-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom-hyperplanes.py
255 lines (209 loc) · 8.37 KB
/
random-hyperplanes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
import math
import random
import collections
import itertools
import json
import torch.nn as nn
import torch.nn.functional as F
import cifar10
import mnist
train_dl = cifar10.get_trainloader()
test_dl = cifar10.get_testloader()
# train_dl = mnist.get_trainloader()
# test_dl = mnist.get_testloader()
class FCNet(nn.Module):
def __init__(self, input_dim=(32*32*3), r_0=None, d=None):
super(FCNet, self).__init__()
self.input_dim = input_dim
self.param_sizes = \
[self.input_dim*200, 200, 200*200, 200, 200*10, 10]
self.r_xavier = math.sqrt(200 + 200 + 10)
self.D = sum(self.param_sizes)
if r_0 is None:
r_0 = self.r_xavier
w = torch.randn(self.D)
w *= r_0 / w.norm()
self.weights = nn.Parameter(w)
# self.w1 = nn.Parameter(torch.randn(input_dim, 200) / math.sqrt(input_dim))
# self.b1 = nn.Parameter(torch.zeros(200))
# self.w2 = nn.Parameter(torch.randn(200, 200) / math.sqrt(200))
# self.b2 = nn.Parameter(torch.zeros(200))
# self.w3 = nn.Parameter(torch.randn(200, 10) / math.sqrt(200))
# self.b3 = nn.Parameter(torch.zeros(10))
def get_params(self):
return self.weights
def get_radius(self):
with torch.no_grad():
params = self.get_params()
return params.norm().item()
def get_radii(self):
with torch.no_grad():
params = self.get_params()
return [param.norm().item() for param in
params.split(self.param_sizes)]
def forward(self, x):
params = self.get_params()
w1, b1, w2, b2, w3, b3 = params.split(self.param_sizes)
w1 = w1.view(self.input_dim, 200)
w2 = w2.view(200, 200)
w3 = w3.view(200, 10)
x = x.view(-1, self.input_dim)
x = F.relu(x @ w1 + b1)
x = F.relu(x @ w2 + b2)
x = x @ w3 + b3
return x
class RandomHyperplaneNet(FCNet):
def __init__(self, d=None, r_0=None, input_dim=(32*32*3)):
nn.Module.__init__(self)
self.input_dim = input_dim
self.d = d
self.param_sizes = \
[self.input_dim*200, 200, 200*200, 200, 200*10, 10]
self.r_xavier = math.sqrt(200 + 200 + 10)
self.D = sum(self.param_sizes)
if d is None:
d = 100
if r_0 is None:
r_0 = self.r_xavier
# The coordinates in the d-dimensional subspace
self.weights = nn.Parameter(torch.zeros(self.d))
# The fixed offset P into parameter space
self.offset = torch.randn(self.D, device='cuda')
self.offset *= r_0 / self.offset.norm()
# Transformation matrix from d subspace into full D space
self.M = self.get_random_ortho_matrix(self.D, self.d)
def get_random_ortho_matrix(self, D, d):
# Use the procedure in the paper for a sparse random projection
M = torch.zeros(D, d, device='cuda')
for i in range(d):
col = torch.zeros(D)
prob = 1 / math.sqrt(D)
col[torch.rand(D) < prob] = 1
col[torch.rand(D) < 0.5] *= -1
col /= col.norm()
M[:,i] = col
return M
def get_params(self):
return self.offset + self.M @ self.weights
class SparseRandomHyperplaneNet(RandomHyperplaneNet):
def __init__(self, **kwargs):
super(SparseRandomHyperplaneNet, self).__init__(**kwargs)
def get_random_ortho_matrix(self, D, d):
prob = 1 / math.sqrt(D)
all_idxs = torch.tensor([], dtype=int, device='cuda')
all_vals = torch.tensor([], device='cuda')
# Build up the matrix column by column
for i in range(d):
# First generate the nonzero indices in this column.
# Profiling told me that this was the slowest step. So I
# moved the random number generation from the CPU to GPU.
rands = torch.cuda.FloatTensor(D).random_(to=int(1/prob))
row_idxs = (rands == 0).nonzero().view(-1)
n = len(row_idxs)
col_idxs = torch.ones(n, dtype=int, device='cuda') * i
idxs = torch.stack((row_idxs, col_idxs))
all_idxs = torch.cat((all_idxs, idxs), dim=1)
vals = torch.ones(n, device='cuda') / math.sqrt(n)
vals[torch.rand(n) < 0.5] *= -1
all_vals = torch.cat((all_vals, vals))
return torch.sparse_coo_tensor(
indices=all_idxs, values=all_vals, size=(D,d),
device='cuda')
def get_params(self):
# For some reason the sparse implementation can only do
# matrix-matrix multiplication, not matrix-vector multiplication
# So I need to do some reshaping business.
w = self.weights.view(-1, 1)
return self.offset + torch.sparse.mm(self.M, w).view(-1)
# Too long of a function name
def f(D, d):
return SparseRandomHyperplaneNet.get_random_ortho_matrix(None, D, d)
def train(n_epochs=10, epoch_start=0,
Net=FCNet, net=None, log=None, **kwargs):
if net is None:
print('Making Network...')
net = Net(**kwargs)
net.to('cuda')
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
if log is None:
log = collections.defaultdict(list)
print_every = 100
examples_seen = 0
batch_size = train_dl.batch_size
n_examples = len(train_dl.dataset.targets)
def get_test_acc():
correct = 0
total = 0
with torch.no_grad():
for data in test_dl:
images, labels = data
images = images.to('cuda')
labels = labels.to('cuda')
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return correct/total
log['test_acc'].append((epoch_start, get_test_acc()))
log['radius'].append((epoch_start, net.get_radius()))
log['radii'].append([epoch_start] + net.get_radii()))
# TODO get the training loss at initialization as well!
print('Starting Training...')
for epoch in range(epoch_start, epoch_start + n_epochs):
running_loss = 0
for i, data in enumerate(train_dl):
inputs = data[0].to('cuda')
labels = data[1].to('cuda')
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
examples_seen += len(labels)
running_loss += loss.item()
# print statistics
if i % print_every == (print_every - 1):
avg_loss = running_loss / print_every
t = epoch + (i * batch_size / n_examples)
running_loss = 0
r = net.get_radius()
log['loss'].append((t, avg_loss))
log['radius'].append((t, r))
if epoch < 1:
test_acc = get_test_acc()
log['test_acc'].append((t, test_acc))
print('[Epoch %.2f] loss: %.3f, radius: %.3f, test accuracy: %.2f%%' % (t, avg_loss, r, test_acc * 100))
else:
print('[Epoch %.2f] loss: %.3f, radius: %.3f' % (t, avg_loss, r), end='\r')
t = epoch + 1
test_acc = get_test_acc()
log['test_acc'].append((t, test_acc))
# avg_loss = running_loss / (i % print_every)
# log['loss'].append((t, avg_loss))
r = net.get_radius()
log['radius'].append((t, r))
rs = net.get_radii()
log['radii'].append([t] + rs)
print('[Epoch %d] loss: %.3f, radius: %.3f, test accuracy: %.2f%%' % (t, avg_loss, r, test_acc * 100))
print('Finished Training')
return log,net
with open('experiment_4.json', 'r') as f:
logs = json.load(f)
# for d in [300, 1000, 3000, 7000, 10000]:
for d in [7000, 10000]:
for r_0 in [0.2, 50, 200]:
print('--- d = %d, r_0 = %d ---' % (d, r_0))
log, net = train(n_epochs=20, r_0=r_0, d=d,
Net=SparseRandomHyperplaneNet)
log['d'] = d
log['r_0'] = r_0
logs.append(log)
with open('experiment_4b.json', 'w') as f:
json.dump(logs)
# logs = []
# for r_0 in [0.2, 2, 20, 50, 200, 2000]:
# print('--- r_0=%d ---' % r_0)
# log,net = train(n_epochs=10, r_0=r_0)
# logs.append(log)