-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathgraph.py
223 lines (172 loc) · 9.12 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import rnn
import pdb
class Shared_Model(object):
"""Tensorflow Graph For Shared Pos & Chunk Model"""
def __init__(self, config, is_training):
self.max_grad_norm = config.max_grad_norm
self.num_steps = num_steps = config.num_steps
self.encoder_size = config.encoder_size
self.pos_decoder_size = config.pos_decoder_size
self.chunk_decoder_size = config.chunk_decoder_size
self.batch_size = config.batch_size
self.vocab_size = config.vocab_size
self.num_pos_tags = config.num_pos_tags
self.num_chunk_tags = config.num_chunk_tags
self.input_data = tf.placeholder(tf.int32, [config.batch_size, num_steps])
self.word_embedding_size = config.word_embedding_size
self.pos_embedding_size = config.pos_embedding_size
self.num_shared_layers = config.num_shared_layers
self.argmax = config.argmax
# add input size - size of pos tags
self.pos_targets = tf.placeholder(tf.float32, [(self.batch_size * num_steps),
self.num_pos_tags])
self.chunk_targets = tf.placeholder(tf.float32, [(self.batch_size * num_steps),
self.num_chunk_tags])
self._build_graph(config, is_training)
def _shared_layer(self, input_data, config, is_training):
"""Build the model up until decoding.
Args:
input_data = size batch_size X num_steps X embedding size
Returns:
output units
"""
with tf.variable_scope('encoder'):
lstm_cell = rnn.BasicLSTMCell(config.encoder_size, reuse=tf.get_variable_scope().reuse, forget_bias=1.0)
if is_training and config.keep_prob < 1:
lstm_cell = rnn.DropoutWrapper(
lstm_cell, output_keep_prob=config.keep_prob)
encoder_outputs, encoder_states = tf.nn.dynamic_rnn(lstm_cell,
input_data,
dtype=tf.float32,
scope="encoder_rnn")
return encoder_outputs
def _pos_private(self, encoder_units, config, is_training):
"""Decode model for pos
Args:
encoder_units - these are the encoder units
num_pos - the number of pos tags there are (output units)
returns:
logits
"""
with tf.variable_scope("pos_decoder"):
pos_decoder_cell = rnn.BasicLSTMCell(config.pos_decoder_size,
forget_bias=1.0, reuse=tf.get_variable_scope().reuse)
if is_training and config.keep_prob < 1:
pos_decoder_cell = rnn.DropoutWrapper(
pos_decoder_cell, output_keep_prob=config.keep_prob)
encoder_units = tf.transpose(encoder_units, [1, 0, 2])
decoder_outputs, decoder_states = tf.nn.dynamic_rnn(pos_decoder_cell,
encoder_units,
dtype=tf.float32,
scope="pos_rnn")
output = tf.reshape(tf.concat(decoder_outputs, 1),
[-1, config.pos_decoder_size])
softmax_w = tf.get_variable("softmax_w",
[config.pos_decoder_size,
config.num_pos_tags])
softmax_b = tf.get_variable("softmax_b", [config.num_pos_tags])
logits = tf.matmul(output, softmax_w) + softmax_b
return logits, decoder_states
def _chunk_private(self, encoder_units, pos_prediction, config, is_training):
"""Decode model for chunks
Args:
encoder_units - these are the encoder units:
[batch_size X encoder_size] with the one the pos prediction
pos_prediction:
must be the same size as the encoder_size
returns:
logits
"""
# concatenate the encoder_units and the pos_prediction
pos_prediction = tf.reshape(pos_prediction,
[self.batch_size, self.num_steps, self.pos_embedding_size])
encoder_units = tf.transpose(encoder_units, [1, 0, 2])
chunk_inputs = tf.concat([pos_prediction, encoder_units], 2)
with tf.variable_scope("chunk_decoder"):
cell = rnn.BasicLSTMCell(config.chunk_decoder_size, forget_bias=1.0, reuse=tf.get_variable_scope().reuse)
if is_training and config.keep_prob < 1:
cell = rnn.DropoutWrapper(
cell, output_keep_prob=config.keep_prob)
decoder_outputs, decoder_states = tf.nn.dynamic_rnn(cell,
chunk_inputs,
dtype=tf.float32,
scope="chunk_rnn")
output = tf.reshape(tf.concat(decoder_outputs, 1),
[-1, config.chunk_decoder_size])
softmax_w = tf.get_variable("softmax_w",
[config.chunk_decoder_size,
config.num_chunk_tags])
softmax_b = tf.get_variable("softmax_b", [config.num_chunk_tags])
logits = tf.matmul(output, softmax_w) + softmax_b
return logits, decoder_states
def _loss(self, logits, labels):
"""Calculate loss for both pos and chunk
Args:
logits from the decoder
labels - one-hot
returns:
loss as tensor of type float
"""
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=labels,
name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
(_, int_targets) = tf.nn.top_k(labels, 1)
(_, int_predictions) = tf.nn.top_k(logits, 1)
num_true = tf.reduce_sum(tf.cast(tf.equal(int_targets, int_predictions), tf.float32))
accuracy = num_true / (self.num_steps * self.batch_size)
return loss, accuracy, int_predictions, int_targets
def _training(self, loss, config):
"""Sets up training ops
Creates the optimiser
The op returned from this is what is passed to session run
Args:
loss float
learning_rate float
returns:
Op for training
"""
# Create the gradient descent optimizer with the
# given learning rate.
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars),
config.max_grad_norm)
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.apply_gradients(zip(grads, tvars))
return train_op
def _build_graph(self, config, is_training):
word_embedding = tf.get_variable("word_embedding", [config.vocab_size, config.word_embedding_size])
inputs = tf.nn.embedding_lookup(word_embedding, self.input_data)
pos_embedding = tf.get_variable("pos_embedding", [config.num_pos_tags, config.pos_embedding_size])
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
encoding = self._shared_layer(inputs, config, is_training)
encoding = tf.stack(encoding)
encoding = tf.transpose(encoding, perm=[1, 0, 2])
pos_logits, pos_states = self._pos_private(encoding, config, is_training)
pos_loss, pos_accuracy, pos_int_pred, pos_int_targ = self._loss(pos_logits, self.pos_targets)
self.pos_loss = pos_loss
self.pos_int_pred = pos_int_pred
self.pos_int_targ = pos_int_targ
# choose either argmax or dot product for pos
if config.argmax == 1:
pos_to_chunk_embed = tf.nn.embedding_lookup(pos_embedding, pos_int_pred)
else:
pos_to_chunk_embed = tf.matmul(tf.nn.softmax(pos_logits), pos_embedding)
chunk_logits, chunk_states = self._chunk_private(encoding, pos_to_chunk_embed, config, is_training)
chunk_loss, chunk_accuracy, chunk_int_pred, chunk_int_targ = self._loss(chunk_logits, self.chunk_targets)
self.chunk_loss = chunk_loss
self.chunk_int_pred = chunk_int_pred
self.chunk_int_targ = chunk_int_targ
self.joint_loss = chunk_loss + pos_loss
# return pos embedding
self.pos_embedding = pos_embedding
if not is_training:
return
self.pos_op = self._training(pos_loss, config)
self.chunk_op = self._training(chunk_loss, config)
self.joint_op = self._training(chunk_loss + pos_loss, config)