-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsave_model.py
42 lines (35 loc) · 1.21 KB
/
save_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
"""
some kind of functions to save model
"""
import os
def save_weights_only(model, path='./ur_model_data', save_format=None):
"""
Save weights to a TensorFlow Checkpoint file
To testore the model's state, model.load_weights('./my_model')
notably, this requires a model with the same architecture.
Parameters:
save_format: None | h5, when None path should be a dir;when h5 path shoud be path_to/*.h5
"""
model.save_weights(path, save_format=save_format)
def save_model_only(model, format='json'):
"""
Recreate the model (freshly initialized)
fresh_model = keras.models.from_json(json_string)
Serializes a model to YAML format
Recreate the model
fresh_model = keras.models.from_yaml(yaml_string)
notbly: subclass model can not be Serialized
"""
if format == 'json':
return model.to_json()
elif format == 'yaml':
return model.to_yaml()
else:
raise ValueError('only json or yaml should be passed in ')
def save_all(model, dir='./model'):
"""
Recreate the model:model = keras.models.load_model('my_model.h5')
"""
if not os.path.exists(dir):
os.mkdir(dir)
model.save(os.path.join(dir, 'model_final.h5'))