-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathGB_GA.py
117 lines (92 loc) · 3.76 KB
/
GB_GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
'''
Written by Jan H. Jensen 2018.
Many subsequent changes inspired by https://github.com/BenevolentAI/guacamol_baselines/tree/master/graph_ga
'''
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Descriptors
from rdkit.Chem import rdmolops
#from rdkit import rdBase
#rdBase.DisableLog('rdApp.error')
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
import numpy as np
import random
import time
import sys
import crossover as co
import mutate as mu
import scoring_functions as sc
def read_file(file_name):
mol_list = []
with open(file_name,'r') as file:
for smiles in file:
mol_list.append(Chem.MolFromSmiles(smiles))
return mol_list
def make_initial_population(population_size,file_name):
mol_list = read_file(file_name)
population = []
for i in range(population_size):
population.append(random.choice(mol_list))
return population
def calculate_normalized_fitness(scores):
sum_scores = sum(scores)
normalized_fitness = [score/sum_scores for score in scores]
return normalized_fitness
def make_mating_pool(population,fitness,mating_pool_size):
mating_pool = []
for i in range(mating_pool_size):
mating_pool.append(np.random.choice(population, p=fitness))
return mating_pool
def reproduce(mating_pool,population_size,mutation_rate):
new_population = []
while len(new_population) < population_size:
parent_A = random.choice(mating_pool)
parent_B = random.choice(mating_pool)
new_child = co.crossover(parent_A,parent_B)
if new_child != None:
mutated_child = mu.mutate(new_child,mutation_rate)
if mutated_child != None:
#print(','.join([Chem.MolToSmiles(mutated_child),Chem.MolToSmiles(new_child),Chem.MolToSmiles(parent_A),Chem.MolToSmiles(parent_B)]))
new_population.append(mutated_child)
return new_population
def sanitize(population,scores,population_size, prune_population):
if prune_population:
smiles_list = []
population_tuples = []
for score, mol in zip(scores,population):
smiles = Chem.MolToSmiles(mol)
smiles = Chem.MolToSmiles(Chem.MolFromSmiles(smiles))
if smiles not in smiles_list:
smiles_list.append(smiles)
population_tuples.append((score,mol))
else:
population_tuples = list(zip(scores,population))
population_tuples = sorted(population_tuples, key=lambda x: x[0], reverse=True)[:population_size]
new_population = [t[1] for t in population_tuples]
new_scores = [t[0] for t in population_tuples]
return new_population, new_scores
def GA(args):
population_size, file_name,scoring_function,generations,mating_pool_size,mutation_rate, \
scoring_args, max_score, prune_population, seed = args
np.random.seed(seed)
random.seed(seed)
high_scores = []
population = make_initial_population(population_size,file_name)
scores = sc.calculate_scores(population,scoring_function,scoring_args)
#reorder so best score comes first
population, scores = sanitize(population, scores, population_size, False)
high_scores.append((scores[0],Chem.MolToSmiles(population[0])))
fitness = calculate_normalized_fitness(scores)
for generation in range(generations):
mating_pool = make_mating_pool(population,fitness,mating_pool_size)
new_population = reproduce(mating_pool,population_size,mutation_rate)
new_scores = sc.calculate_scores(new_population,scoring_function,scoring_args)
population, scores = sanitize(population+new_population, scores+new_scores, population_size, prune_population)
fitness = calculate_normalized_fitness(scores)
high_scores.append((scores[0],Chem.MolToSmiles(population[0])))
if scores[0] >= max_score:
break
return (scores, population, high_scores, generation+1)
if __name__ == "__main__":
pass