-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathCMIP6_for_CORDEX.py
147 lines (141 loc) · 4.87 KB
/
CMIP6_for_CORDEX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
import datetime
from pyesgf.search import SearchConnection
import logging
import natsort as ns
import numpy as np
import pandas as pd
import re
loglevel = logging.INFO
logger = logging.getLogger('root')
logger.setLevel(loglevel)
loghandler = logging.StreamHandler()
loghandler.setFormatter(logging.Formatter('[%(asctime)s] %(message)s'))
logger.addHandler(loghandler)
scenarios = ['ssp119', 'ssp126', 'ssp245', 'ssp370', 'ssp585']
contexts = {
'6hrLev' : {
'project': 'CMIP6',
'experiment_id': ['historical']+scenarios,
'table_id': '6hrLev',
},
'3Dpl' : {
'project': 'CMIP6',
'experiment_id': ['historical']+scenarios,
'variable_id': ['ua','va','ta','zg','hus','hur'],
'table_id': 'day',
},
'LowerBoundaries' : {
'project': 'CMIP6',
'experiment_id': ['historical']+scenarios,
'variable_id': ['tos','siconc','od550aer'],
},
'Ocean' : {
'project': 'CMIP6',
'experiment_id': ['historical']+scenarios,
'variable_id': ['thetao', 'bigthetao','so','zos'],
'table_id': 'Omon',
},
'AerosolExtra' : {
'project': 'CMIP6',
'experiment_id': ['historical']+scenarios,
'variable_id': [
# P2 (different types of aerosols, strongly advised)
'od550bb', 'od550bc', 'od550dust', 'od550no3',
'od550oa', 'od550so4', 'od550ss', 'od550so4so',
# P3 (in option)
'aerasymbnd', 'aeroptbnd', 'aerssabnd'
],
},
'Basic' : {
'project': 'CMIP6',
'experiment_id': ['historical']+scenarios,
'variable_id': ['tas','pr','psl','tasmax','tasmin'],
'frequency': 'day',
},
}
facets = (
'project', 'activity', 'institution', 'model', 'experiment',
'run', 'table', 'variable', 'grid', 'version'
)
tags = { # Values are python sets
'AORCM': [
{'thetao' ,'zos', 'so','hus-ml', 'ta-ml', 'ua-ml', 'va-ml', 'tos', 'siconc', 'od550aer'},
{'bigthetao' ,'zos', 'so','hus-ml', 'ta-ml', 'ua-ml', 'va-ml', 'tos', 'siconc', 'od550aer'},
],
'ARCM': {'hus-ml', 'ta-ml', 'ua-ml', 'va-ml', 'tos', 'siconc', 'od550aer'},
'3Dml': {'hus-ml', 'ta-ml', 'ua-ml', 'va-ml'},
'ESD': [
{'hus', 'zg', 'ta', 'ua', 'va', 'psl', 'pr', 'tas', 'tasmax', 'tasmin'},
{'hur', 'zg', 'ta', 'ua', 'va', 'psl', 'pr', 'tas', 'tasmax', 'tasmin'},
],
'Basic': {'pr', 'tas'},
}
def aggfun(x):
xset = set(x)
for k in tags:
if type(tags[k]) != type([]):
alternative_sets = [tags[k]]
else:
alternative_sets = tags[k]
for altset in alternative_sets:
if altset.issubset(xset):
return(k)
return('-')
#
# Load search results
#
conn = SearchConnection('http://esgf-data.dkrz.de/esg-search', distrib=True)
logging.getLogger('pyesgf.search.connection').setLevel(loglevel)
df = pd.DataFrame()
for context in contexts.keys():
logger.info(f'Retrieving {context} variables ...')
ctx = conn.new_context(**contexts[context])
dids = [result.dataset_id for result in ctx.search(batch_size=1000, ignore_facet_check=True)]
open('CMIP6_for_CORDEX__%s.txt' % context, 'w').writelines([did+'\n' for did in sorted(dids)])
datanode_part = re.compile('\|.*$')
dataset_ids = [datanode_part.sub('', did).split('.') for did in dids]
df = df.append(pd.DataFrame(dataset_ids))
df.columns = facets
df['modelrun'] = df[['model','run']].apply(lambda x: '_'.join(x), axis = 1)
# Add ml and pl tags to distinguish model and pressure level variables
df[df[['table']]=='6hrLev'] = '-ml'
df[(df[['table']]!='-ml') & (df[['table']]!='-pl')] = ''
df['variable'] = df[['variable', 'table']].apply(lambda x: ''.join(x), axis = 1)
# Sort the runs naturally
df['nsrun'] = ns.natsort_key(df.run)
df.sort_values(by=['model','experiment','nsrun','variable'], inplace = True)
# Drop unnecessary columns
df.drop(
['project', 'activity', 'grid', 'version', 'table', 'nsrun'],
axis = 'columns', inplace = True
)
# Disregard replicas and different versions and different tables (frequencies!)
df.drop_duplicates(inplace = True)
df.to_csv('df.csv', float_format = '%g', sep = ';', decimal = ',', index = False)
#
# Variable availability table
#
# One-liner to tag variable availability by model run and experiment
varcount = df.groupby(['modelrun', 'experiment'])['variable'].agg(aggfun).unstack()
# Sort also this table by runs in a natural way
varcount['nsmodelrun'] = ns.natsort_key(varcount.index)
varcount.sort_values(by=['nsmodelrun'], inplace = True)
varcount.drop(['nsmodelrun'], axis = 'columns', inplace = True)
# Split model and run
varcount.index = varcount.index.str.split('_', expand = True)
# Add synthesis column (ssp126 and ssp370 available for dyn. downscaling)
varcount.insert(0, 'synthesis',
np.multiply((varcount['ssp126'] == 'RCM') & (varcount['ssp370'] == 'RCM'),1)
)
#
# CSV output
#
varcount.to_csv('docs/CMIP6_for_CORDEX_availability_ESGF.csv', float_format = '%g',
index_label = ['model', 'run']
)
#
# Time stamp
#
with open('LASTUPDATE', 'w') as fp:
fp.write(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"))