4j8BPHcx+F7i5b16JUDV//NmMN/6ZB9mAUpRMe7zwUSZSly8pHaEEbx10aGfXC3InmHLxAtq5s76Ow7Kh7cpA7l8LxLkAGuyxd2d5F5yo8l5JyXyJ+EVxMb5pjo+7JQe6cCG49Gm+WbnCvo4V01D25FLfRcLN0g3sFpd1FzeMgd3YEtwkZgrN0g3sJneu4a6gYt9lww8bQJHoepa8Wu36juBPRPWY02brBPYuupbi5vDK6TpansrVMnkb3jmLcVQ23kjVFnkA1xeLmcm9xH0U1aeLmcm9xH0JRI3FzeRV6ft9Kch9A0Zxxc7m3uPegayLuOgrO50py70bXYxw3ON5K1oy5A62D466jVdGYK839B3LkxD2Leou7synKXtX/sJIaXJYHcp7njYl5fX30EKoBLvE873cV/Zb/o7Kt3IrAkcjQskUfYbvQQihriGJWdaLNaJVb5VZSSY0NvcHtIHvI7ZLEfRwZVTdF0ZCVaHudhNubakdz+r/B7SJ7aPO3jduGQq//l7iQrIV3lVtVVVVV9c1VG4qqiasVV9X/kCpWNNeyrNGoMOMTnuftV5EPXYJUV1e3Oj0e0Zm1tbWRLVtNIbkRKGXoAPquwn1VVVVVVVVVVVVVVVVVVVVV2TUb+L7juW3BP9bV1fVHqY3LoejCr2pra2ObhFS15KiSoZZ+G9S+as32jVddXd2KKDf/WJQn3WpeGlRXVzcV1Rq5sba2dp7JKTwdpQxlCSmuqqqqqqqqqqqqqqqqqqqq6r+j2Y7n5qX+1tXVbYtqxO2Poie7UI2vQXV1dS8DNwOP1tbWVlsHL6GqSISLZVn9Uf2PVYHLPc+7oOwP/Zarrq5uO1QjwM9hjlJLW9Pi5ttHHD+1raEpXFcjjRYDnwJ1K6695uAf7rrNQQOWGdx/wOCa/v0HD6L/oEH0r9G/AYMHsdSAAa31U2e2vnDh1Y2dbe3hAq5p1NTN/dGay/xwl20OzOPW9LB97qKpM1tf+PVVTV3tHVnqHxRwV1ont+xauww7cMDSNf2C3AE1NfQbNLCHO2V6ywsX/rW5q70jrrhcUu4nQN1K6+a+s9bwYQcMWLqm/4DBNf2CXJ3rgSw1YEDrwknTW1686K/NXR1lcRsN97Pvrv/D5XM7bbV/LHfwIJbq369l4aRprS9e9LeWro7OLPUeorgr5Hbeer8BgwcV5c6fOLVl9MXXtHV1dGap9+Crwed+b8MfrZjbccv9+i9d029AzaB47teTm1+6+LoOr7MzS72HIHcMMHbljX600g922HLf/ppX/frXDIzmfjVp8UuXXNfldXaVqqtUTPVmvGNXrl33uz/YfvNRA5au6dd/cE0/fy6FufPGu02jf389XmdXljoTQe4YYOwqG6+78prbbT4yyB0QvHcYbsOMOfWjL7nuw9b6xm3JVvMBVCtmDPD5Kpust8qa2/54nwKuf+8YPIil+vVraZgxu/6lS677uK2haVgFuGNX3WyD1b4/bNO9I7nm31L9+rU0TJ+18KVLrhvT1rh4mzK4C/3xrvbjDdcYOmzTvQYMHtSv/+CapeK4i6bOWDj6d9d/2t7UPIxsNS7yuKtvvtHQNbbeZM8BS9f0618zqBh3wehLrq9rX1wWd0E3d8vaNdfYcuM9zP15Kf+eHOI2L5w8fcHo310/tqO5ZRjZU87mG+4Xa2y58Q9W36p2xIDB4vrXUQF30vT5o39/3Rcdza1bV4S79SZrrb7FRrvlc/PZ4k6dO/p3N4zvaGkdRvbONfN87tBhm6692uYb7lrAHTyI/oMGdnMXTJwyZ/SlN0zobGnbqhLc72+z2Tqr/niD4VHcATWD6DdoIEv169c8/+sps1++9IavO1vL4s71uWtut/m6q2y6Xiy3f80grKWWap43YfLMVy69YVJnW/tWZO/UM8dwx625/Rbrr7rJejv1HzwolotlNc+fMGnGK3+4aUpnW/uWleD+YIctNlhl4/V2DF6/Udx5X7ozXvnjTVO72ju2pHStsDjNNtzxP9hpq41W2Wid7QcsXdO//+Aay59LIe7iueMmTn/1Mmd6mdxZhvtlbuetN155wx9t282tMfM4NN65X3w95dXLbp7d1dGxBdnThn3u+NzwrTddeYMfbRPkDqgZRL+agXncOZ9PmPTqn2+e63V0lsOd6Y93rV222ex76/9wWJgbvH6BxXPGfjX51ctvned1dG5eBneGz/3hbttu/t1119o6kmvOOdA867MvJ75++a0Lvc6uH1eCu/bu22250jq5LWO5NYPA85pnfjru6zeuvG2R19m1OdnTd6cDY7Csr9befbutV1ont/mApWv6968ZFMud96U7/vUrb7u/val5ddR0YM0SjLBWczx3JkBdXd1SqOD0yejcWTHHNGE6adbW1jZlGmlV32hVKsLlVGRs6SJ7G8clRnV1dRuiYnKlHjw1H/z9wZq2hqY0ES2T0U3rE/O/Y1C3h866urqNUTehUjemQV89+9qgzrb2rAtqD3VAec3x3K66urpNUcG+ktzxT40e1NXeUQ53J+BNw90cFSgslWc/6IvHXhjU1d6RdcPkoc467xruVqggY0nu2IeeHdTVURZ3GPCB4W6DijmW4tbUPfDMoK6OzqzcLlTAeIzhbofmc0nup/c+OairozPugZKEuznwqeHuiAqMlsrvr/n4zscGeZ1lcTdBrYK9urq64agIbEnuR7c/XON1xjVnSsTdGPjccHdD9U5Kcj/4+4PlcDtRAePxhrsH8EgSbv2UmYNa6xv3ysjtQAWMJxjuXqg4YknuwknTBrU1NO1RBnd94GvDHYU6fJTkLvh6yiptjYsj21In5K6LugB5dXV1+6PiiKXSRGvmfTVp5fam5hEZue2oY8pkwz0IdXApyZ3zxdertC9uzmoMbzPcKYZ7KCqyX4o7ePbYrwZ1NLdkNf63okLR0wz3CNRhqyR35ifjVutobs1SdDmKexSKZi3JnfHx52t0tLRm7dLTjM7zdMM9DjguCXfaB3VDO1va0m4efC023BmG+9Ok3Knvjhna2dr2gxLvi1MTuo587kmorl1J7uS3Plqzs619rRLvi1Mn6qQ003BPTcx948MfdLa1h4uIp+EODWzYzkjKnfTaez/oau/Iyu1AKRA+9xyS/b5LTxz99lpd7R3hYu1J1W64swz3fBKO9+sX31y7q6Mja+epMPfXSblfPfv6Ol5HZ9bORG2GO9twLwZ+nIC79Jf/ebUcbqvhzjHc3yfkDh731Oj1vM6urNkLLcCaAe6f0HqrJPeLx19cv0zu9x3PnWu4l6P1Vknuqpuuv95Gh+y1P7Dt9RuPstAeN6ka/WvI6CrgZ5TeDy4D7Aw8V1dXt0M10mXJU9kGF8uyNkGtvACu9zzvs3I/cwnQX0lYbK9pzvxiLy9CG793MEYWx3MXFHn/NSS0Ai+eU+xj8tSIPB7NaL40Apc6nvtK4D3XJuU2zS2Le4njua8H3nMdCa3ti+ctzMIdgKIeLnY89+1s3MTjbTDcFsOtB37jeO57AHV1dRZqVZuI2zxvYVLjQwPypPnjrQd+5XjuRwHuDUm5i7NzFwG/dDx3TIB7Iwm9ZS3zFyXl1iNPqc9dCJzveO5nWbjNC+oTYqmn5/cdaLjnOp471nCXQue5t7itaLwLgF84njsuwE083kVTZiQ5zx4989nnzgfOdjz3K8Pt10tcf7xthjsPOMvx3AkBbuLzXCb3DMdzJxpuf3T9JuNOnp6kQ0IUdy5wuuO5kwx3QBpu/ZQZWblzgNMcz51suAPRfbLS411kuO2GOxs4xfHcqYY7CD2Pko13auLxhrmzgJ8HuDXo+Zt0XpXDPdnx3GmGOxgt6Cv9+y5Cv6n/+84ETnI8d7rhLoO8tgnHOzPJpslD98U59Ix3BvCzAHdZ1Co36XiTcheha7YdrTemAT91PHeG4S6H2sgmG+/UsrjHB4wey6M2sgmvo9TcDlQGYCpwXIC7AvA7Ekbn1E9N9Pt20fP87UDjnYzG6xs9VgQuJvl1lJQbHG9/1InvuAD3u8CvSTzeVNz59Py+LnBswNiyMnABiedV4vO8CJ3nLvT7TgSOCRg9VgXOJeG6rj7Z9duFrt95yGjYH5gQ4q4OnJWUm2K8Ptcf71eG6xtbhqKSDUmjZGqQU2of1NnoeAp/o0702y4McL8EfuK/oa6ubk16IluScjcF9kTOxqqWIJVlcLEsazXUNm5p4AN04/ifVl1d3VrAjiSsZbP1z4/i6xffoq2xu2bSl6hV8ePAh47nJnJj19XV/QjYhoStzLY+7SgmvvJOkDsetbR8D3gLLXrmO57bXoK7HoqGSMTd5vSfMOnV92lf3BzmvoOic+Ym5G6E2ion2mhvc/pPmPzGB7QvbgEtOMYDrwa4/ng7SnA3BmqTcrc981imvj2G9uZu7rgA952kXDTW9ZNytznrWKa++wkdLa0+94sQ1z/PpbhbIK9msvGedRzTP/gsyP08xJ2XkDsMyCVhAmx79nFMP+Z8OlvbfO7YAPddNN4FCbjbIa9mIm139rE8fNyvgtzPUNTV2+haSsrdEUjs4d/+nON55IRf0dnW7nPrAtz3U3CHk6Ld77r77MxnDz9Hw7RZoM3Ya+hcvxvidpb4qF0p3d6+W+uN2oXPH3mehhlzQEacIPeDFNw9SFEja719d+Hzx16kcWY391U0p98BPkzB3YsUKUnr77cbXzz+Ek2z54GMdEHuRym4I0mRwrH+Absz7qnRNM2eH+R+gZ4JPndhAu6+pEgt2OCA3Rn/9CsslkG+GT0Txhnuxym4B5Ai9HyDA/fgy2de9Q3yQe6byMmRlHsQKToabXTwHnz17Os0z18Iihzxz/ObKHo1KfdQUnT42fDgPZnwwps0z1/kc+PGW2rdcRgp1o8bHboXX7/4Fi0L60ERK0FucLyluEek4dYetjdfj36H1kUNPvdl9Ox/A6UlJ+UeRYo2sRsftg/uy+/SWt8IcuL4430d3avnJeQenYp7xEgmvfY+rQ1NPvdlNF6fOxdYlIB7LCnqMW58xEgmvfEhbeI2GO6XGbjHpeIeOYrJb35Ee1MzyJgT5H6WgnsCKebVJv+3L1PeGRPkjjZc/7k0F6hPwD2RFOPd9P/2Y9q7n/rr50X0jNd/PiTlnkSKebXJ0fsx/YPP/HXswgD3tQB3keO5paIyfk6K8W529P7M+GgsHc2tPtc/z6+i6ykp95Q0XKNlkbN1mG3lhqJooCbD9M9zKe7ppN9nL4OMjlWDyxKmzDVcLMtaET1EatEFsKPnebMq+N2+lTLpF0+TYnHd2dZO/fTZDc3zFx62xzGHZ7rI6urqdkJGmizcg/Y45vAXMnJ3QekIibkdrW00zJjT0Dx/4b57HHP4K6WPiOSOAB5My22cMaexae78ffY87sjXMnL3Qgax5NyWVhpnzm1smjN/xJ7HH/l26SMiuaOAu9JyG2bOaWqcOW+XvU886r2M3P2BO9Jw25tbaJw1t6lx1ryd9v7pUR9m5B4E/JMUdSR8bv3UWduNtI/9JCP3MODW1NyZcxfXT5u11Uj72LEZuUeiommJ60i0L26hcdbc5gUTp2623xknjs/I/QmK+EjLbZn/9ZSN9j/zZ19n5B6HIiASGwPaFjfTNGte6+yxX6138AWnTcrIPRH4GynqKhhu+6xPx691yK/PiOwul4B7MnA1KYwQbU2LaZozv33ae3VDj/jdubMzck8FriBF3r3hdkwc/c6qx1z123mlj4jkngH8hRTGj7bGxTTNXdA19uHnVjr5H1clDkkMcc8G/kwKI4Them9fc8dy5z1/T6bc+bq6uvNQJELiroI+97nzL1/m0rEvNpc+IpL7S+BSUizqWxuaWDxvYdfjJ1209BXT32stfUQk9yIUAZF40ybugs6797WXcTw3K/e3wG9J6AAAaK1vZPH8he1372svG+4YkoJ7KXBRmmNa6xtZPG9h29372cuVwf0zKR2ZLYsaaZ6/sOXu/ezly+BeCfwiA3fx3fvZK5RymBXhXgOckY7bQPOCRU1372sPKYN7IzIGpOPOX1R/9372d8vg3oqMLmm5C+/ez/5eAodKHPd2ZFRLrOaF9bQsWDT/7v1+vkoZ3LuQ8TI5d8EimhfUz7ln/5+vXgb3fmQkTqtptbW1Q7MwDfchZIxPqym1tbVZUz+r+oYqU4SLZVnLA88iY8tkYPeqsaVb80l5XvsNHMCQ3Br9huTWcP9L3Eybl6zc/oMGMiS3Rv8huTWmlMlNZbHuP2ggK+TW6L9C+eNNx60Z5HPLHW/ixa3PHZIb2n9IbmifcgcMrqkUN1VNFsMdOCQ3dGqfc9caOmDIWkMzbcYD3FTW7wFL1zBkraH9h6w1dPp/iTujTG6qIjQDlx7MwLWG9huy1tCZpd9dlFsqaiCKaw1Za2g5z7j03GWWZuAyS1tDckMzGT0C3FSLVMNlyPFDi+a7Vpy77NIMXHbpju3POX5Rmdw2UhhcDLc1q7ElxE1scDHc5qzGlgC3lRTP4EHLLcOg5ZZZnNXYEuC2kMKAaLiNWY0tIW5iA+Kg7yzLoO8s25jV+BDiJjYgGm59mdy56PdNHD1Vs/yy1Cy/7KIyuX46WeLryHAXZjU+GAXT5xJyl6Nm+eUWlMmdRU+6URpuyWjsXuLOy2p8MJqJnkeJ17KDV/gOg1f4TrncWam5Q5Zn8JDl51ZgvF2kXMuiFOxyNCsjt5xnflXfUKWdBFiWtQyK4NgSTeLdPc+bXOkv9i3WOBTCmWYT46eajCuD+xmQ1tvsp158VQb3E5QPm5Y7pra2NpN33OgjlO+clvtBbW1tOfP1fTTv06gLeKe2tracDbmfBpSW+3ptbW05G9Q30WIzjTqBl2tra+eUwX0dhZCm5T5fW1tbzkbxFRSKnUYdwDO1tbXlbBRHoxD/tNwnamtr037foF5AG4k0agceqa2tLWej+Bxa0KflPlBbW1vOhu0ZUhoC0Pe8t7a2tpwF31MZuf+qra1NZagJ6XFSGrbQBu+fZRbteywDtwX4e5ncR0hpQDTcW8tggoo/p+U2o6i2cvRghmOagZvK5D5AtvHeWCb3vgzcxaiOUTm6h/TzeTGK4itHd2fkXlsm9y5SGohRusU1ZXLvJP19sglFLZajOzJwG1G9xnL0z/8S9zb0PE3LvapM7q2kf+5Xgnszeq6l5V5ZJvemjNxyx1vVN1CpDC6WZQ0GnkB1DuYhY8uXvfHFvq0yi8XT0eIiqZqBM8pZaAa4aTZt/y1uC3BmVqbhdmXgNv+XuK2oUFg53E4UapuWe3YFuGdm4J5TJrcDnbM0Xuc2UoZBR3DbST/eNuC8Mrlt6Jyl5Z5fJrcVnbM057m9AtwWVLQvLfdXZXKb0XdPy/11mdzF6Lun5aZKY4jgNgEXpuR2oBzycrgN5jPSzOcOlKZSDrfefEYabjvw+zK5C4E/pOB6aLx/KJO7ABVzTcNtp6fRQVbuXJSqlobbhtLMyuHOQZuRNNxW9F3L4c5CxoQ03BaURlgOdwYyFiXldqF1TlkGCOMcujkDtywDk3GG/Z3k6+cudG+7oUyuizqqpeE2UKbBtLa2dgIybiXldqLaLWUZiP+/vXuNlaOs4zj++7eloHIpt+XS0pYoUfGJCQpGxFIFq0AiXigKiqISfWHUF14SE31B9I2SEKJRowYTUSOKFULFQuWmXAqFhksvlAKC0GLxUVEQ6IWe8/jiefYwO93LnDPPmXPa/X6Skz0zOzu/Z/bZPWf2vzPPOOcelXTlOHP/qziAbJ3chyUtG0fuLsXPmlfUzH1IcbzRql8u7VI82upXNXPXSbpunLnPKPYN9jIzL7744koLmtlsxRfsEsU33pIQwoTGSdjbtVqtzd77xxVHuJ6p3qcojCq+ES9yzq3IkPuk9/4pSWdWyN0m6dPOuZUZcp/w3j+tOLJ2v9wRxe39pHNuQmPGlHIf994/ozgQ5qwKuRc4527JkPuY994rvhcG5W6TdL5zbkJj1ZRyH/HePyvp9Iq5H3XO3dFjmfHkbvLeP6d4KfAquR9xzq3KkLvRe/+C4sCu/XJ3pdwPO+dWZ8h9yHu/XfES5INyX5L0IefchMbIKeWu997vVBxAt98h1S8rbu/ZzrkJjZFT5L1fp9h3p1TIfUnS+51zD2TIXav43J5cIfdFSWelHZi6uQ8o9uvbK+ae6ZyrffU97/19iqckvG1A7k7Fb7ne55zbmCF3jeKYNSdWyP2fpPc65+ocbdnOvUdxbKC3Vsh9XtKS9EGgbu7dkuYoDjTeL3dHyj09ffCpm3uX4kDQgy55ukPxQ9NpzrknMuTeqTjw9aBLnu5QPET+NOdcndNq27m3Kw70/aaKue+qeXRpO/c2SfMkHT8gd3sht85ppu3cPysO5P6GCrn/lrTYOVfndM927q2SXqt4aexBuf+SdGrNo1rbuTenzOMG5G5LuYtSYapu7k2SXq94yfVBuV5xeyc0xlUp90bF19Sx6n8q1TbFD8WLU+Gxbu5Kxffuggq5WxW3t/YpJ977GxSviDO/Qu7Tittb5+jhdu71kt6i+B7ul/uS4tWzFqeCdt3cP0o6SdLcCrlPSXp3zaOW27nXKV4E4qgKuU8q/r2qfBlK7DkqFVzMbKbioZxnK+6QnRFCqP0BY2+WPjz9XtIRin/AtynuWO5U3AEZUSxgnZfjw3ghd633/mpJRyruHJRzdxVyb8uY+6D3/hrFPyq9cq9R/DB+Z8bc+7331ypu74IuuS8XcmsXAQq593nvl6v39u5UPMz83BxFgELumvQH/Gh1396dioeZn+ucuydj7r3e+xWK/6wWKP5zKOdeJWmpc25NxtzVacegvb3F3Hb2VZLOyVF8KOTelXaE5irukLyo+Fpqb+sOxb+JS3MUHwq5q9KO31zFqyWVc7crfvtxjnMuS8G71Wqp1WrdmXawe+VuK+Suz5h7u/f+FsWdr2P0Sv8Wc3+dcic0IHGP3L+kD1Dz0k95e19SPLz9nBxFj0LurYUPjPO0++v5RcVv1c7JUfQo5N7ipRRvigAACXpJREFUvb8jZc5V5/a+rPh//RcpN8tRqyn3Ju/9KsW+PVqd/dvOvSLl1jm1tZx7Yyq8zO+R+3wht86prcXc0Gq1VqZC03zF/w3l5/l5xW+Jl+YothRyb0iFtQUp94VS7nOKpxEszVFsKeSuSIXEBYr/g8vb+99CbpZTz1PudalwukBxH6uYu0ux0HJ5yq1dbCnkLk+F4l65zyoefXBuzVOIi7mjrVbrWu/9+pTbUufruX0UwE8U93PqjK1Vzr3Ge7+hT+6/JP1Y8cud2kWeQu7V3vuHFfetDu+S+0/F0zXOy1HkSbkjrVZrmfd+U8o9rJQ7ojgmx48Uv0SrXeRp53rvlylefGSh4va+WMp9RvEonvNzFHkKub9TvHTzQkmHqvP13M79vqSP5SjypNxd3vvfKl6q+lhJh2j353lryr0gR5GnkHulYlGjW+6oYmHpe5I+kY4ezJX7a0mbU+7BXXK3pNxP5iguYXqqdJUiMztVcWwDKe7w96v6bQ4hnJShbXuN9evX76P47fFRadZWSXem0xcmM3d2yj0yzfq7pFUN54aUe1dDue9U3BFq566qOfZCldx9Fbe3nfu04vY2kdve3pGUe3cDuful3FbK3ZJy64w1MZHczYpj40x27qtS7uFTkLtIccdvRPFbl9XptLbJzH214va2c5+UdE9DuYsUd/x2pdx7G8h9TSH3ZUl/k7RmCnKfUBxjarJz90+5h6Tcx1NunbFTquQeoPi6morcRYo7ujtT7n0N5B6ouL3t3L9Kur+h3Pb27lAco+2BBnIPUtzeOYrb+6jiWG2TnTsn5R6Uch+RtLbB3DmKz/MmSesayD1YcX9jjuL++CZJ6xvIPSTlHpRyH5a0oYHcQxWHMWjnbpT0UEO5pyhesXB7ysxS9B+Qe5ji9rZzN+Qq+g/IPVzxaNN27vp0CtBk57ZS7gEpd12uLxvGmbvWOTehqz2OM/eIlLu/4hdKa3N9yYHprWrB5V2KgzpW8WQIYWGNNgEAAAAAAOzRKhVcAAAAAAAAUN24LwsNAAAAAACA/ii4AAAAAAAAZEbBBQAAAAAAIDMKLgAAAAAAAJlRcAEAAAAAAMiMggsAAAAAAEBms6a6AQAAAHuK2Sd8JkiSzZipvrcz4+2MnsvNqPT48vze66u2nu7rtDSdbs26z0+3M6zH/LFp5VmPda6vajtnVryd1fP+GX0fJ0kzbbzrrHnb3tZ2rnU+J4Pu321+qf2D7+/c7lfuLy0/4H575SnUDHXOa2eMTfe6v/340jrb3yKPvS52W1+P+8fWN+j+zjwLIf4SRtP0aMe0Bt5fuh0d53r6rMtK66zcltGRNNk5PTZ/pD1dXr5zfig9bmz+SHn+gLwJtiOM5ZVuS/OLv4+OVHvsaHl+j3WPrXe3+f1zRnuuL5Tub0+HHst1zh8dDd3XM9JjfsX1dz43net6ZZtKGen1ODJ2qwlOT/RxqR2q9/jCU6Afh78V/rp14ggXAAAAAACAzCi4AAAAAAAAZEbBBQAAAAAAIDMKLgAAAAAAAJlRcAEAAAAAAMiMggsAAAAAAEBmFFwAAAAAAAAyo+ACAAAAAACQGQUXAAAAAACAzCi4AAAAAAAAZEbBBQAAAAAAIDMKLgAAAAAAAJlRcAEAAAAAAMiMggsAAAAAAEBmFFwAAAAAAAAyo+ACAAAAAACQGQUXAAAAAACAzCi4AAAAAAAAZEbBBQAAAAAAIDMKLgAAAAAAAJlRcAEAAAAAAMjMQghT3QYAAABMATP7XAjhp1PdDnRH/0xv9M/0Rd9Mb8PUPxzhAgAAMLw+N9UNQF/0z/RG/0xf9M30NjT9Q8EFAAAAAAAgMwouAAAAAAAAmVFwAQAAGF5DcQ79Hoz+md7on+mLvpnehqZ/GDQXAAAAAAAgM45wAQAAAAAAyIyCCwAAwJAws0PM7EYzezTdHtxjuUvMbIOZbTSz75uZNd3WYVS1f9KyB5rZ02b2gybbOGzM7Awz22Rmj5nZ17vcv6+Z/Tbdv9rMFjbfyuE1qH8Kyy01s2BmJzbZvmFX4f0z38xuNbP7zWytmZ01Fe2cTBRcAAAAhsfXJd0cQjhO0s1puoOZvUPSKZLeLMlJOknS4iYbOcQG9k/BtyX9pZFWDSkzmynph5LOlHS8pPPN7PjSYhdJ+k8I4XWSLpP03WZbObwq9o/M7ABJX5K0utkWDreK/fNNSVeFEE6QdJ6kHzXbyslHwQUAAGB4fEDSFen3KyR9sMsyQdJ+kmZL2lfSPpL+0UjrUKV/ZGZvlXSEpD811K5h9TZJj4UQHg8h7JT0G8U+Kir22TJJp3NEWGOq9I8Ui5OXSNreZONQqX+CpAPT7wdJ+nuD7WsEBRcAAIDhcUQIYaskpdtWeYEQwl2SbpW0Nf2sDCFsbLSVw2tg/5jZDEmXSvpaw20bRnMlbS5Mb0nzui4TQtgl6TlJhzbSOgzsHzM7QdIxIYTrmmwYJFV7/1ws6QIz2yJphaQvNtO05sya6gYAAAAgHzO7SdKRXe76RsXHv07SGyXNS7NuNLNTQwi3ZWriUKvbP5I+L2lFCGEzB1JMum5PcPkSr1WWweTo+9yn4uRlkj7VVIPQocp743xJPw8hXGpmJ0v6pZm5EMLo5DevGRRcAAAA9iIhhPf0us/M/mFmR4UQtprZUZJ8l8U+JOnuEMIL6THXS3q7JAouGWTon5MlLTKzz0vaX9JsM3shhNBvvBdMzBZJxxSm52n3Ux7ay2wxs1mKp0U820zzht6g/jlAcRyqP6fi5JGSlpvZ2SGENY21cnhVef9cJOkMKR5daWb7STpM3f/27ZE4pQgAAGB4LJd0Yfr9QknXdlnmKUmLzWyWme2jOGAupxQ1Y2D/hBA+HkKYH0JYKOmrkn5BsWXS3CvpODM71sxmKw7quby0TLHPlkq6JYTAES7N6Ns/IYTnQgiHhRAWpvfL3ZIotjSnyvvnKUmnS5KZvVFx/LB/NtrKSUbBBQAAYHh8R9ISM3tU0pI0LTM70cwuT8ssk/RXSeskPSjpwRDCH6aisUOoSv+gIWlMli9IWqlYdLwqhLDBzL5lZmenxX4m6VAze0zSl9X/ylLIqGL/YIpU7J+vSPqsmT0o6UpJn9rbCpa2l20PAAAAAADAlOMIFwAAAAAAgMwouAAAAAAAAGRGwQUAAAAAACAzCi4AAAAAAACZUXABAAAAAADIjIILAAAAAABAZhRcAAAAAAAAMqPgAgAAAAAAkNn/ASjMhUMaeWfWAAAAAElFTkSuQmCC\n", "text/plain": [ - "
                          " + "
                          " ] }, "metadata": { @@ -280,12 +283,15 @@ "\n", "# Plot time series graph\n", "tp.plot_time_series_graph(\n", - " figsize=(6, 3),\n", + " figsize=(18, 5),\n", + " node_size=0.05,\n", + " node_aspect=.3,\n", " val_matrix=np.ones(link_matrix.shape),\n", " link_matrix=link_matrix,\n", " var_names=None,\n", " link_colorbar_label='',\n", - " )" + " label_fontsize=24\n", + " ); plt.show()" ] }, { @@ -297,16 +303,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 6, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -326,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -341,17 +347,7 @@ }, { "data": { - "text/plain": [ - "Text(0, 0.5, 'Predicted test data')" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5yUdd3/8deHg7AquIiogCKoSFao0Eoq6o2lN2oCiuStlVmZiFZmGUZ3pbfe3QlimacSRDN+oZWKyMEkEzyglSxnAVGOD9lFQTkItrocPr8/5tplZndmdnZ3Zq5rZt/Px2MeO9f3+u5cnx1xPvM9XN+vuTsiIiKptAo7ABERiTYlChERSUuJQkRE0lKiEBGRtJQoREQkLSUKERFJS4lCRETSUqKQomBm683sPTM7KK7s22b2Ytyxm9lHZrbLzCrM7Ndm1jru/ItBnZPrvPa0oHxQcFxqZo+Y2btmttPM3jKzH6e4Ts3j5iz/ve2CGD4M4vhhA/WPNbOZQbzvm9mdcecONbOng5g3mNlXshmrFD4lCikmbYDvN1DnZHc/GPgP4L+Ab9U5/xbw9ZoDM+sMnAZsiatzN3AwcCJwCDAUWJPsOnGPO8mu/wF6A8cA5wA3m9n5ySqa2QHA88Ac4EjgKOCPcVUeAKqBI4CvAr8zs89kOV4pYEoUUkzGAz8ys9KGKrr7auBV4JQ6p6YA/xXX0rgCeJrYB2mNU4HH3H2bu+9z9zfd/cnmh98oXwf+N4hhJfAQ8I0Udb8BVLr7r939I3f/2N2XAgQtsEuBn7v7LnefB0wHrsz5XyAFQ4lCikk58CLwo4YqmtmngLOA1XVOVQIrgP8Mjr8OTK5T55/A/5nZN82sd3MCNrMxZrY91SPF73QCugFL4oqXAKlaAacB683sr0G304tm1jc4dwKw193fyvC1pAVSopBicwvwPTPrkuL8QjP7CFhJLKn8NkmdycDXzawPUOru/6hz/nvEWh7fBVaY2WozuyDJdeI/9AcnC8bdx7p7aapHir/h4ODnjriyHUCHFPWPAi4H7iWWYGYBzwRdUgfXeZ2GXktaICUKKSru/gYwExiTokp/Yh+O/wV8HjgoSZ2pwBeIJYT/l+QaVe7+S3f/HNAZ+AvwhJkdGn+dOh/6s5v8R9W3K/jZMa6sI7AzRf0qYJ67/9Xdq4G7grhPDF6rY5366V5LWiAlCilGtwLXAN2TnfSYvwD/INYCqXv+38BfgetIkijq1P0Q+CWxhNOrsYGa2X/XmR2V8EhxzW3AJiB+dtbJwPIUl1kKpFom+i2gTZ0utHSvJS2QEoUUnWCg+s/ADQ1UHQuMNLMjk5z7b+A/3H193RNm9nMzO9XMDjCz9sRmWm0HVjUh1l/WmR2V8Ejzq5OBn5lZp2C85Rrg0RR1/wicZmbnBoP0NwLvAyvd/SNiLajbzewgMxsIDKOBBCktixKFFKvbSd6tVMvdlwEvAaOTnKsMZgAl/VXg98Q+bCuB84AvuXt8C2BJndbBb5ryR6RxK7EpuRuI/Q3j3f05ADPrEVyzR/C3rAK+BjwIbCOWCIYG3VAA1wMlwGbgceA6d1eLQmqZNi4SEZF01KIQEZG0lChERCQtJQoREUlLiUJERNJqE3YAuXDYYYd5z549ww5DRKRgLFiw4H13T7qiQVEmip49e1JeXh52GCIiBcPMNqQ6p64nERFJS4lCRETSUqIQEZG0lChERCQtJQoREUlLiUJERNJSohARkbRCSxRmdrSZzTWzlWa23My+n6SOmdm9wVaTS82sfxixiohE2bPPPsuIESNy9vph3nC3B7jJ3ReaWQdggZk97+4r4upcAPQOHp8Hfhf8FBFp8Xbt2kXnzp2pro5tLfLxxx/Tvn37rF8ntBaFu29y94XB853ENruvu3XlMGBysHXlP4FSM+ua51BFRCJn3LhxdOjQoTZJLFy4MCdJAiKyhIeZ9QT6Af+qc6o78E7c8cagbFOS1xgJjATo0aNHLsIUEQndunXrOPbYY2uPv/Od73D//ffn9JqhJwozOxh4Crgx2Kg+4XSSX0m6JZ+7TwQmApSVlWnbPhEpKu7OiBEjmDp1am3Ze++9x+GHH57za4c668nM2hJLElPcfWqSKhuBo+OOjyK2R7GISIvx0ksv0apVq9okMWnSJNw9L0kCQmxRmJkBDwMr3f3XKapNB75rZn8iNoi9w93rdTuJiBSjjz/+mOOOO47Kytj34549e/Lmm2/Srl27vMYRZotiIHAl8AUzWxw8LjSzUWY2KqjzLLAWWA08BFwfUqwiInk1YcIESkpKapPEK6+8wrp16/KeJCDEFoW7zyP5GER8HQe+k5+IRETCt2nTJrp161Z7fPnll/PYY48R64QJR+iD2SIimZi2qILxs1dRub2KbqUljB7ch4v71Z1RX9jatGnD3r17a483bNgQiVmcWsJDRCJv2qIKfjJ1GRXbq3CgYnsVP5m6jGmLKsIOLSsmTJiAmdUmiV/96le4eySSBKhFISIFYPzsVVTt3ptQVrV7L+NnryroVsXHH39MSUlJQtnmzZvp0iXp1tWhUYtCRCKvcntVo8oLwdChQxOSxI033oi7Ry5JgFoUIlIAupWWUJEkKXQrLUlSO9rWrFnD8ccfn1C2d+9eWrWK7vf26EYmIhIYPbgPJW1bJ5SVtG3N6MF9QoqoacwsIUlMnz4dd490kgC1KESkANSMQxTqrKennnqq3jLgsdn/hUGJQkQKwsX9uhdMYqixd+9e2rRJ/Jhdt24dPXv2DCegJop2e0dEpEDdfffdCUni8ssvx90LLkmAWhQiIlm1detWOnfunFBWXV1N27ZtQ4qo+dSiEBHJkiFDhiQkiWeffRZ3L+gkAWpRiIg02+LFi+nXr1/tcc+ePVm3bl2IEWWXEoWISBMlm9q6Zs2ahB3oioG6nkREmmDy5MkJSeL666/H3YsuSYBaFCIijfLRRx9x8MEH1ys78MADQ4oo99SiEBHJ0DXXXJOQJKZMmYK7h5okpi2qYODYOfQaM4uBY+fkZEVdtShERBrw9ttvc8IJJ9Qet2nThurq6lA3E4L9y6/XrKxbs/w6kNWbE9WiEBFJo2vXrglJYunSpezevTv0JAHpl1/PJiUKEZEkZsyYgZnx7rvvAnDppZfi7vTt2zfkyPbL1/LroXY9mdkjwEXAZnf/bJLzg4BngJoJyVPd/fb8RSgiLU11dTXt2rVLKNu2bRulpaUhRZRavpZfD7tF8ShwfgN1XnH3U4KHkoSI5MzPfvazhCRx33334e6RTBKQv+XXQ21RuPvLZtYzzBhERCorK+nePXHwN+qbCUH+ll8vhFlPp5vZEqAS+JG7L09WycxGAiOByGxILiLRd+qpp1JeXl57PG/ePAYOHBhiRI2Tj+XXo50uYSFwjLufDNwHTEtV0d0nunuZu5dFcc9ZEYmWl19+GTOrTRJnnHEG7l5QSSJfIt2icPcP454/a2a/NbPD3P39MOMSkcK1b98+WrdO7NfftGkTRx55ZEgRRV+kWxRmdqQFk5XNbACxeD8INyoRKVS/+c1vEpLErbfeirsrSTQg7OmxjwODgMPMbCNwK9AWwN0fBEYA15nZHqAKuNwLaaNZEYmEYtxMKJ/CnvV0RQPn7wfuz1M4IlKEhg0bxvTp02uPZ82axYUXXhhiRIUn0mMUIiJNVXczoR49erBhw4YQIypcShQiUlRaymZC+RTpwWwRkcaou5nQddddV7SbCeWTWhQiUvBa4mZC+aQWhYgUtJEjR0ZuM6F4+dhYKNfUohCRgrR69Wp69+5dexyVzYTi5WtjoVxTi0JECk737t0TksSSJUsis5lQvHxtLJRrShQiUjBmzpyJmVFZWQnA8OHDcXdOOumkkCNLLl8bC+Waup5EJPKSbSa0detWOnXqFFJEmcnXxkK5phaFiERa3c2E7r33Xtw98kkC8rexUK6pRSEikVSomwnFy9fGQrmmRCEikTNgwADmz59fe1xomwnFy8fGQrlWOKlZRIreK6+8gpnVJonTTz9dmwlFgFoUIhK6ZJsJVVZW0rVr15AiknhqUYhIqO65556kmwkpSUSHWhQiEgptJlQ41KIQkbwzs4QkMWvWLNxdSSKilChEJG+eeeaZhGU2OnXqhLtrx7mIy6jrycw+C3waaF9T5u6TcxWUiBSXZJsJvfbaa5x++ukhRSSN0WCLwsxuBe4LHucAdwJDcxyXiBSJkSNHJiSJtm3b4u5KEgUkk66nEcAXgXfd/ZvAyUC79L+SGTN7xMw2m9kbKc6bmd1rZqvNbKmZ9c/GdUUk97Zu3YqZ8dBDD9WWbdu2jerq6hCjkqbIJFFUufs+YI+ZdQQ2A9naV/BR4Pw05y8AegePkcDvsnRdEcmhVq1aJQxW12xJWlpaGmJU0lSZjFGUm1kp8BCwANgFvJ6Ni7v7y2bWM02VYcBkd3fgn2ZWamZd3X1TNq4vItk1b948zjrrrISyffv2RW6fCGmcBhOFu18fPH3QzJ4DOrr70tyGVas78E7c8cagrF6iMLORxFod9OjRIy/Bich+dZPBjBkzuOiii0KKRrIpk8HsF2qeu/t6d18aX5Zjyb6GeLKK7j7R3cvcvaxLly45DktEatx+++31koS7K0kUkZQtCjNrDxwIHGZmndj/od0R6JaH2CDWgjg67vgooDJP1xaRNKqqqjjwwAMTyjZu3FhvaXApfOlaFNcSG5P4VPCz5vEM8EDuQwNgOvD1YPbTacAOjU+IhO+EE05ISBIXXngh7q4k0QzTFlUwcOwceo2ZxcCxc5i2qCLskGqlbFG4+z3APWb2PXe/LxcXN7PHgUHEWi0bgVuBtsH1HwSeBS4EVgP/Br6ZizhEJDMrVqzgM5/5TELZnj176q38Ko0zbVEFP5m6jKrdewGo2F7FT6YuA4jEXhaZDGbfl6s7s939igbOO/Cd5l5HRJqv7jjEpEmTuPrqq0OKpriMn72qNknUqNq9l/GzV0UiUejObBFJ65Zbbkk6WK0kkT2V26saVZ5vmdxHMYLY3diL3P2bZnYEMCm3YYlI2Hbv3s0BBxyQULZixQpOPPHEkCIqXt1KS6hIkhS6lZaEEE19Yd+ZLSIRZGb1koS7K0nkyOjBfShpmzjOU9K2NaMH9wkpokSZJIq6d2YvJEt3ZotItGzcuLFeN9POnTuJDRdKrlzcrzt3DO9L99ISDOheWsIdw/tGYnwCwBrzDyBYbiOfd2Y3SVlZmZeXl4cdhkhBqZsgrrzySiZP1m4CLYWZLXD3smTn0t1wl3KlVjPr7+4LsxGciIRr+vTpDBs2LKGsmFsQ0xZVMH72Kiq3V9GttITRg/tE5pt7VKUbzP5V8LM9UAYsIXZ39knAv4AzcxuaiORSss2EXn31Vc4444yQIsq9qN+vEFUpxyjc/Rx3PwfYAPQP1lH6HNCP2A1wIlKgrr322oQk0bp1a9y9qJMEpL9fQVLLZHrsp9x9Wc2Bu79hZqfkMCYRSaG53Sbbtm3j0EMPTSjbunUrnTp1ynaoSYXd7RP1+xWiKpNZTyvNbJKZDTKz/zCzh4CVuQ5MRBLVdJtUbK/C2d9tkumaQK1bt05IEtdeey3untck0Zz4syHVfQlRuV8hqjJJFN8ElgPfB24EVqA1l0TyrqndJq+++ipmxr59+2rL9u3bx4MPPpi0fq4Wp4tCt0/U71eIqkzWevoYuDt4iEhImtJtUnfK6/Tp0xkyZEjK+rkc7I1Ct0/N36BZT42TyRiFiORAY/vrG7PMw/Dhw3n66acTyjKZ8prLxemiskzFxf26KzE0UiZdTyKSZU3pr8+k22TXrl2YWUKSePPNNzO+LyKX3/rV7VO4Mlk99suZlIlI5prSX9/QMg9mRocOHRJ+x93p0yfzD+JcDvZGfZkKSS2TrqefAE9kUCYiGWrqN/dk3SavvfYaAwcOTCirrq6mbdu2jY5r9OA+CWMUkN1v/er2KUzplvC4gNjuct3N7N64Ux2BPbkOTKSYZau/vu5g9U033cRdd93V5Lg02CvJpGtRVALlxDYpWhBXvhP4QS6DEil2zf3mPnToUGbMmJFQlq31mfStX+pKt2f2EmCJmT3m7rsBzKwTcLS7b8tXgCLFqKnf3Kurq2nXrl1C2bx58+p1PYlkUyZjFM+b2dCg7mJgi5m95O4/zG1oIsWtsd/c63YzQXGv8irRkcn02EPc/UNgOPD7YGHAc7NxcTM738xWmdlqMxuT5Pw3zGyLmS0OHt/OxnVFCsnrr79eL0ls3bo1L0kiV3dpS2HJpEXRxsy6ApcBP83Whc2sNfAAcB6wEZhvZtPdfUWdqn929+9m67oihaRugmjbti3V1dV5ubaW5JYambQobgdmA2vcfb6ZHQu8nYVrDwBWu/tad68G/gQMa+B3RFqEUaNG1UsS7p63JAHRWJtJoqHBROHuT7j7Se5+XXC81t0vzcK1uwPvxB1vDMrqutTMlprZk2Z2dKoXM7ORZlZuZuVbtmzJQngi+efumBkTJkyoLbvzzjtDGYuIwtpMEg2Z3Jl9gpm9YGZvBMcnmdnPsnDt+iNzUPf/hhlAT3c/Cfg78IdUL+buE4PNlcq6dOmShfBE8svM6u045+6MHj06lHi0JLfUyKTr6SFid2LvBnD3pcDlWbj2RiC+hXAUsXs3arn7B+7+SVwcn8vCdUUiZd26dfW6mdasWRP6jCatzSQ1MhnMPtDdX6/zDzkbd2bPB3qbWS+ggljy+Up8BTPr6u6bgsOhaMMkKTJRnvKaq7u0w97lThovk0TxvpkdR9AtZGYjgE3pf6Vh7r7HzL5LbKC8NfCIuy83s9uBcnefDtwQ3MOxB9gKfKO51xWJgilTpvC1r30toWzfvn1JE0eYsn2XtmZSFSZr6NtLMMtpInAGsA1YB3zV3TfkPrymKSsr8/Ly8rDDEEmqbjK47bbbuOWWW0KKJr8Gjp2TdI2r7qUlvDrmCyFEJDXMbIG7lyU7l0mLwt39XDM7CGjl7juD7iIRaYSBAwfy2muvJZRFpZspXzSTqjBlkiieAvq7+0dxZU+igWWRjOzcuZOOHTsmlC1dupS+ffuGFFF4orLLXXO0xDGWdMuMfwr4DHCImQ2PO9URaJ/rwESKQZQHq8OQ6/0ucq2ljrGkmx7bB7gIKAWGxD36A9fkPjSRwjV37tx6SaK6urpFJwko/F3uWurd6umWGX8GeMbMTnf3f+QxJpFIa6jroW6CuPLKK5k8eXK+w4ysQt7voqWOsTQ4RqEkIbJfuq6HmQ/cysMPP5xQv6W3IIpNMYyxNEUmd2aLSCBZ18O/P/6ES/oflZAknn/+eSWJItRS71bPZNaTiATqdjFsGHdRvTpKEMWrpe4pnm7WU9od7Nz919kPRyS/GjvVsabrYffWCiofujbh3I4dO+pNg5XiU8hjLE2VrkXRIfjZBzgVmB4cDwFezmVQIk3R2A/9pkx1HD24D5f0PyqhrH23E3h85py8JImWOIdfwpdyjMLdb3P324DDiN1wd5O730TsRrujUv2eSBhqPvQrtlfh7P/QT7d1Z2OnOk6ZMqVekjjjjhd4fOacvHxYN+VvFMmGTMYoegDx22pVAz1zEo1IE6X70E/1IZ7pVEd3r7dPxHPPPcfgwYObEXHjNeVvFMmGTBLF/wNeN7Onia0gewmgSeESKU2Z357JVMchQ4Ywc+bMhPNhDVa31Dn8Er5MtkL9P+CbxFaO3Q58091/mevARBqjKbuxpZvq+MEHH2BmCUli8+bNoc5o0o5zEpZM76M4EPjQ3e8BNmr1WImapsxvT7WcxCX9j+Kwww6rrXfeeefh7oS9xW5LncMv4Wuw68nMbgXKiM1++j3QFvgjMDC3oYlkrqnz2+OnOr7wwgucW2ewOkqbCbXUOfwSvkw2LloM9AMWunu/oGypu5+Uh/iaRBsXSWPVTQaPPvooV111VUjRiORfuo2LMul6qvZYNqnZCvWgbAYnEqYbbrihXpJwdyUJkTiZzHr6i5lNAErN7BrgW8Ck3IYlklv//ve/OeigxO88q1ev5rjjjgspIpHoymTW013EdrR7itg4xS3ufm82Lm5m55vZKjNbbWZjkpxvZ2Z/Ds7/y8x6ZuO60rK1atUqIUkcc8wxuLuShEgKDSYKMxvn7s+7+2h3/5G7P29m45p7YTNrDTwAXAB8GrjCzD5dp9rVwDZ3Px64G2j2daXlWrx4MWaWMMV19+7drF+/PrygRApAJmMU5yUpuyAL1x4ArHb3te5eDfwJGFanzjDgD8HzJ4EvWlSmoEhBMTP69etXe/yLX/wCd6dNGy2gLNKQdKvHXgdcDxxnZkvjTnUAXsvCtbsD78QdbwQ+n6qOu+8xsx1AZ+D9JPGOBEYC9OjRIwvhSTEYP348N998c0KZlgEXaZx0X6ceA/4K3AHEjx/sdPetWbh2spZB3f+DM6kTK3SfCEyE2PTY5oUmhW7v3r31Wgvz58+nrCzp7L+ipdVmJRvS7Zm9A9hhZvcAW919J4CZdTCzz7v7v5p57Y3A0XHHRwGVKepsNLM2wCFANpKUFLETTzyRN998M6GsJbYimrKMukgymYxR/A7YFXf8UVDWXPOB3mbWy8wOAC5n/54XNaYDNRPaRwBzvCX+Hy8Z2bJlC2aWkCR27drVIpMENH4ZdZFUMkkUFv/h7O77yMIWqu6+B/guMBtYCfzF3Zeb2e1mNjSo9jDQ2cxWAz8ksQtMpFb37t05/PDDa4+vvfZa3L3evRLFYNqiCgaOnUOvMbMYOHZOyv0otNqsZEsmH/hrzewG9rcirgfWZuPi7v4s8Gydslvinn8MfDkb15Li9Morr3D22WcnlBVzC6Ix3UmZLKMukolMWhSjgDOACvbPTBqZy6BEGuLumFlCkli0aFFRJwloXHeSVpuVbMnkzuzN7n65ux/u7ke4+1fcfXM+ghNJZty4cQk7zvXv3x9355RTTgkxqvxoTHdSqmXUNZAtjZXuPoqb3f1OM7uPJFNS3f2GnEYmUsfOnTvp2LFjQtmOHTvqlRWzxnYnxS+jLtJU6VoUK4Of5cCCJA+RvDnjjDMSEsLtt9+Ou7eoJAHqTpJwpLuPYkbw8w+p6ojk2rJlyzjppMStT6K0mVC+Zbp5kW60k2xK1/U0gxR3QQO4+9BU50SyoW4ymDt3LoMGDQonmAhpqDtJN9pJtqXreroL+BWwDqgCHgoeu4A3ch+atFSPPPJIQpLo3Lkz7q4kkSHdaCfZlq7r6SUAM/tfd4+fqD7DzF7OeWQSKfnoyqiurqZdu3YJZe+++y5HHHFEVq9T7HSjnWRbJvdRdDGzY2sOzKwX0CV3IUnU1HRlVGyvwtnflZHqjuCmuOyyyxKSxPXXX4+7K0k0QaoZULrRTpoqkzuzfwC8aGY1d2P3BK7NWUQSOem6Mprbqli/fj29evVKKNuzZw+tW7dO8RstWyYtu9GD+ySMUYBmRknzNJgo3P05M+sNfCooetPdP8ltWBIluerKqDtY/dRTTzF8+PBmvWYhaygJZDpInenMKJFMNZgozOxAYgvyHePu15hZbzPr4+4zcx+eREG21wyaMWMGQ4cmTpp7euFGxs9exU1jZrXID7ZMkkBjWna60U6yKZMxit8D1cDpwfFG4Bc5i0giJ1s3edXc/xCfJFavXs3TCzfmfAwk6jKZqaRBaglLJoniOHe/E9gN4O5VJN95TopUNtYM+sEPfpAw7jBs2DDcneOOO07TOcksCWiQWsKSyWB2tZmVENx8Z2bHARqjaGGa2pWxZcuWhH0iAKqqqmjfvn3tsb4pZ9a9p0FqCUsmLYpbgeeAo81sCvACcHP6XxGpv5nQhAkTcPeEJAHhfVPOdAOgfMike0+rwUpY0rYoLDYt5U1gOHAasS6n77v7+3mITQrUvHnzOOussxLK0u0TEcY35agtc5HpTCUNUksYrKGNXsxsgbt/Lk/xZEVZWZmXl5eHHUaL4+4J+0QALFy4kH79+jX4u/lexG7g2DlJu3q6l5bw6pgv5Oy6IlEVfNaXJTuXyRjFP83sVHefn+W4pIiMGzeOMWP2b2nev39/FizIfDX6fH9T1riISOYySRTnAKPMbD3wEbHuJ3f3k9L+lrQIyTYT2r59O4ccckhIEWVG+0mLZC6TwewLgGOBLwBDgIuCn01mZoea2fNm9nbws1OKenvNbHHwmN6ca0r2pdpMKOpJArQBkEhjpNuPoj0wCjgeWAY87O57snTdMcAL7j7WzMYExz9OUq/K3Yt/I+QCUwybCWmZC5HMpRzMNrM/E7vJ7hVirYoN7v79rFzUbBUwyN03mVlX4EV3r/dVzsx2ufvBjX19DWbnjjYTEilOTR3M/rS79w1e4GHg9SzGdIS7bwIIksXhKeq1N7NyYA8w1t2npXpBMxsJjATo0aNHFkMVgEWLFtG/f//a406dOrF169YQIxKRfEmXKHbXPHH3PY3tVjCzvwNHJjn100a8TA93rwz2w5hjZsvcfU2yiu4+EZgIsRZFo4KVlPbu3cuAAQNYuHBhbdmmTZs48shk/2lFpBilSxQnm9mHwXMDSoLjmllPHVP/Krj7uanOmdl7ZtY1rutpc4rXqAx+rjWzF4F+QNJEIdn3xBNPcNlll9Uez5w5ky996UshRiQiYUi3FWoud46ZDlwFjA1+PlO3QjAT6t/u/omZHQYMBO7MYUwS2L59O5067Z+INmjQIF544YV6N9NJ0+T75kKR5grr//yxwHlm9jZwXnCMmZWZ2aSgzolAuZktAeYSG6NYEUq0LcioUaMSksSKFSuYO3eukkSW5GNbWZFsy+SGu6xz9w+ALyYpLwe+HTx/Deib59BarJkzZzJkyP7bY3784x8zduzYECMqTrncVlYkV0JJFBId+/btq7c/9XvvvVdvaXDJDi0dIoVI/Qkt2A9/+MOEJDFkyBDcXUkih7T5kBQitShaoEw2E5Lc0OZDUojUomhhevTokZAkHnzwwaSbCUluaPMhKURqUbQQr776KmeeeWZCWUN7kUhuaPMhKTRKFEWuOZsJiYiAup6K2vjx4xOSxCmnnIK7K0mISKOoRVGEdu3aRYcOHRLKCmEzIRGJJrUoisyZZ56ZkCRuu8LTG84AAA0kSURBVO22gtlMSESiSS2KIvHGG2/Qt2/ijeyFtpmQiESTWhRFwMwSksScOXNwdyUJEckKJYoC9uijjyYkg0MOOQR355xzzgkxKhEpNup6KkDV1dW0a9cuoayyspKuXbuGFJGIFDO1KArMFVdckZAkRo0ahbsrSYhIzqhFUSA2bNhAz549E8r27NlTb+VXEZFsU4uiAJhZQpJ44okncHclCRHJC7UoIqzuZkKg9ZlEJP+UKCIo2WZCb7/9Nscff3xIEYlIS6aup4j50Y9+lJAkLrroItxdSUJEQqMWRUS8//77dOnSJaFMmwmJSBSE0qIwsy+b2XIz22dmZWnqnW9mq8xstZmNyWeM+fTzn/88IUn89re/1WZCIhIZYbUo3gCGAxNSVTCz1sADwHnARmC+mU139xX5CTH33nnnHXr06JFQpsFqEYmaUFoU7r7S3Vc1UG0AsNrd17p7NfAnYFjuo8s9d+erX/1qQpKorKxUkhCRSIryYHZ34J24441BWVJmNtLMys2sfMuWLTkPrqlee+01WrVqxWOPPQbA7373O91ZLSKRlrOuJzP7O3BkklM/dfdnMnmJJGUpv3K7+0RgIkBZWVnkvppXV1fTp08f1q9fD0DXrl1Zu3atxiFEJPJylijc/dxmvsRG4Oi446OAyma+Zih+//vf861vfav2eO7cuQwaNCi8gEREGiHK02PnA73NrBdQAVwOfCXckBpn8+bNHHHEEbXHw4cP58knn9Q+ESJSUEJJFGZ2CXAf0AWYZWaL3X2wmXUDJrn7he6+x8y+C8wGWgOPuPvyMOJtiu9973vcf//9tcdr166lV69e9epNW1TB+NmrqNxeRbfSEkYP7sPF/VIOxeRUlGIRkeiwYpxpU1ZW5uXl5aFce/HixfTr16/2+I477mDMmOS3gExbVMFPpi6javfe2rKStq25Y3jfvH9ARykWEck/M1vg7knva4vyrKeCsnfvXk499dTaJHHAAQfw4YcfpkwSAONnr0r4YAao2r2X8bMbmjmcfVGKRUSiRYkiC5566inatGlDTStmxowZfPLJJ3To0CHt71Vur2pUeS5FKRYRiZYoD2ZH3o4dOygtLa09Pvvss5k7dy6tWmWWf7uVllCR5IO4W2lJ1mLMVJRiEZFoUYsizrRFFQwcO4deY2YxcOwcpi2qSFn31ltvTUgSy5cv56WXXso4SQCMHtyHkraJy4mXtG3N6MF9Gh98M0UpFhGJFrUoAnUHcyu2V/GTqcsAEgZz33rrLfr02f/hefPNNzNu3LgmXbPmdaMw0yhKsYhItGjWU2Dg2DlJu166l5bw6pgv4O5ccMEFzJ49u/bc+++/T+fOnZsdr4hI2DTrKQPpBnP/9re/0apVq9okMWXKFNxdSUJEWgR1PQWSDebu2/0xlQ9cxeBxHwHw2c9+loULF9K2bdswQhQRCYVaFIG6g7kfzn+Gd349gr2fxJLE66+/zrJly5QkRKTFUYsiUDNo+4s/v8KCcVfUll999dVMmjQprLBEREKnRBHn/BM7c0lckqisrNQ+ESLS4qnrKc4BBxzATTfdVLtntZKEiIhaFAlatWrFXXfdFXYYIiKRokQhOafly0UKmxJFBBTzB2mmd7yLSHRpjCJkNR+kFdurcPZ/kKZbZ6qQaPlykcKnRBGyYv8g1fLlIoVPiSJkxf5BmmqZci1fLlI4lChCVuwfpFq+XKTwhZIozOzLZrbczPaZWdLVCoN6681smZktNrNwNsHOsWL/IL24X3fuGN6X7qUlGLHVeLUPt0hhCWvW0xvAcGBCBnXPcff3cxxPaFrCPhAX9+teVH+PSEsTSqJw95UAZhbG5SNHH6QiEmVRH6Nw4G9mtsDMRqaraGYjzazczMq3bNmSp/BERIpfzloUZvZ34Mgkp37q7s9k+DID3b3SzA4HnjezN9395WQV3X0iMBFiO9w1KWgREaknZ4nC3c/NwmtUBj83m9nTwAAgaaIQEZHciGzXk5kdZGYdap4D/0lsEFxERPIorOmxl5jZRuB0YJaZzQ7Ku5nZs0G1I4B5ZrYEeB2Y5e7PhRGviEhLFtasp6eBp5OUVwIXBs/XAifnOTQREanD3Itv3NfMtgAbwo4jQ4cBhXafSCHGDIUZdyHGDIUZdyHGDNmL+xh375LsRFEmikJiZuXunvLu9CgqxJihMOMuxJihMOMuxJghP3FHdjBbRESiQYlCRETSUqII38SwA2iCQowZCjPuQowZCjPuQowZ8hC3xihERCQttShERCQtJQoREUlLiSLPGrFp0/lmtsrMVpvZmHzGmCSWQ83seTN7O/jZKUW9vcEmU4vNbHq+44yLI+17Z2btzOzPwfl/mVnP/EdZL6aGYv6GmW2Je3+/HUacdWJ6xMw2m1nSpXUs5t7gb1pqZv3zHWMyGcQ9yMx2xL3Xt+Q7xiQxHW1mc81sZfD58f0kdXL3fru7Hnl8ACcCfYAXgbIUdVoDa4BjgQOAJcCnQ4z5TmBM8HwMMC5FvV0ReH8bfO+A64EHg+eXA38ugJi/Adwf9vtbJ6azgf7AGynOXwj8FTDgNOBfYcecYdyDgJlhx1knpq5A/+B5B+CtJP9GcvZ+q0WRZ+6+0t1XNVBtALDa3de6ezXwJ2BY7qNLaRjwh+D5H4CLQ4ylIZm8d/F/z5PAFy3cXbSi9t87Ix5b8n9rmirDgMke80+g1My65ie61DKIO3LcfZO7Lwye7wRWAnV3O8vZ+61EEU3dgXfijjdS/x9FPh3h7psg9g8WODxFvfbB5lH/NLOwkkkm711tHXffA+wAOucluuQy/e99adCl8KSZHZ2f0Jolav+OG+N0M1tiZn81s8+EHUy8oKu0H/CvOqdy9n6HtWd2UcvCpk3Jvt3mdB5zupgb8TI9PLbR1LHAHDNb5u5rshNhxjJ57/L+/jYgk3hmAI+7+ydmNopYi+gLOY+seaL2PmdqIbF1j3aZ2YXANKB3yDEBYGYHA08BN7r7h3VPJ/mVrLzfShQ54M3ftGkjEP+N8SigspmvmVa6mM3sPTPr6u6bgqbs5hSvUbPR1Foze5HYt558J4pM3ruaOhvNrA1wCOF2RTQYs7t/EHf4EDAuD3E1V97/HWdD/Aewuz9rZr81s8PcPdQFA82sLbEkMcXdpyapkrP3W11P0TQf6G1mvczsAGIDrqHNIgqufVXw/CqgXqvIzDqZWbvg+WHAQGBF3iLcL5P3Lv7vGQHM8WA0MCQNxlynr3kosT7qqJsOfD2YjXMasKOmCzPKzOzImjErMxtA7HPyg/S/lfOYDHgYWOnuv05RLXfvd9ij+S3tAVxCLPN/ArwHzA7KuwHPxtW7kNjMhjXEuqzCjLkz8ALwdvDz0KC8DJgUPD8DWEZsxs4y4OoQ46333gG3A0OD5+2BJ4DVxDbFOjYC/y4aivkOYHnw/s4FPhWBmB8HNgG7g3/TVwOjgFHBeQMeCP6mZaSY5RfBuL8b917/EzgjAjGfSawbaSmwOHhcmK/3W0t4iIhIWup6EhGRtJQoREQkLSUKERFJS4lCRETSUqIQEZG0lCik6JlZ57iVQN81s4q44wOyeJ3+ZnZ+E3/30OCO60zq/sLMbmygznAz+1RTYhGpS4lCip67f+Dup7j7KcCDwN01xx5bhK9miebm/v/QH2hSogAOJTYnPluGA0oUkhVKFNJimdnxZvaGmT1IbH2fo81se9z5y81sUvD8CDObGix6+Hpw52v8a5UAtwBfDVoqI8zsYDN7NKi/yMyGBHX7mtn8oN7SYG2ssUCfoGxsklhvsdh+Fc8Tt+6QmY0KXmuJmT1hZiVmdhaxm7HuDl6vZ7J6WX9DpWgpUUhL92ngYXfvB1SkqXcvcKe7lwGXAZPiT7p7FbE7qacELZUniSWO59x9ALEF/H5lZu2J7YdxV9DCOZXYejxjgFXB7yZsXBQsI3EpcAqxJUcGxJ1+wt1PdfeTid2R+w13fwV4FvhB8Hrrk9Vr3NskLZkWBZSWbo27z8+g3rnEvvHXHHcys5IgQaTyn8AFtn/HuvZAD+A14Gdmdgww1d1XN7AdxtnAU8G1qsxsRty5k8zsdqCU2IY2M1O8Rqb1ROpRopCW7qO45/tIXKq5fdxzAwbUjGlkyICLvf5S62+Z2T+ALwHPm9lVNLzKZ6q1diYDF7j7GxbbHvW0ZtYTqUddTyIBd98HbDOz3sHA9iVxp/8OfKfmwMxOSfISO4l9W68xG7gh7nf6BT+PdffV7n4PMAs4KcnvxnsZGG5m7c2sI3BR3LmDgHeDJai/kiaWVPVEGqREIZLox8BzxFbJ3RhX/h1gYDD4vAK4JsnvzgFODgauRwC3AQea2TIzWw78T1DvK2a23MwWE9sn+4/u/h5QHtRNGMx299eBp4mtZvoEscRR4xZiK+A+T+Ky7o8D/10zmJ2mnkiDtHqsiIikpRaFiIikpUQhIiJpKVGIiEhaShQiIpKWEoWIiKSlRCEiImkpUYiISFr/H3X/IwAIACznAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de5yUdd3/8deHg7AquIioHETwEFmhQiupmDea3qgpKJK3VmZlIVqZZRjdld56dyeIZaaWBzTjF1qpiJySTPCEFayAoCjKyYfskqAcBFtdDp/fH3PtMrM7M3vt7sxc18y+n4/HPnau7/WduT474nzme7i+X3N3REREMmkXdQAiIhJvShQiIpKVEoWIiGSlRCEiIlkpUYiISFZKFCIikpUShYiIZKVEISXBzNaZ2Ttmtl9S2TfM7JmkYzezD8xsh5lVmdkvzax90vlngjrHNXjt6UH5sOC43MweMLN/mdl2M3vDzH6Y4Tp1P9fl+O/tFMTwfhDH95uof4SZzQrifdfMbkk6d6CZPR7E/JaZfTGXsUrxU6KQUtIB+G4TdY5z9/2B/wD+C/h6g/NvAF+pOzCz7sCJwKakOrcB+wPHAAcAI4DV6a6T9HMLufU/wNHA4cBpwHVmdla6ima2D/AUMA84FOgD/CGpyl1ALXAI8CXgt2b2yRzHK0VMiUJKySTgB2ZW3lRFd18FLACOb3BqKvBfSS2NS4DHSXyQ1jkBeMjdt7j7Hnd/3d0fbX34zfIV4H+DGF4D7gO+mqHuV4Fqd/+lu3/g7h+6+zKAoAV2IfBTd9/h7i8AM4BL8/4XSNFQopBSUgk8A/ygqYpm9nHgs8CqBqeqgRXAfwbHXwGmNKjzD+D/zOxrZnZ0awI2s/FmtjXTT4bndAN6AS8nFb8MZGoFnAisM7O/BN1Oz5jZwODcx4Dd7v5GyNeSNkiJQkrN9cB3zKxHhvOLzewD4DUSSeU3aepMAb5iZgOAcnf/e4Pz3yHR8vg2sMLMVpnZ2Wmuk/yhPzxdMO4+wd3LM/1k+Bv2D35vSyrbBnTJUL8PcDHwaxIJZjbwRNAltX+D12nqtaQNUqKQkuLurwCzgPEZqgwm8eH4X8BngP3S1JkGnE4iIfy/NNeocfefu/unge7An4FHzOzA5Os0+NCf2+I/qrEdwe+uSWVdge0Z6tcAL7j7X9y9Frg1iPuY4LW6Nqif7bWkDVKikFJ0A/BNoHe6k57wZ+DvJFogDc//G/gLcCVpEkWDuu8DPyeRcPo3N1Az++8Gs6NSfjJccwuwAUienXUc8GqGyywDMi0T/QbQoUEXWrbXkjZIiUJKTjBQ/Sfg6iaqTgDGmNmhac79N/Af7r6u4Qkz+6mZnWBm+5hZZxIzrbYCK1sQ688bzI5K+cny1CnAT8ysWzDe8k3gwQx1/wCcaGZnBIP01wDvAq+5+wckWlA3mdl+ZjYUGEkTCVLaFiUKKVU3kb5bqZ67LweeBcalOVcdzABK+1TgdyQ+bKuBM4HPu3tyC+DlBq2DX7Xkj8jiBhJTct8i8TdMcvcnAcysb3DNvsHfshL4MnA3sIVEIhgRdEMBXAWUARuBh4Er3V0tCqln2rhIRESyUYtCRESyUqIQEZGslChERCQrJQoREcmqQ9QB5MNBBx3k/fr1izoMEZGi8dJLL73r7mlXNCjJRNGvXz8qKyujDkNEpGiY2VuZzqnrSUREslKiEBGRrJQoREQkKyUKERHJSolCRESyUqIQEZGslChERCSryBKFmR1mZvPN7DUze9XMvpumjpnZr4OtJpeZ2eAoYhURibM5c+YwevTovL1+lDfc7QKudffFZtYFeMnMnnL3FUl1zgaODn4+A/w2+C0i0ubt2LGD7t27U1ub2Frkww8/pHPnzjm/TmQtCnff4O6Lg8fbSWx233DrypHAlGDryn8A5WbWs8ChiojEzsSJE+nSpUt9kli8eHFekgTEZAkPM+sHDAL+2eBUb+DtpOP1QdmGNK8xBhgD0Ldv33yEKSISubVr13LEEUfUH3/rW9/izjvvzOs1I08UZrY/8BhwTbBRfcrpNE9JuyWfu98L3AtQUVGhbftEpKS4O6NHj2batGn1Ze+88w4HH3xw3q8d6awnM+tIIklMdfdpaaqsBw5LOu5DYo9iEZE249lnn6Vdu3b1SWLy5Mm4e0GSBETYojAzA+4HXnP3X2aoNgP4tpn9kcQg9jZ3b9TtJCJSij788EOOPPJIqqsT34/79evH66+/TqdOnQoaR5QtiqHApcDpZrY0+DnHzMaa2digzhxgDbAKuA+4KqJYRUQK6p577qGsrKw+STz//POsXbu24EkCImxRuPsLpB+DSK7jwLcKE5GISPQ2bNhAr1696o8vvvhiHnroIRKdMNGIfDBbRCSM6UuqmDR3JdVba+hVXsa44QM4f1DDGfXFrUOHDuzevbv++K233orFLE4t4SEisTd9SRU/mracqq01OFC1tYYfTVvO9CVVUYeWE/fccw9mVp8kfvGLX+DusUgSoBaFiBSBSXNXUrNzd0pZzc7dTJq7sqhbFR9++CFlZWUpZRs3bqRHj7RbV0dGLQoRib3qrTXNKi8GI0eOTEkS11xzDe4euyQBalGISBHoVV5GVZqk0Ku8LE3teFu9ejVHHXVUStnu3btp1y6+39vjG5mISGDc8AGUdWyfUlbWsT3jhg+IKKKWMbOUJDFjxgzcPdZJAtSiEJEiUDcOUayznh577LFGy4AnZv8XByUKESkK5w/qXTSJoc7u3bvp0CH1Y3bt2rX069cvmoBaKN7tHRGRInXbbbelJImLL74Ydy+6JAFqUYiI5NTmzZvp3r17SlltbS0dO3aMKKLWU4tCRCRHRowYkZIk5syZg7sXdZIAtShERFpt6dKlDBo0qP64X79+rF27NsKIckuJQkSkhdJNbV29enXKDnSlQF1PIiItMGXKlJQkcdVVV+HuJZckQC0KEZFm+eCDD9h///0ble27774RRZR/alGIiIQ0ZsyYlCQxdepU3D3SJDF9SRVDJ8yj//jZDJ0wLy8r6qpFISLShFWrVnH00UfXH3fo0IHa2tpINxOCvcuv162sW7f8OpDTmxPVohARyaJXr14pSWLZsmXs3Lkz8iQB2ZdfzyUlChGRNGbOnImZsWHDBgAuvPBC3J2BAwdGHNlehVp+PdKuJzN7ADgX2Ojun0pzfhjwBFA3IXmau99UuAhFpK2pra2lU6dOKWVbtmyhvLw8oogyK9Ty61G3KB4EzmqizvPufnzwoyQhInnzk5/8JCVJ3HHHHbh7LJMEFG759UhbFO7+nJn1izIGEZHq6mp6904d/I37ZkJQuOXXi2HW00lm9jJQDfzA3V9NV8nMxgBjgNhsSC4i8TdkyBAWLVpUf/zCCy8wdOjQCCNqnkIsvx7vdAmLgcPd/TjgDmB6porufq+7V7h7RRz3nBWReHnuuecws/okcfLJJ+PuRZUkCiXWLQp3fz/p8Rwz+42ZHeTu70YZl4gUrz179tC+fWq//oYNGzj00EMjiij+Yt2iMLNDLZisbGZDSMT7XrRRiUix+tWvfpWSJG644QbcXUmiCVFPj30YGAYcZGbrgRuAjgDufjcwGrjSzHYBNcDFXkwbzYpILJTiZkKFFPWsp0uaOH8ncGeBwhGREjRy5EhmzJhRfzx79mzOOeecCCMqPrEeoxARaamGmwkdfvjhrFu3LrqAipgShYiUlLaymVAhxXowW0SkORpuJnTllVeW7GZChaQWhYgUvba4mVAhqUUhIkXtiiuuiN1mQskKsbFQvqlFISJFKa6bCSUr1MZC+aYWhYgUnT59+qQkiZdffjk2mwklK9TGQvmmRCEiRWPWrFmYGVVVie6bUaNG4e4ce+yxEUeWXqE2Fso3dT2JSOyl20xo8+bNdOvWLaKIwinUxkL5phaFiMRaps2E4p4koHAbC+WbWhQiEkvFuplQskJtLJRvShQiEjuf+cxnWLhwYf1xsW0mlKwQGwvlW/GkZhEpec8//zxmVp8kTjrpJG0mFANqUYhI5NJtJlRdXU3Pnj0jikiSqUUhIpG6/fbb024mpCQRH2pRiEgktmzZwoEHHphSps2E4kktChEpODNLSRKzZ8/G3ZUkYkqJQkQK5oknnkhZZqNbt264u3aci7lQXU9m9ingE0DnujJ3n5KvoESktKTbTOjFF1/kpJNOiigiaY4mWxRmdgNwR/BzGnALMCLPcYlIiRgzZkxKkujYsSPuriRRRMJ0PY0GPgf8y92/BhwHdMr+lHDM7AEz22hmr2Q4b2b2azNbZWbLzGxwLq4rIvm3ZcsWzIz77rsvpay2tjbCqKQlwiSKGnffA+wys67ARiBX+wo+CJyV5fzZwNHBzxjgtzm6rojkUbt27VIGq+u2JC0vL48wKmmpMGMUlWZWDtwHvATsABZmf0o47v6cmfXLUmUkMMXdHfiHmZWbWU9335CL64tIbi1YsIBTTjklpWzPnj2x2ydCmqfJROHuVwUP7zazJ4Gu7r4sv2HV6w28nXS8PihrlCjMbAyJVgd9+/YtSHAislfDZDBz5kzOPffciKKRXAozmP103WN3X+fuy5LL8izd1xBPV9Hd73X3Cnev6NGjR57DEpE6N910U6Mk4e5KEiUkY4vCzDoD+wIHmVk39n5odwV6FSA2SLQgDks67gNUF+jaIpJFTU0N++67b0rZ+vXrGy0NLsUvW4viChJjEh8Pftf9PAHclf/QAJgBfCWY/XQisE3jEyLR+9jHPpaSJM455xzcXUmiFaYvqWLohHn0Hz+boRPmMX1JVdQh1cvYonD324Hbzew77n5HPi5uZg8Dw0i0WtYDNwAdg+vfDcwBzgFWAf8GvpaPOEQknBUrVvDJT34ypWzXrl2NVn6V5pm+pIofTVtOzc7dAFRtreFH05YDxGIvizCD2Xfk685sd7+kifMOfKu11xGR1ms4DjF58mQuv/zyiKIpLZPmrqxPEnVqdu5m0tyVsUgUujNbRLK6/vrr0w5WK0nkTvXWmmaVF1qY+yhGk7gbe4m7f83MDgEm5zcsEYnazp072WeffVLKVqxYwTHHHBNRRKWrV3kZVWmSQq/ysgiiaSzqO7NFJIbMrFGScHcliTwZN3wAZR1Tx3nKOrZn3PABEUWUKkyiaHhn9mJydGe2iMTL+vXrG3Uzbd++ncRwoeTL+YN6c/OogfQuL8OA3uVl3DxqYCzGJwCsOf8AguU2CnlndotUVFR4ZWVl1GGIFJWGCeLSSy9lyhTtJtBWmNlL7l6R7ly2G+4yrtRqZoPdfXEughORaM2YMYORI0emlJVyC2L6kiomzV1J9dYaepWXMW74gNh8c4+rbIPZvwh+dwYqgJdJ3J19LPBP4JQMzxORIpBuM6EFCxZw8sknRxRR/sX9foW4yjhG4e6nuftpwFvA4GAdpU8Dg0jcACciReqKK65ISRLt27fH3Us6SUD2+xUkszDTYz/u7svrDtz9FTM7Po8xiUgGre022bJlS8o+EQCbN2+mW7duuQ41rai7feJ+v0JchZn19JqZTTazYWb2H2Z2H/BavgMTkVR13SZVW2tw9nabhF0TqH379ilJ4oorrsDdC5okWhN/LmS6LyEu9yvEVZhE8TXgVeC7wDXACrTmkkjBtbTbZMGCBZgZe/bsqS/bs2cPd999d9r6+VqcLg7dPnG/XyGuwqz19CFwW/AjIhFpSbdJwymvM2bM4LzzzstYP5+DvXHo9qn7GzTrqXnCjFGISB40t7++Ocs8jBo1iscffzylLMyU13wuTheXZSrOH9RbiaGZwnQ9iUiOtaS/Pky3yY4dOzCzlCTx+uuvh74vIp/f+tXtU7zCrB77hTBlIhJeS/rrm1rmwczo0qVLynPcnQEDwn8Q53OwN+7LVEhmYbqefgQ8EqJMREJq6Tf3dN0mL774IkOHDk0pq62tpWPHjs2Oa9zwASljFJDbb/3q9ilO2ZbwOJvE7nK9zezXSae6ArvyHZhIKctVf33Dweprr72WW2+9tcVxabBX0snWoqgGKklsUvRSUvl24Hv5DEqk1LX2m/uIESOYOXNmSlmu1mfSt35pKNue2S8DL5vZQ+6+E8DMugGHufuWQgUoUopa+s29traWTp06pZS98MILjbqeRHIpzBjFU2Y2Iqi7FNhkZs+6+/fzG5pIaWvuN/eG3UxQ2qu8SnyEmR57gLu/D4wCfhcsDHhGLi5uZmeZ2UozW2Vm49Oc/6qZbTKzpcHPN3JxXZFisnDhwkZJYvPmzQVJEvm6S1uKS5gWRQcz6wlcBPw4Vxc2s/bAXcCZwHpgkZnNcPcVDar+yd2/navrihSThgmiY8eO1NbWFuTaWpJb6oRpUdwEzAVWu/siMzsCeDMH1x4CrHL3Ne5eC/wRGNnEc0TahLFjxzZKEu5esCQB8VibSeKhyUTh7o+4+7HufmVwvMbdL8zBtXsDbycdrw/KGrrQzJaZ2aNmdlimFzOzMWZWaWaVmzZtykF4IoXn7pgZ99xzT33ZLbfcEslYRBzWZpJ4CHNn9sfM7GkzeyU4PtbMfpKDazcemYOG/zfMBPq5+7HA34DfZ3oxd7832FypokePHjkIT6SwzKzRjnPuzrhx4yKJR0tyS50wXU/3kbgTeyeAuy8DLs7BtdcDyS2EPiTu3ajn7u+5+0dJcXw6B9cViZW1a9c26mZavXp15DOatDaT1AkzmL2vuy9s8A85F3dmLwKONrP+QBWJ5PPF5Apm1tPdNwSHI9CGSVJi4jzlNV93aUe9y500X5hE8a6ZHUnQLWRmo4EN2Z/SNHffZWbfJjFQ3h54wN1fNbObgEp3nwFcHdzDsQvYDHy1tdcViYOpU6fy5S9/OaVsz549aRNHlHJ9l7ZmUhUna+rbSzDL6V7gZGALsBb4kru/lf/wWqaiosIrKyujDkMkrYbJ4MYbb+T666+PKJrCGjphXto1rnqXl7Fg/OkRRCR1zOwld69Idy5Mi8Ld/Qwz2w9o5+7bg+4iEWmGoUOH8uKLL6aUxaWbqVA0k6o4hUkUjwGD3f2DpLJH0cCySCjbt2+na9euKWXLli1j4MCBEUUUnbjsctcabXGMJdsy4x8HPgkcYGajkk51BTrnOzCRUhDnweoo5Hu/i3xrq2Ms2abHDgDOBcqB85J+BgPfzH9oIsVr/vz5jZJEbW1tm04SUPy73LXVu9WzLTP+BPCEmZ3k7n8vYEwisdZU10PDBHHppZcyZcqUQocZW8W830VbHWNpcoxCSUJkr2xdD7PuuoH7778/pX5bb0GUmlIYY2mJMHdmi0ggXdfDvz/8iAsG90lJEk899ZSSRAlqq3erh5n1JCKBhl0Mb008t1EdJYjS1Vb3FM826ynrDnbu/svchyNSWM2d6ljX9bBzcxXV912Rcm7btm2NpsFK6SnmMZaWytai6BL8HgCcAMwIjs8DnstnUCIt0dwP/ZZMdRw3fAAXDO6TUta518d4eNa8giSJtjiHX6KXcYzC3W909xuBg0jccHetu19L4ka7PpmeJxKFug/9qq01OHs/9LNt3dncqY5Tp05tlCROvvlpHp41ryAf1i35G0VyIcwYRV8geVutWqBfXqIRaaFsH/qZPsTDTnV090b7RDz55JMMHz68FRE3X0v+RpFcCJMo/h+w0MweJ7GC7AWAJoVLrLRkfnuYqY7nnXces2bNSjkf1WB1W53DL9ELsxXq/wFfI7Fy7Fbga+7+83wHJtIcLdmNLdtUx/feew8zS0kSGzdujHRGk3ack6iEvY9iX+B9d78dWK/VYyVuWjK/PdNyEhcM7sNBBx1UX+/MM8/E3Yl6i922Oodfotdk15OZ3QBUkJj99DugI/AHYGh+QxMJr6Xz25OnOj799NOc0WCwOk6bCbXVOfwSvTAbFy0FBgGL3X1QULbM3Y8tQHwtoo2LpLkaJoMHH3yQyy67LKJoRAov28ZFYbqeaj2RTeq2Qt0vl8GJROnqq69ulCTcXUlCJEmYWU9/NrN7gHIz+ybwdWByfsMSya9///vf7Ldf6neeVatWceSRR0YUkUh8hZn1dCuJHe0eIzFOcb27/zoXFzezs8xspZmtMrPxac53MrM/Bef/aWb9cnFdadvatWuXkiQOP/xw3F1JQiSDJhOFmU1096fcfZy7/8DdnzKzia29sJm1B+4CzgY+AVxiZp9oUO1yYIu7HwXcBrT6utJ2LV26FDNLmeK6c+dO1q1bF11QIkUgzBjFmWnKzs7BtYcAq9x9jbvXAn8ERjaoMxL4ffD4UeBzFpcpKFJUzIxBgwbVH//sZz/D3enQQQsoizQl2+qxVwJXAUea2bKkU12AF3Nw7d7A20nH64HPZKrj7rvMbBvQHXg3TbxjgDEAffv2zUF4UgomTZrEddddl1KmZcBFmifb16mHgL8ANwPJ4wfb3X1zDq6drmXQ8P/gMHUShe73AvdCYnps60KTYrd79+5GrYVFixZRUZF29l/J0mqzkgvZ9szeBmwzs9uBze6+HcDMupjZZ9z9n6289nrgsKTjPkB1hjrrzawDcACQiyQlJeyYY47h9ddfTylri62IliyjLpJOmDGK3wI7ko4/CMpaaxFwtJn1N7N9gIvZu+dFnRlA3YT20cA8b4v/x0somzZtwsxSksSOHTvaZJKA5i+jLpJJmERhyR/O7r6HHGyh6u67gG8Dc4HXgD+7+6tmdpOZjQiq3Q90N7NVwPdJ7QITqde7d28OPvjg+uMrrrgCd290r0QpmL6kiqET5tF//GyGTpiXcT8KrTYruRLmA3+NmV3N3lbEVcCaXFzc3ecAcxqUXZ/0+EPgC7m4lpSm559/nlNPPTWlrJRbEM3pTgqzjLpIGGFaFGOBk4Eq9s5MGpPPoESa4u6YWUqSWLJkSUknCWhed5JWm5VcCXNn9kZ3v9jdD3b3Q9z9i+6+sRDBiaQzceLElB3nBg8ejLtz/PHHRxhVYTSnOynTMuoayJbmynYfxXXufouZ3UGaKanufnVeIxNpYPv27XTt2jWlbNu2bY3KSllzu5OSl1EXaalsLYrXgt+VwEtpfkQK5uSTT05JCDfddBPu3qaSBKg7SaKR7T6KmcHv32eqI5Jvy5cv59hjU7c+idNmQoUWdvMi3WgnuZSt62kmGe6CBnD3EZnOieRCw2Qwf/58hg0bFk0wMdJUd5JutJNcy9b1dCvwC2AtUAPcF/zsAF7Jf2jSVj3wwAMpSaJ79+64u5JESLrRTnItW9fTswBm9r/unjxRfaaZPZf3yCRWCtGVUVtbS6dOnVLK/vWvf3HIIYfk9DqlTjfaSa6FuY+ih5kdUXdgZv2BHvkLSeKmriujamsNzt6ujEx3BLfERRddlJIkrrrqKtxdSaIFMs2A0o120lJh7sz+HvCMmdXdjd0PuCJvEUnsZOvKaG2rYt26dfTv3z+lbNeuXbRv3z7DM9q2MC27ccMHpIxRgGZGSes0mSjc/UkzOxr4eFD0urt/lN+wJE7y1ZXRcLD6scceY9SoUa16zWLWVBIIO0gddmaUSFhNJgoz25fEgnyHu/s3zexoMxvg7rPyH57EQa7XDJo5cyYjRqROmnt88XomzV3JteNnt8kPtjBJoDktO91oJ7kUZozid0AtcFJwvB74Wd4iktjJ1U1edfc/JCeJVatW8fji9XkfA4m7MDOVNEgtUQmTKI5091uAnQDuXkP6neekROVizaDvfe97KeMOI0eOxN058sgjNZ2TcElAg9QSlTCD2bVmVkZw852ZHQlojKKNaWlXxqZNm1L2iQCoqamhc+fO9cf6phyue0+D1BKVMC2KG4AngcPMbCrwNHBd9qeINN5M6J577sHdU5IERPdNOewGQIUQpntPq8FKVLK2KCwxLeV1YBRwIokup++6+7sFiE2K1AsvvMBnP/vZlLJs+0RE8U05bstchJ2ppEFqiYI1tdGLmb3k7p8uUDw5UVFR4ZWVlVGH0ea4e8o+EQCLFy9m0KBBTT630IvYDZ0wL21XT+/yMhaMPz1v1xWJq+CzviLduTBjFP8wsxPcfVGO45ISMnHiRMaP37ul+eDBg3nppfCr0Rf6m7LGRUTCC5MoTgPGmtk64AMS3U/u7sdmfZa0Cek2E9q6dSsHHHBARBGFo/2kRcILM5h9NnAEcDpwHnBu8LvFzOxAM3vKzN4MfnfLUG+3mS0Nfma05pqSe5k2E4p7kgBtACTSHNn2o+gMjAWOApYD97v7rhxddzzwtLtPMLPxwfEP09SrcffS3wi5yJTCZkJa5kIkvIyD2Wb2JxI32T1PolXxlrt/NycXNVsJDHP3DWbWE3jG3Rt9lTOzHe6+f3NfX4PZ+aPNhERKU0sHsz/h7gODF7gfWJjDmA5x9w0AQbI4OEO9zmZWCewCJrj79EwvaGZjgDEAffv2zWGoArBkyRIGDx5cf9ytWzc2b94cYUQiUijZEsXOugfuvqu53Qpm9jfg0DSnftyMl+nr7tXBfhjzzGy5u69OV9Hd7wXuhUSLolnBSka7d+9myJAhLF68uL5sw4YNHHpouv+0IlKKsiWK48zs/eCxAWXBcd2sp66Znwrufkamc2b2jpn1TOp62pjhNaqD32vM7BlgEJA2UUjuPfLII1x00UX1x7NmzeLzn/98hBGJSBSybYWaz51jZgCXAROC3080rBDMhPq3u39kZgcBQ4Fb8hiTBLZu3Uq3bnsnog0bNoynn3660c100jKFvrlQpLWi+j9/AnCmmb0JnBkcY2YVZjY5qHMMUGlmLwPzSYxRrIgk2jZk7NixKUlixYoVzJ8/X0kiRwqxraxIroW54S7n3P094HNpyiuBbwSPXwQGFji0NmvWrFmcd97e22N++MMfMmHChAgjKk353FZWJF8iSRQSH3v27Gm0P/U777zTaGlwyQ0tHSLFSP0Jbdj3v//9lCRx3nnn4e5KEnmkzYekGKlF0QaF2UxI8kObD0kxUouijenbt29Kkrj77rvTbiYk+aHNh6QYqUXRRixYsIBTTjklpaypvUgkP7T5kBQbJYoS15rNhEREQF1PJW3SpEkpSeL444/H3ZUkRKRZ1KIoQTt27KBLly4pZcWwmZCIxJNaFCXmlFNOSUkSN954Y9FsJiQi8VKHf8EAAA0cSURBVKQWRYl45ZVXGDgw9Ub2YttMSETiSS2KEmBmKUli3rx5uLuShIjkhBJFEXvwwQdTksEBBxyAu3PaaadFGJWIlBp1PRWh2tpaOnXqlFJWXV1Nz549I4pIREqZWhRF5pJLLklJEmPHjsXdlSREJG/UoigSb731Fv369Usp27VrV6OVX0VEck0tiiJgZilJ4pFHHsHdlSREpCDUooixhpsJgdZnEpHCU6KIoXSbCb355pscddRREUUkIm2Zup5i5gc/+EFKkjj33HNxdyUJEYmMWhQx8e6779KjR4+UMm0mJCJxEEmLwsy+YGavmtkeM6vIUu8sM1tpZqvMbHwhYyykn/70pylJ4je/+Y02ExKR2IiqRfEKMAq4J1MFM2sP3AWcCawHFpnZDHdfUZgQ8+/tt9+mb9++KWUarBaRuImkReHur7n7yiaqDQFWufsad68F/giMzH90+efufOlLX0pJEtXV1UoSIhJLcR7M7g28nXS8PihLy8zGmFmlmVVu2rQp78G11Isvvki7du146KGHAPjtb3+rO6tFJNby1vVkZn8DDk1z6sfu/kSYl0hTlvErt7vfC9wLUFFREbuv5rW1tQwYMIB169YB0LNnT9asWaNxCBGJvbwlCnc/o5UvsR44LOm4D1DdyteMxO9+9zu+/vWv1x/Pnz+fYcOGRReQiEgzxHl67CLgaDPrD1QBFwNfjDak5tm4cSOHHHJI/fGoUaN49NFHtU+EiBSVSBKFmV0A3AH0AGab2VJ3H25mvYDJ7n6Ou+8ys28Dc4H2wAPu/moU8bbEd77zHe6888764zVr1tC/f/9G9aYvqWLS3JVUb62hV3kZ44YP4PxBGYdi8ipOsYhIfFgpzrSpqKjwysrKSK69dOlSBg0aVH988803M358+ltApi+p4kfTllOzc3d9WVnH9tw8amDBP6DjFIuIFJ6ZveTuae9ri/Osp6Kye/duTjjhhPoksc8++/D+++9nTBIAk+auTPlgBqjZuZtJc5uaOZx7cYpFROJFiSIHHnvsMTp06EBdK2bmzJl89NFHdOnSJevzqrfWNKs8n+IUi4jES5wHs2Nv27ZtlJeX1x+feuqpzJ8/n3btwuXfXuVlVKX5IO5VXpazGMOKUywiEi9qUSSZvqSKoRPm0X/8bIZOmMf0JVUZ695www0pSeLVV1/l2WefDZ0kAMYNH0BZx9TlxMs6tmfc8AHND76V4hSLiMSLWhSBhoO5VVtr+NG05QApg7lvvPEGAwbs/fC87rrrmDhxYouuWfe6cZhpFKdYRCReNOspMHTCvLRdL73Ly1gw/nTcnbPPPpu5c+fWn3v33Xfp3r17q+MVEYmaZj2FkG0w969//Svt2rWrTxJTp07F3ZUkRKRNUNdTIN1g7p6dH1J912UMn/gBAJ/61KdYvHgxHTt2jCJEEZFIqEURaDiY+/6iJ3j7l6PZ/VEiSSxcuJDly5crSYhIm6MWRaBu0PZnf3qelyZeUl9++eWXM3ny5KjCEhGJnBJFkrOO6c4FSUmiurpa+0SISJunrqck++yzD9dee239ntVKEiIialGkaNeuHbfeemvUYYiIxIoSheSdli8XKW5KFDFQyh+kYe94F5H40hhFxOo+SKu21uDs/SDNts5UMdHy5SLFT4kiYqX+Qarly0WKnxJFxEr9gzTTMuVavlykeChRRKzUP0i1fLlI8YskUZjZF8zsVTPbY2ZpVysM6q0zs+VmttTMotkEO89K/YP0/EG9uXnUQHqXl2EkVuPVPtwixSWqWU+vAKOAe0LUPc3d381zPJFpC/tAnD+od0n9PSJtTSSJwt1fAzCzKC4fO/ogFZE4i/sYhQN/NbOXzGxMtopmNsbMKs2sctOmTQUKT0Sk9OWtRWFmfwMOTXPqx+7+RMiXGeru1WZ2MPCUmb3u7s+lq+ju9wL3QmKHuxYFLSIijeQtUbj7GTl4jerg90YzexwYAqRNFCIikh+x7Xoys/3MrEvdY+A/SQyCi4hIAUU1PfYCM1sPnATMNrO5QXkvM5sTVDsEeMHMXgYWArPd/cko4hURacuimvX0OPB4mvJq4Jzg8RrguAKHJiIiDZh76Y37mtkm4K2o4wjpIKDY7hMpxpihOOMuxpihOOMuxpghd3Ef7u490p0oyURRTMys0t0z3p0eR8UYMxRn3MUYMxRn3MUYMxQm7tgOZouISDwoUYiISFZKFNG7N+oAWqAYY4bijLsYY4bijLsYY4YCxK0xChERyUotChERyUqJQkREslKiKLBmbNp0lpmtNLNVZja+kDGmieVAM3vKzN4MfnfLUG93sMnUUjObUeg4k+LI+t6ZWScz+1Nw/p9m1q/wUTaKqamYv2pmm5Le329EEWeDmB4ws41mlnZpHUv4dfA3LTOzwYWOMZ0QcQ8zs21J7/X1hY4xTUyHmdl8M3st+Pz4bpo6+Xu/3V0/BfwBjgEGAM8AFRnqtAdWA0cA+wAvA5+IMOZbgPHB4/HAxAz1dsTg/W3yvQOuAu4OHl8M/KkIYv4qcGfU72+DmE4FBgOvZDh/DvAXwIATgX9GHXPIuIcBs6KOs0FMPYHBweMuwBtp/o3k7f1Wi6LA3P01d1/ZRLUhwCp3X+PutcAfgZH5jy6jkcDvg8e/B86PMJamhHnvkv+eR4HPWbS7aMXtv3conljyf3OWKiOBKZ7wD6DczHoWJrrMQsQdO+6+wd0XB4+3A68BDXc7y9v7rUQRT72Bt5OO19P4H0UhHeLuGyDxDxY4OEO9zsHmUf8ws6iSSZj3rr6Ou+8CtgHdCxJdemH/e18YdCk8amaHFSa0Vonbv+PmOMnMXjazv5jZJ6MOJlnQVToI+GeDU3l7v6PaM7uk5WDTpnTfbvM6jzlbzM14mb6e2GjqCGCemS1399W5iTC0MO9dwd/fJoSJZybwsLt/ZGZjSbSITs97ZK0Tt/c5rMUk1j3aYWbnANOBoyOOCQAz2x94DLjG3d9veDrNU3LyfitR5IG3ftOm9UDyN8Y+QHUrXzOrbDGb2Ttm1tPdNwRN2Y0ZXqNuo6k1ZvYMiW89hU4UYd67ujrrzawDcADRdkU0GbO7v5d0eB8wsQBxtVbB/x3nQvIHsLvPMbPfmNlB7h7pgoFm1pFEkpjq7tPSVMnb+62up3haBBxtZv3NbB8SA66RzSIKrn1Z8PgyoFGryMy6mVmn4PFBwFBgRcEi3CvMe5f894wG5nkwGhiRJmNu0Nc8gkQfddzNAL4SzMY5EdhW14UZZ2Z2aN2YlZkNIfE5+V72Z+U9JgPuB15z919mqJa/9zvq0fy29gNcQCLzfwS8A8wNynsBc5LqnUNiZsNqEl1WUcbcHXgaeDP4fWBQXgFMDh6fDCwnMWNnOXB5hPE2eu+Am4ARwePOwCPAKhKbYh0Rg38XTcV8M/Bq8P7OBz4eg5gfBjYAO4N/05cDY4GxwXkD7gr+puVkmOUXw7i/nfRe/wM4OQYxn0KiG2kZsDT4OadQ77eW8BARkazU9SQiIlkpUYiISFZKFCIikpUShYiIZKVEISIiWSlRSMkzs+5JK4H+y8yqko73yeF1BpvZWS187oHBHddh6v7MzK5pos4oM/t4S2IRaUiJQkqeu7/n7se7+/HA3cBtdceeWISvbonm1v7/MBhoUaIADiQxJz5XRgFKFJITShTSZpnZUWb2ipndTWJ9n8PMbGvS+YvNbHLw+BAzmxYsergwuPM1+bXKgOuBLwUtldFmtr+ZPRjUX2Jm5wV1B5rZoqDesmBtrAnAgKBsQppYr7fEfhVPkbTukJmNDV7rZTN7xMzKzOyzJG7Gui14vX7p6uX8DZWSpUQhbd0ngPvdfRBQlaXer4Fb3L0CuAiYnHzS3WtI3Ek9NWipPEoicTzp7kNILOD3CzPrTGI/jFuDFs4JJNbjGQ+sDJ6bsnFRsIzEhcDxJJYcGZJ0+hF3P8HdjyNxR+5X3f15YA7wveD11qWr17y3SdoyLQoobd1qd18Uot4ZJL7x1x13M7OyIEFk8p/A2bZ3x7rOQF/gReAnZnY4MM3dVzWxHcapwGPBtWrMbGbSuWPN7CagnMSGNrMyvEbYeiKNKFFIW/dB0uM9pC7V3DnpsQFD6sY0QjLgfG+81PobZvZ34PPAU2Z2GU2v8plprZ0pwNnu/ooltkc9sZX1RBpR15NIwN33AFvM7OhgYPuCpNN/A75Vd2Bmx6d5ie0kvq3XmQtcnfScQcHvI9x9lbvfDswGjk3z3GTPAaPMrLOZdQXOTTq3H/CvYAnqL2aJJVM9kSYpUYik+iHwJIlVctcnlX8LGBoMPq8AvpnmufOA44KB69HAjcC+ZrbczF4F/ieo90Uze9XMlpLYJ/sP7v4OUBnUTRnMdveFwOMkVjN9hETiqHM9iRVwnyJ1WfeHgf+uG8zOUk+kSVo9VkREslKLQkREslKiEBGRrJQoREQkKyUKERHJSolCRESyUqIQEZGslChERCSr/w+9hiMDVbViZwAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -370,7 +366,8 @@ "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", "plt.plot(true_data, true_data, 'k-')\n", "plt.xlabel('True test data')\n", - "plt.ylabel('Predicted test data')" + "plt.ylabel('Predicted test data')\n", + "plt.show()" ] }, { @@ -382,7 +379,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -397,17 +394,7 @@ }, { "data": { - "text/plain": [ - "Text(0, 0.5, 'Predicted test data')" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXwU9f348dc7IUAAISB4EEFFLFS80Ci2tFWsiv5Uiqi1VuvRKtV6VqWi8hW1UqDU4lEvvKqCF4LxQAVRq/VADQIiihQPlCAakHAGcr1/f+zusNnM7s5mj9nNvp+PRx5kZmdn3pPa92fmc4qqYowxJv8U+B2AMcYYf1gBYIwxecoKAGOMyVNWABhjTJ6yAsAYY/KUFQDGGJOnrAAwxpg8ZQWAyWoi8pWIfCciHcP2nSci/wnbVhHZLCKbRKRSRP4pIoVhn/8neMwBEecuD+4/IrhdIiIPishqEdkoIstE5Ooo1wn9/CXF99suGMOGYBxXxDj2NyLymYisF5HvReRhEekc9vmPReS14OfLReSkVMZqcp8VACYXtAEui3PMAaraCTgcOA34fcTny4CzQhsisiNwGFAVdsxkoBPwY6ALMAz43O06YT9/T/Rm4rgB2BvYHRgC/EVEjo1y7NvAYFXtAvQh8He6GUBE2gDPAi8A3YCRwFQR+VGK4zU5zAoAkwsmAVeJSEm8A1V1OYHEeGDER9OA08LeDE4HngFqw445BHhMVdepaqOqLlXVp5MPPyFnAX8NxvApcB9wjtuBqvqNqq4J29UA9A3+3h/oCUxW1QZVfY3A3+V3aYvc5BwrAEwuqAD+A1wV70AR6Q/8HFge8dEq4BPgmOD2WcAjEcfMA8aJyLkisncyAYvIaBGpjvYT5TtdCSTtRWG7FwEDYlznZyKyHtgInAzcGvrI7XBg35bcj2mdrAAwueJ64BIR6RHl8w9FZDPwKYHC4i6XYx4BzhKRfkCJqr4b8fklBN4ULgY+CdabH+dynfBkPtQtGFWdoKol0X6i3EOn4L/rw/atB3aIcjyq+lawCmg3Am9KXwU/Wgp8D4wSkSIROYZA9ViHaOcy+ccKAJMTVPVjAvXZo6McchCBBHoaMAjo6HLMTOBIAon+UZdr1Kjq31T1YGBH4Clguoh0C79ORDKf3eKbam5T8N/OYfs6E3i6j0lVK4GXgSeC23XAcOB4YDVwJYH7WZnCeE2OswLA5JKxwPlAqduHGvAU8C6BN4bIz7cALwEX4lIARBy7AfgbgYJkz0QDFZFrI3oLNfmJcs11wLdAeG+lA4AlHi/bBtgr7Hwfqerhqrqjqg4l0FD8fqL3YlovKwBMzgg28D4JXBrn0AnASBHZxeWza4HDVfWryA9E5P9E5BARaSsi7Qn0PKoGPmtBrH+L6C3U5CfGVx8BxohI12B7xvnAv90OFJEzRKS3BOwOjANeDft8fxFpLyIdROQqYNdo5zL5yQoAk2tuwr16x6Gqi4E3gFEun61S1beifRV4CFhDoNH4aOB4VQ1/Yl8U8TR/q9uJkjCWQNfTFQTuYZKqvgwQTPabRKR38Nh9gHcIVB29TaCgOj/sXL8j8EbxPfBL4GhV3ZbieE0OE1sQxhhj8pO9ARhjTJ6yAsAYY/KUFQDGGJOnrAAwxpg81cbvABLRvXt33WOPPfwOwxhjcsr8+fPXqGqzUfQ5VQDsscceVFRU+B2GMcbkFBFZ4bbfqoCMMSZPWQFgjDF5ygoAY4zJU1YAGGNMnrICwBhj8pQVAMYYk6dyqhuoMcZkSvmCSibN/oxV1TX0LClm1NB+DB/ouhRFzrICwBhjIpQvqOSamYupqWsAoLK6hmtmLgZoVYWAVQEZY0yESbM/c5J/SE1dA5NmJ7w2UFazAsAYYyKsqq5JaH+6rFmzhp122om77747Lee3AsAYYyL0LClOaH86jBkzhh49elBVVcXs2bPTcg0rAIwxJsKoof0oLipssq+4qJBRQ/ul/dpffvklIsK4ceMAGDt2LOXl5Wm5ljUCG2NMhFBDb6Z7Af3ud79j6tSpzvbatWvp1q1b2q5nBYAxxrgYPrA0Yz1+Fi5cyMCBA53tKVOmcP7556f9ulYAGGOMTxobGzn88MN56623AOjcuTOrV6+muDgzbQ3WBmCMMT6YO3cuhYWFTvJ/9tlnWb9+fcaSP/j4BiAivYBHgF2ARmCKqt7mVzzGGJNOoZHFlWs38O19I6ldXwXA/vvvz/z582nTJvPp2M83gHrgSlX9MXAYcJGI7ONjPMYYkxblCyoZNX0Ry955mRX/OMlJ/uMfepZFixb5kvzBxzcAVf0W+Db4+0YR+RQoBT7xKyZjjGmpWHMH/d9T77N8wgjn2OK+g+gxYgxPrGjLaL8CJksagUVkD2Ag8J7LZyOBkQC9e/fOaFzGGONFrLmDPn/tCT6ecJVzbM/z7qZox14AVNfUZT7YML4XACLSCZgBXK6qGyI/V9UpwBSAsrIyzXB4xhgTl9vcQZvWreGkg3Zztnc4+ES6HfXHTIcWk68FgIgUEUj+01R1pp+xGGNMS0XOEfTDq/exseJZZ3vAVY+xqbBzs+917VCU9thi8bMXkAAPAJ+q6j/9isMYYxLhVtffs6SYyuoa6n6oZNV925/yux5xDg/+82YARj29iLqG7ZUYRYXC2BMHZDz+cH6+AQwGfgcsFpGFwX3XquqLPsZkjDFRRavrH3FQT24dfQFblr3rHNvr8icpaNeRSbM/4+3RRwKZn1oiHj97Ab0FiF/XN8aYRN34/JJmdf3VKz7hbzcf52zveMKVdBowxNkOVQ9lcmoJr3xvBDbGmJbI9JKN5QsqWbdle68dbWxg9SNXUPvd5wC07bwju5x/P9Kmab1+JqeQTpRNBWGMyTmhqpjK6hqU7VUx5Qsq03bN8NXAtnz+AV9P+pWT/Pc5dyJP/mcRHYrbN/lOpqaQbil7AzDG5JxYSzYm8xYQ661iVXUNjXXbqLzzLBq3bQagXemP2fmMiYz7zUG+TSGdDCsAjDE5Jx1LNsZbCL5w+X/4asY/nON3OftW2u3Sl5LiIifJZ2M9fyxWABhjck6o26Xb/paK9lYxvryiyYCuDj8+nB7DRgGBKp4bhvnblTMZVgAYY3LOqKH9mjytQ/L17W5vD9XvPMGK/25foevu597m0SVbM9rwnM4qJSsAjDE5Jx317eFvFfUbqqi8+1zns6uvvpoJEyYAcMGJSQSegHhVUqkgqrkzvU5ZWZlWVFT4HYYxphUKJdyVz9/KpkWznf0PzV3IOb88IOPxDJ7wmms1V2lJsTOwzCsRma+qZZH7rRuoMcYAfYvWsfTm45zkv+eJl/DMhyt9Sf6QnobuSFYFZIzJacnWk6sqxx57LHPmzAGgTZs2rFu3jk6dOqUrZE/S0dAdyd4AjDFxlS+oZPCE19hz9CwGT3gtrQOuEpHsgLA333yTgoICJ/lPnz6duro635M/BBq6i4sKm+xL9cAyewMwxsSUicbIlmrpgLC6ujr23Xdfli1bBkDfvn355JNPKCryd3rmcJkYWGYFgDEmpnSNuk2FltSTz5gxg1NOOcXZfuONN/jFL36R8thSId0Dy6wAMMbElInGyJZKpJ588+bNdOvWjdraWgCOPvpoZs+eTWBpktTK9ER1LWVtAMaYmKI1OmbDLJde68nvvPNOOnXq5CT/xYsX86eJD/Gzia+nvF3Dj4nqWsoKAGNMTJlojGyp4QNLGT9iP0pLihECfeTHj9jPedquqqpCRLj44osBOO+881BVltd1TVuSjlZldvmTC7OqAR2sCsgYE0e2z3IZrZ782muvZfz48c72ihUr6N27N5Dedo1YVWPZ1IAOVgAYYzzI5lkuI+vbz9q3mAtO/Knz+Y033sj111/f5DvpbNeI1i4Rki0N6GAFgDEmh0V2UV346E2888kbzudr166lW7duzb6XzkFWbhPVRcqGBnSwNgBjTA6INhAtVJVT+93nrJh4AluCyX+vEVeiqq7JH9LbrhHeLhFNNjSgg70BGGN84rWrZKyBaJXrNrN62tVsq/wUgIJ2HSm96BEaitrFvHa62zVCVWaRsUP2NKCDFQDGGB8kMrr4hueWuDbYXvevaax48GpnX4+Tr6dD30MBb0/Ysdo1UtWPP9sb0K0AMMZknNdeOOULKqmuqWtynNbXUXnvH2jY9AMA7Xbuw85nTUYKAlU6iT5hRyb7If17MGN+ZcqmvsjmBnQrAIwxSXN7YoboT75ee+FMmv1Zk+1NS15n7Qu3ONvvvvsuq9v1avETttubyLR5XxO5Skomeu74MXrYCgBjTFLckuio6YtAoK5BnX3hT9Fee+GECoTGbVv45tZfO/uL9z6MP0+8lyv/s4ZV1QvpWVLM5NMOTDhhur2JRFsiK509d/yacM/XXkAi8qCIfC8iH/sZhzGm5dySaF2jOsk/JPQUDd574fQsKWb9ezObJP+e593Dnr8Zy8wPVyU9kjeRpJ7OnjuxqsTSye83gH8D/wIe8TkOY/JOqqocEkmioWO9NI5+++23vHPNL53tHQ4eRrejRgLQqEpNXWOTc8eqpol2r9HeRISmbwLp7rnj14R7vhYAqvqmiOzhZwzG5KNUVjnEG/kaeWxIrMbRyy67jNtvv93ZLr3oEdp02t6nPzL5h0QmzPIFldzw3JImDcnh9+o2aKu4qJCTDy7l9aVVGauPz8TqX278fgMwxvgglXPhuCXRogJp0gYA3p6iP/vsM/r37+9sdz3i93QeNMJzLAUilC+ojNoHPyR0r6HF1f3uphmtIEr3eIGsLwBEZCQwEnAmcjLGNJdIlU60qoXIp1Av54xWneO2L1o8qsrw4cN57rnnnH3r16/nuLsqXJ+Mu3YoYmtdY7Pk3qDqPN27FXJuf4Ns6Kbp13iBrC8AVHUKMAWgrKwsWgO9MXkt0SqdWHXf0Z6gY53TLYl6bZCdN28eP/nJT5ztqVOncsYZZwDRn4zHnjgAgCufWkSDujc2x6s/z5bpGEL8KIhsLiBjWoFEe5GMGtoPt3WwlO1975PpmeJlUZSGhgYOOOAAJ/mXlpaybds2J/lD/Pn+I5N/SOgpOppsmo7BT76+AYjI48ARQHcRWQmMVdUH/IzJmFyUaC+S4QNLufzJhTG/k0zPlBufd5++4fInFzJp9mccUfwNf7v8HOezOXPmcPTRR0eN1e3tIvQ24iZUheLWBtC1QxFjTxzge7VPNvC7F9Dpfl7fmNaiJb1ISuN8p6U9U8oXVLJuS53rZ41123j3htN4Z9tmAAYPHsybb75JQUFilRGx6vdDT/fZPg9PNsj6NgBjTHwt6UUSrffOltp69hw9iy7FRRQVStyePJENxZu31bteb+OiOfzw8vaunftffDdv3XFBwvcKsd9CwquIsqGBN5tZAWBMK9CSp93I73QpLmJzbb3z9F5dU0dRgdC1QxHVW+pcz+nWUBypoWYjK2/f/rLfcZ8j6H7iVWxI4n6jvZ2UlhRbwk+AFQDGtBLxnnajdekMfWfwhNeazbxZ16h0aNuGBdcf45xj8ITXnHNsqa2P2dWy+u3HWf/WNGe75x/vp6hkl8DvSfTC8avffGvjqQAQkX2BfYD2oX2qatM3GJMjvHTpjDU2YM/RsyjpUMSmrfXUNW6f4C2a+g3fU3n3753tzoedStfDz3a2k03WVr+fGnELABEZS6Cnzj7Ai8BxwFvY/D3G5AwvI39jTemgELVhN9Lal25n00dznO1DrpvBMWV7p3xqBavfT56XpvdTgF8Cq1X1XOAAIPZ6a8aYrOKlS6fbDJ2JqK36ihUTT3CS/5133omq8v7NI7h5+H6MGtqPniXFrKquYdLszxKeudOknpcqoBpVbRSRehHpDHwP9ElzXMaYFPLSpTOyWsXrsPsu7duwYtq1rF/+IQBFbdux7oe1dOzY0TnGr/nuTWxe3gAqRKQEuA+YD3wIvJ/WqIwxKeV1/v3hA0t5e/SRfDnheEo9NNLqqiV8dOOxTvKfMWMGtdu2Nkn+4H1UcaiRec/Rsxg84TV7S0izuG8Aqvqn4K/3iMjLQGdV/Si9YRljWiJeT59EGk1dxwkUCh3btqF6Uw3fPXQRW9cGEnTpHnvR+7y7ufL9Wm5aPAcRmnQd9VIFZW8JmScaZS4N5wCRV1X1l/H2ZUJZWZlWVFRk+rLG5AS36Y+LiwqbDIxqyTkjC436z9/l1FNPdY4Zd/8MHv2qQ8yRuQUCm2ubf96xbSFLbjoWCHRDjda3PzRts2kZEZmvqmWR+6O+AYhIe6ADgXl6uoIzd1RnoGdaojTGtFgq5/gPCX972LRpEyUlJTQ0BK4xdOhQXnrpJX428XVq6qJ3Ca2pa3CdeA4ChcKY8sXcPHw/31bFymex2gD+SKDOv3/w39DPs8Cd6Q/NGJMIr3P8t8Qdd9zBDjvs4CT/jz/+mJdffhkR8ZSgY9UzTJv3NeULKqMODMu2aZtbk6hvAKp6G3CbiFyiqndkMCZjTAvEm+MfEh84VVVVxU477eRsn3/++UyZMsXTdcMVikSdujk0BbWN7s08L43Ad9hIYGOy36ih/fjzkwubPW0rgemZw1fQCm9gBfeCYfTo0UycONE55uuvv6ZXr16u14229CJsX2N36ryvo8a+qrrGRvf6wEsjsOtIYFU9Je3RRbBGYGNi22P0rKTPUbjpe764c/s0Dn/9618ZM2ZMzO+ENxZ3KS5q1gto+MBSBlz/smtDMFhDb7ol3Agc5hQCo38XqOq5IrIzcH+qAzTGJC/aHP9eVT03iS2fvuFs//DDD3Tt2jXu97xMy7AlSvKHwBvJ4AmvZeSJP5G1k1s7LwPBalS1EbCRwMZkuZZO57Bt9XJWTDzBSf47Hncpquop+XsVrzHXbdnIVPOyVGU+sZHAxuSQeCNlw9fQ9UK1kW8fvZLVD18OQEH7Heh95Uz6/eJXKY/dS+Hkdc3hlkpmnePWyEYCG5MjvI6UDVXHRBtYFVLzxXy+nz7W2e5xylg67HVI2nreeJ1rKFq30lRU3dhYg6ZiDQQ7KNZnqvphekIyxrhJdKBXtKSm9XVU3vN7GjavA6Dtznuxy1n/RAoK075geuQCNF7XHE7VNBEtXee4tYr1BnBL8N/2QBmwiECX4v2B94CfpTc0Y1q/MeWLefy9b2hQpVCE0wf14ubh+7kem+jTq1uy2/Txa6yd9U9ne5ff3UK7nv0oKS7ihmHpS/xuEun3n6pRzjbWoKlYA8GGAIjIE8BIVV0c3N4XuCoz4RnTeo0pX9ykb3yDqrPtVgh4fXoNVZWEH9u4bTPf3Hqas91twM9Zs/gNRKJN0pB+ifT7T1XVjY01aMpLN9D+oeQPoKofi8iBaYzJmLzw+HvfRN3vVgB4eXp1mxBu/XtPU/2ffzvbfS68j9OPGcTPJr7uexL0uqpXolU3sdoLbCWx7bwUAJ+KyP3AVAKDCs8EPk1rVMbkgWhTIzSosufoWa6JC2I/vYZXldRvXEvlXdvX4e1c9iv2PflShvTvwYz5lTk17XIiVTc2rbR3XkYCtwcuBH4R3PUmcLeqbk1zbM3YSGCTa2I9ie51zYtRC4FwiTTM7jl6Fgr88Mo9bPzwBWf/bhc9yjf/OhOAgTfNcV3ftzQYX7ZWj3jtBWTTSjfX4pHAwUQ/OfhjjPEo3pPo6YN6xZwfJ2TdljrPT7AltVUsnHyus911yB/ofOhJzriA8gWVURd3D8WXrU/OXqturKund14GgqWNiBwrIp+JyHIRGe1nLMYkKt6grHiDjm4evh9nHtabQg8NsfEGK6kqw4YNa5L8e13+FJ0PPalJVUmscxSKtIpBUjattHe+FQAiUkhgXYHjCEw0d7qI7ONXPMYkwsuUAl6eRG8evh+fj/9/fOVhDd5o53v33XcpKCjg+eefB+CKv/2Ln45/lcJ2HSgtKW6yIlisp+Bo1VGV1TU5tUav1/WPjYcqIBE5VVWnx9vXAocCy1X1i+A5nwB+BXyS5HmNSTsv/dIT7bkypH+PmFVCkd9raGhg4MCBLF4cqKbp1asXy5cvp23btjHP4RZTSXERHdu1iTpyOFTIjXp6ETc8t4T1NXVZ10YQYl09vfPSC+gaIDLZu+1LVCkQ3g9uJTAo8iARGQmMBOjdu3eSlzQmNbw83Sfac2XG/OhP1xI8X+jYayY/xNJH/8/5fO7cufzyl82X6Y5sOI3sARSK6YZhAwBizusPUNegVNcE2hCyrY0gnHX19CZqFZCIHCcidwClInJ72M+/gfoUXNut4rPZO6iqTlHVMlUt69GjRwoua0zyvNQzh0/MJgSestsXFfDnJxc2q05xe6MIEeCMw3ozfGApT767nJMP29tJ/u167Uu/62axsVv/Zt9zq6aaMb+Skw8udaqbQvX+oXr+8Hi9qKlr4HKX+zG5IVYbwCqgAthK0zWBnwOGpuDaK4Hw5YV2C17TmKzntZ55+MBS3h59JJNPO5Bt9Y2s21Ln2mYQq25+8mkHcvPw/bjvvvv4zU/3prE2cOyu59zOLr+dwNZ6dW2oveG5Ja7VVK8vrXLiD9X7hz/Nvz36SL700CYRLt+nVc5VUQsAVV2kqg8DfVX14eDvzxGot1+Xgmt/AOwtInuKSFvgN8HzG5P1Ip/uIxtbI8XrERTtjaK0pJif926PiDBy5EgAOg4Ywu5Xv0DbnbcvyxFZgJQvqHSqaiKtqq7xNC3yqKH9PL8JuH3fZD8vbQCviMiw4LELgSoReUNVr0jmwqpaLyIXA7OBQuBBVV2SzDmNyaTIeuZQt1C3hsd4bQbR2gt6fzWL7t231+0fNGoqawtKmp0nsgCJlYh7lhR7asMYPrCUy59cGPU88b5vsp+XbqBdVHUDMAJ4SFUPBo5KxcVV9UVV/ZGq7qWq41JxTmPSJVa//3jdQuO1GUS+UeyoG1h683E8cW9g5s7rrrsOVeX/Tj8ibtVT+YLKmOsAjBraz3Nf+USqgdy+b7KblwKgjYjsCvwaeCHewca0RvESfLQqlRufX+JMTRBZnRKZuEPtBUdWzeTDv//W2V9VVcXNN9/sHBOr6ikUZzRdOxQxfGCp5zaMaMedeVhv19W9ttTWWztADvFSBXQTgWqat1X1AxHpA/wvvWEZk13i9fuPVvWxbkudM/WCEujRowQSsSr8+cmFTJr9GaOG9qNP4VoOOOAA57t33XUXF154YbNzxuriGKs3UXFRIWNPHOCcI3R8rL7ysY4r270bNzy3pElbQyLTVhj/eZkLaDphff6DA7dOTmdQxiQrFcsHhotXZx5tgFWkUPLfWtfoJOqV67ZwxknHs2XFIgDat2/PmjVr6NixY8riBGI2UscSrcAZPrCUSbM/a9bY3JKFWow/4lYBiciPRORVEfk4uL2/iIxJf2jGtIyXaRoSFa/OfEj/Hp57zKzbUuck/5ov5vP13090kv/MmTOpqalpUfIvX1BJQZR5hUpLips1WEf+jf785EL2SHDKB5t4Lbd5aQO4j8DI3zqA4ILwv0lnUMYkw0sXx0TFqjMPjeKNP7Hzdlpfx4qJJziLsrfpthu7j3qWk046qUXxhRK623w+bnX7bn+j0De9FpixChxrDM4NXtoAOqjq+xFLx6ViJLAxaZGOp1K3uvAh/Xs0W3oxHgFq5j3Bd29MdfZ1H/YXOv74Fwn3uAkXq+7/5IObV+HE+1vEq8ZJtMAx2clLAbBGRPYi+IAgIqcA36Y1KmOSkOgkbF6F14W7Lb0YT0PNRlbefnqTfb3/8jwi0qKkGd7OEevt4/WlVc32eWmziFVIRCtwCkVa3NZgMs9LFdBFwL1AfxGpBC4HLkhrVMYkIRPTAcd64nZT9fykJsn/r/dN56fjX6VAJO4oYjeRdfixuCVyt79RpFgFZrTCoVHVkn8O8fIGoKp6lIh0BApUdaOI7JnuwIxpqUxMBxyvCqVAoFGhrno1q+49z9nfufsurK8KvECHelKMKV/MlU8t4vInF1IowumDerkuCh8ukQLILZGH/41CYxTCC5J4BWa63rJMZnkpAGYAB6nq5rB9TwMHpyckY5KX7umAY1WhlJYUs6W2niV3Xkjd919s/84f7maPvj9qcuyY8sVN1gBoUHW2YxUCXtszYiXyyCqtRArMRKa6NtkragEgIv2BAUAXERkR9lFnoH26AzMmmw3p34Np875u9tQ8fsR+lNav4tBDD3X2t+9zMDufeiPQPHE//t43uJk272teX1oVNSF7qcMvTeDNJ9EC0xZdaR1ivQH0A04ASoATw/ZvBM5PZ1Am+6R6YJVfUnEfbt0+BRhxUE9OLutNY2Ojs3+3ix6lsFNXZ7vZql5RlmEM9c0H94VX3J7Aw5WWFPP26CMTuq9E2aIruS9qAaCqzwLPishPVPXdDMZkskxkj5d0rQSV7kImVffhVv++efl7/G3iCc72ib89j//1OTluFYkIRCkDmojslhn6N3IqhmjXMcZN3F5AlvxNOgZWRUrH6N1IqbqP8Goc1Ua+feQKqmb81dm3adMmnpt2n6f1AorbeOmI1/y6ECgEFo49hltPO9DzugTGhPPSCGzyXCaG+3tZZD1ZLb2P8DeTkg5F2+P7Yr4zkheg+3GXct+4vzjTOHipIqmpa4z5ebjwa4ezqhjTUlYAmLgy0eUvnYVMKIFHq2mJvI/IhL9paz11jYFvr9tSh9bXsfLuc2ncUg1A2133Zpcz/4EUFCZcpeR1EjnwVlVkTCJi9QKKueKXqv4z9eGYbJRslz8vdfvpKmTijdh1W0wl/PjQVM4hmz5+lbWzJjvbu5z1T9rtur1rZ2iR9NAUz/EKgniNueHWR1ni0ZiWivUGsEPw337AIWxfr/dE4M10BmWySzJd/rw2vKarX3msAVNu3SSjHd+4bTPf3Hqas92h38/o/qurkSiTocVqYI4sEE8+uLRJl8/N2+pd1/O1QVYm1UTjvFeKyBzgZFXdGNzeAZiuqsdmIL4mysrKtKKiItOXNUkIrYYVqaS4iI7t2jQpUCD1/cr3HD3LtepHgC8nHO9sh5KyW6zr502n+o2Hne2e599LUTdvcUV2x3R7IwmNH4g1z1DkMcYkQkTmq2pZ5H4vbQC9gdqw7VpgjxTFZVq5aHX41TV1zlNu6Gl5/Lbc5XYAABkXSURBVIj9Ut533UvVUrRqovqNa6i86xxnu/MhJ9H1yD8kdP3I+/fS2O33IKvWMubDxOelAHgUeF9EniEwPuUk4JG0RmVaDa+NnOlaRSpa1dKQ/j0YPOE1VlXXUCDSbEDWD6/czcYPZznb+1z1BFsKO1ESXMrRrYrGTWS1jdfGbr969mRqzIfJDl7GAYwDzgXWAdXAuar6t3QHZloHL7NOhqRjFSm3RdRPPriUGfMrnTEH4cm/bs03rJh4gpP89zj+T1z3zEeU7NgDgA5t23DDsAGeVv8SAgl0r2tedFba6lLs3pVTIaGVuKIpX1DJ4AmvsWeCK3uFZGLMh8keXruBdgA2qOpDItJDRPZU1S/TGZhpHdyqM7bU1jfrXQPpa+SMfJoePOG15qthqVI14yZqPv/A2TfohucZPWyg6xNxl+KimG8B4bNrhgqYyuoaigqFogJxupWGS/ZpOxVP77bEY36JWwCIyFigjEBvoIeAImAqMDi9oZnWIjIBR2vkzNT0BZHJbOvKT/lu2ihnu/uwv9B9/yGMHrZf1Cfi9kUFFBcVNvusQKBdm4KoA7zqGpSuHYro0LaNa9VYMlVhqRhMZ9M85xcv49BPAoYBmwFUdRXbu4gakzC3aplM9nAJJTNtbGDV/X9ykn+bLjuz+1XP8KOfDHXiidqIvaWOkw9uHm+jxh/dW72ljrdHHxm1GsnLyGS3ap5UPL1nYjEdkz28VAHVqqqKSGhJyI7JXlRETgVuAH4MHKqq1rczz/g5fcGoof24ePwUKqff5OzrdeYEbr/izCZdMQdPeC3q6OEuxUXMmN+y+vpQAdSSp+1Y1TypeHofPrCUihU/8Ph739CgSqGI65rCpnXw8gbwlIjcC5SIyPnAXOD+JK/7MTACG1BmMmzLli2c8bMfOcm/fe/9+cnf5jZL/qGJ6dwUFxUiQkJLQoZ/N/Q03ZKn7VjVPKl4eg9NdR1qt2hQZcb8ypROymeyR9w3AFX9h4gcDWwg0A5wvaq+ksxFVfVTIOooSmPS4d577+WCC7YvZ71w4UIOOOCAZsd5GT385ycXJnz9yJHHLenvH6uaJxXjBxJtR7AxA7nNSyPwRFW9GnjFZZ8xWcUtIf28d3u6d+/uHHP22Wfz73//m/IFlZxz0xynR1JJcRE3DBsQNckKOAPVbnx+iWtPpmiiLdASmbRD3S2jJdF41TzJVq0l0o5gYwZyn5cqoKNd9h0X70siMldEPnb5+VUiAYrISBGpEJGKqqqqRL5q8ozbmgLnXDyqSfL/6quvnOQ/6ulFTZJ4dU0do6YvijrtcnhdeqIzc0ZLrImug5DuRtpo7QVu+23MQO6LNRvohcCfgL1E5KOwj3YA3ol3YlU9KvnwQFWnAFMgMBdQKs5p0s+PqoHwhFS//nsq7/m989mp51/GU1NubXJsXUPz/5zqGhVVmnXxjEyyic7MGS2xJlrlku5pIhKZlM/GDOS+WFVAjwEvAeOB0WH7N6rqD2mNyuS0eFUD6SocQolnzaxb2fzxXGf/bpc+RuWuOzc5Ntb0FOtr6ph82oExY4xWFVNSXMS2+sbmS0Zuq6d8QWWz+2xJEk1nD6pEChgbM5D7Yq0JvB5YLyK3AT+EzwYqIoNU9b2WXlRETgLuAHoAs0RkoaoOben5THaJVzWQrnrjLjWrWHT7SGe729CL2eHAwKS1kQm10GX+n5CeJcVxk2y0J+Ubhg0AmrcRVNfUud5nS5NoOt+wvBYw6ZrC22SOlzaAu4FNYdubg/taTFWfUdXdVLWdqu5syb91ifVUG61wuPKpRS2ev0ZVGTJkiJP8pW0xva542kn+0DyhRkv+ECiU4sURazDb8IGldGjb/NnKrX68JXX6mVg/2Qu/B/SZ5HkZCCYatmiAqjaKiC0laaKK9VQbrXAIny8n8kk52tNu+YJKxtz1BEvuv8o5zymjb6NC92oygMstoZbGmaXUy5tJrCflRGb9hMTq9DOxfrJXth5xbvPyBvCFiFwqIkXBn8uAL9IdmMldsZ5qvdQPhz8pR3vavWb6h5w65CAn+Rd1351+175Av0FDmvTiKSkucn0q9TJLaTI9WhLpTTN8YClvjz6SLyccz9ujj4ybUK3x1aSKlwLgAuCnQCWwEhgEjIz5DZPXYlUNeJ0eOpTM3J5213z0OhN+fTD1678HYOcz/k7PP9zJ1gaYNu/rJnXv2+rd5+WJjDFeHIlKZ3fNRAoXY2LxMhL4e+A3GYjFtCLRqgYiqzzcFmOB7cksPAE3btvCN7f+2tku3usQepx8fZMR5ZFnitelMrQ/2tKVLU2q6eyuaY2vJlVijQP4i6r+XUTuoPn/r1DVS9MamWm1whNvvKmhQ+0JGz54lnWv3ecc0/MPd1PUvZen63l5indLqkUFwpbaevYcPatFCdxtGuzQKmTJFAh+LxlpWo9YbwCfBv+1mTqNZ7G6J8b6LNr+88u6ce7RA53z73DQ8XQ7+kLXa4cvwhLOy1N8ZBxdiovYHLZwTTYs1hIZryV8kyzRRMe0+6isrEwrKqw8ylbRnubHj9gPIOpn0RLZVVddxS233OJsl/7pYdrssKOzXVJcRMd2bZyCY0j/HsyYX5nQNaKJViUUbU6fTJ/PmESIyHxVLYvcH6sK6HncH6gAUNVhKYrN+CAdA4niDQDz2nVx+fLl7L333s727y69hg86/6JZYj/hgF15fen2+aHKdu9G2e7dUnJfqe5pE63LqfXcMX6KVQX0j+C/I4BdCCwDCXA68FUaYzJplq5ZHFuSNMM/U1V+/etf8/TTTzv7qqur6dKlS7MCK/JpP3QP40fsl5In6lROc1C+oDKp6ilj0iVqN1BVfUNV3wAGquppqvp88Oe3wM8yF6JJtXTN4hire2K8rosffPABBQUFTvJ/+OGHUVW6dOkCNO8r//rSqrTORJnKbpyTZn/mmvwleB1j/OJlHEAPEekT2hCRPQnM4WNyVLoGEsVKmtE+u+KovhxyyCEceuihAOy8885s3bqVs846K+a10j0YKpXTHESLSbF5842/vEzp8GfgPyISGv27B/DHtEVk0i4V1Rst6dET+dmRnSo55ZDdnc9efvllhg71Ni1UqqpoYt1HqnraRIu11Kp/jM+8DAR7WUT2BvoHdy1V1W3pDcukU7IDieK1IcSbO2fr1q306tWLd9asAWDQoEG88847FBR4eSFNzT14uY9UsYFbJlvF/X+ciHQARgEXq+oioLeInJD2yEzaJFu9kUwbwsMPP0xxcTFrgsn/gw8+YN68eQkl/1TcQ7L3kelYjUkHL1VADwHzgZ8Et1cC04EX0hWUSb9kqjdaUv9eXV1N165dne3TTjuNxx9/vMk0DonK5Pq3ybKBWyYbeXns2ktV/w7UAahqDcScP8u0colORjZ+/Pgmyf9///sfTzzxRFLJPxVsUjWT77wUALUiUkywG7OI7AVYG0Ae89pFsrKyEhHh2muvDXxv1ChUlb59+2Ys1lhi3Udo3p6WLlJjTC7wUgU0FngZ6CUi04DBwDnpDMpkNy+9fS688ELuueceZ/u7775jp512ynissUS7D0jfspXGZJOYcwFJ4B19N2ALcBiBqp95qromM+E1ZXMBZb9PPvmEAQMGONu33XYbl16aWxPH2rw9prVJeC4gAFVVESlX1YOBWWmLzuQ8VeX444/npZdeAqCwsJDq6mo6derkc2SJsxW3TL7w0gYwT0QOSXskJme99dZbFBQUOMn/qaeeor6+PieTP1jjsMkfXgqAIQQKgc9F5CMRWSwiH6U7MJP96uvr2Wefffj5z38OQJ8+faitreXUU0/1ObLkpHM5R2OyiZdG4OPSHoXJOeXl5Zx00knO9uuvv84RRxzhX0ApZCtumXwRaz2A9gQWhO8LLAYeUNX6TAVmstOWLVvYcccd2bp1KwBHHnkkc+fO9b1Pf6rZwC2TD2JVAT0MlBFI/scBt8Q41uSBe+65h44dOzrJf9GiRbz66qutLvkbky9iVQHto6r7AYjIA8D7mQnJZJs1a9bQo8f2GcDPPfdcHnzwQR8jMsakQqw3gLrQL6mu+hGRSSKyNNio/IyIlKTy/CZ1xowZ0yT5r1ixwpK/Ma1ErALgABHZEPzZCOwf+l1ENiR53VeAfVV1f2AZcE2S5zMp9tVXXyEijBs3DoCxY8eiqvTu3bvZsTZtgjG5KWoVkKoWRvssWao6J2xzHnBKuq5lEnf22WfzyCOPONtr166lW7dursdmak59Y0zqJTYJe3r8Hngp2ociMlJEKkSkoqqqqkUXsCdUbxYuXIiIOMl/ypQpqGrU5A+Zm1PfGJN6XsYBtIiIzAV2cfnoOlV9NnjMdUA9MC3aeVR1CjAFAnMBJRqHPaHG19jYyBFHHMF///tfADp37szq1aspLo4/8tWmTTAmd6XtDUBVj1LVfV1+Qsn/bOAE4AyNNSNdkuwJNbZXX32VwsJCJ/k/++yzrF+/3lPyB5s2wZhc5ksVkIgcC1wNDFPVLem8lj2huqutraV3794cddRRAOy///7U1dUxbNiwhM5j0yYYk7v8agP4F7AD8IqILBSRe+J9oaXsCbW5xx9/nHbt2vHNN98A8M4777Bo0SLatEm8RtDWuzUmd6WtDSAWVc3YklCjhvZr0gYA+fuEunHjRjp37uxsDxs2jPLy8qRH8tq0CcbkJl8KgEzK9MRe5Qsqs3ISscmTJ3PFFVc4259++in9+/f3MSJjjN9afQEAmXtCzcYeR6tXr2bXXXd1ti+55BJuv/32tF4zWwtBY0xT2TAOoNXIth5HV1xxRZPkv2rVqowk/2tmLqayugZleyFoYy+MyT5WAKRQtvQ4WrZsGSLC5MmTAZg4cSKq2qQwSJdsKwSNMdHlRRVQpvQsKXZdTDxTPY5UlVNOOYWZM2c6+6qrq+nSpUtGrg/ZUwgaY+KzN4AU8rNP/Pvvv09BQYGT/B999FFUNaPJH6zbrTG5xAqAFPKjT3xDQwMHH3wwgwYNAqBnz55s3bqVM888M23XjMUGhhmTO6wKKMUy2Sf+xRdf5Pjjj3e2Z8+ezTHHHJORa0dj6+kakzusAMhBW7dupWfPnqxbtw6An/70p/z3v/+loCA7XuhsYJgxuSE7Mobx7KGHHqK4uNhJ/hUVFbz99ttZk/yNMbnD3gByxLp165rMy3/66afz2GOP+RiRMSbX2WNjDhg3blyT5P/5559b8jfGJM3eALLYypUr6dWrl7N99dVXM2HCBB8jMsa0JlYAZKk//vGPTJkyxdn+/vvv6dGjh48RGWNaG6sCyjJLlixBRJzkf8cdd6CqlvyNMSlnbwBZQlU59thjmTNnDgBt2rRh3bp1dOrUyefIjDGtlb0BZIFQH/5Q8p8+fTp1dXWW/I0xaWVvAD6qr69nwIABLFu2DIC+ffvyySefUFRU5HNkxph8YG8APpk5cyZFRUVO8n/jjTf43//+Z8nfGJMx9gaQYZs3b6Zbt27U1tYCcPTRRzN79uyk1+U1xphE2RtABt1111106tTJSf6LFy9mzpw5lvyNMb6wN4AMqKqqYqeddnK2zzvvPO677z4fIzLGGHsDSLtrr722SfJfsWKFJX9jTFawAiBNvvzyS0SE8ePHA3DjjTeiqvTu3dvnyIwxJsCqgNLgzDPPZNq0ac722rVrm0zmZowx2cCXNwAR+auIfCQiC0Vkjoj09COOVFuwYAEi4iT/+++/H1W15G+MyUp+vQFMUtX/AxCRS4HrgQt8iiVpjY2NHH744bz11lsAlJSUsGrVKoqLbSF0Y0z28uUNQFU3hG12BNSPOFJh7ty5FBYWOsn/+eefZ926dZb8jTFZz7c2ABEZB5wFrAeG+BVHS9XW1tKnTx8qKysBOPDAA6moqKCwsNDnyIwxxpu0vQGIyFwR+djl51cAqnqdqvYCpgEXxzjPSBGpEJGKqqqqdIWbkMcee4x27do5yf/dd99lwYIFlvyNMTlFVP2tfRGR3YFZqrpvvGPLysq0oqIiA1G527BhA126dHG2hw8fzsyZM20krzEmq4nIfFUti9zvVy+gvcM2hwFL/YgjEbfcckuT5L906VKeeeYZS/7GmJzlVxvABBHpBzQCK8jiHkDffvstPXtu76V62WWXceutt/oYkTHGpIYvBYCqnuzHdRN1+eWXc9tttznbq1atYtddd/UxImOMSR2bCsLFsmXLEBEn+U+aNAlVteRvjGlVbCqIMKrKiBEjKC8vd/atX7+ezp07+xiVMcakh70BBM2bN4+CggIn+U+dOhVVteRvjGm18v4NoKGhgbKyMhYuXAhAaWkpX3zxBW3btvU5MmOMSa+8fgN44YUXaNOmjZP858yZw8qVKy35G2PyQl6+AdTU1NCzZ0+qq6sBGDx4MG+++SYFBXldHhpj8kzeZbwHHniADh06OMl//vz5vPXWW5b8jTF5J2/eANatW9dkXv4zzjiDqVOn+hiRMcb4Ky8KgPr6+ibJ//PPP6dPnz4+RmSMMf7LiwKgoKCASy65hB122IFx48b5HY4xxmSFvCkAbr/9dr/DMMaYrGItn8YYk6esADDGmDxlBYAxxuQpKwCMMSZPWQFgjDF5ygoAY4zJU1YAGGNMnrICwBhj8pSoqt8xeCYiVQQWkc823YE1fgeRYq3xnqB13ldrvCdonffl1z3trqo9InfmVAGQrUSkQlXL/I4jlVrjPUHrvK/WeE/QOu8r2+7JqoCMMSZPWQFgjDF5ygqA1JjidwBp0BrvCVrnfbXGe4LWeV9ZdU/WBmCMMXnK3gCMMSZPWQFgjDF5ygqAFBGRv4rIRyKyUETmiEhPv2NKlohMEpGlwft6RkRK/I4pWSJyqogsEZFGEcma7ngtJSLHishnIrJcREb7HU+yRORBEfleRD72O5ZUEpFeIvK6iHwa/O/vMr9jAisAUmmSqu6vqgcCLwDX+x1QCrwC7Kuq+wPLgGt8jicVPgZGAG/6HUiyRKQQuBM4DtgHOF1E9vE3qqT9GzjW7yDSoB64UlV/DBwGXJQN/1tZAZAiqrohbLMjkPOt66o6R1Xrg5vzgN38jCcVVPVTVf3M7zhS5FBguap+oaq1wBPAr3yOKSmq+ibwg99xpJqqfquqHwZ/3wh8CpT6G1WerAmcKSIyDjgLWA8M8TmcVPs98KTfQZgmSoFvwrZXAoN8isV4JCJ7AAOB9/yNxAqAhIjIXGAXl4+uU9VnVfU64DoRuQa4GBib0QBbIN49BY+5jsAr7LRMxtZSXu6plRCXfTn/5tmaiUgnYAZweUStgS+sAEiAqh7l8dDHgFnkQAEQ755E5GzgBOCXmiODRhL43ynXrQR6hW3vBqzyKRYTh4gUEUj+01R1pt/xgLUBpIyI7B22OQxY6lcsqSIixwJXA8NUdYvf8ZhmPgD2FpE9RaQt8BvgOZ9jMi5ERIAHgE9V9Z9+xxNiI4FTRERmAP2ARgJTVl+gqpX+RpUcEVkOtAPWBnfNU9ULfAwpaSJyEnAH0AOoBhaq6lB/o2o5Efl/wK1AIfCgqo7zOaSkiMjjwBEEpk3+Dhirqg/4GlQKiMjPgP8CiwnkCIBrVfVF/6KyAsAYY/KWVQEZY0yesgLAGGPylBUAxhiTp6wAMMaYPGUFgDHG5CkrAEzOEpEdg7OvLhSR1SJSGbbdNoXXOSg4JqIl3+0mIp66zorIzSJyeZxjRohI/5bEYkwkKwBMzlLVtap6YHAG1nuAyaHt4ORoSECy/50fRMtnqOwGpHLsxAjACgCTElYAmFZHRPqKyMcicg/wIdBLRKrDPv+NiNwf/H1nEZkpIhUi8r6IHBZxrmICU3ufEXyzOEVEOonIv4PHLxCRE4PH7iciHwSP+0hE+gATgH7BfRNcYr0+OJ//K8DeYfsvCJ5rkYhMF5FiEfk58P+AycHz7eF2XMr/oKbVsgLAtFb7AA+o6kAg1ojs24G/q2oZ8Gvg/vAPVbUGuInA/C0HqurTBAqEl1X1UOBI4BYRaQ/8CfhH8I3kEALz8owGPgt+t8mCLSJyKHAycCBwCoHpnUOmq+ohqnoA8Dlwjqr+F3gR+HPwfF+5HZfYn8nkM5sMzrRWn6vqBx6OO4rAE3pou6uIFAcTfzTHAMeFrcDVHugNvAOMEZHdgZmqujzsvG5+AcwIXqtGRJ4P+2x/EbkJKAF2ILDIkBuvxxnTjBUAprXaHPZ7I02nTm4f9rsAh4baDDwSYLiqfh6xf5mIvAscD7wSnEk13uyc0eZieQQ4TlU/FpHzCKwilcxxxjRjVUCm1VPVRmCdiOwdbBA+KezjucBFoQ0ROdDlFBsJPF2HzAYuDfvOwOC/fVR1uareRmA68P1dvhvuTWCEiLQXkc4Ept0O6QisDk4h/NsYsUQ7zpi4rAAw+eJq4GXgVQLz6IdcBAwONtp+Apzv8t3XgAOCDb6nADcCHURksYgsAW4IHvfb4ILfC4E+wFRV/Q6oCB7bpBFYVd8HngEWAdNpuk7x9cD7BNZl/iRs/+PAtaFG4BjHGROXzQZqjDF5yt4AjDEmT1kBYIwxecoKAGOMyVNWABhjTJ6yAsAYY/KUFQDGGJOnrAAwxpg89f8BXRk38e8U9XkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXwU9fnA8c+TECCAEBA8iKAiFipeaBRb2ipWRX8qRdRaq/VolWq1alUqKhW1UqDU4lEvvKqCF4LxQAVRq/VADQIiihQPlCAakHAGcj2/P3Z32Gxmd2ezx+xmn/frlReZ2dmZZ1L7fGe+p6gqxhhj8k+B3wEYY4zxhxUAxhiTp6wAMMaYPGUFgDHG5CkrAIwxJk9ZAWCMMXnKCgBjjMlTVgCYrCYiX4rItyLSMWzfeSLyn7BtFZHNIrJJRCpF5J8iUhj2+X+CxxwQce7y4P4jgtslIvKAiKwWkY0iskxEropyndDPn1N8v+2CMWwIxnF5jGN/JSKfish6EflORB4Skc5hn/9QRF4Nfr5cRE5KZawm91kBYHJBG+DSOMccoKqdgMOB04DfRny+DDgrtCEiOwKHAVVhx0wGOgE/BLoAw4DP3K4T9vP3RG8mjuuBvYHdgSHAn0Xk2CjHvgUMVtUuQB8Cf6ebAESkDfAM8DzQDRgJTBWRH6Q4XpPDrAAwuWAScKWIlMQ7UFWXE0iMB0Z8NA04LezN4HTgaaA27JhDgEdVdZ2qNqrqUlV9KvnwE3IW8NdgDJ8A9wLnuB2oql+r6pqwXQ1A3+Dv/YGewGRVbVDVVwn8XX6TtshNzrECwOSCCuA/wJXxDhSR/sBPgeURH60CPgaOCW6fBTwcccw8YJyInCsieycTsIiMFpHqaD9RvtOVQNJeFLZ7ETAgxnV+IiLrgY3AycAtoY/cDgf2bcn9mNbJCgCTK64D/igiPaJ8/oGIbAY+IVBY3OlyzMPAWSLSDyhR1XciPv8jgTeFi4GPg/Xmx7lcJzyZD3ULRlUnqGpJtJ8o99Ap+O/6sH3rgR2iHI+qvhmsAtqNwJvSl8GPlgLfAaNEpEhEjiFQPdYh2rlM/rECwOQEVf2IQH326CiHHEQggZ4GDAI6uhwzEziSQKJ/xOUaNar6N1U9GNgReBKYLiLdwq8Tkcxnt/immtsU/Ldz2L7OBJ7uY1LVSuAl4PHgdh0wHDgeWA1cQeB+VqYwXpPjrAAwuWQscD5Q6vahBjwJvEPgjSHy8y3Ai8CFuBQAEcduAP5GoCDZM9FAReSaiN5CTX6iXHMd8A0Q3lvpAGCJx8u2AfYKO9+Hqnq4qu6oqkMJNBS/l+i9mNbLCgCTM4INvE8Al8Q5dAIwUkR2cfnsGuBwVf0y8gMR+YuIHCIibUWkPYGeR9XApy2I9W8RvYWa/MT46sPAGBHpGmzPOB/4t9uBInKGiPSWgN2BccArYZ/vLyLtRaSDiFwJ7BrtXCY/WQFgcs2NuFfvOFR1MfA6MMrls1Wq+ma0rwIPAmsINBofDRyvquFP7IsinuZvcTtREsYS6Hq6gsA9TFLVlwCCyX6TiPQOHrsP8DaBqqO3CBRU54ed6zcE3ii+A34OHK2q21Icr8lhYgvCGGNMfrI3AGOMyVNWABhjTJ6yAsAYY/KUFQDGGJOn2vgdQCK6d++ue+yxh99hGGNMTpk/f/4aVW02ij6nCoA99tiDiooKv8MwxpicIiIr3PZbFZAxxuQpKwCMMSZPWQFgjDF5ygoAY4zJU1YAGGNMnrICwBhj8lROdQM1xphMKV9QyaTZn7KquoaeJcWMGtqP4QNdl6LIWVYAGGNMhPIFlVw9czE1dQ0AVFbXcPXMxQCtqhCwKiBjjIkwafanTvIPqalrYNLshNcGympWABhjTIRV1TUJ7U+XNWvWsNNOO3HXXXel5fxWABhjTISeJcUJ7U+HMWPG0KNHD6qqqpg9e3ZarmEFgDHGRBg1tB/FRYVN9hUXFTJqaL+0X/uLL75ARBg3bhwAY8eOpby8PC3XskZgY4yJEGrozXQvoN/85jdMnTrV2V67di3dunVL2/WsADDGGBfDB5ZmrMfPwoULGThwoLM9ZcoUzj///LRf1woAY4zxSWNjI4cffjhvvvkmAJ07d2b16tUUF2emrcHaAIwxxgdz586lsLDQSf7PPPMM69evz1jyBx/fAESkF/AwsAvQCExR1Vv9iscYY9IpNLK4cu0Gvrl3JLXrqwDYf//9mT9/Pm3aZD4d+/kGUA9coao/BA4DLhKRfXyMxxhj0qJ8QSWjpi9i2dsvseIfJznJf/yDz7Bo0SJfkj/4+Aagqt8A3wR/3yginwClwMd+xWSMMS0Va+6gvzz5HssnjHCOLe47iB4jxvD4iraM9itgsqQRWET2AAYC77p8NhIYCdC7d++MxmWMMV7Emjvos1cf56MJVzrH9jzvLop27AVAdU1d5oMN43sBICKdgBnAZaq6IfJzVZ0CTAEoKyvTDIdnjDFxuc0dtGndGk46aDdne4eDT6TbUb/PdGgx+VoAiEgRgeQ/TVVn+hmLMca0VOQcQd+/ci8bK55xtgdc+SibCjs3+17XDkVpjy0WP3sBCXA/8Imq/tOvOIwxJhFudf09S4qprK6h7vtKVt27/Sm/6xHn8MA/bwJg1FOLqGvYXolRVCiMPXFAxuMP5+cbwGDgN8BiEVkY3HeNqr7gY0zGGBNVtLr+EQf15JbRF7Bl2TvOsb0ue4KCdh2ZNPtT3hp9JJD5qSXi8bMX0JuA+HV9Y4xJ1A3PLWlW11+94mP+dtNxzvaOJ1xBpwFDnO1Q9VAmp5bwyvdGYGOMaYlML9lYvqCSdVu299rRxgZWP3w5td9+BkDbzjuyy/n3IW2a1utncgrpRNlUEMaYnBOqiqmsrkHZXhVTvqAybdcMXw1sy2fv89WkXzjJf59zJ/LEfxbRobh9k+9kagrplrI3AGNMzom1ZGMybwGx3ipWVdfQWLeNyjvOonHbZgDalf6Qnc+YyLhfHeTbFNLJsALAGJNz0rFkY7yF4AuX/4cvZ/zDOX6Xs2+h3S59KSkucpJ8Ntbzx2IFgDEm54S6Xbrtb6lobxXjyyuaDOjq8MPD6TFsFBCo4rl+mL9dOZNhBYAxJueMGtqvydM6JF/f7vb2UP3246z47/YVuu569i0eWbI1ow3P6axSsgLAGJNz0lHfHv5WUb+hisq7znU+u+qqq5gwYQIAF5yYROAJiFcllQqimjvT65SVlWlFRYXfYRhjWqFQwl353C1sWjTb2f/g3IWc8/MDMh7P4AmvulZzlZYUOwPLvBKR+apaFrnfuoEaYwzQt2gdS286zkn+e574R57+YKUvyR/S09AdyaqAjDE5Ldl6clXl2GOPZc6cOQC0adOGdevW0alTp3SF7Ek6Groj2RuAMSau8gWVDJ7wKnuOnsXgCa+mdcBVIpIdEPbGG29QUFDgJP/p06dTV1fne/KHQEN3cVFhk32pHlhmbwDGmJgy0RjZUi0dEFZXV8e+++7LsmXLAOjbty8ff/wxRUX+Ts8cLhMDy6wAMMbElK5Rt6nQknryGTNmcMoppzjbr7/+Oj/72c9SHlsqpHtgmRUAxpiYMtEY2VKJ1JNv3ryZbt26UVtbC8DRRx/N7NmzCSxNklqZnqiupawNwBgTU7RGx2yY5dJrPfkdd9xBp06dnOS/ePFi/jDxQX4y8bWUt2v4MVFdS1kBYIyJKRONkS01fGAp40fsR2lJMUKgj/z4Efs5T9tVVVWICBdffDEA5513HqrK8rquaUvS0arMLntiYVY1oINVARlj4sj2WS6j1ZNfc801jB8/3tlesWIFvXv3BtLbrhGraiybGtDBCgBjjAfZPMtlZH37WfsWc8GJP3Y+v+GGG7juuuuafCed7RrR2iVCsqUBHawAMMbksMguqgsfuZG3P37d+Xzt2rV069at2ffSOcjKbaK6SNnQgA7WBmCMyQHRBqKFqnJqv/2MFRNPYEsw+e814gpU1TX5Q3rbNcLbJaLJhgZ0sDcAY4xPvHaVjDUQrXLdZlZPu4ptlZ8AUNCuI6UXPUxDUbuY1053u0aoyiwydsieBnSwAsAY44NERhdf/+wS1wbba/81jRUPXOXs63HydXToeyjg7Qk7VrtGqvrxZ3sDuhUAxpiM89oLp3xBJdU1dU2O0/o6Ku/5HQ2bvgeg3c592PmsyUhBoEon0SfsyGQ/pH8PZsyvTNnUF9ncgG4FgDEmaW5PzBD9yddrL5xJsz9tsr1pyWusff5mZ/udd95hdbteLX7CdnsTmTbvKyJXSclEzx0/Rg9bAWCMSYpbEh01fREI1DWosy/8KdprL5xQgdC4bQtf3/JLZ3/x3ofxp4n3cMV/1rCqeiE9S4qZfNqBCSdMtzeRaEtkpbPnjl8T7vnaC0hEHhCR70TkIz/jMMa0nFsSrWtUJ/mHhJ6iwXsvnJ4lxax/d2aT5N/zvLvZ81djmfnBqqRH8iaS1NPZcydWlVg6+f0G8G/gX8DDPsdhTN5JVZVDIkk0dKyXxtFvvvmGt6/+ubO9w8HD6HbUSAAaVampa2xy7ljVNNHuNdqbiND0TSDdPXf8mnDP1wJAVd8QkT38jMGYfJTKKod4I18jjw2J1Th66aWXcttttznbpRc9TJtO2/v0Ryb/kMiEWb6gkuufXdKkITn8Xt0GbRUXFXLywaW8trQqY/XxmVj9y43fbwDGGB+kci4ctyRaVCBN2gDA21P0p59+Sv/+/Z3trkf8ls6DRniOpUCE8gWVUfvgh4TuNbS4ut/dNKMVROkeL5D1BYCIjARGAs5ETsaY5hKp0olWtRD5FOrlnNGqc9z2RYtHVRk+fDjPPvuss2/9+vUcd2eF65Nx1w5FbK1rbJbcG1Sdp3u3Qs7tb5AN3TT9Gi+Q9QWAqk4BpgCUlZVFa6A3Jq8lWqUTq+472hN0rHO6JVGvDbLz5s3jRz/6kbM9depUzjjjDCD6k/HYEwcAcMWTi2hQ98bmePXn2TIdQ4gfBZHNBWRMK5BoL5JRQ/vhtg6Wsr3vfTI9U7wsitLQ0MABBxzgJP/S0lK2bdvmJH+IP99/ZPIPCT1FR5NN0zH4ydc3ABF5DDgC6C4iK4Gxqnq/nzEZk4sS7UUyfGAplz2xMOZ3kumZcsNz7tM3XPbEQibN/pQjir/mb5ed43w2Z84cjj766Kixur1dhN5G3ISqUNzaALp2KGLsiQN8r/bJBn73Ajrdz+sb01q0pBdJaZzvtLRnSvmCStZtqXP9rLFuG+9cfxpvb9sMwODBg3njjTcoKEisMiJW/X7o6T7b5+HJBlnfBmCMia8lvUii9d7ZUlvPnqNn0aW4iKJCiduTJ7KhePO2etfrbVw0h+9f2t61c/+L7+LN2y9I+F4h9ltIeBVRNjTwZjMrAIxpBVrytBv5nS7FRWyurXee3qtr6igqELp2KKJ6S53rOd0aiiM11Gxk5W3bX/Y77nME3U+8kg1J3G+0t5PSkmJL+AmwAsCYViLe0260Lp2h7wye8GqzmTfrGpUObduw4LpjnHMMnvCqc44ttfUxu1pWv/UY69+c5mz3/P19FJXsEvg9iV44fvWbb208FQAisi+wD9A+tE9VbfoGY3KEly6dscYG7Dl6FiUditi0tZ66xu0TvEVTv+E7Ku/6rbPd+bBT6Xr42c52ssna6vdTI24BICJjCfTU2Qd4ATgOeBObv8eYnOFl5G+sKR0UojbsRlr74m1s+nCOs33ItTM4pmzvlE+tYPX7yfPS9H4K8HNgtaqeCxwAxF5vzRiTVbx06XSboTMRtVVfsmLiCU7yv+OOO1BV3rtpBDcN349RQ/vRs6SYVdU1TJr9acIzd5rU81IFVKOqjSJSLyKdge+APmmOyxiTQl66dEZWq3gddt+lfRtWTLuG9cs/AKCobTvWfb+Wjh07Osf4Nd+9ic3LG0CFiJQA9wLzgQ+A99IalTEmpbzOvz98YClvjT6SLyYcT6mHRlpdtYQPbzjWSf4zZsygdtvWJskfvI8qDjUy7zl6FoMnvGpvCWkW9w1AVf8Q/PVuEXkJ6KyqH6Y3LGNMS8Tr6ZNIo6nrOIFCoWPbNlRvquHbBy9i69pAgi7dYy96n3cXV7xXy42L5yBCk66jXqqg7C0h80SjzKXhHCDyiqr+PN6+TCgrK9OKiopMX9aYnOA2/XFxUWGTgVEtOWdkoVH/2TuceuqpzjHj7pvBI192iDkyt0Bgc23zzzu2LWTJjccCgW6o0fr2h6ZtNi0jIvNVtSxyf9Q3ABFpD3QgME9PV3DmjuoM9ExLlMaYFkvlHP8h4W8PmzZtoqSkhIaGwDWGDh3Kiy++yE8mvkZNXfQuoTV1Da4Tz0GgUBhTvpibhu/n26pY+SxWG8DvCdT59w/+G/p5Brgj/aEZYxLhdY7/lrj99tvZYYcdnOT/0Ucf8dJLLyEinhJ0rHqGafO+onxBZdSBYdk2bXNrEvUNQFVvBW4VkT+q6u0ZjMkY0wLx5viHxAdOVVVVsdNOOznb559/PlOmTPF03XCFIlGnbg5NQW2jezPPSyPw7TYS2JjsN2poP/70xMJmT9tKYHrm8BW0whtYwb1gGD16NBMnTnSO+eqrr+jVq5frdaMtvQjb19idOu+rqLGvqq6x0b0+8NII7DoSWFVPSXt0EawR2JjY9hg9K+lzFG76js/v2D6Nw1//+lfGjBkT8zvhjcVdioua9QIaPrCUAde95NoQDNbQm24JNwKHOYXA6N8FqnquiOwM3JfqAI0xyYs2x79XVc9OYssnrzvb33//PV27do37PS/TMmyJkvwh8EYyeMKrGXniT2Tt5NbOy0CwGlVtBGwksDFZrqXTOWxbvZwVE09wkv+Ox12CqnpK/l7Fa8x1WzYy1bwsVZlPbCSwMTkk3kjZ8DV0vVBt5JtHrmD1Q5cBUNB+B3pfMZN+P/tFymP3Ujh5XXO4pZJZ57g1spHAxuQIryNlQ9Ux0QZWhdR8Pp/vpo91tnucMpYOex2Stp43XucaitatNBVVNzbWoKlYA8EOivWZqn6QnpCMMW4SHegVLalpfR2Vd/+Whs3rAGi7817sctY/kYLCtC+YHrkAjdc1h1M1TURL1zlurWK9Adwc/Lc9UAYsItCleH/gXeAn6Q3NmNZvTPliHnv3axpUKRTh9EG9uGn4fq7HJvr06pbsNn30Kmtn/dPZ3uU3N9OuZz9Kiou4flj6Er+bRPr9p2qUs401aCrWQLAhACLyODBSVRcHt/cFrsxMeMa0XmPKFzfpG9+g6my7FQJen15DVSXhxzZu28zXt5zmbHcb8FPWLH4dkWiTNKRfIv3+U1V1Y2MNmvLSDbR/KPkDqOpHInJgGmMyJi889u7XUfe7FQBenl7dJoRb/+5TVP/n3852nwvv5fRjBvGTia/5ngS9ruqVaNVNrPYCW0lsOy8FwCcich8wlcCgwjOBT9IalTF5INrUCA2q7Dl6lmvigthPr+FVJfUb11J55/Z1eDuX/YJ9T76EIf17MGN+ZU5Nu5xI1Y1NK+2dl5HA7YELgZ8Fd70B3KWqW9McWzM2EtjkmlhPontd/ULUQiBcIg2ze46ehQLfv3w3Gz943tm/20WP8PW/zgRg4I1zXNf3LQ3Gl63VI157Adm00s21eCRwMNFPDv4YYzyK9yR6+qBeMefHCVm3pc7zE2xJbRULJ5/rbHcd8js6H3qSMy6gfEFl1MXdQ/Fl65Oz16ob6+rpnZeBYGkjIseKyKcislxERvsZizGJijcoK96go5uG78eZh/Wm0ENDbLzBSqrKsGHDmiT/Xpc9SedDT2pSVRLrHIUirWKQlE0r7Z1vBYCIFBJYV+A4AhPNnS4i+/gVjzGJ8DKlgJcn0ZuG78dn4/+PLz2swRvtfO+88w4FBQU899xzAFz+t3/x4/GvUNiuA6UlxU1WBIv1FBytOqqyuian1uj1uv6x8VAFJCKnqur0ePta4FBguap+Hjzn48AvgI+TPK8xaeelX3qiPVeG9O8Rs0oo8nsNDQ0MHDiQxYsD1TS9evVi+fLltG3bNuY53GIqKS6iY7s2UUcOhwq5UU8t4vpnl7C+pi7r2ghCrKund156AV0NRCZ7t32JKgXC+8GtBAZFHiQiI4GRAL17907yksakhpen+0R7rsyYH/3pWoLnCx179eQHWfrIX5zP586dy89/3nyZ7siG08geQKGYrh82ACDmvP4AdQ1KdU2gDSHb2gjCWVdPb6JWAYnIcSJyO1AqIreF/fwbqE/Btd0qPpu9g6rqFFUtU9WyHj16pOCyxiTPSz1z+MRsQuApu31RAX96YmGz6hS3N4oQAc44rDfDB5byxDvLOfmwvZ3k367XvvS7dhYbu/Vv9j23aqoZ8ys5+eBSp7opVO8fqucPj9eLmroGLnO5H5MbYrUBrAIqgK00XRP4WWBoCq69EghfXmi34DWNyXpe65mHDyzlrdFHMvm0A9lW38i6LXWubQax6uYnn3YgNw3fj3vvvZdf/XhvGmsDx+56zm3s8usJbK1X14ba659d4lpN9drSKif+UL1/+NP8W6OP5AsPbRLh8n1a5VwVtQBQ1UWq+hDQV1UfCv7+LIF6+3UpuPb7wN4isqeItAV+FTy/MVkv8uk+srE1UrweQdHeKEpLivlp7/aICCNHjgSg44Ah7H7V87TdefuyHJEFSPmCSqeqJtKq6hpP0yKPGtrP85uA2/dN9vPSBvCyiAwLHrsQqBKR11X18mQurKr1InIxMBsoBB5Q1SXJnNOYTIqsZw51C3VreIzXZhCtvaD3l7Po3n173f5Bo6aytqCk2XkiC5BYibhnSbGnNozhA0u57ImFUc8T7/sm+3npBtpFVTcAI4AHVfVg4KhUXFxVX1DVH6jqXqo6LhXnNCZdYvX7j9ctNF6bQeQbxY66gaU3Hcfj9wRm7rz22mtRVf5y+hFxq57KF1TGXAdg1NB+nvvKJ1IN5PZ9k928FABtRGRX4JfA8/EONqY1ipfgo1Wp3PDcEmdqgsjqlMjEHWovOLJqJh/8/dfO/qqqKm666SbnmFhVT6E4o+naoYjhA0s9t2FEO+7Mw3q7ru61pbbe2gFyiJcqoBsJVNO8parvi0gf4H/pDcuY7BKv33+0qo91W+qcqReUQI8eJZCIVeFPTyxk0uxPGTW0H30K13LAAQc4373zzju58MILm50zVhfHWL2JiosKGXviAOccoeNj9ZWPdVzZ7t24/tklTdoaEpm2wvjPy1xA0wnr8x8cuHVyOoMyJlmpWD4wXLw682gDrCKFkv/WukYnUa9ct4UzTjqeLSsWAdC+fXvWrFlDx44dUxYnELOROpZoBc7wgaVMmv1ps8bmlizUYvwRtwpIRH4gIq+IyEfB7f1FZEz6QzOmZbxM05CoeHXmQ/r38NxjZt2WOif513w+n6/+fqKT/GfOnElNTU2Lkn/5gkoKoswrVFpS3KzBOvJv9KcnFrJHglM+2MRruc1LG8C9BEb+1gEEF4T/VTqDMiYZXro4JipWnXloFG/8iZ230/o6Vkw8wVmUvU233dh91DOcdNJJLYovlNDd5vNxq9t3+xuFvum1wIxV4FhjcG7w0gbQQVXfi1g6LhUjgY1Ji3Q8lbrVhQ/p36PZ0ovxCFAz73G+fX2qs6/7sD/T8Yc/S7jHTbhYdf8nH9y8Cife3yJeNU6iBY7JTl4KgDUishfBBwQROQX4Jq1RGZOERCdh8yq8Ltxt6cV4Gmo2svK205vs6/3n5xCRFiXN8HaOWG8fry2tarbPS5tFrEIiWoFTKNLitgaTeV6qgC4C7gH6i0glcBlwQVqjMiYJmZgOONYTt5uq5yY1Sf5/vXc6Px7/CgUicUcRu4msw4/FLZG7/Y0ixSowoxUOjaqW/HOIlzcAVdWjRKQjUKCqG0Vkz3QHZkxLZWI64HhVKAUCjQp11atZdc95zv7O3XdhfVXgBTrUk2JM+WKueHIRlz2xkEIRTh/Uy3VR+HCJFEBuiTz8bxQaoxBekMQrMNP1lmUyy0sBMAM4SFU3h+17Cjg4PSEZk7x0TwccqwqltKSYLbX1LLnjQuq++3z7d353F3v0/UGTY8eUL26yBkCDqrMdqxDw2p4RK5FHVmklUmAmMtW1yV5RCwAR6Q8MALqIyIiwjzoD7dMdmDHZbEj/Hkyb91Wzp+bxI/ajtH4Vhx56qLO/fZ+D2fnUG4Dmifuxd7/GzbR5X/Ha0qqoCdlLHX5pAm8+iRaYtuhK6xDrDaAfcAJQApwYtn8jcH46gzLZJ9UDq/ySivtw6/YpwIiDenJyWW8aGxud/btd9AiFnbo6281W9YqyDGOobz64L7zi9gQerrSkmLdGH5nQfSXKFl3JfVELAFV9BnhGRH6kqu9kMCaTZSJ7vKRrJah0FzKpug+3+vfNy9/lbxNPcLZP/PV5/K/PyXGrSEQgShnQRGS3zNC/kVMxRLuOMW7i9gKy5G/SMbAqUjpG70ZK1X2EV+OoNvLNw5dTNeOvzr5Nmzbx7LR7Pa0XUNzGS0e85teFQCGwcOwx3HLagZ7XJTAmnJdGYJPnMjHc38si68lq6X2Ev5mUdCjaHt/n852RvADdj7uEe8f92ZnGwUsVSU1dY8zPw4VfO5xVxZiWsgLAxJWJLn/pLGRCCTxaTUvkfUQm/E1b66lrDHx73ZY6tL6OlXedS+OWagDa7ro3u5z5D6SgMOEqJa+TyIG3qiJjEhGrF1DMFb9U9Z+pD8dko2S7/Hmp209XIRNvxK7bYirhx4emcg7Z9NErrJ012dne5ax/0m7X7V07Q4ukh6Z4jlcQxGvMDbc+yhKPxrRUrDeAHYL/9gMOYft6vScCb6QzKJNdkuny57XhNV39ymMNmHLrJhnt+MZtm/n6ltOc7Q79fkL3X1yFRJkMLVYDc2SBePLBpU26fG7eVu+6nq8NsjKpJhrnvVJE5gAnq+rG4PYOwHRVPTYD8TVRVlamFRUVmb6sSUJoNaxIJcVFdGzXpkmBAqnvV77n6FmuVT8CfDHheGc7lJTdYl0/bzrVrz/kbPc8/x6KunmLK7I7ptsbSWj8QKx5hiKPMSYRIjJfVcsi93tpA+gN1IZt1wJ7pCgu08pFq8OvrqlznnJDT8vjR8zxYQ0AABkQSURBVOyX8r7rXqqWolUT1W9cQ+Wd5zjbnQ85ia5H/i6h60fev5fGbr8HWbWWMR8mPi8FwCPAeyLyNIHxKScBD6c1KtNqeG3kTNcqUtGqlob078HgCa+yqrqGApFmA7K+f/kuNn4wy9ne58rH2VLYiZLgUo5uVTRuIqttvDZ2+9WzJ1NjPkx28DIOYBxwLrAOqAbOVdW/pTsw0zp4mXUyJB2rSLkton7ywaXMmF/pjDkIT/51a75mxcQTnOS/x/F/4NqnP6Rkxx4AdGjbhuuHDfC0+pcQSKB7Xf2Cs9JWl2L3rpwKCa3EFU35gkoGT3iVPRNc2SskE2M+TPbw2g20A7BBVR8UkR4isqeqfpHOwEzr4FadsaW2vlnvGkhfI2fk0/TgCa82Xw1LlaoZN1Lz2fvOvkHXP8foYQNdn4i7FBfFfAsIn10zVMBUVtdQVCgUFYjTrTRcsk/bqXh6tyUe80vcAkBExgJlBHoDPQgUAVOBwekNzbQWkQk4WiNnpqYviExmW1d+wrfTRjnb3Yf9me77D2H0sP2iPhG3LyqguKiw2WcFAu3aFEQd4FXXoHTtUESHtm1cq8aSqQpLxWA6m+Y5v3gZh34SMAzYDKCqq9jeRdSYhLlVy2Syh0somWljA6vu+4OT/Nt02Zndr3yaH/xoqBNP1EbsLXWcfHDzeBs1/uje6i11vDX6yKjVSF5GJrtV86Ti6T0Ti+mY7OGlCqhWVVVEQktCdkz2oiJyKnA98EPgUFW1vp15xs/pC0YN7cfF46dQOf1GZ1+vMydw2+VnNumKOXjCq1FHD3cpLmLG/JbV14cKoJY8bceq5knF0/vwgaVUrPiex979mgZVCkVc1xQ2rYOXN4AnReQeoEREzgfmAvcled2PgBHYgDKTYVu2bOGMn/zASf7te+/Pj/42t1nyD01M56a4qBAREloSMvy7oafpljxtx6rmScXTe2iq61C7RYMqM+ZXpnRSPpM94r4BqOo/RORoYAOBdoDrVPXlZC6qqp8AUUdRGpMO99xzDxdcsH0564ULF3LAAQc0O87L6OE/PbEw4etHjjxuSX//WNU8qRg/kGg7go0ZyG1eGoEnqupVwMsu+4zJKm4J6ae929O9e3fnmLPPPpt///vflC+o5Jwb5zg9kkqKi7h+2ICoSVbAGah2w3NLXHsyRRNtgZbIpB3qbhkticar5km2ai2RdgQbM5D7vFQBHe2y77h4XxKRuSLykcvPLxIJUERGikiFiFRUVVUl8lWTZ9zWFDjn4lFNkv+XX37pJP9RTy1qksSra+oYNX1R1GmXw+vSE52ZM1piTXQdhHQ30kZrL3Dbb2MGcl+s2UAvBP4A7CUiH4Z9tAPwdrwTq+pRyYcHqjoFmAKBuYBScU6Tfn5UDYQnpPr131F592+dz049/1KenHJLk2PrGpr/51TXqKjSrItnZJJNdGbOaIk10SqXdE8TkcikfDZmIPfFqgJ6FHgRGA+MDtu/UVW/T2tUJqfFqxpIV+EQSjxrZt3C5o/mOvt3u+RRKnfducmxsaanWF9Tx+TTDowZY7SqmJLiIrbVNzZfMnJbPeULKpvdZ0uSaDp7UCVSwNiYgdwXa03g9cB6EbkV+D58NlARGaSq77b0oiJyEnA70AOYJSILVXVoS89nsku8qoF01Rt3qVnFottGOtvdhl7MDgcGJq2NTKiFLvP/hPQsKY6bZKM9KV8/bADQvI2guqbO9T5bmkTT+YbltYBJ1xTeJnO8tAHcBWwK294c3Ndiqvq0qu6mqu1UdWdL/q1LrKfaaIXDFU8uavH8NarKkCFDnOQvbYvpdflTTvKH5gk1WvKHQKEUL45Yg9mGDyylQ9vmz1Zu9eMtqdPPxPrJXvg9oM8kz8tAMNGwRQNUtVFEbClJE1Wsp9pohUP4fDmRT8rRnnbLF1Qy5s7HWXLflc55Thl9KxW6V5MBXG4JtTTOLKVe3kxiPSknMusnJFann4n1k72y9Yhzm5c3gM9F5BIRKQr+XAp8nu7ATO6K9VTrpX44/Ek52tPu1dM/4NQhBznJv6j77vS75nn6DRrSpBdPSXGR61Opl1lKk+nRkkhvmuEDS3lr9JF8MeF43hp9ZNyEao2vJlW8FAAXAD8GKoGVwCBgZMxvmLwWq2rA6/TQoWTm9rS75sPXmPDLg6lf/x0AO5/xd3r+7g62NsC0eV81qXvfVu8+L09kjPHiSFQ6u2smUrgYE4uXkcDfAb/KQCymFYlWNRBZ5eG2GAtsT2bhCbhx2xa+vuWXznbxXofQ4+TrmowojzxTvC6Vof3Rlq5saVJNZ3dNa3w1qRJrHMCfVfXvInI7zf9/hapektbITKsVnnjjTQ0dak/Y8P4zrHv1XueYnr+7i6LuvTxdz8tTvFtSLSoQttTWs+foWS1K4G7TYIdWIUumQPB7yUjTesR6A/gk+K/N1Gk8i9U9MdZn0fafX9aNc48e6Jx/h4OOp9vRF7peO3wRlnBenuIj4+hSXMTmsIVrsmGxlsh4LeGbZIkmOqbdR2VlZVpRYeVRtor2ND9+xH4AUT+LlsiuvPJKbr75Zme79A8P0WaHHZ3tkuIiOrZr4xQcQ/r3YMb8yoSuEU20KqFoc/pk+nzGJEJE5qtqWeT+WFVAz+H+QAWAqg5LUWzGB+kYSBRvAJjXrovLly9n7733drZ/c8nVvN/5Z80S+wkH7MprS7fPD1W2ezfKdu+WkvtKdU+baF1OreeO8VOsKqB/BP8dAexCYBlIgNOBL9MYk0mzdM3i2JKkGf6ZqvLLX/6Sp556ytlXXV1Nly5dmhVYkU/7oXsYP2K/lDxRp3Kag/IFlUlVTxmTLlG7garq66r6OjBQVU9T1eeCP78GfpK5EE2qpWsWx1jdE+N1XXz//fcpKChwkv9DDz2EqtKlSxegeV/515ZWpXUmylR245w0+1PX5C/B6xjjFy/jAHqISJ/QhojsSWAOH5Oj0jWQKFbSjPbZ5Uf15ZBDDuHQQw8FYOedd2br1q2cddZZMa+V7sFQqZzmIFpMis2bb/zlZUqHPwH/EZHQ6N89gN+nLSKTdqmo3mhJj57Iz47sVMkph+zufPbSSy8xdKi3aaFSVUUT6z5S1dMmWqylVv1jfOZlINhLIrI30D+4a6mqbktvWCadkh1IFK8NId7cOVu3bqVXr168vWYNAIMGDeLtt9+moMDLC2lq7sHLfaSKDdwy2Sru/+NEpAMwCrhYVRcBvUXkhLRHZtIm2eqNZNoQHnroIYqLi1kTTP7vv/8+8+bNSyj5p+Iekr2PTMdqTDp4qQJ6EJgP/Ci4vRKYDjyfrqBM+iVTvdGS+vfq6mq6du3qbJ922mk89thjTaZxSFQm179Nlg3cMtnIy2PXXqr6d6AOQFVrIOb8WaaVS3QysvHjxzdJ/v/73/94/PHHk0r+qWCTqpl856UAqBWRYoLdmEVkL8DaAPKY1y6SlZWViAjXXHNN4HujRqGq9O3bN2OxxhLrPkLz9rR0kRpjcoGXKqCxwEtALxGZBgwGzklnUCa7eentc+GFF3L33Xc7299++y077bRTxmONJdp9QPqWrTQmm8ScC0gC7+i7AVuAwwhU/cxT1TWZCa8pmwso+3388ccMGDDA2b711lu55JLcmjjW5u0xrU3CcwEBqKqKSLmqHgzMSlt0JuepKscffzwvvvgiAIWFhVRXV9OpUyefI0ucrbhl8oWXNoB5InJI2iMxOevNN9+koKDASf5PPvkk9fX1OZn8wRqHTf7wUgAMIVAIfCYiH4rIYhH5MN2BmexXX1/PPvvsw09/+lMA+vTpQ21tLaeeeqrPkSUnncs5GpNNvDQCH5f2KEzOKS8v56STTnK2X3vtNY444gj/AkohW3HL5ItY6wG0J7AgfF9gMXC/qtZnKjCTnbZs2cKOO+7I1q1bATjyyCOZO3eu7336U80Gbpl8EKsK6CGgjEDyPw64OcaxJg/cfffddOzY0Un+ixYt4pVXXml1yd+YfBGrCmgfVd0PQETuB97LTEgm26xZs4YePbbPAH7uuefywAMP+BiRMSYVYr0B1IV+SXXVj4hMEpGlwUblp0WkJJXnN6kzZsyYJsl/xYoVlvyNaSViFQAHiMiG4M9GYP/Q7yKyIcnrvgzsq6r7A8uAq5M8n0mxL7/8EhFh3LhxAIwdOxZVpXfv3s2OtWkTjMlNUauAVLUw2mfJUtU5YZvzgFPSdS2TuLPPPpuHH37Y2V67di3dunVzPTZTc+obY1IvsUnY0+O3wIvRPhSRkSJSISIVVVVVLbqAPaF6s3DhQkTESf5TpkxBVaMmf8jcnPrGmNTzMg6gRURkLrCLy0fXquozwWOuBeqBadHOo6pTgCkQmAso0TjsCTW+xsZGjjjiCP773/8C0LlzZ1avXk1xcfyRrzZtgjG5K21vAKp6lKru6/ITSv5nAycAZ2isGemSZE+osb3yyisUFhY6yf+ZZ55h/fr1npI/2LQJxuQyX6qARORY4CpgmKpuSee17AnVXW1tLb179+aoo44CYP/996euro5hw4YldB6bNsGY3OVXG8C/gB2Al0VkoYjcHe8LLWVPqM099thjtGvXjq+//hqAt99+m0WLFtGmTeI1grberTG5K21tALGoasaWhBo1tF+TNgDI3yfUjRs30rlzZ2d72LBhlJeXJz2S16ZNMCY3+VIAZFKmJ/YqX1CZlZOITZ48mcsvv9zZ/uSTT+jfv7+PERlj/NbqCwDI3BNqNvY4Wr16Nbvuuquz/cc//pHbbrstrdfM1kLQGNNUNowDaDWyrcfR5Zdf3iT5r1q1KiPJ/+qZi6msrkHZXgja2Atjso8VACmULT2Oli1bhogwefJkACZOnIiqNikM0iXbCkFjTHR5UQWUKT1Lil0XE89UjyNV5ZRTTmHmzJnOvurqarp06ZKR60P2FILGmPjsDSCF/OwT/95771FQUOAk/0ceeQRVzWjyB+t2a0wusQIghfzoE9/Q0MDBBx/MoEGDAOjZsydbt27lzDPPTNs1Y7GBYcbkDqsCSrFM9ol/4YUXOP74453t2bNnc8wxx2Tk2tHYerrG5A4rAHLQ1q1b6dmzJ+vWrQPgxz/+Mf/9738pKMiOFzobGGZMbsiOjGE8e/DBBykuLnaSf0VFBW+99VbWJH9jTO6wN4AcsW7duibz8p9++uk8+uijPkZkjMl19tiYA8aNG9ck+X/22WeW/I0xSbM3gCy2cuVKevXq5WxfddVVTJgwwceIjDGtiRUAWer3v/89U6ZMcba/++47evTo4WNExpjWxqqAssySJUsQESf533777aiqJX9jTMrZG0CWUFWOPfZY5syZA0CbNm1Yt24dnTp18jkyY0xrZW8AWSDUhz+U/KdPn05dXZ0lf2NMWtkbgI/q6+sZMGAAy5YtA6Bv3758/PHHFBUV+RyZMSYf2BuAT2bOnElRUZGT/F9//XX+97//WfI3xmSMvQFk2ObNm+nWrRu1tbUAHH300cyePTvpdXmNMSZR9gaQQXfeeSedOnVykv/ixYuZM2eOJX9jjC/sDSADqqqq2GmnnZzt8847j3vvvdfHiIwxxt4A0u6aa65pkvxXrFhhyd8YkxWsAEiTL774AhFh/PjxANxwww2oKr179/Y5MmOMCbAqoDQ488wzmTZtmrO9du3aJpO5GWNMNvDlDUBE/ioiH4rIQhGZIyI9/Ygj1RYsWICIOMn/vvvuQ1Ut+RtjspJfbwCTVPUvACJyCXAdcIFPsSStsbGRww8/nDfffBOAkpISVq1aRXGxLYRujMlevrwBqOqGsM2OgPoRRyrMnTuXwsJCJ/k/99xzrFu3zpK/MSbr+dYGICLjgLOA9cAQv+JoqdraWvr06UNlZSUABx54IBUVFRQWFvocmTHGeJO2NwARmSsiH7n8/AJAVa9V1V7ANODiGOcZKSIVIlJRVVWVrnAT8uijj9KuXTsn+b/zzjssWLDAkr8xJqeIqr+1LyKyOzBLVfeNd2xZWZlWVFRkICp3GzZsoEuXLs728OHDmTlzpo3kNcZkNRGZr6plkfv96gW0d9jmMGCpH3Ek4uabb26S/JcuXcrTTz9tyd8Yk7P8agOYICL9gEZgBVncA+ibb76hZ8/tvVQvvfRSbrnlFh8jMsaY1PClAFDVk/24bqIuu+wybr31Vmd71apV7Lrrrj5GZIwxqWNTQbhYtmwZIuIk/0mTJqGqlvyNMa2KTQURRlUZMWIE5eXlzr7169fTuXNnH6Myxpj0sDeAoHnz5lFQUOAk/6lTp6KqlvyNMa1W3r8BNDQ0UFZWxsKFCwEoLS3l888/p23btj5HZowx6ZXXbwDPP/88bdq0cZL/nDlzWLlypSV/Y0xeyMs3gJqaGnr27El1dTUAgwcP5o033qCgIK/LQ2NMnsm7jHf//ffToUMHJ/nPnz+fN99805K/MSbv5M0bwLp165rMy3/GGWcwdepUHyMyxhh/5UUBsHXr1ibJ/7PPPqNPnz4+RmSMMf7Li3qPoqIiAK6++mpU1ZK/McaQJ28AhYWF+D3rqTHGZJu8eAMwxhjTnBUAxhiTp6wAMMaYPGUFgDHG5CkrAIwxJk9ZAWCMMXnKCgBjjMlTVgAYY0yeklwaICUiVQQWkc823YE1fgeRYq3xnqB13ldrvCdonffl1z3trqo9InfmVAGQrUSkQlXL/I4jlVrjPUHrvK/WeE/QOu8r2+7JqoCMMSZPWQFgjDF5ygqA1JjidwBp0BrvCVrnfbXGe4LWeV9ZdU/WBmCMMXnK3gCMMSZPWQFgjDF5ygqAFBGRv4rIhyKyUETmiEhPv2NKlohMEpGlwft6WkRK/I4pWSJyqogsEZFGEcma7ngtJSLHisinIrJcREb7HU+yROQBEflORD7yO5ZUEpFeIvKaiHwS/O/vUr9jAisAUmmSqu6vqgcCzwPX+R1QCrwM7Kuq+wPLgKt9jicVPgJGAG/4HUiyRKQQuAM4DtgHOF1E9vE3qqT9GzjW7yDSoB64QlV/CBwGXJQN/1tZAZAiqrohbLMjkPOt66o6R1Xrg5vzgN38jCcVVPUTVf3U7zhS5FBguap+rqq1wOPAL3yOKSmq+gbwvd9xpJqqfqOqHwR/3wh8ApT6G1WerAmcKSIyDjgLWA8M8TmcVPst8ITfQZgmSoGvw7ZXAoN8isV4JCJ7AAOBd/2NxAqAhIjIXGAXl4+uVdVnVPVa4FoRuRq4GBib0QBbIN49BY+5lsAr7LRMxtZSXu6plRCXfTn/5tmaiUgnYAZwWUStgS+sAEiAqh7l8dBHgVnkQAEQ755E5GzgBODnmiODRhL43ynXrQR6hW3vBqzyKRYTh4gUEUj+01R1pt/xgLUBpIyI7B22OQxY6lcsqSIixwJXAcNUdYvf8Zhm3gf2FpE9RaQt8CvgWZ9jMi5ERID7gU9U9Z9+xxNiI4FTRERmAP2ARgJTVl+gqpX+RpUcEVkOtAPWBnfNU9ULfAwpaSJyEnA70AOoBhaq6lB/o2o5Efk/4BagEHhAVcf5HFJSROQx4AgC0yZ/C4xV1ft9DSoFROQnwH+BxQRyBMA1qvqCf1FZAWCMMXnLqoCMMSZPWQFgjDF5ygoAY4zJU1YAGGNMnrICwBhj8pQVACZniciOwdlXF4rIahGpDNtum8LrHBQcE9GS73YTEU9dZ0XkJhG5LM4xI0Skf0tiMSaSFQAmZ6nqWlU9MDgD693A5NB2cHI0JCDZ/84PouUzVHYDUjl2YgRgBYBJCSsATKsjIn1F5CMRuRv4AOglItVhn/9KRO4L/r6ziMwUkQoReU9EDos4VzGBqb3PCL5ZnCIinUTk38HjF4jIicFj9xOR94PHfSgifYAJQL/gvgkusV4XnM//ZWDvsP0XBM+1SESmi0ixiPwU+D9gcvB8e7gdl/I/qGm1rAAwrdU+wP2qOhCINSL7NuDvqloG/BK4L/xDVa0BbiQwf8uBqvoUgQLhJVU9FDgSuFlE2gN/AP4RfCM5hMC8PKOBT4PfbbJgi4gcCpwMHAicQmB655DpqnqIqh4AfAaco6r/BV4A/hQ835duxyX2ZzL5zCaDM63VZ6r6vofjjiLwhB7a7ioixcHEH80xwHFhK3C1B3oDbwNjRGR3YKaqLg87r5ufATOC16oRkefCPttfRG4ESoAdCCwy5MbrccY0YwWAaa02h/3eSNOpk9uH/S7AoaE2A48EGK6qn0XsXyYi7wDHAy8HZ1KNNztntLlYHgaOU9WPROQ8AqtIJXOcMc1YFZBp9VS1EVgnInsHG4RPCvt4LnBRaENEDnQ5xUYCT9chs4FLwr4zMPhvH1Vdrqq3EpgOfH+X74Z7AxghIu1FpDOBabdDOgKrg1MI/zpGLNGOMyYuKwBMvrgKeAl4hcA8+iEXAYODjbYfA+e7fPdV4IBgg+8pwA1ABxFZLCJLgOuDx/06uOD3QqAPMFVVvwUqgsc2aQRW1feAp4FFwHSarlN8HfAegXWZPw7b/xhwTagROMZxxsRls4EaY0yesjcAY4zJU1YAGGNMnrICwBhj8pQVAMYYk6esADDGmDxlBYAxxuQpKwCMMSZP/T/2HTsHraBonQAAAABJRU5ErkJggg==\n", "text/plain": [ "
                          " ] @@ -427,7 +414,8 @@ "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", "plt.plot(true_data, true_data, 'k-')\n", "plt.xlabel('True test data')\n", - "plt.ylabel('Predicted test data')" + "plt.ylabel('Predicted test data')\n", + "plt.show()" ] }, { @@ -439,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -454,17 +442,7 @@ }, { "data": { - "text/plain": [ - "Text(0, 0.5, 'Predicted test data')" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deZgU1bXAf2eGAQZcBnXiMoqgUYgrmHF5YkSNirtI0KiJRvPUqDFxewwgKugTHRrjEp8mIS7RqIlriDtg3JIo6iCiokI0EXUUxQVBGLaZ8/7o7rGnp6q7qru6q7r7/L5vPuiq21WnumfOufdsV1QVwzAMo/KoClsAwzAMIxzMABiGYVQoZgAMwzAqFDMAhmEYFYoZAMMwjArFDIBhGEaFYgbAMAyjQjEDYEQaEXlPRD4Rkb4px04TkWdSXquIrBCRr0WkVUSuEZHqlPPPJMbsmnbt6Ynj+yVe14nIrSKyWESWi8hCERnrcp/kT1PAz3uciDwvIitTn9FlrIjIBBF5X0SWicifRWSDlPMxEfkgcW6RiEwIUlaj9DEDYJQCPYBzs4zZVVXXA4YDPwR+mnZ+IXBy8oWIbAzsBSxJGXMtsB7wHWBD4CjgXaf7pPzE/D5MFr4ArgOaPYw9GTgJGAZsAdQCN6ScvwUYrKobAHsDJ4rIqGDFNUoZMwBGKTAV+B8Rqcs2UFXfAf4JDEk7dRfww5SVwQnAX4A1KWN2B+5W1S9VtUNV31bV+/MX3zuq+qSq3gt85GH4kcAtqvqBqn4NTCH+jH0S11qgqitSxncA3w5caKNkMQNglAItwDPA/2QbKCKDge8B76Sd+gh4Ezg48fpk4I60MbOBySJyqohsl4/AIjJORJa6/eRz7dTbJH5SX/cCOmVPyPE18CHQF7g7oHsbZYAZAKNUuBT4hYjUu5x/RURWAG8RNxY3OYy5AzhZRAYBdar6Qtr5XxBfKZwDvCki74jIoQ73SVXmI5yEUdVmVa1z+/H2yFl5HDhNRAaIyIZAMl7RJ1UOYH1gN+CPwFcB3dsoA8wAGCWBqr4BPAKMcxmyG3H//Q+BPYnPdtN5EDiAuKL/o8M92lT1SlX9LrAxcC9wn4hslHqfNGU+I+eHyp9bgT8RN3jzgacTxz9MHaRx5gJtwGXFFNCINmYAjFJiInA60OB0MqHo7gVeIL5iSD+/kvis+SwcDEDa2GXAlcQNyUC/gorIRWnZQl1+/F7PRcYOVZ2oqgNUdUviRqA18eNED2DbIO5tlAdmAIySIRHgvQf4ZZahzcAZIrKZw7mLgOGq+l76CRG5RER2F5GeItKbeObRUmBBDrJemZYt1OXH7X0iUp24dw+gSkR6i0iNy9iNRGTbRDroDsA1wOWq2iEiVSLyMxHplzi/B/Bz4G9+n8UoX8wAGKXG5Ti7dzpR1deBZ4ExDuc+UtV/uL0VuA34jHjQ+CDg8ESGTZJ5abP563J5iAycRNxV8xviwew24PfJk4l7fi/xchPgMWAF8ZXNrao6LeVaxxBPY10O3Ek8RTQ1TdSocMQ2hDEMw6hMbAVgGIZRoZgBMAzDqFDMABiGYVQoZgAMwzAqlB5hC+CHTTbZRAcMGBC2GIZhGCXFnDlzPlPVblX0oRoAETkfOI14+t3rwKmquspt/IABA2hpaSmWeIZhGGWBiCxyOh6aC0hEGogX9DSq6k5ANXB8WPIYhmFUGmHHAHoAtSLSg3gDKy8tcA3DMIwACM0AqGorcDXwPvAx8JWqzkwfJyJniEiLiLQsWbIk/bRhGIaRI2G6gPoBRxNvtLUF0FdEfpw+TlWnqWqjqjbW17t1AjYMwzD8EqYL6EDgP6q6RFXXEm/Vu3eI8hiGYVQUYWYBvQ/sldi+rg34PvGdnwzDMDqZPreVqTMW8NHSNraoq2XMiEGMHOrYEdzwSWgGQFVfFJH7gVeAdcBcYFrmdxmGUUlMn9vK+Adfp21tOwCtS9sY/+DrAGYEAiDULKDEZhaDVXUnVT1JVVeHKY9hGNFi6owFnco/SdvadqbO8L1Fg+FA2GmghmEYrny0tM3XccMfZgAMw4gsW9TV+jpu+MMMgGEYkWXMiEHU1lR3OVZbU82YEYNCkqi8KKlmcIZhVBbJQK9lARUGMwCGYUSakUMbTOEXCHMBGYZhVChmAAzDMCoUMwCGYRgVihkAwzCMCsUMgGEYRoViBsAwDKNCsTRQwzAMj+TTmTSKXU3NABiGYXggn86kUe1qai4gwzAMD+TTmTSqXU3NABiGYXggn86kUe1qagbAMAzDA/l0Jo1qV1MzAIZhGB7IpzNpVLuaWhDYMAzDA/l0Jo1qV1NR1VAF8ENjY6O2tNi+8YZhGH4QkTmq2ph+3FxAhmEYFUqoBkBE6kTkfhF5W0TeEpH/ClMewzCMSiLsGMD1wBOqOlpEegJ9QpbHMAyjYgjNAIjIBsC+wCkAqroGWBOWPIZhGJVGmC6gbYAlwG0iMldEbhaRvumDROQMEWkRkZYlS5YUX0rDMIwyJUwD0APYDfiNqg4FVgDj0gep6jRVbVTVxvr6+mLLaBiGUbaEGQP4EPhQVV9MvL4fBwNgGIZRDkSxG2hoKwBVXQx8ICLJUrjvA2+GJY9hGEahSHYDbV3ahvJNN9Dpc1tDlSvsOoBfAHeJyGvAEODKkOUxDMMInKh2Aw01DVRVXwW6VacZhmGUE9YN1DAMo0KxbqCGYRgBMn1uK8Oan2LguEcZ1vxU6P70TFg3UMMwjICI6haLbkS1G6gZAMMwSg63oOqF984DomsEoiaXuYAMwyg53IKn7aqRSK8sFcwAGIZRcmQKnkYhvbJUMBeQYZQxUaw+DYIxIwZ1iQGkE3Z6Zal87mYADKNMKbVAqR+S8l947zzaHXY1DDO9spQ+d3MBGUaZEtXq06AYObSBXx23a+TSK0vpc7cVgGGUKVGtPg2SKKZXltLnbgbAMMqULepqaXVQOmFXnwZN1NIrS+lzNxeQYZQpUa0+LXdK6XO3FYBhlClRdI9UAqX0uYs6RNCjSmNjo7a0tIQthmEYRkkhInNUtVvnZVsBGIZhOOA3l79Ucv9TMQNgGIaRht9c/lLK/U/FgsCGYRhp+M3lL6Xc/1TMABiGYaThN5e/lHL/UzEDYBiGkYbfHbyiuuNXNswAGIZhpOE3l7+Ucv9TCT0ILCLVQAvQqqpHhC2PYZQypZiJEkX85vIXKve/0N9n6HUAInIB0AhskM0AWB2AYbiTnokC8VnoVaN2LrgRMMMTPEF+n251AKG6gERkS+Bw4OYw5TCMcqAQmSheNl5PKqrWpW0o36RAVuKuXEFuVF+MzKKwYwDXAU1Ah9sAETlDRFpEpGXJkiXFk8wwSoygM1G8KvZSTYEMmqANYTEyi0IzACJyBPCpqs7JNE5Vp6lqo6o21tfXF0k6wyg9gs5E8arYSzUFMmiCNoTFyCzyZABEZCcROU5ETk7+BHDvYcBRIvIe8GfgABG5M4DrGkZFEnQmilfFXqopkEETtCEsRmZRVgMgIhOBGxI/+wMx4Kh8b6yq41V1S1UdABwPPKWqP873uoZRqYwc2sBVo3amoa4WARrqavMKAHtV7KWaAhmkvx6CN4RBf59OeEkDHQ3sCsxV1VNFZFMsaGsYkSQ9HTHpfshFaThtvO6k2MNqf5xP5lEhevd4/bz8UOjNbrwYgDZV7RCRdSKyAfApsE2QQqjqM8AzQV7TMCqRIBWbH8Ve7F258n3OTP76XJ+jlPYBSOLFALSISB3we2AO8DXwUkGlMgwjJ4JWbFHbbjFJvs9ZqMB1VD8vN7IaAFU9O/Hf34rIE8QLtl4rrFiGYeRCpWTk5PucpbRvbyHxEgT+W/L/qvqeqr6WeswwjGgwfW4rVSKO5/JRbEEHS4Mg34BrqQaug8bVAIhIbxHZCNhERPqJyEaJnwHAFsUS0DCM7CR94u0OrV3yUWxRrfLNV4EXI8OmFMjkAvoZcB5xZT8HSE4tlgE3FlguwwidUupv4+QTB6gWyUuxFSJYGgRBBFxLzV9fCFwNgKpeD1wvIr9Q1RuKKJNhhE6pbfHn5vvuUM1L3ijHFEyB50/WGICq3lCgSmDDiCyl1t/GzfddJZLVXZPJx29VvuVNaJXAhhFl8pn5hhE03X+wc5+sdtWMPvtsPn4LlpY3XnoBjQa+DyxW1VOJVwX3KqhUhhEyuc58wwqaPv22e6fcfDYzj0qwNIqZSOVAJCqBDSNq5FrWH1bQNNvKJJ/NzMP2tZdaPKaU8LICSK8EfgWrBDbKnFxnvl4UaiFms9lWJnV9any9L0o+/lKLx5QSVglsVBR+UjtzmflmqzDNdzbrJr/TiiUVt51f82lgVqw02ShnIpU6rgZARHbLdE5VXymMSIZRGIrhSsimUPNxEXmR/7x7XnV871dtax2P55pPX0y3jLVtKByZVgC/Svzbm/im7fOIF4PtArwI7FNY0QwjWIrhn8+mUPOZzWaTf+TQBiY9NJ+lDso+k7LMZaVTzFhHIdosG3EyFYLtDyAifwbOUNXXE693Av6nOOIZRnAE4Urw4vbIpFDzmc1mk3/63FZWrFnX7XxNlQSuLL3GOoJwEZVim+VSwUsW0OCk8gdQ1TdEZEgBZTKMguBH+TopLyBvt0c+s9ls8k+dsYC17d2d/ev17lF0t0zQLqKwM5HKFS9ZQG+JyM0isp+IDBeR3wNvFVowwwgar0VNbrn8lz08P+9slHzy6rPJ7zYrX7rS2f+fD9lkscyd0sDLCuBU4Czg3MTr54DfFEwiwygQXl0JbsrLLcPGbzZKrrPZbPIXM1hayFiHUTy8pIGuAq5N/BhGSeNF+fpVUsXMRskkf7GDpYWKdfillLq2+mHp0qVMmTKF5uZm7rvvPkaPHh34Pby4gAyjotiw1rloqq62JtJ9caLStgGK10No+txWxtw/r4u7bsz98yLVKsJr4V97ezu33347m266KSJCv379aG5uBuDxxx8viGxeXEAFQUS2Au4ANgM6gGmJFtSGERqZMmkmHbUj4C8bpdizUz/upXxly/T+IDN3Mt3nsofndwt8r21XLnt4fiRWAdmC4bNnz2bs2LE899xzju8/55xzuPjii9l0000LIl9WAyAix6rqfdmO5cA64EJVfUVE1gfmiMgsVX0zz+saRhf8KDovmTR+FGxUe9gEUZGc7f1BZO5ku8+XLgFut+PFJj2etG7553z4z7s55ooZjuMPPPBAmpub+e53v1sU+by4gMZ7POYLVf04WU2sqsuJZxaFb7KNssJvd84gM2minAnjJttlD8/P6/1BP1uUP0MvtH62jGUvT2fR1KNZNOUIWm/6CV/P+0b5b7nlltx99920t7ejqsyaNatoyh8yt4I4FDgMaBCRX6ec2oD47D0wEvsMDyVeYZx+7gzgDID+/fsHeVujAvBbseoWvHSLC2Qil0yYQrplvMjw5cq1TJ/bGkjTuyDIdp+62hrHyue6HL6vIFBVnnjiCZqamnjjjTccx2y49wkMOugEXpx0ZJGl606mFcBHQAuwingX0OTPQ8CIoAQQkfWAB4DzVHVZ+nlVnaaqjaraWF/vvOmFUVoUs7e7X0U1ZsQgaqqk2/EVa9b5ltNvp8189xLw8/5M2TiZZtfJ786lt1zgWT7ZPsNJR+3Y7ftKjdcUg4ULF3LsscciIlRVVXHYYYd1Uf7r77AvW5z+O7Ye+whbj32EzQ84mfFHu7ZaKyquBkBV56nq7cC3VfX2xP8fAt5R1S+DuLmI1BBX/nep6oNBXNOINsXeMMWvEh45tIH1endfGK9tV99uB7+ZMPm6O/y8P1M2TuvSNkfjnPrdOVGILJ9sn+HIoQ1MPXbXLplPU4/dtaAxlmXLlnHJJZcgIogIgwYN4v777+88v8suu/DEE0/Q0dGBqnLHnXczYJtvh56Z5YSXLKBZInJUYuyrwBIReVZVL8jnxiIiwC3AW6p6TT7XMkqHYm+YkktuvJu/P5eCL/CeCZOvW8XP+zM1jgO6GOfkeKfvLklDgTKcvHyGQbaJcHKhHbXr5tx11100NTWxePHibu/p2bMnsViMM888k169um+WGOU2Fl4MwIaqukxETgNuU9WJIhLEfgDDgJOA10Uk2cP2IlV9LIBrGxGl2BWiuaQjBlnE5OeP3+t93fz8fuWedNSOGfcQgK7G2e07EuKGduqMBZx/z6sZP+NcYhzFUqCpGUerP17InD/9gWPGO6u6s846i0suuYTNN9+84HIVEi8GoIeIbA4cB0wI6saq+g/ivztGBRFGb3e/CiSs9sNe7pspLdKv3OnG0c2vn1T8bt9dXZ8aTymlUU6LXbx4MWeedTafvPiQ4/n99tuPKVOmsMceexRZssLiJQ30cmAG8K6qviwi2wD/KqxYRrlSrArRfAirotbLfbO50PzKPXJoA/8cdwD/aT6chizxErfvbpVDnySn2IOXGEWxEgTWrFnDr3/9a3r37o2IsPnmm3dR/tV9+7Hx4RfQf8xfGTD2EZ5++umyU/7grRfQfcB9Ka//DfygkEIZ5UtUe7s7uSb+Oe6AosuRbbWSzYWWj7sk2wrC6bvbf3A9d85+35OsXvYzKOQKYebMmTQ1NTFv3jzH8w37nUjVkKOp6tW3y/Fy3nnMSyXw9sS7f26qqjuJyC7AUap6RcGlM8qSqAXFouyaSCcoF1omX7yfgOuw5qcyyupH9qATBN555x0mTJjAvffe63h+1KhRTJ48mcGDBwPdfw8geqvToPESA/g9MAb4HYCqviYidwNmAIyyIF/FU8x+P0HEJ7IZvHS//bDmp1yfLVPwPl2mbLLnmyCwfPlyrr76ai6//HLH8zvuuCOxWIxDDz2UeBJiV1INYOvSNqpFurioojYZCAIvBqCPqr6U9oEFWglsGGGSj+Ip9uohFxdauoFauWadJ4Pn5dk2dKnE7VNT5bhVJsQbuCV79fTq8U0Y0u/q5sE5HzBu6u/492O/o335Z93OV1dXE4vFOPvss+ndu7fjNdJJylgqK8J88WIAPhORbYmnBiMio4GPCyqVYaRRyFl2Pm6VYtc1gP+On+nKzI10g+fl2Rwm0gD0SgsWp7JqbUfn/5e2rfWVxfTKK68wduxYnnzyScdrH3TMidx2Q4yGhtw/+zC+07DwYgB+DkwDBotIK/Af4EcFlcowUrh4+uvcNfv9zjTFoGdk2RRPJuPjtkpoXdqW0XVSLDIVb6WT3u/Iy8rIrWjO7Xgm5ZoMuqd+1qfvvjFP3TaFY3a7wfF6vbbckbrhp9B7y+8AsKKuNi/lD5W1m5kXA6CqeqCI9AWqVHW5iAwstGCGAXHlm6r8kwQ5I8vkVsnmBnFbPQjfzLbDdCH4UVrJfkd+tpj0u3rKplwP27Ge1uen0/S/Tby3ciXPp42rr69nypQpXPbWxlDVfZURhJIOo1YlLLzUATwAoKorEm2bAe7PMN4wAmPqjAVZC5SCIDUf/p/jDuhiFDLlrjvlxgu4Gqxi46a0nFw36f2OvNRs+K3rcJKn7b1XWfLH8xERevXqxTnnnMPKlSs7z48dO5YvvvgCVeXTTz/l1FNPpWGj9Txf3y+lUKsSFJnaQQ8GdgQ2FJFRKac2ALxFVAwjTzIp+WLMyLzk3UPX1YObnz0MF4Kbe8vLBvde00KzjUmX58JbZrH46T+w8s1nHcccffTRXHnlleywww6+nysIJR3VWpVCkMkFNAg4AqgDUhtXLwdOL6RQhpEkk4ulGDMyL+4Ap9x4p/dUiTBw3KNFVShuyiyZ6phOulH1EnB2G5OMnXz46Rfo64/ywZN/cHx/w4Btuen6azjyyCMd0zP9PFdQn2nUalUKhai6LbATA0T+S1VfKJI8GWlsbNSWlpawxTCKiFNxjgA/2qs/V4zcOZT719ZUZ2yx4PSedLJdo9Dk8lxeUVWapk7j+isnsvarTxzHTJkyhV/84hfU1paeX73Y+zwHgYjMUdXG9ONeWkFEQvkblUnYy/Fc7p/+nioR2tMmWtmC2EEpGbfrBP25zps3j3HjxvHEE084nu+784HU7XMiW/ffOpQWG0FRSlXjXsi6AogStgIwooRXJT1w3KOOgWwB/tN8uON1g5idB7F6cnvGzz77jMmTJ3Pdddc5vq/XFoOp2+8Uem+1U5fjbs8cNIWapbu59xrqaiNt2HJeARiG0R0/M0G/aYVBFSI5XUeBu2a/T+PWG2W9Vuozavs63n7mQX4w6TY6Vq/sNrZfv37EYjFu/WRrPlq+xvWaxQjcF3KWXm41ApmygDLu+GW7eBmVjB8l7ZSxUlMtrFi9zjEoHJSScRuvCfmzKcOLf3Mv/37kt6z5eKHj+QsvvJDx48ez8cYbdx6bPO5R1+tleuYgKWQlb7nVCGRaAayf+HcQsDvx/YAhnhH0XCGFMoyo43f7RfjG317Xp4avV63r7KHjtbgsVcl4cXFkSkltXdrWpegLYNGiRVx66aXccccdju+p3XZ36ob/hF71A1zdOG73rEoUR7g9c5AUcpYe1mZBhcLVAKjqZQAiMhPYLVkEJiKTSNkfwDBKlelzW7s0JqurrWHSUTt6Uki5bt947Q+HMHXGgs57JkmdoXppTeHFxTFmxCDOv+dV10K6sfe8zAO3/h93/l+z4/neG23B+vueQu32/9UlPTPTbNdN9l49qro1jStUf51CztLDTkoIGi8xgP5AqlNvDTCgINIYRpGYPreVMffPY237N+pxadtaxtwX3ywk2x/0mBGDur2/plo8bd/olh6aPivP1K/fi4tj5NAGWhZ90dlKQ1Vp+9cLfPnMbaz7Mt7PMd25M3nyZM4991z69u2bU398N9nPv+dVx/GF8J0XepZeTjUCXgzAH4GXROQvxN2HxwDOa0TDKBGmzljQRXknWduh3mel6W9Pe+2mqKsd0kKTuPXlT8WPi+P4bwszrrmOlr87d8/su+P+vPHIrQwYMKDbuVxnu06yT3povmPb6PQGdEGQTe5SzOMvFF7qACaLyOPA9xKHTlXVuUHcXEQOAa4HqoGbVdV5LWoYAZNp5ullVjp1xgLWdnRV4unGw+067aqu7Ri8uEUyuTi++OILrrrqKq6++mrH9/bcfDv6DT+V3lvvAsTTF52Uf5JcZ7vpSnZte4fjOI+Fv77JVJ1cTnn8+eI1DbQPsExVbxORehEZqKr/yefGIlIN3AgcBHwIvCwiD6nqm/lc1zC8kClA6sVX7GUW7naPhsSs87wc3SKpLg7taOfr1//G0mdvY1HbcjYe33Xs+uuvTywWY5PdDuGSh98uSvDSzx4Ebm2jC0Ul9fr3gpc9gScCjcSzgW4DaoA7gWF53nsP4J3EJvOIyJ+BowEzABVKsbdWTPfhA9RUiSel6LYTVqpLI5MveuTQhoz9eDJ9FvUr34OHL2HRPOeiyHPPPZcJEyZQX1/f5XiPmpqifL5+9iAodvpkueXx54uXFcAxwFDgFQBV/UhE1s/8Fk80AB+kvP4Q2DN9kIicAZwB0L9//wBua0SRsLZWzDULyM11kXo8my/azUDsP7i+y/FF73/AKadO4at5Mx3vOWLECK666iqGDh2a9ZmLMcv1qkzDSJ90T1MtfqO+KODFAKxRVRWR5JaQfQO6t9OfULfImKpOI74jGY2NjaXTt8LwRVBLcz+riHwUotedsDLdw22P3IfnvMfif/yFpc/c5vi+rbfemlgsxujRo6mq8rKlR3FxU7J1tTX07dUj1OCrk9EFOoPylRYT8GIA7hWR3wF1InI68FPg5gDu/SGwVcrrLYGPAriuUYIEsTTPdxXhx3gEOZNsW9POynde5Munb2PRFx86jtlwnx+x4e4jWXTN6KzXKyZOn5nbysbr6qqQBNGor5zwkgV0tYgcBCwjHge4VFVnBXDvl4HtEttLtgLHAycGcF2jBAmieCefVYRf45HvTPK5555j+PDhrvL0+c5w6r73Y2r6bd55rCHEdgNOih5w/MyuGrUzV43aObKplqmrsoEurSsqJSbgJQg8RVXHArMcjuWMqq4TkXOAGcTTQG9V1fn5XNMoXYIo3slnFeHXePidSS5evJgjjzwSt262PTfdlrrhp1A70NmPH2a7ATfj2LumKuMG75k2iYmKYSi33j5+8eICOghIV/aHOhzzjao+BjyW73WM0ieIEvt8/pj9Go90RZZ+X+1o58unb2VRy1+R8Y6X4KSTTmLhdieweEX3HPkw/eXpz7Zi9TpHRe9lW8n060YtB7/cevv4JVM30LOAs4FtReS1lFPrA88XWjCj8sg3SyWfP2Y/xsNJkQnw9dv/4LO/utcyDhw4kFmzZrHtttu6XispcyH95Zlm4X5y+N0odJvrICm33j5+ybQCuBt4HLgKGJdyfLmqflFQqQwjB/L5Y/ZjPJKKbN3yz/nqn3fz9bwZrtcdf+2tXHneqQWRORd3SrZZuJ8c/rraGlav6/BscKOag19OvX38kqkb6FfAVyJyPfBFSjfQ9UVkT1V9sVhCGqVD2D7eXP+YvSjiVatWcdNNN/H8RWNAnVsbNAw/gR57HE/DRut5fvZcZM7VneI2C5/00HxGDm3wlcM/6agdO6+ZT+ZUsTaJqdRZfia8xAB+A+yW8nqFwzHDiKSP1w/pilhVefzxxxkzZgzz5zvnJ2y49wlssMcxVPXqU9RtAXN1p7gp+KVta5k+t9VVSffrU0Ofns4xCa/fbVj+9lL/vSwkXgyAaMrGwaraISK2laTRjSj6eP2ycOFCJkyYwP333+94/rjjjmP4iedwQ8uKUAOHubpTMvVAmjpjgauSnnhk/jGJsPzt5fB7WSi8KPJ/i8gvic/6IR4Y/nfhRDJKFTflk0sgsVgsW7aMqVOncsUVVzie32WXXYjFYhx88MFdN0XpH65LIVd3SrYmdIVW0mH426Mae4gCXurIzwT2Jl6slezXc0YhhTKiz/S5rQxrfoqB4x5lWPNTne4DJyQxPgp0dHRw5513ssUWWyAibLjhhl2Uf8+ePbnuuutYtWoVqsq8efMYMWJEF+UPcUX2z3EHcO0PhwBw/j2vdn4OxWDMiEHU1lR3OeZlFTJyaAP9+jj34E9+f8ln+0/z4a75/KWE2+9lpeT6ZyKrAVDVT1X1eFX9lqpuqqonquqnxYyJ+jgAABY1SURBVBDOiCZJn2rr0jaUb3yq+w+ud23wNHXGgiJL+Q0tLS18//vfR0Sorq7mpJNO4uOPP+48f+aZZ/LRRx+hqqxevZpzzz2XXr16Zb2u2+dQDCMwcmgDV43amYa6WoR4lfBVo3bOqKyTRvvLlWu7fU+lkPvuNOnwQq7GshLIVAfQpKoxEbkB5yZtvyyoZEZkcfOpPv32Etf9Z4u53P7kk0+4/PLLuemmmxzP77fffjQ3N7Pnnt2az/oibN+yH3dKeiA0/XvqXRO9pnKp5BPIrfRc/0xkigG8lfjXuXbdqFgy+VQbipjql0zta/18GVUL/kbrzN+zZvXqbuM222wzYrEYJ554ItXV1Q5Xyo1S8i1ny+//cuXaSGfG5GtsKznXPxOZ6gAeTvx7e/HEMUqBTAHIYqX6TfrNn2i+7GJWf+Kcj3DRRRcxZswY6urqAr1vKqXUR8aLUYpyZkwpGdtSIpML6GEcXD9JVPWogkhkRJLUQpoNa2uoqZYuu2ml7nQFwS+33333XSZMmMA999zjeL7P9ntTt+9JDNh2+6Ll4oeZ1+73882U/plKVBVqKRnbUiKTCyi5q/QoYDPi20ACnAC8V0CZjIiR7n9d2raWmiqhX58alq5c61gYlK/CX758Oddccw2TJk1yPF+zcX/q9j+V2m0au2ToFFOBZTN2hag+zdUX7ta+Op2oKtRKb9pWKDK5gJ4FEJH/VdV9U049LCLPFVwyIzI4+V/Xdih9evZg7qUHO74nVfnV9alBFb5q624sknR0dHDffffR1NTE+++/3+16VVVVxGIxfv7zn9O7d2+GNT8ViRmhm7ErVPVprr7wdGO1YW0NK9asc1zFRREL5BYGL4Vg9SKyTcrm7QOB+izvMcqIXFolpyq/5HaH0FURbs2njBs3jpkznfe6Pe2005g4cSJbbrllt3NRnxEWKkMoH194urEqtf44FsgNHi8G4HzgGRFJRtsGAD8rmERG5PDrf3XLOGlf+RVfPf9nls95mGMcCm/32WcfpkyZwt57751VpqjPCAsVtAzSF24K1fCyJeQTIrIdMDhx6G1V7Z5rZ5QtfmfbSSWn7ev4et4MvnzmNnTtqm7jNtlkE2KxGCeffHJO6ZlRVmB+9xfwasiivvIxSgsvW0L2AS4AtlbV00VkOxEZpKqPFF48Iwr4mW0//fTTLLnzQla0Olf+brDnD9hgr2Ppv1l90bJ1wsCrovYbK/DzXZSai8coPqLqmukZHyByDzAHOFlVdxKRWuAFVR1SDAFTaWxsVLc9VY1weO+997jkkku48847Hc/XfntP6vY9mZ71W39zrKY6a9uCUiCbgvWigN2C2fm2lnbbaawcPnfDPyIyR1Ub0497iQFsq6o/FJETAFS1TdI7Y/kXZipwJLAGeBc4VVWX5nNNozisWLGC6667josvvtjx/Pbbb08sFqNjq+9y9cyFnrOASg0vM3cvLqpCxQrCblNhlAZeDMCaxKxfAURkWyDfGMAsYLyqrhORKcB4Athk3ggeVeWBBx5g7Nix/PvfzlW3J/1yPAs33odPViqb1NWi/QdxzNAGjtmte/ZOklJ0T6TKXCVCe9rqORcFW6gCp1KpnC3F34NywksHqInAE8BWInIX8DegKZ+bqupMVV2XeDkbcNcURtF57bXXOPzwwxERqqqqOPbYY7so/1NOOYVFixahqvzllQ95eYN9WbxSPXfEDLOLZq6ky5yu/JOkKlgv3SsL1akynxbIuXbd9Esp/h6UGxkNQMLV8zbxauBTgD8Bjar6TIAy/JT45vNGSHz++edceOGFiAgiwq677spjjz3WeX6vvfbi2WefRVVRVW677Tb69+8PZHY1uJHLe8LG62bpSQXrVbmltnUGqBbp/CzyUYS5GpaLp7/O+fe8WhSlXIq/B+VGRgOQ2Apyuqp+rqqPquojqvqZlwuLyJMi8obDz9EpYyYA64C7MlznDBFpEZGWJUuWeHwsIxPr1q3j97//Pf369UNE2GSTTbjmmms6z9fV1TFt2jTWrl2LqvLCCy+w7777Ol4rF1dDqbgnUvEiW6qC9aPcRg5t6FTYyZVFvoo31/0C7pr9frcGYIVSyqX4e1BueIkBzBaR3VX1ZT8XVtUDM50XkZ8ARwDf1wypSKo6DZgG8SwgPzIY3/Dcc88xduxYZs+e7Xj+ggsu4KKLLmLjjTf2dd1cfNil2NjLTeZqETpUu/mv/Sq3QgRt/dZJTJ2xoKj7OZTi70G54SUGsD9xI/CuiLwmIq+LyGv53FREDiEe9D1KVVfmcy3Dmffff59TTjml060zfPjwLsr/sMMOY968eZ1unV/96le+lT/k5mooxR2a3GT+1XG7Om6d6NcHH4XZcKZ7FUIpl+LvQbnhZQVwaAHu+39AL2BWIqN0tqqeWYD7VAxtbW38+te/Zty4cY7nt9lmG2KxGKNGjeq2v20+5NKSIeptHJzwK7OfQrBMM28lXitQjM/HbUYuUBClXIq/B+WGayGYiPQmviH8t4HXgVtSMndCwQrBvkFVeeihh2hqamLhwoWOY6644grOO+88+vbtW2TpDPBWKDbmvnms7cju2SxGEZdT8ZgAP9qrP1eM3Lkg9zPlXxzcCsEyGYB7gLXA34mvAhap6rkFlTILlW4A5s+fz0UXXcRDDz3keP7HP/4xl19+OQMHDiyyZEYuDLlsJkvb1mYfmCDf6mAvFEspW6VyccmlEngHVd058eZbgJcKJZzhzJdffklzczOxWMzxfGNjI1OmTOGAA8q3p04540f5Q/DxADdlXyiFn3qvFavXWaVyBMhkADp/OxMVu0UQp7Jpb2/n9ttvZ+zYsXz2Wfds2/XWW49YLMZpp51GTU1NXvey5XfpEWQgtlAb1ni9lxuWAlpcMhmAXUVkWeL/AtQmXgvxEoENCi5dBfD8888zduxY/vGPfzie/+Uvf8mECRP41re+Fdg9i/nHXynkYlD79anpsllOkj41VShS0JbPuaad5vKcXovowFJAi41rGqiqVqvqBomf9VW1R8r/TfnnSGtrK6effnpneuawYcO6KP+DDz6YV155pTM98/rrrw9U+YNVYAZNri0NJh65IzXVXVfWNdXClaN28V3E5Zdc0k5zfU6vs3pLAS0+XtJAjTxYtWoVN954I01NTXR0dHQ7379/f2KxGMceeyxVVV7KMvInCjnn5URQ+/Smz6gLuRrLpQgr1+d0u1e/PjX06dnD3JAhYgYgYFSVxx57jKamJt58803HMZMmTeKCCy5g/fXXL7J0cawCM1iC3Ke3WOSys1iuz+l2r4lH7mgKP2SKM+Usc95+++3OAquqqiqOOOKILsr/+OOP51//+lenW2fixImhKX+wCsygyVT1W6zOmn7JpVdQrh1Gc7mXURyy7ggWJaJSB/DVV18Ri8W48sorHc8PGTKEWCzGQQcdVGTJvGNZQMFx8fTXuzVRq62p5gffbeCBOa3dCquUuBIstc/ccvdLl3x2BKt42tvbufvuu2lqamLx4sXdzvfu3ZtYLMbPfvYzevbsGYKE/onyhuqlxPS5rTwwp7WL8hfgB99t4Om3l3TzmSfHlWLmlbVuKD9sBeDCSy+9xNixY3nmmWccz5999tlccsklbLbZZkWRx4gmmfb0/SiRLZOJYlT3GobbCsBiAAk+/vhjzjrrrM70zD333LOL8j/ggAN46aWXOv34N954oyl/I2Ng1EtQ3TKvjDCpWBfQ6tWr+e1vf0tTUxNr1qzpdn6LLbYgFotxwgknFC090yg9MmVUOWW/OI1Lx+IzwWGfZWYqxgCoKjNnzqSpqYnXXnPezuDiiy9mzJgxbLCB1blVAkEoh0zplKk+89albZ0B4PRxqXLU9anh61XrOjuElmKsICpYxXt2KiIGsG7dOsfeOaNHj2by5Mlsv/32QYhnRAQvij3IjBavhsRpHJB1lQAWK8iFTPGZSvssKzoLqEePHvz3f/83L774IrFYjEMOOSTQTVGM6OB11hfkFoxeM6qcxg1rfspTnxyLFfjHKt6zUxEGAODmm28uyn3M5xgukx6a70mxR0U5eL2fVWn7xyres1MxBqAYmM8xXKbPbXXtsZ+uCIJQDl52/Mo2GXCTIxWr0s6NXNpdVBoVkd5SrHJ867IZLpk+Z4Eu33u+7TCydcb02jlz/8H1jtevramytgl5Yi0oslP2K4Bizsqj4laoVDJ9zgpd3ED5VrVmiyF4jTE8/fYSx+tv1LdXxQUqC4FVvGcmVAMgIv8DTAXqVbX7FlgBEGSwLxvmc8yNoOIm2dwp6QYiH+WQzdh7nQzYpMFIEkb8MDQXkIhsBRwEvF/I+xTzD8y6bPon101GnHD6/FMJ0hBn64zptXNmrh02jfIiyL8DP4QZA7gWaIKs7VLyoph/YOZz9E8+cZP02A7AVaN2pl+f7jUfQRvibMbe62TAJg0GhBc/DMUFJCJHAa2qOi9bPr6InAGcAfHds/xS7EwA8zn6I9cVmlts56pROzP30oMLvpz2uptXNhmsw6YB4bkCC1YJLCJPAk7d0iYAFwEHq+pXIvIe0OglBpBrJbDl5keXXKs1o1jlab9nRq4U+ve56JXAqnqgiyA7AwOB5Ox/S+AVEdlDVbs32w8Am5VHl1xXaFELnloNiJEPYdUsFD0GoKqvq+q3VHWAqg4APgR2K5TyN6JNrnGTqAVPrQbEyIew4odlXwdgRJ9cVmhRq/KM2orEKD3C8FSEbgASqwDD8EXUgqdWA2KUIqEbAMPIlSjFdqK2IjEML5gBMIwAiNqKxDC8YAbAMLLgt+vntT8cYorfKAnMABgVjRflnim909I/jVKmItpBG4YTXvqvZEvvtPRPo5QxA2BUJNPntnLhvfOyKu+gun4aRhQxA2BUHMmZf7tLG5RU5R1U10/DiCJmAIyKw8ltk0qq8g6q66dhRBELAhsVRyb3TLryDqrrp2FEkYJ1Ay0EuXYDNaJBVLplunVerBbhV8ftasrbKDvcuoGaC8goCmHteOSEm9vGlL9RaZgBMIpClNIlbec2w4hjMQCjKEQtXTJKfYQMIyxsBWAUBUuXNIzoYQbAKAqWLhltps9tZVjzUwwc9yjDmp8KJTZjFB9zARlFwdIlC0e+2VXWz6hyMQNgFA3zuwdPEMo7U4Devq/yxlxAhlHCBJFdFbUAvVE8zAAYRgkThPK2AH3lYgbAMEqYIJS3Begrl9AMgIj8QkQWiMh8EYmFJYdhlDJBKG8rjKtcQgkCi8j+wNHALqq6WkS+FYYchlHqBJVdZQH6yiSsLKCzgGZVXQ2gqp+GJIdhFI1CNcMz5W3kSlguoO2B74nIiyLyrIjs7jZQRM4QkRYRaVmyZEkRRTSM4IhSMzzDSFIwAyAiT4rIGw4/RxNfefQD9gLGAPeKiDhdR1WnqWqjqjbW19cXSlzDKChRaoZnGEkK5gJS1QPdzonIWcCDGt+M4CUR6QA2AWyKb5QllmtvRJGwXEDTgQMARGR7oCfwWUiyGEbBsVx7I4qEZQBuBbYRkTeAPwM/0VLamswwfGK59kYUCSULSFXXAD8O496GEQbWDM+IItYMzjCKhKVrGlHDWkEYhmFUKGYADMMwKhQzAIZhGBWKGQDDMIwKxQyAYRhGhSKllH4vIkuARWHL4cAmlF8hWzk+E5Tnc5XjM0F5PldYz7S1qnbrpVNSBiCqiEiLqjaGLUeQlOMzQXk+Vzk+E5Tnc0XtmcwFZBiGUaGYATAMw6hQzAAEw7SwBSgA5fhMUJ7PVY7PBOX5XJF6JosBGIZhVCi2AjAMw6hQzAAYhmFUKGYAAkJE/ldEXhORV0VkpohsEbZM+SIiU0Xk7cRz/UVE6sKWKV9E5FgRmS8iHSISmXS8XBGRQ0RkgYi8IyLjwpYnX0TkVhH5NLFXSNkgIluJyNMi8lbi9+/csGUCMwBBMlVVd1HVIcAjwKVhCxQAs4CdVHUXYCEwPmR5guANYBTwXNiC5IuIVAM3AocCOwAniMgO4UqVN38ADglbiAKwDrhQVb9DfC/0n0fhuzIDEBCquizlZV+g5KPrqjpTVdclXs4GtgxTniBQ1bdUtVx2Yt8DeEdV/53YZOnPwNEhy5QXqvoc8EXYcgSNqn6sqq8k/r8ceAsIfXMI2xAmQERkMnAy8BWwf8jiBM1PgXvCFsLoQgPwQcrrD4E9Q5LF8IiIDACGAi+GK4kZAF+IyJPAZg6nJqjqX1V1AjBBRMYD5wATiypgDmR7psSYCcSXsHcVU7Zc8fJMZYI4HCv5lWc5IyLrAQ8A56V5DULBDIAPVPVAj0PvBh6lBAxAtmcSkZ8ARwDf1xIpGvHxPZU6HwJbpbzeEvgoJFmMLIhIDXHlf5eqPhi2PGAxgMAQke1SXh4FvB2WLEEhIocAY4GjVHVl2PIY3XgZ2E5EBopIT+B44KGQZTIcEBEBbgHeUtVrwpYniVUCB4SIPAAMAjqIt6w+U1Vbw5UqP0TkHaAX8Hni0GxVPTNEkfJGRI4BbgDqgaXAq6o6IlypckdEDgOuA6qBW1V1csgi5YWI/AnYj3jb5E+Aiap6S6hCBYCI7AP8HXiduI4AuEhVHwtPKjMAhmEYFYu5gAzDMCoUMwCGYRgVihkAwzCMCsUMgGEYRoViBsAwDKNCMQNglCwisnGi++qrIrJYRFpTXvcM8D67JWoicnnvRiLiKXVWRK4QkfOyjBklIoNzkcUw0jEDYJQsqvq5qg5JdGD9LXBt8nWiORoSJ9/f893IvUPlRkCQtROjADMARiCYATDKDhH5toi8ISK/BV4BthKRpSnnjxeRmxP/31REHhSRFhF5SUT2SrtWLfHW3j9KrCxGi8h6IvKHxPi5InJkYuzOIvJyYtxrIrIN0AwMShxrdpD10kQ//1nAdinHz0xca56I3CcitSLyPeAw4NrE9QY4jQv8AzXKFjMARrmyA3CLqg4FMlVk/xqIqWojcBxwc+pJVW0DLifev2WIqt5P3CA8oap7AAcAvxKR3sDZwNWJFcnuxPvyjAMWJN7bZcMWEdkD+AEwBBhNvL1zkvtUdXdV3RV4FzhFVf8OPAacn7jee07j/H1MRiVjzeCMcuVdVX3Zw7gDic/Qk6/7iUhtQvG7cTBwaMoOXL2B/sDzwMUisjXwoKq+k3JdJ/YFHkjcq01EHk45t4uIXA7UAesT32TICa/jDKMbZgCMcmVFyv876No6uXfK/wXYIxkz8IgAI1X13bTjC0XkBeBwYFaik2q27pxuvVjuAA5V1TdE5DTiu0jlM84wumEuIKPsUdUO4EsR2S4RED4m5fSTwM+TL0RkiMMllhOfXSeZAfwy5T1DE/9uo6rvqOr1xNuB7+Lw3lSeA0aJSG8R2YB42+0kfYHFiRbCJ2aQxW2cYWTFDIBRKYwFngD+RryPfpKfA8MSQds3gdMd3vsUsGsi4DsauAzoIyKvi8h8YFJi3ImJDb9fBbYB7lTVT4CWxNguQWBVfQn4CzAPuI+u+xRfCrxEfF/mN1OO/wm4KBkEzjDOMLJi3UANwzAqFFsBGIZhVChmAAzDMCoUMwCGYRgVihkAwzCMCsUMgGEYRoViBsAwDKNCMQNgGIZRofw/mgBSnouylmcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO2de3wU5dX4v4cQICgQVFo1ooBFvBQFjYovtS3aVq2KSK3W1opa8bVaLSle4uUnN1u5FEJr+9p6q71Yi7eiVt9aFazVVmwwIOKlr1JQY1UUEAWUQM7vj92Nm83M7uzuzM7M7vl+PvkkO/PszJlNcs7znHOec0RVMQzDMCqPbmELYBiGYYSDGQDDMIwKxQyAYRhGhWIGwDAMo0IxA2AYhlGhmAEwDMOoUMwAGIZhVChmAIxIIyKrReRtEdkh7di5IvJ42msVkU0i8qGItIrIPBGpSjv/eHLMQRnXXpg8/sXk61oRuVVE3hKRD0TkXyJyuct9Ul+X+fy8p4rI30Vkc/ozuowVEblKRF4TkY0i8gcR6Zt2vmfyeTYmn+kHfspqxB8zAEYc6A58P8eYg1R1R+ALwGnAORnn/wWcmXohIjsDo4C1aWOagB2B/YB+wFjgVaf7pH3NzvdhcrAOmA/M9DD2TODbwGhgd6AGuD7t/FRgKLAXMAa4TESO9VNYI96YATDiwBzgEhGpzTVQVV8BngJGZJy6HTgtbWVwOvBHYGvamEOB36vqelVtV9WXVPXu4sX3jqo+qqp3Am96GH4icIuqvq6qHwKzSDxj7+T5M4EZyed5EbgJOCsIuY14YgbAiAPNwOPAJbkGisi+wJHAKxmn3gReAL6SfH0m8JuMMU8DPxSRs0VkaDECi0ijiGxw+yrm2um3SX6lv+4JDBWR/iRWBcvTzi8HDvDp3kYZYAbAiAvXABeJyACX88+KyCbgRRLG4n8cxvwGOFNEhgG1qvqPjPMXkVgpfA94QUReEZHjHO6TrsyPcRJGVWeqaq3bl7dHzsn/AueKyCAR6Qek4hW9SbiyAN5PG/8+0MenextlgBkAIxao6vPAn4BGlyEHk1B6pwGHAzs4jLkXOIqEov+twz22qOqPVPUQYGfgTuAuEdkp/T4Zyvzhgh+qeG4F7iBh8FYCi5PH3wA+TP7cN218X+CDUglnRB8zAEacmAJMBOqcTmqCO4F/kFgxZJ7fTGLW/F0cDEDG2I3Aj0gYksH5CioiV2ZkC3X6yvd6LjK2q+oUVR2kqnuQMAKtQKuqrgf+A6RnPh2UHGMYgBkAI0YkA7wLgItzDJ0JnCciuzqcuxL4gqquzjwhIv9PRA4VkR4i0otE5tEG4OUCZP1RRrZQpy+394lIVfLe3YFuItJLRKpdxu4kInsn00H3B+YB01W1PTnkN8DVItI/GRuZCNyW77MY5YsZACNuTMfZvdOBqq4A/gpc6nDuTVV90u2twK+Ad0kEjb8MHJ/MsEmxPGM2P7+Qh8jCt4EtwA0kgtlbSGTvAJC855HJl7sADwGbSKxsblXVG9OuNYVEGusaEp/HHFX9s8/yGjFGrCGMYRhGZWIrAMMwjArFDIBhGEaFYgbAMAyjQgnVAIhIg4isFJHnReSOZPaDYRiGUQJCCwKLSB3wJLC/qm4RkTuBh1T1Nrf37LLLLjpo0KASSWgYhlEeLF269F1V7bKLvnsYwmTcv0ZE2khsX89aAGvQoEE0NzeXRDDDMIxyQUTWOB0PzQWkqq3Aj4HXSOxYfF9V/5I5TkTOE5FmEWleu3Zt5mnDMAyjQEIzAMlqhSeR2Ga/O7CDiJyROU5Vb1TVelWtHzDArQ6YYRiGkS9hBoG/BPxbVdeqahuJQl3/FaI8hmEYFUWYBuA1YJSI9BYRAY4mUcrXMAzDKAFhxgCWAHcDzwIrkrLcmPVNhmEYhm+EmgWkqlNIFKwyDMNwZGFLK3Mefpk3N2xh99oaLj1mGONGOlYEN/Ik7DRQwzAMVxa2tHLFvSvY0rYdgNYNW7ji3hUAZgR8wEpBGIYRWeY8/HKH8k+xpW07cx7Ou0WD4YAZAMMwIsubG7bkddzIDzMAhmFElt1ra/I6buSHGQDDMCLLpccMo6a6qtOxmuoqLj1mWEgSlRcWBDYMI7KkAr2WBRQMZgAMw4g040bWmcIPCDMAhmEYJSCK+xnMABiGYQRMVPczWBDYMAwjYKK6n8FWAIZhGB4p1I0T1f0MtgIwDMPwQMqN07phC8onbpyFLa053xvV/QxmAAzDMDxQjBsnqvsZzAVkGIbhgWLcOFHdz2AGwDAMwwO719bQ6qDsvbpxorifwVxAhmEYHoiqG6cYbAVgGIbhgai6cYrBDIBhGIZHoujGKQZzARmGYVQoZgAMwzAqFDMAhmEYFUqoBkBEakXkbhF5SUReFJEjwpTHMAyjkgg7CPwT4M+qeoqI9AB6hyyPYRhGxRCaARCRvsDngbMAVHUrsDUseQzDMCqNMF1AQ4C1wK9EpEVEbhaRHTIHich5ItIsIs1r164tvZSGYRhlSpgGoDtwMHCDqo4ENgGNmYNU9UZVrVfV+gEDBpRaRsMwjLIlTAPwBvCGqi5Jvr6bhEEwDMMwSkBoBkBV3wJeF5FUIY2jgRfCkscwDKPSCDsL6CLg9mQG0Crg7JDlMQzDqBhCNQCqugyoD1MGwzDiSaHtGY1PCHsFYBiGkTep9oypDl2p9oxAZI1AFA2WGQDDKGOiqHT8IFt7xig+X1QNltUCMowypZgm5lHHrQ1j64YtkXy+YvoJB4kZAMMoU6KqdPwgWxvGKBq5YvoJB4kZAMMoU6KqdPzAqT1jiigaOTeD5bWfcFCYATCMMiWqSscPxo2s47rxw13PR83IRbWfsBkAwyhToqp0/GLcyDrqYmLkUgarrrYGAepqa7hu/PDQA9aWBWQYZUo5NjHP5NJjhnXKroHoGrko9hM2A2AYZUwUlY6fVIKRCxIzAIZhxJpyN3JBYgbAMAzDgWI20cVlA54ZAMMwjAyK2bkb1V2/TlgWkGEYRgbFbKKL0wY8MwCGYRgZFLOJLk4b8MwAGIZhZFDMJro4bcAzA2AYhpFBMZvo4rQBz4LAhmEYGRSyvyA986dfTTW9qruxYXObZQEZhmHEjXz2F2Rm/mzY0kZNdRVNp42IpOJPYS4gwzCMIolT5k86ZgAMwzCKJE6ZP+mYATAMwyiSOGX+pBO6ARCRKhFpEZE/hS2LYRiFsbClldEzFzG48UFGz1wUuY5cQROnzJ90ohAE/j7wItA3bEEMw8ifOJU+CIqgqpIGXVMoVAMgInsAxwM/BH4QpiyGUQ74rTC8XC9bALRSDAD4X5W0FIY1bBfQfOAyoN1tgIicJyLNItK8du3a0klmGDEjpTBaN2xB+URhFOqO8Xq9uAZAo04pMotCMwAicgLwjqouzTZOVW9U1XpVrR8wYECJpDOM+OG3wvB6vbgGQKNOKQyrJwMgIp8VkVNF5MzUlw/3Hg2MFZHVwB+Ao0Tkdz5c1zAqEr8Vhtv7WjOOxzUAGnVKYVhzGgARmQJcn/waA8wGxhZ7Y1W9QlX3UNVBwDeARap6RrHXNYxKxW+F4fY+gU5uoKg2PM9FEJlLfl6zFIbVSxD4FOAgoEVVzxaRTwM3+yaBYRi+4HeD9EuPGUbDgmVoxnGFLgHeuLVlDCLA6vc1S9Hv2IsB2KKq7SKyTUT6Au8AQ3yTAFDVx4HH/bymYVQafiuMcSPrmLRgmeO5uAd4g8hcCuKaQRtWLwagWURqgZuApcCHwDOBSWQYRsFkGoFUwLZQJVJXW9PF5w/xD/AGEWCNYzZUzhiAql6gqhtU9RfAl4EJqnp28KIZhpEvfqeClmuAN4gAaxyzobwEgR9L/ayqq1X1ufRjhmFEh0JSQbMFLuMa4M1FEIYtjsbS1QUkIr2A3sAuItKfRPAfEiUbdi+BbIZh5Em+bggvgcuoBniL2fUcRIC1FEFbv8kWA/hvYBIJZb+UTwzARuDnActlGEYB7J6nzz6uZRz8yLgJwrBF1Vi64WoAVPUnwE9E5CJVvb6EMhlGJAi6EJffLGxpZfPWbV2OZ3NDxDFwCfE1XFEjZxaQql4vIp8F9gd6pR3/TZCCGUaYxK3CZaa8KWprqpk69gBXmfNdMUSFuBquqJHTACR3An+RhAF4CDgOeBIwA2DEDq+z+rjNMJ3kBfjgo64rgnT83jwWFJm/t9re1azf3NZlXNQNV9SwncBGxZDPrD5uM0ynWTzAdtWsK5c4BC6dfm/V3YTqKqFt+yf7lKNouKJOJHYCG0YpyGdWHzfXSJUI2zWzaEOCXCuXqAcunX5vbe1KbU01O/TsHlnDFQdsJ7BRMeQzq4+LaySFm/JPEdWVixfcZH9/SxvLpnylxNKUF16CwBckf/yFiPwZ6KuqzwUrlmH4Tz6z+iBdI0FkF7mVbEgR1ZWLF+K2GosT2TaCHZztnKo+G4xIhhEM+c7qg3CNBJVd5PRsKaqrJLIrFy/EbTUWJ7KtAOYmv/cC6oHlJDaDHQgsAT4XrGiG4S+lCnhmm+EHlV2Ueu+0B1Z2zY7J7h0KDL9WOnEIVMcV0Ry+QxH5A/BDVV2RfP1Z4BJVPSt48TpTX1+vzc3Npb6tYXjGKR+/prqqo37O4MYHHfWxAP+eeXzR9x89c5Gju6SutoanGo8q+vrpZFPwuT6HUslhJBCRpapan3ncS0vIfVPKH0BVnwdG+CmcYZQLuYqxBV0xslTpq7mqjpaiobkXOYzseDEAL4rIzSLyRRH5gojcBLwYtGCGEUVytfzLpYCDrhhZqpLEuRR8qQxRqQxNueLFAJwNrAS+T6I43AvJY4ZRUXiZbeZSwMWWV85lgMbsO6CjamOKIAKmuRR8qQxR3DbsRQ0vaaAfAU3JL8OoCJz8yl4CuE4ZK0LCWIyeuajDP12IjzpXBtHCllbuWdraKcYgwNcOcb9fof7zXKmZpcrcsRTR4vCyAjCMWJNr1uw03mmm75Znnz7bTJ/hQ0IBpxRysf7pXO4Op/MKLH5preP1ivGf53JllaqRTBybsHhl8eLFjBgxAhFh3rx5gdzDy05gw4gtheTdT71/paOidSu3kDnbTM3wnTJyikn5zOXuyNcdUkxKqpfUzFKUmCinFNH33nuPadOmcf31Xavvb9y4MZB7eqkG+nVVvSvXsXwRkYEkKoruCrQDNyZ7EBiGb+Sr5Ba2tLJhS9cqk5Aot1BTXeXZreG3fzqXuyNfd0ix8kWlhlBU5HDDzc2mqtx99900NDTQ2tp11TV48GDmz5/PiSeeiEhmZMcfvLiArvB4LF+2AZNVdT9gFHChiOzvw3UNo4NCZsVu1NZU5+XW8DsQmsvdka87JI5NzONGppttzZrVnHnGtxARunXrxqmnntpJ+U+ePJl169ahqqxatYqxY8cGpvwheymI44CvAnUi8tO0U31JKO+iUNX/AP9J/vyBiLwI1JHIMjIMX/BrVgwgkt9s0+9AaOq+U+9f2bFK6VXdrdP55jXruGPJ62xXpUokawDYSiwEz+yHXuCdZx5g3WM3wfauK8vDDjuMefPmMXr06BCky+4CehNoBsaSqAKa4gOgwU8hRGQQMJJEiYnMc+cB5wHsueeeft7WqADyVXJuBgNgg0MDkmwE5Z/+eFt7x8/rN7d1xDQA7lna2hGn2K7KPUtbqd9rp9j0AnByl0RNxlwsX76cSy65hEcffdTxfO0XzqLvISeyZu74EkvWFS+lIKpVtS35c39goJ/VQEVkR+CvJMpN3JttrJWCMAohn1THhS2tNCxY5liuIYhyCvmSrdQDODeGiYLcXnAqH1HdTUDo0vgl3fUWdimITZs2MXfuXKZMmeJ4vmbvQ6n94tn02OWTCWypfydupSC8ZAE9IiJjk2OXAWtF5K+q+gMfhKoG7gFuz6X8DaNQ8nHbpNwotz/9WicjEBXXSCGB26A2RfmteN0av2SSHsT3u7qq12davHgxDQ0NLF++vMu5Pn36MH/+fCZMmMADz70VaTebFwPQT1U3isi5wK9UdYqIFL0CkERk4xbgRVUNJsnVMArg2nHDqd9rp7xWDaWageaKaeQT7/Ait9uYIMpa52OoUmP9rK6a7Zk+N7An06dPd0zRBJgwYQLXXnste+yxR6fjUXSzpePFAHQXkd2AU4GrfLz3aODbwAoRWZY8dqWqPuTjPQyjILyuGoKq7+9GrpiG19mmF7mzjQmirHW2+IvTWPA31Tb9mVSVzS8/xRuP3cTJ177XZeyQIUNoamrylKIZ5TRVLwZgOvAw8JSq/lNEhgD/V+yNVfVJ6FK2xDBCodBZvN+KMJccXmaUXp7Di9xuYybfudy1BWVmyYt8ns/JuLnFAFJGzc9SEGvWrGb9X3/N5hefcDx/ySWXcOWVV9K/f/+8rx1VvNQCugu4K+31KuBrQQplGKWkmFm8nzNQr3Jkm1F6nW16KWvh9gy5+g+7yZ3r+dyMm9OxbEbDq49927Zt3HjjjTQ0NLB169Yu53vsNoz+R53L3p89OBZB9ELwshN4H+AG4NOq+lkRORAYq6rXBi6dUZaEnbWRSTGzeD9noEF1C8tkYUtrpxpF6dT2rmb0zEW8uWEL3VxKX3jBSW6355v2wMqOcW4GLJvBS13by9/T8uXLmTx5Mo899pjj+QFHnU3NyBOR7j2AaAVsg8DLTuCbSOz8bQNIpoB+I0ihjPIlig08ipnF+1mMrJQ19N3U+ocfbev43RSq/FNkyu32HOs3txX1+x83so6nGo/i3zOP56nGozop/02bNjF9+nREBBFhxIgRnZT/8ccfz8qVK1FVVJUbfzyDPXbpF2gBuyjhxQD0VtVnMo4VvRPYqEwKaeCRbzXPfCmmJIKfVS/DrqEPzmmXVSJI8rsTbscz5c72HH42cEmvornjjjt2ys/v06cPt9xyC9u2bUNV+dOf/sT++39SgSZlTJpOSzQ9bFiwLJC/uajgxQC8KyJ7k1wxisgpJEs4GEa+5DvLLcWKodhZvNMMtBCjVarSxvkalHZV/j3zeOaeepCjfKcfPtCT3Nmeo5hVzrvvvstFF13UMcs/6qijOuXnT5gwgddffx1VZePGjZxzzjlUVVW5Xi+Kq9Sg8GIALgR+CewrIq0kuoKdH6hURtmS7yy3FC3//K5dX6gCCbuGfm1NteP4XN3M6vfaqVNNolTRvEy5x42sy3kPL6gqd955Jzt/aldEhAEDBvCzn/2s4/yQIUO47777aG9vR1W57bbbuuTnZ6OS2kx6SQNVVf2SiOwAdEsWbhsctGBGeZJv1kap/OJ+5moXW2ffb4XvFHS/bvxwx2ybXL+bTPmcyjek1yrKZOrYAwrK2lm9ejWNjY0sWLDA8Xzfw8bz6c+fzuxvHlH051dJbSa9GIB7gINVdVPasbuBQ4IRyShn8s3acMuyqe3tPJMsJW7ZTFFSIG6pl9eNH+6a2phPhpaXLmVO18p1j1SK5qRJk2hr61qEb8eB+7HD58+h1x77dRzbmrxusQagktpMZisHvS9wANBPRNLL1vUFegUtmFG+5FtS+dK7l3faCASJbJWFLa2hZWhky2n3Q4HkSpX1mkqb72ok3xWIm1Fr3bCFSQuWdXrtlPOfTq4UzVmzZnHxxRfTq1cvBjc+6JjJ5IeRraQy2dliAMOAE4Ba4MS0r4OBicGLZhgJZbFDj67zlLZ2DdUnm02xFhvMzRVDyCfGEPRqJB+jlulH37RpE9OmTfOconnZZZfRq1evrPf1Y5aeKxYTdFZaKXFdAajqfcB9InKEqv6jhDIZRifed2nRWCqXitNsO5tiLbYAWK5Zez6z+qDdGWP2HcDvnn7N8/hXlz/NQQc18NxzXetJ9u3bl6amJiZMmJA1SweCn6W7rVJKXfspaLyUgjDlb4RKmD5Zt3/4fjXVjr2D0zNmMl02qR22uQyCn83fsylKP3ZkL35pbdbz2ze/z/tP/Z4Pnn2w49jbaefPOussrr32Wurq8rtvWFU2S7Vbu1R4CQIbRqiE6ZN1+4fvVd3Nc4P4fGeNfjZ/z1Zfx4tMuYxEptFRVTa/9CTrF93E9g/XdZGne+1u9D/6XGr2Powe3btx0ikH5a3805+t1CW6oxTg9wMzAEbkCbOmuts/9obNbTSdNiKQQGwug+eHQfQikxfDtXttTaKK5uO3sfmlvzneq+9h4+l3xKl067Vjp+Nt27VTHSC/CNJNU24ZQtmygLJ2/LImLkYpCaumerZ/eK8y5TtrzGXw8jGIVy9c0am7WUoZZip/J5ncjMSsh1bS+veFNDQ0OKZo9tx9GAOP/W+2DdinQ7b0jKB01m/Or8+yF4J005RbhlC2FUCf5PdhwKHA/cnXJwLOBbMNI0Z4cRP48Q9fyKwxl3HxYnwWtrR2aW0JCWVY5VLpM12mdGOw9Z1VrF90Cx+tWc4a4OmM9+117ET0gOPYY5d+jp+jmwEIglwGtxj3UNQ7fOVLtiygaQAi8hcSG8E+SL6eSlp/AMOII05ugoYFy2hes45rxw3vGOfHP3xYs8ZsVT+3q2aNYWzatIntzXfx+mO/dnz/CSecwOzZs9lvv/0cz2dS6xI0dysNUQzZDK4f7qEod/jKFy8xgD1JbLJLsRUYFIg0hlEinNwECtz+9GvU77WT5wYsXnAyImP2HcCch1+mYcGywGaR2QKTdcl7pst0TP93mXLWVznZIUVTevRmp6MnssvILzPzlBF5yzp17AFcetfyTtVGq7sJU8cekNd1vJDN4JZbFk+xeDEAvwWeEZE/kvgfORn4TaBSGUbAuClHxZ9yApmkG5FS5ZK7zYSFhJL83MCePPrGvfz95z9nNfD3jHFnn302o0+7gFtbNhbt7iil6yTbvRpcXFFxzeIpFlEPTR9E5GDgyOTLJ1S1JVCpXKivr9fm5uYwbm2UGaNnLnJtiyjAv2ceH8q9a2uqO2bFxSrLTEOTK0Vz7733pqmpiRNOOCFno/O44vbZ19XWlG3bRwARWaqq9ZnHvaaB9gY2quqvRGSAiAxW1X/7K6JhlI5LjxlGw4Jljj5yryl9Vy9cwR1LXme7KlUinH74wE7xA8hvFzHAhi1t/GDBMqqqpKP+UaErhHEj63i79TWuuupK3nvucecxZ57Pr35yHbW1tZ6vG2fKLYunWLz0BJ4C1JPIBvoVUA38Dhhd7M1F5FjgJ0AVcLOqziz2mobhhXEj62hes65LloxXZXD1whWdSiBsV+14nTIC+e4iTtEOtGcUv/Pqp25ra+todO6UoplqdJ6qovlObU3FKH8ILx4TVbysAE4GRgLPAqjqmyLSJ/tbciMiVcDPgS8DbwD/FJH7VfWFYq9tGF64dlyimUkhrpY7lrzuejxlAPLZRewFt5XDsmXLmDx5MosWLXI8P3v2bH729mc6Gp17uWaxuKVaBrVDNx/CiMdEFS8GYKuqqoikWkLu4NO9DwNeUdVVyev+ATgJMANglIxCM3zcGqanH8+1i3jyncvzaryeck1t2rSJOXPmMG3aNMdxTimaC11830HsYHVTqs1r1nHP0tZIKdtKzwry0hLyThH5JVArIhOBR4Gbfbh3HZA+jXojeawTInKeiDSLSPPatdkLTxlGqfDSID1byeJxI+uYe+pBVFd1vU436HK8/Y0VtN5yYUej83Tl369fP2699daORucPPPBAl/z8UvUbBneleseS1yPXarHcavvki5dqoD8WkS8DG0nEAa5R1Ud8uLfTf1CX6ZCq3gjcCIksIB/ua0SUKLgHvHL64QMdyyCffvjAjp9zBRxTzzbtgZUdJRFSWUAb16/j8qv+H289fZ/j/c8++2xmzJjhuZBaUGmY+QS53VY7pVC2bn9b5VbbJ19ypoGKyCxVvTzXsbxvLHIEMFVVj0m+vgJAVa9ze4+lgZYvTr1la6qrAmmK7heZWUCjhvRn9XtbulTd9KJ0U43OGxoa+M9//tPl/N577838+fM5/vjjQ0nRdFKg4NxDuGf3bo5BbrfyE0GnYGb72wLnZ4jy310huKWBejEAz6rqwRnHnlPVA4sUqDvwL+BooBX4J/BNVV3p9h4zAOVLFPKzi1mBFGLAnn32WUaNGuWYrQNw6aWXcuWVV4aepeP2bL2quzkWc+vfu5qP2tq7jP/aIXWdYgCp40Er21x/W3FaeRZK3vsAROS7wAXA3iKSvje8D103DeaNqm4Tke8BD5NIA701m/I3ypuwfbHFZoN4CSZ+/PHHTJw4kd/+9reO1xg1ahTz5s3jiCOOKOZRiiZTIW76eJvjs7llMWUrlV1o1lUx5PrbKqfaPvmSLQbwe+B/geuAxrTjH6hq122EBaCqDwEP+XEtI96E7YstNhvETcm8svRviBzt+r5x48bxu9/9jh128Cu5rjicDGG+ZCuVHYayDftvK8pkqwb6PvC+iPwEWJdWDbSPiByuqktKJaRR/oS9QzPfFUjmLLm2dzXrN7ex/aMPWXvvtXz8+vOu93riiSc48sgjXc+HiZMhdKO2ppqPt3V19URtV23Yf1tRxss+gBuA9BjAJodjhlEUYddZz2eWmDlLfmXZP3hnwdWu17744ouZO3cu3btHvwGfV5dbTXWVbzWLgibsv60o4+UvUjQtUqyq7ckArmH4ih/ugUIDevnMEn90zxLeeOhWPmx5sMs5gG69+nDgd3/KlG9/OXZKxs0Q9u9dTe8e3bN2KIsyleznz4YXRb5KRC4mMeuHRGB4VXAiGUZhFBPIzTZLVFUWLFhAQ0MDb731Vpf3du+/G/2POpfeex/G6lkn+PxUweBmKN0M4ZQTDzAFWoZ4MQDnAz8FriaxUesx4LwghTKiTxRT54oN5KbPEletWkVjYwMn3+Xc/K7v4V9LNDrv+UnwtkqEhS2tJfscCv0deDGUUfvdGsHgZSfwO8A3SiCLEROyKRAIT3kUk0ra1tbGL3/5SyZNmsT27V2DoEcccQTz5s1j1KhRjnnxkNjpWqraNoWsdlIGw8nFk24ozV1SOWTbB3CZqs4WketxLtFwcaCSGZHFbaY97YGVnTYAlbrYV77pfi0tLUyePJnFixc7np8zZw4XXXQRPXv27HQ89SxOxdxKUUhsYUtr3vd2M1rpRL3+TRRXnXEn2wrgxeR323prdFUzZOwAABVbSURBVMJNUTjtCg1SIWYqhDH7DnDcaZoK5H744YfMmTOH6dOnO17vxBNPZPbs2ey777457x1We8GUIs+3ro6X9M5+ATRo94tKL9scFNn2ATyQ/P7r0oljxAG3mbYbQShEJ4Vwz9JWvnZIHYtfWvtJo/PatVwz4ThOXrGiyzVqa2tpamri29/+NlVVVV3O5yKMDUa5FLnbvb38DjZt3VbSGEY+VHrZ5qDI5gJ6AAfXTwpVHRuIREYkSZ9t96uppjqtZSFkLwIWhEJ0Uwh/af4/Dl3/GH//n/9xbHR+zjnnMGPGDHbfffeiZQhjg1E2RZ7t3l6Mdtt2jaxCDbtUSLmSzQX04+T38cCuJNpAApwOrA5QJiNiZM62N2xpo7qb0L93NRs2t+WsDhmEQkz946sqm198gvWLbmb7pvWsIVFVMMXQoUNpamriq1/9qu9VNMPImHFT5FUiWYuqORkrJ6KqUK2cQzBkcwH9FUBEZqjq59NOPSAiTwQumREZnGbbbe1K7x7dabnmK13GT71/ZcdKoFe1l55D+bFq1So+eGgO7634q+P5yy+/nCuuuIJ+/fr5fu9MsmXMBBG0dFt15KqomS1wnU5UFaqVcwgGL/sABojIkLTWjYOBAcGKZUSJfJffH29r7/h5/eY2GhYso3nNuo5eufmSK0Wz5+770v+oc6kddEBk6rgHFbQsZtWRGuO2EoiyQrX9CcHgxQA0AI+LSGr37yDgvwOTyIgc+Sy/nVYLCtz+9GvU77WT539YLymaex05nvmLV0dSIQQZtCwmTz9dkbZu2NLRpKUuYp+fE7Y/wX+8bAT7s4gMBVK5cS+p6sfBimVEiXyW326rAoWsyi9XiubYsWOZPXs2w4Z1vufXDx/i8SlKS5SDlqZIjRQ5DYCI9AZ+AOylqhNFZKiIDFPVPwUvnhEF8ll+Z8s2yVR+jz32GJMmTeL557uWTu7fvz9NTU2cccYZBaVoho0FLY044MUF9CtgKZBqU/QGcBdgBqCC8DprvPSYYTQsWOaYP7xt8/vsOuok3l5yv+N7v/Od7zB9+nRfUjTDxoKWRhzwYgD2VtXTROR0AFXdImF0pTZiwbiRdTSvWcftT79GezJFc92im2jftKHL2KFDhzJ//nyOO+64UBqdB0k+q6ZKLnFQyc8eBbwYgK0iUkNyU5iI7A1YDMDoIP2feKf29fRatoDVjzgvEPsefgr9jvg6Az+9S8mavUeZIEscRF25WnmH8PFiAKYAfwYGisjtwGjgrCCFMuLD3c+s5nvXzObtv/wStL3LDsGedfvRf8x36FnXub5OFIKhxZJNwXpVbkFlC8VBuVp5h/DJuksn6ep5icRu4LOAO4B6VX08cMmMyNLS0sKYMWMQEb5++GDefvgG0E9y//uPOYdRM/4XVeWQ7/2si/KH+AdDUwq2dcMWlE8U7MKWViC7cksnqGwhr/fPZGFLK6NnLmJw44OMnrmo43mCIMqZUpVC1hWAqqqILFTVQwDn/ncFICJzgBOBrcCrwNmq2tVJbESCXCmaNUNH0f8LZ1G98x4dx976MKF8yjUYmmv26lW5BZUtVIhydVo1FLuJLxuWKRU+XvbpPy0ih/p830eAz6rqgcC/gCt8vr5RJI8++ijDhw9HROjTp08n5d+/f39+/etfs337dv7rusf41PirOyl/+OSfeNzIOq4bP5y62hoEqKuticxu3XxJnx3nSnV1U2KZxy89Zhg11Z3TXP0wkF7vn062TXxBrASCenbDO15iAGOA80VkNbAJEBKLgwMLvamq/iXt5dPAKYVey/CHtWvXMmXKFG644QbH89/5zneYMWMGu+22W6fjXmb4TimkUQ9QZuKloQp8omC9rnyCKnFQyMqr0E18hWLlHcLHiwE4LmAZzgEWuJ0UkfNI9iDec889Axalckg1Op80aRJvv/12l/P77LMPTU1NOVM0C/knjkOAMhMvDVXSFWw+n0sQO3ML+b3ks4nPTzmj+juvBERdKgOKSC8SDeE/A6wAblHVbZ4vLPIoiTLSmVylqvclx1wF1APj1U2QNOrr67W52RqUFUqi0Xkjd7k0Om9sbKSxsTHwKpqjZy5yVDR1tTWRTQ0d3Piga3MMgbKYvS5saXXdxBfE7yZuq8A4IyJLVbU+83i2FcCvgTbgbyRWAfsD3/d6Q1X9Ug6BJgAnAEd7Uf5G/rS1tfGLX/yChoYGxyqao0ePZu7cuRx++OEllSuO2R9us+OgjFYYyjF9E1/6P2QQfvk4rgLLkWxB4P1V9QxV/SUJH/2Rft1URI4FLgfGqupmv65rdE7R7NGjBxdffHEn5T937lw++ugjVJUnn3yy5MofCgtQhk0pA5a5UkyD5Npxw2k6bUTgQftC01QNf8m2Aujo7aeq23zeqv8zoCfwSPK6T6vq+X7eoFLIlaJ50kknMWvWrC5VNMMkjqmhQQUs02f6tb2rUcWxrWYpN0iVwi8fx1VgOZLNABwkIhuTPwtQk3ydygLqW+hNVfUzhb7XSKRoTpo0iZUrV3Y5t9NOO3VU0ezWzf9uXH4Q1+wPvxVjphtk/eauij+dclKOtgcgGmRrCRm/GrxlyjvvvMPUqVNdUzTPPfdcpk+f3iVFM8pY9oe3zKJ0ykk5xnEVWI54SQM1SkyuFM1hw4bR1NTEscceW3ZVNCsJt5RLJ+KuHJ2C2teNHx67VWC5YQYgIuRK0bziiitobGykb9+CPW9GxEi1Y8xFHNo1ZsMt4+e68cMjm/ZbKZgBCImopmgapSOX8q+propt2Yx0rOpndDEDUEKeffZZJk+ezOOPP+54fu7cuVx44YX07NmztIIZoVCXZedt3Gf96VjGT3QxAxAgH374IbNnz2bGjBmO58eNG8esWbPYZ599SiyZ4Se5+gK4nXMLhEZ51l/IBjXL+IkuZgB8JluK5s4770xTUxPf+ta3Qk/RtG34/pCthHL9Xjtl3e0at3TYQnfvWsZPdHGtBRRFolgLKFeK5sSJE5k2bVqkUjSdKltGfeYZVdzqGgnQr6bacVNXlGseZaOYGk424QiXQmoBGQ60t7ezYMECGhoaXFM058+fz7HHHhuCdN6woJx/ZCuh7KT8s72n1OSrlIvx5du+j2hiBsADr776Ko2Njdx9992O5+OWomlBOf/IVkI523vSCWN2XIg7J46+fFt5ZCeatQJCpq2tjeuvv57u3bsjInzmM5/ppPw/97nPsWTJElQVVeVHP/pRbJQ/xLMYWxRZ2NLKpo/dK6T3713dpYCckFC2qX67YRV+K6QYW9w6eIVZVC8u2AogSa4UzXnz5nHBBReURYqmBeUSFDM7zNUhrKa6iiknHgAklG3rhi2JIlrJ8yll1Ku6m6MinnznchoWLAts1lrIKjBuQWtzdeamYg1ArhTNk08+mVmzZjF06NASSxY8cftHDoJi69Fnq+OTmcM/bmSdYwB1S9t212ukNokFVSe/UHdOnHz55urMTUUZgFwpmvPnz+eb3/xm6CmapSBO/8hBUOzs0E2JCDhmxBSjdIKYtVbCKjCOMYtSUxEGYNu2bVRXV3c5PnHiRKZPn86uuzp1rjTiTC73TrGzw3yVi9v42ppqNn28jbb27OnYfs9aK2EVWAlGrlgqwgB0796dM888kyVLlkQ+RdMoHi/unWJnh/kqF7fxJxy0Gwv++XrO+wUxay33VWAlGLliqQgDsLCllVf2m8DHu53KjGU9+OjTrfZHUMZMe2BlTvdOsbPDfJWL2/g5D79M2/bcReFs1loY5W7kiqXsDYA1n64sFra0unbWSnej+DE7zFe5OI1vWLDMdbyAzVqNQCl7A1DqVDDbeBIuU+/vGuBPkelGicLs0M0VFddyEUbhhKE7yj7dpZSpYLbxJFwWtrS6ll8ASu5GWdjSyuiZixjc+GDHxi8nmeK0ucoIhrB0R6gGQEQuEREVkV2Cukcpd70WsrvS8I9sn3NtTXVJZ/te/6HHjazjuvHDqautQUjM/K0oX+URlu4IzQUkIgOBLwOvBXmfUqaC2caTcMn2OU8de0AJJcnP9RgFV5QRLmHpjjBjAE3AZcB9Qd6klKlgtvGktGT6TGt7VzsGgPv3Lu3sH2wyYORHWLojFAMgImOBVlVdLiKB369UMyzbeFIYhQS/nLK7qrsJ1VXSKa0yvSZPKbHJgJEPYemOwAyAiDwKOG2xvQq4EviKx+ucB5wHsOeee/omXxDYxpP8KTRN18nF0tau1NZUs0PP7qF//jYZMPIhLN1R8o5gIjIceAzYnDy0B/AmcJiqvpXtvVHsCGYUR6FdpgY3PojTX64A/555vH8C5kHmSmbMvgNY/NLa0I2RYUSmI5iqrgA+lXotIquBelV9t9SyGOFTqK88ai4Wp5XMPUtbLaPHiDRlvw/AiDaFpulGLX/eUoCNOBK6AVDVQTb7r1wKVeRRy5+3rB8jjpR9KQgj2hQT/IpK/vzClla6iXQ0cUnHsn6MKGMGwAidqCjyQkj5/p2Uv2X9GFEndBeQYcQZt9aQVSIWADYijxkAwygCNx9/u6opfyPymAvIqEhSOfutG7ZQlfTfZzZz90LU0lENIx9sBWBUHOmVOoEO/30hJXijlo5qGPlgKwCj4nDz24Nzxc5stYqs/IcRZ8wAGBVHrtz89PNeahXFOYvJqGzMBWRUHLn88+nnbYevUc6YATAqDie/fYpM/73t8DXKGTMARsWRXkYCEjn74FxOopQtRQ2j1FgMwKhIvPrtra6/Uc6YATCMLFiWj1HOmAEwSkYhrR+jQNSzfOL6uRrhYwbAKAmFtn40smOfq1EMFgQ2SoKlUwaDX5/rwpZWRs9cxODGBxk9c1Feu6GN+GIrAKMkWDplMPjxudoqonKxFYBREiydMhj8+FxtdVa5mAEwSoIVTQvGzeLH52qrs8rFXEBGSaj0dMqg3Cx+fK5W0rpyEXVoZRdV6uvrtbm5OWwxDCNvRs9c5Khk62preKrxqBAk+oRM4wSJVYR1NCsfRGSpqtZnHg/NBSQiF4nIyyKyUkRmhyWHYZSCKLtZ0ktjCM4lMYzyJBQXkIiMAU4CDlTVj0XkU2HIYRilIupulqhvdjOCIawVwHeBmar6MYCqvhOSHIZREiwIbkSRsAzAPsCRIrJERP4qIoeGJIdhlARzsxhRJDAXkIg8CuzqcOqq5H37A6OAQ4E7RWSIOkSkReQ84DyAPffcMyhxDSNwzM1iRI3ADICqfsntnIh8F7g3qfCfEZF2YBdgrcN1bgRuhEQWUEDiGoZhVBxhuYAWAkcBiMg+QA/g3ZBkMQzDqEjC2gh2K3CriDwPbAUmOLl/DMMwjOAIxQCo6lbgjDDubRiGYSSwWkCGYRgVSqxKQYjIWmBN2HI4sAvlF8Mox2eC8nyucnwmKM/nCuuZ9lLVAZkHY2UAooqINDvV2Ygz5fhMUJ7PVY7PBOX5XFF7JnMBGYZhVChmAAzDMCoUMwD+cGPYAgRAOT4TlOdzleMzQXk+V6SeyWIAhmEYFYqtAAzDMCoUMwCGYRgVihkAnxCRGSLynIgsE5G/iMjuYctULCIyR0ReSj7XH0WkNmyZikVEvp7sQtcuIpFJxysUETk22VnvFRFpDFueYhGRW0XknWSZmLJBRAaKyGIReTH59/f9sGUCMwB+MkdVD1TVEcCfgGvCFsgHHgE+q6oHAv8CrghZHj94HhgPPBG2IMUiIlXAz4HjgP2B00Vk/3ClKprbgGPDFiIAtgGTVXU/EmXwL4zC78oMgE+o6sa0lzsAsY+uq+pfVHVb8uXTwB5hyuMHqvqiqr4cthw+cRjwiqquStbX+gOJVquxRVWfANaFLYffqOp/VPXZ5M8fAC8CoTeHCKsaaFkiIj8EzgTeB8aELI7fnAMsCFsIoxN1wOtpr98ADg9JFsMjIjIIGAksCVcSMwB5ka3Lmarep6pXAVeJyBXA94ApJRWwAHI9U3LMVSSWsLeXUrZC8fJMZYI4HIv9yrOcEZEdgXuASRleg1AwA5AH2bqcZfB74EFiYAByPZOITABOAI6OS8+GPH5PcecNYGDa6z2AN0OSxciBiFSTUP63q+q9YcsDFgPwDREZmvZyLPBSWLL4hYgcC1wOjFXVzWHLY3Thn8BQERksIj2AbwD3hyyT4YCICHAL8KKqzgtbnhS2E9gnROQeYBjQTqJk9fmq2hquVMUhIq8APYH3koeeVtXzQxSpaETkZOB6YACwAVimqseEK1XhiMhXgflAFXCrqv4wZJGKQkTuAL5Iomzy28AUVb0lVKF8QEQ+B/wNWEFCRwBcqaoPhSeVGQDDMIyKxVxAhmEYFYoZAMMwjArFDIBhGEaFYgbAMAyjQjEDYBiGUaGYATBii4jsnKy+ukxE3hKR1rTXPXy8z8HJPRGFvHcnEfGUOisi14rIpBxjxovIvoXIYhiZmAEwYouqvqeqI5IVWH8BNKVeJ4ujIQmK/Ts/mMIrVO4E+Ll3YjxgBsDwBTMARtkhIp8RkedF5BfAs8BAEdmQdv4bInJz8udPi8i9ItIsIs+IyKiMa9WQKO39reTK4hQR2VFEbkuObxGRE5Njh4vIP5PjnhORIcBMYFjy2EwHWa9J1vN/BBiadvz85LWWi8hdIlIjIkcCXwWaktcb5DTO9w/UKFvMABjlyv7ALao6Esi2I/unwGxVrQdOBW5OP6mqW4DpJOq3jFDVu0kYhD+r6mHAUcBcEekFXAD8OLkiOZREXZ5G4OXkezs1bBGRw4CvASOAU0iUd05xl6oeqqoHAa8CZ6nq34CHgIbk9VY7jcvvYzIqGSsGZ5Qrr6rqPz2M+xKJGXrqdX8RqUkqfje+AhyX1oGrF7An8HfgahHZC7hXVV9Ju64TnwfuSd5ri4g8kHbuQBGZDtQCfUg0GXLC6zjD6IIZAKNc2ZT2czudSyf3SvtZgMNSMQOPCDBOVV/NOP4vEfkHcDzwSLKSaq7qnG61WH4DHKeqz4vIuSS6SBUzzjC6YC4go+xR1XZgvYgMTQaET047/ShwYeqFiIxwuMQHJGbXKR4GLk57z8jk9yGq+oqq/oREOfADHd6bzhPAeBHpJSJ9SZTdTrED8FayhPA3s8jiNs4wcmIGwKgULgf+DDxGoo5+iguB0cmg7QvARIf3LgIOSgZ8TwGmAb1FZIWIrASmJsd9M9nwexkwBPidqr4NNCfHdgoCq+ozwB+B5cBddO5TfA3wDIm+zC+kHb8DuDIVBM4yzjByYtVADcMwKhRbARiGYVQoZgAMwzAqFDMAhmEYFYoZAMMwjArFDIBhGEaFYgbAMAyjQjEDYBiGUaH8f2nG76ocz5TKAAAAAElFTkSuQmCC\n", "text/plain": [ "
                          " ] @@ -490,7 +468,8 @@ "plt.plot(true_data, true_data, 'k-')\n", "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", "plt.xlabel('True test data')\n", - "plt.ylabel('Predicted test data')\n" + "plt.ylabel('Predicted test data')\n", + "plt.show()" ] }, { @@ -502,7 +481,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -517,17 +496,7 @@ }, { "data": { - "text/plain": [ - "Text(0, 0.5, 'Predicted test data')" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3hU1b3/8feXECXIJYKIchOQilpBUfDog7baoxUvVfDwq0V7Suk5Wj3WqseiUlutbY9SsV6rp/VaLVbrBVFRpFi8tdqj4SZFg6CCGARBoSAGCeT7+2MmMTuZTCbJ7Nl7Zj6v55mH7LX3zHwTfb5rr8tey9wdEREpPh2iDkBERKKhCkBEpEipAhARKVKqAEREipQqABGRIqUKQESkSKkCEBEpUqoAJNbMbKWZrTOz3RqU/aeZvdDg2M1sq5l9amZVZnaDmZU0OP9C8pqDG332zGT5McnjcjO7x8zWmtkWM3vbzC5r5nvqXpdm+ffdNRnD5mQc/93C9YPNbFYy3g1mdl2Dcz3M7PFkzKvM7Mxsxir5TxWA5IOOwIUtXHOwu3cBvgqcAXyv0fm3ge/UHZhZT+AIYH2Da24EugAHAN2BU4F3Un1Pg9d1ZNfPgC8B+wDHApea2ZhUF5rZLsBcYB6wF9APmN7gktuA7UBv4Czgf83sy1mOV/KYKgDJB9OAH5lZeUsXuvsK4G/AIY1OPQCc0aBlMAF4nESCrDMK+KO7b3T3WnevdPdH2x9+q3wH+EUyhreAO4HvNnPtd4E17n6Du291923u/gZAssX0b8BP3f1Td/8r8CTw76H/BpI3VAFIPqgAXgB+1NKFZrY/cDSwotGpNcCbwNeTx98B7m90zd+B/zGzSWb2pfYEbGaXm9mm5l7NvGd3oA+wuEHxYqC5u/YjgJVmNjvZ/fOCmQ1LntsP2Onub2f4WVKEVAFIvrgSuMDMejVzfoGZbQXeIlFZ3J7imvuB75jZUKDc3V9tdP4CEi2FHwBvmtkKMzsxxfc0TOYnpArG3ae6e3lzr2Z+hy7Jf//ZoOyfQNdmru8HfAu4hUTF8TTwRLJrqEujz2nps6QIqQKQvODu/wBmAZc3c8mhJJLeGcC/ALuluGYG8DUSif4PKb6j2t2vcffDgJ7Aw8AjZtaj4fc0SuZz2vxLNfVp8t9uDcq6AVuaub4a+Ku7z3b37cD1ybgPSH5Wt0bXp/ssKUKqACSfXAWcDfRNddITHgZeJdFiaHz+M2A2cB4pKoBG124GriFRkQxqbaBm9uNGs4UCr2a+cyPwIdBwttLBwNJmvuYNoLnlfN8GOjbqykr3WVKEVAFI3kgO8P4J+GELl04FzjGzvVKc+zHwVXdf2fiEmf3UzEaZ2S5m1onEzKNNwLI2xHpNo9lCgVeat94P/MTMdk+OZ5wN/L6Za6cDR5jZccnB7YuADcBb7r6VRIvn52a2m5mNBk6jhYpPiosqAMk3Pyd19049d18CvAhMTnFuTXJGTMq3AveSSKJrgOOBk9294R374kZ38ze15ZdI4yoSU09Xkfgdprn7swBmNiD5nQOSv8sy4NvAb4GNJBL8qcnuIID/AsqAj4AHgfPcXS0AqWfaEEZEpDipBSAiUqRUAYiIFClVACIiRUoVgIhIkeoYdQCtsccee/jAgQOjDkNEJK/Mnz9/g7s3eYo+ryqAgQMHUlFREXUYIiJ5xcxWpSpXF5CISJFSBSAiUqRUAYiIFClVACIiRUoVgIhIkVIFICJSpFQBiIgUKVUAIiIxdtddd3HBBReE8tl59SCYiEixWLNmDX37frH53a233pr171ALQEQkZv7jP/4jkPzff//9UL5HFYCISEy89tprmBn33HMPADfddBPuTv/+/UP5PnUBiYhErKamhuHDh1NZWQlAjx49WL16NZ07dw71e9UCEBGJ0PTp09lll13qk/+f//xnPv7449CTP6gFICISiQ0bNtCr1xcrNJ900knMmjULM8tZDGoBiIjk2CWXXBJI/suXL+fpp5/OafIHVQAiIjmzZMkSzIwbbrgBgKuvvhp3Z8iQIZHEoy4gEYnczIVVTJuzjDWbqulTXsbkE4YydkTflt+YJ2pqathll10CZf/85z/p1q1bRBElqAUgIpGaubCKKTOWULWpGgeqNlUzZcYSZi6sijq0rJg0aVIg+T/++OO4e+TJH9QCEJGITZuzjOqanYGy6pqdTJuzLK9bAR988EGT+fvbt2+ntLQ0ooiaUgtARCK1ZlN1q8rzQWlpaSD5P/jgg7h7rJI/qAUgIhHrU15GVYpk36e8LIJo2ufZZ5/lxBNPDJS5e0TRtEwtABGJ1OQThlJWWhIoKystYfIJQyOKqPVqa2sxs0Dyr6ysjHXyB1UAIhKxsSP6cu3pw+hbXoYBfcvLuPb0YXnT/3/ZZZdRUvJFBfb1r38dd2fo0PhXYOoCEpHIjR3RN28Sfp3NmzfTvXv3QNlnn31GWVn+dF2pBSAi0koTJkwIJP9bb70Vd8+r5A9qAYiIZGzp0qUcdNBB9cc9e/Zkw4YNEUbUPqoARERa4O507tyZbdu21ZdVVlbmRT9/OuoCEhFJ409/+hMdOnSoT/6TJk3Km0HelqgFICKSQnV1dZM1+bds2UKXLl0iiij71AIQEWnkggsuCCT/e++9F3cvqOQPagGIiNR77733GDx4cKCs7iGvQqQKQEQEGDx4MO+991798YIFCxgxYkSEEYW/TLa6gESkqM2ePRszq0/+J598Mu4ei+Qf9jLZagGISFFKtUnLhg0b6NmzZ0QRBeVimWy1AESk6Fx99dWB5H/DDTfg7rFJ/pCbZbLVAhCRorF27Vr23nvvQNmOHTsCi7nFRS6WyVYLQESKwujRowPJ/8UXX8TdY5n8ITfLZKsFICIF7W9/+xtHHXVU/fGoUaN47bXXIowoM3X9/GHOAlIFICIFqba2tsndfVVVFX369IkootYLe5lsdQGJSMG55ZZbAsn/Jz/5Ce6eV8k/FyJvAZhZCVABVLn7KVHHIyL5a+PGjfTo0SNQ9vnnnzeZ7ikJcWgBXAi8FXUQIpLfxo0bF0j+s2bNwt2V/NOItAVgZv2Ak4H/Af47ylhEJD8tXryYQw45pP64f//+vP/++xFGlD+i7gK6CbgU6NrcBWZ2DnAOwIABA3IUlojEnbvToUOwE2PFihXsu+++EUWUfyLrAjKzU4CP3H1+uuvc/Q53H+nuI3v16pWj6EQkzv7whz8Ekv+5556Luyv5t1KULYDRwKlmdhLQCehmZtPd/dsRxiQiMbZ169Yma/Jv3bq1ycYtkpnIWgDuPsXd+7n7QOBbwDwlfxFpzjnnnBNI/g888ED9Xr3SNlGPAYiIpLV8+XL222+/+uOOHTuyffv2gt2kJZdiUQG4+wvACxGHISIxs/fee7N27dr64zfeeINhw4ZFGFFQ2Bu2hC0OzwGIiAQ8+eSTmFl98h8/fjzuHrvkH/aGLWGLRQtARARg+/bt7LrrroGyjRs3Ul5eHlFEzcvFhi1hUwtARGLhxz/+cSD533bbbbh7LJM/5GbDlrCpBSAikaqqqqJfv36Bsp07dzZ5yCtucrFhS9ji/RcWkYJ26KGHBpL/K6+8kvIJ3zjKxYYtYYv/X1lECs4LL7yAmbFw4UIAjj76aNydI488MuLIMjd2RF+uPX0YfcvLMKBveRnXnj4sb/r/QV1AIpJDO3fupGPHYNpZu3YtvXv3jiii9gl7w5awqQUgIjlx/fXXB5L/L37xC9w9b5N/IVALQERCtWHDBhov5FhTU9OkJSC5pxaAiIRmzJgxgeQ/Z84c3F3JPyb0X0FEsq6iooJRo0bVHw8dOpTKysoII5JUVAGISNakmsK5cuVK9tlnn4giknTUBSQiWXHWWWcFkv/FF1+Muyv5x1hGLQAzOwg4kMTGLQC4+/1hBSUi+WP9+vXsueeegbLNmzfTtWuzO71KTLTYAjCzq4Bbk69jgeuAU0OOS0TygJkFkv8ll1yCuyv554lMWgDjgYOBhe4+ycx6A3eFG5aIxNlf/vIXjjvuuECZu0cUjbRVJmMA1e5eC+wws27AR8DgcMMSkbgys0Dynzt3rpJ/nsqkAqgws3LgTmA+sAB4LdSoRCR2Jk+e3GQbRndv0hKQ/NFiF5C7/1fyx9+a2bNAN3d/I9ywRCQutmzZQrdu3QJl69atazLwK/knk0Hgv9T97O4r3f2NhmUiUrh69eoVSP4TJkzA3ZX8C0SzLQAz6wR0BvYws92BurZfN6BPDmITkYjMnz+fkSNHBsryYZMWaZ10XUDfBy4ikezn80UFsBm4LeS4RCQijfv5H3roIc4444yIoikMMxdWMW3OMtZsqqZPeRmTTxgai2Wkm60A3P1m4GYzu8Ddb81hTCISgV//+tf86Ec/CpRpdk/7zVxYxZQZS+o3kK/aVM2UGUsAIq8EMhkEvlVPAosUru3btwc2Ywd49913GTRoUEQRFZZpc5bVJ/861TU7mTZnWeQVgJ4EFiliBxxwQCD5123NqOSfPWtSbByfrjyX9CSwSBFqvFwzJFoCpaWlEUVUuPqUl1GVItn3KS+LIJogPQksUmTMLJD8r7zyStxdyT8kk08YSllpSaCsrLSEyScMjSiiL2TSAmj8JPCn6Elgkbxz//33M3HixECZBnnDV9fPH8dZQNaa/wHMbCARPgk8cuRIr6ioiOKrRfJWbW0tJSXBO9Dnn3+eY445JpqAJOfMbL67j2xcnu5BsEPTnXP3BdkKTkTCMW7cOGbOnFl/PGDAAFatWhVhROGJ61z7OEvXBfTr5L+dgJHAYhIPgw0H/g84KtzQRKSt1qxZQ9++weS3detWOnfuHFFE4YrzXPs4a3YQ2N2PdfdjgVXAoe4+0t0PA0YAK3IVoIi0jpkFkv9Pf/pT3L1gkz+kn2svzctkEHh/d19Sd+Du/zCzQ0KMSUTa4JlnnuHkk08OlBXLIG+c59rHWSYVwFtmdhcwHXDg28BboUYlUoTa2oft7k0WaXvppZc4+uijwwo1pSj74OM81z7OMnkOYBKwFLiQxOJwbybLRCRL6vqwqzZV43zRhz1zYVXa951//vlNkr+7p0z+MxdWMXrqPAZd/jSjp85r8bNzEX+2xHmufZxlshbQNuDG5CtrzKw/cD+wF1AL3JFcgE6k6LR2vZiPPvqI3r17B8o+/vhjevTokfLzwx4kjXq9mzjPtY+zTLqAwrIDuMTdF5hZV2C+mc119zcjjEkkK1rbHdKaPuzGyzV/73vf4+67704bT9gJOg598GNH9FXCb6XIdndw9w/rniVw9y0kxhX0X0/yXlu6Q5rrq25Y/sQTTzRJ/rW1tS0mfwg/QWcSv8RPJquB/r9Mytoj+YTxCBLPFzQ+d46ZVZhZxfr167P5tSKhaMuUxJb6sM2MsWPH1p+76aabcPcmFUJzwk7Q6oPPT5m0AKZkWNYmZtYFeAy4yN03Nz7v7nckn0EY2atXr2x9rUho2nK3PXZEX649fRh9y8swoG95GdeePow//PKHTZK8u3PhhRe2KqawE3Rz8atLJt7SLQVxInAS0NfMbmlwqhuJ/vt2M7NSEsn/AXefkY3PFIlaW6ckNuzD/vTTT+natWvgfGVlJUOHti1h52KQVH3w+SfdIPAaoILE5i/zG5RvAS5u7xdb4rbmbuAtd7+hvZ8nEheTTxgamHEDrbvbTtWtk40HupSgpbF0S0Esdvf7gCHufl/y5yeBFe6+MQvfPRr4d+BrZrYo+TopC58rEqm2doc8+uijTZJ/TU1N0TzNK7mXyTTQuWZ2avLaRcB6M3vR3f+7PV/s7n8lsbicSMFp7d1248Q/duxYHn/88WyHJRKQSQXQ3d03m9l/Ave6+1VmFsl+ACKF5vDDD+f1118PlOmOX3Ilkwqgo5ntDXwTuCLkeESKwueff06nTp0CZTNmzGDcuHE5i0Hr50smFcDPgTnA39z9dTMbDCwPNyyRwhXWIG9raP18gQyeA3D3R9x9uLuflzx+193/LfzQRArLK6+80iT5b9y4MZIuH62fL5BBC8DM9gP+F+jt7geZ2XDgVHf/ZejRiRSIxom/a9eubN7c5LnHnInD2j0SvUyeBL6TxJO/NQDJDeG/FWZQIoVi4sSJKZ/kjTL5g9bukYRMKoDO7v5ao7KsPAksUqjq1um5//7768tuvvnm2MzwCWtpiDD3HJDsy2QQeIOZ7UtiNzDMbDzwYahRieSxkpISamtrA2VxSfx1wlgaQgPL+SeTCuB84A5gfzOrAt4Dzgo1KpE8tGrVKgYOHBgoe//99+nfv380AbUg20tDRL0pjLReJhWAu/txZrYb0MHdt5jZoLADE8knjfv599xzT9atWxdRNNHQwHL+yWQM4DEAd9+a3LgF4NHwQhLJH3feeWfKTVqKLflDYQwsF9sYRrrloPcHvgx0N7PTG5zqBnRK/S6R4tE48V9//fVccsklEUUTvfaughq1YhzDSNcFNBQ4BSgHvtGgfAtwdphBicTZQQcdxNKlSwNlcRvkjUK+b8xejGMYzVYA7v4E8ISZHenur+YwJpFY2rhxIz169AiUtWeTlkKUz3sOFOMYRouDwEr+UkyaWyAtDuv3SLjaupNbPstkEFikKNT1AVdtqsZJ9AFf8Ku7myT/HTt2KPkXoGLc2F4VgEhS4z7gVb86hQ/+dFX98QUXXIC7U1JSkurtkueKcWP7dLOA0u74pX18Jc7astZ9XV/vRzN+SfXyvwfO6Y6/OOTzGEZbpBsD6Jr8dygwisR+wJCYEfRSmEGJtEdbp/Pt1aUjf//pmGDZt6cx+MuHhhdskjZnkSikmwV0NYCZ/Rk4tO4hMDP7GfBITqITSWpNgmzLdL499tiDjz/+OFC2z2WzctIHXIzzzyUeMlkKYgCwvcHxdmBgKNGIpNDaBNma6XxvvfUWBx54YKDsiF/MZu2nO3N2J16M888lHjKpAP4AvGZmj5NYEXQccH/6t4hkT2sTZKbT+RrP7rn88su59tprsxBx6xTj/HOJh0y2hPwfYBKwEdgETHL3a8IOTKROaxNkS9P5br/99pSbtESR/KEw1tCR/JTpNNDOwGZ3vxn4QKuBSi61NkE2N53v1IP3xsw4//zz6699+eWXI5/hU4zzzyUeMtkT+CpgJInZQPcCpcB0YHS4oYkktGWRscbT+Q4//HDGvf564JqoE3+dfF9DR/JXJmMA44ARwAIAd19jZl3Tv0Uke9qTIKuqqujXr1+gbNOmTXTv3j2UWNuq2OafSzxkUgFsd3c3s7otIXcLOSaRJtqSIBv385911llMnz49m2GJ5LVMxgAeNrPfAeVmdjbwHHBXuGGJtN1jjz2WcpBXyV8kKJPVQK83s+OBzSTGAa5097mhRybSSu5Ohw7Be5qZM2dy2mmnRRSRSLxlMgj8K3e/DJibokwkFr75zW/yyCPBB9TjMsgrEleZdAEdn6LsxGwHItIWmzZtwswCyf/DDz9U8hfJQLMVgJmdZ2ZLgP3N7I0Gr/eAJbkLUSQ1M2P33XevPz7qqKNwd/baa68IoxLJH+m6gP4IzAauBS5vUL7F3T8JNSqRNF588UWOOeaYQFltbW3KXbsKlVYPlWxotgXg7v9095XAzcAn7r7K3VcBNWb2L7kKUKQhMwsk/zvuuAN3L7rk33jnsikzljBzYVXUoUmeyWQM4H+BTxscb02WieTMfffdl3Jq59lnnx1RRNFJtzieSGtk8iCYeYMRNXevNbNM3ifSbtu3b2fXXXcNlC1btoz99tsvooiip9VDJVsyaQG8a2Y/NLPS5OtC4N1sfLmZjTGzZWa2wswub/kdUkwmTJgQSP7f//73cfeCTv4zF1Yxeuo8Bl3+NKOnzkvZraPVQyVbMrmTPxe4BfgJif0A/gKc094vNrMS4DYS00w/AF43syfd/c32frbkt1WrVjFw4MBA2Y4dOwp+M/ZMN75py+J4Iqlksh/AR+7+LXff0917u/uZ7v5RFr77cGCFu7/r7tuBhwA9slnkzCyQ/B999FHcveCTP2Tet9/ccteaBSSt1WwLwMwudffrzOxWEnf+Ae7+w3Z+d19gdYPjD4Ams4vM7BySLY4BAwa08yslrp566ilOPfXUQFmxPczVmr59rR4q2ZCuC+it5L8VIX13qnl7qSqaO4A7AEaOHFlcGaEI1NbWNrm7X7FiBfvuu29EEUUn060sRbIl3XMATyX/vS/VKwvf/QHQv8FxP2BNFj5X8sTFF18cSP6nnXYa7l6UyR+0M5jkXrouoKdIcUdex91Pbe5chl4HvpTcXrIK+BZwZjs/U/LA+vXr2XPPPQNl1dXVdOrUKaKI4iGTjW/0BLBkU7ouoOuT/54O7EViG0iACcDK9n6xu+8wsx8Ac4AS4B53X9rez5V469OnDx9++GH98e9+9zvOOafdk8oKRrq+/UxnCYlkqtkKwN1fBDCzX7j7VxqcesrMXsrGl7v7M8Az2fgsibeXX36Zr3zlK4GyYhvkba90s4RUAUhbZPIcQC8zG+zu7wIku2x6hRuW5ErYXQqpNmlZtGgRBx98cNa+o1joCWDJtkyeBL4YeMHMXjCzF4DngYtCjUpyIuxFxa655ppA8h81ahTuruSfgp4AlihksiXks2b2JWD/ZFGlu38ebliSC2F1KWzevJnu3bs3KevatWubP7OQ6QlgiUqLLQAz6wxMBn7g7ouBAWZ2SuiRSejC6FIYNWpUIPlfc801uHtRJ/+W7u71BLBEJZMxgHuB+cCRyeMPgEeAWWEFJbmRzQePFi1axIgRIwJltbW1PLFoDaOnzivaaYuZ3N3rCWCJSiZjAPu6+3VADYC7V5P6KV7JM9l68MjMAsn/pZdewt15YtGaot+4JJO7e/XtS1QyqQC2m1kZyYfCzGxfQGMABaC9XQp33nlnYJOWvffeG3fn6KOPBrRxCWR2d68ngCUqmXQBXQU8C/Q3sweA0cB3wwxKcqctXQrbtm2jrCx4d7pu3bomT/dq2mJm3WyZPAEsEoa0FYAlbu8qSTwNfASJrp8L3X1DDmKTGBo7dixPPPFE/fFFF13EjTfemPLaqBY3i9NyCZnO3FHfvkQhbQXg7m5mM939MODpHMUkMfTOO+8wZMiQQNnOnTubPOTVUBTTFuO2XILu7iXOMukC+ruZjXL310OPRmKp8WbsTz75JN/4xjdafF8UyS+OyyXo7l7iKpMK4FjgXDNbCWwl0Q3k7j48zMAkeo899hjjx48PlLV2/Z5cJz+NO4hkLpMK4MTQo5BY2bFjB6WlpYGylStXss8++0QUUea0qYpI5prtwDWzTmZ2EYmngMcAVe6+qu6Vswglp84999xA8p8wYQLunhfJHzSlUqQ10rUA7iPx8NfLJFoBBwIX5iIoyb0PP/yQPn36BMo+//xzdtlll4giahsNuopkLl0FcKC7DwMws7uB13ITkuRaz549+eSTT+qPf//73zNx4sQII2ofDbqKZCZdBVBT90Ny964chCO59O677zbZf1ebtIgUj3RLQRxsZpuTry3A8LqfzWxzrgKU7HN3xo0bF0j+lZWVSv4iRabZCsDdS9y9W/LV1d07Nvi5Wy6DlOx5/vnn6dChAzNnzgTg3nvvxd0ZOlSDpCLFJpNpoFIAqqurGThwIB999BEAQ4YMYenSpXk3yBt3cVqGQqQlmawGKnnuy1/+Mp07d65P/q+88grLly9X8s+ysLfYFMk2VQAFrKKiAjPjzTffBOCwww7D3TnyyCNbeKe0hZa/lnyjLqAC1XjW1quvvsoRRxwRUTTFQctQSL5RC6DA3HrrrYHkv+++++LuSv45oJ29JN+oBVAgPvvsM3bbbbdA2YYNG+jZs2dEERWfKJa/FmkPtQAKwPHHHx9I/pdddhnuruSfY+3dYlMk19QCyGPLli1j//33D5S1tEmLhEvLUEg+UabIU2YWSP6zZ8/G3ZX8RSRjyhZ55o9//GNgkLe0tBR3Z8yYMRFGJSL5SF1AeaKmpqbJg1urV6+mX79+EUUkIvlOLYA8MHHixEDynzRpEu6u5C8i7aIWQIytXr2aAQMGBMpqamro2FH/2USk/dQCiKmSkpJA8n/wwQdxdyV/EckaZZOYmT17NieddFKgTOv0i0gYVAHERG1tLSUlwc3Mly1bxn777RdRRCJS6CLpAjKzaWZWaWZvmNnjZlYeRRxxMXny5EDyHzNmDO6u5C8ioYqqBTAXmJLca/hXwBTgsohiiczHH3/MHnvsESj77LPPKCvT4mEiEr5IWgDu/md335E8/DtQdPMZBw0aFEj+v/nNb3B3JX8RyZk4jAF8D/hTcyfN7BzgHKDJlMh89MorrzB69OhAmQZ5RSQKoVUAZvYcsFeKU1e4+xPJa64AdgAPNPc57n4HcAfAyJEj8zZTplqnp6KigsMOOyyiiESk2IVWAbj7cenOm9lE4BTgX73Ab4GnTZvGpZdeWn88fPhwFi9eHGFEIiIRdQGZ2RgSg75fdffPooghF7Zt29akT3/Tpk107949oohERL4Q1ZPAvwG6AnPNbJGZ/TaiOEJzzz33BJL/z372M9xdyV9EYiOSFoC7D4nie3Nh3bp17LXXF0MfQ4YM4e23326ySbuISNS0FlAWnX/++YHk/95777F8+XIlfxGJJVUAWbBw4ULMjNtvvx2AqVOn4u4MHDgw2sBERNKIw3MAeWvHjh2MGjWKRYsWAdCpUyfWr19Ply5dIo5MRKRlagG00cMPP0xpaWl98p81axbV1dVK/iKSN9QCaKWNGzfSo0eP+uNjjz2W5557rslDXjMXVjFtzjLWbKqmT3kZk08YytgRfXMdbuxiEZH4UAugFa644opA8n/zzTeZN29eyuQ/ZcYSqjZV40DVpmqmzFjCzIVVOY44XrGISLyoAshAZWUlZsY111wDwJQpU3B3DjjggJTXT5uzjOqanYGy6pqdTJuzLPRY4xyLiMSLuoDSqK2t5fjjj2fevHn1ZZ988gm777572vet2VTdqvIwxSkWEYkXtQCa8cwzz1BSUlKf/B966CHcvcXkD9CnPPWSzs2VhylOsYhIvBR8BTBzYRWjp85j0OVPM3rqvBb7vj/99FPKyso4+eSTARgxYg6xxKUAAAcjSURBVAQ1NTWcccYZGX/n5BOGUlYa3N6xrLSEyScMbf0v0E5xikVE4qWgK4DWDoBed911dO3alW3btgGwYMECFixYQMeOrespGzuiL9eePoy+5WUY0Le8jGtPHxbJzJs4xSIi8WL5tBLzyJEjvaKiIuPrR0+dR1WKvu6+5WX87fKv1R+vXLmSQYMG1R+fd9559U/1iojkOzOb7+4jG5cX9CBwSwOg7s748eOZMWNG/bm1a9fSu3fvnMQnIhKlgu4CSjcA+uKLL9KhQ4f65H/XXXfh7kr+IlI0CroFMPmEoUyZsSQwD35X20nlDWdyzPp1AAwcOJDKykp23XXXqMIUEYlEQVcAdQOddcsgdFj2HG/PvKn+/F//+tcmG7SLiBSLgq4AIFEJnHrw3pSUfDEV8swzz2T69Olap19EilrBVwAAq1evrv/5/fffp3///hFGIyISD0VRAeyzzz7k03RXEZFcKIoKQMKhZaZF8psqAGmTuqes62ZY1T1lDagSEMkTqgBCVMh3yOmWmS6U31Gk0KkCCEmh3yFrmWmR/FfQTwJHqdA3YtEy0yL5TxVASAr9DlnLTIvkP1UAISn0O2QtMy2S/zQGEJJU6xAV2h3y2BF9lfBF8pgqgJA0Xoeo0GYBiUj+UwUQIt0hi0icaQxARKRIqQIQESlSqgBERIqUKgARkSKlCkBEpEhZPq2Tb2brgVVRx5FFewAbog4ipvS3aZ7+Nqnp79K8fdy9V+PCvKoACo2ZVbj7yKjjiCP9bZqnv01q+ru0nrqARESKlCoAEZEipQogWndEHUCM6W/TPP1tUtPfpZU0BiAiUqTUAhARKVKqAEREipQqgIiZ2TQzqzSzN8zscTMrjzqmKJnZGDNbZmYrzOzyqOOJCzPrb2bPm9lbZrbUzC6MOqa4MbMSM1toZrOijiVfqAKI3lzgIHcfDrwNTIk4nsiYWQlwG3AicCAwwcwOjDaq2NgBXOLuBwBHAOfrb9PEhcBbUQeRT1QBRMzd/+zuO5KHfwf6RRlPxA4HVrj7u+6+HXgIOC3imGLB3T909wXJn7eQSHTabCLJzPoBJwN3RR1LPlEFEC/fA2ZHHUSE+gKrGxx/gJJcE2Y2EBgB/F+0kcTKTcClQG3UgeQT7QiWA2b2HLBXilNXuPsTyWuuINHMfyCXscWMpSjTPOUGzKwL8BhwkbtvjjqeODCzU4CP3H2+mR0TdTz5RBVADrj7cenOm9lE4BTgX724H8z4AOjf4LgfsCaiWGLHzEpJJP8H3H1G1PHEyGjgVDM7CegEdDOz6e7+7Yjjij09CBYxMxsD3AB81d3XRx1PlMysI4mB8H8FqoDXgTPdfWmkgcWAmRlwH/CJu18UdTxxlWwB/MjdT4k6lnygMYDo/QboCsw1s0Vm9tuoA4pKcjD8B8AcEoOcDyv51xsN/DvwteT/J4uSd7wibaYWgIhIkVILQESkSKkCEBEpUqoARESKlCoAEZEipQpARKRIqQKQvGVmPRtMiVxrZlUNjnfJ4vccmnxeoy3v7WFm52Z47S/NLO0cfzM73cz2b0ssIo2pApC85e4fu/sh7n4I8Fvgxrrj5GJyWEJ7/z8/FGhTBQD0ADKqADJ0OqAKQLJCFYAUHDMbYmb/SD5UtwDob2abGpz/lpndlfy5t5nNMLMKM3vNzI5o9FllwJXAWcmWxXgz62Jmv09ev9DMvpG8dpiZvZ687g0zGwxMBYYmy6amiPXK5P4Hc4EvNSg/N/lZi83sETMrM7OjgZOAG5OfNzDVdVn/g0rBUgUghepA4G53H0FiWYnm3AJc5+4jgW/SaDlhd68Gfk5i/Z1D3P1REhXCs+5+OPA14Ndm1gn4L+D6ZItkFIl1jC4HliXfG9jgxswOB/4NOAQYT2I57DqPuPsodz8YeAf4rru/DDwDXJz8vJWprmvdn0mKmRaDk0L1jru/nsF1x5G4Q6873t3MypKJvzlfB05ssGNZJ2AA8ArwEzPbB5jh7isafG4qXwEeS35XtZk91eDccDP7OVBOYqmQ5na5yvQ6kSZUAUih2trg51qCS013avCzAYfXjRlkyICx7v5Oo/K3zexVEhuTzE2u8trSaqbNrcVyP3Ciu//DzP6TxC5g7blOpAl1AUnBc/daYKOZfSk5IDyuwenngPPrDszskBQfsYXE3XWdOcAPG7xnRPLfwe6+wt1vBp4Ghqd4b0MvAaebWScz60ZiSfA6uwFrk0tAn5kmluauE2mRKgApFpcBzwJ/IbHvQJ3zgdHJQds3gbNTvHcecHBywHc8cDXQ2cyWmNlS4GfJ685Mbti+CBgMTHf3dUBF8trAILC7vwY8DiwGHiFRIdS5EniNxJ7RbzYofxD4cd0gcJrrRFqk1UBFRIqUWgAiIkVKFYCISJFSBSAiUqRUAYiIFClVACIiRUoVgIhIkVIFICJSpP4/RjzrHsBLta8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU9b3/8deHECXIEhFE2QyCYq2gKHj1gbTaahW1Cl5+tWhvKb1Xq9e6XQtKbWvtolSsS6ne1rVSrNYFseKCWtxa7NWwSdFEEUENi4BQEIME8vn9MZOYk0wmk2RmzpmZ9/PxmAc533Nm5pPo4/M93+V8v+buiIhI4ekQdgAiIhIOVQAiIgVKFYCISIFSBSAiUqBUAYiIFChVACIiBUoVgIhIgVIFIJFmZqvMbL2Z7dWg7L/M7MUGx25m283sEzOrMrObzKyowfkX49cc3uiz58TLj48fl5rZPWa2zsy2mdnbZnZlM99T95qS5t93z3gMW+Nx/E8L1x9oZnPj8W40sxsanOthZo/FY15tZuekM1bJfaoAJBd0BC5t4ZrD3b0L8GXgbOC7jc6/DXy77sDM9gGOATY0uOZmoAvwBaA7cAbwbqLvafC6gfT6KXAQcABwAjDFzE5JdKGZ7QE8B8wH9gP6AbMaXHIbsBPoDZwL/K+ZfTHN8UoOUwUguWA68AMzK23pQndfAfwdOKLRqfuBsxu0DCYAjxFLkHVGAn9y983uXuvuFe7+SPvDb5VvAz+Px/AWcCfwnWau/Q6wxt1vcvft7r7D3d8AiLeY/h34sbt/4u5/A/4C/EfGfwPJGaoAJBeUAy8CP2jpQjM7BBgNrGh0ag3wJvC1+PG3gZmNrvkH8Eszm2RmB7UnYDO7ysy2NPdq5j17A32ApQ2KlwLN3bUfA6wys6fj3T8vmtnQ+LmDgd3u/naKnyUFSBWA5IqfABebWa9mzi8ys+3AW8Qqi9sTXDMT+LaZDQFK3f3VRucvJtZS+D7wppmtMLMxCb6nYTI/OVEw7j7N3UubezXzO3SJ//uvBmX/Aro2c30/4JvAb4hVHE8Cj8e7hro0+pyWPksKkCoAyQnu/k9gLnBVM5ccSSzpnQ38G7BXgmtmA18hluj/mOA7qt39Onc/CtgHeAh42Mx6NPyeRsl8Xpt/qaY+if/brUFZN2BbM9dXA39z96fdfSdwYzzuL8Q/q1uj65N9lhQgVQCSS64BzgP6JjrpMQ8BrxJrMTQ+/ynwNHAhCSqARtduBa4jVpEMbG2gZvbDRrOFAq9mvnMzsBZoOFvpcGB5M1/zBtDccr5vAx0bdWUl+ywpQKoAJGfEB3j/DFzSwqXTgPPNbL8E534IfNndVzU+YWY/NrORZraHmXUiNvNoC1DZhlivazRbKPBK8taZwI/MbO/4eMZ5wB+auXYWcIyZnRgf3L4M2Ai85e7bibV4fmZme5nZKOBMWqj4pLCoApBc8zMSd+/Uc/dlwEvA5ATn1sRnxCR8K3AvsSS6BjgJOM3dG96xL210N39LW36JJK4hNvV0NbHfYbq7PwNgZgPi3zkg/rtUAt8CfgdsJpbgz4h3BwH8N1ACfAQ8AFzo7moBSD3ThjAiIoVJLQARkQKlCkBEpECpAhARKVCqAEREClTHsANojZ49e3pZWVnYYYiI5JSFCxdudPcmT9HnVAVQVlZGeXl52GGIiOQUM1udqFxdQCIiBUoVgIhIgVIFICJSoFQBiIgUKFUAIiIFShWAiEiBUgUgIlKgVAGIiETYXXfdxcUXX5yRz86pB8FERArFmjVr6Nv3883vZsyYkfbvUAtARCRi/vM//zOQ/N9///2MfI8qABGRiHjttdcwM+655x4AbrnlFtyd/v37Z+T71AUkIhKympoahg0bRkVFBQA9evTggw8+oHPnzhn9XrUARERCNGvWLPbYY4/65P/ss8+yadOmjCd/UAtARCQUGzdupFevz1doPvXUU5k7dy5mlrUY1AIQEcmyK664IpD833nnHZ588smsJn9QBSAikjXLli3DzLjpppsAuPbaa3F3Bg8eHEo86gISkdDNWVzF9HmVrNlSTZ/SEiafPISxw/u2/MYcUVNTwx577BEo+9e//kW3bt1CiihGLQARCdWcxVVMnb2Mqi3VOFC1pZqps5cxZ3FV2KGlxaRJkwLJ/7HHHsPdQ0/+oBaAiIRs+rxKqmt2B8qqa3YzfV5lTrcCPvzwwybz93fu3ElxcXFIETWlFoCIhGrNlupWleeC4uLiQPJ/4IEHcPdIJX9QC0BEQtantISqBMm+T2lJCNG0zzPPPMOYMWMCZe4eUjQtUwtAREI1+eQhlBQXBcpKiouYfPKQkCJqvdraWswskPwrKysjnfxBFYCIhGzs8L5cf9ZQ+paWYEDf0hKuP2tozvT/X3nllRQVfV6Bfe1rX8PdOfjgg0OMKjXqAhKR0I0d3jdnEn6drVu30r1790DZp59+SklJ7nRdqQUgItJKEyZMCCT/GTNm4O45lfxBLQARkZQtX76cww47rP54n332YePGjSFG1D6qAEREWuDudO7cmR07dtSXVVRUMGRI7gxUJ6IuIBGRJP785z/ToUOH+uQ/adIk3D3nkz+oBSAiklB1dXWTNfm3bdtGly5dQooo/dQCEBFp5JJLLgkk/3vvvRd3z6vkD2oBiIjUe++99zjwwAMDZXUPeeUjVQAiIsCgQYNYuXJl/fGiRYsYPnx4iBFlfplsdQGJSEF75plnMLP65H/aaafh7pFI/pleJlstABEpSIk2adm0aRM9evQIKaKgbCyTrRaAiBSca6+9NpD8b7rpJtw9MskfsrNMtloAIlIw1q1bx/777x8o27VrV2Axt6jIxjLZagGISEEYNWpUIPm/9NJLuHskkz9kZ5lstQBEJK/9/e9/57jjjqs/HjlyJK+99lqIEaWmrp8/k7OAVAGISF6qra1tcndfVVVFnz59Qoqo9TK9TLa6gEQk78yYMSOQ/H/0ox/h7jmV/LMh9BaAmRUB5UCVu58edjwikrs2b97cZCbPZ5991mS6p8REoQVwKfBW2EGISG4bN25cIPnPnTsXd1fyTyLUFoCZ9QNOA34J/E+YsYhIblq6dClHHHFE/XH//v15//33Q4wod4TdBXQLMAXo2twFZnY+cD7AgAEDshSWiESdu9OhQ7ATY8WKFQwaNCikiHJPaF1AZnY68JG7L0x2nbvf4e4j3H1Er169shSdiETZH//4x0Dyv/DCC3F3Jf9WCrMFMAo4w8xOBToB3cxslrt/K8SYRCTCtm/f3mRN/u3btzfZuEVSE1oLwN2nuns/dy8DvgnMV/IXkeacf/75geR///331+/VK20T9hiAiEhSK1as4KCDDqo/7tixIzt37szbTVqyKRIVgLu/CLwYchgiEjF9+vRh7dq19cdvvPEGQ4cODTGioExv2JJpUXgOQEQk4IknnsDM6pP/+PHjcffIJf9Mb9iSaZFoAYiIAOzcuZM999wzULZ582ZKS0tDiqh52diwJdPUAhCRSPjhD38YSP633XYb7h7J5A/Z2bAl09QCEJFQVVVV0a9fv0DZ7t27mzzkFTXZ2LAl06L9FxaRvHbkkUcGkv+CBQsSPuEbRdnYsCXTov9XFpG88+KLL2JmLF68GIDRo0fj7hx77LEhR5a6scP7cv1ZQ+lbWoIBfUtLuP6soTnT/w/qAhKRLNq9ezcdOwbTzrp16+jdu3dIEbVPpjdsyTS1AEQkK2688cZA8v/5z3+Ou+ds8s8HagGISEZt2rSJnj17BspqamqatAQk+9QCEJGMGTNmTCD5z5s3D3dX8o8I/VcQkbQrLy9n5MiR9cdDhgyhoqIixIgkEVUAIpI2iaZwrlq1igMOOCCkiCQZdQGJSFqce+65geR/+eWX4+5K/hGWUgvAzA4DDiW2cQsA7j4zU0GJSO7YsGED++67b6Bs69atdO3a7E6vEhEttgDM7BpgRvx1AnADcEaG4xKRHGBmgeR/xRVX4O5K/jkilRbAeOBwYLG7TzKz3sBdmQ1LRKLsr3/9KyeeeGKgzN1DikbaKpUxgGp3rwV2mVk34CPgwMyGJSJRZWaB5P/ss88q+eeoVCqAcjMrBe4EFgKLgNcyGpWIRM6UKVOabMPo7px00kkhRSTt1WIXkLv/d/zH35nZM0A3d38js2GJSFRs27aNbt26BcrWr1/fZOBXck8qg8B/rfvZ3Ve5+xsNy0Qkf/Xq1SuQ/CdMmIC7K/nniWZbAGbWCegM9DSzvYG6tl83oE8WYhORkCxcuJARI0YEynJhkxZpnWRdQN8DLiOW7BfyeQWwFbgtw3GJSEga9/M/+OCDnH322SFFkx/mLK5i+rxK1myppk9pCZNPHhKJZaSbrQDc/VbgVjO72N1nZDEmEQnBr3/9a37wgx8EyjS7p/3mLK5i6uxl9RvIV22pZursZQChVwKpDALP0JPAIvlr586dgc3YAVauXMnAgQNDiii/TJ9XWZ/861TX7Gb6vMrQKwA9CSxSwMrKygLJv25rRiX/9FmTYOP4ZOXZlMqIznjgq8A6d59E7KngPZO/RUSirLy8HDNj9erV9WU7d+7k5ZdfDjGq/NSntKRV5dmkJ4FFCoyZBdbqnzJlCu5OcXFxiFHlr8knD6GkuChQVlJcxOSTh4QU0edSWQuo8ZPAn6AngUVyzsyZM5k4cWKgTIO8mVfXzx/FWUDWmv8BzKyMEJ8EHjFihJeXl4fx1SI5q7a2lqKi4B3oCy+8wPHHHx9OQJJ1ZrbQ3Uc0Lk/2INiRyc65+6J0BScimTFu3DjmzJlTfzxgwIBAv38+iepc+yhL1gX06/i/nYARwFJiD4MNA/4POC6zoYlIW61Zs4a+fYPJb/v27XTu3DmkiDIrynPto6zZQWB3P8HdTwBWA0e6+wh3PwoYDqzIVoAi0jpmFkj+P/7xj3H3vE3+kHyuvTQvlUHgQ9x9Wd2Bu//TzI7IYEwi0gZPPfUUp512WqCsUAZ5ozzXPspSqQDeMrO7gFmAA98C3spoVCIFqK192O7eZJG2l19+mdGjR2cq1ITC7IPvU1pCVYJkH4W59lGWynMAk4DlwKXEFod7M14mImlS14ddtaUa5/M+7DmLq5K+76KLLmqS/N09YfKfs7iKUdPmM/CqJxk1bX6Ln52N+NMlynPtoyyVtYB2ADfHX2ljZv2BmcB+QC1wR3wBOpGC09r1Yj766CN69+4dKNu0aRM9evRI+PmZHiQNe72bKM+1j7JUuoAyZRdwhbsvMrOuwEIze87d3wwxJpG0aG13SGv6sBsv1/zd736Xu+++O2k8mU7QUeiDHzu8rxJ+K4W2u4O7r617lsDdtxEbV9B/Pcl5bekOSWW9mMcff7xJ8q+trW0x+UPmE3SU17uR5qWyGuj/S6WsPeJPGA8n9nxB43Pnm1m5mZVv2LAhnV8rkhFtmZLYUh+2mTF27Nj6c7fccgvu3qRCaE6mE7T64HNTKi2AqSmWtYmZdQEeBS5z962Nz7v7HfFnEEb06tUrXV8rkjFtudseO7wv1581lL6lJRjQt7SE688ayh9/cUmTJO/uXHrppa2KKdMJurn41SUTbcmWghgDnAr0NbPfNDjVjVj/fbuZWTGx5H+/u89Ox2eKhK2tUxIb9mF/8skndO3aNXC+oqKCIUPalrCzMUiqPvjck2wQeA1QTmzzl4UNyrcBl7f3iy12W3M38Ja739TezxOJisknDwnMuIHW3W0n6tZJxwNdStDSWLKlIJa6+33AYHe/L/7zX4AV7r45Dd89CvgP4CtmtiT+OjUNnysSqrZ2hzzyyCNNkn9NTU3BPM0r2ZfKNNDnzOyM+LVLgA1m9pK7/097vtjd/0ZscTmRvNPau+3GiX/s2LE89thj6Q5LJCCVCqC7u281s/8C7nX3a8wslP0ARPLN0Ucfzeuvvx4o0x2/ZEsqFUBHM9sf+AZwdYbjESkIn332GZ06dQqUzZ49m3HjxmUtBq2fL6lUAD8D5gF/d/fXzexA4J3MhiWSvzI1yNsaWj9fIIXnANz9YXcf5u4Xxo9Xuvu/Zz40kfyyYMGCJsl/8+bNoXT5aP18gRRaAGZ2MPC/QG93P8zMhgFnuPsvMh6dSJ5onPi7du3K1q1NnnvMmiis3SPhS+VJ4DuJPflbAxDfEP6bmQxKJF9MnDgx4ZO8YSZ/0No9EpNKBdDZ3V9rVJaWJ4FF8lXdOj0zZ86sL7v11lsjM8MnU0tDZHLPAUm/VAaBN5rZIGK7gWFm44G1GY1KJIcVFRVRW1sbKItK4q+TiaUhNLCce1KpAC4C7gAOMbMq4D3g3IxGJZKDVq9eTVlZWaDs/fffp3///uEE1IJ0Lw0R9qYw0nqpVADu7iea2V5AB3ffZmYDMx2YSC5p3M+/7777sn79+pCiCYcGlnNPKmMAjwK4+/b4xi0Aj2QuJJHcceeddybcpKXQkj/kx8ByoY1hJFsO+hDgi0B3MzurwaluQKfE7xIpHI0T/4033sgVV1wRUjTha+8qqGErxDGMZF1AQ4DTgVLg6w3KtwHnZTIokSg77LDDWL58eaAsaoO8Ycj1jdkLcQyj2QrA3R8HHjezY9391SzGJBJJmzdvpkePHoGy9mzSko9yec+BQhzDaHEQWMlfCklzC6RFYf0eyay27uSWy1IZBBYpCHV9wFVbqnFifcAX/+ruJsl/165dSv55qBA3tlcFIBLXuA949a9O58M/X1N/fPHFF+PuFBUVJXq75LhC3Ng+2SygpDt+aR9fibK2rHVf19f70exfUP3OPwLndMdfGHJ5DKMtko0BdI3/OwQYSWw/YIjNCHo5k0GJtEdbp/Pt16Uj//jxKcGyb03nwC8emblg47Q5i4Qh2SygawHM7FngyLqHwMzsp8DDWYlOJK41CbIt0/l69uzJpk2bAmUHXDk3K33AhTj/XKIhlaUgBgA7GxzvBMoyEo1IAq1NkK2ZzvfWW29x6KGHBsqO+fnTrPtkd9buxAtx/rlEQyoVwB+B18zsMWIrgo4DZiZ/i0j6tDZBpjqdr/Hsnquuuorrr78+DRG3TiHOP5doSGVLyF8Ck4DNwBZgkrtfl+nAROq0NkG2NJ3v9ttvT7hJSxjJH/JjDR3JTalOA+0MbHX3W4EPtRqoZFNrE2Rz0/nOOHx/zIyLLrqo/tpXXnkl9Bk+hTj/XKIhlT2BrwFGEJsNdC9QDMwCRmU2NJGYtiwy1ng639FHH824118PXBN24q+T62voSO5KZQxgHDAcWATg7mvMrGvyt4ikT3sSZFVVFf369QuUbdmyhe7du2ck1rYqtPnnEg2pVAA73d3NrG5LyL0yHJNIE21JkI37+c8991xmzZqVzrBEcloqYwAPmdnvgVIzOw94Hrgrs2GJtN2jjz6acJBXyV8kKJXVQG80s5OArcTGAX7i7s9lPDKRVnJ3OnQI3tPMmTOHM888M6SIRKItlUHgX7n7lcBzCcpEIuEb3/gGDz8cfEA9KoO8IlGVShfQSQnKxqQ7EJG22LJlC2YWSP5r165V8hdJQbMVgJldaGbLgEPM7I0Gr/eAZdkLUSQxM2PvvfeuPz7uuONwd/bbb78QoxLJHcm6gP4EPA1cD1zVoHybu3+c0ahEknjppZc4/vjjA2W1tbUJd+3KV1o9VNKh2RaAu//L3VcBtwIfu/tqd18N1JjZv2UrQJGGzCyQ/O+44w7cveCSf+Ody6bOXsacxVVhhyY5JpUxgP8FPmlwvD1eJpI19913X8Kpneedd15IEYUn2eJ4Iq2RyoNg5g1G1Ny91sxSeZ9Iu+3cuZM999wzUFZZWcnBBx8cUkTh0+qhki6ptABWmtklZlYcf10KrEzHl5vZKWZWaWYrzOyqlt8hhWTChAmB5P+9730Pd8/r5D9ncRWjps1n4FVPMmra/ITdOlo9VNIllTv5C4DfAD8ith/AX4Hz2/vFZlYE3EZsmumHwOtm9hd3f7O9ny25bfXq1ZSVlQXKdu3alfebsae68U1bFscTSSSV/QA+cvdvuvu+7t7b3c9x94/S8N1HAyvcfaW77wQeBPTIZoEzs0Dyf+SRR3D3vE/+kHrffnPLXWsWkLRWsy0AM5vi7jeY2Qxid/4B7n5JO7+7L/BBg+MPgSazi8zsfOItjgEDBrTzKyWqnnjiCc4444xAWaE9zNWavn2tHirpkKwL6K34v+UZ+u5E8/YSVTR3AHcAjBgxorAyQgGora1tcne/YsUKBg0aFFJE4Ul1K0uRdEn2HMAT8X/vS/RKw3d/CPRvcNwPWJOGz5UccfnllweS/5lnnom7F2TyB+0MJtmXrAvoCRLckddx9zOaO5ei14GD4ttLVgHfBM5p52dKDtiwYQP77rtvoKy6uppOnTqFFFE0pLLxjZ4AlnRK1gV0Y/zfs4D9iG0DCTABWNXeL3b3XWb2fWAeUATc4+7L2/u5Em19+vRh7dq19ce///3vOf/8dk8qyxvJ+vZTnSUkkqpmKwB3fwnAzH7u7l9qcOoJM3s5HV/u7k8BT6XjsyTaXnnlFb70pS8FygptkLe9ks0SUgUgbZHKcwC9zOxAd18JEO+y6ZXZsCRbMt2lkGiTliVLlnD44Yen7TsKhZ4AlnRL5Ungy4EXzexFM3sReAG4LKNRSVZkelGx6667LpD8R44cibsr+SegJ4AlDKlsCfmMmR0EHBIvqnD3zzIblmRDproUtm7dSvfu3ZuUde3atc2fmc/0BLCEpcUWgJl1BiYD33f3pcAAMzs945FJxmWiS2HkyJGB5H/dddfh7gWd/Fu6u9cTwBKWVMYA7gUWAsfGjz8EHgbmZiooyY50Pni0ZMkShg8fHiirra3l8SVrGDVtfsFOW0zl7l5PAEtYUhkDGOTuNwA1AO5eTeKneCXHpOvBIzMLJP+XX34Zd+fxJWsKfuOSVO7u1bcvYUmlAthpZiXEHwozs0GAxgDyQHu7FO68887AJi37778/7s7o0aMBbVwCqd3d6wlgCUsqXUDXAM8A/c3sfmAU8J1MBiXZ05YuhR07dlBSErw7Xb9+fZOnezVtMbVutlSeABbJhKQVgMVu7yqIPQ18DLGun0vdfWMWYpMIGjt2LI8//nj98WWXXcbNN9+c8NqwFjeL0nIJqc7cUd++hCFpBeDubmZz3P0o4MksxSQR9O677zJ48OBA2e7du5s85NVQGNMWo7Zcgu7uJcpS6QL6h5mNdPfXMx6NRFLjzdj/8pe/8PWvf73F94WR/KK4XILu7iWqUqkATgAuMLNVwHZi3UDu7sMyGZiE79FHH2X8+PGBstau35Pt5KdxB5HUpVIBjMl4FBIpu3btori4OFC2atUqDjjggJAiSp02VRFJXbMduGbWycwuI/YU8ClAlbuvrntlLULJqgsuuCCQ/CdMmIC750TyB02pFGmNZC2A+4g9/PUKsVbAocCl2QhKsm/t2rX06dMnUPbZZ5+xxx57hBRR22jQVSR1ySqAQ919KICZ3Q28lp2QJNv22WcfPv744/rjP/zhD0ycODHEiNpHg64iqUlWAdTU/RDfvSsL4Ug2rVy5ssn+u9qkRaRwJFsK4nAz2xp/bQOG1f1sZluzFaCkn7szbty4QPKvqKhQ8hcpMM1WAO5e5O7d4q+u7t6xwc/dshmkpM8LL7xAhw4dmDNnDgD33nsv7s6QIRokFSk0qUwDlTxQXV1NWVkZH330EQCDBw9m+fLlOTfIG3VRWoZCpCWprAYqOe6LX/winTt3rk/+CxYs4J133lHyT7NMb7Epkm6qAPJYeXk5Zsabb74JwFFHHYW7c+yxx7bwTmkLLX8tuUZdQHmq8aytV199lWOOOSakaAqDlqGQXKMWQJ6ZMWNGIPkPGjQId1fyzwLt7CW5Ri2APPHpp5+y1157Bco2btzIPvvsE1JEhSeM5a9F2kMtgDxw0kknBZL/lVdeibsr+WdZe7fYFMk2tQByWGVlJYccckigrKVNWiSztAyF5BJlihxlZoHk//TTT+PuSv4ikjJlixzzpz/9KTDIW1xcjLtzyimnhBiViOQidQHliJqamiYPbn3wwQf069cvpIhEJNepBZADJk6cGEj+kyZNwt2V/EWkXdQCiLAPPviAAQMGBMpqamro2FH/2USk/dQCiKiioqJA8n/ggQdwdyV/EUkbZZOIefrppzn11FMDZVqnX0QyQRVARNTW1lJUFNzMvLKykoMPPjikiEQk34XSBWRm082swszeMLPHzKw0jDiiYvLkyYHkf8opp+DuSv4iklFhtQCeA6bG9xr+FTAVuDKkWEKzadMmevbsGSj79NNPKSnR4mEiknmhtADc/Vl33xU//AdQcPMZBw4cGEj+v/3tb3F3JX8RyZoojAF8F/hzcyfN7HzgfKDJlMhctGDBAkaNGhUo0yCviIQhYxWAmT0P7Jfg1NXu/nj8mquBXcD9zX2Ou98B3AEwYsSInM2UidbpKS8v56ijjgopIhEpdBmrANz9xGTnzWwicDrwVc/zW+Dp06czZcqU+uNhw4axdOnSECMSEQmpC8jMTiE26Ptld/80jBiyYceOHU369Lds2UL37t1DikhE5HNhPQn8W6Ar8JyZLTGz34UUR8bcc889geT/05/+FHdX8heRyAilBeDug8P43mxYv349++33+dDH4MGDefvtt5ts0i4iEjatBZRGF110USD5v/fee7zzzjtK/iISSaoA0mDx4sWYGbfffjsA06ZNw90pKysLNzARkSSi8BxAztq1axcjR45kyZIlAHTq1IkNGzbQpUuXkCMTEWmZWgBt9NBDD1FcXFyf/OfOnUt1dbWSv4jkDLUAWmnz5s306NGj/viEE07g+eefb/KQ15zFVUyfV8maLdX0KS1h8slDGDu8b7bDjVwsIhIdagG0wtVXXx1I/m+++Sbz589PmPynzl5G1ZZqHKjaUs3U2cuYs7gqyxFHKxYRiRZVACmoqKjAzLjuuusAmDp1Ku7OF77whYTXT59XSXXN7kBZdc1ups+rzHisUY5FRKJFXUBJ1NbWctJJJzF//vz6so8//pi999476fvWbKluVXkmRSkWEYkWtQCa8dRTT1FUVFSf/B988EHcvcXkD9CnNPGSzs2VZ1KUYhGRaMn7CmStMw4AAAdBSURBVGDO4ipGTZvPwKueZNS0+S32fX/yySeUlJRw2mmnATB8+HBqamo4++yzU/7OyScPoaQ4uL1jSXERk08e0vpfoJ2iFIuIREteVwCtHQC94YYb6Nq1Kzt27ABg0aJFLFq0iI4dW9dTNnZ4X64/ayh9S0swoG9pCdefNTSUmTdRikVEosVyaSXmESNGeHl5ecrXj5o2n6oEfd19S0v4+1VfqT9etWoVAwcOrD++8MIL65/qFRHJdWa20N1HNC7P60HglgZA3Z3x48cze/bs+nPr1q2jd+/eWYlPRCRMed0FlGwA9KWXXqJDhw71yf+uu+7C3ZX8RaRg5HULYPLJQ5g6e1lgHvyetpuKm87h+A3rASgrK6OiooI999wzrDBFREKR1xVA3UBn3TIIHSqf5+05t9Sf/9vf/tZkg3YRkUKR1xUAxCqBrw/bLzCT55xzzmHWrFlap19EClreVwAACxYsqP/5/fffp3///iFGIyISDQVRAYwePZpcmu4qIpINBVEBSGZomWmR3KYKQNqk7inruhlWdU9ZA6oERHKEKoAMyuc75GTLTOfL7yiS71QBZEi+3yFrmWmR3JfXTwKHKd83YtEy0yK5TxVAhuT7HbKWmRbJfaoAMiTf75C1zLRI7tMYQIYkWoco3+6Qxw7vq4QvksNUAWRI43WI8m0WkIjkPlUAGaQ7ZBGJMo0BiIgUKFUAIiIFShWAiEiBUgUgIlKgVAGIiBQoy6V18s1sA7A67DjSqCewMewgIkp/m+bpb5OY/i7NO8DdezUuzKkKIN+YWbm7jwg7jijS36Z5+tskpr9L66kLSESkQKkCEBEpUKoAwnVH2AFEmP42zdPfJjH9XVpJYwAiIgVKLQARkQKlCkBEpECpAgiZmU03swoze8PMHjOz0rBjCpOZnWJmlWa2wsyuCjueqDCz/mb2gpm9ZWbLzezSsGOKGjMrMrPFZjY37FhyhSqA8D0HHObuw4C3gakhxxMaMysCbgPGAIcCE8zs0HCjioxdwBXu/gXgGOAi/W2auBR4K+wgcokqgJC5+7Puvit++A+gX5jxhOxoYIW7r3T3ncCDwJkhxxQJ7r7W3RfFf95GLNFps4k4M+sHnAbcFXYsuUQVQLR8F3g67CBC1Bf4oMHxhyjJNWFmZcBw4P/CjSRSbgGmALVhB5JLtCNYFpjZ88B+CU5d7e6Px6+5mlgz//5sxhYxlqBM85QbMLMuwKPAZe6+Nex4osDMTgc+cveFZnZ82PHkElUAWeDuJyY7b2YTgdOBr3phP5jxIdC/wXE/YE1IsUSOmRUTS/73u/vssOOJkFHAGWZ2KtAJ6GZms9z9WyHHFXl6ECxkZnYKcBPwZXffEHY8YTKzjsQGwr8KVAGvA+e4+/JQA4sAMzPgPuBjd78s7HiiKt4C+IG7nx52LLlAYwDh+y3QFXjOzJaY2e/CDigs8cHw7wPziA1yPqTkX28U8B/AV+L/nyyJ3/GKtJlaACIiBUotABGRAqUKQESkQKkCEBEpUKoAREQKlCoAEZECpQpAcpaZ7dNgSuQ6M6tqcLxHGr/nyPjzGm15bw8zuyDFa39hZknn+JvZWWZ2SFtiEWlMFYDkLHff5O5HuPsRwO+Am+uO44vJYTHt/f/8SKBNFQDQA0ipAkjRWYAqAEkLVQCSd8xssJn9M/5Q3SKgv5ltaXD+m2Z2V/zn3mY228zKzew1Mzum0WeVAD8Bzo23LMabWRcz+0P8+sVm9vX4tUPN7PX4dW+Y2YHANGBIvGxaglh/Et//4DngoAblF8Q/a6mZPWxmJWY2GjgVuDn+eWWJrkv7H1TylioAyVeHAne7+3Biy0o05zfADe4+AvgGjZYTdvdq4GfE1t85wt0fIVYhPOPuRwNfAX5tZp2A/wZujLdIRhJbx+gqoDL+3sAGN2Z2NPDvwBHAeGLLYdd52N1HuvvhwLvAd9z9FeAp4PL4561KdF3r/kxSyLQYnOSrd9399RSuO5HYHXrd8d5mVhJP/M35GjCmwY5lnYABwALgR2Z2ADDb3Vc0+NxEvgQ8Gv+uajN7osG5YWb2M6CU2FIhze1ylep1Ik2oApB8tb3Bz7UEl5ru1OBnA46uGzNIkQFj3f3dRuVvm9mrxDYmeS6+ymtLq5k2txbLTGCMu//TzP6L2C5g7blOpAl1AUnec/daYLOZHRQfEB7X4PTzwEV1B2Z2RIKP2Ebs7rrOPOCSBu8ZHv/3QHdf4e63Ak8CwxK8t6GXgbPMrJOZdSO2JHidvYB18SWgz0kSS3PXibRIFYAUiiuBZ4C/Ett3oM5FwKj4oO2bwHkJ3jsfODw+4DseuBbobGbLzGw58NP4defEN2xfAhwIzHL39UB5/NrAILC7vwY8BiwFHiZWIdT5CfAasT2j32xQ/gDww7pB4CTXibRIq4GKiBQotQBERAqUKgARkQKlCkBEpECpAhARKVCqAERECpQqABGRAqUKQESkQP1/NsTsFPfNQVYAAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -558,7 +527,8 @@ "plt.plot(true_data, true_data, 'k-')\n", "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", "plt.xlabel('True test data')\n", - "plt.ylabel('Predicted test data')\n" + "plt.ylabel('Predicted test data')\n", + "plt.show()" ] }, { @@ -572,7 +542,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -595,23 +565,23 @@ "\n", "Null distribution for GPDC not available for deg. of freed. = 380.\n", "\n", - "## Resulting lagged condition sets:\n", + "## Resulting lagged parent (super)sets:\n", "\n", " Variable 0 has 2 parent(s):\n", - " (0 -2): max_pval = 0.00000, min_val = 0.107\n", - " (2 -3): max_pval = 0.19300, min_val = 0.008\n", + " (0 -2): max_pval = 0.00000, min_val = 0.135\n", + " (2 -3): max_pval = 0.19300, min_val = 0.008\n", "\n", " Variable 1 has 4 parent(s):\n", - " (0 -2): max_pval = 0.00000, min_val = 0.285\n", - " (1 -2): max_pval = 0.00000, min_val = 0.059\n", - " (2 -7): max_pval = 0.14300, min_val = 0.009\n", - " (0 -8): max_pval = 0.19800, min_val = 0.008\n", + " (0 -2): max_pval = 0.00000, min_val = 0.461\n", + " (1 -2): max_pval = 0.00000, min_val = 0.287\n", + " (2 -7): max_pval = 0.14300, min_val = 0.009\n", + " (0 -8): max_pval = 0.19800, min_val = 0.008\n", "\n", " Variable 2 has 4 parent(s):\n", - " (1 -2): max_pval = 0.00000, min_val = 0.266\n", - " (0 -2): max_pval = 0.00000, min_val = 0.112\n", - " (2 -2): max_pval = 0.00000, min_val = 0.050\n", - " (0 -4): max_pval = 0.13600, min_val = 0.010\n", + " (1 -2): max_pval = 0.00000, min_val = 0.635\n", + " (0 -2): max_pval = 0.00000, min_val = 0.259\n", + " (2 -2): max_pval = 0.00000, min_val = 0.387\n", + " (0 -4): max_pval = 0.13600, min_val = 0.010\n", "\n", "##\n", "## Predicting target 2\n", @@ -620,17 +590,7 @@ }, { "data": { - "text/plain": [ - "Text(0, 0.5, 'Predicted test data')" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5xU9b3/8dcHWGBVZC2oEQSxBK+KisGQK4nRqEGjscdo/MUoit2IGBTsGlAMlngtyUVR4xV7QUUUFQxGbIBIEzFi9OJiwRsWBVdcdj+/P2ZmnZmdulPOlPfz8dgHO2fOnPMZlM/3fLu5OyIiUn06BB2AiIgEQwWAiEiVUgEgIlKlVACIiFQpFQAiIlVKBYCISJVSASAiUqVUAEhJM7MPzewzM9sw6tipZvb3qNduZmvNbI2Z1ZvZjWbWMer9v4fP2T3u2pPDx/cNv64zs7vM7FMz+8rM3jOzi5LcJ/JzYZ6/b5dwDF+G4xiR4tzjzGypma02s8/N7G9mtnHU+5ua2RPhmD8ys9/kM1YpfyoApBx0As5Lc87u7r4R8FPg18DQuPffA06MvDCzzYAfASujzrkJ2Aj4D6A7cBiwLNF9on7+lO2XSeNKYEegD7AfcKGZHZTk3FnAYHfvDmxH6O9pTNT7twHfAlsCJwB/MbNd8hyvlDEVAFIOxgN/MLO6dCe6+/uEEuMecW9NAn4dVTM4HniCUIKM2Au4391XuXuLu7/r7o/mHn5WTgT+GI5hCXAHcFKiE919ubt/EXWoGdgBIFxjOhq4zN3XuPsrwFPAbwsZvJQXFQBSDuYAfwf+kO5EM9sJ+AnwftxbK4B3gJ+HX58I3Bt3zuvAWDM72cx2zCVgMxtlZg3JfpJ8ZhNga2B+1OH5QNKndjP7sZmtBr4ilPD/HH7r+0Czu7+X6bWk+qgAkHJxOXCumfVI8v5bZrYWWEKosLg9wTn3AieaWT+gzt1fi3v/XEI1hXOAd8zsfTM7OMF9opP5kETBuPs4d69L9pPkO2wU/nN11LHVQLck5+Pur4SbgHoRqil9GHWt1XGnp7yWVB8VAFIW3H0RMAUYleSUPQklvV8Dg4ANE5zzOPAzQon+fxLco9Hdr3H3HwCbAQ8Dj5jZptH3iUvm09r9pdpaE/5z46hjGxN6uk/J3euB54AHo661cdxpGV1LqocKACknVwDDgJ6J3vSQh4HXCNUY4t//GngWOJMEBUDcuV8C1xAqSPpmG6iZXRw3WijmJ8k9VwGfANGjlXYHFmd4207A9uHf3wM6xTVlZXMtqQIqAKRshDt4HwJ+n+bUccBpZrZVgvcuBn7q7h/Gv2Fml5nZXmbW2cy6Ehp51AAsbUes18SNFor5SfHRe4FLzWyTcH/GMOCeRCea2Qlm1ttC+gBjgenh+68lVOO52sw2NLPBwOGkKfikuqgAkHJzNYmbd1q5+0JgJjAywXsrwiNiEn4UuBv4glCn8YHAIe4e/cQ+P+5p/s+JLpSDKwgNPf2I0HcY7+7PAYST/Roz6x0+d2fgVULNPbMIFVTDoq51FlALfA48AJzp7qoBSCvThjAiItVJNQARkSqlAkBEpEqpABARqVIqAEREqlSnoAPIxuabb+7bbrtt0GGIiJSVuXPnfuHubWbRl1UBsO222zJnzpygwxARKStm9lGi42oCEhGpUioARESqlAoAEZEqpQJARKRKqQAQEalSKgBERKqUCgARkSqlAkBEpITdfvvtzJo1qyDXLquJYCIi1eKtt97iBz/4AQDbbbcdy5Yty/s9VACIiJQQd6dDh9jGmbfffrsg91ITkIhIibjrrrtikv+RRx6Ju9OtW7eC3E81ABGRgLW0tNCxY8eYYw0NDXTv3r2g91UNQEQkQGPGjIlJ/qeffjruXvDkD6oBiIgE4ptvvqG2trbNsS5duhQthsBqAGa2jZm9ZGZLzGyxmZ0XVCwiIsU0bNiwmOR/zTXX4O5FTf4QbA1gPXCBu79lZt2AuWb2gru/E2BMIiIF8+mnn/K9730v5lhzc3ObUT/FElgNwN0/cfe3wr9/BSwBegYVj4hIIZlZTPK/5557Eg75LKaS6AMws22BAcAbCd47DTgNoHfv3kWNS0QkVy+++CIHHnhgzDF3DyiaWIGPAjKzjYDHgOHu/mX8++4+wd0HuvvAHj3abGkpIlKyzCwm+f/+978vmeQPAdcAzKyGUPKf5O6PBxmLiEi+3H777Zx99tkxx0op8UcEVgCYmQETgSXufmNQcYhIdZs8r57x05ayoqGRretqGTmkH0cMaH93ZCi1fefyyy/nqquuyjXMggiyCWgw8FvgZ2b2dvjnFwHGIyJVZvK8ekY/vpD6hkYcqG9oZPhDbzPg6ueZPK8+q2udeeaZbZK/u5ds8ocAawDu/gpgaU8UESmQ8dOW0tjU3Ob4qq+bGP34QoCMagPxif+5555jyJAh+QmygALvBBYRCcqKhsak7zU2NTN+2tKE702eV8/gcTPoUNMl4VN/OSR/KJFhoCIiQdi6rpb6FIVAogJi8rx6Rj22gKVjY1usr7v3ab6/6wAGj5uRc39CvvslklEBICJVa+SQfox+fGHCZiAIFRDxjtyzV5tjfS6awv0f1LDuve+uVd/QmFUzUkSkXyLX62RCBYCIVK1IQr3yqcU0NDbFvFdb05GRQ/q1vl6zZk2bdfm3Pv1Oauq2AmjzefiuGSmbxJ2oX6KxqZkLHp4fE3M+qAAQkap2xICeHDGgZ8pml/h2fgg99WciVT9DNuc3u+e9JqACQEQqXiZt6pGCIPr8c/76LPUThsWcd9/MdxjzwkdtntLNINFcr0TNSKmk6pdoT40iFRUAIlLW0iX3bNvUI+e/O+bgNu898dbHHDGgJxt225irnl7Mqq+/a/ZJlPzjm5Eyka5fItsaRSoqAESkbGWS3JO1qSd7kr7ktvt5d+KFMcd6j3wS69Ax5trjpy2NKQAiOprR4t7u0TuR8y94eD7NCUqVbGsUqagAEJGylUlyT/bEXN/Q2GbIZrIRPomunaqtvmeOQzcjn4uvCbSnRpGKCgARKVvJknD08WRt6gatx5c8fz9Hjp4Y836yTt7ItVO11UfXRIB2jemPrsEUaj6ACgARKVvJknB0M0miNnUDIo0rH113aMxne3yvF5udckfauQHp2uobm5q58qnFrFvf0u4x/dEd04WgpSBEpGyNHNKP2pqOMcfim0mOGNCTa4/qT8+6WgzoWVeLA/9+8b/bJP9tL5rC5yuWc+1R/dlkg5o294u+dvR1k2lobEraRFUKVAMQkbKVaTNJ/JN0/Lj+jQcdwyb7ntT6dB89NyB6tE+XTrHPzJHzBo+bkXJJiXj5HMmTC9UARCRrkcXQ+o56hsHjZmS9dHI+48imjXyvvfZqk/z7XDSFTfY9KWkH6zdNLa2/NzQ2JVwuOllNJFEtAvI7kicXqgGISFaKuVZNPuOIT/znj72FNzrsnLLwyHS56GQ1EWg7kqemo7F23Xr6jnqmoAu9ZUIFgIhkJdtx9UHH0bt3b5YvXx5zXqbbM2ayXHS6ZSQisa5oaKRugxrWfLO+dd2goArPCDUBiUhWMhl6WQpxNDc3Y2YxyX/hwoVZ7c2brqlmRUNjwl3FRj++sLWJ6IgBPZk16mf8a9whbNC5E00tsfcPslNYBYCIZCVZUix2u3aqOMyMTp1iGzjcnV133TWreyRq24+/V6qaSESkzyRZR3FQncIqAEQkK5kMvQwqjs7Njbw6ev+YY59//nlWT/3RIkM9a2sSp8r9duqRtiYSXUNIJqhOYfUBiEhWijFDtT1xfBg3ph8yb+uH5COKIuv+JErgL727Mu1ktGQdyREGRS88I1QAiEjWCj1DNZs49tikib59+8Ycb2xspGvXrgk/kyjRAylHFKV6yr/p13ukXLMnXfOOE0wHMKgAEJE8K9Z+tpB4o5ZUT/3Jho52remQckRRqqf8dDWidPsOp5pJXGgqAEQkb/I1RyBdITJt2jQOOuigmM+0tLQkLBCiJeuwTbf2fqJ1f+KXhUj2/VKtGRRE30k0dQKLSN5kMiImnXTDKs0sJvn/5Cc/wd3TJn/IfrRN9NIQ8esJXXtU/4wXdIteM6hjOM5srlEoqgGISN7kY45AskLk/EvHcOTUv8Ycz3Z0T7LmmLramphVOyHxonLxO43F7yeQLJmXSp9JvEBrAGZ2l5l9bmaLgoxDRPIjH3MEEhUWH113KB9GJf9jjjmmXUM7kw1hvfKwXbJ6wk9XSykXQdcA7gFuBe4NOA4RyYN0beWZiH5KX/nUeL5eMjPm/faO6Yf0Q1gzfUovleUwchVoAeDuL5vZtkHGICLZSdVBm2pRtHTNJZHr1jc0YtBmXP+Jv7+Yv908Nuf489EcUyrLYeQq6BpAWmZ2GnAahBZ1EpHgZDLKJ1FbebLPADFJ32m7QxfAE299XFJP1pnsRFYOSn4UkLtPcPeB7j6wR48eQYcjUtXaM8on2WeuenpxzBIJLe5tkn/vY0bj7iWV/KF0lsPIVcnXAESkdKRq+kjWNJRsElRkly1I/NQf2ZR98rz6pM1FQS1FUSrLYeRKBYCIZCxZ00f32pqkzTwdzWhO0nHb0rSO5TceHXPseyf9F5233K719QUPzwe+S7qlsiFNqQ7tzEbQw0AfAF4D+pnZx2Z2SpDxiEhqyZo+zEjaNJQs+X903aFtkn+fi6bEJH+AZveYIZb5mGwmIYEWAO5+vLt/z91r3L2Xu08MMh4RSS3ZjNiGqOacaCsaGtusdbP+y5Vtmnx6nf0/rU0+iUQn+EoZgVMK1AQkIllJ1PSRbLnkSNt4pMkmVVt/OpEEXykjcEpByY8CEpHSl2pUzBEDenLy99e3Sf6PvPEvdrr02YzvEUnw2Y7AiSzZ0HfUMwweN6PsZusWkmoAIpKzVKNiUi3Z3Kmmhgsenp+0nyAifuXNZPeKVyodxqVKBYCItFuq4Zi33XYbtuc5MefHL+MQOTd++YiajsaGnTuxurEpYYLPdAROpSzZUCgqAESkXVI9XR+5Z6+Yc3v16sXy5csTXiffY+qjC6Vk9Qp1GIdkVACY2a7AzkDrHmvurgXcRKpYoqfrf/1tJEeOiV3cN5PF2/I1pj6+UEpGHcYhaQsAM7sC2JdQATAVOBh4Ba3gKVLV4p+i4zt5u/bZg14njG0zk7eQs3jTbcAO5blkQ6FkUgM4BtgdmOfuJ5vZlsCdhQ1LREpdZDhmqqGdTc3OVU8vLtos3lRNOwZlu2RDoWRSADS6e4uZrTezjYHPge3SfUhEykuiJ3OAq55e3LpuT11tDVcetgtHDOjJyCH92rT1b9j/ADb/xfCYY9Fr/hS6UzbZHIGedbXMGvWznK9faTIpAOaYWR1wBzAXWAO8WdCoRKRd2tu8kujJfOQj82kBmlu+a8NvaGxi5CPz2yR+yGxCV6Fn8eZjQ5pqkrYAcPezwr/+1cyeAzZ29wWFDUukshRj9cpcmlcSPZk3tbTtvHVv4f1rD4s51vewc2n5jyFJr11XW9P6e6Fn8VbKKp3Fkkkn8HR33x/A3T+MPyYiqRVrMlIuzSuZPIEnaut395Qjb2o6GFcetkvr62I8oVfCKp3FknQpCDPramabApub2SZmtmn4Z1tg62IFKJKNUpz2X6zVK9vTvBL5+0o1ULNl3do2yX/38+5sHd4ZvUAchJZ/hlC7+/hf7d5mAlc2m69LYaWqAZwODCeU7OcS6kQH+BK4rcBxiWStVKf9F2v1ymTNK05oP974ppBLJy9k0uv/mzT5dwD+leCpf4fRz3Dlr3aPOZbNU3dQT+hBbyJTipIWAO5+M3CzmZ3r7rcUMSaRdinVaf/ZtHvnkqT226lH0oQeXxhOnlefMvl3XfMJS28bFnNsm+EPs+FGG3HtUbuVXeIs1YeDoGXSCXyLZgJLOSjVdeIzbffOJUlNnlfPY3PrUzblRBeG46ctTXpuqnH9m27YpWAJs9gTxErh4SBomgksFaNU14lPNjIFYI+rnqehMTROvoNB/MCbTJNUJjNgIVSoTJ5Xn7BQ/Pqfb7Dy8T/GHOt94VOYfddVWKjCNKgJYkE/HARNM4GlYpTyGPD4du/J8+oZ+cj8mKGWCUZdApklqWwS2ejHF1K3QU3Gm7JHK1RhGtQEsaAfDoKWyYYwje7eAmgmsJS0chphMn7a0oTj7BPJJEllk8gam5pxDxWOXzxzU5vk7+488dbHWW26kqtiTBAr5vcpF5oJLBWlXMaAZ5rYMk1SiWo/NR2NpubEhczqxiY+TDKuH4o/oUoTxIJhmSzV2npyaA5AYDOBBw4c6HPmzAni1iJ5NXjcjIQJD0Lj6FvcM0pS0R2ndRvU4E7MJiqJ9upd/udf07JubcyxJ976OO/JMZtO3USTyWprOpZsDa7cmNlcdx8YfzxpDcDM9kz1nru/la/gRKrNyCH92vQBQOipffwxu2eU9OKT5qqvm6it6chNv94j5vPR58Q39+y5555cdudTee+AzbZTV0/owUhaAzCzl8K/dgUGAvMJTQbbDXjD3X9clAijqAYglWTyvHqufGpx6yigTTao4Ypf7pJx0ktWi4hf+XLyvPqEi7dF/u1nep1sFOKa0n5Z1wDcfb/wBx8ETnP3heHXuwJ/KFSgItUi1/6KTDtO45P/6NGjueaaa7K+TiFik2Bl0gm8UyT5A7j7IjPbIx83N7ODgJuBjsCd7j4uH9cVqQbpOk7NrM17iWr8heiA1bDL8pDJMNAlZnanme1rZj81szuAJbne2Mw6ElpT6GBCk8yON7Odc72uSLVINrRx+H7btkn+Tz31VNK9eQsxRFLDLstDJjWAk4EzgfPCr18G/pKHe/8QeN/dP4DWpqbDgXfycG2Ripeo4/TV0ftz7JjY89KN9CtEB6w6dctDVsNA83pjs2OAg9z91PDr3wKD3P2cZJ9RJ7BIYitWrKBnz9jk+s9//pMddtgB0EqY1S7rTuAiaNtASdv1qczsNOA0gN69exc6JpGCKVQSTtfWn+mQTBUS1SeTPoBC+RjYJup1L2BF/EnuPsHdB7r7wB49ehQtOJF8iiTh+oZGnO+ScC4b1syaNatN8l+7dm2bJp9MNqQpRHxS+tIWAGb2q0yOtcNsYEcz62tmnYHjgKfycF2RknPV04vzuiuYmfHjH8dOxXF3NthggzbnZjIks1i7lklpyaQGMDrDY1lx9/XAOcA0QqOKHnb3xbleV6TUTJ5XH7PyZrT6hsastq68/fbb2zz1t7S0pOzoTTb0Mvq4xu1Xp1RLQRwM/ALoaWb/FfXWxsD6fNzc3acS2mNApGKle4rOdOmFTMf1x8tkmexMxu2rj6DypKoBrADmAN8QWgU08vMUMKTwoYlUhkyeolM1txx33HFtkr+7J0z+kU3e+456prVmkcky2enG7auPoDKlWgpiPjDfzO539yYAM9sE2MbdVxUrQJFyl+zpOl6igiI+8W+55ZZ8+umnCT+fbrRPqqf1dOP2taViZcpkGOgLZnZY+Ny3gZVmNtPdRxQ2NJFg5LupI1ETTCLRzS0bbbQRa9fGLtm897XTWRHuM0gUU65JOlUh0Z4+AjUZlb5MCoDu7v6lmZ0K3O3uV5hZIPsBiBRaIfamjX6KTlUTWLV2XcKVO/f75a/4ZPehrZ9NFlMhO3LT9RHEJ/v9durBY3PrC7bHr+RHJqOAOpnZ94BjgbabhIpUkPYOh0zU9h7tiAE9mTXqZwlnP0YsGfOLNsnf3Vm39xkZxZTJaJ/2StVHkKh/YNLr/6thpWUgkwLgakJDNZe5+2wz2w74Z2HDEime6OSd7Ak9XVNHph2kiZKxu7fZqOWBBx5o7eTN9Mm+kAuwpepITlRoJhubpGGlpSVtE5C7PwI8EvX6A+DoQgYlUiyJtiJMJNVTdDZt7yOH9GP4Q2+3vo5P/ADbXjSF4447JObemSytXOgF2JL1EWST1LUcdGnJZCbw981supktCr/ezcwuLXxoIoWXKHnHS/cUnW3be8cORkvTN22S//dO/i/6XDSlTZLM5sk+0tR0069DW3ac/9DbWU00a49kST2+uUvLQZeeTJqA7iA087cJILwh/HGFDEqkWFI9vSYbMx8v07b3yfPqueDh+Xxw7SEsv/GYmPf6XDSFzltslzBJZjKOP/4+2Y7ZT9eHkUqyAuqEH/XOOGYJRiajgDZw9zfjxiPnZSawSNCSNa9sskEN8y7/eUbXyGSm7eR59Qy/43k++svQmM/2Ouc+Om5YB4SSZLImm2y2j8x2OGiuI5+09n/5yqQA+MLMtifcrxNex/+TgkYlUiQjh/Rj5KPzaWqO7bZc8816Lp28kJfeXZk2qWWSABNtyt7nou8G1eVzs/Rsm6TyMckr1/2NJRiZFABnAxOAncysHvgXcEJBoxIpkiMG9OTKpxbT0Bi7WFtTizPp9f9tHc2S7qk4WQKcN28ee+65Z8yx3iOfxDp812SSz7bxyfPq6WBGc5K9fxPRQnDVK5MCwN39ADPbEOjg7l+ZWd9CByZSLKvjkn9EfApN91QcPxnq1dH7x7xvnbrQ+4LH2nwuX23jkaacRMk/VSGjDdyrVyadwI8BuPtad/8qfOzRwoUkUlzZJLpkT8XRHa9rls5qk/z3uGpawuS/yQY1eWs6STaiqaNZykJGG7hXr1TLQe8E7AJ0N7Ojot7aGOha6MBEiiXTtXogeWERSb7xQzvrdtyLVe+9yeR59W36Gmo6Glf8cpfcgo+SrHBqcc9pITipXKmagPoBhwJ1wC+jjn8FDCtkUCL5ksmCZJHXFzw8P2HzSUSqp+Klf3+c/5t2W8yxPhdNaR0LX4wkm0tTjjpxq1Oq5aCfBJ40s/9099eKGJNIXmQzvPGIAT05P2qGbrxUQzTjl2ze+D9/zSb7/BaITb6FTrKZDEcViZa2D0DJX8pVtgu7JXtSjgzRjE/ew4cPb5P8+1w0pTX5Fzv5ZjthTCSTUUAiZSnb4Y3ZPEHHJ/5nn32Wb7bsH3g7uppyJBsqAKRiZdsmnkk7/U9+8hNeeeWVmM9Fb82o5CvlJNUooJQ7frn7jfkPRyR/2tMmnuwJuqWlhY4dY4dKLlq0iF12yd8oHpFiS1UD6Bb+sx+wF6HN4CE0IujlQgYlkg/5GnnTsWNHWlpaYo4l2pBdpNxYuv+Rzex54OjIJDAz6wY84u4HFSG+GAMHDvQ5c+YU+7ZSpb7++ms23HDDmGOfffYZW2yxRUARibSPmc1194HxxzPpA+gNfBv1+ltg2zzFJVKS4jt5QU/9UnkyKQD+B3jTzJ4gtDzKkcC9BY1KJCBffPEFPXr0iDnW2NhI166a/C6VJ5N5AGOBk4FVQANwsrtfk8tNzexXZrbYzFrMrE21RCQIZhaT/A844ADcXclfKlamw0A3AL5097vNrIeZ9XX3f+Vw30XAUcB/53ANkbyor6+nV6/Y9fpbWloSNgOJVJJM9gS+AriI0LaQADXAfbnc1N2XuHvi6ZgiRWRmMcl/+PDhuLuSv1SFTGoARwIDgLcA3H1FeCRQUZjZacBpAL179y7WbaXCLVy4kN122y3mmDp5pdpksh/Atx76lxHZEnLDNOcTPu9FM1uU4OfwbAJ09wnuPtDdB8Z3zom0h5nFJP+nn35ayV+qUiY1gIfN7L+BOjMbBgwF7kz3IXc/INfgRPJpxowZ7L9/7EYtSvxSzdIWAO5+vZkdCHxJaFbw5e7+QsEjE8mj+Db9N998k7322iugaERKQyadwNe5+wvuPtLd/+DuL5jZdbnc1MyONLOPgf8EnjGzablcTySZN998s03yd3fqO23N4HEz6DvqGQaPm8HkefUBRSgSnEz6AA5McOzgXG7q7k+4ey937+LuW7r7kFyuJ5JI586dGTRoUOvrZcuW4e4x+/c6320Uo0JAqk3SAsDMzjSzhcBOZrYg6udfwMLihSiSneeeew4zo6mpCYARI0bg7my33XZA9hvFiFSqVH0A9wPPAtcCo6KOf+Xu/y5oVCLt4O7cddddnHrqqa3HvvrqKzbaaKOY87LdKEakUiWtAbj7anf/ELgZ+Le7f+TuHwFNZjYo2edEgvDRRx9x8MEHtyb/G264AXdvk/wh+YYwmWyeLlJJMukD+AuwJur12vAxkcC1tLRw6623sssuu/DKK69w66230tzczIgRyfczGjmkH7U1sZu7aPN0qUaZzAMwjxos7e4tZqatJCVwS5cu5dRTT+WVV17h5z//ORMmTKBPnz5pP5evjWJEyl0mifwDM/s93z31nwV8ULiQRFJbv349N9xwA1dccQW1tbXcfffd/O53v8tq/R5tni6SWRPQGcDeQD3wMTCI8No8IsU2f/58Bg0axKhRozjkkENYsmQJJ510khZvE2mHTGYCfw4cV4RYpAJMnldfkKaVdevWMWbMGMaNG8emm27KI488wjHHHJOHiEWqV9ICwMwudPc/mdkthBeCi+buvy9oZFJ2IhOsImPsIxOsgJwKgddff52hQ4eyZMkSTjzxRG688UY222yzvMQsUs1SNQEtCf85B5ib4EckRr4nWK1du5bzzz+fvffemzVr1jB16lT+9re/KfmL5EnSGoC7Px3+82/FC0fKWT4nWM2YMYNhw4bxwQcfcOaZZzJu3Dg23njjXEMUkSipmoCeJkHTT4S7H1aQiKRsbV1XS32CZJ/NBKvVq1fzhz/8gTvvvJMddtiBmTNnss8+++QzTBEJS9UEdD1wA/AvoBG4I/yzhtCeviIxcp1g9fTTT7Pzzjtz1113MXLkSBYsWKDkL1JAqZqAZgKY2R/dPfpf4dNm9nLBI5Oy094JVitXruS8887jgQceoH///kyePFlr9YsUQSYTwXqY2Xbu/gGAmfUFtDejJJTNBCt356GHHuLcc89l9erVXHXVVYwaNYrOnTsXOEoRgcwKgPOBv5tZZPbvtsDpBYtIKlb0HIHNbA0dXruL2TOf54c//CETJ05k1113DTpEkaqSyUSw58xsR2Cn8KF33X1dYcOSShOZI/D1t018NedpPpp1PzSv56TzL+PO8VfQsWPH9BcRkbxKWwCY2QbACKCPuw8zsx3NrJ+7Tyl8eFIpxk9byudzpvLv524BoMvWO7HZof8V2qEAABBrSURBVCN4b4vtlfxFApJJE9DdhCZ+/Wf49cfAI4AKAMnIunXreHX0/jHHtvx/f8KsgzZhEQlQJovBbe/ufwKaANy9EdDKW5KRsWPH0rVr19bXmx8+ij4XTcEs9L+eNmERCU4mNYBvzayW8KQwM9seUB+ApLR69Wrq6upijvW7ZCrfrG9pfa1NWESClUkN4ArgOWAbM5sETAcuLGhUUtYeeOCBmOQ/ffp03J1xR+9Gz7paDOhZV8u1R/XXmvwiAbKozb7avhlaZL0X8DXwI0JNP6+7+xfFCS/WwIEDfc6cOUHcWjLwzTffcNVVVzFu3DgA6urqWLVqVcBRiYiZzXX3gfHHU9YAwltBTnb3/3P3Z9x9SlDJX0rbK6+8wu677864ceMYOnQo//73v5X8RUpcJk1Ar5uZ5uVLQmvWrOHcc89ln3324dtvv+X5559n4sSJbLLJJkGHJiJpZFIA7EeoEFhmZgvMbKGZLcjlpmY23szeDV/vCTOrS/8pKTXPP/88u+66K7fddhvnnnsuCxcu5MADDww6LBHJUCajgA4uwH1fAEa7+3ozuw4YDVxUgPtIAaxatYoRI0Zwzz330K9fP/7xj38wePDgoMMSkSyl2g+gK6EN4XcAFgIT3X19Pm7q7s9HvXwd0OauZeKJJ57grLPOYuXKlVx88cVcdtllMeP8RaR8pGoC+hswkFDyP5jQ3gCFMBR4NtmbZnaamc0xszkrV64sUAiSzmeffcaxxx7LUUcdxVZbbcXs2bPbTPISkfKSqgloZ3fvD2BmE4E3s7mwmb0IbJXgrUvc/cnwOZcA64FJya7j7hOACRAaBppNDJI7d2fSpEmcd955rFmzhrFjxzJy5EhqamqCDk1EcpSqAGiK/BJuq8/qwu5+QKr3zex3wKHA/p5qMoIEZvny5ZxxxhlMnTqVvffem4kTJ7LTTjul/6CIlIVUBcDuZvZl+HcDasOvjdAUgXbv0G1mBxHq9P2pu3/d3utIYbS0tDBhwgQuvPBCmpubufnmmzn77LO1aqdIhUm1JWQh/7XfCnQBXgjXLF539zMKeD/J0Pvvv8+pp57KzJkzOeCAA5gwYQJ9+/YNOiwRKYBMhoHmnbvvEMR9Jbnm5mZuuukmLrvsMrp06cLEiRM5+eSTybbpT0TKRyAFgJSWRYsWMXToUGbPns3hhx/O7bffztZbbx10WCJSYCoAykz0vrpb19Uycki/dq+o+e2333LttdcyduxY6urqePDBBzn22GP11C9SJVQAlJHIvrqNTc0A1Dc0MvrxhQBZFwKzZ89m6NChLFq0iBNOOIE///nPbL755nmPWURKVyZrAUkKk+fVM3jcDPqOeobB42YweV59we41ftrS1uQf0djUzPhpSzO+xtdff83IkSP50Y9+xKpVq5gyZQr33Xefkr9IFVINIAf5fCLPRLL9czPdV3fmzJmceuqpvP/++5x++ulcd911dO/ePZ8hikgZUQ0gB/l4Is9Gsv1z0+2r++WXX3LmmWey77774u7MmDGDv/71r0r+IlVOBUAOcn0iz9bIIf2orYmdnpFuX91nn32WXXfdlQkTJjBixAgWLFjAfvvtV5D4RKS8qAkoB1vX1VKfINmneyJvr0izUrpRQJPn1XPN42/yzhO3sHbxS2yzfT9effVVBg0aVJC4RKQ8qQDIwcgh/WL6ACD9E3mujhjQM2X/whNvfcxRP9im9XX3vY+ndp/j+KRzr4LFJCLlSU1AOThiQE+uPao/PetqMaBnXS3XHtW/IB3AmZg6dWpM8t/sF8Op+8kJrPOOBeuXEJHypRpAjtI9kRdDS0tLm4Xatjn/UTp0/m6t/kL1S4hI+VINoMzde++9Mcl/20POpM9FU2KSPxSuX0JEypdqAGXq22+/pUuXLm2OPbPo86L3S4hIeVINoAzNmTMnJvlPmjQJd6empqbk+iVEpHRVRQ0gnwuoBampqYnrr7+eiy++uPVYS0tLm8XbSqFfQkRKX8XXACLLNdQ3NOJ8t1xDIdfsKYS3336bQYMGcfHFF3P00UfzySef4O5auVNE2q3iC4BiL9eQb+vWrePSSy9lr732YsWKFTz66KM8+uijbLXVVkGHJiJlruKbgIq9XEM+vfbaa5xyyiksWbKE3/3ud9x4441suummQYclIhWi4msA7V1ALUhr165l+PDhDB48mLVr1/Lss89yzz33KPmLSF5VfAHQngXUgjR9+nT69+/PzTffzFlnncWiRYs46KCDgg5LRCpQxRcA5TIssqGhgWHDhnHAAQfQqVMnXn75ZW699Va6desWdGgiUqEqvg8ASn9Y5FNPPcWZZ57Jp59+yoUXXsiVV15JbW3pNlGJSGWo+BpAKVu5ciXHH388hx9+OJtvvjlvvPEG1113nZK/iBSFCoAAuDsPPPAAO++8M4899hhXX301s2fPZuDAgUGHJiJVJJACwMz+aGYLzOxtM3vezLYOIo4g1NfXc9hhh/Gb3/yG7bffnnnz5nHZZZfRuXPnoEMTkSoTVA1gvLvv5u57AFOAywOKo2jcnTvuuIOdd96Z6dOnc+ONNzJr1ix22WWXoEMTkSoVSCewu38Z9XJDwIOIo1iWLVvGsGHDeOmll9hvv/2444472H777YMOS0SqXGB9AGY21syWAyeQogZgZqeZ2Rwzm7Ny5criBZgHzc3N3HTTTfTv35+5c+cyYcIEpk+fruQvIiXB3Avz8G1mLwKJFqy5xN2fjDpvNNDV3a9Id82BAwf6nDlz8hhl4bzzzjuccsopvP766xx66KH85S9/oVcv7csrIsVnZnPdvc0ok4I1Abn7ARmeej/wDJC2ACgHTU1NjBs3jjFjxtCtWzcmTZrE8ccfr1U7RaTkBNIHYGY7uvs/wy8PA94NIo58mzt3LkOHDmXBggUcd9xx3HzzzWyxxRZBhyUiklBQM4HHmVk/oAX4CDgjoDjyYvXq1VxzzTXccMMNbLHFFjz55JMcdthhQYclIpJSUKOAjg7ivoVw7bXXtu7Qdcopp3D99ddTV1cXcFQiIulVxVpAhfDJJ5+w9dbfzV+75JJLGDNmTIARiYhkRwVAO4wYMYKbbrqp9fVnn32mtn4RKTtaCygLy5Ytw8xak//111+Puyv5i0hZUg0gQ7/97W+57777Wl83NDTQvXv3ACMSEcmNagBpLFiwADNrTf5333037q7kLyJlTzWAJNydIUOG8MILLwDQvXt3PvnkE63VLyIVQzWABGbNmkWHDh1ak//kyZNpaGhQ8heRiqIaQJTm5mb23HNPFixYAMD3v/99Fi9eTKdO+msSkcqjGkDY1KlT6dSpU2vy//vf/87SpUuV/EWkYlV9dlu3bh29e/fm888/B2CfffbhpZdeokMHlY0iUtmqOsvdf//9dO3atTX5z507l5kzZyr5i0hVqMoawJo1a+jWrVvr62OPPZYHH3xQSzaLSFWpukfdW2+9NSb5L126lIceekjJX0SqTtXUAL744gt69OjR+vqcc87hlltuCTAiEZFgVUUB0NTUFJP8ly9fru0ZRaTqVUUB0LFjR8466yy22GILrriiInaeFBHJWVUUAB06dOC2224LOgwRkZJSdZ3AIiISogJARKRKqQAQEalSKgBERKqUCgARkSqlAkBEpEqpABARqVIqAEREqpS5e9AxZMzMVgIfBR1HO20OfBF0EHlUSd+nkr4LVNb3qaTvAsF9nz7u3iP+YFkVAOXMzOa4+8Cg48iXSvo+lfRdoLK+TyV9Fyi976MmIBGRKqUCQESkSqkAKJ4JQQeQZ5X0fSrpu0BlfZ9K+i5QYt9HfQAiIlVKNQARkSqlAkBEpEqpACgiM/ujmS0ws7fN7Hkz2zromNrLzMab2bvh7/OEmdUFHVMuzOxXZrbYzFrMrGSG6WXDzA4ys6Vm9r6ZjQo6nlyY2V1m9rmZLQo6lnwws23M7CUzWxL+/+y8oGMCFQDFNt7dd3P3PYApwOVBB5SDF4Bd3X034D1gdMDx5GoRcBTwctCBtIeZdQRuAw4GdgaON7Odg40qJ/cABwUdRB6tBy5w9/8AfgScXQr/fVQAFJG7fxn1ckOgbHvg3f15d18ffvk60CvIeHLl7kvcfWnQceTgh8D77v6Bu38LPAgcHnBM7ebuLwP/DjqOfHH3T9z9rfDvXwFLgJ7BRlUlewKXEjMbC5wIrAb2CzicfBkKPBR0EFWuJ7A86vXHwKCAYpEUzGxbYADwRrCRqADIOzN7EdgqwVuXuPuT7n4JcImZjQbOAa4oaoBZSPddwudcQqh6O6mYsbVHJt+njFmCY2Vbw6xUZrYR8BgwPK5FIBAqAPLM3Q/I8NT7gWco4QIg3Xcxs98BhwL7exlMKMniv005+hjYJup1L2BFQLFIAmZWQyj5T3L3x4OOB9QHUFRmtmPUy8OAd4OKJVdmdhBwEXCYu38ddDzCbGBHM+trZp2B44CnAo5JwszMgInAEne/Meh4IjQTuIjM7DGgH9BCaFnrM9y9Ptio2sfM3ge6AP8XPvS6u58RYEg5MbMjgVuAHkAD8La7Dwk2quyY2S+APwMdgbvcfWzAIbWbmT0A7Eto+eTPgCvcfWKgQeXAzH4M/ANYSOjfP8DF7j41uKhUAIiIVC01AYmIVCkVACIiVUoFgIhIlVIBICJSpVQAiIhUKRUAUrbMbLPwyqpvm9mnZlYf9bpzHu+zZ3jeQ3s+u6mZZTQ81szGmNnwNOccZWY7tScWkXgqAKRsufv/ufse4dVV/wrcFHkdXhANC8n1//M9af/KlJsC+ZwfcRSgAkDyQgWAVBwz28HMFpnZX4G3gG3MrCHq/ePM7M7w71ua2eNmNsfM3jSzH8Vdq5bQst0nhGsWx5jZRmZ2T/j8eWb2y/C5/c1sdvi8BWa2HTAO6Bc+Ni5BrJeH1/B/Adgx6vgZ4WvNN7NHzKzWzH4C/AK4KXy9bROdl/e/UKlYKgCkUu0MTHT3AUCq2db/BfzJ3QcCxwJ3Rr/p7o3A1YTWb9nD3R8lVCA85+4/BH4G3GBmXYGzgOvDNZK9CK3FMwpYGv5szCYtZvZD4GhgD+AYQks6Rzzi7nu5++7AMuAkd/8HMBU4P3y9DxOdl91fk1QzLQYnlWqZu8/O4LwDCD2hR15vYma14cSfzM+Bg6N23eoK9AZeBS41sz7A4+7+ftR1E9kHeCx8r0Yzezrqvd3M7GqgDuhGaAOhRDI9T6QNFQBSqdZG/d5C7HLJXaN+N+CHkT6DDBlwhLsvizv+npm9BhwCvBBeLTXdipzJ1mK5FzjY3ReZ2amEdpHK5TyRNtQEJBXP3VuAVWa2Y7hD+Miot18Ezo68MLM9ElziK0JP1xHTgN9HfWZA+M/t3P19d7+Z0FLfuyX4bLSXgaPMrKuZbUxoae2IDYFPw0sI/yZFLMnOE0lLBYBUi4uA54DphNbOjzgbGBzutH0HGJbgszOA3cMdvscAVwEbmNlCM1sMXBk+7zfhDb/fBrYD7nP3z4A54XNjOoHd/U3gCWA+8Aix+xFfDrxJaO/ld6KOPwBcHOkETnGeSFpaDVREpEqpBiAiUqVUAIiIVCkVACIiVUoFgIhIlVIBICJSpVQAiIhUKRUAIiJV6v8DIeR2NavLT00AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd5xU9b3/8dcHWGBVZC2oEQSxBK+KisGQK4nRqEGjscdo/MUoit2IGBTsGlAMlngtyUVR4xV7QUUUFQxGbIBIEzFi9OJiwRsWBVdcdj+/P2ZmnZmdulPOlPfz8dgHO2fOnPMZlM/3fLu5OyIiUn06BB2AiIgEQwWAiEiVUgEgIlKlVACIiFQpFQAiIlVKBYCISJVSASAiUqVUAEhJM7MPzewzM9sw6tipZvb3qNduZmvNbI2Z1ZvZjWbWMer9v4fP2T3u2pPDx/cNv64zs7vM7FMz+8rM3jOzi5LcJ/JzYZ6/b5dwDF+G4xiR4tzjzGypma02s8/N7G9mtnHU+5ua2RPhmD8ys9/kM1YpfyoApBx0As5Lc87u7r4R8FPg18DQuPffA06MvDCzzYAfASujzrkJ2Aj4D6A7cBiwLNF9on7+lO2XSeNKYEegD7AfcKGZHZTk3FnAYHfvDmxH6O9pTNT7twHfAlsCJwB/MbNd8hyvlDEVAFIOxgN/MLO6dCe6+/uEEuMecW9NAn4dVTM4HniCUIKM2Au4391XuXuLu7/r7o/mHn5WTgT+GI5hCXAHcFKiE919ubt/EXWoGdgBIFxjOhq4zN3XuPsrwFPAbwsZvJQXFQBSDuYAfwf+kO5EM9sJ+AnwftxbK4B3gJ+HX58I3Bt3zuvAWDM72cx2zCVgMxtlZg3JfpJ8ZhNga2B+1OH5QNKndjP7sZmtBr4ilPD/HH7r+0Czu7+X6bWk+qgAkHJxOXCumfVI8v5bZrYWWEKosLg9wTn3AieaWT+gzt1fi3v/XEI1hXOAd8zsfTM7OMF9opP5kETBuPs4d69L9pPkO2wU/nN11LHVQLck5+Pur4SbgHoRqil9GHWt1XGnp7yWVB8VAFIW3H0RMAUYleSUPQklvV8Dg4ANE5zzOPAzQon+fxLco9Hdr3H3HwCbAQ8Dj5jZptH3iUvm09r9pdpaE/5z46hjGxN6uk/J3euB54AHo661cdxpGV1LqocKACknVwDDgJ6J3vSQh4HXCNUY4t//GngWOJMEBUDcuV8C1xAqSPpmG6iZXRw3WijmJ8k9VwGfANGjlXYHFmd4207A9uHf3wM6xTVlZXMtqQIqAKRshDt4HwJ+n+bUccBpZrZVgvcuBn7q7h/Gv2Fml5nZXmbW2cy6Ehp51AAsbUes18SNFor5SfHRe4FLzWyTcH/GMOCeRCea2Qlm1ttC+gBjgenh+68lVOO52sw2NLPBwOGkKfikuqgAkHJzNYmbd1q5+0JgJjAywXsrwiNiEn4UuBv4glCn8YHAIe4e/cQ+P+5p/s+JLpSDKwgNPf2I0HcY7+7PAYST/Roz6x0+d2fgVULNPbMIFVTDoq51FlALfA48AJzp7qoBSCvThjAiItVJNQARkSqlAkBEpEqpABARqVIqAEREqlSnoAPIxuabb+7bbrtt0GGIiJSVuXPnfuHubWbRl1UBsO222zJnzpygwxARKStm9lGi42oCEhGpUioARESqlAoAEZEqpQJARKRKqQAQEalSKgBERKqUCgARkSqlAkBEpITdfvvtzJo1qyDXLquJYCIi1eKtt97iBz/4AQDbbbcdy5Yty/s9VACIiJQQd6dDh9jGmbfffrsg91ITkIhIibjrrrtikv+RRx6Ju9OtW7eC3E81ABGRgLW0tNCxY8eYYw0NDXTv3r2g91UNQEQkQGPGjIlJ/qeffjruXvDkD6oBiIgE4ptvvqG2trbNsS5duhQthsBqAGa2jZm9ZGZLzGyxmZ0XVCwiIsU0bNiwmOR/zTXX4O5FTf4QbA1gPXCBu79lZt2AuWb2gru/E2BMIiIF8+mnn/K9730v5lhzc3ObUT/FElgNwN0/cfe3wr9/BSwBegYVj4hIIZlZTPK/5557Eg75LKaS6AMws22BAcAbCd47DTgNoHfv3kWNS0QkVy+++CIHHnhgzDF3DyiaWIGPAjKzjYDHgOHu/mX8++4+wd0HuvvAHj3abGkpIlKyzCwm+f/+978vmeQPAdcAzKyGUPKf5O6PBxmLiEi+3H777Zx99tkxx0op8UcEVgCYmQETgSXufmNQcYhIdZs8r57x05ayoqGRretqGTmkH0cMaH93ZCi1fefyyy/nqquuyjXMggiyCWgw8FvgZ2b2dvjnFwHGIyJVZvK8ekY/vpD6hkYcqG9oZPhDbzPg6ueZPK8+q2udeeaZbZK/u5ds8ocAawDu/gpgaU8UESmQ8dOW0tjU3Ob4qq+bGP34QoCMagPxif+5555jyJAh+QmygALvBBYRCcqKhsak7zU2NTN+2tKE702eV8/gcTPoUNMl4VN/OSR/KJFhoCIiQdi6rpb6FIVAogJi8rx6Rj22gKVjY1usr7v3ab6/6wAGj5uRc39CvvslklEBICJVa+SQfox+fGHCZiAIFRDxjtyzV5tjfS6awv0f1LDuve+uVd/QmFUzUkSkXyLX62RCBYCIVK1IQr3yqcU0NDbFvFdb05GRQ/q1vl6zZk2bdfm3Pv1Oauq2AmjzefiuGSmbxJ2oX6KxqZkLHp4fE3M+qAAQkap2xICeHDGgZ8pml/h2fgg99WciVT9DNuc3u+e9JqACQEQqXiZt6pGCIPr8c/76LPUThsWcd9/MdxjzwkdtntLNINFcr0TNSKmk6pdoT40iFRUAIlLW0iX3bNvUI+e/O+bgNu898dbHHDGgJxt225irnl7Mqq+/a/ZJlPzjm5Eyka5fItsaRSoqAESkbGWS3JO1qSd7kr7ktvt5d+KFMcd6j3wS69Ax5trjpy2NKQAiOprR4t7u0TuR8y94eD7NCUqVbGsUqagAEJGylUlyT/bEXN/Q2GbIZrIRPomunaqtvmeOQzcjn4uvCbSnRpGKCgARKVvJknD08WRt6gatx5c8fz9Hjp4Y836yTt7ItVO11UfXRIB2jemPrsEUaj6ACgARKVvJknB0M0miNnUDIo0rH113aMxne3yvF5udckfauQHp2uobm5q58qnFrFvf0u4x/dEd04WgpSBEpGyNHNKP2pqOMcfim0mOGNCTa4/qT8+6WgzoWVeLA/9+8b/bJP9tL5rC5yuWc+1R/dlkg5o294u+dvR1k2lobEraRFUKVAMQkbKVaTNJ/JN0/Lj+jQcdwyb7ntT6dB89NyB6tE+XTrHPzJHzBo+bkXJJiXj5HMmTC9UARCRrkcXQ+o56hsHjZmS9dHI+48imjXyvvfZqk/z7XDSFTfY9KWkH6zdNLa2/NzQ2JVwuOllNJFEtAvI7kicXqgGISFaKuVZNPuOIT/znj72FNzrsnLLwyHS56GQ1EWg7kqemo7F23Xr6jnqmoAu9ZUIFgIhkJdtx9UHH0bt3b5YvXx5zXqbbM2ayXHS6ZSQisa5oaKRugxrWfLO+dd2goArPCDUBiUhWMhl6WQpxNDc3Y2YxyX/hwoVZ7c2brqlmRUNjwl3FRj++sLWJ6IgBPZk16mf8a9whbNC5E00tsfcPslNYBYCIZCVZUix2u3aqOMyMTp1iGzjcnV133TWreyRq24+/V6qaSESkzyRZR3FQncIqAEQkK5kMvQwqjs7Njbw6ev+YY59//nlWT/3RIkM9a2sSp8r9duqRtiYSXUNIJqhOYfUBiEhWijFDtT1xfBg3ph8yb+uH5COKIuv+JErgL727Mu1ktGQdyREGRS88I1QAiEjWCj1DNZs49tikib59+8Ycb2xspGvXrgk/kyjRAylHFKV6yr/p13ukXLMnXfOOE0wHMKgAEJE8K9Z+tpB4o5ZUT/3Jho52remQckRRqqf8dDWidPsOp5pJXGgqAEQkb/I1RyBdITJt2jQOOuigmM+0tLQkLBCiJeuwTbf2fqJ1f+KXhUj2/VKtGRRE30k0dQKLSN5kMiImnXTDKs0sJvn/5Cc/wd3TJn/IfrRN9NIQ8esJXXtU/4wXdIteM6hjOM5srlEoqgGISN7kY45AskLk/EvHcOTUv8Ycz3Z0T7LmmLramphVOyHxonLxO43F7yeQLJmXSp9JvEBrAGZ2l5l9bmaLgoxDRPIjH3MEEhUWH113KB9GJf9jjjmmXUM7kw1hvfKwXbJ6wk9XSykXQdcA7gFuBe4NOA4RyYN0beWZiH5KX/nUeL5eMjPm/faO6Yf0Q1gzfUovleUwchVoAeDuL5vZtkHGICLZSdVBm2pRtHTNJZHr1jc0YtBmXP+Jv7+Yv908Nuf489EcUyrLYeQq6BpAWmZ2GnAahBZ1EpHgZDLKJ1FbebLPADFJ32m7QxfAE299XFJP1pnsRFYOSn4UkLtPcPeB7j6wR48eQYcjUtXaM8on2WeuenpxzBIJLe5tkn/vY0bj7iWV/KF0lsPIVcnXAESkdKRq+kjWNJRsElRkly1I/NQf2ZR98rz6pM1FQS1FUSrLYeRKBYCIZCxZ00f32pqkzTwdzWhO0nHb0rSO5TceHXPseyf9F5233K719QUPzwe+S7qlsiFNqQ7tzEbQw0AfAF4D+pnZx2Z2SpDxiEhqyZo+zEjaNJQs+X903aFtkn+fi6bEJH+AZveYIZb5mGwmIYEWAO5+vLt/z91r3L2Xu08MMh4RSS3ZjNiGqOacaCsaGtusdbP+y5Vtmnx6nf0/rU0+iUQn+EoZgVMK1AQkIllJ1PSRbLnkSNt4pMkmVVt/OpEEXykjcEpByY8CEpHSl2pUzBEDenLy99e3Sf6PvPEvdrr02YzvEUnw2Y7AiSzZ0HfUMwweN6PsZusWkmoAIpKzVKNiUi3Z3Kmmhgsenp+0nyAifuXNZPeKVyodxqVKBYCItFuq4Zi33XYbtuc5MefHL+MQOTd++YiajsaGnTuxurEpYYLPdAROpSzZUCgqAESkXVI9XR+5Z6+Yc3v16sXy5csTXiffY+qjC6Vk9Qp1GIdkVACY2a7AzkDrHmvurgXcRKpYoqfrf/1tJEeOiV3cN5PF2/I1pj6+UEpGHcYhaQsAM7sC2JdQATAVOBh4Ba3gKVLV4p+i4zt5u/bZg14njG0zk7eQs3jTbcAO5blkQ6FkUgM4BtgdmOfuJ5vZlsCdhQ1LREpdZDhmqqGdTc3OVU8vLtos3lRNOwZlu2RDoWRSADS6e4uZrTezjYHPge3SfUhEykuiJ3OAq55e3LpuT11tDVcetgtHDOjJyCH92rT1b9j/ADb/xfCYY9Fr/hS6UzbZHIGedbXMGvWznK9faTIpAOaYWR1wBzAXWAO8WdCoRKRd2tu8kujJfOQj82kBmlu+a8NvaGxi5CPz2yR+yGxCV6Fn8eZjQ5pqkrYAcPezwr/+1cyeAzZ29wWFDUukshRj9cpcmlcSPZk3tbTtvHVv4f1rD4s51vewc2n5jyFJr11XW9P6e6Fn8VbKKp3Fkkkn8HR33x/A3T+MPyYiqRVrMlIuzSuZPIEnaut395Qjb2o6GFcetkvr62I8oVfCKp3FknQpCDPramabApub2SZmtmn4Z1tg62IFKJKNUpz2X6zVK9vTvBL5+0o1ULNl3do2yX/38+5sHd4ZvUAchJZ/hlC7+/hf7d5mAlc2m69LYaWqAZwODCeU7OcS6kQH+BK4rcBxiWStVKf9F2v1ymTNK05oP974ppBLJy9k0uv/mzT5dwD+leCpf4fRz3Dlr3aPOZbNU3dQT+hBbyJTipIWAO5+M3CzmZ3r7rcUMSaRdinVaf/ZtHvnkqT226lH0oQeXxhOnlefMvl3XfMJS28bFnNsm+EPs+FGG3HtUbuVXeIs1YeDoGXSCXyLZgJLOSjVdeIzbffOJUlNnlfPY3PrUzblRBeG46ctTXpuqnH9m27YpWAJs9gTxErh4SBomgksFaNU14lPNjIFYI+rnqehMTROvoNB/MCbTJNUJjNgIVSoTJ5Xn7BQ/Pqfb7Dy8T/GHOt94VOYfddVWKjCNKgJYkE/HARNM4GlYpTyGPD4du/J8+oZ+cj8mKGWCUZdApklqWwS2ejHF1K3QU3Gm7JHK1RhGtQEsaAfDoKWyYYwje7eAmgmsJS0chphMn7a0oTj7BPJJEllk8gam5pxDxWOXzxzU5vk7+488dbHWW26kqtiTBAr5vcpF5oJLBWlXMaAZ5rYMk1SiWo/NR2NpubEhczqxiY+TDKuH4o/oUoTxIJhmSzV2npyaA5AYDOBBw4c6HPmzAni1iJ5NXjcjIQJD0Lj6FvcM0pS0R2ndRvU4E7MJiqJ9upd/udf07JubcyxJ976OO/JMZtO3USTyWprOpZsDa7cmNlcdx8YfzxpDcDM9kz1nru/la/gRKrNyCH92vQBQOipffwxu2eU9OKT5qqvm6it6chNv94j5vPR58Q39+y5555cdudTee+AzbZTV0/owUhaAzCzl8K/dgUGAvMJTQbbDXjD3X9clAijqAYglWTyvHqufGpx6yigTTao4Ypf7pJx0ktWi4hf+XLyvPqEi7dF/u1nep1sFOKa0n5Z1wDcfb/wBx8ETnP3heHXuwJ/KFSgItUi1/6KTDtO45P/6NGjueaaa7K+TiFik2Bl0gm8UyT5A7j7IjPbIx83N7ODgJuBjsCd7j4uH9cVqQbpOk7NrM17iWr8heiA1bDL8pDJMNAlZnanme1rZj81szuAJbne2Mw6ElpT6GBCk8yON7Odc72uSLVINrRx+H7btkn+Tz31VNK9eQsxRFLDLstDJjWAk4EzgfPCr18G/pKHe/8QeN/dP4DWpqbDgXfycG2Ripeo4/TV0ftz7JjY89KN9CtEB6w6dctDVsNA83pjs2OAg9z91PDr3wKD3P2cZJ9RJ7BIYitWrKBnz9jk+s9//pMddtgB0EqY1S7rTuAiaNtASdv1qczsNOA0gN69exc6JpGCKVQSTtfWn+mQTBUS1SeTPoBC+RjYJup1L2BF/EnuPsHdB7r7wB49ehQtOJF8iiTh+oZGnO+ScC4b1syaNatN8l+7dm2bJp9MNqQpRHxS+tIWAGb2q0yOtcNsYEcz62tmnYHjgKfycF2RknPV04vzuiuYmfHjH8dOxXF3NthggzbnZjIks1i7lklpyaQGMDrDY1lx9/XAOcA0QqOKHnb3xbleV6TUTJ5XH7PyZrT6hsastq68/fbb2zz1t7S0pOzoTTb0Mvq4xu1Xp1RLQRwM/ALoaWb/FfXWxsD6fNzc3acS2mNApGKle4rOdOmFTMf1x8tkmexMxu2rj6DypKoBrADmAN8QWgU08vMUMKTwoYlUhkyeolM1txx33HFtkr+7J0z+kU3e+456prVmkcky2enG7auPoDKlWgpiPjDfzO539yYAM9sE2MbdVxUrQJFyl+zpOl6igiI+8W+55ZZ8+umnCT+fbrRPqqf1dOP2taViZcpkGOgLZnZY+Ny3gZVmNtPdRxQ2NJFg5LupI1ETTCLRzS0bbbQRa9fGLtm897XTWRHuM0gUU65JOlUh0Z4+AjUZlb5MCoDu7v6lmZ0K3O3uV5hZIPsBiBRaIfamjX6KTlUTWLV2XcKVO/f75a/4ZPehrZ9NFlMhO3LT9RHEJ/v9durBY3PrC7bHr+RHJqOAOpnZ94BjgbabhIpUkPYOh0zU9h7tiAE9mTXqZwlnP0YsGfOLNsnf3Vm39xkZxZTJaJ/2StVHkKh/YNLr/6thpWUgkwLgakJDNZe5+2wz2w74Z2HDEime6OSd7Ak9XVNHph2kiZKxu7fZqOWBBx5o7eTN9Mm+kAuwpepITlRoJhubpGGlpSVtE5C7PwI8EvX6A+DoQgYlUiyJtiJMJNVTdDZt7yOH9GP4Q2+3vo5P/ADbXjSF4447JObemSytXOgF2JL1EWST1LUcdGnJZCbw981supktCr/ezcwuLXxoIoWXKHnHS/cUnW3be8cORkvTN22S//dO/i/6XDSlTZLM5sk+0tR0069DW3ac/9DbWU00a49kST2+uUvLQZeeTJqA7iA087cJILwh/HGFDEqkWFI9vSYbMx8v07b3yfPqueDh+Xxw7SEsv/GYmPf6XDSFzltslzBJZjKOP/4+2Y7ZT9eHkUqyAuqEH/XOOGYJRiajgDZw9zfjxiPnZSawSNCSNa9sskEN8y7/eUbXyGSm7eR59Qy/43k++svQmM/2Ouc+Om5YB4SSZLImm2y2j8x2OGiuI5+09n/5yqQA+MLMtifcrxNex/+TgkYlUiQjh/Rj5KPzaWqO7bZc8816Lp28kJfeXZk2qWWSABNtyt7nou8G1eVzs/Rsm6TyMckr1/2NJRiZFABnAxOAncysHvgXcEJBoxIpkiMG9OTKpxbT0Bi7WFtTizPp9f9tHc2S7qk4WQKcN28ee+65Z8yx3iOfxDp812SSz7bxyfPq6WBGc5K9fxPRQnDVK5MCwN39ADPbEOjg7l+ZWd9CByZSLKvjkn9EfApN91QcPxnq1dH7x7xvnbrQ+4LH2nwuX23jkaacRMk/VSGjDdyrVyadwI8BuPtad/8qfOzRwoUkUlzZJLpkT8XRHa9rls5qk/z3uGpawuS/yQY1eWs6STaiqaNZykJGG7hXr1TLQe8E7AJ0N7Ojot7aGOha6MBEiiXTtXogeWERSb7xQzvrdtyLVe+9yeR59W36Gmo6Glf8cpfcgo+SrHBqcc9pITipXKmagPoBhwJ1wC+jjn8FDCtkUCL5ksmCZJHXFzw8P2HzSUSqp+Klf3+c/5t2W8yxPhdNaR0LX4wkm0tTjjpxq1Oq5aCfBJ40s/9099eKGJNIXmQzvPGIAT05P2qGbrxUQzTjl2ze+D9/zSb7/BaITb6FTrKZDEcViZa2D0DJX8pVtgu7JXtSjgzRjE/ew4cPb5P8+1w0pTX5Fzv5ZjthTCSTUUAiZSnb4Y3ZPEHHJ/5nn32Wb7bsH3g7uppyJBsqAKRiZdsmnkk7/U9+8hNeeeWVmM9Fb82o5CvlJNUooJQ7frn7jfkPRyR/2tMmnuwJuqWlhY4dY4dKLlq0iF12yd8oHpFiS1UD6Bb+sx+wF6HN4CE0IujlQgYlkg/5GnnTsWNHWlpaYo4l2pBdpNxYuv+Rzex54OjIJDAz6wY84u4HFSG+GAMHDvQ5c+YU+7ZSpb7++ms23HDDmGOfffYZW2yxRUARibSPmc1194HxxzPpA+gNfBv1+ltg2zzFJVKS4jt5QU/9UnkyKQD+B3jTzJ4gtDzKkcC9BY1KJCBffPEFPXr0iDnW2NhI166a/C6VJ5N5AGOBk4FVQANwsrtfk8tNzexXZrbYzFrMrE21RCQIZhaT/A844ADcXclfKlamw0A3AL5097vNrIeZ9XX3f+Vw30XAUcB/53ANkbyor6+nV6/Y9fpbWloSNgOJVJJM9gS+AriI0LaQADXAfbnc1N2XuHvi6ZgiRWRmMcl/+PDhuLuSv1SFTGoARwIDgLcA3H1FeCRQUZjZacBpAL179y7WbaXCLVy4kN122y3mmDp5pdpksh/Atx76lxHZEnLDNOcTPu9FM1uU4OfwbAJ09wnuPtDdB8Z3zom0h5nFJP+nn35ayV+qUiY1gIfN7L+BOjMbBgwF7kz3IXc/INfgRPJpxowZ7L9/7EYtSvxSzdIWAO5+vZkdCHxJaFbw5e7+QsEjE8mj+Db9N998k7322iugaERKQyadwNe5+wvuPtLd/+DuL5jZdbnc1MyONLOPgf8EnjGzablcTySZN998s03yd3fqO23N4HEz6DvqGQaPm8HkefUBRSgSnEz6AA5McOzgXG7q7k+4ey937+LuW7r7kFyuJ5JI586dGTRoUOvrZcuW4e4x+/c6320Uo0JAqk3SAsDMzjSzhcBOZrYg6udfwMLihSiSneeeew4zo6mpCYARI0bg7my33XZA9hvFiFSqVH0A9wPPAtcCo6KOf+Xu/y5oVCLt4O7cddddnHrqqa3HvvrqKzbaaKOY87LdKEakUiWtAbj7anf/ELgZ+Le7f+TuHwFNZjYo2edEgvDRRx9x8MEHtyb/G264AXdvk/wh+YYwmWyeLlJJMukD+AuwJur12vAxkcC1tLRw6623sssuu/DKK69w66230tzczIgRyfczGjmkH7U1sZu7aPN0qUaZzAMwjxos7e4tZqatJCVwS5cu5dRTT+WVV17h5z//ORMmTKBPnz5pP5evjWJEyl0mifwDM/s93z31nwV8ULiQRFJbv349N9xwA1dccQW1tbXcfffd/O53v8tq/R5tni6SWRPQGcDeQD3wMTCI8No8IsU2f/58Bg0axKhRozjkkENYsmQJJ510khZvE2mHTGYCfw4cV4RYpAJMnldfkKaVdevWMWbMGMaNG8emm27KI488wjHHHJOHiEWqV9ICwMwudPc/mdkthBeCi+buvy9oZFJ2IhOsImPsIxOsgJwKgddff52hQ4eyZMkSTjzxRG688UY222yzvMQsUs1SNQEtCf85B5ib4EckRr4nWK1du5bzzz+fvffemzVr1jB16lT+9re/KfmL5EnSGoC7Px3+82/FC0fKWT4nWM2YMYNhw4bxwQcfcOaZZzJu3Dg23njjXEMUkSipmoCeJkHTT4S7H1aQiKRsbV1XS32CZJ/NBKvVq1fzhz/8gTvvvJMddtiBmTNnss8+++QzTBEJS9UEdD1wA/AvoBG4I/yzhtCeviIxcp1g9fTTT7Pzzjtz1113MXLkSBYsWKDkL1JAqZqAZgKY2R/dPfpf4dNm9nLBI5Oy094JVitXruS8887jgQceoH///kyePFlr9YsUQSYTwXqY2Xbu/gGAmfUFtDejJJTNBCt356GHHuLcc89l9erVXHXVVYwaNYrOnTsXOEoRgcwKgPOBv5tZZPbvtsDpBYtIKlb0HIHNbA0dXruL2TOf54c//CETJ05k1113DTpEkaqSyUSw58xsR2Cn8KF33X1dYcOSShOZI/D1t018NedpPpp1PzSv56TzL+PO8VfQsWPH9BcRkbxKWwCY2QbACKCPuw8zsx3NrJ+7Tyl8eFIpxk9byudzpvLv524BoMvWO7HZof8V2qEAABBrSURBVCN4b4vtlfxFApJJE9DdhCZ+/Wf49cfAI4AKAMnIunXreHX0/jHHtvx/f8KsgzZhEQlQJovBbe/ufwKaANy9EdDKW5KRsWPH0rVr19bXmx8+ij4XTcEs9L+eNmERCU4mNYBvzayW8KQwM9seUB+ApLR69Wrq6upijvW7ZCrfrG9pfa1NWESClUkN4ArgOWAbM5sETAcuLGhUUtYeeOCBmOQ/ffp03J1xR+9Gz7paDOhZV8u1R/XXmvwiAbKozb7avhlaZL0X8DXwI0JNP6+7+xfFCS/WwIEDfc6cOUHcWjLwzTffcNVVVzFu3DgA6urqWLVqVcBRiYiZzXX3gfHHU9YAwltBTnb3/3P3Z9x9SlDJX0rbK6+8wu677864ceMYOnQo//73v5X8RUpcJk1Ar5uZ5uVLQmvWrOHcc89ln3324dtvv+X5559n4sSJbLLJJkGHJiJpZFIA7EeoEFhmZgvMbKGZLcjlpmY23szeDV/vCTOrS/8pKTXPP/88u+66K7fddhvnnnsuCxcu5MADDww6LBHJUCajgA4uwH1fAEa7+3ozuw4YDVxUgPtIAaxatYoRI0Zwzz330K9fP/7xj38wePDgoMMSkSyl2g+gK6EN4XcAFgIT3X19Pm7q7s9HvXwd0OauZeKJJ57grLPOYuXKlVx88cVcdtllMeP8RaR8pGoC+hswkFDyP5jQ3gCFMBR4NtmbZnaamc0xszkrV64sUAiSzmeffcaxxx7LUUcdxVZbbcXs2bPbTPISkfKSqgloZ3fvD2BmE4E3s7mwmb0IbJXgrUvc/cnwOZcA64FJya7j7hOACRAaBppNDJI7d2fSpEmcd955rFmzhrFjxzJy5EhqamqCDk1EcpSqAGiK/BJuq8/qwu5+QKr3zex3wKHA/p5qMoIEZvny5ZxxxhlMnTqVvffem4kTJ7LTTjul/6CIlIVUBcDuZvZl+HcDasOvjdAUgXbv0G1mBxHq9P2pu3/d3utIYbS0tDBhwgQuvPBCmpubufnmmzn77LO1aqdIhUm1JWQh/7XfCnQBXgjXLF539zMKeD/J0Pvvv8+pp57KzJkzOeCAA5gwYQJ9+/YNOiwRKYBMhoHmnbvvEMR9Jbnm5mZuuukmLrvsMrp06cLEiRM5+eSTybbpT0TKRyAFgJSWRYsWMXToUGbPns3hhx/O7bffztZbbx10WCJSYCoAykz0vrpb19Uycki/dq+o+e2333LttdcyduxY6urqePDBBzn22GP11C9SJVQAlJHIvrqNTc0A1Dc0MvrxhQBZFwKzZ89m6NChLFq0iBNOOIE///nPbL755nmPWURKVyZrAUkKk+fVM3jcDPqOeobB42YweV59we41ftrS1uQf0djUzPhpSzO+xtdff83IkSP50Y9+xKpVq5gyZQr33Xefkr9IFVINIAf5fCLPRLL9czPdV3fmzJmceuqpvP/++5x++ulcd911dO/ePZ8hikgZUQ0gB/l4Is9Gsv1z0+2r++WXX3LmmWey77774u7MmDGDv/71r0r+IlVOBUAOcn0iz9bIIf2orYmdnpFuX91nn32WXXfdlQkTJjBixAgWLFjAfvvtV5D4RKS8qAkoB1vX1VKfINmneyJvr0izUrpRQJPn1XPN42/yzhO3sHbxS2yzfT9effVVBg0aVJC4RKQ8qQDIwcgh/WL6ACD9E3mujhjQM2X/whNvfcxRP9im9XX3vY+ndp/j+KRzr4LFJCLlSU1AOThiQE+uPao/PetqMaBnXS3XHtW/IB3AmZg6dWpM8t/sF8Op+8kJrPOOBeuXEJHypRpAjtI9kRdDS0tLm4Xatjn/UTp0/m6t/kL1S4hI+VINoMzde++9Mcl/20POpM9FU2KSPxSuX0JEypdqAGXq22+/pUuXLm2OPbPo86L3S4hIeVINoAzNmTMnJvlPmjQJd6empqbk+iVEpHRVRQ0gnwuoBampqYnrr7+eiy++uPVYS0tLm8XbSqFfQkRKX8XXACLLNdQ3NOJ8t1xDIdfsKYS3336bQYMGcfHFF3P00UfzySef4O5auVNE2q3iC4BiL9eQb+vWrePSSy9lr732YsWKFTz66KM8+uijbLXVVkGHJiJlruKbgIq9XEM+vfbaa5xyyiksWbKE3/3ud9x4441suummQYclIhWi4msA7V1ALUhr165l+PDhDB48mLVr1/Lss89yzz33KPmLSF5VfAHQngXUgjR9+nT69+/PzTffzFlnncWiRYs46KCDgg5LRCpQxRcA5TIssqGhgWHDhnHAAQfQqVMnXn75ZW699Va6desWdGgiUqEqvg8ASn9Y5FNPPcWZZ57Jp59+yoUXXsiVV15JbW3pNlGJSGWo+BpAKVu5ciXHH388hx9+OJtvvjlvvPEG1113nZK/iBSFCoAAuDsPPPAAO++8M4899hhXX301s2fPZuDAgUGHJiJVJJACwMz+aGYLzOxtM3vezLYOIo4g1NfXc9hhh/Gb3/yG7bffnnnz5nHZZZfRuXPnoEMTkSoTVA1gvLvv5u57AFOAywOKo2jcnTvuuIOdd96Z6dOnc+ONNzJr1ix22WWXoEMTkSoVSCewu38Z9XJDwIOIo1iWLVvGsGHDeOmll9hvv/2444472H777YMOS0SqXGB9AGY21syWAyeQogZgZqeZ2Rwzm7Ny5criBZgHzc3N3HTTTfTv35+5c+cyYcIEpk+fruQvIiXB3Avz8G1mLwKJFqy5xN2fjDpvNNDV3a9Id82BAwf6nDlz8hhl4bzzzjuccsopvP766xx66KH85S9/oVcv7csrIsVnZnPdvc0ok4I1Abn7ARmeej/wDJC2ACgHTU1NjBs3jjFjxtCtWzcmTZrE8ccfr1U7RaTkBNIHYGY7uvs/wy8PA94NIo58mzt3LkOHDmXBggUcd9xx3HzzzWyxxRZBhyUiklBQM4HHmVk/oAX4CDgjoDjyYvXq1VxzzTXccMMNbLHFFjz55JMcdthhQYclIpJSUKOAjg7ivoVw7bXXtu7Qdcopp3D99ddTV1cXcFQiIulVxVpAhfDJJ5+w9dbfzV+75JJLGDNmTIARiYhkRwVAO4wYMYKbbrqp9fVnn32mtn4RKTtaCygLy5Ytw8xak//111+Puyv5i0hZUg0gQ7/97W+57777Wl83NDTQvXv3ACMSEcmNagBpLFiwADNrTf5333037q7kLyJlTzWAJNydIUOG8MILLwDQvXt3PvnkE63VLyIVQzWABGbNmkWHDh1ak//kyZNpaGhQ8heRiqIaQJTm5mb23HNPFixYAMD3v/99Fi9eTKdO+msSkcqjGkDY1KlT6dSpU2vy//vf/87SpUuV/EWkYlV9dlu3bh29e/fm888/B2CfffbhpZdeokMHlY0iUtmqOsvdf//9dO3atTX5z507l5kzZyr5i0hVqMoawJo1a+jWrVvr62OPPZYHH3xQSzaLSFWpukfdW2+9NSb5L126lIceekjJX0SqTtXUAL744gt69OjR+vqcc87hlltuCTAiEZFgVUUB0NTUFJP8ly9fru0ZRaTqVUUB0LFjR8466yy22GILrriiInaeFBHJWVUUAB06dOC2224LOgwRkZJSdZ3AIiISogJARKRKqQAQEalSKgBERKqUCgARkSqlAkBEpEqpABARqVIqAEREqpS5e9AxZMzMVgIfBR1HO20OfBF0EHlUSd+nkr4LVNb3qaTvAsF9nz7u3iP+YFkVAOXMzOa4+8Cg48iXSvo+lfRdoLK+TyV9Fyi976MmIBGRKqUCQESkSqkAKJ4JQQeQZ5X0fSrpu0BlfZ9K+i5QYt9HfQAiIlVKNQARkSqlAkBEpEqpACgiM/ujmS0ws7fN7Hkz2zromNrLzMab2bvh7/OEmdUFHVMuzOxXZrbYzFrMrGSG6WXDzA4ys6Vm9r6ZjQo6nlyY2V1m9rmZLQo6lnwws23M7CUzWxL+/+y8oGMCFQDFNt7dd3P3PYApwOVBB5SDF4Bd3X034D1gdMDx5GoRcBTwctCBtIeZdQRuAw4GdgaON7Odg40qJ/cABwUdRB6tBy5w9/8AfgScXQr/fVQAFJG7fxn1ckOgbHvg3f15d18ffvk60CvIeHLl7kvcfWnQceTgh8D77v6Bu38LPAgcHnBM7ebuLwP/DjqOfHH3T9z9rfDvXwFLgJ7BRlUlewKXEjMbC5wIrAb2CzicfBkKPBR0EFWuJ7A86vXHwKCAYpEUzGxbYADwRrCRqADIOzN7EdgqwVuXuPuT7n4JcImZjQbOAa4oaoBZSPddwudcQqh6O6mYsbVHJt+njFmCY2Vbw6xUZrYR8BgwPK5FIBAqAPLM3Q/I8NT7gWco4QIg3Xcxs98BhwL7exlMKMniv005+hjYJup1L2BFQLFIAmZWQyj5T3L3x4OOB9QHUFRmtmPUy8OAd4OKJVdmdhBwEXCYu38ddDzCbGBHM+trZp2B44CnAo5JwszMgInAEne/Meh4IjQTuIjM7DGgH9BCaFnrM9y9Ptio2sfM3ge6AP8XPvS6u58RYEg5MbMjgVuAHkAD8La7Dwk2quyY2S+APwMdgbvcfWzAIbWbmT0A7Eto+eTPgCvcfWKgQeXAzH4M/ANYSOjfP8DF7j41uKhUAIiIVC01AYmIVCkVACIiVUoFgIhIlVIBICJSpVQAiIhUKRUAUrbMbLPwyqpvm9mnZlYf9bpzHu+zZ3jeQ3s+u6mZZTQ81szGmNnwNOccZWY7tScWkXgqAKRsufv/ufse4dVV/wrcFHkdXhANC8n1//M9af/KlJsC+ZwfcRSgAkDyQgWAVBwz28HMFpnZX4G3gG3MrCHq/ePM7M7w71ua2eNmNsfM3jSzH8Vdq5bQst0nhGsWx5jZRmZ2T/j8eWb2y/C5/c1sdvi8BWa2HTAO6Bc+Ni5BrJeH1/B/Adgx6vgZ4WvNN7NHzKzWzH4C/AK4KXy9bROdl/e/UKlYKgCkUu0MTHT3AUCq2db/BfzJ3QcCxwJ3Rr/p7o3A1YTWb9nD3R8lVCA85+4/BH4G3GBmXYGzgOvDNZK9CK3FMwpYGv5szCYtZvZD4GhgD+AYQks6Rzzi7nu5++7AMuAkd/8HMBU4P3y9DxOdl91fk1QzLQYnlWqZu8/O4LwDCD2hR15vYma14cSfzM+Bg6N23eoK9AZeBS41sz7A4+7+ftR1E9kHeCx8r0Yzezrqvd3M7GqgDuhGaAOhRDI9T6QNFQBSqdZG/d5C7HLJXaN+N+CHkT6DDBlwhLsvizv+npm9BhwCvBBeLTXdipzJ1mK5FzjY3ReZ2amEdpHK5TyRNtQEJBXP3VuAVWa2Y7hD+Miot18Ezo68MLM9ElziK0JP1xHTgN9HfWZA+M/t3P19d7+Z0FLfuyX4bLSXgaPMrKuZbUxoae2IDYFPw0sI/yZFLMnOE0lLBYBUi4uA54DphNbOjzgbGBzutH0HGJbgszOA3cMdvscAVwEbmNlCM1sMXBk+7zfhDb/fBrYD7nP3z4A54XNjOoHd/U3gCWA+8Aix+xFfDrxJaO/ld6KOPwBcHOkETnGeSFpaDVREpEqpBiAiUqVUAIiIVCkVACIiVUoFgIhIlVIBICJSpVQAiIhUKRUAIiJV6v8DIeR2NavLT00AAAAASUVORK5CYII=\n", "text/plain": [ "
                          " ] @@ -649,7 +609,8 @@ "dataframe = pp.DataFrame(pp.var_process(links_coeffs, T=T)[0])\n", "pred = Prediction(dataframe=dataframe,\n", " cond_ind_test=GPDC(), #CMIknn ParCorr\n", - " prediction_model = sklearn.gaussian_process.GaussianProcessRegressor(alpha=0., kernel=sklearn.gaussian_process.kernels.RBF() +\n", + " prediction_model = sklearn.gaussian_process.GaussianProcessRegressor(alpha=0., \n", + " kernel=sklearn.gaussian_process.kernels.RBF() +\n", " sklearn.gaussian_process.kernels.WhiteKernel()),\n", " # prediction_model = sklearn.neighbors.KNeighborsRegressor(),\n", " data_transform=sklearn.preprocessing.StandardScaler(),\n", @@ -675,7 +636,8 @@ "plt.plot(true_data, true_data, 'k-')\n", "plt.title(r\"NRMSE = %.2f\" % (np.abs(true_data - predicted).mean()/true_data.std()))\n", "plt.xlabel('True test data')\n", - "plt.ylabel('Predicted test data')\n" + "plt.ylabel('Predicted test data')\n", + "plt.show()" ] }, {