forked from as4456/Leo_Krippner_SSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_read.py
executable file
·389 lines (306 loc) · 14.6 KB
/
data_read.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import openpyxl
import string
import datetime
from scipy import interpolate
import calendar
import csv
import os
import pandas as pd
import numpy as np
def write_to_csv(idx,idx1,val,val1,sub_datenum,name):
daily_values_data=map(list,zip(*val))
daily_values_data1=map(list,zip(*val1))
daily_values_data = list(daily_values_data)
daily_values_data1 = list(daily_values_data1)
daily_date_index=list(idx)
daily_date_index[:] = [x - sub_datenum for x in idx]
daily_date_index = list(daily_date_index)
daily_date_index1=list(idx1)
daily_date_index1[:] = [x - sub_datenum for x in idx1]
daily_date_index1 = list(daily_date_index1)
# daily_date_index1 is from fri 12/30/1994 to fri 12/30/2005
# daily_date_index is from tues 1/31/2006 to tues 11/30/2021
for i in range(len(daily_values_data)):
daily_values_data[i].insert(0,daily_date_index[i])
for i in range(len(daily_values_data1)):
daily_values_data1[i].insert(0,daily_date_index1[i])
with open(name+'.csv', 'w') as csvfile:
spamwriter = csv.writer(csvfile, delimiter=',',quotechar='|', quoting=csv.QUOTE_NONNUMERIC)
spamwriter.writerows(daily_values_data1)
spamwriter.writerows(daily_values_data)
print(f"Export for {name}.csv finished. ")
def filter_data_index(a,thr,method):
if method == 'ge':
index=list([idx for idx,i in enumerate(a) if i<thr])
elif method == 'le':
index=list([idx for idx,i in enumerate(a) if i>thr])
elif method == 'l':
index=list([idx for idx,i in enumerate(a) if i>=thr])
elif method == 'g':
index=list([idx for idx,i in enumerate(a) if i<=thr])
return index
def filter_data(a,index,dim):
b=list(a)
if dim > 1:
for i in range(dim):
b[i] = list(a[i])
for idx in reversed(index):
del b[i][idx]
else:
for idx in reversed(index):
del b[idx]
return b
list1=list(string.ascii_uppercase)
list2=['A'+x for x in list1]
list1 = list1+list2
datelist = list1[0:36:3]
valuelist = list1[1:36:3]
Country='US'# US, EA, JP, UK.
CurveType='OIS'
PathName=os.getcwd()
ExcelName=os.path.join(PathName, './Data_Files/A_'+Country+'_All_Data_Bloomberg.xlsx')
if CurveType == 'OIS':
ExcelSheetName='D. Live OIS data'
if CurveType == 'Govt':
ExcelSheetName='D. Live Govt data';
Maturities=[0.25,0.5,1,2,3,4,5,7,10,15,20,30]
wb=openpyxl.load_workbook(ExcelName)
sheet_names=wb.sheetnames
sheet=wb['D. Live OIS data']
datenum = [[] for i in range(len(datelist))]
# ========== remove rows from start of OIS data =============
for z in range(1, 10):
zb = sheet.cell(row=z, column=2).value
if zb == 'PX_MID':
headerindex = z
sheet.delete_rows(headerindex+1)
kb = sheet.cell(row=headerindex+1,column=1).value
kbdayofw = kb.weekday()
while kbdayofw != 3: # change this to alter day of data reporting. week starts on monday at 0
sheet.delete_rows(headerindex)
kb = sheet.cell(row=headerindex+1,column=1).value
kbdayofw = kb.weekday()
# =========== end of data splicing correction ===============
values_data=[[] for i in range(len(datelist))]
for col_num in range(len(datelist)):
DateGen=sheet[datelist[col_num]+'8':datelist[col_num]+'8000']
for i in DateGen:
if i[0].value is not None:
a=i[0].value.date().toordinal()
datenum[col_num].append(a)
ValueGen=sheet[valuelist[col_num]+'8':valuelist[col_num]+'8000']
for i in ValueGen:
if i[0].value is not None:
a=i[0].value
values_data[col_num].append(a)
common_datenum=list(datenum[0])
for i in range(1,len(datenum)):
common_datenum = list(set(common_datenum)&set(datenum[i]))
common_datenum.sort()
for i in range(len(datenum)):
diff_dates=list(set(common_datenum) ^ set(datenum[i]))
for j in diff_dates:
index=datenum[i].index(j)
print(str(j)+' date num at '+str(index)+'removed')
value_to_remove = values_data[i][index]
values_data[i].remove(value_to_remove)
ref_friday=datetime.date(2013,5,24).toordinal()
weeks_to_step_back = (ref_friday - common_datenum[0])/7
first_friday = ref_friday - (weeks_to_step_back*7)
week_date_index = range(int(first_friday),common_datenum[-1],7)
# week_date_index shows 01-03-2005 to 11-16-2020
week_values_data=[[] for i in range(len(datelist))]
for i in range(len(datelist)):
f=interpolate.interp1d(common_datenum,values_data[i],'zero',bounds_error=False)
week_values_data[i] = list(f(week_date_index))
month_date_index=[]
first_date=datetime.date.fromordinal(common_datenum[0])
last_date=datetime.date.fromordinal(common_datenum[-1])
first_year = first_date.year
last_year = last_date.year
for i in range(first_date.month,13,1):
(first_week_day,last_day_of_month)=calendar.monthrange(first_year,i)
month_date_index.append(datetime.date(first_year,i,last_day_of_month).toordinal())
for i in range(first_year+1,last_year,1):
for month in range(1,13,1):
(first_week_day,last_day_of_month)=calendar.monthrange(i,month)
month_date_index.append(datetime.date(i,month,last_day_of_month).toordinal())
for i in range(1,last_date.month+1,1):
(first_week_day,last_day_of_month)=calendar.monthrange(last_year,i)
month_date_index.append(datetime.date(last_year,i,last_day_of_month).toordinal())
month_values_data=[[] for i in range(len(datelist))]
for i in range(len(datelist)):
f=interpolate.interp1d(common_datenum,values_data[i],'zero',bounds_error=False)
month_values_data[i] = list(f(month_date_index))
BusinessDayTimestamp = float(common_datenum[-1]-common_datenum[0]+1)/(len(common_datenum)*365.25)
#GOVT
if Country == 'EA':
wbG=openpyxl.load_workbook(os.path.join(PathName, './Data_Files/A_GE_All_Data_Bloomberg.xlsx'))
sheet=wbG['D. Live Govt data']
datenumG = [[] for i in range(len(datelist))]
values_dataG=[[] for i in range(len(datelist))]
for col_num in range(len(datelist)):
DateGen=sheet[datelist[col_num]+'8':datelist[col_num]+'8000']
for i in DateGen:
if i[0].value is not None:
a=i[0].value.date().toordinal()
datenumG[col_num].append(a)
ValueGen=sheet[valuelist[col_num]+'8':valuelist[col_num]+'8000']
for i in ValueGen:
if i[0].value is not None:
a=i[0].value
values_dataG[col_num].append(a)
common_datenumG=list(datenumG[0])
for i in range(1,len(datenumG)):
common_datenumG = list(set(common_datenumG)&set(datenumG[i]))
common_datenumG.sort()
for i in range(len(datenumG)):
diff_dates=list(set(common_datenumG) ^ set(datenumG[i]))
for j in diff_dates:
index=datenumG[i].index(j)
print(str(j)+' date num at '+str(index)+'removed')
value_to_remove = values_dataG[i][index]
values_dataG[i].remove(value_to_remove)
euto_date_num = datetime.date(1999,1,1).toordinal()
index_to_del=filter_data_index(common_datenumG,euto_date_num,'l')
pre_euro_ge_index=filter_data(common_datenumG,index_to_del,1)
pre_euro_ge_vlues=filter_data(values_dataG,index_to_del,len(values_dataG))
index_to_del=filter_data_index(common_datenumG,euto_date_num,'ge')
post_euro_ge_index=filter_data(common_datenumG,index_to_del,1)
post_euro_ge_vlues=filter_data(values_dataG,index_to_del,len(values_dataG))
wbF=openpyxl.load_workbook(os.path.join(PathName, './Data_Files/A_FR_All_Data_Bloomberg.xlsx'))
sheet=wbG['D. Live Govt data']
datenumF = [[] for i in range(len(datelist))]
values_dataF=[[] for i in range(len(datelist))]
for col_num in range(len(datelist)):
DateGen=sheet[datelist[col_num]+'8':datelist[col_num]+'8000']
for i in DateGen:
if i[0].value is not None:
a=i[0].value.date().toordinal()
datenumF[col_num].append(a)
ValueGen=sheet[valuelist[col_num]+'8':valuelist[col_num]+'8000']
for i in ValueGen:
if i[0].value is not None:
a=i[0].value
values_dataF[col_num].append(a)
common_datenumF=list(datenumF[0])
for i in range(1,len(datenumF)):
common_datenumF = list(set(common_datenumF)&set(datenumF[i]))
common_datenumF.sort()
for i in range(len(datenumF)):
diff_dates=list(set(common_datenumF) ^ set(datenumF[i]))
for j in diff_dates:
index=datenumG[i].index(j)
print(str(j)+' date num at '+str(index)+'removed')
value_to_remove = values_dataF[i][index]
values_dataF[i].remove(value_to_remove)
euto_date_num = datetime.date(1999,1,1).toordinal()
index_to_del=filter_data_index(common_datenumF,euto_date_num,'ge')
post_euro_fr_index=filter_data(common_datenumF,index_to_del,1)
post_euro_fr_vlues=filter_data(values_dataF,index_to_del,len(values_dataF))
post_inter_index=list(set(post_euro_ge_index)&set(post_euro_fr_index))
post_inter_index.sort()
for i in range(len(post_euro_fr_vlues)):
diff_dates=list(set(post_inter_index) ^ set(post_euro_fr_index))
for j in diff_dates:
index=post_euro_fr_index.index(j)
print(str(j)+' date num at '+str(index)+'removed')
value_to_remove = post_euro_fr_vlues[i][index]
post_euro_fr_vlues[i].remove(value_to_remove)
for i in range(len(post_euro_ge_vlues)):
diff_dates=list(set(post_inter_index) ^ set(post_euro_ge_index))
for j in diff_dates:
index=post_euro_ge_index.index(j)
print(str(j)+' date num at '+str(index)+'removed')
value_to_remove = post_euro_ge_vlues[i][index]
post_euro_ge_vlues[i].remove(value_to_remove)
common_datenum1 = pre_euro_ge_index + post_inter_index
values_data1=[[] for i in range(len(post_euro_ge_vlues))]
for i in range(len(post_euro_ge_vlues)):
post_euro_sum_values = [x+y for x,y in zip(post_euro_fr_vlues[i],post_euro_ge_vlues[i])]
post_euro_avg_values=[float(x)*0.5 for x in post_euro_sum_values]
values_data1[i] = pre_euro_ge_vlues[i] + post_euro_avg_values
else:
sheet=wb['D. Live Govt data']
datenum1 = [[] for i in range(len(datelist))]
values_data1=[[] for i in range(len(datelist))]
for col_num in range(len(datelist)):
DateGen=sheet[datelist[col_num]+'8':datelist[col_num]+'8000']
for i in DateGen:
if i[0].value is not None:
a=i[0].value.date().toordinal()
datenum1[col_num].append(a)
ValueGen=sheet[valuelist[col_num]+'8':valuelist[col_num]+'8000']
for i in ValueGen:
if i[0].value is not None:
a=i[0].value
values_data1[col_num].append(a)
common_datenum1=list(datenum1[0])
for i in range(1,len(datenum1)):
common_datenum1 = list(set(common_datenum1)&set(datenum1[i]))
common_datenum1.sort()
for i in range(len(datenum1)):
diff_dates=list(set(common_datenum1) ^ set(datenum1[i]))
for j in diff_dates:
index=datenum1[i].index(j)
print(str(j)+' date num at '+str(index)+'removed')
value_to_remove = values_data1[i][index]
values_data1[i].remove(value_to_remove)
ref_friday=datetime.date(2013,5,24).toordinal()
weeks_to_step_back = (ref_friday - common_datenum1[0])/7
first_friday = ref_friday - (weeks_to_step_back*7)
week_date_index1 = range(int(first_friday),common_datenum1[-1],7)
week_values_data1=[[] for i in range(len(datelist))]
for i in range(len(datelist)):
f=interpolate.interp1d(common_datenum1,values_data1[i],'zero',bounds_error=False)
week_values_data1[i] = list(f(week_date_index1))
month_date_index1=[]
first_date=datetime.date.fromordinal(common_datenum1[0]) # 1994-12-30
last_date=datetime.date.fromordinal(common_datenum1[-1]) # 2016-11-16
first_year = first_date.year # 1994
last_year = last_date.year # 2016
for i in range(first_date.month,13,1):
(first_week_day,last_day_of_month)=calendar.monthrange(first_year,i)
month_date_index1.append(datetime.date(first_year,i,last_day_of_month).toordinal())
for i in range(first_year+1,last_year,1):
for month in range(1,13,1):
(first_week_day,last_day_of_month)=calendar.monthrange(i,month)
month_date_index1.append(datetime.date(i,month,last_day_of_month).toordinal())
for i in range(1,last_date.month+1,1):
(first_week_day,last_day_of_month)=calendar.monthrange(last_year,i)
month_date_index1.append(datetime.date(last_year,i,last_day_of_month).toordinal())
month_values_data1=[[] for i in range(len(datelist))]
for i in range(len(datelist)):
f=interpolate.interp1d(common_datenum1,values_data1[i],'zero',bounds_error=False)
month_values_data1[i] = list(f(month_date_index1))
BusinessDayTimestamp1 = float(common_datenum1[-1]-common_datenum1[0]+1)/(len(common_datenum1)*365.25)
sub_datenum = datetime.date(1899,12,30).toordinal()
# sub_datenum is 693594
if Country == 'JP':
firstday=datetime.date(2009,8,6).toordinal()
else:
firstday=common_datenum[0]
lastday=firstday-1
index_to_del=filter_data_index(common_datenum,firstday,'ge')
new_daily_index=filter_data(common_datenum,index_to_del,1)
new_daily_values=filter_data(values_data,index_to_del,len(values_data))
index_to_del=filter_data_index(common_datenum1,lastday,'le')
new_daily_index1=filter_data(common_datenum1,index_to_del,1)
new_daily_values1=filter_data(values_data1,index_to_del,len(values_data1))
write_to_csv(new_daily_index,new_daily_index1,new_daily_values,new_daily_values1,sub_datenum,Country+'_Daily')
index_to_del=filter_data_index(week_date_index,firstday,'ge')
new_daily_index=filter_data(week_date_index,index_to_del,1)
new_daily_values=filter_data(week_values_data,index_to_del,len(week_values_data))
index_to_del=filter_data_index(week_date_index1,lastday,'le')
new_daily_index1=filter_data(week_date_index1,index_to_del,1)
new_daily_values1=filter_data(week_values_data1,index_to_del,len(week_values_data1))
write_to_csv(new_daily_index,new_daily_index1,new_daily_values,new_daily_values1,sub_datenum,Country+'_Weekly')
# new_daily_index is 2005-01-03 to 2020-11-09
# new_daily_index1 is 1993-12-29 to 2004-12-29
index_to_del=filter_data_index(month_date_index,firstday,'ge')
new_daily_index=filter_data(month_date_index,index_to_del,1)
new_daily_values=filter_data(month_values_data,index_to_del,len(month_values_data))
index_to_del=filter_data_index(month_date_index1,lastday,'le')
new_daily_index1=filter_data(month_date_index1,index_to_del,1)
new_daily_values1=filter_data(month_values_data1,index_to_del,len(month_values_data1))
write_to_csv(new_daily_index,new_daily_index1,new_daily_values,new_daily_values1,sub_datenum,Country+'_Monthly')