-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_st2.py
124 lines (111 loc) · 3.38 KB
/
main_st2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import argparse
from datetime import datetime
# import sys
# sys.path.append('../')
from utils.config import parse
from train_st2 import Trainer
def defineyaml(args):
#YAML
sv_name = datetime.strftime(datetime.now(), '%Y%m%d_%H%M%S')
yamlcontents = f"""
sv_name: '{sv_name}'
model_name: deeplabv3plus
model_path: ./20210908_095909/checkpoints/20210908_095909_checkpoint.pth.tar
train: true
model_specs:
encoder_name: efficientnet-b3
in_channels: 4
classes: 2
upsampling: 4
batch_size: 8
data_specs:
width: 512
height: 512
dtype:
image_type: 32bit
rescale: false
rescale_minima: auto
rescale_maxima: auto
label_type: mask
is_categorical: false
mask_channels: 1
val_holdout_frac:
data_workers: 4
sar_training_data_csv: {args.sar_traincsv}
sar_validation_data_csv: {args.sar_validcsv}
rgb_training_data_csv: {args.rgb_traincsv}
rgb_validation_data_csv: {args.rgb_validcsv}
training_augmentation:
augmentations:
HorizontalFlip:
p: 0.5
RandomCrop:
height: 512
width: 512
p: 1.0
Normalize:
mean:
- 0.5
std:
- 0.125
max_pixel_value: 255.0
p: 1.0
p: 1.0
shuffle: true
validation_augmentation:
augmentations:
CenterCrop:
height: 512
width: 512
p: 1.0
Normalize:
mean:
- 0.5
std:
- 0.125
max_pixel_value: 255.0
p: 1.0
p: 1.0
training:
epochs: 200
lr: 5e-3
loss:
diceloss:
mode: multiclass
from_logits: True
crossentropyloss:
loss_weights:
crossentropyloss: 1.0
diceloss: 1.0
"""
print('saving file name is ', sv_name)
checkpoint_dir = os.path.join('./', sv_name, 'checkpoints')
logs_dir = os.path.join('./', sv_name, 'logs')
if not os.path.isdir(checkpoint_dir):
os.makedirs(checkpoint_dir)
if not os.path.isdir(logs_dir):
os.makedirs(logs_dir)
with open(os.path.join('./', sv_name, f'{sv_name}.yaml'), 'w') as f:
f.write(yamlcontents)
return sv_name, checkpoint_dir, logs_dir
def main(args):
sv_name, checkpoint_dir, logs_dir = defineyaml(args)
config = parse(os.path.join('./', sv_name, f'{sv_name}.yaml'))
config['checkpoint_dir'] = checkpoint_dir
config['logs_dir'] = logs_dir
trainer = Trainer(config)
trainer.run()
return None
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SpaceNet 6 Algorithm')
parser.add_argument('--sar-traincsv', default='/home/zkgy/Data/SpaceNet6/proc_train_test/train.csv',
help='Where to save reference CSV of training data')
parser.add_argument('--sar-validcsv', default='/home/zkgy/Data/SpaceNet6/proc_train_test/valid.csv',
help='Where to save reference CSV of validation data')
parser.add_argument('--rgb-traincsv', default='/home/zkgy/Data/SpaceNet6/proc_train_test/train.csv',
help='Where to save reference CSV of training data')
parser.add_argument('--rgb-validcsv', default='/home/zkgy/Data/SpaceNet6/proc_train_test/valid.csv',
help='Where to save reference CSV of validation data')
args = parser.parse_args()
main(args)