forked from landreman/regcoil_pm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregcoil_init_plasma_mod.f90
588 lines (464 loc) · 24.9 KB
/
regcoil_init_plasma_mod.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
module regcoil_init_plasma_mod
use stel_kinds
implicit none
private
public :: regcoil_init_plasma
real(dp) :: theta_rootSolve_target, zeta
contains
subroutine regcoil_init_plasma()
use regcoil_variables
use regcoil_read_efit_mod
use read_wout_mod, only: nfp_vmec => nfp, xm_vmec => xm, xn_vmec => xn, &
rmnc_vmec => rmnc, zmns_vmec => zmns, rmns_vmec => rmns, zmnc_vmec => zmnc, &
lasym_vmec => lasym, mnmax_vmec => mnmax, ns, Rmajor, read_wout_file, &
mpol_vmec => mpol, ntor_vmec => ntor, bvco, bsubvmnc
use safe_open_mod
use stel_constants
implicit none
integer :: i, itheta, izeta, imn, tic, toc, countrate, iflag, ierr, iopen, tic1, toc1, iunit
real(dp) :: angle, sinangle, cosangle, dsinangledtheta, dsinangledzeta, dcosangledtheta, dcosangledzeta
real(dp) :: angle2, sinangle2, cosangle2, dsinangle2dzeta, dcosangle2dzeta
real(dp) :: weight1, weight2, theta, r_temp, z_temp, dnorm
integer :: ntheta_coordTransform, nzeta_coordTransform
real(dp), dimension(:,:), allocatable :: r_coordTransform, z_coordTransform, major_R_squared
real(dp), dimension(:), allocatable :: rmnc_vmecLast, zmns_vmecLast
real(dp) :: rootSolve_abserr, rootSolve_relerr, theta_rootSolve_min, theta_rootSolve_max, theta_rootSolve_soln
integer :: fzeroFlag, mpol, ntor, jm, jn, index
call system_clock(tic, countrate)
if (verbose) print *,"Initializing plasma surface."
select case (geometry_option_plasma)
case (0,1)
! Plain circular torus
if (verbose) print *," Building a plain circular torus."
nfp = nfp_imposed
mnmax_plasma = 2
lasym = .false.
call regcoil_allocate_plasma_surface_arrays()
xm_plasma = (/0,1/)
xn_plasma = (/0,0/)
rmnc_plasma = (/ R0_plasma, a_plasma /)
zmns_plasma = (/ 0.0d+0, a_plasma /)
case(6)
! Read in an ASCII table
call safe_open(iunit, ierr, trim(shape_filename_plasma), 'old', 'formatted')
if (ierr .ne. 0) then
stop 'Error opening nescin file'
endif
! Skip first line
read (iunit, *)
read (iunit, *) mnmax_plasma
call regcoil_allocate_plasma_surface_arrays()
! Skip a line
read (iunit, *)
do i = 1, mnmax_plasma
read (iunit, *) xm_plasma(i), xn_plasma(i), rmnc_plasma(i), zmns_plasma(i), rmns_plasma(i), zmnc_plasma(i)
end do
close(iunit)
nfp = nfp_imposed
lasym = .true.
case(7)
! Read in FOCUS format plasma boundary, for more information, please check
! https://princetonuniversity.github.io/FOCUS/rdsurf.pdf
call safe_open(iunit, ierr, trim(shape_filename_plasma), 'old', 'formatted')
if (ierr .ne. 0) then
stop 'Error opening FOCUS file'
endif
if (verbose) print *,"Reading FOCUS format data from file:", trim(shape_filename_plasma)
! Skip first line
read (iunit, *)
read (iunit, *) mnmax_plasma, nfp, nbf
if (allocated(xm_plasma)) deallocate(xm_plasma)
allocate(xm_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 1"
if (allocated(xn_plasma)) deallocate(xn_plasma)
allocate(xn_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 2"
if (allocated(rmnc_plasma)) deallocate(rmnc_plasma)
allocate(rmnc_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 3"
if (allocated(zmns_plasma)) deallocate(zmns_plasma)
allocate(zmns_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 4"
if (allocated(rmns_plasma)) deallocate(rmns_plasma)
allocate(rmns_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 5"
if (allocated(zmnc_plasma)) deallocate(zmnc_plasma)
allocate(zmnc_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 6"
! Skip two lines
read (iunit, *)
read (iunit, *)
do i = 1, mnmax_plasma
read (iunit, *) xn_plasma(i), xm_plasma(i), rmnc_plasma(i), rmns_plasma(i), zmnc_plasma(i), zmns_plasma(i)
end do
xn_plasma = xn_plasma * nfp ! include nfp
! read bnorm coefficients if available
if ( nbf > 0 ) then
if (allocated(bfm)) deallocate(bfs)
allocate(bfm(nbf),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 7"
if (allocated(bfn)) deallocate(bfc)
allocate(bfn(nbf),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 8"
if (allocated(bfs)) deallocate(bfs)
allocate(bfs(nbf),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 9"
if (allocated(bfc)) deallocate(bfc)
allocate(bfc(nbf),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 10"
! Skip two lines
read (iunit, *)
read (iunit, *) !empty line
do i = 1, nbf
read (iunit, *) bfn(i), bfm(i), bfc(i), bfs(i)
enddo
bfn = bfn * nfp ! include nfp
if (verbose) print *,"Number of modes for Bnormal read from FOCUS file:", nbf
endif
close(iunit)
lasym = .true.
case (2,3)
! VMEC, "original" theta coordinate which is not a straight-field-line coordinate
call read_wout_file(wout_filename, ierr, iopen)
if (iopen .ne. 0) stop 'error opening wout file'
if (ierr .ne. 0) stop 'error reading wout file'
if (verbose) print *," Successfully read VMEC data from ",trim(wout_filename)
if (geometry_option_plasma == 2) then
! Only use the outermost point in the full radial mesh:
weight1 = 0
weight2 = 1
if (verbose) print *," Using outermost grid point in VMEC's FULL radial grid."
else
! Average the two outermost points in the full radial mesh
! to get a value on the outermost point of the half radial mesh:
weight1 = 0.5_dp
weight2 = 0.5_dp
if (verbose) print *," Using outermost grid point in VMEC's HALF radial grid."
end if
nfp = nfp_vmec
mnmax_plasma = mnmax_vmec
lasym = lasym_vmec
R0_plasma = Rmajor
call regcoil_allocate_plasma_surface_arrays()
xm_plasma = xm_vmec
xn_plasma = xn_vmec
if (verbose) print *,"size of rmnc_vmec:",size(rmnc_vmec,1),size(rmnc_vmec,2)
rmnc_plasma = rmnc_vmec(:,ns-1) * weight1 + rmnc_vmec(:,ns) * weight2
zmns_plasma = zmns_vmec(:,ns-1) * weight1 + zmns_vmec(:,ns) * weight2
if (lasym) then
rmns_plasma = rmns_vmec(:,ns-1) * weight1 + rmns_vmec(:,ns) * weight2
zmnc_plasma = zmnc_vmec(:,ns-1) * weight1 + zmnc_vmec(:,ns) * weight2
end if
case (4)
! VMEC, straight-field-line poloidal coordinate
call read_wout_file(wout_filename, ierr, iopen)
if (iopen .ne. 0) stop 'error opening wout file'
if (ierr .ne. 0) stop 'error reading wout file'
if (verbose) print *," Successfully read VMEC data from ",trim(wout_filename)
nfp = nfp_vmec
lasym = lasym_vmec
if (lasym) then
stop "Error! geometry_option_plasma=4 is not yet implemented for lasym=true"
end if
R0_plasma = Rmajor
! Average R and Z from the outermost 2 grid points in vmec's full mesh
! to get R and Z on the outermost point of vmec's half mesh:
weight1 = 0.5_dp
weight2 = 0.5_dp
if (allocated(rmnc_vmecLast)) deallocate(rmnc_vmecLast)
allocate(rmnc_vmecLast(mnmax_vmec),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(zmns_vmecLast)) deallocate(zmns_vmecLast)
allocate(zmns_vmecLast(mnmax_vmec),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
rmnc_vmecLast = rmnc_vmec(:,ns-1) * weight1 + rmnc_vmec(:,ns) * weight2
zmns_vmecLast = zmns_vmec(:,ns-1) * weight1 + zmns_vmec(:,ns) * weight2
! Since the "original" vmec poloidal angle is chosen to have a very condensed
! Fourier spectrum, we probably need more Fourier modes to represent the surface using the
! straight-field-line coordinate.
mpol = mpol_vmec*mpol_transform_refinement
ntor = ntor_vmec*ntor_transform_refinement
! Beginning of coordinate transformation.
! Set up high-resolution grid in the "new" theta coordinate:
ntheta_coordTransform = mpol * 2
nzeta_coordTransform = ntor * 2
if (allocated(r_coordTransform)) deallocate(r_coordTransform)
allocate(r_coordTransform(ntheta_coordTransform, nzeta_coordTransform), stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(z_coordTransform)) deallocate(z_coordTransform)
allocate(z_coordTransform(ntheta_coordTransform, nzeta_coordTransform), stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
r_coordTransform = 0
z_coordTransform = 0
call system_clock(tic1)
rootSolve_abserr = 1.0e-10_dp
rootSolve_relerr = 1.0e-10_dp
!open(unit=5,file="testStraightFieldLines",status='new',form='formatted')
!write (5,*) ntheta_coordTransform, nzeta_coordTransform
do izeta = 1,nzeta_coordTransform
zeta = (izeta-1.0_dp)/nzeta_coordTransform
do itheta = 1,ntheta_coordTransform
! For each value of the new coordinates, solve for the old theta:
theta_rootSolve_target = (itheta-1.0_dp)/ntheta_coordTransform
theta_rootSolve_min = theta_rootSolve_target - 0.3
theta_rootSolve_max = theta_rootSolve_target + 0.3
call regcoil_fzero(fzero_residual, theta_rootSolve_min, theta_rootSolve_max, theta_rootSolve_target, &
rootSolve_relerr, rootSolve_abserr, fzeroFlag)
! Note: fzero returns its answer in theta_rootSolve_min
theta_rootSolve_soln = theta_rootSolve_min
if (fzeroFlag == 4) then
stop "ERROR: fzero returned error 4: no sign change in residual"
else if (fzeroFlag > 2) then
print *,"WARNING in irp: fzero returned an error code:",fzeroFlag
end if
! Now that we have the old theta, evaluate r and z:
r_temp = 0
z_temp = 0
do imn = 1, mnmax_vmec
!angle = twopi*(xm_vmec(imn)*theta_rootSolve_soln - xn_vmec(imn)*zeta/nfp)
angle = xm_vmec(imn)*theta_rootSolve_soln - xn_vmec(imn)*zeta
r_temp = r_temp + rmnc_vmecLast(imn)*cos(angle)
z_temp = z_temp + zmns_vmecLast(imn)*sin(angle)
end do
r_coordTransform(itheta,izeta) = r_temp
z_coordTransform(itheta,izeta) = z_temp
!write(5,*) theta_rootSolve_soln
end do
end do
!close(unit=5)
call system_clock(toc1)
if (verbose) print *," Time for root solving:",real(toc1-tic1)/countrate
! Now that we have R and Z on a grid in the new coordinates, Fourier transform the results.
! The next bit of code is much like initFourierModesMod, but with 2 differences:
! 1. We need to keep the m=n=0 mode.
! 2. We follow VMEC convention that n includes the factor of nfp.
! xm is nonnegative.
! xn can be negative, zero, or positive.
! When xm is 0, xn must be positive.
mnmax_plasma = mpol*(ntor*2+1) + ntor + 1
call regcoil_allocate_plasma_surface_arrays()
! Handle the xm=0 modes:
xm_plasma=0
do jn=0,ntor
xn_plasma(jn+1)=jn*nfp
end do
! Handle the xm>0 modes:
index = ntor + 1
do jm = 1,mpol
do jn = -ntor, ntor
index = index + 1
xn_plasma(index) = jn*nfp
xm_plasma(index) = jm
end do
end do
! Initialization of xm and xn is now complete.
call system_clock(tic1)
do imn = 1, mnmax_plasma
dnorm = (1.0_dp)/(ntheta_coordTransform*nzeta_coordTransform)
if (xm_plasma(imn).ne.0 .or. xn_plasma(imn).ne.0) dnorm = 2*dnorm
r_temp = 0
z_temp = 0
do izeta = 1, nzeta_coordTransform
zeta = (izeta-1.0_dp)/nzeta_coordTransform
do itheta = 1, ntheta_coordTransform
theta = (itheta-1.0_dp)/ntheta_coordTransform
angle = xm_plasma(imn)*theta-xn_plasma(imn)*zeta
cosangle = cos(angle)
sinangle = sin(angle)
r_temp = r_temp + r_coordTransform(itheta,izeta) * cosangle
z_temp = z_temp + z_coordTransform(itheta,izeta) * sinangle
end do
end do
rmnc_plasma(imn) = r_temp*dnorm
zmns_plasma(imn) = z_temp*dnorm
end do
call system_clock(toc1)
if (verbose) print *," Time for Fourier transform:",real(toc1-tic1)/countrate
case (5)
! EFIT
lasym = .true.
nfp = nfp_imposed
mnmax_plasma = efit_num_modes
call regcoil_allocate_plasma_surface_arrays()
call regcoil_read_efit(efit_filename, efit_psiN, efit_num_modes, rmnc_plasma, zmns_plasma, rmns_plasma, zmnc_plasma)
! Set major radius equal to the zero-frequency component of R(theta)
R0_plasma = rmnc_plasma(1)
xn_plasma = 0
do i=1,efit_num_modes
xm_plasma(i) = i-1
end do
case default
print *,"Error! Invalid setting for geometry_option_plasma:",geometry_option_plasma
stop
end select
! ---------------------------
! End of the parts of code specific to each geometry_option_plasma.
! Now comes the code that applies to all values of geometry_option_plasma.
nzetal_plasma = nzeta_plasma * nfp
if (allocated(theta_plasma)) deallocate(theta_plasma)
allocate(theta_plasma(ntheta_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(zeta_plasma)) deallocate(zeta_plasma)
allocate(zeta_plasma(nzeta_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(zetal_plasma)) deallocate(zetal_plasma)
allocate(zetal_plasma(nzetal_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
do i=1,ntheta_plasma
theta_plasma(i) = twopi*(i-1.0_dp)/ntheta_plasma
end do
do i=1,nzeta_plasma
zeta_plasma(i) = twopi/nfp*(i-1.0_dp)/nzeta_plasma
end do
do i=1,nzetal_plasma
zetal_plasma(i) = twopi*(i-1.0_dp)/nzetal_plasma
end do
! First coordinate is the Cartesian component x, y, or z
if (allocated(r_plasma)) deallocate(r_plasma)
allocate(r_plasma(3,ntheta_plasma,nzetal_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(drdtheta_plasma)) deallocate(drdtheta_plasma)
allocate(drdtheta_plasma(3,ntheta_plasma,nzetal_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(drdzeta_plasma)) deallocate(drdzeta_plasma)
allocate(drdzeta_plasma(3,ntheta_plasma,nzetal_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
if (allocated(normal_plasma)) deallocate(normal_plasma)
allocate(normal_plasma(3,ntheta_plasma,nzetal_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
r_plasma=0
drdtheta_plasma=0
drdzeta_plasma=0
do izeta = 1,nzetal_plasma
angle2 = zetal_plasma(izeta)
sinangle2 = sin(angle2)
cosangle2 = cos(angle2)
dsinangle2dzeta = cosangle2
dcosangle2dzeta = -sinangle2
do itheta = 1,ntheta_plasma
do imn = 1,mnmax_plasma
angle = xm_plasma(imn)*theta_plasma(itheta) - xn_plasma(imn)*zetal_plasma(izeta)
sinangle = sin(angle)
cosangle = cos(angle)
dsinangledtheta = cosangle*xm_plasma(imn)
dcosangledtheta = -sinangle*xm_plasma(imn)
dsinangledzeta = -cosangle*xn_plasma(imn)
dcosangledzeta = sinangle*xn_plasma(imn)
r_plasma(1,itheta,izeta) = r_plasma(1,itheta,izeta) + rmnc_plasma(imn) * cosangle * cosangle2
r_plasma(2,itheta,izeta) = r_plasma(2,itheta,izeta) + rmnc_plasma(imn) * cosangle * sinangle2
r_plasma(3,itheta,izeta) = r_plasma(3,itheta,izeta) + zmns_plasma(imn) * sinangle
drdtheta_plasma(1,itheta,izeta) = drdtheta_plasma(1,itheta,izeta) + rmnc_plasma(imn) * dcosangledtheta * cosangle2
drdtheta_plasma(2,itheta,izeta) = drdtheta_plasma(2,itheta,izeta) + rmnc_plasma(imn) * dcosangledtheta * sinangle2
drdtheta_plasma(3,itheta,izeta) = drdtheta_plasma(3,itheta,izeta) + zmns_plasma(imn) * dsinangledtheta
drdzeta_plasma(1,itheta,izeta) = drdzeta_plasma(1,itheta,izeta) + rmnc_plasma(imn) * (dcosangledzeta * cosangle2 + cosangle * dcosangle2dzeta)
drdzeta_plasma(2,itheta,izeta) = drdzeta_plasma(2,itheta,izeta) + rmnc_plasma(imn) * (dcosangledzeta * sinangle2 + cosangle * dsinangle2dzeta)
drdzeta_plasma(3,itheta,izeta) = drdzeta_plasma(3,itheta,izeta) + zmns_plasma(imn) * dsinangledzeta
if (lasym) then
r_plasma(1,itheta,izeta) = r_plasma(1,itheta,izeta) + rmns_plasma(imn) * sinangle * cosangle2
r_plasma(2,itheta,izeta) = r_plasma(2,itheta,izeta) + rmns_plasma(imn) * sinangle * sinangle2
r_plasma(3,itheta,izeta) = r_plasma(3,itheta,izeta) + zmnc_plasma(imn) * cosangle
drdtheta_plasma(1,itheta,izeta) = drdtheta_plasma(1,itheta,izeta) + rmns_plasma(imn) * dsinangledtheta * cosangle2
drdtheta_plasma(2,itheta,izeta) = drdtheta_plasma(2,itheta,izeta) + rmns_plasma(imn) * dsinangledtheta * sinangle2
drdtheta_plasma(3,itheta,izeta) = drdtheta_plasma(3,itheta,izeta) + zmnc_plasma(imn) * dcosangledtheta
drdzeta_plasma(1,itheta,izeta) = drdzeta_plasma(1,itheta,izeta) + rmns_plasma(imn) * (dsinangledzeta * cosangle2 + sinangle * dcosangle2dzeta)
drdzeta_plasma(2,itheta,izeta) = drdzeta_plasma(2,itheta,izeta) + rmns_plasma(imn) * (dsinangledzeta * sinangle2 + sinangle * dsinangle2dzeta)
drdzeta_plasma(3,itheta,izeta) = drdzeta_plasma(3,itheta,izeta) + zmnc_plasma(imn) * dcosangledzeta
end if
end do
end do
end do
! Evaluate cross product
normal_plasma(1,:,:) = drdzeta_plasma(2,:,:) * drdtheta_plasma(3,:,:) - drdtheta_plasma(2,:,:) * drdzeta_plasma(3,:,:)
normal_plasma(2,:,:) = drdzeta_plasma(3,:,:) * drdtheta_plasma(1,:,:) - drdtheta_plasma(3,:,:) * drdzeta_plasma(1,:,:)
normal_plasma(3,:,:) = drdzeta_plasma(1,:,:) * drdtheta_plasma(2,:,:) - drdtheta_plasma(1,:,:) * drdzeta_plasma(2,:,:)
if (allocated(norm_normal_plasma)) deallocate(norm_normal_plasma)
allocate(norm_normal_plasma(ntheta_plasma, nzeta_plasma),stat=iflag)
if (iflag .ne. 0) stop 'regcoil_init_plasma Allocation error!'
norm_normal_plasma = sqrt(normal_plasma(1,:,1:nzeta_plasma)**2 &
+ normal_plasma(2,:,1:nzeta_plasma)**2 &
+ normal_plasma(3,:,1:nzeta_plasma)**2)
dtheta_plasma = theta_plasma(2)-theta_plasma(1)
dzeta_plasma = zeta_plasma(2)-zeta_plasma(1)
area_plasma = nfp * dtheta_plasma * dzeta_plasma * sum(norm_normal_plasma)
! Compute plasma volume using \int (1/2) R^2 dZ dzeta.
! These quantities will be evaluated on the half theta grid, which is the natural grid for dZ,
! but we will need to interpolate R^2 from the full to half grid.
allocate(major_R_squared(ntheta_plasma,nzetal_plasma))
major_R_squared = r_plasma(1,:,:)*r_plasma(1,:,:) + r_plasma(2,:,:)*r_plasma(2,:,:)
! First handle the interior of the theta grid:
volume_plasma = sum((major_R_squared(1:ntheta_plasma-1,:) + major_R_squared(2:ntheta_plasma,:)) * (0.5d+0) & ! R^2, interpolated from full to half grid
* (r_plasma(3,2:ntheta_plasma,:)-r_plasma(3,1:ntheta_plasma-1,:))) ! dZ
! Add the contribution from the ends of the theta grid:
volume_plasma = volume_plasma + sum((major_R_squared(1,:) + major_R_squared(ntheta_plasma,:)) * (0.5d+0) & ! R^2, interpolated from full to half grid
* (r_plasma(3,1,:)-r_plasma(3,ntheta_plasma,:))) ! dZ
volume_plasma = abs(volume_plasma * dzeta_plasma / 2) ! r_plasma includes all nfp periods already, so no factor of nfp needed.
deallocate(major_R_squared)
if (verbose) print "(a,es10.3,a,es10.3,a)"," Plasma surface area:",area_plasma," m^2. Volume:",volume_plasma," m^3."
select case (geometry_option_plasma)
case (2,3,4)
! A VMEC wout file is available
! VMEC stores the toroidal Boozer component B_zeta as "bvco", using the HALF mesh
if (net_poloidal_current_Amperes == 0) then
net_poloidal_current_Amperes = 2*pi/mu0*(1.5_dp*bvco(ns)-0.5_dp*bvco(ns-1))
! curpol is a number which multiplies the data in the bnorm file.
curpol = (2*pi/nfp)*(1.5_dp*bsubvmnc(1,ns) - 0.5_dp*bsubvmnc(1,ns-1))
if (verbose) print "(a)"," Obtaining net_poloidal_current_Amperes from the VMEC wout file."
else
if (verbose) print "(a)"," Ignoring net_poloidal_current_Amperes from the VMEC wout file; using user-provided value instead."
end if
case default
!!$ if (abs(net_poloidal_current_Amperes-1)<1e-12) then
!!$ if (verbose) print *,"No VMEC file is available, and the default value of net_poloidal_current_Amperes (=1) will be used."
!!$ else
!!$ if (verbose) print *,"No VMEC file is available, so net_poloidal_current_Amperes will be taken from the bdistrib input file."
!!$ end if
end select
if (verbose) print *,"G = ", net_poloidal_current_Amperes, " ; curpol = ", curpol
call system_clock(toc)
if (verbose) print *,"Done initializing plasma surface. Took ",real(toc-tic)/countrate," sec."
end subroutine regcoil_init_plasma
! --------------------------------------------------------------------------
function fzero_residual(theta_old)
use regcoil_variables, only: nfp
use read_wout_mod, only: xm_vmec => xm, xn_vmec => xn, mnmax_vmec => mnmax, lmns, ns
use stel_constants
implicit none
real(dp) :: theta_old, fzero_residual
integer :: imn
! residual = twopi*(u_new - u_new_target) = (twopi*u_old + lambda) - u_new_target*twopi
fzero_residual = theta_old - theta_rootSolve_target
do imn = 1, mnmax_vmec
fzero_residual = fzero_residual + lmns(imn,ns)*sin(xm_vmec(imn)*theta_old - xn_vmec(imn)*zeta)
end do
end function fzero_residual
! --------------------------------------------------------------------------
subroutine regcoil_allocate_plasma_surface_arrays()
use regcoil_variables
implicit none
integer :: iflag
if (allocated(xm_plasma)) deallocate(xm_plasma)
allocate(xm_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 1"
if (allocated(xn_plasma)) deallocate(xn_plasma)
allocate(xn_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 2"
if (allocated(rmnc_plasma)) deallocate(rmnc_plasma)
allocate(rmnc_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 3"
if (allocated(rmns_plasma)) deallocate(rmns_plasma)
allocate(rmns_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 4"
if (allocated(zmnc_plasma)) deallocate(zmnc_plasma)
allocate(zmnc_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 5"
if (allocated(zmns_plasma)) deallocate(zmns_plasma)
allocate(zmns_plasma(mnmax_plasma),stat=iflag)
if (iflag .ne. 0) stop "regcoil_init_plasma Allocation error! 6"
xm_plasma = 0
xn_plasma = 0
rmnc_plasma = 0
rmns_plasma = 0
zmnc_plasma = 0
zmns_plasma = 0
end subroutine regcoil_allocate_plasma_surface_arrays
end module regcoil_init_plasma_mod