-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathYamlStudies.py
247 lines (218 loc) · 8.29 KB
/
YamlStudies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import glob
import natsort as ns
import numpy as np
import pandas as pd
import re
import requests
import textwrap
import yaml
def synthesis(binvalues):
return(np.logical_and.reduce(binvalues, 1)*1)
def split_index(df):
return(pd.MultiIndex.from_tuples([idx.split('_') for idx in df.index], names=['model','run']))
def parse_ripf(str):
p = re.compile(r'r(?P<r>[0-9-]+)i(?P<i>[0-9-]+)p(?P<p>[0-9-]+)f(?P<f>[0-9-]+)')
m = p.match(str)
return(m.groupdict() if m else [])
def indent_text(str, nspace=2):
dedent = textwrap.dedent(str).strip()
return(textwrap.fill(
dedent,
width = 80,
initial_indent = ' '*nspace,
subsequent_indent = ' '*nspace
))
def doi2dic(doi):
url = "http://dx.doi.org/" + doi
headers = {"accept": "application/x-bibtex"}
r = requests.get(url, headers = headers)
rval = r.text.replace('@article{', '')
for char in '}{\t':
rval = rval.replace(char, '')
rdict = {}
for item in rval.split('\n'):
if '=' in item:
kv = item.split('=')
rdict[kv[0].strip()] = kv[1].strip().strip(',')
if 'and' in rdict['author']:
rdict['author'] = rdict['author'].split(' and ')[0] + ' et al.'
return(rdict)
def find_metric(mlist, key):
keys = [x.key for x in mlist]
return(mlist[keys.index(key)])
class MetricEntry:
def __init__(self, yamlentry, resolve_doi = False):
self.__dict__.update(yamlentry)
# print(f'instantiating {self.key} ...')
self.metric = SubKeys(**self.metric)
if self.has_period():
self.period = SubKeys(**self.period)
for key in ('plausible_values', 'classes'):
if hasattr(self, key):
if type(self[key]) is list:
self[key] = [SubKeys(**x) for x in self[key]]
else:
self[key] = [SubKeys(**self[key])]
if resolve_doi and type(self.doi) == type('string'):
self.reference = '%(author)s (%(year)s) %(title)s, %(url)s' % doi2dic(self.doi)
else:
self.reference = str(self.doi)
if type(list(self.data.values())[0]) is dict:
self.data = pd.DataFrame.from_dict(self.data, orient='columns')
self.data.columns = [f'{self.key} {x}' for x in self.data.columns]
else:
self.data = pd.DataFrame.from_dict(self.data, orient='index', columns=[self.key])
self.expand_data()
self.data = self.data.reindex(ns.natsorted(self.data.index))
self.data.index = split_index(self.data)
def __str__(self):
rval = f'- key: {self.key}\n'
for item in ('doi', 'type', 'spatial_scope', 'temporal_scope', 'data_source'):
if hasattr(self, item):
rval += f' {item}: {self[item]}\n'
for item in ('metric', 'period'):
if hasattr(self, item):
rval += f' {item}:\n' + self[item].__str__()
for item in ('plausible_values', 'classes'):
if hasattr(self, item):
rval += f' {item}:\n'
for x in self[item]:
rval += f' - ' + x.__str__().lstrip()
return(rval)
def __getitem__(self, item):
return(self.__dict__[item])
def __setitem__(self, item, val):
self.__dict__[item] = val
def __call__(self, column='data'):
if column == 'data':
return(self.data)
else:
return(self.data[column])
def expand_data(self):
# Expand ranges of members such as:
# MODEL_r1-3i1p1f1 into MODEL_r1i1p1f1, MODEL_r2i1p1f1, MODEL_r3i1p1f1
# preserving the same value for all members.
modelmeanflag = dict()
for key in self.data.index:
try:
model, member = key.split('_')
except ValueError as e:
print(f'Malformed model_run string when parsing {self.key}: {key}\n{e}')
break
ripf = parse_ripf(member)
for item in ripf:
if '-' in ripf[item]:
ini,end = tuple([int(x) for x in ripf[item].split('-')])
for imem in range(ini,end+1):
thisripf = ripf.copy()
thisripf[item] = imem
self.data.loc[model + '_r%(r)si%(i)sp%(p)sf%(f)s' % thisripf] = self.data.loc[key]
modelmeanflag[model + '_r%(r)si%(i)sp%(p)sf%(f)s' % thisripf] = 1
self.data.drop(index = key, inplace = True)
self.is_ens_mean = self.data.iloc[:,0].copy()
self.is_ens_mean.iloc[:] = False
self.is_ens_mean = self.is_ens_mean | (pd.DataFrame.from_dict(modelmeanflag, orient='index', columns=['is_ens_mean']) != 1)
def get_class_data(self):
if self.has_classes():
rval = self.data.copy()
rval.iloc[:] = pd.cut(self.data.values.flat,
self.classes[0]['limits'],
labels=self.classes[0]['labels'],
ordered = True # TODO: could be made False if 'colors' are passed (e.g. to have ['unplausible', 'medium','unplausible'])
)
elif self.metric.units == 'categorical':
rval = self.data.copy()
else:
rval = self.data.copy()
try:
for icol in range(rval.shape[1]):
rval.iloc[:,icol] = pd.qcut(rval.iloc[:,icol].values.flat,
q=3, # terciles
labels=[f'T{x}' for x in range(1,3+1)]
)
except ValueError:
rval = self.data.copy()
return(rval)
def get_formatted_data(self):
if 'ensmean' in self.data.columns:
return(self.data.applymap(lambda x: '%.2f*' % x).where(
self.is_ens_mean,
other = self.data.applymap(lambda x: '%.2f' % x)
))
else:
return(self.data)
def get_plausible_mask(self):
if self.has_plausible_values():
rval = (self.data <= self.plausible_values[0].max) & (self.data >= self.plausible_values[0].min)
else:
rval = ~self.data.isnull()
return(rval)
def get_plausible_values(self):
if self.has_plausible_values():
rval = pd.DataFrame.from_dict(
dict(min=self.plausible_values[0].min, max=self.plausible_values[0].max),
orient='index', columns=self.data.columns
)
else:
rval = pd.DataFrame.from_dict(
dict(min=self.data.values.min(), max=self.data.values.max()),
orient='index', columns=self.data.columns
)
return(rval)
def has_classes(self):
return(hasattr(self, 'classes'))
def has_period(self):
return(hasattr(self, 'period'))
def has_plausible_values(self):
return(hasattr(self, 'plausible_values'))
def has_reference(self):
return(hasattr(self, 'reference'))
def is_disabled(self):
return(hasattr(self, 'disabled'))
def plausible_values_default(self, which=0):
if self.has_plausible_values():
idx = which if type(which) is int else [x.source for x in self.plausible_values].index(which)
return(self.plausible_values[which])
class SubKeys:
def __init__(self, **subkeydict):
self.__dict__.update(subkeydict)
def __str__(self):
rval = ''
for item in self.__dict__.keys():
if item == 'comment':
rval += f' {item}:\n{indent_text(self[item], 6)}\n'
else:
rval += f' {item}: {self[item]}\n'
return(rval)
def __getitem__(self, item):
return(self.__dict__[item])
def load_from_files(pattern, skip_disabled = False, skip_cause = '', skip_disabled_domain = '', resolve_doi = False):
alldata = []
for fname in sorted(glob.glob(pattern)):
with open(fname) as fp:
entrylist = yaml.load(fp, Loader=yaml.FullLoader)
for x in entrylist: x['file'] = fname
alldata.extend(entrylist)
if skip_disabled:
rval = [MetricEntry(x, resolve_doi = resolve_doi) for x in alldata if not 'disabled' in x]
elif skip_cause:
rval = [MetricEntry(x, resolve_doi = resolve_doi) for x in alldata if not ('disabled' in x and x['disabled']['cause'] == skip_cause)]
else:
rval = [MetricEntry(x, resolve_doi = resolve_doi) for x in alldata]
if skip_disabled_domain:
rval = [x for x in rval if not f'disabled_{skip_disabled_domain}' in x.__dict__]
return(rval)
if __name__ == '__main__':
resolve_doi = False
allmetrics = load_from_files('CMIP6_studies/*.yaml', skip_cause = 'incomplete', resolve_doi = resolve_doi)
for field in ['type', 'spatial_scope', 'temporal_scope', 'data_source']:
values = sorted(set([x[field] for x in allmetrics if hasattr(x, field)]))
print(f'Current {field}s:')
[print(f' - {x}') for x in values]
for field,subfield in [('disabled','cause')]:
values = sorted(set([x[field][subfield] for x in allmetrics if hasattr(x, field)]))
print(f'Current {field}.{subfield}s:')
[print(f' - {x}') for x in values]
if resolve_doi:
print(set([x.reference for x in allmetrics if x.has_reference()]))
print(allmetrics[6])