forked from Koukyosyumei/AIJack
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmi_face_differential_privacy.py
167 lines (138 loc) · 4.55 KB
/
mi_face_differential_privacy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from matplotlib import pyplot as plt
from sklearn.metrics import accuracy_score
from torch.utils.data import TensorDataset
from aijack.attack import MI_FACE
from aijack.defense import GeneralMomentAccountant, PrivacyManager
from aijack.utils import NumpyDataset
# INPUT PATHS:
BASE = "data/"
lot_size = 40
batch_size = 1
iterations = 10
sigma = 0.5
l2_norm_clip = 1
delta = 1e-5
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fla = nn.Flatten()
self.fc = nn.Linear(112 * 92, 40)
def forward(self, x):
x = self.fla(x)
x = self.fc(x)
x = F.softmax(x, dim=1)
return x
def prepare_dataset():
imgs = []
labels = []
for i in range(1, 41):
for j in range(1, 11):
img = cv2.imread(BASE + f"s{i}/{j}.pgm", 0)
imgs.append(img)
labels.append(i - 1)
X = np.stack(imgs)
y = np.array(labels)
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
trainset = NumpyDataset(X, y, transform=transform)
return trainset
def train():
trainset = prepare_dataset()
accountant = GeneralMomentAccountant(
noise_type="Gaussian",
search="ternary",
precision=0.001,
order_max=1,
order_min=72,
max_iterations=1000,
bound_type="rdp_upperbound_closedformula",
backend="python",
)
privacy_manager = PrivacyManager(
accountant,
optim.SGD,
l2_norm_clip=l2_norm_clip,
dataset=trainset,
lot_size=lot_size,
batch_size=batch_size,
iterations=iterations,
)
accountant.reset_step_info()
accountant.add_step_info(
{"sigma": sigma},
lot_size / len(trainset),
iterations * (len(trainset) / lot_size),
)
estimated_epsilon = accountant.get_epsilon(delta=delta)
print(f"estimated epsilon is {estimated_epsilon}")
accountant.reset_step_info()
dpoptimizer_cls, lot_loader, batch_loader = privacy_manager.privatize(
noise_multiplier=sigma
)
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = dpoptimizer_cls(net.parameters(), lr=0.05, momentum=0.9)
for epoch in range(iterations): # loop over the dataset multiple times
running_loss = 0
data_size = 0
preds = []
labels = []
for data in lot_loader(trainset):
X_lot, y_lot = data
optimizer.zero_grad()
for X_batch, y_batch in batch_loader(TensorDataset(X_lot, y_lot)):
optimizer.zero_grad_keep_accum_grads()
pred = net(X_batch)
loss = criterion(pred, y_batch.to(torch.int64))
loss.backward()
optimizer.update_accum_grads()
running_loss += loss.item()
data_size += X_batch.shape[0]
preds.append(pred)
labels.append(y_batch)
optimizer.step()
preds = torch.cat(preds)
labels = torch.cat(labels)
print(f"epoch {epoch}: loss is {running_loss/data_size}")
print(
f"epoch {epoch}: accuracy is {accuracy_score(np.array(torch.argmax(preds, axis=1)), np.array(labels))}"
)
print(f"final epsilon is {accountant.get_epsilon(delta=delta)}")
return net
def attack(net):
input_shape = (1, 1, 112, 92)
target_label_1 = 1
target_label_2 = 10
lam = 0.1
num_itr = 100
print("start model inversion")
mi = MI_FACE(net, input_shape)
print("finish model inversion")
print("reconstruct images ....")
x_result_1, _ = mi.attack(target_label_1, lam, num_itr)
x_result_2, _ = mi.attack(target_label_2, lam, num_itr)
_, axes = plt.subplots(nrows=2, ncols=2, figsize=(4, 5))
axes[0][0].imshow(cv2.imread(BASE + "s2/1.pgm", 0), cmap="gray")
axes[0][0].axis("off")
axes[0][0].set_title("original image")
axes[0][1].imshow(x_result_1[0][0], cmap="gray")
axes[0][1].axis("off")
axes[0][1].set_title("extracted image")
axes[1][0].imshow(cv2.imread(BASE + "s11/1.pgm", 0), cmap="gray")
axes[1][0].axis("off")
axes[1][0].set_title("original image")
axes[1][1].imshow(x_result_2[0][0], cmap="gray")
axes[1][1].axis("off")
axes[1][1].set_title("extracted image")
plt.savefig("reconstructed.png")
if __name__ == "__main__":
model = train()
attack(model)