-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunctr_ipm.py
390 lines (357 loc) · 15.2 KB
/
runctr_ipm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
from tqdm import tqdm, trange
from time import time
from scipy.interpolate import interp1d
from libsvm.svmutil import svm_read_problem # https://blog.csdn.net/u013630349/article/details/47323883
import json, argparse
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import contrnewton as cn
import contripm as ci
#* 数据读取
def read_data(path, rm_zeros=True):
b, A = svm_read_problem(path)
rows = len(b) # 矩阵行数, i.e. sample 数
cols = max([max(row.keys()) if len(row)>0 else 0 for row in A]) # 矩阵列数, i.e. feature 数
b = np.array(b)
A_np = np.zeros((rows,cols))
for r in range(rows):
for c in A[r].keys():
# MatLab 是 1-index, python 则是 0-index
A_np[r,c-1] = A[r][c]
if rm_zeros:
# 清除全 0 features
effective_row_ids = []
for idx, row in enumerate(A_np):
if np.sum(np.abs(row)) > 1e-3:
effective_row_ids.append(idx)
return b[effective_row_ids], A_np[effective_row_ids]
return b, A_np
#* 实验结果保存
def save_as_json_files(objs, filename):
with open(filename, 'w') as f:
json.dump(objs, f)
#* Armijo rule
def armijo_search(f, f_grad, xk, t_hat, alpha, beta, D, isNewton=False, dk=None):
if isNewton:
assert dk is not None
tk = t_hat*1
grad = f_grad(xk)
while True:
if isNewton:
if np.linalg.norm(xk+tk*dk,ord=2)<=D/2 and f(xk+tk*dk) <= f(xk) + alpha*tk*grad.T@dk:
break
else:
# if np.linalg.norm(xk-tk*grad,ord=2)<=D/2 and f(xk-tk*grad) <= f(xk)-alpha*tk*grad.T@grad:
if f(xk-tk*grad) <= f(xk)-alpha*tk*grad.T@grad:
break
tk *= beta
return tk
#* 外部迭代
def barrier_method(t_init, f, f_grad, f_hessian, phi, phi_grad, phi_hessian, A, b, x0, D, num_constraints, mu,
method='newton', epsilon=1e-6, maxIter=20):
xt = x0
t = t_init
duality_gaps = []
func_val_record = []
time_record = []
t_s = time()
for i in trange(maxIter):
xt,num_newton_step, fvals, times = solve_central(objective=f,
f=lambda x:t*f(x)+phi(x,D),
f_grad=lambda x:t*f_grad(x)+phi_grad(x,D),
f_hessian=lambda x:t*f_hessian(x)+phi_hessian(x,D),
x0=xt, D=D, method=method, epsilon=epsilon*1e3)
times=(np.array(times)-t_s).tolist()
duality_gaps.extend([num_constraints/t]*num_newton_step)
func_val_record.extend(fvals)
time_record.extend(times)
if num_constraints/t < epsilon:
break
t *= mu
t_e = time()
print(f"Num newton:{len(func_val_record)}.")
return xt, t_e-t_s, np.array(duality_gaps), np.array(func_val_record),np.array(time_record)
#* 中心问题求解
def solve_central(objective, f, f_grad, f_hessian, x0, D, method='newton', epsilon=1e-6, max_iter=50):
if method == 'newton':
return damped_newton(objective, f=f, f_grad=f_grad, f_hessian=f_hessian, x0=x0, D=D, epsilon=epsilon, max_iter=max_iter)
if method == 'bfgs':
return bfgs(objective, f=f, f_grad=f_grad, f_hessian=f_hessian, x0=x0, D=D, epsilon=epsilon, max_iter=max_iter)
#* 阻尼牛顿
def damped_newton(objective, f, f_grad, f_hessian, x0, D, epsilon=1e-6, max_iter=50):
xk = x0
iter_cnt = 0
fvals = []
times=[]
for idx in range(max_iter):
iter_cnt += 1
fvals.append(objective(xk))
times.append(time())
grad = f_grad(xk)
hessian = f_hessian(xk)
dk = -np.linalg.inv(hessian)@grad
decrement = (-grad@dk)**0.5
if decrement**2/2 <= epsilon:
# print('** End The Loop - Iter Cnt.:',iter_cnt, 'Decrement:',decrement, 'fval:',f(xk))
return xk, iter_cnt, fvals,times
tk = armijo_search(f, f_grad, xk, t_hat=1, alpha=0.1, beta=0.5, D=D, isNewton=True, dk=dk)
# print('Iter Cnt.:',iter_cnt, 'Decrement:',decrement, 'fval:',f(xk), 'tk:',tk)
xk += tk*dk
return xk, iter_cnt, fvals, times
#* 拟牛顿
def bfgs(objective, f, f_grad, f_hessian, x0, D, alpha=0.1, beta=0.5, epsilon=1e-6, max_iter=500):
xk = x0
hessian = f_hessian(x0)
mat_k = np.linalg.inv(hessian)
# mat_k = np.eye(n)
iter_cnt = 0
fvals = []
times=[]
for idx in range(max_iter):
iter_cnt += 1
grad_k = f_grad(xk)
dk = -mat_k@grad_k
tk = wolfe_condition(f, f_grad, xk, dk, D, c1=1e-4, c2=0.9)
if tk<0:
return xk, iter_cnt-1, fvals
fvals.append(objective(xk))
times.append(time())
sk = tk*dk
xk_next = xk + sk
grad_next = f_grad(xk_next)
# if np.linalg.norm(grad_next, ord=2) <= epsilon:
# if np.linalg.norm(xk_next)>=D/2-1e-2:
# while np.linalg.norm(xk_next)>=D/2-1e-2:
# xk_next = xk + tk / 2 * dk
# tk /= 2
# return xk_next, iter_cnt, fvals, times
if np.linalg.norm(grad_next, ord=2) <= epsilon or np.linalg.norm(xk_next)>=D/2-1e-2:
return xk_next, iter_cnt, fvals, times
# print(f'Iteration {iter_cnt} - grad_norm:',np.linalg.norm(grad_next),"tk:",tk, "x_norm:",np.linalg.norm(xk_next))
# mat_k = np.linalg.inv(f_hessian(xk_next))
mat_k = update_approximation_bfgs(mat=mat_k, sk=sk, yk=grad_next-grad_k)
xk = xk_next
return xk_next, iter_cnt, fvals, times
#* 更新 Bk or Hk
def update_approximation_bfgs(mat, sk, yk, mat_type='H'):
rhok = 1/(yk@sk)
if mat_type == 'H':
Hkyk = mat@yk
ykTHkyk = yk@Hkyk
HkykskT = Hkyk[:,None]@sk[None,:]
skskT = sk[:,None]@sk[None,:]
mat_new = mat + rhok*((rhok*ykTHkyk+1)*skskT - HkykskT - HkykskT.T)
else:
Bksk = mat@sk
skTBksk = sk@Bksk
mat_new = mat - Bksk[:,None]@Bksk[None,:]/skTBksk + yk[:,None]@yk[None,:]*rhok
return mat_new
#* Wolfe Condition
def wolfe_condition(f, f_grad, xk, pk, D, c1=1e-4, c2=0.9, multiplier=1.2, t0=0, tmax=2):
while (np.linalg.norm(xk+tmax*pk)>=D/2):
tmax /= 2
if tmax<1e-6:
return -1
ti = tmax/2
tprev = t0
i = 1
fval_cur = f(xk)
grad_cur = f_grad(xk)
while True:
xk_next = xk+ti*pk
fval_next = f(xk_next)
if (fval_next > fval_cur + c1*ti*grad_cur@pk) or (fval_next >= fval_cur and i>1):
return zoom(f, f_grad, xk, pk, fval_cur, grad_cur, c1, c2, tprev, ti)
grad_next = f_grad(xk_next)
grad_next_T_pk = grad_next@pk
if np.abs(grad_next_T_pk) <= -c2*grad_cur@pk:
return ti
if grad_next_T_pk >= 0:
return zoom(f, f_grad, xk, pk, fval_cur, grad_cur, c1, c2, ti, tprev)
tprev = ti
ti = tprev*multiplier
i += 1
def zoom(f, f_grad, xk, pk, fval, grad, c1, c2, t_lo, t_hi):
while True:
t = (t_lo+t_hi)/2
xk_next = xk + t*pk
fval_next = f(xk_next)
if fval_next > fval + c1*t*grad@pk or fval_next >= f(xk+t_lo*pk):
t_hi = t
else:
grad_next = f_grad(xk_next)
grad_next_T_pk = grad_next@pk
if np.abs(grad_next_T_pk) <= -c2*grad@pk:
return t
if grad_next_T_pk*(t_hi-t_lo)>=0:
t_hi = t_lo
t_lo = t
if t_lo == t_hi: # 死循环
return -1
#* Projection
def project(x,D):
x_norm = np.linalg.norm(x)
if x_norm <= D/2:
return x
coef = D/2/x_norm
return coef*x
#* 投影(次)梯度法
def projected_gradient_descent(f, f_grad, x0, D, t_hat=1, epsilon=1e-6, max_iters=10000):
# grad_norm_record = [np.linalg.norm(f_grad(x0))]
xk = x0
xk_norm = np.linalg.norm(xk)
t_s = time()
func_val_record = [f(x0)]
time_record=[t_s]
# for idx in range(max_iters):
for idx in trange(max_iters):
tk = armijo_search(f, f_grad, xk, t_hat=t_hat, alpha=0.1, beta=0.5, D=D)
xk_next = project(xk-tk*f_grad(xk), D)
fval_xk_next = f(xk_next)
grad_xk_next = f_grad(xk_next)
func_val_record.append(fval_xk_next)
time_record.append(time()-t_s)
grad_norm_next = np.linalg.norm(grad_xk_next,ord=2)
# grad_norm_record.append(grad_norm_next)
norm_diff = np.linalg.norm(xk_next-xk)
if norm_diff<=epsilon:
break
# print(f'Iteration {idx} - Grad. Norm.:',grad_norm_next, 'Norm. Diff.:',norm_diff,'tk:',tk, 'x_norm:',np.linalg.norm(xk_next))
xk = xk_next
t_e = time()
print(f"Num gradient:{len(func_val_record)}.")
# return xk_next, t_e-t_s, np.array(func_val_record), np.array(grad_norm_record)
return xk_next, t_e-t_s, np.array(func_val_record),np.array(time_record)
def write_tsv(fvals, times, fopt, filep):
with open(filep,'w') as f:
f.write('Iter\tf-f*\tTime\n')
for i in range(fvals.shape[0]):
f.write('%d\t%.8f\t%.4f\n'%(i,fvals[i]-fopt,times[i]))
parser = argparse.ArgumentParser(description='Train All Non-stoch')
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--save_path', type=str, required=True)
parser.add_argument('--diameter', type=float, required=True)
parser.add_argument('--lamda', type=float, required=True)
# parser.add_argument('--batch_size', type=int, required=True)
parser.add_argument('--rm_zeros', type=int, required=True)
parser.add_argument('--maxiter', type=int, default=200)
args = parser.parse_args()
# e.g. python run_baselines.py --data_path w8a --save_path D_20_test.json --diameter 20 --lamda 100 --rm_zeros 0
if __name__ == "__main__":
data_path = args.data_path
output_path = args.save_path
max_iter=args.maxiter
D = args.diameter
lamda = args.lamda
# batch_size = args.batch_size
rm_zeros = True if args.rm_zeros else False
seed = 1000
b, A = read_data(data_path)
m,n = A.shape
# b=np.expand_dims(b, axis=1)
params=dict()
params['A']=-np.multiply(b,A.T).T
params['A_o']=A
params['b']=b
# print(params['A'][0,:])
print(np.sum(A==params['A']))
# params['x_0']=np.zeros(n)
c_0 = 3.0
params['R']=D/2
params['inner_eps']=1e-7
params['outer_eps']=1e-6
params['n_iters']=max_iter
# params['n_iters_newton']=800
params['lambda']=1/lamda
params['t_init']=1
history=None
decrease_gamma=True
#* objective
def f(x):
bAx = b*(A@x)
exp_mbAx = np.exp(-bAx)
log1p_exp = np.log(1+exp_mbAx)
overflow_idxs = np.where(exp_mbAx==float('inf'))
log1p_exp[overflow_idxs] = -bAx[overflow_idxs]
return log1p_exp.mean() + 1/(lamda*m)* x.T@x
def f_grad(x):
return np.ones(m)@(np.expand_dims((-b)/(1+np.exp(b*(A@x))), axis=1)*A)/m + 2/(lamda*m)*x
def f_hessian(x):
Ax = A@x
exp_bAx = np.exp(b*Ax)
return (A.T @ (np.expand_dims(b*b*exp_bAx/(1+exp_bAx)**2, axis=1)*A) )/m + 2/(lamda*m)*np.eye(x.size)
#* logarithm barrier
def phi(x,D):
real = D/2-np.linalg.norm(x,ord=2)
return -np.log(real) if real>0 else float("inf")
# return -np.log(D**2/4-x@x)
def phi_grad(x,D):
x_norm = np.linalg.norm(x,ord=2)
return x/(x_norm*(D/2-x_norm))
# return 8/(D**2-4*x@x)*x
def phi_hessian(x,D):
x_norm = np.linalg.norm(x,ord=2)
# xTx = x@x
xxT = np.matmul(x[:,None],x[None,:]) # x * xT
return np.eye(x.size)/(x_norm*(D/2-x_norm)) + (2*x_norm-D/2)/(x_norm**3 * (D/2-x_norm)**2)*xxT
# return 4/((D**2-xTx)**2)*xxT + 8/(D**2-4*x@x)*np.eye(x.size)
#* 高精度 - 求解问题最优解
np.random.seed(seed)
t_init = 1
x0 = np.zeros(n)+0.005
x_opt, t, _, _,_ = barrier_method(t_init=t_init, f=f, f_grad=f_grad, f_hessian=f_hessian, phi=phi, phi_grad=phi_grad, phi_hessian=phi_hessian,
A=A, b=b, x0=x0, D=D, num_constraints=1, method='newton', mu=10, epsilon=1e-10, maxIter=20)
print(f'求解问题最优解 - 最小值: {f(x_opt):>2f}\t耗时: {t:>2f}s')
# #* Damped Newton
# np.random.seed(seed)
# t_init = 1
# x0 = np.zeros(n)+0.005
# x_opt_ipm_damped, t_ipm_damped, duality_gaps_damped, fvals_damped, times_damped = barrier_method(t_init=t_init, f=f, f_grad=f_grad, f_hessian=f_hessian, phi=phi, phi_grad=phi_grad, phi_hessian=phi_hessian,
# A=A, b=b, x0=x0, D=D, num_constraints=1, method='newton', mu=10, epsilon=1e-6, maxIter=max_iter//10)
# print(f'阻尼牛顿 - 最小值: {f(x_opt_ipm_damped):>2f}\t耗时: {t_ipm_damped:>2f}s')
# #* Quasi Newton - BFGS
# np.random.seed(seed)
# t_init = 1
# x0 = np.zeros(n)+0.005
# x_opt_ipm_bfgs, t_ipm_bfgs, duality_gaps_bfgs, fvals_bfgs, times_bfgs = barrier_method(t_init=t_init, f=f, f_grad=f_grad, f_hessian=f_hessian, phi=phi, phi_grad=phi_grad, phi_hessian=phi_hessian,
# A=A, b=b, x0=x0, D=D, num_constraints=1, method='bfgs', mu=10, epsilon=1e-6, maxIter=max_iter//10)
# print(f'拟牛顿 BFGS - 最小值: {f(x_opt_ipm_bfgs):>2f}\t耗时: {t_ipm_bfgs:>2f}s')
# #* Projectd gd
# np.random.seed(seed)
# init_x = np.zeros(n)+0.005
# x_opt_pgd, t_pgd, fvals_pgd, times_pgd = projected_gradient_descent(f=f, f_grad=f_grad, x0=init_x, D=D, t_hat=5, epsilon=1e-6, max_iters=max_iter)
# print(f'投影次梯度 - 最小值: {f(x_opt_pgd):>2f}\t耗时: {t_pgd:>2f}s')
# #* Contracting Newton
# np.random.seed(seed)
# params['x_0'] = np.zeros(n)+0.005
# x_opt_ctr, t_ctr, fvals_ctr, time_ctr = cn.contracting_newton(params, c_0, decrease_gamma)
# print(f'收缩域牛顿法 - 最小值: {f(x_opt_ctr):>2f}\t耗时: {t_ctr:>2f}s')
#* Contracting Newton (IPM-Newton)
np.random.seed(seed)
params['x_0'] = np.zeros(n)+0.005
x_opt_ctr_ipm, t_ctr_ipm, fvals_ctr_ipm, time_ctr_ipm = ci.contracting_newton(params, c_0, decrease_gamma, False)
print(f'收缩域牛顿法(内点法) - 最小值: {f(x_opt_ctr_ipm):>2f}\t耗时: {t_ctr_ipm:>2f}s')
#* Contracting Newton (IPM-BFGS)
np.random.seed(seed)
params['x_0'] = np.zeros(n)+0.005
x_opt_ctr_bfgs, t_ctr_bfgs, fvals_ctr_bfgs, time_ctr_bfgs = ci.contracting_newton(params, c_0, decrease_gamma, True)
print(f'收缩域牛顿法(内点法BFGS) - 最小值: {f(x_opt_ctr_bfgs):>2f}\t耗时: {t_ctr_bfgs:>2f}s')
# 保存计算迭代的计算结果
# results = {
# 'newton': (fvals_damped.tolist(), t_ipm_damped, x_opt_ipm_damped.tolist()),
# 'bfgs': (fvals_bfgs.tolist(), t_ipm_bfgs, x_opt_ipm_bfgs.tolist()),
# 'gd': (fvals_pgd.tolist(), t_pgd, x_opt_pgd.tolist()),
# 'contr': (fvals_ctr.tolist(), t_ctr, x_opt_ctr.tolist()),
# 'contripm': (fvals_ctr_ipm.tolist(), t_ctr_ipm, x_opt_ctr_ipm.tolist()),
# # 'contrbfgs': (fvals_ctr_bfgs.tolist(), t_ctr_bfgs, x_opt_ctr_bfgs.tolist()),
# 'fval_opt': f(x_opt)
# }
fopt=f(x_opt)
# save_as_json_files(results, filename=output_path)
# write_tsv(fvals_damped,times_damped,fopt,output_path+".damped.tsv")
# write_tsv(fvals_bfgs,times_bfgs,fopt,output_path+".bfgs.tsv")
# write_tsv(fvals_pgd,times_pgd,fopt,output_path+".pgd.tsv")
# write_tsv(fvals_ctr,time_ctr,fopt,output_path+".ctr.tsv")
write_tsv(fvals_ctr_ipm,time_ctr_ipm,fopt,output_path+".ctripm.tsv")
write_tsv(fvals_ctr_bfgs,time_ctr_bfgs,fopt,output_path+".ctrbfgs.tsv")