forked from serge-sans-paille/pythran-stories
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathan-incursion-into-basic-ml-gradient-descent-compiled-with-pythran.html
427 lines (367 loc) · 31.3 KB
/
an-incursion-into-basic-ml-gradient-descent-compiled-with-pythran.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>An incursion into basic ML - Gradient Descent compiled with Pythran</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="">
<meta name="author" content="serge-sans-paille and other pythraners">
<!-- Le styles -->
<link rel="stylesheet" href="./theme/css/bootstrap.min.css" type="text/css" />
<style type="text/css">
body {
padding-top: 60px;
padding-bottom: 40px;
}
.sidebar-nav {
padding: 9px 0;
}
.tag-1 {
font-size: 13pt;
}
.tag-2 {
font-size: 10pt;
}
.tag-2 {
font-size: 8pt;
}
.tag-4 {
font-size: 6pt;
}
</style>
<link href="./theme/css/bootstrap-responsive.min.css" rel="stylesheet">
<link href="./theme/css/font-awesome.css" rel="stylesheet">
<link href="./theme/css/pygments.css" rel="stylesheet">
<!-- Le HTML5 shim, for IE6-8 support of HTML5 elements -->
<!--[if lt IE 9]>
<script src="//html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<!-- Le fav and touch icons -->
<link rel="shortcut icon" href="./theme/images/favicon.ico">
<link rel="apple-touch-icon" href="./theme/images/apple-touch-icon.png">
<link rel="apple-touch-icon" sizes="72x72" href="./theme/images/apple-touch-icon-72x72.png">
<link rel="apple-touch-icon" sizes="114x114" href="./theme/images/apple-touch-icon-114x114.png">
<link href="./" type="application/atom+xml" rel="alternate" title="Pythran stories ATOM Feed" />
</head>
<body>
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container-fluid">
<a class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</a>
<a class="brand" href="./index.html">Pythran stories </a>
<div class="nav-collapse">
<ul class="nav">
<li class="divider-vertical"></li>
<li >
<a href="./category/benchmark.html">
<i class="icon-folder-open icon-large"></i>benchmark
</a>
</li>
<li >
<a href="./category/compilation.html">
<i class="icon-folder-open icon-large"></i>compilation
</a>
</li>
<li >
<a href="./category/cython.html">
<i class="icon-folder-open icon-large"></i>cython
</a>
</li>
<li >
<a href="./category/engineering.html">
<i class="icon-folder-open icon-large"></i>engineering
</a>
</li>
<li class="active">
<a href="./category/examples.html">
<i class="icon-folder-open icon-large"></i>examples
</a>
</li>
<li >
<a href="./category/optimisation.html">
<i class="icon-folder-open icon-large"></i>optimisation
</a>
</li>
<li >
<a href="./category/release.html">
<i class="icon-folder-open icon-large"></i>release
</a>
</li>
<ul class="nav pull-right">
<li><a href="./archives.html"><i class="icon-th-list"></i>Archives</a></li>
</ul>
</ul>
<!--<p class="navbar-text pull-right">Logged in as <a href="#">username</a></p>-->
</div><!--/.nav-collapse -->
</div>
</div>
</div>
<div class="container-fluid">
<div class="row">
<div class="span9" id="content">
<section id="content">
<article>
<header>
<h1>
<a href=""
rel="bookmark"
title="Permalink to An incursion into basic ML - Gradient Descent compiled with Pythran">
An incursion into basic ML - Gradient Descent compiled with Pythran
</a>
</h1>
</header>
<div class="entry-content">
<div class="well">
<footer class="post-info">
<span class="label">Date</span>
<abbr class="published" title="2018-05-16T00:00:00+02:00">
<i class="icon-calendar"></i>Wed 16 May 2018
</abbr>
<span class="label">By</span>
<a href="./author/serge-sans-paille.html"><i class="icon-user"></i>serge-sans-paille</a>
<span class="label">Category</span>
<a href="./category/examples.html"><i class="icon-folder-open"></i>examples</a>.
</footer><!-- /.post-info --> </div>
<p>This blogpost originally was a Jupyter Notebook. You can <a href="notebooks/An incursion into basic ML - Gradient Descent compiled with Pythran.ipynb">download it</a> if you want. The conversion was done using <code>nbconvert</code> and a <a href="notebooks/nbmarkdown.tpl">custom template</a> to match the style of the other part of the blog.</p>
<p>Thanks to w1gz and Apo for their review!</p>
<p>In https://realpython.com/numpy-tensorflow-performance/, the author compares the performance of different approaches of a basic ML kernel, gradient descent. </p>
<p>Let's try to join the party :-) </p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="kn">import</span> <span class="nn">pythran</span>
<span class="o">>>></span> <span class="o">%</span><span class="n">load_ext</span> <span class="n">pythran</span><span class="o">.</span><span class="n">magic</span>
</pre></div>
<h1>Original Setup</h1>
<p>The original Numpy code is the following:</p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="o">>>></span> <span class="kn">import</span> <span class="nn">itertools</span> <span class="kn">as</span> <span class="nn">it</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="k">def</span> <span class="nf">np_descent</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">):</span>
<span class="o">...</span> <span class="n">d</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="o">...</span> <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="o">...</span> <span class="n">f</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">N</span>
<span class="o">...</span>
<span class="o">...</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">...</span> <span class="n">err</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">...</span> <span class="n">w</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span>
<span class="o">...</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">):</span>
<span class="o">...</span> <span class="n">np</span><span class="o">.</span><span class="n">subtract</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">out</span><span class="o">=</span><span class="n">err</span><span class="p">)</span>
<span class="o">...</span> <span class="n">grad</span><span class="p">[:]</span> <span class="o">=</span> <span class="n">f</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">err</span><span class="p">),</span> <span class="n">f</span> <span class="o">*</span> <span class="p">(</span><span class="n">err</span> <span class="err">@</span> <span class="n">x</span><span class="p">)</span>
<span class="o">...</span> <span class="n">w</span> <span class="o">=</span> <span class="n">w</span> <span class="o">+</span> <span class="n">mu</span> <span class="o">*</span> <span class="n">grad</span>
<span class="o">...</span> <span class="n">y</span> <span class="o">=</span> <span class="n">w</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">w</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">w</span>
</pre></div>
<p>And the experimental setup is the following: </p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">444</span><span class="p">)</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="n">N</span> <span class="o">=</span> <span class="mi">10000</span>
<span class="o">>>></span> <span class="n">sigma</span> <span class="o">=</span> <span class="mf">0.1</span>
<span class="o">>>></span> <span class="n">noise</span> <span class="o">=</span> <span class="n">sigma</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">d</span> <span class="o">=</span> <span class="mi">3</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">x</span> <span class="o">+</span> <span class="n">noise</span>
<span class="o">>>></span> <span class="n">d</span><span class="o">.</span><span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="n">mu</span> <span class="o">=</span> <span class="mf">0.001</span>
<span class="o">>>></span> <span class="n">N_epochs</span> <span class="o">=</span> <span class="mi">10000</span>
</pre></div>
<p>So our base line is:</p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%</span><span class="n">timeit</span> <span class="n">np_descent</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>281 ms ± 9.82 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
</pre></div>
<h1>Pythran version</h1>
<p>the implicit contract with pythran is ‘add a comment and compile’, but in that case we made two changes:</p>
<ol>
<li>static <code>squeeze</code> because pythran does not support dynamic array dimensions</li>
<li>remove the <code>out</code> parameter for <code>np.subtract</code> because it's not supported yet by pythran (but it could in the future)</li>
</ol>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%%</span><span class="n">pythran</span>
<span class="o">>>></span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="o">>>></span> <span class="kn">import</span> <span class="nn">itertools</span> <span class="kn">as</span> <span class="nn">it</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="c1">#pythran export pythran_descent(float64[], float64[,], float, int)</span>
<span class="o">>>></span> <span class="k">def</span> <span class="nf">pythran_descent</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">):</span>
<span class="o">...</span> <span class="k">assert</span> <span class="n">d</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">,</span> <span class="s2">"pythran does not support squeeze"</span>
<span class="o">...</span> <span class="n">d</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">d</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="o">...</span> <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="o">...</span> <span class="n">f</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">N</span>
<span class="o">...</span>
<span class="o">...</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">...</span> <span class="n">err</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">...</span> <span class="n">w</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span>
<span class="o">...</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">):</span>
<span class="o">...</span> <span class="n">err</span><span class="p">[:]</span> <span class="o">=</span> <span class="n">d</span> <span class="o">-</span> <span class="n">y</span>
<span class="o">...</span> <span class="n">grad</span><span class="p">[:]</span> <span class="o">=</span> <span class="n">f</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">err</span><span class="p">),</span> <span class="n">f</span> <span class="o">*</span> <span class="p">(</span><span class="n">err</span> <span class="err">@</span> <span class="n">x</span><span class="p">)</span>
<span class="o">...</span> <span class="n">w</span> <span class="o">=</span> <span class="n">w</span> <span class="o">+</span> <span class="n">mu</span> <span class="o">*</span> <span class="n">grad</span>
<span class="o">...</span> <span class="n">y</span> <span class="o">=</span> <span class="n">w</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">w</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">w</span>
</pre></div>
<p>Ok, it compiles fine, let's run it!</p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%</span><span class="n">timeit</span> <span class="n">pythran_descent</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>268 ms ± 5.05 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
</pre></div>
<p>That's slightly faster, but not by much. The numpy code is actually pretty good already, and a good chunk of the time is spent in the scalar product; there is not much to gain here as both numpy and pythran fallback to blas.</p>
<h2>SIMD Instructions to the rescue</h2>
<p>Pythran supports generation of SIMD instructions, through the great Boost.SIMD library. Let's update compile flags and try again. The <code>-march=native</code> tells the underlying compiler (here, GCC 7.3.0) to generate code specific to my processor's architecture, thus enabling AVX instructions \o/</p>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%%</span><span class="n">pythran</span> <span class="o">-</span><span class="n">DUSE_BOOST_SIMD</span> <span class="o">-</span><span class="n">march</span><span class="o">=</span><span class="n">native</span>
<span class="o">>>></span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="o">>>></span> <span class="kn">import</span> <span class="nn">itertools</span> <span class="kn">as</span> <span class="nn">it</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="c1">#pythran export pythran_descent_simd(float64[], float64[,], float, int)</span>
<span class="o">>>></span> <span class="k">def</span> <span class="nf">pythran_descent_simd</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">):</span>
<span class="o">...</span> <span class="k">assert</span> <span class="n">d</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">,</span> <span class="s2">"pythran does not support squeeze"</span>
<span class="o">...</span> <span class="n">d</span> <span class="o">=</span> <span class="n">d</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">d</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="o">...</span> <span class="n">N</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="o">...</span> <span class="n">f</span> <span class="o">=</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">N</span>
<span class="o">...</span>
<span class="o">...</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">...</span> <span class="n">err</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="o">...</span> <span class="n">w</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span> <span class="n">grad</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="o">...</span>
<span class="o">...</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="n">it</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">):</span>
<span class="o">...</span> <span class="n">err</span><span class="p">[:]</span> <span class="o">=</span> <span class="n">d</span> <span class="o">-</span> <span class="n">y</span>
<span class="o">...</span> <span class="n">grad</span><span class="p">[:]</span> <span class="o">=</span> <span class="n">f</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">err</span><span class="p">),</span> <span class="n">f</span> <span class="o">*</span> <span class="p">(</span><span class="n">err</span> <span class="err">@</span> <span class="n">x</span><span class="p">)</span>
<span class="o">...</span> <span class="n">w</span> <span class="o">=</span> <span class="n">w</span> <span class="o">+</span> <span class="n">mu</span> <span class="o">*</span> <span class="n">grad</span>
<span class="o">...</span> <span class="n">y</span> <span class="o">=</span> <span class="n">w</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">w</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">x</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">w</span>
</pre></div>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%</span><span class="n">timeit</span> <span class="n">pythran_descent_simd</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">,</span> <span class="n">mu</span><span class="p">,</span> <span class="n">N_epochs</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>114 ms ± 298 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
</pre></div>
<p>Now <em>that</em> is fast \o/</p>
<h1>The long story</h1>
<p>When I first tried to port the kernel, there was two limitations in Pythran. They are now merged into master but not in current release (0.8.5).</p>
<ol>
<li>
<p>There was no support for <code>itertools.repeat</code>. Pythran already supports a bunch of the <code>itertools</code> interface, so even if it's a bit overkill in that context, i added the support and the tests for that call.</p>
</li>
<li>
<p>Poor <code>@</code> performance. In the case of the scalar product of two arrays, openblas is much faster than the trivial non-vectorized implementation, so I specialized the pythran implementation of dot to fallback to the blas call when both parameters are arrays. In the more generic case, merging the operation is still a better approach</p>
</li>
</ol>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%%</span><span class="n">pythran</span> <span class="o">-</span><span class="n">DUSE_BOOST_SIMD</span> <span class="o">-</span><span class="n">march</span><span class="o">=</span><span class="n">native</span>
<span class="o">>>></span> <span class="c1">#pythran export dottest0(float[], float[])</span>
<span class="o">>>></span> <span class="k">def</span> <span class="nf">dottest0</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="o">...</span> <span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span>
<span class="o">...</span> <span class="n">tmp</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">x</span> <span class="err">@</span> <span class="n">tmp</span><span class="p">,</span> <span class="n">tmp</span>
<span class="o">...</span>
<span class="o">>>></span> <span class="c1">#pythran export dottest1(float[], float[])</span>
<span class="o">>>></span> <span class="k">def</span> <span class="nf">dottest1</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="o">...</span> <span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">array</span>
<span class="o">...</span> <span class="n">tmp</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">x</span> <span class="err">@</span> <span class="n">tmp</span><span class="p">,</span> <span class="n">x</span>
</pre></div>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="n">x</span> <span class="o">=</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="mi">1000000</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%</span><span class="n">timeit</span> <span class="n">dottest0</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>1.74 ms ± 12.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
</pre></div>
<div class="highlight"><pre><span></span><span class="o">>>></span> <span class="o">%</span><span class="n">timeit</span> <span class="n">dottest1</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>631 µs ± 33.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
</pre></div>
<p>What happened? In <code>dottest0</code>, <code>tmp</code> is used twice so a temporary array is created, and the <code>@</code> operator fallsback to blas implementation, as it is specialized in that case. For <code>dottest1</code>, <code>tmp</code> is used once, so it is evaluated lazily and the <code>@</code> operator now has an array and a lazy expression as parameter: it computes this expression in a single (vectorized) loop.</p>
<h1>Final Words</h1>
<p>So here are the final timings from my little experiment. It's nice to get some speedups from high level code, and I should probably be able to improve the generated code in the future!</p>
<table>
<thead>
<tr>
<th>Engine</th>
<th>Execution Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numpy</td>
<td>0.281</td>
</tr>
<tr>
<td>Pythran</td>
<td>0.268</td>
</tr>
<tr>
<td>Pythran+SIMD</td>
<td>0.114</td>
</tr>
</tbody>
</table>
</div><!-- /.entry-content -->
</article>
</section>
</div><!--/span-->
<div class="span3 well sidebar-nav" id="sidebar">
<ul class="nav nav-list">
<li class="nav-header"><h4><i class="icon-external-link"></i>blogroll</h4></li>
<li><a href="http://pythonhosted.org/pythran"><i class="icon-external-link"></i>Pythran Doc</a></li>
<li><a href="https://pypi.python.org/pypi/pythran"><i class="icon-external-link"></i>Pythran on PyPI</a></li>
<li class="nav-header"><h4><i class="icon-home icon-large"></i> social</h4></li>
<li><a href="./feeds/all.atom.xml" rel="alternate"><i class="icon-bookmark icon-large"></i>atom feed</a></li>
<li><a href="https://github.com/serge-sans-paille/pythran"><i class="icon-github-sign icon-large"></i>github</a></li>
<li class="nav-header"><h4><i class="icon-folder-close icon-large"></i>Categories</h4></li>
<li>
<a href="./category/benchmark.html">
<i class="icon-folder-open icon-large"></i>benchmark
</a>
</li>
<li>
<a href="./category/compilation.html">
<i class="icon-folder-open icon-large"></i>compilation
</a>
</li>
<li>
<a href="./category/cython.html">
<i class="icon-folder-open icon-large"></i>cython
</a>
</li>
<li>
<a href="./category/engineering.html">
<i class="icon-folder-open icon-large"></i>engineering
</a>
</li>
<li>
<a href="./category/examples.html">
<i class="icon-folder-open icon-large"></i>examples
</a>
</li>
<li>
<a href="./category/optimisation.html">
<i class="icon-folder-open icon-large"></i>optimisation
</a>
</li>
<li>
<a href="./category/release.html">
<i class="icon-folder-open icon-large"></i>release
</a>
</li>
<li class="nav-header"><h4><i class="icon-tags icon-large"></i>Tags</h4></li>
</ul> </div><!--/.well -->
</div><!--/row-->
<hr>
<footer>
<address id="about">
Proudly powered by <a href="http://pelican.notmyidea.org/">Pelican <i class="icon-external-link"></i></a>,
which takes great advantage of <a href="http://python.org">Python <i class="icon-external-link"></i></a>.
</address><!-- /#about -->
<p>The theme is from <a href="http://twitter.github.com/bootstrap/">Bootstrap from Twitter <i class="icon-external-link"></i></a>,
and <a href="http://fortawesome.github.com/Font-Awesome/">Font-Awesome <i class="icon-external-link"></i></a>, thanks!</p>
</footer>
</div><!--/.fluid-container-->
<!-- Le javascript -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="./theme/js/jquery-1.7.2.min.js"></script>
<script src="./theme/js/bootstrap.min.js"></script>
</body>
</html>