-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathcontroller.py
851 lines (747 loc) · 40.2 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
# Author: Jimmy Wu
# Date: February 2023
import argparse
import logging
import math
import random
import socket
import subprocess
import threading
import time
from datetime import datetime
from multiprocessing.connection import Client
from pathlib import Path
from queue import Queue
from kortex_api.Exceptions.KServerException import KServerException
from redis import Redis
from camera import Camera
from constants import SERVER_HOSTNAME, ROBOT_HOSTNAME_PREFIX, CONN_AUTHKEY, REDIS_PASSWORD
from constants import ARM_HEADING_COMPENSATION
from kinova import KinovaArm
def distance(pt1, pt2):
return math.sqrt((pt2[0] - pt1[0])**2 + (pt2[1] - pt1[1])**2)
def restrict_heading_range(h):
return (h + math.pi) % (2 * math.pi) - math.pi
def dot(a, b):
return a[0] * b[0] + a[1] * b[1]
def intersect(d, f, r, use_t1=False):
# https://stackoverflow.com/questions/1073336/circle-line-segment-collision-detection-algorithm/1084899%231084899
a = dot(d, d)
b = 2 * dot(f, d)
c = dot(f, f) - r * r
discriminant = (b * b) - (4 * a * c)
if discriminant >= 0:
if use_t1:
t1 = (-b - math.sqrt(discriminant)) / (2 * a + 1e-6)
if 0 <= t1 <= 1:
return t1
else:
t2 = (-b + math.sqrt(discriminant)) / (2 * a + 1e-6)
if 0 <= t2 <= 1:
return t2
return None
class RedisClient:
def __init__(self):
hostname = socket.gethostname()
assert hostname.startswith(ROBOT_HOSTNAME_PREFIX)
self.bot_num = int(hostname[-1])
self.client = Redis(f'{ROBOT_HOSTNAME_PREFIX}{self.bot_num}', password=REDIS_PASSWORD, decode_responses=True)
def get_driver_version(self):
redis_key = f'mmp::bot{self.bot_num}::veh::driver_version'
self.client.delete(redis_key)
time.sleep(3 * 0.008) # 3 cycles at 125 Hz
return self.client.get(redis_key)
def get_pose(self):
return tuple(map(float, self.client.get(f'mmp::bot{self.bot_num}::veh::sensor::x').split(' ')))
def set_target_pose(self, pose):
self.client.set(f'mmp::bot{self.bot_num}::veh::control::x', f'{pose[0]} {pose[1]} {pose[2]}')
def get_goal_reached(self):
return bool(int(self.client.get(f'mmp::bot{self.bot_num}::veh::sensor::goal_reached')))
def set_stop(self, value):
self.client.set(f'mmp::bot{self.bot_num}::veh::stop', int(value))
def set_max_velocity(self, max_vel_x, max_vel_y, max_vel_theta):
self.client.set(f'mmp::bot{self.bot_num}::veh::control::max_vel', f'{max_vel_x} {max_vel_y} {max_vel_theta}')
def set_max_acceleration(self, max_accel_x, max_accel_y, max_accel_theta):
self.client.set(f'mmp::bot{self.bot_num}::veh::control::max_accel', f'{max_accel_x} {max_accel_y} {max_accel_theta}')
def get_velocity(self):
return tuple(map(float, self.client.get(f'mmp::bot{self.bot_num}::veh::sensor::dx').split(' ')))
def get_cstop(self):
return bool(int(self.client.get('mmp::cstop')))
def get_emergency_shutdown(self):
return bool(int(self.client.get('mmp::emergency_shutdown')))
class CoordFrameConverter:
def __init__(self, pose_in_map, pose_in_odom):
self.origin = None
self.basis = None
self.update(pose_in_map, pose_in_odom)
def update(self, pose_in_map, pose_in_odom):
self.basis = pose_in_map[2] - pose_in_odom[2]
dx = pose_in_odom[0] * math.cos(self.basis) - pose_in_odom[1] * math.sin(self.basis)
dy = pose_in_odom[0] * math.sin(self.basis) + pose_in_odom[1] * math.cos(self.basis)
self.origin = (pose_in_map[0] - dx, pose_in_map[1] - dy)
def convert_position(self, position):
x, y = position
x = x - self.origin[0]
y = y - self.origin[1]
xp = x * math.cos(-self.basis) - y * math.sin(-self.basis) # pylint: disable=invalid-unary-operand-type
yp = x * math.sin(-self.basis) + y * math.cos(-self.basis) # pylint: disable=invalid-unary-operand-type
return (xp, yp)
def convert_heading(self, th):
return th - self.basis
def convert_pose(self, pose):
x, y, th = pose
return (*self.convert_position((x, y)), self.convert_heading(th))
class BaseController:
LOOKAHEAD_DISTANCE = 0.3 # 30 cm
def __init__(self, debug=False):
# Mobile base driver
self.driver_running = True
ps_output = subprocess.run(['ps', '-C', 'vehicle', 'H', '-o', 'rtprio='], capture_output=True, text=True).stdout # pylint: disable=subprocess-run-check
if '80' not in map(str.strip, ps_output.split('\n')): # Control thread runs with rtprio 80
self.driver_running = False
print('Mobile base driver is not running, please restart this controller after the driver is ready')
self.redis_client = RedisClient()
self.redis_client.set_stop(True)
self.redis_client.set_max_velocity(0.5, 0.5, 3.14)
self.redis_client.set_max_acceleration(0.5, 0.5, 2.36)
self.robot_idx = self.redis_client.bot_num - 1
if self.driver_running:
expected_driver_version = '2023-08-17'
assert self.redis_client.get_driver_version() == expected_driver_version, f'Please make sure you are running the correct version of the mobile base driver ({expected_driver_version})'
# Control loop
self.running = False
self.state = 'idle' # States: idle, moving
self.pose_map = (0, 0, 0)
self.pose_odom = self.redis_client.get_pose()
self.map_to_odom_converter = CoordFrameConverter(self.pose_map, self.pose_odom)
self.odom_to_map_converter = CoordFrameConverter(self.pose_odom, self.pose_map)
self.waypoints_map = None
self.waypoints_odom = None
self.waypoint_index = None # Index of waypoint we are currently headed towards
self.target_ee_pos_map = None
self.target_ee_pos_odom = None
self.lookahead_position_odom = None
self.position_tolerance = None
self.heading_tolerance = None
# Checking for excessive drift
self.excessive_position_drift_count = 0
self.excessive_heading_drift_count = 0
self.debug = debug
if self.debug:
self.odom_to_map_converter_lookahead = CoordFrameConverter(self.pose_odom, self.pose_map)
def execute_command(self, base_command):
self.map_to_odom_converter.update(self.pose_map, self.pose_odom)
self.odom_to_map_converter.update(self.pose_odom, self.pose_map)
self.waypoints_map = base_command['waypoints']
self.waypoints_odom = list(map(self.map_to_odom_converter.convert_position, self.waypoints_map))
self.waypoint_index = 1
self.target_ee_pos_map = base_command['target_ee_pos']
self.target_ee_pos_odom = None if self.target_ee_pos_map is None else self.map_to_odom_converter.convert_position(self.target_ee_pos_map)
self.lookahead_position_odom = None
self.position_tolerance = base_command.get('position_tolerance', 0.015) # Default 1.5 cm
self.heading_tolerance = base_command.get('heading_tolerance', math.radians(2.1)) # Default 2.1 deg
if self.driver_running:
self.redis_client.set_stop(False)
self.state = 'moving'
def stop(self):
self.redis_client.set_stop(True)
self.state = 'idle'
def get_controller_data(self):
controller_data = {
'state': self.state,
'pose': self.pose_map,
'pose_odom': self.odom_to_map_converter.convert_pose(self.pose_odom),
'waypoints': self.waypoints_map,
'target_ee_pos': self.target_ee_pos_map,
}
if self.debug:
velocity = self.redis_client.get_velocity()
controller_data['velocity'] = (time.time(), velocity[0], velocity[1], velocity[2])
if self.lookahead_position_odom is not None:
self.odom_to_map_converter_lookahead.update(self.pose_odom, self.pose_map)
controller_data['lookahead_position_odom'] = self.odom_to_map_converter_lookahead.convert_position(self.lookahead_position_odom)
return controller_data
def run(self):
try:
self.running = True
# Robot pose from marker detection
marker_detector_conn = Client((SERVER_HOSTNAME, 6002), authkey=CONN_AUTHKEY)
marker_detector_conn.send(None)
goal_reached_steps = 0
last_time = time.time()
while True:
while time.time() - last_time < 0.008: # 125 Hz
time.sleep(0.0001)
step_time = time.time() - last_time
if step_time > 0.012: # 83 Hz
print(f'Warning: Step time {1000 * step_time:.1f} ms in {self.__class__.__name__}')
last_time = time.time()
# Check for cstop or emergency shutdown
if self.redis_client.get_cstop():
print('Exiting since cstop key was set')
break
if self.redis_client.get_emergency_shutdown():
print('Exiting since emergency shutdown key was set')
break
# Update pose from odometry and marker detection
self.pose_odom = self.redis_client.get_pose()
if marker_detector_conn.poll():
detector_data = marker_detector_conn.recv()
marker_detector_conn.send(None)
if self.robot_idx in detector_data['poses']:
self.pose_map = detector_data['poses'][self.robot_idx]
# Check for excessive drift
if self.state == 'moving':
pose_odom = self.odom_to_map_converter.convert_pose(self.pose_odom)
# Position drift
position_drift = distance(pose_odom, self.pose_map)
if position_drift > 0.3: # 30 cm
self.excessive_position_drift_count += 1
else:
self.excessive_position_drift_count = 0
if self.excessive_position_drift_count > 4: # 40 ms
print(f'Exiting due to excessive position drift ({100 * position_drift:.2f} cm)')
self.redis_client.set_stop(True)
break
# Heading drift
heading_drift = abs(restrict_heading_range(self.pose_map[2] - pose_odom[2]))
if heading_drift > math.radians(30): # 30 deg
self.excessive_heading_drift_count += 1
else:
self.excessive_heading_drift_count = 0
if self.excessive_heading_drift_count > 4: # 40 ms
print(f'Exiting due to excessive heading drift ({math.degrees(heading_drift):.2f} deg)')
self.redis_client.set_stop(True)
break
# Base control logic
if self.state == 'idle':
self.redis_client.set_target_pose(self.pose_odom)
elif self.state == 'moving':
if self.redis_client.get_goal_reached():
goal_reached_steps += 1
if goal_reached_steps > 1: # 16 ms
goal_reached_steps = 0
position_error = distance(self.pose_map, self.waypoints_map[-1])
if self.target_ee_pos_map is not None:
dx = self.target_ee_pos_map[0] - self.pose_map[0]
dy = self.target_ee_pos_map[1] - self.pose_map[1]
heading_error = abs(restrict_heading_range(math.atan2(dy, dx) + math.pi - self.pose_map[2]))
else:
heading_error = 0
if position_error > self.position_tolerance or heading_error > self.heading_tolerance:
# Execute corrective movement if robot is too far from intended destination
print(f'Too far from target pose ({100 * position_error:.2f} cm, {math.degrees(heading_error):.2f} deg)')
self.map_to_odom_converter.update(self.pose_map, self.pose_odom)
self.odom_to_map_converter.update(self.pose_odom, self.pose_map)
self.waypoints_odom = list(map(self.map_to_odom_converter.convert_position, self.waypoints_map))
self.target_ee_pos_odom = None if self.target_ee_pos_map is None else self.map_to_odom_converter.convert_position(self.target_ee_pos_map)
else:
self.redis_client.set_stop(True)
self.state = 'idle'
else:
# Compute lookahead position
while True:
start = self.waypoints_odom[self.waypoint_index - 1]
end = self.waypoints_odom[self.waypoint_index]
d = (end[0] - start[0], end[1] - start[1])
f = (start[0] - self.pose_odom[0], start[1] - self.pose_odom[1])
t2 = intersect(d, f, BaseController.LOOKAHEAD_DISTANCE)
if t2 is not None:
self.lookahead_position_odom = (start[0] + t2 * d[0], start[1] + t2 * d[1])
break
if self.waypoint_index == len(self.waypoints_odom) - 1:
self.lookahead_position_odom = None
break
self.waypoint_index += 1
if self.lookahead_position_odom is None:
target_position = self.waypoints_odom[-1]
else:
target_position = self.lookahead_position_odom
# Compute target heading
target_heading = self.pose_odom[2]
if self.target_ee_pos_odom is not None:
# Turn to face target end effector position
dx = self.target_ee_pos_odom[0] - self.pose_odom[0]
dy = self.target_ee_pos_odom[1] - self.pose_odom[1]
frac = 1
if self.lookahead_position_odom is not None:
# Turn slowly at first, and then more quickly as robot approaches target
remaining_path_length = BaseController.LOOKAHEAD_DISTANCE
curr_waypoint = self.lookahead_position_odom
for idx in range(self.waypoint_index, len(self.waypoints_odom)):
next_waypoint = self.waypoints_odom[idx]
remaining_path_length += distance(curr_waypoint, next_waypoint)
curr_waypoint = next_waypoint
frac = math.sqrt(BaseController.LOOKAHEAD_DISTANCE / remaining_path_length)
target_heading += frac * restrict_heading_range(math.atan2(dy, dx) + math.pi - self.pose_odom[2])
self.redis_client.set_target_pose((target_position[0], target_position[1], target_heading))
finally:
self.running = False
print('Stopping mobile base movement before exiting')
self.redis_client.set_stop(True)
class DummyBaseController:
def __init__(self):
self.state = 'idle' # States: idle, moving
self.pose_map = (0, 0, 0)
self.pose_odom = (0, 0, 0)
self.waypoints = None
self.waypoint_index = None # Index of waypoint we are currently headed towards
self.target_ee_pos = None
self.running = False
def execute_command(self, base_command):
self.waypoints = base_command['waypoints']
self.waypoint_index = 1
self.target_ee_pos = base_command['target_ee_pos']
self.pose_odom = self.pose_map
self.state = 'moving'
def stop(self):
self.state = 'idle'
def get_controller_data(self):
return {
'state': self.state,
'pose': self.pose_map,
'pose_odom': self.pose_odom,
'waypoints': self.waypoints,
'target_ee_pos': self.target_ee_pos,
}
def run(self):
try:
self.running = True
drift = 0
last_time = time.time()
while True:
while time.time() - last_time < 0.008: # 125 Hz
time.sleep(0.0001)
last_time = time.time()
if self.state == 'idle':
drift = 0
elif self.state == 'moving':
drift += 0.0005
next_waypoint = self.waypoints[self.waypoint_index]
dist = distance(self.pose_odom, next_waypoint)
if dist < 0.01:
self.waypoint_index += 1
if self.waypoint_index == len(self.waypoints):
self.state = 'idle'
else:
x = self.pose_odom[0] + 0.01 * (next_waypoint[0] - self.pose_odom[0]) / dist
y = self.pose_odom[1] + 0.01 * (next_waypoint[1] - self.pose_odom[1]) / dist
self.pose_odom = (x, y, 0)
self.pose_map = (x + drift, y + drift, 0)
finally:
self.running = False
class ArmController:
def __init__(self, robot_idx):
self.robot_idx = robot_idx
# Assumes parallel locking shafts are installed
self.gripper_open_threshold = 2.5 / 229 # Fully open is 2/229
self.gripper_closed_threshold = 226.5 / 229 # Fully closed is 227/229 (try restarting the arm if measured value is not 227/229)
# Arm setup
self.arm = KinovaArm()
self.arm.clear_faults()
self.arm.set_high_level_servoing()
self.arm.set_joint_limits(4 * [80] + 3 * [70], [297] + 6 * [150])
self.arm.set_max_twist_linear_limit()
self.arm.move_angular([self.arm.get_heading(), 340, 180, 214, 0, 320, 90])
if self.gripper_open_threshold < self.arm.get_gripper_position() < self.gripper_closed_threshold:
gripper_state = 'closed'
else:
self.arm.open_gripper()
gripper_state = 'open'
print(f'Initial gripper state: {gripper_state}')
# Control loop
self.state = 'idle' # States: idle, manipulating
self.gripper_state = gripper_state
self.target_ee_pos = None
self.arm_heading = self.arm.get_heading()
self.queue = Queue()
def disconnect(self):
self.arm.disconnect()
def execute_command(self, command):
self.queue.put(command)
def stop(self):
self.arm.apply_emergency_stop()
time.sleep(0.05) # Two 40 Hz cycles
self.arm.clear_faults()
self.arm.open_gripper()
self.gripper_state = 'open'
self.state = 'idle'
def get_controller_data(self):
return {
'state': self.state,
'gripper_state': self.gripper_state,
'target_ee_pos': self.target_ee_pos,
'arm_heading': self.arm_heading,
}
def check_grasp_success(self):
gripper_position = self.arm.get_gripper_position()
if gripper_position < self.gripper_closed_threshold:
print(f'Grasp succeeded (gripper position: {gripper_position:.4f})')
return True
print(f'Grasp failed (gripper position: {gripper_position:.4f})')
return False
def pick_object(self, target_arm_heading, distance_to_target, grasp_orientation):
self.arm.wait_ready()
computed_joint_angles_1 = self.arm.compute_inverse_kinematics((distance_to_target, 0, -0.288 + 0.1), (180, 0, 90), guess_joint_angles=[0, 90, 180, 295, 0, 335, 90])
computed_joint_angles_2 = self.arm.compute_inverse_kinematics((distance_to_target, 0, -0.288), (180, 0, 90), guess_joint_angles=[0, 90, 180, 295, 0, 335, 90])
if computed_joint_angles_1 is not None and computed_joint_angles_2 is not None:
computed_joint_angles_1[0] = target_arm_heading
computed_joint_angles_2[0] = target_arm_heading
computed_joint_angles_1[6] = grasp_orientation
computed_joint_angles_2[6] = grasp_orientation
self.arm.move_angular(computed_joint_angles_1)
self.arm.move_angular(computed_joint_angles_2)
self.arm.close_gripper()
if self.check_grasp_success():
self.gripper_state = 'closed'
self.arm.move_angular([target_arm_heading, 340, 180, 214, 0, 320, 90], blocking=False) # 2.03 secs
self.arm.close_gripper(blocking=False) # Make the grasp more secure
time.sleep(1) # Wait until arm reaches safe position before moving the base
else:
self.arm.open_gripper()
self.arm.move_angular([target_arm_heading, 340, 180, 214, 0, 320, 90])
def _check_gripper(self):
# Check whether object slipped out of the gripper
assert self.gripper_state == 'closed'
self.arm.close_gripper()
if not self.check_grasp_success():
self.arm.open_gripper()
self.gripper_state = 'open'
return False
return True
def place_object(self, target_arm_heading, distance_to_target, height=-0.288, horizontal=False): # height: -0.288 floor, 0.45 max
if not self._check_gripper():
return
self.arm.wait_ready()
theta_xyz = (90, 0, 90) if horizontal else (180, 0, 90)
computed_joint_angles = self.arm.compute_inverse_kinematics((distance_to_target, 0, height), theta_xyz, guess_joint_angles=[0, 55, 180, 275, 0, 320, 90])
if computed_joint_angles is not None:
computed_joint_angles[0] = target_arm_heading
self.arm.move_angular(computed_joint_angles)
self.arm.open_gripper()
self.gripper_state = 'open'
self.arm.move_angular([target_arm_heading, 340, 180, 214, 0, 320, 90])
def toss_object(self, target_arm_heading):
if not self._check_gripper():
return
self.arm.wait_ready()
self.arm.move_angular([target_arm_heading, 50, 180, 250, 0, 260, 90])
self.arm.toss(target_arm_heading)
self.gripper_state = 'open'
self.arm.move_angular([target_arm_heading, 340, 180, 214, 0, 320, 90])
def place_object_in_shelf(self, target_arm_heading, distance_to_target):
if not self._check_gripper():
return
self.arm.wait_ready()
computed_joint_angles_1 = self.arm.compute_inverse_kinematics((distance_to_target, 0, 0.05), (135, 0, 90), guess_joint_angles=[0, 60, 180, 275, 0, 5, 90])
computed_joint_angles_2 = self.arm.compute_inverse_kinematics((distance_to_target + 0.15, 0, 0.05), (90, 0, 90), guess_joint_angles=[0, 90, 180, 305, 0, 50, 90])
if computed_joint_angles_1 is not None and computed_joint_angles_2 is not None:
computed_joint_angles_1[0] = target_arm_heading
computed_joint_angles_2[0] = target_arm_heading
self.arm.move_angular(computed_joint_angles_1)
self.arm.move_angular(computed_joint_angles_2)
self.arm.open_gripper()
self.gripper_state = 'open'
self.arm.move_angular(computed_joint_angles_1)
self.arm.move_angular([target_arm_heading, 340, 180, 214, 0, 320, 90])
def place_object_in_drawer(self, target_arm_heading, distance_to_target):
if not self._check_gripper():
return
self.arm.wait_ready()
computed_joint_angles_1 = self.arm.compute_inverse_kinematics((0.4, 0, -0.288), (180, 0, 90), guess_joint_angles=[0, 85, 180, 280, 0, 345, 90])
computed_joint_angles_2 = self.arm.compute_inverse_kinematics((distance_to_target - 0.045, 0, 0.185), (90, 0, 90), guess_joint_angles=[0, 65, 180, 265, 0, 65, 90])
computed_joint_angles_3 = self.arm.compute_inverse_kinematics((0.4, 0, -0.1), (150, 0, 90), guess_joint_angles=[0, 70, 180, 225, 0, 55, 90])
computed_joint_angles_4 = self.arm.compute_inverse_kinematics((0.4, 0, 0.3), (180, 0, 90), guess_joint_angles=[0, 355, 180, 240, 0, 290, 90])
computed_joint_angles_5 = self.arm.compute_inverse_kinematics((distance_to_target - 0.11, 0, 0.40), (160, 0, 90), guess_joint_angles=[0, 45, 180, 330, 0, 275, 90])
computed_joint_angles_6 = self.arm.compute_inverse_kinematics((distance_to_target - 0.25, 0, 0.25), (160, 0, 90), guess_joint_angles=[0, 20, 180, 260, 0, 320, 90])
if (computed_joint_angles_1 is not None and computed_joint_angles_2 is not None and computed_joint_angles_3 is not None
and computed_joint_angles_4 is not None and computed_joint_angles_5 is not None and computed_joint_angles_6 is not None):
computed_joint_angles_1[0] = target_arm_heading
computed_joint_angles_2[0] = target_arm_heading
computed_joint_angles_3[0] = target_arm_heading
computed_joint_angles_4[0] = target_arm_heading
computed_joint_angles_5[0] = target_arm_heading
computed_joint_angles_6[0] = target_arm_heading
# Set down object
self.arm.move_angular(computed_joint_angles_1)
self.arm.open_gripper()
# Open drawer
self.arm.move_angular(computed_joint_angles_2)
self.arm.close_gripper()
self.arm.move_cartesian((distance_to_target - 0.22, 0, 0.185), (90, 0, 90))
self.arm.open_gripper()
# Pick up object
self.arm.move_angular(computed_joint_angles_3)
self.arm.move_angular(computed_joint_angles_1)
self.arm.close_gripper()
self.arm.move_angular(computed_joint_angles_4)
# Place object in drawer
self.arm.move_angular(computed_joint_angles_5)
self.arm.open_gripper()
self.arm.move_angular(computed_joint_angles_6)
# Close drawer
self.arm.move_cartesian((distance_to_target - 0.04, 0, 0.185), (90, 0, 90))
# Retract arm
self.gripper_state = 'open'
self.arm.move_angular([target_arm_heading, 340, 180, 214, 0, 320, 90])
def run(self):
while True:
if self.queue.empty():
self.state = 'idle'
else:
self.state = 'manipulating'
try:
# Clear faults
if self.arm.in_fault():
self.arm.clear_faults()
arm_command = self.queue.get()
# Arm-dependent heading compensation
arm_command['target_arm_heading'] += ARM_HEADING_COMPENSATION[self.robot_idx]
# Execute command
self.target_ee_pos = arm_command['target_ee_pos']
if arm_command['primitive_name'] == 'pick':
self.pick_object(arm_command['target_arm_heading'], arm_command['distance_to_target'], arm_command['grasp_orientation'])
elif arm_command['primitive_name'] == 'place':
if arm_command['place_height'] is not None:
self.place_object(arm_command['target_arm_heading'], arm_command['distance_to_target'], height=arm_command['place_height'])
else:
self.place_object(arm_command['target_arm_heading'], arm_command['distance_to_target'])
elif arm_command['primitive_name'] == 'toss':
self.toss_object(arm_command['target_arm_heading'])
elif arm_command['primitive_name'] == 'shelf':
self.place_object_in_shelf(arm_command['target_arm_heading'], arm_command['distance_to_target'])
elif arm_command['primitive_name'] == 'drawer':
self.place_object_in_drawer(arm_command['target_arm_heading'], arm_command['distance_to_target'])
# Update state
self.target_ee_pos = None
self.arm_heading = self.arm.get_heading()
except KServerException:
pass
time.sleep(0.001)
class DummyArmController:
def __init__(self, _):
self.state = 'idle' # States: idle, manipulating
self.gripper_state = 'open'
self.target_ee_pos = None
self.arm_heading = 0
self.queue = Queue()
def disconnect(self):
pass
def execute_command(self, command):
self.queue.put(command)
def stop(self):
pass
def get_controller_data(self):
return {
'state': self.state,
'gripper_state': self.gripper_state,
'target_ee_pos': self.target_ee_pos,
'arm_heading': self.arm_heading,
}
def run(self):
while True:
if self.queue.empty():
self.state = 'idle'
else:
self.state = 'manipulating'
arm_command = self.queue.get()
self.target_ee_pos = arm_command['target_ee_pos']
time.sleep(1)
if arm_command['primitive_name'] == 'pick':
self.gripper_state = 'closed'
else:
self.gripper_state = 'open'
self.target_ee_pos = None
time.sleep(0.001)
class Controller:
def __init__(self, debug=False):
self.state = 'idle' # States: idle, moving, manipulating
self.start_time = time.time()
# Base controller
try:
self.base_controller = BaseController(debug=debug)
robot_idx = self.base_controller.robot_idx
except Exception as e:
print(e)
# Start dummy base controller
self.base_controller = DummyBaseController()
robot_idx = 0
print('Could not start base controller, falling back to dummy base controller')
# Arm controller
try:
self.arm_controller = ArmController(robot_idx)
except Exception as e:
print(e)
# Start dummy arm controller
self.arm_controller = DummyArmController(robot_idx)
print('Could not start arm controller, falling back to dummy arm controller')
# Object detection
self.categories = []
try:
self.camera = Camera(robot_idx)
self.object_detector_conn = Client((SERVER_HOSTNAME, 6003), authkey=CONN_AUTHKEY)
self.queue = Queue()
self.object_detector_conn.send({'encoded_image': self.camera.get_encoded_image(), 'categories': self.categories}) # Warm up the server
self.object_detector_conn.recv()
self.detected_object = None
except Exception as e:
print(e)
self.camera = None
print('Could not set up object detection, falling back to random selection from object categories')
# Controller server
self.server_conn = Client((SERVER_HOSTNAME, 6007 + robot_idx), authkey=CONN_AUTHKEY)
# Logging
log_dir = 'logs'
Path(log_dir).mkdir(exist_ok=True)
today = datetime.now().strftime('%Y-%m-%d')
logging.basicConfig(filename=f'{log_dir}/{today}.log', format='%(asctime)s %(levelname)s %(filename)s: %(message)s', level=logging.INFO, encoding='utf-8')
logging.info('Starting new session')
def _get_end_effector_offset(self, primitive_name):
if self.arm_controller.gripper_state == 'open':
return 0.55
return {'toss': 1.30, 'shelf': 0.75, 'drawer': 0.80}.get(primitive_name, 0.55)
def build_base_command(self, command):
assert command['primitive_name'] in {'move', 'pick', 'place', 'toss', 'shelf', 'drawer'}
# Base movement only
if command['primitive_name'] == 'move':
return {'waypoints': command['waypoints'], 'target_ee_pos': None, 'position_tolerance': 0.1} # 10 cm tolerance for position error
# Modify waypoints so that the end effector is placed at the target end effector position (the last waypoint)
target_ee_pos = command['waypoints'][-1]
end_effector_offset = self._get_end_effector_offset(command['primitive_name'])
new_waypoint = None # Find new_waypoint such that distance(new_waypoint, target_ee_pos) == end_effector_offset
reversed_waypoints = command['waypoints'][::-1]
for idx in range(1, len(reversed_waypoints)):
start = reversed_waypoints[idx - 1]
end = reversed_waypoints[idx]
d = (end[0] - start[0], end[1] - start[1])
f = (start[0] - target_ee_pos[0], start[1] - target_ee_pos[1])
t2 = intersect(d, f, end_effector_offset)
if t2 is not None:
new_waypoint = (start[0] + t2 * d[0], start[1] + t2 * d[1])
break
if new_waypoint is not None:
# Discard all waypoints that are too close to target_ee_pos (distance(waypoint, target_ee_pos) < end_effector_offset)
waypoints = reversed_waypoints[idx:][::-1] + [new_waypoint]
else:
# Base is too close to target end effector position and needs to back up
print('Warning: Base needs to deviate from commanded path to reach target position, watch out for potential collisions')
curr_position = command['waypoints'][0]
signed_dist = distance(curr_position, target_ee_pos) - end_effector_offset
dx = target_ee_pos[0] - curr_position[0]
dy = target_ee_pos[1] - curr_position[1]
target_heading = restrict_heading_range(math.atan2(dy, dx))
target_position = (curr_position[0] + signed_dist * math.cos(target_heading), curr_position[1] + signed_dist * math.sin(target_heading))
waypoints = [curr_position, target_position]
base_command = {'waypoints': waypoints, 'target_ee_pos': target_ee_pos}
return base_command
def build_arm_command(self, command, base_pose):
if command['primitive_name'] == 'move':
return None
target_ee_pos = command['waypoints'][-1]
distance_to_target = distance(base_pose, target_ee_pos)
end_effector_offset = self._get_end_effector_offset(command['primitive_name'])
diff = abs(end_effector_offset - distance_to_target)
if diff < 0.1: # 10 cm
dx = target_ee_pos[0] - base_pose[0]
dy = target_ee_pos[1] - base_pose[1]
target_arm_heading = math.degrees(math.pi - (math.atan2(dy, dx) - base_pose[2])) % 360
grasp_orientation = 90
if command.get('grasp_orientation', None) is not None:
grasp_orientation += math.degrees(((command['grasp_orientation'] - base_pose[2]) + math.pi / 2) % math.pi - math.pi / 2)
assert 0 <= grasp_orientation <= 180, grasp_orientation
arm_command = {
'primitive_name': command['primitive_name'],
'target_ee_pos': target_ee_pos,
'distance_to_target': distance_to_target,
'target_arm_heading': target_arm_heading,
'grasp_orientation': grasp_orientation,
'place_height': command.get('place_height', None),
}
if arm_command['primitive_name'] == 'pick':
assert self.arm_controller.gripper_state == 'open'
return arm_command
print(f'Too far from target end effector position ({(100 * diff):.1f} cm)')
return None
def handle_object_detection(self):
while True:
if self.state == 'moving':
self.detected_object = None
elif not self.queue.empty():
self.queue.get()
encoded_image = self.camera.get_encoded_image() # 90 ms
#self.object_detector_conn.send({'encoded_image': encoded_image, 'categories': self.categories})
self.object_detector_conn.send({'encoded_image': encoded_image, 'categories': self.categories, 'use_clip': True})
output = self.object_detector_conn.recv() # 1000 ms
logging.info(f'Object detection: {output["image_path"]} {list(zip(output["categories"], output["scores"]))}') # pylint: disable=logging-fstring-interpolation
self.detected_object = output['categories'][0]
time.sleep(0.001)
def request_object_detection(self):
self.queue.put(None)
def run(self):
# Start base and arm controllers
threading.Thread(target=self.base_controller.run, daemon=True).start()
threading.Thread(target=self.arm_controller.run, daemon=True).start()
# Start thread to handle object detection
if self.camera is not None:
threading.Thread(target=self.handle_object_detection, daemon=True).start()
self.server_conn.send({'state': self.state, 'start_time': self.start_time})
curr_command = None
last_time = time.time()
while self.base_controller.running:
while time.time() - last_time < 0.008: # 125 Hz
time.sleep(0.0001)
step_time = time.time() - last_time
if step_time > 0.02: # 50 Hz
print(f'Warning: Step time {1000 * step_time:.1f} ms in {self.__class__.__name__}')
last_time = time.time()
# Communicate with server
new_command = None
if self.server_conn.poll():
new_command = self.server_conn.recv()
controller_data = {'state': self.state, 'start_time': self.start_time}
if self.camera is not None:
controller_data['detected_object'] = self.detected_object
elif len(self.categories) > 0:
controller_data['detected_object'] = random.choice(self.categories)
controller_data['base'] = self.base_controller.get_controller_data()
controller_data['arm'] = self.arm_controller.get_controller_data()
self.server_conn.send(controller_data)
# Base and arm control logic
if new_command == 'stop':
if self.state == 'moving':
self.base_controller.stop()
elif self.state == 'manipulating':
self.arm_controller.stop()
self.state = 'idle'
elif self.state == 'idle':
if new_command is not None: # Only accept new commands if robot is idle
curr_command = new_command
logging.info(f'Executing command: {curr_command}') # pylint: disable=logging-fstring-interpolation
self.categories = curr_command.get('categories', [])
self.state = 'moving'
self.base_controller.execute_command(self.build_base_command(curr_command))
elif self.state == 'moving':
if self.base_controller.state == 'idle':
arm_command = self.build_arm_command(curr_command, self.base_controller.pose_map)
if arm_command is not None:
if self.camera is not None and arm_command['primitive_name'] == 'pick':
self.request_object_detection()
self.state = 'manipulating'
self.arm_controller.execute_command(arm_command)
else:
self.state = 'idle'
elif self.state == 'manipulating':
if self.arm_controller.state == 'idle':
self.state = 'idle'
print('Disconnecting arm')
self.arm_controller.disconnect()
if self.camera is not None:
print('Disconnecting camera')
self.camera.disconnect()
time.sleep(1) # Wait for error messages in threads to print
def main(args):
Controller(debug=args.debug).run()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true')
main(parser.parse_args())