forked from grablab/openhand-software
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenhand.py
executable file
·553 lines (456 loc) · 16 KB
/
openhand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#!/usr/bin/python -i
from lib_robotis_mod import *
import time
import numpy as np #for array handling
#assumptions:
#only dynamixel servos being used
#either all RX or MX servos being used (no mixing)
#different encoder limits for each type
#motor limits and mov't designated in terms of proportion, not encoder value
class OpenHand():
dyn = None #USB2Dynamixel device
port = None #mounted port, /devttyUSB# in Linux, COM# in Windows
servo_ids = []
servos = []
servo_speed = 1.0
max_torque = 0.4 #Dynamixel suggests capping max torque at 0.4 of stall torque
motorDir = []
motorMin = []
motorMax = []
amnt_release = 0.0 #values [0,1.0] for degree of closing and opening
amnt_close = 0.5
pause = 0.3 #amount of time to wait for move commands and eeprom updates
HAND_HEIGHT = 0.14 #hand height from base to palm (m) used for arm IK and approach vectors
WRIST_OFFSET = -np.pi/3 #J5 offset (rad) to accommodate final orientation
def __init__(self,port,servo_ids,series="RX"):
self.port = port
self.dyn = USB2Dynamixel_Device(port) #always only one
self.servo_ids = servo_ids
num_servos = len(servo_ids)
print "Initializing..."
self.servos = []
for servo_id in self.servo_ids:
self.servos.append(Robotis_Servo(self.dyn,servo_id,series))
print "Adding servo id "+repr(servo_id)
time.sleep(self.pause)
for servo in self.servos:
servo.kill_cont_turn() #make sure position mode limits are enabled
time.sleep(self.pause) #in case eeprom delay is what is causing the issues
servo.apply_speed(self.servo_speed)
time.sleep(self.pause)
servo.apply_max_torque(self.max_torque)
if len(self.motorDir)!=num_servos or len(self.motorMin)!=num_servos or len(self.motorMax)!=num_servos:
print "[ERR] Servo number mismatch, resetting motor limits"
self.motorDir = [1]*num_servos
self.motorMin = [self.amnt_release]*num_servos
self.motorMax = [self.amnt_close]*num_servos
time.sleep(self.pause)
self.reset()
print "Initialization Complete."
def reset(self): #returns everything to zeroed positions, different from release
print "[ERR] reset() not implemented"
return False
def release(self): #opens the finger components, doesn't necessarily move non-finger servos
print "[ERR] release() not implemented\n"
return False
#close functions are normalized regardless of mode such that the operating range [0,1.0] makes sense
def close(self,amnt=0.5):
print "[ERR] close() not implemented\n"
return False
#move servo according to amnt, not encoder value, scaled between designated min/max values
def moveMotor(self,index,amnt):
if amnt < 0. or amnt > 1.0:
print "[WARNING] motion out of bounds, capping to [0,1]. Index: "+repr(index)+", Cmd:"+repr(amnt)
amnt = min(max(amnt,0.),1.0)
if (index < 0 or index >= len(self.servos)):
print "[ERR] invalid motor index "+repr(index)
else:
servo = self.servos[index]
if self.motorDir[index]>0: #normal case
servo.move_to_encoder(int(servo.settings["max_encoder"]*(self.motorMin[index] + amnt*(self.motorMax[index]-self.motorMin[index]))))
else: #reverse
servo.move_to_encoder(int(servo.settings["max_encoder"]*(self.motorMax[index] - amnt*(self.motorMax[index]-self.motorMin[index]))))
def moveHand(self,vals):
if len(vals)!=len(self.servos):
print "[ERR] Motor number mismatch"
else:
for i in xrange(len(vals)):
self.moveMotor(i,vals[i])
#returns motor position amnt, between designated min and max values
def readMotor(self,index):
servo = self.servos[index]
enc = servo.read_encoder()
if self.motorDir[index]>0:
val = (enc/float(servo.settings["max_encoder"])-self.motorMin[index]) / (self.motorMax[index]-self.motorMin[index])
else:
val = (self.motorMax[index]-enc/float(servo.settings["max_encoder"])) / (self.motorMax[index]-self.motorMin[index])
return val,enc
def readHand(self):
amnts = np.array([0.]*len(self.servos))
encs = np.array([0]*len(self.servos))
for i in xrange(len(self.servos)):
amnt,enc = self.readMotor(i)
amnts[i] = amnt
encs[i] = enc
return amnts, encs
#takes the current location and sets either the min or max
def setMotorMin(self):
amnts,encs = self.readHand()
self.motorMin = (encs/float(self.servos[0].settings['max_encoder'])).tolist()
def setMotorMax(self):
amnts,encs = self.readHand()
self.motorMax = (encs/float(self.servos[0].settings['max_encoder'])).tolist()
#setting the max torque (shortcut for torque-based closing motions)
def setMaxTorque(self,val=0.4):
for servo in self.servos:
servo.apply_max_torque(val)
time.sleep(self.pause) #helps mitigate eeprom delay issues?
#moves to the current encoder value and locks servos in place to minimize current draw
def preventAllLoadErrors(self,offset_scale = 0):
for i in range(len(self.servos)):
self.preventLoadError(i,offset_scale)
def preventLoadError(self,i,offset_scale = 0):
if abs(self.servos[i].read_load()) > 80: #arbitrary load threshold
value = offset_scale*10 + self.servos[i].read_encoder()
if value < self.servos[i].settings['max_encoder']:
self.servos[i].move_to_encoder(value)
else:
if value < 0:
self.servos[i].move_to_encoder(0)
else:
self.servos[i].move_to_encoder(self.servos[i].settings['max_encoder'])
def diagnostics(self):
for servo in self.servos:
print "---"
print "Servo ID: "+repr(servo.servo_id)
print "Load: "+repr(servo.read_load())
print "Temperature: "+repr(servo.read_temperature())
print "Target Encoder: "+repr(servo.read_target_encoder())
print "Current Encoder: "+repr(servo.read_encoder())
class GR2(OpenHand):
motorDir = [1,1]
motorMin = [0.05,0.05] #should always be symmetric here?
motorMax = [0.7,0.7]
modes = [True,True]
HOLD_TORQUE = 0.2
OVERSHOOT = 0.15
pause = 0.2
def __init__(self,port="/dev/ttyUSB0",s1=1,s2=2,dyn_model="RX"):
OpenHand.__init__(self,port,[s1,s2],dyn_model)
def moveMotor(self,index,val):
val = min(1.0,max(val,0))
amnt = val * (self.motorMax[index]-self.motorMin[index]) + self.motorMin[index]
enc = int(self.servos[index].settings['max_encoder'] * amnt)
self.servos[index].move_to_encoder(enc)
if not self.modes[index]:
self.servos[index].apply_max_torque(self.max_torque)
self.modes[index] = True
def torqueMotor(self,index,val,pos_val=None):
val = min(1.0,max(val,0)) #by design, can exceed default max torque value
self.modes[index] = False
s = self.servos[index]
if pos_val is None:
enc = int(s.read_encoder()+self.OVERSHOOT * s.settings['max_encoder'])
else:
pos_val = min(max(0,pos_val),1.0)
enc = int((pos_val * (self.motorMax[index]-self.motorMin[index])+self.motorMin[index]) * s.settings['max_encoder'])
s.apply_max_torque(val)
s.move_to_encoder(enc)
def reset(self):
self.release()
def release(self):
self.moveMotor(0,self.amnt_release)
self.moveMotor(1,self.amnt_release)
def close(self,amnt=0.3):
self.moveMotor(0,amnt)
self.moveMotor(1,amnt)
def hold(self):
for i in xrange(2):
amnt,enc = self.readMotor(i)
self.moveMotor(i,amnt) #accounts for possible transition from torque mode
def close_torque(self):
for i in xrange(2):
self.torqueMotor(i,self.HOLD_TORQUE,1.0)
i = 0
while i<10:
if not self.servos[0].is_moving() or not self.servos[1].is_moving():
break
time.sleep(self.pause)
i+=1
self.hold()
def shift(self,index,val):
other_index = (index+1)%2
vals,encs = self.readHand()
if val<vals[index]:
self.torqueMotor(index,0.)
self.moveMotor(other_index,vals[other_index]+(vals[index]-val))
else:
self.torqueMotor(other_index,0.)
self.moveMotor(index,val)
i=0
while i<10:
s_val,s_enc = self.readMotor(index)
s_val_err = abs(s_val-val)
print "Shifting error: "+repr(round(s_val_err,4))
if s_val_err<0.005:
break
time.sleep(self.pause)
i+=1
print "Final shift error: "+repr(round(abs(val-s_val),4))
self.hold()
class Model_M2(OpenHand):
servo_speed = 1.0
max_torque = 0.4
pos_err = 0.05 #error value for position checking
motorDir = [1,1]
motorMin = [0.05,0.05]
motorMax = [0.6,0.6]
SCALE_ANTAGONIST = 1.25
SCALE_TRACKING = 0.35
#initial id is antagonist, secondary id is agonist
def __init__(self,port="/dev/ttyUSB0",s1=1,s2=2,dyn_model="MX"):
OpenHand.__init__(self,port,[s1,s2],dyn_model)
def reset(self):
self.release()
def release(self): #moving both tendons to slack position
self.moveMotor(0,self.amnt_release)
self.moveMotor(1,self.amnt_release)
def close(self,amnt=0.5):
#check that antagonist is slack:
curr_amnt,enc = self.readMotor(0)
if curr_amnt>(self.amnt_release+self.pos_err):
print "[ERR] Had to reset antagonist for close, try again"
self.moveMotor(0,self.amnt_release)
else:
self.moveMotor(1,amnt)
def precision_close(self,amnt=0.5):
#check that agonist is slack:
curr_amnt,enc = self.readMotor(0)
if curr_amnt>(self.amnt_release+self.pos_err):
print "[ERR] Had to reset agonist for precision close, try again"
self.moveMotor(1,self.amnt_release)
else:
self.moveMotor(0,amnt)
class Model_M(OpenHand):
servo_speed = 1.0
max_torque = 0.4
motorDir = [1,1]
motorMin = [0.05]
motorMax = [0.7]
def __init__(self,port="/dev/ttyUSB0",s1=1,dyn_model="RX"):
OpenHand.__init__(self,port,[s1],dyn_model)
def reset(self):
self.release()
def release(self):
self.moveMotor(0,self.amnt_release)
def close(self,amnt=0.4):
self.moveMotor(0,amnt)
class Model_O(OpenHand):
servo_speed = 1.0
max_torque = 0.4
amnt_close = 0.5
motorDir = [1,1,-1,1]
motorMin = [0.05,0.05,0.3,0.05]
motorMax = [0.5,0.7,0.95,0.7]
HAND_HEIGHT = 0.14
WRIST_OFFSET = -np.pi/4
def __init__(self,port="/dev/ttyUSB0",s1=2,s2=7,s3=3,s4=8,dyn_model="RX"):
#s1: adduction/abduction motor for spread
#s2: forward-driving finger
#s3: reverse-driving finger
#s4: thumb
OpenHand.__init__(self,port,[s1,s2,s3,s4],dyn_model)
def reset(self):
self.moveMotor(0,0.) #moves fingers into lateral pinch mode with fingers orthogonal to thumb
self.release()
def release(self):
self.moveMotor(1,0.)
self.moveMotor(2,0.)
self.moveMotor(3,0.)
def close(self,amnt=0.5):
self.moveMotor(1,amnt)
self.moveMotor(2,amnt)
self.moveMotor(3,amnt)
#jiggling the fingers closed
def close_jiggle(self,amnt=0.5,da=0.05,nsteps=5,pause=0.25):
amnt_start,amnt_enc = self.readHand()
s_amnt = amnt_start[0]
if s_amnt<0.5:
print "[WARNING] Fingers may be spread too far apart for closing motion"
amnt_goal = np.array([amnt,amnt,amnt,s_amnt])
da_arr = np.array([da,-da,0.,0.])
for i in xrange(nsteps):
amnt_arr = amnt_start+(amnt_goal-amnt_curr)*float(i)/nsteps+da_arr*(-1)**i
self.moveHand(amnt_arr)
time.sleep(pause)
self.moveHand(amnt_goal)
class Model_Q(OpenHand):
servo_speed = 0.25
amnt_close = 0.35
motorDir = [1,-1,1,1]
motorMin = [0.32,0.4,0.05,0.05]
motorMax = [0.67,0.9,0.5,0.5]
HAND_HEIGHT = 0.12
WRIST_OFFSET = -np.pi/4
def __init__(self,port="/dev/ttyUSB0",s1=13,s2=12,s3=11,s4=10,dyn_model="MX"):
#s1: internal twist between fingers
#s2: adaptive two-finger power-grasp
#s3: single finger 1 (usually the forefinger)
#s4: single finger 2 (usually the thumb or shorter finger if implemented as such)
OpenHand.__init__(self,port,[s1,s2,s3,s4],dyn_model)
#default OpenHand commands
def release(self):
#self.reset()
self.moveMotor(1,0.)
self.moveMotor(2,0.)
self.moveMotor(3,0.)
time.sleep(self.pause)
self.preventAllLoadErrors()
def close(self,amnt=0.35):
self.moveMotor(1,amnt)
self.moveMotor(2,amnt)
self.moveMotor(3,amnt)
time.sleep(self.pause)
self.preventAllLoadErrors()
def reset(self):
self.moveMotor(0,0.5)
self.moveMotor(1,0.)
self.moveMotor(2,0.)
self.moveMotor(3,0.)
time.sleep(self.pause)
self.preventAllLoadErrors()
#model-specific commands
def closeFF(self,amnt):
self.moveMotor(1,amnt-0.1)
time.sleep(self.pause)
self.preventLoadError(1)
def closeFP(self,amnt):
self.moveMotor(2,amnt)
self.moveMotor(3,amnt)
time.sleep(self.pause)
self.preventLoadError(2)
self.preventLoadError(3)
def twist(self,direction=1,amnt=0.5,num=5):
num = max(0,num)
self.closeFP(self.amnt_release)
for i in range(0,num):
self.closeFF(amnt)
self.closeFP(self.amnt_release)
if direction>0:
self.moveMotor(0,0.)
time.sleep(self.pause)
self.preventLoadError(0)
self.closeFP(amnt)
self.closeFF(0.)
self.moveMotor(0,1.)
else:
self.moveMotor(0,1.)
time.sleep(self.pause)
self.preventLoadError(0)
self.closeFP(amnt)
self.closeFF(0.)
self.moveMotor(0,0.)
time.sleep(self.pause)
self.preventLoadError(0)
def pinchPower(self,pinchAmnt=0.5,offsetAmnt=0.2,num=3):
num = max(0,num)
self.closeFP(self.amnt_release)
for i in range(num):
self.closeFF(pinchAmnt)
self.closeFP(self.amnt_release) #finger replacement/recycle
self.closeFP(pinchAmnt) #begin grasp exchange
self.closeFF(self.amnt_release)
self.closeFP(pinchAmnt+offsetAmnt) #pull finger closer inward
self.closeFF(pinchAmnt)
self.closeFP(self.amnt_release)
self.closeFP(pinchAmnt)
class Model_T42(OpenHand):
servo_speed = 0.25
motorDir = [1,1]
motorMin = [0.05,0.05]
motorMax = [1.,1.]
HAND_HEIGHT = 0.08
WRIST_OFFSET = -5*np.pi/12
def __init__(self,port="/dev/ttyUSB0",s1=1,s2=2,dyn_model="RX"):
#s1: "forefinger"
#s2: "thumb"
OpenHand.__init__(self,port,[s1,s2],dyn_model)
#default OpenHand commands:
def reset(self):
self.release()
def close(self,amnt=0.45): #position-based closing mechanism
self.moveMotor(0,amnt)
self.moveMotor(1,amnt)
def release(self):
self.moveMotor(0,self.amnt_release)
self.moveMotor(1,self.amnt_release)
#model-specific OpenHand commands:
def flip_init(self):
self.moveMotor(0,self.amnt_release)
self.moveMotor(1,self.amnt_close)
def flip_close(self):
self.moveMotor(0,self.amnt_close)
self.moveMotor(1,self.amnt_close)
class Model_T(OpenHand):
max_torque = 0.4
limit_close = 10 #counter for a standard close (to prevent servo stuck in closing mode in event of tendon failure)
motorDir = [1]
motorMin = [0.05]
motorMax = [1.]
HAND_HEIGHT = 0.14
WRIST_OFFSET = -np.pi/4
def __init__(self,port="/dev/ttyUSB0",s1=1,dyn_model="MX"):
OpenHand.__init__(self,port,[s1],dyn_model)
def reset(self):
self.moveMotor(0,self.amnt_release)
def close_torque(self,amnt=0.5):
self.servos[0].enable_torque_mode()
self.servos[0].apply_torque(amnt*self.max_torque)
time.sleep(self.pause*2)
i,sp = 0,1.
while i<self.limit_close and sp>0:
sp = self.servos[0].read_speed()
print "close (speed): "+repr(sp)
i += 1
time.sleep(self.pause)
self.servos[0].disable_torque_mode()
self.preventLoadError(0)
return True
def close_wheel(self,amnt=0.5,speed=0.2): #closing through wheel mode
#set torque output to max, use wheel speed to modulate closing force
self.servos[0].disable_torque_mode()
self.servos[0].init_cont_turn()
self.servos[0].apply_speed(speed)
time.sleep(self.pause*2)
i,sp = 0,1.
while i<self.limit_close and sp>0:
sp = self.servos[0].read_speed()
print "close (speed): "+repr(sp)
i += 1
time.sleep(self.pause)
self.servos[0].kill_cont_turn()
self.preventLoadError(0)
return True
def close(self,amnt=0.2): #closing through position mode and torque limit
#set target position to furthest limit, but change servo torque limit
self.servos[0].apply_max_torque(amnt)
time.sleep(self.pause)
self.servos[0].move_to_encoder(self.servos[0].settings['max_encoder']-1)
time.sleep(self.pause)
i,sp = 0,1.
while i<self.limit_close and sp>0:
sp = self.servos[0].read_speed()
print "close (speed): "+repr(sp)
i += 1
time.sleep(self.pause)
self.preventLoadError(0)
self.servos[0].apply_max_torque(self.max_torque)
return True
def release(self): #should work for all previous close cases
self.servos[0].enable_torque_mode()
self.servos[0].apply_torque(0.) #allow natural compliance to loosen grasp for tight grip cases
time.sleep(self.pause*2)
self.servos[0].disable_torque_mode()
self.servos[0].kill_cont_turn() #back to position mode
self.servos[0].apply_speed(self.servo_speed) #check in case it was in wheel mode
self.moveMotor(0,self.amnt_release)