-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathplot_base_state.py
87 lines (73 loc) · 2.89 KB
/
plot_base_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Author: Jimmy Wu
# Date: October 2024
import math
import time
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import redis
ROBOT_WIDTH = 0.5 # Note: Approximate value
class Visualizer:
def __init__(self):
# Odometry figure
plt.figure('Odometry')
plt.axis([-1, 1, -1, 1])
self.fig_axis = plt.gca()
self.fig_axis.set_aspect('equal')
plt.grid(which='both')
self.robot_line, = plt.plot([], color='tab:gray')
self.robot_arrow = plt.arrow(0, 0, 0, 0, head_width=0)
self.odom_line, = plt.plot([], '--', color='tab:blue')
# Velocity figure
plt.figure('Velocity')
self.vel_fig_axis = plt.gca()
self.vel_x_line, = plt.plot([], label='x')
self.vel_y_line, = plt.plot([], label='y')
self.vel_th_line, = plt.plot([], label='θ')
plt.grid(True)
plt.legend()
# Bring to foreground
plt.figure('Odometry')
def draw(self, x, t_data, x_data, dx_data):
# Robot outline
th = x[2]
angles = th + np.radians([135, 45, -45, -135], dtype=np.float32)
corners = (math.sqrt(2) / 2) * np.stack((np.cos(angles, dtype=np.float32), np.sin(angles, dtype=np.float32)), axis=1)
corners = np.array([x[0], x[1]], dtype=np.float32) + ROBOT_WIDTH * corners
corners = np.append(corners, corners[:1], axis=0)
self.robot_line.set_data(*corners.T)
# Robot heading
arrow_dx = 0.25 * ROBOT_WIDTH * math.cos(th)
arrow_dy = 0.25 * ROBOT_WIDTH * math.sin(th)
self.robot_arrow.set_data(x=x[0], y=x[1], dx=arrow_dx, dy=arrow_dy, head_width=ROBOT_WIDTH / 8)
# Trajectory (odometry)
x_data = np.array(x_data, dtype=np.float32)
self.odom_line.set_data(x_data[:, 0], x_data[:, 1])
# Robot velocity
t_data = np.array(t_data, dtype=np.float64) # Do not cast timestamps to np.float32, major loss of precision
dx_data = np.array(dx_data, dtype=np.float32)
self.vel_x_line.set_data(t_data, dx_data[:, 0])
self.vel_y_line.set_data(t_data, dx_data[:, 1])
self.vel_th_line.set_data(t_data, dx_data[:, 2])
# Update plots
self.fig_axis.relim()
self.fig_axis.autoscale()
self.vel_fig_axis.relim()
self.vel_fig_axis.autoscale()
plt.pause(0.001)
def main(remote_host):
robot_client = redis.Redis(remote_host)
visualizer = Visualizer()
history_len = 500
t_data = deque(maxlen=history_len)
x_data = deque(maxlen=history_len)
dx_data = deque(maxlen=history_len)
while True:
t_data.append(time.time())
x = np.fromstring(robot_client.get('x'), sep=' ')
dx = np.fromstring(robot_client.get('dx'), sep=' ')
x_data.append(x)
dx_data.append(dx)
visualizer.draw(x, t_data, x_data, dx_data)
if __name__ == '__main__':
main('localhost')