-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain_mnist.py
143 lines (125 loc) · 5.33 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import os
import torch
from tensorboardX import SummaryWriter
from torch import nn, optim
from torch.autograd import Variable
from torch.nn.utils import clip_grad_norm
from torch.utils.data import DataLoader, sampler
from torchvision import datasets, transforms
from model import MNISTModel
def train(args):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.1307,), std=(0.3081,))
])
train_dataset = datasets.MNIST(
root='data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(
root='data', train=False, transform=transform, download=True)
train_loader = DataLoader(
dataset=train_dataset, batch_size=256,
sampler=sampler.SubsetRandomSampler(list(range(0, 55000))))
valid_loader = DataLoader(
dataset=train_dataset, batch_size=256,
sampler=sampler.SubsetRandomSampler(list(range(55000, 60000))))
test_loader = DataLoader(dataset=test_dataset, batch_size=256)
model = MNISTModel(margin=args.margin)
if args.gpu > -1:
model.cuda(args.gpu)
criterion = nn.CrossEntropyLoss()
if args.optimizer == 'sgd':
optimizer = optim.SGD(params=model.parameters(), lr=0.1, momentum=0.9,
weight_decay=0.0005)
min_lr = 0.001
elif args.optimizer == 'adam':
optimizer = optim.Adam(model.parameters(), weight_decay=0.0005)
min_lr = 0.00001
else:
raise ValueError('Unknown optimizer')
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer=optimizer, mode='max', factor=0.1, patience=5, verbose=True,
min_lr=min_lr)
summary_writer = SummaryWriter(os.path.join(args.save_dir, 'log'))
def var(tensor, volatile=False):
if args.gpu > -1:
tensor = tensor.cuda(args.gpu)
return Variable(tensor, volatile=volatile)
global_step = 0
def train_epoch():
nonlocal global_step
model.train()
for train_batch in train_loader:
train_x, train_y = var(train_batch[0]), var(train_batch[1])
logit = model(input=train_x, target=train_y)
loss = criterion(input=logit, target=train_y)
optimizer.zero_grad()
loss.backward()
clip_grad_norm(model.parameters(), max_norm=10)
optimizer.step()
global_step += 1
summary_writer.add_scalar(
tag='train_loss', scalar_value=loss.data[0],
global_step=global_step)
def validate():
model.eval()
loss_sum = num_correct = denom = 0
for valid_batch in valid_loader:
valid_x, valid_y = (var(valid_batch[0], volatile=True),
var(valid_batch[1], volatile=True))
logit = model(valid_x)
y_pred = logit.max(1)[1]
loss = criterion(input=logit, target=valid_y)
loss_sum += loss.data[0] * valid_x.size(0)
num_correct += y_pred.eq(valid_y).long().sum().data[0]
denom += valid_x.size(0)
loss = loss_sum / denom
accuracy = num_correct / denom
summary_writer.add_scalar(tag='valid_loss', scalar_value=loss,
global_step=global_step)
summary_writer.add_scalar(tag='valid_accuracy', scalar_value=accuracy,
global_step=global_step)
lr_scheduler.step(accuracy)
return loss, accuracy
def test():
model.eval()
num_correct = denom = 0
for test_batch in test_loader:
test_x, test_y = (var(test_batch[0], volatile=True),
var(test_batch[1], volatile=True))
logit = model(test_x)
y_pred = logit.max(1)[1]
num_correct += y_pred.eq(test_y).long().sum().data[0]
denom += test_x.size(0)
accuracy = num_correct / denom
summary_writer.add_scalar(tag='test_accuracy', scalar_value=accuracy,
global_step=global_step)
return accuracy
best_valid_accuracy = 0
for epoch in range(1, args.max_epoch + 1):
train_epoch()
valid_loss, valid_accuracy = validate()
print(f'Epoch {epoch}: Valid loss = {valid_loss:.5f}')
print(f'Epoch {epoch}: Valid accuracy = {valid_accuracy:.5f}')
test_accuracy = test()
print(f'Epoch {epoch}: Test accuracy = {test_accuracy:.5f}')
if valid_accuracy > best_valid_accuracy:
model_filename = (f'{epoch:02d}'
f'-{valid_loss:.5f}'
f'-{valid_accuracy:.5f}'
f'-{test_accuracy:.5f}.pt')
model_path = os.path.join(args.save_dir, model_filename)
torch.save(model.state_dict(), model_path)
print(f'Epoch {epoch}: Saved the new best model to: {model_path}')
best_valid_accuracy = valid_accuracy
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--margin', default=1, type=int)
parser.add_argument('--optimizer', default='sgd')
parser.add_argument('--max-epoch', default=50, type=int)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--save-dir', required=True)
args = parser.parse_args()
train(args)
if __name__ == '__main__':
main()