-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path.gitignore
224 lines (223 loc) · 19.2 KB
/
.gitignore
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
D2:機器學習概論/.ipynb_checkpoints/Day_002_HW-checkpoint.ipynb
D1:資料介紹與評估資料/.ipynb_checkpoints/Day_001_example_of_metrics-checkpoint.ipynb
D1:資料介紹與評估資料/.ipynb_checkpoints/Day_001_HW-checkpoint.ipynb
D3:機器學習 - 流程與步驟/.ipynb_checkpoints/Day_003_HW-checkpoint.ipynb
D4:EDA讀取資料與分析流程/.ipynb_checkpoints/Day_004_first_EDA-checkpoint.ipynb
D4:EDA讀取資料與分析流程/.ipynb_checkpoints/Day_004_HW-checkpoint.ipynb
D4:EDA讀取資料與分析流程/Data/application_test.csv
D4:EDA讀取資料與分析流程/Data/application_train.csv
D4:EDA讀取資料與分析流程/Data/bureau.csv
D4:EDA讀取資料與分析流程/Data/bureau_balance.csv
D4:EDA讀取資料與分析流程/Data/credit_card_balance.csv
D4:EDA讀取資料與分析流程/Data/example.jpg
D4:EDA讀取資料與分析流程/Data/example.mat
D4:EDA讀取資料與分析流程/Data/example.npy
D4:EDA讀取資料與分析流程/Data/example.pkl
D4:EDA讀取資料與分析流程/Data/example.txt
D4:EDA讀取資料與分析流程/Data/example01.json
D4:EDA讀取資料與分析流程/Data/example02.json
D4:EDA讀取資料與分析流程/Data/HomeCredit_columns_description.csv
D4:EDA讀取資料與分析流程/Data/installments_payments.csv
D4:EDA讀取資料與分析流程/Data/POS_CASH_balance.csv
D4:EDA讀取資料與分析流程/Data/previous_application.csv
D4:EDA讀取資料與分析流程/Data/sample_submission.csv
Data/application_test.csv
Data/application_train.csv
Data/bureau.csv
Data/bureau_balance.csv
Data/credit_card_balance.csv
Data/example.jpg
Data/example.mat
Data/example.npy
Data/example.pkl
Data/example.txt
Data/example01.json
Data/example02.json
Data/HomeCredit_columns_description.csv
Data/installments_payments.csv
Data/POS_CASH_balance.csv
Data/previous_application.csv
Data/sample_submission.csv
D5:如何新建一個 dataframe 如何讀取其他資料 (非 csv 的資料)/.ipynb_checkpoints/Day_005-1_build_dataframe_from_scratch-checkpoint.ipynb
D5:如何新建一個 dataframe 如何讀取其他資料 (非 csv 的資料)/.ipynb_checkpoints/Day_005-1_HW-checkpoint.ipynb
D5:如何新建一個 dataframe 如何讀取其他資料 (非 csv 的資料)/.ipynb_checkpoints/Day_005-2_HW-checkpoint.ipynb
D5:如何新建一個 dataframe 如何讀取其他資料 (非 csv 的資料)/.ipynb_checkpoints/Day_005-2_read_and_write_files-checkpoint.ipynb
D5:如何新建一個 dataframe 如何讀取其他資料 (非 csv 的資料)/.ipynb_checkpoints/Day_005-3_read_and_write_files-checkpoint.ipynb
D6:EDA:欄位的資料類型介紹及處理/.ipynb_checkpoints/Day_006_column_data_type-checkpoint.ipynb
D6:EDA:欄位的資料類型介紹及處理/.ipynb_checkpoints/Day_006_HW-checkpoint.ipynb
D7:特徵類型/.ipynb_checkpoints/Day_007_Feature_Types-checkpoint.ipynb
D7:特徵類型/.ipynb_checkpoints/Day_007_HW-checkpoint.ipynb
Data/house_test.csv.gz
Data/house_train.csv.gz
Data/taxi_data1.csv
Data/taxi_data2.csv
Data/titanic_test.csv
Data/titanic_train.csv
D8:EDA資料分佈/.ipynb_checkpoints/Day_008_HW-checkpoint.ipynb
D9:EDA Outlier 及處理/.ipynb_checkpoints/Day_009_outliers_detection-checkpoint.ipynb
D9:EDA Outlier 及處理/.ipynb_checkpoints/Day_009_HW-checkpoint.ipynb
D10:數值型特徵 - 去除離群值/.ipynb_checkpoints/Day_010_HW-checkpoint.ipynb
D10:數值型特徵 - 去除離群值/.ipynb_checkpoints/Day_010_Outliers-checkpoint.ipynb
D11:常用的數值取代:中位數與分位數連續數值標準化/.ipynb_checkpoints/Day_011_HW-checkpoint.ipynb
D11:常用的數值取代:中位數與分位數連續數值標準化/.ipynb_checkpoints/Day_011_handle_outliers-checkpoint.ipynb
D12:數值型特徵-補缺失值與標準化/.ipynb_checkpoints/Day_012_Fill_NaN_and_Scalers-checkpoint.ipynb
D12:數值型特徵-補缺失值與標準化/.ipynb_checkpoints/Day_012_HW-checkpoint.ipynb
D13:DataFrame operationData frame merge常用的 DataFrame 操作/.ipynb_checkpoints/Day_013_dataFrame_operation-checkpoint.ipynb
D13:DataFrame operationData frame merge常用的 DataFrame 操作/.ipynb_checkpoints/Day_013_HW-checkpoint.ipynb
D14:程式實作 EDA correlation相關係數簡介/.ipynb_checkpoints/Day_014_HW-checkpoint.ipynb
D15:EDA from Correlation/.ipynb_checkpoints/Day_015-supplementary_correlation_and_plot_with_different_range-checkpoint.ipynb
D15:EDA from Correlation/.ipynb_checkpoints/Day_015_HW-checkpoint.ipynb
D16:EDA 不同數值範圍間的特徵如何檢視繪圖與樣式Kernel Density Estimation (KDE)/.ipynb_checkpoints/Day_016_EDA_KDEplots-checkpoint.ipynb
D16:EDA 不同數值範圍間的特徵如何檢視繪圖與樣式Kernel Density Estimation (KDE)/.ipynb_checkpoints/Day_016_HW-checkpoint.ipynb
D17:EDA 把連續型變數離散化/.ipynb_checkpoints/Day_017_discretizing-checkpoint.ipynb
D17:EDA 把連續型變數離散化/.ipynb_checkpoints/Day_017_HW-checkpoint.ipynb
D18:程式實作 把連續型變數離散化/.ipynb_checkpoints/Day_018_HW-checkpoint.ipynb
D19:Subplots/.ipynb_checkpoints/Day_019_EDA_subplots-checkpoint.ipynb
D19:Subplots/.ipynb_checkpoints/Day_019_HW-checkpoint.ipynb
D20:Heatmap & Grid-plot/.ipynb_checkpoints/Day_020_EDA_heatmap-checkpoint.ipynb
D20:Heatmap & Grid-plot/.ipynb_checkpoints/Day_020_HW-checkpoint.ipynb
D21:模型初體驗 Logistic Regression/.ipynb_checkpoints/Day_021_HW-checkpoint.ipynb
D21:模型初體驗 Logistic Regression/.ipynb_checkpoints/Day_021_first_model-checkpoint.ipynb
D22:特徵工程簡介/.ipynb_checkpoints/Day_022_HW-checkpoint.ipynb
D22:特徵工程簡介/.ipynb_checkpoints/Day_022_Introduction_of_Feature Engineering-checkpoint.ipynb
D23:數值型特徵 - 去除偏態/.ipynb_checkpoints/Day_023_HW-checkpoint.ipynb
D23:數值型特徵 - 去除偏態/.ipynb_checkpoints/Day_023_Reduce_Skewness-checkpoint.ipynb
D24:類別型特徵 - 基礎處理/.ipynb_checkpoints/Day_024_HW-checkpoint.ipynb
D24:類別型特徵 - 基礎處理/.ipynb_checkpoints/Day_024_LabelEncoder_and_OneHotEncoder-checkpoint.ipynb
D25:類別型特徵 - 均值編碼/.ipynb_checkpoints/Day_025_HW-checkpoint.ipynb
D25:類別型特徵 - 均值編碼/.ipynb_checkpoints/Day_025_Mean_Encoder-checkpoint.ipynb
D26:類別型特徵 - 其他進階處理/.ipynb_checkpoints/Day_026_CountEncoder_and_FeatureHash-checkpoint.ipynb
D26:類別型特徵 - 其他進階處理/.ipynb_checkpoints/Day_026_HW-checkpoint.ipynb
D27:時間型特徵/.ipynb_checkpoints/Day_027_DayTime_Features-checkpoint.ipynb
D27:時間型特徵/.ipynb_checkpoints/Day_027_HW-checkpoint.ipynb
D28:特徵組合 - 數值與數值組合/.ipynb_checkpoints/Day_028_Feature_Combination-checkpoint.ipynb
D28:特徵組合 - 數值與數值組合/.ipynb_checkpoints/Day_028_HW-checkpoint.ipynb
D29:特徵組合 - 類別與數值組合/.ipynb_checkpoints/Day_029_GroupBy_Encoder-checkpoint.ipynb
D29:特徵組合 - 類別與數值組合/.ipynb_checkpoints/Day_029_HW-checkpoint.ipynb
D30:特徵選擇/.ipynb_checkpoints/Day_030_Feature_Selection-checkpoint.ipynb
D30:特徵選擇/.ipynb_checkpoints/Day_030_HW-checkpoint.ipynb
D31:特徵評估/.ipynb_checkpoints/Day_031_Feature_Importance-checkpoint.ipynb
D31:特徵評估/.ipynb_checkpoints/Day_031_HW-checkpoint.ipynb
D32:分類型特徵優化 - 葉編碼/.ipynb_checkpoints/Day_032_HW-checkpoint.ipynb
D32:分類型特徵優化 - 葉編碼/.ipynb_checkpoints/Day_032_Leaf_Encoding-checkpoint.ipynb
D33:機器如何學習/.ipynb_checkpoints/Day_033_HW-checkpoint.ipynb
D34:訓練測試集切分的概念/.ipynb_checkpoints/Day_034_train_test_split-checkpoint.ipynb
D35:regression vs. classification/.ipynb_checkpoints/Day_035_HW-checkpoint.ipynb
D36:評估指標選定evaluation metrics/.ipynb_checkpoints/Day_036_evaluation_metrics-checkpoint.ipynb
D36:評估指標選定evaluation metrics/.ipynb_checkpoints/Day_036_HW-checkpoint.ipynb
D37:regression model 介紹 - 線性迴歸羅吉斯回歸/.ipynb_checkpoints/Day_037_HW-checkpoint.ipynb
Data/.ipynb_checkpoints/application_test-checkpoint.csv
Data/.ipynb_checkpoints/bureau-checkpoint.csv
Data/.ipynb_checkpoints/credit_card_balance-checkpoint.csv
Data/.ipynb_checkpoints/example-checkpoint.jpg
D38:regression model 程式碼撰寫/.ipynb_checkpoints/Day_038_HW-checkpoint.ipynb
D38:regression model 程式碼撰寫/.ipynb_checkpoints/Day_038_regression_model-checkpoint.ipynb
D39:regression model 介紹 - LASSO 回歸 Ridge 回歸/.ipynb_checkpoints/Day_039_HW-checkpoint.ipynb
D40:regression model 程式碼撰寫/.ipynb_checkpoints/Day_040_lasso_ridge_regression-checkpoint.ipynb
D40:regression model 程式碼撰寫/.ipynb_checkpoints/Day_040_HW-checkpoint.ipynb
D41:tree based model - 決策樹 (Decision Tree) 模型介紹/.ipynb_checkpoints/Day_041_HW-checkpoint.ipynb
D42:tree based model - 決策樹程式碼撰寫/.ipynb_checkpoints/Day_042_HW-checkpoint.ipynb
D43:tree based model - 隨機森林 (Random Forest) 介紹/.ipynb_checkpoints/Day_043_HW-checkpoint.ipynb
D44:tree based model - 隨機森林程式碼撰寫/.ipynb_checkpoints/Day_044_HW-checkpoint.ipynb
D44:tree based model - 隨機森林程式碼撰寫/.ipynb_checkpoints/Day_044_random_forest-checkpoint.ipynb
D46:tree based model - 梯度提升機程式碼撰寫/.ipynb_checkpoints/Day_046_HW-checkpoint.ipynb
D47:超參數調整與優化/.ipynb_checkpoints/Day_047_HW-checkpoint.ipynb
D47:超參數調整與優化/.ipynb_checkpoints/Day_047_hyper_parameter_tunning-checkpoint.ipynb
D48:Kaggle 競賽平台介紹/.ipynb_checkpoints/Day_048_HW-checkpoint.ipynb
D48:Kaggle 競賽平台介紹/.ipynb_checkpoints/train-checkpoint.csv
D48:Kaggle 競賽平台介紹/.ipynb_checkpoints/Untitled-checkpoint.ipynb
D49:集成方法 混合泛化(Blending)/.ipynb_checkpoints/Day_049_Blending-checkpoint.ipynb
D49:集成方法 混合泛化(Blending)/.ipynb_checkpoints/Day_049_Blending_HW-checkpoint.ipynb
D50:集成方法 堆疊泛化(Stacking)/.ipynb_checkpoints/Day_050_Stacking-checkpoint.ipynb
D50:集成方法 堆疊泛化(Stacking)/.ipynb_checkpoints/Day_050_Stacking_HW-checkpoint.ipynb
D51 - D53:Kaggle期中考 考ML與調參相關/.ipynb_checkpoints/Day_051-053_Midterm_Exam-checkpoint.ipynb
D51 - D53:Kaggle期中考 考ML與調參相關/midterm_data/test_features.csv
D51 - D53:Kaggle期中考 考ML與調參相關/midterm_data/train_data.csv
D54:clustering 1 非監督式機器學習簡介/.ipynb_checkpoints/Day_054_HW-checkpoint.ipynb
D55:clustering 2 聚類算法/.ipynb_checkpoints/Day_055_HW-checkpoint.ipynb
D55:clustering 2 聚類算法/.ipynb_checkpoints/Day_055_kmean_sample-checkpoint.ipynb
D56:K-mean 觀察 使用輪廓分析/.ipynb_checkpoints/Day_056_kmean_HW-checkpoint.ipynb
D56:K-mean 觀察 使用輪廓分析/.ipynb_checkpoints/Day_056_kmean-checkpoint.ipynb
D57:clustering 3 階層分群算法/.ipynb_checkpoints/Day_057_hierarchical_clustering_sample-checkpoint.ipynb
D57:clustering 3 階層分群算法/.ipynb_checkpoints/Day_057_HW-checkpoint.ipynb
D58:階層分群法 觀察 使用 2D 樣版資料集/.ipynb_checkpoints/Day_058_hierarchical_clustering-checkpoint.ipynb
D58:階層分群法 觀察 使用 2D 樣版資料集/.ipynb_checkpoints/Day_058_hierarchical_clustering_HW-checkpoint.ipynb
D59:dimension reduction 1 降維方法-主成份分析/.ipynb_checkpoints/Day_059_HW-checkpoint.ipynb
D59:dimension reduction 1 降維方法-主成份分析/.ipynb_checkpoints/Day_059_PCA_sample-checkpoint.ipynb
D60:PCA 觀察 使用手寫辨識資料集/.ipynb_checkpoints/Day_060_PCA-checkpoint.ipynb
D60:PCA 觀察 使用手寫辨識資料集/.ipynb_checkpoints/Day_060_PCA_HW-checkpoint.ipynb
D61:dimension reduction 2 降維方法-T-SNE/.ipynb_checkpoints/Day_061_HW-checkpoint.ipynb
D61:dimension reduction 2 降維方法-T-SNE/.ipynb_checkpoints/Day_061_tsne_sample-checkpoint.ipynb
D62:t-sne 觀察 分群與流形還原/.ipynb_checkpoints/Day_062_tsne-checkpoint.ipynb
D62:t-sne 觀察 分群與流形還原/.ipynb_checkpoints/Day_062_tsne_HW-checkpoint.ipynb
D63:深度學習簡介/.ipynb_checkpoints/Day_063_HW-checkpoint.ipynb
D64:深度學習體驗 模型調整與學習曲線/.ipynb_checkpoints/Day_064_HW-checkpoint.ipynb
D65 深度學習體驗 啟動函數與正規化/.ipynb_checkpoints/Day_065_HW-checkpoint.ipynb
D66 Keras 安裝與介紹/.ipynb_checkpoints/Day_066_HW-checkpoint.ipynb
D66 Keras 安裝與介紹/.ipynb_checkpoints/Day_066_Introduction_of_Keras-checkpoint.ipynb
D65:深度學習體驗 啟動函數與正規化/.ipynb_checkpoints/Day_065_HW-checkpoint.ipynb
D66:Keras 安裝與介紹/.ipynb_checkpoints/Day_066_HW-checkpoint.ipynb
D66:Keras 安裝與介紹/.ipynb_checkpoints/Day_066_Introduction_of_Keras-checkpoint.ipynb
D67:Sample Code & 作業內容/.ipynb_checkpoints/Day67-Keras_Dataset_HW-checkpoint.ipynb
D67:Sample Code & 作業內容/.ipynb_checkpoints/Day67-Keras_Dataset_Introduce-checkpoint.ipynb
D68:Keras Sequential API/.ipynb_checkpoints/Day68-Keras_Sequential_Model-checkpoint.ipynb
D68:Keras Sequential API/.ipynb_checkpoints/Day68-Keras_Sequential_Model_HW-checkpoint.ipynb
D69:Keras Module API/.ipynb_checkpoints/Day69-keras_Module_API-checkpoint.ipynb
D69:Keras Module API/.ipynb_checkpoints/Day69-keras_Module_API_HW-checkpoint.ipynb
D70:深度神經網路的基礎知識/.ipynb_checkpoints/Day70-Keras_Mnist_MLP_HW-checkpoint.ipynb
D70:深度神經網路的基礎知識/.ipynb_checkpoints/Day70-Keras_Mnist_MLP_Sample-checkpoint.ipynb
D71:損失函數/.ipynb_checkpoints/Day71-使用損失函數_HW-checkpoint.ipynb
D71:損失函數/.ipynb_checkpoints/Day71-使用損失函數-checkpoint.ipynb
D72:啟動函數/.ipynb_checkpoints/Day72-Activation_function-checkpoint.ipynb
D72:啟動函數/.ipynb_checkpoints/Day72-Activation_function_HW-checkpoint.ipynb
D73:梯度下降Gradient Descent/.ipynb_checkpoints/Day73_Gradient Descent-checkpoint.ipynb
D73:梯度下降Gradient Descent/.ipynb_checkpoints/Day73_Gradient_Descent_HW-checkpoint.ipynb
D74:Gradient Descent 數學原理/.ipynb_checkpoints/Day74-Gradient Descent_數學式說明-checkpoint.ipynb
D74:Gradient Descent 數學原理/.ipynb_checkpoints/Day74-Gradient_Descent_HW-checkpoint.ipynb
D75:BackPropagation/.ipynb_checkpoints/Day75-反向式傳播進階說明-checkpoint.ipynb
D75:BackPropagation/.ipynb_checkpoints/Day75-反向式傳播進階說明作業-checkpoint.ipynb
D76:優化器optimizers/.ipynb_checkpoints/D76-optimizer_example-checkpoint.ipynb
D76:優化器optimizers/.ipynb_checkpoints/D76-optimizer_HW-checkpoint.ipynb
D76:優化器optimizers/.ipynb_checkpoints/D76-Optimizers_進階-checkpoint.ipynb
D77:訓練神經網路的細節與技巧 - Validation and overfit/.ipynb_checkpoints/Day077_HW-checkpoint.ipynb
D77:訓練神經網路的細節與技巧 - Validation and overfit/.ipynb_checkpoints/Day077_overfitting-checkpoint.ipynb
D78:訓練神經網路前的注意事項/.ipynb_checkpoints/Day078_CheckBeforeTrain-checkpoint.ipynb
D78:訓練神經網路前的注意事項/.ipynb_checkpoints/Day078_HW-checkpoint.ipynb
D79 訓練神經網路的細節與技巧 - Learning rate effect/.ipynb_checkpoints/Day079_HW-checkpoint.ipynb
D79 訓練神經網路的細節與技巧 - Learning rate effect/.ipynb_checkpoints/Day079_LearningRateEffect-checkpoint.ipynb
D80:[練習 Day] 優化器與學習率的組合與比較/.ipynb_checkpoints/Day080_HW-checkpoint.ipynb
D79:訓練神經網路的細節與技巧 - Learning rate effect/.ipynb_checkpoints/Day079_HW-checkpoint.ipynb
D79:訓練神經網路的細節與技巧 - Learning rate effect/.ipynb_checkpoints/Day079_LearningRateEffect-checkpoint.ipynb
D80:[練習 Day] 優化器與學習率的組合與比較/.ipynb_checkpoints/Day080_HW-checkpoint.ipynb
D80:[練習 Day] 優化器與學習率的組合與比較/.ipynb_checkpoints/Day080_HW-checkpoint.ipynb
D81:訓練神經網路的細節與技巧 - Regularization/.ipynb_checkpoints/Day081_Regulization-checkpoint.ipynb
D81:訓練神經網路的細節與技巧 - Regularization/.ipynb_checkpoints/Day081_HW-checkpoint.ipynb
D82 訓練神經網路的細節與技巧 - Dropout/.ipynb_checkpoints/Day082_Dropout-checkpoint.ipynb
D82 訓練神經網路的細節與技巧 - Dropout/.ipynb_checkpoints/Day082_HW-checkpoint.ipynb
D83 訓練神經網路的細節與技巧 - Batch normalization/.ipynb_checkpoints/Day083_BatchNorm-checkpoint.ipynb
D83 訓練神經網路的細節與技巧 - Batch normalization/.ipynb_checkpoints/Day083_HW-checkpoint.ipynb
D84 正規化機移除批次標準化的 組合與比較/.ipynb_checkpoints/Day084_HW-checkpoint.ipynb
D85 訓練神經網路的細節與技巧 - 使用 callbacks 函數做 earlystop/.ipynb_checkpoints/Day085_CB_EarlyStop-checkpoint.ipynb
D85 訓練神經網路的細節與技巧 - 使用 callbacks 函數做 earlystop/.ipynb_checkpoints/Day085_HW-checkpoint.ipynb
D86 訓練神經網路的細節與技巧 - 使用 callbacks 函數儲存 model/.ipynb_checkpoints/Day086_CB_ModelCheckPoint-checkpoint.ipynb
D86 訓練神經網路的細節與技巧 - 使用 callbacks 函數儲存 model/.ipynb_checkpoints/Day086_HW-checkpoint.ipynb
D86 訓練神經網路的細節與技巧 - 使用 callbacks 函數儲存 model/tmp.h5
D87 訓練神經網路的細節與技巧 - 使用 callbacks 函數做 reduce learning rate/.ipynb_checkpoints/Day087_CB_ReduceLR-checkpoint.ipynb
D87 訓練神經網路的細節與技巧 - 使用 callbacks 函數做 reduce learning rate/.ipynb_checkpoints/Day087HW-checkpoint.ipynb
D88 訓練神經網路的細節與技巧 - 撰寫自己的 callbacks 函數/.ipynb_checkpoints/Day088_CB_CustomizedCallbacks-checkpoint.ipynb
D88 訓練神經網路的細節與技巧 - 撰寫自己的 callbacks 函數/.ipynb_checkpoints/Day088_HW-checkpoint.ipynb
D89 訓練神經網路的細節與技巧 - 撰寫自己的 Loss function/.ipynb_checkpoints/Day089_CustomizedLoss-checkpoint.ipynb
D89 訓練神經網路的細節與技巧 - 撰寫自己的 Loss function/.ipynb_checkpoints/Day089_HW-checkpoint.ipynb
D90 使用傳統電腦視覺與機器學習進行影像辨識/.ipynb_checkpoints/Day090_color_histogram-checkpoint.ipynb
D90 使用傳統電腦視覺與機器學習進行影像辨識/.ipynb_checkpoints/Day090_color_histogram_HW-checkpoint.ipynb
D91 [練習 Day] 使用傳統電腦視覺與機器學習進行影像辨識/.ipynb_checkpoints/Day091_classification_with_cv-checkpoint.ipynb
D91 [練習 Day] 使用傳統電腦視覺與機器學習進行影像辨識/.ipynb_checkpoints/Day091_classification_with_cv_HW-checkpoint.ipynb
D92 卷積神經網路 (Convolution Neural Network, CNN) 簡介/.ipynb_checkpoints/Day092_CNN_theory-checkpoint.ipynb
D93 卷積神經網路架構細節/.ipynb_checkpoints/Day93-CNN_Brief-checkpoint.ipynb
D93 卷積神經網路架構細節/.ipynb_checkpoints/Day93-CNN_Brief_HW-checkpoint.ipynb
D94 卷積神經網路 - 卷積(Convolution)層與參數調整/.ipynb_checkpoints/Day94-CNN_Convolution -checkpoint.ipynb
D94 卷積神經網路 - 卷積(Convolution)層與參數調整/.ipynb_checkpoints/Day94-CNN_Convolution_HW-checkpoint.ipynb
D95 卷積神經網路 - 池化(Pooling)層與參數調整/.ipynb_checkpoints/Day95-CNN_Pooling_Padding-checkpoint.ipynb
D95 卷積神經網路 - 池化(Pooling)層與參數調整/.ipynb_checkpoints/Day95-CNN_Pooling_Padding_HW-checkpoint.ipynb
D96 Keras 中的 CNN layers/.ipynb_checkpoints/Day096_Keras_CNN_layers-checkpoint.ipynb
D97 使用 CNN 完成 CIFAR-10 資料集/.ipynb_checkpoints/Day097_Keras_CNN_vs_DNN-checkpoint.ipynb