-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
154 lines (124 loc) · 5.29 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import re
import torch
from torch.utils.data import Dataset
from PIL import Image
import os
import os.path as osp
import glob
from augmentations import *
class CelebAMaskHQ(Dataset):
"""The data reading method modified from the original paper"""
def __init__(self, img_path, label_path, resize=512, transform=None, mode=True):
self.img_path = img_path
self.label_path = label_path
self.train_dataset = []
self.test_dataset = []
self.transform = transform
self.mode = mode
self.resize = resize
self.preprocess()
if mode:
self.num_images = len(self.train_dataset)
else:
self.num_images = len(self.test_dataset)
def preprocess(self):
for i in range(len([name for name in os.listdir(self.img_path) if osp.isfile(osp.join(self.img_path, name))])):
img_path = osp.join(self.img_path, str(i)+'.jpg')
label_path = osp.join(self.label_path, str(i)+'.png')
if self.mode:
self.train_dataset.append([img_path, label_path])
else:
self.test_dataset.append([img_path, label_path])
def __getitem__(self, index):
dataset = self.train_dataset if self.mode == True else self.test_dataset
img_path, label_path = dataset[index]
# Uniform image size
image = Image.open(img_path).convert("RGB")
label = Image.open(label_path).convert("L")
# Image resized to the same dimension
image, label = Compose(
[FreeScale(self.resize)])(image, label)
if self.mode: # train mode
if self.transform is not None:
image, label = self.transform(image, label)
# Convert it to pytorch style
image = img_transform(image)
mask = mask_transform(label)
edge = mask_transform(Image.fromarray(edge_contour(np.asarray(label))))
return image, mask, edge
else:
image = img_transform(image)
mask = mask_transform(label)
return image, mask
def __len__(self):
return self.num_images
class CustomDataLoader:
def __init__(self, img_path, label_path, image_size, batch_size, num_workers, transform=None, mode=True):
self.img_path = img_path
self.label_path = label_path
self.imsize = image_size
self.batch = batch_size
self.num_workers = num_workers
self.mode = mode
self.transform = transform
def loader(self):
dataset = CelebAMaskHQ(
self.img_path, self.label_path, self.imsize, self.transform, self.mode)
if self.mode == True:
loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=self.batch,
shuffle=True,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True)
return loader
loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=self.batch,
shuffle=False,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True)
return loader
class CelebAMaskHQ_Unseen(Dataset):
def __init__(self, img_path, resize=512, transform=None):
self.img_path = img_path
self.dataset = []
self.transform = transform
self.resize = resize
self.preprocess()
self.num_images = len(self.dataset)
def preprocess(self):
def custom_sort(item):
match = re.findall(r'(\d+)', item)
if match and len(match) >= 2:
return int(match[0]), int(match[1])
return 0, 0
self.dataset.extend(glob.glob(osp.join(self.img_path, "*.jpg")))
self.dataset = sorted(self.dataset, key=custom_sort)
def __getitem__(self, index):
img_path = self.dataset[index]
# Uniform image size
image = Image.open(img_path).convert("RGB")
# Image resized to the same dimension
image = image.resize((self.resize, self.resize), Image.BILINEAR)
image = img_transform(image)
return image
def __len__(self):
return self.num_images
class Unseen_DataLoader:
def __init__(self, img_path, image_size, batch_size, num_workers, transform=None):
self.img_path = img_path
self.imsize = image_size
self.batch = batch_size
self.num_workers = num_workers
self.transform = transform
def loader(self):
dataset = CelebAMaskHQ_Unseen(
self.img_path, self.imsize, self.transform)
loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=self.batch,
shuffle=False,
num_workers=self.num_workers,
drop_last=True,
pin_memory=True)
return loader