-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrsparse_quad.py
61 lines (48 loc) · 1.46 KB
/
rsparse_quad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
""" Randomly Generated Sparse Quadratics """
from __future__ import absolute_import, division, unicode_literals, print_function
import scipy.sparse as sparse
import numpy as np
def rsparse_quad(m,n,seed,type='convex'):
# Fix RNG seed
np.random.seed(seed)
# Generate random quadratic Hessians
Qs = []
for i in range(m):
A = sparse.random(n,n,density=0.001)
if type == 'convex':
Qs.append((A.T.dot(A)).toarray())
elif type == 'nonconvex':
U = sparse.triu(A)
Qs.append((U.T+U).toarray())
else:
raise RuntimeError('Incorrect type '+type)
# Residual
def r(x):
res = np.zeros(m)
for i in range(m):
res[i] = 0.5*x.dot(Qs[i].dot(x))
return res
# Jacobian
def J(x):
jac = np.zeros((m,n))
for i in range(m):
jac[i,:] = Qs[i].dot(x)
return jac
# Initial guess
x0 = np.ones(n)
return r, J, x0
# Plot Hessian sparsity structure
def main():
import matplotlib.pyplot as plt
funcs = ['Random Sparse Quadratic ' + str(i) for i in range(1, 16)]
for ifunc, func in enumerate(funcs):
r, J, x0 = rsparse_quad(20,100,ifunc,type='nonconvex')
# Plot sparsity
plt.figure(ifunc)
plt.spy(np.dot(J(x0).T,J(x0)))
plt.ylabel('m')
plt.xlabel('m')
plt.title('Hessian Sparsity: '+func)
plt.show()
if __name__ == "__main__":
main()