-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_stoch.py
233 lines (217 loc) · 8.91 KB
/
run_stoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
from tqdm import tqdm, trange
from time import time
from scipy.interpolate import interp1d
from libsvm.svmutil import svm_read_problem # https://blog.csdn.net/u013630349/article/details/47323883
import cvxpy as cp
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import contrnewtonstoch as cns
from runall_non_stoch import barrier_method
def read_data(path,readzero):
b, A = svm_read_problem(path)
rows = len(b) # 矩阵行数, i.e. sample 数
cols = max([max(row.keys()) if len(row)>0 else 0 for row in A]) # 矩阵列数, i.e. feature 数
b = np.array(b)
A_np = np.zeros((rows,cols))
for r in range(rows):
for c in A[r].keys():
# MatLab 是 1-index, python 则是 0-index
A_np[r,c-1] = A[r][c]
# 清楚全 0 features
effective_row_ids = []
for idx, row in enumerate(A_np):
if readzero or np.sum(row) > 1e-3:
effective_row_ids.append(idx)
return b[effective_row_ids], A_np[effective_row_ids]
#* Armijo rule
def armijo_search(f, f_grad, xk, t_hat, alpha, beta, D, isNewton=False, dk=None):
if isNewton:
assert dk is not None
tk = t_hat*1
grad = f_grad(xk)
while True:
if isNewton:
if np.linalg.norm(xk+tk*dk,ord=2)<=D/2 and f(xk+tk*dk) <= f(xk) + alpha*tk*grad.T@dk:
break
else:
if f(xk-tk*grad) <= f(xk)-alpha*tk*grad.T@grad:
break
tk *= beta
return tk
def project(x,D):
x_norm = np.linalg.norm(x)
if x_norm <= D/2:
return x
coef = D/2/x_norm
return coef*x
def Sigmoid(t):
if t>0:
return 1.0 / (1 + np.exp(-t))
else:
return np.exp(t) / (1 + np.exp(t))
def Log_one_exp(inner):
if (inner > 0):
return inner + np.log(1 + np.exp(-inner))
else:
return np.log(1 + np.exp(inner))
#* 投影梯度法
def projected_sgd(f, f_grad, x0, D, t_hat=1, epsilon=1e-6, batch_size=8192, epochs=50, variance_reduction=False):
func_val_record = []
time_record=[]
xk = x0
xk_norm = np.linalg.norm(xk)
t_s = time()
inv_m=1/A.shape[0]
full_g_k=0
for epoch in range(epochs):
if variance_reduction and (epoch==0 or abs(2**np.floor(np.log2(epoch)) - epoch)<1e-6):
# print(k)
Ax = -np.multiply(b,A.T).T @ xk
full_g_k = inv_m * (-np.multiply(b,A.T).dot(np.array([Sigmoid(ax) for ax in Ax])))
z_k = xk.copy()
for batch_A, batch_b in data_generator(A, b, batch_size):
tk = armijo_search(f=lambda x:f(x,batch_A,batch_b), f_grad=lambda x:f_grad(x,batch_A,batch_b),
xk=xk, t_hat=t_hat, alpha=0.1, beta=0.5, D=D)
g_k=f_grad(xk,batch_A,batch_b)+full_g_k-(f_grad(z_k,batch_A,batch_b) if variance_reduction else 0)
xk_next = project(xk-tk*g_k, D)
norm_diff = np.linalg.norm(xk_next-xk)
if norm_diff<=epsilon:
break
xk = xk_next
fval = f(xk,A,b)
grad_norm = np.linalg.norm(f_grad(xk,A,b))
func_val_record.append(fval)
time_record.append(time()-t_s)
print(f'Epoch {epoch} - Grad. Norm.:',grad_norm, 'F val.:',fval, 'Norm. Diff.:',norm_diff, 'x_norm:', np.linalg.norm(xk))
t_e = time()
return xk_next, np.asarray(func_val_record), t_e-t_s, np.asarray(time_record)
def write_tsv(fvals, times, fopt, filep):
with open(filep,'w') as f:
f.write('Epoch\tf-f*\tTime\n')
for i in range(fvals.shape[0]):
f.write('%d\t%.8f\t%.4f\n'%(i,fvals[i]-fopt,times[i]))
def write_tsv2(epochs,fvals, times, fopt, filep):
with open(filep,'w') as f:
f.write('Epoch\tf-f*\tTime\n')
for i in range(fvals.shape[0]):
f.write('%d\t%.8f\t%.4f\n'%(epochs[i],fvals[i]-fopt,times[i]))
parser = argparse.ArgumentParser(description='Train All stoch')
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--save_path', type=str, required=True)
parser.add_argument('--diameter', type=float, required=True)
parser.add_argument('--lamda', type=float, required=True)
# parser.add_argument('--batch_size', type=int, required=True)
parser.add_argument('--rm_zeros', type=int, required=True)
parser.add_argument('--convert', type=int, default=1)
parser.add_argument('--maxiter', type=int, default=400)
args = parser.parse_args()
if __name__ == "__main__":
data_path = args.data_path
output_path = args.save_path
max_iter=args.maxiter
D = args.diameter
lamda = args.lamda
# batch_size = args.batch_size
rm_zeros = True if args.rm_zeros else False
seed = 1000
b, A = read_data(data_path,not rm_zeros)
if(args.convert == 1):
b = 2*b-3
m,n = A.shape
# b=np.expand_dims(b, axis=1)
params=dict()
params['A']=-np.multiply(b,A.T).T
params['A_o']=A
params['b']=b
# print(params['A'][0,:])
print(np.sum(A==params['A']))
# params['x_0']=np.zeros(n)
c_0 = 3.0
params['R']=D/2
params['inner_eps']=1e-7
params['outer_eps']=1e-4
params['n_iters']=max_iter # 400次Doikov迭代相当于50个convtype epoch
# params['n_iters_newton']=800
params['lambda']=1/lamda
params['t_init']=1
history=None
decrease_gamma=True
def f(x,A,b):
m,n = A.shape
bAx = b*(A@x)
exp_mbAx = np.exp(-bAx)
log1p_exp = np.log(1+exp_mbAx)
overflow_idxs = np.where(exp_mbAx==float('inf'))
log1p_exp[overflow_idxs] = -bAx[overflow_idxs]
return log1p_exp.mean() + 1/(lamda*m)* x.T@x
def f_grad(x,A,b):
m,n = A.shape
return np.ones(m)@(np.expand_dims((-b)/(1+np.exp(b*(A@x))), axis=1)*A)/m + 2/(lamda*m)*x
def f_hessian(x,A,b):
m,n = A.shape
Ax = A@x
exp_bAx = np.exp(b*Ax)
return (A.T @ (np.expand_dims(b*b*exp_bAx/(1+exp_bAx)**2, axis=1)*A) )/m + 2/(lamda*m)*np.eye(x.size)
#* logarithm barrier
def phi(x,D):
real = D/2-np.linalg.norm(x,ord=2)
return -np.log(real) if real>0 else float("inf")
# return -np.log(D**2/4-x@x)
def phi_grad(x,D):
x_norm = np.linalg.norm(x,ord=2)
return x/(x_norm*(D/2-x_norm))
# return 8/(D**2-4*x@x)*x
def phi_hessian(x,D):
x_norm = np.linalg.norm(x,ord=2)
# xTx = x@x
xxT = np.matmul(x[:,None],x[None,:]) # x * xT
return np.eye(x.size)/(x_norm*(D/2-x_norm)) + (2*x_norm-D/2)/(x_norm**3 * (D/2-x_norm)**2)*xxT
# return 4/((D**2-xTx)**2)*xxT + 8/(D**2-4*x@x)*np.eye(x.size)
def data_generator(A, b, batch_size=8192):
m,n = A.shape
new_idxs = np.arange(m)
np.random.shuffle(new_idxs)
A = A[new_idxs]
b = b[new_idxs]
numBatches = m//batch_size+1
for i in range(numBatches):
idx_begin = i*batch_size
idx_end = (i+1)*batch_size
yield (A[idx_begin:idx_end], b[idx_begin:idx_end])
#* 高精度 - 求解问题最优解
np.random.seed(seed)
t_init = 1
x0 = np.zeros(n)+0.001
x_opt, t, _, _,_ = barrier_method(t_init=t_init, f=lambda x:f(x,A,b), f_grad=lambda x:f_grad(x,A,b), f_hessian=lambda x:f_hessian(x,A,b), phi=phi, phi_grad=phi_grad, phi_hessian=phi_hessian,
A=A, b=b, x0=x0, D=D, num_constraints=1, method='newton', mu=10, epsilon=1e-10, maxIter=20)
print(f'求解问题最优解 - 最小值: {f(x_opt,A,b):>2f}\t耗时: {t:>2f}s')
fopt = f(x_opt,A,b)
# print(f(x0,A,b))
# 投影法
np.random.seed(1000)
init_x = np.zeros(n)+0.001
x_opt_spgd, fvals_spgd, t_spgd,times_spgd = projected_sgd(f=f, f_grad=f_grad, x0=init_x, D=D, t_hat=5, epsilon=1e-4, epochs=50)
print(f'最小值: {f(x_opt_spgd,A,b):>2f}\t耗时: {t_spgd:>2f}s')
# 投影法(方差缩减)
np.random.seed(1000)
init_x = np.zeros(n)+0.001
x_opt_spgd_vr, fvals_spgd_vr, t_spgd_vr,times_spgd_vr = projected_sgd(f=f, f_grad=f_grad, x0=init_x, D=D, t_hat=5, epsilon=1e-4, epochs=50, variance_reduction=True)
print(f'最小值: {f(x_opt_spgd_vr,A,b):>2f}\t耗时: {t_spgd_vr:>2f}s')
# 收缩域牛顿(无方差缩减)
np.random.seed(1000)
init_x = np.zeros(n)+0.001
params['x_0']=init_x
x_opt_vtr,fvals_ctr, times_ctr, epochs_ctr = cns.contracting_newton(params, c_0, decrease_gamma, False)
print(f'最小值: {f(x_opt_vtr,A,b):>2f}\t耗时: {times_ctr[-1]:>2f}s')
# 收缩域牛顿(方差缩减)
np.random.seed(1000)
init_x = np.zeros(n)+0.001
params['x_0']=init_x
x_opt_vtr_vr,fvals_ctr_vr, times_ctr_vr, epochs_ctr_vr = cns.contracting_newton(params, c_0, decrease_gamma, True)
print(f'最小值: {f(x_opt_vtr_vr,A,b):>2f}\t耗时: {times_ctr_vr[-1]:>2f}s')
write_tsv(fvals_spgd,times_spgd,fopt,args.save_path+".spgd.csv")
write_tsv(fvals_spgd_vr,times_spgd_vr,fopt,args.save_path+".spgd_vr.csv")
write_tsv2(epochs_ctr_vr,fvals_ctr_vr,times_ctr_vr,fopt,args.save_path+".ctr_vr.csv")
write_tsv2(epochs_ctr,fvals_ctr,times_ctr,fopt,args.save_path+".ctr.csv")