-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGeneralAnalysis.R
73 lines (53 loc) · 2.76 KB
/
GeneralAnalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
library("ggplot2")
#setwd("Documents/PaperInnovacionPilar")
library(readr)
G21 <- read_csv("Graduados2021.csv")
GraduatePrograms <- filter(G21, G21$`NIVEL ACADÉMICO` == "POSGRADO")
GraduatePrograms <- GraduatePrograms[!duplicated(GraduatePrograms$`PROGRAMA ACADÉMICO`), ]
table(GraduatePrograms$`NIVEL DE FORMACIÓN`)
PHD <- filter(GraduatePrograms, grepl('Doctor|DOCTOR', GraduatePrograms$`PROGRAMA ACADÉMICO`))
MASTER <- filter(GraduatePrograms, grepl('Maestr|MAESTR', GraduatePrograms$`PROGRAMA ACADÉMICO`))
ESPEC <- filter(GraduatePrograms, grepl('ESPECIALIZAC', GraduatePrograms$`PROGRAMA ACADÉMICO`))
1793+1153+146
library(tidyverse)
setwd("Documents/PaperInnovacionPilar/Graduates")
G18 <- read_csv("Graduados2018.csv") # Columns 3, 6, 9, 10, 11, 14, 16, 18, 22, 24
G18 <- G18[,c(3,6,10,14,16,18,22,24,31)]
variable.names(G18)
G19 <- read_csv("Graduados2019.csv")
G19 <- G19[,c(3,6,10,14,16,18,22,24,37)]
variable.names(G19)
G20 <- read_csv("Graduados2020.csv")
G20 <- G20[,c(3,6,10,14,16,18,22,24,37)]
G21 <- read_csv("Graduados2021.csv")
G21 <- G21[,c(3,6,11,15,18,20,24,26,39)]
colnames(G18)[c(1,2,3,4,5,6,7,8,9)] <- c("Institution", "Sector", "Department","Program","Level","Type","Discipline","Knowledge","Year")
colnames(G19)[c(1,2,3,4,5,6,7,8,9)] <- c("Institution", "Sector", "Department","Program","Level","Type","Discipline","Knowledge","Year")
colnames(G20)[c(1,2,3,4,5,6,7,8,9)] <- c("Institution", "Sector", "Department","Program","Level","Type","Discipline","Knowledge","Year")
colnames(G21)[c(1,2,3,4,5,6,7,8,9)] <- c("Institution", "Sector", "Department","Program","Level","Type","Discipline","Knowledge","Year")
all <- list(G18, G19, G20, G21)
ALL <- do.call(rbind.data.frame, all)
rm(list = setdiff(ls(), "ALL"))
GraduatePrograms <- filter(ALL, Level == "POSGRADO")
Programs <- GraduatePrograms[!duplicated(GraduatePrograms$Program), ]
PHD <- filter(Programs, grepl('Doctor|DOCTOR', Type))
MASTER <- filter(Programs, grepl('Maestr', Type))
ESPEC <- filter(Programs, grepl('Especializa', Type))
table(PHD$Discipline)
table(MASTER$Discipline)
table(ESPEC$Discipline)
Universidades <- data.frame(table(GraduatePrograms$`INSTITUCIÓN DE EDUCACIÓN SUPERIOR (IES)`))
PHD <- filter(ProgramasUnicos, grepl('Doctor|DOCTOR', Name))
MASTER <- filter(ProgramasUnicos, grepl('Maestr', Type))
ESPEC <- filter(ProgramasUnicos, grepl('Especializa', Type))
table(PHD$Discipline)
table(MASTER$Discipline)
table(ESPEC$Discipline)
ProgramasDoctores <- data.frame(table(PHD$Name))
146+1154+1834
568/3134
ProgramsByDepartment <- data.frame(table(Programs$`DEPARTAMENTO DE DOMICILIO DE LA IES`))
#ProgramsByDep <- data.frame(table(Programs$`CÓDIGO DEL DEPARTAMENTO (IES)`))
library(tidyverse)
library(colmaps)
colmap(municipios, subset(Programs, Level == "POSGRADO"), var = "GRADUADOS")